
[1]

Skill Up: A Software
Developer's Guide to
Life and Career

65 steps to becoming a better developer

Jordan Hudgens

BIRMINGHAM - MUMBAI

Skill Up: A Software Developer's Guide to
Life and Career

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the prior
written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.
Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly
by this book.
Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate
use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

First published: July 2017

Production reference: 1280717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78728-703-7
www.packtpub.com

Credits

Author
Jordan Hudgens

Acquisition Editor
Ben Renow-Clarke

Content Development Editor
Radhika Atitkar

Technical Editor
Joel D'souza

Proofreader
Safis Editing

Indexer
Pratik Shirodkar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

About the Author

Jordan Hudgens is the CTO and founder of DevCamp, where he leads
instruction and curriculum development for all the DevCamp and Bottega
code schools around the US.
As a developer over the past decade, Jordan has traveled the world building
applications and training individuals on a wide variety of topics, including
Ruby development, big data analysis, and software engineering.
Jordan focuses on project-driven education as opposed to theory-based
development. This style of teaching is conducive to learning how to build
real-world products that adhere to industry best practices.
Additionally, Jordan has published multiple books on programming and
computer science along with developing training curriculum for Learn.co,
DevCamp, and AppDev on the topics, namely Ruby on Rails, Java, AngularJS,
NoSQL, API development, and algorithms.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.PacktPub.com and as a print book customer, you are entitled to
a discount on the eBook copy. Get in touch with us at customercare@
packtpub.com for more details.
At www.PacktPub.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters and receive exclusive discounts
and offers on Packt books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access
to all Packt books and video courses, as well as industry-leading tools to help
you plan your personal development and advance your career.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of
our editorial process. To help us improve, please leave us an honest review on
this book's Amazon page at https://www.amazon.com/dp/1787287033.
If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers
with free eBooks and videos in exchange for their valuable feedback. Help us
be relentless in improving our products!

To my sweet and loving daughter, Kristine. I cherished every moment of writing
this book at coffee shops all over the country with you!

[i]

Table of Contents
Preface	 xv

Part 1: Coder Skills	 1
Chapter 1: Discovering the Tipping
Point for Developers	 3

Tipping point for developers	 3
My own experience	 4
The doubt machine	 4
The painful process	 4
The tipping point(s)	 4

The first tipping point	 5
The second tipping point	 5
The secret	 5
The book	 6

The solution	 6
Chapter 2: Are Developers Born or
Made? – Debunking the Myth of Prodigies	 7

Are prodigies real?	 7
The Mozart case study	 7
Are developers born or made?	 8
The tipping point	 8

Why we love the prodigy myth	 8
Chapter 3: Do You Have to Be a Genius to
Be a Developer?	 11

The running man	 12
Do you have to be a genius to be a developer?	 12

Table of Contents

[ii]

The way the mind works	 12
The reason	 13
A smarter approach	 13

Chapter 4: How to Study and Understand
Complex Topics?	 15

A system for how to study	 15
Chapter 5: Effective Study Practices for Developers	 17

Why traditional study habits don't work	 17
An effective study practices case study	 18

The reification example	 18
The hard way	 19

Additional negative effects	 19
The comprehensive study system	 19
Summary	 20

Chapter 6: Defining Deep Work and What It
Means for Developers	 21

Definition of deep work	 22
The deep work strategy for developers	 22

Taking action	 22
Removing distractions	 22
Study hard and smart	 23

Multiple sessions	 23
Summary	 24

Chapter 7: Task Switching Costs for Developers	 25
A system for decreasing task switching costs	 26

Chapter 8: How to Use Willpower Limits
Instead of Letting Them Use You?	 27

What are willpower limits?	 27
How many decisions do you make each day?	 28
Why is willpower important?	 28
Are willpower limits real?	 29
When the willpower well runs dry	 29
Saving up willpower	 29

One outfit to rule them all	 30
Being a copycat	 30

Focusing willpower	 30
Summary	 31

[iii]

Table of Contents

Chapter 9: Cramming Versus Consistent Study
and a Study System that Works	 33
Chapter 10: Is Reading Important for Developers?	 37

Why is reading important for developers?	 37
CEOs and reading	 37
Compounded learning	 37

A compounded learning case study	 38
The CEO who didn't have time to read	 38
My reading system	 39
The reading schedule	 39
Audio books are books too!	 39
Books are too expensive	 39

Summary	 40
Chapter 11: Learning How to Code – Getting
Past Skill Plateaus	 41

What is a learning plateau?	 41
False ceiling	 42

Getting past skill plateaus	 42
Proper information/resources	 42
Best practices	 42
Challenging/new tasks	 43
Frustration = skill	 43

Summary	 44
Chapter 12: Developer Learning Curve – Why
Learning How to Code Takes So Long	 45
Chapter 13: Slowing Down to Learn How to
Code Faster	 53

Learn how to code faster	 53
Our default mind	 54
Hacking the mind	 54

Slowing it down	 54
Bend it like Beethoven	 55
From classical music to coding	 55

A practical system	 55
Chapter 14: Mental Models for Learning
How to Code and Improve as a Developer	 57

Mental models for the Kouros	 58

Table of Contents

[iv]

What are mental models?	 58
Mental models for developers	 59

Summary	 59
Chapter 15: A Developer's Guide for Hacking
Procrastination to Achieve Success	 61

Root causes of procrastination	 61
Hacking procrastination	 62

Hacking perfectionism	 62
Hacking the fear of success	 63
Hacking the plan	 63

Summary	 64
Chapter 16: The Problem with Procrastination
for Developers	 65

The problem with procrastination	 65
Instant gratification	 66
Baby steps to knock out procrastination	 66

Baby coding steps	 67

Chapter 17: Practical Ways to Use the Pomodoro
Technique as a Developer	 69

Practical ways to use the Pomodoro Technique	 69
Taking a break	 70
Lifestyle versus fads	 70

A lifestyle of productivity	 71
Practical implementation	 71

Chapter 18: The Power of Making
Mistakes – Learning by Failing	 73

The secret weapon to mastery – making mistakes	 73
Making mistakes – memory steroids	 74
Mistakes force learning	 74
Mistakes kill pride	 74

Summary	 75
Chapter 19: Learn How to Code – The Guide to
Memorization	 77

The guide to memorization	 77
Repetition	 78
Smarter, not harder	 78

Visual mental mapping	 78

[v]

Table of Contents

Short-term versus long-term memory	 79
Implementing visual mental mapping	 80
Taking a real-world example	 81
Finding patterns	 81
Copy and paste is the enemy	 82

Not everything has to be memorized	 83
Chapter 20: A System for Learning a New
Programming Language	 85
Chapter 21: Development Study Tips – Reverse
Note-Taking	 87

The problem with traditional note-taking	 87
Reverse note-taking	 88
Benefits of reverse note-taking	 88

Narrowed focus	 88
Story-based mindset	 89
Forced repetition	 89

Summary	 90

Part 2: Freelancer Skills	 91
Chapter 22: Tips for Organically Growing a
Freelance Business	 93

Organically growing a freelance business	 93
Referral requests	 94
Blogging	 94
Expert positioning	 95
Open source contribution	 95
Social media marketing	 96

Summary	 96
Chapter 23: Freelancing Tips – Knowing
When to Fire a Client	 97

My urgent client	 97
When to fire a client	 98

#1 – being treated like an employee	 98
#2 – tyranny of urgent	 98
#3 – toxic environment	 99

The joy of firing a client	 99

Table of Contents

[vi]

Chapter 24: Dodging Silver Bullets for
Scalable Freelance Projects	 101

The problem with silver bullets	 101
Silver bullet customization	 102
Becoming a sharp shooter with code libraries	 103

Chapter 25: A Freelance Guide to Managing
Advanced Features	 105

Managing advanced features	 105
The talent pool	 106
The process	 106

Kanban	 107
The result	 107
Summary	 107
A caveat	 108

Chapter 26: Freelancer Interviews – Practical
Tips for Taking Over a Legacy Application	 109
Chapter 27: Five Tips for Taking Over a Legacy
Application	 111

Tips for taking over a legacy application	 112
Creating a test suite	 112
Adding new features via TDD	 112
Breaking out specific features into microservices	 112
DRY up the codebase	 113

Summary	 113
Chapter 28: Guide to Freelancing – Starting
Over Versus Refactoring	 115

The legacy scenario	 115
Starting over versus refactoring	 116

#1 – removing the fear factor	 116
#2 – analyzing the 80/20 principle	 116
#3 – building an automated bug list	 117
#4 – becoming the client	 117

When should you start over?	 118
Summary	 118

[vii]

Table of Contents

Chapter 29: Should You Use TDD on Freelance
Projects? – Comparing Quality Versus Speed	 119

Quality versus Speed	 120
TDD on freelance projects	 121

Making the decision	 121
Giving no choice	 121
Letting the client decide	 121
Using common sense	 122

Chapter 30: Automating Client Updates as a
Freelance Developer	 123

Importance of daily updates	 123
An example of client update	 124
Automating client updates	 124
Version control to the rescue	 124

Summary	 125
Chapter 31: Freelance Requirement
Elicitation – A Guide for Feature Development	 127

Freelance requirement elicitation	 128
How it started	 128
The build	 128
The problem	 129
Who was at fault?	 129

A better way	 129
Step 1	 129
Step 2	 130

A better ending	 130
Summary	 130

Chapter 32: How to Remotely Demo Work for
Freelance Clients?	 131

Why proper demonstrations are important	 131
Review of services to remotely demo work	 132

Screencast	 132
A remote desktop	 133
PowerPoint	 134

Summary	 135

Table of Contents

[viii]

Chapter 33: Defining Project Success as a
Freelance Developer	 137

A clear end	 137
What is scope creep?	 137
When scope creep isn't scope creep	 138
When scope creep goes badly	 138

Based on requirements	 138
Based on a story	 139
The sign off 	 139

Summary	 139
Chapter 34: Top Project Management
Tools for Freelancers	 141

Top project management tools	 141
Basecamp	 142
Trello	 144
LeanKit	 145
ProWorkflow	 146
Wrike	 146
GitHub	 147

Summary	 148
Chapter 35: Top Freelance Bookkeeping
Options for Developers	 149

Freelance bookkeeping options	 149
FreshBooks	 150

How it works	 151
FreshBooks additional features	 152
Weaknesses	 152

QuickBooks	 152
NetSuite	 153

Summary	 153
Chapter 36: Learning the Secret to Get New
Clients as a Freelancer	 155

Where to find new clients	 155
The challenge in getting new clients with outsourcing
services	 156
Getting new clients as a freelancer	 157

Proposal material	 157
Sending out constant proposals	 157

[ix]

Table of Contents

The result	 158
Summary	 158

Chapter 37: Managing Client Conflicts
as a Freelancer	 159

Strategies for managing client conflicts	 159
Chapter 38: Examples of Freelance Portfolios
That Help Acquire New Clients	 163

Examples of freelance portfolios	 163
Social network utility	 164
An API tool	 164
An accounting application	 164
A scheduling application	 164
A frontend application	 164

Chapter 39: Importance of Test-Driven
Development for Coders	 167

Importance of test-driven development	 169
Summary	 171

Chapter 40: SEO Best Practices and Strategies
for Freelancers	 173

SEO best practices tutorial	 173
Content is king	 173
Creating an XML sitemap	 174
Mixing text, images, and videos	 174
Managing your site speed	 174
Site responsiveness	 174
Backlinks	 175
Focused content	 175

Summary	 175
Chapter 41: Client Communication Freelancing Tips	 177

A system to maintain proper client communication	 178
Summary	 178

Chapter 42: Outsource Web Developers Properly
with System-Based Processes	 179

A system to manage outsourced web developers	 180
Summary	 180

Table of Contents

[x]

Chapter 43: How to Create Accurate Freelance Bids?	 181
Summary	 182

Chapter 44: Freelancer Tips – Three Ways to
Get New Clients	 183

Freelancing services	 183
LinkedIn	 184
Referrals	 184
Summary	 184

Part 3: Career Skills	 185
Chapter 45: Should I Learn to Code? – A Balanced
Perspective on Programming	 187

Should I learn to code? – a balanced look at both sides	 188
Summary	 189

Chapter 46: Following Your Passion – Good or
Bad Advice for Developers?	 191

Following your passion – a case study	 191
Summary	 192

Chapter 47: How to Learn to Code from
Scratch? – A Practical Strategy	 193

Small bites	 193
Tutorials	 194
Reading	 195
Real-world projects	 196
Coding is hard	 196
But you can learn programming	 196

Chapter 48: How to Choose a Developer Specialty?	 197
How to choose a developer specialty?	 197

#1 – the full stack developer	 198
#2 – the server-side developer	 198
#3 – the frontend developer	 199
#4 – the mobile developer	 199
#5 – the data scientist	 200

Making the decision	 200

[xi]

Table of Contents

Chapter 49: How to Choose Your Next
Programming Language?	 203

How to pick a programming language?	 203
The next job you want	 204
Your specialty	 204

Specialty-based mapping	 205
Summary	 206

Chapter 50: Developer Soft Skills – Learning
How to Gain an Edge in the Marketplace	 207

Developer soft skills	 207
Writing	 208
Conversation	 208

Conversation tips	 208
Management	 209
Design	 209
Public speaking	 210

Becoming a better public speaker	 211
The importance of soft skills	 211

Chapter 51: Developer Learning
Options – A Practical Analysis	 213

Degrees of programming expertise	 213
Becoming a professional developer	 213

Developer bootcamps	 214
Is this practical?	 214

Improving your skill in your current profession	 215
Is this practical?	 215

Learning for fun or as a hobby	 216
Summary	 216

Chapter 52: Is it Possible to Lose
Your Coding Skills?	 217

Summary	 219
Chapter 53: Is Writing Bad Code Immoral
for Developers?	 221

How to write better code	 223
Summary	 223

Table of Contents

[xii]

Chapter 54: Inspirational Programming Advice
from Howard Roark	 225
Chapter 55: Best Practices Versus Creativity
as a Developer	 227
Chapter 56: A Practical Guide to Approaching
Project Development	 231

Student question	 231
Strategies to approaching project development	 232

Planning a feature from start to end	 232
Moving from requirements to stories	 232
Starting with a base case	 233
Fear of the unknown	 233

Moving fast and breaking things	 234
Battling procrastination	 234
Small, practical steps	 234
Getting unstuck	 235

Application bugs	 235
Messages over models	 235

Chapter 57: How to Practice Programming
Techniques and Improve as a Developer?	 237

Engaging in pair programming	 237
Utilizing open source software	 238
Visiting the DailyProgrammer subreddit on Reddit	 238
Taking online courses	 238
Code katas	 239
Summary	 239

Chapter 58: What Does It Take to Become a
Great Developer?	 241

Tips for becoming a great developer	 241
Working through difficult features	 242
Community contribution	 242
Artistry	 243
Craftsmanship	 243

Steve Jobs's craftsmanship	 244
Adapting to change	 244
Tireless learning	 245

Summary	 246

[xiii]

Table of Contents

Chapter 59: How to Stay Sharp as a Developer?	 247
Tips to stay sharp as a developer	 247

#1 – coding exercises	 247
Example coding exercises	 248

#2 – teaching others to code	 249
How does this apply to development?	 249

#3 – reading	 250
#4 – newsletters	 250
#5 – tutorials	 250

Summary	 250
Chapter 60: Developer Resume Tips – How
to Create an Effective Resume?	 251

Developer resume tips	 251
Keep it simple	 251
Keep it relatable	 252
Keep it professional	 253

Summary	 253
Chapter 61: Developer Salary Negotiation Strategies	 255

Knowing your skill set	 255
Knowing the industry	 255
Knowing the organization	 256
Researching salary rates	 256

Chapter 62: Best Questions to Ask During a
Job Interview	 257

Best questions to ask during a job interview	 258
Poor questions to ask during a job interview	 259
Summary	 260

Chapter 63: Answering in an Impossible Interview	 261
Questions	 261
Answering impossible interview questions – case studies	 261

Chapter 64: Greatest Weakness Answers for Coding
Interviews	 263

Bad answers to your greatest weakness	 263
Good answers to your greatest weakness	 264

Table of Contents

[xiv]

Chapter 65: Enterprise Software Job Strategy
and Guide	 265

Summary	 266
Index	 267

[xv]

Preface
Skill Up: A Software Developer's Guide to Life and Career is an all-purpose

toolkit for your programming career. It has been built by Jordan Hudgens
over a lifetime of coding and teaching coding. It helps you identify the key
questions and stumbling blocks that programmers encounter, and gives
you the answers to them! It is a comprehensive guide containing more than
50 insights and methodologies that you can use to improve the work you
produce, and to give advice in your day-to-day career.

