
Program the
Internet of Things
with Swif t for iOS

Learn How to Program Apps for the
Internet of Things
—
Second Edition
—
Ahmed Bakir

Program the Internet of
Things with Swift for iOS
Learn How to Program Apps for the

Internet of Things

Second Edition

Ahmed Bakir

Program the Internet of Things with Swift for iOS: Learn How to Program Apps for
the Internet of Things

ISBN-13 (pbk): 978-1-4842-3512-6			 ISBN-13 (electronic): 978-1-4842-3513-3
https://doi.org/10.1007/978-1-4842-3513-3

Library of Congress Control Number: 2018964570

Copyright © 2018 by Ahmed Bakir

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image, we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the author nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-3512-6. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Ahmed Bakir
devAtelier, Tokyo, Japan

https://doi.org/10.1007/978-1-4842-3513-3

Dedicated to my mother, Layla Bakir, who shared with me her love of
teaching and enduring optimism

v

Part 1: �Building Health Apps for the Internet of Things����������������������������������� 1

Chapter 1: �Laying the Foundation for Your First IoT App��� 3

Learning Objectives��� 4

Setting Up the Project�� 5

Linking Your Apple Developer Account to Xcode�� 13

Building an Adaptive User Interface��� 17

Renaming Classes from the Base Template��� 19

Laying Out the User Interface��� 22

Applying Auto Layout Constraints��� 24

Customizing the Appearance of Items�� 27

Resolving Auto Layout Issues��� 37

Connecting the Storyboard to Your Code��� 41

Defining Interface Builder-Compatible Properties and Methods (Actions)����������������������������� 42

Using the Connection Inspector to Make the Final Storyboard Connections�������������������������� 45

Summary��� 50

Table of Contents
About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

vi

Chapter 2: �Using Core Location to Build a Workout Tracking App��������������������������� 51

Learning Objectives��� 52

Configuring Your Project for Background Location Activity�� 52

Requesting Location Permission�� 58

Checking for Hardware Availability��� 62

Responding to Changes in Location Permission Status��� 64

Requesting Location Updates�� 72

Responding to Location Updates�� 74

Displaying Location Data on a Map�� 81

Using the Codable Protocol for File-Based Data Storage��� 82

Displaying Saved Locations on a Map��� 93

Summary��� 96

Chapter 3: �Using Core Motion to Add Physical Activity Data to Your Apps������������� 97

Learning Objectives��� 98

Requesting Motion Permission from the User��� 99

Receiving Real-Time Step Count Updates from the iPhone’s Pedometer���������������������������������� 104

Updating the User Interface�� 108

Stopping and Pausing Pedometer Updates�� 111

Getting Activity Type��� 113

Handling Altimeter Updates��� 118

Summary��� 121

Chapter 4: �Using HealthKit to Securely Retrieve and Store Health Data���������������� 123

Learning Objectives��� 124

Requesting HealthKit Permission��� 125

Writing Data to HealthKit�� 132

Understanding How HealthKit Represents Data��� 132

Creating and Saving HealthKit Samples��� 133

Reading Workout Data from HealthKit��� 143

Using a Table View Controller to Display Data�� 146

Summary��� 160

Table of Contents

vii

Part 2: �Building Your Own Internet Things�� 161

Chapter 5: �Building Arduino-Based Peripherals�� 163

Learning Objectives��� 164

Building the Wireless Door-Sensor Hardware�� 166

Part List�� 166

Assembling the Hardware�� 168

Writing an Arduino Solution (Program)��� 178

Setting Up the Arduino Programming Environment�� 179

Using GPIO to Monitor Input Pins and Control Output Pins��� 184

Calculating Battery Status�� 187

Running and Monitoring the Arduino Solution�� 188

Summary��� 191

Chapter 6: �Building a Bluetooth LE Hardware Companion App����������������������������� 193

Learning Objectives��� 193

A Quick Introduction to Bluetooth LE��� 195

Adding Bluetooth Functionality to an Arduino Solution�� 197

Installing the ESP32_BLE_Arduino Library for Bluetooth Communication��������������������������� 198

Setting Up the Arduino As a Bluetooth Peripheral�� 201

Sending Data Updates via Bluetooth LE��� 208

Using Core Bluetooth to Communicate with Bluetooth LE Devices�� 210

Setting Up the IOTHome Project��� 211

Setting Up the App As a Central Manager�� 216

Connecting to a Bluetooth LE Peripheral�� 222

Monitoring Characteristic Updates��� 226

Monitoring Updates While the App Is in the Background��� 229

Summary��� 233

Table of Contents

viii

Chapter 7: �Setting Up a Raspberry Pi and Using It As a HomeKit Bridge�������������� 235

Learning Objectives��� 236

Setting Up the Raspberry Pi HomeKit Bridge��� 237

Putting Together the Hardware��� 237

Bootstrapping the Raspberry Pi�� 241

Installing HomeBridge�� 248

Configuring HomeBridge to Read Data from a Temperature Sensor������������������������������������ 253

Configuring HomeBridge to Connect to a Bluetooth LE Accessory��������������������������������������� 255

Connecting to Your New HomeKit Bridge��� 261

Summary��� 266

Chapter 8: �Building a Web Server on a Raspberry Pi�� 267

Learning Objectives��� 268

Creating a Web Server to Share Data over HTTPS��� 269

Using Express to Expose Web Services�� 269

Reading Values from the DHT Temperature Sensor�� 273

Reading Information from Bluetooth Devices��� 276

Using HTTPS to Provide Secure HTTP Connections�� 283

Configuring the Server to Start Up with the Raspberry Pi�� 290

Connecting to Your Server from an iOS App��� 292

Setting Up the User Interface��� 292

Making and Responding to HTTPS Requests�� 297

Summary��� 309

Part 3: Building Apps Using Apple’s Advanced Internet of
Things Technologies�� 311

Chapter 9: �Using tvOS to Build an Apple TV Dashboard App��������������������������������� 313

Learning Objectives��� 314

Setting Up the tvOS Target��� 315

Creating the User Interface�� 319

Programmatically Styling Elements to Match the tvOS Design Language��������������������������� 324

Using Font Awesome for Font-Based Graphics�� 328

Table of Contents

ix

Adding Data Sources to the tvOS App�� 332

Requesting User Location��� 335

Connecting to the OpenWeatherMap API�� 339

Handling Touch Input from the Siri Remote��� 351

Debugging the App on an Apple TV�� 354

Summary��� 358

Chapter 10: �Using watchOS to Build an Apple Watch App������������������������������������� 359

Learning Objectives��� 360

Setting Up the Project�� 361

Building a watchOS User Interface�� 368

Setting Up a Table View Using the WKInterfaceTable Class�� 380

Adding Force Touch Support��� 383

Creating a New Workout Using Core Location and Core Motion�� 388

Using HealthKit to Populate the Workout History Table�� 401

Summary��� 405

Chapter 11: Using Face ID, Touch ID, and Keychain Services to
Secure Your Apps�� 407

Learning Objectives��� 408

Setting Up the Project�� 409

Creating a Lock Screen User Interface��� 410

Querying for Sensor Availability��� 421

Using Face ID or Touch ID to Restrict Access to Features�� 424

Using Keychain Services to Secure Data��� 430

Using Biometrics or an App Password to Lock Keychain Items��� 437

Detecting When an App Returns to the Foreground��� 441

Summary��� 443

�Index�� 445

Table of Contents

xi

About the Author

Ahmed Bakir is an iOS author, teacher, and entrepreneur. After starting his career as

a firmware engineer, he made the mistake of telling someone at a party that he was

developing iPhone apps for fun and has been inundated with work ever since. He has

worked on more than 30 mobile projects, ranging from advising startups to architecting

apps for Fortune 500 companies. In 2014, he published his first book, Beginning iOS

Media App Development, followed, in 2016, by the first edition of Program the Internet of

Things with Swift for iOS. In 2015, he was invited to develop and teach iOS development

at UCSD-Extension. He is currently building cool stuff in Tokyo, Japan! You can find him

online at www.devatelier.com.

http://www.devatelier.com/

xiii

About the Technical Reviewer

Massimo Nardone has more than 22 years’ experience in security, web/mobile

development, and cloud and IT architecture. His true IT passions are security and

Android. He has been programming and teaching how to program with Android, Perl,

PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

Massimo holds a master of science degree in computer science from the University

of Salerno, Italy. He has worked as a project manager, software engineer, research

engineer, chief security architect, information security manager, PCI/SCADA auditor,

and senior lead IT security/cloud/SCADA architect for many years. Among his technical

skills are security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile

development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,

Django CMS, Jekyll, and Scratch.

Massimo currently works as chief information security officer at Cargotec Oyj.

He is a visiting lecturer and supervisor for exercises at the Networking Laboratory

of the Helsinki University of Technology (Aalto University), Finland. He holds four

international patents (related to PKI, SIP, SAML, and Proxy).

xv

Acknowledgments

Every author writes a book to tell a story, whether to entertain, educate, or provide an

experience for the reader that lies somewhere in between. What I have learned from

writing these past few years is that the process itself also has a story. The process of

writing this book had a more elaborate story than my first two, but on this page, I’d like to

thank as many people as possible who had a part in it.

First and foremost, I would like to thank my editors, Jessica Vakili and Aaron Black,

whose incredible patience and support allowed me to complete this work. I truly

apologize for any headaches I may have given you, but I am really proud of what we

produced together.

Next, I would like to thank my original coauthors on the first edition of this book,

Gheorghe Chesler and Manny de la Torriente. Beyond writing together, our experiences

while collaborating greatly shaped me as a developer and provided many fond memories

that I still look back on fondly today. The first edition of this book is something I will

always be proud of, especially because we produced it at a time when so much of Swift

and the Internet of Things was still up in the air!

Finally, I must thank my incredible family and friends, who have always supported

me, even on my crazy adventure of moving to Japan. They helped me realize that I was

seeking a new challenge, and they constantly encouraged me to persevere through every

part of it. Thank you, all!

To everyone I may have missed, don’t forget the legend of Hana no Asuka-gumi, and

I’ll be back again soon for our next misadventures at the Bonaventure!

xvii

Introduction

Welcome back to the Internet of Things (IoT). When my original coauthors, Gheorghe

Chesler and Manny de la Torriente, and I wrote the first edition of this book in 2016, we

combined what we learned from our careers, consulting projects, and dreams to put

together a narrative we hoped would help future developers write their own IoT apps for

iOS, using Swift. Looking at the Apress web site today, it appears that more than 30,000

people have read the book through their site alone, so I am glad we were able to reach

out to at least a few readers!

However, time marches on, and since the publication of the first edition, Swift and

the Internet of Things have evolved considerably. Some of the technologies we originally

wanted to write about have finally become real, and others have fallen by the wayside.

Most important, Swift as a language has finally begun to stabilize, and the developer

community has been establishing a clearer set of design patterns and coding standards

that are appropriate for the language. In addition to the Swift version from the original

edition (2.0) being incompatible with modern versions of the language, the time was

right to overhaul the original book.

This edition strikes a balance between revisiting some of the most loved content

from the first edition and presenting new concepts that were not available when the

previous edition was published. I have eliminated or streamlined concepts that fizzled

out and greatly expanded on those that have proven to be more important than before.

In particular, this book offers more coverage on building hardware projects, as the

availability of high-quality, affordable parts has expanded rapidly, as has their ease

of use. Beyond this, I noticed that, in general, more people want to build their own

hardware, and apps to go along with it.

Additionally, I have tried to make this edition accessible to more readers. While

every book I have written has been a narrative, aimed at developers with a basic

understanding of iOS development, in this volume, I have modified the format to reflect

the feedback I received while teaching and speaking to readers. Namely, this edition

xviii

allows you to skip around more between topics and provides more detailed step-by-step

instructions. Rather than simply giving you code to copy, I try to explain what you need

to put together to accomplish each task in a project. My hope is that this will allow you to

debug problems easier and use this book beyond the initial Swift version it was written

for (Swift 4.2).

While it would be impossible to describe the IoT fully in one paragraph, in this book,

I focus on how you can build, interact with, and network hardware-based sensors to

make your users’ lives more informed and convenient. In my home, I am able to use

IoT devices to turn off my lights with my voice, determine if I am using my appliances at

times when power is too expensive, and to figure out if I am brewing my tea at the perfect

temperature (I am, but I need to remember to get up when the timer goes off). In this

book, some of the projects you will implement will help you to keep better track of your

workouts, determine whether you have locked your door, and show you a dashboard for

your home on your Apple TV. Pretty cool for do-it-yourself projects!

Finally, remember, this book exists for you. The ultimate goal of writing it was to help

you and the developer community gain a stronger understanding of IoT development as

it relates to iOS and provide a wealth of inspiration for your own future projects. If you

would like to contribute to making sure that the code stays up to date, please submit pull

requests to the GitHub repository for the book (https://github.com/Apress/program-

internet-of-things-w-swift-for-ios). If you have any feedback, I would be excited to

hear it via Apress or my web site (www.devatelier.com). Happy hacking!

Introduction

https://github.com/Apress/program-internet-of-things-w-swift-for-ios
https://github.com/Apress/program-internet-of-things-w-swift-for-ios
http://www.devatelier.com/

Building Health Apps
for the Internet of Things

PART 1

3
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_1

CHAPTER 1

Laying the Foundation
for Your First IoT App
Before taking you on a deep dive into Apple’s Internet of Things (IoT) technologies,

I thought it would be useful to begin with a brief introduction to some of the tools

and workflows you will use throughout the book to build your projects. In this book,

your primary tools for building IoT apps will be the Xcode Integrated Development

Environment from Apple and its Interface Builder tool for building user interfaces.

When teaching iOS development, I always notice that both novice and experience

developers find these tools to encompass some of the most challenging concepts to

master, even more than Swift or the eccentricities of any framework.

To practice using Xcode, in this chapter, you will begin developing your first IoT app

for iOS: IOTFit, a workout app that uses the location services (GPS) on a user’s phone

to help them keep track of how long they exercised and where. If you are an avid user

of such workout apps as Runkeeper or Nike Plus, you will recognize time tracking as a

minimum requirement and location tracking as a feature that engages users and keeps

them coming back for more.

Throughout this book, you will continue to expand the IOTFit app to integrate more

of Apple’s IoT frameworks. I hope this approach will help you to notice when some

solutions are more appropriate than others. Additionally, I feel this approach is very

reminiscent of many Agile working environments, in which you constantly refine or

expand a product, based on one strongly defined feature set at a time.

If you are already familiar with iOS development, you can safely skim through this

chapter, but I highly recommend glancing through the screenshots to see if anything has

changed since you last worked with Xcode. This chapter has been designed and tested

for Xcode 9 and 10.

4

�Learning Objectives
In this chapter, you will learn the following critical skills for IoT development on iOS by

starting development on the IOTFit application.

•	 Setting up a project in Xcode

•	 Modifying a project from its default settings

•	 Linking Xcode to your Apple Developer Program account

•	 Using Interface Builder to lay out an adaptive user interface

•	 Connecting your visual layout-based user interface to your code

One of the most aggravating points of Apple platform development is that you

have to master certain workflows and aspects of using Xcode in order to achieve

critical milestones as an iOS developer, such as releasing your first app. To help you

with this process, in this chapter, I will try to include as many detailed screenshots and

explanations as possible for the project and user interface setup steps.

Unfortunately, Apple frequently replaces its old tools and workflows. This allows

Apple to build tools that are more relevant to current trends, but it also places a burden

on developers to keep up to date with the latest changes and caveats. In my personal

experience, I have noticed that while a workflow may change only every few years, the

project settings change with almost every major release. In the past two years, iOS 11

added mandatory settings for enabling permission-locked features like location sharing

and iOS 12 went even further by replacing the default build system.

In this chapter, I emphasize adaptive (Apple’s term) user interface development,

because the current range of supported iOS devices is so vast. While devices with the

form factor of the iPhone 8 and 8 Plus are the most widely used at the time of writing,

the tiny iPhone SE still makes up a huge segment of active devices, and Apple’s bezel-

less devices (iPhone X, XR, XS, XS Max) are being positioned strongly as the future of the

platform. If you take the iPad lineup into consideration, you will notice that the iPad mini

is nearly the same size as the iPhone 8 Plus, and the iPad Pro 13-inch model is larger

than many of today’s laptop computers. As a developer, it is amazing that the same code

can run on all of these devices; however, it comes at the cost of having to do some careful

Chapter 1 Laying the Foundation for Your First IoT App

5

preparation work and debugging, to make sure the experience is consistent across all

devices. In this chapter, I will share the workflow I use to build adaptive user interfaces

and tips I think will help make it easier for you.

Note  For the sake of clarity, the diagrams in this book illustrate the iPhone
implementation of these projects. Most of the projects in this book will run fine
on iPad as well, except for the ones that require device-specific hardware (for
example, Core Motion, Face ID). I will indicate what these projects are at the
beginning of the relevant chapter.

This chapter is intended to guide you through the process of setting up a project, but

if you run into any trouble along the way and would like to look at the completed project

for reference, it is available from the GitHub repository for this book, under the Chapter 1

folder (https://github.com/Apress/program-internet-of-things-w-swift-for-ios).

�Setting Up the Project
Before I start developing a project, I always want to know what I am building. To help you

gain a better understanding of what the first version of the IOTFit app will encompass,

please look at the wireframe diagrams in Figure 1-1. In design terms, a wireframe is

usually an initial sketch (hand-drawn or computer-generated) that lays out the most

critical components of a user interface.

Chapter 1 Laying the Foundation for Your First IoT App

https://github.com/Apress/program-internet-of-things-w-swift-for-ios

6

In reviewing the wireframes, you will notice three main states for the application:

recording a workout (inactive), recording a workout (active), and displaying a workout

on a map. When users want to start a workout, they press the Start button on the record

screen, and the text on the buttons and labels change to indicate that the workout is

being recorded. If users want to view their progress on a map, they press the Map icon

in the bottom tab bar, and the app will show an annotated map in place of the record

screen. If you use the App Store or Facebook apps for iOS, you will already be familiar

with the tab bar as a convenient way of switching screens in an app, while still preserving

the state of each tab. Although it is not listed on the wireframe, the background state

preservation you will implement for the app allows users to keep tracking a workout,

even when the app is in the background.

Figure 1-1.  Wireframe diagrams for the IOTFit app

Chapter 1 Laying the Foundation for Your First IoT App

7

WIREFRAMES VS. MOCKUPS

I like to use wireframes at the beginning of a project to put the stakeholders, developers,

and design team on the same page about what an app has to do, before committing to the

time-consuming work of generating mockups—the Photoshop- or Sketch-generated design

resources that specify the fine details of implementation, including exact colors, font sizes, and

shadows. It is much easier to throw away or redo a wireframe than it is a mockup!

To begin the development process, you will have to set up a new Xcode project for the

IOTFit app and configure it for the iOS frameworks you will need to use. Apple provides

a very rich toolbox for you to work with, but it always requires some careful preparation.

Before getting started, take a second to think about what frameworks you would like to

use to implement the requirements of the app, then refer to Table 1-1 for the final list of

what application programming interfaces (APIs) you will end up using in this project.

Table 1-1.  IOTFit Features and Their Corresponding iOS APIs

Requirement Application Programming Interface Parent Framework

Switching between screens easily Tab View Controller

(UITabViewController)

UIKit

Displaying a map Map View

(MKMapViewController)

MapKit

Accessing GPS hardware Location Manager

(CLLocationManager)

Core Location

Requesting location permission Location Manager

(CLLocationManager)

Core Location

The UITabViewController and MKMapViewController classes will drive the most

complicated parts of the user interface. The Core Location framework will do the heavy

lifting for requesting and tracking the user’s location.

Chapter 1 Laying the Foundation for Your First IoT App

8

Now that you have a better idea of the technical and design aspects of the project,

you can begin implementation. First, create a new Xcode Project by opening Xcode on

your Mac and clicking Create a new Xcode project from the Welcome to Xcode screen

shown in Figure 1-2. Alternatively, if Xcode is already open, you can click the File menu

and then select New ➤ Project.

Figure 1-2.  Creating a new project from the Xcode welcome screen

Next, Xcode will present a pop-up window asking you to select the template type

for your project. As shown in Figure 1-3, select Tabbed App to create a project based

on a template that includes a Tab Bar Controller and two empty View Controllers. This

template is close to the general user interface you must use for the IOTFit app and saves

a lot of time over manually setting everything up yourself.

Chapter 1 Laying the Foundation for Your First IoT App

9

After selecting the correct template, click the Next button, then when asked to set the

options for the project, enter “IOTFit” as the project name, as shown in Figure 1-4.

This will be used as a general identifier throughout the project and as the default

display name of the app on the iOS home screen. If you have an organization name or

organization identifier you would like to use, you can enter those at this time too. You do

not have to set a team for the project at this time, as you will do that later, after verifying

that the project has been created successfully.

Figure 1-3.  Selecting the Tabbed App template

Chapter 1 Laying the Foundation for Your First IoT App

10

After confirming these options, click the Next button, then select a location to save

the project. I like to place my projects in an easy-to-find folder in my home directory. As

shown in Figure 1-5, click the Create button to generate the project.

Figure 1-4.  Initial options for IOTFit project

Chapter 1 Laying the Foundation for Your First IoT App

11

After the project has been generated successfully, Xcode will greet you with the

Xcode editor window for your new project, as shown in Figure 1-6.

Figure 1-5.  Selecting a destination for the IOTFit project

Chapter 1 Laying the Foundation for Your First IoT App

12

If you have been developing apps for a while, this editor window should be very

familiar to you. For newer users, the major areas of this screen are described following.

•	 Navigator pane (left): The atlas for your project. This allows you to

manage your project hierarchy, search for text in your project, and

quickly navigate to debugging issues.

•	 Editor pane (center): Your main editing workspace. This lets you

modify source code, build settings, and view diffs of source-control-

managed files.

•	 Utilities pane (right): Your source code concierge. With this, you can

manage additional settings for individual files and view quick help

tips on classes you are working with (by simply highlighting them).

Getting back to the project at hand, verify that the settings for the generated project

are similar to those in the zoomed-in screenshot in Figure 1-7. In particular, verify that

the project has source files in the navigator pane and that the app’s Display Name and

Bundle Identifier match what you entered into the previous screens.

Figure 1-6.  Default Xcode editor window for the IOTFit project

Chapter 1 Laying the Foundation for Your First IoT App

13

Tip I f the project setting did not automatically appear with the editor window,
manually select them by clicking the project name in the Project Navigator (the
topmost item in the navigation pane).

Figure 1-7.  Default Xcode project settings for IOTFit

�Linking Your Apple Developer Account to Xcode
The first time you open Xcode or a project that you did not create yourself, such as one

that you cloned from GitHub, on your computer, the Signing section of your project

settings will have one of the error messages shown in Figure 1-8 or Figure 1-9, indicating

that it cannot find the signing credentials required to build the project.

Chapter 1 Laying the Foundation for Your First IoT App

14

To resolve these issues, click the drop-down menu next to Team, as shown in

Figure 1-10. Click Add an Account.

After making your selection, Xcode will display the sign in prompt shown in

Figure 1-11. If you have a paid Apple Developer Program membership, sign in with that.

Otherwise, enter a valid Apple ID that you use with iTunes or on the App Store.

Figure 1-8.  Signing error for fresh Xcode installation

Figure 1-9.  Signing error for missing Apple Developer account

Figure 1-10.  Team selection drop-down menu

Chapter 1 Laying the Foundation for Your First IoT App

15

Note A pple allows you to create a limited Developer account without a paid
membership that lets you test up to three devices per Apple ID. For this book, this
type of account is sufficient. However, when you reach the stage where you must
release your app on the App Store, or wish to share it via TestFlight or Enterprise
distribution, you will have to upgrade your account to a paid tier.

After signing in, the Accounts window will show a list of all the Apple Developer

Program teams your Apple ID is associated with, as shown in Figure 1-12. To sign onto

another Apple ID account or add a Source Control Management account (for example,

GitHub, Bitbucket) to Xcode, you can click the plus (+) button at the bottom-left (circled

in Figure 1-12).

Figure 1-11.  Xcode’s Apple ID sign-in prompt

Chapter 1 Laying the Foundation for Your First IoT App

16

After successfully linking your account, it is safe to close the Accounts window.

When you return to the editor window, your project settings should resemble those in

Figure 1-13, but with your team set as the team for the project.

If your selection still does not appear after closing the Accounts window, click the

Team drop-down menu again, to select one of your linked teams manually. You can use

this same method to change the team a project is associated with.

Figure 1-12.  Accounts window for successful sign-in

Figure 1-13.  Project settings after successfully signing in

Chapter 1 Laying the Foundation for Your First IoT App

17

These steps complete the project setup phase for this chapter. In later chapters, you

will return to the project settings to add new features to the app. Feel free to use this

section as a quick refresher at those times.

�Building an Adaptive User Interface
As an app developer, you always have to keep three thoughts in the back of your head:

“How do I build it?”, “How do I convince people to download it?”, and “How do I keep

people coming back for more?” Although marketing strategies are critical to building and

maintaining a customer base, as a developer, you can make an app more attractive to

your users by making sure it has a solid feature set and provides a compelling, consistent

user experience across all devices. In this section, I will introduce you to using the Auto

Layout features of iOS, to build a user interface that can adapt to all of the different

devices iOS runs on.

Until the release of the iPhone 5, iOS developers only had to worry about two

devices: the iPhone and the iPad. If a developer wanted to be on the cutting edge, he

or she could also configure all of the user interface elements to handle rotating with

the device. For this workflow, many of us could get by programming the entire layout

ourselves and maintaining separate Interface Builder (.xib) files for the iPhone and

iPad and for portrait and landscape modes. However, things started to change rapidly

after the iPhone 4 was released, and today’s device lineup for iOS has expanded greatly

since those early days. As an example, in Figure 1-14, I have provided a screenshot of the

device preview options in Interface Builder as of late 2018.

Figure 1-14.  Xcode 9’s Interface Builder device preview selector

Chapter 1 Laying the Foundation for Your First IoT App

18

In order of decreasing screen size, you are able to view previews for the following

devices:

•	 iPad Pro 13"

•	 iPad Pro 10.5"

•	 iPad Pro 9.7"

•	 iPhone 8 Plus

•	 iPhone X

•	 iPhone 8

•	 iPhone SE

•	 iPhone 4S

Going back to Figure 1-14 for a second, if you look carefully, you will notice that

every iPhone in the list has a different aspect ratio. When you combine these variables

with portrait and landscape mode, it starts to become obvious why iOS developers

moved away from hard-coding pixel positions for user interface elements a long time

ago. It sends you down an endless if statement rabbit hole!

By using Apple’s trait API’s (horizontalSizeClass, verticalSizeClass,

displayScale, userInterfaceIdiom), you can determine at runtime the display

characteristics of the device you are running on, without having to worry about the exact

device model or pixel size. You can then use these to define rules (constraints) for how

Auto Layout should adapt items for different screen configurations (for example, iPad

Pro in landscape mode, iPhone SE in portrait mode).

Each size class has two possible values: regular or compact. Auto Layout defines

iPads as purely regular devices. Both its horizontal and vertical size classes return

regular values, regardless of what the screen orientation is. iPhones, however, introduce

compact values, based on their device orientation. An iPhone in portrait orientation

returns regular for its vertical size class and compact for its horizontal size class. An

iPhone in landscape orientation returns compact for its vertical size class and compact

for its horizontal size class. If you are wondering why, Figure 1-15 should help. When

you put an iPhone X in portrait orientation next to a ten-inch iPad Pro in landscape

orientation, you will notice their screen heights are about the same, but the iPhone X

is much smaller in width. When you rotate the iPhone X to landscape orientation, both

dimensions will be much smaller than the iPad Pro.

Chapter 1 Laying the Foundation for Your First IoT App

19

The way you will use Auto Layout in this project is by placing elements on the main

storyboard for the app via Interface Builder and then using the IDE to set the Auto

Layout constraints for each. Interface Builder’s preview tools let you toggle between

different device configurations, so you can see if your rules are sufficient to be a good fit

for the devices you are targeting. What has worked best for me in the past has been to

work out most of the details of Auto Layout in Interface Builder first and then fine-tune

settings in my code later.

�Renaming Classes from the Base Template
As mentioned earlier, a huge advantage of using the Tabbed App template from Apple is

that it pre-populates your project with a storyboard and empty classes for an application

that uses a Tab interface as its primary method for navigation between screens. Earlier,

you verified that the project itself was generated successfully. To verify that your

storyboard was generated successfully, click the Main.storyboard file in the Project

Figure 1-15.  Comparing the physical dimensions of an iPhone X and iPad Pro

Chapter 1 Laying the Foundation for Your First IoT App

20

Navigator. The center pane of the editor window should switch to Interface Builder and

display the contents of the default storyboard, as shown in Figure 1-16. The storyboard

should contain a Tab View Controller linked to two blank View Controllers.

The child View Controllers are named FirstViewController and

SecondViewController; however, these class names will make maintainability difficult

as the project starts to grow. As with a natural ecosystem, items in an Xcode project are

linked deeper than what you see on the surface. In the case of classes that are used by

storyboards, changing the class name also means changing references in other classes

and the storyboard file itself. To manage this complicated process, you can use the

refactoring tools in Xcode. To rename the FirstViewController class, secondary-click

(right-click or long-press) the symbol name, scroll down to Refactor in the contextual

menu, and then select Rename, as shown in Figure 1-17.

Figure 1-16.  Default storyboard for a Tabbed App project

Chapter 1 Laying the Foundation for Your First IoT App

21

After clicking Rename, the center pane will display an accordion-style table.

In the case of renaming a class, the first row shows a preview of the file name, the

second provides an editing area where you can make changes to the class name,

and the third row and later show previews of changes that are made in files that

use your class as a dependency (such as storyboards or other classes). Enter

“CreateWorkoutViewController” as the new name for the View Controller and verify that

the output is similar to that in Figure 1-18. Click the Rename button at the top-right, to

apply your changes.

Figure 1-17.  Presenting the Refactor menu for a symbol

Chapter 1 Laying the Foundation for Your First IoT App

22

Follow the same process to rename SecondViewController to

WorkoutMapViewController. You can use the Rename tool in your own code later, to

rename variable names and data structures with the same visual editor.

Note I f the files did not get renamed automatically, you can fix this with two click
actions. First, click the file name once, to select the item, then click again, to edit
the file name. In Swift, the file name does not affect compilation.

�Laying Out the User Interface
Now that the storyboard’s dependencies have been resolved, you can start placing user

interface elements. If you have been developing iOS apps for a while, this should be a

fairly routine exercise, but for newer users, it may clear up some confusion from the past.

Your first objective will be to layout the Create Workout screen from the wireframe

in Figure 1-1. It has four labels (two for information and two for values) to display your

workout progress and two buttons the user can use to start/stop the workout or pause/

resume a workout.

First, start by clicking Main.storyboard from the Project Navigator. From there,

make sure the utilities pane (right pane) is open. The bottom right has a split screen

with an icon that looks like the old iPhone Home button. This is called the object library

and contains user interface elements that you can drag onto View Controllers in the

Figure 1-18.  Xcode editor preview for refactoring

Chapter 1 Laying the Foundation for Your First IoT App

23

storyboard. Scroll down or search for “Label,” to find a UILabel. As shown in Figure 1-19,

drag-and-drop the Label object from the object library to the Create Workout View

Controller (it should still have the “First View Controller” label on it from the template).

Tip T o speed up navigation, you can open files within tabs in Xcode, by pressing
Command+T (⌘+T).

Continue this process, adding the other three labels and two buttons. You can delete

the old labels with the “First View” text as well. At this point, don’t worry about the exact

placement of the items, as you are about to learn how to use constraints to set the size

and Auto Layout rules.

Figure 1-19.  Adding a label to a View Controller

Chapter 1 Laying the Foundation for Your First IoT App

24

�Applying Auto Layout Constraints
When building a user interface with Auto Layout, instead of thinking about the (x, y)

coordinate position of each item, you should think about where they should sit relative

to the boundaries of the screen and other elements. In iOS, these rules are managed by

constraints. At runtime, Auto Layout will use these constraints to resize or reposition

elements on the screen. The most common types of constraints are pinned (fixed

position) and relative (their position is relative to a boundary on the screen or other

items). Constraints can be greater than, equal to, or less than a value.

For the IOTFit app, I felt the key feature of the Create Workout screen was that users

should be able to press the Start and Pause buttons easily, no matter what size iPhone

they are using. By pinning the buttons to the bottom of the screen, I would not have to

worry about the button placement becoming too difficult to use with changes in screen

size. Users are already accustomed to pressing buttons on the bottom of the screen,

because the placement of the Home button on the bottom of every iOS device has taught

them to interact with the bottom of the screen for control gestures. For the status labels,

I wanted to accomplish two goals: keeping the screen balanced and not interfering

with the placement of the buttons, so I pinned them to the top of the screen. As shown

in Figure 1-20, with this layout in mind, when the app runs on an iPhone SE, iPhone X,

and iPhone 8 Plus, the only things that will change are the scale of the elements and the

vertical space in between the status labels and action buttons.

Chapter 1 Laying the Foundation for Your First IoT App

25

Figure 1-20.  How the IOTFit user interface adapts to different iPhone sizes

Tip A nother good Auto Layout strategy to use is to center an item in the middle
of the screen and place items below or above that.

In Interface Builder, you can use the Add New Constraints tool to set constraints,

using a graphical user interface. As shown in Figure 1-21, select the topmost label, then

in the bottom toolbar for the editor window, find the Add New Constraints button (the

icon looks like a box plot graph), and click it. The pop-up window that appears will

display the label’s distance to its closest neighbors.

Chapter 1 Laying the Foundation for Your First IoT App

26

To set a fixed constant, click the text field containing the value you want to fix and

type in the new value. The line next to the text field will change from a dotted red line to a

solid red line, indicating that your value was read successfully. For the topmost label, fix

the label to 20 pixels from the top, left, and right of the screen. Set the height of the label

Figure 1-21.  Steps for setting constraints via Interface Builder’s Add New
Constraints tool

Chapter 1 Laying the Foundation for Your First IoT App

27

to 30 pixels. Check the check box next to height, to make sure your change is recorded.

Finally, click the Add 4 Constraints button at the bottom of the pop-up, to save your

changes. The modified storyboard should be similar to the screenshot in Figure 1-22.

�Customizing the Appearance of Items
Although you have set the constraints for the top label in the Create Workout View

Controller, the appearance of the label does not match the initial design in the

wireframe. To modify the text, apply the correct the text justification (centered), and

set the text size. Follow the steps indicated in Figure 1-23. First, click the label in the

storyboard, then, in the utilities pane (right), click the Attributes Inspector (center icon).

To change the text, insert the new text you want in the Text row. Click the T icon next to

Font to change the font. A pop-up will appear. Instead of typing in a font size, pick one of

Apple’s pre-defined styles, Title 3. This will help the text app scale better for users with

vision impairments. Additionally, you will use the style in this family later, enabling a

consistent user interface. Click the “center” graphic next to Alignment, to center the text

alignment. Finally, to prevent text from clipping on small screens, set the Autoshrink

property to Minimum Font Scale. This will shrink the text as low as 50% of the original

size before clipping the text.

Figure 1-22.  Create Workout View Controller, after setting constraints for the top
label

Chapter 1 Laying the Foundation for Your First IoT App

28

Follow these same steps of setting constraints and text properties for all the labels

and buttons, according to the parameters specified in Table 1-2.

Figure 1-23.  Steps for setting the correct display properties for the Workout Time
label

Table 1-2.  Constraints and Font Settings for Create Workout View Controller User

Interface Elements

Display Text Top Left Right Bottom Height Text Class

Workout Time 20 20 20 -- 30 Title 3

0 hrs 00 mins 10 20 20 -- 50 Title 1

Workout Distance 10 20 20 -- 30 Title 3

0.00 meters 10 20 20 ≥20 50 Title 1

Pause -- 20 20 20 60 Title 2

Stop 20 20 20 20 60 Title 2

Chapter 1 Laying the Foundation for Your First IoT App

29

After applying the constraints and font settings, your storyboard should resemble the

screenshot in Figure 1-24.

By default, UIButton objects are styled with a transparent background and text style

that match the default tint color of your app (as of this writing, the default tint color is

a shade of blue). To make the app easier to use, in my wireframes, I suggested a button

with a large colored touchable area and white text. Using the Attributes Inspector, once

again, you can modify the text color and background color of a UIButton element.

Click the Pause button to select it, then click the Attributes Inspector (tab icon) in

the utilities pane, if you have not already. As shown in Figure 1-25, click the Text Color

drop-down menu, to bring up a secondary menu with frequently used colors. Select

White Color to make the button text white. The button will appear invisible, but it will

reappear after setting the background color.

Figure 1-24.  Create Workout View Controller after setting all constraints

Chapter 1 Laying the Foundation for Your First IoT App

30

To set the background color, scroll down in the Attributes Inspector. Under the View

section, select the Background drop-down menu. This time, when the secondary menu

appears, select Other. As shown in Figure 1-26, this will bring up a color wheel. Select a

shade of red, as this is a color that many users recognize in the context of stop or pause

actions (e.g., a red stop sign).

Figure 1-25.  Setting the text color for a button

Chapter 1 Laying the Foundation for Your First IoT App

31

Figure 1-26.  Color wheel for selecting background color

Follow these same steps to select a blue background color for the Start button. Your

final layout for the Create Workout View Controller should be similar to the screenshot in

Figure 1-27.

Chapter 1 Laying the Foundation for Your First IoT App

32

Tip Y ou can use the hierarchy panel (the left pane of the editor) to quickly verify
that items have been added to a View Controller. Similarly, by rearranging items in
the hierarchy, you can quickly move items in front of or behind other items.

Now that the Create Workout View Controller has been successfully set up, you can

move on to the Workout Map View Controller. If you remember Figure 1-1, this screen

consists of a navigation bar at the top, with some information about the last recorded

workout and a map that fills most of the screen.

The easiest component to start with is adding the navigation bar. Navigation bars

are one of iOS’s core navigation features, which emulate the behavior of a browser

window, by providing a common information bar at the top. A navigation bar is loaded

with a Root View Controller (similar to a home page). When buttons (or links) inside the

Figure 1-27.  Final layout for Create Workout View Controller

Chapter 1 Laying the Foundation for Your First IoT App

33

Figure 1-28.  Adding a navigation controller via the Editor menu

Root View Controller are clicked, the navigation bar pushes their content into the main

window, while also providing a back button at the top right, allowing the user to navigate

back to the last screen.

To easily add a navigation bar to the blank Workout Map View Controller, click to

select the View Controller in Interface Builder (it should still have the “Second View”

label on it) and, as pictured in Figure 1-28, go to the Editor menu and select Embed In ➤

Navigation Controller.

Chapter 1 Laying the Foundation for Your First IoT App

34

As shown in Figure 1-29, this will add a Navigation Controller in between the Tab

Bar Controller and Workout Map View Controller. By holding down on the Workout Map

View Controller, you can change its position on the storyboard, to make it more visually

appealing. As you will notice, there are directed arrows between the Tab Bar Controller,

Navigation Controller, and Workout Map View Controller. These are called segues and

specify how View Controllers are linked to each other on Storyboards, either through

relationships (for example, parent-child) or actions (for example, pressing a button). The

Embed In function is very convenient, because it prevents you from having to set up all

these segues yourself, which, although possible, is very time-consuming and error-prone.

Figure 1-29.  Storyboard after embedding Navigation Controller

Chapter 1 Laying the Foundation for Your First IoT App

35

Figure 1-30.  Editing the title for the Workout Map View Controller

To customize the title of the Workout Map View Controller, click in the middle of the

Navigation Item (bar) on the Workout Map View Controller and begin typing, as shown

in Figure 1-30. You may also use the Attributes Inspector to enter your text.

To make the title text large, the new preferred style for iOS 11, click the Navigation

Controller, then in the Attributes Inspector, select Prefers Large Titles, as shown in

Figure 1-31.

Chapter 1 Laying the Foundation for Your First IoT App

36

For the final step in preparing the Workout Map View Controller, you must add a

Map View. First, delete the old labels from the template-generated View Controller, drag

a Map View from the Object Library and set its Top, Bottom, Right, and Left constraints

to 0. Then click the Add 4 Constraints button to apply the constraints. If you must jog

your memory on how to do this, go back to the “Applying Auto Layout Constraints”

section earlier in this chapter. Your output should look similar to that in Figure 1-32.

Figure 1-31.  Enabling iOS 11–style Navigation Item titles

Chapter 1 Laying the Foundation for Your First IoT App

37

Figure 1-32.  Workout Map View Controller after adding Map View

�Resolving Auto Layout Issues
The Map was added successfully to the View Controller, as indicated in Figure 1-32, but

the frame was not as you might have expected (a small centered rectangle instead of a

full-screen one). Don’t worry! You did nothing wrong.

One of the issues raised by the introduction of the iPhone X (Apple’s first bezel-

less phone) is developers’ need to detect the new edges of the phone. To make things

more complicated, the top edge is interrupted by a sensor bar, and the bottom edge

shares space with the new iOS app switcher. To address this issue, Apple introduced

the concept of safe areas to iOS 11. Safe areas in storyboards act as new boundaries for

Chapter 1 Laying the Foundation for Your First IoT App

38

For this issue, the pop-up was not sufficient; another problem-solving technique is

required. My second go-to fix would be to use the Resolve Auto Layout Issues tool at the

bottom right of the Interface Builder Editor. As shown in Figure 1-34, clicking this will

provide you with a context menu that asks you to fill in missing constraints, delete all

constraints for the selected view, or delete all constraints for the View Controller.

In my experience, the best use of this tool is to reset the constraints for the troublesome

Auto Layout. When you pin an item to a safe area, the system will take care of the logic

required to work around the “unsafe” areas on the iPhone X. Safe areas can be used on

storyboards for all iOS devices.

Unfortunately, sometimes Apple is not ready with all of its APIs, or there is a conflict

in how these rules should be applied, such as with the Map View in this example. To

resolve this, I will introduce techniques I like to use to obviate Auto Layout conflicts in

Interface Builder.

The first place I look when I run into Auto Layout conflicts is the Document Outline

(the left pane in Interface Builder). View Controllers with faulty Auto Layout constraints

will have a red stop sign icon next to them, like the one that appears to the left in

Figure 1-33. If you click the stop sign icon, the Document Outline will drill down into that

View Controller and provide the list of faulty constraints (often, it will be more than one).

As shown in Figure 1-33, clicking the stop sign one more time will provide you with a

pop-up dialog suggesting a solution.

Figure 1-33.  Document Online pop-upAuthor: Change okay? for solving
constraint issues

Chapter 1 Laying the Foundation for Your First IoT App

39

Figure 1-34.  Presenting the Resolve Auto Layout Issues context menu

view and then try to apply the constraints again. Many times, when you rearrange items

in a View Controller, you unexpectedly break other constraints that depend on the old

position. This tool provides a good way to create a clean slate for one view.

Unfortunately, this did not solve the issue either. When nothing else goes right, I like

to open up the Size Inspector tool for the troublesome view (indicated by the Ruler icon

in the right-hand side utilities pane), and I like to start manually modifying values until

the warnings disappear. As shown in Figure 1-35, you can edit values by typing new ones

into the text fields or by clicking Edit, next to a constraint, to bring up a pop-up with its

properties.

Chapter 1 Laying the Foundation for Your First IoT App

40

For the Map View, the issue was that the constraints did not pin the top and bottom

positions of the view, so I set the y position to 0 (the top of the screen) and make the

height match the height of the screen. I verified it by making sure the Document Outline

warnings disappeared.

After resolving the Auto Layout issues, the final storyboard for the project should

look similar to Figure 1-36.

Figure 1-35.  Using the Size Inspector to modify constraints

Chapter 1 Laying the Foundation for Your First IoT App

41

�Connecting the Storyboard to Your Code
Although the completed storyboard is beautiful, right now it will not do anything if the

user presses any of the buttons, because the new user interface objects are not attached

to any code. In Xcode, the way you connect your code to your storyboards is by defining

properties and methods that must interact with Interface Builder, using special keywords

(IBOutlet, IBAction). Then, you find these items in Interface Builder and drag-and-drop

connections between the storyboard and your code.

Figure 1-36.  Completed storyboard for IOTFit project

Chapter 1 Laying the Foundation for Your First IoT App

42

�Defining Interface Builder-Compatible Properties
and Methods (Actions)
When you created the IOTFit project from Xcode’s Tabbed App template, it generated

a blank storyboard and blank classes for the first (Create Workout) and second (Map

Workout) View Controllers. If you click the CreateWorkoutViewController.swift file

in the Project Navigator, the editor will show you its contents, shown in Listing 1-1. The

WorkoutMapViewController.swift file will have similar contents, at this point.

Listing 1-1.  Intial Contents of the CreateWorkoutViewController Class

import UIKit

class CreateWorkoutViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 }

}

This is not much to write home about, as most of the critical code required to

initialize the View Controller itself is provided by its parent class, UIViewController. You

may also notice that there is no code for the labels. Generally speaking, you do not have

to declare properties (class members) for user interface elements whose appearance

will not change significantly at runtime. However, items that will change should be

represented as properties. For the Create Workout View Controller, you can ignore the

Workout Distance and Workout Time labels, but you will have to create properties to

represent the labels that hold the values.

Interface builder–compatible properties are initialized much like normal properties,

with two strengths: you must pay extra attention to their type and you must add a

keyword that allows Interface Builder to expose them to its drag-and-drop interface

(@IBOutlet).

Chapter 1 Laying the Foundation for Your First IoT App

43

Unlike a normal variable, user interface properties that are tied to a storyboard

will be initialized by that storyboard. Therefore, you need to pay extra attention to the

reference strength and type of the variable. For most properties, this means you will

have to define the property as being an optional (a variable that can be initialized with

a value or remain in a detectable, uninitialized state) and having a weak reference (its

contents will not stay in memory indefinitely).

You can find the updated class definition for the Create Workout View Controller,

including the new, properly declared properties, in Listing 1-2.

Listing 1-2.  CreateWorkoutViewController Class Definition, Including User

Interface Properties

import UIKit

class CreateWorkoutViewController: UIViewController {

 @IBOutlet weak var workoutTimeLabel: UILabel?

 @IBOutlet weak var workoutDistanceLabel: UILabel?

 @IBOutlet weak var toggleWorkoutButton: UIButton?

 @IBOutlet weak var pauseWorkoutButton: UIButton?

 override func viewDidLoad() {

 super.viewDidLoad()

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 }

}

The process for declaring a method that can be discovered by Interface is similar.

Add the @IBAction keyword in front of the func keyword. For the Create Workout View

Controller, there are only two user-initiated actions to worry about at this point: starting/

stopping (toggling) a workout and pausing/resuming a workout. The modified definition

for the CreateWorkoutViewController class, including the new methods, is provided in

Listing 1-3.

Chapter 1 Laying the Foundation for Your First IoT App

44

Listing 1-3.  CreateWorkoutViewController Class Definition, Including

Interface Builder–Compatible Method Definitions

import UIKit

class CreateWorkoutViewController: UIViewController {

 @IBOutlet weak var workoutTimeLabel: UILabel?

 @IBOutlet weak var workoutDistanceLabel: UILabel?

 @IBOutlet weak var toggleWorkoutButton: UIButton?

 @IBOutlet weak var pauseWorkoutButton: UIButton?

 override func viewDidLoad() {

 super.viewDidLoad()

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 }

 @IBAction func toggleWorkout() {

 NSLog("Toggle workout button pressed")

 }

 @IBAction func pauseWorkout() {

 NSLog("Pause workout button pressed")

 }

}

I added NSLog() statements to this example, to allow you to view output messages in

the Xcode debugging pane when you click the buttons.

Moving on to the Workout Map View Controller, the setup is straightforward. You

simply have to add a Map View to the class. All of the user interface operations on this

View Controller are handled by the Map View, so there are no additional methods you

need to define. One last caveat, though. In order to declare a MKMapView (Map View)

object, you must import the MapKit framework into your class. The modified class

definition for the WorkoutMapViewController class, including these changes, is included

in Listing 1-4.

Chapter 1 Laying the Foundation for Your First IoT App

45

Listing 1-4.  WorkoutMapViewController Class Definition, Including MapKit

Framework and Map View Property

import UIKit

import MapKit

class WorkoutMapViewController: UIViewController {

 @IBOutlet weak var mapView: MKMapView?

 override func viewDidLoad() {

 super.viewDidLoad()

 }

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 }

}

�Using the Connection Inspector to Make the Final
Storyboard Connections
Now that the classes for the project have been fully defined, you can use Interface

Builder to make the connections. As shown in Figure 1-37, click the Main.storyboard

file, then select the Create Workout View Controller and click the Connection Inspector

(the circled arrow icon in the utilities pane).

Chapter 1 Laying the Foundation for Your First IoT App

46

The Connection Inspector contains a list of all available outlets for your

class. Among those will be the properties you just defined (pauseWorkoutButton,

toggleWorkoutButton, workoutDistanceLabel, and workoutTimeLabel). To connect an

item, hold down the radio button next to its name and then release it over the item you

want to connect, as shown in Figure 1-38.

Figure 1-37.  Presenting the Connection Inspector for the
CreateWorkoutViewController class

Chapter 1 Laying the Foundation for Your First IoT App

47

When you have successfully made the connection, the radio button will be replaced

with a text bubble containing the property name, as shown in Figure 1-39.

Figure 1-38.  Connecting the Pause Workout button to its property

Figure 1-39.  Connection Inspector after successfully linking a property

Chapter 1 Laying the Foundation for Your First IoT App

48

Repeat this process for the rest of the properties in the

CreateWorkoutViewController and WorkoutMapViewController classes.

To link a method to a user interface event (such as pressing a button or tapping

an area on a view), you will follow mostly the same process, with a few differences. As

shown in Figure 1-40, start by selecting the Pause Workout button. The Connection

Inspector will now display a list of all the possible user interface events that are

applicable to a button, including Touch Up Inside, Touch Down, Value Changed, and

Touch Cancel.

Figure 1-40.  Connection Inspector events for the Pause Workout button

The event you will use most often for detecting when the user presses a button is

Touch Up Inside. This event fires once after the user holds down and releases a button.

To connect the action to its handler method, toggleWorkout(), select the radio button

in the Touch Up Inside row and then release it over the CreateWorkoutViewController

class. As shown in Figure 1-41, when you release the mouse, a contextual menu will

appear, listing available Interface Builder–compatible methods in the class. Select

toggleWorkout.

Chapter 1 Laying the Foundation for Your First IoT App

49

After making your selection, the pauseWorkout() method’s name should appear in a

text bubble next to the Touch Up Inside event, as shown in Figure 1-42.

Figure 1-41.  Connecting a user interface event to a method in your class

Figure 1-42.  Verifying the successful event connection for the Pause Workout
button

Repeat this process for the Toggle Workout button and you will be all done! To

verify that everything is working as expected, click the Run button at the top right of the

Xcode editor window. This will compile and run your application. By default, Xcode

will run your project on its default setting (currently, the iPhone 8 Plus simulator), but

you can change it to another simulator or a connected device from the drop-down menu

Chapter 1 Laying the Foundation for Your First IoT App

50

to the right of the Run button. As shown in Figure 1-43, after pressing the Run button, the

simulator will start up with your app in the foreground, and when you click the Toggle

Workout or Pause Workout buttons, the Debugging Console (bottom right) will display

the log messages you specified earlier.

Figure 1-43.  Testing the IOTFit app using the Xcode iPhone 8 Plus simulator

�Summary
In this chapter, you learned how to perform many critical project life cycle tasks in

Xcode, which you will use throughout this book and in your own projects. These tasks

included creating a new project, connecting your Apple Developer Program account

to Xcode, using Xcode’s refactoring tools, building a user interface, and using Interface

Builder to connect storyboards to your code. The chapter was heavy on images and

step-by-step instructions, reflecting the visual nature of working with Xcode. In my

experience, so much of the joy and frustration of iOS development comes from learning

workflows in Xcode. I hope that this chapter made the learning process a little less

painful!

Chapter 1 Laying the Foundation for Your First IoT App

51
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_2

CHAPTER 2

Using Core Location
to Build a Workout
Tracking App
In the first chapter, you learned how to use Xcode and Interface Builder to set up the

project for the IOTFit workout app and create its user interface. However, due to the

complicated setup process, you did not have an opportunity to make it a true Internet

of Things (IoT) app by accessing the GPS hardware on the phone. In this chapter, you

will learn how to take advantage of Apple’s Core Location framework to request location

permission from the user, receive periodic updates on the user’s location, and plot those

locations on a map.

This chapter will begin addressing a misconception that you will hear throughout

your time as an iOS developer: the platform is too hard and inconvenient to use.

Although there are elements of truth to this, as evidenced by Chapter 1’s complicated

user interface setup process, you will learn that as you become more familiar with

Apple’s development patterns, the learning curve for picking up new frameworks

will drop significantly. Additionally, you will notice that the amount of work to learn

a new framework is significantly less than the work required to implement all of the

functionality yourself. In the case of Core Location, the framework does the hard work of

making the location requests, processing the data from the GPS hardware, and delivering

it via asynchronous events that your app can handle. Imagine having to write all of this

by yourself, on a deadline!

In keeping with the iterative process of this book, this chapter will focus on how to

implement the features of the IOTFit app that are responsible for recording a workout’s

duration, tracking the path the user took during the workout, and displaying this location

information on a map.

52

�Learning Objectives
In this chapter, you will learn the following critical skills for IoT development on iOS by

building the location-based functions of the IOTFit application:

•	 Configuring an application for background activity

•	 Checking for availability of hardware resources

•	 Asking the user for permission to access sensitive permissions

•	 Requesting and responding to location updates

•	 Displaying saved locations on a map

One of the most critical lessons you will learn in this chapter is the workflow of

checking if a hardware feature is available and then asking the user for permission to

access that resource before doing any work with it. Not only is this a good strategy to

help you design your app’s flow (for example, thinking about what to do when the user

does not want to allow access), but it also helps you prevent some of the most common

sources of runtime crashes. Apple’s SDKs will cause your applications to crash, if you try

to access unavailable or forbidden resources.

As with the first chapter, the code for this project is available on the GitHub

repository for this book, under the Chapter 2 folder (https://github.com/Apress/

program-internet-of-things-w-swift-for-ios).

�Configuring Your Project for Background Location
Activity
During a workout, users will often put their phone in their pocket, in a case on their arm,

or on top of their workout equipment. To enable the IOTFit app to be useful to users in

these cases, you should configure the IOTFit app to continue workout tracking while the

app is backgrounded. Users will have to enable this functionality the first time the app

is launched, via an alert that iOS presents in your app. To allow these features to work,

you will learn how to declare the app as one that would like to use background location

updates and how to configure the message for the permission alert. It is important to

perform these setup steps early in the development process, as both affect how your app

is compiled and can only be configured through the Project Settings editor.

Chapter 2 Using Core Location to Build a Workout Tracking App

https://github.com/Apress/program-internet-of-things-w-swift-for-ios
https://github.com/Apress/program-internet-of-things-w-swift-for-ios

53

Apple imposes strict limitations on the background actions individual apps can take

in iOS, to save power and prevent memory leaks. Unless your app is correctly configured

to ask for permission to a background-enabled feature (mode), your app will not be able

to perform any actions while it is in the background. The special features Apple allows

you to configure your app to access in the background are described in Table 2-1. For the

IOTFit application, you will use background location updates. In later chapters in the

book, you will enable the Bluetooth LE features.

Table 2-1.  Configurable Background Modes for iOS Apps

Background Mode Name Purpose

Audio, AirPlay, and

Picture-in-Picture

Allows multimedia apps to continue playback uninterrupted when

the user backgrounds the app

Location updates Allows developers to perform small tasks, based on location

change events that happen while an app is backgrounded

Newsstand downloads Allows Newsstand apps (for example, magazines, newspapers) to

fetch new content while the app is inactive

External accessory

communication

Allows apps to maintain active data channels with physically

connected, Made for iPhone (MFI) hardware

Uses Bluetooth LE accessories Allows an app to act as a Bluetooth LE central manager and

communicate with external devices that are configured as

Bluetooth LE Peripherals

Acts as a Bluetooth

LE accessory

Allows an app to serve as a Bluetooth LE Peripheral and accept

messages from Bluetooth LE central manager devices

Background fetch Allows an app to periodically fetch data from HTTPS end points in

the background (frequency determined by iOS task manager)

Remote notifications Allows apps to respond to Apple Push Notifications

To start developing this chapter’s iteration of the IOTFit app, begin by copying your

completed project from Chapter 1 or by downloading the code from the Chapter 1 folder

of this book’s GitHub repository (https://github.com/Apress/program-internet-of-

things-w-swift-for-ios).

Chapter 2 Using Core Location to Build a Workout Tracking App

https://github.com/Apress/program-internet-of-things-w-swift-for-ios
https://github.com/Apress/program-internet-of-things-w-swift-for-ios

54

Open your new project and click the project name (IOTFit) in the Project Navigator

(within Xcode’s left pane). To configure the IOTFit project to use the Location updates

background mode, click on the Capabilities tab of the Project Settings editor view,

indicated in Figure 2-1.

Scroll down to Background Modes and click the switch to turn it on. Click the check

box labeled Location updates, to enable background location updates. After the changes,

your capabilities screen should match Figure 2-2.

Figure 2-1.  Capabilities tab within Project Settings

Chapter 2 Using Core Location to Build a Workout Tracking App

55

Note I f you did not finish linking your Apple ID account to Xcode, you will not be
able to successfully set any background modes.

Although it would be convenient for everything to be managed on the same screen,

you will have to switch to the Info tab, to edit the permission messages for the app.

Click the Info tab in Project Settings. You will be presented with a property list editor

populated with the default settings for your project, as shown in Figure 2-3.

Figure 2-2.  Capabilities tab with location updates configured correctly

Chapter 2 Using Core Location to Build a Workout Tracking App

56

Property lists (.plist files) are XML-based text files. Configuration settings within

a property list are stored as key-value pairs (dictionaries). Their ease of readability and

ease of use make them Apple’s preferred method for managing optional project settings.

This file is usually referred to by its file name, Info.plist.

Although you can edit property list files in a text editor, Xcode provides the visual

editor you saw in Figure 2-3 to help make property list management even easier. This

editor will show up for both auto-generated files (such as Info.plist) and files you

create manually.

To add a key-value pair to a property list, click any row and then click the plus (+)

button. For project settings, a drop-down menu will appear with suggested build settings

keys. Scroll down the menu and select Privacy - Location Always and When In Use Usage

Description as shown in Figure 2-4.

Figure 2-3.  Default property list within Info tab

Chapter 2 Using Core Location to Build a Workout Tracking App

57

Double-click the blank space in the Value column for the new row and enter the

text you would like to display in the permission alert window. One of Apple’s App Store

submission guidelines is that your permission prompts describe your intended use of

a protected feature. For this application, I used the following string as my permission

prompt description:

IOTFit would like to use location permission to plot your location during

workouts. This information will not be shared outside of the app.

There are three variations for location permissions that users can select in iOS:

Always, When In Use, and Always and When in Use. Create additional rows for the

Privacy - Location When In Use Usage Description and Privacy - Location

Usage Description key-value pairs and specify the permission prompts for those as

well. When your work is complete, your output should be similar to that in Figure 2-5.

Figure 2-4.  Adding a key-value pair to the Info property list

Chapter 2 Using Core Location to Build a Workout Tracking App

58

Note T he position where your new key-value pairs appear in the list has no
impact on compilation.

�Requesting Location Permission
Now that the project dependencies have been taken care of, you can start implementing

the logic to request location permission from the user. One of the most critical questions

you need to ask yourself at this point is: “Where should I place the location permission

pop-up?”

To begin answering this question, first take a look at Figure 2-6, to review the user

interface you built in Chapter 1. The user can start or stop a workout by pressing the Start

button and can pause or resume a workout by pressing the Pause button. If users want to

view their map, they press the Second tab to switch to the Map View.

Figure 2-5.  Completed Info property list, including all location permission strings

Chapter 2 Using Core Location to Build a Workout Tracking App

59

The recent trend in mobile applications is to ask for a permission the first time a user

attempts to perform an action that requires the resource you want to use. In the case of

the IOTFit app, this would be the first time the user presses the Start button. In addition

to asking for location permission, at that time, you would also update the user interface

to indicate that the workout has started. Once you have confirmed that everything is

ready, you can start recording the data for the user’s workout.

Thinking about the other activities on the Create Workout View Controller (pausing

and stopping the workout), these would require additional user interface updates and

some kind of mechanism to pause the location and time tracking.

In Figure 2-7, I have created a flowchart that records all of these decisions. You will

use this throughout the chapter as a guide to implementing the behavior of the Create

Workout View Controller.

Figure 2-6.  Completed IOTFit user interface from Chapter 1

Chapter 2 Using Core Location to Build a Workout Tracking App

60

The transition between the Inactive and Active states is handled by the

toggleWorkout() method, which is tied to the Touch Up Inside event for the

Toggle Workout button. The code for the location request should be initiated

there. To help jog your memory, in Listing 2-1, I have provided the code from the

CreateWorkoutViewController class that was implemented in Chapter 1.

Listing 2-1.  CreateWorkoutViewController Class from Chapter 1

import UIKit

class CreateWorkoutViewController: UIViewController {

 @IBOutlet weak var workoutTimeLabel :UILabel?

