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Preface

Most physical problems can be expressed in the form of mathematical equations

(e.g. differential equations, integral equations). Historically, mathematicians had to

find analytic solutions to the equations encountered in engineering and related fields

(e.g. mechanics, physics, biology). These equations are sometimes highly complex,

requiring significant work to be simplified. However, in the mid-20th Century, the

introduction of the first computers gave rise to new methods for solving equations:

numerical methods. This new approach allows us to solve the equations that we

encounter (when constructing models) as accurately as possible, thereby enabling us

to approximate the solutions of the problems that we are studying. These

approximate solutions are typically calculated by computers using suitable

algorithms.

Practical experience has shown that, compared to standard numerical approaches,

a carefully planned and optimized methodology can improve the speed of

computation by a factor of 100 or even higher. This can transform a completely

unreasonable calculation into a perfectly routine computation, hence our great

interest in numerical methods! Clearly, it is important for researchers and engineers

to understand the methods that they are using and, in particular, the limitations and

advantages associated with each approach. The computations needed by most

scientific fields require techniques to represent functions as well as algorithms to

calculate derivatives and integrals, solve differential equations, locate zeros, find the

eigenvectors and eigenvalues of a matrix, and much more.

The objective of this book is to present and study the fundamental numerical

methods that allow scientific computations to be executed. This involves

implementing a suitable methodology for the scientific problem at hand, whether

derived from physics (e.g. meteorology, pollution) or engineering (e.g. structural

mechanics, fluid mechanics, signal processing).
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This book is divided into two parts, with two appendices. The first part contains

two chapters dedicated to solving nonlinear equations and differential equations. The

second part consists of four chapters on the various numerical methods that are used to

solve partial differential equations: finite differences, finite elements, finite volumes

and meshless methods.

Each chapter starts with a brief overview of relevant theoretical concepts and

definitions, with a range of illustrative numerical examples and graphics. At the end

of each chapter, we introduce the reader to the various Matlab commands for

implementing the methods that have been discussed. As is often the case, practical

applications play an essential role in understanding and mastering these methods.

There is little hope of being able to assimilate them without the opportunity to apply

them to a range of concrete examples. Accordingly, we will present various examples

and explore them with Matlab. These examples can be used as a starting point for

practical exploration.

Matlab is currently widely used in teaching, industry and research. It has become

a standard tool in various fields thanks to its integrated toolboxes (e.g. optimization,

statistics, control, image processing). Graphical interfaces have been improved

considerably in recent versions. One of our appendices is dedicated to introducing

readers to Matlab.

Bouchaib RADI

Abdelkhalak EL HAMI

March 2018
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Solving Equations



1

Solving Nonlinear Equations

1.1. Introduction

Let F : R → R be a function defined on a subset D ⊂ R. Suppose that we wish to

find the roots of the equation F (x) = 0, if they exist. Most theorems that guarantee the

existence of roots for equations of the form F (x) = 0 do not specify a way to construct

these roots, and we are usually not capable of solving the problem analytically, except

in a few special cases. Therefore, we often need to resort to numerical methods to find

approximate solutions of the equation F (x) = 0 [RAD 09, BAK 76].

There are many possible numerical methods to choose from, and each has its

own advantages and disadvantages (we will only present the most common methods

in this chapter). Before trying to solve a problem numerically, we need to know

that the solution exists and is unique [QUA 04, RAD 10]. Therefore, the process of

numerically solving the equation F (x) = 0 can be divided into two parts:

1) First, we must show the existence of real-valued solutions and separate each

solution that we wish to approximate in an interval [a, b] ⊂ D.

2) Second, we must choose a numerical method to approximate the isolated roots.

1.2. Separating the roots

DEFINITION.– We say that the root x̄ of the equation F (x) = 0 is separable if there
exists an interval [a, b] ⊂ D, such that x̄ is the only root contained in [a, b].

If so, the root x̄ ∈ [a, b] is said to be separated or isolated. In practice, we can

separate the roots of the equation F (x) = 0 either graphically (by looking for the

points at which the graph of F intersects with the ( �ox) axis) or analytically, by

applying the intermediate value theorem (see the appendix on standard results from

analysis, Appendix 2).

Advanced Numerical Methods with Matlab® 2: Resolution of Nonlinear, Differential
and Partial Differential Equations, First Edition. Bouchaib Radi and Abdelkhalak El Hami
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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EXAMPLE.–

1) The equation x3 − 6x + 2 = 0 has three real roots that are separated by the

intervals [−3,−2], [0, 1] and [2, 3].

2) The equation ex sinx− 1 = 0 ⇔ sinx = e−x has two roots that are separated

by the intervals [0, 1] and [3, 4].

3) The equation x lnx− 1 = 0 has a single root in [1, 2].

4) The equation 2x4 + 3x3 − 4x − 5 = 0 has two real roots separated by the

intervals [−2,−1] and [1, 2].

5) The equation (1+x)e1−x−3/2 = 0 has two real roots separated by the intervals

[−1, 0] and [1, 2].

1.3. Approximating a separated root

In this section, we will assume that the root x̄ has already been isolated by the

interval [a, b].

We will present some of the standard methods that can be used to find an

approximate value for x̄, and we will study their properties and rates of convergence.

Concretely, when we speak of approximating x̄ up to ε, we mean finding an

approximate value x̃ that is known to satisfy |x̄ − x̃| ≤ ε (where ε is a small real

number; the smaller this ε, the more precise the algorithm).

1.3.1. Bisection method (or dichotomy method)

Suppose that x̄ is a simple separable root in [a, b] (F (a)F (b) < 0). The bisection

method constructs a sequence of intervals In = [an, bn] from the initial interval [a, b],
such that each In contains x and has a width equal to half of the width of In−1.

The underlying idea of the method is to construct the following three sequences

(an), (bn), and (xn):

Define a0 = a; b0 = b, x0 = 1
2 (a0 + b0), and for n ≥ 1:

– If F (an−1)F (xn−1) < 0, define an = an−1, bn = xn−1, xn = 1
2 (an + bn).

– If F (an−1)F (xn−1) > 0, define an = xn−1, bn = bn−1, xn = 1
2 (an + bn).

– If F (an−1)F (xn−1) = 0, then x = xn−1: this means that we have found the

exact solution, hence the process is terminated.

In this way, at each iteration, we select the half-interval that contains the root x̄.

After n iterations, we have found an interval containing x̄ with width
b− a

2n
.
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THEOREM.– The sequence (xn) constructed by the bisection algorithm converges to
the root x̄.

An upper bound for the error committed by approximating x̄ by xn is given by:

|xn − x| ≤ b− a

2n+1
.

REMARK.–

1) Similarly, the sequences (an) and (bn) converge to x̄, and |x̄−an| ≤ (b−a)/2n;

|x̄− bn| ≤ (b− a)/2n.

2) To guarantee a precision of ε when approximating x̄ by xn, we can simply pick

n, such that: n ≥ ln

[
(b− a)

ε

]
/ ln 2− 1.

This method has the following properties:

– straightforward algorithm (based on the intermediate value theorem);

– can be applied to non-analytic functions;

– cannot be applied to double roots;

– cannot be applied to multiple equations;

– very slow (to achieve high precision, we need a high number of iterations).

Owing to these limitations, we need other methods in some situations.

EXAMPLE.– Suppose that we wish to find a zero of the following function using the

bisection method:

f(x) = x sin(x)− 1.

This function satisfies f(0) = −1, f(2) = 0.818595. It is continuous on [0, 2],
and f(0)f(2) < 0. By the intermediate value theorem, the equation f(x) = 0 has at

least one root α ∈ [0, 2]. We can therefore use this interval to initialize the bisection

method. Applying this method to f on the interval [0, 2], we find:

i xi i xi

1 1.000000 7 1.109375
2 1.500000 8 1.117188
3 1.250000 9 1.113281
4 1.125000 10 1.115234
5 1.062500 11 1.114258
6 1.093750 12 1.114258

An approximate value for the root of f is therefore given by x12 = 1.114258.
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1.3.2. Fixed-point method

DEFINITION.– The solutions of the equation f(x) = x are said to be the fixed points
of the function f .

THEOREM.– If f is continuous on [a, b] and f([a, b]) ⊂ [a, b], then f has at least one
fixed point between a and b (in other words, ∃c ∈]a, b[ / f(c) = c).

Suppose that x̄ ∈ [a, b] is an isolated root of the equation F (x) = 0. The

fixed-point method defines and studies a function f such that x̄ is a fixed point of f
(i.e. such that F (x) = 0 ⇔ f(x) = x).

EXAMPLE.– For example, for the function F (x) = (1 + x)e1−x − 3
2 , we can define

f(x) = 3
2e

x−1 − 1.

Now, instead of searching for x̄ as a root of F (x), we can find it as a fixed point of

f(x) by taking advantage of the following property:

If the recursive sequence (xn) defined by x0 arbitrary; xn = f(xn−1), n ≥ 1,

converges, then its limit is a fixed point of the function f (see Figure 1.1).

Figure 1.1. Fixed-point method



Solving Nonlinear Equations 7

The idea of the method is to choose a function f for the original function F , such

that:

– F (x) = 0 → f(x) = x.

– The sequence (xn) defined by x0 ∈ [a, b]; xn = f(xn−1) for n ≥ 1 converges

to x.

The problem of approximating x̄ up to ε is therefore reduced to that of computing

xn, such that |xn − x̄| ≤ ε.

REMARK.– For any given function F (x) = 0, there are an infinite number of choices

of f such that F (x) = 0 is equivalent to f(x) = x (e.g. f(x) = x+ λF (x); λ ∈ R
∗).

The challenge of the fixed-point method lies in choosing f in such a way that the

sequence (xn) converges, and does so as quickly as possible. There are two natural

criteria for selecting the best function: convergence and rate of convergence. The

choice of the initial point x0 also influences both of these criteria.

EXAMPLE.– Suppose that we wish to compute the value of
√
2. This is equivalent to

finding the positive root α =
√
2 of the function

f(x) = x2 − 2,

that is, solving a nonlinear equation.

It is easy to check that α =
√
2 is a fixed point of the function φ(x) = − 1

4x
2+x+ 1

2

simply by noting that φ(
√
2) =

√
2. Moreover, ∀x ∈ [1, 2], |φ′(x)| ≤ 1

2 = C. We

can therefore define the sequence x0 ∈ [1, 2] and xn+1 = φ(xn), and apply the mean

value theorem to deduce that ∃η ∈ [1, 2], such that

|xn+1 − α| = |φ(xn)− φ(α)| = |φ′(η)||xn − α|.

Therefore,

|xn − α| ≤ Cn|x0 − α|, ∀n ≥ 0.

This shows that the sequence xn converges to the root α. We need to perform 34
iterations of the fixed-point method to compute an approximate value for

√
2 that is

accurate to ten digits after the decimal point.

1.3.3. First convergence criterion

THEOREM.– Let x ∈ [a, b] be an isolated root of F (x), and suppose that f(x) is a
continuous and differentiable function on [a, b] satisfying f(x) = x.



8 Advanced Numerical Methods with Matlab 2

If there exists a real number k, 0 < k < 1, such that:

i) f([a, b]) ⊂ [a, b];

ii) ∀x ∈ [a, b], |f ′(x)| ≤ k;

then the recursive sequence (xn) defined by x0 ∈ [a, b];xn = f(xn−1) converges
to x.

An upper bound for the error committed by approximating x with xn is given by:

|x− xn| ≤ kn|x− x0|.

1.3.4. Iterative stopping criteria

The idea of this method is to find x by computing the limit of a convergent

numerical sequence. In practice, we need to find an approximation of x up to a

certain accuracy ε in a finite number of iterations (as few as possible). As x̄ is

unknown, we cannot directly apply the stopping criterion |x− xn| ≤ ε.

1.3.4.1. Choosing the number of iterations

To guarantee an accuracy of ε when approximating x̄ by xn, we can simply choose

the smallest integer n, such that kn|b− a| ≤ ε. Let n ≥ ln

(
ε

b− a

)
/ ln k.

The smaller the number k, the faster the convergence.

The condition kn|b− a| ≤ ε is an extremely strong condition that is sufficient but

not necessary! Before we can apply this condition, we need to know the value of k. If

this is not possible, we will need an alternative stopping condition.

1.3.4.2. Testing the absolute value

In some cases, we can use a stopping condition based on the absolute value of the

difference between two consecutive approximations of x, which can be expressed in

the form of the inequality |xn − xn−1| ≤ ε.

Of course, this condition is not sufficient to guarantee that xn approximates the

exact solution x̄ up to ε, since |xn − xn−1| ≤ ε does not imply that |xn − x| ≤ ε in

general. Whether or not the latter inequality holds depends on how the sequence (xn)
converges to x̄.
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We can write |xn − x̄| as a function of |xn − xn−1| as follows:

CASE 1.– −1 < f ′(x) < 0 on [a, b].

In this case, the sequences (x2n) and (x2n+1) are adjacent and their limit x̄ is

always located between any two consecutive terms of the sequence (xn). Therefore, in

this specific case, |xn−x| ≤ |xn−xn−1|, and the stopping condition |xn−xn−1| ≤ ε
is sufficient to guarantee that xn and xn−1 approximate x̄ up to ε, one from above and

the other from below. Therefore, we can approximate x̄ up to ε without needing to find

k.

CASE 2.– 0 < f ′(x) < 1 (or if the sign of f ′ is not known on [a, b]).

In this case, the sequence (xn) converges monotonically, and we can show that

|xn − x̄| ≤ 1

1− k
|xn+1 − xn|.

Therefore, to guarantee a precision of ε when approximating x̄ by xn, we can

simply apply the stopping condition |xn+1 − xn| ≤ ε(1− k).

1.3.5. Second convergence criterion (local criterion)

THEOREM.– Let x̄ ∈ [a, b] be an isolated root of F (x), and let f(x) be a C1 function,
such that f(x̄) = x̄.

1) If |f ′(x̄)| < 1, then there exists a neighborhood V of x̄ such that the recursive
sequence (xn) associated with f converges to x̄, ∀x0 ∈ V.

Furthermore, (xn) converges monotonically if 0 ≤ f ′(x̄) < 1, and converges
while oscillating around x if −1 < f ′(x̄) < 0.

The set V is called the domain of attraction of x̄.

2) If |f ′(x̄)| > 1, then, ∀x0, the sequence xn = f(xn−1) does not converge to x̄.

3) If |f ′(x̄)| = 1, then we cannot draw any conclusions about the convergence
behavior of the sequence (xn), which is unstable (either convergent or divergent) and
very sensitive to rounding errors.

REMARK.–

1) The convergence criterion |f ′(x̄)| < 1 only holds in the neighborhood of x̄ (we

might not have convergence for every x0 in [a, b]). We therefore need to choose the

right x0 (in the domain of attraction) to apply this criterion.

2) The smaller the value of |f ′(x̄)|, the faster the convergence (|f ′(x̄)| is known

as the rate of convergence).
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3) In order to use this criterion, we need to compute f ′(x̄). This is not always

possible (since x̄ is an unknown in the problem).

The properties of this method can be summarized as follows:

– mostly only useful in theoretical contexts;

– constructive method;

– need a strategy to choose f and x0.

1.3.6. Newton’s method (or the method of tangents)

Suppose that we have an isolated root x of the equation F (x) = 0 in the interval

[a, b], and suppose that F ′(x) does not vanish on [a, b].

Newton’s method chooses the following specific function f to study the roots of

F (see Figure 1.2):

f(x) = x− F (x)

F ′(x)
. [1.1]

Clearly, x̄ is a fixed point of f . What can we say about the recursive sequence (xn)
defined by x0 ∈ [a, b], xn+1 = f(xn)?

THEOREM.– Let x̄ be an isolated root of the equation F (x) = 0 in [a, b]. Suppose that
F has continuity class C2 and that F ′ does not vanish on [a, b].

Then there exists a neighborhood V of x̄ on which the sequence (xn) constructed
by Newton’s method converges to x̄, ∀x0 ∈ V.

THEOREM.– Let x̄ be an isolated root of the equation F (x) = 0 in [a, b]. Suppose
that F ′ does not vanish on [a, b], and that F ′′ is continuous on [a, b]. Let
M = max |F ′′(x)|/2 on [a, b]. If x0 ∈ [a, b] and |x0 − x̄| < 1

M , then the sequence
(xn) constructed by Newton’s method converges to the solution x̄.

An upper bound for the error committed by approximating x̄ with xn is given by:

|xn − x̄| ≤ 1

M
(M |x0 − x̄|)2n .
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Figure 1.2. Newton’s method

REMARK.–

1) Note that f(x̄) = 0, so convergence is guaranteed on some neighborhood V
of x̄.

2) The convergence condition of Newton’s process is expressed in terms of the

choice of initial value |x0− x̄| < 1
M . This condition is satisfied ∀x0 ∈ [a, b] whenever

|b− a| < 1
M .

Therefore, the challenge of Newton’s method is to choose the right x0.

3) The following expression gives an alternative upper bound for the error:

|xn − x| ≤ 1

L
(L|x0 − x|)2n ,

where L = max

∣∣∣∣ F ′′(x)
2F ′(x)

∣∣∣∣.
4) Theorem 1.3 gives a sufficient condition on the choice of x0 to guarantee

convergence, but this condition is not necessary. The assumptions of the theorem



12 Advanced Numerical Methods with Matlab 2

are often difficult to satisfy (since x̄ is unknown). Therefore, in practice, we work

backwards, as follows:

We define the sequence xn+1 = f(xn), then pick an arbitrary x0 ∈ [a, b]; if this

sequence converges, the limit is the desired solution; otherwise, we choose another x0

in [a, b].

5) Newton’s method achieves quadratic convergence, which is faster than the

previous method.

1.3.7. Secant method

In cases where we cannot compute the value of F ′(x) explicitly, we can instead

use the approximation:

F (xn)− F (xn−1)

xn − xn−1
. [1.2]

This transforms the recurrence formula into:

xn+1 = xn − F (xn)
xn − xn−1

F (xn)− F (xn−1)
, x0, x1 ∈ [a, b]. [1.3]

Conceptually, we are replacing the tangent to the curve F (x) at the point

(xn, F (xn)) with the straight line that passes through this point and the point

(xn−1, F (xn−1)).

EXAMPLE.– In 1225, Leonardo di Pisa studied the equation

f (x) = x3 + 2x2 + 10x− 20 = 0 [1.4]

and found the solution x � 1.368808107. Nobody knows how he found his result, but

it is an astonishing achievement given the state of knowledge at the time.

There are several ways in which to rewrite equation [1.4] in the form x = F (x).
If we define

x =
20

x2 + 2x+ 10
= F (x),

then

lim
x→+∞ f(x) = +∞ lim

x→−∞ f(x) = −∞.
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By the intermediate value theorem, there exists at least one root on ] − ∞,+∞[.
Computing the derivative of the function f gives

f ′(x) = 3x2 + 4x+ 10

= (
√
3x+

2√
3
)2 +

26

3
.

Therefore, f ′(x) > 0 for every x ∈ R, so the equation f(x) = 0 has a unique

root in R. More precisely, f(1) = −7 and f(2) = 16 so the unique root of f on R is

contained in the interval [1, 2].

Hence, to find this root, we can simply restrict attention to the interval [1, 2]. The

solution satisfies

x =
20

x2 + 2x+ 10
= F (x) =

20

(x+ 1)2 + 32
.

It can easily be shown that the image of [1, 2] under F is [1, 2]. The derivative of

F is

F ′(x) =
−40(x+ 1)

((x+ 1)2 + 9)2
,

so, for all x ≥ 0,

|F ′(x)| = 40(x+ 1)

((x+ 1)2 + 9)2
≤ K < 1.

We define

g(x) =
40(x+ 1)

((x+ 1)2 + 9)2
.

After performing a few calculations, we find that

g′(x) =
120((x+ 1)2 + 9)(3− (x+ 1)2)

((x+ 1)2 + 9)4
.

The following table shows the variations of g:

x 0
√
3− 1 +∞

g′ + 0 −
g 2

5
↗ 5

√
3

18
↘ 0
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On [1, 2], the function g is decreasing, so, ∀x ∈ [1, 2],

g(x) ≤ g(1) � 0.47 = K < 1.

Therefore,

|F ′(x)| ≤ 0.48 � K < 1 K =
80

169
,

which means that F is a contraction mapping. This implies that the fixed-point

algorithm converges, and lim
n→+∞xn = α for x0 = 1, where α = F (α).

Note that:

|α− x24| = |F (α)− F (x23|.

Now, let

e24 = α− x24 = F (α)− F (x23) = F ′(α− x23).

Then:

|e24| ≤ 80

169
|e23| ≤ · · · ≤

(
80

169

)24

|α− x0| <
(

80

169

)24

.

To finish, observe that

(
80

169

)24

� 1.6× 10−8.

We can now apply the fixed-point method to the function f(x) = x3 + 2x2+
10x− 20.

We have the values y0 = 1, c = 2, f( 32 ) =
23
8 and f(2) = 16, so

yn+1 = yn − f(yn)

f(yn)− f(c)
(yn − c).

Setting

G(y) = y − f(y)

f(y)− f(c)
(y − c)

=
−yf(c) + cf(y)

f(y)− f(c)
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gives

G′(y) =
[−f(c) + cf ′(y)][f(y)− f(c)]− [−yf(c) + cf(y)]f ′(y)

(f(y)− f(c))2

=
−f(c)f(y) + f(c)yf ′(y)− cf(c)f ′(y) + f(−c)2

(f(y)− f(c))2
.

Replacing f(y) with its formula, we find

G′(y) =
32(y3 − 2y2 − 4y + 8)

(f(y)− 16)2
.

It can be shown that |G′(y)| ≤ K < 1 in the neighborhood of α. This implies that

|G′(y)| ≤ 32|y3 − y2 − 4y + 8|
(f( 32 − 16)2

<
32.33

13.1252
� 0.557.

The following computations are performed with c = 3
2 . In this case,

y1 = G(y0) = 1 +
28

79
=

107

79
� 1.354430797

and f(y1) � −0.302055212;

y2 = G(y1) = y1 − f(y1)

f(y1)− 23
8

(
107

79
− 3

2
)

� 1.36827067688

and f(y2) � −0.011685720;

y3 = G(y2) = y2 − f(y2)

f(y2)− 23
8

(y2 − 3

2
)

� 1.36878803936

and f(y3) � −0.000088007;

y4 = G(y3) = y3 − f(y3)

f(y3)− 23
8

(y3 − 3

2
)

� 1.3688079520.
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Therefore,

|α− yn| ≤ |α− x24|+ |x24 − y4|
≤ 1.6× 10−8 + 2.5× 10−7

≤ 2.2× 10−7.

With the secant method, an order of n = 4 leads to an accuracy of the order

of 10−7, which is much better than the fixed-point method, which needed an order

of n = 24 to achieve an accuracy of the order of 10−8. Thus, the secant method

converges more quickly than the fixed-point method.

Newton’s method can be stated as

xn+1 = xn − f(xn)

f ′(xn)
= F (xn),

where f(x) = x3 + 2x2 + 10x− 20 and f ′(x) = 3x2 + 4x+ 10, which gives

xn+1 = xn − x3
n + 2x2

n + 10xn − 20

3x2
n + 4xn + 10

.

Choosing x0 = 1, we find:

x1 � 1.411764706

x2 � 1.369336471

x3 � 1.368808189

x4 � 1.368898108.

In this example, we almost achieved the same accuracy as Leonardo in just four

iterations, with an error of 10−8.

Newton’s method is significantly better than the secant method, but in a sense they

are similar. We can show that the error of Newton’s method decays quadratically.

From the second-order Taylor expansion of f about α, we can write that:

f(α) = f(xn−1) + (α− xn−1)f
′(xn−1) +

1

2
(α− xn−1)

2f ′′(ξ).
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Newton’s formula gives

0 = f(xn−1) + (xn − xn−1)f
′(xn−1)

which implies that

f(α) = 0 = (α− xn)f
′(xn−1) +

1

2
(α− xn−1)

2f ′′(ξ).

By setting en = α− xn, we find that

0 = enf
′(xn−1) +

1

2
e2n−1f

′′(ξ),

hence

|en| ≤ 1

2

M

m
|en−1|2,

where M = sup[1, 32 ] |f ′′(x)| and m = inf [1, 32 ] |f ′(x)|. We deduce that

|en| ≤
(

M

2m

)2n−1

|e0|2n .

1.3.8. Regula falsi method (or false position method)

If we approximate F ′(x) by the expression:

F (xn)− F (x0)

xn − x0
, [1.5]

then the recurrence formula becomes

xn+1 = xn − F (xn)
xn − x0

F (xn)− F (x0)
, x0, x1 ∈ [a, b]. [1.6]

This time, we are replacing the tangent to the curve of F (x) at the point

(xn, F (xn)) with the straight line that passes through this point and (x0, F (x0)).

EXAMPLE.– Consider the function

f(x) = e−2x − cos(x)− 3.

The function f is decreasing on [−1, 0], f(−1) = 3.848754 and f(0) = −3,

hence f has a unique zero in [−1, 0].
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By applying the regula falsi method to f on [−1, 0], we find:

i xi i xi

1 −0.438036 8 −0.6656762
2 −0.595945 9 −0.665706
3 −0.645201 10 −0.665714
4 −0.659764 11 −0.665717
5 −0.663996 12 −0.665717
6 −0.665221 13 −0.665718
7 −0.665574 14 −0.665718

An approximate value for the root of f is given by x13 = −0.665718.

By applying Newton’s method to f with initial point x0 = 0, we find that

i xi

1 −1.500000
2 −1.086704
3 −0.798386
4 −0.681373
5 −0.665953
6 −0.665718

This also leads to the approximation x6 = −0.665718.

Figure 1.3. Regula falsi method
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1.4. Order of an iterative process

DEFINITION.– Let x̄ be a root of the equation F (x) = 0, and let (xn) be a numerically
constructed sequence that converges to x̄.

We say that the method associated with this sequence is of order k if the following
condition holds:

xn+1 − x̄ = (xn − x̄)k[ak + ε(xn)],

where ak is a non-zero constant and ε(x) is a function that satisfies lim ε(x) = 0
(i.e. lim

n→+∞ ε(xn) = 0). In other words:

lim
n→=∞

xn+1 − x

(xn − x)k
= ak.

REMARK.–

1) In practice, the sequence (xn) is not explicitly known. We say that the method

is of at least order k if we can find a constant M > 0 and a given rank n0, such that,

for n ≥ n0, |xn+1 − x̄| ≤ M |xn − x̄|k.
If so, an upper bound for the error of the method is given by:

|xn − x̄| ≤ 1
k−1
√
M

(
k−1
√
M |x0 − x̄|)kn

.

2) If the iterative method is defined using a function with continuity class Cp,

the order k can be defined as the smallest integer m, such that f (m)(x̄) 
= 0 and

ak =
f (k)(x̄)

k!
(or alternatively, M = sup

∣∣∣∣f (k)(x)

k!

∣∣∣∣).
3) Higher order iterative methods converge faster.

1.5. Using Matlab

1.5.1. Finding the roots of polynomials

Suppose that we wish to compute the roots of the equation:

x5 − 2x4 + 2x3 + 3x2 + x+ 4 = 0.
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We can use the roots function to do this in Matlab. First, we enter the coefficients

of the polynomial:

>> c= [1 -2 2 3 1 4];

Next, we can find the solution by running the following command:

>> solution = roots(c)

solution =

1.5336 + 1.4377i

1.5336 - 1.4377i

-1.0638

-0.0017 + 0.9225i

-0.0017 - 0.9225i

Given an array of roots, the function poly returns the coefficients of the polynomial

with these roots ordered by decreasing powers. Thus, in this example, we can recover

the original polynomial as follows:

>> poly(solution)

ans =

1.0000 -2.0000 2.0000 3.0000 1.0000 4.0000

Matlab allows us to find the zero of a function using the fzero command. To do

this, we need to create a file (e.g. ‘f.m’) containing the function. In this example, we

shall choose f(x) = exp(x)− 2 cos(x).

function f=f(x)

f=exp(x)-2*cos(x)

To find the solution of f(x) = 0 in the neighborhood of the point x = 0.5, we run

the command ‘fzero(‘f’,0.5)’. This function displays the values of f(x) computed at

each iteration until the desired solution x∗ is found.

>>d=fzero(’f’,0.5)

f =

-0.1064

-0.1430

-0.0692

-0.1579
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-0.0536

-0.1788

-0.0313

-0.2080

5.8950e-004

-3.0774e-005

-4.1340e-009

2.2204e-016

-8.8818e-016

d =

0.5398

1.5.2. Bisection method

To implement the bisection method, we can create a script called ‘bisection.m’,

with the following code:

a=0;

fa=-5;

b=3;

fb=16;

eps=1.0e-3;

while (b-a) >eps

x=(a+b)/2;

fx=x^3-2*x-5;

if (sign(fx) == sign(fa))

a=x;

fa=fx;

else

b=x;

fb=fx;

end

end;

x

We can run the script ‘bisection.m’ as follows to compute the root of the function

f(x) = x3 − 2x− 5 contained in the interval [0, 3]:

>> bisection

x=

2.0940
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1.5.3. Newton’s method

The following script, saved under the name ‘newton.m’, implements Newton’s

method:

format

short;

clc;

syms x;

display (’Newton’’s method is an iterative method for solving

nonlinear systems’);

f = input(’Enter the function f(x)=’);

x0 = input(’Enter the initial estimate of the solution: ’);

n = input(’Enter the maximum number of iterations: ’);

e = input(’Enter the margin of error: ’);

i = 0;

while (i<n)

df = diff(f,x);

dfx0 = subs(df,x,x0);

fx0 = subs(f,x,x0);

x1 = x0 - (fx0/dfx0);

dx = x1 - x0;

if abs(dx)/abs(x0)<=e

fprintf(’The solution is = %i\n’,x1);

fprintf(’The number of iterations required was = %i\n’,i);

break

end

i = i+1;

x0=x1;

end

if abs(dx)/abs(x0) >e

fprintf(’Convergence was not achieved in n iterations ’);

end

We can apply this script to compute the root of the equation x3 − 3x + 1 = 0.
Executing the script ‘newton.m’ returns the following output:

Newton’s method is an iterative method for solving nonlinear systems

Enter the function f(x)=x^3-3*x+1
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Enter the initial estimate of the solution: 0

Enter the maximum number of iterations: 100

Enter the margin of error: 0.001

The solution is = 3.472964e-001

The number of iterations required was = 2

Therefore, the solution computed by this script is x = 0.3473.
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Numerically Solving Differential Equations

2.1. Introduction

Differential equations are found in a wide variety of fields, including physics (e.g.

mechanical physics), chemistry (e.g. reaction kinetics), biology (e.g. population

dynamics) and much more.

The simplest example of a demographic model considers an isolated population.

At any time t, we denote P (t) the current number of individuals in the population.

We shall assume that this number is sufficiently high that we can view P (t) as a real

number (rather than as an integer). We can describe the evolution of this population

with a differential equation:

dP (t)

dt
= births - deaths + migration. [2.1]

If we assume that there is no migration, and that the births and deaths are

proportional to the size of the population, we obtain a linear equation:

dP (t)

dt
= aP (t)− bP (t). [2.2]

This expression for the population increases or decreases exponentially, which is

not physically realistic, especially in the long run. We need to add a corrective term

that depends on the size of the population to reflect the assumption that an ideal size

exists (the biotic capacity). Below this capacity, the population should increase; above

this capacity, it should decrease. One example of a model that meets these criteria is

known as the logistic model. It has the following expression:

dP (t)

dt
= rP (t)

(
1− P (t)

K

)
. [2.3]

Advanced Numerical Methods with Matlab® 2: Resolution of Nonlinear, Differential
and Partial Differential Equations, First Edition. Bouchaib Radi and Abdelkhalak El Hami
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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The constant K denotes the biotic capacity. This equation has the family of

solutions:

P (t) =
N(0)K exp(rt)

K +N(0)(exp(rt)− 1)
. [2.4]

There are two equilibrium points, 0 and K. If N(0) = 0, the population size

remains permanently fixed at zero. If N(0) = K, the population size is also stable,

equal to K. Furthermore, if N(0) > 0, then it’s easy to see that lim
t→+∞N(t) = K.

This means that K is a stable equilibrium point, whereas 0 is unstable: if N(0) is

close to K, the solution remains close to K; if N(0) is close to 0, it moves away from

zero over time.

We could also model interactions with other populations. As a simple example,

consider two populations with a predator–prey relationship. The Lotka–Volterra model

proposes one way of describing this dynamic. It makes the following assumptions:

– in the absence of predators, the population of prey should increase exponentially;

– in the absence of prey, the predator death rate should be proportional to the

predator population size;

– the rate of predation should be proportional to the number of meetings between

predator and prey, which is assumed to be proportional to the product of the two

population sizes;

– the predator growth rate should also be proportional to the number of meetings

between the predator and the prey.

Writing N for the prey population and P for the predator population, we obtain

the following system of equations:

dN(t)

dt
= N(a− bP ), [2.5]

dP (t)

dt
= P (cN − d). [2.6]

The four constants a, b, c and d are positive. This is a dynamic system with very

specific properties. It has two equilibrium points, (0, 0) and (dc ,
a
b ). In the phase space,

that is, the (planar) space spanned by the coordinates N and P , the system follows

a closed path, implying that N and P are periodic. This model is not perfect. For

instance, in the absence of predators, it is unrealistic to assume that the prey population

will increase indefinitely.

These examples have allowed us to explore a number of different scenarios: linear

equations, nonlinear equations and systems of equations. However, we had no reason
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to believe a priori that these equations had solutions, nor did we know whether the

stated solutions were unique. The questions of existence and uniqueness are studied

in more depth in section 2.

2.2. Cauchy problem and discretization

Suppose that f: [a, b]×R → R and η ∈ R. We will consider the following Cauchy

problem:

Does there exist a function y: [a, b] → R that is differentiable on [a, b] and which

satisfies [CRO 84]:

(P)

{
y(a) = η
y′(x) = f(x, y(x)) ∀x ∈ [a, b]

[2.7]

DEFINITION.– We say that the function f: [a, b]×R → R is Lipschitz in y on [a, b]×R,
if there exists K > 0, such that:

|f(x, y)− f(x, z)| ≤ K|y − z|, ∀x ∈ [a, b], ∀y, z ∈ R.