Focusing on your life skills and the key soft skills we need in the modern
world, Skill Up: A Software Developer's Guide to Life and Career will help you find
your path to being a better and a happier coder.

What this book covers
Part 1, Coder Skills, contains advice for people starting out in a coding

career, or those who are already working as in a programming role but want
to improve their general skills. It includes such subjects as how to study
and understand complex topics, defining deep work and what it means for
developers, and getting past skill plateaus when learning new languages.

Part 2, Freelancer Skills, contains advice for developers working as
freelancers and trying to manage their careers and bid on new tenders. It
includes such subjects as knowing when to fire a client, practical tips for
taking over legacy applications, and a guide to automating client update
messages.

Preface

[xvi]

Part 3, Career Skills, contains advice for having a successful career as
a developer. It provides information on how to advance your career, and
practical tips, such as interview guides. It includes such subjects as how to
practice programming techniques and improve as a developer, how to balance
best practice and creativity as a developer, and developer salary negotiation
strategies.

Who this book is for
This book is useful for programmers of any ability or discipline. It has

advice for those thinking about beginning a career in programming, those
already working as a fully employed programmer, and for those working as
freelance developers.

Conventions
In this book, you will find a number of text styles that distinguish

between different kinds of information. Here are some examples of these
styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: "Returning to our case study of memorizing CSS elements,
let's look at the border attributes available in CSS3: border."

New terms and important words are shown in bold. Words that you
see on the screen, for example, in menus or dialog boxes, appear in the text
like this: "Here in the image I would move a task from being a To-Do, to
being Assigned, to Working, to Under Review, and finally to Finished."

Reader feedback
Feedback from our readers is always welcome. Let us know what you

think about this book—what you liked or disliked. Reader feedback is
important for us as it helps us develop titles that you will really get the most
out of.

To send us general feedback, simply e-mail feedback@packtpub.com,
and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested
in either writing or contributing to a book, see our author guide at www.
packtpub.com/authors.

www.packtpub.com/authors
www.packtpub.com/authors

[xvii]

Preface

Customer support
Now that you are the proud owner of a Packt book, we have a number

of things to help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our

content, mistakes do happen. If you find a mistake in one of our books—
maybe a mistake in the text or the code—we would be grateful if you could
report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-
errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website
or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.
packtpub.com/books/content/support and enter the name of the
book in the search field. The required information will appear under the
Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem

across all media. At Packt, we take the protection of our copyright and
licenses very seriously. If you come across any illegal copies of our works
in any form on the Internet, please provide us with the location address or
website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the
suspected pirated material.

We appreciate your help in protecting our authors and our ability to
bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact

us at questions@packtpub.com, and we will do our best to address the
problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Part 1
Coder Skills

[3]

1
Discovering the Tipping

Point for Developers
If you've been programming for a while, a question that has most likely
crossed your mind is this:

"Am I a good developer?"
Before we go on, let me share a little secret with you… Every developer, even
senior developers, have insecurities when it comes to programming. Few
individuals like to share that information, mainly because confidence and
even arrogance has become a developer stereotype for some stupid reason.

However, I won't BS you. I can tell you that the more experience I have
as a coder, the more I realize how much more there is to learn and how far
I still have to go.

Tipping point for developers
With all that being said, I want to discuss topic of defining the tipping point
for developers, which is essentially the point at which a developer goes from
a beginner to a pro. Since this topic is a bit abstract, it's not possible to point
to a specific point in time and say:

"Here it is, this is when it all clicks and makes sense."

There's not a sentinel moment when programming mastery occurs. It's
different for every individual.

Discovering the Tipping Point for Developers

[4]

My own experience
I remember when I was originally learning programming. Understanding the
syntax and context did not come easy for me. It seemed like I spent 99% of
my time looking things up and copying and pasting code from others just to
get my programs running.

The doubt machine
Needless to say, my confidence as a programmer was very low in the
beginning. I kept being plagued by nagging doubts, such as:

•	 Maybe programming isn't for you
•	 Even if you code works you won't be able to write your own

programs
•	 You're only typing in what the book is saying to do, you won't be

able to build anything custom

And the negative thoughts continued from there

The painful process
If you're a new developer maybe some of this sounds familiar to you, or
maybe it doesn't and I simply lacked confidence. Either way, I trudged along,
trying everything I could think of to improve as a developer:

•	 Going through dozens upon dozens of programming books in
various languages

•	 Trying to build up a portfolio of project
•	 Following online guides

However, back when I was originally learning how to code, the online
resources weren't quite as good as they are today.

The tipping point(s)
So, what did the trick and pushed me over the edge to become a professional
developer? None of those things… and all those things. I persevered through
project after project and I consumed every training resource I could find.
And slowly something amazing started to happen:

"Everything started to make sense."

[5]

Chapter 1

The first tipping point
Even though it was a while ago, I still remember the moment my first
development tipping point happened. I was sitting in front of my computer
in a coffee shop and working on a web application.

A few hours went by and I stopped dead in my tracks, realizing that I
had just spent the afternoon building a project and hadn't looked up a single
code snippet. It wasn't like I programmed the space station, the project was
incredibly basic. However, it was one of the most exciting moments I can
remember in my life.

The second tipping point
As great as that was, I still had very far to go. I remember the next moment
when I felt like I reached another key milestone. Even though my confidence
had increased as a developer, the thought of anyone seeing my code was a
very scary thought. However, I had started to build my freelance business and
a client (who was also a developer) asked me to perform a pair programming
session with him.

He had run into a bug with the program we were building and asked me
to jump on a screen sharing session where we could work on the project at the
same time. Honestly, I was scared to death when he asked. I had never coded
in front of anyone before and the thought of doing it with this client pretty
much gave me a panic attack. However, I didn't really have a choice in the
matter so I started the session with him. After a few minutes of nervousness,
I started to relax and to my surprise not only did I not make a fool of myself,
I actually figured out the bug in his code and got the feature working.

The secret
So, what was my secret to getting over the hump and going from a beginner
to a professional developer? Unfortunately, there is no easy-to-follow recipe.
However, there is a process that is guaranteed to work. And the process isn't
specific to becoming a programmer, it's the same whether you want to be a
developer or a professional athlete… it's hard and smart work.

Discovering the Tipping Point for Developers

[6]

The book
In the book The Tipping Point, by Malcolm Gladwell, Gladwell gives countless
case studies of what it takes for individuals to achieve mastery in a specific
field. The key comes down to how dedicated an individual is to a specific skill.
The book postulates that it takes around 10,000 hours for an individual to
become a true master of whatever they're pursuing.

I'm not sure I believe in the 10,000-hour rule, mainly because there are a
large number of variables when it comes to learning a topic or skill and rarely
does a single rule apply for all fields. Also, I think the quality of your practice
makes a significant difference.

For example, if you're learning how to play the violin: 5,000 hours of
practice with a world class instructor is probably equivalent to 10,000 hours
trying to figure it out yourself. However, with all that being said, one thing
cannot be denied, the key to mastery is hard work.

The solution
I'm sorry if you were hoping for a quick fix. I can tell you from experience
that there are no shortcuts to becoming a developer. You need to learn:

•	 The fundamentals of coding
•	 How to build projects on your own
•	 Various process for working through bugs

Becoming a great developer is not an easy road. However, be comforted
in the fact that you are 100% in control of how skilled you will become.
The formula is straightforward: the harder you work, the better you will
get. So, get your hands on all the material you can find on the language and
framework you want to learn. Work through challenging applications and you
will be well on your way to mastery.

And soon you will be able to have the exciting moment of clarity when
everything starts to click.

[7]

2
Are Developers Born

or Made? – Debunking
the Myth of Prodigies

When talking to development students, I've discovered one topic that
constantly arises in conversation. And that topic is the misconceived notion
that great developers are born with a special programming gene. So, let's walk
through the question are developers born or made, from a practical perspective.

Are prodigies real?
Before tackling this question, let's take a step back and discuss the topic
of prodigies. Because whenever someone thinks that a certain group of
individuals are born with superhuman-like talent, they're essentially saying
that these special people are prodigies.

The Mozart case study
But are prodigies real? Let's take a look at one of the most famous prodigies
of all time, Mozart. At the age of 5, Mozart was playing concert grade music
to the royal family. Surely, this would qualify Mozart as a prodigy, right?

In his book, Peak: Secrets from the New Science of Expertise, researcher
Anders Ericsson dispels a number of commonly held prodigy myths. He had
this to say about Mozart:

"If you compare the kind of music pieces that Mozart can play at various
ages to today's Suzuki-trained children, he is not exceptional. If anything, he's

relatively average."

Are Developers Born or Made? – Debunking the Myth of Prodigies

[8]

In his book, Ericsson dedicates a full chapter to debunking the concept
of prodigies. And in each case, he illustrates that the individuals achieved
their respective levels of success through massage amounts of work.

Are developers born or made?
Extending the Mozart case study, let's discuss how this applies to developers.
Whenever we see a skilled coder it's easy to think that they were born with
the innate ability to build applications and that learning new languages and
frameworks comes easy to them.

However, nothing could be further from the truth. Over the years I've
known more developers than I can count and I have yet to find a single
one that was a born developer. I know programmers that work for Google
and Amazon, along with computer science professors who specialize in
research that boggles my mind to think about. And as amazing as all of these
individuals are, each one of them became a great developer through hard
work and dedication.

The tipping point
In Chapter 1, Discovering the Tipping Point for Developers I've discussed the
tipping point for developers. The longer I teach and the more I work on my
own coding skills, the more I'm convinced that the key to excellence is as
straightforward as focused practice.

If you want to become a skilled developer badly enough, and you're
willing to:

•	 Dedicate the time
•	 Learn from experienced teachers
•	 Fight through frustrating challenges
•	 Continually build projects with features you've never developed

before

You're going to wake up one day and realize that everything is clicking
and that you've become a professional programmer.

Why we love the prodigy myth
Before I end this chapter, I want to address a subtle issue that explains the
reason of why we, as humans, love the idea of prodigies.

[9]

Chapter 2

The concept of prodigies, individuals born with a natural ability to be
successful at a certain skill, such as sports, math, or programming, can be
detrimental to our own success. This belief is dangerous because it causes
our minds to have negative responses to failure.

For example, if you're an aspiring developer who thinks that programmers
are born and not made, when you come across a bug that you can't seem to
figure out or a feature you can't build, your first reaction might be:

I guess I wasn't born to do be a developer.
Or:
I wish I had talent like XYZ programmer, everything seems to come so easy to him.
If you catch yourself with thoughts like these, remind yourself that

prodigies aren't real.
Developers achieve greatness through smart work and perseverance.

The 10,000-hour rule from the Tipping Point book by Malcolm Gladwell may
not be exactly accurate. However, it does give a general guide for how much
work is required to reach a level of mastery.

If you feel like you weren't born with the "developer gene", go and
knock out 10,000 hours of focused practice on building applications. I think
you'll be pleasantly surprised to find that you'll become so good, that other
people will look at you, and they'll think… that you were just born this way.

[11]

3
Do You Have to Be

a Genius to Be a
Developer?

We've discussed the topic of whether great developers are born or made.
And in this chapter, we're going to look at a similar topic from a different
angle. And we're going to answer the question do you have to be a genius to be a
developer?

Because of the near-magical nature of coding, one of the most common
remarks I hear from individuals who hear what I do is:

"Oh wow, you're so smart!"
In fact, just recently I traveled to meet with a group of developers and

the head of the company introduced me by saying:
"This is Jordan, he's just here to be smart."
I know that when people say things like this it comes from a good place.

However, it bothers me. And it bothers me for a couple reasons:
1.	 First and foremost, these type of comments make it seem like all it

takes to become a great developer is being smart.
2.	 Following up on the above point, these remarks devalue the

countless hours of work that are required to learn development.

Do You Have to Be a Genius to Be a Developer?

[12]

The running man
I'm going to get off my soap box for a moment and discuss the life of Steve
Prefontaine. If you've never heard of him before, Prefontaine was one of
the world's greatest runners during his time. Before tragically dying in a car
accident at 24 years old, he had already broken seven track world records.

During his climactic rise to success, many people would try to compliment
Prefontaine by saying how talented he was, and by calling him a prodigy, such
as on the cover of Sports Illustrated.

However, he was famous for getting furious at people for this type of
statement. He said that his success had literally nothing to do with talent. In
fact, he said he wasn't born with any innate ability as a runner. Instead he
credits 100% of his success with his legendary work ethic.

Do you have to be a genius to be a
developer?
It's important to take the same approach that Prefontaine took as developers.
If you fall into the trap of thinking that only geniuses can become good
coders, it will most likely lead to quitting when tasks become challenging.
This is because our minds constantly are searching for ways to work less. And
if you believe that being a genius is a requirement for development, you will
have a built-in excuse for faltering on your developer learning journey.

The way the mind works
In a comprehensive educational study published in Scientific American
(http://www.scientificamerican.com/article/the-secret-to-
raising-smart-kids1/), kids were broken into two groups and taken
through some academic assignments. Both groups scored around the same
for the assignments. One of the groups were praised by their parents and
teachers, and the focus of the compliments centered around how smart and
talented the kids were.

The second group of students were complimented in a different
manner. Instead of complimenting students on their innate ability, students
were complimented on how hard they worked.

After going through this cycle of compliments, the same two groups of
students were presented with new, and very challenging assignments.

http://www.scientificamerican.com/article/the-secret-to-raising-smart-kids1/
http://www.scientificamerican.com/article/the-secret-to-raising-smart-kids1/

[13]

Chapter 3

The first group of students, the ones that had been told that they
were brilliant, ended up giving up and not completing the tasks that were
assigned to them. However, the second group of students, the ones that
were complimented on their hard work, performed dramatically better than
group 1.