 @IBOutlet weak var workoutDistanceLabel :UILabel?

 @IBOutlet weak var toggleWorkoutButton :UIButton?

 @IBOutlet weak var pauseWorkoutButton :UIButton?

 override func viewDidLoad() {

 super.viewDidLoad()

 }

Figure 2-7.  Flowchart for the Create Workout View Controller

Chapter 2 Using Core Location to Build a Workout Tracking App

61

 override func didReceiveMemoryWarning() {

 super.didReceiveMemoryWarning()

 }

 @IBAction func toggleWorkout() {

 NSLog("Toggle workout button pressed")

 }

 @IBAction func pauseWorkout() {

 NSLog("Pause workout button pressed")

 }

}

To represent the different states of the app, you can create an enum that corresponds

to the states in the flowchart. Inside the class, create a property that uses the enum

as its type. When the user presses the Start button, update the state property and

make the call to request location permission. To implement this logic, update the

CreateWorkoutViewController class, as indicated in Listing 2-2.

Listing 2-2.  Adding State Tracking to the CreateWorkoutViewController Class

import UIKit

enum WorkoutState {

 case inactive

 case active

 case paused

}

class CreateWorkoutViewController: UIViewController {

 @IBOutlet weak var workoutTimeLabel: UILabel?

 @IBOutlet weak var workoutDistanceLabel: UILabel?

 var currentWorkoutState = WorkoutState.inactive

 ...

Chapter 2 Using Core Location to Build a Workout Tracking App

62

 @IBAction func toggleWorkout() {

 switch currentWorkoutState {

 case .inactive:

 currentWorkoutState = .active

 requestLocationPermission()

 case .active:

 currentWorkoutState = .inactive

 default:

 NSLog("toggleWorkout() called out of context!")

 }

 NSLog("Toggle workout button pressed")

 }

 func requestLocationPermission() {

 NSLog("Location permission requested")

 }

 ...

}

�Checking for Hardware Availability
As I mentioned at the beginning of the chapter, Apple’s recommended design pattern is

to first check if a hardware device is available and ask for permission to use it. Apple has

always differentiated its devices by hardware features, favoring the newest device with

the most advanced features. As a developer, you naturally want to use these features, but

making decisions based on device model number becomes unwieldy quickly. For many

hardware features, including the iPhone’s GPS and camera, there is an API that allows

you to determine the availability of the feature.

In the case of the GPS, the framework that manages its operation is Core Location.

It provides a class method, CLLocationManager.locationServicesEnabled(), that you

can use to query the availability of location on the device. To use this method, you must

import the Core Location framework into the CreateWorkoutViewController class.

Update the class, as indicated in Listing 2-3.

Chapter 2 Using Core Location to Build a Workout Tracking App

63

Listing 2-3.  Adding Location Service Querying to the

CreateWorkoutViewController Class

import UIKit

import CoreLocation

class CreateWorkoutViewController: UIViewController {

 ...

 func requestLocationPermission() {

 if CLLocationManager.locationServicesEnabled() {

 NSLog("Location services are available")

 } else {

 presentEnableLocationAlert()

 }

 }

 func presentEnableLocationAlert() {

 let alert = UIAlertController(title: "Permission

 �Error", message: "Please enable location services on your

device", preferredStyle: UIAlertControllerStyle.alert)

 let okAction = UIAlertAction(title: "OK", style:

 UIAlertActionStyle.default, handler: nil)

 alert.addAction(okAction)

 self.present(alert, animated: true, completion: nil)

 }

 ...

}

As you will notice, I added a method to present an Alert View, if location services are

not enabled globally on the device (owing to user settings or hardware unavailability).

This is a good way to inform your users that location permissions are important for the

best experience with your app.

Chapter 2 Using Core Location to Build a Workout Tracking App

64

�Responding to Changes in Location Permission Status
Having verified that the GPS hardware is available on the user’s device, you are now

ready to request location permission from iOS. Once again, the Core Location framework

manages this operation. However, in order to respond to the changes, you must

instantiate an object that takes care of the interface with the Core Location framework,

and you have to declare the CreateWorkoutViewController class as delegate of the

CLLocationManagerDelegate protocol.

A protocol is a programming concept that allows you to define a light interface

between two classes. These are used frequently in Apple’s hardware frameworks, in

which you just need to be able to call one or two methods on the target hardware,

without knowing all the details of its implementation. An object that implements the

functions specified by a protocol is called a delegate. It plays the role of the object that

initiates the call to the hardware and receives the output.

To manage the interface to the Core Location framework, add a CLLocationManager

property to the CreateWorkoutViewController class. As shown in Listing 2-4,

initialize the object when you declare it and then inside the toggleWorkout()

method, set the delegate property of the manger object to self (a reference to the

CreateWorkoutViewController class). This will allow the class to respond to messages

from the Core Location framework.

Listing 2-4.  Adding a CLLocationManager Property to the

CreateWorkoutViewController Class

class CreateWorkoutViewController: UIViewController {

 ...

 let locationManager = CLLocationManager()

 @IBOutlet weak var workoutTimeLabel: UILabel?

 ...

 func requestLocationPermission() {

 if CLLocationManager.locationServicesEnabled(){

 locationManager.delegate = self

Chapter 2 Using Core Location to Build a Workout Tracking App

65

 NSLog("Location services are available")

 } else {

 ...

 }

 }

 ...

}

The Swift compiler will flag your code with an error saying that you are attempting to

assign the property to an incompatible class. To resolve this issue, add the definition for

the CLLocationManagerDelegate protocol.

The way I like to declare classes as implementing protocols in Swift is by adding

an extension under the class definition. In the long term, this helps with code clarity.

An extension is a code block that allows you to add additional functionality to a class

without modifying the original class itself. A common example is when you want to

extend the UIColor class by adding a method for a color you have open in your app that

is not defined by Apple.

The extension for the CreateWorkoutViewController class is provided in Listing 2-5.

The protocol method you must implement to handle location permission status updates

is func locationManager:didChangeAuthorizationStatus:. If you already requested

permission before, the delegate method will immediately return with the authorized

value. If you have not requested permission before, it will return when the user has made

his or her decision.

Listing 2-5.  Adding an Extension to the CLLocationManagerDelegate Protocol

 func requestLocationPermission() {

 if CLLocationManager.locationServicesEnabled(){

 ...

 } else {

 ...

 }

 }

} //end of class

Chapter 2 Using Core Location to Build a Workout Tracking App

66

extension CreateWorkoutViewController:

 CLLocationManagerDelegate {

 func locationManager(_ manager: CLLocationManager,

 didChangeAuthorization status: CLAuthorizationStatus) {

 NSLog("Received permission change update!")

 }

}

Similar to how the workout’s state is managed by the WorkoutState enum you

defined, the permission state for your app is managed by the CLAuthorizationStatus

enum provided by the Core Location framework. The possible authorization status

values and their implications are listed in Table 2-2.

Table 2-2.  Core Location Authorization States

Value User Action Impact on App

notDetermined The user has not seen the

permission pop-up for your app

yet.

Your app cannot use any location-

based features until you present the

location permission pop-up and the

user approves it.

restricted Due to Parental Controls or

Mobile Device Management

settings, location services are

disabled on their device.

Your app cannot use any

location-based features until the

management policy changes.

denied The user has denied location

services for your app.

Your app cannot use any location-

based features until the user

allows permission status in the iOS

Settings app.

authorizedWhenInUse The user has allowed your app to

use location services while the

app is in the foreground.

Your app can access location

services only when the app is in the

foreground.

authorizedAlways The user has allowed your app

to use location services in the

foreground and background.

Your app can use location services

while it is active and in the

background.

Chapter 2 Using Core Location to Build a Workout Tracking App

67

The didChangeAuthorizationStatus() method will fire for all states. Similarly,

when you check for location permission, the call you make should be different, based on

the user’s existing authorization state. You can find out the current authorization state by

calling the CLLocationManager.authorizationStatus() method. In Listing 2-6, I have

updated the requestLocationPermission() and didChangeAuthorizationStatus()

methods to include the new authorization state-based logic.

Listing 2-6.  Using Authorization State to Present Location Permission and

Respond to Changes in Authorization Status

class CreateWorkoutViewController: UIViewController {

 ...

 func requestLocationPermission() {

 if CLLocationManager.locationServicesEnabled(){

 locationManager.delegate = self

 switch(CLLocationManager.authorizationStatus()) {

 case .notDetermined:

 locationManager.requestWhenInUseAuthorization()

 case .authorizedWhenInUse :

 requestAlwaysPermission()

 case .authorizedAlways:

 startWorkout()

 default:

 presentPermissionErrorAlert()

 }

 } else {

 presentEnableLocationAlert()

 }

 }

 func requestAlwaysPermission() {

 if let isConfigured = UserDefaults.standard.value(forKey:

 "isConfigured") as? Bool, isConfigured == true {

 startWorkout()

Chapter 2 Using Core Location to Build a Workout Tracking App

68

 } else {

 locationManager.requestAlwaysAuthorization()

 }

 }

 func startWorkout() {

 currentWorkoutState = .active

 UserDefaults.standard.setValue(true, forKey:

 "isConfigured")

 UserDefaults.standard.synchronize()

 }

 func presentPermissionErrorAlert() {

 let alert = UIAlertController(title: "Permission

 Error", message: "Please enable location services

 for this app", preferredStyle:

 UIAlertControllerStyle.alert)

 let okAction = UIAlertAction(title: "OK", style:

 UIAlertActionStyle.default, handler: nil)

 alert.addAction(okAction)

 self.present(alert, animated: true, completion: nil)

 }

 ...

}

extension CreateWorkoutViewController :

 CLLocationManagerDelegate {

 func locationManager(_ manager:

 CLLocationManager, didChangeAuthorization

 status: CLAuthorizationStatus) {

 switch status {

 case .authorizedWhenInUse:

 requestAlwaysPermission()

 case .authorizedAlways:

 startWorkout()

 case .denied:

 presentPermissionErrorAlert()

Chapter 2 Using Core Location to Build a Workout Tracking App

69

 default:

 NSLog("Unhandled Location Manager Status:

 \(status)")

 }

 }

In the requestLocationPermission() method, I added a switch statement to direct

the next action, based on the existing authorization status. In the case of notDetermined,

I mapped this to the first time the user opened the app and called the locationManager.

requestWhenInUseAuthorization() method to ask the user for in-use permission.

Apple’s recommended design pattern is to first request authorizedWhenInUse

permission and then authorizedAlways permission.

Continuing through the switch statement, if the app has already been authorized

for in-use permission, this is when you can request always permission. To handle

Apple’s workflow, I wrapped the always permission request in a method. If the user is

coming directly from the authorizedWhenInUse permission request, you should show

the always permission request; otherwise, start the workout. I needed to go outside of

Core Location and use the UserDefaults class to track whether the app has asked for

permission before, as checking for authorizedWhenInUse or denied authorization here

would cause too many false positives. The isConfigured value is set to true when users

start their first workout.

Finally, in the case of authorizedAlways permission, you can start the workout

normally. For denied, I show an error alert. For all other statements, I record the

unknown statement to the console log for assistance in later debugging.

The didChangeAuthorizationStatus() method uses the same logic as the

requestLocationPermission() method to handle states. If you think of the permission

request like a conversation, the delegate method is the listener’s reply to the speaker’s

question.

To make sure everything is working, compile and run the app. When you press the

Start button for the first time, you should see the alerts pictured in Figure 2-8.

Chapter 2 Using Core Location to Build a Workout Tracking App

70

�Asking the User to Change App Settings

The only way to recover from the denied permission is when the user allows it in the

page for your app within iOS’s Settings app. A common way to help encourage this

activity is by creating an alert that sends the user directly to this page. Although iOS has

much more limited settings for sharing data between apps when compared to a desktop

computer or Android phone, URL Schemes (specially formatted URLs) have been an

officially supported way of passing tiny bits of data between apps that register for their

own scheme (for example, mySocalApp://). Data is passed back and forth as URL

parameters (for example, mySocalApp://?request=shareLink).

The iOS Settings app registers the prefs:// scheme. Luckily, Apple

makes finding the settings-specific URL for you. All you have to do is call the

UIApplicationOpenSettingsURLSetting macro. In Listing 2-7, I have modified the

presentPermissionErrorAlert() method to launch the Settings app from this URL.

Listing 2-7.  Sending the User to the Settings Page for Your App

func presentPermissionErrorAlert() {

 let alert = UIAlertController(title: "Permission Error",

 message: "Please enable location services for this app",

 preferredStyle: UIAlertControllerStyle.alert)

Figure 2-8.  Location permission alerts for IOTFit

Chapter 2 Using Core Location to Build a Workout Tracking App

71

 let okAction = UIAlertAction(title: "OK", style:

 UIAlertActionStyle.default, handler: {

 (action: UIAlertAction) in

 if let settingsUrl = URL(string:

 UIApplicationOpenSettingsURLString),

 UIApplication.shared.canOpenURL(settingsUrl) {

 UIApplication.shared.open(settingsUrl,

 options: [:], completionHandler: nil)

 }

 })

 let cancelAction = UIAlertAction(title: "Cancel", style:

 UIAlertActionStyle.cancel, handler: nil)

 alert.addAction(okAction)

 alert.addAction(cancelAction)

 self.present(alert, animated: true, completion: nil)

}

In the same way you had to check if location services were available before

requesting permission, you must ask if the app can open the Settings URL before

attempting to open it. One of the most unfortunate side effects of how Apple implements

its protected resources is that if you do not ask for permission or availability, your

app may crash at runtime. Runtime crashes are the number-one reason for App Store

rejection.

If users reject location permission for the app, the next time they press the Start

button, they will see the flow in Figure 2-9. Pressing the OK button will take them to the

Settings page for IOTFit. When they return to the app, they can use it without a problem.

You can test this by disabling location permission in the Settings app and then pressing

the Start button within the IOTFit app.

Chapter 2 Using Core Location to Build a Workout Tracking App

72

�Requesting Location Updates
Now that the app is allowed to interact with the location features of iOS, you can begin

polling for location updates. As indicated in the flowchart for the app from Figure 2-7,

every few seconds, you must save the most recent location, calculate the new workout

time, and calculate the new workout distance. When the user pauses the workout, you

must pause the updates. Resuming continues the time and distance updates.

The flow for handling location updates in iOS is very similar to the flow for

requesting location permission. First, let your location manager instance know you want

location updates, then respond to these updates through the locationManager:didUpda

teLocations: delegate method. To reduce the number of updates, you will have to set a

limit on the accuracy of the location manager as well.

In Listing 2-8, I have updated the requestLocationPermission() and

startWorkout() methods and CLLocationManagerDelegate extension to include the

location update request and delegate handler method.

Figure 2-9.  Settings request flow for IOTFit

Chapter 2 Using Core Location to Build a Workout Tracking App

73

Listing 2-8.  Requesting Location Permission When the Workout Begins

class CreateWorkoutViewController: UIViewController {

 ...

 func requestLocationPermission() {

 if CLLocationManager.locationServicesEnabled(){

 locationManager.desiredAccuracy =

 kCLLocationAccuracyHundredMeters

 locationManager.distanceFilter = 10.0 //meters

 locationManager.delegate = self

 ...

 }

 } else {

 presentEnableLocationAlert()

 }

 }

 func startWorkout() {

 currentWorkoutState = .active

 ...

 locationManager.startUpdatingLocation()

 }

 }

extension CreateWorkoutViewController:

 CLLocationManagerDelegate {

 ...

 func locationManager(_ manager: CLLocationManager,

 didUpdateLocations locations: [CLLocation]) {

 guard let mostRecentLocation = locations.last else {

 NSLog("Unable to read most recent location")

 return

 }

Chapter 2 Using Core Location to Build a Workout Tracking App

74

 NSLog("Most recent location: \(String(describing:

 mostRecentLocation))")

}

The locationManager:didUpdateLocations: delegate method returns multiple

locations, but for the sake of calculating distance, the last one is sufficient. In my code,

I added a guard-let to validate the value before accessing it. With optional values that

come back from hardware, the risk that they were not initialized is high (such as when

the hardware is not ready, or a connection is down). It is not wise to force-unwrap in

these situations.

�Responding to Location Updates
The locationManager:didUpdateLocations: delegate method will fire anytime it

detects a location change greater than the distanceFilter value you specified. However,

you will have to update the user interface at these times, to show the new value.

Additionally, when the user changes the state of the workout, you should also change the

labels in the buttons (and hide the Pause button, if the workout is stopped altogether).

Finally, you will also require some way of keeping track of the time that has elapsed.

The easiest of these tasks is updating the buttons. When the workout is started, you

will show the Pause button and change the label of the Start button to “Stop.” When

the Pause button is pressed, change the label of this button to “Resume.” Finally, when

the Stop button is pressed, reset the user interface (Show Start button, hide Pause

button). Because this logic is the same for all state changes in the app, you can wrap it

in a method and use that method throughout your code. In Listing 2-9, I have created

a method called updateUserInterface() to handle these updates and added calls to it

in the viewDidLoad(), toggleWorkout(), and pauseWorkout() methods. These are the

points at which the view is created, and the user interacts with the screen.

Listing 2-9.  Updating the Buttons When the App Changes State

class CreateWorkoutViewController: UIViewController {

 ...

 override func viewDidLoad() {

 super.viewDidLoad()

 updateUserInterface()

 }

Chapter 2 Using Core Location to Build a Workout Tracking App

75

 @IBAction func toggleWorkout() {

 switch currentWorkoutState {

 case .inactive:

 requestLocationPermission()

 case .active:

 currentWorkoutState = .inactive

 default:

 NSLog("toggleWorkout() called out of

 context!")

 }

 updateUserInterface()

 }

 @IBAction func pauseWorkout() {

 updateUserInterface()

 }

 func updateUserInterface() {

 switch(currentWorkoutState) {

 case .active:

 toggleWorkoutButton?.setTitle("Stop", for:

 UIControlState.normal)

 pauseWorkoutButton?.setTitle("Pause", for:

 UIControlState.normal)

 pauseWorkoutButton?.isHidden = false

 case .paused:

 pauseWorkoutButton?.setTitle("Resume", for:

 UIControlState.normal)

 pauseWorkoutButton?.isHidden = false

 default:

 toggleWorkoutButton?.setTitle("Start", for:

 UIControlState.normal)

Chapter 2 Using Core Location to Build a Workout Tracking App

76

 pauseWorkoutButton?.setTitle("Pause", for:

 UIControlState.normal)

 pauseWorkoutButton?.isHidden = true

 }

 }

 ...

}

The next easiest task is to update the time display. Because the location updates fire

at unpredictable times (whenever the threshold has changed), you will have to come up

with an independent time-tracking mechanism. Luckily, there’s an API for that! You can

use the Timer class to create a timer object, which can call a method at a later time or

repeatedly at an interval you specify. For the IOTFit app, every time the timer fires, you

must calculate the new total time of the workout and update the workout time label. In

Listing 2-10, I have updated the CreateWorkoutViewController class with properties

and helper methods to assist with managing the timer and inserted the appropriate calls

for timer state management.

Listing 2-10.  Using a Timer to Track Workout Time Updates

import UIKit

import CoreLocation

...

let timerInterval: TimeInterval = 1.0

class CreateWorkoutViewController: UIViewController {

 ...

 var lastSavedTime: Date?

 var workoutDuration: TimeInterval = 0.0

 var workoutTimer: Timer?

 ...

 func startWorkout() {

 currentWorkoutState = .active

 UserDefaults.standard.setValue(true, forKey:

 "isConfigured")

Chapter 2 Using Core Location to Build a Workout Tracking App

77

 UserDefaults.standard.synchronize()

 workoutDuration = 0.0

 workoutTimer = Timer.scheduledTimer(timeInterval:

 timerInterval, target: self, selector:

 #selector(updateWorkoutData), userInfo: nil,

 repeats: true)

 locationManager.startUpdatingLocation()

 }

 @objc func updateWorkoutData() {

 let now = Date()

 if let lastTime = lastSavedTime {

 self.workoutDuration +=

 now.timeIntervalSince(lastTime)

 }

 self.workoutDuration += timerInterval

 workoutTimeLabel?.text = stringFromTime(timeInterval:

 self.workoutDuration)

 }

 func stringFromTime(timeInterval: TimeInterval) -> String{

 let integerDuration = Int(timeInterval)

 let seconds = integerDuration % 60

 let minutes = (integerDuration / 60) % 60

 let hours = (integerDuration / 3600)

 if hours > 0 {

 return String("\(hours) hrs \(minutes) mins

 \(seconds) secs")

 } else {

 return String("\(minutes) min \(seconds) secs")

 }

 }

 @IBAction func toggleWorkout() {

 switch currentWorkoutState {

 case .inactive:

 requestLocationPermission()

Chapter 2 Using Core Location to Build a Workout Tracking App

78

 case .active:

 currentWorkoutState = .inactive

 stopWorkoutTimer()

 default:

 NSLog("toggleWorkout() called out of

 context!")

 }

 updateUserInterface()

 }

 @IBAction func pauseWorkout() {

 switch currentWorkoutState {

 case .paused:

 startWorkout()

 case .active:

 currentWorkoutState = .paused

 stopWorkoutTimer()

 default:

 NSLog("pauseWorkout() called out of

 context!")

 }

 updateUserInterface()

 }

 ...

 func stopWorkoutTimer() {

 workoutTimer?.invalidate()

 lastSavedTime = nil

 }

}

To track the time elapsed, I have created a TimeInterval object. Timer objects

are initialized with TimeInterval values, so using this same class for tracking time

makes the code much more consistent. Next, you initialize the Timer and reset the

workoutDuration inside the startWorkout() method. The Timer is initialized to repeat

every second. When it fires, it calls the updateWorkoutData() method. Inside this

Chapter 2 Using Core Location to Build a Workout Tracking App

79

method, I use the stringFromTime() helper method to convert the workoutDuration

property to a string and update the workoutTime label. I calculated the difference in time

by comparing two Date objects (lastSavedTime and now). This allowed me to keep an

accurate track of time, even when the app is in the background.

For the final timer-related tasks, you may notice that I inserted the appropriate calls

to stopWorkoutTimer() inside the toggleWorkout() and pauseWorkout() methods

and fleshed out the pauseWorkout() method with the logic it requires to implement the

states in the flowchart from Figure 2-7.

With all of this user interface update groundwork now in place, it is straightforward

to update the total workout distance. In the same way you created a property to track

total time, you can create properties to track workout distance and the last location

saved. When the locationManager:didUpdateLocations: delegate method fires, you

can add the distance between the most recent location and last saved location using

the distance property of the CLLocation object (the class that represents locations as

coordinate points). In Listing 2-11, I have updated the CreateWorkoutViewController

class, locationManager:didUpdateLocations: delegate method, and

updateWorkoutData() method, to implement this logic.

Listing 2-11.  Calculating Workout Distance

class CreateWorkoutViewController: UIViewController {

 ...

 var workoutDistance: Double = 0.0

 var lastSavedLocation: CLLocation?

 ...

 @objc func updateWorkoutData() {

 self.workoutDuration += timerInterval

 workoutTimeLabel?.text =

 stringFromTime(timeInterval:

 self.workoutDuration)

 workoutDistanceLabel?.text = String(format: "%.2f

 meters", arguments: [workoutDistance])

 }

 ...

}

Chapter 2 Using Core Location to Build a Workout Tracking App

80

extension CreateWorkoutViewController: CLLocationManagerDelegate {

 ...

 func locationManager(_ manager:

 CLLocationManager, didUpdateLocations

 locations: [CLLocation]) {

 guard let mostRecentLocation = locations.last else {

 NSLog("Unable to read most recent location")

 return

 }

 if let savedLocation = lastSavedLocation {

 let distanceDelta = savedLocation.distance(from:

 mostRecentLocation)

 workoutDistance += distanceDelta

 }

 lastSavedLocation = mostRecentLocation

 }

}

�Programmatically Enabling Background Updates

As mentioned earlier, the locationManager:didUpdateLocations: delegate method will

fire anytime the location change detected is greater than the minimum threshold you set,

including while the app is in the background. For the safest implementation, you must

modify the setup code for the Create Workout View Controller’s location manager, to

declare that the app will be using location in the background and that the updates can be

paused. In addition to code clarity, this will help your app become a responsible power

citizen. GPS is one of the most power-hungry features on mobile devices! In Listing 2-12,

I have modified the requestLocationPermission() method with these changes.

Listing 2-12.  Enabling Background Updates for the Location Manager

func requestLocationPermission() {

 if CLLocationManager.locationServicesEnabled() {

 locationManager.distanceFilter = 10.0

Chapter 2 Using Core Location to Build a Workout Tracking App

81

 locationManager.pausesLocationUpdatesAutomatically

 = true

 locationManager.allowsBackgroundLocationUpdates

 = true

 locationManager.desiredAccuracy =

 kCLLocationAccuracyHundredMeters

 locationManager.delegate = self

 ...

 } else {

 presentEnableLocationAlert()

 }

 }

With these last few changes, you can now use the Create Workout screen to track

workouts! Try walking around your home or office for a few meters, you will see the time

and distance increase, until you press the Pause or Stop buttons!

�Displaying Location Data on a Map
Now that the IOTFit app is able to use location services on the iPhone to help users

figure out how far they ran, it would be good to make this data useful to the users. When

building an IoT application, you should think of how to use the data to help the user

improve his/her life, as much as what it takes to talk to the hardware to collect that data.

By allowing your users to visualize their workouts on a map, you can help them think

about the effect of a path on their performance, research a path they liked, or give them a

fun image to share with their friends.

In the first half of this chapter, you learned how to use the CLLocation class to save

location coordinate data and calculate the distance between two points. In this section,

you will learn how to take that further, by converting this data into map pinpoints and a

path. As you will learn, it is actually quite simple. Unfortunately, these operations require

a set of data to work on, and Apple does not give you a free store for locations out of the

box, so you will have to build one yourself. Luckily, however, this has also become a lot

easier with iOS 11, with the help of the Codable protocol.

Chapter 2 Using Core Location to Build a Workout Tracking App

82

�Using the Codable Protocol for File-Based Data Storage
One of the key features of any workout app is a history feature, which allows users to

see their past workouts. In this first iteration of IOTFit, the history feature is a map that

shows a path between the user’s starting and end points (represented as pinpoints). To

enable this feature, you must add a class to save and retrieve workout data and modify

the existing classes, to use it as their data source. For the IOTFit app, you will make a

new class called WorkoutDataManager, to manage these duties and access it through a

singleton object.

A singleton is an object that can only be instantiated once within an application. It

is a controversial design pattern, as many developers think singletons serve the same

purpose as global variables (having side effects and being shared everywhere in an

application), but I want to introduce them, as Apple uses them frequently in its hardware

APIs, and I feel they are appropriate in situations in which you must manage access to a

shared resource within an application.

To let users access data after closing the app, the WorkoutDataManager will use a

property-list (.plist) file as its persistent data store. Property-lists, like the one you used

earlier to configure location permissions for the app, are frequently used to store settings

and simple data sets in iOS, both as bundled files and documents. In the old days, you

would have to write the entire data input/output (I/O) stack yourself, but now, thanks to

the Codable protocol, all you have to do is abstract your information into basic data types

(for example, Int, String) that implement the protocol, write adapters to help serialize

more complex types (like CLLocation) to your basic ones, and then specify the format

you want to store your data as (for example, JSON, Property-List).

Caution T he code in this section will only work in iOS 11 and later versions. The
Codable protocol was introduced in iOS 11, along with Swift 4.

Chapter 2 Using Core Location to Build a Workout Tracking App

83

To get started, you must create the WorkoutDataManager class. As shown in

Figure 2-10, go to the File menu and select New ➤ File.

Figure 2-10.  Creating a new file in Xcode

When asked to choose a type, choose Swift File, as shown in Figure 2-11. Name the

new file WorkoutDataManager.swift.

Chapter 2 Using Core Location to Build a Workout Tracking App

84

Your new class should resemble Listing 2-13.

Listing 2-13.  Blank WorkoutDataManager Class

import Foundation

class WorkoutDataManager {

}

Singletons in Swift are implemented by creating a static instance of the class

and a custom initializer to lazy-load the object (initialize it the first time it is called).

To implement these, modify the blank class, as shown in Listing 2-14.

Figure 2-11.  Xcode new file templates

Chapter 2 Using Core Location to Build a Workout Tracking App

85

Listing 2-14.  Implementing the WorkoutDataManager Class As a Singleton

class WorkoutDataManager {

 static let sharedManager = WorkoutDataManager()

 private init() {

 print("Singleton initialized")

 }

}

As mentioned earlier, to take advantage of the data serialization features of the

Codable protocol, you must define data types that implement it. In keeping with the

name of the class, the core data type for the IOTFit app will be a workout. If you think

about the Create Workout View Controller, the data you displayed there was the workout

duration and distance. To help draw the map, you should also keep a list of locations that

were detected during the workout. In Listing 2-15, I added the data types you will use to

build the Workout Data Manager.

Listing 2-15.  Adding Codable-Compatible Data Types to the

WorkoutDataManager Class

import Foundation

struct Coordinate: Codable {

 var latitude: Double

 var longitude: Double

}

struct Workout: Codable {

 var endTime: Date

 var duration: TimeInterval

 var locations: [Coordinate]

}

typealias Workouts = [Workout]

class WorkoutDataManager {

 static let sharedManager = WorkoutDataManager()

Chapter 2 Using Core Location to Build a Workout Tracking App

86

 private var workouts: Workouts?

 private init() {

 print("Singleton initialized")

 }

}

As mentioned earlier, to use the Codable protocol, you must abstract everything

into basic data types. To assist with this, I created the Coordinate data type, which

you will use later to help convert data from CLLocation objects. Because users will

avail themselves of the app more than once, I created a typealias called Workouts, to

represent an array of workout items. One of the great things about the Codable protocol

is that when you want to store an entire array of items, all you have to do is encode (write)

or decode (read) that array from your data store.

�Implementing File I/O

iOS is famous for keeping apps in sandboxes, meaning that apps can only access and

manage resources (such as files) within a space for that app alone, with a few exceptions

allowed by Apple. One of the most common ways developers work with this sandbox is by

creating files in the Documents folder of the app bundle at runtime. For the IOTFit app, you

will do the same. Workouts will be stored in a property-list file named Workouts.plist.

One of the challenges of working with the Documents folder of your app is that you

must find its file path at runtime. Every time your app is installed, it will be created in

a unique folder generated by iOS. To help manage this, I have added logic in Listing

2-16 that looks up the path for IOTFit’s Documents folder at runtime and appends the

Workouts.plist file name to the end.

Listing 2-16.  Finding a File Path in an App’s Documents Directory at Runtime

class WorkoutDataManager {

 ...

 private var workoutsFileUrl: URL? {

 guard let documentsUrl = documentsDirectoryUrl() else {

 return nil

 }

Chapter 2 Using Core Location to Build a Workout Tracking App

87

 return documentsUrl.appendingPathComponent(

 "Workouts.plist")

 }

 func documentsDirectoryUrl() -> URL? {

 let fileManager = FileManager.default

 return fileManager.urls(for: .documentDirectory, in:

 .userDomainMask).first

 }

}

The FileManager class is primarily used to do manual file I/O; however, it comes

with convenient helper methods to help manage your program’s sandbox. You may

have also noticed that I used the guard-let pattern here. For times when you must stop

execution of a block after a condition fails, guard-let is a perfect choice. It also helps

increase readability, as subsequent logic is nested in fewer chained if-let statements.

To load the data, you must create a Decoder. This is an object that uses one of Apple’s

pre-built file interfaces (or one you write yourself) and your Codable-compatible data

type to map the data in the file to something you can use in your app. In Listing 2-17,

I have added the loadFromPlist() method to handle this operation, and a call to the

method in the custom initializer. To keep data in sync, the first operation you should do

after initializing the WorkoutDataManager class is load past data.

Listing 2-17.  Loading Data from a Property-List Using PropertyListDecoder

class WorkoutDataManager {

 ...

 private init() {

 print("Singleton initialized")

 loadFromPlist()

 }

 ...

Chapter 2 Using Core Location to Build a Workout Tracking App

88

 func loadFromPlist() {

 workouts = [Workout]()

 guard let fileUrl = workoutsFileUrl else {

 return

 }

 do {

 let workoutData = try Data(contentsOf: fileUrl)

 let decoder = PropertyListDecoder()

 workouts = try decoder.decode(Workouts.self, from:

 workoutData)

 } catch {

 NSLog("Error reading plist")

 }

 }

}

Writing to a file is a very similar process, except rather than using a decoder, you use

an encoder to read the contents of a file. To handle saving to files, add the saveToList()

method to the WorkoutDataManager class, as shown in Listing 2-18.

Listing 2-18.  Writing to a Property-List Using PropertyListEncoder

class WorkoutDataManager {

 ...

 func saveToPlist() {

 guard let fileUrl = workoutsFileUrl else {

 return

 }

 let encoder = PropertyListEncoder()

 encoder.outputFormat = .xml

 do {

 let workoutData = try encoder.encode(workouts)

 try workoutData.write(to: fileUrl)

Chapter 2 Using Core Location to Build a Workout Tracking App

89

 } catch {

 NSLog("Error writing plist")

 }

 }

}

�Using the map() Method to Serialize Data

The final tasks you must perform to complete the Workout Data Manager are the

interfaces to Create Workout View Controller and Workout Map View Controller. These

include the operations required to create a workout, close a workout, append locations

to a workout, and retrieve the most recent workout. These View Controllers receive their

data from the Core Location framework as CLLocation objects, so you will also have to

add some logic to convert from CLLocation to the Coordinate data type you created in

this section. Luckily, this is where the map() higher-order function (method) that was

introduced in Swift 3.0 comes in

As with prior examples, before thinking about the details of implementation, think

about how the user interface will need to connect to the workout life-cycle logic. When

you start a new workout, you will have to create a new workout. Every time Core Location

detects a new location, you will have to append it to the current workout. When you

finish a workout, you should close the current workout and save it. Finally, when the

map appears, you should load the last saved workout. In Listing 2-19, I have modified the

CreateWorkoutViewController class to include these calls, based on the information

each method has when it is called.

Listing 2-19.  Interacting with the WorkoutDataManager Class from the Create

Workout View Controller

class CreateWorkoutViewController: UIViewController {

 ...

 func startWorkout() {

 ...

 locationManager.startUpdatingLocation()

 lastSavedTime = Date()

 WorkoutDataManager.sharedManager.createNewWorkout()

 }

 ...

Chapter 2 Using Core Location to Build a Workout Tracking App

90

 @IBAction func toggleWorkout() {

 switch currentWorkoutState {

 case .inactive:

 requestLocationPermission()

 case .active:

 currentWorkoutState = .inactive

 stopWorkoutTimer()

 WorkoutDataManager.sharedManager.saveWorkout(

 duration: workoutDuration)

 default:

 NSLog("toggleWorkout() called out of

 context!")

 }

 updateUserInterface()

 }

 ...

}

extension CreateWorkoutViewController: CLLocationManagerDelegate {

 ...

 func locationManager(_ manager:CLLocationManager,

 didUpdateLocations locations: [CLLocation]) {

 guard let mostRecentLocation = locations.last

 else{

 return

 }

 ...

 WorkoutDataManager.sharedManager.addLocation(coordinate:

 mostRecentLocation.coordinate)

 }

}

To manage the coordinate data for an active workout, add a property that holds an

array of CLLocationCoordinate2D objects to the WorkoutDataManager class. When a

workout is reset, clear the array. When a location update is posted, append the latest

Chapter 2 Using Core Location to Build a Workout Tracking App

91

location to the array. In Listing 2-20, I have updated the WorkoutDataManager class to

include this logic. The CLLocationCoordinate2D class is a good way to get coordinate

information from a CLLocation object without requiring too much extra code.

Listing 2-20.  Adding Active Workout Location Management to the

WorkoutDataManager Class

import Foundation

import CoreLocation

...

class WorkoutDataManager {

 static let sharedManager = WorkoutDataManager()

 private var workouts: Workouts?

 private var activeLocationss: [CLLocationCoordinate2D]?

 ...

 func createNewWorkout() {

 activeLocations = [CLLocationCoordinate2D]()

 }

 func addLocation(coordinate: CLLocationCoordinate2D) {

 activeLocations?.append(coordinate)

 }

 ...

}

Creating and updating workout locations turned out to be straightforward; however,

for the save and retrieve operations, you will have to convert these locations to/from

Coordinate objects. Rather than creating a for-loop to iterate through all these items,

starting with Swift 3.0, you can use the map() higher-order function to define an operation

to apply or map onto each item in a collection (for example, add 3 to every item in

an array). For the Workout Data Manager, you can use map() to convert each item to/

from the Coordinate data type. In Listing 2-21, I have added the saveWorkout() and

getLastWorkout() methods to the WorkoutDataManager class, which implement this logic.

Chapter 2 Using Core Location to Build a Workout Tracking App

92

Listing 2-21.  Using the map() Method to Serialize Data in the saveWorkout()

and getLastWorkout() Methods

class WorkoutDataManager {

 ...

 func saveWorkout(duration: TimeInterval) {

 guard let activeLocations = activeLocations else {

 return

 }

 let mappedCoordinates = activeLocations.map{(value:

 CLLocationCoordinate2D) in

 return Coordinate(latitude: value.latitude,

 longitude: value.longitude)

 }

 let currentWorkout = Workout(endTime: Date(), duration:

 duration, locations: mappedCoordinates)

 workouts?.append(currentWorkout)

 saveToPlist()

 }

 func getLastWorkout() -> [CLLocationCoordinate2D]? {

 guard let workouts = workouts, let lastWorkout =

 workouts.last else {

 return nil

 }

 let locations = lastWorkout.locations.map{(value:

 Coordinate) in

 return CLLocationCoordinate2D(latitude:

 value.latitude, longitude: value.longitude)

 }

 return locations

 }

}

Chapter 2 Using Core Location to Build a Workout Tracking App

93

Just as with a callback handler or block, the logic in map() that must occur on each

item is defined as an anonymous function. To help make it easier to read, I gave a label

to the iterated value. This completes the Workout Data Manager; now you can use it to

display saved locations on a map!

�Displaying Saved Locations on a Map
Of all the capabilities you will learn in this chapter, mapping the data is the easiest.

To map the data, you must retrieve the data from the Workout Location Manager, add

pins showing the starting and ending points of the workout, and draw a path between

them. For the data retrieval operation, you will use the getLastWorkout: method from

the previous exercise. To draw the pinpoints and path, you can use MapKit’s built-in

annotation (MKPointAnnotation) and polyline (MKPolylineRenderer) APIs.

Creating a pinpoint (annotation in Apple’s terminology) is straightforward. All you

have to do is initialize an MKPointAnnotation object with a CLLocationCoordinate2D

object and assign a title to the annotation. Displaying the annotations is even easier. Just

call the showAnnotations: method on the Map View. It will automatically zoom in to fit

these annotations on your map. In Listing 2-22, I have added the logic to generate these

annotations in the viewWillAppear: method of the WorkoutMapViewController class.

This is called whenever the Map tab is displayed.

Listing 2-22.  Generating and Displaying Annotations on a Map View

import MapKit

class WorkoutMapViewController: UIViewController {

 @IBOutlet weak var mapView: MKMapView?

 ...

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 guard var locations =

 WorkoutDataManager.sharedManager.getLastWorkout(),

 let first = locations.first,

Chapter 2 Using Core Location to Build a Workout Tracking App

94

 let last = locations.last else {

 return

 }

 let startPin = workoutAnnotation(title: "Start",

 coordinate: first)

 let finishPin = workoutAnnotation(title: "Finish",

 coordinate: last)

 if let oldAnnotations = mapView?.annotations {

 mapView?.removeAnnotations(oldAnnotations)

 }

 mapView?.showAnnotations([startPin, finishPin],

 animated: true)

 }

 func workoutAnnotation(title: String, coordinate:

 CLLocationCoordinate2D) -> MKPointAnnotation {

 let annotation = MKPointAnnotation()

 annotation.coordinate = coordinate

 annotation.title = title

 return annotation

 }

}

An important point worth mentioning about Listing 2-22 is that you must call the

removeAnnotations: method to clear old annotations before displaying new ones. This

is a shortcoming in MapKit’s implementation, but it’s not too hard to overcome.

Drawing a path is also straightforward but requires you to declare the

WorkoutMapViewController as implementing the MKMapViewDelegate protocol. To draw

the path, you simply create an MKPolyline object, based on the complete set of saved

locations, and apply it as an overlay on the map. To define the shape of the path, you have

to implement the mapView:rendererFor:overlay: method from the MKMapViewDelegate

protocol. However, the details of implementation are quite simple. This method simply

specifies the color, size, and other display properties of the line. In Listing 2-23, I have

updated the WorkoutMapViewController class to include the protocol implementation

and call for drawing the polyline. As with the CreateWorkoutViewController class, I

implemented the protocol through an extension, to improve readability.

Chapter 2 Using Core Location to Build a Workout Tracking App

95

Listing 2-23.  Generating and Displaying a Path on a Map View

class WorkoutMapViewController: UIViewController {

 @IBOutlet weak var mapView: MKMapView?

 override func viewDidLoad() {

 super.viewDidLoad()

 mapView?.delegate = self

 }

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 guard var locations =

 �WorkoutDataManager.sharedManager.getLastWorkout(), let first =

locations.first, let last = locations.last else {

 return

 }

 ...

 let workoutRoute = MKPolyline(coordinates:

 &locations, count: locations.count)

 mapView?.addOverlays([workoutRoute])

 }

 ...

}

extension WorkoutMapViewController: MKMapViewDelegate {

 func mapView(_ mapView: MKMapView, rendererFor overlay:

 MKOverlay) -> MKOverlayRenderer {

 let pathRenderer = MKPolylineRenderer(overlay: overlay)

 pathRenderer.strokeColor = UIColor.red

 pathRenderer.lineWidth = 3

 return pathRenderer

 }

}

Chapter 2 Using Core Location to Build a Workout Tracking App

96

This completes the map portion of the IOTFit app! After saving your first workout, when

you press the Map tab, you will see two pinpoints indicating the start and end points of your

workout, as well as a red line between them, similar to the screenshot in Figure 2-12.

Figure 2-12.  IOTFit app with completed workout in Workout Map screen

�Summary
In this chapter, you took the user interface skeleton of the IOTFit app from the first

chapter and fleshed it out by adding location permissions, workout distance calculation,

and the ability to display the locations on a map. Along the way, you learned that when

accessing sensitive permissions on a user’s device, Apple makes you jump through a

lot of hoops in project setup and make the calls to display the request to the user. You

also learned how protocols can help you implement callbacks from Apple’s hardware

frameworks and even define how to draw paths on a map. These concepts will keep

coming back as you progress through this book and IoT app development.

Chapter 2 Using Core Location to Build a Workout Tracking App

97
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_3

CHAPTER 3

Using Core Motion to Add
Physical Activity Data
to Your Apps
In the last two chapters, you started with a drawing of a workout app and fleshed it

out with a functioning user interface that could be used to record workout distance

based on GPS readings and display the path on a map. Unfortunately, as you may have

noticed by playing with the app, the locations only updated when the user moved

and the app was suspectible to lost GPS signals, occasionally producing inaccurate

distance data. To make a more accurate and appopriate workout app, in this chapter,

you will learn how to use Core Motion, Apple’s interface to the M-series motion

coprocessor, the chip that provides the pedometer, accelerometer, and gyroscope

features on the iPhone and Apple Watch.

With the features provided by the Core Motion framework, you can not only provide

users with data they expect from other workout trackers (such as step count) but reduce

your app’s battery impact, as GPS is one of the most power-hungry features of the

iPhone. As iOS devices continued to evolve, many workout apps followed this same

transformation by shifting GPS from being the primary sensing method to an opt-in

feature for power users.

One last bonus for you as a developer is that you will be able to leverage the

knowledge from this chapter again later in the book when you build a watchOS version

of the IOTFit app. When Apple was trying to strengthen watchOS during its 2.0 release, it

added slimmed-down versions of iOS frameworks to the watch itself. Core Motion and

many of the other workout-related frameworks retain the most APIs from iOS, so the

porting process should be painless.

98

Caution  Core Motion relies on a discrete microprocessor chip to perform its
motion-tracking functions. While a variation of this chip is available on iPhones
and Apple Watch devices, as of this writing, it is not available on iPad. You can still
develop this project with an iPad, but you will not able to test it successfully.

�Learning Objectives
In this chapter, you will learn how to use Core Motion to extend the IOTFit app to display

live-updating reports on step count and activity type, perform step-based distance

calculations, and measure changes in elevation. By performing these tasks, you will learn

the following key skills for Internet of Things (IoT) app development:

•	 Setting up an app for motion (activity) permission

•	 Requesting step data from the iPhone’s pedometer

•	 Measuring difference in altitude during the iPhone’s altimeter

•	 Responding to fast-changing events (step count, activity type,

altitude)

•	 Performing calculations based on motion data

Just as with Core Location, Core Motion provides your app access to hardware on

the iPhone that has the potential to collect sensitive data about the user. You will apply

the lessons you learned from Chapter 2 (location features) to check for the availability

of motion features on the user’s device and ask for his/her permission. This chapter

acts like the third iteration, or third sprint, of IOTFit. It builds on the foundations in user

interface development and permission-based resource development you learned in

Chapters 1 and 2 to introduce a new concept. If you are still unsure of either topic, please

review those chapters before continuing with this one.

As with the previous chapters, the project in this chapter is meant to be built as you

progress through the narrative. If you get stuck on anything or need some reference, the

completed code for this project is available on the GitHub repository for this book, under

the Chapter 3 folder (https://github.com/Apress/program-internet-of-things-

w-swift-for-ios).

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

https://github.com/Apress/program-internet-of-things-w-swift-for-ios
https://github.com/Apress/program-internet-of-things-w-swift-for-ios

99

�Requesting Motion Permission from the User
When you built the location-based features of the IOTFit app in Chapters 1 and 2, the

changes consisted of three major components:

•	 Modifying the project file to declare it would use a sensitive

permission (and why)

•	 Checking for the availability of a hardware resource before

attempting to use it

•	 Displaying a pop-up asking the user to allow the app to use the

sensitive permission

These concepts all apply to Core Motion as well; however, unlike Core Location, you

have less control over how to present the permissions request. With Core Motion, the

request is presented the first time an attempt to access a protected resource is made.

While this may seem like it is great, because it means less code, the implication is that

you will have to move your resource availability check from the beginning of execution to

before each operation begins.

The easiest place to start is by declaring your project as requiring motion permission.

You enable this operation by adding the NSMotionUsageDescription key-value pair to

your project’s Info.plist file. First, make a copy of the IOTFit project from Chapter 2

(either from your own code or the GitHub repository) and open the project. As shown

in Figure 3-1, click the project name in the project hierarchy to open the Project Setting

editor, then click the Info tab. Scroll down to the vicinity of the location permission key-

value pairs (for example, Privacy When In Use Description) and click the plus (+) button

to add a new key-value pair. The key for motion permission is Privacy - Motion Usage

Description.

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

100

Click inside the text field to enter in the description that will appear when the user is

prompted for motion permission. For the IOTFit project, I used the following text:

IOTFit would like to use motion permission to help you measure the step
count and altitude of your workouts. This information will not be shared
outside of the app.

To help your users (and to prevent getting rejected by the App Store submission team),

you should always describe why you need to use a restricted resource as accurately as

possible. During App Store submissions (initial requests and updates), Apple will run your

app and attempt to verify that you are actually using the permissions you requested.

Now that the project is set up for motion permission, you must check if the M-series

motion coprocessor is available for use on the user’s device. In a similar manner to Core

Location, you can query the CMMotionManager class to check for hardware availability.

You can perform this operation by querying the isDeviceMotionAvailable calculated

property. There is more variation in the motion sensing hardware in iOS devices, as

compared to GPS hardware, so you will also have to add checks for the features you are

trying to use (step counting, altitude). These have similar class methods that you can call

Figure 3-1.  Adding the motion permission description to the IOTFit project

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

101

to check availability. In Listing 3-1, I have updated the CreateWorkoutViewController

class to include the Core Motion framework and check for hardware availability inside

the startWorkout() method.

Listing 3-1.  Adding Motion Permission Checking to the

CreateWorkoutViewController Class

import UIKit

import CoreLocation

import CoreMotion

...

class CreateWorkoutViewController: UIViewController {

 let locationManager = CLLocationManager()

 ...

 var isMotionAvailable: Bool = false

 ...

 func startWorkout() {

 currentWorkoutState = .active

 ...

 if (CMMotionManager().isDeviceMotionAvailable &&

 CMPedometer.isStepCountingAvailable() &&

 CMAltimeter.isRelativeAltitudeAvailable()) {

 //Start motion updates

 isMotionAvailable = true

 } else {

 NSLog("Motion acitivity not available on device.")

 isMotionAvailable = false

 }

 }

}

When adopting a permission-based feature, try to design your app to provide value

to the user, even when the desired feature is disabled. In the case of motion permission,

I did not prevent the user from starting a workout, but I did set the isMotionAvailable

flag in the CreateWorkoutViewController class to false, so that I could disable hooks

for motion-based features later in the class.

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

102

Finally, to make the permission prompt appear, you must attempt to collect data

through a CoreMotion API. Because one of the goals of this third iteration of IOTFit is

to add step counting, you can trigger the motion permission by initiating a request for

pedometer updates. As you may have figured out from Listing 3-1, the class that manages

the pedometer on iOS is CMPedometer. To initiate a request for pedometer updates,

initialize a CMPedometer object and call the startUpdates(from:withHandler:) method

on that object, specifying a start date and completion handler. In Listing 3-2, I have

updated the CreateWorkoutViewController class to include this logic. The response to

the request is initiated from the startWorkout() method.

Listing 3-2.  Adding a Step Count Request to the CreateWorkoutViewController

Class

class CreateWorkoutViewController: UIViewController {

 ...

 var lastSavedTime: Date?

 var workoutStartTime: Date?

 var pedometer: CMPedometer?

 ...

 func startWorkout() {

 ...

 lastSavedTime = Date()

 workoutStartTime = Date()

 WorkoutDataManager.sharedManager.

 createNewWorkout()

 if(CMMotionManager().isDeviceMotionAvailable

 && CMPedometer.isStepCountingAvailable()

 && CMAltimeter.isRelativeAltitudeAvailable()){

 isMotionAvailable = true

 startPedometerUpdates()

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

103

 } else {

 NSLog("Motion activity not available on

 device.")

 isMotionAvailable = false

 }

 }

 func startPedometerUpdates() {

 guard let workoutStartTime = workoutStartTime else {

 return

 }

 pedometer = CMPedometer()

 pedometer?.startUpdates(from: workoutStartTime,

 withHandler: { (pedometerData:

 CMPedometerData?, error: Error?) in

 NSLog("Received pedometer update!")

 })

 }

 ...

}

The completion handler is intentionally empty, as the purpose of this exercise is to

learn how to present the permission alert. In the next section, you will learn how to work

with the data to display step count in your apps.

Now, run the modified application on an iPhone and press the Start button. The first

time you press the Start button, you will see a permission alert on your phone, similar to

that in the screenshot in Figure 3-2.

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

104

�Receiving Real-Time Step Count Updates
from the iPhone’s Pedometer
One of the technologies that kicked off the Quantified Self movement in the early 2000s

was the introduction of inexpensive standalone pedometers that displayed step counts

on an LCD screen. As technology evolved, they began to integrate other statistics, such as

floors climbed and smartphone integration (the most famous being the Fitbit). Luckily,

iPhones now include very advanced, accurate pedometer-like features built into the

M-series motion coprocessor chips, without the need for additional external hardware.

In Listing 3-2, the method I used to initiate the permission request was startUpdates

(from:withHandler:). This method tells the pedometer to start collecting data and send

it back to your app via the completion handler closure you specify.

Figure 3-2.  Motion permission alert for the IOTFit app

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

105

A closure in Swift operates the same way as a block in Objective-C or an anonymous

function in other high-level programming languages. Closures are often defined and

passed as parameters for other methods. They are an appropriate choice for long-

running methods or methods whose response time is unclear (such as updates from

hardware), or in place of protocols, whose implementations often end up requiring a lot

of supporting code.

The closure for pedometer updates returns a CMPedometerData object, if the

operation was a success (or an uninitialized optional value, in case of failure). By

inspecting this value, you can determine the number of steps traveled, floors ascended

or descended, distance, and pace of the user between the starting time and the time

of the update. In Listing 3-3, I have updated the CreateWorkoutViewController class

to include new properties for tracking pace and floors climbed. I also updated the

startPedometerUpdates() method to use the pedometer-based values instead of the

GPS values and refactored the logic to reset the workout tracking values into a new

resetWorkoutData() method.

Listing 3-3.  Adding Real-Time Pedometer Updating Handling to the

CreateWorkoutViewController Class

class CreateWorkoutViewController: UIViewController {

 ...

 var workoutDistance: Double = 0.0

 var averagePace: Double = 0.0

 var workoutSteps: Int = 0

 var floorsAscended: Int = 0

 ...

 func resetWorkoutData() {

 lastSavedTime = Date()

 workoutDuration = 0.0

 workoutDistance = 0.0

 workoutSteps = 0

 floorsAscended = 0

 averagePace = 0.0

 }

 ...

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

106

 func startPedometerUpdates() {

 guard let workoutStartTime = workoutStartTime

 else { return }

 pedometer = CMPedometer()

 pedometer?.startUpdates(from: workoutStartTime,

 withHandler: { [weak self] (pedometerData:

 CMPedometerData?, error: Error?) in

 if let error = error {

 NSLog("Error reading pedometer data:

 \(error.localizedDescription)")

 return

 }

 guard let pedometerData = pedometerData,

 let distance = pedometerData.distance

 as? Double,

 let averagePace = pedometerData.averageActivePace

 as? Double,

 let steps = pedometerData.numberOfSteps

 as? Int,

 let floorsAscended = pedometerData.floorsAscended

 as? Int else { return }

 self?.workoutDistance = distance

 self?.workoutSteps = steps

 self?.floorsAscended = floorsAscended

 self?.averagePace = averagePace

 })

 }

 func requestLocationPermission() {

 if CLLocationManager.locationServicesEnabled(){

 ...

 switch(CLLocationManager.authorizationStatus()){

 ...

 case .authorizedAlways:

 resetWorkoutData()

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

107

 startWorkout()

 default:

 presentPermissionErrorAlert()

 }

 } else {

 presentEnableLocationAlert()

 }

 }

 ...

}

extension CreateWorkoutViewController: CLLocationManagerDelegate {

 func locationManager(_ manager:

 CLLocationManager, didChangeAuthorization status:

 CLAuthorizationStatus) {

 switch status {

 ...

 case .authorizedAlways:

 resetWorkoutData()

 startWorkout()

 ...

 }

 }

 func locationManager(_ manager:

 CLLocationManager, didUpdateLocations

 locations: [CLLocation]) {

 guard let mostRecentLocation = locations.last

 else { return }

 //Disable the old location calculation code

 //if let savedLocation = lastSavedLocation {

 // let distanceDelta = savedLocation.distance(from:

 mostRecentLocation)

 // workoutDistance += distanceDelta

 //}

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

108

 lastSavedLocation = mostRecentLocation

 WorkoutDataManager.sharedManager.addLocation(

 coordinate: mostRecentLocation.coordinate)

 }

}

One of the challenges of working with optional values in Swift is that you always have

to check if the value has been initialized. When working with optional values inside of

another optional value, you must perform both of these checks. To get around this issue,

many developers have been chaining unwrapping checks in single if-let or guard-

let statements, as I did in my example. I recommend against force-unwrapping using!

syntax, as it can crash your app at runtime.

�Updating the User Interface
Now that the IOTFit app can detect more information about a user’s workout, you

must modify the user interface to display this information. The way I chose to deal with

this was by tightening the spacing in between the labels on the Create Workout View

Controller, repurposing the distance label, and adding an extra label to show the average

pace, as shown in Figure 3-3.

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

109

Update the layout for the Create Workout View Controller in your Main.storyboard

file by adding two UILabel objects and adjusting the Auto Layout constraints to match

the values in Table 3-1. If you need a refresher on how to do this, refer back to Chapter 1.

Table 3-1.  New Auto Layout Constraints for the Create Workout View Controller

Display Text Top Left Right Bottom Height Text Class

Workout Time 10 20 20 -- 30 Title 3

0 hrs 00 mins 0 20 20 -- 50 Title 1

Workout Distance 0 20 20 -- 30 Title 3

0.00 m | 0 steps | 0 floors 0 20 20 -- 50 Title 1

Workout Pace 0 20 20 -- 30 Title 3

0.00 m / s 0 20 20 ≥20 50 Title 1

Figure 3-3.  Modified user interface for Create Workout View Controller

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

110

In the same manner as Chapter 1, in order to update the Workout Pace label from the

code, you have to add a UILabel property to the WorkoutViewController class, as shown

in Listing 3-4.

Listing 3-4.  Adding the Workout Pace Label to the Create Workout View

Controller

class CreateWorkoutViewController: UIViewController {

 ...

 @IBOutlet weak var workoutDistanceLabel: UILabel?

 @IBOutlet weak var workoutPaceLabel: UILabel?

 ...

}

Next, connect the label to the class, by switching back to the Main.storyboard file,

clicking the Connection Inspector for the Create View Controller, holding down the

radio button next to workoutPaceLabel and releasing it over the Pace label, as shown in

Figure 3-4. Once again, if you run into trouble during this operation, refer to Chapter 1,

to quickly review the process.

Figure 3-4.  Connecting the Workout Pace label to the Create Workout View
Controller

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

111

Finally, to update the values in the labels, modify the updateWorkoutData() method,

as shown in Listing 3-5. Read the values from the averagePace, workoutDistance and

workoutSteps properties and include them in the text for the labels. You do not have to

worry about adding extra events for the data updates. The timer event for updating the

time (once per second) should provide sufficient accuracy for most users.

Listing 3-5.  Adding Workout Data Updates to the updateWorkoutData() Method

@objc func updateWorkoutData() {

 let now = Date()

 if let lastTime = lastSavedTime {

 self.workoutDuration +=

 now.timeIntervalSince(lastTime)

 }

 workoutTimeLabel?.text =

 stringFromTime(timeInterval:

 self.workoutDuration)

 workoutDistanceLabel?.text = String(format: "%.2fm | %d steps

 | %d floors", arguments: [workoutDistance, workoutSteps,

 floorsAscended])

 workoutPaceLabel?.text = String(format: "%.2f m /s",

 arguments: [averagePace])

 lastSavedTime = now

}

�Stopping and Pausing Pedometer Updates
For the final pedometer-related tasks, you must be able to stop and pause pedometer

updates. To stop pedometer updates, simply call the stopUpdates() method on your

CMPedometer object as part of the toggleWorkout() method, as shown in Listing 3-6.

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

112

Listing 3-6.  Stopping Pedometer Updates

@IBAction func toggleWorkout() {

 switch currentWorkoutState {

 case .inactive:

 requestLocationPermission()

 case .active:

 currentWorkoutState = .inactive

 stopWorkoutTimer()

 pedometer?.stopUpdates()

 WorkoutDataManager.sharedManager.

 saveWorkout(duration: workoutDuration)

 default:

 NSLog("toggleWorkout() called out of

 context!")

 }

 updateUserInterface()

}

There is no pause method available for the pedometer; however, you can accomplish

the same task through careful management of which variable you use to manage the

time updates. The original implementation of the startPedometerUpdates() method

used the workoutStartTime property as the baseline for all pedometer updates. All

updates would generate data based on the period between the original start time and

the last update. You would not be able to implement accurate pausing with this behavior.

However, if you were to use lastSavedTime, the property you created to manage the time

updates for the workout duration label, you could get a value that queried pedometer

updates for a starting date that would be updated when the user pressed the Pause and

Resume buttons. In Listing 3-7, I have updated the startPedometerUpdates() method

to use the lastSavedTime property and incremental data updates in its calculation of

workout distance.

Listing 3-7.  Incorporating Pausing into Pedometer Distance Calculations

func startPedometerUpdates() {

 guard let lastSavedTime = lastSavedTime

 else { return }

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

113

 pedometer = CMPedometer()

 pedometer?.startUpdates(from: lastSavedTime, withHandler: {

 [weak self] (pedometerData: CMPedometerData?, error: Error?) in

 NSLog("Received pedometer update!")

 if let error = error {

 NSLog("Error reading data:

 \(error.localizedDescription)")

 return

 }

 guard let pedometerData = pedometerData,

 let distance = pedometerData.distance

 as? Double,

 let averagePace =

 pedometerData.averageActivePace

 as? Double,

 let steps = pedometerData.numberOfSteps

 as? Int,

 let floorsAscended =

 pedometerData.floorsAscended as? Int else {

 return

 }

 self?.workoutDistance += distance

 self?.floorsAscended += floorsAscended

 self?.workoutSteps += steps

 self?.averagePace = averagePace

 })

}

�Getting Activity Type
As you learned previously, Core Motion provides you with a very accurate, easy-to-

use pedometer. However, it can provide more than just raw data alone. When Apple

announced the Apple Watch, one of the slides it was proud of was the public reveal of

their fitness lab, where they employ a large staff of engineers and researchers in the

hope of finding better ways of measuring and utilizing the sensor data generated by

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

114

the M-series chips and Apple Watch. One of the fruits of this labor was the ability to

determine the type of activity the user is participating in (for example, running, walking,

or bicycling). In a process similar to receiving pedometer updates, you can use an

instance of CMMotionActivityManager in your class to listen to asynchronous updates

for activity type.