The constant K is known as the Lipschitz constant.

THEOREM.– Consider the Cauchy problem (P). If f: [a, b] × R → R satisfies the
hypotheses:

i) f is continuous;

i) |f(x, y)− f(x, z)| ≤ K|y − z| ∀x ∈ [a, b], ∀y, z ∈ R.

Then the problem (P) has a unique solution.

Suppose that the interval [a, b] is partitioned by a sequence of points (xi)0≤i≤N

x0 = a < x1 < x2 < · · · < xN = b (xi = a+ ih, h = b−a
N ).

Our goal is to find N real numbers y1, y2, . . . , yN , such that each yi approximates

y(xi). We will then connect these points together by interpolation to define a function

yh on [a, b].

Finally, we will establish an estimate of the discretization error en = yn − y(xn),
which depends on h.

A numerical method is said to be of order p if it yields approximate values yn of

y(xn) that satisfy |en| ≤ Khp.

The two numerical methods presented below calculate an approximate solution

yi+1 at the point xi+1 from the approximate solution at xi.
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Suppose that we wish to solve the differential equation y′(t) = f(t, y(t)), where

t ∈ [0, 1] and y(0) = y0. We shall assume that f has continuity class C∞ and is

K-Lipschitz. We can use the following method:

yn+1 = yn + h(
1

3
f(tn, yn) +

2

3
f(tn +

3

4
h, yn +

3

4
hf(tn, yn))), [2.8]

where h = 1
N and 0 ≤ n ≤ N − 1. The numerical scheme defined by [2.8] is

both consistent and stable. To see this, observe first that it is defined by the relation

yn+1 = yn + hF (tn, yn, h), where

F (t, y, h) =
1

3
f(t, y) +

2

3
f(t+

3

4
h, y +

3

4
hf(t, y)).

Since F (t, y, 0) = f(t, y), this method is consistent. Moreover, since f is

L-Lipschitz, the following relation holds ∀y, z ∈ [0, 1]:

|F (t, y, h)− F (t, z, h)| ≤ |y − z|(L+ h
L2

2
).

This shows that the method is stable. As it is both stable and consistent, it

converges. It is at least a second-order, which can be shown by computing
∂
∂hF (t, y, h):

∂

∂h
F (t, y, h) =

2

3

(
3

4

∂

∂t
f(t+

3

4
h, y +

3

4
h(f(t, y))

+
3

4
f(t, y)

∂

∂y
f

(
t+

3

4
h, y +

3

4
h(f(t, y))

)

=
1

2

(
∂

∂t
f(t+

3

4
h, y +

3

4
h(f(t, y))

+ f(t, y)
∂

∂y
f

(
t+

3

4
h, y +

3

4
h(f(t, y))

)
.

Hence,

∂

∂h
F (t, y, 0) =

1

2

(
∂

∂t
f(t, y) + f(t, y)

∂

∂y
f(t, y)

)
=

1

2
f [1](t, y).

As F (t, y, 0) = f(t, y), this proves that the method is at least of the first-order.

For f(t, y) = −λy,

F (t, y, h) =
−λy

3
+

2

3
(−λ)(y +

3

4
h(−λy)) = −λy +

1

2
λ2 + hy.
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Thus,

F (t, y, 0) = −λy = f(t, y)

∂

∂h
F (t, y, h) =

1

2
λ2y =

∂

∂h
F (t, y, 0)

f [1](t, y) = 0 + (−λy)(−λ) = λ2y

Therefore, ∂
∂hF (t, y, h) = 1

2f
[1](t, y), and so the method is at least of the second-

order. Finally,

∂2

∂h2
F (t, y, h) = 0,

but f [2](t, y) = (−λy)y2 = −λ3y. This shows that the method is not of the third-

order.

Applied to the example problem y′ = −λy, the method has the expression:

yn+1 = yn + h(−λyn +
1

2
λ2hyn) = yn(1− hλ+

(hλ)2

2
) = ynP (hλ),

where P (x) = 1 − x + x2

2 = 1
2 ((x − 1)2 + 1) (this is identical to the augmented

Euler method, with the same radius of stability). This method convergences whenever

|P (hλ)| < 1. Its radius of stability is equal to 2.

EXAMPLE.– Consider the Cauchy problem:{
y′(t) = t2 − y(t)
y(0) = 1

[2.9]

It is easy to verify that the analytic solution of [2.9] is y(t) = −e−t + t2 − 2t+2.

Now, consider the following method:

yn+1 = yn +
3

4
hf(tn+1, yn+1) +

1

4
hf(tn, yn). [2.10]

We can use this method to approximate problem (1). Here, f(t, y(t)) = t2 − y(t)
and h is the time step.

For h = 0.2, after two iterations, we find: y1 = 0.8313 and y2 = 0.7093.
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For h = 0.1, after four iterations, we find: y1 = 0.9077, y2
= 0.8263, y3 = 0.7566 and y4 = 0.6995. Note that y4 = 0.6995 is the closest to the

exact value, which is y(0.4) = 0.6897.

2.3. Euler’s method

Euler’s method can be written as follows:⎧⎨
⎩

yi+1 = yi + hf(xi, yi)
y0 = y(a) = η
1 ≤ i ≤ N

[2.11]

2.3.1. Interpretation

Euler’s method is based on the assumption that, on the interval [x0, x0 + h], the

curve is approximately equal to its tangent at x0, which has equation

z(x) = y′(x0)(x− x0) + y(x0). The formula y1 = y0 + hf(x0, y0) therefore gives a

good approximation of y(x1).

Next, we assume that f(x1, y1) is a good approximation of y′(x1) and, on the

interval [x1, x2], we replace the curve by its approximate tangent at x1, which has

equation: z(x) = y′(x1)(x− x1) + y(x1) = f(x1, y1)(x− x1) + y1.

Therefore, we can use y2 = y1 + hf(x1, y1) to approximate y(x2).

2.3.2. Convergence

THEOREM.– If f satisfies the following hypotheses:

i) f ∈ C1([a, b]× R);

ii) f is K-Lipschitz in y:

|f(x, y)− f(x, z)| ≤ K|y − z| ∀x ∈ [a, b], ∀y, z ∈ R, K > 0;

then Euler’s method converges.

More precisely, choosing M = max{|y′(t)|, t ∈ [a, b]}, the following expression
gives an upper bound for the error:

|en| = |yn − y(xn)| ≤ eK(b−a) − 1

K

M

2
h
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and

lim
n→∞ max

n=1,··· ,N
|en| = 0.

REMARK.–

1) The result of this theorem can be summarized as |en| ≤ Ah, where A > 0 is a

constant; in other words, Euler’s method is of the first-order.

2) First-order methods do not converge sufficiently quickly to give results that are

useful in practice. We will present a higher-order numerical method below.

EXAMPLE.– Consider the differential equation:{
y′ = 2y
y(0) = 5

(1)

The analytic solution is y(t) = 5e2t. Setting h =
1

n
for i = 0, . . . , n, Euler’s

method gives the approximations yi = 5(1+2h)i. For i = 0, . . . , 100, we define ti =
ih (h = 0.01). We can now compute the values y(ti), yi for i = 0, 10, 20, . . . , 100.

ti y(ti) yi
0 5. 5.

0.1 6.107013790 6.094972100

0.2 7.459123490 7.429736980

0.3 9.110594000 9.056807920

0.4 11.12770464 11.04019832

0.5 13.59140914 13.45794016

0.6 16.60058462 16.40515397

0.7 20.27599984 19.99779113

0.8 24.76516212 24.37719581

0.9 30.24823732 29.71566566

1.0 36.94528050 36.22323061

2.4. One-step Runge–Kutta method

Runge–Kutta methods are widely used in practice because they have various

advantages (easy to program, stable solutions, easy to adjust the step, knowledge of

y0 is sufficient to integrate the differential equation). However, these methods are

computationally slow, and it can be difficult to estimate the local error.
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2.4.1. Second-order Runge–Kutta method

This method considers the first-order centered differences:

xi1 = xi + θ1, h, 0 ≤ θ1 ≤ 1

yi1 = yi + hA10f(xi, yi)

yi+1 = yi + h[A20f(xi, yi) +A21f(xi1, yi1)].

The values of the coefficients θ1, A10, A20, A21 must be chosen in such a way that

the method is of the second-order.

Writing fi = f(xi, yi),

yi+1 = yi + h [A20fi +A21f(xi + θ1h, yi + hA10fi)]

= yi + h
[
A20fi +A21fi +A21θ1hf

′
xi +A21A10fihf

′
yi + ...

]
y(ti+1) = y(xi) + hy′(xi) +

h2

2
y′′(xi) +

h3

6
y(3)(ζi)

ei+1 = yi+1 − y(xi+1).

This gives the system

⎧⎨
⎩

A20 +A21 = 1
A21A10 = 1

2
A21θ1 = 1

2 .
[2.12]

This is a nonlinear system of 3 equations and 4 unknowns. The usual approach is

to fix θ1:

A21 =
1

2θ1
[2.13]

A20 =
2θ1 − 1

2θ1
[2.14]

A10 = θ1. [2.15]

EXAMPLE.– Consider the differential equation:{
y′ = −y + t+ 1
y(0) = 1

(1)
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The analytic solution is y(t) = t + e−t. We write yi and zi for the values found

using the second-order Taylor method and the second-order Runge–Kutta method,

respectively.

ti y(ti) yi zi
0 1. 1. 1.

0.1 1.004837418 1.005000000 1.005000000

0.2 1.018730753 1.019025000 1.019025000

0.3 1.040818221 1.041217625 1.041217625

0.4 1.070320046 1.070801950 1.070801951

0.5 1.106530660 1.107075765 1.107075766

0.6 1.148811636 1.149403567 1.149403568

0.7 1.196585304 1.197210228 1.197210229

0.8 1.249328964 1.249975256 1.249975257

0.9 1.306569660 1.307227606 1.307227608

1.0 1.367879441 1.368540983 1.368540985

2.4.2. Fourth-order Runge–Kutta method

The most common version of Runge–Kutta is the fourth-order method (RK4),

which can be used whenever the functions being studied are sufficiently regular:

xij = xi + θjh [2.16]

yij = yi + h

j−1∑
k=0

Ajkf(xik, yik) [2.17]

A10 = θ1 [2.18]

with j = 1, 2, 3, 4 and yi3 = yi+1.

The coefficients θj are chosen in such a way that the method is of the fourth-order.

This leads to:

θ1 =
1

2
, θ2 =

1

2
, θ3 = θ4 = 1. [2.19]

A10 =
1

2
[2.20]

A20 = 0, A21 =
1

2
[2.21]

A30 = 0, A31 = 0, A32 = 1 [2.22]

A40 =
1

6
, A41 =

1

3
, A42 =

1

3
, A43 =

1

6
. [2.23]
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Therefore, we can compute yi+1 as follows:

yi+1 = yi +
�t

6
(f(xi, yi) + 2f(xi+1/2, ŷi+1/2) + 2f(xi+1/2, ỹi+1/2)

+ f(xi+1, ŷi+1)) [2.24]

ŷi+1/2 = yi +
�x

2
f(xi, yi) [2.25]

ỹi+1/2 = yi +
�x

2
f(xi+1/2, ŷi+1/2) [2.26]

ŷi+1 = yi +�tf(xi+1/2, ỹi+1/2). [2.27]

To compute yi+1, we need to evaluate the function f four times. This can lead to

high computation times with complicated functions.

EXAMPLE.– Consider the differential equation:{
y′ = ty
y(1) = 3

(1)

The analytic solution is y(t) = 3e
(t2−1)

2 . For i = 0, . . . , 10, we define ti = 1+ ih
(with h = 0.1). The approximate values of y(ti) for i = 0, . . . , 10 calculated using

Runge–Kutta 4 are shown in Table 2.1.

ti y(ti) yi
1.0 3. 3.

1.1 3.332131830 3.332131472

1.2 3.738230193 3.738229173

1.3 4.235969760 4.235967573

1.4 4.848223206 4.848219004

1.5 5.604737871 5.604730254

1.6 6.544416795 6.544403471

1.7 7.718440137 7.718417376

1.8 9.194562609 9.194524378

1.9 11.06306728 11.06300382

2.0 13.44506721 13.44496278

Table 2.1. Approximate values computed by RK4

EXAMPLE.– Suppose that we wish to find an algorithm to compute the approximate

values for the solution y of the problem:{
y′(t) = g(t)y t ∈ [a, b]
y(a) = α
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(where g is a function that we can compute using some procedure G(S)) with fourth-

order Runge–Kutta).

In this case, F (t, y, h) =
1

6
(k1 + 2k2 + 2k3 + k4), where f(t, y) = g(t)y, and

k1 = g(t)y
k2 = g(t+ h

2 )(y +
h
2k1)

k3 = g(t+ h
2 )(y +

h
2k2)

k4 = g(t+ h)(y + hk3).

We will use the following variables: N is the number of iterations; t is the time

variable; a, b are the end points of the interval; y is an array of size N + 1; k1, k2, k3
and k4 are computation variables and G(t) is the procedure that computes g(s).

Start

Initialization: a, b, N , z

set size of y to N + 1

y(0) := z

h := (b− a)/2/N

t := a

For i = 1 to N , do

p := G(t)

k1 := z ∗ p
t := t+ h

p := G(t)

k2 := (z + h ∗ k1) ∗ p
k3 := (z + h ∗ k2) ∗ p
t := t+ h

p := G(t)

k4 := (z + 2 ∗ h ∗ k3) ∗ p
z := z + 2 ∗ h ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4)/6

y(i) := z
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Print t and y(i)

End of For

End

2.5. Multi-step Adams methods

Adams methods are a category of multi-step methods. They can be divided into

two subcategories: open-formula methods and closed-formula methods.

2.5.1. Open Adams methods

Consider the following differential equation:

{
dy

dt
= f(y, t)

y(0) = y0
[2.28]

The Taylor expansion about t is:

y(t+�t) = y(t) +�t
dy

dt
+

(�t)2

2!

d2y

dt2
+

(�t)3

3!

d3y

dt3

+
(�t)4

4!

d4y

dt4
+ · · ·+ (�t)n

n!

dny

dtn
.

In the differential equation [2.28], we can write:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dy

dt
= y′(t) = f(y, t)

d2y

dt2
= y′′(t) = f ′(y, t)

...
dny

dtn
= y(n)(t) = f (n−1)(y, t)

where

yi+1 = yi +�tfi +
(�t)2

2!
f ′
i +

(�t)3

3!
f ′′
i

+
(�t)4

4!
f
(3)
i + · · ·+ (�t)n

n!
f
(n−1)
i . [2.29]
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2.5.1.1. First-order Adams formulas

If we keep only the first two terms (up to first-order) in equation [2.29]:

yi+1 = yi +�tfi, [2.30]

then we recover Euler’s method.

2.5.1.2. Second-order Adams formulas

Suppose now that we keep the first three terms in equation [2.29]:

yi+1 = yi +�tfi +
(�t)2

2!
f ′
i +O(�t)3. [2.31]

If we substitute the formula left finite differences according to:

f ′
i =

fi − fi−1

�t
, [2.32]

then equation [2.31] becomes:

yi+1 = yi +�tfi +
(�t)2

2!

(
fi − fi−1

�t
+O(�t)

)
+O(�t)3. [2.33]

Alternatively:

yi+1 = yi +
�t

2
(3fi − fi−1) +O(�t)3. [2.34]

Third-order terms are neglected, so this formula is of the second-order. To compute

yi+1, we need to know fi and fi−1. Note that we cannot find y1, since we do not know

y−1. Therefore, to initialize this method, we need some other way of evaluating y1
(e.g. second-order Runge–Kutta).

2.5.1.3. Third-order Adams formulas

Suppose now that we keep the first four terms in equation [2.29]:

yi+1 = yi +�tfi +
(�t)2

2!
f ′
i +

(�t)3

3!
f ′′
i +O(�t)4.

We can rewrite f ′
i and f ′′

i as left differences as follows:

f ′
i =

fi − fi−1

�t
+

�t

2
f ′′
i +O(�t)2, [2.35]

f ′′
i =

fi − 2.fi−1 + fi−2

(�t)2
+O(�t). [2.36]
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After regrouping the various terms, we find the following expression:

yi+1 = yi +
�t

12
(23fi − 16fi−1 + 5fi−2) +O(�t)4. [2.37]

As before, we will need some other method to compute y1 and y2, such as fourth-

order Runge–Kutta.

2.5.1.4. Higher-order Adams formulas

Similarly, we can use a general formula of order n+1 to express yi+1 as a function

of yi and fi, fi−1, fi−2, . . . , fi−n:

yi+1 = yi +�t
n∑

k=0

βnk.fi−k +O(�t)n+2. [2.38]

Table 2.2 lists the values of βnk up to n = 5, which results in a sixth-order formula.

k,n 0 1 2 3 4 5 Order of the method

0 1 1

1
3

2
−1

2
2

2
23

12
−16

12

5

12
3

3
55

24
−59

24

37

24
− 9

24
4

4
1901

720
−2774

720

2616

720
−1274

720

251

720
5

5
4277

1440
−7923

1440

9982

1440
−7298

1440

2877

1440
− 475

1440
6

Table 2.2. The values of βnk

The fourth-order formula is the most widely used:

yi+1 = yi +
�t

24
(55fi − 59fi−1 + 37fi−2 − 9fi−3) +O(�t)5. [2.39]
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2.5.2. Closed Adams formulas

The second class of Adams formulas uses the “backwards” Taylor expansion:

y(t) = y(t+�t−�t)

= y(t+�t)−�ty′(t+�t) +
(�t)2

2!
y′′(t+�t)− (�t)3

3!
y(3)(t+�t)

+ · · ·+ (−1)n
(�t)n

n!
y(n)(t+�t). [2.40]

In this Taylor expansion, we observe that:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y′ = f
y′′ = f ′
...

y(n) = f (n−1)

[2.41]

Hence, for t = ti:

yi = yi+1 −�tfi+1 +
(�t)2

2!
− (�t)3

3!
f ′′
i+1

+
(�t)4

4!
f
(3)
i+1 + · · ·+ (−1)n

(�t)n

n!
f
(n−1)
i+1 . [2.42]

This gives:

yi+1 = yi +�tfi+1 − (�t)2

2!
+

(�t)3

3!
f ′′
i+1

− (�t)4

4!
f
(3)
i+1 + · · ·+ (−1)(n+1) (�t)n

n!
f
(n−1)
i+1 . [2.43]

This formula is said to be “closed” because we need to compute

fi+1 = f(yi+1, ti+1) to find the unknown yi+1, and fi+1 itself usually depends on

yi+1. Hence, we need to apply an iterative method.

The idea is to inject an initial estimate y
(0)
i+1 of yi+1 into the equation. This gives a

new value y
(1)
i+1:

y
(1)
i+1 = yi +�tf(y

(0)
i+1, ti+1). [2.44]
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Next, we inject y
(1)
i+1 into the equation to calculate y

(2)
i+2. The calculations are

terminated when convergence is attained. For example, if the convergence criterion is

defined in terms of an accuracy threshold ε, we stop when:

|y(r+1)
i+1 − y

(r)
i+1| ≤ ε. [2.45]

At order n+ 1, this leads to the following generalized formula:

yi+1 = yi +�t
n∑

k=0

γnkfi+1−k +O(�t)n+2. [2.46]

The values of γnk are listed up to n = 5 in Table 2.3.

k,n 0 1 2 3 4 5 Order of the method

0 1 1

1
1

2

1

2
2

2
5

12

8

12
− 1

12
3

3
9

24

19

24
− 5

24

1

24
4

4
251

720

646

720
−264

720

106

720
− 19

720
5

5
1475

1440

1427

1440
− 798

1440

482

1440
− 173

1440

27

1440
6

Table 2.3. The values of γnk

The fourth-order version of this method is again the most widely used:

yi+1 = yi +
�t

24
(9fi+1 + 19fi − 5fi−1 + fi−2) +O(�t)5. [2.47]

Closed formulas, which are iterative, require higher computation times than open

formulas, since we need to compute |y(r+1)
i+1 − y

(r)
i+1| until the difference converges to

within ε.

REMARK.– The closed version of the method at any given order is much more accurate

and stable than the corresponding “open” version. The closer the initial estimate y
(0)
i+1

to the exact value yi+1, the faster the convergence.
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2.6. Predictor–Corrector method

The two methods presented above (closed and open Adams formulas) can be

combined into a method known as the predictor–corrector method. The idea is to

begin by finding an estimated value y
(0)
i+1, the predictor that is close to the final value

yi+1. This predictor y
(0)
i+1 is computed using the open version of the formula. The

value of y
(0)
i+1 thus obtained is then injected into the closed method of the same order.

This combined approach accelerates the convergence, allowing us to fully exploit the

advantages of the Adams method: reduced computation times and significantly

decreased estimated truncation errors.

The fourth-order predictor–corrector method can be summarized as follows:

PREDICTOR.– Fourth-order open Adams formula:

y
(0)
i+1 = yi +

�t

24
(55fi − 59fi−1 + 37fi−2 − 9fi−3). [2.48]

We know y
(0)
i from the previous step. This is taken as the value of the predictor:

ŷ
(0)
i+1 = y

(0)
i+1 −

251

720
(yi − y

(0)
i ). [2.49]

CORRECTOR.– Calculated from the closed Adams formula (e.g. of the fourth-order):⎧⎨
⎩ y

(r+1)
i+1 = yi +

�t

24
(9f

(r)
i+1 + 19fi − 5fi−1 + fi−2)

f
(0)
i+1 = f(ŷ

(0)
i+1, ti+1)

[2.50]

The values y1, y2, and y3 can be computed from Runge–Kutta formulas. Since

y
(0)
3 does not exist, the value y04 is calculated from equations [2.48] and [2.49], and

y
(0)
4 is used to initialize the iterative computations (formula [2.50]). We can estimate

y
(0)
5 from y5 using equation [2.48], and then we can estimate ŷ

(0)
5 using formula

[2.49]. This value is then injected into formula [2.50] to begin the iterative

computations.

EXAMPLE.– Consider the implicit method defined by:{
y0 = y(0)
yn+1 = yn + h

2 (f(tn, yn) + f(tn+1, yn+1))

We can design a prediction–correction algorithm for this method by choosing the

predictor yn+1 = yn + hf(tn, yn). (We are assuming that a procedure F (S,Z) is

available to compute the value of f .) Thus:
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Start

Initialization: tmax, N , z (initial value of y0), M , and the size of y is N + 1:

y(0) := z

h := tmax/N

t := 0

p := F (t, z)

For i = 1 to N , do

q := p

s := t+ h

x : = z + h ∗ q (prediction)

For k := 1 to M (correction loop)

p := F (s, x)

x := z + h/2 ∗ (q + p)

End of For

z := x

y(i) := z

Print s and y(i)

End of For

End

Suppose now that we wish to find the stability radius of this method (without

prediction–correction). The implicit method can be written as

yn+1 = yn +
h

2
(−Ayn −Ayn+1),
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so

yn+1 =
1− Ah

2

1 + Ah
2

yn.

Since

∣∣∣∣∣1−
Ah
2

1 + Ah
2

∣∣∣∣∣ < 1 for all h, the method is A-stable and its stability radius is

infinite.

2.7. Using Matlab

The built-in features offered by Matlab can solve almost any problem phrased in

terms of ordinary differential equations of the following type and with the following

initial conditions:

y = f(t, y), y(t0) = y0.

The first step is to create a Matlab function describing the differential system in

terms of equations. This function should be of the form

function dY = odefct(x,Y)

where odefct is the (arbitrary) name of the Matlab function implementing the

mathematical function F . It should return a column vector dY containing the

components F1 and F2 of the function F.

REMARK.– Even if the function F does not explicitly depend on x, the function must

have two input parameters.

Matlab has several differential equation solvers: some designed for classical

problems, and others designed for the so-called “stiff” problems. The following

solvers are classical solvers:

– ode45 uses an explicit one-step Runge–Kutta method. This solver is the best

choice for most problems;

– ode23 also uses an explicit one-step Runge–Kutta method. It can be more

efficient than ode45 in some cases;

– ode113 uses an Adams–Bashforth–Moulton method. This is a multi-step solver.

There are four solvers for “stiff” problems: ode15s, ode23s, ode23t and ode23tb.
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The following syntax is used to call each of these solvers:

[t,Y] = odexx(@odefct,[t0,t1],Y0)

where

– odexx is the name of the solver, from the choices listed above;

– odefct is the name of the Matlab function that implements the mathematical

function F of the differential system;

– [t0, t1] is the time interval on which the solution should be computed;

– Y 0 is the column vector containing the initial data: Y0 = (y(t0), y
′(t0)).

Each solver has the following output parameters:

– t: column vector containing the nodes of the interval [t0, t1] at which the solution

was calculated;

– Y : matrix containing the values of the solution and its derivatives at the nodes

of the interval [t0, t1] specified by the vector t. The i-th row of Y contains the values

of the (i− 1)-th derivative at each of the nodes, which are all in [t0, t1]. The first row

contains the solution y of the original differential equation (E).

REMARK.– Note that the symbol @ is required before odefct in the function

parameters.

Matlab includes a (short) demo for solving ordinary differential equations, which

can be run by typing:

>> odedemo

Suppose, for example, that we wish to solve the differential equation:

{
dy

dt
= −0.1(y − 10)

y0 = 100

First, we implement the equations of this function in a file named ‘myode.m’:

function yprime = myode(t,y)
yprime = -0.1 * (y-10);
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We can now find the evolution over time of the function y by solving the

differential equation with ode45 as follows:

>> tinitial = 0;
>> tfinal = 60;
>> y0 = 100;
>> [t y] = ode45(’myode’, [tinitial tfinal], y0)
>> plot(t,y)

The ode45 function and the other solvers also work with systems of multiple

coupled differential equations.

Figure 2.1. Graphical solution
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Solving PDEs



3

Finite Difference Methods

3.1. Introduction

The evolution of many physical problems is described by differential equations

with multiple parameters (often t and x), typically involving partial derivatives with

respect to each parameter:

– the wave equation:

c2
∂2u

∂x2
− ∂2u

∂t2
= f(x, t); [3.1]

– the (heat) diffusion equation:

D
∂2u

∂x2
− ∂u

∂t
= f(x, t); [3.2]

– Schrödinger’s equation:

�
2

2m

∂2u

∂x2
+ i�

∂u

∂t
− U(x)u = 0. [3.3]

These equations are known as Partial Differential Equations (PDEs).

They are often more complex to solve than equations within a single parameter,

which are known as Ordinary Differential Equations (ODEs). To solve PDEs, we need

to use grids to discretize every parameter simultaneously. For example, a 3D grid is

required for space and a 1D grid is required for time (see Figure 3.1).

The best technique to solve the problem varies somewhat as a function of the

number of dimensions. We will mostly focus on 2D systems in this chapter, with one

spatial dimension and one time dimension, but these methods can also be generalized

Advanced Numerical Methods with Matlab® 2: Resolution of Nonlinear, Differential
and Partial Differential Equations, First Edition. Bouchaib Radi and Abdelkhalak El Hami
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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to N dimensions. Just like ODEs, attempts to solve PDEs encounter obstacles such

as:

– precision;

– speed;

– stability.

There are two major frameworks for solving PDEs [CIA 90]:

– Physical space: This class of methods works in “physical” space (real space).

This includes methods such as:

- finite difference methods;

- finite element methods;

- finite volume methods.

Figure 3.1. Example of a grid

These methods use grids for both space and time.

– Fourier space: This second class of methods works in Fourier space (the

functions are expressed in terms of a Fourier basis). These methods are described as

spectral methods. The idea is to decompose the functions with respect to a finite (and

therefore incomplete) basis. The decomposition thus obtained is then used for the

grid.
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3.2. Presentation of the finite difference method

In this chapter, we will study the method of finite differences, which can be used

to numerically solve first-order partial differential equations in t.

Consider the first-order hyperbolic equation in t, also know as the transport
equation. The unknown is a function u that is defined for (x, t) ∈ R × R+. The

domain of u is discretized by the grid

Gh,k = {(xm, tn)/xm = mh, m ∈ Z, tn = nk, n ∈ N}, [3.4]

where h and k are strictly positive real numbers that are chosen to be as small as

possible. We say that h is the spatial discretization step and k is the time step.

The function u, defined in terms of the continuous variables (x, t), takes the value

un
m = u(mh, nk) at the point (xm, tn) = (mh, nk) of the grid Gh,k. To distinguish

the continuous solution u from the result of the numerical computation, we will write

v for the numerical solution, which is only defined on Gh,k: (vnm)m∈Z,n∈Z. In other

words, vnm is the approximate solution at the point (xm, tn) of the PDE.

To discretize the problem, we can replace the partial derivatives by any of the

following finite differences [QUA 08]:

–
∂u

∂x
(xm, tn) �

un
m+1 − un

m

h
, forward finite difference;

–
∂u

∂x
(xm, tn) �

un
m − un

m−1

h
, backward finite difference;

–
∂u

∂x
(xm, tn) �

un
m+1 − un

m−1

2h
, centered finite difference;

–
∂2u

∂x2
(xm, tn) �

un
m+1 − 2un

m + un
m−1

h2
, second-order centered finite difference.

These approximations are derived from Taylor’s formula. Next, we need to do the

same for the partial derivatives with respect to t:

–
∂u

∂t
(xm, tn) � un+1

m − un
m

k
, forward finite difference in t.

EXAMPLE.– Consider the transport equation ut + cux = 0 on R×R
∗
+ with the initial

condition u(x, 0) = Φ(x) for x ∈ R, and suppose that c > 0.

We will use a forward method in both space and time to discretize this equation:

vn+1
m − vnm

k
+ c

vnm+1 − vnm
h

= 0. [3.5]
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Setting λ = k
h gives:

vn+1
m = (1 + λc)vnm − λcvnm+1 = (1 + λc− λcTh)vnm,

where Tα is the spatial translation operator defined by Tαu(x, t) = u(x− α, t) for all

α ∈ R, that is, T−hv
n
m = vnm+1.

By induction:

vnm = (1 + λc− λcT−h)
nv0m

=
n∑

p=0

Cp
n(1 + λc)n−p(−λcT−h)

pΦ(xm)

=
n∑

p=0

Cp
n(1 + λc)n−p(−λc)pΦ(xm + ph).

Thus, the domain of dependence of v at the point (xm, tn) = (ih, nk) consists of

the points xm, xm + h, xm + 2h, . . . , xm + nh. However, we know that

u(x, t) = Φ(x− ct)

and that the domain of dependence of un
m = u(xm, tn) is simply the point xm−cλnh.

The discrete method therefore neglects some of the properties of the solution of the

PDE, and the discrete solution vnm is distinct from un
m in general: the scheme [3.5]

does not converge.

Suppose that Φ was obtained experimentally, for example, in the form of a

measurement Φ̃(xm + ph) = Φ(xm + ph) + (−1)pε, that is, there is an error of ε in

the value of |Φ|.

The error of vnm would be of the order of (1 + 2λc)nε. For fixed λ, the error of

vnm would grow exponentially as the number of iterations n increases. We say that the

scheme [3.5] is unstable.

REMARK.– This example shows that, although it might seem straightforward to

replace partial derivatives by finite differences, we need to guarantee that the solution

obtained by a finite differences method converges to the solution of the partial

differential equation in a sense that remains to be defined.
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3.2.1. Convergence, consistency and stability

In the following, L is a linear differential operator and a first-order operator in t.
We will assume that the problem

{Lu(x, t) = f(x, t) on Ω× R
∗
+

u(x, 0) = Φ(x) for x ∈ Ω open subset of R
[3.6]

is well posed [RAP 05].

Replacing the partial derivatives by finite differences yields a discrete operator

Lh,k. This allows us to write the discretized homogeneous PDE in the form

Lh,kv = 0.

To account for the right-hand side of the PDE, we use a discrete operator Ih,k
that is applied to f. One example of a finite differences scheme for the PDE [3.6] is

therefore:

Lh,kv = Ih,kf. [3.7]

Below, we will always choose Ih,k in such a way that Ih,kf = fn
m, and our initial

condition is simply v0m = Φ(xm) for xm ∈ Ω.

The following definitions give one way of classifying the various types of discrete

scheme:

DEFINITION.– A finite differences scheme is said to be explicit if we can write vn+1
m

as a finite linear combination of the vji for j ≤ n.

It is said to be implicit if other values of v are required (e.g. vn+1
m±1).

DEFINITION.– A finite differences scheme is said to be one-step with respect to time if
it only uses values of v at two points in time, for example, tn and tn+1.

It is said to be multi-step if values of v at more than two points in time are used.

Earlier, we showed that we need a way to guarantee that the discrete solution

constructed by a finite differences scheme properly represents the solution of the PDE.

The next definition can help us with this.

DEFINITION.– Let u(x, t) be the solution of [3.6] and let v be a solution of the discrete
scheme Lh,kv = fn

m such that v0m converges to Φ(x) whenever xm converges to x.
We say that the finite differences scheme Lh,k is convergent if vnm converges to u(x, t)
whenever (xm, tn) converges to (x, t) as (h, k) tends to (0, 0).
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REMARK.– This definition and the definitions given below only apply to one-step

schemes. For multi-step schemes, we need to account for the initialization phase.

DEFINITION.– We say that the scheme Lh,kv = fn
m is consistent with the PDE Lu = f

if, for every function φ with continuity class C∞, the following limit holds at every
point (xm, tn):

lim
(h,k)→(0,0)

(Lφ− Lh,kφ) = 0.