The reason
So why did two groups of students have such different results when, by all
appearances, the students had the same level of actual skill?

The researchers concluded that the students from group 1 felt like
the top priority was maintaining their genius status. So, they quit the second
assignment early because they didn't want to look bad and tarnish the genius
label that they had been given.

However, the second group of students didn't feel the pressure
to maintain a genius status. Instead, they wanted to maintain their new
reputations as hard workers. With this mindset, the second set of students
worked through the challenging topics instead of giving up.

A smarter approach
So, instead of taking the mindset that you need to be a genius to become a
developer, take the mindset that best developers are also the hardest working
developers. With this approach, your potential for skill is literally limitless.
You are 100% in control of how good you will become as a coder. And your
success will completely be determined how hard (and how smart) you are
willing to work.

[15]

4
How to Study

and Understand
Complex Topics?

When I was younger I used to struggle learning a new or difficult subject,
and over the years and about a decade of university and grad school have
helped me put together a strategy for how to study and understand complex
topics. Typically, I apply this learning system to subjects such as algorithms
and software engineering; however, it can be applied to any topic.

While there is a near infinite set of study strategies out there, I like
this approach because it utilizes a divide and conquer strategy, focusing on
breaking a complex topic into easy-to-understand components, and putting
the pieces back together at the end to see how they all work together.

A system for how to study
Let's take a case study example: understanding how logarithms work.
Logarithms are used throughout the fields of mathematics and computer
science; however, unless you use them regularly it's easy to get rusty on them:

1.	 The first task that I will do is take a piece of paper and write
Logarithm in the center and circle it.

2.	 Next, I'll go to a comprehensive post on the topic, such as one on
Wikipedia. When reading the first sentence, I come across a few
terms that are a bit fuzzy:

°° Inverse operation
°° Exponentiation

How to Study and Understand Complex Topics?

[16]

I will stop reading the logarithm article and go and read those two
articles until I feel comfortable with what they represent. After I
feel good about those two items, I write them as their own circles
that connect to the Logarithm circle. I will also add any examples
that will help me understand what the terms mean if necessary.

3.	 Next, I'll go back to the original Logarithm post and keep going
through the article repeating this process until the entire page is
filled with a mind map that explains each component that makes up
logarithms and how they work together. This may include base case
examples, such as:
64 = 2^6 is the same as log 2 (64) = 6

If this seems like a dead simple approach to study…it is. The goal of
studying is to learn a topic, and one of the easiest ways to understand a
complex subject is to break it into easy to comprehend components. For
example, if you're trying to understand an advanced algorithm in computer
science from scratch, you may feel a little intimidated.

However, if you break the algorithm down into small enough
components you'll see that it's essentially a process of steps made up of
connecting simple modules such as loops, manipulating variables, and using
conditionals. A problem is only hard when you try to think of it as a whole.
However, any concept can be understood if you simplify it down to easy to
comprehend pieces.

Obviously, the more complex the topic, the longer it will take to
deconstruct; however, I am a firm believer that anyone can understand any
topic assuming they dedicate themselves and put the work in. I hope that you
can leverage this mind mapping process to understand complex topics and
that it will help you learn how to study properly and truly learn.

[17]

5
Effective Study

Practices for
Developers

Let's imagine that you're back in school and midterm exams are coming up.
How would you study? Some common approaches might be:

•	 Re-read the study materials or lecture notes
•	 Highlight and memorize the key terms
•	 Go over your notes constantly until test day comes

Those all sound like effective study practices. However, cognitive
research has shown that many of the traditional study patterns that students
have followed for decades simply do not work.

I didn't make up that list of study patterns. That's exactly what I used
to do in preparing for exams. However, I discovered (after failing a number
of tests) that these strategies failed miserably when it came to helping me to
truly learn new concepts.

Why traditional study habits don't work
This type of approach to studying doesn't work because our minds don't
function like computers. A computer can take in information and then spit it
back out. However, our minds are more relational in nature.

By relational in nature, I mean that our brain functions like a
graph-based network. If new information attempts to enter the brain
without being connected to any of our previous knowledge, it will simply
be rejected.

Effective Study Practices for Developers

[18]

For example, let's imagine that you are new to learning programming. If
you simply run through a list of programming terms and syntax rules, you
might memorize them in the short run.

However, because your brain hasn't been properly introduced to the
concepts, it will eventually eject the information, viewing it as useless since
it's not related to the rest of your view of the world.

However, imagine that you take a different approach. In this new, more
enlightened approach, you work with your brain and allow it to connect each
of the new programming concepts that you're learning to knowledge and
experiences that you already have.

An effective study practices case study
Whenever I'm teaching a new programming concept to students, I try to draw
a fitting analogy to a real-world concept. This process is called reification and
I view it as one of my most important tasks as a teacher.

Let's imagine that you are learning about the MVC (Model, View,
Controller) design pattern in software development. You could take the
approach of trying to memorize each of the roles of the Model, View, and
Controller. However, that strategy wouldn't help you answer questions related
to how each of the components work together. And if you memorize quiz
questions and answers, you probably will have issues answering anything that
you haven't memorized.

The reification example
What if instead of trying to memorize key terms about the MVC pattern you
focused on drawing a real-world analogy to the process? My favorite way to
understand this type of architecture is comparing it to a restaurant:

•	 Model: The model is the chef in the kitchen. In the same way that
a chef prepares the meal for customers, the model works directly
with the data for the application.

•	 Controller: The controller works like a restaurant waiter. In an
application, the controller's role is based on taking requests and
managing communication between the model and the view. This is
much like a waiter who takes customer orders, communicates with
the chef, and eventually brings the food out to the table.

[19]

Chapter 5

•	 View: The view is like the table that a customer is sitting at. It
doesn't do much besides provide a platform for placing the food on.
This is exactly like how the view should operate in an application. If
built properly, a view should simply be a place where data is shown
to users.

Do you see what we just did? We learned about the MVC design pattern
in a way that our minds can actually comprehend. I could fall out of bed and
recite back the role of each component of the MVC architecture, not because
I spent countless hours trying to memorize them, but because I connected
the concept to my real-world experiences.

The hard way
Over the years I've concluded that if studying is easy…I'm doing it wrong. I
used to follow study pattern of:

1.	 Read
2.	 Memorize
3.	 Repeat

This was partly because it was easy. It wasn't mentally taxing to sit down
and read through a textbook or my notes. However, research is proving that
this type of study habit is not only ineffective, it is also damaging.

Additional negative effects
How is it damaging? If you have followed this type of study system you know
one thing: it takes time. This time spent reading and memorizing could have
been used in countless other ways that would have proven more effective
in the long run. And when it comes to studying, time is one of the most
valuable assets that you have, so wasting it is akin to an educational felony.

The comprehensive study system
In addition to the process of reification, there are a number of other study
strategies that research is showing to be more effective than traditional study
practices. In their book Make It Stick, cognitive psychologists Brown, Roediger,
and McDaniel give the following recommendations for studying:

•	 When learning from a textbook, use the key terms from the back of
each chapter to test yourself.

Effective Study Practices for Developers

[20]

•	 List out key terms and use each one in a paragraph; this will test to
see if you understand a concept outside of the realm of how the
textbook or instructor supplied it.

•	 While reading new material, convert the main concepts into a series
of questions and then go back and answer the questions when
you're done reading the chapter.

•	 Rephrase the main ideas in your own words as you go through the
material.

•	 Relate the main concepts to your own experiences, much like the
reification process we've already discussed.

•	 Look for examples of key concepts outside of the text. When I'm
learning a new programming language I never rely on a single source.
If I come across a concept that doesn't make sense I'll usually
review 2- 3 other sources that provide alternative explanations to
what I'm attempting to learn.

Summary
In summary, when it comes to effective study practices, make sure that you're
making the most of your time. Remember that the most important goal with
studying is retaining knowledge so that you can use it in real-world scenarios.
And the best way to accomplish this goal is by following strategies that work
with your mind's learning patterns.

[21]

6
Defining Deep Work

and What It Means for
Developers

Standing on the podium, Michael Phelps stares at the American flag and
listens to the National Anthem after winning gold once again. After watching
Phelps win 21 gold medals (at the time I'm writing this), it's natural to ask:
"Was he simply born for greatness?" I don't know. Yes, his body type has
helped him take advantage of physical elements of swimming.

However, there are millions of individuals with his height and wingspan
who watch him at the Olympics from their couches every four years. There
is no magical swimming gene that Phelps was born with. Instead, the secret
to his success can be found in his discipline to a practice called deep work.
Muscle Prodigy (https://www.muscleprodigy.com/michael-phelps-
workout-and-diet/) research claims:

"Phelps swims minimum 80,000 meters a week, which is nearly 50 miles. He
practices twice a day, sometimes more if he's training at altitude. Phelps trains

for around five to six hours a day at six days a week."

If Malcom Gladwell's 10,000-hour rule is even close to being accurate,
Michael Phelps surpassed this benchmark years ago.

In case you're wondering how this applies to coding, don't worry, I
haven't forgotten that this is a show for developers.

https://www.muscleprodigy.com/michael-phelps-workout-and-diet/
https://www.muscleprodigy.com/michael-phelps-workout-and-diet/

Defining Deep Work and What It Means for Developers

[22]

Definition of deep work
As you go through these chapters, you may discover that one of my favorite
books is Deep Work by Cal Newport. (The fact I referenced the book a few
dozen times may given it away). So, what exactly is deep work? A dead simple
explanation of deep work is:

"Deep work is the ability to focus without distraction on a cognitively demanding
task."

Whether you believe that swimming is cognitively demanding or not, I
believe that Phelps's example is fitting. If you have ever attempted to train
with the level of intensity that Phelps does, you can attest to the mental toll
that training takes. So essentially, deep work can be simplified by saying that
it has the following characteristics:

1.	 It's a real-world action. It's not a theoretical concept, it's something
that you can practically implement.

2.	 To work properly you have to eliminate 100% of your distractions.
3.	 The task has to be challenging.

The deep work strategy for developers
Let's dissect the definition of deep work and build a practical strategy for
how it can be implemented from a developer perspective. Let's imagine that
you want to learn about the computer science topic of asymptotic analysis. If
you've never heard of asymptotic analysis, don't worry, you can trust me that
it qualifies as a challenging topic.

Taking action
Let's start with the fact that deep work is an action. With that in mind, you
will need to make a clearly defined time slot. If you have never practice deep
work studying before, I'd recommend limiting the slot to around two hours.
As you'll discover deep work is a draining task. For our example, let's imagine
that you have designated 9 AM to 11 AM as when you're going to study
asymptotic analysis.

Removing distractions
With your time slot set, now it's time to remove any and all potential
distractions. Let me be 100% explicit; this means:

1.	 You cannot check your email.
2.	 No phone calls. In fact, put your phone in airplane mode to ensure

no one calls or text messages you.

[23]

Chapter 6

3.	 Don't even think about checking Instagram, Facebook, Twitter, or
Tinder. All your swipe rights will have to wait for a few hours.

If I missed any distractions you can add them to the list. It may also help
to listen to classical music to block out any potential sound distractions while
you study.

Study hard and smart
Now that you have dedicated a few hours to studying asymptotic analysis and
have removed all your distractions, it's finally time to get down to business.
If you think that now you can simply start reading a few Wikipedia posts, I'm
sorry, that won't earn you a deep work badge.

For deep work to be truly effective, it has to be difficult. If I was learning
about asymptotic analysis for the first time and wanted to practice deep work
while studying it, I'd take the following approach:

1.	 I'd begin by reading a number of online resources on the subject.
2.	 Next I'd watch an online lecture while taking notes.
3.	 I would then find practice exercises where I would attempt to figure

out problems from scratch.
4.	 Next, I would write a blog post or record myself teaching the

concept.
5.	 Lastly, I would have another student or instructor review my

teaching and exercises to ensure that I understood the concept
properly.

Do you see how much more comprehensive this type of studying is?
Even if you had never heard of asymptotic analysis before your deep work
study session, you would be fluent in it after you were done.

Multiple sessions
When I mentioned earlier how you should limit your deep work sessions to
around 2 hours, I don't mean that you can understand any topic in that period
of time. Some complex topics may take days, weeks, months, or years to
properly understand. So, it is completely fine to spend a number of sessions
working through the same concept. If you are going to do this, I recommend
that you make notes for what you were doing when you stopped. This will
allow you to pick up right where you left off.

Defining Deep Work and What It Means for Developers

[24]

Summary
I hope that this has been a helpful introduction to what deep work is and how
you can practically implement it as a developer. If you want to learn more
about the topic I suggest that you pick up Newport's book. It will give you a
great set of tools for learning how to use deep work to constantly improve
as a developer. When it comes to learning, deep work is the closest thing you
can get to steroids. Good luck with the coding!

[25]

7
Task Switching Costs

for Developers
In this chapter, I'm going to discuss the concept of task switching costs.
Task switching, commonly referred to as multitasking, can be detrimental to
your performance as a developer and can even lead to errors in your projects.
Our world has changed dramatically over the past decade, whether for good
or bad is not a topic we'll discuss in this chapter. However, one thing is sure:
we are constantly bombarded with distractions.

As I was researching this chapter, I received over a dozen emails, 7
Snapchat messages, 30 notifications on Instagram, 7 Twitter notifications, 5
Skype instant messages, and surprisingly only 9 text messages. If you were
counting, that's around 72 various notifications that were pushed to me in the
past two hours. Beyond that, I researched this chapter at a coffee shop filled
with potential distractions.

So exactly how bad are distractions? Research from Gloria Mark
(https://www.fastcompany.com/944128/worker-interrupted-
cost-task-switching), who is a Professor in the Department of
Informatics at the UC Irvine, shows that it takes, on average, 23 minutes and
15 seconds to get fully back on task after being distracted. That's a very, very
bad thing when it comes to productivity; however, I've seen it myself, I've lost
track of how many times I'll be in the middle of a development project and
receive an email on a completely unrelated matter and instead of ignoring it
and continuing to work I'll read it and then spend time working on another
task before returning to the project.

This may not sound like a major issue, except that when I come back
to the project, I don't pick up from where I left off. Instead I have to
re-familiarize myself with what I was working on the moment that I was
distracted. If the problem was complex, it may take me even longer than the
23 minutes in order to get back in the zone and working on the project.

Task Switching Costs for Developers

[26]

So, in a world filled with emails and social media distractions, how can
anyone get any real work done? After reading Cal Newport's book Deep Work,
I started to put together some practical ways that I can work efficiently and
still stay in touch with the world.

A system for decreasing task switching
costs

1.	 If I'm working on a project, I set aside a specific amount of time
that morning. For example, if I'm working on Project X for 2 hours,
I will put it on my calendar and say that from 9 AM to 11 AM I'm
working on Project X.

2.	 I remove any and all negative distractions during that time. That
means I'll usually put my phone on Airplane mode so I don't
receive any social media notifications. Notice how I said negative
distractions? I made this distinction because in the same research
report from UC Irvine it revealed that not all distractions are bad.
If the distraction is related to the task that you're working on,
it can actually be beneficial. For example, if I'm working on the
routing engine for a web application and the client messages me
to discuss the application, what they say may actually influence the
work that I'm doing or give me an idea on how to refine it. That's
a good distraction and it's why I typically will keep my email and
instant messenger on while I'm working. However, if I see that
the Skype message or email is coming from another client or is
completely unrelated I'll simply ignore it. I do know many Deep
Work proponents who would say that 100% of your distractions
have to be eliminated; however, that's not always practical.