The method you use to listen to motion updates from a CMMotionActivityManager

object is startActivityUpdates(to:withHandler:). It takes two parameters: an

Operation Queue and a completion handler that returns information on the activity type.

In iOS programming, the concept of an Operation Queue is similar to a thread in other

higher-level programming languages. It is a way of making a set of instructions (tasks or

Operations) run in its own path of execution, with the hope of preventing others from

being able to execute. These are frequently adopted for long-running tasks, such as

heavy Core Data database operations. A developer will make a separate OperationQueue

object for Core Data tasks and use a protocol or completion handler to tell another part

of the program that the task has completed running.

The startActivityUpdates(to:withHandler:) method requires you to specify to

which OperationQueue the motion updates should be delivered. For the IOTFit app, you

will primarily use motion data to update the user interface, so you should deliver the

updates to the main OperationQueue for the application. In Listing 3-8, I have updated

the CreateWorkoutViewController class to include a CMMotionActivityManager

property and added a startActivityUpdates() method to monitor for activity changes

when the workout begins.

Listing 3-8.  Initiating Activity-Type Updates

class CreateWorkoutViewController: UIViewController {

 ...

 var pedometer: CMPedometer?

 var motionManager: CMMotionActivityManager?

 ...

 func startWorkout() {

 ...

 if (CMMotionManager().isDeviceMotionAvailable

 && CMPedometer.isStepCountingAvailable()

 && CMAltimeter.isRelativeAltitudeAvailable()){

 isMotionAvailable = true

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

115

 startPedometerUpdates()

 startActivityUpdates()

 } else {

 isMotionAvailable = false

 }

 }

 ...

 func startActivityUpdates() {

 motionManager = CMMotionActivityManager()

 motionManager?.startActivityUpdates(to:

 OperationQueue.main, withHandler: { (activity:

 CMMotionActivity?) in

 //received motion update

 })

 }

}

Note I f you are having issues with your iOS applications not displaying items to
the user interface correctly, verify that your calls are occurring on the main thread
(main OperationQueue). iOS only executes user interface updates from the main
thread.

The CMMotionActivity response object contains a series of Bool properties,

indicating Core Motion’s estimation of the current activity type and a confidence

property indicating the accuracy of the estimation (low, medium, high). For the IOTFit

app, all you must do is display the activity type on the Create Workout View Controller, so

you only have to evaluate the responses in the response handler and save the best value.

In Listing 3-9, I have updated the CreateWorkoutViewController class to include a

currentActivity property and save this value as part of the motion completion handler

in the startActivityUpdates() method.

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

116

Listing 3-9.  Saving the Updated Activity Type

import UIKit

...

struct WorkoutType {

 static let automotive = "Driving"

 static let running = "Running"

 static let bicycling = "Bicycling"

 static let stationary = "Stationary"

 static let walking = "Walking"

 static let unknown = "Unknown"

}

class CreateWorkoutViewController: UIViewController {

 ...

 var currentWorkoutState = WorkoutState.inactive

 var currentWorkoutType = WorkoutType.unknown

 ...

 func startActivityUpdates() {

 motionManager = CMMotionActivityManager()

 motionManager?.startActivityUpdates(to:

 OperationQueue.main, withHandler: { [weak self]

 (activity: CMMotionActivity?) in

 guard let activity = activity else { return }

 if activity.walking {

 self?.currentWorkoutType = WorkoutType.walking

 } else if activity.running {

 self?.currentWorkoutType = WorkoutType.running

 } else if activity.cycling {

 self?.currentWorkoutType =

 WorkoutType.bicycling

 } else if activity.stationary {

 self?.currentWorkoutType =

 WorkoutType.stationary

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

117

 } else {

 self?.currentWorkoutType = WorkoutType.unknown

 }

 })

 }

 ...

}

One of the unfortunate aspects of the design of the CMMotionActivity class is that

it requires you to define what you want to be the priority of the activities, rather than

using an enumerated value to represent the data. I prefaced the completion handler with

[weak self]. When working with closures, accessing self with a strong reference has

the potential of retaining the object, causing memory leaks. Using weak prevents this.

To display the value on the user interface, simply update the updateWorkoutData()

method to include inspecting the currentActivity property, as shown in Listing 3-10.

Listing 3-10.  Displaying Activity Type

@objc func updateWorkoutData() {

 let now = Date()

 var workoutPaceText = String(format: "%.2f m/s", arguments:

 [averagePace])

 if let lastTime = lastSavedTime {

 self.workoutDuration +=

 now.timeIntervalSince(lastTime)

 }

 if currentWorkoutType != WorkoutType.unknown {

 workoutPaceText.append(" | \(currentWorkoutType)")

 }

 ...

 workoutPaceLabel?.text = workoutPaceText

 ...

}

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

118

In this example, I modified the pace label to include the activity type. If the activity

type is unknown, I do not display the value. It would serve to confuse users more than it

would help them.

To stop motion (activity type) updates, simply update the toggleWorkout() method

to tell the CMMotionActivityManager to stop listening for motion updates, in the same

manner you used to stop pedometer updates, as shown in Listing 3-11.

Listing 3-11.  Stopping Motion Updates

@IBAction func toggleWorkout() {

 switch currentWorkoutState {

 ...

 case .active:

 currentWorkoutState = .inactive

 stopWorkoutTimer()

 pedometer?.stopUpdates()

 motionManager?.stopActivityUpdates()

 ...

 default:

 ...

 }

 updateUserInterface()

}

�Handling Altimeter Updates
For your final experiment with Core Motion, you can also retrieve the user’s altitude. The

best part is that it follows the design of the other Core Motion sensor APIs, namely to

•	 Instantiate a manager object

•	 Define a completion block to save the most recent data

•	 Update the user interface

•	 Stop updates when complete

As you should now be familiar with this design pattern, I have included the code for

adding altimeter data to the Create Workout View Controller in Listing 3-12.

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

119

Listing 3-12.  Adding Altitude Tracking to the Create Workout View Controller

class CreateWorkoutViewController: UIViewController {

 ...

 var workoutAltitude: Double = 0.0

 var workoutDistance: Double = 0.0

 ...

 var motionManager: CMMotionActivityManager?

 var altimeter: CMAltimeter?

 ...

 @IBAction func toggleWorkout() {

 ...

 switch currentWorkoutState {

 ...

 case .active:

 ...

 motionManager?.stopActivityUpdates()

 altimeter?.stopRelativeAltitudeUpdates()

 default:

 ...

 }

 updateUserInterface()

 }

 ...

 @objc func updateWorkoutData() {

 let now = Date()

 var workoutPaceText = String(format: "%.2f m/s |

 %0.2fm ", arguments: [averagePace, workoutAltitude])

 ...

 }

 ...

 func startWorkout() {

 currentWorkoutState = .active

 ...

 if (CMMotionManager().isDeviceMotionAvailable

 && CMPedometer.isStepCountingAvailable() &&

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

120

 CMAltimeter.isRelativeAltitudeAvailable()) {

 ...

 startActivityUpdates()

 startAltimeterUpdates()

 } else {

 isMotionAvailable = false

 }

 }

 ...

 func startAltimeterUpdates() {

 altimeter = CMAltimeter()

 altimeter?.startRelativeAltitudeUpdates(to:

 OperationQueue.main, withHandler: { [weak self]

 (altitudeData: CMAltitudeData?, error: Error?) in

 if let error = error {

 NSLog("Error reading altimeter data:

 \(error.localizedDescription)")

 return

 }

 guard let altitudeData = altitudeData,

 let relativeAltitude =

 altitudeData.relativeAltitude as? Double

 else { return }

 self?.workoutAltitude += relativeAltitude

 })

 }

 ...

 func resetWorkoutData() {

 ...

 workoutDistance = 0.0

 workoutAltitude = 0.0

 currentWorkoutType = WorkoutType.unknown

 }

}

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

121

Now, when you run the IOTFit app on your iPhone and walk around a little (or shake

your phone), you should see faster, more accurate activity updates, similar to those in

the screenshot in Figure 3-5.

Figure 3-5.  Screenshot of IOTFit app with additional workout data

�Summary
In this chapter, you took the GPS-powered IOTFit app and turned it into a more

accurate, feature-rich, and battery-friendly version by using the Core Motion

framework to access the M-series motion co-processor on iPhone and Apple Watch. You

learned how to set up manager objects for several of the sensors and how to respond

to their asynchronous updates using completion handlers. After a few examples,

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

122

the process of setting up a manager, responding to updates, and stopping requests

became very obvious as a widely-used pattern, making altimeter integration extremely

straightforward.

For the sake of readability, and to keep up with current programming trends, Apple is

moving toward more and more completion handler–based workflows in its frameworks.

Completion handlers are extremely convenient in situations in which you must execute a

quick action after another long-running method completes, and I am sure you will reuse

this knowledge many times again in this book and your own projects.

Chapter 3 Using Core Motion to Add Physical Activity Data to Your Apps

123
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_4

CHAPTER 4

Using HealthKit
to Securely Retrieve
and Store Health Data
So far, you have learned how to use the motion and GPS sensors on iOS devices to build

a workout app called IOTFit, with the capabilities to track activity data (steps, altitude,

step count) and display the user's workout path on a map. Additionally, you’ve learned

how to store this data to a property-list (.plist) file inside the app’s Documents folder.

While it is useful to store data within one app, you can help the user even more

by saving the data in a way that is accessible to other workout apps. For this purpose,

you can use the HealthKit framework. HealthKit allows you to abstract workouts into

HKWorkout objects and store them in the iPhone’s HealthKit store. The HealthKit store

is an encrypted area in memory in which the iOS Health app and HealthKit-authorized

third-party apps can share information about a user. For example, by enabling HealthKit,

users can see workouts they created in IOTFit as discrete items on the iOS Health app.

They can also use HealthKit to read display workouts from other apps within IOTFit.

Aside from security, one of HealthKit’s most powerful features is the breadth of data

it can store via its HKSample class. For the sake of clarity, this chapter will focus on how

to apply it to workout-related data, but you can make apps to manage everything from

heart rate to UV exposure to vitamin C consumption.

124

�Learning Objectives
In this chapter, by integrating HealthKit into IOTFit, you will learn the following key

concepts of Internet of Things (IoT) app development:

•	 Requesting permission to the iOS HealthKit Store

•	 How to save data to HealthKit

•	 How to load data from HealthKit

•	 How to display data on a Table View Controller

These changes will be expressed by expanding the previously developed

WorkoutDataManager class and adding a History tab to the app, which will contain a

table view documenting the user’s workout history, as shown in Figure 4-1.

Figure 4-1.  Modified wireframe for the IOTFit app, including the new History tab

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

125

As in the previous chapters, this project builds on the progress you have made

through Chapter 3. If you get stuck or have to reference the completed code for this

project, it is available on the GitHub repository for this book, under the Chapter 4 folder

(https://github.com/Apress/program-internet-of-things-w-swift-for-ios).

�Requesting HealthKit Permission
Given the sensitive nature of health data, it should come as no surprise that using

HealthKit requires you to modify your app to declare that it wants to use health-related

features and presents a permission alert when users want to access these features.

Similar to Core Motion, HealthKit is only available on newer iPhones, iPod touches, and

the Apple Watch, requiring you also to query for the availability of these features. Luckily,

you can use the same workflow you learned for requesting permissions in Core Motion

and Core Location to add HealthKit to your app.

Note S imilar to the Core Motion features discussed in Chapter 3, this chapter
is designed to run on an iPhone or iPod touch. As of this writing, Apple does not
expose the Health app or HealthKit on iPad.

To begin, make a copy of the IOTFit app you developed in Chapter 3 or download

a copy from the GitHub repository for this book. Next, select the project settings for the

app, by clicking IOTFit in the project hierarchy navigator. As shown in Figure 4-2, to

declare that the app wants to advantage HealthKit, add the HealthKit capability to the

app by clicking the Capabilities tab. Scrolling down to HealthKit, and clicking the switch

once to flip it to ON.

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

https://github.com/Apress/program-internet-of-things-w-swift-for-ios

126

If the app is not linked to a valid Apple Developer account (paid or free are both

acceptable), enabling the HealthKit capability will fail. This will be expressed by the

switch reverting to the OFF position. If you are having trouble remembering how to

connect your project to an Apple Developer account, refer back to Chapter 1.

Next, as with all permission-based features, you must add keys to the project’s

information property list (Info.plist), to define the messages that will appear in the

system-generated permission alerts. As shown in Figure 4-3, click the Info tab, then click

the (+) button that appears when you hover over the Privacy – Location When in Use

Description row, to add a new key.

Figure 4-2.  Enabling the HealthKit capability in the IOTFit project

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

127

To enable reading data from HealthKit, add the Privacy – Health Share Usage

Description key-value pair. For the description string, the text I used was “IOTFit

would like to use HealthKit permission to import workout data from the Health app

into the History feature of the app. This information will not be shared online or with

third parties.” To enable saving data to HealthKit, add the Privacy – Health Share

Usage Description key-value pair. The text I used for the description string was “IOTFit

would like to use HealthKit permission to export workout data to the Health app. This

information will not be shared online or with third parties.”

In the same manner as Core Location, you should query for HealthKit availability

and display its permission prompt before your first operation that attempts to use

the framework. The primary class for accessing HealthKit from your applications is

HKHealthStore. Similar to the manager objects from Core Motion, you instantiate an

Figure 4-3.  Adding new keys to IOTFit’s information property list

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

128

instance of the class and make calls to HealthKit through that. Unlike Core Motion, there

is a hard requirement from Apple that you only create one instance of the class in your

application. For this purpose, the most appropriate place to put the HKHealthStore

object would be in the WorkoutDataManager singleton. In Listing 4-1, I have modified the

WorkoutDataManager class to add a HKHealthStore object as a property and instantiate it

if the feature is available on the device.

Listing 4-1.  Adding an HKHealthStore Property to the WorkoutDataManager

Class

import Foundation

import CoreLocation

import HealthKit

...

class WorkoutDataManager {

 static let sharedManager = WorkoutDataManager()

 ...

 private var healthStore: HKHealthStore?

 private init() {

 print("Singleton initialized")

 loadFromPlist()

 if HKHealthStore.isHealthDataAvailable() {

 healthStore = HKHealthStore.init()

 }

 }

 ...

}

For the IOTFit app, the two points at which you will be interacting with HealthKit

are when you must save a workout and when you have to read the list of workouts to

display them on the Workout History Table View Controller. To make the code easier

to read, I will perform these operations through loadWorkoutsFromHealthKit() and

saveWorkoutToHealthKit() methods in the WorkoutDataManager class. As you do not

know which operation the user is going to perform first, you should make the permission

request in both methods. If the user has already accepted or declined the permission

request, no alert will be shown, and the next instruction will execute immediately.

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

129

The method HealthKit uses for requesting health permission is requestAutho

rization(toShare:read:completion:), which is part of the HKHealthStore class.

As its parameters, this method takes in a set of the types of health data you want to

read and write and a completion handler that will execute when the user has made

his/her decision (or immediately upon a second call). To work with HealthKit, you

must specify every type of data you wish to read or write. My secondary reason for

suggesting making the permission call before every HealthKit operation is because

if your type list changes between app versions, iOS will show the alert pop-up again,

asking to authorize your app for the new permissions. In Listing 4-2, I have added

the new loadWorkoutsFromHealthKit and saveWorkoutToHealthKit() methods to

the WorkoutDataManager class and added a call to saveWorkoutToHealthKit() in the

saveWorkout(duration:) method, to trigger the health permission pop-up. Thanks

to the healthStore property being declared as an optional value, if the availability

request in the init() method fails, the permission request and its subsequent HealthKit

operations will not execute.

Listing 4-2.  Requesting Health Permissions Before Reading or Writing Health Data

class WorkoutDataManager {

 ...

 private var hkDataTypes: Set<HKSampleType> {

 var hkTypesSet = Set<HKSampleType>()

 if let stepCountType =

 HKQuantityType.quantityType(forIdentifier:

 HKQuantityTypeIdentifier.stepCount) {

 hkTypesSet.insert(stepCountType)

 }

 if let flightsClimbedType =

 HKQuantityType.quantityType(forIdentifier:

 HKQuantityTypeIdentifier.flightsClimbed) {

 hkTypesSet.insert(flightsClimbedType)

 }

 if let cyclingDistanceType =

 HKQuantityType.quantityType(forIdentifier:

 HKQuantityTypeIdentifier.distanceCycling) {

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

130

 hkTypesSet.insert(cyclingDistanceType)

 }

 if let walkingDistanceType =

 HKQuantityType.quantityType(forIdentifier:

 HKQuantityTypeIdentifier.distanceWalkingRunning) {

 hkTypesSet.insert(walkingDistanceType)

 }

 hkTypesSet.insert(HKObjectType.workoutType())

 return hkTypesSet

 }

 ...

 func saveWorkout(duration: TimeInterval) {

 ...

 saveToPlist()

 saveWorkoutToHealthKit()

 }

 func loadWorkoutsFromHealthKit() {

 healthStore?.requestAuthorization(toShare: hkDataTypes,

 read: hkDataTypes, completion: { (isAuthorized:

 Bool, error: Error?) in

 //Request completed, it is now safe to use HealthKit

 })

 }

 func saveWorkoutToHealthKit() {

 healthStore?.requestAuthorization(toShare: hkDataTypes,

 read: hkDataTypes, completion: { (isAuthorized:

 Bool, error: Error?) in

 //Request completed, it is now safe to use HealthKit

 })

 }

}

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

131

To reduce duplicated code, I made the hkDataTypes computed property to represent

the list of data types the app required. The types you must use to request permissions

are implementations of the HKSampleType abstract class. As the name suggests, they

represent data that is saved and measured in samples. You will learn more about how

HealthKit represents data in the next section. Samples are just one of many types you can

use. The most important point to remember now is that, as with like health permissions,

not all sample types are available on all iOS devices, and you must query for the types

you want to use before attempting to use them.

Now, if you run the IOTFit app and try to save a workout, you will be presented

with the health permission alert, as shown in Figure 4-4. Users can selectively choose

permissions they want to allow from this screen or turn everything on. When they press

the Allow button, the settings will be saved, and the completion handler in your app will

execute.

Figure 4-4.  Health permission alert for the IOTFit app

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

132

�Writing Data to HealthKit
The easiest way to start working with HealthKit is to use it to save workouts to the

HealthKit store. In the preceding chapters, you generated enough data to get a good

snapshot of the user’s activity, but it needs to be serialized (massaged) into a format

that can be consumed by HealthKit. Rather than storing data as simple data types, such

as String or Float, HealthKit employs a hierarchical system that allows you to group

related statistics together. It also has its own system of units that you must learn to work

with, in order to make your data conform to a format the HealthKit store can recognize.

In this section, you will learn the conceptual foundations for this system and how to use

it to convert raw numbers into health data.

�Understanding How HealthKit Represents Data
The HealthKit store in iOS classifies data into two primary categories: characteristic

data and sample data. Characteristic data refers to qualitative information about a user,

which is described in characteristics, rather than units, and does not change frequently.

For instance, a user’s blood type or skin color. In HealthKit, these are represented by

instantiations of the HKCharacteristicType class. Sample data refers to information

arising from a user action, which can be measured and described in quantitative units

(for example, meters) or quantitative descriptors of the data (for example, steps) or

the aggregate action (for example, workouts). In HealthKit, these are represented by

subclasses of the HKSample class. In the IOTFit app, you will be working primarily with

sample data.

In HealthKit terminology, quantitative sample data (such as step count or distance)

are called quantity samples and represented by objects of the HKQuantitySample class.

Sample data that describes the characteristics of an activity (such as if a workout should

be described as bicycling or running) are called category samples and represented by

HKCategorySample objects. For describing aggregate activities, HealthKit defines two

final sample types: workouts and correlations. Workouts are represented by HKWorkout

objects and fit the purpose their name suggests: they are meant to represent a set of data

about a workout the user has performed. Correlations are represented by HKCollection

objects and although their name is a bit hard to derive meaning from, their purpose is

similar to that of workouts: they are specifically intended for grouping data about food

that was consumed or a blood pressure reading.

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

133

Units in HealthKit are represented by the HKUnit objects. When storing quantitative

samples, you must specify which HKUnit class to use to represent the data. You can

do this by either using a convenience method provided by Apple for commonly used

units (for example, HKUnit.meter()) or defining your own by passing a String to the

init(from:) convenience initializer method for the HKUnit class.

�Creating and Saving HealthKit Samples
For the IOTFit app and your own projects, you must follow these steps to save data to

HealthKit:

•	 Verify that the device is capable of storing the samples you want to

work with (workouts, correlations, and quantity samples)

•	 Create an aggregate sample object (workout or correlation)

•	 Create quantity samples

•	 Save the samples to a workout

In Listing 4-2, you performed the verify step by checking the quantity types you

wanted to work with (step count, flights climbed, workout type, walking distance, and

cycling distance). Now that you have a better idea of how HealthKit represents data, you

can begin to convert the simple numerical data from the Create Workout View Controller

into something HealthKit can consume.

The first step you must perform to save data to HealthKit is to create a HKWorkout

object to represent the workout. There are several convenience constructor methods

for the HKWorkout class, but the most appropriate one for storing workouts from IOTFit

is init(activityType:start:end:duration:totalEnergyBurned:totalDistance:d

istanceQuantity:device:metadata), which will allow you to specify a workout type

(HKWorkoutType), start and end dates (Date objects), and workout distance. To enable

this operation, as well as eventually saving such other statistics as flights climbed, you

have to modify the Workout struct to add the new parameters and refactor the calling

functions to use a Workout as a parameter, instead of a long list of parameters. In Listing 4-3,

I have modified the CreateWorkoutViewController and WorkoutDataManager classes to

include these changes.

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

134

Listing 4-3.  Modifying the CreateWorkoutViewController and

WorkoutDataManager Classes to Include All Workout Data

class CreateWorkoutViewController: UIViewController {

 ...

 @IBAction func toggleWorkout() {

 switch currentWorkoutState {

 ...

 case .active:

 currentWorkoutState = .inactive

 ...

 if let workoutStartTime = workoutStartTime {

 let workout = Workout(startTime: workoutStartTime,

 endTime: Date(), duration: workoutDuration,

 locations: [], workoutType:

 self.currentWorkoutType, totalSteps:

 workoutSteps, flightsClimbed: floorsAscended,

 distance: workoutDistance)

 WorkoutDataManager.sharedManager.saveWorkout(workout)

 }

 default:

 NSLog("Error")

 }

 updateUserInterface()

 }

}

// The following lines are part of the

// WorkoutDataManager.swift file

struct Workout: Codable {

 var startTime: Date

 var endTime: Date

 var duration: TimeInterval

 var locations: [Coordinate]

 var workoutType: String

 var totalSteps: Double

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

135

 var flightsClimbed: Double

 var distance: Double

}

class WorkoutDataManager {

 ...

 func saveWorkout(_ workout: Workout) {

 var activeWorkout = workout

 ...

 saveToPlist()

 workouts?.append(activeWorkout)

 saveWorkoutToHealthKit(activeWorkout)

 }

 func saveWorkoutToHealthKit(_ workout: Workout) {

 healthStore?.requestAuthorization(toShare:

 hkDataTypes, read: hkDataTypes, completion: {

 [weak self] (isAuthorized: Bool, error:

 Error?) in

 ...

 })

 }

}

Now that you have access to all the data you require, you can try to create the

HKWorkout object. In Listing 4-4, I have modified the saveWorkoutToHealthKit(...)

method to include the new call to create the HKWorkout object. I created the createHKWor

kout(workoutType:startDate:endDate) method to help manage converting the custom

WorkoutType struct to HealthKit’s HKWorkoutActivityType category sample type. Use

a guard-let or if-let block to verify that the object was created successfully, before

attempting to use it.

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

136

Listing 4-4.  Creating an HKWorkout Object

class WorkoutDataManager {

 func saveWorkoutToHealthKit(stepCount: Double,

 flightsClimbed: Double, distance: Double,

 workoutType: String, startDate: Date, endDate:

 Date) {

 healthStore?.requestAuthorization(toShare:

 hkDataTypes, read: hkDataTypes, completion: {

 [weak self] (isAuthorized: Bool, error:

 Error?) in

 if let error = error {

 NSLog("Error accessing HealthKit")

 } else {

 guard let workoutObject =

 self?.createHKWorkout(workout)

 else { return }

 }

 })

 }

 func createHKWorkout(_ workout: Workout) -> HKWorkout? {

 let distanceQuantity = HKQuantity(unit: HKUnit.meter(),

 doubleValue: workout.distance)

 var activityType = HKWorkoutActivityType.walking

 switch(workout.workoutType) {

 case WorkoutType.running:

 activityType = HKWorkoutActivityType.running

 case WorkoutType.bicycling:

 activityType = HKWorkoutActivityType.cycling

 default:

 activityType = HKWorkoutActivityType.walking

 }

 return HKWorkout(activityType: activityType, start:

 workout.startTime, end: workout.endTime, duration:

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

137

 workout.duration, totalEnergyBurned: nil,

 totalDistance: distanceQuantity , device: nil,

 metadata: nil)

 }

}

One of the downsides of working with HealthKit is that the setup steps

required to use it are very rigid. After creating a workout, the only way to attach

samples to it is by first saving it to the HealthKit store. If the operation is successful,

you can begin to add samples to the workout. In Listing 4-5, I have modified the

saveWorkoutToHealthKit(...) method to save the workout and then make a call to a

function that will be used to add the samples.

Listing 4-5.  Preparing to Add Samples to a Workout

class WorkoutDataManager {

 ...

 func saveWorkoutToHealthKit(_ workout: Workout) {

 healthStore?.requestAuthorization(toShare:

 hkDataTypes, read: hkDataTypes, completion: {

 [weak self] (isAuthorized: Bool,error:Error?)

 in

 if let error = error {

 NSLog("Error accessing HealthKit")

 } else {

 guard let workoutObject =

 self?.createHKWorkout(workout)

 else { return }

 self?.healthStore?.save(workoutObject,

 withCompletion: { (completed: Bool,

 error: Error?) in

 if let error = error {

 NSLog("Error creating workout")

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

138

 } else {

 self?.addSamples(hkWorkout:

 workoutObject, workoutData:

 workout)

 }

 })

 }

 })

 }

 ...

 func addSamples(hkWorkout: HKWorkout, workoutData: Workout){

 var samples = [HKSample]()

 addStepCountSample(workoutData, objectArray: &samples)

 addFlightsClimbedSample(workoutData, objectArray:

 &samples)

 addDistanceSample(workoutData, activityType:

 hkWorkout.workoutActivityType, objectArray: &samples)

 self.healthStore?.add(samples, to:hkWorkout, completion:{

 (saveCompleted: Bool, saveError: Error?) in

 if let saveError = saveError {

 NSLog("Error adding workout samples")

 } else {

 NSLog("Workout samples added successfully!")

 }

 })

 }

}

As shown in the addSamples(...) method, to add samples to a workout, you build a

series of HKSample objects and call the add(to:completion:) method on the iOS health

store, using the workout object you created earlier. The setup code for an HKSample

object can get lengthy, so I created methods to generate each sample and append it to

the array.

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

139

Harkening back to the discussion on sample types in HealthKit, to store quantitative

data about the workout, you will want to use the HKQuantitySample class. In comparing

the convenience initializers, the best one to use would be init(type: quantity:

start: end:). At this point, the scaffolding code starts to get lengthy. To use the quantity

parameter, you must generate a HKQuantity object and specify an HKQuantityType

object to represent the quantity type. Similarly, you will also have to specify the

unit type. In Listing 4-6, I have implemented the addStepCountSample(...) and

addFlightsClimbedSample(...) methods, which implement all of these steps.

Listing 4-6.  Creating “Step Count” and “Flights Climbed” Sample Objects

class WorkoutDataManager {

 ...

 func addStepCountSample(_ workoutData: Workout,

 objectArray: inout [HKSample]) {

 guard let stepQuantityType =

 HKQuantityType.quantityType(forIdentifier:

 HKQuantityTypeIdentifier.stepCount)

 else { return }

 let stepUnit = HKUnit.count()

 let stepQuantity = HKQuantity(unit: stepUnit,

 doubleValue: workoutData.totalSteps)

 let stepSample = HKQuantitySample(type:

 stepQuantityType, quantity: stepQuantity, start:

 workoutData.startTime, end: workoutData.endTime)

 objectArray.append(stepSample)

 }

 func addFlightsClimbedSample(_ workoutData: Workout,

 objectArray: inout [HKSample]) {

 guard let flightQuantityType =

 HKQuantityType.quantityType(forIdentifier:

 HKQuantityTypeIdentifier.flightsClimbed)

 else { return }

 let flightUnit = HKUnit.count()

 let flightQuantity = HKQuantity(unit: flightUnit,

 doubleValue: workoutData.flightsClimbed)

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

140

 let flightSample = HKQuantitySample(type:

 flightQuantityType, quantity: flightQuantity,

 start: workoutData.startTime, end:

 workoutData.endTime)

 objectArray.append(flightSample)

 }

}

In these methods, the two lines that stand out are the method signature and lookup

of the quantity type. The inout keyword specifies that a parameter should be passed

by reference. For C/C++ programmers, this term should be very familiar. Passing by

reference is a way to modify the contents of a parameter from within a method, rather

than operating on a copy of that data. When you make the method call, you add the &

symbol in front of the name of the variable that will be modified to pass it by reference.

Apple uses this pattern frequently in their methods that pass back an Error object.

In the line where you look up the quantity type, once again you will have to check

that the result is valid before using it. As mentioned earlier, some sample types are not

available on all iOS devices or iOS versions. Better to be safe than sorry!

The final quantity type you must add is workout distance. One of the particularities

of this quantity type is that Apple treats walking/running distance and cycling distance

as separate quantity types. To remove this limitation, in Listing 4-7, I have implemented

the addWorkoutDistance(...) method, using the workout type to specify the quantity

type.

Listing 4-7.  Adding the “Workout Distance” Sample Object

class WorkoutDataManager {

 ...

 func addDistanceSample(_ workoutData: Workout,

 activityType: HKWorkoutActivityType, objectArray: inout

 [HKSample]) {

 guard let cyclingDistanceType =

 HKQuantityType.quantityType(forIdentifier:

 HKQuantityTypeIdentifier.distanceCycling),

 let walkingDistanceType =

 HKQuantityType.quantityType(forIdentifier:

 HKQuantityTypeIdentifier.distanceWalkingRunning)

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

141

 else { return }

 let distanceUnit = HKUnit.meter()

 let distanceQuantity = HKQuantity(unit: distanceUnit,

 doubleValue: workoutData.distance)

 let distanceQuantityType = activityType ==

 HKWorkoutActivityType.cycling ? cyclingDistanceType:

 walkingDistanceType

 let distanceSample = HKQuantitySample(type:

 distanceQuantityType, quantity: distanceQuantity,

 start: workoutData.startTime, end:

 workoutData.endTime)

 objectArray.append(distanceSample)

 }

}

Believe it or not, this completes all the steps required to save data to HealthKit! Now,

if you complete a workout on the Create Workout View Controller, it will create a new

workout that you can view in the iOS Health app, as shown in Figure 4-5. To view the

workout, in the Health app, click the Sources tab, then IOTFit, then Data, and finally

Workouts.

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

142

Figure 4-5.  Viewing a saved workout in the iOS Health app

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

143

�Reading Workout Data from HealthKit
Now that you understand how HealthKit represents data, as well as the steps required

to convert simple data types into HealthKit sample data, you can use that knowledge to

read data from the iOS HealthKit store. In the IOTFit app, you will use this to fetch the

user’s workout history. Much like writing data, the primary data type you will use for

reading data from the HealthKit store is HKSample.

To fetch data, you must perform a query on the HealthKit store, using the

HKSampleQuery class. As with creating an HKSample object, there are several convenience

initializers you can use, but for the IOTFit app, HKSampleQuery(sampleType:predicat

e:limit:, sortDescriptors:resultsHandler) is an appropriate choice. There is a lot

to unpack in this, but the important concepts are that you must specify a sample type

to fetch, a predicate to filter the search results, and a completion handler to process

the results. In Listing 4-8, I have updated the loadWorkoutsFromHealthKit() method

to include a query for workouts, in decreasing date order (newest first), limited to the

newest ten from the preceding week.

Listing 4-8.  Setting Up a HealthKit Sample Query

func loadWorkoutsFromHealthKit(completion: @escaping

 (([Workout]?) -> Void)) {

 healthStore?.requestAuthorization(toShare:

 hkDataTypes, read: hkDataTypes, completion: {

 [weak self] (isAuthorized: Bool, error :

 Error?) in

 if let error = error {

 NSLog("Error accessing HealthKit")

 } else {

 let workoutType = HKCategoryType.workoutType()

 let weekAgo = Date(timeIntervalSinceNow:

 -3600 * 24 * 7)

 let predicate = HKQuery.predicateForSamples(withStart:

 weekAgo, end: Date(), options: [])

 let sortDescriptor = NSSortDescriptor(key: "startDate",

 ascending: false)

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

144

 let query = HKSampleQuery(sampleType: workoutType,

 predicate: predicate, limit: 10, sortDescriptors:

 [sortDescriptor], resultsHandler: { (query:

 HKSampleQuery, samples: [HKSample]?, error:

 Error?) in

 if let error = error {

 NSLog("Error fetching items from HealthKit ")

 completion(nil)

 } else {

 let workouts = [Workout]()

 completion(workouts)

 }

 })

 self?.healthStore?.execute(query)

 }

 })

}

Unless a user disables location and step counting, iOS is always collecting health

data on a user. To avoid the risk of your query taking too long, I recommend using a

date-based predicate or (page) limit to restrict the query results. You can always use your

user interface to allow the user to see more search results. Another important point to

remember is that after you declare the query, it will not start until you call the execute()

method on your HKHealthStore object.

Next, to use the results of the sample query in the app, you must convert the

HKSample array to custom Workout structs you have been using throughout the project.

In Listing 4-9, I have further expanded the loadWorkoutsFromHealthKit(completion:)

method to perform the conversion logic.

Listing 4-9.  Converting HealthKit Sample Objects to Simple Data Types

func loadWorkoutsFromHealthKit(completion: @escaping (([Workout]?) -> Void)) {

 healthStore?.requestAuthorization(toShare:

 hkDataTypes, read: hkDataTypes, completion: {

 [weak self] (isAuthorized: Bool, error:

 Error?) in

 if let error = error {

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

145

 NSLog("Error accessing HealthKit")

 } else {

 ...

 let query = HKSampleQuery(sampleType:

 workoutType, predicate: predicate, limit:

 10, sortDescriptors: [sortDescriptor],

 resultsHandler: { (query: HKSampleQuery,

 samples: [HKSample]?, error: Error?) in

 if let error = error {

 NSLog("Error fetching items")

 completion(nil)

 } else {

 guard let hkWorkouts = samples as?

 [HKWorkout] else {

 completion(nil)

 return

 }

 let workouts = hkWorkouts.map({ (hkWorkout:

 HKWorkout) -> Workout in

 let totalDistance =

 hkWorkout.totalDistance?.doubleValue(

 for: HKUnit.meter()) ?? 0

 let flightsClimbed =

 hkWorkout.totalFlightsClimbed?.

 doubleValue(for: HKUnit.count()) ?? 0

 var workoutType = WorkoutType.walking

 switch(hkWorkout.workoutActivityType) {

 case .running:

 workoutType = WorkoutType.running

 case .cycling:

 workoutType = WorkoutType.bicycling

 default:

 workoutType = WorkoutType.walking

 }

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

146

 return Workout(startTime:

 hkWorkout.startDate, endTime:

 hkWorkout.endDate, duration:

 hkWorkout.duration, locations: [],

 workoutType: workoutType, totalSteps: 0,

 flightsClimbed: flightsClimbed,

 distance: totalDistance)

 })

 completion(workouts)

 }

 })

 self?.healthStore?.execute(query)

 }

 })

}

In this function, the first challenge I had to tackle was making sure the sample was a

HKWorkout object. In order to make a generic completion handler, Apple must use a type

general enough to handle all sample data. However, for the purposes of IOTFit, the type

I had to work with was HKWorkout. Next, I had to extract simple data types from HKSample

objects. To cast the data down, I used the doubleValue(for:) method and specified

the unit to convert from. If the operation fails, I return 0 as a default value. The final

challenge was to convert the HKWorkoutType property to a String with which to build a

Workout object. This, however, was easily taken care of with a switch() statement.

�Using a Table View Controller to Display Data
The final step in this chapter is to display the workout history. For many data-based

apps, a Table View Controller is a great choice for letting users interact with the data.

Out of the box, it provides you with a scrolling user interface, an easy way to display

results in a uniform manner (cells), and components that you can easily customize

through Interface Builder. The difficulty, however, is that the setup code for the

UITableViewController class is very protocol-heavy and can be intimidating for newer

iOS developers. In learning how to display the workout results for IOTFit on a table, you

will learn three fundamental skills for working with the UITableViewController class

that you can apply to other apps: adding a Table View Controller from Interface Builder,

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

147

setting up the UITableViewDataSource delegate methods for populating the table,

and setting up the UITableViewDelegate delegate methods for displaying the workout

content in each cell.

To begin, use Xcode’s template feature to create a new

UITableViewControllersubclass. As in the case of the examples in Chapters 1 and 2, go

to the File menu, then select New ➤ File and, from the template picker, choose Cocoa

Touch Class, as shown in Figure 4-6.

Next you will be asked to name the new class and select a base class. As

shown in Figure 4-7, name the new file WorkoutTableViewController and choose

UITableViewController as the base class.

Figure 4-6.  Creating a new Cocoa Touch class

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

148

Your new WorkoutTableViewController class should resemble Listing 4-10, in

which Apple’s template provides you with stubs for the required methods you require to

implement the UITableViewDelegate and UITableViewDataSource protocols.

Listing 4-10.  Empty WorkoutTableViewController Class

import UIKit

class WorkoutTableViewController: UITableViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 }

 // MARK: - Table view data source

 override func numberOfSections(in tableView:

 UITableView) -> Int {

 return 0

 }

Figure 4-7.  Creating a new UITableViewController class based on a template

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

149

 override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return 0

 }

 override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) ->

 UITableViewCell {

 let cell = tableView.dequeueReusableCell(

 withIdentifier: "Identifier", for:

 indexPath)

 return cell

 }

}

�Setting Up the User Interface

First, select the Main.storyboard file from the Project Navigator to open Interface

Builder in the Xcode’s editor (center) pane. As shown in Figure 4-8, drag and drop a

Table View Controller object from the Object Library to the storyboard.

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

150

To attach the Table View Controller to the Tab View Controller, hold down the

Control button on your keyboard and drag a line to the Tab View Controller. From the

context menu, select View Controllers as the relationship type, as shown in Figure 4-9.

Figure 4-8.  Adding a Table View Controller to the storyboard

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

151

To change the icon on the Tab bar, click the Tab Bar under the Table View Controller,

and in the Attributes Inspector, select History from the System Item row, as shown in

Figure 4-10.

Figure 4-9.  Adding new items to a Tab View Controller

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

152

To make the cell match the wireframe in Figure 4-1, where there are two lines of

text, click the cell, and in the Attributes Inspector, set the style to Subtitle, as shown in

Figure 4-11.

Figure 4-10.  Changing the icon for a Tab bar item

Figure 4-11.  Changing the style of a Table View Cell

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

153

For the final layout task, you must embed the Table View Controller in a navigation

controller. This will help the app maintain consistency between the workout history

and map screens. To perform this operation, click to select the view controller and then,

from the Editor menu, select Embed In ➤ Navigation Controller. To edit the title of the

navigation item for the Workout Table View Controller, double-click the navigation bar

above the screen and begin typing in the text field that appears. To make the text large,

enable the Prefers Large Titles option for the navigation controller. When all of these

operations are completed, your Workout Table View Controller should be similar to the

screenshot in Figure 4-12.

Now that the layout is complete, you must modify the ownership and

outlets of the Workout Table View Controller so that it can interact with the

WorkoutTableViewController.swift file. Click the Table View Controller, then navigate

to the Identity Inspector, and in the Class text field, type “WorkoutTableViewController,”

to set the ownership of the file, as shown in Figure 4-13.

Figure 4-12.  Completed storyboard for Workout Table View Controller

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

154

Note S etting ownership only works when a class or property is defined in your
project using a subclass based on the object library template you are trying to use
(for example, Table View Controller, Button).

In Chapters 1 and 2, you used outlets to connect button handlers to methods in an

object’s owning class. For a Table View Controller, you must perform a similar operation

to identify the UITableViewDataSource and UITableViewDelegate delegate objects. As

shown in Figure 4-14, click Connections Inspector, then drag lines from the dataSource

and delegate outlets to the Workout Table View Controller.

Figure 4-13.  Setting ownership for the Table View Controller

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

155

For the final connection step, you must set an identifier for the cell template in the

Workout Table View Controller. Based on this identifier, you can look up the cell and

modify its contents at runtime. As shown in Figure 4-15, select the cell, then navigate to

the Attributes Inspector and enter a title in the Identifier text field, to set the identifier for

the cell.

Figure 4-14.  Setting delegate outlets for the Table View Controller

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

156

�Using the UITableViewDataSource Protocol to Populate
the Table View

Now that the Workout Table View Controller is completely laid out, you must implement

the UITableViewDataSource protocol methods to populate the table view. These let

you specify the number of rows, sections, titles, and editing features of the table view,

such as if you want the user to be able to rearrange cells in the table. For the IOTFit

app, the methods you must implement are focused on the number of sections and

rows in the table view. The pattern most developers use to implement this behavior

is to define a single or multidimensional array to represent the data and extract the

hierarchy of the data from there. In Listing 4-11, I added the workouts property to

the WorkoutTableViewController class to hold the workout data and used that to

determine the values for the numberOfSections() and tableView(numberOfRowsIn

Section:) delegate methods. Apple’s Table View Controller template provided empty

implementations (stubs) for these methods.

Figure 4-15.  Setting an identifier for a Table View Cell

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

157

Listing 4-11.  Using an Array to Determine the Rows and Sections in a Table View

Controller

class WorkoutTableViewController: UITableViewController {

 var workouts: [Workout]?

 override func numberOfSections(in tableView:

 UITableView) -> Int {

 return 1

 }

 override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 return self.workouts?.count ?? 0

 }

 ...

}

Although you specified the number of rows and sections for the Table View

Controller in Listing 4-11, the workouts property will be empty until you populate

it. For this purpose, you can bring together everything you learned so far in this

chapter and use the loadWorkoutsFromHealthKit() method from the Workout

Data Manager to populate the workouts array. In Listing 4-12, I have modified the

WorkoutTableViewController class to override the viewWillAppear() method and

make the call to load the data there. The viewWillAppear() method is called every time

the table view is about to be presented, such as switching from another tab in the app,

and is an appropriate place to check for updates.

Listing 4-12.  Triggering Updates for the Table View Controller

class WorkoutTableViewController: UITableViewController {

 ...

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 WorkoutDataManager.sharedManager.loadWorkoutsFromHealthKit

 { [weak self] (fetchedWorkouts: [Workout]?) in

 if let fetchedWorkouts = fetchedWorkouts {

 self?.workouts = fetchedWorkouts

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

158

 DispatchQueue.main.async {

 self?.tableView?.reloadData()

 }

 }

 }

 }

 ...

}

Inside the completion handler, I called the reloadData() method on the tableView

property of the class to force it to reload the data. Although the array is populated, the

table view will not reload the data until you ask it to.

�Using the UITableViewDelegate Protocol to Map Data to Cells

To display the data from the workouts array on the Workout Table View Controller, you

must implement the UITableViewDelegate protocol. This protocol is responsible for the

display and general user interaction properties of the table view, such as the height of

each cell, assigning methods to populate cell contents, and what should happen when a

user selects a cell. As with the UITableViewDataSource protocol, for the IOTFit app, you

do not have to implement all of the methods provided by this protocol. To populate the cells

in the IOTFit app, you will implement the tableView(cellForRow:) method. This allows

use of a section and row number to determine the display of a cell at runtime. Additionally,

every time you reload the table view, this method is called for each of the cells.

The advantage of using an array to manage the data for a Table View Controller

is that it makes mapping data extremely simple. You can simply correlate a row

number to the position in the array. In Listing 4-13, I use this logic to implement the

tableView(cellForRow:) method for the WorkoutTableViewController class. I use the

workoutCell identifier to look up the cell template, then create formatted strings, based

on the values in each Workout item.

Listing 4-13.  Populating Table View Cells with Data

class WorkoutTableViewController: UITableViewController {

 ...

 let dateFormatter = DateFormatter()

 ...

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

159

 override func tableView(_ tableView: UITableView,

 cellForRowAt indexPath: IndexPath) ->

 UITableViewCell {

 let cell = tableView.dequeueReusableCell(withIdentifier:

 "workoutCell", for: indexPath)

 guard let workouts = workouts else {

 return cell

 }

 let selectedWorkout = workouts[indexPath.row]

 let dateString = dateFormatter.string(from:

 selectedWorkout.startTime)

 let durationString =

 WorkoutDataManager.stringFromTime(timeInterval:

 selectedWorkout.duration)

 let titleText = "\(dateString) |

 \(selectedWorkout.workoutType) | \(durationString)"

 let detailText = String(format: "%.0f m | %.0f floors",

 arguments: [selectedWorkout.distance,

 selectedWorkout.flightsClimbed])

 cell.textLabel?.text = titleText

 cell.detailTextLabel?.text = detailText

 return cell

 }

}

Now, if you re-compile the app and save a few more workouts, when you go to the

History tab, the table view will display the start time, distance, total steps, and floor

counts for the last ten workouts in the user’s HealthKit store, similar to the screenshot in

Figure 4-16.

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

160

�Summary
In this chapter, by expanding the Workout Data Manager and adding a Table View

Controller for displaying workout history, you learned how you to harness the power

of HealthKit to securely import and export health data in the IOTFit app. In the first

iterations of the app, you had to rely on a property-list file for data management and

had no way of getting it out of the app. After applying the familiar lessons of accessing

permission-based hardware resources and learning how HealthKit represents data, you

were able to help users manage all of their workouts in one place and see your workout

data from other apps they may also use.

Although HealthKit is unique in its representations of data, the protocol and

completion handler-based communication methods you practiced in this chapter

are applied often through Apple’s IoT-related frameworks. Furthermore, with small

modifications, most of the code in this chapter can be reused in the Apple Watch version

of this app later in the book, just as with your Core Motion code from the previous chapter.

Figure 4-16.  The completed History tab for the IOTFit app

Chapter 4 Using HealthKit to Securely Retrieve and Store Health Data

Building Your Own
Internet Things

PART 2

163
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_5

CHAPTER 5

Building Arduino-Based
Peripherals
One of the greatest forces in empowering the Internet of Things (IoT) as you know

it today has been the expansion of access to lower-cost, higher-quality electronics

components and communications standards that were once only available to large

companies. Previously, if you wanted to learn how to program a microprocessor, you

would have to buy a high-performance computer, chip programmer, blank chips, and

an expensive software license from the chip manufacturer. Today, you can program all

the hardware projects you want with a single $30 Arduino, Raspberry Pi, or BeagleBone

microcontroller board, and you can find a wide variety of sensors with two- or three-pin

connections built in for less than $10.

In a similar vein, Bluetooth used to be a technology that was only available by

using limited-purpose hardware chips and programming the interface for the protocol

yourself. Today, Bluetooth chips are built in to most connected devices and are

available through many open source implementations of the protocol. As part of iOS,

Apple provides a framework, Core Bluetooth, that allows you to develop apps that

communicate with the Bluetooth accessory or make the iPhone act as a Bluetooth

accessory.

Just as the Apple II opened up personal computers and programming to people who

couldn’t put together their own computer, these low-cost programming environments

are opening up hardware development to new waves of students, hobbyists, and

startups. In this chapter, you will join their ranks and learn how to start making your

own IoT!

164

�Learning Objectives
This chapter starts the second section of the book, centered on building apps that

interact with external hardware. Leaving Apple’s universe briefly, you will learn how

you can take advantage of popular general-purpose hardware, such as Arduino and

Raspberry Pi, to create your own sensors and apply industry best practices to your

custom hardware. To make apps for this hardware, you will learn about iOS frameworks

that allow you to communicate over common protocols, such as HTTPS and Bluetooth.

In the same manner as the first section of the book, in this section, you will build

a smart home management app, IOTHome, and continue to iterate on it with each

successive chapter. In this chapter, you will learn how to put together and write the

software for an Arduino-based wireless door sensor. In the next chapter, you will learn

how to make it communicate with an iOS app via Bluetooth LE.

Unlike Raspberry Pi or BeagleBone, which are designed and produced by single

entities, the Arduino project takes a more hands-off approach to its hardware designs

by open sourcing their base designs and programming environment (IDE), and

encouraging others to iterate on them. The Adafruit HUZZAH32, pictured in Figure 5-1,

is one of those iterations, based on the Espressif ESP32 system on a chip (SoC), which

adds more interface pins, Bluetooth, Wi-Fi, and a built-in battery plug/charger to

the original Arduino design, while still retaining compatibility with the common

programming environment.

Chapter 5 Building Arduino-Based Peripherals

165

In the process of building the door-sensing hardware and its control software, you

will learn the following key skills for IoT app development:

•	 Building a simple circuit for detecting input from a switch

•	 Setting up the Arduino programming environment

•	 Writing a C++-based Arduino “solution” (program)

•	 Monitoring and controlling devices using general purpose input/

output (GPIO) and analog-to-digital conversion (ADC)

As this book is targeted at software engineers and enthusiasts, the electronics sections

of this chapter are presented in a very straightfoward, practical manner. My intention is to

give hardware newbies enough of a taste of the work to explore it further, while not making

it too boring for readers with a bit more experience. Furthermore, the project does not

require any soldering, and all of the parts required can easily be ordered from Amazon.

com, Adafruit, or Mouser Electronics.

The C++ section of this chapter will piggyback off of concepts you are familiar with

from Swift. Thanks to the hard work of the developers of the Arduino project, you will

Figure 5-1.  Adafruit HUZZAH32 microcontroller

Chapter 5 Building Arduino-Based Peripherals

166

notice that the C++ syntax used by the Arduino IDE is very modern and should, once

again, look very similar to what you are familiar with from Swift.

�Building the Wireless Door-Sensor Hardware
Now that you have a better understanding of Bluetooth, you can start building the

peripheral for IOTHome, the door sensor. For this task, you will have to assemble the

hardware, set up the Arduino programming environment, write the code for the Arduino

program, and download it to the HUZZAH32 microcontroller. Today, more than ever,

these tasks have become more streamlined and reliable, but they still require some

careful attention. In this section, I will guide you through the steps I took to create the

door sensor and the design considerations that helped inform my decisions.

�Part List
To build the door sensor for this chapter, you will have to acquire the parts listed in

Table 5-1. The major components are the Adafruit HUZZAH32 microcontroller, which

will run the control software; a breadboard, to assemble the circuit on; a magnetic

switch, to detect if the door is closed or opened; two light emitting diodes (LEDs), to

visually indicate the status of the system; and some resistors, to regulate voltage.

Table 5-1.  Part List for Door Sensor

Part Name Quantity Mouser Part #

Adafruit HUZZAH32 microcontroller (pre-soldered) 1 485-3591

Solderless breadboard 1 589-TW-E40-1020

Breadboard jumper wire kit 1 424-WIRE-KIT

3.7V 190mAh lithium polymer battery 1 932-MIKROE-2759

Magnetic proximity aensor 1 934-59140-1-S-03-F

10KΩ resistor 1 603-FMP200JR-52-10K

200Ω resistor 2 603-CFR-12JB-52-200R

Blue LED (through hole, 3.4V, 5mm package) 1 941-C5SMFBJECR0U045

Red LED (through hole, 2.1V, 5mm package) 1 941-C5SMFRJFCT0W0BB2

Chapter 5 Building Arduino-Based Peripherals

167

Adafruit offers three varieties of the HUZZAH32: an unassembled version,

which requires you to solder a header or parts directly to its pins, in order to use it; an

assembled version with a header already soldered to the pins, allowing you to plug the

microcontroller into a breadboard; and an assembled version with stacking headers

attached, allowing you to plug the microcontroller into a motherboard and use jumper

wires to attach the pins. For this project, I recommend the latter two versions, as they will

save you considerable amounts of time and frustration, in exchange for a $1 or $2 price

difference.

For the remaining parts, you will notice that I did not mention a brand name or

place strict restrictions on the parts. My goal in designing this project was to create

something I felt you could create with spare parts from other projects or the contents

of an inexpensive Arduino Starter Kit you may have seen on Amazon.com or at a local

electronics parts store.

All of the parts in this project were specifically selected to be easy to purchase on

Amazon.com, Adafruit (www.adafruit.com), or Mouser Electronics (www.mouser.com).

Comparing the three retailers, Adafruit is the most accessible to hobbyists, providing

a curated collection of reliable parts and a wealth of tutorials and sample projects to

accompany them. Mouser is the best choice for professionals and those looking to order

specialty parts or large quantities of items. Finally, Amazon is the retailer of all things.

Searching for parts on Amazon is significantly harder than the other two, and it is harder

to guarantee the quality of what you are getting (many small manufacturers are able to

sell directly through Amazon), but it can be a good resource to get popular parts and

generic, lower-priced parts as part of the same order.

Your completed set of parts for the project should resemble that in the photograph in

Figure 5-2.

Chapter 5 Building Arduino-Based Peripherals

http://www.adafruit.com
http://www.mouser.com

168

�Assembling the Hardware
My first boss told me that one of the greatest things about working at NASA was that all

of the engineers had to take NASA’s soldering training classes. That being said, soldering

is an exercise that requires practice and precision. When working with a sensitive part,

such as a microcontroller, you must be careful to not apply too much solder (the easy-

to-melt metal that forms the bond between parts), or you will risk creating a short circuit

(an unintentional physical connection between two parts that should not touch). You

must also be careful not to apply the soldering iron (the tool that heats up the solder) for

too long or at too hot a temperature, or you will risk the chance of physically burning out

the part.

Figure 5-2.  Photograph of collected parts for the IOTHome project

Chapter 5 Building Arduino-Based Peripherals

169

To alleviate both of these risks, many engineers use breadboards (like the one

shown in Figure 5-3), to create connections between parts using jumper wires. This is

particularly useful during the prototyping stage, when you are constantly experimenting

with different parts and changing the circuit. To more accurately reflect the real world,

you, too, will use a breadboard to assemble the hardware for this project. If you feel

comfortable soldering and want to transfer the design to a more compact or stable

medium, you are welcome to do so.

Although breadboards come in various shapes and sizes, there are a few common

characteristics shared by all of them.

•	 The case is frequently made of solid plastic, with several metal

peg holes.

•	 Frequently, there are rows at the top and bottom, with markings for

shared positive and negative connections.

•	 Most of the physical space on the breadboard will be occupied by

closely spaced columns of pins, running across the length of the

device.

•	 There is usually a gap in the center row of the breadboard.

As with all things, there are reasons for all of these characteristics. First, plastic is an

insulator, meaning it does not conduct electricity (form a path for electricity to travel).

You can handle the plastic area freely, without concern of it electrocuting you. The rows

on the top and bottom are shared connections. Every part or wire you plug into a pin on

these rows will share an electrical connection with every other pin on these rows. Most

electrical parts run on DC voltage, which requires a source (positive) connection and

ground (negative) connection, like the connections coming from a battery, so it makes

sense that these pins are the ones that will be shared the most in a circuit. For smaller

shared connections, you will use the columns in the center of the breadboard. All pins in

a column are shared. Because most integrated circuits (ICs) come in a case that follows

the dual in-line package (DIP) standard, the gap in the center of the breadboard allows

you enough space to plug an IC and use a single column for each pin. In this manner,

you can connect other parts to the pins without soldering. To help make this easier

to visualize, I have included an annotated photograph of a breadboard in Figure 5-3,

indicating the shared connections.

Chapter 5 Building Arduino-Based Peripherals

170

To begin assembling the project, take your HUZZAH32 and place it on the center-left

side of the breadboard. As shown in Figure 5-4, make sure you place the HUZZAH32 on

the breadboard with the USB port sticking out. This will make it easier to insert a USB

cable for programming and give you more space on the breadboard to insert parts.

Figure 5-3.  Physical connections on a breadboard

Chapter 5 Building Arduino-Based Peripherals

171

Figure 5-4.  Breadboard with the HUZZAH32 chip placed on top

To prevent bending or breaking the header pins, gently push down on the right

side of the chip until the pins start to feel a little secure in the breadboard, as shown in

Figure 5-5.

Chapter 5 Building Arduino-Based Peripherals

172

Figure 5-5.  Securing the HUZZAH32 chip onto the breadboard

Continue this process by pushing down on the left side of the chip, then alternate

pushes between the left and right sides, until the bottom of the header is flush with the

breadboard, as shown in Figure 5-6.

Chapter 5 Building Arduino-Based Peripherals

173

You will use this same process of plugging in parts and connecting them with header

wires to complete the circuit for this project. Before going further, take a second to

review the schematic in Figure 5-7. A schematic is a design diagram that specifies which

parts are used in a circuit and how the connections are made between these parts. All

schematics are drawn using standardized symbols for the parts and connections, so any

engineer can quickly look at the schematic and understand how to build or analyze the

circuit.

Figure 5-6.  Fully secured HUZZAH32 chip

Chapter 5 Building Arduino-Based Peripherals

174

For the door sensor, the heart of the circuit is the HUZZAH32 chip. Its 3V and GND

pins are used to provide the power and ground connections for the rest of the circuit.

Connected to the GPIO14 and GPIO15 pins are LEDs, which will be used to indicate if

the door is locked and if the Bluetooth connection has been established. Many parts,

especially LEDs, have specific requirements on the voltage and amperage that are

required to drive (operate) them. The resistors placed in between the pins and LEDs are

used to reduce the voltage to a level that allows the LEDs to operate without burning

out from voltage levels higher than what they were designed for. The final connection in

the circuit is for the switch. One side of the switch is connected to the 3V pin and power

connection, and the other side is attached to a resistor placed between the other side of

the switch and the ground connection. This is called a pull-down resistor and is used to

establish a stable ground connection when the switch is opened. Without the pull-down

resistor, the microcontroller is unable to reliably read if the pin is high (connected to

power) or low (connected to ground), and you cannot tell if the switch is open or closed.

First, start by establishing the power and ground connections for the circuit. Take out

red and green header wires. Find the pin marked 3V on the HUZZAH32 chip. Insert one

side of the red wire (red, to represent power) into the row for this pin, and the other side

into the column marked “positive” on the breadboard. Repeat this process for the GND

Figure 5-7.  Schematic diagram for the door sensor

Chapter 5 Building Arduino-Based Peripherals

175

pin, except use a green pin (to represent ground) and terminate the connection at the

“negative” column. The breadboard with the HUZZAH32 chip and power/ground wires

attached is pictured in Figure 5-8. When the HUZZAH32 is powered through the USB

cable or a battery, these two connections will provide power to the rest of the circuit.

Figure 5-8.  Breadboard with HUZZAH32 chip and power/ground
connections

Now you are ready to start assembling the real guts of the circuit. First, begin

by snipping off the extra ends of the resistors with a pair of wire cutters. Leave

approximately 10mm (0.4 inches) remaining, so the resistors are easy to insert and

remove from the breadboard. You will also need to snip the LEDs leads down to size. As

indicted by their schematic symbol, LEDs are polarized, meaning they only allow current

to flow in one direction—from the anode (positive) to cathode (negative). To indicate

which pin is the anode, manufacturers ship LEDs with the anode pin intentionally cut

Chapter 5 Building Arduino-Based Peripherals

176

longer than the cathode. As shown in Figure 5-9, use wire cutters to make a diagonal cut

across the pins of the resistor, paying attention to leave the anode as the longer pin.

Figure 5-9.  Cutting the pins on an LED

Now that the parts are ready, you can begin inserting them into the breadboard.

First, establish the circuit for the red LED. Start by taking a gray, blue, or white header

wire (any color that is not red or green will do) and run it from GPIO14 to an empty area

of the breadboard. Then, plug a 200Ω resistor into the breadboard, vertically across

the empty gap in the center, connecting two columns. Resistors are not polar, so the

direction does not matter. Then, insert the red LED into the breadboard horizontally,

with the anode (long, positive terminal) pin inserted in the same column as the end of

the resistor (bottom column), and the cathode (short, negative terminal) inserted into an

empty column. To finish things off, take a green header wire and connect it between the

cathode’s column and the ground row. This process establishes the connection from the

Chapter 5 Building Arduino-Based Peripherals

177

GPIO pin to the resistor, into the LED, and eventually terminating at the ground. At this

point, your breadboard should resemble the photograph in Figure 5-10.

Follow these same steps to attach the blue LED, except start at the pin marked

GPIO15, and make sure all the connections are using empty columns.

Note E ngineers will usually color-code connections on a breadboard to help
them identify the purpose of the header wire. This is especially important when
dealing with the power pins. If you have to reuse colors, try to place them in
different physical areas of the breadboard, to make debugging easier.