Consistency is a necessary condition for convergence, but is not sufficient. For

example, consider again the scheme [3.5] and let φ be a function with continuity class

C∞. Then:

Lφ = φt + cφx et Lh,kφ =
φn+1
m − φn

m

k
+ c

φn
m+1 − φn

m

k
. [3.8]

By Taylor’s formula,

φn
m+1 = φ(xm + h, tn) = φn

m + hφx(xm, tn) +
h2

2
φxx(xm, tn) +O(h3),

φn+1
m = φ(xm, tn + k) = φn

m + kφt(xm, tn) +
k2

2
φtt(xm, tn) +O(k3).

Therefore,

Lh,kφ(xm, tn) = φt(xm, tn) + cφx(xm, tn) +
1

2
(kφtt(xm, tn)

+chφxx(xm, tn)) +O(h2) +O(k2),

and so

(Lφ− Lh,kφ)(xm, tn) = −1

2
(kφtt(xm, tn) + chφxx(xm, tn))

+ O(h2) + O(k2) −−−−−−−→
(h,k)→(0,0)

0.

This shows that the scheme [3.5] is consistent but not convergent.

DEFINITION.– The finite differences scheme Lh,kv = 0 associated with the PDE
Lu = 0 is said to be stable if there exists Λ ⊂ (R∗

+)
2 satisfying (0, 0) ∈ Λ̄ such

that, for all T > 0, there exists a constant CT for which the inequality

h

+∞∑
m=−∞

|vnm|2 ≤ CTh

+∞∑
m=−∞

|v0m|2,
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holds for every 0 ≤ t ≤ T and (h, k) ∈ Λ. We say that Λ is the stability region of the
scheme.

One common example of Λ is the segment {(h, λh) | 0 < h < C}, where C
and λ are constants. Stability can be characterized by the normed space l2(hZ); the

sequence (vnm)m∈Z is an element of l2(hZ) if ‖vn‖l2(hZ) =
(
h

+∞∑
m=−∞

|vnm|2
)1/2

is

finite.

Then, for sufficiently small h and k in Λ, the stability criterion can be written as:

(∀T > 0)(∃CT > 0)(∀tn ∈ [0, T ]), ‖vn‖l2(hZ) ≤ CT ‖v0‖l2(hZ). [3.9]

Stability guarantees that, at every time tn ∈ [0, T ], the norm of the discretized

solution is bounded by the norm of the initial data multiplied by some constant factor.

This concept of numerical stability must not be confused with the separate notion

of whether the well-posed problem [3.6] is stable. The latter property concerns the

behavior of the solution at infinity as a function of the initial conditions, whereas the

numerical stability of a scheme concerns the behavior of v on the interval [0, T ] as

(h, k) tends to (0, 0) [SMA 02].

The next result explains why these notions of consistency and stability are

important.

THEOREM.– A linear scheme that is consistent with the problem [3.6] is convergent if
and only if it is stable.

The final definition of this chapter gives a way of comparing convergent schemes.

Any two given convergent schemes do not necessarily achieve equivalent performance

when approximating the continuous solution.

DEFINITION.– A scheme Lh,kv = fn
m that is consistent with the problem [3.6] is said

to be of order p in space and order q in time if, for every function φ with continuity
class C∞:

Eh,kφ = Lh,kφ− Lφ = O(hp) +O(kq). [3.10]

If so, we say that the scheme is of order (p, q), and Eh,k is called the truncation
error.
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3.2.2. Courant–Friedrichs–Lewy condition

Below, we will consider several examples of discrete schemes for the transport

problem with speed c ∈ R
∗:

{
ut + cux = 0 on R× R

∗
+

u(x, 0) = Φ(x) for x ∈ R
[3.11]

– The forward scheme in time and space [3.5] is of the form vn+1
m = αvnm +

βvnm+1. This scheme satisfies

‖vn+1‖2l2(hZ) = h
∑
m∈Z

|αvnm + βvnm+1|2 ≤ (|α|+ |β|)2‖vn‖2l2(hZ).

Hence, it can only be stable if |α|+ |β| ≤ 1.

In particular, for the scheme [3.5], |1 + cα| + |cα| ≤ 1, so it is stable for −1 ≤
cα ≤ 0.

– The Lax–Friedrichs scheme is centered in space and forward in time, but uses a

centered average to approximate vnm:

vn+1
m − 1

2 (v
n
m+1 + vnm−1)

k
+ c

vnm+1 − vnm−1

2h
= 0. [3.12]

This scheme is consistent, and is of the form vn+1
m = αvnm+1 + βvnm−1.

It can be shown that these schemes are in fact stable whenever |α|+ |β| ≤ 1, and

in particular the Lax–Friedrichs scheme [3.12] is stable whenever |cλ| ≤ 1 [TRE 96].

The results stated above can be generalized as follows:

THEOREM.– Suppose that vn+1
m = αvnm−1 + βvnm + γvnm+1 is an explicit scheme for

the PDE [3.11]. Then, if the ratio k
h = λ is constant, the scheme can only be stable if

the Courant–Friedrichs–Lewy (CFL) condition holds: |cλ| ≤ 1.

THEOREM.– Explicit schemes for the PDE [3.11] cannot be both consistent and
unconditionally stable.

EXAMPLE.– The above theorem does not extend to implicit schemes. For example,

consider the following scheme, which is forward in time and backward in space, at

time tn+1:

vn+1
m − vnm

k
+ c

vn+1
m − vn+1

m−1

h
= 0.
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By writing this scheme in the form (1 + cλ)vn+1
m = vnm + cλvn+1

m−1, we can show

that, for c > 0 and for all λ ∈ R+:

‖vn+1‖2l2(hZ) ≤ ‖vn‖2l2(hZ).

Therefore, this scheme is unconditionally stable for c > 0.

3.2.3. Von Neumann stability analysis

Von Neumann stability analysis uses Fourier analysis to study the behavior of

discrete schemes.

Consider a linear one-step discrete scheme Lh,kv = 0 with constant coefficients.

Taking the Fourier transform and rearranging terms leads to the relation:

v̂n+1(ξ) = g(ξ, h, k)v̂n(ξ). [3.13]

The factor g(ξ, h, k) is said to be the amplification factor: the modulus |g| of g
is the amplification, and the phase arg g of g is the phase offset introduced at each

frequency of the discrete solution when increasing by one time step k. Iterating this

gives the relation:

v̂n(ξ) = g(ξ, h, k)nv̂0(ξ).

EXAMPLE.– Consider the transport equation ut+cux = 0 for c > 0, discretized using

[3.5], a forward scheme in both time and space.

Then g(ξ, h, k) = 1 + cλ− cλeihξ. For fixed λ, this only depends on hξ, and

|g(hξ)|2 = g(hξ) ¯g(hξ) = 1 + 4cλ sin2(hξ/2).

However,

|v̂n(ξ)| = |g(hξ)|n|v̂0(ξ)|,

and |g(hξ)| = 1 if and only if hξ = 0; |g(hξ)| > 1. We can use this fact to deduce

that the scheme is unstable.

Let (h0, k0) ∈ (R∗
+)

2, and K ∈ R
∗
+. There exists (h, k) ∈]0, h0]×]0, k0] and

(ξ1, ξ2) ∈]0, π/h[2 such that

|g(hξ)| ≥ 1 +Kh for all ξ ∈ [ξ1, ξ2].
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We define v̂0 to satisfy

v̂0(ξ) =

{
(ξ2 − ξ1)

−1/2 if ξ ∈ [ξ1, ξ2]
0 if ξ /∈ [ξ1, ξ2]

and ‖v0‖l2(hZ) = 1. Thus,

‖vn‖2l2(hZ) = ‖v̂n‖2L2([−π/h,π/h])

=

∫ +π
h

−π
h

|g(hξ)|2n|v̂0(ξ)|2dξ

=

∫ ξ2

ξ1

|g(hξ)|2n 1

ξ2 − ξ1
dξ

≥ (1 +Kk)2n ≥ 1

2
e2KT ‖v0‖2l2(hZ)

for n � T/k and k0 sufficiently small.

Since K may be chosen to be arbitrarily large, the stability criterion (S) is not

satisfied and the scheme [3.5] is unstable and hence divergent for c > 0.

In general, the following result holds:

THEOREM.– A linear one-step scheme Lh,kv = 0 with constant coefficients is stable
if and only if there exists a constant K ∈ R+ together with a set Λ ⊂ (R∗

+)
2 with

(0, 0) ∈ Λ̄ such that

|g(ξ, h, k)| ≤ 1 +Kk

for all (h, k) ∈ Λ. If the amplification factor only depends on hξ, the scheme is stable
if and only the following condition holds:

|g(hξ))| ≤ 1.

3.3. Hyperbolic equations

Hyperbolic problems behave differently from elliptic or parabolic equations. For

example, they can exhibit a special phenomenon known as shocks. We will study three

examples of hyperbolic equations.

Two of these examples are linear hyperbolic equations:

– the transport equation;

– the wave equation.
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These two equations can be written in the form:

∂2u

∂t2
−∇(a∇u) + cu = f.

Finally, as a prototype for nonlinear hyperbolic equations, we will also consider

Burgers’ equation:

∂u

∂t
+

∂f(u)

∂x
= 0.

3.3.1. Key results

Shocks or shock waves are singularities in the solution of a PDE. Some linear

hyperbolic equations admit shocks, in which case these shocks are necessarily

specified in the initial conditions or the boundary conditions, and propagate along the

characteristics of the differential equation.

For nonlinear hyperbolic equations, shocks that are not present in the data (either

the initial conditions or the boundary conditions) can nonetheless arise if the

characteristics intersect.

EXAMPLE.– Consider the transport equation

∂u

∂t
+ c

∂u

∂x
= ρ

with boundary conditions:{
u(x, 0) = 0 if x < ρ
u(x, 0) = ρ if x > ρ

The function u(x, t) is discontinuous at (ρ, 0), assuming that ρ �= 0. The

characteristics are therefore defined by the equation

dt

1
=

dx

c
=

du

ρ
.

Each of these characteristics is a straight line. The equation of the characteristic

that passes through the point (x0, 0) is

x = ct+ x0.
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The solutions of the PDE are given by:

⎧⎨
⎩

u(x, 0) = ρ(x−x0)
c if x0 < ρ

u(x, 0) = ρ(x−x0)
c + ρ if x0 > ρ

Along any given characteristic,

lim
x0→ρ−

u(x, t) �= lim
x0→ρ+

u(x, t).

Hence, the function u(x, t) is discontinuous along the characteristics of the PDE.

EXAMPLE.– Consider the wave equation

∂2u

∂t2
= c2

∂2u

∂x2

with boundary conditions:⎧⎨
⎩

u(x, t) = 0 if x = ct and x ≤ 1
u(x, t) = x− 1 if x = ct and x ≥ 1
u(x, t) = x if x = −ct

The solution of this equation is:

{
u(x, t) = 1

2 (x− ct) if x ≤ 1
u(x, t) = x− 1 if x ≥ 1

This solution is said to be a weak solution because the function u(x, t) is

continuous, but is not differentiable at the point (x = 1, t = 1
c ). The boundary

condition is not differentiable at this point: the singularity is inherited by the solution.

EXAMPLE.– Consider the following nonlinear hyperbolic equation. It was studied by

J.M. Burgers:

∂u

∂t
+ u

∂u

∂x
= 0.

The Cauchy problem

{
∂u

∂t
+ u

∂u

∂x
= 0 if x ∈ R, and t > 0

u(x, 0) = u0(x)
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has a solution u(x, t) that is parametrically described by the characteristic equation

(Dλ):

x = u0(λ)t+ λ.

The solution is constant along each of these curves u = u0(λ).

The next series of examples explores the question of whether a problem is well

posed or ill posed, and studies the conditions under which shocks can arise.

Suppose that the function u0 is the Heaviside function:

{
u0(λ) = 0 if λ ≤ 0
u0(λ) = 1 if λ > 0

With these assumptions, one possible solution is given by:

⎧⎨
⎩

u(x, t) = 0 if x ≤ 0
u(x, t) = 1 if 0 < t ≤ x
u(x, t) = x

t if 0 ≤ x ≤ t

This solution is continuous even though the initial conditions are discontinuous.

However, the system has another solution, which features a shock:

{
u(x, t) = 0 if x ≤ t/2
u(x, t) = 1 if x > t/2

The shock propagates along the straight line described by the equation x = t
2 .

We can impose an additional condition, the so-called entropy condition, to

eliminate this solution:

∀x, ∀t > 0, u(x− 0, t) ≥ u(x+ 0, t).

This condition accepts shocks that decrease u and rejects shocks that increase u.
Consider the initial values:⎧⎨

⎩
u0(λ) = 0 if λ ≤ 0

u0(λ) = −λ2 if λ > 0

With these values, the characteristics intersect. Writing

f(x, t, λ) = x− u0(λ)− λ,
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the envelope of the characteristics is described by the parametric system f = 0 and

∂f/∂λ = 0, or in other words the system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t =
−1

u0(λ)

x = λ− u0(λ)

u′
0(λ)

Here, this is the branch of a hyperbola described by the equation t = 1
4x.

We know that the solution is constant and equal to the slope u0(λ) on each

characteristic. Therefore, if the characteristics intersect, the function u(x, t) takes

two or more values. This is inadmissible, so the problem is ill posed. Furthermore, if

the derivatives of u are discontinuous, the PDE is no longer defined, since the

derivatives do not exist.

DEFINITION.– We say that u has a discontinuity of first category on the curve C if
u is not continuous, but u and its derivatives have left and right derivatives that are
continuous functions in curvilinear coordinates on C.

If u is a piecewise C1 function with discontinuities of the first category on the

curve C, then it can be shown that the slope of the shock is equal to the average of the

values on either side of the shock:

dx

dt

∣∣∣
C
=

u− + u+

2
. [3.14]

For the generalized Burgers equation, the Rankine–Hugoniot conditions are used

to describe the requirement that the flow f(x) should be continuous at the

discontinuities of the curve x = x(t).

If u0 is a bounded measurable function, it can be shown that the Cauchy problem,

reformulated as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
+ u

∂u

∂x
= 0 if x ∈ R, and t > 0

u(x, 0) = u0(x)
dx

dt
|C =

u− + u+

2
Rankine-Hugoniot condition

∀x, ∀t > 0, u(x− 0, t) ≥ u(x+ 0, t) entropy condition

has a unique solution.
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This problem can equivalently be stated in a variational form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀φ ∈ C1(R2) of bounded support

∫ +∞
−∞ dx

∫ +∞
0

(u∂φ
∂t + u2

2
∂φ
∂x )dt+

∫ +∞
−∞ u0(x)φ(x, 0)dx = 0

∀x, ∀t > 0, u(x− 0, t) ≥ u(x+ 0, t)

3.3.2. Numerical schemes for solving the transport equation

This section presents a few of the most commonly used schemes for solving the

homogeneous problem [3.11] when c ∈ R
∗.

3.3.2.1. Spatially centered scheme

The spatially centered scheme is defined as follows:

vn+1
m − vnm

k
+ c

vnm+1 − vnm−1

2h
= 0.

This scheme is consistent and has order (2,1). Writing

vn+1
m = vnm − cλ

2
(vnm+1 − vnm−1),

where λ = k
h , it can be shown that the amplification factor is g(hξ) = 1− icλ sin(hξ)

and |g|2 = 1 + c2λ2 sin2(hξ) ≥ 1. Hence, the scheme is unstable.

3.3.2.2. Upwind scheme

If we test the sign of c, we obtain a scheme that uses either vnm−1 or vnm+1

depending on the direction of advection (hence the name “upwind”). This scheme

can be stated as follows:

vn+1
m − vnm

k
+

(
c− |c|

2

)
vnm+1 − vnm

h
+

(
c+ |c|

2

)
vnm − vnm−1

h
= 0.

Equivalently:

vn+1
m − vnm

k
+ c

vnm+1 − vnm−1

2h
− |c|h

2

vnm+1 − 2vnm + vnm−1

h2
= 0.

Hence, this is an explicit centered scheme with a correction term originating from

the discretization of (|c|h/2)uxx.
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This scheme is consistent, of order (1,1), and g(hξ) = 1 − 2|c|λ sin2(hξ/2) −
icλ sin(hξ). The relation |g(hξ)|2 = 1 − 4|c|λ(1 − |c|λ) sin2(hξ) ≤ 1 holds if and

only if |c|λ ≤ 1. Note that the numerical dissipation or viscosity term (|c|h/2)uxx

stabilizes the spatially centered scheme, but reduces its order.

3.3.2.3. Lax–Friedrichs scheme

The Lax–Friedrichs scheme can be stated as follows:

vn+1
m − 1

2 (v
n
m+1 + vnm−1)

k
+ c

vnm+1 − vnm−1

2h
= 0.

If φ is regular, it is possible to show that

Lh,kφ− Lφ =
k

2
φtt − h2

2k
φxx +O(k2 + h4/k) +

ch2

6
φxxx +O(h4).

This scheme is consistent, provided that h2

k → 0 as h, k → 0. If k = λh, where

λ ∈ R
∗
+ is fixed, then the Lax–Friedrichs scheme is consistent of order one.

The amplification factor is g(hξ) = cos(hξ)+ icλ sin(hξ), and |g|2 = cos2(hξ)+
c2λ2 sin2(hξ) ≤ 1 if and only if |c|λ ≤ 1.

The scheme can be rewritten in the form:

vn+1
m − vnm

k
+ c

vnm+1 − vnm−1

2h
− 1

2

vnm+1 − 2vnm + vnm−1

k
= 0.

Note that the Lax–Friedrichs scheme is equivalent to discretizing the following

PDE by finite centered differences:

ut + cux − h2

2k
uxx = 0.

The phenomenon of numerical viscosity is again present, with a stabilizing effect

on the scheme.

3.3.2.4. Lax–Wendroff scheme

The Lax–Wendroff scheme uses Taylor expansions to discretize the PDE. If u is a

regular solution of the PDE, then:

un+1
m = un

m + k
∂u

∂t
+

k2

2

∂2u

∂t2
+O(k2).
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However,

ut = −cux and utt = (−cux)t = −cuxt = c2uxx,

so

un+1
m = un

m − ck
∂u

∂x
+ c2

k2

2

∂2u

∂x2
+O(k2).

By using spatially centered discretization to approximate ux and uxx, we obtain

the following discrete scheme:

vn+1
m = vnm − ck

vnm+1 − vnm−1

2h
+ c2

k2

2

vnm+1 − 2vnm + vnm−1

h2
.

This scheme is consistent and of order (2,1), since

Lh,kφ− Lφ =
k

2
φtt − c2k

2
φxx +

c2kh2

4!
φxxxx +O(h3 + k2).

Setting λ = k
h , we have that:

vn+1
m = vnm − cλ

2
(vnm+1 − vnm−1) +

c2λ2

2
(vnm+1 − 2vnm + vnm−1).

It can be shown that the amplification factor is

g(hξ) = 1− 2c2λ2 sin2(hξ/2)− icλ sin(hξ)

and

|g|2 = 1− 4c2λ2(1− c2λ2) sin4(hξ/2).

This scheme is therefore stable whenever the CFL condition |cλ| ≤ 1 holds.

3.3.2.5. Leapfrog scheme

The so-called “leapfrog” scheme is centered in both space and time:

vn+1
m − vn−1

m

2k
+ c

vnm+1 − vnm−1

2h
= 0,

or, alternatively,

vn+1
m = vn−1

m − cλ(vnm+1 − vnm−1).
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This is a two-step scheme, so we need initial conditions for both v0m and v1m. In

practice, a one-step scheme is used to initialize multi-step schemes. Since

Lh,kφ− Lφ =
k2

6
φttt − ch2

6
φxxx +O(h2 + k2),

the leapfrog scheme is consistent and of order (2, 2). We cannot apply von Neumann

analysis to this scheme directly, but it nonetheless has the following properties:

– if cλ < 1, the scheme is stable;

– if cλ ≥ 1, the scheme is not stable.

3.3.3. Wave equation

The wave equation is the canonical example of a second-order linear hyperbolic

equation. Its statement is:

∂2u

∂t2
= c2

∂2u

∂x2
. [3.15]

Any function of the form

u(x, t) = f(x+ ct) + g(x− ct)

is a solution, where f and g are arbitrary C2 functions, representing the sum of a

forward-propagating wave and a backward-propagating wave.

Consider the following Cauchy problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2u
∂t2 = c2 ∂2u

∂x2 if x ∈ R and t > 0,

u(x, 0) = u0(x)

∂u
∂t (x, 0) = u1(x)

[3.16]

If u0 has continuity class Cp and u1 has continuity class Cp−1, then this Cauchy

problem has a classical solution with continuity class Cp:

u(x, t) = u0(x+ ct)/2 + u0(x− ct)/2 +
1

2c

∫ x+ct

x−ct

u1(τ)dτ. [3.17]
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3.3.3.1. Theta-scheme method

Consider the wave equation,

∂2u

∂t2
− c2

∂2u

∂x2
= 0.

The θ-scheme associated with the wave equation can be stated as

ui,j+1 − 2ui,j + ui,j−1

(Δt)2
− c2

θAui,j+1 + (1− 2θ)Aui,j + θAui,j−1

(Δx)2
= 0,

where

Aui,j = ui+1,j − 2ui,j + ui−1,j .

This scheme is explicit if θ = 0 and implicit otherwise. For 0 ≤ θ ≤ 1
4 , the scheme

is stable whenever

c
Δt

Δx
≤ 1√

1− 4θ
.

For 1
4 ≤ θ ≤ 1, the scheme is universally stable.

3.3.3.2. Lax scheme

The wave equation can be written in the form of a system:

⎧⎪⎨
⎪⎩

∂v

∂t
= c

∂w

∂x
∂w

∂t
=

∂v

∂x

The Lax scheme can then be stated as:

⎧⎨
⎩

vi,j+1 = 1
2 (vi+1,j + vi−1,j) + c Δt

2Δx (wi+1,j − vi−1,j)

wi,j+1 = 1
2 (wi+1,j + wi−1,j) + c Δt

2Δx (vi+1,j − vi−1,j)

This scheme is a first-order, two-level scheme that is stable whenever the CFL

condition holds:

c
Δt

Δx
≤ 1.
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3.3.3.3. Leapfrog scheme

The leapfrog scheme can also be applied to the wave equation expressed as a

first-order system:

⎧⎨
⎩

vi,j+1 = vi,j + cΔt
Δx (wi+1,j − wi−1,j)

wi,j+1 = wi,j−1 + cΔt
Δx (vi+1,j − vi−1,j)

This is an explicit second-order, three-level scheme that is stable whenever the

CFL condition is satisfied.

3.3.3.4. Lax–Wendroff scheme

The Lax–Wendroff scheme with λ = Δt/Δx can be stated as follows:

⎧⎨
⎩

vi,j+1 = vi,j + cλ2 (wi+1,j − wi−1,j) +
c2λ2

2 (vi+1,j − 2vi,j + vi−1,j)

wi,j+1 = wi,j + cλ2 (vi+1,j − vi−1,j) +
c2λ2

2 (wi+1,j − 2wi,j + wi−1,j)

This scheme is stable whenever the CFL condition holds.

3.3.4. Burgers equation

The equation studied by J.M. Burgers,

∂u

∂t
+ u

∂u

∂x
= 0, [3.18]

can be generalized to

∂u

∂t
+

∂f(u)

∂x
= 0. [3.19]

The Cauchy problem associated with this equation is:

{
∂u

∂t
+ u

∂u

∂x
= 0 if x ∈ R and t > 0

u(x, 0) = u0(x)
[3.20]

This problem admits a solution u(x, t) that is parametrically described by the

characteristic equation (Dλ):

x = u0(λ)t+ λ.
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Whenever f is a convex function, the Burgers equation with initial conditions

u(x, 0) =

{
ug if x < 0
ud if x > 0

has a unique solution u(x, t) = w(xt , ug, ud), where w is the function known as the

Riemann solver and g is the function that satisfies f ′(g(x)) = x. The Riemann solver

is defined by:

w(y, u, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u if y < f ′(u)

g(y) if f ′(u) < y < f ′(v)

v if y > f ′(v)

Below, we will assume that f is convex and has continuity class C2.

3.3.4.1. Lax–Friedrichs scheme

The Lax–Friedrichs scheme can be stated as:

ui,j+1 − 1
2 (ui−1,j + ui+1,j)

Δt
+

f(ui+1,j)− f(ui−1,j)

2Δx
= 0. [3.21]

This is an explicit first-order, two-level scheme in time that is stable if the CFL

condition is satisfied:

Δt

Δx
sup |f ′(ui,j)| ≤ 1.

3.3.4.2. Leapfrog scheme

The leapfrog scheme can be applied to the Burgers equation as follows:

ui,j+1 = ui,j−1 − Δt

2Δx
(f(ui+1,j)− f(ui−1,j)). [3.22]

This is an explicit second-order, three-level scheme that is stable when the CFL

condition holds.
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3.3.4.3. Lax–Wendroff scheme

Consider the Taylor expansion up to second order of the Burgers equation:

u(x, t+Δt) = u(x, t) + Δ
∂u

∂t
(x, t) +

Δt2

2

∂2u

∂t2
(x, t) +O(Δt3).

After discretization, this becomes:

ui,j+1 = ui,j +Δt

(
∂u

∂t

)
i,j

+
Δt2

2

(
∂2u

∂t2

)
i,j

+O(Δt3).

Now discretize by centered differences:

(
∂u

∂t

)
i,j

= −
(
∂f(u)

∂x

)
i,j

=
−f(ui+1,j) + f(ui−1,j)

2Δx
+O(Δx2).

Note that

∂2u

∂t2
=

∂

∂t

(
−∂f(u)

∂x

)
= − ∂

∂x

(
f ′(u)

∂u

∂t

)
=

∂

∂x

(
f ′(u)

∂f(u)

∂x

)
.

Given θ ∈ [0, 1], if we set ∂xf(u) = ∂f(u)/∂x, then:

∂

∂x
(f ′(u)∂xf(u)) = f ′(u(x+ θΔx, t))

f(u(x+Δx, t))− f(u(x−Δx, t))

Δx2

− f ′(u(x+ (θ − 1)Δx, t))
f(u(x, t))− f(u(x−Δx, t))

Δx2

+O(Δx).

In the above expression, we replaced

∂f(u)

∂x
=

f(u(x+Δx, t))− f(u(x−Δx, t))

Δx2
,

which gives the discretized expression

∂

∂x

(
f ′(u)

f(u)

∂x

)
i,j

=
f ′(ui+θ,j)

Δx2
(f(ui+1,j)− f(ui,j))

− f ′(ui+(θ−1),j)

Δx2
(f(ui,j)− f(ui−1,j)).
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Finally, by choosing θ = 1
2 , we obtain the Lax–Wendroff scheme:

ui,j+1 = ui,j − λ2

2
(f(ui+1,j)− f(ui−1,j)) +

λ2

2
f ′(uu+1/2,j)(f(ui+1,j)

− f(ui,j))− λ2

2
f ′(ui−1/2,j)(f(ui,j)− f(ui−1,j)),

where λ = Δt
Δx and

f ′(ui±1/2,j) =
f ′(ui,j) + f ′(ui±1,j)

2
.

The Lax–Wendroff scheme is an explicit second-order, two-level scheme that is

stable when the CFL condition holds.

3.3.4.4. Engquist–Osher scheme

This scheme is used for the generalized Burgers equation:

∂u

∂t
+

∂f(u)

∂x
= 0.

The Engquist–Osher scheme is a generalization of the Lax–Wendroff scheme:

ui,j+1 = ui,j − λ(Φ(ui,j , ui+1,j)− Φ(ui−1,j , ui,j)), [3.23]

where λ = Δt
Δx , and the numerical flux Φ(u, v) is defined by

Φ(u, v) =
1

2
(f(v)− f(u))− λ

2

∫ v

u

|f ′(τ)|dτ.

The integral term discretizes the numerical viscosity. This scheme is of first order

and is stable when the CFL condition is satisfied.

3.3.4.5. Godunov scheme

The Godunov scheme is also used for the generalized Burgers equation:

∂u

∂t
+

∂f(u)

∂x
= 0. [3.24]

Here, we introduce the numerical flux Φ(u, v) in terms of the Riemann solver

w(0, u, v):

Φ(u, v) = w(0, u, v) =

⎧⎨
⎩

f(u) if f ′(u) > 0
f ◦ g(0) if f ′(u) < 0 and f ′(v) > 0
f(v) if f ′(v) < 0
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where g is the function that satisfies f ′(g(x)) = x. The Godunov scheme can be stated

as:

ui,j+1 = ui,j − Δt

Δx
(Φ(ui,j , ui+1,j)− Φ(ui−1,j , ui,j)). [3.25]

This is a first-order scheme that is stable when the CFL condition holds.

3.3.4.6. Lerat–Peyret scheme

Again for the generalized Burgers equation:

∂u

∂t
+

∂f(u)

∂x
= 0.

The Lerat–Peyret schemes Sβ
α are a family of second-order schemes indexed by

the parameters α and β:

– Choosing α = 1 and β = 0 yields the Mac–Cormak scheme.

– Choosing α = β = 1/2 yields the Richtmeyer scheme.

These schemes follow a prediction–correction approach to solving the Burgers

equation:

– the predictor is

pi = (1− β)ui,j + βui+1,j − α
Δt

Δx
(f(ui+1,j)− f(ui,j)). [3.26]

– the corrector is

ui,j+1 = ui,j − Δt

2αΔx
((α− β)f(ui+1,j) + (2β − 1)f(ui,j)

+ (1− α − β)f(ui−1,j) + f(pi)− f(pi−1)). [3.27]

Lerat–Peyret schemes are stable when the CFL condition holds.

3.4. Elliptic equations

3.4.1. Poisson equation

3.4.1.1. Richardson–Liebmann method

This method discretizes the Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= f [3.28]
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and its boundary conditions by the expression

ui+1,j − 2ui,j + ui−1,j

(Δx)2
+

ui,j+1 − 2ui,j + ui,j−1

(Δy)2
= fi,j . [3.29]

When the discretization step is equal in both x and y, that is, h = Δx = Δy, the

above scheme can be rewritten more simply as

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = h2fi,j . [3.30]

This gives a system of equations whose unknowns are the values ui,j of the

function u at each of the nodes of the discretization mesh. A matrix method is used to

solve this system:

– This method is called the Liebmann method when the Gauss–Seidel method is

used to solve the system.

– It is known as the Richardson method when the system is solved using the Jacobi

method.

3.4.1.2. Relaxation methods

Relaxation methods rewrite the usual discretized form of the Poisson equation as a

linear system, then solve it with a relaxation method. At the k-th iteration, the method

computes

u
(k+1)
i,j = (1− ω)u

(k)
i,j + ωξ

(k)
i,j ,

where

ξ
(k)
i,j =

1

4
(fi,jh

2 − u
(k)
i+1,j − u

(k)
i−1,k − u

(k)
i,j−1).

3.4.1.3. Fast Fourier Transform method

This method considers the Poisson equation in the discretized form

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j = h2fi,j

and then applies a Fourier transform to obtain

(e2iπm/I + e−2iπm/I + e2iπn/J + e−2iπn/J − 4)ûm,n = h2f̂m,n, [3.31]

or, equivalently,

2(cos 2πm/I + cos 2πn/J − 2)ûm,n = h2f̂m,n [3.32]
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when the variables x0, . . . , xI and y0, . . . , yJ have been discretized. The goal of the

method is to compute f̂m,n and ûm,n.

The value of f̂m,n is found using the equation:

f̂m,n =
I−1∑
l=0

J−1∑
k=0

e2iπlm/Ie2iπnk/Jfl,k. [3.33]

The value of ûm,n is then computed using the discretized equation:

ûm,n =
h2f̂m,n

2(cos 2πm/I + cos 2πn/J − 2)
. [3.34]

Finally, ui,j is calculated using the inversion formula:

ul,k =
1

IJ

I−1∑
m=0

J−1∑
n=0

e−2iπlm/Ie−2iπnk/J ûm,n. [3.35]

3.5. Parabolic equations

3.5.1. Heat equation

3.5.1.1. Theta-scheme method

The heat equation

∂u

∂t
= c

∂2u

∂x2
[3.36]

is discretized by

ui,j+1 − ui,j

Δt
= θc

ui−1,j+1 − 2ui,j+1 + ui+1,j+1

(Δx)2

+ (1− θ)c
ui−1,j − 2ui,j + ui+1,j

(Δx)2
. [3.37]

The θ-scheme is known as the explicit method when θ = 0, the Crank–Nicholson

method when θ = 1/2, and the implicit method when θ = 1.

For 0 ≤ θ < 1
2 , it can be shown that the scheme is stable whenever

cΔt

(Δx)2
≤ 1

2(1− 2θ)
. [3.38]
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For 1
2 ≤ θ ≤ 1, the method is universally stable.

3.5.1.2. Alternating direction implicit method (Peaceman–Rachford–Douglas)

To solve equations of the form

∂u

∂t
= a

∂2u

∂x2
+ b

∂2u

∂y2
, [3.39]

Peaceman–Rachford suggested replacing the differential equation by an

expression that alternates between two discretized equations after each period Δt
2 .