3.	 Have a clear conclusion for whatever you are studying or working
on. If you don't establish an end for the task, your mind is going
to be prone to wander in the same way that a runner without a
finish line won't be able to effectively compete in a race. The
research around task switching costs also reveals that even planned
distractions are harmful, so if you are planning on working for 2
hours straight on a project, don't plan any breaks in the middle of
the task. Maintain your focus throughout the allotted time and then
you'll be free to relax afterwards.

I hope that this has been a helpful overview of task switching costs and
that you now have some practical methods for staying on task.

[27]

8
How to Use Willpower

Limits Instead of Letting
Them Use You?

There are a number of common characteristics among great developers.
However, few virtues are as important as willpower. World class coders
constantly are forced to work through complex concepts, and without
willpower they would give up before experiencing any kind of breakthrough.
In this chapter, I'm going to walk through the topic of willpower limits.

This will include a practical walk through on:
•	 What willpower limits are
•	 How you can improve your personal willpower limits
•	 A plan for being intentional about managing willpower limits

What are willpower limits?
For graduate school I have performed extensive research on the topic of
task switching costs. While studying about task switching, I came across the
topic of willpower limits and how they related to performance. Essentially,
the study of willpower limits says that individuals have a limited amount of decision
making power each day.

How to Use Willpower Limits Instead of Letting Them Use You?

[28]

How many decisions do you make each day?
If that sounds weird to you, don't worry, I had a hard time with the concept
right away too. So, let's go through a typical day for a developer. What are
some decisions that you make each day?

•	 Deciding to get up or press snooze on the alarm clock
•	 Picking out what to eat for breakfast
•	 Selecting your clothes for the day
•	 Deciding if you want to go to the gym, a run, or walk around and

play Pokémon Go
•	 Deciding on which route to take to work
•	 And the list goes on and on

Notice how none of those items are related to development at all. And
in fact, those were all common decision items that you have to make each
morning before you even get into work. If you actually count the number
of decisions that you have to make each day, you'd discover the number is
probably in the hundreds or even thousands. If you include subconscious
decisions such as staying in your lane while driving, the number is most likely
in the millions every day!

Why is willpower important?
Hopefully, I've helped you see all of the decisions that we make daily. So
why do willpower limits matter when it comes to making decisions? Mainly
because without willpower the quality of our decisions will suffer dramatically.

Imagine yourself without willpower for a second. With no willpower,
you:

•	 Would eat whatever you wanted, harming your overall health
•	 Wouldn't study, thus never improving as a developer
•	 Would recklessly spend money on whatever popped into your mind,

forcing you into debt and eventually bankruptcy

It's not a pretty picture, which is why willpower is so important when it
comes to making decisions. Willpower gives you the self-control to make the
right decision, even when it's not the easy one.

[29]

Chapter 8

Are willpower limits real?
So, with all of that in mind, is there really a limit to the amount of willpower
you have each day? I recently went through the book, The Willpower Instinct,
written by Dr. Kelly McGonigal (no relation to Professor McGonagall that I'm
aware of). In the book Kelly presents research and countless case studies that
clearly show that we do indeed have a limit to our daily willpower.

Imagine that your willpower is like a bottle of water. Each morning you
start with the bottle filled to the top. And each time you make a decision or
have to use willpower, such as deciding to get up instead of hitting snooze on
the alarm clock, a little of the water gets poured out. As you go through your
day you'll eventually "pour out" all of your stored-up willpower.

When the willpower well runs dry
So, what happens when the willpower well runs dry? Typically, it leads to poor
behavior, such as:

•	 Procrastination
•	 Making bad decisions
•	 Poor performance

If you find yourself experiencing these types of thought patterns, it
could very well be due to hitting your willpower limit too quickly.

I know from experience that I typically write my best code in the morning
when I'm fresh, whereas I find myself running into more development bugs
when I work later in the evening. When I realized this pattern, it made me
believe even deeper in the concept of willpower limits and how they can
negatively affect performance.

Saving up willpower
With all of this in mind, the concept of saving up our willpower reserves
seems like a pretty important concept. Let's go back to the water bottle
analogy. If you were in a desert and had a limited supply of water, what
would you do? I think the obvious answer is that you would only use the
water when it was needed.

So, if we treat our willpower like a precious resource, it would make the
most sense to use it on our most important tasks each day.

What's a practical way of doing this? Let's walk through a simple but
practical example.

How to Use Willpower Limits Instead of Letting Them Use You?

[30]

One outfit to rule them all
If you watch my show on CronDose you may have noticed something…
You get a gold star if you noticed that for the last 13 weeks (14 weeks if
you include this week) I've worn the same shirt. Please note, it's not the
same exact shirt. When I decided to experiment with the one outfit concept I
purchased eight identical shirts.

So why am I doing this? By wearing the identical outfit each day, it
completely removes the set of decisions that I would normally have to make
each morning when I'm getting dressed. I no longer have to pick between
100+ shirt and jeans combinations. And it has the added benefit that it's quite
comfortable.

Does wearing the same outfit each day really help improve my
performance? I can't scientifically say one way or the other. Most likely it has
a negligible effect. However, it has a much more powerful benefit than simply
removing my morning outfit decision. Each day when I put this shirt on it
reminds me that I have a limit to my willpower and that I need to use it wisely.
And having that mindset does make a difference.

Being a copycat
As a side note, the idea of wearing the same outfit is not an original idea. Steve
Jobs, President Obama, and Mark Zuckerberg all have a similar ritual and
that's where I got the idea from. If some of the most successful individuals
in the world make it a priority to remove any and all unnecessary decisions, I
thought it would be a good idea to try out.

Focusing willpower
Wearing the same outfit each day is a good idea for taking care of some
low-hanging decision-making fruit, but it's only the beginning. To really
ensure that you get the most out of your willpower each day, you need to be
intentional with how you use it.

For example, I've talked before about how I have a daily list of to-do
items that I follow religiously. To ensure that I'm getting the most out of my
day, I always schedule my most challenging tasks in the morning. By taking
this approach, I don't risk running out of willpower while I'm working on a
vital project. From there I save my lower priority to-dos, such as reading, for
the end of the day.

By following this pattern, I've noticed a significant improvement in my
work over the past few months and I also feel more relaxed at the end of
the day.

[31]

Chapter 8

Summary
I hope that this has been a helpful discussion on the topic of willpower limits
and that it has given you some ideas on how to manage your own willpower.

[33]

9
Cramming Versus

Consistent Study and
a Study System that

Works
In this chapter, I'm going to discuss the concept of cramming versus
consistent study. And don't change the channel if you're not in school, if
you're a developer, or if you want to learn software development the learning
never ends.

On an average, I typically go through over a dozen books at the same
time and around 4-5 various online courses because the deeper I get into
development, the more I realize how much more I really need to understand.

With that in mind, I think the topic of cramming versus consistent study
habits should be beneficial since the way that we study is just as important
as the volume of how much we study. Most of us have been in the situation
where we put off studying for too long and before we know it an exam is
upon us that we have to cram for. If you can remember back to the last time
that you crammed for an exam or project, how much of what you studied
can you remember today?

If you're like me, probably not much. While I was in college I was very
bad at this and ended up cramming for many of my midterms and finals, with
mixed results from a grade perspective. However, once I got to computer
science graduate school at Texas Tech I ran into a problem—cramming
didn't work at all.

Cramming Versus Consistent Study and a Study System that Works

[34]

Software development concepts build upon themselves, so what was
taught in the Fall semester would be the foundation for even more complex
topics that would be discussed in the Spring. In the Fall, I would learn about
logic programming and in the Spring, I'd have a course where I had to build a
production application using the Prolog programming language.

Using cramming as a study technique resulted in me having very poor
retention of what I was learning, which meant I had to go back and relearn
the topics that I had already forgotten from the previous semester. I don't
have to tell you how stressful this made my academic life, not to mention the
fact that I was working as a full-time developer at the same time. So, I knew
that something had to change and I put together a system for helping me
retain what I learned each day through a consistent study pattern. Much like
a function in programming, my system for consistent study takes in a few
parameters:

•	 Scheduling
•	 Fighting procrastination

For scheduling I created a to-do list, segmented by day, for what I
needed to study, which included academic papers, books, and watching online
lectures. I put these in a drag and drop to-do list on Basecamp. After I studied
a particular item I would drag it up to the next day's to-do list so I would have
a visual cue that I was done for that day.

For me, I would procrastinate studying because staring at the list of the
books I had to read was intimidating, and this was mainly due to the fact
that I didn't set any practical goals for studying. If you stare at a Discrete
Mathematics textbook and tell yourself to study, it's natural to want to put it
off; however, if you set small goals, you're less likely to put it off.

With that in mind, I'll put a note, such as read 3 pages of my Information
Retrieval textbook, and 3 pages doesn't sound nearly as scary as the vague
"just study" mindset. The interesting result in making small, manageable
goals for studying is that not only does it help curb procrastination, but
typically I will also read much more than the 3 pages. There have been plenty
of times where I set of goal of a few pages of a book and ended up reading
a few chapters.

With all this being said, there are times where I plan deep work study
sessions. In one of these sessions I will set aside 2-3 hours of time to sit
down, without distractions, and work through a complex topic. However, I
always limit the time to no more than 2-3 hours per day, and I will usually
not study any other topics on these days since I'm usually mentally drained
by the end of them.

[35]

Chapter 9

I hope that this chapter has been helpful and will help you develop your
own system for studying so that you can retain when you learn and be able to
use it when it matters most.

[37]

10
Is Reading Important

for Developers?
Throughout this book, I have written quite a bit about improving as a
developer, specifically discussing various ways to study from a practical
perspective. However, in this chapter, I want to specifically answer the
question: is reading important for developers?

The short answer to the question is: yes! However, as computer scientists
it's poor form to simply take someone at their word. So, let's dive into why
reading is critical to improvement.

Why is reading important for developers?
Let's analyze a few key statistics with regard to reading.

CEOs and reading
How many books do you currently read a year? If your answer is that you're
too busy to read entire books, let me ask you another question: are you busier
than the CEOs of the world's most successful companies? Probably not.

However, research from the Rype Academy (http://rypeapp.
com/blog/5-easy-ways-to-read-more-books-and-double-your-

knowledge/) shows that CEOs such as Elon Musk, Mark Cuban, and Peter
Thiel read around 60 books a year! That's 4-5 books each month.

Compounded learning
So why do some of the most successful individuals in the world take the time
to go through so many books? At a high level it may seem excessive, but if
you truly believe that knowledge is power, wouldn't it make sense to dedicate
whatever time is needed to attain more knowledge?

http://rypeapp.com/blog/5-easy-ways-to-read-more-books-and-double-your-knowledge/
http://rypeapp.com/blog/5-easy-ways-to-read-more-books-and-double-your-knowledge/
http://rypeapp.com/blog/5-easy-ways-to-read-more-books-and-double-your-knowledge/

Is Reading Important for Developers?

[38]

If you look at reading like a form of linear learning, then yes, reading
would be a waste of time. Linear learning would be a 1 to 1 transfer of
knowledge. For example, if it took the author of the book 10 years to research
a topic and it took me 10 years to go through the book, that would be pretty
pointless. At the end of the day this type of reading would be pointless.

However, I look at reading like it's compounded learning. What is
compounded learning? Good question! Compounded learning is the process
of taking the knowledge from an individual, but not having to spend the
same amount of time that it took that individual to research the topic.

A compounded learning case study
For example, imagine that you read a book on How to Become a Better Developer.
The author of the book had to spend years researching the topic (assuming
that it was a well-written/well-researched book). However, if you go through
the book in a few weeks, that means that you were able to gain years worth
of knowledge in a few weeks!

Research (http://blogs.plos.org/neurotribes/2011/06/02/
practical-tips-on-writing-a-book-from-22-brilliant-

authors/) shows that top authors will spend a minimum of two years
researching a book. And that research time doesn't take into account the fact
that authors draw on their entire lifespans to write a book. All of this means
that each time you read a book it's as if you were able to gain a lifetime's
worth of experiences and wisdom from the author.

The CEO who didn't have time to read
A few years back, I was offered a CTO position for a startup in New York
City. The job had a good salary, great stock options, and an excellent product.

However, during a dinner meeting with their Founder/CEO, I asked
him about a book I had finished reading that discussed best practices for tech
startups. He said that he had never heard of the book.

This wasn't a problem, there are millions of books and I don't judge
someone for having different literary tastes than myself. However, the CEO
followed this statement up by saying that he didn't have time for reading. He
was too busy building the business.

The CEO's view of reading resonated with me during the job
consideration process. And I ended up turning down the job. If the CEO
didn't dedicate time to read and learn from others, that means that he would
be relying solely on his own knowledge and life experiences. And even the
most brilliant business person will fail if they think that they already have all
the right answers.

http://blogs.plos.org/neurotribes/2011/06/02/practical-tips-on-writing-a-book-from-22-brilliant-authors/
http://blogs.plos.org/neurotribes/2011/06/02/practical-tips-on-writing-a-book-from-22-brilliant-authors/
http://blogs.plos.org/neurotribes/2011/06/02/practical-tips-on-writing-a-book-from-22-brilliant-authors/

[39]

Chapter 10

My reading system
It's one thing to say that reading is important; it's another thing entirely to
go through a large number of books on a regular basis. With that in mind
I've developed my own reading system. This system also takes into account a
number of complaints that I've heard others say about reading.

The reading schedule
First and foremost, I schedule a set amount of time each day for reading.
Usually, this equals around 1-2 hours; however, on weekends this number
can be double that number. At any given point of time, I'm usually going
through a dozen books ranging from mind/skill hacking through technical
programming books.

Audio books are books too!
I'm not sure where the stigma of audio books came from. However, with my
travel schedule, I've discovered that audio books are an invaluable tool in my
learning arsenal. Obviously, you can't go through programming books via
Audible. However, you can go through skill and business-based books. And
I personally have hundreds of books in my Audible account, many of which
I've gone through multiple times. In fact, many of the books I've discussed
and quoted from were books I listened to rather than read.

Books are too expensive
One of the top complaints I hear from students is that books are too
expensive. My response is always: if you're not willing to sacrifice to improve,
then you're not going to attain your goals. And that includes sacrificing
financially.

With that being said, there are ways that you can go through a large
number of books, even if you're on a budget. To start off, your local library
has countless books that you can learn from each day. And assuming that you
bring the books back on time, a library is a completely free option. I have a
library within walking distance of my home in Scottsdale, AZ, and I will visit
it a few times a week to discover new books.

Additionally, you can sign up for book memberships. Safari Books
Online offers an All You Can Read package. I have this membership and
have gone through a large number of technical programming books in their
database over the years.

Is Reading Important for Developers?

[40]

Summary
In summary, is reading important for developers? I believe that it is. Reading
enables you to activate compounded learning. And if you have the chance
to gain years' worth of knowledge and experiences in a few weeks, it seems
insane to pass up on an opportunity like that.