Figure 5-10.  Breadboard with red LED and supporting parts attached

Chapter 5 Building Arduino-Based Peripherals

178

The final part to connect at this point is the magnetic switch. Once again, start

by taking a header wire and extending it from the pin marked GPIO33 to an empty

column. Next, attach the 10KΩ resistor across the column gap. Finally, attach one end

of the switch to the terminating end of the resistor, and the other to the shared positive

connection row at the bottom of the breadboard. Similar to resistors, switches are not

polar, so the direction does not matter. Your completed circuit should resemble the

photograph in Figure 5-11.

Figure 5-11.  Completed circuit for the door sensor

�Writing an Arduino Solution (Program)
Now that the hardware work is completed, you can start to move back into the realm of

software. Before the advent of Arduino, primitive reprogrammable chips were the only

option you had for developing your own embedded systems. The parts you would use in

your circuits would have a fixed purpose, and you would have to pour over the instruction

Chapter 5 Building Arduino-Based Peripherals

179

sheet for the part to figure out what each pin did and if there were any other conditions

required to use them (such as current limitations or dependence on another part).

With the Arduino, there is still the requirement that some pins can only be used for

one purpose, but the GPIO and ADC pins are your playground. You can write programs

that use them as simple inputs or outputs (GPIO) or more fine-grained, precise ones

(ADC). Just as with third-party libraries in iOS, you can also download third-party

libraries that control more complex parts over these pins. In the next section, you will

learn how to write your own Arduino solution (program) to use these programmable

pins to read the status of the magnetic proximity sensor (switch) and battery level and

share the results via the LEDs and Bluetooth.

�Setting Up the Arduino Programming Environment
To get started on your Arduino programming experience, you must download the

free, official Arduino Integrated Development Environment software. As shown in

Figure 5-12, navigate to www.arduino.cc and click the Software tab at the top. On the

Software page, scroll down to Download the Arduino IDE, and click the link to download

the OS X version of the Arduino IDE.

Figure 5-12.  Downloading the Arduino IDE

Chapter 5 Building Arduino-Based Peripherals

http://www.arduino.cc

180

Caution T he Arduino development team does an excellent job of ensuring near-
identical usability on the OS X, Windows, and Linux versions of the IDE; however,
the instructions in this book require command-line instructions that were tested on
the OS X and Linux versions only.

When the download is complete, double-click the zip file to extract it. Drag and drop

the Arduino binary file to your Applications folder, as shown in Figure 5-13.

Figure 5-13.  Installing the Arduino IDE

Next, click the Arduino icon from the Applications folder to open the IDE. You will

be greeted with a text editor containing the stub functions for a new program, as shown

in Figure 5-14. As with any IDE, there are compile and run buttons in the top-left corner

of the screen. Compile is represented by the button with the check mark, and Run is

represented by the right-pointing arrow.

Chapter 5 Building Arduino-Based Peripherals

181

Before you can use the HUZZAH32 with the Arduino IDE, you must run a

configuration script provided by the manufacturer of the SoC it is based on, the

ESP32, manufactured by Espressif. The SoC provides the core functions of Arduino

compatibility and pinmapping. Manufacturers such as Adafruit can then choose what

features they want to use and how to package them. To install the build scripts, you must

check them out via git. If you have installed the Xcode command-line tools in the past,

the git version control software will already be installed on your computer. If have not,

you can install the tools by opening up the terminal and then typing in the following

command:

xcode-select --install

To run the ESP32 installation script, first close the Arduino IDE, then open a terminal

window. Inside the terminal window, enter the command in Listing 5-1. It will create a

new directory, check out the code from git, and run the installation script.

Figure 5-14.  Default display for the Arduino IDE

Chapter 5 Building Arduino-Based Peripherals

182

Listing 5-1.  Command-Line Instructions to Add ESP32 Support to the Arduino IDE

mkdir -p ~/arduino && \

cd ~/arduino && \

git clone https://github.com/espressif/arduino-esp32.git esp32 && \

cd esp32 && \

git submodule update --init --recursive && \

cd tools && \

python get.py

If the script ran successfully, the last line of the output should contain “Done!”

Now that you have added ESP32 support to the Arduino, you must select the

HUZZAH32 as the target device. First, reopen the Arduino IDE, then navigate to the

Tools menu. As shown in Figure 5-15, select the Board: … menu item and scroll down

until you find ESP32 Feather.

Figure 5-15.  Selecting target hardware within the Arduino IDE

Chapter 5 Building Arduino-Based Peripherals

183

Next, you have to select your computer’s USB port as the interface for debugging.

Navigate to the Tools menu once more and then select /dev/cu.SLAB_USBtoUART as

the port, as shown in Figure 5-16. For consistency’s sake, also confirm that the Flash

Frequency is set to 80Hz and that the Upload Speed is set to 921600, while you are in the

Tools menu.

Finally, to verify that the Arduino IDE is able to communicate with the HUZZAH32,

go to the Tools menu and select Get Board Info. If the connection was established

successfully, you will be presented with a dialog similar to the one in Figure 5-17, listing

unique identifier values for your microcontroller.

Figure 5-16.  Selecting the USB port for debugging

Chapter 5 Building Arduino-Based Peripherals

184

�Using GPIO to Monitor Input Pins and Control Output Pins
Now that the Arduino IDE is set up for programming, you can finally start writing some

Arduino code! The Arduino solution for the door sensor can be split into two components:

monitoring the hardware and transmitting the results over Bluetooth. In this section, you

will focus on the hardware-monitoring code, as you can debug that by monitoring the

Arduino IDE’s debugging console and visually inspecting the LEDs in the circuit.

To begin writing a new Arduino solution, go to the File menu and select New. You

will be presented with an empty solution file, containing two stub methods: setup() and

loop(). As the names suggest, Arduino solutions have a simple architecture: the logic

in the setup() method gets executed as soon the device powers on, and the logic in the

loop() method is repeated until the device is powered off. The initial Arduino solution

should resemble Listing 5-2.

Figure 5-17.  Verifying the connection to the HUZZAH32

Chapter 5 Building Arduino-Based Peripherals

185

Listing 5-2.  Initial, Empty Arduino Solution

void setup() {

 // put your setup code here, to run once:

}

void loop() {

 // put your main code here, to run repeatedly:

}

Working with GPIO in Arduino is a straightforward operation. In the setup()

method, specify the pin number and whether it will be used for input or output. The API

for specifying this is pinMode(). In Listing 5-3, I have updated the solution to make these

calls. To help manage the code, I have defined the pin numbers as compiler macros

using the #define keyword. If you are familiar with Objective-C, you will recognize this

keyword, as it is used there for the same purpose. The pin numbers match the ones you

used to put together the circuit in the “Assembling the Hardware” section.

Listing 5-3.  Setting Up GPIO Pin Modes in an Arduino Solution

#define RED_LED_PIN 14

#define BLUE_LED_PIN 15

#define SWITCH_PIN 32

void setup() {

 pinMode(RED_LED_PIN, OUTPUT);

 pinMode(BLUE_LED_PIN, OUTPUT);

 pinMode(SWITCH_PIN, INPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

}

In Listing 5-3, I set the BLUE_LED and RED_LED pins as outputs, and the DOOR_SENSOR

pin as an input. Now, it is time to take advantage of them. To interact with GPIO pins

on the Arduino, you use the DigitalRead() and DigitalWrite() APIs. As the names

suggest, they are used to read or write a value to a digital pin. For this introductory part

Chapter 5 Building Arduino-Based Peripherals

186

of the program, you will turn the RED_LED on or off, based on whether the magnetic

sensors are touching each other (door closed) or not (door open). Because I designed the

circuit with a pull-down resistor between GPIO pin and ground, the switch will read OFF

while the door is open and ON when the door is closed. In Listing 5-4, I have updated

the loop() method to include this logic. To read the value of the magnetic switch more

accurately, I have added a 1 second (1000 millisecond) delay to the end of the loop()

method, using the delay() API.

Listing 5-4.  Turning an LED On or Off, Based on GPIO Status

#define RED_LED_PIN 14

#define BLUE_LED_PIN 15

#define SWITCH_PIN 32

void setup() {

 pinMode(RED_LED_PIN, OUTPUT);

 pinMode(BLUE_LED_PIN, OUTPUT);

 pinMode(SWITCH_PIN, INPUT);

 Serial.begin(9600);

 Serial.println(" Program start");

}

void loop() {

 checkSwitch();

 delay(1000);

}

void checkSwitch() {

 int currentState = digitalRead(SWITCH_PIN);

 if (currentState != switchState) {

 updateLockBLE(currentState);

 }

 switchState = currentState;

 digitalWrite(LED_PIN, switchState);

 Serial.print("Switch state: ");

 Serial.println(switchState);

}

Chapter 5 Building Arduino-Based Peripherals

187

In the next chapter, you will use the Blue LED to indicate whether the Bluetooth

connection has been established.

�Calculating Battery Status
One of the most convenient aspects of the HUZZAH32 is that its built-in battery port

allows you to power it from an inexpensive lithium polymer (LiPo) battery and recharge

it when the HUZZAH32 is powered via USB. However, to help the user get the most out of

the device, it would be wise to transmit the battery’s charge level through the companion

app. Luckily, we can use the power of ADC to read the battery level and transmit it over

Bluetooth.

Just like software developers, hardware developers often finding themselves

adapting their designs to fit the limitations they are given. In the case of the HUZZAH32,

its designers were able to fit more functionality in the device, by allowing some pins

to have multiple functions. To read battery level, you can take advantage of their

engineering ingenuity on Pin 35 (ADC #13). When nothing is plugged into this pin, you

can use it to read exactly half of the voltage level of the connected battery. ADC pins on

the HUZZAH32 work just like RGB values in iOS code, in that you can read or write 12-bit

levels from them. This allows you to fine-tune the speed of a motor or read a non-binary

value from a pin, as we have to in this example. To calculate the battery level accurately,

divide the ADC output value by 4095 (2^12 - 1), to find what percent the battery level is

at (out of the maximum), double this by 2, then multiply it by 1.1 (the reference voltage

of the ADC pin), and 3.3 (the reference voltage of the HUZZAH32’s output). If you want

to report the battery level as a percentage, divide this number by 4.2, the maximum

possible voltage of a LiPo battery that can be connected to the chip. In Listing 5-5, I

have modified the Arduino solution to include these calculations. For now, I display

the output value on the Arduino IDE console. In the next chapter, you will learn how to

transmit it across Bluetooth LE.

Listing 5-5.  Reading the Battery Level from ADC Pin 13

#define RED_LED_PIN 14

#define BLUE_LED_PIN 15

#define SWITCH_PIN 32

#define BATTERY_PIN 35

Chapter 5 Building Arduino-Based Peripherals

188

void setup() {

 pinMode(RED_LED_PIN, OUTPUT);

 pinMode(BLUE_LED_PIN, OUTPUT);

 pinMode(SWITCH_PIN, INPUT);

 pinMode(BATTERY_PIN, INPUT);

 Serial.begin(9600);

 Serial.println(" Program start");

}

void loop() {

 checkSwitch();

 checkBattery();

 delay(1000);

}

...

void checkBattery() {

 float currentLevel = analogRead(BATTERY_PIN);

 currentLevel = ((currentLevel / 4095) * 2 * 3.3 * 1.1)

 * 100 / 4.3;

 batteryLevel = currentLevel;

 Serial.print("Battery Level: ");

 Serial.print(t);

 Serial.println("%");

}

�Running and Monitoring the Arduino Solution
Now that the Arduino hardware and its control software are complete, the only step left

is to try to run the program and see if the sensor is performing its functions correctly:

turning on a switch when the magnetic sensor is open and regularly reporting the

voltage level of the connected battery.

When you were writing your Arduino solution, you may have found yourself

constantly saving the program. If you were adventurous, you may have tried to compile it

a few times, to see if the code was valid. To fully take advantage of the Arduino IDE, refer

to Figure 5-18, for a more detailed description of its user interface.

Chapter 5 Building Arduino-Based Peripherals

189

Unlike Xcode, you will notice that the Arduino has two Run buttons—Verify

and Upload. The Verify button performs compilation only, operating like the Build

command in Xcode, allowing you to check if your code compiles and fulfills basic

runtime requirements, such as fitting within the available storage on the target device.

The Upload button compiles the solution and uploads it to the target device’s hardware.

Because the HUZZAH32 is an Arduino-compatible device, the scripts you installed

earlier are used in this step to complete the upload to the device. At the far right of the

top bar, you will find the Serial Monitor button. This adds output from the UART port to

the Debug Console pane at the bottom of the IDE, if it is not already present. When new

messages are ready from the compiler or device, they will appear in this pane.

To begin debugging the application, click the Upload button. In the serial console,

you should see a series of messages indicating the upload progress. After the upload has

completed successfully, you should see the switch and battery status being printed out

once per second (the duration of the delay in the loop() method). You should also be

able to turn on the red LED by opening the magnetic switch. The Arduino solutions run

continuously after they are uploaded, so you do not have to re-upload the solution every

Figure 5-18.  Identifying the Run button and Serial Monitor in the Arduino IDE

Chapter 5 Building Arduino-Based Peripherals

190

time you want to run it. Simply power the device, and the start() and loop() methods

will start executing immediately.

TROUBLESHOOTING COMPILATION

Before I was an iOS developer, I worked in embedded systems. The most frustrating and time-

consuming part of the process was always trying to get the program to run for the first time.

Following, I have included some of most common problems I encountered when I was trying to

run solutions on the Arduino devices.

The circuit is working correctly, but the serial console is
showing junk characters.

Serial communication is only able to work when the sender and receiver are communicating at

the same frequency (literally!). To resolve this issue, verify that the serial monitor is set to the

same value you used to configure the serial Port in the Arduino solution. For the door monitor,

you can find it in the serial Port initialization code:

Serial.begin(9600);

The Arduino IDE is uploading the solution successfully, but I am unable to
see serial messages or get the switch to work.

This problem is frustrating because it prevents you from verifying the behavior of the program.

In my experience, there are two common causes for this error:

	1.	T he device needs to be reset. This is a simple operation to perform. Simply

press the Reset button on the HUZZAH32 chip while it is still connected to

power. When the device restarts, you should see the correct output in the serial

monitor and on the circuit.

	2.	 You must hold down the Reset button while uploading the solution to the

HUZZAH32. On older ESP32-based boards, Espressif requires the Reset signal

to be held down to a negative value during programming. If the hardware is

stuck in a state in which you cannot reprogram the device, or the program is

not running, try holding down the Reset button of the device during the entire

duration of the Upload operation. This should re-enable programming the chip.

Chapter 5 Building Arduino-Based Peripherals

191

The Arduino IDE is unable to find the serial port for the HUZZAH32.

This is the most frustrating issue to track down. The HUZZAH32 may be working during one

programming session and suddenly become unresponsive. In my experience, this issue is

often caused by the OS X USB-to-Serial driver for the HUZZAH32, rather than your hardware

itself. As the vast majority of modern computers no longer ship with Serial (RS-232) ports,

device manufacturers use an integrated circuit to transmit serial signals over USB. Because

the community of users who need this functionality is small compared to general users, the

drivers are often unstable. To fix this problem, I recommend rebooting your Mac and then

trying to plug the HUZZAH32 into your computer again, after the reboot completes.

Much like debugging connected devices on Xcode, once you are able to identify the symptoms

of a connection issue, it becomes a trivial matter to resolve it.

�Summary
In this chapter, you learned how to make your first sensor using an Arduino. On the

hardware side, you learned how a breadboard can help you connect components

without soldering. With the exception of pull-down resistors, which are used to stabilize

the signal from the switch, most of putting the circuit together is connecting dots from

the schematic to the breadboard. On the software side, you learned that the Arduino IDE

and the Arduino solutions operate much like simplified Swift applications. Instead of

relying on UIKit or other Apple frameworks, most of the code you wrote in the Arduino

solution took advantage of the GPIO and ADC pins on HUZZAH32 chip. In the setup()

method, you configured the roles and modes for each pin you would use, then in the

loop() method, you read the values and used them to turn pins on or off, to control the

hardware. In the next chapter, you will extend this simple program to transmit this data

to the companion iOS app over Bluetooth LE.

Chapter 5 Building Arduino-Based Peripherals

193
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_6

CHAPTER 6

Building a Bluetooth LE
Hardware Companion App
In Chapter 5, you dipped your toes into the world of embedded systems by building an

Arduino-based wireless door sensor. In this chapter, you will continue your hardware

engineering journey by developing the Bluetooth LE–based companion app for the

door sensor. Bluetooth LE is an extremely popular radio-based communication protocol

that allows devices to communicate at ranges up to 77 meters (~250 feet), with a very

low-energy requirement, compared to other wireless communication methods (this is

the LE part of Bluetooth LE).

One of the wonderful things about iOS development today is that Apple’s Core

Bluetooth framework includes everything you need to make your app communicate

with (or as) a Bluetooth LE device, using the built-in Bluetooth hardware on your

iOS devices. Beyond simply establishing the connection with the device, this chapter will

also introduce you to some best practices for improving your users’ Bluetooth experience,

such as saving the paired device and displaying messages from the hardware as push

notifications on your users’ iOS devices. As with so many things in iOS, Apple provides

theoretical guidance on implementation the Bluetooth LE stack in their documentation, but

leaves the burden of the clarifying the implementation details up to the developers. To help

fill this knowledge gap, in this chapter I will share what has worked best for me in the past.

�Learning Objectives
In this chapter, you will take the door sensor you built in Chapter 5 and learn how

to make it into a full Bluetooth LE solution by adding Bluetooth pairing and data

transmission capabilities to your existing Arduino program, and then by building an

iOS companion app to monitor the sensor. This chapter will start the new app that you

will iterate throughout the section, IOTHome. IOTHome is an Internet of Things (IoT)

194

home-management system, which will eventually be used to track multiple IoT devices

and provide a secure, Siri-compatible interface to the hardware via HomeKit. For the

sake of introduction, the design wireframes for the first iteration of the IOTHome app are

provided in Figure 6-1.

Figure 6-1.  Design wireframes for the IOTHome app

To make the iteration process easy, you will once again use a Tab View

Controller–based design to switch between screens in the application. In this chapter,

you will focus on building the “Door” tab, which allows users to connect to the

door-sensing hardware and monitor the status of their door and the battery level of

Chapter 6 Building a Bluetooth LE Hardware Companion App

195

the device. In the process of building the companion iPhone app, you will learn the

following key skills for IoT app development:

•	 Bluetooth LE core concepts

•	 Advertising an Arduino as a Bluetooth peripheral

•	 Sending data updates from an Arduino over Bluetooth

•	 Using Core Bluetooth on iOS to discover Bluetooth devices

•	 Using Core Bluetooth on IOS to listen for device updates

•	 Responding to Bluetooth updates in the background

This chapter will ask you to jump between the Arduino IDE and Xcode. If you feel

you need to refresh your knowledge of Arduino, I recommend reviewing Chapter 5 and

checking out some of Adafruit’s online tutorials at https://learn.adafruit.com.

�A Quick Introduction to Bluetooth LE
To make the rest of the chapter easier for you to understand, I would first like to

introduce some key concepts and terminology relating to Bluetooth LE. In this chapter,

you will implement different aspects of the Bluetooth LE stack in the Arduino and iOS

programs, and having some knowledge of the big picture at the beginning will help make

the components easier to put together.

Bluetooth was originally developed as a short-distance, low-power wireless

communications protocol by the Bluetooth Special Interest Group (SIG), a

standards organization run by members from various computer hardware and

telecommunications companies. It was always intended to serve a different purpose

from LTE or Wi-Fi, aiming for efficient, short-message communication between

computers or computers and peripherals (accessories). Bluetooth LE (Low Energy) was

developed as part of the 4.0 specification of the Bluetooth standard and was designed to

provide a lower-power, lower-cost implementation of the standard, without sacrificing

range or requiring drastically different hardware to implement either version of the

standard (Classic Bluetooth or Bluetooth LE). In practice, Apple and many other

smartphone manufacturers use the lower-power, slightly slower Bluetooth LE standard

to communicate with accessories that require little data (such as IoT health sensors

or location beacons) and the higher-power, higher-throughput Bluetooth standard for

devices that require less latency (such as phone headsets or speakers).

Chapter 6 Building a Bluetooth LE Hardware Companion App

https://learn.adafruit.com

196

When it comes to implementing Bluetooth, there are two firmly defined roles (the

actual name of the term) that a device can play. A peripheral is a device whose role is to

provide supporting features or data for another device. You can think about a Bluetooth

peripheral in the same way that you would a peripheral for a personal computer. You

connect to a peripheral, and it provides services (features) that were previously not

available on the main processing unit. When you think of a Bluetooth keyboard or

headset, these are devices that act as peripherals. The other major role a device can

play is that is of a central device, a device that connects to and manages peripherals. In

most cases, when you think of a computer or smartphone, when it is sending its audio

to a Bluetooth headset or using a Bluetooth keyboard for input, it is serving the role of a

central device.

Bluetooth devices are not limited by their hardware to serve only one role. For

example, within the same application, you can create a mode in which the app is acting

as a central device and another in which the app is acting as a peripheral (for example,

if you were making an offline photo-sharing app), but a device will only serve one role

during a communication session. In this chapter, the Arduino will act as the peripheral,

and the IOTHome app will act as the central device.

If you have connected to a Bluetooth accessory from your iPhone, you may

remember that the process follows this order:

	 1.	 Scan for nearby devices.

	 2.	 Click a device in the list to try to connect to it.

	 3.	 Confirm the connection using a PIN code.

	 4.	 Begin Bluetooth communication.

The way a central device finds peripherals is by scanning (searching) for their

advertising packets that are being broadcast by peripherals. Similar to an Ethernet

packet, these are special, short messages that advertise the device’s name, services

(features), and characteristics (data types) it provides. In a similar manner to pairing

from iOS, in most applications, you will use this advertising data to let the user select

which device he or she wants to connect to. Once the device is connected, two-way

communication can proceed. To save power on both sides, scanning and advertising are

operations that are initiated by a user and stop as soon as a connection is established.

In this chapter, the Arduino will start advertising its services as soon as it is powered on,

and the Connect button in the IOTHome app will be used to scan for and connect to the

Arduino.

Chapter 6 Building a Bluetooth LE Hardware Companion App

197

A final detail to mention about Bluetooth is the idea of a profile. Services and

characteristics are identified by 128-bit universally unique identifiers (UUIDs). However,

for reoccurring hardware, such as heart rate monitors and headsets, the Bluetooth

SIG asks you to use the commonly agreed upon set of services and characteristics of

UUIDs for those devices. These are what are referred to as profiles and can help you

provide a better experience for your users, by taking advantage of any optimizations

the central device has for known profiles. For example, iOS will show battery levels and

a headphone icon when you connect to a Bluetooth headset. The door sensor for the

IOTHome app does not fit into any of the predefined profiles, so you will use randomly

generated UUIDs to identify it.

�Adding Bluetooth Functionality to an Arduino Solution
Now that you have a better understanding of Bluetooth, you are ready to start

implementing it in the Arduino solution (program) for the door sensor. To configure the

door sensor as a Bluetooth peripheral, you must do the following to the Arduino solution:

•	 Establish the device as a Bluetooth server (peripheral), so it can

accept incoming connections

•	 Advertise the services and characteristics the peripheral provides

•	 Send data updates over Bluetooth LE when the magnetic switch state

or battery level changes

Although Bluetooth LE itself is an efficient protocol, you can make your

implementation even more efficient by pushing updates only when something changes

(rather than every second). Keeping the connection established is a low-power

operation, but pushing data over it has a cost. Reducing communication will help battery

life on the Arduino and iOS app significantly.

As does iOS, Arduino has a vast collection of libraries provided by the Arduino

foundation and open source libraries developed by the user community. In this chapter,

you will use the ESP32_BLE_Arduino library, developed by Neil Kolban, to establish the

Bluetooth LE server, handle incoming connections, and push updates over Bluetooth

LE. His hard work means you do not have to study timing diagrams or implement the

low-level protocol yourself. You can focus on how to use Bluetooth in your app, rather

than on how to build it. Additionally, his library provides customization, specifically

for ESP32-based devices such as the Adafruit HUZZAH32 you are using for this project.

Chapter 6 Building a Bluetooth LE Hardware Companion App

198

Although the form factor and available features for ESP32-based devices vary widely,

they all use the same system-on-a-chip (SoC) from Espressif. The device manufacturers

(OEMs) simply decide what they want to use and how to expose it.

�Installing the ESP32_BLE_Arduino Library for
Bluetooth Communication
To take advantage of the ESP32_BLE_Arduino library, you first must import it into the

Arduino IDE. After you have imported it, you can use it again in other projects, without

having to repeat the import step. To begin, navigate to the GitHub page for the library at

https://github.com/nkolban/ESP32_BLE_Arduino. To download the latest version of

the library, click the Clone or download button at the top right, as shown in Figure 6-2.

You will have options to Open in Desktop (normally this will open GitHub or Sourcetree,

if they are installed on your computer) or Download ZIP (download the files as a zipped

archive). Because you will have to import only a subset of the files into the Arduino IDE, I

recommend selecting Download ZIP.

Figure 6-2.  Downloading a repository from GitHub

Chapter 6 Building a Bluetooth LE Hardware Companion App

https://github.com/nkolban/ESP32_BLE_Arduino

199

Once the repository is on your computer, return to the Arduino IDE and go to the

Sketch menu. As shown in Figure 6-3, select Include Library and then Add .ZIP Library.

When the file browser window appears, select the zip file you just downloaded.

Figure 6-3.  Importing a zip archive

After importing the file, return to the Sketch menu. As shown in Figure 6-4, select

Include Library one more time. This time, the library you just imported, ESP32 BLE

Arduino, should appear in the context menu.

Chapter 6 Building a Bluetooth LE Hardware Companion App

200

After selecting the library, you will notice that the source code for your solution has

been modified to include some of the files from the library, as shown in Listing 6-1.

Listing 6-1.  Arduino Solution After Including ESP32 BLE Library

#include <BLE.h>

#include <BLEUtils.h>

#include <BLEScan.h>

#include <BLEAdvertisedDevice.h>

#define RED_LED_PIN 14

...

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

Figure 6-4.  Including the ESP32 BLE Arduino library in your project

Chapter 6 Building a Bluetooth LE Hardware Companion App

201

 Serial.println(" Program start");

 ...

}

...

For this project, you must use the Bluetooth server and data transmission features

of the library, which are not provided by the default set of included files. Modify your

solution, as shown in Listing 6-2, to include the correct files.

Listing 6-2.  Arduino Solution with Files for Bluetooth Server Features

#include <BLEDevice.h>

#include <BLEUtils.h>

#include <BLEServer.h>

#include <BLE2902.h>

#define RED_LED_PIN 14

...

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println(" Program start");

 pinMode(RED_LED_PIN, OUTPUT);

 ...

}

...

To confirm that the files are compatible with the project, click the Verify button in

the Arduino IDE. The project should compile successfully. You can repeat these steps to

include other libraries in your future projects.

�Setting Up the Arduino As a Bluetooth Peripheral
Now that the Bluetooth library has been imported, you can start implementing the

Bluetooth server, which will allow the device to advertise itself as a peripheral and accept

incoming connections. To revisit the earlier overview of the Bluetooth specification, this

is accomplished by advertising the services (features) and data types (characteristics)

Chapter 6 Building a Bluetooth LE Hardware Companion App

202

the device provides. Both of these values are represented as 128-bit UUIDs. A UUID is a

mostly random pattern of hexadecimal characters; however, in order to register the door

sensor as a Bluetooth LE–compatible device, you will have to replace some of the values

with known identifiers from the Bluetooth LE specification.

To get started, you will have to generate four UUIDs—two to represent the services

being advertised (information about the door, information about the battery) and two

to represent the characteristics (battery level, door lock status). On your Mac, you can

generate UUIDs from the command line, using the uuidgen tool. I have shared my result

in Listing 6-3.

Listing 6-3.  Generating a UUID from the OS X Command Line

ahmeds-macbook:arduino abakir$ uuidgen

8CED1808-7984-47CE-BE9C-E2DD56317575

As you can see, no additional parameters are required to run the uuidgen tool. The

result is printed immediately as a string on the command line. Run this command four

times to generate your four UUIDs and save the results. I have appended my results to

the Arduino solution, as shown in Listing 6-4.

Listing 6-4.  Appending UUIDs to the Arduino Solution

#include <BLEDevice.h>

#include <BLEUtils.h>

#include <BLEServer.h>

#include <BLE2902.h>

#define RED_LED_PIN 14

...

#define LOCK_SERVICE_UUID "83b46845-6e9c-4b25-89cf-871cc74cc68e"

#define BATT_SERVICE_UUID "7d6925f3-6e19-48c6-a503-05585abe761e"

#define LOCK_CHARACTERISTIC_UUID "4b61d6b9-2e29-4fdf-a74a-7b8bf70ecd9a"

#define BATT_CHARACTERISTIC_UUID "8e628af6-0275-4f80-bb64-58f2b2771cba”

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println(" Program start");

Chapter 6 Building a Bluetooth LE Hardware Companion App

203

 pinMode(RED_LED_PIN, OUTPUT);

 ...

}

...

Next, you must replace with known values from the Bluetooth specification the

second two bytes (the four characters starting at the fifth character in the string). This

master record of values is called the Bluetooth GATT (Generic Attributes). You can

find the values for services at www.bluetooth.com/specifications/gatt/services

and the values for characteristics at www.bluetooth.com/specifications/gatt/

characteristics. While the GATT do not cover all use cases, they cover a wide range,

which should be sufficient for most projects. For advertising the battery level, you can

use the Battery Service identifier (0x180F) and the Battery Level State characteristic

(0x2A1B). The door is a bit harder, as there is no door service; however, the Alert

Notification Service identifier (0x1811) and Alert Status characteristic (0x2A3F) estimate

the use case pretty well and are appropriate here. As shown in Listing 6-5, modify your

solution to include these new values.

Listing 6-5.  Arduino Solution with Valid GATT UUIDs

#include <BLEDevice.h>

#include <BLEUtils.h>

#include <BLEServer.h>

#include <BLE2902.h>

#define RED_LED_PIN 14

...

#define LOCK_SERVICE_UUID "83b41811-6e9c-4b25-89cf-871cc74cc68e"

#define BATT_SERVICE_UUID "7d69180F-6e19-48c6-a503-05585abe761e"

#define LOCK_CHARACTERISTIC_UUID "4b612A3F-2e29-4fdf-a74a-7b8bf70ecd9a"

#define BATT_CHARACTERISTIC_UUID "8e622A1B-0275-4f80-bb64-58f2b2771cba”

void setup() {

 // put your setup code here, to run once:

 Serial.begin(9600);

 Serial.println(" Program start");

Chapter 6 Building a Bluetooth LE Hardware Companion App

http://www.bluetooth.com/specifications/gatt/services
http://www.bluetooth.com/specifications/gatt/characteristics
http://www.bluetooth.com/specifications/gatt/characteristics

204

 pinMode(RED_LED_PIN, OUTPUT);

 ...

}

...

Next, you can begin setting up the Bluetooth server. The Arduino_ESP32_BLE library

exposes these functions through the BLEServer class. The class is straightforward to

use, as the setup primarily requires registering the characteristics, services, and callback

handlers for the server events (for example, connection initiated, disconnected). To

begin, initialize the server, characteristics, and services, as shown in Listing 6-6.

Listing 6-6.  Initializing the Bluetooth LE Server from the Arduino Solution

...

#define BATT_CHARACTERISTIC_UUID "134c298f-7d6b-4f64-8496-8965e0851d03"

BLECharacteristic *lockCharacteristic;

BLECharacteristic *battCharacteristic;

void setup() {

 ...

 pinMode(BATTERY_PIN, INPUT);

 startBLE();

}

void startBLE() {

 // Create the BLE Device

 BLEDevice::init("IOTDoor");

 // Create the BLE Server

 BLEServer *bleServer = BLEDevice::createServer();

 // Create the BLE Service

 BLEService *lockService = bleServer->

 createService(LOCK_SERVICE_UUID);

 // Create a BLE Characteristic

 lockCharacteristic = lockService->createCharacteristic(

 LOCK_CHARACTERISTIC_UUID,

 BLECharacteristic::PROPERTY_READ |

Chapter 6 Building a Bluetooth LE Hardware Companion App

205

 BLECharacteristic::PROPERTY_WRITE |

 BLECharacteristic::PROPERTY_NOTIFY |

 BLECharacteristic::PROPERTY_INDICATE

);

 lockCharacteristic->addDescriptor(new BLE2902());

 BLEService *battService = bleServer->

 createService(BATT_SERVICE_UUID);

 battCharacteristic = lockService->createCharacteristic(

 BATT_CHARACTERISTIC_UUID,

 BLECharacteristic::PROPERTY_READ |

 BLECharacteristic::PROPERTY_WRITE |

 BLECharacteristic::PROPERTY_NOTIFY |

 BLECharacteristic::PROPERTY_INDICATE

);

 battCharacteristic->addDescriptor(new BLE2902());

 // Start the service

 lockService->start();

 battService->start();

 // Start advertising

 bleServer->getAdvertising()->start();

}

In accordance with the execution flow of Arduino solutions, you must start the server

from the setup() method, as it is the only area of the program that is executed once. To

send messages later on, you will have to reuse the characteristic objects, thus I declared

them as global variables. When setting up the services and characteristics, be careful to

attach them correctly, or they will not work. As with the Bluetooth specification, services

can only be discovered when they are attached to a characteristic. The properties for the

characteristics do not have to include the full list in my example (READ, WRITE, NOTIFY,

INDICATE). For future projects, you can pare them down as you need to.

The final requirement to start the server is to register the connection callbacks. To

perform this operation, you will have to implement the BLEServerCallbacks protocol.

As C++ and Swift share common language design ancestry, the process of implementing

Chapter 6 Building a Bluetooth LE Hardware Companion App

206

the protocol should be very familiar to you. Just as in Swift, define a class that inherits

the protocol, and implement the required named methods, onConnect(BLEServer *

pServer) and onDisconnect(BLEServer * pServer). As the names suggest, these

are called when the server establishes or destroys a connection. In Listing 6-7, I have

modified the solution to include this code and added the call to attach the callbacks to

the server object. Right now, the only actions you must perform on the callbacks are

setting a status object to true or false and turning the blue LED on or off. Later, you will

use this status object again, to help filter outgoing messages.

Listing 6-7.  Arduino Solution Including Valid Bluetooth LE Callbacks

...

BLECharacteristic *lockCharacteristic;

BLECharacteristic *battCharacteristic;

bool deviceConnected = false;

class MyServerCallbacks: public BLEServerCallbacks {

 void onConnect(BLEServer* pServer) {

 deviceConnected = true;

 digitalWrite(BLUE_LED_PIN, deviceConnected);

 };

 void onDisconnect(BLEServer* pServer) {

 deviceConnected = false;

 digitalWrite(BLUE_LED_PIN, deviceConnected);

 }

};

...

void startBLE() {

 // Create the BLE Device

 BLEDevice::init("IOTDoor");

 // Create the BLE Server

 BLEServer *bleServer = BLEDevice::createServer();

 bleServer->setCallbacks(new MyServerCallbacks());

 // Create the BLE Service

 BLEService *lockService = bleServer->createService(LOCK_SERVICE_UUID);

Chapter 6 Building a Bluetooth LE Hardware Companion App

207

 ...

}

...

This step completes all of the setup required for the Bluetooth LE server component

of the Arduino solution. To verify that the server was set up correctly, I like to use

a Bluetooth LE scanner app to check that the Arduino is advertising the correct

information. My preferred app is LightBlue® Explorer, available on the App Store at

https://itunes.apple.com/us/app/lightblue-explorer/id557428110?mt=8. In

Figure 6-5, I have included screenshots of the app, including the status of my door

sensor. On the home screen of the app, you should see the advertising name you

specified in Listing 6-6 (“IOTDoor”), and on the detail page, you see the four UUIDs

you used to set up the server. To find the device, simply download the solution to the

HUZZAH32, press the Reset button on the chip, and wait a few seconds.

Figure 6-5.  Verifying Bluetooth LE advertising data using LightBlue® Explorer

Chapter 6 Building a Bluetooth LE Hardware Companion App

https://itunes.apple.com/us/app/lightblue-explorer/id557428110?mt=8

208

Caution A fter adding the Bluetooth server initialization code, your Arduino
solution will start up much slower. You can verify this by opening up the Arduino
IDE serial monitor. You should see log messages from the Bluetooth server code
every few sections, while it is starting up.

�Sending Data Updates via Bluetooth LE
Believe it or not, setting up the Bluetooth server for advertising the device was the

hardest part of the Arduino solution. To send data updates via Bluetooth LE, you simply

have to use the saved characteristics (Battery Power Level, Alert Status) and push new

updates when the state changes. Although the Arduino solution is set to poll for updates

every second, in practice, it is not a wise idea to transmit Bluetooth updates every

second. In addition to draining power, constantly transmitting the status will prevent

you from being able to notify the user when the device has an update (such as when the

magnetic sensor detects that the door has been opened).

Begin by modifying the checkSensor() method, which you used in Chapter 5 to

detect if the door sensor was closed or open. In the old implementation of the method,

you checked if the pin was high (connected) or low (disconnected) and used that value

to turn the LED on or off. While this implementation is still valid, you must save the old

value to trigger the update.

To send updates using the ESP32 BLE Arduino library, you set a new value on the

characteristic, using the setValue() method. Next, you tell the characteristic object to

notify all connected devices using the notify() method. In Listing 6-8, I have updated

the solution to save the old sensor value as a global variable and to trigger the Bluetooth

update only if a device is connected to the peripheral and the value has changed since

the last update.

Listing 6-8.  Posting Magnetic Sensor Updates from the Arduino Solution

void loop() {

 // put your main code here, to run repeatedly:

 checkSensor();

 checkBattery();

 delay(1000);

}

Chapter 6 Building a Bluetooth LE Hardware Companion App

209

...

void checkSensor() {

 int currentState = digitalRead(SWITCH_PIN);

 if (currentState != switchState) {

 updateLockBLE(currentState);

 }

 switchState = currentState;

 digitalWrite(RED_LED_PIN, switchState);

 Serial.print("Sensor state: ");

 Serial.println(switchState);

}

...

void updateLockBLE(bool currentState) {

 uint8_t value = 0;

 if (deviceConnected) {

 value = currentState ? 1 : 0;

 lockCharacteristic->setValue(&value, 1);

 lockCharacteristic->notify();

 }

}

For the checkBattery() method, you can use the same process; however, you will

have to adjust the logic for detecting changes in status. In practice, you will notice the

battery level continuously decreasing as the sensor stays powered on. This is normal, but

for the sake of users, it is best to notify them only about noticeable changes. In

Listing 6-9, I have updated the solution to save the old battery value (just as with the

magnetic sensor), but instead of sending a notification every time the value changes,

I only send it when the battery level is at least 5% lower than the previous reading.

Listing 6-9.  Posting Battery Updates When the Level Decreases More Than 5%

void checkBattery() {

 float currentLevel = analogRead(BATTERY_PIN);

 currentLevel = ((currentLevel / 4095) * 2 * 3.3 *

 1.1) * 100 / 4.3;

 if (currentLevel + 5.0 < batteryLevel) {

Chapter 6 Building a Bluetooth LE Hardware Companion App

210

 updateBatteryBLE(currentLevel);

 }

 batteryLevel = currentLevel;

 Serial.print("Battery Level: ");

 Serial.print(batteryLevel);

 Serial.println("%");

}

...

void updateBatteryBLE(float currentLevel) {

 if (deviceConnected) {

 char string[8];

 dtostrf(currentLevel, 3, 1, string);

 battCharacteristic->setValue(string);

 battCharacteristic->notify();

 }

}

With these steps, the Arduino solution in this chapter is complete. From here on out,

you will focus on how to build an app that connects to the sensor you created and read

the values it transmits.

�Using Core Bluetooth to Communicate
with Bluetooth LE Devices
As mentioned at the beginning of the chapter, Apple provides the Core Bluetooth

framework to help you connect to Bluetooth devices quickly and safely, using their APIs.

Instead of focusing on pouring over the Bluetooth specification to implement basic

communication yourself, you can focus on the business logic directly, just as you did

with the ESP32 BLE library for the Arduino solution. In this half of the chapter, I will

quickly walk you through the setup of the IOTHome project, which will be used as the

base for the remaining projects in this section, and then introduce the following steps for

setting up an app that connects to a Bluetooth LE accessory:

•	 Adding the Bluetooth background service permission to the project

•	 Discovering and connecting to Bluetooth devices

Chapter 6 Building a Bluetooth LE Hardware Companion App

211

•	 Monitoring Bluetooth characteristic updates

•	 Responding to Bluetooth characteristic updates while the app is

backgrounded

As with previous projects in the book, the goals here are not only to learn some

useful skills for yourself but also how to apply them to provide a convenient user

experience in the future.

�Setting Up the IOTHome Project
Jumping back to Figure 6-1 for a second, the IOTHome project for this section will

provide a tab-based user interface to allow users to monitor various data points about

their home, using IoT technologies. Although this chapter will focus only on the screen

for the door sensor, it is a good idea to start the project out on the right foot, by creating a

new project in Xcode using the Tab Bar Controller template, just as you did in Chapter 1

for the IOTFit project. To shift the focus to the Bluetooth portion of the project, I strongly

recommend referring back to Chapter 1 for a detailed review of this operation. However,

for everyone’s benefit, the summary is

	 1.	 Choose Tab Bar Controller from the New Project option in Xcode’s

File menu.

	 2.	 Navigate to the Main.storyboard file, to verify that the tab-based

project was created successfully.

	 3.	 Rename the tabs “Door” and “Home” by double-clicking them

in the storyboard, then choose new names and icons from the

Attributes Inspector Xcode’s right-hand side panes.

	 4.	 Rename the classes representing the tabbed view controllers to

HomeViewController (first tab) and DoorViewController (second

tab).

When complete, your storyboard and project structure should resemble the

screenshot in Figure 6-6.

Chapter 6 Building a Bluetooth LE Hardware Companion App

212

In order to initiate the Bluetooth connection and display the data from the sensor,

you will have to set up the user interface with the use of code and Interface Builder. In

Listing 6-10, I have provided the modified DoorViewController class, which includes

the properties and stub method for the user interface. As this screen will be used mostly

for displaying data, the user interface primarily consists of UILabel objects; however,

you will have to use a UIButton to initiate and destroy the connection. The user can only

access the app from the “connected” or “disconnected” state, so my implementation

shares the same button for the connection management actions.

Listing 6-10.  DoorViewController Class, Including User Interface Properties

and Stub Methods

import UIKit

class DoorViewController: UIViewController {

 @IBOutlet var statusLabel: UILabel?

Figure 6-6.  New IOTHome project, including modified storyboard and view
controller names

Chapter 6 Building a Bluetooth LE Hardware Companion App

213

 @IBOutlet var batteryLabel: UILabel?

 @IBOutlet var lastUpdatedLabel: UILabel?

 @IBOutlet var connectButton: UIButton?

 let dateFormatter = DateFormatter()

 override func viewDidLoad() {

 super.viewDidLoad()

 dateFormatter.dateStyle = .medium

 dateFormatter.timeStyle = .short

 }

 @IBAction func connect() {

 }

}

To help you theme the view controller, in Table 6-1, I have provided the styling

options I used for each element. As with the first section, I used Apple’s font classes

to reduce the complexity of managing fonts and give the user an experience more

consistent with Apple’s iOS design guidelines.

Table 6-1.  Styling for Door View Controller User Interface Elements

Element Name Text Style Height Top
Margin

Bottom
Margin

Left
Margin

Right
Margin

Navigation bar Prefers large

text

— — — —- —

“Status” title label Title 2 24 40 — 30 20

“Status” value label Title 2 24 40 — 20 ≥30

“Battery Level” title label Title 2 24 8 — 30 20

“Battery Level” value label Title 2 24 8 — 20 ≥30

“Last Updated” label Body 25 8 — 20 20

“Press to Connect” label Body 25 — 20 20 20

“Connect” button Title 1 60 20 30 20 20

Chapter 6 Building a Bluetooth LE Hardware Companion App

214

After the elements are styled, remember to drag and drop outlets, to connect the

code to the storyboard file. Your completed storyboard and its Connection Inspector

should resemble the output shown in Figure 6-7.

�Enabling Bluetooth Accessory Background Updates

Although iOS is notorious for pausing applications while they are backgrounded,

Bluetooth LE peripheral updates are one of the few exceptions, much like the

background locations updates you enabled in the first section of the book. In the same

manner as background location updates, to enable Bluetooth updates, you must declare

them as capabilities in your application’s project settings.

Figure 6-7.  Styled storyboard and Interface Builder connections for Door View
Controller

Chapter 6 Building a Bluetooth LE Hardware Companion App

215

To begin the process of declaring the capability, click the .xcodeproj file for the

IOTHome project (IOTHome.xcodeproj). As shown in Figure 6-8, click the Capabilities

tab. Click on the Background Modes and then Uses Bluetooth LE accessories.

For background location updates, you are required to update the capabilities for

your project and define a message for the location permission alert in your project’s

Info.plist file. For background Bluetooth projects, the “and” is what you require to

define the role the iOS device will play in the Bluetooth operation. For this project, you

only have to discover and connect to Bluetooth LE devices. Thus, you will only perform

the central manager role. Click the Info.plist file for your project and enable the

NSBluetoothPeripheralUsageDescription key-value pair, as shown in Figure 6-9. For

the description, I used the following message: “IOTHome would like to use Bluetooth to

help you monitor Bluetooth-based IOT sensors in your home. This information will not

be shared outside of the app.”

Figure 6-8.  Enabling the Bluetoooth accessory background mode

Chapter 6 Building a Bluetooth LE Hardware Companion App

216

Figure 6-9.  Specifying the central manager alert message in the project’s Info.plist

These steps complete the project setup for this iteration of the IOTHome project.

Now you can begin to flesh out the project, by using Core Bluetooth to discover and

interact with the door sensor.

�Setting Up the App As a Central Manager
With the rough user interface and capability permissions in place, you are now ready to

begin scanning for Bluetooth devices from the IOTHome app. To follow the vocabulary

of Bluetooth LE, in this section, you will enable the iOS app to act as a central manager

and connect to the Arduino-based peripheral.

To help keep the code manageable, you will wrap the Bluetooth operations into

a class called BluetoothService. This will deliver state messages back to the class

that instantiated it, via a protocol you will define, called BluetoothServiceDelegate.

While it is possible to put everything into one file, the logic required to implement

Bluetooth is a bit heavy, and sticking that many functions into one view controller

will introduce the Massive View Controller anti-pattern many developers cite as a

weakness in Apple’s Model-View-Controller architecture for iOS applications. The recent

Chapter 6 Building a Bluetooth LE Hardware Companion App

217

adoption of protocols as a way to alleviate this is called Protocol Oriented Programming.

It gives you an easy path to split up code, by defining key behaviors in protocols

and grouping the implementations via extensions. If you have ever used extensions

before to add functionality to classes or split up large delegate-based APIs (such as

UITableViewDelegate), you are already familiar with the basics of protocol oriented

programming.

For the IOTHome app, you must expose the following events to consumers of the

BluetoothService class:

•	 Bluetooth connection state change

•	 Door state change

•	 Battery level change

Following these requirements, you can declare the BluetoothServiceDelegate

protocol, with the signature provided in Listing 6-11. This should go in a new file named

BluetoothService.swift. Bluetooth is a serial-based protocol, like the RS-232 serial

port of legacy computing, meaning it delivers data as a continuous stream of bytes. Core

Bluetooth exposes this data using the Data class. In the Arduino solution, the state data

was transmitted as string values, so you can safely convert the input data from Core

Bluetooth to String objects, to make message passing easier. On a similar note, Core

Bluetooth does not provide a terse object to describe the state of a connection, so I

defined the ConnectionStatus enum to represent this.

Listing 6-11.  Declaration for BluetoothServiceDelegate Protocol

enum ConnectionStatus {

 case unknown

 case scanning

 case connecting

 case connected

 case disconnected

}

protocol BluetoothServiceDelegate: class {

 func didUpdateConnection(status: ConnectionStatus)

 func didReceiveDoorUpdate(value: String)

 func didReceiveBatteryUpdate(value: String)

}

Chapter 6 Building a Bluetooth LE Hardware Companion App

218

Although the protocol specifies the functions that will be used, it does not perform

any logic by itself. To implement the behavior for the BluetoothServiceDelegate

protocol, you must provide the method definitions in BluetoothService.swift,

as shown in Listing 6-12. The main points of this initial implementation include

convenience initializers, a stub for the connect() method, and CBUUID objects to

represent the Bluetooth LE service and characteristic UUIDs you will have to interact

with later.

Listing 6-12.  Initial Definition for BluetoothService Class

import Foundation

import CoreBluetooth

let doorServiceUUID = CBUUID(string: "83b46845-6e9c-4b25-89cf-

871cc74cc68e")

let battServiceUUID = CBUUID(string: "7d6925f3-6e19-48c6-a503-

05585abe761e")

let doorCharUUID = CBUUID(string: "4b61d6b9-2e29-4fdf-a74a-7b8bf70ecd9a")

let battCharUUID = CBUUID(string: "8e628af6-0275-4f80-bb64-58f2b2771cba")

class BluetoothService: NSObject {

 let doorServices = [doorServiceUUID]

 let doorCharacteristics = [doorCharUUID,

 battCharUUID]

 weak var delegate: BluetoothServiceDelegate?

 convenience init(delegate:

 BluetoothServiceDelegate) {

 self.init()

 self.delegate = delegate

 }

 private override init() {

 super.init()

 }

Chapter 6 Building a Bluetooth LE Hardware Companion App

219

 func connect() {

 delegate?.didUpdateConnection(status: connectionStatus)

 }

}

Having declared the BluetoothService class and its corresponding protocol, switch

back to DoorViewController.swift. As shown in Listing 6-13, create a property to

represent an instance of the BluetoothService class and instantiate it in the viewDidLoad()

method. To allow compilation to complete successfully, add a stub (blank) extension of the

BluetoothServiceDelegate protocol beneath the definition for the DoorViewController

class. In the connect() method you defined earlier to represent the Connect button being

pressed, call the corresponding method from the BluetoothService class.

Listing 6-13.  Initial Implementation of the BluetoothServiceDelegate Protocol

class DoorViewController: UIViewController {

 ...

 var bluetoothService: BluetoothService?

 override func viewDidLoad() {

 super.viewDidLoad()

 ...

 bluetoothService = BluetoothService(delegate: self)

 }

 @IBAction func connect() {

 bluetoothService?.connect()

 }

}

extension DoorViewController: BluetoothServiceDelegate {

 func didReceiveDoorUpdate(value: String) {

 }

 func didReceiveBatteryUpdate(value: String) {

 }

 func didUpdateConnection(status: ConnectionStatus) {

 }

}

Chapter 6 Building a Bluetooth LE Hardware Companion App

220

Following the logical progression of the application, you should now begin to

develop the connect() method for the BluetoothService class. The ConnectionState

enum I provided earlier defines five states of a Bluetooth connection: unknown, scanning,

connecting, connected, and disconnected. During the unknown and disconnected

states, you can safely assume that the app does not have a connection to a Bluetooth

peripheral, so you can use these to begin the process of scanning for a device. If the

state is connected or connecting, you can assume the user is attempting to establish a

connection with a device, and this is the cue to disconnect. Finally, the scanning state

indicates that the app is scanning for a device, and you can use this to stop scanning.

In Listing 6-14, I have included an initial implementation of the connect() method,

which updates the connection state, based on the previous one. To set the initial state

correctly, I have included a connectionStatus property in the class, with a default value

of unknown. As you progress in this section, you will connect these state changes to

CoreBluetooth API calls.

Listing 6-14.  Initial Implementation of the connect() Method

class BluetoothService: NSObject{

 func connect() {

 switch connectionStatus {

 case .unknown, .disconnected :

 connectionStatus = .scanning

 case .connected, .connecting:

 connectionStatus = .disconnected

 default:

 connectionStatus = .disconnected

 }

 delegate?.didUpdateConnection(status: connectionStatus)

 }

}

extension DoorViewController: BluetoothServiceDelegate {

 ...

 func didUpdateConnection(status: ConnectionStatus) {

 switch status {

 case .connecting:

 connectButton?.setTitle("Connecting", for: .normal)

Chapter 6 Building a Bluetooth LE Hardware Companion App

221

 case .connected:

 connectButton?.setTitle("Disconnect", for: .normal)

 case .scanning:

 connectButton?.setTitle("Scanning", for: .normal)

 default:

 connectButton?.setTitle("Connect", for: .normal)

 }

 }

}

For the IOTHome app, the only Bluetooth role the BluetoothService class must

provide is that of a central manager. You can accomplish this via the CBCentralManager

class. To use it in your program, you must instantiate a CBCentralManager object and

set its delegate. In Listing 6-15, I have added this object as a property to the class and

provided stubs for the CBCentralManagerDelegate protocol methods you must use in

this project.

Listing 6-15.  Initializing a CBCentralManager Object

class BluetoothService: NSObject {

 ...

 weak var delegate: BluetoothServiceDelegate?

 var centralManager: CBCentralManager?

 ...

 private override init() {

 super.init()

 centralManager = CBCentralManager.init(delegate: self,

 queue: nil)

 }

}

extension BluetoothService: CBCentralManagerDelegate {

 func centralManagerDidUpdateState(_ central:

 CBCentralManager) {

 }

 func centralManager(_ central: CBCentralManager,

Chapter 6 Building a Bluetooth LE Hardware Companion App

222

 didDiscover peripheral: CBPeripheral, advertisementData:

 [String: Any], rssi RSSI: NSNumber) {

 }

 func centralManager(_ central: CBCentralManager, didConnect

 peripheral: CBPeripheral) {

 }

}

�Connecting to a Bluetooth LE Peripheral
Now that the CBCentralManager object is initialized correctly, you are ready to establish

a connection to a Bluetooth LE peripheral. To begin, update the connect() method,

as shown in Listing 6-16, to start or stop scanning for what state the app is in when the

Connect button is pressed.

Listing 6-16.  Starting or Stopping Scanning for Bluetooth LE Peripherals

class BluetoothService: NSObject {

 ...

 var centralManager: CBCentralManager?

 var connectedPeripheral: CBPeripheral?

 ...

 func connect() {

 switch connectionStatus {

 case .unknown, .disconnected :

 centralManager?.scanForPeripherals(withServices:

 nil, options: nil)

 connectionStatus = .scanning

 case .connected, .connecting:

 if let connectedPeripheral = connectedPeripheral {

 centralManager?.cancelPeripheralConnection(

 connectedPeripheral)

 connectionStatus = .disconnected

 }

 default:

 centralManager?.stopScan()

Chapter 6 Building a Bluetooth LE Hardware Companion App

223

 connectionStatus = .disconnected

 }

 delegate?.didUpdateConnection(status: connectionStatus)

 }

}

You initiate the scan by calling the scanForPeripherals(withServices:options:)

method on your Central Manager object. You can specify UUIDs to filter by, but in my

experience, this makes scanning for devices harder, if your advertising code is not set

up correctly on the Arduino, so I have omitted it in this example. Stopping scanning is

equally easy, as it simply requires you to call the stopScan() method. To disconnect, you

must call cancelPeripheralConnection() with a saved CBPeripheral object, which you

will have after completing the connection.

When your Central Manager has found Bluetooth LE peripherals, it will reply back with

your implementation of the centralManager(didDiscover:advertisementData:RSSI:)

method. This method returns a CBPeripheral object for each device it finds, including the

device’s name and services from its advertising data. After you have identified the device

you want to connect to, you should save its CBPeripheral object and attempt to connect to

it. In Listing 6-17, I have updated the BluetoothService class’s implementation of the cen

tralManager(didDiscover:advertisementData:RSSI:) method, to save the device that

matches the name “IOTHome” to a property in this class, and then try to connect to it.

Listing 6-17.  Discovering and Saving a Bluetooth LE Peripheral

extension BluetoothService: CBCentralManagerDelegate {

 ...

 func centralManager(_ central: CBCentralManager,

 didDiscover peripheral: CBPeripheral, advertisementData:

 [String: Any], rssi RSSI: NSNumber) {

 if peripheral.name == "IOTDoor" {

 self.connectedPeripheral = peripheral

 self.connectedPeripheral?.delegate = self

 centralManager?.connect(peripheral, options: nil)

 }

 }

 ...

}

Chapter 6 Building a Bluetooth LE Hardware Companion App

224

While it would be ideal to start using the peripheral after finding it, there is still a bit

more effort required to retrieve data from the device. Once the connection is established,

the centralManager(didConnect:) method will fire. Inside this method, you must begin

scanning for the services you want to use on the peripheral (door and battery status).

After you have connected to the IOTHome peripheral, you no longer have to scan for

devices, so you should tell the Central Manager to stop scanning and update the status of

the connection status property for the BluetoothService class.

Similar to the CBCentralManager, the CBPeripheral sends its updates back through

delegate methods. In Listing 6-18, I have updated the BluetoothService class to

include the completed centralManager(didConnect:) method and a stub for the

CBPeripheralDelegate protocol.

Listing 6-18.  Sending Updates After Connecting to a Peripheral

extension BluetoothService: CBCentralManagerDelegate {

 func centralManagerDidUpdateState(_ central:

 CBCentralManager) {

 switch(central.state) {

 case .poweredOn:

 NSLog("It's showtime")

 default:

 NSLog("Device is not ready")

 }

 }

 ...

 func centralManager(_ central: CBCentralManager, didConnect

 peripheral: CBPeripheral) {

 central.stopScan()

 connectedPeripheral?.discoverServices(doorServices)

 self.connectionStatus = .connecting

 delegate?.didUpdateConnection(status: connectionStatus)

 }

}

Chapter 6 Building a Bluetooth LE Hardware Companion App

225

extension BluetoothService: CBPeripheralDelegate {

 func peripheral(_ peripheral: CBPeripheral,

 didDiscoverServices error: Error?) {

 }

 func peripheral(_ peripheral: CBPeripheral,

 didDiscoverCharacteristicsFor service: CBService,

 error: Error?) {

 }

 func peripheral(_ peripheral: CBPeripheral,

 didUpdateValueFor characteristic: CBCharacteristic,

 error: Error?) {

 }

}

After connecting to the device, the CBPeripheral object will respond with

the services it has discovered. Reflecting on the hierarchical nature of Bluetooth

LE communication, after finding the services, you must inquire about the

characteristics they reveal. As shown in Listing 6-19, this is accomplished by calling

discoverCharacteristics() on the CBPeripheral object.

Listing 6-19.  Interrogating Services and Characteristics for a Bluetooth LE

Peripheral

extension BluetoothService: CBPeripheralDelegate {

 func peripheral(_ peripheral: CBPeripheral,

 didDiscoverServices error: Error?) {

 guard let services = peripheral.services

 else { return }

 for service in services {

 peripheral.discoverCharacteristics(

 doorCharacteristics, for: service)

 }

 }

 func peripheral(_ peripheral: CBPeripheral,

 didDiscoverCharacteristicsFor service: CBService, error:

Chapter 6 Building a Bluetooth LE Hardware Companion App

226

 Error?) {

 self.connectionStatus = .connected

 delegate?.didUpdateConnection(status: connectionStatus)

 }

 ...

}

For now, inside the peripheral(didDiscoverCharacteristicsFor:error:)

method, you can set the connection state to connected and notify the BluetoothService

delegate that the connection has been established.

�Monitoring Characteristic Updates
Having discovered what the peripheral is capable of, the last remaining steps are

to indicate that the BluetoothService object should receive updates when the

characteristic values change and to pass these changes along to the BluetoothService

delegate. To register for the updates, you will have to modify the peripheral(didD

iscoverCharacteristicsFor:error:) method. The method returns a CBService

object containing valid references to all of the available services on the device. Use

the characteristics property to extract these values from the service, then use the

setNotifyValue(enabled:For:) method on the CBPeripheral object to indicate

that you want to receive the updates, as shown in Listing 6-20. To limit the number

of messages that are received, use the known UUIDs for the battery and lock

characteristics.

Listing 6-20.  Registering for Characteristic Updates

extension BluetoothService: CBPeripheralDelegate {

 ...

 func peripheral(_ peripheral: CBPeripheral,

 didDiscoverCharacteristicsFor service: CBService,

 error: Error?) {

 guard let characteristics = service.characteristics

 else { return }

 for characteristic in characteristics {

 if characteristic.uuid == doorCharUUID {

 self.connectedPeripheral?.setNotifyValue(true,

Chapter 6 Building a Bluetooth LE Hardware Companion App

227

 for: characteristic)

 }

 if characteristic.uuid == battCharUUID {

 self.connectedPeripheral?.setNotifyValue(true,

 for: characteristic)

 }

 }

 self.connectionStatus = .connected

 delegate?.didUpdateConnection(status:

 connectionStatus)

 }

}

To handle the characteristic updates, implement the peripheral(didUpdateVal

ueFor:error:) method. This method returns a CBCharacterstic object, including

the raw binary data from the characteristic object. Since the updates were transmitted

from the Arduino device as character strings, in this method, you should try to

convert the raw data to strings. The easiest way to do this is with the String class’s

String(data:encoding:) constructor method. Generally, UTF-8 is the safest encoding

to use when parsing plain text English, but you can also try Unicode encoding, if you

plan on working with non-English characters.