Writing vi,j for the intermediate result, this scheme can be stated as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vi,j − un
i,j

(Δt/2)
= a

vi−1,j − 2vi,j + vi+1,j

(Δx)2
+ b

un
i,j−1 − 2un

i,j + un
i,j+1

(Δy)2

un+1
i,j − vi,j

(Δt/2)
= a

vi−1,j − 2vi,j + vi+1,j

(Δx)2
+ b

un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1

(Δy)2

[3.40]

Setting

Lxu
n
i,j =

un
i−1,j − 2un

i,j + un
i+1,j

(Δx)2
[3.41]

and

Lyu
n
i,j =

un
i,j−1 − 2un

i,j + un
i,j+1

(Δy)2
, [3.42]

and defining Un and Vn to be the matrices (un
i,j) and (vni,j), these equations can be

written in matrix form:

⎧⎨
⎩

Vn − Un = Δt
2 (aLxVn + bLyUn)

Un+1 − Vn = Δt
2 (aLxVn + bLyUn+1)

[3.43]

At the n-th step, with knowledge of Un, we can compute Vn, then Un+1, by solving

tridiagonal systems.
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3.6. Using Matlab

This example is taken from the Matlab documentation. It solves the Laplace

equation on an L-shaped domain. The script is as follows:

R = ’L’; % Specify the shape of the domain

% Generate and display the grid

n = 32;

G = numgrid(R,n);

spy(G)

title(’A finite difference grid’)

% Show a smaller version as sample

g = numgrid(R,12)

D = delsq(G);

spy(D)

title(’The 5-point Laplacian’)

% Number of interior points

N = sum(G(:)>0)

rhs = ones(N,1);

if (R == ’N’) % Specify boundary conditions

spparms(’autommd’,0)

u = D\rhs;

spparms(’autommd’,1)

else

u = D\rhs; % Useful in the case R==’L’

end

% Draw the contours of the solution

U = G;

U(G>0) = full(u(G(G>0)));

clabel(contour(U)); prism axis

square ij

colormap((cool+1)/2);

mesh(U)

axis([0 n 0 n 0 max(max(U))])

axis

square ij
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Running this script returns the following results:

g =

0 0 0 0 0 0 0 0 0 0 0 0

0 1 6 11 16 21 26 36 46 56 66 0

0 2 7 12 17 22 27 37 47 57 67 0

0 3 8 13 18 23 28 38 48 58 68 0

0 4 9 14 19 24 29 39 49 59 69 0

0 5 10 15 20 25 30 40 50 60 70 0

0 0 0 0 0 0 31 41 51 61 71 0

0 0 0 0 0 0 32 42 52 62 72 0

0 0 0 0 0 0 33 43 53 63 73 0

0 0 0 0 0 0 34 44 54 64 74 0

0 0 0 0 0 0 35 45 55 65 75 0

0 0 0 0 0 0 0 0 0 0 0 0

N =

675

Figure 3.2. A finite difference grid
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Figure 3.3. The 5-point Laplacian

Figure 3.4. The contours of the solution. For a color version of this
figure, see www.iste.co.uk/radi/advanced2.zip
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Figure 3.5. Visualization of the solution. For a color version of this
figure, see www.iste.co.uk/radi/advanced2.zip

Consider the following boundary value problem:

−u′′(x) + π2u(x) = π2x sin(πx)− 2π cos(πx) on ]0, 1[ [3.44]

u(0) = u(1) = 0 [3.45]

The script listed below can be used to solve this PDE using the method of finite

differences [KOK 09]:

%----------------------------------------------------------

% use finite differences to solve the boundary value problem

% -u’’(x)=(\pi^2)*x*sin(x*\pi)-2*\pi*cos(x*\pi)

% u(0)=u(1)=0;

%-----------------------------------------------------------

a=0; b=1;

% Subdivision

N=63;

h=(b-a)/(N+1);

x=[a+h:h:b-h]’;

% System matrix

e=ones(N,1)/(h*h);
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ee=[-e 2*e -e];

A=pi*pi*speye(N)+spdiags(ee,-1:1,N,N);

% Right-hand side

b=2*pi*pi*x.*sin(pi*x)-2*pi*cos(pi*x);

% Solve

u=A/b;

% Errors

ec=x.*sin(pi*x);

ec1=norm(A*ue-b,inf); % consistency

ec2=norm(ue-u,inf); % convergence

fprintf(’Consistency error: %15.8e convergence error: %15.8e

\n’,ec1,ec2)

Consider the following problem:

∂u

∂t
(x, t)− ∂2u

∂x2
= 0, 0 < x < 1, 0 < t ≤ T [3.46]

u(0, t) = u(1, t) = 0, 0 < t ≤ T [3.47]

u(x, 0) = sin(πx), 0 ≤ x ≤ 1 [3.48]

The exact solution of Problem [3.46–3.48] is u(x) = e−π2t sin(πx), ∀(x, t) ∈
[0, 1]× [0, T ].

The following script can be used to solve this PDE:

a=0; b=1;

nu=1; T=0.5;

% Discretization

M=10000; N=1600;

h=(b-a)/(M+1); k=T/N;

theta=0.75; x=[a+h:h:b-h]’;

% System matrix

e=ones(M,1);

ee=[-e 2*e -e];

R=spdiages(ee,-1:1,M,M);

A=(1/k)*speye(M)+(theta*nu/h/h)*R;

B=(1/k)*speye(M)-((1-theta)*nu/h/h)*R;

% Right-hand side is constant in time/space

b=zeros(M,1);
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% Time loop

ec=zeros(N,1);

up=sin(pi*x);

it=0;

while(it<N)

it=it+1;

t=it+k

% Solve the system

bt=B*up;

% Solve the system

ut=A\bt;

up=ut;

% Error ||u-\pi(u)||_2

ue=sin(pi*x)*exp(-pi*pi*t);

ec(it)=sqrt(sum(h*(ut-ue).*(ut-ue)));

end

% Convergence error

ecn=max(ec);

fprintf(’Convergence error: %15.8e \n’,ecn)



4

Finite Element Method

4.1. Introduction

The objective of this chapter is to present the basic principles of the finite element

method, with emphasis on how the consistency of the computational process is

guaranteed at each step of the method. Analyzing and interpreting the results of a

computation requires a solid understanding of each mathematical step in the

approximation; only then can the error between the numerical model and the exact

solution of the mathematical problem be estimated. We also need to bear in mind that

the results of the numerical model can only provide insight into aspects of the

mathematical model that are captured by the modeling hypotheses [FIS 07, HAR 07].

In this chapter, we will focus on examples of elementary models that are used for

linear theories. These models are already sufficiently rich to solve a wide range of

engineering problems.

4.2. One-dimensional finite element methods

Consider the following problem (P):

−u′′(x) + c(x)u(x) = f(x) for 0 ≤ x ≤ 1 [4.1]

u(0) = u(1) = 0 [4.2]

where u(x) is twice continuously differentiable on [0, 1]. The function c(x) is

assumed to be continuous and positive on [0, 1].

Advanced Numerical Methods with Matlab® 2: Resolution of Nonlinear, Differential
and Partial Differential Equations, First Edition. Bouchaib Radi and Abdelkhalak El Hami
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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Let V be the vector space of all piecewise continuously differentiable functions

v(x) on [0, 1] that satisfy the condition v(0) = v(1). Consider an arbitrary element

v(x) of V. After multiplying [4.1] by v(x), we can establish the following relation:

−
∫ 1

0

u′′(x)v(x)dx+

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx. [4.3]

We can integrate the first term by parts over [0, 1] to obtain:

−[u′(x)v(x)]10 +
∫ 1

0

u′(x)v′(x)dx+

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx. [4.4]

Since v(0) = v(1) = 0, this implies that:

∫ 1

0

u′(x)v′(x)dx+

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx. [4.5]

Therefore, for any given v(x) in V, every solution u(x) of (P) satisfies equation

[4.5].

The problem (P ) therefore implies the following problem (PF ):

Find a twice continuously differentiable function u on [0, 1] with the following

properties:

– for every function v(x) in V ,∫ 1

0

u′(x)v′(x)dx+

∫ 1

0

c(x)u(x)v(x)dx =

∫ 1

0

f(x)v(x)dx; [4.6]

– u(0) = u(1) = 0.

In fact, it is possible to show that the problems (P) and (PF) both have a unique

solution, which implies that they are equivalent. The formulation (PF) is known as the

weak formulation.

The advantage of the weak formulation (PF) is that it is linear in v(x). Let

φ1, φ2, . . . , φN be N linearly independent functions in V. In practice, these functions

will depend on a parameter h > 0 that we will introduce later.

Write Vh for the vector space generated by φ1, φ2, . . . , φN . If w(x) is an element

of Vh, then:

w(x) =
N∑
j=1

λjφj(x).
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Note that w(0) = w(1) = 0.

The N -dimensional vector space Vh does not span the full space V (which is

infinite-dimensional), but, as N increases, it becomes an increasingly large subspace

of V .

The idea of Galerkin approximation is to find uh in Vh that satisfies a weaker

version of the problem, which is obtained by relaxing the requirement that the relation

should hold for every v(x) in V, instead only requiring it to hold for every vh(x) in Vh.
Thus, the Galerkin approximation (PFh) of the problem (P) can be stated as follows:

Find uh in Vh satisfying

∫ 1

0

u′
h(x)v

′
h(x)dx+

∫ 1

0

c(x)uh(x)vh(x)dx =

∫ 1

0

f(x)vh(x)dx [4.7]

for every function vh(x) in Vh.

The Galerkin approximation is weaker than both (P) and (PF). It represents an

“approximation” of these problems that improves as the space Vh covers more of the

full space V, that is, as N increases.

REMARK.– Every function uh in Vh is of the form

uh(x) =

N∑
k=0

λkφk(x).

Finding uh is therefore equivalent to finding the coefficients λ1, λ2, . . . , λN .

In order for a given function to be a solution of the problem (PFh), it simply

needs to satisfy [4.7] when vh(x) is taken to be equal to each of the functions

φ1, φ2, . . . , φN . Hence, we can reduce the problem (PFh) to a system of N equations

in the N unknowns λ1, λ2, . . . , λN :

N∑
k=0

λk

∫ 1

0

(φ′
k(x)φ

′
j(x) + c(x)φj(x)φk(x))dx =

∫ 1

0

f(x)φj(x)dx.

For j = 1, 2, . . . , N, this system can be written as:

A

⎛
⎜⎜⎜⎝

λ1

λ2

...

λN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

F1

F2

...

FN

⎞
⎟⎟⎟⎠ , [4.8]
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where

Fk =

∫ 1

0

f(x)φk(x)dx, [4.9]

and the element Ajk of the matrix A is given by

Ajk =

∫ 1

0

φ′
j(x)φ

′
k(x)dx+

∫ 1

0

c(x)φj(x)φk(x)dx. [4.10]

To fully take advantage of the finite element method, we need to choose the

N linearly independent functions φ1, φ2, . . . , φN carefully. We must consider the

following two factors:

– The space Vh needs to cover as much of the original space V as possible. In

other words, the function uh(x) needs to be a good approximation of the original

target function u(x).

– The matrix A needs to be as simple as possible, since we will need to solve a

very large system of equations; in practice, we need to choose the functions φj(x) in

such a way that as many elements as possible of the matrix A are zero.

One classical and straightforward way of choosing φ1, φ2, . . . , φN is as follows.

First, define h = 1
N+1 , and discretize the interval [0, 1] by setting xk = kh for

k = 0, 1, 2, . . . , N + 1.

The xk are the nodes of the discretization. Now, for k = 0, 1, 2, . . . , N + 1,

consider the function φk(x) shown in Figure 4.1.

Figure 4.1. The function φ

Setting

Bjk =

∫ 1

0

φ′
j(x)φ

′
k(x)dx and Cjk =

∫ 1

0

c(x)φj(x)φk(x)dx, [4.11]
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We can rewrite equation [4.10] as Ajk = Bjk + Cjk. The next step is to evaluate

Bjk, Cjk, and Fk. The first thing to note is that:

φ′
j(x) =

⎧⎨
⎩

0 if x < xj−1 or x > xj+1
1
h if xj−1 < x < xj

− 1
h if xj < x < xj+1

[4.12]

Therefore, Bjk is given by

Bjk =

⎧⎨
⎩

2
h if j = k

− 1
h if j = k ± 1
0 otherwise

[4.13]

We can use the trapezoidal rule with a step size of h to evaluate the integrals Cjk

and Fk. This gives us an approximate value for
∫ 1

0
h(x)dx:

1

2
h(x0) +

N∑
j=1

h(xj) +
1

2
h(xN+1).

When h(0) = h(1) = 0, the above formula reduces to

N∑
j=1

h(xj). In our case,

Cjk =

{
hc(xj) if j = k

0 if j �= k
, Fk = hf(xk). [4.14]

After defining ck = c(xk) and fk = f(xk), the matrix A can be expressed as the

following tridiagonal matrix:

1

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 + h2c1 −1 0 · · · 0 0 0
−1 2 + h2c2 1 · · · 0 0 0
0 −1 2 + h2c3 −1 · · · 0 0
0 0 −1 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · −1 2 + h2cN−1 −1
0 0 0 · · · 0 −1 2 + h2cN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. [4.15]
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The system that we need to solve is

A

⎛
⎜⎜⎜⎝

λ1

λ2

...

λN

⎞
⎟⎟⎟⎠ = h

⎛
⎜⎜⎜⎝

f1
f2
...

fN

⎞
⎟⎟⎟⎠ . [4.16]

By writing u(x) for the exact solution of the problem (P ) as before, and uh(x) for

the solution obtained by solving the system [4.16], it is possible to show that

|u(x)− uh(x)| ≤ Ch2, [4.17]

where C is a constant. Hence, this method is O(h2) in these conditions, which is

already very good.

4.3. Two-dimensional finite element methods

Let Ω be a polygonal contour, and suppose that F (x, y) is continuously

differentiable on Ω (see Figure 4.2).

Figure 4.2. The domain Ω
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Consider the following problem (P ):

Find a twice continuously differentiable function u(x, y) on Ω that satisfies:

−Δu = F (x, y) for all (x, y) ∈ Ω; [4.18]

u(x, y) = 0 for all (x, y) on the boundary of Ω. [4.19]

Let H1
0 (Ω) be the vector space of piecewise continuously differentiable functions

on Ω that vanish on the boundary of Ω.

Suppose that u(x, y) is a solution of the problem (P ). Let v(x, y) be an element of

H1
0 (Ω). Multiplying [4.18] by v(x, y), then integrating over Ω yields:

−
∫ ∫

Ω

(Δu)vdxdy =

∫ ∫
Ω

Fvdxdy. [4.20]

We know that∫ ∫
Ω

(Δu)vdxdy =

∫ ∫
Ω

(
∂2u

∂x2
+

∂2u

∂y2
)vdxdy. [4.21]

By Stokes’ theorem,

∫ ∫
Ω

(Δu)vdxdy = −
∫ ∫

Ω

(∇u)(∇v)dxdy +

∫
∂Ω

∂u

∂n
vdn. [4.22]

However, v vanishes on the boundary, so

∫ ∫
Ω

(Δu)vdxdy = −
∫ ∫

Ω

∇u.∇vdxdy. [4.23]

Therefore, u(x, y) satisfies

∫ ∫
Ω

∇u.∇vdxdy =

∫ ∫
Ω

Fvdxdy. [4.24]

This reasoning can be reversed, so the problem (P ) is equivalent to the following

problem (PF ):

Find a twice continuously differentiable function u(x, y) on Ω that satisfies:

– for every function v(x, y) in H1
0 (Ω),∫ ∫

Ω

∇u.∇vdxdy =

∫ ∫
Ω

Fvdxdy;
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– for each point (x, y) on the boundary of Ω, u(x, y) = 0.

Figure 4.3. Triangulation

Next, consider a triangulation Th of the polygonal contour Ω:

Given any pair of triangles in this triangulation, one of the following conditions

holds that:

– both triangles are disjoint;

– the triangles share precisely one vertex;

– the triangles share precisely one edge.

Here, we take h to be the maximum diameter of the triangles in the triangulation.

The nodes are the vertices of the triangles that are not on the boundary of Ω. Let

p1, p2, . . . , pk, . . . , pN be an enumeration of these nodes. For each node pk, consider

the function φk(x, y) whose graph is shown in Figure 4.4.

– Consider the polygon Bk formed by the points of the triangulation that are

directly connected to the node pk.

– Outside of Bk, the function φk(x, y) is 0.
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– Next, construct the pyramid with base Bk whose summit is height 1 vertically

above the node pk.

– On Bk, the graph of φk(x, y) is defined as the faces of the pyramid. In other

words, the points (x, y, φk(x, y)) sweep over the faces of the pyramid; in particular,

φk(pk) = 1 and φk(x, y) is 0 for every point (x, y) on the contour of Bk.

Figure 4.4. Graph

By construction, each function φk(x, y) vanishes at every point on the boundary

of Ω.

Now, consider the vector space Vh of linear combinations of the functions

φ1, φ2, . . . , φN . Every element w of Vh is of the form

w(x, y) =
N∑

k=1

λkφk(x, y). [4.25]
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The vector space Vh is an approximation of H1
0 (Ω). The quality of this

approximation naturally depends on the triangulation, and in particular the number of

nodes.

The problem (PF) can therefore be approximated by the following weaker

problem, (PFh), known as the Galerkin approximation of the original problem:

Find uh(x, y) in Vh such that

∫ ∫
Ω

∇uh.∇vhdxdy =

∫ ∫
Ω

Fvhdxdy [4.26]

for every function vh(x, y) in Vh.

As the problem (PF) is linear in v(x), equation [4.26] is also linear in vh(x).
Therefore, for a function to satisfy (PFh), it simply needs to satisfy [4.26], when

vh(x) is equal to each of the functions φ1(x, y), φ2(x, y), . . . , φN (x, y).

As before, to determine uh, we simply need to find λ1, λ2, . . . , λN such that

uh(x, y) =

N∑
j=1

λkφk(x, y) [4.27]

is a solution of [4.26].

Thus, we solve the following system of N equations in the N unknowns

λ1, λ2, . . . , λN :

N∑
k=0

λk

∫ ∫
Ω

∇φj .∇φkdxdy =

∫ ∫
Ω

Fφjdxdx for j = 1, 2, . . . , N. [4.28]

This system can be written in matrix form as:

A

⎛
⎜⎜⎜⎝

λ1

λ2

...

λN

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

F1

F2

...

FN

⎞
⎟⎟⎟⎠ , [4.29]

where

Fj =

∫ ∫
Ω

Fφjdxdy. [4.30]
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The element Ajk of the matrix A is given by

Ajk =

∫ ∫
Ω

(∇φj).(∇φk)dxdy. [4.31]

Many of the terms Ajk will be zero, since each function φk(x, y) is zero outside

of the polygon Bk, hence the term Ajk is zero whenever the node pj is not directly

connected to the node pk.

4.4. General procedure of the method

The process of constructing a finite element model can be divided into the

following key steps [BAT 96]:

– discretize the continuous medium into subdomains;

– construct a nodal approximation on each subdomain;

– compute the elementary matrices of the integral form of the problem;

– assemble the elementary matrices;

– account for the boundary conditions;

– solve the system of equations.

4.5. Finite element method for computing elastic structures

4.5.1. Linear elasticity

This section briefly reviews a few notions from linear elasticity to ensure that the

model problem is clearly stated, and introduces the notation that we will use below.

We will study the static equilibrium of a deformable solid body S whose undeformed

state occupies a bounded domain Ω in the affine space R
d (usually d = 1, 2, or 3)

(Figure 4.5). The space R
d is equipped with an affine orthonormal coordinate system

{O, e1, . . . , ed}. The coordinates of a point x ∈ R
d are denoted (x1, . . . , xd). Each

vector u in the underlying vector space has components (u1, . . . , ud) with respect to

the orthonormal basis {e1, . . . , ed}.

The body S is subjected to a stress f (per unit volume), as well as a traction

or compression ϕN (per unit surface area) on a region of its boundary ΓN , and an

imposed displacement ϕD on the rest of its boundary ΓD. We make the following

assumptions:

ΓD ∪ ΓN = Γ, ΓD ∩ ΓN = ∅, and ΓD �= ∅. [4.32]
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The third condition in [4.32] is required to eliminate any rigid body motion. Under

the action of the external stresses, the body S deforms to occupy a new domain Ωd in

R
d, which we shall call the updated or deformed configuration.

Figure 4.5. Elastic body in equilibrium under external loads: a) initial
configuration of S; b) deformed configuration of S

If the small perturbation hypothesis (SPH) holds, the original configuration Ω and

the deformed configuration Ωd of S are assumed to be identical. This allows us to

write the static equilibrium equations on Ω:

divσ(x) + f(x) = 0 ∀x ∈ Ω (by the balance of forces)

σ(x).n(x) = ϕN ∀x ∈ ΓN [4.33]

σ(x) = (σ(x))t ∀x ∈ Ω (by the balance of moments)

where σ = (σij)i,j=1,...,d denotes the second-order Cauchy stress tensor, σt denotes

its transpose, and the divergence operator is defined by divσ(x) = tr(Dxσ(x)), or in

other words (divσ(x))i = ∂xj
σij(x) for i = 1, . . . , d, in summation notation. In the

following, we will no longer distinguish between the body S itself and the domain Ω
that it occupies.

As applying the same external load to different materials leads to different

deformations, the equilibrium equations [4.33] do not fully determine the equilibrium

state of the deformable body S. In order for the problem to be fully determined,

we need to consider the behavioral law of the material from which S is made.

According to the SPH, the (second-order) tensor of linearized deformations
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ε(x) = (εij)i,j=1,...,d satisfies the following linear relation with the displacement

field u : Ω → R
d:

ε(u) =
1

2
(Dxu+Dt

xu), or, in summation notation,

εij(u) =
1

2
(∂xjui + ∂xiuj). [4.34]

If we further assume that Ω is made from a linear elastic material, then its

behavioral law (or constitutive equations), which relate the Cauchy stress tensor σ to

the strain tensor ε, is simply Hooke’s law:

σ(x) = E(x)ε(x), or, in summation notation,

σij(x) = Eijkl(x)εkl(x). [4.35]

The (fourth-order) elasticity tensor E has the following symmetry properties:

Eijkl = Eklij (major symmetry)

Eijkl = Ejikl = Ejilk (minor symmetry) [4.36]

Note that the major symmetry follows from elasticity and the minor symmetry

follows from the symmetry of stresses and strains. Moreover, E is defined positive:

Eijkl(x)ψijψkl ≥ 0

Eijkl(x)ψijψkl = 0 ⇒ ψij = 0, ∀x, ∀ψ such that ψij = ψji. [4.37]

In homogeneous materials, E is independent of x. In isotropic materials, E is

uniquely determined by two strictly positive constants, λ and μ, known as the Lamé

coefficients. These coefficients satisfy the following relation with Young’s modulus η
and the Poisson coefficient ν:

Eijkl = λδijδkl + μ(δilδjk + δikδjl)

λ =
ην

(1 + ν)(1− 2ν)
, μ =

η

2(1 + ν)
, [4.38]
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where δij is the Kronecker delta (δij = 1 if i = j, δij = 0 if i �= j). In this case, the

behavior relation [4.35] can be rewritten as follows:

σ(x) = λtr(ε(x))I + 2με(x)

ε(x) =
1 + ν

η
σ(x)− ν

η
tr(σ(x))I, or, in summation notation,

σij(x) = λεkk(x)δij + 2μεij(x) [4.39]

εij(x) =
1 + ν

η
σij(x)− ν

η
σkk(x)δij .

Finally, by choosing the displacement field u as the primary unknown of the

problem and grouping together the equilibrium equations [4.33], the definition of the

linearized deformations [4.34] and the behavioral law [4.39], we obtain the strong or

local equilibrium formulation of our static linear elasticity problem:

Given an elastic body Ω ⊂ R
d whose deformations are defined by [4.34] and

whose behavior is governed by the relation [4.39], f : Ω → R
d, ϕN : ΓN → R

d

and ϕD : ΓD → R
d.

Find u : Ω → R
d, such that:

divσ(x) + f(x) = 0 ∀x ∈ Ω

u = ϕD on ΓD [4.40]

σ(x).n(x) = ϕN ∀x ∈ ΓN

After introducing a second-order differential operator, we can reformulate the

linear elasticity problem [4.40] as follows [DUV 98]:

Find u : Ω → R
d such that:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(Lu)i = fi on Ω, i = 1, . . . , d
u = ϕD on ΓD
d∑

j=1

σij(u)nj = (ϕN )i on ΓN , i = 1, . . . , d.
[4.41]
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The differential operator L is defined as Lw = −divσ (w) , and (Lw)i =

−
d∑

j=1

Djσij (w) = −
d∑

j=1

∂xjσij (w) for i = 1, . . . , d (no summation notation),

where λ ≥ 0, μ > 0 are the Lamé coefficients of the elastic material.

Each of the fields used in this formulation is assumed to be sufficiently regular so

that its derivatives exist and the mechanical problem is well-defined. We also assume

that the boundary Γ = ∂Ω of the field Ω is sufficiently regular in the sense that the

outward unit normal vector n(x) = (nj)1≤j≤d can be defined almost everywhere. For

homogeneous and isotropic materials, the Navier equations hold:

μΔu+ (λ+ μ)grad(divu) + f = 0 on Ω, [4.42]

that is,

Lw = −divσ(w) = −μΔw − (λ+ μ)∇divw,

where (Δu)i =
∑
k

(
∂2ui

∂x2
k

) is the Laplace operator, div(u) = ∂uk

∂xk
is the divergence

operator and (∇φ)i = (gradφ)i = ∂φ
∂xi

is the gradient operator applied to a scalar

function φ. These equations show that the elasticity problem is described by an

elliptic system of second-order partial differential equations. This system can be

solved analytically and approximated by the method of finite differences. However,

in practice, the complexity of the boundary conditions and the geometric shapes of

the solid bodies often prevent an analytic approach, and the finite element method

(FEM) tends to be preferred over the finite difference method, which requires a

“structured” domain (that can be meshed with right-angled quadrilaterals).

4.5.2. Variational formulation of the linear elasticity problem

For simplicity, assume that ΓN = ∅ and ϕD = 0 in Problem [4.41], that is, that

the solid is fixed along all of its boundary. This leads to the following boundary value

problem:

Find u : Ω → R
d such that:{

(Lu)i = fi on Ω 1 ≤ i ≤ d
ui = 0 on Γ 1 ≤ i ≤ d

[4.43]

where

(Lu)i = −2μ
d∑

j=1

∂

∂xj
εij(u)− λ

∂

∂xi
div (u).
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4.5.2.1. Weak formulation of Problem [4.43]

To derive a variational formulation (mechanically, this is known as the principle

of virtual power) for Problem [4.43], we multiply both sides of the PDE by a test

function v = (vi)1≤i≤d ∈ (
H1

0 (Ω)
)d

. The Sobolev spaces that provide the

theoretical foundation for the variational formulation of this problem are described in

Appendix 2.

Let Lu = ((Lu)i)1≤i≤d and f = (fi)1≤i≤d . Then:

(Lu, v)Ω =

∫
Ω

∑
i

(Lu)ividΩ

=
∑
i

∫
Ω

−
∑
j

Dj(σij(u))vidΩ

= −
∑
i,j

(

∫
Ω

Dj(σij(u))vi)dΩ

= −
∑
i,j

(

∫
∂Ω

σij(u)vinj −
∫
Ω

σij(u)DjvidΩ)

[Green’s formula]

=
∑
i,j

∫
Ω

σij(u)DjvidΩ (since vi/∂Ω = 0)

=
∑
i,j

∫
Ω

(μ(Diuj +Djui) + λdiv(u)δij)DjvidΩ.

However,
∑
i,j

Djvi =
1

2

∑
i,j

(Divj +Djvi), and the Kronecker delta satisfies

∑
i,j

δijDjvi =
∑
j

Djvj =
∑
i

Divi = div(v), which implies that:

(Lu, v)Ω =
μ

2

∫
Ω

∑
i,j

(Diuj +Djui)(Divj +Djvi) + λ

∫
Ω

div(u)div(v).

Introducing the bilinear form

a(u, v) =
μ

2

∫
Ω

∑
i,j

(Diuj +Djui)(Divj +Djvi) + λ

∫
Ω

div(u)div(v)
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this now allows us to establish the weak formulation of [4.43]:

Find u ∈ H1
0 (Ω)

d such that a(u, v) = l(v) ∀v ∈ H1
0 (Ω)

d, [4.44]

where

a(u, v) = 2μ
d∑

i,j=1

∫
Ω

εij(u)εij(v)dΩ+ λ

∫
Ω

div(u)div(v)dΩ [4.45]

and

l(v) =

∫
Ω

fvdΩ.

Clearly, the bilinear form a(., .) (resp. the linear form l) is continuous on

(H1
0 (Ω))

d × (H1
0 (Ω))

d (resp. continuous on (H1
0 (Ω))

d). We still need to show that

a(., .) is coercive.

To do this, note that a(v, v) =
μ

2

∫
Ω

∑
i,j

(Divj +Djvi)
2 + λ

∫
Ω

(div(v))2.

However, (div(v))2 ≥ 0 and λ ≥ 0, so a(v, v) ≥ μ

2

∫
Ω

∑
i,j

(Divj +Djvi)
2

∀v ∈ (H1
0 (Ω))

d. By Korn’s inequality (see Appendix 1):

∫
Ω

∑
i,j

(Divj +Djvi)
2 ≥ K ‖v‖21,Ω ∀v ∈ (H1

0 (Ω))
d,

we deduce that ∀v ∈ (H1
0 (Ω))

d, a(v, v) ≥ α ‖v‖21,Ω , where ‖.‖1,Ω is the norm on

H1(Ω), and hence, the bilinear form is indeed coercive. It then follows from the

Lax–Milgram theorem [BRE 83] that the weak equation [4.44] has a unique solution

u ∈ (H1
0 (Ω))

d.

4.5.3. Planar linear elasticity problems

These problems consider symmetric 2 × 2 tensors, which have three elements. In

vector notation, we can write the tensors as follows [HAR 07]:

σ = [σ11, σ22, σ12]
t, ε = [ε11, ε22, γ12]

t.
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Figure 4.6. Punctured plate

There are two types of planar linear elasticity problems:

– Planar stress problems, which assume that σi3 = 0. For these problems, ε33 is

not zero, but depends on ε11, ε22 (since σ33 = 0).

– Planar strain problems, which assume that εi3 = 0. For these problems, σ33 is

not zero, but depends on σ11, σ22 (since ε33 = 0).

When working with isotropic elastic materials, we can deduce the matrix A from

Hooke’s law:

– Planar stress:

A =
E

1− ν2

⎛
⎝ 1 ν 0

ν 1 0
0 0 1−ν

2

⎞
⎠ .

The value of ε33 is computed from the relation ε33 = ν
1−ν (ε11 − ε22).

– Planar strain:

A =
E

(1 + ν)(1− 2ν)

⎛
⎝1− ν ν 0

ν 1− ν 0
0 0 1−2ν

2

⎞
⎠ .

The value of σ33 is computed from the relation σ33 = ν(σ11 + σ22).
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4.5.4. Applying the finite element method to planar problems

For planar problems, we choose triangular or rectangular shapes for the finite

elements [CIA 02].

P1 triangle with three nodes (see Figure 4.7).

Figure 4.7. Triangle with three nodes

The same interpolation nodes are used for both the geometry and the displacements

(isoparametric elements) [ZIE 00].

DEFINITION.– An element is said to be isoparametric if the same interpolations are
used to model both the distance and the displacement.

The three nodes define a polynomial basis φ with three terms: φ = (1, r, s). The

interpolating functions are N1 = 1 − r − s, N2 = r, and N3 = s. The matrix B is

computed as follows:

ε = Bun;
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As ε = (∂u∂x ,
∂v
∂y ,

∂u
∂y + ∂v

∂x )
t,

( ∂u
∂x
∂u
∂y

)
= J−1

(
∂u
∂r
∂u
∂s

)
and

( ∂v
∂x
∂v
∂y

)
= J−1

(
∂v
∂r
∂v
∂s

)
[4.46]

u = (1− r − s)u1 + ru2 + su3

v = (1− r − s)v1 + rv2 + sv3
and

x = (1− r − s)x1 + rx2 + sx3

y = (1− r − s)y1 + ry2 + sy3
. [4.47]

This gives:

(
∂u
∂r
∂u
∂s

)
=

(−u1 + u2

−u1 + u3

)
and

(
∂v
∂r
∂v
∂s

)
=

(−v1 + v2
−v1 + v3

)
[4.48]

J =

(
∂x
∂r

∂y
∂r

∂x
∂s

∂y
∂s

)
=

(−x1 + x2 −y1 + y2
−x1 + x3 −y1 + y3

)
. [4.49]

Hence,

J−1 =
1

Δ

(
y3 − y1 y1 − y2
x1 − x3 x2 − x1

)
, [4.50]

where

Δ = (x2 − x1)(y3 − y1)− (y2 − y1)(x3 − x1). [4.51]

Thus,

ε =
1

Δ

⎛
⎝ y2 − y3 0 y3 − y1 0 y1 − y2 0

0 x3 − x2 0 x1 − x3 0 x2 − x1

x3 − x2 y2 − y3 x1 − x3 y3 − y1 x2 − x1 y1 − y2

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u1

v1
u2

v2
u3

v3

⎞
⎟⎟⎟⎟⎟⎟⎠

.[4.52]

REMARK.– Note that the matrix B is constant (over the whole element), so the triangle

P1 is implicitly assumed to have constant stress and strain.

By reusing the spatial interpolating functions of the triangle P1 and adding

interpolation nodes for the displacement in the middle of each edge, we can construct

a subparametric element that is quadratic in the displacement.
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Figure 4.8. P2 triangle

For isoparametric triangles with 6 nodes (continuity class C0), we use the same

interpolating functions as above, but N = N̄ . This allows us to define a more

realistically curved element with quadratic edges.

For (cubic) triangles with 9 nodes (with continuity class C0), the functions N are

of the third-order; this type of element can also be defined isoparametrically.

For Hermite-type triangles (continuity class C1), we require the derivative to be

continuous at the boundary. There are six degrees of freedom at each of the nodes

1, 2, 3, namely

u,
∂u

∂r
,
∂u

∂s
, v,

∂v

∂r
,
∂v

∂r
,

and two degrees of freedom at node 4, namely u and v.
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Figure 4.9. P3 triangle

In one direction, we therefore have a basis φ of (3× 3) + 1 = 10 terms:

φ = (1, r, s, r2, rs, s2, r3, r2s, sr2, s3). [4.53]

The following quadrilateral elements can be found in the literature:

– Q1 quadrilateral with 4 nodes;

– Q2 quadrilateral with 9 nodes;

– Serendip quadrilateral with 8 nodes;

– cubic quadrilateral with 16 or 12 nodes;

– Hermite quadrilateral.
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4.5.5. Axisymmetric problems

Axisymmetric problems consider structures and loads that are symmetric about

an axis. This class of problems is similar to the class of planar problems, since

axisymmetric problems can be described by planar models (see Figure 4.10)

[DHA 81].