[41]

11
Learning How to Code

– Getting Past Skill
Plateaus

A common pattern I see with students learning how to code is:
1.	 Quickly learning a massive amount of information.
2.	 Then running into a seemingly insurmountable wall. In this phase,

the student typically feels like they've reached the zenith of what
they're going to be able to accomplish about development.

This second phase is called a plateau. In this chapter, we're going to walk
through strategies for getting past skill plateaus.

It's important to understand that everyone follows a similar pattern when
it comes to learning a new skill. This means that you will experience times
where it seems like every day you're soaking in a wealth of new information.
But it also means that you will run into times where it feels like your mind will
limit you from learning anything new.

What is a learning plateau?
When it comes to hitting a learning plateau, it's important to look at the
potential root causes for why it's occurring. It's been my experience that
no two plateaus are the same. And until you've diagnosed why you're not
learning, you won't be able to move on to your next level of skill.

Learning How to Code – Getting Past Skill Plateaus

[42]

False ceiling
Before I continue I want to reiterate something: you will never reach a point
where your level of skill is maxed out. Maybe if you're a professional athlete and
getting older, then your body is naturally going to decrease in performance.
But when it comes to concepts such as understanding development, if you
continue to dedicate yourself and if you're willing to listen to experts, your
skill will never reach a peak.

Getting past skill plateaus
Over the years I have witnessed a few key reasons why individuals (and
myself) run into skill plateaus.

Proper information/resources
When a student lacks access to proper information, it makes learning a more
arduous process. Imagine a talented developer in high school who had been
relying on her teacher (who had limited skill). In cases like this, the student
will need to find additional resources, such as online courses, that will help
teach her concepts she's never been taught before.

Best practices
During a phase of the learning cycle when best practices are the focus,
students may feel like they are hitting a learning plateau. I remember when
I was first learning about test-driven development. The concept seemed
counterintuitive. I would spend 2-3 times the amount of time on a feature.
And this became incredibly frustrating. It felt like I wasn't learning anything
new because my new knowledge wasn't affecting anything on the screen.

However, this phase isn't actually a skill plateau. There are many times
where developers need to take a step back and focus on quality over quantity
when it comes to building applications.

My advice for going through this phase is to embrace it. Be patient.
As soon as you have a firm understanding of how the best practices can
be utilized, you'll be able to move onto learning new concepts. The only
difference is that now you will be able to leverage your new skills, the result
being that you'll be a more refined developer.

[43]

Chapter 11

Challenging/new tasks
In my experience, the main cause of students hitting a skill plateau is when
they stop challenging themselves. If you remember back to when you were
first learning development, it seemed like your knowledge was skyrocketing
each day.

The reason for this was because each of the concepts you were learning
were completely new to you. However, after a certain period of time it seems
like it's natural for us to want to become comfortable. Instead of trying to
learn something new each day, we simply try to duplicate the work that we've
done up to a certain point.

This approach is less taxing mentally. However, it has the nasty side
effect of limiting how we improve. Whenever I feel like I'm getting into a rut,
I will look at popular websites and I'll start to put together a list of features
that I want to learn how to build. From that point, I can put a plan together
for what concepts I need to learn in order to implement them.

Frustration = skill
One of my favorite illustrations of getting past skill plateaus was made by the
calligrapher, Jamin Brown:

Learning How to Code – Getting Past Skill Plateaus

[44]

Notice in this illustration how the learning process is filled with plateaus?
This is a natural component when it comes to improving at any skill.

But also notice that the key to overcoming a plateau is called the
Frustration Zone. I think that's a great name for it. Learning complex
topics is not easy. As you've probably heard countless times, "if it were easy,
everyone would do it".

Becoming a developer can be one of the most rewarding experiences
that someone can have. And part of what makes learning how to code so
fulfilling is how many challenges you'll need to overcome to succeed.

Summary
I hope that this has been a helpful guide and that you now have some practical
strategies for getting past skill plateaus. And good luck with the coding.

[45]

12
Developer Learning

Curve – Why Learning
How to Code Takes

So Long
When it comes to becoming a developer, one of the questions I get asked the
most is: why does it take so long to learn how to code? I've discovered the
answer can be found in research related to learning curves.

What is the learning curve?
The concept of learning curves has been around since 1885. Typically, the
research has been performed in the psychological and cognitive sciences.
However, the concept can be clearly utilized when it comes to learning
development.

Developer Learning Curve – Why Learning How to Code Takes So Long

[46]

The developer learning curve
The following graph shows the standard learning curve. This was generated
by a big data analysis algorithm that analyzed the learning patterns of
individuals in a number of industries. The curve is smooth because it takes
the average learning process and averages the process.

Later in this chapter, we'll take a look at what a learning curve looks like
for a single person. Over the years I've had the privilege of teaching students
how to become developers. I've witnessed this learning curve play out again
and again. And in this chapter, I want to examine the three stages that all
developers go through. Additionally, I'll discuss about how long it takes to
traverse from one stage to another. The three stages that I'll discuss are:

•	 Liftoff
•	 The twilight zone
•	 The zone

Liftoff
Let's start off by taking a look at the liftoff stage. This is an exciting time for
new students. During this time students are immersed in learning skills that
they've never seen before:

[47]

Chapter 12

Because all the topics that students learn during this stage are new, their
expertise skyrockets. I like to call this the liftoff stage because it's easy to
visualize a new student's expertise like a rocket ship soaring into the sky into
places it has never been before. During this time, a student will learn how to:

•	 Configure a development machine
•	 Learn a programming language
•	 Work with various frameworks
•	 Build functional applications

This stage usually lasts for the first 250-300 hours that a developer is
learning how to code. This estimate is based on what I've seen with the
DevCamp bootcamp students and equals around 6-8 weeks of intensive
learning.

As fun as this stage is, it has drawbacks. One of the key problems is
that it can give students false confidence. When they see themselves building
applications that actually work, it's natural to believe that they can dive right
into building production apps for clients. However, they don't realize that
they're about to enter… the twilight zone of learning how to code.

Developer Learning Curve – Why Learning How to Code Takes So Long

[48]

The twilight zone
After the exciting liftoff stage of the developer learning curve, aspiring
developers will enter the twilight zone:

This is a challenging time for students and many students decide to quit
programming entirely during this stage.

So why is this time so challenging? After seeing countless students go
through it, I've discovered that there are a number of contributing factors:

•	 While in this stage, many of the core concepts and commands
haven't cemented themselves in a student's long-term memory. This
results in them having to constantly look up documentation, query
Stack Overflow, and things like that.

•	 During this time, the novelty of simply having an application work
has worn off. Now students are asked to perform advanced tasks
such as:

°° Working with legacy applications
°° Debugging defects
°° Improving performance
°° Building features that they don't have a step-by-step

tutorial for

•	 Additionally, while working through the twilight zone, students are
expected to start implementing best practices. In the launch stage,
the primary goal was to get applications functional.

[49]

Chapter 12

During this next phase, students start learning how to build applications
that can be used in real-world scenarios. This means that a student may
spend five times longer to build an application with the identical feature of
something they created during the launch stage.

This can be frustrating; however, the increased time spent implementing
best practices allow the applications to be scalable and flexible enough to be
used in production. This is in stark contrast to the apps created during the
launch phase that don't adhere to industry standards.

The zone
There is good news though; if a student persists through the twilight zone of
learning they will enter The Zone of the developer learning curve:

This zone is entered usually after around 1,000 hours of study and work.
During this stage, developers have a wide range of features they can build
without having to look up the documentation.

In this stage, when you visit Stack Overflow you'll be answering as
many questions as you ask. And thankfully, learning new concepts will come
easier. The reason why learning is easier at this stage is because you will have
developed a mental model of development.

Developer Learning Curve – Why Learning How to Code Takes So Long

[50]

For example, I recently started working with the Scala programming
language. I've been able to pick up on how to build applications in Scala
dramatically faster than when I started learning C or PHP a decade ago. This
is because I have a decade of knowledge in the development space that allows
me to frame the new concepts. When I read the documentation and see what
it says about data types, I don't have to wonder what a data type is. Instead I
can skip ahead to learning the syntax.

As you'll notice in the developer learning curve, the growth pattern in
this phase is less than the other two stages. As you've heard me say countless
times, learning never ends for developers. However, learning does change.
During this phase, a developer focuses on learning topics such as:

•	 Incremental performance improvements
•	 Building helper code libraries
•	 Refining how application code flows

A unique journey
Throughout this chapter you may have noticed that the developer learning
curve was smooth. However, that's not reality. The reason why the curve was
smooth was because it averaged out the learning path of a large number of
individuals. When it comes to a single student, the learning curve looks more
like the following graph:

[51]

Chapter 12

There are ups and downs throughout the learning cycle. As a student,
you may decide to switch programming languages after a few years (like I did
when I switched from PHP to Ruby around 5 years ago).

Even though you don't have to start back from scratch, it will still take
time to learn a new language or framework. And throughout your development
journey you'll discover plenty of ups and downs. So, don't get discouraged
if you aren't satisfied with your skill level, because I have a secret to tell you:
good developers never feel like they've arrived and are done learning.

Summary
I hope that this has been a helpful guide to understanding the developer
learning curve, and good luck with the coding.

[53]

13
Slowing Down to Learn

How to Code Faster
Nowadays, it seems like everyone wants to do things faster. We want to pay
without taking out a credit card or cash. Social media lets us share images
and videos from our lives in a split second. And we get frustrated if Netflix
takes more than 3 seconds to start streaming our latest TV show series binge.
However, if you want to learn how to code faster, I'm going to present an
odd idea: go slower.

This may seem like a counterintuitive concept. After all, don't coding
bootcamps, even DevCamp where I teach, tell you how you can learn how
to code in a few months? Well yes, and research shows that 8 weeks is a
powerful number when it comes to learning. The Navy Seal training program
specifically chose 8 weeks as its timeframe for conditioning candidates. And
if you search the web for the phrase 8 Week Training programs, you'll find
courses ranging from running 10ks to speaking Spanish fluently.

So yes, I'm huge believer that individuals can learn an incredible amount
of information in a short period of time. But what I'm talking about here is
becoming more deliberate when it comes to learning new information.

Learn how to code faster
If you're like me, when you learn a new topic the first thing you'll do is
either move onto the next topic or repeat the concept as quickly as humanly
possible. For example, when I learn a new Ruby or Scala programming
method I'll usually jump right into using it in as many different situations as
possible. However, I've discovered that this may not be the best approach
because it's very short-sighted.

Slowing Down to Learn How to Code Faster

[54]

Our default mind
When it comes to learning how to code, one of the most challenging
requirements is moving knowledge from our short-term memory to our
long-term memory.

Remember the last time you learned a programming technique. Do you
remember how easy it felt when you repeated what the instructor taught? The
syntax seemed straightforward and it probably seemed like there was no way
you would forget how to implement the feature. But after a few days, if you
try to rebuild the component, is it easy or hard?

If you're like me, the concept that seemed incredibly easy only a few
days ago now causes you to draw a blank. But don't worry. This doesn't mean
that we're incompetent. Instead, it means that this piece of knowledge wasn't
given the chance to move from our short-term to our long-term memory.

Hacking the mind
So, if our default mindset is to forget what we've learned after a few days (or
a few minutes), how can we learn anything? This is where our brain's default
programming comes into play and where we can hack the way that we learn.

I'm currently teaching myself the TypeScript programming language.
TypeScript is the language that is recommended for Angular 2 development,
so I thought it would be a good next language to learn. However, instead of
taking my default approach, which is to slam through training guides and
tutorials, I'm taking a more methodical approach.

Slowing it down
Through my learning path, I'm going through a number of books and video
series. And as I follow along with the guides, as soon as I learn a new topic
I completely stop. I'll stand up. Write the new component on one of my
whiteboards. And actually, write the program out by hand.

After that, I type the program out on the keyboard… very slowly. So
slowly that I know I could go around 4-5x faster. But by taking this approach
I'm forcing my mind to think about the new concept instead of rushing
through it. When it comes to working with our long-term memory, this
approach is more effective than simply flying through a concept because it
forces our minds to think through each keystroke.

[55]

Chapter 13

Bend it like Beethoven
I didn't learn this technique from another developer. Instead, I heard about
how one of the most successful classical music institutions in the world, the
Meadowmount School of Music in New York, taught students new music
compositions. As a game, the school gives out portions of the sheet music.
So, where most schools will give each student the full song, Meadowmount
splits the music up into pieces.

From there, it hands each student a single piece for them to focus on.
From that point, the student will only learn to place that single piece of
music. They will start out very slowly. They won't rush through notes because
they don't even know how they fit into the song. This approach teaches them
how to concentrate on learning a new song one note at a time.

From that point, the students trade note cards and then focus on
learning another piece of the song. They continue with trading cards until
each student has been able to work through the entire set of cards.

By forcing the students to break a song into pieces they no longer will
have any weak points in a song. Instead, the students will have focused on the
notes themselves. From this point, it's trivial for all the students in the class to
combine their knowledge and learn how to play the song all the way through.

From classical music to coding
So, can this approach help you learn how to code faster? I think so. The
research shows that by slowing down and breaking concepts into small
pieces, it's easier for students to transfer information from the short-term to
long-term memory.

A practical system
So, the next time you are learning a coding concept, take a step back. Instead
of simply copying what the instructor is teaching, write it down on a piece of
paper. Walk through exactly what is happening in a program.

If you take this approach, you will discover that you're not longer
simply following a teacher's set of steps, but that you'll actually learn how
the concepts work. And if you get to the stage of understanding, you will be
ready to transfer that knowledge to your long-term memory and remember
it for good.

[57]

14
Mental Models for

Learning How to Code
and Improve as a

Developer
I've talked quite a bit about what it takes to become a great developer. To
achieve a level of mastery, I've discussed a number of criteria and in this
chapter, I want to add a new pre-requisite to the list.

Let me begin by asking you a question. If I showed you some code,
would you be able to tell me in a few seconds if it's good or not? The world
of software development is incredibly complex. However, I've discovered
over the years that the best developers have the uncanny ability to instantly
judge the quality of someone's code.

I spoke to you in Chapter 2, Are Developers Born or Made? – Debunking the
Myth of Prodigies about the notion that prodigies and savants are a myth. But
if this is the case, how can expert developers analyze programs so quickly? To
answer this question, we need to go back to Fake Ancient Greece.

Mental Models for Learning How to Code and Improve as a Developer

[58]

Mental models for the Kouros
I said Fake Ancient Greece because my favorite illustration of mental models
was discovered alongside one of the greatest forgeries in modern art history.

In Malcolm Gladwell's book Blink, he tells the story of the Greek
Kouros. In 1985, the Getty Museum purchased a Greek statue called the
Kouros for over $9 million dollars. Initially, the museum was hesitant to
purchase the statue because there was a significant fear that sculpture was a
fake. Kouros pieces were so incredibly rare, the chances that a legitimate and
well cared for piece had been discovered were slim to none.

However, the museum was willing to take the risk and embarked on a fact-
finding mission. They put the statue through every scientific test available at
the time. And the Kouros passed with flying colors. After going through the
full examination, the museum purchased the Kouros for $9 million dollars.

Art historians from all over the world were flown in for the unveiling
of the Kouros. But something went terribly wrong. The moment that these
specialists saw the statue they knew the Kouros was a fake. Interestingly
enough they couldn't give any actual reason.