Because the IOTHome app should be able to handle door or battery updates

independently of each other, you should pass their updates via separate methods in the

BluetoothServiceDelegate protocol. In Listing 6-21, I have implemented the periphe

ral(didUpdateValueFor:error:) method with this logic. When the updates come in, I

check which characteristic UUID they are originating from, convert the data to a string,

and then call the didReceiveDoorUpdate(value:) method or didReceiveBatteryUpdat

e(value:) method.

Listing 6-21.  Handling Characteristic Updates

extension BluetoothService: CBPeripheralDelegate {

 ...

 func peripheral(_ peripheral: CBPeripheral,

 didUpdateValueFor characteristic: CBCharacteristic,

 error: Error?) {

Chapter 6 Building a Bluetooth LE Hardware Companion App

228

 guard let characteristicData = characteristic.value

 else { return }

 if characteristic.uuid == doorCharUUID,

 let stringValue = String(data: characteristicData,

 encoding: String.Encoding.utf8) {

 delegate?.didReceiveDoorUpdate(value: stringValue)

 }

 if characteristic.uuid == battCharUUID,

 let stringValue = String(data: characteristicData,

 encoding: String.Encoding.utf8) {

 delegate?.didReceiveBatteryUpdate(value:

 stringValue)

 }

 }

}

Finally, to update the user interface when the updates come in, switch

to the DoorViewController class. As shown in Listing 6-22, inside the

didReceiveDoorUpdate(value:) and didReceiveBatteryUpdate(value:) methods,

update the status labels with the new values.

Listing 6-22.  Updating the User Interface After Receiving Characteristic Updates

extension DoorViewController: BluetoothServiceDelegate {

 func didReceiveDoorUpdate(value: String) {

 let statusString = (value == "1") ? "Locked" :

 "Unlocked"

 let dateString = dateFormatter.string(from: Date())

 statusLabel?.text = statusString

 lastUpdatedLabel?.text = "(Last Updated: \(dateString))"

 }

 func didReceiveBatteryUpdate(value: String) {

 batteryLabel?.text = "Battery Level: \(value)%"

 }

}

Chapter 6 Building a Bluetooth LE Hardware Companion App

229

�Monitoring Updates While the App Is in the Background
As a nice finishing touch on the IOTHome app, you can make the app present a

notification on the user’s phone when characteristic updates come in while the app is

backgrounded. This way, even if users do not have the IOTHome app open, they can

still find out if their door was opened or the sensor’s battery level is low. To add this

feature, you must take advantage of two features from iOS’s notification framework,

UserNotifications, requesting notification permission from the user and scheduling a

notification when the Bluetooth characteristic updates come in.

To present the notification permission dialog, you must call the requestAuthori

zation(options:completionHandler:) method on the UNUserNotificationCenter

object, which represents the user’s device. Similar to location services, this is a singleton

object shared by all iOS apps. You can access it by calling the current() method on the

UNUserNotificationCenter class. In Listing 6-23, I have made the call to request the

permission, by adding a viewWillAppear() implementation to the DoorViewController

class. The message for the permission prompt comes from the value you specified in the

project’s Info.plist file for the NSBluetoothPeripheralUsageDescription key-value pair.

Listing 6-23.  Requesting Notification Permission from the Door View Controller

import UIKit

import UserNotifications

class DoorViewController: UIViewController {

 ...

 override func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 let center =

 UNUserNotificationCenter.current()

 center.requestAuthorization(

 options: [.alert, .sound]) { (completed: Bool,

 error: Error?) in

 NSLog("Notification request completed with status:

 \(completed)")

 }

 }

}

Chapter 6 Building a Bluetooth LE Hardware Companion App

230

The viewWillAppear() method is called when the view controller is presented,

either by switching tabs or navigating back to the view controller from another view

controller in a navigation stack. The permission dialog will only appear the first time the

user opens the Door View Controller. It should look like the screenshot in Figure 6-10.

To present the notification, you must create a notification request, using content

information, including a title, message, and sound, and a trigger, such as time or a

location update. For the DoorViewController class, I have enclosed this logic in a

method called scheduledLocalNotification(), which takes strings indicating the

update type and value as its input. The trigger is set to fire half a second after the value is

received, as I want the user to know immediately when his or her door has opened.

Figure 6-10.  Notification permission dialog for the IOTHome app

Chapter 6 Building a Bluetooth LE Hardware Companion App

231

Because you requested Bluetooth central manager permission for the app at the

beginning of this section, you can use that to your advantage to schedule the notification

request. The background permission allows the IOTHome app a couple of seconds

of executions upon every characteristic update. As shown in Listing 6-24, in the

DoorViewController class’s BluetoothService delegate methods, you can add a call to

schedule a local notification if the app is backgrounded. The check for whether the app is

backgrounded is good for user experience, as the user does not have to see notifications

when the app is open. The notifications will continue to be delivered until the Bluetooth

connection is disconnected by the user or a physical limitation (for example, distance or

insufficient power).

Listing 6-24.  Scheduling a Background Notification When Characteristic

Updates Are Received

extension DoorViewController: BluetoothServiceDelegate {

 func didReceiveDoorUpdate(value: String) {

 ...

 let state = UIApplication.shared.applicationState

 if state == .background {

 scheduleLocalNotification(updateType: "Door",

 updateValue: value)

 }

 }

 func didReceiveBatteryUpdate(value: String) {

 ...

 let state = UIApplication.shared.applicationState

 if state == .background {

 �scheduleLocalNotification(updateType:"Battery level",

updateValue: "\(value)%")

 }

 }

 ...

Chapter 6 Building a Bluetooth LE Hardware Companion App

232

 func scheduleLocalNotification(updateType: String,

 updateValue: String) {

 let center = UNUserNotificationCenter.current()

 let content = UNMutableNotificationContent()

 content.title = "IOTHome device update"

 content.body = "\(updateType) is now \(updateValue)"

 content.sound = UNNotificationSound.default()

 let trigger =

 UNTimeIntervalNotificationTrigger(

 timeInterval: 0.5,

 repeats: false)

 let request =

 UNNotificationRequest(identifier:

 "IOTHomeNotification", content: content,

 trigger: trigger)

 center.add(request) { (error: Error?) in

 if let errorObject = error {

 NSLog("Error scheduling notification:

 \(errorObject.localizedDescription)")

 } else {

 NSLog("Notification scheduled successfully")

 }

 }

 }

}

Chapter 6 Building a Bluetooth LE Hardware Companion App

233

�Summary
In this chapter, you learned how to implement both roles of Bluetooth LE: the peripheral

(the device that offers infromation) and the central manager (the device that fetches

information from one or more peripherals). The ESP32-based circuit you started in

Chapter 5 served as the peripheral, powered by the open source ESP32_BLE_Arduino

library, and the IOTHome iOS served as the central manager, using the Core Bluetooth

framework. For both roles, after going through some lengthy setup steps, it became

quite easy to transfer data using Bluetooth LE characteristic updates. To help the user

reduce his/her battery usage, you also configured both devices to send and respond to

updates only when the device experienced a noticeable state change (for example, a 10%

reduction in the door opening or battery level since the last update).

Bluetooth continues to be one of the most popular protocols for communicating

with hardware accessories. My hope is that you will be able to reuse most of what you

learned in this chapter for future updates to the protocol and on other devices you may

choose to build!

Chapter 6 Building a Bluetooth LE Hardware Companion App

235
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_7

CHAPTER 7

Setting Up a Raspberry Pi
and Using It As a HomeKit
Bridge
At this point in your journey through Internet of Things (IoT) app development, you

have learned how to use sensors on iOS devices (GPS, motion) and how to interact

with third-party hardware devices, such as Arduino, using open communication

protocols, including Bluetooth. In this chapter, you will learn about an Apple-specific IoT

technology that lies somewhere in between both of these: HomeKit.

HomeKit was introduced in 2014 with iOS 8, as Apple’s proprietary standard to

enable iOS devices to communicate with certified third-party IoT accessories for the

home, such as smart lightbulbs and air conditioners. The sales pitch was that through

Apple’s hardware certification process, special encryption chip for IoT devices, and

deep integration with iOS, it would be able to deliver the strongest, most secure platform

for IoT in the home. Rather than buying a special hardware device to serve as the

gateway for your devices, you could use an iPad, HomePod, or Apple TV in your home to

serve this purpose. Additionally, you would be able to use Siri to check on the status of

your devices.

Unfortunately, the certification process and hardware chip proved to be too

expensive and too late for many third-party hardware manufacturers, and the platform

never achieved the momentum that was expected of it. While HomeKit has not proven

itself to be the instant commercial status Apple hoped for, more compatible devices

are being released for it every day. And, more important, Apple now allows hobbyists

to create noncertified HomeKit devices for their personal use, through its release of a

noncommercial version of the HomeKit Accessory Protocol (HAP) specification. This

license allows you to create accessories for your personal use, which will appear as

236

“non-certified” when you connect to them through an iOS device. To make things even

better, your personal devices can be built on anything that can implement HAP, from a

Raspberry Pi to a Mac.

On the software side, as a part of iOS, Apple provides a HomeKit framework that allows

you to manage rooms and devices registered in the system’s HomeKit database. Released

at the same time as HealthKit, HomeKit aims to operate in the same manner, by providing

a protected, system-wide database of HomeKit devices that any user-permitted application

can access. However, one major component Apple does not provide is an implementation

of the HAP for use on hardware devices. To fill this niche, in this chapter, you will use an

excellent open source project, HomeBridge (https://github.com/nfarina/homebridge),

which implements most of the HAP specification and a provides a plug-in system that

makes it easy to connect other popular IoT services and accessories to your project.

�Learning Objectives
In this chapter, you will use a Raspberry Pi to build a HomeKit bridge for the door sensor

you created in Chapters 5 and 6 and you will learn how to register it as a valid HomeKit

device in iOS. The Raspberry Pi will connect to the sensor via Bluetooth to read its status

and report it back via the HomeKit Accessory Protocol (HAP). As the name implies, a

HomeKit bridge can connect multiple devices to HomeKit through a single interface. To

demonstrate the bridge functionality of a device, you will also connect a temperature

sensor to the Raspberry Pi and report its status over HAP.

While there is an API that allows you to manage HomeKit devices and rooms within

your app, after the publication of the first edition of this book, I found those features

being adopted less in HomeKit devices, as they mirror functions in Apple’s Home app.

For this edition, I decided to forego those topics in favor of expanding on configuring the

Raspberry Pi, as it is such an involved process.

In deploying the HomeKit bridge, you will learn the following key concepts for iOS

IoT application development:

•	 Setting up a Raspberry Pi

•	 Installing Linux packages, such as Node.js, and their dependencies

•	 Installing and configuring HomeBridge

•	 Registering devices through the Home app

•	 Debugging HomeBridge

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

https://github.com/nfarina/homebridge

237

For this chapter, you will use the Raspberry Pi as your hardware development

platform. Like the Arduino, the Raspberry Pi is a popular open source hardware platform.

However, unlike the Arduino, there are only a few officially supported Raspberry Pi

devices, manufactured by the Raspberry Pi Foundation (www.raspberrypi.org), and a

Raspberry Pi is intended to run Linux and provide desktop computer-like functionality,

whereas an Arduino is intended to power sensors. For this reason, the Raspberry Pi

is called a single-board computer. As a full Linux computer, you can run most Linux

packages. For this chapter, you will take advantage of Node.js to run the HomeBridge

service and its plug-ins. Node.js is a runtime environment that allows you to run JavaScript

programs from the command line and is frequently used today as a replacement for web

servers and startup utilities written in such compiled languages as C.

Depending on your needs, you may eventually want to look into using a BeagleBone

or Asus Tinker Board as a replacement for the Raspberry Pi, but I find the Raspberry Pi’s

setup process and user community to be the friendliest for beginners.

As always, you can find the iOS code for this project under the Chapter 7 folder of

the GitHub page for this book (https://github.com/Apress/program-internet-of-

things-w-swift-for-ios). The configuration scripts for the Raspberry Pi part of the

project are included in the Pi subfolder under the Chapter 7 folder.

�Setting Up the Raspberry Pi HomeKit Bridge
In this chapter, you will use a Raspberry Pi to serve as the HomeKit bridge for the

IOTHome door sensor and a temperature sensor you will connect directly to the

Raspberry Pi. This will allow the user to access both statistics via voice commands in Siri

and the companion app you will build later in the chapter.

While there will be a hardware component to this chapter, much of it will piggyback

off of what you learned in Chapter 5. Unlike the Arduino, you will not have to install a

special IDE to connect to the Raspberry Pi. However, you will have to spend a little bit

more time on the setup, to get HomeBridge working correctly.

�Putting Together the Hardware
For this project, the hardware requirements are a Raspberry Pi capable of running

HomeBridge and a temperature sensor to read the temperature of the room the Pi is

located in. In Table 7-1, I have included the list of parts that I used when putting together

the circuit for this project.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

http://www.raspberrypi.org
https://github.com/Apress/program-internet-of-things-w-swift-for-ios
https://github.com/Apress/program-internet-of-things-w-swift-for-ios

238

To revisit Chapters 5 and 6 for a second, one of the greatest benefits to come out of

the popularity of IoT applications in the last few years is the increased availability to

hobbyists of low-cost sensors. As you will notice in the part list, I selected the DHT22

temperature/humidity sensor module for our project. In one package, it bundles the

integrated circuit for the humidity sensor, its supporting parts (for example, capacitors,

resistors), and provides a simple three-pin interface consisting of a power pin, ground

pin, and data pin. While you can hook up the sensor directly to the Pi’s header pins,

I recommend using a breadboard to make the circuit easier to move around and

reconfigure in the future.

In the part list, I have specified “any modern, wireless-enabled Raspberry Pi.” In

order to run HomeBridge, not only must your host device be able to run a Node.js server,

it also requires Wi-Fi and Bluetooth, to communicate with your HomeKit hub (an iPad,

HomePod, or Apple TV in your home). While the scripts and instructions provided in

this chapter will run on any Raspberry Pi capable of running a recent distribution of the

Raspbian Linux distribution, the Raspberry Pi 3 and Raspberry Pi Zero W were the first

devices to include Bluetooth and Wi-Fi onboard. If you have a Raspberry Pi 2 or Pi Zero,

on which you have already configured USB Bluetooth and Wi-Fi modules, you are more

than welcome to use them here.

On a related note, if you are not familiar with how the Raspberry Pi works, it requires

a microSD card to run its system image. It comes with a small bootloader, but it is only

capable of starting up the image on your microSD card. For the power supply, you can

use any device capable of outputting 5V DC, such as the USB port on a computer, a

portable battery, or a USB wall wart power adapter.

Table 7-1.  List of Parts for the HomeBridge Project

Part Name Quantity Mouser Part #

Raspberry Pi 3 (or newer) 1 RPI3-MODBP-BULK

Solderless breadboard 1 854-BB170-WH

Breadboard jumper wire pack 1 713-110990049

DHT22 temperature sensor 1 485-385

microSD USB reader/writer 1 485-939

16GB (or larger) microSD

memory card

1 467-SDSDQAD-016G

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

239

When collected, your parts should resemble those in the photo in Figure 7-1. I used a

Raspberry Pi 3 for my implementation, as I think it is the easiest to acquire, and its large

size makes it very easy to work with.

Figure 7-1.  Collected parts for the IOTHome project

�Assembling the Circuit

Putting together the circuit for this project is very straightforward. As shown in Figure 7-2,

you primarily have to connect the temperature sensor’s VCC and GND pins to those on

the Pi, then connect the DATA pin to any available general-purpose input/output (GPIO)

pin on the Raspberry Pi. For this project, I chose GPIO21 (Pin 40).

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

240

To make the connections, I used male-to-female header cables. I connected the

female ends to the header on the Pi and the male ends into the breadboard. From there,

I connected the DHT22 temperature sensor directly to the breadboard. I have attached

a photograph of my completed circuit in Figure 7-3. Once again, I used color-coded

header cables and breadboard jumper wires to help me quickly debug the circuit.

Figure 7-2.  Schematic for the IOTHome project

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

241

�Bootstrapping the Raspberry Pi
Now that the helper circuit is completed for the project, you can begin to bootstrap the

Raspberry Pi. Bootstrapping is a term used in Linux and embedded systems to refer to

preparing a system to turn on for the first time (“bringing it up by the bootstraps”).

As I mentioned earlier, the bootloader on the Raspberry Pi is only capable of booting

up whatever is on the microSD card inserted into the device. For this project, you will

use the Raspbian Linux distribution, provided by the Raspberry Pi Foundation, as

the operating system for the Raspberry Pi. If you have ever used Ubuntu on a desktop

Figure 7-3.  Photograph of completed circuit for the IOTHome project

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

242

computer before, you will be very familiar with how Raspbian works, as it shares the

same common relative: Debian Linux. Both distributions share the same package

manager and architecture as Debian, with slight modifications for their intended use

cases.

To install Raspbian, the first step is to download a pre-built image file containing

a pre-built, bootable instance of Raspbian from the Raspberry Pi Foundation’s web

site (www.raspberrypi.org/downloads/raspbian/). As shown in Figure 7-4, from the

Downloads page, select Raspbian, Raspbian Stretch with Desktop, and then Download

ZIP. The major difference between the Desktop and Lite distributions is that the Lite

distribution sacrifices the GNOME Desktop graphical user interface, providing you with

a command-line interface only. If you are comfortable with the command line, you are

welcome to install the Lite version, but I recommend the full Desktop version, because

GNOME makes the Pi easier to configure and reuse for other purposes later.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

http://www.raspberrypi.org/downloads/raspbian/

243
Figure 7-4.  Downloading a Raspbian image from the Raspberry Pi web site

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

244

Once the zip file has completed downloading, you will have to write it to the microSD

card in a way that allows it to be recognized by the bootloader as a valid disk image. Disk

images package the files for an operating system and any documents and configuration

files that the creator feels are useful to consumers of the image. For Linux distributions,

they provide a useful way to share a distribution with end users without forcing them to go

through a lengthy, sensitive installation process. A skilled engineer builds a system he or

she feels is an appropriate starting place for most users and then shares it. However, if the

disk image is not unpacked and installed in the correct way, it will be unusable by the target

computer. The tool I prefer for burning Raspberry Pi images to microSD cards is Etcher

(https://etcher.io). It has an easy-to-understand user interface and high reliability rate.

As shown in Figure 7-5, after installing Etcher, insert the microSD card into the adapter on

your Mac and open Etcher. From its single-screen user interface, select the ZIP file for the

Raspbian image and the drive corresponding to the microSD card, then select Flash! to

begin the image-burning process. If your microSD card is not appearing in Etcher, please

check that both the microSD card and adapter are securely attached to your Mac.

Figure 7-5.  Burning a Raspbian image to a microSD card using Etcher

Etcher will play a sound and present a pop-up to inform you that the disk image has

been written successfully. At this time, it is safe to remove the microSD card from your

Mac and insert it into the slot at the bottom of the Raspberry Pi, as shown in Figure 7-6.

At this time, you should also plug an HDMI-based monitor and USB keyboard/mouse

into the Raspberry Pi.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

https://etcher.io

245

Once all of these preparations are complete, connect your power source to the USB

port marked PWR and wait a minute or two for the GNOME desktop to boot up. When

the desktop is ready, the image on your monitor should resemble Figure 7-7.

Figure 7-6.  Inserting a microSD card into the Raspberry Pi

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

246

As shown in Figure 7-8, find the Wi-Fi icon at the top right of the system tray, then

click it to present the network selection drop-down menu. Select your network, then

enter in the password when prompted.

Figure 7-7.  Screenshot of desktop for freshly installed Raspbian distribution

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

247

For the final configuration step, you must enable the hardware interfaces on the

Pi, using the Raspberry Pi configuration tool. This will allow you to access the I2C, SPI,

and other hardware communication libraries that are preinstalled on Raspbian but

disabled by default for security reasons. As shown in Figure 7-9, to find this tool, click the

raspberry icon at the top-left of the system tray, navigate to Preferences, and then select

Raspberry Pi Configuration. From the application that appears, click the Interfaces tab,

then click the SPI, I2C, and 1-Wire check boxes, to enable them. After you click OK, you

will be asked to restart the Pi to save the settings.

Figure 7-8.  Selecting a WiFi network from the Raspbian desktop

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

248

If you want to use a remote desktop client such as RealVNC or TightVNC to view your

Pi’s desktop without connecting to a monitor, you can enable this in the configuration

tool as well. The next time the Pi restarts, the RealVNC server application will start up

and prompt you to configure the VNC settings for the device.

�Installing HomeBridge
Having completed the hardware setup phase of the project, you can now shift your focus

to installing HomeBridge and its dependencies, the second-to-last step before you can

start using the Raspberry Pi as a HomeKit bridge.

As mentioned at the beginning of the chapter, HomeBridge and its core dependency,

HAP-NodeJS (the library that implements the HomeKit Accessory Protocol), run

as Node.js applications. You must begin to set up this process by installing Node.js.

Although the distribution of Node.js provided by the default package manager (apt-get)

is very stable and fits most average use cases, HomeBridge requires a slightly newer,

more powerful version of Node.js, which you will have to install yourself. To begin this

Figure 7-9.  Enabling hardware interfaces on the Raspberry Pi

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

249

process, navigate to the Node.js distribution web site (http://nodejs.org/dist/) and

select the latest version of Node.js 8 (http://nodejs.org/dist/latest-v8.x/). Under

this directory, you will be presented with several different files that you can download

whose names vary by operating system and processor architecture (for example, x86,

ARMv6). These indicate what the targets the enclosing binaries were compiled for. For

the Raspberry Pi, you should search for the latest Linux/ARMv6L archive. At the time of

writing, the URL for this file is http://nodejs.org/dist/latest-v8.x/node-v8.11.4-

linux-armv6l.tar.gz.

Although you can download the archive via a browser, I recommend using the OS X

Terminal. By default, your Raspberry Pi will advertise its hostname (raspberrypi.local)

over Bonjour. You can connect to it in the Terminal by attempting to log in to SSH with

the pi user.

ssh pi@raspberrypi.local

As shown in Figure 7-10, after connecting to the device, download the file using the

wget command.

wget http://nodejs.org/dist/latest-v8.x/node-v8.11.4-linux-armv6l.tar.gz

Figure 7-10.  Downloading Node.js via the Raspberry Pi terminal

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

http://nodejs.org/dist/
http://nodejs.org/dist/latest-v8.x/
http://nodejs.org/dist/latest-v8.x/node-v8.11.4-linux-armv6l.tar.gz
http://nodejs.org/dist/latest-v8.x/node-v8.11.4-linux-armv6l.tar.gz

250

Note A t the time of this writing, I observed that the Node.js 8 binary for
Raspberry Pi had greater compatibility with HomeBridge and the plug-ins for this
chapter than the Node.js 9 binary. You are welcome to try either one!

After the download is complete, you must unpack the archive using the tar

command. For the file indicated previously, the command I used was

tar -xvf node-v8.11.4-linux-armv6l.tar.gz

After you have unpacked the file, you must copy the Node binaries to the default

location for user-installed software: /usr/local. This will allow HomeBridge and other

Node applications you may write later to use the binaries as if they were installed by the

apt-get package manager. For my version of Node, I used the following command to

copy the files:

sudo cp -R node-v8.11.4-linux-armv6l/*/usr/local/

You can verify that your files were copied correctly by restarting your Raspberry Pi

and attempting to run the Node command that queries the currently installed version:

node -v

The result should print out the version number you manually downloaded.

Before installing HomeBridge, you must install a few other packages it depends

on, specifically, the latest version of C++, the development tools for Python, WiringPi,

AVAHI, PiGPIO, and BCM2835. These will allow HomeBridge to interface with the

GPIO pins and Bluetooth from within Node. You can easily install C++ and the Python

development tools, using the apt-get package manager, as follows:

sudo apt-get install g++

sudo apt-get install libavahi-compat-libdnssd-dev

sudo apt-get install python-dev

sudo apt-get install pigpio python-pigpio

After running these commands, you must enable PiGPIO as a service and restart the

Pi, as shown following:

sudo systemctl enable pigpiod.service

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

251

The BCM2835 package is the C library that allows WiringPi to access the GPIO pins

on the Raspberry Pi and will have to be installed first. Begin by finding the latest version

of the package from www.airspayce.com/mikem/bcm2835/, using the wget command to

download it, and then tar, to unzip, just as you did for Node.

wget http://www.airspayce.com/mikem/bcm2835/bcm2835-\1.56.tar.gz

tar -xvf bcm2835-1.56.tar.gz

Unlike Node, you will have to run BCM2835’s build scripts to install it correctly. Run

the following commands, in order to configure the library for your hardware, verify it,

and then install it:

cd bcm2835-1.56

./configure

make

sudo make check

sudo make install

You can verify that the installation is successful from the absences of a build failure

while running the last make command.

To install WiringPi, you will have to download it from GitHub. You can perform this

option from the command line, using the following git pull command, which makes a

local clone of the project:

git clone git://git.drogon.net/wiringPi

As with BCM2835, you will have to run build scripts to install the package on your

Raspberry Pi. For WiringPi, these commands are

cd wiringPi/

 ./build

To verify that the packages were installed correctly, attempt to run the gpio readall

command to echo the status of all pins on the Raspberry Pi. Your output should contain

a table of pin status, similar to that in the screenshot in Figure 7-11.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

http://www.airspayce.com/mikem/bcm2835/

252

Now, you are finally ready to install HomeBridge! To install HomeBridge, download

it using the Node Package Manager (NPM).

sudo npm install -g --unsafe-perm homebridge

The installation should take several minutes to complete. Because iOS’s Home app

manages a database of HomeKit devices, the easiest way to verify that you created a valid

device is by attempting to register the device after all of the plug-ins you want to use have

been configured. In the next two sections, I will explain the steps required to do this for

reading from a temperature sensor and Bluetooth device (the door sensor you created in

Chapter 6).

Caution T he -g and –unsafe-perm flags ensure that Node packages are
installed globally (for all applications) and without restrictions on who can execute
them. The global setting is required to run HomeBridge; however, you may want
to look at finding alternatives to the unsafe permissions setting, if you are worried
about security threats in your home/office network.

Figure 7-11.  Querying GPIO status using the gpio readall command

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

253

�Configuring HomeBridge to Read Data
from a Temperature Sensor
As mentioned at the beginning of the chapter, one of the great things about

HomeBridge is that it has a very actively maintained, easy-to-use plug-in system. To

read the temperature from the DHT22 temperature/humidity sensor, you can use

the homebridge-dht plug-in. Just as with HomeBridge itself, it is available as an NPM

package. Install the plug-in globally, using the following command:

sudo npm install -g homebridge-dht --unsafe-perm

To help verify that the DHT22 sensor and plug-in are working correctly, I suggest

making the binary for reading the status of the sensor available on the command line,

similar to how you installed Node earlier.

sudo cp /usr/local/lib/node_modules/homebridge-dht/dht22 /usr/local/bin/

dht22

Unlike Node, you must explicitly give the dht22 binary executable permissions to run

it from the command line. You can perform this operation by using the chmod command,

along with the a+x parameter (add executable).

sudo chmod a+x./usr/local/bin/dht22

You can now use the dht22 command to verify that HomeBridge will be able

to access the sensor. To test this functionality, attempt to run the dht22 command,

specifying that the sensor is connected to GPIO pin 21, as shown following:

dht22 -g 21

If your circuit and HomeBridge packages are set up correctly, three numbers should

print out on the terminal containing the reading count, temperature, and humidity. For

my sensor, the result was as follows:

0 28.2 C 41.5 %

Note  When I was debugging my sample for this project, I found that errors on
this step were most often caused by incomplete PiGPIO and WiringPi installations
or the DHT22 sensor not receiving enough power. I found that 5V worked best for
the DHT22, while its lower-spec sibling, the DHT11, worked better with 3.3V.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

254

After verifying that the DHT22 sensor and binary are operating correctly, you can

begin writing the configuration file for HomeBridge. In addition to its plug-in system,

HomeBridge allows you to easily configure the device, using a JSON file. To begin, create

an empty configuration file using the following:

mkdir .homebridge

touch .homebridge/config.json

HomeBridge requires that a configuration file named config.json be in the invisible

.homebridge folder of the user whose account will be employed to run the application,

so please be careful to type this command exactly as written previously.

Next, use your favorite command-line text editor to open the config.json file. Enter

the text in Listing 7-1 into this file as the configuration.

Listing 7-1.  Configuration JSON File for HomeBridge (config.json)

{ "bridge": {

 "name": "IOTHome",

 "username": "CC:22:3D:E3:CD:31",

 "port": 51826,

 "pin": "031-45-154"

 },

"description": "IOTHome HomeBridge",

"platforms": [],

"accessories": [

 { "accessory": "Dht",

 "name": "Indoor Comfort Sensor",

 "name_temperature": "Temperature",

 "name_humidity": "Humidity",

 "gpio": "21",

 "service": "dht22" }

]}

To comment on this file, the bridge dictionary specifies the values that are used

to expose the Raspberry Pi as a valid HomeKit bridge, specifically its device name,

port, PIN, and HomeKit “username.” You may change the values as you wish, but be

careful to maintain the port number and hexadecimal number format of the username.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

255

The accessories dictionary specifies an array of configurations for each accessory

that will be attached to the bridge. The specific key-value pairs have to come from the

documentation for the plug-in you are using. For the HomeBridge DHT sensor, this

documentation can be found at www.npmjs.com/package/homebridge-dht. Of special

interest to the configuration of this project are the gpio and service key-value pairs. As

you may have noted, "gpio": "21" reflects that the sensor is connected to GPIO pin 21;

the "service": "dht22" key-value pair specifies that you are using the DHT22 sensor, as

opposed to other chips in the family, such as the DHT11.

With these steps, the temperature sensor is ready to interface with your Raspberry Pi

and HomeBridge. If do not wish to set up the Bluetooth connection to the door sensor

or startup options for the device, you can skip to the “Connecting to Your New HomeKit

Bridge” section, to start using the sensor right away.

�Configuring HomeBridge to Connect to a Bluetooth LE
Accessory
Another powerful plug-in available to use with HomeBridge is homebridge-bluetooth,

which allows you to connect to a Bluetooth peripheral through HomeKit. The plug-in acts

as a Bluetooth client, such as the IOTHome app from Chapter 6, and in addition to reading

status, can also be used to control a device. This functionality allows you to ask Siri if “the

entrance door sensor is on” and get a response based on data from a sensor you built.

Before installing the plug-in, you will have to resolve a few dependencies. First,

install the node-gyp and noble Node.js modules via npm.

sudo npm install -g --unsafe-perm node-gyp

sudo npm install -g --unsafe-perm noble

Next, following a tip from Noble’s GitHub documentation (https://github.com/

noble/noble), you must enable non-administrator accounts to use the Bluetooth LE

utilities on the Raspberry Pi, as follows:

sudo setcap cap_net_raw+eip $(eval readlink -f `which node`)

For security purposes, it is always a good idea to lock network and hardware access

only to trusted users. However, for prototyping, the extra security can add hurdles, which

make debugging hard. For a HomeKit bridge that is intended to be used for an extended

period, I recommend rolling back this setting after you have become comfortable with

HomeBridge.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

http://www.npmjs.com/package/homebridge-dht
https://github.com/noble/noble
https://github.com/noble/noble

256

Now, you can finally install homebridge-bluetooth using npm.

sudo npm install -g --unsafe-perm homebridge-bluetooth

As with homebridge-dht, in order to use the plug-in as part of your bridge, you will

have to add its configuration information to your HomeBridge configuration file (~/.

homebridge/config.json), following the specification provided by the developers at

www.npmjs.com/package/homebridge-bluetooth. For my implementation, I chose to

follow their switch example, which registers the door sensor as a smart switch. Although

there is a lock example, it is geared toward controlling popular IoT smart locks.

Unfortunately, the IOTDoor project does not meet that specification yet. In Listing 7-2, I

have provided the configuration I used for my door sensor.

Listing 7-2.  Configuration JSON File for Homebridge (config.json), Including

Bluetooth

{ "bridge": {

 "name": "IOTHome",

 "username": "CC:22:3D:E3:CD:31",

 "port": 51826,

 "pin": "031-45-154"

 },

"description": "IOTHome HomeBridge",

"platforms": "platforms": [

 {

 "platform": "Bluetooth",

 "accessories": [

 {

 "name": "IOTDoor",

 "address": "30:AE:A4:28:73:76",

 "services": [

 {

 "name": "Door Sensor",

 "type": "Switch",

 "UUID": " 83b46845-6e9c-4b25-89cf-

 871cc74cc68e",

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

http://www.npmjs.com/package/homebridge-bluetooth

257

 "characteristics": [

 {

 "type": "On",

 "UUID": " 4b61d6b9-2e29-4fdf-a74a-

 7b8bf70ecd9a"

 }

]

 }

]

 }

]

 }

],

"accessories": [

 { "accessory": "Dht",

 "name": "Indoor Comfort Sensor",

 "name_temperature": "Temperature",

 "name_humidity": "Humidity",

 "gpio": "21",

 "service": "dht22" }

]}

There are three aspects of the configuration that you must pay careful attention to.

First, homebridge-bluetooth implements its interface via a platform configuration,

rather than an accessory.

Next, in order to bridge the correct Bluetooth functionality, you must put the exact

service and characteristic UUIDs for the lock status from the Arduino program into the

config.json file. Finally, in order to find the device, you must provide its name and

hardware address, as they are advertised. In Chapter 6’s Arduino setup code, you did

not have to set up a hardware address, as it is generated by the Bluetooth LE module in

the ESP32 microcontroller. However, you can use the scanning utilities on the Raspberry

Pi to find the hardware address. After verifying that your door sensor is not currently

connected to any devices, run the following command:

sudo hcitool lescan

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

258

Your output should contain a list of nearby Bluetooth LE devices that are advertising

in the physical vicinity of your Raspberry Pi, as shown in Figure 7-12.

Figure 7-12.  Results of using the hcitool utility to scan for Bluetooth LE devices

After copying the hexadecimal hardware address for your IOTDoor sensor into

the HomeBridge configuration file, save your result. Your HomeKit bridge is now fully

configured!

�Configuring HomeBridge to Run at Startup (Experimental)

To make your new HomeKit bridge meet user expectations, namely, that it will work

when you plug it into power, you will have to configure the Raspberry Pi to start

HomeBridge on startup. I have marked this section as experimental, since, during

my research, I found it very difficult to find a configuration method that would be

appropriate by Linux administration standards, easy to explain, and stable (i.e., boots

up without errors every time). The solution I provide here is heavily based on the official

HomeBridge GitHub documentation (https://github.com/nfarina/homebridge/

wiki/Running-HomeBridge-on-a-Raspberry-Pi#running-homebridge-on-bootup) and

Tim Leland’s supplementary guide (https://timleland.com/setup-homebridge-to-

start-on-bootup/). In my experiments, these instructions worked best through one or

two debugging sessions. After significant trial-and-error, I noticed much of the stability

began to degrade. At that point, resetting the Raspberry Pi and starting over from scratch

worked best for me.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

https://github.com/nfarina/homebridge/wiki/Running-HomeBridge-on-a-Raspberry-Pi#running-homebridge-on-bootup
https://github.com/nfarina/homebridge/wiki/Running-HomeBridge-on-a-Raspberry-Pi#running-homebridge-on-bootup
https://timleland.com/setup-homebridge-to-start-on-bootup/
https://timleland.com/setup-homebridge-to-start-on-bootup/

259

To begin the setup process, start by creating a new system called homebridge, using

the useradd command:

sudo useradd --system homebridge

For startup scripts, it is a common practice to run them as their own user. This allows

you to separate users by their intended roles and adds security, by preventing jobs from

running with full administrator permissions.

Next, you must specify the startup options for the job. Create a new file called /etc/

default/homebridge using nano or your other favorite text editor.

sudo nano /etc/default/homebridge

For the contents of the configuration file, use the sample from Listing 7-3. The

most important configuration option is HOMEBRIDGE_OPTS, which specifies where the

HomeBridge configuration file is located. For this project, you will copy the configuration

to /var/lib/homebridge, to make it more accessible by the homebridge user.

Listing 7-3.  Startup Options File for HomeBridge

Defaults / Configuration options for \homebridge

The following settings tells homebridge where \to find the config.json

file and where to \persist the data (i.e. pairing and others)

HOMEBRIDGE_OPTS=-U /var/lib/homebridge

If you uncomment the following line, \homebridge will log more

You can display this via systemd's journalctl: \journalctl -f -u

homebridge

DEBUG=*

After saving the startup options file, you must define the service itself. Again, using

your favorite text editor, create a file called /etc/systemd/system/homebridge.service.

sudo nano /etc/systemd/system/homebridge.service

Use the contents of Listing 7-4 as your guide to populating the service definition. In

this file, be careful of the User key, which defines which user account will be employed to

run the service, and the ExecStart key, which defines where HomeBridge is installed.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

260

Listing 7-4.  Startup Service Definition for HomeBridge

[Unit]

Description=Node.js HomeKit Server

After=syslog.target network-online.target

[Service]

Type=simple

User=homebridge

EnvironmentFile=/etc/default/homebridge

Adapt this to your specific setup (could be \/usr/bin/homebridge)

See comments below for more information

ExecStart=/usr/local/bin/homebridge \$HOMEBRIDGE_OPTS

Restart=on-failure

RestartSec=10

KillMode=process

[Install]

WantedBy=multi-user.target

Next, you must copy the local HomeBridge configuration files from your .homebridge

directory to a new directory for the homebridge user. As shown in Listing 7-5, create a

new directory, called, /var/lib/homebridge, copy all of your old files there, and then

make the files executable.

Listing 7-5.  Moving the HomeBridge Configuration Files

sudo mkdir /var/lib/homebridge

sudo cp ~/.homebridge/config.json /var/lib/homebridge/

sudo chmod -R 0777 /var/lib/homebridge

Finally, when the files have been moved over, register the service using the

systemctl command.

sudo systemctl daemon-reload

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

261

Your HomeBridge installation is now ready to start up when your Raspberry Pi is

powered on!

�Connecting to Your New HomeKit Bridge
After the long and arduous process of setting up the Raspberry Pi, HomeBridge, and its

plug-ins and creating the configuration file, you can now finally start HomeBridge and

try to find your new HomeKit bridge in the iOS Home app.

To begin, start HomeBridge on your Raspberry Pi. A normal installation of

HomeBridge is accomplished by running the command homebridge -D & (these

options give you more debugging information and let the app run in the background).

If you completed setting up the startup service, this is accomplished by running the

command sudo systemctl start homebridge. Next, monitor the console output,

to make sure HomeBridge does not report any errors while starting up. For a normal

installation, these messages will appear in the terminal as HomeBridge starts up. For a

startup service installation, you will have to monitor the status through the command

sudo journalctl -au homebridge. When HomeBridge has started successfully, you

should see log messages indicating that the Bluetooth and DHT sensor interfaces were

established successfully, and, more important, a large QR code that you can use to set up

the bridge from the Home app, as shown in Figure 7-13.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

262

Next, open the Home app on your iPhone or iPad. It should start with the Home tab

selected, showing an overview of your currently configured HomeKit Home and devices.

As shown in Figure 7-14, press the Add button (+ sign) at the top right, then select

Add Accessory from the action sheet that appears. This will take you to a screen with a

camera view that allows you to scan in a HomeKit setup QR code. At this time, scan the

QR code that appears in the HomeKit console output.

Figure 7-13.  HomeBridge-generated QR code for HomeKit configuration

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

263

Figure 7-14.  Adding a HomeKit accessory using the Home app

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

264

After the QR code has been recognized by the Home app, you will receive a pop-up

asking you to confirm that you want to add an unofficial HomeKit device. This lets you

know that HomeBridge is successfully advertising your bridge as a valid HomeKit device.

If the Home app will not recognize your QR code, you can use the Don’t Have a Code or

Can’t Scan button on the Add Accessory screen, to manually enter the PIN number from

your HomeBridge configuration file. If your device is correctly set up, successful PIN

entry should find your device and present the same pop-up.

After confirming your selection, an Adding message will appear on the screen for

a few seconds while the bridge is being registered in the HomeKit database. As shown

in Figure 7-15, once registration is complete, you will be asked to assign the room and

display name for each service that is exposed through the bridge. For my configuration,

I assigned the temperature and humidity services to my bedroom and the door sensor

to the entrance. This will allow me to say, “Is the door switch on at the entrance?” or

“What is the temperature in the bedroom?”

Figure 7-15.  Assigning details to a new HomeKit device

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

265

After setup is complete, you will be returned to the Home tab. As shown in Figure 7-16,

it will now include the services from your HomeKit bridge, as well as the latest values for

each. As one final test, say “Hey Siri,” to activate Siri, then ask for the temperature in your

bedroom. Siri should read back the latest value from your Raspberry Pi after a few seconds.

Figure 7-16.  Using the Home app and Siri to confirm that the HomeKit bridge is
operational

�Troubleshooting Configuration Problems

While I was developing this chapter, the most common debugging problem I ran

into was that after changing the HomeBridge configuration, HomeKit would not find

the new services, even after restarting all of my devices. To alleviate this, I found the

quickest solution in two simple tricks: changing the username of the HomeKit bridge and

emptying the persist folder in HomeBridge’s configuration directory (~/.homebridge/

persist or /var/lib/homebridge, depending on your startup method).

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

266

As mentioned at the beginning of the chapter, HomeKit serves as a secure database

of devices, managed by your Apple devices and HomeKit hub. Complementing this,

HomeBridge keeps information on saved devices in its persist folder. Emptying this

folder resets the saved information on your Raspberry Pi. Although you can delete

and re-add devices through the Home app on your iOS devices, you cannot fully wipe

out its database yourself. However, by changing some of the bytes of the username

(for instance, changing the last two digits from 30 to 31), you can make it think you are

connecting to a new device, allowing you to enter the provisioning process again.

�Summary
In this chapter, you learned how to start harnessing the power of the Raspberry Pi single-

board computer to run HomeBridge as a Node.js-powered HomeKit bridge for the door

sensor you built in Chapters 5 and 6, as well as a thermometer sensor. Not only did this

expand the functionalities of the smart functionalities of your IOTHome, it also allowed

you to harness Siri commands for getting the statistics of your home sensors.

The most grueling part of this chapter was bootstrapping the Raspberry Pi,

HomeBridge, and all of their dependencies, but I hope you will be able to use this

chapter again in your projects as a quick setup guide. In later chapters, you will expand

the capabilities of your Raspberry Pi even further, to make it as a web server. Not bad for

a $35 computer!

The instructions in this chapter were optimized for Raspberry Pi but can be modified

slightly to work on a BeagleBone, Mac, or any other Linux-based system that can run

Node.js.

Chapter 7 Setting Up a Raspberry Pi and Using It As a HomeKit Bridge

267
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_8

CHAPTER 8

Building a Web Server
on a Raspberry Pi
Back in the early days of the World Wide Web (the browser-based Internet you know

today), the idea of a web server was transparent to most developers. You would install a

program to host your HTML files (or open a free account on a service such as GeoCities)

and spend most of your time thinking about what size to make your text or where you

could find the best GIFs to put. To most people, a web server was just a place where you

would upload your files.

As web development technologies continued to progress, more people found

themselves needing the ability to control their web hosting themselves, leading to

greater awareness of web server technologies. Instead of relying on your hosting

provider’s guarantees of security or uptime, you could begin to take matters into your

own hands by configuring the server yourself.

Additionally, more advanced applications such as e-commerce and electronic

medical records (EMR) systems began taking off, with their own requirements for user

personalization, database integration, and security. To meet these needs, scripting

languages, such as PHP and Ruby began to rise in popularity, allowing programmers to

create pages that could perform all of the logic of processing data and generating a static

page immediately after a user requested the page from his/her browser. Instead of static

web pages, people were beginning to develop web applications.

In the world of the Internet of Things (IoT), you can take advantage of web

application technology to help you expose data from your IoT devices over HTTP, the

Hypertext Transfer Protocol. Whenever you use a web browser or an app that connects

to a server, it is using HTTP to transfer that data. As you may remember from earlier

chapters, protocols such as Bluetooth or HomeKit are optimized for specific use cases

and sometimes require a massive amount of domain-specific knowledge to be deployed

268

successfully. Web technologies, on the other hand, are a well-known platform with

a strong development community and low hardware requirements (you just need

something that can power a web server).

In this chapter, you will revisit the Raspberry Pi and Node.js development

environment from earlier chapters and expand both to advertise the same data over

HTTP and HTTPS, using the Express module for Node.js. Due to its small binary size,

potential for scaling, and huge developer base, Node has been taking over as a first-class

web application scripting language.

�Learning Objectives
In this chapter, you will learn how to set up a web server on the Raspberry Pi you have

been using throughout this book, expose its sensor data over HTTPS end points, and

connect to the server from the IOTHome app for iOS. You will use Node.js to create the

web application and Swift for the iOS app. While some projects to get Swift running on

Raspberry Pi are starting to gather steam, in today’s environment, Python and Node.

js are the most well-documented and -supported options for building web-based

applications on a Raspberry Pi.

For this chapter, rather than depending on a full web server application, such as

Apache, to listen for HTTPS connections and route them to Node.js, you will learn how

to use the Express module for Node.js, to accomplish the same task. For projects for

which you will be running multiple web applications on the same server, you may want

to look at Apache or NGINX, to better manage your connections. However, the project

in this chapter aims to replicate the use case for a single-purpose IoT device or a single-

purpose web microservice, such as one you would host on Heroku or an Amazon Web

Services Lambda.

In building the Raspberry Pi web server, you will learn the following key concepts for

iOS IoT application development:

•	 Web application development core concepts

•	 Setting up Express to expose web services through Node.js

•	 Reading data from a temperature sensor in a Node.js application

•	 Reading data from Bluetooth sensors within a Node.js application

•	 Providing security with HTTPS

Chapter 8 Building a Web Server on a Raspberry Pi

269

The project in this chapter is heavily based on the Express module for Node.js. If you

would like to learn more about the module or find more support on it, please visit its

official home page at www.expressjs.com.

�Creating a Web Server to Share Data over HTTPS
In this section, I will focus on the process of setting up a web server using Node.js

and Express, as well as how to use Node modules to expose the data generated by the

IOTHome sensors (temperature, humidity, status of a switch) over HTTPS. The projects

in this section assume that Node.js and the temperature sensor from Chapter 7 have

been set up correctly. If you still feel uncomfortable with either topic, or are coming into

this chapter directly, I highly recommend going back to the setup sections of Chapter 7

before progressing with this chapter.

In this section, you will start by implementing a web server that transfers data over

HTTP, then you will learn how to apply an SSL certificate to the server, to make it an HTTPS

server—the new, secure standard for web applications. After the web server is set up

successfully, you will use it to provide the data for the Home screen on the IOTHome app.

�Using Express to Expose Web Services
Unlike the HomeBridge project, where the primary task was installing and configuring

a Node application that was developed by another party, in this chapter, you will

develop your own Node application from scratch. To start developing the project, begin

by deciding on a location for the project. After turning on your Raspberry Pi, open the

terminal and create two new directories under your home directory: sites and iothome.

These directories are the sites or /var/www/ directory that most web hosting Linux

distributions use as the document root (starting point) for web applications, and the

location of the application itself. As shown in Listing 8-1, create the new directories, then

use the cd command to change your working directory to the iothome directory.

Listing 8-1.  Creating a Folder for the Express Project

mkdir ~/sites

mkdir ~/sites/iothome

cd ~/sites/iothome

Chapter 8 Building a Web Server on a Raspberry Pi

http://www.expressjs.com

270

Next, you must use npm to install Express in the directory for the iothome project. In

Chapter 7, you installed the modules for HomeBridge globally, meaning all Node-based

applications on the Raspberry Pi could use them. However, for application development,

I recommend installing modules only in the project you are currently working on. In

multi-application environments, this will prevent side effects on other projects. To install

Express for the IOTHome project, run npm install, without the global flag.

npm install express

To verify the installation, you can write a simple Node application, which echoes

Hello World across HTTP. To begin the development process, create a new JavaScript file,

called app.js, using nano or your favorite text editor.

nano app.js

Unlike iOS or Arduino programming, in which application execution begins from

a very specific method (for example, viewDidLoad for iOS, setup for Arduino), Node

applications begin executing immediately. As Node implements object-oriented

programming (OOP) concepts, you should use them to control the flow of your program

in a predictable manner. To use Express, you must include the module, then instantiate

an object of it. You can continue other operations while Express is running, but all

HTTP requests will have to be handled through the Express object. To create your blank

Express application, implement the code sample in Listing 8-2.

Listing 8-2.  Creating a New Express-Based Node Application

var express = require('express');

var app = express();

A QUICK INTRODUCTION TO HOW EXPRESS WORKS

Express works by listening for HTTP requests on a port, then responding to them, based on the

end point that is specified. End points are defined as functions that are available to consumers

of your API, made up of a route, the path component appended to the server’s address and

the HTTP method that is used to make the request (for example, GET, POST). Throughout

web application development, you will see these two terms used interchangeably. To reduce

confusion, I think the clearest explanation is that end point is primarily used as a term to

describe external (client-facing) interactions with your server, and route is used primarily to

describe the internal logic of your Express application.

Chapter 8 Building a Web Server on a Raspberry Pi

271

For example, if you wanted to get a list of movie titles from a server with the IP address

10.0.1.5, the request would be GET 10.0.1.5/movie/titles. The GET method is

frequently used for reading data. In this example, the route is /movie/titles and GET is the

end point. In Express, the code for this end point would be look like this:

app.get('/movie/titles', function (req, res) { ... }

Creating a record for a new movie, on the other hand, may look something like this: POST

10.0.1.5/movie/new. The POST method is often used to add a new record. In database

programming, the term CRUD is used to describe the four major operations for any type of data:

create, read, update, and delete. Many back-end developers like to use this same model for

naming their routes, and they will append /new, /delete, or /update to a route, to indicate it

is a create, update, or delete operation. In Express, the code for this end point would be

app.post('/movie/now', function (req, res) { ... }

As you can tell, the method called on the app object changed, as well as the string for the

route.

Finally, two of the other most frequently used HTTP methods are PUT and DELETE, which

are used to update and delete records. You will not use them in this chapter, but they may be

helpful to you in your own projects in the future.

By default, when you load a web page in a browser, it will try to make a GET request

to the document root of the server on TCP port 80 (the port reserved for HTTP traffic).

To represent this in Express, use the get() method on your object, to specify the code

that should execute for the root directory. To make Express listen for requests, use the

listen() method on the app object. The implementation for both the route and listener

is shown in Listing 8-3.

Listing 8-3.  Creating a New Express-Based Node Application

var express = require('express');

var app = express();

app.get('/', function (req, res) {

 res.send('Hello World');

});

app.listen(3000);

Chapter 8 Building a Web Server on a Raspberry Pi

272

In this example, I instructed Node to send the text, Hello World, upon receiving a

GET request for the document root. The res object is built into Node and specifies that

you want to pipe output as an HTTP response. In this example, I asked Express to listen

on port 3000 instead of the standard HTTP port 80, because Node considers port 80 a

privileged port. Unless you are logged in to a root or system user account, you are not

able to run applications from this port. Later in this section, you will switch to port 80,

but for initial testing, it is best to use a non-privileged port.

To verify that the Express application is working, you must tell Node to start

executing the new script, then try to make the request from a web browser.

Before starting the server, you must get the IP address for the Raspberry Pi. Inside the

terminal, use the ifconfig command to view the information for your device. As shown

in Figure 8-1, the IP address will appear next to the inet field, under the record for the

wlan0 interface (representing the built-in Wi-Fi interface).

Figure 8-1.  Getting the IP address for a Raspberry Pi

Next, begin execution of the Node application, by calling the node command with

your script’s file name.

node app.js

Chapter 8 Building a Web Server on a Raspberry Pi

273

Finally, open your favorite browser on another computer in your network and type in

the URL for the Raspberry Pi, with the port number (3000) appended to it. Your "Hello

World" string should appear as plain text in the browser, as shown in Figure 8-2.

Figure 8-2.  Verifying the Hello World example in a browser

Congratulations on creating your first Node application! It will keep executing until

you kill the Node process on your Raspberry Pi.

�Reading Values from the DHT Temperature Sensor
Now that you have the hang of adding a Node module and Express route, you can begin

to refine your simple example to mirror the status of the temperature sensor via HTTP. To

begin, enter Ctrl+C into the terminal, to kill Node.js, then install the node-dht-sensor

module using npm.

npm install node-dht-sensor

For my example, I thought it would make sense to use the temperature path

extension to represent the temperature and humidity sensor. As shown in Listing 8-4,

include the node-dht-sensor module in your application and add a route and end point

for GET requests to the temperature path extension.

Listing 8-4.  Defining a New Route for the Temperature Sensor

var express = require('express');

var dht = require('node-dht-sensor');

var app = express();

app.get('/temperature', function (req, res) {

Chapter 8 Building a Web Server on a Raspberry Pi

274

 //Your cool code will go here

});

app.listen(80);

At this point, I recommend making two changes: removing the end point for the

earlier example and changing the port to 80. Many web servers are easily hacked when

debugging end points are left active. Vigilant code maintenance is an easy way to reduce

this risk in your applications. By using port 80, you will also be able to make your server

behave closer to the HTTP specification, which states that HTTP traffic is transmitted on

TCP/IP port 80.

Next, you must use the node-dht-sensor module to retrieve the data from the

sensor. Referring to the documentation for the module available at its GitHub repository

(https://github.com/momenso/node-dht-sensor), you will learn that you can perform

this operation by calling the read() method on your dht object, specifying the sensor type

(22 for DHT22 or 11 for DHT11), the general-purpose input/output (GPIO) pin its data line

is connected to, and a callback method that will execute when the reading is complete.

In my example in Chapter 7, I used GPIO 21 for the DHT22 sensor. In Listing 8-5, I have

expanded the example to include reading the data from the temperature sensor.

Listing 8-5.  Reading DHT22 Data from a Node Application

var express = require('express');

var dht = require('node-dht-sensor');

var app = express();

app.get('/temperature', function (req, res) {

 dht.read(22, 21, function(err, temperature, humidity) {

 res.type('json');

 if (!err) {

 res.json({

 'temperature': temperature.toFixed(1),

 'humidity': humidity.toFixed(1)

 });

Chapter 8 Building a Web Server on a Raspberry Pi

https://github.com/momenso/node-dht-sensor

275

 } else {

 res.status(500).json({error: 'Could not access

 sensor'});

 }

 });

});

app.listen(80);

In this example, you will notice that I used the json() method on the res object,

to send back the temperature data. While plain text was sufficient for the Hello World

example, using JSON (JavaScript Object Notation) is a widely adopted practice

to represent dictionaries and hierarchical data in web application development.

Additionally, most web and mobile frameworks these days provide built-in JSON

validation and encoding/decoding, making it much easier to work with than custom

data types. Following this line of reasoning, you will notice that I also used the status()

method to return the error as a standard HTTP 500 server error. This allows you to use

built-in HTTP error handling.

Next, you must restart the Node application. Kill the existing process, then run the

script again with superuser permission.

sudo node app.js

Tip I f you would like your Node application to automatically restart whenever
you change its source code, I recommend looking into the nodemon tool, available
via npm and GitHub at https://github.com/remy/nodemon. While this tool
can be convenient during the development phase, I recommend disabling it in
production.

To verify that the new route is working, attempt to load it in a web browser, by

appending /temperature to the old URL. You should receive a plain text response

containing the JSON-encoded temperature and humidity, as shown in Figure 8-3.

Chapter 8 Building a Web Server on a Raspberry Pi

https://github.com/remy/nodemon

276

Caution I t takes approximately two seconds for the DHT22 temperature and
humidity sensor to get an accurate reading. Keep this in mind if you are getting
stale data or time-outs when pinging the temperature route.

�Reading Information from Bluetooth Devices
In the last section, you exposed the data from the temperature sensor over HTTP by

reading its value directly from a Node application and then echoing it via Express. In

this section, you will expose the Bluetooth door sensor’s data over HTTP, by making the

Node application act like a Bluetooth central manager, using the Noble module for Node

(https://github.com/noble/noble). You may remember from previous chapters that

one of the riskiest and time-consuming parts of Bluetooth communication is discovering

the device and establishing a connection to receive data. To help with this operation,

in this section, you will add end points for managing the connection state and transmit

data based on the last update (rather than making a new connection each time data is

requested).

To begin, you must add Noble to the project, using the npm package manager.

npm install noble

Figure 8-3.  Verifying the temperature route in a browser

Chapter 8 Building a Web Server on a Raspberry Pi

https://github.com/noble/noble

277

Next, you must modify the Node application to include Noble and the UUIDs for

Bluetooth services and characteristics for the door sensor, as shown in Listing 8-6. Just as

with the apps in previous chapters, you will need these values to help identify the device

and its data notifications.

Listing 8-6.  Adding Noble and Bluetooth UUIDs to the Node Application

var express = require('express');

var dht = require('node-dht-sensor');

var noble = require('noble');

var app = express();

const LOCK_SERVICE_UUID = "4fafc2011fb5459e8fccc5c9c331914b";

const BATT_SERVICE_UUID = "0af2d54c4d334fc79e34823b02c294d5";

const LOCK_CHARACTERISTIC_UUID = "beb5483e36e14688b7f5ea07361b26a8";

const BATT_CHARACTERISTIC_UUID = "134c298f7d6b4f6484968965e0851d03";

...

Remember: These UUIDs were defined in Chapter 6 as unique, random hexadecimal

values that identify the device. Just as with Chapter 6’s Bluetooth app and Chapter 7’s

HomeBridge configuration, you need these values to find and identify the device.

Because the values will not change while the application is executing, you can define

them as constants, using the const keyword.

Just as with connecting to a hardware protocol like Bluetooth or I2C, it is common

for flow-based web server operations, such as creating a new user account, to require

the client developer (for example, mobile app developer, front-end web developer) to

follow a specified flow of API calls to complete the operation. For the IOTHome Node

application, the client developer must POST the /door/connect/ end point before

attempting to request data from the device. Similarly, after they have finished their

session, they must POST to the /door/disconnect/ end point, to close the connection

and allow other applications to use the hardware.

In my implementation, I decided to start the connection process from the Express

end point. In Listing 8-7, I have expanded the Node application to include a /door/

connect/ end point that uses Noble to scan for the door sensor. In this example, I also

saved a reference to the response object from Express, so that I could complete the

HTTP request at the same time the Bluetooth connection was established.

Chapter 8 Building a Web Server on a Raspberry Pi

278

Listing 8-7.  Discovering a Bluetooth Peripheral Using Noble

var response;

...

app.post('/door/connect', function (req, res) {

 console.log("start connect");

 response = res;

 noble.startScanning();

});

...

noble.on('discover', function(peripheral) {

 console.log("discovered");

 �console.log("peripheral name "+peripheral.id+" "+peripheral.address +

" | " + peripheral.advertisement.localName);

 var advertisement = peripheral.advertisement;

 if (PERIPHERAL_NAME == advertisement.localName) {

 noble.stopScanning();

 console.log('peripheral with name ' +

 advertisement.localName + ' found');

 console.log('ready to connect');

 }

});

The arrangement of the connection may seem a bit odd at first. In the Arduino code

for the door sensor, you had to implement completion handlers to progress through the

connection flow for the Bluetooth server. In the iOS app, you had to implement delegate

methods. To receive messages with Noble, you must respond to discover events, which

are triggered by initiating a scan for devices. To implement an efficient Bluetooth LE

connection process, you should scan only for the devices advertising the services you

need. However, at the time of writing, I noticed that the results of the scan API that

specifies service UUIDs were hard to predict, so, instead, I decided to filter discovered

devices by the name specified in their advertisement data.

Chapter 8 Building a Web Server on a Raspberry Pi

279

After you have confirmed that the device is within range, you must try to connect to it.

In Listing 8-8, I have expanded the application to include the connection process. Just as

when you implemented a Bluetooth central manager on iOS, after finding a device, you

must connect to it and save a reference to it, so you can disconnect from it later.

Listing 8-8.  Connecting to a Bluetooth Peripheral Using Noble

...

var savedPeripheral;

...

noble.on('discover', function(peripheral) {

 console.log("discovered");

 var advertisement = peripheral.advertisement;

 if (PERIPHERAL_NAME == advertisement.localName) {

 noble.stopScanning();

 console.log('attempting to connect');

 connect(peripheral);

 }

});

function connect(peripheral) {

 peripheral.connect(function(error) {

 if (error) {

 console.log('error = ' + error);

 response.status(500).json({error: 'Could not

 find sensor'});

 } else {

 console.log('connected');

 response.json({'status': 'connected'});

 savedPeripheral = peripheral;

 }

 });

}

For the final step in the connection process, you must find the characteristics for the

data you want to observe and set up their completion handlers. In Listing 8-9, I call the

discoverAllServicesAndCharacteristics() method, then subscribe to events only for

the characteristics matching the desired UUIDs.

Chapter 8 Building a Web Server on a Raspberry Pi

280

Listing 8-9.  Observing and Responding to Characteristic Updates with Noble

function connect(peripheral) {

 peripheral.connect(function(error) {

 if (error) {

 ...