Figure 4.10. Axisymmetric problem

Consider a cylindrical coordinate system ρ, θ and z. The displacement in the

θ-direction is zero, and every parameter is independent of θ by symmetry. In

cylindrical coordinates, ∇u is defined by the formula:

∇u =

⎛
⎜⎝

∂u
∂ρ

1
ρ

(
∂u
∂θ − v

)
∂u
∂z

∂v
∂ρ

1
ρ

(
∂v
∂θ + u

)
∂v
∂z

∂w
∂ρ

1
ρ
∂w
∂θ

∂w
∂z

⎞
⎟⎠ , [4.54]

where u, v, and w represent the displacement in the ρ, θ, and z-directions, respectively.
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As v = 0 and ∂u
∂θ = ∂w

∂θ = 0,

∇su =

⎛
⎜⎜⎝

∂u
∂ρ 0 1

2

(
∂u
∂z + ∂w

∂ρ

)
0 u

ρ 0
1
2

(
∂u
∂z + ∂w

∂ρ

)
0 ∂w

∂z

⎞
⎟⎟⎠ . [4.55]

The strain tensor therefore has 4 components. The same is true for σ, since γρθ =
γzθ = 0, which implies that σρθ = σzθ = 0. In vector notation:

σ =

⎛
⎜⎜⎝

σρρ

σθθ

σzz

σρz

⎞
⎟⎟⎠ ε =

⎛
⎜⎜⎝

ερρ
εθθ
εzz
ερz

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

∂u
∂ρ
u
ρ
∂w
∂z

∂u
∂z + ∂w

∂ρ

⎞
⎟⎟⎠ . [4.56]

The matrix B has the following form:

ε =

⎛
⎜⎜⎜⎝

< ∂Ni

∂ρ > < 0 >

< Ni

ρ < 0 >

< 0 > < ∂Ni

∂z >

< ∂Ni

∂z < ∂Ni

∂ρ >

⎞
⎟⎟⎟⎠

(
ui

wi

)
= Bun. [4.57]

From Hooke’s law, we can find an elastic matrix that relates σ and ε. This matrix

is of the following form (assuming isotropic elasticity):

A =
E(1− ν)

(1 + ν)(1− 2ν)

⎛
⎜⎜⎝

1 ν
1−ν

ν
1−ν 0

. . . 1 ν
1−ν 0

. . . . . . 1 0

. . . . . . . . . 1−2ν
2(1−ν)

⎞
⎟⎟⎠ . [4.58]

As the problem is axially symmetric, the elementary stiffness matrix is:

Ke = 2π

∫
Ωr

Bt(r, s)AB(r, s) det(J)ρ(r, s)drds. [4.59]

We can use numerical integration to compute both this matrix and the stress matrix:

F e = 2π

∫
Ωr

N t(r, s) f det(J) ρ(r, s)drds. [4.60]

Various types of elements can be used. For example, we can use the same elements

for planar problems, with the interpolating functions remaining the same.
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In general, the elements can be divided into three groups: planar stresses, planar

strains and axisymmetrics. The stiffness matrix is computed differently in each case.

4.5.6. Three-dimensional problems

For three-dimensional problems, the stress and strain tensors are complete

[CIA 88]:

σ =

⎛
⎜⎜⎜⎜⎜⎜⎝

σ11

σ22

σ33

σ12

σ13

σ23

⎞
⎟⎟⎟⎟⎟⎟⎠

ε =

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
γ12
γ13
γ23

⎞
⎟⎟⎟⎟⎟⎟⎠

. [4.61]

We can use either the isotropic or the anisotropic version of Hooke’s law to

determine the behavior matrix. The elements are usually chosen from one of the three

shapes: tetrahedra, hexahedra and prisms.

Figure 4.11. 3D elements

4.6. Using Matlab

The latest version of Matlab features a PDE Toolbox, which can be accessed by

running the pdftool command. This opens the window shown in [4.12], which allows

the data of the problem to be entered [MAT 14].
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Figure 4.12. Window of the PDE Toolbox

4.6.1. Solving Poisson’s equation

We can use the assempde function in the Toolbox to solve the Poisson problem on

the unit disk with the following Dirichlet boundary conditions:

{
−Δu = 1 on Ω

u = 0 on ∂Ω
[4.62]

The script listed below can be used to solve this problem numerically:

g=’circleg’; b=’circleb1’; c=1; a=0; f=1;

[p,e,t]=initmesh(g,’hmax’,1); figure; pdemesh(p,e,t);

axis equal er = Inf; while er > 0.001

[p,e,t]=refinemesh(g,p,e,t);

u=assempde(b,p,e,t,c,a,f);

exact=(1-p(1,:).^2-p(2,:).^2)’/4;

er=norm(u-exact,’inf’);

fprintf(’Error: %e. Number of nodes: %d\n’,er,size(p,2));
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end figure; pdemesh(p,e,t); axis equal figure; pdesurf(p,t,u-exact);

figure; pdesurf(p,t,u);

Figures 4.13–4.16 show the results of this computation.

Figure 4.13. Discretization of the domain. For a color version of this
figure, see www.iste.co.uk/radi/advanced2.zip

Figure 4.14. Mesh of the domain. For a color version of this
figure, see www.iste.co.uk/radi/advanced2.zip
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Figure 4.15. Computed solution. For a color version of this figure, see
www.iste.co.uk/radi/advanced2.zip

Figure 4.16. Comparison of the computed solution and the exact
solution. For a color version of this figure, see

www.iste.co.uk/radi/advanced2.zip
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4.6.2. Solving the heat equation

Suppose that we wish to solve the heat equation in the following problem

[KOK 09]:

Find u : [0, 1]× [0, T ] → R, such that:

∂u

∂t
(x, t)− 1

π2

∂2u

∂x2
(x, t) = 0, x ∈]0, 1[, t ∈]0, T [ [4.63]

u(0, t) = u(1, t) = 0, t ∈ [0, 1] [4.64]

u(x, 0) = cos

(
π

(
x− 1

2

))
, x ∈]0, 1[. [4.65]

The exact solution of Problem [4.63–4.65] is u(x, t) = e−t cos(π(x − 1
2 )) for all

(x, t) ∈ [0, 1]× [0, T ]. To compute an approximate solution for this equation, we can

discretize in time using a θ-scheme, then discretize in space with finite elements.

We can use the following Matlab script to do this:

%--------------------------------------------------

%Solving the heat equation

%--------------------------------------------------

%

%subdivisions space /time

ht=0.01; Tmax=1.2; nx=33; hx=1/(nx-1); x=[0:hx:1]’;

%matrices

K=stiff(1/pi^2,hx,nx); M=mass(1/ht,hx,nx); A=M+K;

%boundary conditions by deleting rows

A(nx,:)=[]; A(:,nx)=[]; A(1,:)=[]; A(:,1)=[];

%creation

R=chol(A);

%initial condition

u=cos(pi*(x-1/2));

%time step loop

k=0; while (k*ht<Tmax)

k=k+1;

%compute the right-hand side
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b=M*u;

b(nx)=[];b(1)=[];

%solve

u=zeros(nx,1);

u(2:nx-1)=R\(R’\b);

end

This script calls the two subfunctions stiff and mass, which can, for example, be

implemented as follows:

function R=stiff(nu,h,n)

%

[m1,m2]=size(nu);

if (length(nu)==1)

ee=nu*ones(n-1,1)/h; e1=[ee;0]; e2=[0;ee]; e=e1+e2;

else

ee=.5*(nu(1:n-1)+nu(2:n))/h; e1=[ee;0]; e2=[0;ee]; e=e1+e2;

end

R=spdiags([-e1 e -e2],-1:1,n,n);

return

function M=mass(alpha,h,n)

[m1,m2]=size(alpha);

if(length(alpha)==1)

ee=alpha*h*ones(n-1,1)/6;

e1=[ee;0]; e2=[0;ee]; e=e1+e2;

else

ee=h*(alpha(1:n-1)+alpha(2:n))/12;

e1=[ee;0]; e2=[0;ee]; e=e1+e2;

end

M=spdiags([e1 2*e e2],-1:1,n,n);

return

4.6.3. Computing structures

Consider the structure shown in Figure 4.17, with the following parameters

E = 200 000 MPa, cross-section A = 6000 mm2, and moment of inertia I =
200× 106 mm4.
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Figure 4.17. Structure of the problem

The following Matlab script computes the structure of this problem using the finite

element method:

% Set the matrices to zero

k=zeros(6,6,2); K=zeros(6,6,2); Gamma=zeros(6,6,2);

% Enter parameter values, in units: mm^2, mm^4, and MPa(10^6 N/m)

A=6000; II=200*10^6; EE=200000;

% Convert units into meters and kN

A=A/10^6; II = II/10^12; EE =EE*1000;

% Element 1

i=[0,0]; j=[7.416,3];

[k(:,:,1),K(:,:,1),Gamma(:,:,1)]=stiff(EE,II,A,i,j);

% Element 2

i=j; j=[15.416,3];

[k(:,:,2),K(:,:,2),Gamma(:,:,2)]=stiff(EE,II,A,i,j);

% Define the elementary stiffness matrix

ID=[-4 1 -7;-5 2 -8;-6 3 -9];

% Define the connection matrix

LM=[-4 -5 -6 1 2 3; 1 2 3 -7 -8 -9];

% Assemble the augmented stiffness matrix

Kaug = zeros(9); for elem=1:2

for r=1:6

lr=abs(LM(elem,r));

for c=1:6

lc=abs(LM(elem,c));

Kaug(lr,lc)=Kaug(lr,lc)+K(r,c,elem);

end

end
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end

% Extract the stiffness matrix

Ktt=Kaug(1:3,1:3);

% Determine the reactions at the nodes in local coordinates

fea(1:6,1)=0; fea(1:6,2)=[0,8*4/2,4*8^2/12,0,8*4/2,-4*8^2/12]’;

% Determine the reactions in the global coordinate system

FEA(1:6,1)=Gamma(:,:,1)’*fea(1:6,1);

FEA(1:6,2)=Gamma(:,:,2)’*fea(1:6,2);

% FEA_Rest for constrained nodes

FEA_Rest=[0,0,0,FEA(4:6,2)’];

% Assemble the right-hand side for non-constrained nodes

P(1)=50*3/8; P(2)=-50*7.416/8-FEA(2,2); P(3)=-FEA(3,2);

% Solve to find the displacements in meters and in radians

Displacements=inv(Ktt)*P’

% Extract Kut

Kut = Kaug(4:9,1:3);

% Compute the reactions and introduce boundary conditions

Reactions=Kut*Displacements+FEA_Rest’

% Solve to find the internal forces, excluding fixed points

dis_global(:,:,1)=[0,0,0,Displacements(1:3)’];

dis_global(:,:,2)=[Displacements(1:3)’,0,0,0]; for elem=1:2

dis_local= Gamma(:,:,elem)*dis_global(:,:,elem)’;

int_forces= k(:,:,elem)*dis_local+fea(1:6,elem)

end

The above script calls the stiff function, which can be implemented as follows:

function [k,K,Gamma] = stiff( EE,II,A,i,j )

% Find the length

L=sqrt((j(2)-i(2))^2+(j(1)-i(1))^2);

% Compute the angle theta

if(j(1)-i(1))~=2

alpha=atan((j(2)-i(2))/(j(1)-i(1)))

else

alpha=-pi/2;

end

% Form the rotation matrix Gamma

Gamma =[cos(alpha) sin(alpha) 0 0 0 0;

-sin(alpha) cos(alpha) 0 0 0 0;
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0 0 1 0 0 0;

0 0 0 cos(alpha) sin(alpha) 0;

0 0 0 -sin(alpha) cos(alpha) 0;

0 0 0 0 0 1];

% Form the elementary stiffness matrix in local coordinates

EI=EE*II; EA=EE*A; k=[EA/L, 0, 0, -EA/L, 0, 0; 0, 12*EI/L^3,

6*EI/L^2, 0, -12*EI/L^3,6*EI/L^2;

0, 6*EI/L^2, 4*EI/L, 0 -6*EI/L^2, 2*EI/L;

-EA/L, 0 ,0 , EA/L, 0, 0;

0, -12*EI/L^3, -6*EI/L^2, 0, 12*EI/L^3, -6*EI/L^2;

0, 6*EI/L^2, 2*EI/L, 0, -6*EI/L^2, 4*EI/L];

% Elementary matrix in global coordinates

K=Gamma’*k*Gamma;

end

Executing this script returns the following results:

>> finite_elements

alpha =

0.3844

alpha =

0

Displacements =

0.0010

-0.0050

-0.0005

Reactions =

130.4973

55.6766

13.3742

-149.2473

22.6734

-45.3557
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int_forces =

149.2473

9.3266

-8.0315

-149.2473

22.6734

-45.3557



5

Finite Volume Methods

5.1. Introduction

Finite volume methods are a class of numerical analysis methods used to solve

PDEs numerically, much like the finite element method and finite difference methods.

However, unlike finite difference methods, which approximate the derivatives, finite

volume methods and the finite element method approximate the integrals and then

apply Gauss’s divergence theorem. Finite volume methods work directly from the

so-called strong form of the equation, whereas finite element methods are based on a

variational formulation.

The idea of the technique of control volumes is to integrate the PDE on a certain

set of control volumes to obtain discretized equations that conserve the value of every

physical quantity on each volume.

Every conservation equation is of the same form, and can be stated in terms of a

single general formula for the transport equation of a scalar property. In the notation

popularized by Bird, Steward and Lightfoot [BIR 06] and later reused by Brodkey and

Hershey, two of the best-known researchers in transport phenomena, this formula can

be presented as:

∂ρφ

∂t
+∇ · J = Sφ, [5.1]

where φ denotes a scalar representing some property; J summarizes the convection

and diffusion flux terms of φ, defined as J = ρφuΓφ∇φ, with Γφ the diffusion

coefficient of the variable φ and Sφ is the source term of φ.

This convection-diffusion equation can also be written in the following form:

∂ρφ

∂t
+ div(ρφu) = div(Γφ∇φ) + Sφ. [5.2]

Advanced Numerical Methods with Matlab® 2: Resolution of Nonlinear, Differential
and Partial Differential Equations, First Edition. Bouchaib Radi and Abdelkhalak El Hami
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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It intrinsically contains multiple transport equations in the dependent variable φ.
In general, each term has a specific, well-defined physical interpretation [LEV 02].

For example, if φ = 1 and Sφ = 0, then we recover the continuity equation:

∂ρ

∂t
+ div(ρu) = 0. [5.3]

If φ = T, Sφ = Q(T ) and Γφ = k/cp, then we recover a simplified version of the

energy equation:

∂ρT

∂t
+ div(ρuT ) = div

(
K

cp
∇T

)
+Q(T ). [5.4]

Most equations describing the transport of a quantity can be derived similarly. The

generalized transport equation is written in the form of a divergence, which allows us

to apply Gauss’s theorem when working with the integral equations.

5.2. Finite volume method (FVM)

The finite volume method (FVM) can be viewed as a special case combining both

the finite difference method and the method of mean weighted residuals (variables of

the FEM). The underlying idea of the FVM is easy to understand and lends itself well

to direct physical interpretation: the computation domain is divided into distinct

(disjoint) elements, called “control volumes” (CVs), in such a way that each control

volume encloses one node of the computation mesh. The PDE is then integrated on

each control volume. To compute the integral, the variable is approximated using

profile functions (e.g. piecewise linear or quadratic) between the points of the

computation mesh. This leads to a discretization of the PDE whose unknowns are the

values of the variables on the set of mesh points.

5.2.1. Conservation properties of the method

One of the most important aspects of the FVM is its conservation properties, which

rely heavily on the integral formulation of the method. Specifically, in the integral form

of the general transport equation:

∂

∂t

∫
Ω

ρφdΩ+

∮
Γ

J · ndΓ =

∫
Ω

SφdΩ, [5.5]

the variation in the property φ is a function of the net flux that passes through the

surface Γ enclosing the volume Ω. This property is crucial: after partitioning the
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domain into multiple subdomains with arbitrarily many sides, the following result

holds:

∫ B

A

J · ndΓ = −
∫ A

B

J · ndΓ, [5.6]

where A and B are the two end points of each side.

In other words, regardless of the choice of partition, the internal flux terms always

cancel, and the value of the global property φ is conserved.

5.2.2. The stages of the method

To solve the generalized transport equation by the FVM, we apply the volume and

contour integrals to a certain set of elements and then approximate the integrals with

algebraic expressions. Thus, the first step is to divide the domain into a finite set of

subdomains. Then, we compute the value of the variable φ on each element, or control

volume. The individual steps of the method can be summarized as follows:

– partition the region into subdomains or control volumes. These control volumes

must cover the domain completely and can have various shapes. The most common

basis elements are quadrilaterals and triangles in two dimensions, and hexahedra and

tetrahedra in three dimensions;

– integrate the equations on each control volume and apply Gauss’s divergence

theorem. On each control volume, we replace the function φ by an approximation; this

is typically a constant fixed to the center of gravity of the element. We also estimate

the flux through the sides of the control volume, usually in the form of an average

value;

– incorporate the boundary conditions;

– compute the balance of φ on each volume;

– solve the algebraic system thus obtained.

In this chapter, we will demonstrate the FVM by applying it to examples of fluid

flow problems, beginning with a scalar transport equation and then moving on to the

Navier–Stokes equations.

We recall that the numerical methods used to solve a PDE in the context of a given

model must satisfy certain conditions, such as convergence, consistency and stability.
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5.2.3. Convergence

An approximation scheme is said to be convergent if the numerical solution

approaches the continuous problem (the solution of the PDE) as the space and time

steps tend to zero. In other words, a scheme is convergent if the errors resulting from

the spatiotemporal discretization decrease with the spatiotemporal step size while

remaining bounded.

In practice, it is not easy to verify that this property is satisfied. Instead, we

consider methods for which we can study two fundamental properties, consistency

and stability, and apply the Lax equivalence theorem, which states that if a PDE is

approximated by a consistent linear scheme, then this scheme converges if and only

if it is stable.

5.2.4. Consistency

A finite difference scheme is said to be consistent with the original PDE if the

truncation error tends to zero as the discretization step (Δx,Δy,Δz for space, and Δt
for time) tends to zero (in other words, as the discretization steps approach zero, the

scheme describing the discrete problem transforms into the equation that describes the

continuous problem). It is easy to study whether a given scheme satisfies this property

by considering Taylor series.

5.2.5. Stability

The objective of rewriting a PDE in terms of finite differences is to allow us to

solve it numerically, but the solution that we obtain is of course only a numerical

approximation. Any such approximation is only satisfactory if it tends to the exact

solution as the integration step tends to zero. This fundamental convergence

condition leads us to define the condition of stability – a scheme is stable if the

solution is bounded whenever the initial condition is bounded, for sufficiently small

Δt and (nΔt < ∞).

It can be tricky to show that a given numerical scheme is stable, especially for

nonlinear schemes. Several methods for studying stability have been suggested, but a

general approach is not available; the most commonly adopted strategy is von

Neumann analysis, which does not consider the boundary conditions of the PDE

when studying whether the stability condition is satisfied.

To solve the problem of numerical stability, an alternative approach has been

suggested by several authors: the idea is to tackle the stability problem (whether or

not the scheme is stable) early in the design stage by imposing certain properties, such
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as conservation properties, positivity or the TVD (total variation decreasing) property.

The numerical scheme must satisfy the following conditions:

– the transported quantity must be conserved;

– if the transported quantity increases at a given point by convection and diffusion,

then it must not decrease at neighboring points;

– the diffusion must remain linear.

5.3. Advection schemes

Below, we present a numerical method based on this integral formulation (method

of finite volumes/control volumes). As an example, we will study the simplest possible

transport equation, the unsteady pure diffusion transport equation:

div(Γ �gradφ) + Sφ = 0. [5.7]

Formally integrating this equation (the key stage of the FVM) over a control

volume and then applying the divergence theorem yields:

∫
V C

div(Γ �gradφ)dv+

∫
V C

Sφdv =

∫
A

�n(Γ �gradφ)dA+

∫
V C

Sφdv = 0.[5.8]

To illustrate more clearly how the FVM works, we will consider the

one-dimensional steady-state diffusion equation on [A,B]:

d

dx

(
Γ
dφ

dx

)
, [5.9]

where Γ is the diffusion coefficient, Sφ is a source term and the values of θ at the end

points A and B are given, respectively, by φA = φ(A) and φB = φ(B):

Step 1. Meshing

The first step is to generate the mesh (computation grid). This involves dividing the

computational domain into finitely many control volumes (elements, cells, etc.). To

implement the finite volume method, we distribute a set of points, the nodes, between

the end points A and B of the domain. The boundaries of each control volume are

positioned between pairs of adjacent nodes; in other words, each node is enclosed by

one control volume or cell. It is often useful to choose the boundaries of the control

volume at the edges of the domain (here, A and B) to coincide with the boundaries.

Figure 5.2 shows the positioning of the nodes, the control volumes, their

boundaries and that each control volume has “length” Δx.
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Figure 5.1. Control volume
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ΔX = δXW e

eW
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Figure 5.2. Positioning of nodes and control volumes

Step 2. Discretization

As mentioned earlier, the most important stage of the FVM is integrating the PDE

on each control volume to obtain discretized equations at the node P. For the control

volume Δv defined in the figure:

∫
V C

d

dx
(Γ

dφ

dx
)dv +

∫
V C

Sφdv = (ΓA
dφ

dx
)e − (ΓA

dφ

dx
)w + S̄Δv = 0, [5.10]

where A is the surface whose sides are perpendicular to ōx,Δv is the control volume

and S̄ is the average value of the source term S on the control volume.

This discretized equation has a clear physical interpretation; the equation states

that the diffusive flux of φ exiting the control volume via the “East e” face minus the

diffusive flux of φ entering the control volume via the “West w” face is equal to the



Finite Volume Methods 123

quantity of φ generated by the source term inside the control volume. In other words,

this equation describes the balance in the quantity of φ over the control volume.

To complete the discrete equation, we still need to evaluate the diffusion coefficient

r and the gradient dφ
dx at the points “e” and “w”, which are not mesh nodes (fictitious

points). We only know the values of Γ and dφ
dx at the nodes W, P and E, so we need

to approximate these variables using their values at these nodes. For example, the

diffusion coefficient at the “w, e” interfaces of the control volume can be calculated

by linear interpolation:

Γe =
ΓE + ΓP

2
; Γw =

ΓW + ΓP

2
. [5.11]

The diffusive flux term can be calculated by:

(
ΓA

dφ

dx

)
w

= ΓwAw
φP − φW

δxpw
;

(
ΓA

dφ

dx

)
e

= ΓeAe
φE − φP

δxpE
. [5.12]

In practice, the source term is usually a function of the variable φ. If so, the FVM

approximates the source term by a linear relation:

S̄Δv = Su + Spφp. [5.13]

Finally, we have that:

ΓwAw
φP − φW

δxpw
+ ΓeAe

φE − φP

δxpE
[5.14]

(
ΓeAe

δxpE
+

ΓwAw

δxpw
− Sp

)
φp︸ ︷︷ ︸

apφp

=
ΓwAw

δxpw
φw︸ ︷︷ ︸

awφw

+
ΓeAe

δxpE
φE︸ ︷︷ ︸

aEφE

+Su [5.15]

The following relation holds:

ap = aE + aw − Sp. [5.16]

The terms Su, Sp are known and can be calculated from a model that approximates

the source term S.

REMARK.– The expressions of φ at the interfaces w and e are indirectly assumed to

have a piecewise linear profile in these computations.



124 Advanced Numerical Methods with Matlab 2

Step 3. Solving the system

The discrete equation obtained above for a single point P must be satisfied by

every point on the computational mesh. For the control volumes at the physical

boundaries of the domain, this equation needs to be modified to account for the

boundary conditions. The resulting algebraic system is then solved by a suitable

choice of algorithm to obtain a solution on the nodes of the mesh.

φ

X

φ
W

φ
E

PW W e E

φP

Figure 5.3. The function φ

EXAMPLE.– Consider a bar AB of length L = 50 cm and cross-section A = 10−2m2.
Suppose that we wish to compute the temperature distribution along the bar, assuming

a thermal conductivity of k = 1, 000W/m/k and subject to the conditions that the

temperature is TA = T (A) = 100 at A and TB = T (B) = 500 at B. The heat

conduction equation is d
dx

(
k dT

dx

)
= 0.

We will consider five nodes and a uniform mesh δx = 0.1m.

•

3

•

4

•

5

•

1

•

2A

TA=100

B

TB=500

Figure 5.4. Discretization of the function T
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– For each of the interior nodes P = 2, 3, 4, as ke = Kw = k and Ae = Aw = A:⎧⎪⎪⎨
⎪⎪⎩
apTp = aWTW + aETE

aE =
kA

δx
= aW

ap = aE + aW

[5.17]

– The nodes 1 and 5 at the boundary need to be handled differently to account for

the boundary conditions.

NODE 1 (P=1).–

KA
TE − Tp

δx
− kA

Tp − TA

δx/2
= 0 [5.18]

The term δx/2 comes from the fact that the distance from the boundary A to the

node P = 1 is equal to half of the mesh size. In other words:

(
KA

δx
+

2KA

δx

)
Tp = 0.TW +

KA

δx

(
KA

δx

)
TE +

(
2KA

δx

)
TA, [5.19]

where aw = 0, aE =
kA

δx
, Sp = −2kA

δx
, Su =

2KA

δx
TA and ap = aE + aW − Sp.

We do the same for node 5 at the other boundary:

NODE 5 (P = 5).–

kA
TB − Tp

δx/2
− kA

Tp − TW

δx
= 0 [5.20]

(
kA
δx

+
2kA
δx

)
Tp =

kA

δx
TW + 0.TE +

2kA

δx
TB , [5.21]

where aw =
kA

δx
, aE = 0, Sp = −2kA

δx
, Su =

2KA

δx
TA and ap = aE + aW − Sp.

The resulting linear system can now be written as follows:

kA
δx

= 100

– Node 1: 300T1 = 100T2 + 200TA

– Node 2: 20073 = 100Tl + 100T3
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– Node 3: 200T3 = 100T2 + 100T4

– Node 4: 200T4 = 100T3 + 200T5

– Node 5: 300T5 = 100T4 + 200TB

In matrix form:

⎡
⎢⎢⎢⎢⎣

300 −100 0 0 0
−100 200 −100 0 0
0 −100 200 −100 0
0 0 −100 200 −100
0 0 0 −100 200

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T1

T2

T3

T4

T5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

200TA

0
0
0

200TB

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. [5.22]

This method can be solved with “any old” numerical method for solving linear

systems. The solution is:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

T1 = 140

T2 = 220

T3 = 300

T4 = 380

T5 = 480

[5.23]

By comparison, the exact solution is T (x) = 800x+ 100.

5.3.1. Two-dimensional FVM

To illustrate the FVM in two dimensions, we will consider the two-dimensional

steady-state diffusion equation:

∂

∂x

(
Γ
∂φ

∂x

)
+

∂

∂y

(
Γ
∂φ

∂y

)
+ S = 0. [5.24]

For the two-dimensional problem, as well as the nodes E, W, we consider the two

additional nodes N, S in the direction of �oy.

Integrating the diffusion equation over a control volume gives Δv:

∫
Δv

∂

∂x

(
Γ
∂φ

∂x

)
dxdy +

∫
Δv

∂

∂y

(
Γ
∂φ

∂y

)
dxdy +

∫
Δv

Sφdv = 0. [5.25]
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We note that, here, Ae = Aw = Δy ; An = As = Δx, which gives:[
ΓeAe

(
∂φ

∂x

)
e

− ΓwAw

(
∂φ

∂x

)
w

]

+

[
ΓnAn

(
∂φ

∂y

)
n

− ΓsAs

(
∂φ

∂y

)
s

]
+ S̄Δv = 0. [5.26]

As in the one-dimensional case, this equation can be interpreted as the

conservation of φ within the control volume, describing the balance of the quantity

of φ generated (by the source) and the various flux terms through each interface of

Δv. With similar approximations as in the one-dimensional case, we obtain:

– flux through the “West w” face:

ΓwAw

(
∂φ

∂x

)
w

= ΓwAw
φp − φW

δxpW
[5.27]

– flux through the “East e” face:

ΓeAe

(
∂φ

∂x

)
e

= ΓeAe
φE − φp

δxpE
[5.28]

– flux through the “North n” face:

ΓnAn

(
∂φ

∂y

)
n

= ΓnAn
φN − φp

δxNp
[5.29]

– flux through the “South s” face:

ΓsAs

(
∂φ

∂y

)
s

= ΓsAs
φp − φs

δxsp
[5.30]

and also:

Γw =
Γp + Γw

2
; Γe =

ΓE + Γp

2

Γs =
Γp + Γs

2
; Γn =

Γp + ΓN

2

S̄ = Su + Spφp

Hence, the discretized equation is:

apφp = aEφE + aWφW + aSφS + aNφN + Sn [5.31]
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aW =
ΓwAw

δxWp
; aE =

ΓeAe

δxpE
; aN =

ΓnAn

δxpN
; aS =

ΓsAs

δxpS

ap = aE + aw + as + aN − Sp

In three dimensions, the discretized equation has a similar structure, with

additional terms aT and aB .

p

EW

T

b

t

B

w
c

S

s
p

n

N

x

z
y

Figure 5.5. Three-dimensional case

In summary, for the steady-state diffusion equation:

– The discrete equation in one, two and three dimensions is of the following form

in general:

apφp =
∑

anbφnb + Sn, [5.32]

where the sum ranges over the nodes adjacent to P and anb denotes the corresponding

coefficients (aw, aE , aN , as, aB , aT ), φnb is the value of φ at the adjacent nodes and

(Su + Spφp) is the linearized source term.

– In each case, the coefficients around the node P satisfy the relation:

ap =
∑

anb − Sp. [5.33]

– The source term is included in a linearized form:

S̄Δv = Su + Spφp. [5.34]

– The boundary conditions can either be incorporated exactly if the flux is imposed

by Su +φpSp = qB , or as a linearized approximation by using additional coefficients

Su and Sp.
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5.3.2. Convection-diffusion equation

Most fluid motion phenomena unfold according to two modes of transport:

convection and diffusion [PAT 80]. In this section, we apply the FVM to a

convection-diffusion transport equation (CDTE):

div (ρ�uφ) = div (Γgradφ) + Sφ [5.35]

expressed in integral form over a control volume Δv:

∫
A

�n (ρφ�u) dA =

∫
A

�n (Γgradφ) dA+

∫
V C

Sφdv. [5.36]

The term on the left-hand side represents the convective flux, and the first term on

the right-hand side represents the diffusive flux.

The primary difficulty associated with discretizing the convective term lies in

choosing how to compute the value of the transported quantity at the interfaces of the

control volume. The problem is that the convection process only exerts an influence

in the direction of the flow, whereas the diffusion process acts in every direction

through its gradients.

5.3.2.1. One-dimensional steady-state CD equation

Without a source term, the steady-state CD equation can be stated as follows for

the quantity φ in one dimension:

d

dx
(ρuφ) =

d

dx

(
Γ
dφ

dx

)
. [5.37]

The flow must satisfy the continuity equation:

d

dx
(ρu) = 0. [5.38]

Integrating the CD equation over the control volume (CV) gives the following

expression (see Figure 5.6):

(ρuAφ)e − (ρuAφ)w =

(
ΓA

∂φ

∂x

)
e

−
(
ΓA

∂φ

∂x

)
w

. [5.39]

Integrating the continuity equation over the control volume gives:

(ρAU)e − (ρAU)w = 0. [5.40]
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Figure 5.6. Control volume

To obtain the discrete equation, we still need to approximate each term at the points

w and e, which are not on the computational mesh. To do this, we define two auxiliary

variables:

F = ρu ; D =
Γ

δx
. [5.41]

Thus:

Fw = (ρu)w ; Dw =
Γw

δxWp

Fe = (ρu)e ; De =
Γe

δxpE

With this notation, setting Ae = Aw = A, the discrete equation becomes:

Feφe − Fwφw = De (φE − φp)−Dw (φp − φw) . [5.42]

The continuity equation can be stated as Fe − Fw = 0.

To solve this discrete equation, we need to evaluate the values at the interfaces

(East, West) of the control volume. Several approximation schemes have been

suggested to do this. The most classical schemes in the context of meshing are

presented below.
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5.3.3. Central differencing scheme

Centered differences can be used to represent the diffusive term in the discrete

equation. One seemingly reasonable approach is to attempt to approximate φe and φw

by linear integration (this amounts to approximating
Dφ

Dx
by centered differences):

φe =
φp + φE

2
; φw =

φW + φp

2
. [5.43]

After substitution, we find:[(
Dw − Fw

2

)
+

(
De +

Fe

2

)]
φp =

(
Dw +

Fw

2

)
φW +

(
De − Fe

2

)
φE

[5.44][(
Dw − Fw

2

)
+

(
De +

Fe

2

)
+ (Fe − Fw)

]
φp

=

(
Dw +

Fw

2

)
φW +

(
De − Fe

2

)
φE

[5.45]

This equation holds for any node P in the interior of the computational mesh. At

the boundaries, we need a separate approach, similar to the one we used earlier for

pure diffusion, to obtain a closed system. As before, this system can be written in the

form:

apφp = aWφW + aEφE

aW = Dw +
Fw

2
; aE = De − Fe

2
; ap = aW + aE + (Fe − Fw).

To demonstrate more clearly how the FVM works when applied to CD-type

transport equations and to illustrate some of the difficulties associated with the

central differencing scheme, we will consider the following CDTE:

⎧⎪⎪⎨
⎪⎪⎩

d

dx
(ρuφ) =

d

dx

(
Γ
dφ

dx

)
x ∈]0, L[

φ(0) = φ0 = 1

φ(L) = φL = 0

[5.46]

We will use the values ρ = 1 kg/m3; Γ = 0.1 kg/m/s and L = 10 m, and we

will consider the following cases:
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1) u = 1.0 m/s, with a mesh of five equally-spaced points;

2) u = 2.5 m/s, with a mesh of five equally-spaced points;

3) u = 2.5 m/s, with a mesh of two equally-spaced points.