They simply knew that something was not quite right. Their
suspicions turned out to be correct and the Kouros ended up being proved to
be a hoax. But how were these individuals able to do what countless scientific
studies could not? It all comes down to mental models.

What are mental models?
In preparation for this chapter, I was discussing the topic of mental models
with a friend and was surprised when she looked at me, confused. After
informing me that she'd never heard of mental models, I decided to add this
section to explain what mental models are. And after that we'll get into how
we can build them to learn development.

A mental model is a mental representation of a specific topic or skill.
You can't create a mental model overnight or with cram sessions. Mental
models are developed through years of repetition and countless hours of
honing a craft.

My Dad is a major league hitting coach for the Houston Astros.
Throughout my life I've been able to watch him instruct hitters on how they
can improve their swings.

[59]

Chapter 14

And I'll never stop being amazed by the fact that he can watch a new
hitter's swing and within a split second pick out multiple ways that the player
can improve. I can tell you that he did not develop this skill in a short period
of time. He has spent more time watching hitters and film than anyone I
know. And over the years he has developed a mental model of what the
perfect swing looks like.

Mental models for developers
OK, so we've talked about art historians and baseball coaches, but how can
we create mental models as developers? You may or may not like the answer,
but it doesn't really matter because it's the truth. Mental models are made
through repetition.

However, repetition by itself isn't enough. For example, if you built an
identical program every day for 10 years you would get really, really good at
building that one application. However, you wouldn't improve as a developer.
I've talked before how medical research shows that doctors who have spent
years practicing on the same types of patient are less proficient than doctors
fresh out of residency. In the same way, as developers we improve when we're
stretching ourselves each day.

You can stretch yourself by doing things such as:
•	 Learning a new programming language or framework
•	 Teaching others how to learn programming
•	 Creating an open source code library and allowing other developers

to use it

Einstein said it best when he said:

"The only source of knowledge is experience."

Summary
If you dedicate enough time each day improving yourself as a developer, you
will be able to truthfully answer yes to the question I posed at the start of
this chapter. You will be able to have the ability to look at a piece of code and
instantly know if it's good or bad. And you'll know that it's not some type of
coding super power; instead, it's a skill that you earned through your constant
pursuit of improving as a developer.

[61]

15
A Developer's Guide for
Hacking Procrastination

to Achieve Success
There you are. Sitting in front of your computer. Staring at a blank screen.
You know you have to work on a code project, but it feels like you're frozen.
The task before you is so intimidating that you don't even know where you
begin. It feels as if you'd rather be doing anything else in the world besides
that task that's staring you in the face.

This scenario is the ugly and all-too-common face of procrastination
that programmers are forced to fight constantly. If this situation sounds
familiar, you're in good company. But if you want to become a professional
developer, you'll need to implement a system for hacking procrastination.
And that's what we're going to walk through in this chapter.

As the lead instructor for DevCamp I get asked questions from students
from around the world. However, one of the most prevalent inquiries I get
from aspiring coders is how to overcome procrastination.

Root causes of procrastination
Before we walk through a system for hacking procrastination, we first
need to dive into the root causes for this negative habit. Everyone is unique,
but over the years I've seen procrastination is typically caused by three
thought patterns:

•	 Perfectionism
•	 Fear of success
•	 Lack of planning

A Developer's Guide for Hacking Procrastination to Achieve Success

[62]

To overcome procrastination and get back on track we'll need to address
each one of these issues. Because if you let any of these mindsets control the
way your mind operates, you will never be able to reach your potential.

Hacking procrastination
I called this chapter hacking procrastination because I think that hacking
is the most appropriate term for what needs to happen to achieve success.
Developers hack applications to build features or fix bugs. In the same way,
we need to hack our thought patterns so that our brains function properly.

Before we go through the system I want to make one concept clear. As
humans, we were made for action. Procrastination is a negative habit that we've
learned through fear-driven thought patterns. To be successful at anything in
life, whether it's development or business, overcoming procrastination is a
requirement.

Hacking perfectionism
Starting off the list of the causes for procrastination is perfectionism. Have
you ever watched a baby trying to stand up for the first time? Babies, who
haven't learned that failure is a bad thing, will spend countless hours trying
to stand up.

Each time they fall down it doesn't seem to faze them in the slightest.
But you won't find a baby that lets perfectionism get in the way of achieving
their goal. Instead, they will keep trying until they can stand up and eventually
walk by themselves.

However, somewhere between the time that we're babies and adults we
develop the thought pattern that we're not supposed to fail. So instead of
trying and failing until we succeed, we simply try to only perform tasks that
we know we can do properly. To hack perfectionism, we have to remove the
component in our brain that is afraid of failing.

If you are a developer learning how to build a new feature that you've
never worked through before? Let me clear something up. You are going to
do it wrong the first time!

And that's 100% fine. If you think that by waiting you are magically
going to learn how to perform the task perfectly, you are sadly mistaken. So,
step one is: embrace failure and remove the requirement of perfectionism.

[63]

Chapter 15

Hacking the fear of success
Next on the list is hacking the fear of success. If you're overcome the trap of
perfectionism, congratulations. However, I've seen just as many developers
get stuck due to the fear of success as the fear of failure.

This concept may seem odd since success doesn't seem like something
that you should be scared of. However, I remember when I was first learning
development. When I was walking through a coding book I would get so
excited when I discovered a new concept. However, then I would freeze. My
mind's first response was:

"If you learn this, then what are you going to do?"

For example, when I first learned how to build a connection to a database,
I put the book down and didn't pick it up until weeks later. By learning the
database concept, it opened up a new and scary new world of all of the new
topics I had to learn after that. All of a sudden, I had to understand:

•	 SQL queries
•	 How to build relationships between database tables
•	 SQL injection requirements
•	 And the list seemingly went on infinitely in my mind

To hack the fear of success, we need to quieten our minds. The fear
of success is really rooted in the fear of the unknown. So, whenever you're
feeling this fear, simply take a step back. Be happy that you have learned a
new topic. And then move onto the next feature or topic.

Don't let your mind run wild with all of the potential, unknown concepts
that you'll need to learn in the future. Like learning anything else, you need to
take it one step at a time.

Hacking the plan
Last on the list for hacking procrastination is creating a practical plan. When
I recognize that I'm procrastinating I now tell myself to look at my plan of
attack. Usually I'll discover that my plan is too general.

For example, if I'm building a payroll application, I may have an item
on my to-do list that says: Build reporting engine. That's a scary feature!
That's the type of item that will stick on my to-do list for weeks without me
taking any action.

To fix this, I've learned that if I break the requirement into a series of
very small tasks I can break the cycle of procrastination. For the reporting
engine feature I can create a series of much smaller, more manageable tasks,
such as:

•	 Create a page for users to access reports
•	 Implement a database query for pulling the reports from the

database
•	 Build a file downloader for reports

When I break a large and scary feature down into small pieces, I instantly
feel better. The feature is no longer scary and I no longer feel like putting it
off until tomorrow. Instead, I am able to simply follow a set of small tasks
each day until the feature is complete.

Summary
I hope that this has been a helpful guide for helping you break the cycle of
procrastination in your own projects and that you will be able to use it to
become a more effective developer. I'll leave you with a quote from the book
The Five Elements of Effective Thinking by Edward B. Burger and Michael Starbird:

"Being willing to fail is a liberating attribute of transformative thinking."

So, put yourself out there, create a practical plan, and stop procrastinating
and start coding!

[65]

16
The Problem with

Procrastination for
Developers

Libraries could be filled to overflowing with books filled on procrastination.
Through my life and career, I have gone through self-help books that attempt
to explain why people procrastinate along with supplying strategies to help
curb procrastination.

And as great as all those books are, no one has been able to describe the
true problem with procrastination better in my mind than Steven Pressfield in
his book The War of Art.

The problem with procrastination
In The War of Art, Pressfield compares procrastination with being an alcoholic.
If you're like me, when I first heard this comparison I was skeptical. I had a
hard time connecting myself pushing off writing a blog post until tomorrow
with an alcoholic passed out on the sidewalk in front of a bar.

However, I chose to continue reading. Pressfield gave procrastination
a name, calling it the resistance. And that was something I could relate to.
Whenever I come across a challenging task, it's as if there is a constant voice
in my head saying:

"Wouldn't this feel great to push to tomorrow?
You'll be excited to do it tomorrow."

The Problem with Procrastination for Developers

[66]

And when I give into the voice, it's as if I took a shot of happy pills. I
instantly feels as through a weight has been lifted off my shoulders and I feel
happy. However, when tomorrow rolls around I've discovered something…
the voice comes right back and it's still encouraging me to push the task off
again.

Instant gratification
After going through this cycle of procrastination for years I finally did
recognize the pattern. And Pressfield was right, procrastinating on tasks
has the same root cause as being an alcoholic. Alcoholics are willing to trade
long-term joy for short-term happiness. By this I mean that an alcoholic will
risk their health, career, and family, all for the sake of the feeling that a drink
will give them at that moment.

This pattern is played out in the mind of all of us when we procrastinate.
When we continually put off tasks for tomorrow, we are trading long-term
success for short-term convenience.

Baby steps to knock out procrastination
I've already presented my system for hacking procrastination. However, I
don't want to describe a problem without giving a solution. Therefore, I will
conclude by saying that the best way I've discovered to fight procrastination
is by taking baby steps.

In his book Mini Habits, Stephen Guise made the concept of performing
one push up a day famous. Guise was a self-proclaimed procrastinator who
despised going to the gym or working out. However, one day he decided
he was going to create the mini goal for himself to perform a single push
up every single day. By following this approach, he realized that the idea of
working out was no longer a scary concept. And therefore wasn't something
to procrastinate.

Of course, doing one push up a day would have limited health benefits.
But what Guise discovered was that after performing the push up he was
usually in the mood for doing more pushups. And eventually, his daily habit
morphed into a full daily fitness regime.

[67]

Chapter 16

Baby coding steps
I've discovered the same approach works with learning and development.
When there is a task that I feel like pushing off, I tell myself that I only have
to work on it for thirty minutes.

By giving myself a doable goal, the task is far less intimidating and
therefore, I don't feel the same resistance and desire to push it off. And
typically, I'll discover that I want to work longer than 30 minutes on the task.
The end result being that I get much more done and I no longer fear my daily
to-do list.

[69]

17
Practical Ways to

Use the Pomodoro
Technique as a

Developer
As we continue to work through ways to hack the developer's mind, the focus
of this chapter is going to be on increasing productivity. Specifically, we're
going to analyze practical ways to use the Pomodoro Technique.

I'm constantly researching new ways to improve my personal
productivity. And through my journey as a developer, a popular approach
that I've discovered is the Pomodoro Technique. This is a process that I've
utilized and I credit it with allowing me to focus on a large number of tasks
each day.

Don't let the weird name scare you away. The Pomodoro Technique is
a dead simple productivity system that focuses on splitting tasks into timed
intervals throughout the day.

Practical ways to use the Pomodoro
Technique
One of the greatest strengths of the Pomodoro Technique is how easy it is
to implement. The process that I follow is:

1.	 Each morning I pick out the tasks that I want to accomplish that
day.

Practical Ways to Use the Pomodoro Technique as a Developer

[70]

2.	 I then decide how long each task will take. The Pomodoro Technique
works on point system. Each time you work through a 25-minute
task you earn a point.

3.	 Typically, I try to earn 10 Pomodoro points each day. This means
that if I have 3 tasks that I know will take an hour each, I will
earn 6 points for those tasks. And it means that I have 4 additional
25-minute slots available for the rest of the day.

Taking a break
Did you notice how I kept saying 25-minute time slots? There is a reason for
the odd number. The Pomodoro Technique places a high priority on taking
scheduled breaks. After completing each 25-minute task, you take a 5-minute
break. During this free time, you can do anything you want. You can get on
social media, you can take a walk around the block, or anything that you want
to do. Just make sure that your break does not exceed 5 minutes.

Also, after you've completed 4 tasks it's recommended that you take a
15-minute break. However, you can tailor your breaks and intervals to what
works best with your schedule. By planning breaks throughout the day, you
will decrease your chances of burn out. And I've noticed that I no longer feel
bad about doing things such as checking my Instagram account or Hacker
News throughout the day, because I can fit my guilty pleasures into my
scheduled free time.

This is one of the aspects that I truly love about the Pomodoro
Technique. Many of the other productivity systems I've tried in the past tend
to lead individuals towards burning out. However, the Pomodoro approach
allows you to have a sense of balance.

Lifestyle versus fads
Have you ever tried dieting before? When I was younger I struggled with
my weight and to help fix it, I tried a number of intense diets. This included
nutrition strategies such as dramatically decreasing calories, or killing off
carbs. However, I noticed that I'd stay true to the diet for a few weeks or even
a few months, but eventually I would fall back into poor eating habits.

Once I recognized this trend I moved to having a balanced approach
to eating. I stopped trying nutritional fads and I transitioned my focus into
eating in a way I felt I could eat for the rest of my life.

I made this change in my nutritional approach a few years ago and it's
completely stopped my roller coaster dieting and weight loss and weight gain.

[71]

Chapter 17

A lifestyle of productivity
In the same way when I was younger I fell into the same pattern with
working on tasks. I'd get excited about working on a project or learning a
new programming language. And I would spend countless hours working on
what I wanted to accomplish.

However, this approach inevitably led to burning out and large stretches
of time where I didn't want to work at all. I look at the Pomodoro Technique
in the same way that I look at having a balanced diet. By limiting the number
of tasks that I work on each day and by implementing planned breaks
between each task, I no longer burn myself out.

Additionally, after I have finished my work for the day and have earned
my 10 Pomodoro points, I feel a sense of accomplishment that I never felt
before. And after work, I don't feel guilty spending time with my family and
friends, because I know that I completed every task that I set out to work on
that day.

Practical implementation
So how can you implement the program? There are a few ways. To start off,
you can simply use the timer on your phone and then count up each of the
tasks/points that you achieved each day. That's how I started off working
with the Pomodoro Technique.

Additionally, there are a number of smartphone apps that have Pomodoro
timers and even allow for creating a task list that you can use as a pick list
for your tasks each day. I like these types of apps because they also give you
historical analytics so you can see how many tasks you've completed each
day. The Pomodoro focus app (https://itunes.apple.com/us/app/
pomodoro-time-focus-timer/id973134470?mt=12) is my personal
favorite (and it's free).

https://itunes.apple.com/us/app/pomodoro-time-focus-timer/id973134470?mt=12
https://itunes.apple.com/us/app/pomodoro-time-focus-timer/id973134470?mt=12

[73]

18
The Power of Making
Mistakes – Learning

by Failing
Let's take a step back in time back to my first semester of Computer Science
grad school. Stepping into my first class I was filled with nervous excitement.
The class was taught by Dr. Gelfond, one of the most respected individuals
in the artificial intelligence sector.

As class progressed I witnessed a disturbing trend. Instead of simply
lecturing us like our other professors, Dr. Gelfond constantly called students
up front to write programs on the chalkboard or to describe a concept he
discussed. This wouldn't be a big deal, except that he made a habit of calling
us up front specifically when it was clear that we did not understand the
concept. Was he cruel? Did he want to make us look ignorant in front of the
entire class?