 } else {

 ...

 discoverServices();

 }

 });

}

function discoverServices() {

 if (savedPeripheral) {

 savedPeripheral.discoverAllServicesAndCharacteristics(

 function(error, services, characteristics) {

 if (error) {

 console.log('error = ' + error);

 }

 console.log('services = ' + services);

 console.log('characteristics = ' + characteristics);

 for (characteristic in characteristics) {

 if (characteristic.uuid ==

 LOCK_CHARACTERISTIC_UUID ||

 characteristic.uuid == BATT_CHARACTERISTIC_UUID) {

 observeCharacteristic(characteristic);

 }

 }

 });

 }

}

function observeCharacteristic(characteristic) {

Chapter 8 Building a Web Server on a Raspberry Pi

281

 //Fires when data comes in

 characteristic.on('data', (data, isNotification) => {

 console.log('data: "' + data + '"');

 lastUpdateTime = date.getTime();

 if (characteristic.uuid == BATT_CHARACTERISTIC_UUID) {

 batteryStatus = data;

 }

 if (characteristic.uuid == LOCK_CHARACTERISTIC_UUID) {

 lockStatus = data;

 }

 });

 //Used to setup subscription

 characteristic.subscribe(error => {

 if (error) {

 console.log('error setting up subscription = ' + error +

 'for uuid:' + characteristic.uuid);

 } else {

 console.log('subscription successful for uuid:' +

 characteristic.uuid);

 }

 });

The subscription process is initiated through the subscribe method, but the data must

be observed through the on method. Because it is impractical to make the user wait until the

first update has been delivered, I save the values to global variables that can be queried later.

Caution  While researching this chapter, I noticed that the Bluetooth utility on
the Raspberry Pi became unable to maintain a connection after several connection
debugging sessions. If you are having issues with the door sensor not reporting a
successful connection via its blue status LED, try restarting the Pi and then trying again.

To expose the data over HTTP, create a /door/status end point. When the end

point is called, echo the saved values from the global variables and wrap them in a JSON

dictionary, as shown in Listing 8-10. To help enforce the connection flow for the API,

return an error if the device connection has not been established yet.

Chapter 8 Building a Web Server on a Raspberry Pi

282

Listing 8-10.  Reading Data from a Bluetooth Peripheral, Using Noble

app.get('/door/status', function (req, res) {

 console.log("start connect");

 if (savedPeripheral) {

 res.json({

 'lockStatus': lockStatus,

 'batteryStatus': batteryStatus,

 'lastUpdateTime': lastUpdateTime

 });

 } else {

 res.status(500).json({error: 'Not connected to a

 sensor. Please re-connect and try again.'});

 }

});

To wrap up the Node application, you must create the /door/disconnect/ end point.

As shown in Listing 8-11, in my implementation, I disconnect from the device when the

end point is called. To be safe, I also stop scanning for the BLE device, just in case this

method is called before the connection has been fully established.

Listing 8-11.  Disconnecting from a Bluetooth Peripheral, Using Noble

app.post('/door/disconnect', function (req, res) {

 noble.stopScanning();

 console.log("stop scan");

 if (savedPeripheral) {

 console.log('disconnected');

 savedPeripheral.disconnect();

 }

 res.json({

 'status': 'disconnected'

 });

});

Before moving on, you may be wondering how to test the POST-based end points. For

this task, I recommend downloading the Postman OS X app from www.getpostman.com/.

As shown in Figure 8-4, to begin your debugging session, simply click the Send button

Chapter 8 Building a Web Server on a Raspberry Pi

http://www.getpostman.com/

283

after configuring your request. The results of your request will appear in the large text

field at the bottom of the window. You can access a list of your past requests (and their

configurations) from the left sidebar of the window.

Figure 8-4.  Using Postman to verify POST requests

�Using HTTPS to Provide Secure HTTP Connections
In a move to increase the privacy of users’ data and reduce phishing (false identity)

attacks on the Internet, starting in 2016, Apple, Google, and other major technology

companies announced that their platforms would be moving toward primarily

supporting servers that implement HTTPS, an extension of HTTP that requires all data

to be encrypted with Transport Layer Security (TLS). TLS is implemented by adding a

Secure Sockets Layer (SSL) certificate to your server, which has been issued by a provider

that is trusted by the major browsers and your platform (for example, iOS).

In Google Chrome, some of the most obvious implications of not using HTTPS are

that your site will show up lower in Google’s search ranking. Additionally, sites with

untrusted TLS certificates will be marked as Not Secure and present users a warning

Chapter 8 Building a Web Server on a Raspberry Pi

284

page when they are loaded in the browser. In iOS, Apple enforces HTTPS by making all

HTTP requests fail inside of an app, unless the developer manually re-enables them.

Additionally, all untrusted HTTPS requests will fail.

To work around these limitations and improve the security of the IOTHome

device, you should extend the Node application to support HTTPS. As with the other

functionality in this project, you can take advantage of Node modules and tools that have

been developed for web apps, to easily add HTTPS to the IOTHome project.

There are three major options for implementing HTTPS in your project.

	 1.	 If you are developing for a production environment, you must

request an SSL certification from a service that is trusted by the

Internet Engineering Task Force (IETF), the organization that

maintains the HTTPS standard. I recommend using Comodo,

Verisign, or a certificate from Amazon Web Services (AWS).

Certificates from these providers have the greatest compatibility,

clear instructions, and support.

	 2.	 If you would like to develop a production-level prototype and

already have a domain, you can use the Let’s Encrypt trust

authority (www.letsencrypt.org) and its accompanying tool,

certbot-auto (https://certbot.eff.org/docs/install.html),

to generate a free, trusted SSL certificate for testing.

	 3.	 For pure prototype purposes, you can generate your own SSL

certificate, using OpenSSL on your Raspberry Pi.

For the purposes of this book, I have chosen option #3. If you would like to use

options #1 or #2, I suggest creating those certificates on the server attached to your

domain name, then copying it over to your Raspberry Pi (granted your SSL provider

allows this capability).

GENERATING AN OPENSSL SELF-SIGNED SSL CERTIFICATE

With OpenSSL, you act as your own trust provider and generate an SSL certificate that meets

the basic encryption requirements of HTTPS. This is referred to as a self-signed certificate.

Because it is not generated by one of the trusted vendors I mentioned above, most browsers

and iOS will initially reject it, until you perform some steps to trust it on the device, which I will

explain after you are done generating the certificate.

Chapter 8 Building a Web Server on a Raspberry Pi

http://www.letsencrypt.org
https://certbot.eff.org/docs/install.html

285

If you have ever created an Apple Developer Program iOS development certificate or Push

Notification certificate, you are already familiar with the process of generating SSL certificates

(although the delivery method is different). In Apple’s model, you create a private key (a unique

hex value that is used as the base for the encryption/decryption of communications), create a

Certificate Signing Request (CSR) file using the Keychain Access tool to serve as a receipt for

your application for a new certificate, and then submit the CSR file to Apple’s web site, which

will refresh with a new SSL certificate you can download once your request has been processed.

With OpenSSL, you can have complete control of this flow, to the point where you can even

import existing private keys or hand CSRs to another service. For this project, though, you

will act as your own Certificate Authority (CA), so you do not require a CA; you simply have

to create a private key and a certificate. To do this in one command in OpenSSL, input the

following command:

openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout express.

key -out express.crt

The preceding command specifies that you want to create a private key based on RSA 2048-

bit encryption and a certificate based on that key, which is good for 365 days. As with your

iPhone developer certificate, make sure that you save the private key and do not share it with

others. Losing the key will result in being unable to use the certificate. Sharing the key will

allow others to break your encryption.

Now that you have a valid SSL certificate, you can begin using it in your Node

application. To begin, add the https and fs (filesystem) modules to your project,

as shown in Listing 8-12. These modules are provided with the standard Node.js

distribution and do not require any additional installation steps.

Listing 8-12.  Adding the https and fs Modules to the Node Project

var express = require('express');

var dht = require('node-dht-sensor');

var fs = require('fs');

var https = require('https');

var app = express();

app.get('/temperature', function (req, res) {

 ...

});

Chapter 8 Building a Web Server on a Raspberry Pi

286

Earlier in the chapter, app.listen(80) was used to instruct Express to listen for HTTP

traffic on port 80. To use HTTPS in place of HTTP, you must disable this line and, instead,

instruct an https object to listen for traffic. To initialize the https object, you must

provide it with the paths to the SSL certificate and its private key on the Raspberry Pi.

If you used Let’s Encrypt to generate these, they will be under the folder that was output

by the certbot-auto tool. If you generated the SSL certificates with your own provider,

you will have to save the files to your Raspberry Pi, either by downloading them via the

Chromium browser on the Pi itself or configuring another tool, such as avahi-daemon, to

help make the Raspberry Pi discoverable by your Mac over Bonjour.

Once you have verified the location of the SSL certificate and private key, create

a dictionary to store the file paths, and initialize a new https object, as shown in

Listing 8-13.

Listing 8-13.  Configuring the Node Project to Use HTTPS Instead of HTTP

var express = require('express');

var dht = require('node-dht-sensor');

var fs = require('fs');

var https = require('https');

var app = express();

var sslOptions = {

 key: fs.readFileSync('express.key'),

 cert: fs.readFileSync('express.crt)

}

https.createServer(sslOptions, app);

https.listen(4443);

//app.listen(80);

app.get('/temperature', function (req, res) {

 ...

});

As with the earlier HTTP example, for the first HTTPS test, I suggest listening for

traffic on port 4443 instead of the protected port for HTTPS, 443. To test that your

SSL configuration was successful, kill your old Node process and reload the file for

the application. If there is a problem loading the SSL certificate, you will see an error

Chapter 8 Building a Web Server on a Raspberry Pi

287

message in the terminal at this point, similar to the example in Figure 8-5. As they are

well-adopted technologies, you can find a great deal of data to help you resolve OpenSSL

and Node HTTPS issues, based on these error messages.

Figure 8-5.  Sample error message for failed Node HTTPS configuration

Next, change the URL for the /temperature end point to include port number 4443

and https as the protocol. Attempt to load the URL in your browser. If you are using

Google Chrome, you will receive a security warning about the page being insecure,

similar to the one I received in Figure 8-6.

Chapter 8 Building a Web Server on a Raspberry Pi

288

To resolve this error, click the ADVANCED link at the bottom of the page, and then

click the Proceed to… link, as shown in Figure 8-7.

Figure 8-6.  Google Chrome warning for pages with untrusted SSL certificates

Chapter 8 Building a Web Server on a Raspberry Pi

289

Figure 8-7.  Enabling trust for a page in Google Chrome

Chapter 8 Building a Web Server on a Raspberry Pi

290

After verifying that you want to load the page, you should now be able to see the

temperature JSON data in the browser, just like you did when it was exposed through

normal HTTP.

At this point, it is safe to change your application to listen on port 443. Just remember

that you will have to run Node as a superuser, and that you will have to trust the :443 end

point in Chrome. For HTTPS requests to port 443, you do not have to append the port

number in iOS or your web browser.

To enable Postman to connect to self-signed certificates, click the Wrench icon at the

top-right of the screen, as shown in Figure 8-8, then set SSL certificate verification to OFF.

Figure 8-8.  Trusting self-signed certificates in Postman

�Configuring the Server to Start Up with the Raspberry Pi
As the final step in setting up the web server, you should make the Node application

start with the Raspberry Pi on boot. This will prevent you from having to manually start

and run the Node application every time you want to access its data through HTTPS. If

you implemented this step for the HomeBridge project from the last chapter, this setup

Chapter 8 Building a Web Server on a Raspberry Pi

291

process should be extremely familiar to you, as you will create a service using the

systemd tool, to manage this operation. Unlike HomeBridge, however, the IOTHome

web server is much easier to set up as a service.

To begin, you must create a service definition. First, create a file named iothome.

service in your home directory using your favorite text editor. Within this file, you will

have to specify

•	 The name of the service

•	 The working directory for the script that will be run as a service

•	 The location of the script

•	 The user permissions for the script

•	 The failure behavior for the script

In Listing 8-14, I have provided the service definition file for my implementation of

the project. To mimic the development environment, note that the user is set to root,

and the working direction is set as the sites/iothome folder for the pi user.

Listing 8-14.  Service Definition for the IOTHome Node Application

[Service]

WorkingDirectory=/home/pi/sites/iothome

ExecStart=node app.js

Restart=always

StandardOutput=syslog

StandardError=syslog

SyslogIdentifier=iothome

User=root

Group=root

[Install]

WantedBy=multi-user.target

Next, you will have to copy the definition file to the default directory for systemd and

enable read and execute permissions on the file.

sudo cp ~/iothome.service \ /etc/systemd/system/iothome.service

sudo chmod u+rwx /etc/systemd/system/iothome.service

Chapter 8 Building a Web Server on a Raspberry Pi

292

As with the HomeBridge service, you must register the service with system.

sudo systemctl enable iothome

To start the service, call the systemctl tool again, this time with the start command.

sudo systemctl enable iothome

Your script is now set up to restart with the Raspberry Pi! To confirm that the

operation was successful, restart your Raspberry Pi and try to call the /temperature

end point from your browser. To view error messages, call the systemctl utility with the

status command.

sudo systemctl status iothome

From here on out, if you have to modify your service definition or would like to

modify the script itself, stop the service before performing your changes, then restart it

once you are done.

�Connecting to Your Server from an iOS App
At this point, you are able to access all of the data from the IOTHome system, using

the web server on the Raspberry Pi. You also learned many different tools to debug the

connection, including Google Chrome, the command line, and Postman. However, this

is an iOS book, so it is only natural to learn how to apply these skills to iOS apps.

In this section, you will expand the IOTHome app from previous chapters to add

a screen that allows users to access the sensors in the system via HTTP instead of

Bluetooth. While the UI code for Apple platforms are mostly single-use, the networking

code can be reused among all platforms. In Chapter 9, you will reuse the networking

code from this chapter to power an Apple TV–based dashboard for the IOTHome system.

�Setting Up the User Interface
For this project, the user interface plays a supporting role to the networking code. As

such, I do not want to focus too much on creating a new user interface for the Home

Manager screen (the one intended to show data for the entire system). As opposed to the

Door Manager, it should show information from the temperature system and connect to

the web server instead of Bluetooth to retrieve data. To accomplish this, you will subclass

Chapter 8 Building a Web Server on a Raspberry Pi

293

the DoorViewController class (the backbone for the Door Manager screen), add the new

properties for displaying temperature, and override the connect() method to initiate a

call to the HTTPS web server, instead of a Bluetooth device.

For the user interface, I have provided the updated wireframes in Figure 8-9. I used

the same basic layout as the Door Manager screen, except I added the new labels for the

temperature and humidity data above the door sensor information. I also changed the

description text for the Update button.

Figure 8-9.  Updated wireframes for the IOTHome app

To start implementing the project, make a clone of the IOTHome app from Chapter 6.

You can copy your project files or a fresh copy from the GitHub project for this book

(https://github.com/Apress/program-internet-of-things-w-swift-for-ios).

Chapter 8 Building a Web Server on a Raspberry Pi

https://github.com/Apress/program-internet-of-things-w-swift-for-ios

294

In Table 8-1, I have provided the property names and constraints for the user

interface elements. If you need a refresher on applying constraints, I recommend

reviewing Chapters 1 and 6.

Table 8-1.  Styling for Home View Controller User Interface Elements

Element Name Text Style Height Top
Margin

Bottom
Margin

Left
Margin

Right
Margin

Navigation bar Prefers large text — — — — —

“Temperature” title label Title 2 24 40 — 30 20

“Temperature” value label Title 2 24 40 — 20 ≥30

“Humidity” title label Title 2 24 8 — 30 20

“Humidity” value label Title 2 24 8 — 20 ≥30

“Door” title label Title 2 24 8 — 30 20

“Door” value label Title 2 24 8 — 20 ≥30

“Battery Level” title label Title 2 24 8 — 30 20

“Battery Level” value label Title 2 24 8 — 20 ≥30

“Last Updated” label Body 25 8 — 20 20

“Press to Connect” label Body 25 — 20 20 20

“Connect” button Title 1 60 20 30 20 20

Your final Interface Builder storyboard file (Main.storyboard) should be similar to

my example in Figure 8-10.

Chapter 8 Building a Web Server on a Raspberry Pi

295

From the previous implementation in Chapter 6, the owner for the Home Manager

screen was set to the HomeViewController class. As shown in Listing 8-15, update the

HomeViewController.swift file to use the DoorViewController class as its parent.

Additionally, add the properties for the new labels and create an empty connect()

method, with the override keyword, to indicate you will be overriding a method from

the parent class.

Figure 8-10.  Updated storyboard for the IOTHome app

Chapter 8 Building a Web Server on a Raspberry Pi

296

Listing 8-15.  Updated HomeViewController Class, Including User Interface

Scaffolding

import UIKit

class HomeViewController: DoorViewController {

 @IBOutlet var temperatureLabel: UILabel?

 @IBOutlet var humidityLabel: UILabel?

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the

 // view, typically from a nib.

 }

 @IBAction override func connect() {

 //Put network init code here

 }

}

For the final step, in the user interface setup process, connect all of the outlets

for the labels and Update button handler to the view controller via Interface Builder.

Your Connection Inspection output for the class should resemble my implementation

in Figure 8-11. If you need a refresher on making the connections, please review

Chapters 1 and 6.

Chapter 8 Building a Web Server on a Raspberry Pi

297

�Making and Responding to HTTPS Requests
Now that the user interface is ready for the Home View Controller, you can begin working

on the networking code for the project. In Chapter 6, you created a BluetoothService

class to streamline Bluetooth connections in the Door View Controller. For this project,

you will use a similar pattern, by creating a NetworkManager class to manage network

connections in the app. Unlike the Bluetooth Service, the Network Manager will have

to be accessed by the Home Manager and AppDelegate class for the app, and the state

will have to be the same, regardless of who is calling it. For the sake of simplicity, in this

project, I will implement this behavior via a singleton (a lazy-loaded, global object). I

have provided my initial implementation of the class in Listing 8-16.

Figure 8-11.  Updated storyboard connections for the Home View Controller

Chapter 8 Building a Web Server on a Raspberry Pi

298

Listing 8-16.  Initial implementation of Network Manager as a Singleton

import Foundation

class NetworkManager: NSObject {

 static let shared = NetworkManager(urlString:

 "https://raspberrypi.local")

 let baseUrl: URL

 init(urlString: String) {

 guard let baseUrl = URL(string: urlString) else {

 fatalError("Invalid URL string")

 }

 self.baseUrl = baseUrl

 }

}

Singletons are a contentious subject in the Apple developer community, owing to

their nature of being shared globally, but for this chapter, a singleton is a convenient

choice, because there are no side effects, and I want to re-create Apple’s approach

to accessing hardware APIs (using a single object throughout iOS to manage one

resource, for example, GPS, camera). If you are interested in alternatives to singletons, I

recommend researching dependency injection. Dependency injection is not a first-class

design pattern from Apple, so you should exercise some caution in picking a library or

implementation that suits your application.

Singletons are implemented in Swift by adding a static property to an object,

which returns an initialized instance of that class. If the object was initialized before,

the existing object will be returned; otherwise, a new object will be initialized. This is

referred to as lazy-loading. For my initializer, all I needed to do was initialize the class

with the base URL for the network requests. For the base URL, use the Bonjour name

of the device, as I did in my example. As of this writing, Raspbian ships with Bonjour

enabled by default. Bonjour allows Apple devices to find devices on a network by their

domain name, instead of an IP address.

For the network implementation, start with the simplest end point first

(temperature). To query the temperature, all you have to do is make a GET request to the

/temperature end point. In iOS, this operation is accomplished using the URLSession

class. Just like the Network Manager, this object is a singleton. The URLSession class

Chapter 8 Building a Web Server on a Raspberry Pi

299

exposes network operations in three main categories: data tasks, upload tasks, and

download tasks. As the names suggest, upload and download tasks are intended for

long-running file uploads or downloads. For short-running operations, such as web

server API calls, data task is the most appropriate operation to use. Because all of the API

responses from the Raspberry Pi return JSON data, you can wrap the network calls in a

single method. In Listing 8-17, I have created the base method for these calls: request

(endpoint:httpMethod:completion:). As does its parameters, it takes the end point

extension and string representing the method types, and it returns a JSON dictionary

containing the response from the server (or an error).

Listing 8-17.  Network Manager Method for Making HTTP Requests

class NetworkManager: NSObject {

 func request(endpoint: String, httpMethod: String,

 completion: @escaping (_ jsonDict: [String: Any]) ->

 Void) {

 guard let url = URL(string: endpoint, relativeTo:

 baseUrl) else {

 return completion(["error": "Invalid URL"])

 }

 var urlRequest = URLRequest(url: url)

 urlRequest.httpMethod = httpMethod

 let session = URLSession.default

 let task = session.dataTask(with: urlRequest) { (data:

 Data?, url: URLResponse?, error: Error?) in

 if error == nil {

 do {

 guard let jsonData = data else {

 return completion(["error": "Invalid

 input data"])

 }

 guard let result = try

 JSONSerialization.jsonObject(with: jsonData,

Chapter 8 Building a Web Server on a Raspberry Pi

300

 options: []) as? [String : Any] else {

 return completion(["error": "Invalid

 JSON data"]) }

 completion(result)

 } catch let error {

 return completion(["error":

 error.localizedDescription])

 }

 } else {

 guard let errorObject = error else { return

 completion(["error": "Invalid error

 object"]) }

 return completion(["error":

 errorObject.localizedDescription])

 }

 }

 task.resume()

 }

}

The basic flow of the method is to create a URL request object using the end point

and HTTP method string, then create a completion handler for the data task, and

execute the task using the resume() method. You may notice a significant amount of

error handling in this method. Although the JSONSerializer and URLSession classes

abstract a lot of logic for you, they are prone to failure from incorrect configuration.

Adding detailed error handling will make it easier for you to find which step failed later.

Because the method returns its result through a completion handler, you can pass along

the error object, instead of the result from the server.

In Listing 8-18, I use this method to get the temperature, by calling from the Home

View Controller’s connect() method, via a new Network Manager method called

getTemperature(completion:). By using completion handler–based logic, you can

quickly pass the result object through the entire flow, without having to reprocess it at

every step.

Chapter 8 Building a Web Server on a Raspberry Pi

301

Listing 8-18.  Using the Network Manager to Get the Temperature from the

Server

class NetworkManager: NSObject {

 ...

 func getTemperature(completion: @escaping (_ jsonDict:

 [String: Any]) -> Void) {

 request(endpoint: "temperature", httpMethod: "GET") {

 (resultDict: [String: Any]) in

 completion(resultDict)

 }

 }

}

class HomeViewController: DoorViewController {

 ...

 @IBAction override func connect() {

 NetworkManager.shared.getTemperature { [weak self]

 (resultDict: [String: Any]) in

 if let error = resultDict["error"] as? String {

 self?.displayError(errorString: error)

 } else {

 DispatchQueue.main.async {

 if let temperature =

 resultDict["temperature"] as? String {

 self?.temperatureLabel?.text = "\(temperature) C"

 }

 if let humidity = resultDict["humidity"]

 as? String {

 self?.humidityLabel?.text = "\(humidity)%"

 }

 }

 }

 }

 }

Chapter 8 Building a Web Server on a Raspberry Pi

302

 func displayError(errorString: String) {

 let alertView = UIAlertController(title: "Error",

 message: errorString, preferredStyle: .alert)

 let alertAction = UIAlertAction(title: "OK", style:

 .default, handler: nil)

 alertView.addAction(alertAction)

 DispatchQueue.main.async { [weak self] in

 self?.present(alertView, animated: true,

 completion: nil)

 }

 }

}

Caution  When you must access a class’s properties from within a completion
handler, always perform the operation through a weak reference. Accessing self
directly creates what is referred to as a retain cycle: a memory leak resulting from
strong references to a class never being completely released.

Next, run the app and press the Update button, to attempt the network request. The

request should fail with an SSL similar to my result in Figure 8-12. This is owing to the

Raspberry Pi using a self-signed certificate, just like the issues you faced with Postman

and Google Chrome.

Chapter 8 Building a Web Server on a Raspberry Pi

303

As mentioned earlier in the chapter, Apple wants to enforce verified SSL certificates

as the default setting for network operations in iOS apps, to help ensure the safety of

users’ data. To enable self-signed certificates for the Raspberry Pi, you can add a whitelist

entry, or exception, for the server in the IOTHome app’s Info.plist file. Find the file in

your project explorer, then secondary-click (long-press or right-click) it, to select Open

As ➤ Source File. When the text editing window for the file appears, append the snippet

in Listing 8-19, to enable self-signed certificates for the Raspberry Pi’s domain only.

Figure 8-12.  Error message for self-signed certificates

Chapter 8 Building a Web Server on a Raspberry Pi

304

Listing 8-19.  Info.plist Entry for Enabling Self-Signed SSL

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/

DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>CFBundleDevelopmentRegion</key>

 <string>$(DEVELOPMENT_LANGUAGE)</string>

 ...

 <key>NSAppTransportSecurity</key>

 <dict>

 <key>NSExceptionDomains</key>

 <dict>

 <key>raspberrypi.local</key>

 <dict>

 <key>NSExceptionAllowsInsecureHTTPLoads</key>

 <true/>

 <key>NSIncludesSubdomains</key>

 <true/>

 </dict>

 </dict>

 </dict>

</dict>

</plist>

For the final change to enable self-signed certificates, you must override the

URLSessionDelegate protocol method for HTTPS authentication challenges. In Listing 8-20,

I have implemented this by creating a new URLSession object, which takes a delegate, in the

request() method. Within the authentication method, I whitelist the Raspberry Pi’s domain

only. After this change, when you try to run the app again, your network requests should

now complete successfully.

Chapter 8 Building a Web Server on a Raspberry Pi

305

Listing 8-20.  Enabling Self-Signed SSL Certificates Through

URLSessionDelegate

class NetworkManager: NSObject, URLSessionDelegate {

 func request(endpoint: String, httpMethod:

 String, completion: @escaping (_ jsonDict:

 [String: Any]) -> Void) {

 ...

 var urlRequest = URLRequest(url: url)

 urlRequest.httpMethod = httpMethod

 let session: URLSession = URLSession(configuration:

 URLSessionConfiguration.default, delegate: self,

 delegateQueue: OperationQueue.main)

 let task = session.dataTask(with: urlRequest)

 { (data: Data?, url: URLResponse?, error:

 Error?) in

 ...

 }

 task.resume()

 }

 ...

 func urlSession(_ session: URLSession, didReceive

 �challenge: URLAuthenticationChallenge, completionHandler: @escaping

(URLSession.AuthChallengeDisposition, URLCredential?) -> Void) {

 let method = challenge.protectionSpace.

 authenticationMethod

 let host = challenge.protectionSpace.host

 NSLog("Received challenge for \(host)")

 switch (method, host) {

 case (NSURLAuthenticationMethodServerTrust,

 "raspberrypi.local"):

 let trust = challenge.protectionSpace.serverTrust!

 let credential = URLCredential(trust: trust)

 completionHandler(.useCredential, credential)

Chapter 8 Building a Web Server on a Raspberry Pi

306

 default:

 completionHandler(.performDefaultHandling, nil)

 }

 }

}

To read the door status for the IOTHome system, you must call the /door/connect

end point and then the /door/status end point. In Listing 8-21, I implemented this

behavior by nesting the call for the /door/status end point within the completion

handler for the /door/connect end point. Just as with the temperature reading, this

network call should be initiated when you press the Update button in the app.

Listing 8-21.  Getting the Status of the Door Sensor Through the Network

Manager

class NetworkManager: NSObject, URLSessionDelegate {

 ...

 func getDoorStatus(completion: @escaping (_ jsonDict:

 [String: Any]) -> Void) {

 connectDoor { [weak self] (result: [String: Any]) in

 if (result["error"] as? String) != nil {

 return completion(result)

 } else {

 self?.request(endpoint: "door/status",

 httpMethod: "GET") { (resultDict: [String:

 Any]) in

 completion(resultDict)

 }

 }

 }

 }

 func connectDoor(completion: @escaping (_ jsonDict:

 [String: Any]) -> Void) {

 request(endpoint: "door/connect", httpMethod: "POST") {

 (resultDict: [String: Any]) in

Chapter 8 Building a Web Server on a Raspberry Pi

307

 completion(resultDict)

 }

 }

}

class HomeViewController: DoorViewController {

...

@IBAction override func connect() {

 ...

 NetworkManager.shared.getDoorStatus{ [weak self]

 (resultDict: [String: Any]) in

 if let error = resultDict["error"] as? String {

 self?.displayError(errorString: error)

 } else {

 DispatchQueue.main.async {

 if let doorStatus =

 resultDict["doorStatus"] as? String {

 self?.statusLabel?.text =

 "\(doorStatus)"

 }

 if let batteryStatus =

 resultDict["batteryStatus"] as? String {

 self?.batteryLabel?.text =

 "\(batteryStatus)"

 }

 if let lastUpdate =

 resultDict["lastUpdate"] as? String {

 self?.lastUpdatedLabel?.text =

 "\(lastUpdate)"

 }

 }

 }

 }

 }

}

Chapter 8 Building a Web Server on a Raspberry Pi

308

Finally, to implement the final API calls for the app, you should call the /door/

disconnect end point when the app is backgrounded or when the Home screen is

navigated away from. This will allow other devices to connect to the door sensor when

the app is inactive. As shown in Listing 8-22, you can implement this by creating a

disconnectDoor() method in the NetworkManager and calling it from the Home

View Controller’s viewWillDisappear() method, as well as the App Delegate’s

applicationWillResignActive() method.

Listing 8-22.  Automatically Disconnecting from the Door Sensor

class NetworkManager: NSObject, URLSessionDelegate {

 ...

 func disconnectDoor(completion: @escaping (_ jsonDict:

 [String: Any]) -> Void) {

 request(endpoint: "door/disconnect", httpMethod:

 "POST") { (resultDict: [String: Any]) in

 completion(resultDict)

 }

 }

}

class AppDelegate: UIResponder, UIApplicationDelegate {

 ...

 func applicationWillResignActive(_ application:

 UIApplication) {

 NetworkManager.shared.disconnectDoor { (resultDict:

 [String: Any]) in

 NSLog("Disconnect result:

 \(resultDict.description)")

 }

 }

 }

 class HomeViewController: DoorViewController {

 ...

 override func viewWillDisappear(_ animated: Bool) {

 super.viewWillAppear(animated)

 NetworkManager.shared.disconnectDoor { (resultDict:

Chapter 8 Building a Web Server on a Raspberry Pi

309

 [String: Any]) in

 NSLog("Disconnect result:

 \(resultDict.description)")

 }

 }

 }

�Summary
In this chapter, you were able to build a classic IoT device by expanding the Raspberry

Pi from earlier chapters to act as a web server and expose its data via HTTPS end points.

During this process, you also learned how HTTP requests work, how Express and Noble

can offload the hard work of implementing the HTTP and Bluetooth stacks for you, and

how to connect to the end points using an iOS app. In a similar manner to setting up

HomeKit, many of these tasks were not as much iOS- or Raspberry Pi–specific as they

were implementations of established Linux and web application development practices.

Before single-board computers such as the Raspberry Pi achieved commercial

success, many proprietary system-on-a-chip solutions were providing this same core

functionality, GPIO and a web server, with a much higher price tag and learning curve.

Thanks to the streamlining of technologies such as these, the IoT continues to expand,

but as you will learn later in the book, you should also remember to add HTTPS or other

security measures, to help make it a safe IoT.

Chapter 8 Building a Web Server on a Raspberry Pi

Building Apps Using
Apple’s Advanced Internet
of Things Technologies

PART 3

313
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_9

CHAPTER 9

Using tvOS to Build
an Apple TV
Dashboard App
Although the Apple TV was introduced in 2007, its adoption rate was slow for several

years, and it was famously described as “a hobby” by Steve Jobs. At that time, its main

purpose was to serve as a set-top box for media purchased on iTunes. In 2012, a lower-

priced, iOS-inspired Apple TV 2 came out and took off immediately. Instead of being

limited to iTunes content, users could suddenly watch content from Netflix and popular

TV channels via apps that were packaged with system updates. This led many people to

suspect that the device was, in fact, based on a fork of iOS, and the hope was that Apple

would one day offer its software development kit to all developers.

In 2015, these predictions came true when Apple announced the Apple TV 4, the

public release of the software development kit for its operating system (now called tvOS)

and an App Store for the device. As many people speculated, tvOS is based on iOS, and

developers can write apps for it using Swift and close forks of frameworks from iOS,

including Cocoa Touch and Core Location. As of this writing, the notable exceptions are

MapKit and WebKit—meaning you cannot embed web pages or maps directly into your

native tvOS apps.

With this in mind, for this chapter, you will bridge the two worlds of tvOS and

the Internet of Things (IoT) by taking what you know about iOS and using it to build

an Apple TV dashboard for the IOTHome hardware. To make the user experience

compelling, you will include data from both the IOTHome web server and the

OpenWeatherMap.org weather API, allowing you to show climate inside and outside a

user’s home.

314

Note  Although you can use the Apple TV simulator and any Linux-based device
to develop the project in this chapter, the code samples and explanations are
optimized for an Apple TV 4 and Raspberry Pi 3 or newer versions.

�Learning Objectives
In this chapter, you will learn how to build an Apple TV dashboard app by adding an

Apple TV target to the IOTHome project, creating tvOS-resources for the target, and

writing code to make the tvOS app render its user interface and make network requests

on its own. In creating the tvOS dashboard app, you will learn the following key concepts

for iOS IoT application development:

•	 Adding a tvOS target to an existing iOS app

•	 Creating a user interface for a tvOS project

•	 Making HTTP requests within a tvOS app

•	 Requesting user location from a tvOS app

•	 Connecting to the OpenWeatherMap.org public weather API

•	 Running a tvOS app on an Apple TV

One of Apple’s great accomplishments with tvOS was the large extent to which it

preserved iOS development tools and practices for the platform. You will find yourself

forgetting what platform you are writing code for, compared to watchOS, in which

many APIs are absent, or macOS, in which there is little overlap in workflows or shared

frameworks. As you work through this chapter, I will highlight these similarities and how

you can apply them to tvOS. As an added bonus, although you will be writing new code

for the user interface, you will be able to reuse the network code from Chapter 8 with

almost no changes.

In this chapter, I assume you are familiar with the IOTHome sensors (Chapters 5–7)

and the web server (Chapter 8). If you are unfamiliar with either of these, I highly

recommend reviewing them before continuing with this chapter. As with previous

chapters, you can find the completed project for this chapter on the GitHub repository

for this book (https://github.com/Apress/program-internet-of-things-w-swift-

for-ios), under the Chapter 9 folder.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

https://github.com/Apress/program-internet-of-things-w-swift-for-ios
https://github.com/Apress/program-internet-of-things-w-swift-for-ios

315

�Setting Up the tvOS Target
If you have ever downloaded any games or weather apps for iOS, and happen to also

own an Apple TV, you may have noticed some of these apps magically appearing on your

Apple TV home screen. You can re-create this experience for your users and increase

adoption of your tvOS experience by adding your tvOS app as a new target to your

IOTHome iOS app. To get started, make a copy of the IOTHome app from Chapter 8, or

download a fresh copy from the GitHub repository for the book. Next, open the project in

Xcode and then select New ➤ Target from the File menu, as shown in Figure 9-1.

Figure 9-1.  Adding a tvOS target to an existing iOS project

In the Template Picker window that appears after clicking the menu item, select tvOS

and then Single View App, as shown in Figure 9-2.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

316

When asked to name the product, call it “IOTHomeTV.” Your organization identifier

should be the same as that you used for the previous iterations of the applications

(reverse domain notation for your name or web site domain). Your project should now

contain a new scheme and new folders for the IOTHomeTV target, as shown in Figure 9-3.

Figure 9-2.  Selecting the Single View App tvOS template

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

317

Next, you must copy over the network whitelist from the iOS project, in order to

connect to the self-signed HTTPS end points. Open the Info.plist file for the IOTHome

iOS app (in the IOTHome folder) and secondary-click (right-click) the key named App

Transport Security Settings. Select Copy to copy the contents of the key-value pair. Next,

open the Info.plist file for the IOTHomeTV tvOS app (in the IOTHomeTV folder), and

from the secondary-click (right-click) menu, select Paste, to paste the key-value pair.

Your resulting Info.plist file should look similar to my result in Figure 9-4.

Figure 9-3.  IOTHome project hierarchy, including the new tvOS scheme and files

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

318

For the final project setup step, you have to make the NetworkManager class from

the iOS target available to the tvOS target. One of the benefits of using the same

project to manage both targets is that you can accomplish this task by using the same

source file in both projects. As shown in Figure 9-5, to enable this capability, click the

NetworkManager.swift file in the Project Navigator, then select the check box next to

IOTHomeTV.

Figure 9-4.  Info.plist file for the IOTHomeTV target, including the network
whitelist

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

319

To verify that the source file was added successfully and is compatible with tvOS,

select the IOTHomeTV scheme and Apple TV 4K target device from the drop-down

menu next to the Run button at the top of Xcode. You should be able to compile the

target successfully with the new file included.

�Creating the User Interface
Now that the new target for the tvOS is set up and compiles, you can begin building

the user interface for the dashboard application. A dashboard is widely expected to be

displayed for an extended period and should be easy to read. To achieve these goals,

in Figure 9-6, I provide a wireframe for a tile-based user interface that displays the

door status and inside temperature and humidity data from the IOTHome sensors, a

three-day weather forecast, and the current outdoor temperature. The weather data

is provided by querying OpenWeatherMap.org, employing the user’s current location.

You will import the icons from the FontAwesome.swift (https://github.com/thii/

FontAwesome.swift) open source library.

Figure 9-5.  Sharing a source code between multiple targets in a project

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

https://github.com/thii/FontAwesome.swift
https://github.com/thii/FontAwesome.swift

320

One of the most convenient aspects of tvOS is that Apple allows you to reuse a

significant majority of the development tools and practices you are familiar with from

iOS development to help you build your apps. For the IOTHomeTV app, you can quickly

build the user interface using Interface Builder and simple UIView, UIImage, and UILabel

objects. To get started, open the Main.storyboard file for the IOTHomeTV target. The

initial display of the empty storyboard should resemble the screenshot in Figure 9-7.

Figure 9-6.  Wireframe for IOTHomeTV dashboard

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

321

In the same manner as an iOS app, you can compose your user interface by dragging

and dropping items from the Object Library at the bottom right of Interface Builder onto

the storyboard. To further control the placement of elements, you can also use Auto

Layout in the same manner as you would an iOS app. Using Table 9-1 as a guide, lay out

the user interface. The labels and graphics should be placed over the tiles. Do not worry

about the rounded borders on the views, as you will implement those programmatically

later in this section.

Figure 9-7.  Blank storyboard for an Apple TV app

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

322

Table 9-1.  Styling for Main View Controller User Interface Elements

Element Name Text Style Align Relative to Top
Margin

Bottom
Margin

Left
Margin

Right
Margin

“Three Day Forecast”

background view

— View 8 60 8 8

“Bottom Row”

background views

— View 60 40 60 60

“Tip” label Title 3 View 40 20 8 8

“Title” labels Title 2 Parent (center X) 30 — — —

“Icon” image views — Parent (center X, Y) — — — —

“Detail” text labels Headline “Icon” image views

(center X)

20 — — —

As of this writing, there is only one aspect ratio supported by tvOS, so you can choose

to skip setting the Auto Layout constraints for this project, if you would like to.

For the final step of setting up the user interface, you must link the storyboard

to your source. In Listing 9-1, I have expanded the ViewController class for the

IOTHomeTV project to include Interface Builder–accessible properties for all of the user

interface elements.

Listing 9-1.  View Controller Definition, Including User Interface Properties

class ViewController: UIViewController {

 @IBOutlet weak var forecastView: UIView?

 @IBOutlet weak var indoorView: UIView?

 @IBOutlet weak var outdoorView: UIView?

 @IBOutlet weak var lockView: UIView?

 @IBOutlet weak var firstDayLabel: UILabel?

 @IBOutlet weak var secondDayLabel: UILabel?

 @IBOutlet weak var thirdDayLabel: UILabel?

 @IBOutlet weak var indoorTempLabel: UILabel?

 @IBOutlet weak var indoorHumidityLabel: UILabel?

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

323

 @IBOutlet weak var outdoorTempLabel: UILabel?

 @IBOutlet weak var outdoorHumidityLabel: UILabel?

 @IBOutlet weak var tipLabel: UILabel?

 @IBOutlet weak var lockImageView: UIImageView?

 @IBOutlet weak var firstDayImageView: UIImageView?

 @IBOutlet weak var secondDayImageView: UIImageView?

 @IBOutlet weak var thirdDayImageView: UIImageView?

 override func viewDidLoad() {

 super.viewDidLoad()

 }

}

After modifying the source file, link the properties to the storyboard, using the

Connection Inspector in Xcode. In the same manner as in previous examples, you can

review Chapter 1 for a refresher course on using Interface Builder. After making the

connections, your completed storyboard should resemble my implementation in Figure 9-8.

Figure 9-8.  Completed storyboard for the IOTHomeTV app

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

324

�Programmatically Styling Elements to Match
the tvOS Design Language
Having laid out the user interface, you may have noticed it is a bit…plain. By adding soft

shadows, rounded corners, and a blur effect to the backgrounds of the tiles, you can

make a user interface that more closely matches what users are familiar with from the

Apple TV home screen. These are changes you must make using code, but luckily, they

are not very complicated to implement.

You can begin by adding the blur effect to the view. To achieve this, you can use the

UIVisualEffectView class, which allows you to apply complicated visual effects, pre-

built by Apple, to any UIView. To apply a modern iOS blur effect, use a UIBlurEffect

object. In Listing 9-2, I applied the visual effect to the tiles by creating a helper method

called applyEffects().

Listing 9-2.  Adding a Blur Effect to a View

class ViewController: UIViewController {

 ...

 override func viewDidLoad() {

 super.viewDidLoad()

 applyEffects(to: [forecastView, indoorView,

 outdoorView, lockView])

 }

 func applyEffects(to views: [UIView?]) {

 for view in views {

 addBlurEffect(to: view)

 }

 }

 func addBlurEffect(to targetView: UIView?) {

 guard let targetView = targetView else { return }

 view.backgroundColor = UIColor.clear

 let blurEffect = UIBlurEffect(style: .regular)

 let blurView = UIVisualEffectView(effect:

 blurEffect)

 blurView.frame = view.bounds

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

325

 targetView.addSubview(blurView)

 targetView.sendSubview(toBack: blurView)

 }

}

Although you must add the visual effect as a sub-view, it does not have to block the

content. By calling the sendSubview(toBack:) method, you can blur the effect to the

back of the tile without affecting the previous layout of the view from the storyboard.

The logic for applying the effects is called from the viewDidLoad() method for the

view controller, as that method is executed after the view has been laid out from the

storyboard and the view controller is ready to use.

Adding the corner radius is a more straightforward process. To apply a corner radius,

provide a numerical value to apply to the CALayer for the view (the object that represents

how the view is drawn) and specify that you want to clip the area under the rounded

corners. In Listing 9-3, I have expanded the applyEffects() method to include the

corner radius effect.

Listing 9-3.  Adding a Rounded Corner to a View

class ViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 applyEffects(to: [forecastView, indoorView,

 outdoorView, lockView], cornerRadius: 20)

 }

 func applyEffects(to views: [UIView?],

 cornerRadius: CGFloat) {

 for view in views {

 addBlurEffect(to: view)

 addRoundedCorners(to: view, cornerRadius:

 cornerRadius)

 }

 }

 func addRoundedCorners(to targetView: UIView?,

 cornerRadius: CGFloat) {

 guard let targetView = targetView else { return }

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

326

 targetView.layer.cornerRadius = cornerRadius

 targetView.layer.masksToBounds = true

 }

}

For the shadow, you need to combine concepts from both of these effects. A shadow

by itself is created by applying a shadow color, blur radius, and shadow position to a

CALayer. This serves to replicate soft or hard light in real life. Unfortunately, the required

masking to enable the rounded corners would clip the shadows, if applied to the same

view. You can work around this by creating another view with the same position,

applying the shadow effect to this new view and placing it underneath the content view.

In Listing 9-4, I have expanded the view controller to implement these steps and add a

shadow effect to the tiles.

Listing 9-4.  Adding a Shadow Under a View with Rounded Corners

class ViewController: UIViewController {

 ...

 func applyEffects(to views: [UIView?],

 cornerRadius: CGFloat) {

 for view in views {

 addBlurEffect(to: view)

 addRoundedCorners(to: view,

 cornerRadius: cornerRadius)

 addShadow(to: view, cornerRadius: cornerRadius)

 }

 }

 func addShadow(to targetView: UIView?, cornerRadius:

 CGFloat) {

 guard let targetView = targetView else { return }

 let shadowView = UIView(frame: targetView.frame)

 shadowView.layer.cornerRadius = cornerRadius

 shadowView.layer.shadowOffset = CGSize.zero

 shadowView.layer.shadowOpacity = 0.2

 shadowView.layer.shadowRadius = 10.0

 shadowView.layer.shadowColor = UIColor.black.cgColor

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

327

 let shadowPath = UIBezierPath(roundedRect:

 shadowView.bounds, cornerRadius: cornerRadius)

 shadowView.layer.shadowPath = shadowPath.cgPath

 view.addSubview(shadowView)

 view.bringSubview(toFront: targetView)

 }

}

Note  The frame property of a UIView includes its x and y positions. The
bounds property sets these to (0,0). When adding a sub-view to a view, try to use
bounds. When copying or moving a view, try to use frame.

After applying both visual effects and running the application in the Apple TV

simulator, your output should resemble the screenshot in Figure 9-9.

Figure 9-9.  Stylized user interface for the IOTHomeTV app

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

328

�Using Font Awesome for Font-Based Graphics
For the final piece of the user interface puzzle, you must add graphics to the application.

Instead of importing graphics files directly, for this section, I would like to introduce

a very popular font-based alternative, Font Awesome, and its Swift implementation,

FontAwesome.swift. Font Awesome is a font file that provides a massive collection of

icons. It is a popular choice in web development for helping reduce page size and the

amount of work you have to hire a graphic designer for. On iOS, it provides the same

benefits, in addition to allowing you to remove the burden of managing and scaling

images yourself. The implementation you will use in this section, FontAwesome.swift,

allows you to create UIImage objects based on the font, making its use exactly the same

as if you were using graphics from an Assets Catalog or other source.

To get started, download or clone the repository for FontAwesome.swift from its

GitHub page: https://github.com/thii/FontAwesome.swift. Next, copy all of the files

in the archive’s FontAwesome folder to your project, except for the Info.plist file. You

can perform this operation by using the Add Files to IOTHome option in the File menu.

As shown in Figure 9-10, when the file section pop-up window appears, select IOTHome

and IOTHomeTV as the targets to include the files in both the iOS and tvOS apps. Make

sure you also select Copy Items If Needed, to copy the files to add a copy of the files to

the project.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

https://github.com/thii/FontAwesome.swift

329

After the files for FontAwesome.swift have been added to your project, select all of

them, then secondary-click (right-click), to present the context menu. Select New Group

from Selection, to place all of the files in a single folder in your project. Your Xcode

Project Navigator should now resemble my example in Figure 9-11.

Figure 9-10.  Importing the files for FontAwesome.swift into the IOTHome
project

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

330

Finally, to use the library, you must create UIImage objects based on icons available

in the font. Rather than pure Unicode Hex codes alone, Font Awesome provides

names for each icon. To discover what icons are available, and their names, I like

to use the official search tool for the font, available at: https://fontawesome.com/

icons?d=gallery&m=free. To start the project off, use lock for the lock graphic and sun

for the sunny weather graphic.

To create the graphic, you can use FontAwesome.swift’s extension for the UIImage

class, UIImage.fontAwesome(name:style:textColor:size:). As the name suggests,

you have to call the API using the icon’s name, display style, a tint color, and the size. In

Listing 9-5, I have added these calls to the ViewController class.

Figure 9-11.  Project Navigator after adding FontAwesome.swift to the project

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

https://fontawesome.com/icons?d=gallery&m=free
https://fontawesome.com/icons?d=gallery&m=free

331

Listing 9-5.  Adding FontAwesome–Based Images to Image Views

class ViewController: UIViewController {

 ...

 override func viewDidLoad() {

 super.viewDidLoad()

 applyEffects(to: [forecastView, indoorView,

 outdoorView, lockView], cornerRadius: 20)

 addFontAwesomeImage(to: lockImageView, name: .lock)

 addFontAwesomeImage(to: firstDayImageView, name: .sun)

 addFontAwesomeImage(to: secondDayImageView, name:

 .sun)

 addFontAwesomeImage(to: thirdDayImageView, name: .sun)

 }

 func addFontAwesomeImage(to imageView: UIImageView?,

 name: FontAwesome) {

 guard let imageView = imageView else { return }

 imageView.image = UIImage.fontAwesomeIcon(name: name,

 style: .solid,

 textColor: UIColor.black,

 size: imageView.bounds.size)

 }

}

After adding the image views, running the application in the Apple TV simulator

should provide output resembling that in the screenshot in Figure 9-12.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

332

�Adding Data Sources to the tvOS App
Now that the user interface for the IOTHomeTV app is ready, you can begin integrating

its data sources and populating it with real data from the IOTHome sensors you built

in Chapters 5–7 and OpenWeatherMap.org. Although you can connect directly to

Bluetooth devices from an Apple TV, for this system, it is more efficient and reliable to

take advantage of the heavy lifting on the web server. In addition to being able to use a

consistent interface, removing the need to add additional clients will free up the sensors

to accept more connections.

At the beginning of the chapter, you were able to verify that the network client code

from Chapter 8 compiles without issue on tvOS. To integrate the client, you simply have

to call it from the IOTHomeTV app. In Listing 9-6, I began this integration by using

the NetworkManager class to request the indoor climate data from the sensor on the

Raspberry Pi.

Figure 9-12.  IOTHomeTV with Font Awesome images

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

333

Listing 9-6.  Fetching Temperature Data from the IOTHome Web Server in the

tvOS App

class ViewController: UIViewController {

 ...

 override func viewDidLoad() {

 super.viewDidLoad()

 applyEffects(to: [forecastView, indoorView,

 outdoorView, lockView], cornerRadius: 20)

 ...

 fetchNetworkData()

 }

 ...

 func fetchNetworkData() {

 NetworkManager.shared.getTemperature { [weak self]

 (resultDict: [String: Any]) in

 if let error = resultDict["error"] as? String {

 self?.tipLabel?.text = "Error: \(error)"

 } else {

 DispatchQueue.main.async {

 if let temperature =

 resultDict["temperature"] as? String {

 self?.indoorTempLabel?.text =

 "\(temperature) C"

 }

 if let humidity = resultDict["humidity"]

 as? String {

 self?.indoorHumidityLabel?.text =

 "Humidity \(humidity)%"

 }

 }

 }

 }

 }

}

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

334

Looking back at Chapter 8, you will remember that the Network Manager is

responsible for managing the address of the server, using URLSession to make the

network connection, and validating the JSON response. When a network request

is complete, the manager executes the completion handler specified by the user,

whose return parameter is a JSON dictionary containing an error key-value pair or

the response from the target end point. Inside the completion handler, I used the

temperature and humidity key-value pairs to update the text for the Indoor Temperature

and Indoor Humidity labels. The network request is triggered from the viewDidLoad()

method, so that the app can update the data when it is launched.

In Listing 9-7, I have expanded the fetchNetworkData() method further, to include

the status from the door sensor. Instead of updating a label, in that sample, I updated the

image for the door status.

Listing 9-7.  Fetching Door Sensor Data from the IOTHome Web Server in the

tvOS App

class ViewController: UIViewController {

 ...

 func fetchNetworkData() {

 NetworkManager.shared.getTemperature { [weak

 self] (resultDict: [String: Any]) in

 ...

 }

 NetworkManager.shared.getDoorStatus{ [weak self]

 (resultDict: [String: Any]) in

 if let error = resultDict["error"] as? String {

 self?.tipLabel?.text = "Error: \(error)"

 } else {

 DispatchQueue.main.async { [weak self] in

 if let doorStatus =

 resultDict["doorStatus"] as? String {

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

335

 if doorStatus == "0" {

 self?.addFontAwesomeImage(to:

 self?.lockImageView, name:

 .lockOpen)

 } else {

 self?.addFontAwesomeImage(to:

 self?.lockImageView, name: .lock)

 }

 }

 }

 }

 }

 }

}

�Requesting User Location
At the beginning of the chapter, I described how I thought it would be useful to display

a three-day forecast and current weather conditions in the IOTHomeTV dashboard.

Although users are often aware of the conditions inside their home, having data on the

weather outside allows them to better prepare for when they must leave. In order to

request location-based forecasts, you must request the user’s current location, just as in

Chapter 2, when you used location tracking to build a workout app.

As with the project in Chapter 2, before you can request a user’s location, you must

set a description for the tvOS location permission request dialog. As shown in Figure 9-13,

open the Info.plist file for the IOTHomeTV target, then add the Privacy – Location When

in Use key-value pair. For my description string, I used the text: “IOTHomeTV would like to

use your location to show you weather information for your area.”

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

336

Next, you must add the permission request after the app launches. Just as on

iOS, user location on tvOS is managed through a CLLocationManager object. As

shown in Listing 9-8, initialize an object, to manage this request; implement the

viewWillAppear() method, to make the request; and the locationManager(didChangeA

uthorization status:) delegate method to handle the result.

Listing 9-8.  Requesting User Location Permission from the IOTHomeTV App

import UIKit

import CoreLocation

class ViewController: UIViewController {

 ...

 let locationManager = CLLocationManager()

 ...

Figure 9-13.  Adding a user location permission description to the
IOTHomeTV app

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

337

 override func viewDidLoad() {

 super.viewDidLoad()

 locationManager.delegate = self

 ...

 }

 override func viewDidAppear(_ animated: Bool) {

 super.viewDidAppear(animated)

 if CLLocationManager.authorizationStatus() ==

 .authorizedWhenInUse {

 locationManager.requestLocation()

 } else {

 locationManager.requestWhenInUseAuthorization()

 }

 }

 ...

}

extension ViewController : CLLocationManagerDelegate {

 func locationManager(_ manager: CLLocationManager,

 didChangeAuthorization status: CLAuthorizationStatus) {

 NSLog("Authorization state: \(status)")

 }

 func locationManager(_ manager: CLLocationManager,

 didFailWithError error: Error) {

 let errorString = "Location error:

 \(error.localizedDescription)"

 tipLabel?.text = errorString

 NSLog(errorString)

 }

}

To verify the result, run the app in the Apple TV 4K simulator. You should receive a

full-screen alert asking you for your user location permission, as shown in Figure 9-14.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

338

Finally, to request the current user location, modify the locationManager(didChan

geAuthorization status:) delegate method to request the current user location, after

you have verified that permission has been granted. As shown in Listing 9-9, add another

delegate method, locationManager(didUpdateLocations locations:), to handle the

location update, and then save the result in a property you can use later.

Listing 9-9.  Requesting Current User Location from the IOTHomeTV App

import UIKit

import CoreLocation

class ViewController: UIViewController {

 ...

 let locationManager = CLLocationManager()

 var lastSavedLocation : CLLocation?

 ...

 override func viewDidAppear(_ animated: Bool) {

 ...

 }

}

Figure 9-14.  User Location permission pop-up for the IOTHomeTV app

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

339

extension ViewController : CLLocationManagerDelegate {

 func locationManager(_ manager:

 CLLocationManager, didChangeAuthorization

 status: CLAuthorizationStatus) {

 NSLog("Authorization state: \(status)")

 if status == .authorizedWhenInUse {

 locationManager.requestLocation()

 }

 }

 func locationManager(_ manager: CLLocationManager

 didUpdateLocations locations: [CLLocation]) {

 lastSavedLocation = locations.first

 }

}

�Connecting to the OpenWeatherMap API
With the user interface, network functionality, and user location in place, you are almost

ready to start using OpenWeatherMap’s public weather database, to add outside weather

information to the IOTHomeTV app. For the final piece in the setup puzzle, you must

request an API key from OpenWeatherMap.org. Many services that allow others to

use their data through a web API often require an API key to authenticate requests or

enforce data access, according to membership level. For example, OpenWeatherMap.org

allows up to 60 requests a minute on a free account, but anything above this requires a

paying membership. As shown in Figure 9-15, to request a free account, navigate to www.

openweathermap.org in your browser, then click the Sign Up link.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

http://www.openweathermap.org
http://www.openweathermap.org

340

After you have completed creating your account, you will be redirected to the API

keys page, pictured in Figure 9-16, which lists all of the OpenWeatherMap API keys

available to you. Make a note of the Default key and do not share it with others, or you

may risk losing access to your account.

Figure 9-15.  Creating an account on OpenWeatherMap.org

Figure 9-16.  OpenWeatherMap.org API keys page

Now that you have an OpenWeatherMap API key and the user’s current location, you

can begin using the service to fetch weather data. To populate the weather fields on the

app, you will use two end points from OpenWeatherMap: /weather (for current weather

conditions) and /forecast (for the three-day forecast). Looking at the documentation

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

341

for the /weather end point (https://openweathermap.org/current), you will notice

that you can use URL parameters to call the end point with geographic coordinates. URL

parameters are a way of passing values to an end point by appending them to the end of

the URL. For the coordinate (35.730534, 139.705001), you would use the URL:

https://api.openweathermap.org/data/2.5/weather?lat=35.730534&lon=139.70500

1&units=metric&appid=YOUR_APP_ID

In Listing 9-10, I have included the JSON response for this API call. For the Outdoor

Conditions label, you need only the temperature and humidity fields, which you can

extract from the temp and humidity key-value pairs inside the main dictionary.

Listing 9-10.  Sample JSON Response for the OpenWeatherMap Current

Conditions End Point

{

 "coord": {

 "lon": 139.71,

 "lat": 35.73

 },

 "weather": [{

 "id": 803,

 "main": "Clouds",

 "description": "broken clouds",

 "icon": "04n"

 }],

 "base": "stations",

 "main": {

 "temp": 27.64,

 "pressure": 1009,

 "humidity": 74,

 "temp_min": 26,

 "temp_max": 29

 },

 ...

}

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

https://openweathermap.org/current

342

The NetworkManager class so far has always used end points relative to the domain

for the IOTHome web server. To support OpenWeatherMap, you will have to expand the

Network Manager to use multiple base URLs and append parameters to the end of the

URL. One special requirement of URL parameters is that the first parameter must be

prefixed with ?, and every consecutive parameter must be prefixed with &. Rather than

writing the logic for this yourself, you can take advantage of the URLComponents class to

build a properly formatted URL. In Listing 9-11, I have expanded the request(endpoint:

httpMethod:completion:) method in the Network Manager to accept a base URL

and URL parameter dictionary as input parameters. Additionally, I have modified the

remaining methods with the new parameters and added a formattedURL(baseUrl:

endpoint:parameters:) method to build the formatted URL.

Listing 9-11.  Expanding the NetworkManager Class to Support Multiple Base

URLs and URL Parameters

class NetworkManager: NSObject, URLSessionDelegate {

 let deviceBaseUrl = "https://raspberrypi.local"

 let opmBaseUrl = "https://api.openweathermap.org/data/2.5"

 let opmApiKey = "YOUR_API_KEY"

 static let shared = NetworkManager()

 func formattedUrl(baseUrl: String, endpoint: String,

 parameters: [String: String]?) -> URL? {

 guard var urlComponents = URLComponents(string:

 "\(baseUrl)/\(endpoint)") else {

 return nil

 }

 urlComponents.queryItems = parameters?.compactMap({

 pair in

 URLQueryItem(name: pair.key, value: pair.value)

 })

 return urlComponents.url?.absoluteURL

 }

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

343

 func request(baseUrl: String, endpoint: String,

 httpMethod: String, parameters: [String: String]? =

 nil, completion: @escaping (_ jsonDict: [String: Any]) -> Void) {

 guard let url = self.formattedUrl(baseUrl: baseUrl,

 endpoint: endpoint, parameters: parameters) else {

 return completion(["error": "Invalid URL"])

 }

 var urlRequest = URLRequest(url: url)

 urlRequest.httpMethod = httpMethod

 ...

 }

 ...

 func getTemperature(completion: @escaping (_

 jsonDict: [String: Any]) -> Void) {

 request(baseUrl: deviceBaseUrl, endpoint:

 "temperature", httpMethod: "GET") {

 (resultDict: [String: Any]) in

 completion(resultDict)

 }

 }

 func getDoorStatus(completion: @escaping (_

 jsonDict: [String: Any]) -> Void) {

 connectDoor { [weak self] (result: [String:

 Any]) in

 if (result["error"] as? String) != nil {

 return completion(result)

 } else {

 guard let deviceBaseUrl =

 self?.deviceBaseUrl else {

 return completion(["error":

 "Invalid device URL"])

 }

 self?.request(baseUrl: deviceBaseUrl,

 endpoint: "door/status",

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

344

 httpMethod: "GET") { (resultDict

 [String: Any]) in

 completion(resultDict)

 }

 }

 }

 }

 func connectDoor(completion: @escaping (_

 jsonDict: [String: Any]) -> Void) {

 request(baseUrl: deviceBaseUrl, endpoint:

 "door/connect", httpMethod: "POST") {

 (resultDict: [String: Any]) in

 completion(resultDict)

 }

 }

 func disconnectDoor(completion: @escaping (_

 jsonDict: [String: Any]) -> Void) {

 request(baseUrl: deviceBaseUrl, endpoint:

 "door/disconnect", httpMethod: "POST") {

 (resultDict: [String: Any]) in

 completion(resultDict)

 }

 }

}

In this example, rather than using a for loop to build the array of URLQueryItem

objects, I used the new compactMap() method. This API takes cues from functional

programming languages (such as Haskell) and has been taking off in popularity recently

as a way of performing a calculation based on iterating through a set.