The analytic solution is:

φ(x)− φ0

φL − φ0
=

exp
(ρux

π

)
− 1

exp

(
ρuL

π

)
− 1

. [5.47]

In case (2), the central differencing scheme (CDS) results in a numerical solution

that oscillates around the analytic solution. This oscillation arises due to a combination

of the following reasons:

Consider first of all the dimensionless quantity Pe =
uL

Γ
, known as the Péclet

number (quantity proportional to the ratio of the weights of the convection and

diffusion terms). If ρ = 1, the CDTE can be written in dimensionless form as:

⎧⎨
⎩

∂φ̃

∂x̃
− 1

Pe

∂2φ̃

∂2x̃
x ∈]0, 1[

φ̃(0) = 1; φ̃(1) = 0.

[5.48]

This has the analytic solution:

φ̃(x̃) =
exp(Pe)− exp(Pex̃)

exp(Pe)− 1
[5.49]

– If Pe = 0 (pure diffusion), then:

φ̃(x̃) = 1− x̃.

– If Pe → +∞ (pure convection), then:

In this case, there appear to be two solutions associated with two possible choices

of boundary condition. To choose the relevant solution, we need to know the direction

of the current or time evolution that led to the steady state. Let h be the step size of a

mesh of N+1 points. Discretizing the dimensionless equation by the CDS then gives:

⎧⎨
⎩

1

h2Pe

(
φ̃i+1 − 2φ̃i + φ̃i−1

)
+

φ̃i+1 − φ̃i−1

2h
φ̃1 = 1; φ̃N+1

[5.50]
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Without going into excessive detail, the general solution is:

φ̃i = a+ bri, [5.51]

where:

a =
−rN

1− rN
; b =

1

r − rN+1
; r =

2 + hPe

2− hPe
.

Therefore, the behavior of the solution fundamentally depends on the sign of r,

via the Péclet term with mesh Pen (Pen = hPe), which reflects the fineness of the

discretization.

In summary:

– If Pen > 2, then the mesh is too coarse for the given values of u and Γ. The

numerical solution will exhibit sawtooth oscillations (every other node on the mesh).

– If Pen < 2, then the mesh is appropriately scaled relative to the phenomena

being modeled. The numerical solution is monotone and converges to the exact

solution at a rate of h2. This extremely simple example illustrates the limitations of the

second-order approach (CDS). If we can satisfy the constraint on the Péclet number

(which may be possible in some cases, for example, at very low speeds), then this

approach can be viable, because it achieves a high order of convergence (second order

in this case) with a simple discretization. However, if the mesh is too coarse in regions

of the domain with high gradients, then an oscillatory zone can develop and spread to

the rest of the domain, rendering the numerical solution physically useless. Instead,

less “heavy” approximations are often preferable, motivated by the observation that a

quantity defined to be positive can otherwise take negative values.

This discussion suggests that discretization schemes should satisfy certain

fundamental properties in order to be exploitable in practice for scientific

computations, especially in the context of finite difference methods. Among the most

important of these desirable properties, we can quote the following: a good

numerical scheme should be conservative, bounded and transportive.

5.3.4. Upwind (decentered) scheme

We saw earlier that the formulation of the CDS does not incorporate the direction

of the flow, i.e. the value φw is always influenced by both φp and φW .

If there is strong convection from West to East, the CDS ceases to be viable,

because φw needs to be more strongly influenced by φW than by φp. The upwind

scheme was introduced to model the direction of flow when approximating φ at the

interfaces (w, e) (see Figure 5.7).
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– If the flow is in the positive direction:

uw > 0, ue > 0 (Fe, Fw > 0),

then the upwind scheme approximates φp and φw by:

φe = φp φw = φW .

W Ew eP

φW φw

φP φe

uw ue

Figure 5.7. Upwind scheme (positive direction)

The discrete CDTE then becomes:

[(Dw + Fw) +De + (Fe − Fw)]φp = (Dw + Fw)φW +DeφE . [5.52]

– If the flow is in the negative direction:

uw < 0, ue < 0 (Fe, Fw < 0),

then the upwind scheme approximates φp and φw by

φe = φE φw = φp.

W Ew eP

φw φP

φe φE

uw ue

Figure 5.8. Upwind scheme (negative direction)
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The corresponding discrete CDTE is:

[Dw + (De − Fe) + (Fe − Fw)]φp = DwφW + (DeFe)φE . [5.53]

In summary, if we write the general form of the discrete CDTE as:

apφp = aEφE + aWφW , [5.54]

then the coefficients ap, aE and aW are defined as:

aw = Dw +max(Fw, 0) [5.55]

aE = De +max(Fw, 0) [5.56]

ap = aE + aW + (Fe − Fw). [5.57]

EXAMPLE.– Consider again cases (1) and (2) from the previous example. The upwind

scheme (US) is conservative, because it uses consistent expressions to compute the

flux terms through each face of the control volume.

It is also bounded, because the coefficients aE , ap and aW are always positive.

Furthermore, when the continuity equation is satisfied (Fe − Fw = 0),
ap = aE + aW ; in other words, the system matrix is diagonally dominant, which

prevents oscillations from arising. Finally, the upwind scheme is transportive, by

construction. It is worth noting that the upwind scheme does have one disadvantage:

its precision (rate of convergence). This scheme uses first-order formulas to

approximate the gradients of φ, which introduces a numerical diffusion term

(unrelated to any physical phenomenon) that degrades the numerical solution. In

other words, the decentering model comes hand-in-hand with an artificial diffusion

term that depends on the speed and the discretization step. In general, the decentering

can be expressed as:

∂φ

∂x
= α

φW − φp

h
+ (1− α)

φE − φp

h
+ (α− 1/2) o(h) [5.58]

– upwind decentering: a > 1/2

– downwind decentering: a < 1/2

u
∂φ

∂x
= αu

φW − φp

h
+ (1− α)u

φE − φp

h
+ o(h). [5.59]

This relation can be approximated to the second order as follows (for comparison

with the centered approximation of the diffusion term):

u
φE − φp

h
+(1/2−α)uh

φE − 2φp + φW

h2
= u

∂φ

∂x
−(α−1/2)uh

∂φ2

∂x2
+o(h2).[5.60]
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Therefore, by decentering in the direction of the current (Q > 2), we use the

second-order expression, but the problem is stabilized by formally adding an artificial

diffusion of the order of Dnum = (α− 1/2)|u|h.

5.3.5. Hybrid scheme

When the speed and the diffusion coefficients of the flow vary over time and space

(which is often the case in practice), the Péclet number also varies; there may be some

zones with low Péclet numbers and others with high Péclet numbers. One approach to

designing a numerical scheme for this type of situation is to define a “hybrid” scheme

(HS), for example, by approximating qw with the following definition:

⎧⎪⎪⎨
⎪⎪⎩
qw = Fw

[
1

2

(
1 +

2

Pew

)
φW +

1

2

(
1− 2

Pew

)
φp

]
if − 2 < Pew < 2

qw = FwA1φW if Pew ≥ 2

qw = FwA2φp if Pew ≤ 2

[5.61]

where:

Pew =
Fw

Dw
=

(ρu)w
Γw/δWp

.

In summary, the coefficients of this discretization scheme, apφp = aEφE =
aWφW , are as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

aW = max

[
Fw;

(
Dw +

Fw

2

)
; 0

]

aE = max

[
−Fe;

(
De +

Fe

2

)
; 0

]
ap = aE + aW

[5.62]

5.3.6. Power-law scheme

Approximations using the power-law scheme are more precise in one dimension

and produce better results than the hybrid scheme. The power-law scheme neglects

the effects of diffusion when the Péclet number is greater than 10. If Pe is between 0
and 10, the flux is evaluated with a polynomial expression. For example, the flux per

unit surface area at w is:{
qw = Fw [φW − βw (φp − φW )] if 0 < Pe < 10

qw = FwφW if Pe ≥ 10
[5.63]
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where βw =

(
1− Pew

10

)5

Pew
.

The coefficients ap, aE and aw of this method are defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

aE = De max

[
0;

(
1−

( |Pew|
10

)5
)]

+max[Fe; 0]

aW = Dw max

[
0;

(
1−

( |Pew|
10

)5
)]

+max[Fw; 0]

ap = aE + aW

[5.64]

This scheme is very widely used in practice as an alternative to the hybrid scheme.

The commercial software package FLUENT v4.22 uses it as the default scheme for

computing the flow.

5.3.7. QUICK scheme

QUICK (Quadratic Upstream Interpolation for Convection Kinetics) uses

quadratic interpolation on three nodes to compute the value at the interface. In the

direction of flow, we consider two upstream nodes and one downstream node. For

example:

– For uw > 0; ue > 0, we use quadratic smoothing between WW, W and P to

evaluate φw, and a separate instance of smoothing between W, P and E to evaluate

φe (see Figure 5.9).

– For uw < 0; ue < 0, the values of b at W, P and E are used to evaluate φw, and

the values of φ at EE, P and E are used to evaluate φe:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uw > 0, φw =
6

8
φW +

3

8
φp − 1

8
φWW

ue > 0, φe =
6

8
φp +

3

8
φE − 1

8
φW

uw < 0, φw =
6

8
φp +

3

8
φW − 1

8
φE

ue < 0, φe =
6

8
φE +

3

8
φp − 1

8
φEE

[5.65]
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Figure 5.9. Quadratic smoothing

Note that the discrete CDTE includes two additional coefficients aWW and aEE .

This is because we used φEE to approximate the flux at the interfaces. The expressions

of ap, aE , aW , aWW and aEE can be stated more concisely as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aW = Dw +
6

8
αwFw +

1

8
αeFe − 3

8
(1− αw)Fw

aE = De − 3

8
αeFe − 6

8
(1− αe)Fe − 1

8
(1− αw)Fw

aEE =
1

8
(1− αe)Fe

aWW = −1

8
αwFw

ap = eE + aW + aEE + aWW + (Fe − Fw)

apφp = eEφE + aWφW + aEEφEE + aWWφEE

[5.66]

where:

αw,e =

{
1 if uw,e > 0

0 if uw,e < 0
[5.67]

The flux terms at the interfaces are calculated by quadratic interpolation on two

upstream nodes and one downstream node. This procedure guarantees that the QUICK

scheme is conservative.

QUICK is accurate up to the third order on uniform grids. The “transportativity”

criterion is satisfied by construction as a quadratic function that uses the values of φ at

two upstream nodes and one downstream node. If the flow also satisfies the continuity

equation, then the coefficient ap is the sum of the neighboring coefficients. This is
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a desirable property when trying to show that the scheme is bounded. However, it

can easily be seen that aE and aW are not always positive for the QUICK scheme,

and aWW , aEE are negative. Therefore, QUICK is not always stable; we say that

it is conditionally stable. Another disadvantage of this scheme is that the structure

of the linear system matrix that we must solve is pentadiagonal, unlike the schemes

considered above, which produce tridiagonal matrices that are easier and quicker to

solve.

Finally, we note that special care must be taken with QUICK when discretizing

the boundaries of the domain, because fictitious points (mirror points) are required to

close the system. To resolve this problem, we typically use extrapolation of the form:

φA =
φ0 + φ1

2
φ0 = 2φA − φ1. [5.68]

5.3.8. Higher-order schemes

Even though QUICK is accurate to the third order, it can still develop undesirable

oscillations. This motivated the development of second-order schemes without

parasitic oscillatory behavior. Two examples of such schemes are “slope limiters”

and total variation diminishing (TVD) schemes. For example, slope-limiter schemes

model the flux at the interface “e” by:

φe =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φp +

1

2
(φE − φp)ψ (θ+e ) if ue ≥ 0

φE − 1

2
(φE − φp)ψ (θ−e ) if ue < 0

[5.69]

The function ψ is called the limiter function, and is designed to stabilize the

scheme and eliminate parasitic oscillations.

The best-known examples of limiters are:

– Minmod limiter: φ (θ) = max (0,min (1, θ));

– Superbee limiter: φ (θ) = max (0,min (1, 2θ) ,min (2, θ));

– van Leer limiter: φ (θ) = (θ+ | θ |) / (1+ | θ |);
– MC limiter: φ(θ) = max [0,min ((1 + θ)/2, 2θ)].

Each of these limiters satisfies the stability condition:

0 � φ(θ)

θ
� 2 and 0 � φ(θ) � 2. [5.70]
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These schemes limit the numerical diffusion and eliminate oscillations while

remaining second-order overall.

5.3.9. Unsteady one-dimensional convection-diffusion equation

In this section, we present an example of a time-dependent flow problem by

considering the following transport equation:

∂φ

∂t
+ div (ρ�uφ) = div

(
Γ �gradφ

)
+ Sφ. [5.71]

When applying the FVM to transient problems, in addition to integrating the

equation over control volumes as usual, we need to integrate the equation over a time

interval of size Δt :

∫
Δv

(∫ t+Δt

t

∂

∂t
(ρφ)dt

)
dv +

∫ t+Δt

t

(∫
A

�n.(ρφ�u)dA

)
dt =

∫ t+Δt

t

(∫
A

�n.(Γ �gradφ)dA

)
dt+

∫ t+Δt

t

(∫
Δv

Sφdv

)
dt. [5.72]

The convection-diffusion terms and the time-based terms need to be approximated

simultaneously.

The methods for approximating the convection-diffusion terms presented above (in

the steady-state case) can be reused for the transient case (under certain conditions).

To demonstrate the method used for integration with respect to time and without loss

of generality, we will consider the unsteady pure diffusion equation (heat conduction

equation):

ρc
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+ S. [5.73]

Integrating this equation over a control volume and [t, t+Δt] gives:

∫ e

w

(∫ t+Δt

t

ρc
∂T

∂t
dt

)
dv =

∫ t+Δt

t

(∫
A

�n.(ρφ�u)dA

)
dt

=

∫ t+Δt

t

[(
kA

∂T

∂x

)
e

−
(
kA

∂T

∂x

)
w

]
dt+

∫ t+Δt

t

S̄Δvdt. [5.74]



Finite Volume Methods 141

The left-hand term can be approximated by:

∫
Δ

v

(∫ t+Δt

t

ρc
∂T

∂t
dt

)
dv = ρc(Tp − T ◦

p )Δv, [5.75]

where T ◦
p denotes the temperature at the point P at time t and Tp denotes the

temperature at the point P at time t+Δt.

The same result can be obtained by replacing
∂T

∂t
by

Tp − T ◦
p

Δt
, i.e. by

approximating
∂T

∂t
using a first-order decentering scheme. The discrete equation can

be stated as:

ρc(Tp − T ◦
p )Δv =

∫ t+Δt

t

[(
keAe

TE − Tp

δEP

)

−
(
kwAw

Tp − TW

δpW

)]
+

∫ t+Δt

t

S̄Δvdt. [5.76]

We must now decide which values of Tw, TP and TE we should use (at t or t+Δt)
to approximate the first integral above. Depending on our choice, we obtain two types

of time discretization: explicit (using the values at t) and implicit (using the values at

t+Δt).

Both choices can be generalized into a θ-scheme with the following general

expression:

Ip =

∫ t+Δt

t

Tpdt =
[
θTp + (1− θ)T o

p

]
Δt. [5.77]

Thus:

– for θ = 0, we recover the explicit scheme;

– for θ = 1, we recover the implicit scheme;

– for θ =
1

2
, we recover the Crank–Nicolson scheme.

With the θ-scheme, the discrete equation is:

apTp = aW [θTW + (1− θ)T o
W ] + aE [θTE + (1− θ)T o

E ]

+
[
aop − (1− θ) aW − (1− θ) aE

]
T o
p + b, [5.78]
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where:⎧⎪⎪⎨
⎪⎪⎩
ap = θ (aW + aE) + aop

aop = ρc
Δx

Δt
b = S̄Δx

[5.79]

5.3.10. Explicit scheme

If we linearize the source term b = Su + SpT
◦
p and substitute θ = 0 into the

above equation, we obtain the “explicit” discretization of the unsteady heat conduction

equation:

apTp = aWT o
W + aET

o
E +

[
aop − (aW + aE − Sp)

]
T o
p + Su [5.80]

ap = aop = ρc
Δx

Δt
; aW =

kw
δxWp

; aE =
ke

δxEp
.

We note that Tp can be computed explicitly from the value of T at time t, without

needing to solve a linear system.

For reasons of stability, the coefficients of the equation must be positive. This is in

particular true for the coefficient of T o
p ; in other words, the relation ap−aW −aE > 0

must hold.

In the case of a regular mesh Δx = δxWp = δxpE and constant k, the above

condition can be rewritten as:

ρc
Δx

Δt
>

2k

Δx
=⇒ Δt < ρc

Δx2

2k
. [5.81]

This condition specifies the maximum time step before the explicit scheme fails. It

represents a limitation of the discretization approach, in the sense that improving the

spatial precision (Δx small) penalizes the computation time (the limiting Δt becomes

small). Nonetheless, with a sensible choice of Δt, explicit discretization is viable for

heat condition problems.

5.3.11. Crank–Nicolson scheme

This scheme chooses θ = 1
2 in the discrete equation:

apTp = aE

(
TE + T o

E

2

)
+ aW

(
TW + T o

W

2

)
+
[
aop −

aE
2

− aW
2

]
T o
p + b, [5.82]
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where:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ap =
1

2
(aW + aE) + aop −

1

2
Sp

aop = ρc
Δx

Δt

b = Su +
1

2
SpT

o
p

[5.83]

We note that this scheme requires a linear system to be solved at every time step.

It is an implicit scheme that is unconditionally stable. To guarantee the positivity of

the coefficients, the relation aop > aE+aW

2 must hold, leading to the condition:

Δt < ρc
Δx2

k
. [5.84]

This condition is less restrictive than the condition imposed by the explicit

scheme. The Crank–Nicolson scheme uses a centered difference for ∂T
∂t , and is

therefore second-order in time. With a sufficiently small step size Δt, it can produce

solutions with higher overall accuracy than the explicit scheme. In fact, the overall

accuracy of the computations depends on the spatial discretization. Therefore, the

Crank–Nicolson scheme is typically used with spatially centered differences.

5.3.12. Implicit scheme

The implicit scheme is obtained by choosing θ = 1:

apTp = aWTW + aETE + aopTp + Su, [5.85]

where:

ap = aW + aE + aop − Sp; ap = aop = ρc
Δx

Δt
;

aW =
kw

δxWp
; aE =

ke
δxEp

.

The discrete equation [5.85] incorporates the temperature values at the neighbors

of the node P, which are unknown, and are therefore determined implicitly by solving

a linear system (hence the name “implicit scheme”). Every coefficient of the resulting

linear system is positive. The implicit scheme is therefore unconditionally stable. It
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is first order in time, because it uses a decentered time discretization. To guarantee

a certain level of precision in time, a suitable value of Δt must be chosen, while

bearing in mind the associated computational costs. The implicit scheme is the most

commonly used approach for unsteady meshing problems because it is straightforward

to implement and is unconditionally stable.

5.4. Using Matlab

We will solve the conservative form of the shallow water equation in two

dimensions using the finite volume method in Matlab. The corresponding script is

provided below:

clear all; clc;
% Construct the grid
m = 60;
dx = 2/m; dy = 2/m;
x = -1-dx:dx:1+dx; y = -1-dy:dy:1+dy;
[xx,yy] = meshgrid(x,y);
g = 1; c = 0.5;

h = ones(size(xx));
h(xx>=-0.5 & xx<=0.5 & yy>=-0.5 & yy<=0.5) = 2;
% U is an unknown matrix.
U(:,:,1)=h,U(:,:2)=hu,U(:,:,3)=hv
U = zeros([size(h) 3]);
U(:,:,1) = h;
u = zeros(size(xx));
v = u;

% circular shift vectors
shiftp1 = circshift((1:length(x))’,1);

shiftm1 = circshift((1:length(x))’,-1);

mesh(x,y,U(:,:,1)), colormap jet, axis([-1 1 -1 1 0.5 2.5])
title(’hit enter to continue’)
xlabel x, ylabel y; zlabel h;
pause;

t = 0; dt = 0; tstop = 3.0;
ii = 1;
numplots = 3;
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tplot = [1.35;3.0]; Uplot = zeros([size(U) length(tplot)+1]);
Uplot(:,:,:,1) = U; styles = {’k:’,’k--’,’k-’};

while t < tstop
Uold = U; uold = u; vold = v; told = t; t = t + dt;

% calculate lambda = |u| + sqrt(gh) using the computed value
of the flux

lambdau = 0.5*abs(uold+uold(:,shiftm1)) +...
sqrt(g*0.5*(Uold(:,:,1)+Uold(:,shiftm1,1)));

lambdav = 0.5*abs(vold+vold(shiftm1,:)) +...
sqrt(g*0.5*(Uold(:,:,1)+Uold(shiftm1,:,1)));

lambdamax = norm([lambdau(:); lambdav(:)],Inf);

dt = c*(dx/lambdamax);
% adjust dt to regenerate the graph
if (ii<=length(tplot) && tplot(ii)>=told && tplot(ii)<=t+dt)

dt = tplot(ii)-t;
ii = ii + 1;

end

huv = Uold(:,:,2).*Uold(:,:,3)./Uold(:,:,1);
ghh = 0.5*g*Uold(:,:,1).^2;
% compute (hu,hu^2+gh^2/2,huv)
lffu = cat(3,Uold(:,:,2),Uold(:,:,2).^2./Uold(:,:,1)+ghh,huv);
% compute (hv,huv,hv^2+gh^2/2)
lffv = cat(3,Uold(:,:,3),huv,Uold(:,:,3).^2./Uold(:,:,1)+ghh);
% compute the flux terms
fluxx = 0.5*(lffu+lffu(:,shiftm1,:)) - ...

0.5*bsxfun(@times,Uold(:,shiftm1,:)-Uold,lambdau);
fluxy = 0.5*(lffv+lffv(shiftm1,:,:)) - ...

0.5*bsxfun(@times,Uold(shiftm1,:,:)-Uold,lambdav);
% time step
U = Uold - (dt/dx)*(fluxx - fluxx(:,shiftp1,:)) ...

- (dt/dy)*(fluxy - fluxy(shiftp1,:,:));

% impose the boundary conditions on h
U(1:end,end,1)= U(1:end,end-1,1); U(1:end,1,1)= U(1:end,2,1);
U(end,1:end,1)= U(end-1,1:end,1); U(1,1:end,1)= U(2,1:end,1);
% on hu
U(1:end,end,2)=-U(1:end,end-1,2); U(1:end,1,2)=-U(1:end,2,2);
U(end,1:end,2)= U(end-1,1:end,2); U(1,1:end,2)= U(2,1:end,2);
% on hv
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U(1:end,end,3)= U(1:end,end-1,3); U(1:end,1,3)=U(1:end,2,3);
U(end,1:end,3)=-U(end-1,1:end,3); U(1,1:end,3)=-U(2,1:end,3);

% u = hu./h; % v = hv./h;
u = U(:,:,2)./U(:,:,1); v = U(:,:,3)./U(:,:,1);

% display the animation
mesh(x,y,U(:,:,1)), colormap jet, axis([-1 1 -1 1 0 2.5])
title([’t = ’ num2str(t+dt)])
xlabel x, ylabel y, zlabel y, pause(0.001)
%if (ismember(t+dt,tplot))
if (any(tplot-t-dt==0))

Uplot(:,:,:,ii) = U; % store U for plotting
end

end

The result returned by this script is shown in Figure 5.10.

Figure 5.10. Solution of the shallow water equation computed
by finite volumes. For a color version of this figure, see

www.iste.co.uk/radi/advanced2.zip
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Meshless Methods

6.1. Introduction

Meshless methods offer significant advantages in nonlinear structure analysis

because they can handle discontinuities and large deformations flexibly, whereas

FEM approaches typically suffer from severe grid distortion under these conditions.

Research into structure elastoplasticity using meshless methods has remained a

relatively niche field in the past, and has only begun to attract attention more recently.

Chen et al. [CHE 96] presented a formulation for nonlinear structures undergoing

large deformations based on the reproducing kernel particle method (RKPM) and

used it to study elastoplasticity and hyperelasticity problems. Rao and Rahman

[RAO 04] proposed an augmented meshless method for analyzing nonlinear ruptures

to study the fissuring of solids. Kargarnovin et al. [KAR 04] extended the

element-free Galerkin (EFG) method to elastoplasticity stress analysis using an

incremental formulation of plastic deformations. Xu and Saigal [XU 98, XU 99]

suggested an EFG-based approach to describe the propagation of quasi-static and

dynamically stable fissures in elastoplastic materials.

Liu et al. [LIU 05] used the EFG method coupled with FEM to solve elastoplastic

contact problems. Belinha and Dinis [BEL 06, BEL 07] conducted elastoplastic

analysis of plates using the EFG method. This method was also used by other

researchers to perform nonlinear analysis of folded plates [LIE 07], analyze the

elastoplastic adaptation of structures made from perfectly plastic materials [CHE 08]

and simulate nonlinear dynamic ruptures [RAB 07]. Other fields of application of

meshless methods include the analysis of unsteady systems [CHE 09].

Advanced Numerical Methods with Matlab® 2: Resolution of Nonlinear, Differential
and Partial Differential Equations, First Edition. Bouchaib Radi and Abdelkhalak El Hami
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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6.2. Limitations of the FEM and motivation of meshless methods

Numerical simulations have become truly irreplaceable for certain types of

process, while other processes have remained unexplored. In particular, anything

involving very large deformations, high deformation speeds, separation of matter or

extremely localized deformations often requires the complex differential equations

governing these phenomena to be solved. In general, differential equations are

usually solved by numerical methods such as the finite element method (FEM), the

finite difference method (FDM) or the finite volume method (FVM). By using a

suitably predefined mesh and applying the principles of these methods to the

problem, even complex differential equations can be approximated by systems of

equations that are easier to solve.

The finite element method (FEM) [ZIE 00] is now the most widely used approach

for solving the partial differential equations of physical and mechanical systems.

However, it suffers from some limitations during simulations. The necessity of

reconstructing the mesh, for example, when large transformations are encountered –

to either avoid deformation of the elements or match the shape of the mesh to the

localizations – creates significant extra computational cost, as well as introducing

robustness issues, especially when working with complex three-dimensional

geometries.

Over the last two decades, a range of new numerical methods have been

developed as alternatives to the finite element method. Many of these methods

circumvent the difficulties associated with the mesh by constructing some or all of

the approximations using techniques that do not rely on spatial discretization

elements. “Meshless methods” are one such group of techniques. They have proven

to be effective for certain problems that are difficult to solve using the finite element

method.

6.3. Examples of meshless methods

The shape functions of meshless methods are not constructed by partitioning the

domain into elements, but are instead defined only in terms of a cloud of nodes. The

first such method was proposed in the 1970s. A few examples are listed below:

– the smooth particle hydrodynamics (SPH) method [LUC 77], which simulates

astrophysical phenomena such as star explosions using a set of particles;

– the diffuse element method (DEM) [NAY 92], which uses a basis function and a

set of weighted nodes to construct an approximation of the displacement field;

– the element-free Galerkin (EFG) method [BEL 94], which computes the moving

least-squares approximation (MLSA) from the previous approximation [LAN 81];
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– the reproducing kernel particle method [LIU 05];

– the hp-clouds method [DUA 96];

– the partition of unity finite element method [MEL 96], which uses FE shape

functions and polynomial basis functions;

– the boundary node method [MUK 97];

– the meshless local Petrov–Galerkin (MLPG) method [ATL 98].

In this chapter, we will study and apply the element-free Galerkin method proposed

by Belytschko, Lu and Gu.

6.3.1. Advantages of meshless methods

The main advantage of using meshless methods in simulations is that they allow

problems with large transformations to be handled more easily than the finite element

method. Their excellent performance under these conditions can be traced back to the

following factors:

1) In Lagrangian formulations, which are total, the gradient operator of

the transformation computed at a given integration point is constructed from a

neighborhood of nodes that is typically larger than just the nodes of the element

considered by the FEM. Therefore, the distortions in the neighborhood can be much

larger before the Jacobian matrix becomes singular.

2) The quality of the solution is much less sensitive to the relative positions of

the nodes. In updated Lagrangian-type formulations, this allows us to construct the

solution from these relative positions, which is not viable in the context of the finite

element method.

3) The fact that we do not need to construct a mesh to build the approximation

allows us to handle domains with complex 2D and 3D geometries with just a cloud of

nodes.

Another major advantage of meshless methods is that they make it extremely easy

to insert or remove specific nodes, because the relative positions between the nodes

have very little effect on the quality of the solution.

Meshless shape functions are generally highly isotropic, which significantly

reduces issues associated with dependencies between the directions of the shear

bands or fissures and the mesh. This property was illustrated by successfully

simulating the propagation of the shear bands with the RKPM.

Finally, the relatively wide support of the moving-least-squares shape functions

somewhat mitigates the blockage issues encountered in incompressibility problems.
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For a while, it was believed that meshless methods were completely exempt from these

blockage problems, but this has since been disproven. Whenever narrower supports are

used for the shape functions (for reasons of cost and/or quality), the blockage problems

resurface. Thus, although less significant, blockage remains a concern in the general

case.

6.3.2. Disadvantages of meshless methods

The greatest disadvantage of most “classical” meshless methods (SPH, RKPM,

DEM, EFG) is the difficulty in imposing boundary conditions. In order to be able to

impose Dirichlet-type boundary conditions directly, like in the finite element method,

the approximation must be constructed in terms of the node values (strict

interpolation) and the influence of interior nodes must cancel on the boundary of the

domain. However, the approximation functions constructed by the most common

meshless methods do not satisfy either of these conditions. This problem has inspired

a large number of publications to propose a range of techniques for imposing

boundary conditions in meshless methods, such as the Lagrange multiplier method

[BEL 94], the transformation method [CHE 96], an approach based on d’Alembert’s

principle [GUN 97], the introduction of singular weight functions [KAL 97], a

penalty-based method [ZHU 98], and a mixed transformation method [CHE 08] to

name a few. More recently, [CHE 09] has proposed a technique that allows the

RKPM shape functions to act as interpolants. Although these techniques are

effective, they introduce additional costs, and make it difficult to use updated

Lagrangian-type approaches, which apply the boundary conditions to the updated

configuration. Another rapidly abandoned technique was to couple a meshless

method to a layer of finite elements at the boundary of the domain, discretizing the

interior of the domain by the meshless approach [ATT 94]. This technique naturally

caused all of the usual mesh-related problems to resurface.

The second disadvantage of meshless methods is linked to numerical integration.

In most cases, meshless shape functions have rational rather than polynomial

expressions, which renders Gaussian-type integration schemes non-optimal. Dolbow

and Belytschko [DOL 99] proved that extremely fine integration schemes are

required to minimize the error caused by the non-overlapping of the support of the

shape functions and the integration cells, requiring very large numbers of integration

points and hence excessive computational costs. Conversely, Chen et al. [CHE 98]

showed that direct nodal integration leads to numerical instability and therefore

cannot be used. Various solutions to this obstacle have since been proposed.

Another issue relates to the support of the shape functions. In most meshless

approaches, the support or domain of influence of each node is defined by a sphere or

a parallelepiped centered around the node. As discussed by Liu et al.
[LIU 95, LIU 96], this support must include sufficiently many particles for the



Meshless Methods 151

method to be stable and therefore must be sufficiently wide. However, excessively

large support leads to high computational costs and strongly degrades the quality of

the solution. Necessary conditions for guaranteeing the stability of these methods and

ensuring that the basis functions are properly reproduced are stated in [LIU 95].

Using fixed supports in problems in which the node cloud experiences strong

distortions can cause instability to the method. Continuously readjusting the size of

the support during the simulation can help to avoid this problem, but creates

robustness problems, because choosing the suitable support size relative to the local

density is a non-trivial problem. This significantly limits the applicability of these

methods in adaptive refinement problems, in which the nodal density is strongly

heterogeneous across distinct regions in the domain, as well as problems involving

separation of matter, such as machining simulations.

6.3.3. Comparison of the finite element method and meshless methods

Similar to the finite element method, the meshless approach solves the weak form

of the PDE using a Galerkin method; however, the approximation of the

displacement field in the weak formulation does not require a mesh. Instead, a set of

nodes is distributed throughout the domain, and the approximation of the

displacement field at any given point only depends on the distance of this point from

its neighbors, and not on whether it belongs to any specific finite element. Thus,

meshless methods only differ from the finite element method in some regards; both

approaches adopt a similar solving structure or procedure. The most significant

difference is how the interpolation functions are computed by the FEM; the meshless

approach uses shape functions because it does not have a notion of element.

6.4. Basis of meshless methods

6.4.1. Approximations

Meshless methods use the following approximation to describe the scalar function

u in terms of the (Lagrangian) coordinates of the material:

uh(x, t) =
∑
i∈S

φi(x)ui(t), [6.1]

where φi : Ω → R are the shape functions, ui is the value at the i-th node, which

is located at position xi, and S is the set of nodes i such that φi(x) �= 0. We note

that this formula is identical to the approximation used by the FEM. However, unlike

the FEM, the shape functions in equation [6.1] are simply approximations and not
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interpolations because ui �= u(xi). Consequently, special techniques are required to

implement boundary conditions that are phrased in terms of the displacement. These

techniques are discussed further below.

6.4.2. Kernel (weight) functions

The shape functions φi are derived from a set of kernel functions, also known as

weight functions, denoted ωi : Ω → R. These kernel functions have compact support,

whose size is determined by the choice of dilatation parameter. This parameter plays

a crucial role in both the exactness of the solution and its stability, and is roughly

analogous to the size of the elements in the finite element method.

Finally, each weight function has a certain shape, required to be continuous and

positive on its support. In every meshless method discussed below, the continuity of

the shape functions only depends on the continuity of the kernel functions; for more

details, see [HUE 04]. For example, if the kernel function is C2, then the

corresponding shape function will also be C2.

6.4.3. Completeness

Completeness, often linked to reproducibility, plays a role in Galerkin methods

analogous to that of consistency in the finite difference method. Completeness refers

to the capacity of an approximation to reproduce polynomials of a certain order. An

approximation is said to be complete to order zero if it reproduces constant functions

exactly. It is said to be linear (complete to first order) if it reproduces linear functions

exactly and so on for higher orders.