The secret weapon to mastery – making
mistakes
Actually, the opposite was true. Instead, Dr. Gelfond cared enough about us
that he imparted to us the secret weapon to mastery: making mistakes. Wait,
making mistakes is the opposite of what our mind tells us to do, right? Making
mistakes is embarrassing. Mistakes tell the world that we don't understand
a concept. However, making mistakes also provides a number of powerful
tools that anyone interested in learning should be aware of.

The Power of Making Mistakes – Learning by Failing

[74]

Making mistakes – memory steroids
First and foremost, when you make mistakes, especially publicly, you're going
to feel like you're taking memory steroids. How so? When I think back to Dr.
Gelfond's class I still remember every mistake I made when I was called in
front of the class. The memories generated by making mistakes are so vivid
that they can be recalled, even years later like mine. Now obviously simply
remembering the mistakes by themselves would be pointless.

However, in addition to remembering what I did wrong, more importantly
I remember what I had to do to correct my mistake. It's been over three years
since I took that class, but I can still remember each of the key concepts that
he taught us. And I can tell you from experience that I cannot say the same
thing about all of the classes I've taken.

Mistakes force learning
Another benefit to making mistakes is that they force you to learn. No one
likes being wrong. So, assuming that you have a passion for knowledge, you
can use the memory of making mistakes to help motivate you to learn a
concept properly.

If Dr. Gelfond would have simply stood in front of the class and lectured
for the entire semester, I most likely would have studied enough to do well on
the tests and leave it at that. However, because I constantly had the thought
in the back of my mind that I may have to be called up in front of the class
to write a program or describe a concept, it forced me to study harder than
I would have for a test. This healthy fear took me from simply being able to
remember a concept to truly mastering it.

Mistakes kill pride
Lastly, making mistakes helps to kill pride. Proverbs 16:18 says:

"Pride goes before destruction, a haughty spirit before a fall."

One of the largest obstacles to learning is pride. Anyone puffed up with
pride will find that their learning progress will come to a halt. When someone
is filled with pride they can't see beyond their own limited knowledge.
Thankfully, if you embrace the process of learning by making mistakes, pride
will never be able to stake a claim in you. By their very nature mistakes force
you to realize that you don't know everything, and that you have more to
learn… which we all do.

[75]

Chapter 18

Summary
So, whether you are just learning to code from scratch or if you're a seasoned
developer, never be afraid to make mistakes. Mistakes reveal that you're
traversing into new territory that you've never been before, which is what you
need to do to go from mediocrity to mastery.

[77]

19
Learn How to

Code – The Guide
to Memorization

During a recent bootcamp teaching session where I was walking through
a number of frontend development techniques, a student asked a great
question. Referencing the CSS styles, she asked:

"What is the best way to remember all of the specific style names and
properties?"

This is a vital question to answer, especially for new students. For
example, if you look at the CSS documentation you'll find thousands of
potential style options. If you're learning these styles for the first time that list
can be pretty intimidating. And that doesn't even bring in the idea of learning
how the styles work together with applications as a whole!

Obviously, this issue does not only apply to CSS styles. When it comes
to learning development, whether it's a programming language or framework,
you will be greeted with a large amount of information that you'll need to
memorize, or at least know where to reference it.

The guide to memorization
At first glance, this may seem like a daunting task. And many aspiring
developers have given up on their learning journey because it seems like an
insurmountable challenge.

Learn How to Code – The Guide to Memorization

[78]

However, I'm here to tell you that it's completely realistic for you to learn
how to work with a large number of complex concepts. And if you follow
the system I outline in this chapter, you'll be amazed at how quickly you pick
up on memorizing more information than you ever thought possible.

Repetition
Before I go into the memorization system I have used over the years, it's
important to say that repetition is the key to memorizing large amounts of
information. None of the techniques I will give you are going to help if you
don't take the time to work through them consistently.

Smarter, not harder
With that being said, it's important to know that, by itself, repetition is a slow
and naive memory training technique. As a development student, imagine
that I had a list of a few hundred method names and tell you to memorize
them. If you were to simply stare at the sheet of paper and try to memorize
the names, how do you think you'd do? If you're like me and the majority of
the world, probably not very well.

The reason why dry repetition isn't a great way to memorize names is
because it doesn't give you a frame of reference for the names.

Visual mental mapping
In the first memory technique, we're going to walk through visual mental
mapping. Our minds are incredible at memorization. However, at the same
time, our minds are also picky with how they store information. Let's run a
quick test. If I show you 15 random digits, such as:

•	 234
•	 348532
•	 984
•	 234523
•	 34534
•	 35234
•	 234
•	 25345
•	 234
•	 985
•	 553
•	 37434

[79]

Chapter 19

•	 740
•	 423
•	 9812

And I give you 5 seconds to look at each number. How many of the
numbers will you repeat back to me? Unless your name is Dustin Hoffman,
you probably won't be able to name very many!

However, what if I showed you the pictures of 15 celebrities? Now if
I give you the same test as with the numbers, do you think you'd do a better
job remembering the list of celebrities or the random numbers? Assuming
you know who the celebrities are, you'd be able to repeat back a significantly
larger number of celebrities than numbers.

The reason for this difference is because you have a frame of reference
for the celebrities and in this exercise, you had a visual reference. By combining
these two things your brain was fully prepared to recite back a larger number
of items from the second list.

With this knowledge in mind we can apply the same principles for
memorizing anything.

Short-term versus long-term memory
Because our brains are efficient machines they naturally sort information
based on priority. You are most likely aware that you have short-term
and long-term memory. This concept is the reason why you can instantly
remember your second-grade teacher's name decades later, but may forget a
new acquaintance's name 30 seconds after hearing it.

Typically, the brain doesn't log knowledge into our long-term memory
bank unless it thinks we're going to need it in the future. This is kind of like
how a computer works. If you add text to a document and save the file on the
hard drive, that's like storing information in the mind's long-term memory.

However, if you run a calculation in the terminal the computer processes
the information in memory and then discards it, which is like how our
short-term memory system works.

Learn How to Code – The Guide to Memorization

[80]

Implementing visual mental mapping
So, when it comes to implementing the visual mental mapping technique,
we're essentially tricking our brain into thinking that it needs to move a piece
of information into long-term memory. In this process, we associate a visual
image with the term that we want to memorize. A key prerequisite for this to
work is that the visualization needs to be relevant to the term (or the behavior
of the term).

Getting back to the developer's initial question. Let's see how we can use
visual mental mapping to memorize a CSS style. I'm going to use the text-
decoration property as a case study. In the world of CSS, the text-
decoration element allows you to add or remove an underline style to
a piece of text. With this in mind, I would create an image in my mind that
would look something like this:

So, in this example I have an image filled with decorations. And on top
of the image, I have some text that is underlined. And it's sitting on the
decorated fireplace mantle. By creating this visual image, I've mapped:

•	 Decoration to underlined text
•	 A familiar image to something abstract

And with this mental image in place, I don't have to think about the
term text-decoration, instead I will think of a decorated fireplace with
underlined text sitting on the mantle. This visual is much easier for my brain
to accept into long term memory because it has a direct frame of reference.

The text-decoration word is no longer a foreign element trying to invade
my memory. Instead, it's catching a ride on an image that already has a home
in my long-term memory.

[81]

Chapter 19

Taking a real-world example
Sticking with our celebrity theme. Imagine that you wanted to go to a private,
VIP party in Hollywood. If you just try to show up the bouncer at the door
most likely won't let you in. However, if you're friends with Brad Pitt and you
walk in together, you won't have any issues attending the party.

Visual mental mapping follows the same principle. Our brains guard our
long-term memory to ensure that our mind doesn't get cluttered with useless
information. For example, what if you logged every piece of information
that you come across each day into your long-term memory?

As you drive down the street to work your brain captures millions of
data points, such as street signs and people walking, etc. If your brain didn't
guard against useless information entering your long-term memory bank, all
of this information would be treated with the same priority as your parent's
names. Obviously, this wouldn't be a good idea!

So, our brains are like the guard in the VIP Hollywood party. And when
we attach a new piece of information to something already logged in long
term memory, it's like we're having Brad Pitt escort us into the party.

Finding patterns
So visual mental mapping seems like a great idea. However, the idea of
creating thousands of visualizations isn't very practical, which is why, when
I'm learning a new programming language, I also focus on picking up on
patterns.

Returning to our case study of memorizing CSS elements, let's take a
look at the border attributes available in CSS3:

•	 border
•	 border-bottom
•	 border-bottom-color
•	 border-bottom-style
•	 border-bottom-width
•	 border-color
•	 border-left
•	 border-left-color
•	 border-left-style
•	 border-left-width
•	 border-radius
•	 border-right
•	 border-right-color
•	 border-right-style

Learn How to Code – The Guide to Memorization

[82]

•	 border-right-width
•	 border-style
•	 border-top
•	 border-top-color
•	 border-top-style
•	 border-top-width
•	 border-width

As you can see, there are 21 available attributes. And that's just for
managing border styles on a webpage! As you can imagine, it would be pretty
intimidating to memorize this list, especially when you realize that it's only
a very small percentage of the available CSS styles needed for development.

However, if you start to analyze the list you'll notice a number of
trends. For example, there are a number of styles that simply reference: top,
bottom, left, and right. These styles are simply ways for giving a border
style to a specific side of an element.

Additionally, you may also notice that each side also has a set of options
for color, style, and width. So practically, if you know that these elements are
all available to the border set of elements, this list can be shrunk down to 5
items:

•	 border
•	 border-color
•	 border-radius
•	 border-style
•	 border-width

This is more manageable.

Copy and paste is the enemy
In addition to creating visual mental maps and using patterns, I'm going to
finish off the list of memorization techniques with the recommendation to
not copy and paste new concepts that you're trying to learn.

I first heard this advice from Zed A. Shaw, the author of the Learn Hard
programming book series. He instructs his readers to not even look at the
book at the same time that they're implementing the code. He postulates that
by forcing yourself to type in the code without referencing the documentation
while typing, it forces the mind to actually think through each keystroke.

[83]

Chapter 19

In my personal experience as a developer and with teaching, I've
discovered a significant difference between the students that copied and
pasted code or simply followed along with a tutorial, compared with the
students that attempted (even unsuccessfully) to implement the code by
themselves.

Not everything has to be memorized
On a final note, I want to dispel a common fallacy. As a developer, you don't
have to memorize every class and method to build a project.

Even professional programmers constantly look up documentation
on a regular basis. Instead of feeling like you have to memorize everything,
focus on memorizing the terms that you use the most. This will make the
memorization process more practical and natural.

[85]

20
A System for Learning

a New Programming
Language

In this chapter, I'm going to discuss how to learn a new programming
language. I'll walk you through the five steps that I use whenever I'm learning
a new language or framework.

Over the years, I've been hired by organizations such as Learn.co and
AppDev to write programming curriculums for:

•	 Ruby on Rails
•	 Ruby programming
•	 Python
•	 Java
•	 Several JavaScript frameworks

The only language that I really build applications in is Ruby, which means
that I've been forced to become proficient in a number of language that I
really didn't have much experience working with, sometimes in a very short
period of time. And over the years I've developed a system for learning a
new language or framework, and that's what I'm going to walk through in
this chapter.

When I'm learning a new programming language I follow these steps:
1.	 Watch a full tutorial series on the language. When I'm watching I

don't try to follow along, I simply watch what the instructor does
in the demos so I can get a high-level view of the language syntax
and flow.

A System for Learning a New Programming Language

[86]

2.	 Create a hello world application. I'll incorporate a few basics, such as
running a loop, creating and instantiating a class, and any other
high-level concepts I remember from the tutorial.

3.	 Pick out a sorting algorithm and implement it in the language. It's
fine if the sorting algorithm is a basic one such as selection or
bubble sort. Sorting algorithms force you to use data structures,
loops, variables, and functions. Combining each of these elements
will give you a good handle on how the language works.

4.	 Go through an advanced tutorial on the language and this time
follow along and build the programs with the instructor.

5.	 Go through coding interview questions for the language. Being able
to confidently answer these questions will give you a good idea if
you have a solid understanding of the language.

I've used these five steps for a number of languages and I can also tell
you, once you've become proficient in a single language you'll find it's much
easier to pick up new programming languages since most of them have quite
a bit of shared processes, and all you'll need to do is learn the difference in
syntax.

I hope these tips will help you learn a new programming language. Please
feel free to write to me with any other methods that you've found helpful
when learning, and good luck with the coding!

[87]

21
Development Study

Tips – Reverse
Note-Taking

In this chapter, we're going to go back in time and walk through when I
developed the system of reverse note-taking. A quick Google search will
show that I have coined the term; however, I did not invent the process.

Back when I started computer science grad school at Texas Tech I was
struggling with one of my classes. It had been about a decade since I had
been in a classroom environment and I was having a difficult time paying
attention to the 1.5-hour lectures.

The problem with traditional note-taking
During this time, I spent quite a bit of time meeting with Dr. Richard Watson.
And during one of our meetings I brought up the issues I was having. His
first question was based around how I was taking notes for the course.

I showed him my notes and he instantly told me that I was taking notes
completely wrong. He pointed out multiple places in my notes where I had
missed key concepts that were unifying elements. And without noting these
items, I wouldn't understand the topics at all.

In reviewing the notes, I realized he was completely right. I spent my
time writing down facts and what I thought were key terms. However, I
regularly failed to articulate how everything worked together.

For example, for my notes on tree data structures I outlined each of the
key elements of binary search trees and B-Trees. But I failed to describe the
innate differences between the tree components from a behavior perspective.

Development Study Tips – Reverse Note-Taking

[88]

This is similar to taking notes in a history class and writing down the
names, dates, and locations for Napoleon's loss at the battle of Waterloo
without describing the critical differences between his old armies with the
one he lost with.

Reverse note-taking
Finding out that I was taking notes wrong was great. But it wouldn't have
been too useful without learning an alternative approach. So, Dr. Watson
asked me to try a different type of note-taking technique.

He said to put my pen and paper away during class. And instead of
taking notes during class, he recommended that I simply listen to the lecture.
He instructed that as soon as the lecture was over I should find a quiet place
and then write down all the topics that I remembered from the discussion.

Initially, I was skeptical of this approach, mainly because I was afraid
that the important concepts would go in one ear and out the other. He added
that I should tape record the lecture so that I could use the recording as a
safety net for the topics that I failed to remember.

Despite my negative perspective on the approach, I decided to give it a
try. (Obviously, my natural note-taking approach wasn't effective, so I didn't
have much to lose). I followed Dr. Watson's advice to the letter. And I was
pleasantly surprised to discover that I remembered much more information
using this reverse note-taking approach compared with simply trying to write
down concepts during the lecture.

Benefits of reverse note-taking
I started following this reverse note-taking process years ago and I still use
it today. Through this time, I've noticed a number of key benefits to this
approach.

Narrowed focus
First and foremost, by having the knowledge that I will have to recite back the
key components of the lecture forces me to have an increased level of focus.
This is opposite to how I used to take notes. My old way of taking notes
would many times distract me from the concepts being discussed. I would
hear a concept that I felt was important and I would take my focus away from
the speaker and focus on writing down the topic.

Many times, this would inadvertently result steal my focus away from
another important concept, or a description of how the topic I was writing
down worked at a high level.