Now that the Network Manager is ready to handle your new requirements, you can

add a getOutdoorTemperature() method to the Network Manager, to make the request

and handle the response in the main view controller of the app, as shown in Listing 9-12.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

345

Listing 9-12.  Requesting Current Weather Conditions Using the Network

Manager

class NetworkManager: NSObject, URLSessionDelegate {

 ...

 func getOutdoorTemperature(latitude: String, longitude:

 String, completion: @escaping (_ jsonDict: [String: Any])

 -> Void) {

 let parameters = ["appid": opmApiKey,

 "lat": latitude,

 "lon": longitude,

 "units": "metric"]

 request(baseUrl: opmBaseUrl, endpoint: "weather",

 httpMethod: "GET", parameters: parameters) {

 (resultDict: [String: Any]) in

 completion(resultDict)

 }

 }

class ViewController: UIViewController {

 ...

 @IBAction func fetchNetworkData() {

 fetchOutdoorTemperature()

 }

 ...

 func fetchOutdoorTemperature() {

 guard let latitude =

 lastSavedLocation?.coordinate.latitude,

 let longitude =

 lastSavedLocation?.coordinate.longitude else {

 return

 }

 NetworkManager.shared.getOutdoorTemperature(latitude:

 "\(latitude)", longitude: "\(longitude)") { [weak

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

346

 self] (resultDict: [String: Any]) in

 if let error = resultDict["error"] as? String {

 self?.tipLabel?.text = "Error: \(error)"

 } else {

 guard let mainDict = resultDict["main"] as?

 [String: Any] else {

 self?.tipLabel?.text = "Error: Invalid

 response"

 return

 }

 if let humidity = mainDict["humidity"] {

 self?.outdoorHumidityLabel?.text =

 "Humidity \(humidity)%"

 }

 if let temperature = mainDict["temp"] {

 self?.outdoorTempLabel?.text =

 "\(temperature) C"

 }

 }

 }

 }

}

extension ViewController : CLLocationManagerDelegate {

 ...

 func locationManager(_ manager:

 CLLocationManager, didUpdateLocations

 locations: [CLLocation]) {

 lastSavedLocation = locations.first

 fetchOutdoorTemperature()

 }

}

To make the user experience more streamlined, I added calls to request the outside

weather conditions, along with the other network requests, and when the current

location is confirmed. As it can take a few seconds to confirm the user’s location, the call

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

347

in the location delegate will enable you to display valid data the first time the user loads

the application.

OpenWeatherMap provides a free end point (/forecast) and a paid end point (/

forecast/daily) for getting the daily forecast. The paid end point is significantly more

convenient to use, but to expand the access of this book, I will cover using the free end

point. The API documentation for the /forecast end point is available at https://

openweathermap.org/forecast5. In Listing 9-13, I have expanded the Network Manager

to include a method for calling the /forecast end point. There are no surprises here; it

closely resembles the /weather end point.

Listing 9-13.  Adding a Method for Requesting the Forecast from

OpenWeatherMap

class NetworkManager: NSObject, URLSessionDelegate {

 ...

 func getForecast(latitude: String, longitude: String,

 completion: @escaping (_ jsonDict: [String: Any]) ->

 Void) {

 let parameters = ["appid": opmApiKey,

 "lat": latitude,

 "lon": longitude,

 "units": "metric"]

 request(baseUrl: opmBaseUrl, endpoint: "forecast",

 httpMethod: "GET", parameters: parameters) {

 (resultDict: [String: Any]) in

 completion(resultDict)

 }

 }

}

The response provides the daily forecast for five days, in three-hour blocks. Within

the record for each block, you can find a human-readable description of the condition

(for example: Sunny) and detailed statistics ranging from minimum temperature to

barometric pressure. In Listing 9-14, I have provided an extremely abbreviated sample of

one of these responses.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

https://openweathermap.org/forecast5
https://openweathermap.org/forecast5

348

Listing 9-14.  Sample Response for OpenWeatherMap Forecast End Point

{

 "cod": "200",

 "message": 0.1654,

 "cnt": 38,

 "list": [{

 "dt": 1535781600,

 "main": {

 "temp": 287.67,

 "temp_min": 287.67,

 "temp_max": 288.554,

 "pressure": 1019.41,

 ...

 },

 "weather": [{

 "id": 800,

 "main": "Clear",

 "description": "clear sky",

 "icon": "01n"

 }],

 ...

 }],

 "city": {

 "id": 5391959,

 "name": "Tokyo",

 ...

 }

}

Unfortunately, this API is much more complicated to use than the /weather end

point. The data for each three-hour block is inside an array of dictionaries. As you can

guess, you will have to traverse the sub-dictionaries to extract the values you require

(list, main, weather). A common way of accomplishing this is by nesting guard-let

statements.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

349

To get an accurate average maximum and minimum temperature, you will have to

average the results for each day. However, to demonstrate API usage, I will abbreviate

this and use three samples that are spaced 24 hours apart. In Listing 9-15, I have

expanded the view controller to include the request for the forecast.

Listing 9-15.  Requesting the Forecast from the View Controller

class ViewController: UIViewController {

 ...

 func fetchOutdoorTemperature() {

 ...

 NetworkManager.shared.getForecast(latitude:

 "\(latitude)", longitude: "\(longitude)") {

 [weak self] (resultDict: [String: Any]) in

 if let error = resultDict["error"] as? String {

 self?.tipLabel?.text = "Error: \(error)"

 } else {

 guard let resultList = resultDict["list"]

 as? [Any] else {

 self?.tipLabel?.text = "Error: Invalid

 response"

 return

 }

 guard resultList.count > 15 else { return }

 //today

 self?.setupForecastView(dictionary:

 resultList[0], index: 0)

 //tommorrow

 self?.setupForecastView(dictionary:

 resultList[7], index: 1)

 //the day after

 self?.setupForecastView(dictionary:

 resultList[15], index: 2)

 }

 }

 }

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

350

I have offloaded processing the request and mapping it to the views in the setupFore

castView(dictionary:index:) method, provided in Listing 9-16.

Listing 9-16.  Processing the Forecast Request in the View Controller

class ViewController: UIViewController {

 ...

 func setupForecastView(dictionary: Any, index: Int) {

 guard let dayDict = dictionary as? [String: Any],

 let mainDict = dayDict["main"] as? [String: Any],

 let weatherArray = dayDict["weather"] as? [Any],

 let weatherDict = weatherArray.first as? [String:

 Any],

 let minTemp = mainDict["temp_min"] as? Double,

 let maxTemp = mainDict["temp_max"] as? Double,

 let conditionCode = weatherDict["id"] as? Int

 else { return }

 let icon: FontAwesome

 switch conditionCode {

 case 300...599: icon = .umbrella

 case 600...699: icon = .snowflake

 case 700...799: icon = .exclamationTriangle

 case 800: icon = .sun

 default: icon = .cloud

 }

 switch index {

 case 0:

 guard let imageView = firstDayImageView else { return }

 firstDayLabel?.text = "\(maxTemp) / \(minTemp)"

 firstDayImageView?.image =

 UIImage.fontAwesomeIcon(name: icon, style:

 .solid, textColor: UIColor.black, size:

 imageView.bounds.size)

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

351

 case 1:

 guard let imageView = secondDayImageView else {

 return }

 secondDayLabel?.text = "\(maxTemp) / \(minTemp)"

 secondDayImageView?.image =

 UIImage.fontAwesomeIcon(name: icon, style: .solid,

 textColor: UIColor.black, size: imageView.bounds.size)

 default:

 guard let imageView = thirdDayImageView else {

 return }

 thirdDayLabel?.text = "\(maxTemp) / \(minTemp)"

 thirdDayImageView?.image =

 UIImage.fontAwesomeIcon(name: icon, style:

 .solid, textColor: UIColor.black, size:

 imageView.bounds.size)

 }

 }

This method contains a lot of logic to extract the nested values from the dictionaries

for each block of data and map them to the user interface. Unfortunately, this is a

common design oversight in many big data APIs. If possible, use this experience as an

opportunity to advocate for simple network API responses in your back-end projects.

�Handling Touch Input from the Siri Remote
For the final step in developing the IOTHomeTV app, you should take advantage of the

primary human interface device for the Apple TV, the Siri Remote. Every Apple TV has

included a remote control with the device; however, the fourth-generation Apple TV

introduced the Siri Remote, with a touchpad for app-like gestures and a microphone for

accepting Siri voice commands. In this section, I will focus on how to accept button and

touchpad click input from the remote, to refresh the data in the application.

To begin, you can implement a button press. The basic interface of every Apple TV

has relied on using directional buttons for moving between items, using the Play/Pause

button to navigate to the detail page for an item, and the Menu button to navigate out of

the item. For the IOTHomeTV, the natural interaction to implement would be to use the

Play/Pause button to refresh the data in the application.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

352

You can implement support for button presses on tvOS, using the

UITapGestureRecognizer class. If you have implemented your own custom

gesture recognizer on iOS (for example, making a view swipeable or clickable

without using UIButton or UIPageController), you are already familiar with the

UITapGestureRecognizer class and its parent class, UIGestureRecognizer. Their

implementations are mostly the same on tvOS. The way gesture recognizers work is

that you specify a gesture to observe (for example, tap, touch, swipe, pinch), a view to

observe these events on, and a selector (method signature) to call when these events

are recognized. You specify your event by instantiating a single-purpose subclass of

UIGestureRecognizer, such as UITapGestureRecognizer or UISwipeGestureRecognizer.

UIGestureRecognizer is an abstract class and cannot be instantiated directly.

To implement the Play/Pause button handler, instantiate a UITapGestureRecognizer

object. As shown in Listing 9-17, specify the fetchNetworkData() method as the handler

for the tap event by creating a selector with its method signature. In the same manner as

on iOS, use the addGestureRecognizer() method from the UIView class, to attach the

gesture to the main view for the view controller. Unlike iOS, you can limit button presses

to only the Play/Pause button, using the allowedPressTypes property.

Listing 9-17.  Adding a Play/Pause Button Gesture Recognizer

class ViewController: UIViewController {

 ...

 override func viewDidLoad() {

 super.viewDidLoad()

 ...

 setupGestureHandlers()

 }

 func setupGestureHandlers() {

 let tapRecognizer = UITapGestureRecognizer(target:

 self, action:

 #selector(ViewController.fetchNetworkData))

 tapRecognizer.allowedPressTypes = [NSNumber(value:

 UIPressType.playPause.rawValue)]

 self.view.addGestureRecognizer(tapRecognizer)

 }

}

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

353

To test the gesture recognizer, run the Apple TV simulator. As shown in Figure 9-17,

under the Hardware menu, select Show Apple TV Remote. Click the onscreen remote

control, and verify that the fetchNetworkData() method is called, via an update in the

displayed data or a breakpoint.

Figure 9-17.  Using the onscreen remote in the Apple TV simulator

Implementing a touchpad click in tvOS takes advantage of another concept from

iOS, press events. However, these are implemented in a different fashion from gesture

recognizers. Subclasses of UIViewController have default handler methods for UITouch

and UIPress events, which are triggered by any touch or press event. To add touchpad

click support, override the default delegate method for when a press is completed,

pressesEnded(presses:with Event:), and insert a call to refresh the network data only

when the Select event has been recognized, as shown in Listing 9-18.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

354

Listing 9-18.  Adding Touchpad Click Support

class ViewController: UIViewController {

 ...

 override func pressesEnded(_ presses: Set<UIPress>, with

 event: UIPressesEvent?) {

 for pressEvent in presses {

 if pressEvent.type == .select {

 fetchNetworkData()

 }

 }

 }

}

To test the touchpad click event, open the Apple TV simulator again. Press down

on the Option key on your keyboard to enable touchpad support in the simulator, and

click inside the touchpad again. Once again, the call to fetchNetworkData() should be

triggered.

�Debugging the App on an Apple TV
Having completely developed the IOTHomeTV app and verified that it works through

the Apple TV simulator, there is just one step left to round out your journey into tvOS

development: running the app on Apple TV hardware. In the same vein as iOS devices,

starting with Xcode 9, if you have a valid Apple Developer account, you can connect to

an Apple TV and debug it wirelessly from your Mac, via your home or office network

connection.

To begin, verify that your Mac and Apple TV are connected to the same wireless

network. Next, open the Settings app on your Apple TV. As shown in Figure 9-18, select

Remotes and Devices, and then Remote App and Devices. If you pair your Apple TV with

an iPhone or iPad via the Remote app, it should show up on this screen; otherwise, it

should be empty.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

355

Figure 9-18.  Preparing an Apple TV for pairing with a Mac

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

356

Leave the Remote App and Devices screen open on your Apple TV and open up

Xcode. Within Xcode, click the Window menu and then Devices and Simulators. Inside

the Devices and Simulators window, you should see a graphic of an Apple TV and a Pair

button that includes the name of your Apple TV in its title text. As shown in Figure 9-19,

after clicking this button, you will be presented with an authentication dialog that asks

you to type in the identification code displayed on your Apple TV. Enter this code and

then press Connect.

Figure 9-19.  Pairing an Apple TV from a Mac

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

357

After the pairing process has been completed successfully, the Devices and

Simulators window will update to show statistics about your Apple TV, as shown in

Figure 9-20.

Figure 9-20.  Confirmation of successful pairing with an Apple TV

After waiting several minutes for Xcode to download the debugging symbols for

your device, you will be able to select your Apple TV as a Debugging Target from the

target selection menu next to the Run button in Xcode, as shown in Figure 9-21. The first

time you connect a device, you will also be prompted to add it to your Apple Developer

Program account. Select the confirm action in this pop-up, to complete the device setup

process.

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

358

At this point, you can press the Run button to run the app on the device, and you should

be able to access debugging features you are used to on iOS devices, including breakpoints

and stack inspection. Congratulations on building and running your first Apple TV app!

�Summary
In this chapter, you learned how to leverage your knowledge of iOS programming to

create a tvOS dashboard app for the IOTHome hardware. Although you had to make

some special exceptions for tvOS, the development flow and APIs that were available

for use closely resembled their counterparts in iOS. By adding the tvOS app as a target

to the IOTHome project, you were able even to share code with the iOS app, including

the Network Manager. To add that last bit of useful polish to the app, you learned

how to apply visual effects to views, use Font Awesome for font-based icons, and

OpenWeatherMap.org for public weather data.

As fun as it was building the app, it also gave you an opportunity to make the data from

the IOTHome sensors more useful and easier to access for users. The biggest recurring

challenge I kept seeing when consulting for companies implementing IoT sensors and big

data was how to use all the data that has been generated. By giving your users a visualization

of their data and augmenting it with other useful, related information data, you were able

to reduce the friction of using the hardware and increase its value to your users. By making

systems that improve a user’s life, you can help transform IoT devices from toys to tools.

Figure 9-21.  Selecting an Apple TV as a debugging target

Chapter 9 Using tvOS to Build an Apple TV Dashboard App

359
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_10

CHAPTER 10

Using watchOS to Build
an Apple Watch App
From Dick Tracy’s watch phone in the 1940s to the Pip-Boy in today’s extremely popular

Fallout video game series, the idea of a watch as an information device on your wrist

has been in the public consciousness long before Apple introduced the Apple Watch in

2015. Starting in the 1980s, such consumer electronics companies as Casio and Radio

Shack began taking the leap forward and introduced the first smart watches, by adding

calculators, FM radios, and contact books to digital watches. This trend continued

through the 1990s and 2000s, with smart watches beginning to gain more and more

connected features, such as cellular phone calling and PC data synchronization.

However, as someone whose first part-time job was fixing watches in the early 2000s,

I can tell you, the only smart watch I ever saw during that time was the single camera

watch we had on display and never sold for several years. At that time, the only smart

watches that were being sold were not compelling purchases, stemming from their high

price tags, gimmicky features, and run-of-the-mill design.

This all began to change in 2012, when Pebble introduced their Pebble smart

watch. Rather than being a calculator glued to the bottom of a regular digital watch, it

was a Bluetooth-enabled timepiece that used an E Ink screen to display the time and

notifications from your phone. The cherry on the cake was that you could use Pebble’s

software development kit to make your own watch faces and full-fledged applications. It

quickly became the most funded project on the Kickstarter crowdfunding web site and

helped push Google, Apple, and Samsung (among countless others) to get serious about

connected watches.

In 2015, when Apple finally released the Apple Watch, with its own watchOS software

development kit and App Store, many predicted it would be Apple’s next huge market

and instantly dominate the smart watch market, just as the iPhone revolutionized

360

smartphones in 2007. As of this writing, in 2018, the Apple Watch did fulfill the prophecy

of becoming the number-one smart watch; however, it was a long, slow process of

attrition. Although feature-wise, they were mostly the same. The Apple Watch provided

a higher build quality, full-color screen, and health sensors that the Pebble did not have.

Compared to Android Wear, the Apple Watch had a more passionate user base and

hardware manufacturers that provided the supply and demand to keep improving

the platform.

Most important of all, the Apple Watch was able to become the number-one smart

watch by expanding into mainstream consciousness and addressing markets that were

previously underserved. Although the platform did not expand to the popularity of

smartphones, it has proved to be extremely popular in health care, the service sector,

and fitness communities, as it provides nonintrusive access to snippets of information

in environments in which smartphones are inappropriate or impractical. I know I

personally am lost without my Apple Watch when I get on crowded trains in Tokyo. In

these respects, the Apple Watch is a true Internet of Things (IoT) success story.

In this chapter, you will learn how to take advantage of the Apple Watch, to build

apps that can run in tandem with your iOS apps. As with the tvOS project in Chapter 9,

you will take the IOTFit fitness app from Chapters 1-4 and add a watchOS target that

allows users to view their past workout history and create new workouts. You will

port over the motion (accelerator) and location-tracking features from the iOS app, to

generate all of the same data in the watchOS app. As an added bonus, you will also take

advantage of the HealthKit store from the iOS project, which will automatically sync data

between the user’s watch and phone.

�Learning Objectives
In this chapter, by building the watchOS version of the IOTFit fitness-tracking

application, you will learn the following key concepts for IoT application development:

•	 Adding a watchOS target to an iOS project

•	 Building a table-based user interface on a watchOS app

•	 Adding Force Touch support to a watchOS app

•	 Using Core Motion, Core Location, and HealthKit on watchOS

•	 Populating a table view in watchOS

Chapter 10 Using watchOS to Build an Apple Watch App

361

Similar to tvOS, watchOS provides a stripped-down development environment

based on the development principles and frameworks from iOS. Starting with

watchOS 2.0, Apple began exposing more of these frameworks to developers, so that

Apple Watch apps could run without being tethered to an iPhone or Internet connection.

Although this started as a way to improve performance on the device, it was one of the key

factors that helped solidify the platform’s adoption in the markets described previously.

The IOTFit watchOS app will be able to run without being paired with an iPhone, except

for when the user must enable permissions the first time the app is loaded. As mentioned

in the introduction, all of the data in the app will be stored in HealthKit, which Apple

automatically syncs between the user’s watch and his/her iPhone.

Unlike tvOS, due to the limited memory and processing power of watchOS, many

of these frameworks are stripped down to the core features required for smart watch

use cases. For most frameworks, this is manifested by seeing a smaller subset of APIs

available. However, in the area of user interface development, the toll is quite significant.

Rather than being able to use the full set of UIView subclasses and Auto Layout, you

will have to learn how to use stack views and the more limited WKInterface* classes. In

this chapter, I will focus on both, with careful attention to making stack views work for

practical user interfaces and implementing a WKInterfaceTable-based table view whose

implementation concepts differ considerably from those of the UITableView class on iOS.

This chapter is based heavily on the foundation of the IOTFit fitness app from

Chapters 1-4. If you are still uncomfortable with user interface development in Xcode,

I highly recommend reviewing Chapter 1. If you would like to review the details of

implementing location services and health APIs in iOS, I highly recommend reviewing

Chapters 2-4.

�Setting Up the Project
In the same manner as the tvOS project from Chapter 9, in this chapter, you will

implement the watchOS version of the IOTFit project by adding a new target to the last

iteration of the app from Chapter 4. Begin by copying your completed project from that

chapter or downloading a fresh copy from the official GitHub repository for this book at

https://github.com/Apress/program-internet-of-things-w-swift-for-ios.

When a watchOS target is added to an iOS project, not only will you be able to

share code with the iOS app, but the watchOS target will be tagged as an Apple Watch

version on the App Store. As shown in Figure 10-1, when a watchOS version is available

Chapter 10 Using watchOS to Build an Apple Watch App

https://github.com/Apress/program-internet-of-things-w-swift-for-ios

362

for an iOS app in the App Store, users are provided with a link on the App Store

description page that shows them information on the watchOS version and the option to

automatically install it, along with the iOS version.

Figure 10-1.  App Store description page for an iOS app that offers a watchOS
version

After you have prepared a copy of the original project, go to the File menu and select

New ➤ Target, just as you did in Chapter 9 for the tvOS target. From the template picker

pop-up window, select WatchKit App, as shown in Figure 10-2.

Chapter 10 Using watchOS to Build an Apple Watch App

363

When asked to configure the target, name it IOTFitWatch. As shown in

Figure 10-3, confirm that the product is set to build against the credentials for your

developer account and that the Include Notification Scene and Include Complication

check boxes are not selected. For the scope of this project, you do not have to enable

either option.

Figure 10-2.  Selecting a WatchKit app template

Chapter 10 Using watchOS to Build an Apple Watch App

364

The first time you add a watchOS target to a project, you will be asked to activate its

target, as shown in Figure 10-4. Select Activate, to dismiss the pop-up, and continue with

the setup process.

Figure 10-3.  Configuring the watchOS target

Chapter 10 Using watchOS to Build an Apple Watch App

365

After you have finished setting up the target, your project should now include two

new folders, IOTFitWatch and IOTFitWatch Extension, as indicated in Figure 10-5.

Figure 10-4.  Activating the scheme for the watchOS app

Figure 10-5.  IOTFit project after including the watchOS target

Chapter 10 Using watchOS to Build an Apple Watch App

366

Since watchOS 1.0, Apple has split watchOS apps into two parts: an app containing

the static resources only (storyboards, assets) and an extension containing the code. In

watchOS 1.0, Apple did not expose the watchOS frameworks on the watch hardware,

and the extension was used by the iOS app to update the views that were specified by the

WatchKit app component. Today, both pieces run on the watch hardware, but this logic

separation pattern is still preserved by Apple.

Next, you must set the descriptions for the permission-restricted features the

watchOS app will have to use: user location, HealthKit, and Core Motion. The easiest

way to do this is to copy the Privacy description key-value pairs from the iOS project’s

Info.plist file into the Info.plist file in the IOTFitWatch Extension folder. The

key-value pairs you need to copy are provided as source code in Listing 10-1. You can use

the Open As ➤ Source Code secondary-click (right-click) option for the Info.plist file,

to copy them into the file as text, or you can look for the Privacy... key-value pairs in

the Property List Inspector and add them manually.

Listing 10-1.  Privacy Permission Description Key-Value Pairs for the

IOTFitWatch Extension Info.plist File

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/

DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

 <key>WKCompanionAppBundleIdentifier</key>

 <string>com.devAtelier.IOTFit</string>

 ...

 <key>NSHealthShareUsageDescription</key>

 <string>IOTFit would like to use HealthKit permission to

 import workout data </string>

 <key>NSHealthUpdateUsageDescription</key>

 <string>IOTFit would like to use HealthKit permission to

 export workout data to the Health app. </string>

 <key>NSLocationAlwaysAndWhenInUseUsageDescription</key>

 �<string>IOTFit would like to use location permission to plot your

location during workouts. </string>

 <key>NSLocationAlwaysUsageDescription</key>

Chapter 10 Using watchOS to Build an Apple Watch App

367

 <string>IOTFit would like to use location permission to

 plot your location during workouts. </string>

 <key>NSLocationUsageDescription</key>

 <string>IOTFit would like to use location permission to

 plot your location during workouts. </string>

 <key>NSLocationWhenInUseUsageDescription</key>

 <string>IOTFit would like to use location permission to

 plot your location during workouts.string>

 <key>NSMotionUsageDescription</key>

 <string>IOTFit would like to use motion permission to

 help you measure the step count and altitude of your

 workouts. </string>

</dict>

</plist>

For the final step in the setup process, you must enable background modes for the

WatchKit App, in order to track the user’s location. As shown in Figure 10-6, select the

IOTFit project file at the top of the Project Navigator, then navigate to the IOTFitWatch

Extension target and click the Capabilities tab. In the Capabilities detail screen, enable

Background Modes and Workout Processing.

Figure 10-6.  Enabling Background Modes for the IOTFitWatch app

Chapter 10 Using watchOS to Build an Apple Watch App

368

�Building a watchOS User Interface
Now that the watchOS target has been configured completely, you can begin putting

together the user interface. For this project, I have adapted the IOTFit app to an Apple

Watch form factor, as shown in Figure 10-7. Because most users interact with their Apple

Watches when they are on the go or unable to access their phones, you should design

your interface so that it is easy to view the most commonly used information from the

app and equally easy to create a new record in the app.

Figure 10-7.  Design wireframes for the IOTFitWatch app

In the IOTFitWatch app, I expose the user’s workout history on the Home screen

and provide a context menu that allows him/her to launch a Detail screen for recording

a new workout. Users can bring up the context menu by performing a force touch (hard

press) on the Workout Screen. The Workout History and Record Workout screens display

the user’s activity type to help him/her identify workouts.

To get started developing the user interface, open the Interface.storyboard

file under the IOTFitWatch folder. As shown in Figure 10-8, you will be greeted with

a storyboard containing the blank interface for the first view controller in the app

(InterfaceController.swift).

Chapter 10 Using watchOS to Build an Apple Watch App

369

Begin by laying out the Workout History screen. In the same manner as an iOS or

tvOS app, drag a Table object from the Object Library to the view controller, as shown in

Figure 10-9.

Figure 10-8.  Initial storyboard for the IOTFitWatch project (Interface.storyboard)

Chapter 10 Using watchOS to Build an Apple Watch App

370

If you have upgraded to Xcode 10, your user interface may hide the Object Library by

default. To open the Object Library on Xcode 10, click the Library button (the one with

an iPhone Home button icon) at the top-right of Xcode, next to the options for toggling

the side bars in Interface Builder, as shown in Figure 10-10.

Figure 10-9.  Adding a table to the Record Workout view controller

Chapter 10 Using watchOS to Build an Apple Watch App

371

Next, you must configure the height of the table view cell (known as a table row in

watchOS). As shown in Figure 10-11, click the table row, then in the Attributes inspector

(the right detail pane of Interface Builder), click the Height drop-down, and select Fixed.

This will allow you to make all of the rows a consistent height. For my implementation, I

chose 50 pixels for the height.

Figure 10-10.  Finding the Object Library in Xcode 10

Chapter 10 Using watchOS to Build an Apple Watch App

372

As mentioned at the beginning of the chapter, one of the unfortunate side effects

of watchOS’s small subset of iOS is that you must use stack views to lay out your user

interfaces. Stack views manage a container view and layout each item vertically or

horizontally in the container, according to a few configuration parameters (e.g., equal

heights, equal spacing). In order to implement the user interface from Figure 10-7, in

which there is an image to the left of two vertically-aligned labels, you will have to nest

stack views. The parent stack view will be configured to stack items horizontally and

contain the image view, and stack view for the labels. The stack view for the labels will be

configured to stack items vertically.

To begin implementing the stack views, drag a Group from the Object Library onto

the table row, as shown in Figure 10-12. The groups will be wider than the width of the

Apple Watch at first. To fix this, click the right edge of each group and resize it so that the

group for the image view is smaller than the group for the labels.

Figure 10-11.  Configuring cell height for a table row

Chapter 10 Using watchOS to Build an Apple Watch App

373

Next, drag Image and Label items from the Object Library onto the view controller.

Your table row should look like my implementation in Figure 10-13. Although the image

view is displayed correctly, the labels require adjustment.

Figure 10-12.  Adding an additional group to a table row

Figure 10-13.  Table row with default stack view configuration

Chapter 10 Using watchOS to Build an Apple Watch App

374

To fix the layout of the labels, you must configure the stack view to use vertical layout.

As shown in Figure 10-14, select the group, then, inside the Layout drop-down menu,

select Vertical.

To configure the font size, label text, or other options for a view, select it and

use the drop-downs in the Attributes inspector to make the adjustments, as shown in

Figure 10-15. After modifying the font size for the top label to Subhead, your table row

should now match the design specified in the original design.

Figure 10-14.  Configuring vertical layout for a stack view

Chapter 10 Using watchOS to Build an Apple Watch App

375

Having completed the Workout History view controller’s layout, you can lay out the

Workout Detail view controller. Using the object library, drag an Interface Controller

onto the storyboard, configure its single group to use a vertical layout, and then drag

Label and Button items onto the group. Before configuring the views, your layout should

look similar to my result in Figure 10-16. You can use the view hierarchy, highlighted

on the left, to help you determine if you assigned sub-views to a stack view or normal

UIView correctly.

Figure 10-15.  Configuring text size and color for a stack view

Chapter 10 Using watchOS to Build an Apple Watch App

376

After configuring text sizes, alignment, and colors, your final storyboard should look

similar to my implementation in Figure 10-17. I set all of the views to use the Body or

Headline text styles and text centering. I set the color property of the buttons to Red and

Blue, to make the buttons easier to differentiate.

Figure 10-16.  Record Workout view controller with initial sub-view arrangement

Figure 10-17.  Final storyboard arrangement for the IOTFitWatch project

Chapter 10 Using watchOS to Build an Apple Watch App

377

Just as you were required to do for your iOS apps, to finish the user interface setup for

a watchOS project, you must connect the storyboard to your interface controller (view

controller) classes. As its layout is more straightforward, begin with the Record Workout

interface controller class. Click the IOTFitWatch Extension folder in the Project

Navigator, then select New File from the secondary-click (right-click) context menu.

As shown in Figure 10-18, navigate to watchOS from the template picker pop-up

window, then select WatchKit Class. This is the equivalent of choosing the Cocoa Touch

class template for an iOS project.

Figure 10-18.  Creating a WatchKit class from the File Template window

When asked to choose your parent class, type in “WKInterfaceController.” Enter

RecordInterfaceController as the class name. Use my sample in Listing 10-2 for the

contents of the class. Each user interface item is represented by an @IBOutlet property.

Unlike an iOS app, all of the elements are WKInterface classes.

Chapter 10 Using watchOS to Build an Apple Watch App

378

Listing 10-2.  Record Interface Controller Class Definition

(RecordInterfaceController.swift)

class RecordInterfaceController: WKInterfaceController {

 @IBOutlet var timerLabel: WKInterfaceLabel?

 @IBOutlet var workoutLabel: WKInterfaceLabel?

 @IBOutlet var progressLabel: WKInterfaceLabel?

 @IBOutlet var toggleButton: WKInterfaceButton?

 @IBOutlet var exitButton: WKInterfaceButton?

 override func willActivate() {

 super.willActivate()

 }

 override func didDeactivate() {

 super.didDeactivate()

 }

}

In the same manner as an iOS application, to connect the storyboard to

the RecordInterfaceController class, you have to set it as the parent class. As

shown in Figure 10-19, select the Interface Controller on the storyboard, then

navigate to the Identity Inspector (the tab with the ID card icon), and enter

RecordInterfaceController in the Class text field.

Chapter 10 Using watchOS to Build an Apple Watch App

379

Just as with an iOS storyboard, drag and drop connections from the Attributes

inspector onto elements in the Interface Controller, to complete the connection process,

as shown in Figure 10-20.

Figure 10-19.  Setting ownership for a watchOS Interface Controller

Chapter 10 Using watchOS to Build an Apple Watch App

380

�Setting Up a Table View Using the WKInterfaceTable Class
The setup process for the Workout History Interface Controller is more

complicated, owing to the table view. To begin, modify the definition of the default

InterfaceController class to add the outlet for the table view, as shown in Listing 10-3.

After updating the definition, connect the outlet in Interface Builder.

Listing 10-3.  Workout History Interface Controller Class Definition

(InterfaceController.swift)

class InterfaceController: WKInterfaceController {

 @IBOutlet var workoutTable: WKInterfaceTable?

 ...

}

Figure 10-20.  Connecting Outlets to Interface Controller elements

Chapter 10 Using watchOS to Build an Apple Watch App

381

Next, you must create a class to define each table row otherwise known as a row

controller, in watchOS terminology. Unlike a table view cell on iOS, in which you can

use UITableViewCell as your parent class, watchOS does define a parent class for table

rows. Instead, you must use NSObject to define a generic object that is compatible with

both Swift and Objective-C. Aside from this restriction, the rest of the setup process is

straightforward, as you include the user interface elements as properties of the new

class. In Listing 10-4, I have defined my table row as the WorkoutRowController class.

The definition includes the properties for the image view and labels. Add a new file

named WorkoutRowController.swift to the IOTFitWatch Extension target to contain

this class.

Listing 10-4.  Workout Row Controller Class Definition

(WorkoutRowController.swift)

import WatchKit

class WorkoutRowController: NSObject {

 @IBOutlet var icon: WKInterfaceImage?

 @IBOutlet var dateLabel: WKInterfaceLabel?

 @IBOutlet var durationLabel: WKInterfaceLabel?

}

Next, navigate back to Interface Builder and select the table row. As shown in

Figure 10-21, begin by clicking the Attributes inspector (the second-to-last tab in the

right pane) and setting an identifier for the row. Make a note of this, as you will use it

later when you populate the data for the table.

Chapter 10 Using watchOS to Build an Apple Watch App

382

After setting the identifier, click the Identity Inspector (the third tab) and

set the class to WorkoutRowController, in the same manner you connected the

WorkoutInterfaceController to its definition. If the operation was successful, you

should be able to see the properties for the row controller in the Connections Inspector

(the last tab) and connect them to the storyboard successfully, as shown in Figure 10-22.

Figure 10-21.  Setting the identifier for a row controller

Chapter 10 Using watchOS to Build an Apple Watch App

383

�Adding Force Touch Support
For the final piece in the user interface puzzle, you will learn how to use Force Touch

to present a context menu to initiate the transition to the Record Workout Interface

Controller. Although you can use segues, just as you would in an iOS app, using Force

Touch provides a more native experience for the Apple Watch. Force Touch (or 3D touch

on the iPhone) is the term Apple uses to describe the pressure sensitivity of their touch

pads, starting with the iPhone 6S and eventually moving into the MacBook Pro and

Apple Watch. These devices provide support for two kind of touch events: a shallow

press, a normal touch event, which is used to select an item, and a deep press, a long,

forceful press on the screen, which is used to bring up context menus.

You can enable Force Touch in your watchOS apps by adding a context menu to

an Interface Controller. To add a context menu to an Interface Controller, drag a Menu

object from the Object Library and drop it on the target Interface Controller. As shown in

Figure 10-23, after adding a context menu to the Workout History Interface Controller, it

will be added to its view hierarchy.

Figure 10-22.  Connecting outlets to a row controller

Chapter 10 Using watchOS to Build an Apple Watch App

384

By default, a context menu will include one menu item. For the IOTFitWatch app,

you only need an Add button, for presenting the Record Workout Interface Controller.

To customize the menu item, select it from the view hierarchy and use the Attributes

inspector to set a title and icon. For my implementation, I selected the Add icon and

named the menu item, New Workout.

To enable the transition to the Record Workout Interface Controller, or perform any

other action based on the menu selection, you must declare a method with the @IBAction

keyword, to indicate that should be discoverable by Interface Builder. In Listing 10-5,

I have added a method named presentRecordInterface() to handle the transition.

Listing 10-5.  Adding a Method for Presenting the Record Workout Screen

(InterfaceController.swift)

class InterfaceController: WKInterfaceController {

 @IBOutlet var workoutTable: WKInterfaceTable?

 ...

Figure 10-23.  Adding and configuring a context menu

Chapter 10 Using watchOS to Build an Apple Watch App

385

 @IBAction func presentRecordInterface() {

 presentController(withName:

 "RecordInterfaceController", context: nil)

 }

}

watchOS provides a presentController(withName:context:) for presenting one

Interface Controller from another, similar to the present(animated:completion:)

method on iOS. To use this method on watchOS, you must provide the Identifier string

for the Interface Controller you want to target and a context object, which can be used

to share data between the two Interface Controllers. In the earlier setup steps, although

you set the class for the Record Workout Interface Controller, you did not have to set an

identifier. To add the identifier, select the Record Workout Interface Controller and then

navigate to the Attributes inspector, as shown in Figure 10-24.

Figure 10-24.  Adding an identifier string to an Interface Controller

Now that all the prerequisites for the presentRecordInterface() method have been

met, you can connect to the storyboard. To perform this operation, select the menu item

in the view hierarchy, navigate to the Connection Inspector, and drag a connection from

Chapter 10 Using watchOS to Build an Apple Watch App

386

the selector item to the Record Workout Interface Controller. As shown in Figure 10-25,

the presentRecordInterface() method signature should appear as a selectable option.

Figure 10-25.  Connecting a selector to a method in an Interface Controller

To test the context menu, select one of the iOS simulators that is paired with an

Apple Watch simulator from the menu next to the run button in Xcode (for example,

iPhone 8 Plus + Apple Watch Series 3). Although the Workout History screen of the watch

app will initially be empty, as shown in Figure 10-26, you can perform a deep press on

your Mac’s touchpad, to bring up the context menu in the simulator. Alternatively, you

can enable deep presses in the simulator by going to the Hardware menu and selecting

Touch Pressure ➤ Deep Press.

Chapter 10 Using watchOS to Build an Apple Watch App

387

To dismiss the Record Workout Interface Controller, create an exit() function, as

shown in Listing 10-6, which will call the dismiss() method to dismiss the Interface

Controller. This method behaves in the same fashion as the dismissViewController()

method in iOS, by dismissing modal Interface Controllers from the view hierarchy. Use

the Connection Inspector in Interface Builder to set the exit() method as the selector

for the Exit button, in the same fashion you connected the selector for the context menu.

Figure 10-26.  Debugging the context menu from the Apple Watch simulator

Chapter 10 Using watchOS to Build an Apple Watch App

388

Listing 10-6.  Dismissing the Record Workout Screen

(RecordInterfaceController.swift)

class RecordInterfaceController: WKInterfaceController {

 ...

 @IBAction func exit() {

 dismiss()

 }

}

�Creating a New Workout Using Core Location
and Core Motion
The IOTFit app started as a simple location-based workout tracking app, and as

you learned more sensor-based frameworks, it expanded into an accurate, detailed

application through the adoption of Core Motion and HealthKit. Complementing its

wide adoption in fitness applications, Apple included both of these frameworks, as well

as Core Location, among the set of binaries that can run untethered on an Apple Watch.

To begin implementing the stand-alone features of the Apple Watch app, start

with the Record Workout Interface Controller. It serves the same purpose as the

Create Workout View Controller from the iOS project, allowing the user to start and

stop a workout session. As mentioned at the beginning of the chapter, one of the goals

of adding the IOTFitWatch app to the IOTFit iOS project is to share code between

applications. Quickly skimming through the CreateWorkoutViewController class,

you will notice that much of the heavy lifting, including logging locations, saving

the workout to HealthKit, and formatting the time strings was taken care of by the

WorkoutDataManager class. Because a great deal of this functionality is also applicable

to the watchOS app, you should try to add it to the watchOS target. To perform this

action, click the WorkoutDataManager.swift file in the Project Navigator, select the File

Inspector tab (the one with the Document icon) in the right pane of Xcode, and click the

check box next to IOTFitWatch Extension, as shown in Figure 10-27.

Chapter 10 Using watchOS to Build an Apple Watch App

389

With Xcode still set to compile for the iPhone + Apple Watch simulator, attempt

to compile the watchOS app with the WorkoutDataManager class now included in the

target. Compilation should fail, owing to being unable to resolve the definitions for

WorkoutType and WorkoutState. In the iOS-only implementation of the IOTFit project,

these types were defined inside the CreateWorkoutViewController class, which cannot

be included in the watchOS target. To fix the compilation issue, move these values to the

top of the WorkoutDataManager class, as shown in Listing 10-7. The watchOS app should

now compile successfully.

Listing 10-7.  Completing the WorkoutDataManager Class

import Foundation

import CoreLocation

import HealthKit

Figure 10-27.  Adding the WorkoutDataManager class to the IOTFitWatch
Extension target

Chapter 10 Using watchOS to Build an Apple Watch App

390

enum WorkoutState {

 case inactive

 case active

 case paused

}

struct WorkoutType {

 static let automotive = "Driving"

 static let running = "Running"

 static let bicycling = "Bicycling"

 static let stationary = "Stationary"

 static let walking = "Walking"

 static let unknown = "Unknown"

}

let timerInterval : TimeInterval = 1.0

...

class WorkoutDataManager {

 static let sharedManager = WorkoutDataManager()

 ...

 }

To continue with the implementation of the Record Workout Interface Controller,

port over the state initialization code from the Create Workout View Controller. Looking

back at the iOS version, you will notice that the view controller maintained its state via

a series of properties that were originally set to 0 values. When the view controller was

loaded, you used these values to initialize the labels in the user interface. In Listing

10-8, I have expanded the Record Workout Interface Controller class to include these

properties and the updateUserInterface() method. In particular, you will notice

that watchOS interface controllers are awakened via the willActivate() method (vs.

viewWillAppear() on iOS) and that the convenience method for setting button titles is

much shorter.

Chapter 10 Using watchOS to Build an Apple Watch App

391

Listing 10-8.  Adding State to the RecordInterfaceController Class

class RecordInterfaceController:

 WKInterfaceController {

 ...

 var currentWorkoutState = WorkoutState.inactive

 var currentWorkoutType = WorkoutType.unknown

 var workoutStartTime : Date?

 var lastSavedTime : Date?

 var workoutDuration : TimeInterval = 0.0

 var workoutTimer : Timer?

 var workoutAltitude : Double = 0.0

 var workoutDistance : Double = 0.0

 var averagePace : Double = 0.0

 var floorsAscended : Double = 0.0

 var workoutSteps : Double = 0.0

 var lastSavedLocation : CLLocation?

 var isMotionAvailable : Bool = false

 ...

 override func willActivate() {

 super.willActivate()

 updateUserInterface()

 }

 ...

 func updateUserInterface() {

 switch(currentWorkoutState) {

 case .active:

 toggleButton?.setTitle("Stop")

 case .paused:

 toggleButton?.setTitle("Resume")

 default:

 toggleButton?.setTitle("Start")

 }

 }

}

Chapter 10 Using watchOS to Build an Apple Watch App

392

Next, you have to implement the methods to start or stop the workout. As shown

in Listing 10-9, enable this by porting over the methods to start, stop, and reset the

workout. These methods work by using the currentWorkoutState variable to determine

the current state of the Interface Controller and then using that to request device

permissions, start the measurements, or stop them and reset the Interface Controller

back to the initial state. These methods were almost directly copied from the iOS version.

Make sure you connect the toggleWorkout() method to the Start button on the

storyboard to enable it.

Listing 10-9.  Toggling State Within the RecordInterfaceController Class

import UIKit

import CoreLocation

import CoreMotion

class RecordInterfaceController: WKInterfaceController {

 ...

 var pedometer : CMPedometer?

 var motionManager : CMMotionActivityManager?

 var altimeter : CMAltimeter?

 let locationManager = CLLocationManager()

 ...

 func resetWorkoutData() {

 lastSavedTime = Date()

 workoutDuration = 0.0

 workoutDistance = 0.0

 workoutAltitude = 0.0

 workoutSteps = 0

 floorsAscended = 0

 averagePace = 0.0

 currentWorkoutType = WorkoutType.unknown

 }

 func startWorkout() {

 currentWorkoutState = .active

 UserDefaults.standard.setValue(true, forKey:

 "isConfigured")

Chapter 10 Using watchOS to Build an Apple Watch App

393

 UserDefaults.standard.synchronize()

 workoutTimer = Timer.scheduledTimer(timeInterval:

 timerInterval, target: self, selector:

 #selector(updateWorkoutData), userInfo: nil,

 repeats: true)

 locationManager.startUpdatingLocation()

 lastSavedTime = Date()

 workoutStartTime = Date()

 WorkoutDataManager.sharedManager.createNewWorkout()

 if (CMMotionManager().isDeviceMotionAvailable &&

 CMPedometer.isStepCountingAvailable() &&

 CMAltimeter.isRelativeAltitudeAvailable()) {

 isMotionAvailable = true

 startPedometerUpdates()

 startActivityUpdates()

 startAltimeterUpdates()

 } else {

 NSLog("Motion acitivity not available on device.")

 isMotionAvailable = false

 }

 }

 func stopWorkoutTimer() {

 workoutTimer?.invalidate()

 }

 @IBAction func toggleWorkout() {

 switch currentWorkoutState {

 case .inactive:

 requestLocationPermission()

 case .active:

 currentWorkoutState = .inactive

 stopWorkoutTimer()

 pedometer?.stopUpdates()

Chapter 10 Using watchOS to Build an Apple Watch App

394

 motionManager?.stopActivityUpdates()

 altimeter?.stopRelativeAltitudeUpdates()

 if let workoutStartTime = workoutStartTime {

 let workout = Workout(startTime:

 workoutStartTime, endTime: Date(), duration:

 workoutDuration, locations: [], workoutType:

 �self.currentWorkoutType, totalSteps: workoutSteps,

flightsClimbed: floorsAscended, distance: workoutDistance)

 �WorkoutDataManager.sharedManager.

saveWorkout(workout)

 }

 default:

 NSLog("toggleWorkout() called out of context!")

 }

 updateUserInterface()

 }

}

To start monitoring the user’s location, motion activity, and to gain access to

HealthKit, port over the methods for requesting permission and starting updates, as

shown in Listing 10-10. Compared to the iOS version, the biggest difference here is that

you must limit some of the configuration options for the hardware manager objects, as

they are not available on watchOS.

Listing 10-10.  Requesting and Monitoring Hardware Updates in the

RecordInterfaceController Class

class RecordInterfaceController: WKInterfaceController {

 ...

 func startPedometerUpdates() {

 �guard let workoutStartTime = workoutStartTime

else { return }

 pedometer = CMPedometer()

 pedometer?.startUpdates(from: workoutStartTime,

 �withHandler: { [weak self] (pedometerData : CMPedometerData?,

error: Error?) in

Chapter 10 Using watchOS to Build an Apple Watch App

395

 NSLog("Received pedometer update!")

 if let error = error {

 NSLog("Error reading pedometer data”)

 return

 }

 guard let pedometerData = pedometerData,

 let distance = pedometerData.distance as?

 Double,

 let averagePace =

 pedometerData.averageActivePace as? Double,

 let steps = pedometerData.numberOfSteps as?

 Int,

 let floorsAscended =

 pedometerData.floorsAscended as? Int else {

 return

 }

 self?.workoutDistance = distance

 self?.floorsAscended = Double(floorsAscended)

 self?.workoutSteps = Double(steps)

 self?.averagePace = averagePace

 })

 }

 func startActivityUpdates() {

 motionManager = CMMotionActivityManager()

 motionManager?.startActivityUpdates(to:

 OperationQueue.main, withHandler: { [weak self]

 (activity : CMMotionActivity?) in

 guard let activity = activity else {

 return

 }

 if activity.walking {

 self?.currentWorkoutType = WorkoutType.walking

Chapter 10 Using watchOS to Build an Apple Watch App

396

 } else if activity.running {

 self?.currentWorkoutType = WorkoutType.running

 } else if activity.cycling {

 self?.currentWorkoutType =

 WorkoutType.bicycling

 } else if activity.stationary {

 self?.currentWorkoutType =

 WorkoutType.stationary

 } else {

 self?.currentWorkoutType = WorkoutType.unknown

 }

 })

 }

 func startAltimeterUpdates() {

 altimeter = CMAltimeter()

 altimeter?.startRelativeAltitudeUpdates(to:

 OperationQueue.main, withHandler: { [weak self]

 (altitudeData : CMAltitudeData?, error: Error?) in

 if let error = error {

 NSLog("Error reading altimeter data")

 return

 }

 guard let altitudeData = altitudeData,

 let relativeAltitude =

 altitudeData.relativeAltitude as? Double else {

 return

 }

 self?.workoutAltitude = relativeAltitude

 })

 }

 func requestLocationPermission() {

 if CLLocationManager.locationServicesEnabled() {

Chapter 10 Using watchOS to Build an Apple Watch App

397

 locationManager.desiredAccuracy =

 kCLLocationAccuracyNearestTenMeters

 locationManager.distanceFilter = 10.0

 locationManager.allowsBackgroundLocationUpdates =

 true

 locationManager.delegate = self

 switch(CLLocationManager.authorizationStatus()) {

 case .notDetermined:

 locationManager.requestWhenInUseAuthorization()

 case .authorizedWhenInUse :

 requestAlwaysPermission()

 case .authorizedAlways:

 resetWorkoutData()

 startWorkout()

 default:

 NSLog("Unable to request location")

 }

 } else {

 NSLog("Unable to init location")

 }

 }

 func requestAlwaysPermission() {

 if let isConfigured =

 UserDefaults.standard.value(forKey:

 "isConfigured") as? Bool, isConfigured == true {

 startWorkout()

 } else {

 locationManager.requestAlwaysAuthorization()

 }

 }

}

Chapter 10 Using watchOS to Build an Apple Watch App

398

Finally, to complete the setup process, you must extend the Record Interface

Controller to implement the CLLocationManagerDelegate protocol. As shown in

Listing 10-11, you can port this over directly from the iOS app, with the exception of the

pause/resume delegate methods, which are not available on watchOS.

Listing 10-11.  Adding Support for the CLLocationManagerDelegate Protocol to

the RecordInterfaceController Class

class RecordInterfaceController: WKInterfaceController {

 ...

}

extension RecordInterfaceController : CLLocationManagerDelegate {

 func locationManager(_ manager: CLLocationManager,

 didChangeAuthorization status: CLAuthorizationStatus) {

 switch status {

 case .authorizedWhenInUse:

 requestAlwaysPermission()

 case .authorizedAlways:

 resetWorkoutData()

 startWorkout()

 case .denied:

 NSLog("location permission denied")

 default:

 NSLog("Unhandled Location Manager Status:

 \(status)")

 }

 }

 func locationManager(_ manager: CLLocationManager,

 didUpdateLocations locations: [CLLocation]) {

 guard let mostRecentLocation = locations.last else {

 NSLog("Unable to read most recent location")

 return

 }

Chapter 10 Using watchOS to Build an Apple Watch App

399

 lastSavedLocation = mostRecentLocation

 NSLog("Most recent location: \(String(describing:

 mostRecentLocation))")

 WorkoutDataManager.sharedManager.addLocation(coordinate:

 mostRecentLocation.coordinate)

 }

}

To test the application, select the iPhone + Apple Watch simulator or your iPhone +

Apple Watch and attempt to run the IOTFitWatch target. The first time you run the Apple

Watch target, you will be prompted to open the IOTFit app on your iPhone, to accept

the Health, Motion, and Location permissions, as shown in Figure 10-28. Press the Start

button in the IOTFit app for iOS, to request these permissions. Although the app can

run without being paired to the phone for most of its functions, accepting permissions

requests on the phone is still a limitation of watchOS.

Chapter 10 Using watchOS to Build an Apple Watch App

400

After you have accepted all of the permissions, you can press the Close button on the

Apple Watch app to return to the Workout History Interface Controller. Now, when you

present the Record Workout Interface Controller from the context menu, you will be able

to start and stop a workout via the user interface.

Figure 10-28.  Permission request dialog boxes for an Apple Watch app

Chapter 10 Using watchOS to Build an Apple Watch App

401

�Using HealthKit to Populate the Workout
History Table
To complete the core functionality of the IOTFitWatch app, you must populate the

Workout History Interface Controller with data on the user’s past workouts. In the

same manner as the Record Workout Interface Controller, you can leverage code

from the IOTFit iOS app, to help with you with this task. In the iOS app, the Workout

History was managed by the WorkoutTableViewController class. Looking at this

class, you will remember that you fetched by the data for the table view by calling the

loadWorkoutsFromHealthKit() method on the shared Workout Data Manager, which

queried HealthKit for all the workouts the user saved on their device. Because you

successfully set up HealthKit permission and imported the Workout Data Manager into

the IOTFitWatch target in the last section, you can leverage them to load the table view

data here.

To begin, port over the logic for loading the table. In the IOTFit iOS app, the data

for the Workout Table View Controller was refreshed whenever the view controller

was presented, via the viewWillAppear(animated:) method. In watchOS, the parallel

to this method is the willActivate() method. As shown in Listing 10-12, expand

the InterfaceController class to fetch data every time it becomes active. The

WKInterfaceTable class does not define a protocol for initializing its data, so include a

stub method for refreshing the table view’s data.

Listing 10-12.  Fetching Data When the Workout History Interface Controller

Becomes Active (InterfaceController.swift)

class InterfaceController: WKInterfaceController {

 @IBOutlet var workoutTable: WKInterfaceTable?

 var workouts : [Workout]?

 let dateFormatter = DateFormatter()

 override func awake(withContext context: Any?) {

 super.awake(withContext: context)

 // Configure interface objects here.

 dateFormatter.dateStyle = .medium

 }

Chapter 10 Using watchOS to Build an Apple Watch App

402

 override func willActivate() {

 // This method is called when watch view

 // controller is about to be visible to user

 super.willActivate()

 WorkoutDataManager.sharedManager.

 loadWorkoutsFromHealthKit { [weak self]

 (fetchedWorkouts: [Workout]?) in

 if let fetchedWorkouts = fetchedWorkouts {

 self?.workouts = fetchedWorkouts

 DispatchQueue.main.async {

 self?.refreshTable()

 }

 }

 }

 }

 func refreshTable() {

 //TODO: build table here

 }

}

There are three primary tasks required to set up a table view in watchOS: specify the

number of rows in the table, looking up cells by their identifier string, and initializing

the discovered cells. In Listing 10-13, I have expanded the refreshTable() method to

include this logic. Pay special attention to use the exact same identifier string for the row

controller that you used in the storyboard.

Listing 10-13.  Fetching Data When the Workout History Table View

(InterfaceController.swift)

class InterfaceController: WKInterfaceController {

 ...

 func refreshTable() {

 guard let workouts = workouts else { return }

 workoutTable?.setNumberOfRows(workouts.count,

 withRowType: "WorkoutRow")

Chapter 10 Using watchOS to Build an Apple Watch App

403

 for index in 0..<workouts.count {

 guard let row = workoutTable?.rowController(at:

 index) as? WorkoutRowController else { return }

 let selectedWorkout = workouts[index]

 let dateString = dateFormatter.string(from:

 selectedWorkout.startTime)

 let durationString =

 WorkoutDataManager.stringFromTime(timeInterval:

 selectedWorkout.duration)

 let detailText = String(format: "%.0f m | %@",

 arguments: [selectedWorkout.distance,

 durationString])

 row.dateLabel?.setText(dateString)

 row.durationLabel?.setText(detailText)

 }

 }

}

To add the icons for the app, import FontAwesome.swift (https://github.com/

thii/FontAwesome.swift) by dragging and dropping its Swift and font (.otf) files

into the project, just as you did in the tvOS project in Chapter 9. After copying the

files into the project, you must change the file ownership to expose it to watchOS

correctly. For the font files, make sure that they are part of all three targets (IOTFit,

IOTFitWatch, and IOTFitWatch Extension). As mentioned earlier, this change is

required, because watchOS uses the Watch App target to store static files. Among the

Swift files, remove the UIView subclasses from the IOTFitWatch Extension target,

including FontAwesomeBarButtonItem.swift, FontAwesomeTabBarItem.swift, and

FontAwesomeSegmentedControl.swift. After making these changes, the IOTFitWatch

app should now compile again.

To set the image for each row, you can adapt the logic from the IOTHomeTV app:

map the workout type to a Font Awesome icon name and then use that name to create

a UIImage object. Just as with the IOTHomeTV app, use the official search page for Font

Awesome to find the symbol names: www.fontawesome.com/icons?d=gallery&m=free.

In Listing 10-14, I have updated the refreshTable() method with this logic.

Chapter 10 Using watchOS to Build an Apple Watch App

https://github.com/thii/FontAwesome.swift
https://github.com/thii/FontAwesome.swift
http://www.fontawesome.com/icons?d=gallery&m=free

404

Listing 10-14.  Fetching Data When the Workout History Table View

(InterfaceController.swift)

class InterfaceController: WKInterfaceController {

 ...

 func refreshTable() {

 guard let workouts = workouts else { return }

 workoutTable?.setNumberOfRows(workouts.count,

 withRowType: "WorkoutRow")

 for index in 0..<workouts.count {

 guard let row =

 workoutTable?.rowController(at:

 index) as? WorkoutRowController

 else { return }

 ...

 row.dateLabel?.setText(dateString)

 row.durationLabel?.setText(detailText)

 let icon: FontAwesome

 switch selectedWorkout.workoutType {

 case WorkoutType.walking:

 icon = FontAwesome.walking

 case WorkoutType.bicycling:

 icon = FontAwesome.bicycle

 case WorkoutType.automotive:

 icon = FontAwesome.car

 default:

 icon = FontAwesome.dumbbell

 }

 let faImage = UIImage.fontAwesomeIcon(name: icon,

 style: .solid, textColor: UIColor.white, size:

 CGSize(width: 50, height: 50))

 row.icon?.setImage(faImage)

 }

}

Chapter 10 Using watchOS to Build an Apple Watch App

405

To test that the Workout History Interface Controller is now populated with data

from HealthKit, run the app in the iPhone + Apple Watch Simulator or on your Apple

Watch hardware. The iOS and Apple Watch apps should now both show records for the

sample workouts you generated while testing the Record Workout Interface Controller,

as shown in Figure 10-29.

Figure 10-29.  Workout History screens on both apps, including populated data

�Summary
In this chapter, you learned how to take advantage of watchOS to build an Apple Watch

version of the IOTFit app, which was able to share code and workout data with the

original iOS version of the app. In some places, the setup process for the Apple Watch

app was more complicated than the iOS version, for example, putting together the user

interface using stack views only. However, other parts of the watchOS app, like creating

the table view, used stripped down versions of their iOS counterparts and were easier to

Chapter 10 Using watchOS to Build an Apple Watch App

406

implement than their iOS counterparts. Much like the Apple TV project in Chapter 9, you

were able to take advantage of running frameworks natively on the hardware and were

able to make an Apple Watch app with all of the same workout tracking capabilities as

the iOS version.

In keeping with the theme of the book, this was a perfect example of an IoT app,

because users were able to use a “thing” (the Apple Watch) as another way of providing

data for a bigger system. In this chapter, the large system you were able to take advantage

of was HealthKit, which Apple automatically secures and syncs between devices for users.

Chapter 10 Using watchOS to Build an Apple Watch App

407
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3_11

CHAPTER 11

Using Face ID, Touch ID,
and Keychain Services
to Secure Your Apps
As you have learned so far in this book, Internet of Things (IoT) technologies can be used

to expand the conveniences in people’s lives. Compared to a few years ago, these devices

have increased in their capabilities, as have the barriers of entry to creating a device.

In this book alone, you have already taken advantage of an Arduino, Raspberry Pi, and

iPhone as IoT sensors.

However, as they say, new medicines come at the cost of new side effects. For the

IoT, the most unfortunate, unexpected side effect of its adoption has been an increase

in security exploits, originating from improperly secured IoT devices. As mentioned

throughout the book, much of the popularity of IoT has been powered by the availability

of affordable system-on-a-chip (SoC) solutions, such as the ESP32 you used in earlier

chapters. Unfortunately, when a widely used system’s design shortcomings are exploited,

its high adoption rate can lead to devastating damage.

This was precisely what has occurred with the Mirai botnet, which exploited a

known set of commonly used default passwords on IoT devices to automatically install,

replicate, and run a program to use infected devices for a coordinated attack on target

systems, otherwise known as a distributed denial-of-service (DDoS) attack. Having

affected more than 600,000 devices, in 2017 it took down several Domain Name System

(DNS) servers, which form the backbone of routing Internet traffic, and was cited as

408

the largest DDoS attack publicly recorded.1 As of this writing (late 2018), the botnet has

continued to increase in sophistication and find new targets.

In Chapter 8, when you learned how to build a web server using a Raspberry Pi,

one of the methods you learned for increasing security on a device was adding an SSL

certificate to the web server, so that all of the data transferred between the devices

and external clients (such as the iOS app) could be secured via HTTPS. Although not a

perfect or complete solution, this was one step in making it harder for your users’ data to

be intercepted via simple traffic sniffing (using a program to monitor packets transferred

on a network). For a complete solution, you should always try to research all of the paths

to accessing an administrator account on a system and secure them, including changing

passwords, using two-factor authentication, adding input validation to your web

application APIs, and installing security patches and helper utilities to prevent known

attacks.