6.4.4. Partition of unity

Partition of unity (PU) refers to the division of the domain into overlapping

subdomains Ωi, each associated with a function φi(x) that is zero everywhere except

on Ωi, and which furthermore satisfies the following property:

N∑
i=1

φi(x) = 1 on Ω. [6.2]

There are two ways of increasing the completeness order of the approximation.

The first is to intrinsically increase the completeness order of the shape functions by

directly increasing the completeness order of the kernel functions. Alternatively, the

completeness order can be increased by modifying equation [6.1] according to the

principle of partition of unity (PU).
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6.5. Meshless method (EFG)

6.5.1. Theory

The EFG method is classified as meshless because it only requires a set of nodes

and a description of the boundary to construct an approximate solution. The contrast

between the meshless approach and the method of finite elements is illustrated in

Figure 6.6.

In the meshless method, each node is assigned a weight function that is non-zero

on a small domain, called the domain of influence. The value of the approximated

function at any given point depends on the nodes whose domains of influence contain

this point; the approximation is computed from the values of the function at these

nodes using a technique known as moving least-squares (MLS) approximation.

The meshless method involves:

– shape functions, constructed by the moving least-squares method;

– the global discrete system, derived from the weak Galerkin formulation;

– the cells of the mesh, used to compute the integrals of K and F .

6.5.2. Moving Least-Squares Approximation

The idea of MLS approximation is to construct an approximation locally and then

improve it as much as possible. The exact values are not interpolated, but

approximated, unlike classical polynomial interpolation.

MLS approximation consists of three components:

– the basis function;

– the weight function assigned to each node;

– a set of coefficients that depend on the position of the node.

Let u(x) be the displacement field on the domain. We want to construct a local

approximation in the neighborhood of the point x of the following form:

uh
local,.x(x) =

m∑
i

pi(x)ai(.x) = pt(x)a(.x), [6.3]

where m is the number of terms in the polynomial basis, a(.x) is the number of

generalized parameters and p(x) is the polynomial basis vector pt(x) = {p1(x),
p2(x), . . . , pm(x)}.
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Figure 6.1. Comparison of the finite element
method and the meshless method

The basis p(x) is constructed using Pascal’s triangle. The coefficients a depend on

the point x around which the approximation is being constructed.

The global approximation is constructed in such a way as to be equal to this local

approximation around any given point. Thus:

uh
global(x) = uh

local,x(x) = pt(x)a(x). [6.4]

The coefficients of a(x) are determined as follows:

– Consider n nodes with positions x1, x2, . . . , xn at which the values of the

displacement u1, u2, . . . , un are known. The approximation at the point xi is then

constructed by computing:

uh(x, xi) = pt(xi)a(x), i = 1, 2, . . . , n. [6.5]

– The norm of the distance between the approximation around x and the known

values can be written as:

J(x) =
n∑

i=1

w(x− xi)[u
h(x, xi)− u(xi)]

2 [6.6]

=
n∑

i=1

w(x− xi)[p
t(xi)a(x)− u(xi)]

2. [6.7]

The term ω(x−xi) is the weight function, which fulfills a dual purpose: balancing

the influence of the point/distance and ensuring that the compatibility condition is

satisfied (no dependency between functions).
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The coefficients a(x) are computed by minimizing J, which leads to the following

linear system:

A(x)a(x) = B(x)U. [6.8]

The matrix A(x) has the expression:

A(x) =
n∑

i=1

wi(x)p(xi)p
t(xi) and wi(x) = w(x− xi). [6.9]

Writing:

B(x) = [B1, B2, . . . , Bn], (Bi = ωi(x)p(xi)), [6.10]

we can now write:

a(x) = A−1(x)B(x)U. [6.11]

The MLS approximation of the displacement is:

uh(x) =
n∑
i

m∑
j

pj(x)(A
−1(x)B(x))jiui, [6.12]

or, alternatively:

uh(x) =
n∑
i

φi(x)ui, [6.13]

where:

φi(x) =

m∑
j

pj(x)(A
−1(x)B(x))ji = ptA−1Bi. [6.14]

The term φi(x) is the shape function of the MLS approximation at the i-th node,

m is the number of terms in the polynomial basis and n >> m is the number of points

in the domain of influence.

The approximation of the displacement field can be stated as uh(x) = φ(x)U. The

shape functions φi are well defined on the domain of approximation if and only if

A(x) is invertible at every point x in the domain. The matrix A(x) is a square matrix

of dimension equal to the size of the vector p.
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6.5.2.1. Choosing the basis functions

In general, the basis functions are:

– In 1D: pt(x) = 1, x, x2, . . . , xm,

– In 2D: pt(x, y) = 1, x, y, xy, x2, y2, . . . , xm, ym,

– In 3D: pt(x, y, z) = 1, x, y, z, xy, yz, zx, x2, y2, z2, . . . , xm, ym, zm.

The table below lists the constant, linear and quadratic basis functions in one, two

and three dimensions.

1D 2D 3D

Constant [1] [1] [1]

Linear [1, x] [1, x, y] [1, x, y, z]

Quadratic [1, x, x2] [1, x, y, x2, y2, xy] [1, x, y, z, x2, y2, z2, xy, xz, yz]

Table 6.1. Basis functions

We will use the linear basis for the rest of this chapter. This is the most typical

choice of basis, for the following two reasons:

– A constant basis is more cost-effective in terms of computation time, but the

resulting approximation is not capable of representing linear fields exactly, which is

needed for the displacement field in Galerkin methods.

– A quadratic basis would require each point in the domain to be covered by the

support of a greater number of functions, and the matrix A that we must invert at each

point will be larger than with a linear basis. These additional computations lead to a

higher cost/performance ratio in practice.

6.5.2.2. Choosing the weight functions

The weight functions are usually chosen to decrease with the distance from their

nodes in a bell shape. In one dimension, if s is the normalized distance between the

i-th node and an arbitrary point x, then:

s =

∣∣∣∣xi − x

di

∣∣∣∣ , [6.15]

where di is the size of the support of the i-th node.



Meshless Methods 157

Common choices of ωi(x) include:

– Truncated Gaussian functions:

f1(s) =

{
e−( s

α )2 if |s| ≤ 1

0 if |s| > 1
[6.16]

Figure 6.2. Discretization using a meshless method:
nodes, domain of influence (circle)

This function has the disadvantage of being discontinuous at s = 1. In practice,

this discontinuity is numerically insignificant when α is sufficiently large.

– Modified Gaussian functions:

f2(s) =

⎧⎪⎨
⎪⎩

e−( s
α )2 − e(

1
α )2

1− e(
1
α )2

if |s| ≤ 1

0 if |s| > 1

[6.17]

This is similar to the truncated Gaussian, but is C0.

– Cubic splines:

f3(s) =

⎧⎪⎨
⎪⎩

2
3 − 4s2 + 4s3 if |s| ≤ 1

2
4
3 − 4s+ 4s2 − 4

3

3
if 1

2 < |s| ≤ 1

0 if |s| > 1

[6.18]
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This function is C1.

– Fourth-order splines:

f4(s) =

{
1− 6s2 + 8s3 − 3s4 if |s| ≤ 1

0 if |s| > 1
[6.19]

This function is C2.

In practice, it turns out that the choice of weight function has little influence on the

results. Below, we will use fourth-order splines. In two or three dimensions, we must

choose one of the above functions with either a circular domain:

wi(x) = fa

(
x− xi

di

)
; [6.20]

or a rectangular domain:

wi(x) = fa

( |x− xi|
dxi

)
fb

( |y − yi|
dyi

)
(in 2D), [6.21]

wi(x) = fa

( |x− xi|
dxi

)
fb

( |y − yi|
dyi

)
fc

( |z − zi|
dzi

)
(in 3D). [6.22]

Figure 6.3. Set of 5× 5 regularly distributed nodes

We will use circular domains. The next few figures give an illustration of a

two-dimensional problem. Figure 6.3 shows the set of nodes and their support: 5× 5
nodes are uniformly distributed over a square domain [−2, 2] × [−2, 2]. The weight

functions are fourth-order splines defined on circular domains of radius 1.4.

Figure 6.4 shows a plot of the central node on the left – its support can be seen in
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Figure 6.3 – and the shape function of this node on the right, using a linear basis.

Every point is covered by the support of at least three functions, because the radius

was chosen to be sufficiently large; this guarantees that we can compute the shape

functions. In Figure 6.4 (two dimensions), we used a set of equidistant nodes with

identical weights, but this is not necessary in general – the nodes could alternatively

be distributed irregularly. Similarly, the weights can differ from node to node in

terms of shape (circular, rectangular, etc.), size (di) or type (fourth-order spline,

exponential, etc.). The only constraints are that the weights must be positive and

there must be sufficiently many non-zero weights at any given point for the

approximation to be well defined.

Figure 6.4. Weight function and shape functions

Finally, the derivatives of the weight functions can be calculated analytically. For

example, consider a fourth-order spline defined on a circular domain. Writing

s = ‖x−xi‖
di

, the following relations holds:

wi,k(x) = f ′
4

xk − xik

sd2i
[6.23]

wi,kl(x) =

(
f”4 − f ′

4

s

)
(xk − xik)− (xl − xil)

s2d4i
+ f ′

4

δkl
sd2i

, [6.24]

where:

f ′
4(s) =

{
−12s+ 24s2 − 12s3 if |s| ≤ 1

0 if |s| > 1
[6.25]

f”4(s) =

{
−12 + 48s− 48s2 if |s| ≤ 1

0 if |s| > 1
[6.26]
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To check that this is uniquely defined at x = xi, we observe that wi,k(xi) = 0 and

wi,kl(xi) = −12δkl
d2i

.

6.5.2.3. Imposing essential boundary conditions

The shape functions used by meshless methods are not equal to 1 at their respective

nodes:

φi(xj) �= δij =

{
1 if i = j

0 otherwise
[6.27]

where δij is the Kronecker delta.

Consequently, the boundary conditions cannot be imposed directly. Various

alternative methods have been developed, including the method of Lagrange

multipliers [BEL 94], the penalty-based method [ZHU 98], the collocation method

[WAG 00] and the coupled meshless/FEM method [HEG 96]. It makes sense to

introduce the relevant variational principle before attempting to explain these

methods. This variational principle specifies a scalar quantity, the functional Π,
defined by the integral formula:

Π(u) =

∫
Ω

F (u, u,x, . . .)dΩ+

∫
Ω

E(u, u,x, . . .)dΓ, [6.28]

where u is the unknown function, and F and E are differential operators. The

solution of this continuous problem is the function u for which Π is stationary under

an arbitrary variation δu:

δΠ = 0 ∀δu. [6.29]

6.5.2.4. Penalty-based method

This method adds a penalty term to the weak formulation:

δΠ̄ = δΠ+
α

2
δ

(∫
Γu

‖u− ū‖2dΓ
)
. [6.30]

This yields the linear system Ku = f , where:

Kij =

∫
Ω

Bt
iCBjdΩ− α

∫
Γu

φiφjdΓ [6.31]

fi =

∫
Γt

φit̄dΓ +

∫
Ω

φibdΩ− α

∫
Γu

φiūdΓ. [6.32]
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6.5.2.5. Method of Lagrange multipliers

This method is based on the weak formulation. The Lagrange multipliers are used

to impose boundary conditions on the displacement. Physically, they can be

interpreted as the reaction of the body to its fixation. Consider the general problem of

finding the stationary point of the functional Π, subject to the constraint:

C(u) = 0 on Γu. [6.33]

To satisfy these constraints, we construct the following functional:

Π̄(u, λ) = Π(u) +

∫
Γu

λtC(u)dΓ. [6.34]

The variation of the new functional is:

δP̄ i = δΠ+

∫
Γu

δλtC(u)dΓ +

∫
Γu

λtδC(u)dΓ. [6.35]

To derive the discrete equations, we approximate the Lagrange multipliers as

follows:

λ =
n∑

i=1

Ni(x)λi. [6.36]

We will explain this method in more detail below.

By comparison with the Lagrange multiplier method, the greatest advantage of the

penalty-based method is that it does not require any additional unknowns. However, it

can introduce discrepancies if the penalty parameter is poorly designed.

6.5.2.6. Integration

To compute the stiffness matrix K and the load vector f in the matrix formulation

KU = f , we need to evaluate some of the integral terms. We need to know the value

of the integrals along certain contours to find the contribution of the surface forces to

the force vector and, for some problems, the contribution of the essential boundary

conditions to the stiffness matrix, depending on the method. Several approaches have

been used to carry this out. The following two are among the most widely used:

– Integration on an implicit mesh. The simplest method is to apply the classical

integration formula to a mesh (Figure 6.5). We can distribute integration points over

each element/cell, like in the FEM, according to one of the two possible techniques:

the first is to construct a mesh whose elements are connected by the nodes of the

MLS approximation (Figure 6.5, left), and the second technique is to uniformly divide
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the problem into cells that cover the component and which are independent of the

approximation nodes. Gaussian integration is then performed on each cell, assigning

zero weight to any Gaussian points outside of the component (Figure 6.5, right).

Constructing the mesh on the point cloud (left of 6.5) preserves the external boundaries

of the domain, which eliminates integration errors. However, the fact that the support

of the shape functions does not coincide perfectly with the elements/cells represents a

source of errors.

Figure 6.5. Implicit meshes

Even though the method is no longer strictly meshless, the problems encountered

by the FEM do not necessarily resurface. The implicit mesh is not required to follow

the interior boundaries of the computation domain and is not subject to the same

constraints: the shape functions are never degenerate, because their support is not

bound to the mesh. Hence, we do not need to keep remeshing the domain, and the

mesh is less computationally expensive. In summary, the key difference compared

with the FEM is that the mesh is only used for numerical integration, and is not part

of the approximation scheme. The greatest challenge of the meshless approach lies in

choosing the integration points. There must be a suitable number of integration points

relative to the number of discretization nodes: if there are too few integration points in

the zone of influence of a node, then the precision of the method suffers, and artificial

modes can be introduced. By contrast, if there are too many integration points,

the computations become excessively heavy (the shape functions can sometimes be

expensive to evaluate, and need to be evaluated once per integration point). A poor
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distribution of integration points can negatively affect the conditioning of the matrix

that needs to be inverted.

– Direct nodal integration. If we want to avoid an implicit mesh, then we need a

way of formulating the integrals in terms of the nodal values ui at the discretization

points xi only, without introducing any additional points. Any such method is said

to be a direct nodal integration technique. These integration schemes are typically

unstable and give rise to parasitic modes, because the gradient of φi vanishes at xi

in general. A stabilized nodal integration technique, called stabilized conformal nodal

integration, has been recently proposed by Chen et al. [CHE 01].

We will now explore the first approach further (see Figure 6.6).

6.6. Application of the meshless method to elasticity

6.6.1. Formulation of static linear elasticity

Consider the following two-dimensional linear elasticity problem. The domain Ω
is enclosed by its boundary Γ:

Ltσ + b = 0 on Ω, [6.37]

subject to the boundary conditions:

{
σ.n = t̄ on Γt

u = ū on Γu

[6.38]

where u, σ, b and n, respectively, denote the displacement field, the stress tensor, the

force per unit volume and the normal unit vector pointing outward from the boundary

Γ. The terms ū and t̄, respectively, denote the displacements and tractions imposed on

the displacement and traction boundaries Γu and Γt. The matrix L has the expression:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.
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CAD

Background mesh (BG) + nodes

For every cell in the BG mesh

For every integration point in the cell

Find the neighboring nodes in the domain of influence

Create the MLS shape functions

Create the nodal matrices

Assemble

Solve the general system

Compute the derivatives of

the displacement by MLS

Compute the constraints

Figure 6.6. General algorithm of the EFG method



Meshless Methods 165

The variational formulation (principle of virtual work) associated with this

elastostatic problem can be stated as follows:

∫
Ω

δ(Lu)t(CLu)dΩ−
∫
Ω

δutbddΩ−
∫
Γt

δutt̄dΓ = 0. [6.39]

The MLS approximation of the uh(x) component of the displacement is given by

equation [6.13]. Similarly, the MLS approximation of the vh(x) component is:

vh(x) =
n∑
i

φi(x)vi. [6.40]

Grouping these two components together gives:

Uh =
n∑
i

[
φi 0
0 φi

](
ui

vi

)
=

n∑
i

ΦiUi, [6.41]

where Φi is the matrix of shape functions. Thus:

LUh =
n∑
i

LΦiUi =
n∑
i

⎡
⎣φi,x 0

0 φi,y

φi,y φi,y

⎤
⎦Ui =

n∑
i

Biui, [6.42]

where Bi is the matrix of deformations at the i-th node.

6.6.2. Imposing essential boundary conditions

Essential boundary conditions can be imposed with Lagrange multipliers. The

variational formulation is:

∫
Ω

δ(Lu)t(CLu)dΩ−
∫
Ω

δutbddΩ−
∫
Γt

δutt̄dΓ

−
∫
Γu

δλt(u − ū)dΓ −
∫
Γu

δutλdΓ = 0, [6.43]

where λ is the vector of Lagrange multipliers.

These Lagrange multipliers are unknown, so we approximate them along the

contour:

λ(x) =

nλ∑
i

Ni(s)λi x ∈ Γu, [6.44]
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where nλ is the number of nodes used for the interpolation, s is the arclength, λi is

the Lagrange multiplier at the i-th node and Ni is the corresponding Lagrange-type

shape function (e.g. N0(s) =
s−s1
s0−s1

, N1(s) =
s−s0
s1−s0

)
.

Varying the Lagrange multiplier gives:

δλ(x) =

nλ∑
i

Ni(s)δi x ∈ Γu. [6.45]

The vector of multipliers is therefore:

λ =

nλ∑
i=1

[
Ni 0

0 Ni

]
︸ ︷︷ ︸

Ni

{
λui

λvi

}
︸ ︷︷ ︸

λi

=

nλ∑
i=1

Niλi. [6.46]

Substituting these approximations into the variational formulation (equation

[6.43]) gives:

∫
Ω

δ(
n∑
i

Biui)
t(C

n∑
i

Bjuj)dΩ−
∫
Ω

δ(
n∑
i

φiui)
tbdΩ−

∫
Γ

δ(
n∑
i

φiui)
tt̄dΓ

−
∫
Γu

δλt((
n∑
i

φiui)
t − ū)dΓ−

∫
Γu

δλt(
n∑
i

φiui)
tλdΓ = 0. [6.47]

The first term of equation [6.47] is:

∫
Ω

δ(

n∑
i

Biui)
t(C

n∑
i

Bjuj)dΩ =

∫
Ω

δ(

n∑
i

uT
i B

t
i )(C

n∑
i

Bjuj)dΩ. [6.48]

The summation, integration and variation operators are all linear:

∫
Ω

δ(
n∑
i

ut
iB

t
i )(C

n∑
i

Bjuj)dΩ =
n∑
i

n∑
j

δut
i

∫
Ω

Bt
iCBjdΩuj︸ ︷︷ ︸
Kij

=

n∑
i

n∑
j

δut
iKijuj , [6.49]

where Kij is the 2× 2 nodal stiffness matrix and nt is the total number of nodes.
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The sum above represents an assembly operation:

nt∑
i

nt∑
j

δut
iKijuj = δut

1K11u1 + δut
1K12u2 + · · ·+ δut

1K1ntunt

+δut
2K21u1 + δut

2K22u2 + · · ·+ δut
2K2ntunt

...
...

...

+δut
nt
Knt1u1 + δut

nt
Knt2u2 + · · ·+ δut

nt
Kntntunt

= δU tKU, [6.50]

where K is the 2nt × 2nt global stiffness matrix:

K =

⎡
⎢⎢⎢⎣

K11 K12 · · · K1nt

K21 K22 · · · K2nt

...
...

. . .
...

Knt1 K12 · · · Kntnt

⎤
⎥⎥⎥⎦ [6.51]

and U is the 2nt × 1 global displacement vector:

U =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u1

u2

...

unt

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. [6.52]

The vector of external forces can be derived from the second term of the variational

formulation (equation [6.43]):

∫
Ω

δutbdΩ =

∫
Ω

δ(

n∑
i

φiui)
tbdΩ

=
n∑
i

δut
i

∫
Ω

φt
ibdΩ︸ ︷︷ ︸
fi

[6.53]

=

n∑
i

δut
ifi,

where fi is the vector of nodal forces.
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This sum can be rewritten as:

n∑
i

δut
ifi = δut

1f1 + δut
2f2 + · · ·+ δut

nfn = δU tF. [6.54]

The third term of equation [6.43] completes the vector of external forces, following

the same approach as above, with:

fi =

∫
Γt

φt
i t̄dΓ. [6.55]

The fourth term of the variational formulation (equation [6.43]) is:

∫
Γu

δλt(u− ū)dΓ =

∫
Γu

δλt((
n∑
i

φiui)− ū)dΓ

=

∫
Γu

δ(

nλ∑
i

Niλi)
t

n∑
j

φjujdΓ−
∫
Γu

δ(

nλ∑
i

Niλi)
tūdΓ

=

nλ∑
i

nt∑
j

δλt
i

∫
Γu

N t
i φjdΓuj︸ ︷︷ ︸

−Gt
ij

−
nλ∑
i

δλt
i

∫
Γu

N t
i ūdΓ︸ ︷︷ ︸

−qi

[6.56]

=

nλt∑
i

nt∑
j

δλt
iG

t
ijuj +

nλt∑
j

δλt
iqi

= −δλtGtU + δλtq.

The vector q, of size 2nt, is the vector of imposed displacements. The fifth term in

the variational formulation (equation [6.43]) is:

∫
Γu

δutλdΓ =

∫
Γu

δ(

n∑
i

φiui)
tλdΓ

=

∫
Γu

δ(

n∑
i

φiui)
t(

nλ∑
i

Njλj)dΓ

=

n∑
i

nλ∑
j

δut
i

∫
Γu

φjN
t
i dΓλj︸ ︷︷ ︸

−Gij

[6.57]
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= −
n∑
i

nλt∑
j

δut
iGijλj

= −δU tGλ,

where nλ is the number of nodes on the boundary affected by the boundary conditions

of the i-th node, nλt is the number of total nodes on the contour Γu, Gij is the 2 × 2
nodal matrix and G is the global 2nt × 2nt matrix.

After replacing all of the matrix parameters in the variational formula, we find:∫
Ω

δ(
n∑
i

ut
iB

t
i )(C

n∑
i

Bjuj)dΩ

︸ ︷︷ ︸
δUtKU

−
∫
Ω

δ(
n∑
i

φiui)
tbdΩ−

∫
Γ

δ(
n∑
i

φiui)
tt̄dΓ

︸ ︷︷ ︸
δUtF

−
∫
Γu

δλt((

n∑
i

φiui)
t − ū)dΓ

︸ ︷︷ ︸
δλt(GtU−q)

−
∫
Γu

δλt(

n∑
i

φiui)
tλdΓ

︸ ︷︷ ︸
δUtGλ

= 0. [6.58]

This can be written as:

δU t(KU +Gλ− F ) + δλt(GtU − q) = 0. [6.59]

Hence:{
KU +Gλ− F = 0

GtU − q = 0
[6.60]

Equivalently:[
K G
Gt 0

]{
U
λ

}
=

{
F
q

}
, [6.61]

where:

Kij =

∫
Ω

Bt
iCBjdΩ [6.62]

Gij = −
∫
Γu

φt
iNjdΓ [6.63]

Fij =

∫
Ω

φt
ibdΩ+

∫
Γt

φt
i t̄dΓ [6.64]

qi = −
∫
Γu

N t
i ūdΓ [6.65]



170 Advanced Numerical Methods with Matlab 2

Bi = Lφi =

⎡
⎣ φi,x 0

0 φi,x

φi,y φi,y

⎤
⎦ [6.66]

N =

[
Ni 0
0 Ni

]
[6.67]

φ =

[
φi 0
0 φi

]
. [6.68]

In equation [6.67], Ni are the conventional shape functions from the finite element

method, which are used to approximate the Lagrange multipliers under the boundary

conditions.

6.7. Numerical examples

6.7.1. Fixed-free beam

In this example, we use linear basis functions and cubic spline weight functions

for the MLS approximation. Each cell is integrated using 4× 4 Gaussian points.

Consider a fixed-free beam subject to a concentrated force [PHU 07] (Figure 6.7).

The beam is assumed to be in a plane stress state.

Figure 6.7. Fixed-free beam subject to a concentrated force

The geometric parameters of the computation are as follows: E = 3 × 106, ν =
0.3, P = 1, 000, L = 100 and D = 10. We will use 18×7 nodes, distributed as shown

in Figure 6.8. After using the EFG method to compute the displacements, stresses and

strains of the problem, the results are shown in Figure 6.9.
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Figure 6.8. Distribution of the nodes

Figure 6.9. Visualization of the deformation

6.7.2. Compressed block

Consider a metal block under compression (Figure 6.10). By the symmetry of

the model, we only need to consider half of the block (Figure 6.11). The geometric

parameters are as follows: E = 2.1× 105 and ν = 0.3.

Figure 6.10. Metal block
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Figure 6.11. Geometry and boundary conditions

Figure 6.12 shows the distribution of the 289 nodes over the domain. The results

are computed with the assumption of a vertical displacement of −0.2 mm. The metal

block is assumed to be in a plane strain regime (see Figure 6.13).

Figure 6.12. Distribution of nodes
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Figure 6.13. Visualization of the deformation

6.8. Using Matlab

A comprehensive library of example Matlab scripts for this method can be found

in [FAS 07]. For instance, consider the Poisson problem:

Δu(x, y) = 13e(−2x+3y) on Ω [6.69]

u(x, y) = e(−2x+3y) on ∂Ω [6.70]

where the domain Ω is the unit disk.

The exact solution of this problem is:

u(x, y) = e(−2x+3y). [6.71]
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By using a particular solutions approach to approximate the Laplacian with the

following multiquadratic basis functions (MQ):

φ(r) =
√

r2 + c2; [6.72]

and the following particular solutions:

φ(r) =
1

9
(4c2 + r2)

√
r2 + c2 − c3

3
ln(c+

√
r2 + c2); [6.73]

we will solve the Poisson problem on 300 randomly distributed points in the domain

and 40 boundary points. We will then test the result against various parameters c and

find the maximum error at another 200 random points in the domain.

The Matlab script is listed below [MAT 10]:

%---------------------------------------------

% This script is based on the MAPS method by

% C.S. Chen, C.M. Fan and P.H. Wen.

% c: Optimal shape parameter.

%-----------------------------------------------

n_in = 300; % number of interior points

n_b = 40; % number of boundary points

n = n_in + n_b;

% Random points in the disk

rad = rand(n_in,1);

th = 2*pi * rand(n_in,1);

x1 = sqrt(rad) .* cos(th);

y1 = sqrt(rad) .* sin(th);

% Points on the circle

pi2 = 2 * pi;

st = pi2/n_b;

ro = 0 : st : pi2-st;

x2 = cos(ro’);

y2 = sin(ro’);

% Radial basis functions and their solutions

R = [x1, y1; x2, y2]; % All points in the matrix

r = squareform( pdist(R,’euclidean’) );
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r2 = r.^2;

c2 = c^2;

c3 = c^3/3;

fi1 = sqrt(r2(1:n_in,:) + c2); % MQ: radial basis functions

fi2 = sqrt(r2(n_in+1:n,:) + c2);

FI=(4*c2 + r2(n_in+1:n,:)).*fi2/9 - c3*log(c + fi2); %

corresponding particular solutions

% Exact solution on random points selected above

u_exact = exp(-2*R(:,1) + 3*R(:,2));

% System of equations

A = [fi1; FI];

a = zeros(n,1);

b = exp(-2*R(:,1) + 3*R(:,2));

b(1:n_in) = 13 * b(1:n_in);

% Singular value decomposition (SVD)

[U,Sing,V] = svd(A);

% Test

e = log10(max(max(Sing)))-16 + 16/5;

epsilon = 10^(e);

m = length(A);

k = 0;

for i = 1:m

if Sing(i,i) < epsilon

Sing(i,i)=0;

k = k+1;

else Sing(i,i) = 1/Sing(i,i);

end

end

k;

A = V * Sing * U’;

a = A * b; % Coefficients - solution of SVD.

% Results

% Random points selected above

fi = [fi1;fi2];
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FI_comp = (4*c2 + r2) .* fi / 9 - c3 * log(c + fi);

u_comp = sum((FI_comp*diag(a))’) ;

RMSE = sqrt(sum( (u_comp(1:n_in)’-u_exact(1:n_in)).^2 )/n_in);

% New random points

n_t = 200;

rad = rand(n_t,1);

th = 2*pi * rand(n_t,1);

x3 = sqrt(rad) .* cos(th);

y3 = sqrt(rad) .* sin(th);

R_t = [x3, y3; R]; % All points in the matrix;

r_t = squareform( pdist(R_t,’euclidean’) );

r_t2 = r_t(n_t+1:end,1:n_t).^2;

fi_t = sqrt(r_t2 + c2); % MQ: radial basis functions

FI_t = (4*c2 + r_t2) .* fi_t / 9 - c3* log(c + fi_t); %

corresponding particular solutions

u_t = sum((diag(a)*FI_t));

u_t_exact = exp(-2*x3 + 3*y3);

RMSE_t = sqrt(sum( (u_t’-u_t_exact).^2 )/n_t);

% Plot the result

% Plot u

x_int = linspace(min(R(:,1)),max(R(:,1)),500);

y_int = (linspace(min(R(:,2)),max(R(:,2)),500))’;

[X,Y,Z] = griddata(R(:,1),R(:,2),u_comp’,x_int,y_int,’linear’);

mesh(X,Y,Z);

xlabel(’x’);

ylabel(’y’);

zlabel(’u(x,y)’);

The mesh is shown in Figure 6.14.

The formula of the RMSE is given by equation [6.74]. The error is less than 10−4

at every point. The solution of the equation is shown in Figure 6.16.

RMSE =

√√√√ 1

m

m∑
j=1

(ûj − uj)2. [6.74]
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Figure 6.14. The ni random points in the domain and nb points
on the boundary. For a color version of this figure, see

www.iste.co.uk/radi/advanced2.zip

Figure 6.15. RMSE as a function of the shape parameter
c for two sets of values. For a color version of this figure, see

www.iste.co.uk/radi/advanced2.zip
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Figure 6.16. Profile of the solution of the problem. For a color
version of this figure, see www.iste.co.uk/radi/advanced2.zip
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Appendix 1

Introduction to Matlab

A1.1. Introduction

Matlab stands for matrix laboratory. Originally written in Fortran by Cleve Moler,

Matlab was designed to make it easier to access the matrix software developed by

the LINPACK and EISPACK projects. The modern version of Matlab is written in

C, published by MathWorks Inc. and is available in both professional and student

versions across multiple platforms.

Matlab is a powerful, comprehensive and easy-to-use environment for scientific

computation. It gives engineers, researchers and scientists an interactive system that

integrates numerical calculations and visualizations.

Matlab uses its own intuitive and natural programming language, which offers

spectacular CPU performance improvements over other languages such as C,

TurboPascal and Fortran. Matlab allows users to dynamically include links to

programs in C or Fortran, exchange data with other software applications or use

Matlab itself as the engine for analysis and visualization.

Matlab also offers specialized tools for certain fields, known as ToolBoxes, which

are regarded as one of Matlab’s most attractive features for most users. These

ToolBoxes are collections of functions that extend the Matlab environment to enable

it to solve certain types of problems. They cover a wide range of topics, including

signal processing, automation, neural networks, structural computations and

statistics.

Matlab allows users to work interactively in either command mode or

programming mode; graphical visualizations can be generated in either case. Widely

viewed as one of the best programming languages (alongside others such as C or

Fortran), Matlab offers the following specific advantages relative to its competitors:

Advanced Numerical Methods with Matlab® 2: Resolution of Nonlinear, Differential
and Partial Differential Equations, First Edition. Bouchaib Radi and Abdelkhalak El Hami
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.
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– easy programming;

– continuity between integer, real and complex values;

– an extensive range of numbers and precisions;

– a very comprehensive mathematical library;

– graphical tools, including graphical interface tools and utilities;

– the ability to add links to other classical programming languages (e.g. C or

Fortran).

The graphical interface allows scientific or even artistic representations to be

generated from their mathematical expressions. The figures generated by Matlab are

simple and eye-catching, and an impressive array of features is available to enhance

them.

A1.2. Starting up Matlab

To launch Matlab:

– in Windows, click on Start, then Programs, then Matlab;

– for other operating systems, refer to the user manual.

The Matlab prompt “>>” should then be displayed. This is where users can enter

commands (see Figure A1.1).

Figure A1.1. Matlab window
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The quit function allows the user to exit Matlab:

>>quit

The “help” command gives information about specific problems. For example:

>> help cos

COS Cosine.
COS(X) is the cosine of the elements of X.

The standard arithmetic operations are supported:

+ : addition; - : subtraction; / : division; * : multiplication;ˆ : exponentiation;

pi=π. For example:

>>x=2

x =
2

>>P=(4*x^2-2*x+3)/(x^3+1)

P =
1.6667

Command mode allows us to perform computations in Matlab.

For example, suppose that we wish to calculate the following volume: V = 4
3πR

3,
where R = 4 cm. We can carry this out as follows:

>>R=4

R =
4

>>V=4/3*pi*R^3

V =
268.0826

A1.3. Mathematical functions

The trigonometric functions are:

sin(x), cos(x), tan(x), asin(x), acos(x), atan(x), atan2(x,y), sinh(x), cosh(x),

tanh(x), asinh(x), acosh(x), atanh(x).
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The other (elementary) mathematical functions available in Matlab are:

abs(x) Absolute value of x

angle(x) If x is a positive real number, then angle(x) = 0;

if x has positive imaginary part, then angle(x) = pi/2

sqrt(x) Square root of x

real(x) Real part of the complex value x

imag(x) Imaginary part of the complex value x

conj(x) Complex conjugate of x

round(x) Round x to the nearest integer

fix(x) Round x toward zero

floor(x) Round x to the integer below

ceil(x) Round x to the integer above

sign(x) =+1 if x>0; =-1 if x<0

rem(x,y) The remainder of the division: = x-y*fix(x/y)

exp(x) Exponential (base e)

log(x) Logarithm (base e)

log10(x) Logarithm (base 10)

A1.4. Operators and programming with Matlab

Most programming scripts make frequent use of “if” statements. Every “if”

statement must be followed by the “end” keyword:

>>V=268.0826

V =
268.0826

>> R = 4

R =
4

>>if V>150, surface=pi*R^2, end

surface =
50.2655

The “not” operator is written (or symbolically represented) by “�=”:

>>R=4
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R =
4

>>if R ~=2, V=4/3*pi*R^3, end

V=
268.0826

The “equals” operator (==) in an “if” statement is written (or symbolically

represented) by “==”:

>>R=4
R =

4
>>if R==4, V=4/3*pi*R^3; end

The “or” operator is written (or symbolically represented) by “|”. For example, the

test “if R = 4 or m = 1” can be written as:

>>if R==4 | m==1, V=4/3*pi*R^3; end

Other operators available in Matlab include:

> greater than < less than

>= greater than or equal to <= less than or equal to

ˆ power (exponent) * product

xor exclusive OR (XOR) / division

Error displays the message: “error”

For example, “if g > 2 or g < 0, then a = 4” can be programmed as follows:

>>if g>2 |g<0,
a=4;
end

As another example, “if a > 3 and c < 0, then b = 15” can be implemented with the

code:

>>if a>3 \& c<0,
b=15;
end

The operators “&” and “|” can be chained together:

>>if ((a==2 | b==3)\&(c<5)),
g=1;
end
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The operator “if ... elseif ... else ... end” can be used as follows:

>>R=2, if R>3, b=1 ;
elseif R==3, b=2;
else b=0;
end

The keyword “elseif” can be repeated as many times as necessary within the same

program.

The “for/end” and “while/end” operators can, for example, be used as follows:

>>for R=1 :5,
V=4/3*pi*R^3;
disp([R,V]);
end

In this example, R ranges from 1 to 5 and the command “disp([R,V])” returns the

matrix [R=1 :5,V (V(1) :V(5)].

The “length” command can also be called, returning the size of a variable. In the

above example, length(R)=5; (R=1 :5) and length(R)-1=4 (4 intervals separated by

increments of 1).

>>while R<5, R=R+1 ; V=4/3*pi*R^3; disp([R,V]); end

The “while” command continues to execute the same instruction until its logical

test no longer returns true.

The next example demonstrates how to use an automatic increment in a “for” loop:

>>for R=5 :-1 :1, V=4/3*pi*R^3; disp([R,V]); end

Here, the increment is decreasing (=-1). “For” loops can be nested as many times

as necessary:

>>for i=0 :10, for j=1 :5, a=i*j; end; end

A1.5. Writing a Matlab script

Matlab programs are saved with the file extension “.m”. When they are executed,

error messages are displayed whenever Matlab encounters an error, indicating where

in the code the error arose. Scripts do not need to be precompiled. To run a program,

we must first load the file directory in which it is saved.

Data files are saved with the file extension “.mat”, and variables are saved with

double precision.
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A1.6. Generating figures with Matlab

Matlab is a very powerful and user-friendly tool for managing figures, whether in

one, two or three dimensions. For example, to plot the curve y=sin(x), where x=0:50,

we can simply run:

>>x= -pi:pi/10:pi; y=sin(x), plot(x,y)

Some of the many commands for plotting graphs and manipulating axes and scales

are briefly summarized below:

– xlabel(“time”): gives a title to the x-axis;

– ylabel(“speed”): gives a title to the y-axis;

– title(“progression of the speed”): gives a title to the graph;

– text(2,4,“+++Temperature T1”): adds a caption to the curve plotted by “+++” at

a certain point;

– loglog(x,y): plots the curve with a logarithmic scale (log-log);

– semilogx(t,f(t)): plots the curve with a logarithmic scale along the x-axis only;

– semilogy(t,f(t)): plots the curve with a logarithmic scale along the y-axis only;

– grid on: displays the grid in the graph;

– grid off: hides the grid in the graph;

– clf: deletes the graph;
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– plot(x,y,x,z,x,w): plots y, z and w as a function of x on the same graph;

– polar(x,y): plots the curve y as a function of x in polar coordinates;

– plot(x,y,“+g”): plots y as a function of x using green “+” symbols;

– fplot(“f_name”,[x-min, x-max]): plots the function “f_name” on the specified

interval of x;

– axis(“square”): plots a square graph;

– axis(“off”): hides the x- and y-axes;

– axis(“on”): displays the x- and y-axes;

– axis([x-min, x-max, y-min, y-max]): displays the section of the graph between

the specified values on the x- and y-axes;

– plot3(x,y,z): plots z in 3D as a function of x and y.
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General Approximation Principles

A2.1. Standard results

DEFINITION.– A Hilbert space is a space equipped with a scalar product (., .)H that
is complete with respect to the norm induced by this scalar product.

Let F be a closed vector subspace of a Hilbert space H . For every x ∈ H , there

exists a unique a ∈ F such that ‖x− a‖H = d(x, F ) = infb∈F ‖x− b‖H .

This point a = PFx is said to be the projection of x onto F , which defines a

function PF : H → H satisfying Im(PF ) = F and characterized by the property

(x− PFx, b) = 0, ∀b ∈ F .

The function PF is known as the orthogonal projection of H onto F . For all

x, y ∈ H:

‖PFx− PF y‖H ≤ ‖x− y‖H .

DEFINITION.– The bilinear form a(., .) and the linear form l are said to be continuous
if and only if:

∃ca > 0, ∀(u, v) ∈ V 2, |a(u, v)| ≤ ca‖u‖V ‖v‖V ;
∃cl > 0, ∀v ∈ V, |l(v)| ≤ cl‖v‖V . [A2.1]

DEFINITION.– The bilinear form a(., .) is said to be α-coercive if:

∃α > 0, ∀v ∈ V, a(v, v) ≥ α‖v‖2V . [A2.2]

The next theorem states that, in a Hilbert space, whenever a linear form l is

continuous, it can be represented by a vector n that is normal to the kernel

hyperplane Ker(l) = l−1({0}).
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THEOREM.– Let V be a Hilbert space with scalar product (., .)V and let V ′ be its
dual space (the space V ′ = L(V,R) of linear forms that are continuous on V ). Then:

∀l ∈ V ′, ∃τl ∈ V, l(v) = (τl, v)V . [A2.3]

In other words, every continuous linear form on V can be viewed as an operator
that takes the scalar product by some vector τl ∈ V. Furthermore:

‖τl‖V = ‖l‖V ′ . [A2.4]

THEOREM.– Suppose that:

i) V is a Hilbert space with scalar product (., .)V and norm ‖.‖V ;

ii) a(., .) is a bilinear form that is α-coercive on V ;

iii) l(.) is a linear form that is continuous on V .

Then, the following problem is well-posed:

(P )

{
Find u ∈ V such that:
a(u, v) = l(v)

In other words, the solution u exists, is unique and depends continuously on l:

‖u‖V ≤ ‖l‖V ′

α
. [A2.5]

The bilinear form a(., .) can be identified with the operator A from V to its dual

space V ′ = L(V,R):

∀u, v ∈ V, < Au, v >V,V ′= a(u, v). [A2.6]

The problem (P) can therefore be reformulated as:

{
Find u ∈ V such that:

Au = l on V ′ [A2.7]

This form [A2.7] of the problem (P) is known as the strong form. It gives an

interpreted version of the problem.

In the examples considered below, the strong form corresponds to the PDEs that

we wish to solve, whereas the variational formulation views the problem in terms of
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energy (theorem of virtual power). The Lax–Milgram theorem states that the operator

A−1 : V ′ → V is continuous and bijective:

l ∈ V ′ → u = A−1l ∈ V, [A2.8]

and

‖u‖V = ‖A−1l‖V ≤ c‖l‖V ′ , [A2.9]

where c > 0 is independent of l : c = 1
α . Therefore, a perturbation applied to l will

produce an error of same order on u.

A2.2. Linear variational problems

In general, the variational formulation of a boundary value problem is of the

following form:

(P )

{
Find uin the Hilbert space V s.t.:

a(u, v) = l(v) v ∈ V
[A2.10]

with the assumptions:

– a is a continuous bilinear and elliptic form on V ;

– l is a continuous linear form on V.

The Lax–Milgram theorem leads to the following conclusions:

– The problem P has a unique solution u on V .

– If the bilinear form a is symmetric, then the variational problem P is equivalent

to the following minimization problem:

{
Find u ∈ V that minimizes the quadratic form

J(v) = 1
2a(v, v)− l(v)

[A2.11]

A2.3. Variational approximation

Consider now a finite-dimensional Hilbert subspace Vh ⊂ V , indexed by h,

equipped with the norm induced by V , and which satisfies the property that, for every

v ∈ V , there exists an element rhv = vh ∈ Vh such that:

lim
h→0

‖rhv − v‖V = 0.
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This is said to be an internal approximation, because Vh ⊂ V , and Vh is a

conformal approximation of V .

Thus, consider the problem Ph:

(Ph)

{
Find the function uh ∈ Vh such that:

a(uh, vh) = l(vh) ∀vh ∈ Vh
[A2.12]

The problem (Ph) is well posed for any choice of h.

It also has a unique solution, because Vh ⊂ V , and the hypotheses of the

Lax–Milgram theorem are also satisfied in Vh. Similarly, if the bilinear form a is

symmetric, then the variational problem Ph is equivalent to the following

minimization problem:

{
Find the function uh ∈ Vh that minimizes the quadratic form

J(vh) =
1
2a(vh, vh)− l(vh)

[A2.13]

Clearly:

J(uh) > J(u).

A2.4. General result on an upper bound for the error

THEOREM.– Let M be the constant in the continuity hypothesis of a:

a(u, v) ≤ M‖u‖‖v‖ (M = ‖a‖),
and let α be the constant in the ellipticity hypothesis:

a(v, v) ≥ α‖v‖2.

Then, the following upper bound holds for the error:

‖u− uh‖ ≤ M

α
inf

vh∈Vh

‖u− vh‖.

This is described as the a priori approximation error.

If a is also symmetric, then the fact that a(u− uh, vh) = 0, ∀vh ∈ Vh implies that

uh is the projection of u onto Vh with respect to the scalar product defined by a. In

this case, we can give an improved a priori approximation:

‖u− uh‖ ≤
√

M

α
inf

vh∈Vh

‖u− vh‖.
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By increasing the dimension of Vh, we might hope that u can be approximated

“arbitrarily well”. This will succeed whenever the Vh are contained in a dense

subspace of W , i.e. it suffices to consider Vh spaces that are all of the same type, for

example, all contained in the space W of continuous piecewise affine functions,

which is known to be dense in H1(Ω).

A2.5. Speed of convergence

Suppose that Ω is an open subset of R
n and that Ω is partitioned into Nel

subdomains Ki (the elements or mesh cells):

T = ∪Nel
i=1Ki where ∀i, j, Ki ∩Kj = ∅.

Let hi be the diameter of the Ki (i.e. the diameter of the smallest ball containing

Ki), and write h = max(hi) for the diameter of the largest cell.

We will assume that the approximation is conformal and convergent, i.e. the

approximation space Vh tends to V as h tends to 0. In other words, for arbitrary

u ∈ V :

d(u, Vh) → 0,

where d(u, Vh) = infvh∈Vh
‖u− vh‖V .

It can be shown that approximating by continuous piecewise k-th order

polynomials on Ω results in an approximation error of order hk:

‖u− uh‖V ≤ ckh
k,

where ck > 0 is a constant that is independent of h.

Hence, it might seem desirable to prefer higher-order polynomial approximations.

However, the implementation (programming) will be more difficult and may increase

the cost significantly for a marginal gain in accuracy.

A2.6. Galerkin method

Suppose that the Hilbert space V is separable. Then, there exists a Hilbert basis

{wj}+∞
j=1 that generates a dense subspace of V . Consider a finite subset

Bm = {wj}mj=1 and write Vm for the space generated by Bm.
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If Πm is the orthogonal projection vector from V to Vm, then:

lim
m→+∞ ‖Πmv − v‖V = 0 ∀v ∈ Vm.

Indeed, because every element can be written as v =
∑+∞

i=1 viwi, its projection

onto Vm is Πmv =
∑m

i=1 viwi, and the result follows from the approximation

theorem, given that ‖v − Πmv‖V → 0. Therefore, we need to find a solution of the

following problem Pm:

(Pm)

{
Find um ∈ Vm such that:

a(um, vm) = l(vm) ∀vm ∈ Vm
[A2.14]

Whenever the Lax–Milgram theorem is satisfied, this problem is well posed and

has a unique solution um ∈ Vm. It can then be shown that:

‖u− um‖V → 0.

We note that the approximate solution constructed in this way is “truncated”; we

are neglecting the components of u with indices ≥ m. This method is not used in

practice, because we do not know a Hilbert basis of V in general. The methods that

are used instead (non-Hilbert basis, subspaces Vm not contained in Vm+l for l ∈ N
∗)

are nevertheless often referred to as Galerkin methods.



Bibliography

[ATL 98] ATLURI S.N., ZHU T., “A new meshless local Petrov-Galerkin approach in

computational mechanics”, Computational Mechanics, vol. 22, pp. 117–127, 1998.

[ATT 94] ATTAWAY S.W., HEINSTEIN M.W., SWEGLE J.W., “Coupling of smooth particle

hydrodynamics with the finite element method”, Nuclear Engineering and Design, vol. 150,

pp. 199–205, 1994.

[BAK 76] BAKHVALOV N., Méthodes numériques - Analyse, algèbre, équations différentielles
ordinaires, Mir Publishers, 2nd edition, 1976.

[BAT 96] BATHE K.-J., Finite Element Procedures, Prentice Hill, 1996.

[BEL 94] BELYTSCHKO T., LU Y.Y., GU L., “Element-free Galerkin methods”, International
Journal for Numerical Methods in Engineering, vol. 37, pp. 229–256, 1994.

[BEL 06] BELINHA J., DINIS L.M., “Elastoplastic analysis of plates by the element free

Galerkin method”, International Journal of Computer Aided Engineering and Software,

vol. 23, no. 5, pp. 525–551, 2006.

[BEL 07] BELINHA J., DINIS L.M., “Nonlinear analysis of plates and laminates using the

element free Galerkin method”, Composite Structures, vol. 78, pp. 337–350, 2007.

[BIR 06] BIRD R.B., STEWART W.E., LIGHTFOOT E.N., Transport Phenomena, John Wiley

& Sons, 2nd revised edition, Hoboken, New Jersey, 2006.

[BRE 83] BREZIS H., Analyse fonctionnelle, Théorie et Applications, Masson, Paris, 1983.

[CHE 96] CHEN J.S., PAN C., WU C.T. et al., “Reproducing kernel particle methods for large

deformation analysis of non-linear structures”, Computer Methods in Applied Mechanics
and Engineering, vol. 139, pp. 195–227, 1996.

[CHE 98] CHEN J.S., WANG H.P., “New boundary conditions treatments in meshfree

computation of contact problems”, Computer Methods in Applied Mechanics and
Engineering, vol. 187, pp. 441–468, 1998.

[CHE 01] CHEN J.S., WU C.T., YOON Y., “A stabilized conforming nodal integration

for Galerkin mesh-free methods”, International Journal for Numerical Methods in
Engineering, vol. 50, pp. 435–466, 2001.

Advanced Numerical Methods with Matlab® 2: Resolution of Nonlinear, Differential
and Partial Differential Equations, First Edition. Bouchaib Radi and Abdelkhalak El Hami
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.



196 Advanced Numerical Methods with Matlab 2

[CHE 08] CHEN S.S., LIU Y.H., CEN Z.Z., “Lower bound shakedown analysis by using the

element free Galerkin method and non-linear programming”, Computer Methods in Applied
Mechanics and Engineering, vol. 197, pp. 3911–3921, 2008.

[CHE 09] CHEN S.S., LIU Y.H., CEN Z.Z., “A time integration algorithm for linear transient

analysis based on reproducing kernel method”, Computer Methods in Applied Mechanics
and Engineering, vol. 198, pp. 3361–3371, 2009.

[CIA 88] CIARLET P.-G., Mathematical Elasticity I: Three-dimensional Elasticity, North-

Holland, Amsterdam, 1988.

[CIA 90] CIARLET P., LIONS J., Handbook of Numerical Analysis: Finite difference methods
(pt. 1). Solutions of equations in Rn (pt. 1), North-Holland, 1990.

[CIA 02] CIARLET P., The Finite Element Method for Elliptic Problems, Society for Industrial

and Applied Mathematics, 2002.

[CRO 84] CROUZEIX M., MIGNOT A., Analyse numérique des équations différentielles,

Masson, Paris, 1984.

[DHA 81] DHATT G., TOUZOT G., Une présentation de la méthode des éléments finis, Presses

de l’Université Laval Québec, Maloine, Paris, 1981.

[DOL 99] DOLBOW J., BELYTSCHKO T., “Numerical integration of the Galerkin weak form

in meshfree methods”, Computational Mechanics, vol. 23, pp. 219–230, 1999.

[DUA 96] DUARTE C.A., ODEN J.T., “An hp adaptive method using clouds”, Computer
Methods in Applied Mechanics and Engineering, vol. 139, pp. 237–262, 1996.

[DUV 98] DUVAUT G., Mécanique des milieux continus, Dunod, Paris, 1998.

[FAS 07] FASSHAUER G.F., Meshfree Approximation Methods with MATLAB, World

Scientific Publishing Co., Inc., New Jersey, 2007.

[FIS 07] FISH J., BELYTSCHKO T., A First Course in Finite Elements, John Wiley & Sons,

Hoboken, New Jersey, 2007.

[GUN 97] GUNTHER F.C., LIU W.K., “Implementation of boundary conditions for meshless

methods”, Computer Methods in Applied Mechanics and Engineering, vol. 163, pp. 205–

230, 1997.

[HAR 07] HARTMANN F., KATZ C., Structural Analysis with Finite Elements, Springer, New

York, 2007.

[HEG 96] HEGEN D., “Element-free galerkin methods in combination with finite element

approaches”, Computer Methods in Applied Mechanics and Engineering, vol. 19, pp. 120–

35, 1996.

[HUE 04] HUERTA A., BELYTSCHKO T., FERNANDEZ-MENDEZ S. et al., “Meshfree

Methods”, Encyclopedia of Computational Mechanics, John Wiley & Sons, Hoboken, New

Jersey, 2004.

[KAL 97] KALJEVIC I., SAIGAL S., “An improved element free Galerkin formulation”,

International Journal for Numerical Methods in Engineering, vol. 40, 1997.

[KAR 04] KARGARNOVIN M.H., TOUSSI H.E., FARIBORZ S.J., “Elasto-plastic element-free

galerkin method”, Computational Mechanics, vol. 33, pp. 206–214, 2004.



Bibliography 197

[KOK 09] KOKO J., Calcul scientifique avec MATLAB, Ellipses, Paris, 2009.

[LAN 81] LANCASTER P., SALKAUSKAS K., “Surfaces generated by moving least squares

methods”, Mathematics of Computation, vol. 37, pp. 141–158, 1981.

[LEV 02] LEVEQUE R.J., Finite Volume Methods for Hyperbolic Problems, Cambridge

University Press, 1st edition, 2002.

[LIE 07] LIEW K.M., PENG L.X., “Geometric non-linear analysis of folded plate structures

by the spline strip kernel particle method”, International Journal for Numerical Methods in
Engineering, vol. 71, pp. 1102–1133, 2007.

[LIU 95] LIU W.K., JUN S., ZHANG Y.F., “Reproducing kernel particle methods”,

International Journal for Numerical Methods in Engineering, vol. 20, pp. 1081–1106, 1995.

[LIU 96] LIU W.K., CHEN Y., JUN S. et al., “Advances in multiple scale kernel particle

methods”, Computational Mechanics, vol. 18, no. 2, pp. 73–11, 1996.

[LIU 05] LIU T., LIU G., WANG Q., “An element-free galerkin-finite element coupling

method for elasto-plastic contact problems”, Journal of Tribology, vol. 128, pp. 1–9, 2005.

[LUC 77] LUCY L.B., “A numerical approach to the testing of the fission hypothesis”, The
Astronomical Journal, vol. 82, pp. 1013–1024, 1977.

[MAT 10] MATEJ A., Meshless Numerical Methods, Project, University of Nova Gorica,

2010.

[MAT 14] MATLAB®, “The Language of Technical Computing”, The Mathworks®, New

York, 2014.

[MEL 96] MELENK J.M., BABUSHKA I., “The partition of unity finite element method:

Basic theory and applications”, Computer Methods in Applied Mechanics and Engineering,

vol. 139, pp. 289–314, 1996.

[MUK 97] MUKHERJEE Y.X., MUKHERJEE S., “The boundary node method for potential

problems”, International Journal for Numerical Methods in Engineering, vol. 40, pp. 797–

815, 1997.

[NAY 92] NAYROLES B., TOUZOT G., VILLON P., “Generalizing the finite element method:

Diffuse approximation and diffuse elements”, Computational Mechanics, vol. 10, pp. 307–

318, 1992.

[PAT 80] PATANKAR S., Numerical Heat Transfer Fluid Flow, McGraw-Hill, New York,

1980.

[PHU 07] PHU N.V., RABCZUK T., BORDAS S. et al., “Meshless methods: a review and

computer implementation aspects”, Mathematics and Computers in Simulation, 2007.

[QUA 04] QUARTERONI A., SACCO R., SALERI F., Méthodes numériques: Algorithmes,
analyse et applications, Springer, New York, 2004.

[QUA 08] QUARTERONI A.M., SALERI F., GERVASIO P., Calcul Scientifique, Springer

Verlag, 2008.



198 Advanced Numerical Methods with Matlab 2

[RAB 07] RABCZUK T., AREIAS P., BELYTSCHKO T., “A meshfree thin shell method for

nonlinear dynamic fracture”, International Journal for Numerical Methods in Engineering,

vol. 72, no. 5, pp. 524–548, 2007.

[RAD 09] RADI B., EL HAMI A., Eléments d’analyse, Ellipses, Paris, 2009.

[RAD 10] RADI B., EL HAMI A., Mathématiques numériques pour l’ingénieur, Ellipses,

Paris, Technosup edition, 2010.

[RAO 04] RAO B.N., RAHMAN S., “An enriched meshless method for non-linear fracture

mechanics”, International Journal for Numerical Methods in Engineering, vol. 59, pp. 197–

223, 2004.

[RAP 05] RAPPAZ J., PICASSO M., Introduction à l’analyse numérique, Presses

polytechniques et universitaires romandes, Lausanne, 2005.

[SMA 02] SMAOUI H., RADI B., “Comparative study of different advective schemes:

Application to the MECCA model”, Environmental Fluid Mechanics, vol. 1, no. 4, pp. 361–

381, 2002.

[TRE 96] TREFETHEN L.N., Finite Difference and Spectral Methods for Ordinary and Partial
Differential Equations, Cornell University, New York, 1996.

[WAG 00] WAGNER G.J., LIU W.K., “Application of essential boundary conditions in

meshfree methods: a corrected collocation method”, International Journal for Numerical
Methods in Engineering, vol. 47, pp. 1367–1379, 2000.

[XU 98] XU Y., SAIGAL S., “Element free galerkin study of steady quasi-static crack growth

in plane strain tension in elastic-plastic materials”, Computational Mechanics, vol. 22,

pp. 255–265, 1998.

[XU 99] XU Y., SAIGAL S., “An element-free galerkin analysis of steady dynamic growth of

a mode i crack in elastic-plastic materials”, International Journal of Solids and Structures,

vol. 36, pp. 1045–1079, 1999.

[ZHU 98] ZHU T., ATLURI S., “A modified collocation method and a penalty formulation

for enforcing the essential boundary conditions in the element free Galerkin method”,

International Journal for Numerical Methods in Engineering, vol. 21, 1998.

[ZIE 00] ZIENKIEWICZ O., TAYLOR R., The Finite Element Method: The Basis, vol. I,

Butterworth-Heinemann, Oxford, 5th edition, 2000.



Index

A, B, C, D

Adams, 36
adjacent sequences, 9
bisection, 4
Burgers, 62, 68
Cauchy, 27, 94
constant

Lipschitz, 27
Crank, 74
dichotomy, 4
domain of attraction, 9
Douglas, 75

E, F, G, H

Engquist, 71
equations

differential, 25
Euler, 30
fixed point, 6
fixed-point method, 6
Friedrichs, 69
function

Lipschitz, 27
Galerkin, 194
Gauss, 117
Godunov, 71
Heaviside, 61
Hooke, 106
Hugoniot, 62

I, L, M, N

isolated root, 10
Lax, 67, 68
leapfrog, 68
Lerat, 72
Liebmann, 73
Mac-Cormak, 72
method

bisection, 5
Newton’s (method of tangents), 10
regula falsi (false position), 17
secant, 12

Newton, 10
Nicholson, 74

O, P, R

order of a process, 19
Osher, 71
Peaceman, 75
Peyret, 72
Poisson, 72
Rachford, 75
Rankine, 62
rate of convergence, 9
recursive sequence, 10
relaxation, 73
Richardson, 73
Richtmeyer, 72
Runge-Kutta, 31

Advanced Numerical Methods with Matlab® 2: Resolution of Nonlinear, Differential
and Partial Differential Equations, First Edition. Bouchaib Radi and Abdelkhalak El Hami
© ISTE Ltd 2018. Published by ISTE Ltd and John Wiley & Sons, Inc.



200 Advanced Numerical Methods with Matlab 2

S, V, W

stability, 57
Stokes, 89
value

approximate, 8
intermediate, 3

von Neumann, 57, 66
Wendroff, 68



Other titles from  

 

in 

Mechanical Engineering and Solid Mechanics 

2018 
BOREL Michel, VÉNIZÉLOS Georges 
Movement Equations 4: Equilibriums and Small Movements 
(Non-deformable Solid Mechanics Set – Volume 4)     

RADI Bouchaib, EL HAMI Abdelkhalak 
Advanced Numerical Methods with Matlab® 1: Function Approximation 
and System Resolution 
(Mathematical and Mechanical Engineering SET – Volume 6) 

SALENÇON Jean 
Virtual Work Approach to Mechanical Modeling 

2017 

BOREL Michel, VÉNIZÉLOS Georges 
Movement Equations 2: Mathematical and Methodological Supplements 
(Non-deformable Solid Mechanics Set – Volume 2) 
Movement Equations 3: Dynamics and Fundamental Principle 
(Non-deformable Solid Mechanics Set – Volume 3) 



BOUVET Christophe 
Mechanics of Aeronautical Solids, Materials and Structures 
Mechanics of Aeronautical Composite Materials 

BRANCHERIE Delphine, FEISSEL Pierre, BOUVIER Salima,  
IBRAHIMBEGOVIC Adnan 
From Microstructure Investigations to Multiscale Modeling:  
Bridging the Gap 

CHEBEL-MORELLO Brigitte, NICOD Jean-Marc, VARNIER Christophe 
From Prognostics and Health Systems Management to Predictive 
Maintenance 2: Knowledge, Traceability and Decision 
(Reliability of Multiphysical Systems Set – Volume 7) 

EL HAMI Abdelkhalak, RADI Bouchaib 
Dynamics of Large Structures and Inverse Problems 
(Mathematical and Mechanical Engineering Set – Volume 5) 
Fluid-Structure Interactions and Uncertainties: Ansys and Fluent Tools 
(Reliability of Multiphysical Systems Set – Volume 6) 

KHARMANDA Ghias, EL HAMI Abdelkhalak 
Biomechanics: Optimization, Uncertainties and Reliability  
(Reliability of Multiphysical Systems Set – Volume 5) 

LEDOUX Michel, EL HAMI Abdelkhalak 
Compressible Flow Propulsion and Digital Approaches in Fluid Mechanics 
(Mathematical and Mechanical Engineering Set – Volume 4) 
Fluid Mechanics: Analytical Methods 
(Mathematical and Mechanical Engineering Set – Volume 3) 
MORI Yvon  
Mechanical Vibrations: Applications to Equipment 

2016 
BOREL Michel, VÉNIZÉLOS Georges  
Movement Equations 1: Location, Kinematics and Kinetics 
(Non-deformable Solid Mechanics Set – Volume 1)  



BOYARD Nicolas  
Heat Transfer in Polymer Composite Materials 

CARDON Alain, ITMI Mhamed  
New Autonomous Systems  
(Reliability of Multiphysical Systems Set – Volume 1) 

DAHOO Pierre Richard, POUGNET Philippe, EL HAMI Abdelkhalak  
Nanometer-scale Defect Detection Using Polarized Light  
(Reliability of Multiphysical Systems Set – Volume 2) 

DE SAXCÉ Géry, VALLÉE Claude 
Galilean Mechanics and Thermodynamics of Continua 

DORMIEUX Luc, KONDO Djimédo  
Micromechanics of Fracture and Damage  
(Micromechanics Set – Volume 1) 

EL HAMI Abdelkhalak, RADI Bouchaib  
Stochastic Dynamics of Structures  
(Mathematical and Mechanical Engineering Set – Volume 2) 

GOURIVEAU Rafael, MEDJAHER Kamal, ZERHOUNI Noureddine  
From Prognostics and Health Systems Management to Predictive 
Maintenance 1: Monitoring and Prognostics  
(Reliability of Multiphysical Systems Set – Volume 4) 

KHARMANDA Ghias, EL HAMI Abdelkhalak  
Reliability in Biomechanics  
(Reliability of Multiphysical Systems Set –Volume 3) 

MOLIMARD Jérôme  
Experimental Mechanics of Solids and Structures 

RADI Bouchaib, EL HAMI Abdelkhalak  
Material Forming Processes: Simulation, Drawing, Hydroforming and 
Additive Manufacturing  
(Mathematical and Mechanical Engineering Set – Volume 1) 



2015 

KARLIČIĆ Danilo, MURMU Tony, ADHIKARI Sondipon, MCCARTHY Michael  
Non-local Structural Mechanics 

SAB Karam, LEBÉE Arthur  
Homogenization of Heterogeneous Thin and Thick Plates 

2014 
ATANACKOVIC M. Teodor, PILIPOVIC Stevan, STANKOVIC Bogoljub,  
ZORICA Dusan 
Fractional Calculus with Applications in Mechanics: Vibrations and 
Diffusion Processes 

ATANACKOVIC M. Teodor, PILIPOVIC Stevan, STANKOVIC Bogoljub, 
ZORICA Dusan 
Fractional Calculus with Applications in Mechanics: Wave Propagation, 
Impact and Variational Principles 

CIBLAC Thierry, MOREL Jean-Claude 
Sustainable Masonry: Stability and Behavior of Structures 

ILANKO Sinniah, MONTERRUBIO Luis E., MOCHIDA Yusuke  
The Rayleigh−Ritz Method for Structural Analysis 

LALANNE Christian 
Mechanical Vibration and Shock Analysis – 5-volume series – 3rd edition 
Sinusoidal Vibration – Volume 1  
Mechanical Shock – Volume 2  
Random Vibration – Volume 3  
Fatigue Damage  – Volume 4  
Specification Development  – Volume 5  

LEMAIRE Maurice 
Uncertainty and Mechanics 



2013 
ADHIKARI Sondipon 
Structural Dynamic Analysis with Generalized Damping Models: Analysis 

ADHIKARI Sondipon 
Structural Dynamic Analysis with Generalized Damping Models: 
Identification 

BAILLY Patrice 
Materials and Structures under Shock and Impact 

BASTIEN Jérôme, BERNARDIN Frédéric, LAMARQUE Claude-Henri 
Non-smooth Deterministic or Stochastic Discrete Dynamical Systems: 
Applications to Models with Friction or Impact 

EL HAMI Abdelkhalak, RADI Bouchaib 
Uncertainty and Optimization in Structural Mechanics 

KIRILLOV Oleg N., PELINOVSKY Dmitry E. 
Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations 

LUONGO Angelo, ZULLI Daniele 
Mathematical Models of Beams and Cables 

SALENÇON Jean 
Yield Design 

2012 
DAVIM J. Paulo  
Mechanical Engineering Education 

DUPEUX Michel, BRACCINI Muriel 
Mechanics of Solid Interfaces 

ELISHAKOFF Isaac et al. 
Carbon Nanotubes and Nanosensors: Vibration, Buckling and Ballistic 
Impact 

GRÉDIAC Michel, HILD François 
Full-Field Measurements and Identification in Solid Mechanics 



GROUS Ammar 
Fracture Mechanics – 3-volume series 
Analysis of Reliability and Quality Control – Volume 1 
Applied Reliability – Volume 2 
Applied Quality Control – Volume 3 

RECHO Naman 
Fracture Mechanics and Crack Growth 

2011 
KRYSINSKI Tomasz, MALBURET François 
Mechanical Instability 

SOUSTELLE Michel 
An Introduction to Chemical Kinetics 

2010 
BREITKOPF Piotr, FILOMENO COELHO Rajan 
Multidisciplinary Design Optimization in Computational Mechanics 

DAVIM J. Paulo  
Biotribolgy 

PAULTRE Patrick 
Dynamics of Structures 

SOUSTELLE Michel 
Handbook of Heterogenous Kinetics 

2009 
BERLIOZ Alain, TROMPETTE Philippe 
Solid Mechanics using the Finite Element Method 

LEMAIRE Maurice 
Structural Reliability 



2007 
GIRARD Alain, ROY Nicolas 
Structural Dynamics in Industry 

GUINEBRETIÈRE René 
X-ray Diffraction by Polycrystalline Materials 

KRYSINSKI Tomasz, MALBURET François 
Mechanical Vibrations 

KUNDU Tribikram 
Advanced Ultrasonic Methods for Material and Structure Inspection 

SIH George C. et al. 
Particle and Continuum Aspects of Mesomechanics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