In this chapter, you will learn three techniques on the iOS app side that you can

use to help prevent your users’ information from being leaked or stolen from their

devices: Face ID, Touch ID, and Keychain Services. As an iPhone user, you may already

be familiar with the first two services from your Home screen. They allow you to unlock

your Home screen using a 3D surface scan of your face (on iPhone X and newer versions)

or using a fingerprint (on iPhone 5S–iPhone 8 Plus, and iPad Air 2 and later versions).

However, you may not be aware that you can use Keychain Services in your own apps to

restrict access to parts of your application. This is a feature popular in many password

repository applications (such as 1Password). Similarly, Keychain Services allows you to

create an encrypted database for your app’s data, which can only be accessed while your

app is active and in the foreground on the user’s devices. Keychain Services is Apple’s

recommended method for storing user passwords, API keys, and SSL certificates, which

could be exploited greatly, if they were leaked from your app.

�Learning Objectives
In this chapter, you will learn how to use Face ID, Touch ID, and Keychain Services to

secure data, by expanding the IOTFit application from earlier chapters to use these APIs,

to restrict access to the application to only the owner of the iOS device or via a password

1�Elie Bursztein, “Inside the infamous Mirai IoT Botnet,” Cloudflare, https://blog.cloudflare.com/
inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/, September 8, 2018.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

409

stored in the keychain. By implementing these improvements to the IOTFit app, you will

learn the following key concepts for IoT application development:

•	 Creating a lock screen user interface

•	 Determining Face ID and Touch ID availability on a device

•	 Using Face ID and Touch ID to restrict access to an application

•	 Storing and retrieving values from the iOS keychain

•	 Detecting when an app returns from the background

The workout data stored in the HealthKit store is encrypted and managed by the

Health app on the device; however, you can add further security by disabling the portion

of the WorkoutDataManager class that was used to backup data to a .plist file in the

Documents folder for the application. Although the data in an application’s bundle is not

available to other applications, it is possible to extract this data via backup applications

on a Mac or PC.

As with previous projects in this book, the source code for the completed project is

available from the GitHub page for this book (https://github.com/Apress/program-

internet-of-things-w-swift-for-ios). If you would like to review how the health

features of the IOTFit app were created, please refer to Chapters 2–4. If you would like to

review how HTTPS was added to a web server application, please refer to Chapter 8.

�Setting Up the Project
To get started, create a duplicate of the IOTFit app from Chapter 10, either by copying

your old project or downloading a copy from the GitHub repository for this book. As

Face ID is easier to access unintentionally than Touch ID or typing a password into an

iPhone, Apple requires permission from the user to enable it in your app. As in the case

of HealthKit (Chapter 4), this permission prompt will appear the first time your users try

to use Face ID in the app. Another similarity to HealthKit is that the permission prompt

is enabled by defining a message string for it in your app’s Info.plist file.

As shown in Figure 11-1, to set the Face ID permission prompt message for your

app, open the Info.plist file for the IOTFit target in the Project Navigator, click the (+)

button in any column, and add a new entry for the Privacy – Face ID Usage Description

key-value pair. In my implementation, I used the message, “IOTFit would like to use Face

ID to secure your workout data.”

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

https://github.com/Apress/program-internet-of-things-w-swift-for-ios
https://github.com/Apress/program-internet-of-things-w-swift-for-ios

410

�Creating a Lock Screen User Interface
When I was thinking about how to design a project for demonstrating Face ID, the best

example that popped into my head was the lock screen for the 1Password password

manager app. As shown in Figure 11-2, before you can access the user interface for the

app, 1Password asks you to type in a password or press a Face ID button to unlock the

app with Face ID. When verification is successful, the lock screen performs an animation

that mimics a door opening, revealing the main user interface when it is complete.

Figure 11-1.  Adding a message string for the Face ID permission prompt

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

411

Although the full animation is a bit beyond the scope of this project, I thought the

idea of showing a full-screen overlay to block sensitive features would be universally

appropriate. In the IOTFit app, the most sensitive pieces of data are the user’s past

location and workout data. As shown in Figure 11-3, I have expanded the wireframes for

the app to show a simple lock screen over the Workout History and Last Run screens. For

the sake of simplicity, you will reveal the lock screen whenever the screens are navigated

to within the Tab bar and when the app becomes active.

Figure 11-2.  Lock screen for 1Password password manager

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

412

Figure 11-3.  Design wireframes for the IOTFit app, including lock screen

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

413

As with 1Password, I have included a button to initiate Face ID (or Touch ID), and a

password text field as a backup authentication method. In the app, by detecting which

sensor is available on the device, you can update the text to show Touch ID or Face ID. As

opposed to 1Password, I only applied the lock screen over the screens that display data,

as the primary purpose of the app is recording workouts, and it is a good design practice

to reduce the friction leading up to this activity.

To prevent the lock screen from blocking access to the Tab bar, I suggest

implementing the lock screen as a UIView that will be displayed over the contents of

the Workout History and Last Run view controllers. After authentication is successful,

you will use a simple animation to dismiss the view and present the data. To begin this

process, you must create a new UIView subclass and NIB (.xib) file to represent the

lock screen.

As with previous examples in the book, create the UIView subclass by going to the

File menu and selecting New ➤ File… . From the template picker that appears, select

iOS ➤ Cocoa Touch Class. As shown in Figure 11-4, create a subclass of UIView named

SecurityView.

Figure 11-4.  Adding a UIView subclass to the project

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

414

Because UIView subclasses can be used without modification in Objective-C

classes, the first time you add a new one to a Swift project, you will be asked to add

an Objective-C bridging header to the project, as shown in Figure 11-5. Select Create

Bridging Header to create the bridging header and continue with the setup process.

Figure 11-5.  Prompt for adding an Objective-C bridging header to a Swift project

Next, you must create a NIB (.xib) file to manage the visual layout of the

SecurityView class. While previous examples in the book managed all of these user

interfaces on a single storyboard file, when you are creating a view that will be reused

multiple places in an app, the common practice in the industry is to manage the single

view in its own NIB file. NIBs are the original visual layout tool for Interface Builder and

are intended to manage single views or view controllers, as opposed to storyboards,

which are designed to manage common segues between multiple view controllers. To

create a new NIB, open the File menu again and select New ➤ File... one more time.

This time, scroll further down in the iOS template picker, as shown in Figure 11-6, and

select View. When asked to name the file, use the name SecurityView.xib, to match the

UIView subclass.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

415

After clicking the NIB file in the Project Navigator, you should see a single blank

view inside Interface Builder, similar to when you created a new storyboard file. Using

Table 11-1 as a guide, lay out the user interface, paying particular attention to the

UITextField for password entry and the UIButton for presenting Face ID.

Figure 11-6.  Selecting a View NIB from the Xcode template picker

Table 11-1.  Styling for Security View User Interface Elements

Element Name Text Style Align Relative to Top
Margin

Bottom
Margin

Left
Margin

Right
Margin

“Verification Required”

label

Title 1 View 60 40 40 40

“Description” label Footnote “Verification” label 40 40 40 40

“Password” text field Body “Description” label 40 8 80 80

“or” label Footnote “Password” text field 8 8 80 80

“Use Face ID” button Body “or” label 8 — 80 80

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

416

The NIB file for your completed security view should resemble the screenshot in

Figure 11-7, after applying these styles. In the same manner as in previous chapters, your

next step should be to define the SecurityView class, including its properties.

Switch back to the SecurityView.swift class and use my example in Listing 11-1

as a starting point for your implementation. Pay careful attention to declare the button

and text field with the @IBOutlet keyword and the button handlers with the @IBAction

keyword, so that both will be compatible with Interface Builder.

Figure 11-7.  Final layout for the security view

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

417

Listing 11-1.  Initial Definition for the SecurityView Class

import UIKit

class SecurityView: UIView {

 @IBOutlet var unlockButton: UIButton?

 @IBOutlet var passwordTextField: UITextField?

 @IBAction func validatePassword(sender:

 UITextField) {

 //password handling will go here

 }

 @IBAction func validateBiometrics(sender:

 UIButton) {

 //biometrics handling will go here

 }

}

To round out the SecurityView class, you will have to connect its outlets to the

parent class. As with previous examples, you can find detailed instructions for this

process in Chapter 1. In particular, do not forget to

•	 Set the SecurityView class as the parent class in the Identity

Inspector (the third tab from the left).

•	 Connect the unlockButton and passwordTextField on the NIB file

to their respective properties in the class (using the Connections

Inspector).

•	 Connect the passwordTextField’s delegate property to the

SecurityView class (so you can handle its events).

•	 Connect the unlockButton’s Touch Up Inside event to the

validateBiometrics(sender:) method.

After making all of the connections, the Connections Inspector for the security view

should resemble the screenshot in Figure 11-8.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

418

For the final user interface setup tasks, you must display the security view when

the WorkoutMapViewController and WorkoutTableViewController classes become

visible. To begin, you must load the security view from the NIB file and make it available

to the calling class. Unlike the Main storyboard, which is loaded as part of the app’s

initialization process, to load a view from a NIB file, you must attempt to load the file

via its bundle path (its relative path in the .app bundle) and verify that the contained

class matches your expectations. In Listing 11-2, I have implemented this via a

setupSecurityView() method, in which I use the Bundle class to load this view and then

use the main view for calling the view controller to set the size and destination for the

security view.

Figure 11-8.  Connections Inspector for completed security view

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

419

Listing 11-2.  Adding the Security View to a View Controller

(WorkoutTableViewController.swift)

class WorkoutTableViewController: UITableViewController {

 ...

 var securityView: SecurityView?

 override func viewDidLoad() {

 super.viewDidLoad()

 ...

 setupSecurityView()

 }

 ...

 func setupSecurityView() {

 guard let securityNibItems =

 Bundle.main.loadNibNamed("SecurityView", owner:

 nil, options: nil),

 let securityView = securityNibItems.first as?

 SecurityView else { return }

 securityView.frame = view.frame

 securityView.autoresizingMask = [.flexibleWidth,

 .flexibleHeight]

 self.securityView = securityView

 view.addSubview(securityView)

 }

}

For the sake of brevity, my code listings for this chapter will be for the

WorkoutTableViewController class only, but all of the same logic can be copied directly

into the WorkoutMapViewController class, with a few exceptions, which I will point out

throughout the chapter.

To make the security view visible to the user, you must bring it to the top of the view

hierarchy when the WorkoutTableViewController or WorkoutMapViewController

classes become active. In Listing 11-3, I perform this step via the showSecurityView()

method, which is called from the viewWillAppear() method.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

420

Listing 11-3.  Presenting the Security View When a Tab Becomes Active

(WorkoutTableViewController.swift)

class WorkoutTableViewController: UITableViewController {

 ...

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 ...

 showSecurityView()

 }

 ...

 func showSecurityView() {

 if let securityView = self.securityView,

 securityView.isHidden == true {

 tableView.reloadData()

 securityView.alpha = 1.0

 securityView.isHidden = false

 view.bringSubview(toFront: securityView)

 }

 }

}

As the name view hierarchy suggests, views are presented as a stack, with the

topmost view being the one that the user sees. When you built your user interfaces in

Interface Builder, you simply added child views to the main view. As all of the child

views were on the same presentation level (z-order), there was no need to manage

view visibility. In the case of the security view, it should be presented over every

other view in its calling class, to obstruct the user interface during the locked state.

I was able to perform this operation in the showSecurityView() method. I used the

bringSubview(toFront:) method on the main view. To avoid side effects, I also used the

isHidden property on the security view, to prevent the view from being presented twice,

if it was already active.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

421

�Querying for Sensor Availability
In the same manner you used to implement the other hardware-based APIs in this

book, before attempting to use Touch ID or Face ID, you must first check if either is

available on the device and that your app has access to them. To query this information,

and eventually access the sensor, you will have to establish a security context for the

app using the LocalAuthentication framework. To maintain its device-based security

model, Apple performs all encryption on the iPhone via a discrete microprocessor called

the Security Enclave. The LocalAuthentication framework allows you to access the

Security Enclave through sessions referred to as contexts, in which you can query the

availability of a security policy (for example, authentication via a biometric sensor) and

attempt to request validation through that security policy. At no time does your app have

access to the user’s personal information or encryption keys, maintaining the security

of the device. Success or failure is returned through a Boolean return value and an error

object, which will be set to a non-nil value describing the failure reason.

You can establish the security context for the security view using the LAContext

class from the LocalAuthentication framework, and you can perform the availability

query using the canEvaluatePolicy(policy:error:) method on the LAContext object.

In Listing 11-4, I have expanded the SecurityView class to include this functionality by

maintaining the context and authentication type as properties that can be reused when

the authentication request is made later.

Listing 11-4.  Detecting the Availability of Biometrics Using a Context

(SecurityView.swift)

import UIKit

import LocalAuthentication

class SecurityView: UIView {

 ...

 let context = LAContext()

 override func awakeFromNib() {

 super.awakeFromNib()

 commonInit()

 }

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

422

 private func commonInit() {

 let error: ErrorPointer = nil

 if context.canEvaluatePolicy(

 .deviceOwnerAuthenticationWithBiometrics, error: error) {

 //success!

 } else {

 NSLog("Biometrics unavailable on device")

 unlockButton?.isEnabled = false

 }

 }

}

As with the viewDidLoad() method on a view controller, a view has an

awakeFromNib() method that is called after it is loaded from a NIB file. As of this writing,

Apple’s primary security policies are Biometrics and Device Passcode or Biometrics

only. Because, the app will use its own passcode, I have chosen to skip the device

passcode option for the IOTFit app.

Although the policy query does not return information on the sensor type, after you

have determined that the app has access to biometrics, you can use the biometryType

property of the LAContext object to determine this information. In Listing 11-5, I have

expanded the commonInit() method to check for this information and update the title of

the Use Face ID button to properly reflect the sensor type. If biometrics are unavailable,

I disable the button, so that the user cannot press it by accident.

Listing 11-5.  Accessing the Sensor Type from a Context (SecurityView.swift)

import UIKit

import LocalAuthentication

enum AuthenticationType : String {

 case faceID

 case touchID

 case password

 case notAvailable

}

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

423

class SecurityView: UIView {

 ...

 var authenticationType: AuthenticationType?

 ...

 private func commonInit() {

 let error: ErrorPointer = nil

 if context.canEvaluatePolicy(

 .deviceOwnerAuthenticationWithBiometrics,

 error: error) {

 switch (context.biometryType) {

 case LABiometryType.faceID:

 authenticationType = AuthenticationType.faceID

 unlockButton?.setTitle("Use Face ID", for:

 .normal)

 case LABiometryType.touchID:

 authenticationType = AuthenticationType.touchID

 unlockButton?.setTitle("Use Touch ID", for:

 .normal)

 default:

 authenticationType =

 AuthenticationType.notAvailable

 unlockButton?.isEnabled = false

 }

 } else {

 NSLog("Biometrics unavailable on device")

 unlockButton?.isEnabled = false

 }

 }

}

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

424

�Using Face ID or Touch ID to Restrict Access
to Features
Now that you have established the availability of biometrics on the device and

determined the sensor type, you can use this information to make the authentication

request via the context property on the SecurityView class. To make this call, you will

use the evaluatePolicy(policy:localizedReason:) method on the LAContext object.

As described earlier, in keeping with Apple’s security restrictions, it will return a Boolean

value indicating success or failure and a non-null Error object, if the request failed. In

Listing 11-6, I make this call from the validateBiometrics(sender:) method.

Listing 11-6.  Requesting Biometric Authorization (SecurityView.swift)

class SecurityView: UIView {

 ...

 @IBAction func validateBiometrics(sender: UIButton) {

 passwordTextField?.resignFirstResponder()

 let permissionString = "Unlock with biometrics to

 reveal workout data"

 context.evaluatePolicy(

 .deviceOwnerAuthenticationWithBiometrics,

 localizedReason: permissionString) { [weak self]

 (success: Bool, error: Error?) in

 guard let authenticationType =

 self?.authenticationType else { return }

 if success == true {

 self?.delegate?.didFinishWithAuthenticationType(

 authenticationType)

 } else {

 self?.delegate?.didFinishWithError(description:

 error.debugDescription)

 }

 }

 }

}

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

425

In addition to making calls to the Security Enclave for you, the LocalAuthorization

context also provides the initial permission pop-up to enable Face ID for your app

and the pop-up that appears when you make the preceding authorization request.

Unfortunately, it is up to you, as the developer, to handle the result yourself. One

limitation of the view-based implementation is that views exist outside of view

controllers, so by default, you will not be able to present any user interface updates

outside of the view. To resolve this, you can establish a protocol to pass along

information back to the presenting view controller when the security request has

completed with success or failure.

In Listing 11-7, I have defined this protocol as SecurityViewDelegate, to reflect that

classes that implement it are delegates of the protocol. Its methods are didFinishWithAu

thenticationType(type:), which is called when the request completes successfully, and

didFinishWithError(description:), which is called in case of a failure. This is similar

to the design of the UIImagePickerControllerDelegate protocol used for the iPhone’s

image picker and allows success and failure to be treated as discrete events.

Listing 11-7.  Defining a Protocol to Pass Messages from the Security View

(SecurityView.swift)

import UIKit

import LocalAuthentication

...

protocol SecurityViewDelegate {

 func didFinishWithAuthenticationType(_ type: AuthenticationType)

 func didFinishWithError(description: String)

}

class SecurityView: UIView {

 ...

 var delegate: SecurityViewDelegate?

 ...

 @IBAction func validateBiometrics(sender:

 UIButton) {

 ...

 context.evaluatePolicy(

 .deviceOwnerAuthenticationWithBiometrics,

 localizedReason: permissionString) {

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

426

 [weak self] (success: Bool, error:

 Error?) in

 ...

 if success == true {

 self?.delegate?.didFinishWithAuthenticationType(

 authenticationType)

 } else {

 self?.delegate?.didFinishWithError(description:

 error.debugDescription)

 }

 }

 }

}

Messages are passed back to the presenting view controller via the delegate

property on the security view. It is defined as an optional value to prevent crashes if the

developer did not choose to implement a delegate.

The final steps to complete the authentication process are to now declare the

WorkoutTableViewController and WorkoutMapViewController classes as delegates

that implement the SecurityViewDelegate protocol and to implement the methods

that will be called when the success or failure events are triggered. In Listing 11-8,

I implemented this by setting the delegate property when presenting the security view

from the WorkoutTableViewController class. For the success event, I dismissed the

security view and for the failure event, and I presented a UIAlertController with the

error description over all other views in the view controller. To implement a smoother

transition, such as 1Password’s unlock animation, I used the UIView class’s animate()

method to animate the alpha level (transparency) of the security view fading to zero.

Listing 11-8.  Implementing the SecurityViewDelegate Protocol to Receive

Messages from the Security View (WorkoutTableViewController.swift)

class WorkoutTableViewController: UITableViewController {

 ...

 func setupSecurityView() {

 ...

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

427

 securityView.delegate = self

 ...

 }

}

extension WorkoutTableViewController: SecurityViewDelegate {

 func didFinishWithError(description: String) {

 let alert = UIAlertController(title: "Authentication

 Error", message: description, preferredStyle:

 .alert)

 let alertAction = UIAlertAction(title: "OK", style:

 .default, handler: nil)

 alert.addAction(alertAction)

 present(alert, animated: true)

 }

 func didFinishWithAuthenticationType(_ type:

 AuthenticationType) {

 UIView.animate(withDuration: 0.3, animations: { [weak

 self] in

 DispatchQueue.main.async {

 self?.securityView?.alpha = 0.0

 self?.securityView?.isHidden = true

 self?.securityView?.passwordTextField?.text =

 nil

 guard let securityView = self?.securityView

 else { return }

 self?.view.sendSubview(toBack: securityView)

 }

 })

 }

}

When I was implementing this application, I noticed that the

UITableViewController class expects to be the primary view in the hierarchy and can

sometimes display under the views that are presented over it. To alleviate this problem,

I modified the UITableViewDataSource delegate methods shown in Listing 11-9 to show

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

428

data only from HealthKit when the security view is not active. I made this call after every

call that affected the presentation state of the security view.

Listing 11-9.  Showing or Hiding Table View Data Based on the State of the

Security View (WorkoutTableViewController.swift)

class WorkoutTableViewController: UITableViewController {

 ...

 // MARK: - Table view data source

 ...

 override func tableView(_ tableView: UITableView,

 numberOfRowsInSection section: Int) -> Int {

 guard let securityView = securityView else { return 0 }

 if securityView.isHidden {

 return self.workouts?.count ?? 0

 } else {

 return 0

 }

 }

 ...

 func showSecurityView() {

 if let securityView = self.securityView,

 securityView.isHidden == true {

 tableView.reloadData()

 securityView.alpha = 1.0

 securityView.isHidden = false

 view.bringSubview(toFront: securityView)

 }

 }

}

extension WorkoutTableViewCon troller: SecurityViewDelegate {

 ...

 func didFinishWithAuthenticationType(_ type:

 AuthenticationType) {

 UIView.animate(withDuration: 0.3, animations:

 { [weak self] in

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

429

 DispatchQueue.main.async {

 self?.securityView?.alpha = 0.0

 ...

 self?.view.sendSubview(toBack:

 securityView)

 self?.tableView.reloadData()

 }

 })

 }

}

If you attempt to test the application now, the first time you click on the Use Face ID

button in either the Workout History or Last Run screens, you will be presented with the

system dialog to accept Face ID authentication, then the Face ID scan dialog. After you

have validated, the security view will disappear, as shown in Figure 11-9.

Figure 11-9.  Unlocking the Last Run screen using Face ID

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

430

�Using Keychain Services to Secure Data
Now that the app can authorize users via biometrics, you must implement the password

field as a backup, in case the user is having trouble with Face ID or Touch ID. As

mentioned at the beginning of the chapter, you will store the password in the device’s

Secure Enclave via Keychain Services. This data is only unencrypted and available when

your app is active and in the foreground.

To begin, you must implement the UITextFieldDelegate protocol, to handle events

from the password text field. Although the protocol defines several events, such as when

editing begins or the entered text changes, the event you will want to observe is when the

Return key is pressed on the onscreen keyboard. In Listing 11-10, I have implemented

this event in the security view, by implementing the textFieldShouldReturn()

delegate method. Although it is intended for enabling or disabling the Return key, many

developers augment this by calling other methods before this one completes. For the

IOTFit app, when the Return key is pressed, you should attempt to validate the password

and clear the text field.

Listing 11-10.  Performing an Action for a Text Field When the Return Key Is

Pressed (SecurityView.swift)

extension SecurityView: UITextFieldDelegate {

 func textFieldShouldReturn(_ textField: UITextField) ->

 Bool {

 textField.resignFirstResponder()

 validatePassword(sender: textField)

 return true

 }

}

Next, you must validate the password. Unfortunately, the implementation of the

application so far has not prompted the user for an initial password yet nor stored it

anywhere. You can perform this operation in a similar manner to accessing values

from the UserDefaults for your app, namely by checking if a key-value pair exists in

the Secure Enclave and setting it if it does not. When using Keychain Services, this is

accomplished by attempting to extract values based on a search query.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

431

Despite its name, a Keychain Services search query is closer to a predicate than a

simple key-value pair lookup. To perform a search query, you must specify the type of

value you are trying to interrogate (for example, web site password, general password,

SSH secret), the number of matches you want to investigate, whether you want to

access the data from the query, and identifying information for the data (such as the

app name). For the IOTFit app, the data you will want to store is a general password,

identified by the app’s name, in place of an account name. In Listing 11-11, I have

expanded the SecurityView class to make this query, via a checkPasswordExistence()

method. Because the presenting view controller will have to present the user interface

for requesting the password, I have expanded the SecurityViewDelegate protocol to

include new methods reflecting the password state of the application.

Listing 11-11.  Querying If a Password Exists in the Secure Enclave

(SecurityView.swift)

protocol SecurityViewDelegate {

 func didFinishWithAuthenticationType(_ type:

 AuthenticationType)

 func didFinishWithError(description: String)

 func needsInitialPassword()

}

class SecurityView: UIView {

 ...

 let ACCOUNT_NAME: String = "IOTFit"

 ...

 func checkPasswordExistence() {

 guard let accessControl = accessControl else { return }

 let query: [String: Any] = [kSecClass as String:

 kSecClassGenericPassword,

 kSecAttrAccount as String: ACCOUNT_NAME,

 kSecMatchLimit as String: kSecMatchLimitOne,

 kSecReturnAttributes as String: true,

 kSecReturnData as String: true]

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

432

 let queryStatus = SecItemCopyMatching(query as

 CFDictionary, nil)

 if queryStatus != errSecSuccess {

 delegate?.needsInitialPassword()

 } else {

 NSLog("Password has already been set")

 }

 }

}

Although it breaks the pattern of many of Apple’s other APIs, the only way to execute

the query is by attempting to perform an operation on the Keychain (copy, update, add,

or delete). Because the SecItemCopyMatching(query:result:) method does not return

an error object, you can verify the result of the operation via the OSStatus value that is

returned after performing the operation. Any value other than errSecSuccess indicates

that the operation failed. When I was debugging this application, I noticed that searching

for the error code in Google was effective in determining the failure reason. Apple uses

the OSStatus type in both iOS and OS X, so there is a wealth of information on what its

possible values represent.

Note T he terms Security Enclave and Keychain are used interchangeably on iOS,
as Keychain Services borrows its design from Keychain Services on macOS. In
macOS, the secure store is referred to colloquially as the Keychain.

Next, you must make the call to check if the passcode exists and prompt the user to

enter a password if it does not. It would make sense that before presenting the security

view, which contains a password text field, you should check if there is a password

to validate against. In my implementation, I performed this logic by adding a call to

check the password state, after presenting the security view in the showSecurityView()

methods in the WorkoutMapViewController and WorkoutTableViewController classes,

as shown in Listing 11-12.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

433

Listing 11-12.  Checking If a Password Has Been Set When Presenting the

Security View (WorkoutTableViewController.swift)

class WorkoutTableViewController:

 UITableViewController {

 ...

 func showSecurityView() {

 if let securityView = self.securityView,

 securityView.isHidden == true {

 ...

 }

 securityView?.checkPasswordExistence()

 }

}

To handle the case in which the password does not exist, you must create a method

for saving a string value to the Keychain. As mentioned earlier, all Keychain Services

operations must be executed with a query. When it comes to adding a new item to the

Keychain, the query is almost exactly like that for looking up a value, except that you

need to include the new value as binary data. In Listing 11-13, I have added this logic to

the SecurityView class via the savePassword(password:) method. Pay careful attention

to the kSecValueData key-value pair and SecItemAdd(query:result:), as they are

responsible for implementing the add value operation.

Listing 11-13.  Saving a Value to the Keychain (SecurityView.swift)

protocol SecurityViewDelegate {

 ...

 func needsInitialPassword()

 func didSavePassword(success: Bool)

}

class SecurityView: UIView {

 ...

 func savePassword(password: String) {

 guard let passwordData = password.data(using:

 String.Encoding.utf8) else { return }

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

434

 let query: [String: Any] = [kSecClass as String:

 kSecClassGenericPassword,

 kSecAttrAccount as String: ACCOUNT_NAME,

 kSecValueData as String: passwordData]

 let queryStatus = SecItemAdd(query as CFDictionary,

 nil)

 if queryStatus == errSecSuccess {

 delegate?.didSavePassword(success: true)

 } else {

 NSLog("Error saving passcode: \(queryStatus)")

 delegate?.didSavePassword(success: false)

 }

 }

}

As with checking the password status, I expanded the SecurityViewDelegate

protocol to include a method for indicating whether the password was saved successfully.

To complete the process of saving the password, implement the needsInitialPassword()

and didSavePassword(success:) methods in the WorkoutTableViewController and

WorkoutMapViewController classes, as shown in Listing 11-14. In my implementation, I

chose to present a UIAlertController with a text field to accept the new password and

logged the result of the operation to the console using NSLog().

Listing 11-14.  Prompting for a New Password (WorkoutTableViewController.

swift)

extension WorkoutTableViewController: SecurityViewDelegate {

 func needsInitialPassword() {

 let alert = UIAlertController(title: "Initial

 installation", message: "Please set a passcode for

 your data", preferredStyle: .alert)

 alert.addTextField { (textField: UITextField) in

 textField.placeholder = "Password"

 textField.isSecureTextEntry = true

 }

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

435

 let okAction = UIAlertAction(title: "OK", style:

 .default) { [weak self] (action: UIAlertAction) in

 guard let textField = alert.textFields?.first,

 let password = textField.text else { return }

 self?.securityView?.savePassword(password:

 password)

 }

 let cancelAction = UIAlertAction(title: "Cancel",

 style: .cancel, handler: nil)

 alert.addAction(okAction)

 alert.addAction(cancelAction)

 present(alert, animated: true)

 }

 func didSavePassword(success: Bool) {

 NSLog("Password save status: \(success)")

 }

 ...

 }

For the final step in the password validation process, you must implement the

validatePassword() method in the SecurityView class, which should compare the

saved password to the text that was entered into the text field on the security view. The

query for extracting the value from the Keychain is exactly like that for detecting the

presence of a value; however, after performing the copy operation, you should inspect

its result to extract the password. In Listing 11-15, I have implemented this by adding a

getSavedPassword() method to the SecurityView class.

Listing 11-15.  Validating a Password Against a Saved Value in the Keychain

(SecurityView.swift)

class SecurityView: UIView {

 ...

 private func getSavedPassword() -> String? {

 let query: [String: Any] = [kSecClass as String:

 kSecClassGenericPassword,

 kSecAttrAccount as String: ACCOUNT_NAME,

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

436

 kSecMatchLimit as String: kSecMatchLimitOne,

 kSecReturnAttributes as String: true,

 kSecReturnData as String: true]

 var keychainItemRef: CFTypeRef?

 let queryStatus = SecItemCopyMatching(query as

 CFDictionary, &keychainItemRef)

 guard queryStatus == errSecSuccess,

 let keychainItem = keychainItemRef as? [String:

 Any],

 let passwordData = keychainItem[kSecValueData as

 String] as? Data,

 let password = String(data: passwordData, encoding:

 String.Encoding.utf8)

 else { return nil }

 return password

 }

 @IBAction func validatePassword(sender: UITextField) {

 guard let input = sender.text,

 let savedPassword = getSavedPassword(),

 input == savedPassword else {

 delegate?.didFinishWithError(description:

 "Invalid password")

 return

 }

 delegate?.didFinishWithAuthenticationType(.password)

 }

 }

Just as you had to serialize strings to binary data to save them in the keychain, to use

stored values for string comparisons, you must reassemble them from binary data, using

the String(data:encoding:) constructor.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

437

�Using Biometrics or an App Password to Lock
Keychain Items
As an added bonus security feature, you can lock Keychain items even further, by

limiting them to a specific security context. For example, if you were building a password

manager, you could use this feature to make a specific set of passwords only available

via Face ID or the device’s passcode. This is used as a technique to replace building your

complete security overlay, as you did in this chapter.

To add this extra layer of security to your Keychain items, you simply have to add

a security context and access control settings to each search query. Similar to how the

LocalAuthentication framework presents the initial Face ID permission prompt for

you, it will also present the system’s biometrics or password prompts when you try to

access values using access control-enabled search queries.

For the extra security settings, you can use the same security context you used

through the SecurityView class. However, you will have to define a separate access

control policy via the SecAccessControl class. In Listing 11-16, after initializing the

SecurityView class, I specified a security policy that will keep the Keychain items

available only when the device is unlocked, and the user has validated his/her presence

via Face ID or an app-specific password.

Listing 11-16.  Adding an Access Control Policy (SecurityView.swift)

class SecurityView: UIView {

 ...

 private func commonInit() {

 let error: ErrorPointer = nil

 if context.canEvaluatePolicy(

 .deviceOwnerAuthenticationWithBiometrics,

 error: error) {

 ..

 } else {

 NSLog("Biometrics unavailable on device")

 ...

 }

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

438

 accessControl = SecAccessControlCreateWithFlags(nil,

 kSecAttrAccessibleWhenUnlocked, .userPresence,

 nil)

 }

 }

To use the access policy and context to protect the Keychain items, simply modify

the copy and add queries from before, to include the context and access control policies

for the SecurityView class, as shown in Listing 11-17.

Listing 11-17.  Using the Access Control Policy and Context in Keychain Search

Queries (SecurityView.swift)

class SecurityView: UIView {

 ...

 func checkPasswordExistence() {

 guard let accessControl = accessControl else { return }

 let query: [String: Any] = [kSecClass as

 String: kSecClassGenericPassword,

 kSecAttrAccount as String: ACCOUNT_NAME,

 kSecMatchLimit as String: kSecMatchLimitOne,

 kSecReturnAttributes as String: true,

 kSecReturnData as String: true,

 kSecAttrAccessControl as String: accessControl as Any,

 kSecUseAuthenticationContext as String: context]

 ...

 }

 func savePassword(password: String) {

 guard let accessControl = accessControl,

 let passwordData = password.data(using:

 String.Encoding.utf8) else { return }

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

439

 let query: [String: Any] = [kSecClass as

 String: kSecClassGenericPassword,

 kSecAttrAccount as String: ACCOUNT_NAME,

 kSecAttrAccessControl as String: accessControl as

 Any,

 kSecUseAuthenticationContext as String: context,

 kSecValueData as String: passwordData]

 ...

 }

 private func getSavedPassword() -> String? {

 guard let accessControl = accessControl else {

 return nil

 }

 let query: [String: Any] = [kSecClass as

 String: kSecClassGenericPassword,

 kSecAttrAccount as String: ACCOUNT_NAME,

 kSecMatchLimit as String: kSecMatchLimitOne,

 kSecReturnAttributes as String: true,

 kSecAttrAccessControl as String:

 accessControl as Any,

 kSecUseAuthenticationContext as String:

 context,

 kSecReturnData as String: true]

 ...

 return password

 }

 }

Now, if you load the IOTFit app on your device and attempt to access the Last Run or

Workout History tabs, you will be presented with an App Password dialog before the tab

loads, as shown in Figure 11-10. After entering the password, you will have a minute or

two in which to navigate between the tabs freely, before you are asked to re-validate the

app. Although the extra password prompt is a bit excessive for the IOTFit app, it may be

helpful to you in your other projects.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

440

Caution A fter setting a security policy for Keychain items, you will always be
prompted for the original security settings whenever you try to access those values
again. To reset these values, you will have to add a delete operation to your app
or reset your device. At the time of writing, Keychain items are retained, even after
an app is deleted.

Figure 11-10.  App password prompt for Access Control–protected Keychain items

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

441

�Detecting When an App Returns to the Foreground
For the final security enhancement to the IOTFit app, you will display the security view

over the Last Run and Workout History screens when the app returns to the foreground

from the background. If you use a password manager on a regular basis, you will

recognize this as one of the functions it provides to prevent your information from being

stolen after you initially unlock the app.

If you have ever looked into the AppDelegate.swift file in any of your

projects, you may have noticed applicationDidEnterBackground() and

applicationDidEnterForeground() methods, which handle when your app enters

the foreground or background. These are intended to give you an opportunity to start

or stop background tasks, such as network calls or database writes, when your app’s

state changes. One of the ways Apple saves battery power is through a scheduler that

only gives apps’ background execution times based on when they are used most often.

Unfortunately, these times can be unpredictable, and these methods give you a few

seconds of execution time to prepare or wind down your app before it gets sent to the

background, and all tasks are paused.

For the IOTFit app, however, there are no globally running tasks or objects that you

can pause from the app delegate. Instead, you must observe the state changes from the

individual view controllers. To implement this, you can use iOS’s Notification Center

to observe the UIApplicationWillResignActive event within the Workout History

and Last Run view controllers. When observing notifications, whether they originate

from system events, internal messages, or push notifications, you always specify

the notification name and a selector (method signature), to handle the notification.

In Listing 11-18, I have updated the WorkoutTableViewController class to call the

showSecurityView() method when the background event has been detected.

Listing 11-18.  Using a Notification Observer to Detect When the App Is

Backgrounded (WorkoutTableViewController.swift)

class WorkoutTableViewController: UITableViewController {

 ...

 override func viewDidLoad() {

 super.viewDidLoad()

 ...

 setupSecurityView()

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

442

 let notificationCenter = NotificationCenter.default

 notificationCenter.addObserver(self, selector

 #selector(showSecurityView), name:

 Notification.Name.UIApplicationWillResignActive,

 object: nil)

 }

}

You should call the notification observer only once, as multiple observers will cause

the selector to be called multiple times. In my example, I ensured it would be called once

by adding the observer to the viewDidLoad() method for the view controller.

When you try to compile the app, you will receive a compiler error about the

showSecurityView() method being unfit as a selector. To fix this, add the @objc keyword

before the function definition, as shown in Listing 11-19. This is owing to the fact that

selectors are a concept ported over from Objective-C, requiring Swift methods to be

defined as compatible with Objective-C, in order to be used as selectors. After the

modification, the app should now compile successfully.

Listing 11-19.  Defining a Method As Compatible with Objective-C

(WorkoutTableViewController.swift)

class WorkoutTableViewController: UITableViewController {

 ...

 @objc func showSecurityView() {

 ...

 securityView?.checkPasswordExistence()

 }

}

If you try to run the app on your device now, after unlocking the Last Run or Workout

History screens and backgrounding the app, when you reopen the app, the security view

will reappear. You have now created one of the most secure workout applications out

there. Congratulations!

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

443

�Summary
In this chapter, you learned how to leverage Face ID, Touch ID, and Keychain Services

to secure the sensitive user data in the IOTFit app. Using iOS’s LocalAuthentication

framework, you were able to detect if biometrics were available to the app, modify the

user interface accordingly, and unlock the security view, using the device’s biometric

sensor. As a backup option, in case biometrics were unavailable or failed, you learned

how to store a password for the app in the device’s Secure Enclave and how to perform

add and lookup operations for this data, using Keychain Services. To go the extra mile,

you learned how you could sidestep having to write your own security view, using access

control for Keychain Services, and figured out how to lock the screens when the app was

backgrounded.

When designing this project, I took inspiration from password managers, because I

feel the security user experience they provide is appropriate for any case in which user

data must be protected beyond the initial lock screen for the device. My hope is that with

the lessons in this chapter, you can now build apps that protect against data theft that

results from simply having access to an unlocked device or plugging it into a computer

and reading the user data on the device.

Chapter 11 Using Face ID, Touch ID, and Keychain Services to Secure Your Apps

445
© Ahmed Bakir 2018
A. Bakir, Program the Internet of Things with Swift for iOS, https://doi.org/10.1007/978-1-4842-3513-3

Index

A
Adaptive user interface

appearance item
background color, 31
constraints and text properties, 28
editor menu, 33
embedding navigation

controller, 34
layout, 32
map view, 37
navigation controller, 35–36
text color, 30
title editing, 35
view controller creation, 29
workout time label, 28

auto layout issues
constraint issues, 38
context menu, 39
pop-up, 38
size inspector, 40
storyboard, 41

base template
contextual menu, 20
editor preview, 22
refactor menu, 21
storyboard, 19–20

constraints
auto layout, 24
different iPhone sizes, 25
screenshot, 27

tool adding, 26
workout view controller, 27

devices, 18
features, 17
interface builder device, 17
iPhone X and iPad Pro, 18–19
laying out, 22–23

Apple’s bezel-less devices, 4
Apple TV dashboard app, see tvOS

dashboard application
Application programming

interfaces (APIs), 7
Arduino-based peripherals

Adafruit HUZZAH32
microcontroller, 165

battery status, 187
Bluetooth chips, 163
door-sensor hardware

IOTHome project, 167–168
part list, 166

GPIO
empty Arduino solution, 185
LED on/off, 186
pin modes, 185

hardware assembling
breadboards, 169
characteristics, 169
circuit, 178
HUZZAH32 chip, 171–173
LED, 176

https://doi.org/10.1007/978-1-4842-3513-3

446

physical connections, 170
power/ground connections, 175
red LED, 177
schematic diagram, 174
shared connections, 169

LiPo and ADC Pin 13, 187
objectives, 164
process of, 165
programming environment

command-line instructions, 182
connection, 184
default display, 181
download, 179
installation, 180
software, 179
target hardware, 182
USB port, 183

run and monitor solution, 188–189
troubleshooting compilation, 190

B
Bluetooth LE (low energy)

accessory, 255, 257
device

config.json file, 257
connection process, 279
discoverAllServicesAnd

Characteristics() method, 279
flow connection, 281
HomeBridge, 255
implementation, 282
node application, 277
npm package manager, 276
peripheral mode, 278
POST requests, 283

hcitool utility, 258
HomeBridge, 258

Bluetooth LE (low energy) hardware
accessories, 195
advertising packets, 196
Arduino solution, 197
background updates

background notification, 231
DoorViewController class, 229
IOTHome app, 229
notification permission dialog, 230
scheduledLocalNotification(), 230
viewWillAppear() method, 230

communication
accessory background updates, 214
BluetoothService class, 217–218
BluetoothService

Delegate, 216–217, 219
CBCentralManager object, 221
central manager, 216
connect() method, 220
DoorViewController class, 212
elements, 213
IOTHome project, 211
properties and stub methods, 212
protocol oriented

programming, 217
steps of, 210
storyboard and interface

builder connections, 214
storyboard and view controller, 212
.xcodeproj file, 215

companion app, 193
data updates

battery updates, 209
checkBattery() method, 209
checkSensor() method, 208

Arduino-based peripherals (cont.)

Index

447

magnetic sensor updates, 208
notify() method, 208
setValue() method, 208

design wireframes, 194
ESP32_BLE_Arduino library

context menu, 199
ESP32 BLE library, 200
GitHub, 198
server features, 201
zip archive, 199

iteration process, 194
monitoring characteristic updates

BluetoothService object, 226
DoorViewController class, 228
handling method, 227

objectives, 193
peripheral device, 196, 201

BLEServer class, 204
filter outgoing messages, 206
GATT UUIDs, 203
LightBlue explorer, 207
OS X command line, 202
setup() method, 205
uuidgen tool, 202

peripherals
cancelPeripheralConnection()

method, 223
characteristics, 225
connect() method, 222
interrogating services, 225
sending updates, 224
stop scanning, 222

role, 196
scanning, 196

Bootstraps
Etcher, 244
hardware interfaces, 248
Linux and embedded systems, 241

microSD card, 245
pre-built image file, 242
Raspbian image, 243
screenshot of, 246
WiFi network, 247
zip file, 244

C
CLLocationManager.authorizationStatus()

method, 67
Control output pins, 184
Core motion

activity-type updates
CMMotionActivityManager class, 114
currentActivity property, 117
OperationQueue object, 114
startActivityUpdates()

method, 114–115
stop pedometer updates, 118
toggleWorkout() method, 118
updateWorkoutData() method, 117

framework, 97
handling altimeter updates

design pattern, 118
screenshot of, 121
workout view controller, 118–120

motion permission
components, 99
description, 100
IOTFit project, 100, 104
CreateWorkoutViewController

class, 101
step count request, 102–103

objectives, 98
real-time step count updates

closure, 104
pedometer, 112

Index

448

pedometer handling tool, 105
startPedometerUpdates()

method, 112
stopUpdates() method, 111
user interface, 108–109

user interface
auto layout constraints, 109
UILabel property, 110
updateWorkoutData() method, 111
workout view controller, 108–109

CreateWorkoutViewController() class
class definition, 43
CLLocationManager property, 64
contents, 42
interface builder-compatible, 44
service querying, 63
state tracking, 61

D
DHT temperature sensor

DHT22 sensor, 274
json() method, 275
temperature path extension, 273
web browser, 276

didChangeAuthorizationStatus()
method, 67, 69

Distributed denial-of-service (DDoS), 407
Dual in-line package (DIP), 169

E
Express project

app.js, 270
expose web services, 269
folder creation, 269
Hello World verification, 273

IP address, 272
listen() method, 271
node application, 270
working process, 270

External accessory communication, 53

F
Face ID, Touch ID and Keychain Services

devices and external clients, 408
face/fingerprint, 408
foreground

AppDelegate.swift file, 441
showSecurityView()

method, 441–442
viewDidLoad() method, 442
WorkoutTableViewController

class, 441
key concepts, 408
lock screen user interface

design wireframes, 412
NIB (.xib) file, 414
Objective-C bridging

header, 414
password manager app, 410
screenshot, 417
security view, 415–416
SecurityView class, 417
setupSecurityView() method, 418
showSecurityView()

method, 419–420
UIView subclass, 413
View NIB, 415
viewWillAppear() method, 419
WorkoutMapViewController

class, 419
WorkoutTableView

Controller.swift, 419–420

Core motion (cont.)

Index

449

message string, 410
restrict access

animate() method, 426
biometric authorization, 424
run screen, 429
security view, 428
SecurityViewDelegate protocol, 426
table view data, 428
UIImagePickerControllerDelegate

protocol, 425
secure data (see Keychain Services)
security context

commonInit() method, 422
context and authentication type, 421
LocalAuthentication framework, 421
SecurityView class, 421
sensor type, 422
viewDidLoad() method, 422

web server, 408

G
General-purpose input/output (GPIO), 239

H
HealthKit, see Workout History table

history tab, 124
HKQuantitySample class, 132
key concepts, 124
reading workout data

conversion logic, 144–146
execute() method, 144
HKSample object, 143
loadWorkoutsFromHealthKit()

method, 143
table view controller, 146, 148

represents data, 132

requesting permission
capabilities, 126
features, 125
HKHealthStore object, 128
information property list, 127
IOTFit app, 131
reading/writing health data, 129

save data and creation, 133
CreateWorkoutView

Controller, 134–135
HKWorkout object, 136
iOS health app, 141–142
source code, 137–138
step count and flight

objects, 139–140
steps of, 133
workout distance, 140–141
WorkoutDataManager

classes, 134–135
writing data, 132

HomeBridge
apt-get package manager, 250
Bluetooth LE

accessory, 255, 257–258
configuration files, 260
experimental configuration, 258
git pull command, 251
gpio readall command, 252
HAP-NodeJS, 248
installation, 248
make command, 251
Node.js applications, 248
options file, 259
service definition, 260
tar command, 250
temperature sensor, 253–255
terminal command, 249
wget command, 249, 251

Index

450

HomeKit
assigning details, 264
bridge, 261
configuration, 262
device, 264
home app, 263
Raspberry Pi, 235
troubleshooting configuration, 265

HomeKit Accessory Protocol (HAP), 235
Hyper Text Transfer protocol (HTTP)

connections
error message, 287
Google Chrome, 288
https and fs Modules, 285
node project, 286
options, 284
self-signed certificates, 284, 290
TLS and SSL, 283

iSO apps
connect() method, 300, 302
disconnectDoor() method, 308
/door/status end point, 306–307
error message, 303
Info.plist file, 303–304
initial implementation, 297
network manager method, 299
singletons, 298
URLSessionDelegate, 305

I, J
Integrated circuits (ICs), 169
Internet Engineering Task

Force (IETF), 284
iOS (iPhone OS) application, 292

HTTPS requests, 297
connect() method, 300, 302

disconnectDoor() method, 308
door/status, 306–307
error message, 303
Info.plist file, 303–304
initial implementation, 297
network manager method, 299
singletons, 298
URLSessionDelegate file, 304–305
viewWillDisappear() method, 308

tvOS dashboard app, 314
user interface, 292

DoorViewController class, 293
elements, 294
home view controller, 297
HomeViewController class, 296
storyboard file, 294
wireframes, 293

IOTFit application
adaptive user interface (see Adaptive

user interface)
Apple developer account-Xcode

sign-in prompt, 15–16
team selection, 14
Xcode installation, 13–14

default project, 13
development, 12
features, 7
initial options (project name), 9–10
iOS APIs, 7
objectives, 4
storyboard (see Storyboard)
tabbed app template, 9
wireframe diagrams, 6
Xcode

editor window, 12
iPhone testing, 50
welcome screen, 8

Index

451

K
Keychain Services

biometrics/app password
access control policy, 437
app password prompt, 440
search queries, 438
security policy, 440

checkPasswordExistence()
method, 431

getSavedPassword() method, 435
NSLog() method, 434
password exists, 431
return key, 430
savePassword() method, 433
search query, 431
SecurityViewDelegate protocol, 431
textFieldShouldReturn() method, 430
UITextFieldDelegate protocol, 430
validatePassword() method, 435
WorkoutTableViewController

class, 432

L
Lithium polymer (LiPo) battery, 187
loadWorkoutsFromHealthKit()

method, 128, 143
Location-based functions

background modes
capabilities tab, 54
editor view, 54
Info tab, 56
iOS apps, 53
key-value pair, 57
location updates, 55
permission prompts, 57–58

handling updates, 72
app changes state, 74–76
background updates, 80
timer class, 76
pauseWorkout() method, 79
request and delegate

handler method, 73
startWorkout() method, 78
timer class, 77–78
updateUserInterface(), 74
updateWorkoutData() method, 78
workout distance, 79

location permission
authorization states, 66
authorization status, 67–69
CLLocationManager property, 64
CLLocationManagerDelegate

protocol, 65
create workout view controller, 59
CreateWorkoutViewController

class, 60
didChangeAuthorizationStatus()

method, 69
flowchart, 60
hardware availability, 62
IOTFit, 70
presentPermissionErrorAlert()

method, 70
request flow, 72
requestLocationPermission()

method, 69
service querying, 63
state tracking, 61–62
user interface, 58–59
user page, 70

map (see Map location)
objectives, 52

Index

452

M
Map location

CLLocation class, 81
codable protocol

compatible data types, 85
file-based data storage, 82
file templates, 84
I/O implementation, 86–87, 89
loadFromPlist() method, 87
map() method-serialize data, 89
property-list (.plist) file, 82
PropertyListDecoder method, 87
saveToList() method, 88
saveWorkout() and

getLastWorkout() methods, 92
WorkoutDataManager

class, 82, 84, 91
Xcode creation, 83

generate and displays
annotations, 93, 95

IOTFit app, 96
Monitor input pins, 184

N
Node Package Manager (NPM), 252

O
OpenWeatherMap API, 339

account creation, 340
compactMap() method, 344
forecast method, 347
getOutdoorTemperature()

method, 344–346
JSON response, 341

keys page, 340
NetworkManager class, 342–344
processing request, 350
response, 348
view controller, 349

P, Q
pauseWorkout() methods, 79
presentPermissionErrorAlert()

method, 70
presentRecordInterface() method, 385

R
Raspberry Pi

hardware component
bootstraps, 241
circuit, 239, 241
HomeBridge, 248
HomeKit bridge, 261
IOTHome project, 239
requirements, 237

HomeKit, 235
key concepts, 236
objectives, 236
server configuration

service definition, 291
systemctl tool, 292
systemd tool, 291

single-board computer, 237
web server, 268

RecordInterfaceController.swift, 378
requestLocationPermission()

method, 69, 72, 80
resetWorkoutData() method, 105

Index

453

S
saveWorkoutToHealthKit()

method, 128–129
Secure Sockets Layer (SSL), 283
Single-board computer, 237
Siri Remote

addGestureRecognizer()
method, 352

allowedPressTypes() method, 352
fetchNetworkData() method, 352
handling touch input, 351
onscreen remote, 353
play/pause button, 352
touchpad, 354
UITapGestureRecognizer class, 352

startPedometerUpdates()
method, 105

startWorkout() methods, 72
Storyboard

connection inspector
CreateWorkoutViewController

class, 46
Main.storyboard file, 45
pauseWorkout() method, 49
pause workout button, 47–48
property name, 47
testing, 50
user interface event, 49

interface builder-compatible
CreateWorkoutViewController

class, 42–44
MapKit framework and map

view property, 45
properties and methods, 41–42

System-on-a-chip (SoC)
solutions, 407

T
Table View Controller

cocoa touch class, 147
UITableViewController class, 146, 148
UITableViewDataSource

protocol, 156–157
UITableViewDelegate protocol, 158
user interface

context menu, 150
delegate outlets, 155
identifier, 156
ownership, 154
screenshot, 153
storyboard, 149–150
subtitle view, 152
tab bar item, 152

WorkoutTableViewController
class, 148

toggleWorkout() method, 60, 64, 79
Transport layer security (TLS), 283
tvOS dashboard application

Apple TV and debug
confirmation of, 357
debugging target, 358
device setup process, 357
pair button, 356
remote app and devices, 354–355

data sources
fetchNetworkData() method, 334
NetworkManager class, 332–333
OpenWeatherMap API, 339
request location, 335
viewDidLoad() method, 334

Info.plist file, 317–318
key concepts, 314
scheme and files, 317

Index

454

Siri Remote, 351
source code, 319
target, 315
template picker window, 315
user interface

blank storyboard, 321
creation, 319
design language, 324
elements, 322
font-based graphics, 328
source file, 323
ViewController class, 322
wireframe of, 320

U
UITableViewController class, 146
UITableViewDataSource protocol

methods, 156
UITableViewDelegate protocol, 158
Universally unique identifiers (UUIDs), 197
updateUserInterface() method, 74
updateWorkoutData() method, 111
User interface

blank storyboard, 321
creation, 319
design language, 324

applyEffects() method, 325
applyEffects() method, 324
screenshot, 327
shadow effect code, 326
UIVisualEffectView class, 324
viewDidLoad() method, 325

elements, 322
font-based graphics, 328

FontAwesome.swift, 329

Info.plist file, 328
project navigator, 330
screenshot, 331
ViewController class, 330

source file, 323
ViewController class, 322
watchOS, 368

context menu, 384
controller, 378
debugging menu, 387
default stack view

configuration, 373
design wireframes, 368
dismissViewController()

method, 387
elements, 380
file template window, 377
force touch, 383
InterfaceController.swift, 380, 384
object library, 371
presentRecordInterface()

method, 385
RecordInterfaceController.swift,

378, 388
record workout view controller, 370
storyboard arrangement, 369, 376
sub-view arrangement, 376
table row, 372–373
text size and color, 375
vertical layout, 374
WKInterfaceTable class, 380
WorkoutRowController.swift, 381

wireframe of, 320

V
viewWillAppear() method, 157

tvOS dashboard application (cont.)

Index

455

W, X, Y, Z
watchOS application

Apple Watch, 359
core location and motion, 388

CLLocationManagerDelegate
protocol, 398

hardware manager, 394, 396–397
RecordInterfaceController class, 391
stand-alone features, 388
testing, 399
toggleWorkout() method, 392–393
updateUserInterface() method, 390
WorkoutDataManager class, 389–390

IOTFit project
app store description page, 361–362
background modes, 367
configuration, 364
fitness app, 361
Info.plist file, 366
IOTFitWatch and IOTFitWatch

extension, 365
scheme activation, 365
WatchKit app template, 363

key concepts, 360
memory and processing power, 361
stripped-down development, 360
user interface

default stack view configuration, 373
design wireframes, 368
elements, 379
file template window, 377
force touch, 383
image view, 372
object library, 371
RecordInterfaceController

class, 378–379
RecordInterfaceController.swift, 378
record workout view controller, 370

stack view, 372
storyboard arrangement, 369, 376
sub-view arrangement, 376
table row, 371
text size and color, 375
vertical layout, 374
WKInterfaceTable class, 380

Workout History table
InterfaceController.swift, 401–402
IOTHomeTV app, 403
loadWorkoutsFromHealthKit()

method, 401
refreshTable() method, 402–403
screenshot, 405

Web server
iOS app, 292

HTTPS requests, 297
user interface, 292

key concepts, 268
objectives, 268
share data (HTTPS)

Bluetooth devices, 276
DHT temperature sensor, 273
express project, 269
HTTP connections, 283
IOTHome sensors, 269
Raspberry Pi, 290

willActivate() method vs.
viewWillAppear() method, 390

Wireframes vs.mockups, 7
WorkoutDataManager class, 128
Workout History table

InterfaceController.swift, 401–402
IOTHomeTV app, 403
loadWorkoutsFromHealthKit()

method, 401
refreshTable() method, 402–403
screenshot, 405

WorkoutMapViewController class, 45

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part 1: Building Health Apps for the Internet of Things
	Chapter 1: Laying the Foundation for Your First IoT App
	Learning Objectives
	Setting Up the Project
	Linking Your Apple Developer Account to Xcode

	Building an Adaptive User Interface
	Renaming Classes from the Base Template
	Laying Out the User Interface
	Applying Auto Layout Constraints
	Customizing the Appearance of Items
	Resolving Auto Layout Issues

	Connecting the Storyboard to Your Code
	Defining Interface Builder-Compatible Properties and Methods (Actions)
	Using the Connection Inspector to Make the Final Storyboard Connections

	Summary

	Chapter 2: Using Core Location to Build a Workout Tracking App
	Learning Objectives
	Configuring Your Project for Background Location Activity
	Requesting Location Permission
	Checking for Hardware Availability
	Responding to Changes in Location Permission Status
	Asking the User to Change App Settings

	Requesting Location Updates
	Responding to Location Updates
	Programmatically Enabling Background Updates

	Displaying Location Data on a Map
	Using the Codable Protocol for File-Based Data Storage
	Implementing File I/O
	Using the map() Method to Serialize Data

	Displaying Saved Locations on a Map
	Summary

	Chapter 3: Using Core Motion to Add Physical Activity Data to Your Apps
	Learning Objectives
	Requesting Motion Permission from the User
	Receiving Real-Time Step Count Updates from the iPhone’s Pedometer
	Updating the User Interface
	Stopping and Pausing Pedometer Updates

	Getting Activity Type
	Handling Altimeter Updates
	Summary

	Chapter 4: Using HealthKit to Securely Retrieve and Store Health Data
	Learning Objectives
	Requesting HealthKit Permission
	Writing Data to HealthKit
	Understanding How HealthKit Represents Data
	Creating and Saving HealthKit Samples

	Reading Workout Data from HealthKit
	Using a Table View Controller to Display Data
	Setting Up the User Interface
	Using the UITableViewDataSource Protocol to Populate the Table View
	Using the UITableViewDelegate Protocol to Map Data to Cells

	Summary

	Part 2: Building Your Own Internet Things
	Chapter 5: Building Arduino-Based Peripherals
	Learning Objectives
	Building the Wireless Door-Sensor Hardware
	Part List
	Assembling the Hardware

	Writing an Arduino Solution (Program)
	Setting Up the Arduino Programming Environment
	Using GPIO to Monitor Input Pins and Control Output Pins
	Calculating Battery Status
	Running and Monitoring the Arduino Solution

	Summary

	Chapter 6: Building a Bluetooth LE Hardware Companion App
	Learning Objectives
	A Quick Introduction to Bluetooth LE
	Adding Bluetooth Functionality to an Arduino Solution
	Installing the ESP32_BLE_Arduino Library for Bluetooth Communication
	Setting Up the Arduino As a Bluetooth Peripheral
	Sending Data Updates via Bluetooth LE

	Using Core Bluetooth to Communicate with Bluetooth LE Devices
	Setting Up the IOTHome Project
	Enabling Bluetooth Accessory Background Updates

	Setting Up the App As a Central Manager
	Connecting to a Bluetooth LE Peripheral
	Monitoring Characteristic Updates
	Monitoring Updates While the App Is in the Background

	Summary

	Chapter 7: Setting Up a Raspberry Pi and Using It As a HomeKit Bridge
	Learning Objectives
	Setting Up the Raspberry Pi HomeKit Bridge
	Putting Together the Hardware
	Assembling the Circuit

	Bootstrapping the Raspberry Pi
	Installing HomeBridge
	Configuring HomeBridge to Read Data from a Temperature Sensor
	Configuring HomeBridge to Connect to a Bluetooth LE Accessory
	Configuring HomeBridge to Run at Startup (Experimental)

	Connecting to Your New HomeKit Bridge
	Troubleshooting Configuration Problems

	Summary

	Chapter 8: Building a Web Server on a Raspberry Pi
	Learning Objectives
	Creating a Web Server to Share Data over HTTPS
	Using Express to Expose Web Services
	Reading Values from the DHT Temperature Sensor
	Reading Information from Bluetooth Devices
	Using HTTPS to Provide Secure HTTP Connections
	Configuring the Server to Start Up with the Raspberry Pi

	Connecting to Your Server from an iOS App
	Setting Up the User Interface
	Making and Responding to HTTPS Requests

	Summary

	Part 3: Building Apps Using Apple’s Advanced Internet of Things Technologies
	Chapter 9: Using tvOS to Build an Apple TV Dashboard App
	Learning Objectives
	Setting Up the tvOS Target
	Creating the User Interface
	Programmatically Styling Elements to Match the tvOS Design Language
	Using Font Awesome for Font-Based Graphics

	Adding Data Sources to the tvOS App
	Requesting User Location
	Connecting to the OpenWeatherMap API

	Handling Touch Input from the Siri Remote
	Debugging the App on an Apple TV
	Summary

	Chapter 10: Using watchOS to Build an Apple Watch App
	Learning Objectives
	Setting Up the Project
	Building a watchOS User Interface
	Setting Up a Table View Using the WKInterfaceTable Class
	Adding Force Touch Support

	Creating a New Workout Using Core Location and Core Motion
	Using HealthKit to Populate the Workout History Table
	Summary

	Chapter 11: Using Face ID, Touch ID, and Keychain Services to Secure Your Apps
	Learning Objectives
	Setting Up the Project
	Creating a Lock Screen User Interface

	Querying for Sensor Availability
	Using Face ID or Touch ID to Restrict Access to Features
	Using Keychain Services to Secure Data
	Using Biometrics or an App Password to Lock Keychain Items

	Detecting When an App Returns to the Foreground
	Summary

	Index