[89]

Chapter 21

Additionally, as a naturally competitive person I would make a game of
how much I could remember from each lecture. If I could remember enough
to write down two pages of notes on Monday, I would try to write down two
and a half pages on Tuesday. By making a game of the practice it forced me
to narrow my focus even more on the content.

Story-based mindset
Another benefit of reverse note-taking is that it forced me to think of the
lecture as a unified story instead of a series of facts. Let's go back to our
illustration of Napoleon's battle at Waterloo. If you listen to a lecture about
the battle and take notes during the class, you'd probably do things like write
down the following:

•	 General names
•	 Cities where battles took place
•	 Dates

However, if you simply listen intently to the lecture and recite it back
afterwards you won't repeat dates and locations. Instead you will naturally
remember the battle in story form. You'll discuss the struggles that the Duke
of Wellington had to overcome to lead the charge against the French army.
And because it's a story, your retention of the topics will be considerably
higher compared with attempting to memorize facts and figures.

If I were to ask you to remember a high school history class and a movie
you saw in high school, would you have a better chance of remembering the
plot of the movie or the history lecture?

So, getting back to my computer science grad school experience, by
leveraging the reverse note-taking strategy I forced myself to think of the
topics discussed during the lecture as a story as opposed to a bunch of
theories and math equations.

Forced repetition
Lastly, the reverse note-taking approach made it easier to review the lecture
material compared with my old style of note-taking. Before that I would
rarely listen to a lecture recording. Even if I had the intention to listen to
the recording, other priorities always seemed to override the task. I mainly
attribute this failure to the fact that I, for some reason, trusted my notes.

Development Study Tips – Reverse Note-Taking

[90]

However, when I started reverse note-taking I would always listen to
the lecture a second time to fill in any items that I missed during my post
note-writing session. I discovered this single benefit to be critical to my
success since it became an automatic habit to reinforce my knowledge. In
contrast to my old approach where I trusted my untrustworthy notes, with
reverse note-taking I didn't trust my memory, so I knew I had to reinforce
my memory. And the consequence was that I always would listen to a lecture
twice, with the final result being a dramatic increase in retention.

Summary
This approach is not for everyone. I know students who excel with a more
traditional note-taking strategy. However, if you find yourself in a situation
like mine, I highly recommend you giving reverse note-taking a chance. You
may be surprised how effective it can be.

[91]

Part 2
Freelancer Skills

[93]

22
Tips for Organically

Growing a Freelance
Business

I strongly recommend that you think about freelance techniques whether
you're a freelance developer today or you are working with freelancers in
some capacity. You'll gain insights into thinking and coding, whatever type of
developer you are today.

Your career will be smarter if you're able to think—at least when it's
a help—like a successful freelance developer. That's what this part of this
guide is all about: thinking smartly and for yourself as a developer!

We'll begin by discussing how to organically grow a freelance business
as a developer. When I say organically, I mean that these are strategies that
should work while you sleep. For example, I have had some of my largest
clients contact me out of the blue based on them coming across a blog post
or GitHub project I published.

Organically growing a freelance
business
Having an organic marketing strategy is key for building a sustainable
business. And in my experience the marketing mechanisms that have been
the most effective are the six I will discuss.

Tips for Organically Growing a Freelance Business

[94]

Referral requests
Starting off the list are referral requests. Word of mouth marketing is one of
the most powerful tools you can use for acquiring new clients. Imagine a real-
world scenario of referrals. If someone opens up a new restaurant in your
town, are you more likely to be influenced by the restaurant advertisements or
one of your close friends telling you how great the food was?

If you're like me, if a friend sings the praises of the restaurant I'm going
to, I value their opinion much more than an ad from the restaurant itself. The
reason for this is because I trust my friend more than the restaurant. It works
the same way when it comes to marketing yourself as a freelancer. If you
have happy clients they can help grow your business.

Over the years I've had multiple clients refer their friends and colleagues
to me. However, I've also discovered that sometimes it helps to give them a
little push. After you have successfully completed a project is a great time to
ask a client if they have any friends that may need your services.

Blogging
Next on the list of organic marketing strategies is blogging. I considered
placing blogging at the top of the list because it's such a powerful tool.
Over the years I have been contacted by multiple clients that told me they
found me via my blog and subsequently hired me.

Blogging is content marketing at its finest. With your blog, you can
showcase your skills, position yourself as an expert in the field, and give
clients a taste of your personality. If you have never blogged before and are
wondering what type of content to write, here are some high-level topics that
have worked for me:

•	 Tutorials showing how to build features I specialize in. For example, if you
focus on building eCommerce websites, you could write blog posts
explaining how to connect an application to a payment gateway.

•	 Soft-skill strategies. For this you can write posts related to experiences
you have had while learning how to become a freelancer. An example
could be writing about a time when you had a challenging client
and how you were able to work with them effectively. These types
of posts have multiple benefits since they are effective for content
marketing and allow you to contribute to the freelancer community.

[95]

Chapter 22

Expert positioning
Blogging is a great way to position yourself as an expert. However, writing
blog posts is not the only way to be considered an expert. Another great way
to accomplish this feat is to contribute to other blogs and news outlets.

If you look at my personal site you'll see that I've been interviewed
or quoted in dozens of blogs and magazines over the years. These outlets
include sites such as ReadWriteWeb and the magazine CIO.

And don't worry, you don't have to pay a high-priced PR firm to be
quoted on these types of sites. I personally use a service called HARO
(https://www.helpareporter.com/), which stands for Help A Reporter
Out. HARO pairs individuals with reporters around the world. The way it
works is that reporters can post requests on HARO asking for interviews or
quotes on a topic they are researching. Each day I monitor HARO and when
I see a topic that I am familiar with I'll write up a few sentences and send
them to the reporter.

Don't let the expert moniker scare you away. There are many times
where I am far from an expert in a field that I've been quoted in. However,
I'll perform a little time researching a reporter's question and then I'll simply
give my opinion. This type of marketing is great because:

•	 It's free
•	 Credible reporters are the ones positioning you as an expert
•	 Many times, the reporter will link back to your website, which helps

from an SEO perspective

Open source contribution
Next on the list of strategies for organically growing a freelance business is
contributing to the open source community. When it comes to open source
contributions, there are a number of strategies that you can take:

•	 Direct code contribution: This usually comes in the form of
creating a code library that other developers can use. One of the
more successful Rails development firms in the world, thoughtbot,
has taken this approach to the extreme. The thoughtbot team has
built libraries such as FactoryGirl, Paperclip, and Administrate.
These Ruby gems are some of the most popular gems in the
Ruby development ecosystem and the thoughtbot team released
these libraries completely for free. However, I can assure you that
the company's open source contributions are directly related to
acquiring clients.

Tips for Organically Growing a Freelance Business

[96]

•	 Tutorials: If you don't feel that you're quite ready for building a
code library that other developers will use, that's perfectly fine. You
can find a feature that you feel comfortable developing and you
can create a screencast in which you walk through your process for
building the component.

•	 Contributing to pre-existing libraries: Another great way to
contribute to the open source community is to help add features or
fix bugs on pre-existing code libraries. You can easily discover the
full list of requested features for a code library by looking at its issue
list on GitHub. By taking this approach, you don't have to worry
about building a code library from scratch. You can simply add onto
another app, which helps the original development team and will
give you experience and confidence in working with professional
code bases. Personally, I contributed to multiple Eventbrite API
RubyGems and built-in functionality that previously didn't exist.

Social media marketing
No guide that discusses organically growing a freelance business would be
complete without mentioning social media marketing. I have to admit that
this is probably my least favorite marketing channel. If you peruse Twitter,
Facebook, or Instagram it seems like they are cluttered with annoying sales
pitches.

However, I have been discovered by multiple clients via my social media
accounts. Each day I try to post a development picture on Instagram. And
by taking this approach, I have received a number of unsolicited project
requests. And several of these requests have turned into freelance clients.

When it comes to social media marketing my recommendation is to find
an outlet that you enjoy working with. And once you've picked your favorite
channel, put all of your available energy into that specific service.

This is important, because if you pick out an outlet that you don't like,
you're not going to want to post on it in a regular basis. And when it comes
to social media marketing, consistency is key to success.

Summary
In summary, when it comes to organically growing a freelance business I
focus on three approaches. First, once you have happy clients, work on getting
them to refer you to their friends and colleagues. Next, make sure that you're
constantly blogging and positioning yourself as an expert in your space. And
lastly, find a social media outlet that you enjoy working in and post on it daily.

[97]

23
Freelancing Tips –

Knowing When to Fire
a Client

If you're starting on your freelance journey, or still even considering it,
the topic of this chapter may seem insane. However, I can ensure you that
knowing when to fire a client is a critical component of building a successful
freelance business. It can also sharpen up the same decision-making skills you
use every day as a developer in general.

My urgent client
A few years ago, I was hired by a fast-rising startup. The company had
skyrocketing growth, and I was hired to build their platform. After going
through the interview process, I was hired. Soon after taking the client, I met
with a developer who was leaving the organization.

After the developer walked me through the system he gave me a word of
warning. He mentioned that the CEO of the company had a favorite word:
urgent. I filed the information in the back of my mind and started working
on the application. Within days, I learned why the previous developer left the
fast-growing startup. Literally EVERY email the CEO sent me contained the
word urgent in some form or another.

Through the course of around a year I worked with the company and
built out the full system. However, I noticed that my quality of life was
negatively affected by this single client. My nights and weekends were no
longer filled with spending time with my family. Instead that time was spent
working through countless urgent tasks from the client.

Freelancing Tips – Knowing When to Fire a Client

[98]

When to fire a client
After a while it dawned on me that if I continued to work with this client,
I was actually losing the benefits of being a freelancer. Being a freelancer is
supposed to result in freedom and making my own schedule, right?

Once I realized that this client was making my life worse instead of
better, I put a plan in place and told him that I would no longer be working
with him. Through that experience I developed a system for deciding when
to fire a client. There are three criteria that have to be met, and I've listed
them here.

#1 – being treated like an employee
First on the list for deciding when to fire a client is when you are treated
like an employee. Being treated like an employee typically means that you're
expected to be on the company's schedule and thus limit your own freedom/
flexibility. I have had multiple times where a client appeared to forget that I
was a freelancer. Some telltale signs of this happening are:

•	 When a client is frustrated that they can't communicate with you 24/7. I once
had a client that I had to fire because their employees would send
me Skype messages all day and night for trivial issues. And then they
would be frustrated if I didn't respond immediately.

•	 No organized communication. Over the years, I've had clients who would
let multiple employees message or call me any time they needed
a task completed. It's important to have a set number of project
stakeholders. If a client lets any/all employees send you requests
it's pretty much guaranteed that communication conflicts will occur.

When I realize that a client is treating me like an employee, I'll approach
the CEO or whoever my direct report is, and I'll convey my concerns. Many
times, this will fix the issue. However, there have been times where the
problem persists and I have been forced to fire the client.

#2 – tyranny of urgent
Returning to my story from the beginning of this chapter, a top reason
for knowing when to fire a client is when they can't separate urgent from
normal tasks. I remember a time where this specific client set up a project
management job board. I kid you not, 90% of the tasks were marked with
the tag urgent.

[99]

Chapter 23

Not only is this a stressful situation, it is also a recipe for failure. When all
tasks are marked as urgent it essentially means that none of them are urgent
because there's no designation between the projects.

In the book Rework, Fried and Hansson recommend that companies
remove the word urgent from their dictionaries. I highly recommend this
approach.

Typically, when a client marks tasks as urgent or ASAP, it means
that they don't know how to properly manage a project. And poor project
management skills are not an attribute you want in a client, because a client
who doesn't know how to manage a project will eventually blame you for not
implementing their plan properly.

#3 – toxic environment
Last on the list for knowing when to fire a client is when it's a toxic
environment. I've been fortunate to not run into this situation very often.
However, over the years I have a had a few toxic clients. Being toxic can take
a number of forms, including:

•	 Constant negativity
•	 Poor communication
•	 Unrealistic deadlines
•	 Moral/integrity issues

I can think of one client that embodied each of these traits. He hired
me to build an application and gave an incredibly vague list of requirements.
Throughout the build of the project I would send daily project updates and
he would go weeks without giving feedback at all.

When I would hear from him, all his comments were negative. In many
of the cases he would be upset for not implementing features that he had
never even mentioned in his vague list of features. Needless to say, I fired the
client on the spot and moved on to greener pastures.

The joy of firing a client
When I started out as a freelancer the thought of firing a client seemed crazy.
However, as I built up my business, I came to the realization that firing a
client that constantly brought stress into my life actually resulted in making
me a better freelancer.

Freelancing Tips – Knowing When to Fire a Client

[100]

Toxic clients are not fun to work with. They cause anxiety and kill the
joy that freelancing should bring. So, I'm constantly pruning my client list.
And the more experienced I get as a freelancer, the better my client list has
become. This has resulted in more joy for me and better performance in
regard to what I produce for clients.

[101]

24
Dodging Silver Bullets
for Scalable Freelance

Projects
Does the idea of a code library fulfilling a significant portion of a freelance
project that you're contracted into, sound appealing? It's OK, you can be
honest and say yes, whether you're an active freelance developer today, or will
be in the future.

When I started out on my freelance journey, any time I came across a
large feature request, the first thing I'd do was check to see if there was a code
library that took care of the requirement. In the development world, code
libraries like these are called silver bullets.

However, as appealing as it may sound for a plugin or library to take care
of the lion's share of a project, it's been my experience that this approach
ends up taking longer to implement than simply building the components
from scratch.

The problem with silver bullets
Let's start off with a practical case study. A few years ago, I took on a fleet
management project. The set of requirements included features such as:

•	 Having full CRUD capabilities for a number of database tables
•	 Creating a search engine that could search through various attributes

of each database table
•	 The ability to use filters to drill down data
•	 And a number of other items related to a reporting dashboard

Dodging Silver Bullets for Scalable Freelance Projects

[102]

After starting the project, I started to research code libraries that would
work as silver bullets and take care of the key features. After a few days, I
came across the RubyGem called rails admin. The rails admin gem is pretty
impressive. It includes features such as:

•	 Easily querying database tables
•	 Implement custom filters for running advanced queries
•	 Export records to Excel/CSV
•	 Add new records from the dashboard
•	 Edit/delete records

As you may have noticed, this code library looks like it fits nicely with the
set of requirements for the project I had.

Silver bullet customization
I quickly went to work building out the application. And I integrated the
rails admin gem as a cornerstone component of the project. The client was
ecstatic during the demo. They absolutely loved the application and they were
shocked I could build the app so quickly.

So, what was the problem? The issues started when the client started to
ask for new features. After testing the application out for a few weeks, they
came back with feature requests such as:

•	 Being able to save common queries
•	 Export out to rare file formats that worked with their accounting

system
•	 Integrate a tax API to calculate depreciation

Each of these new features are relatively common requests for a fleet
management system. There was just one problem. Because I built the entire
application around the rails admin code library I was limited to the features
that the gem offered. And this was a problem because rails admin turned out
to be incredibly difficult to modify.

In fact, after several weeks of tedious work, I concluded that it would
take less time to build the entire system from scratch as opposed to customize
the gem itself. So, the end result was that I wasted quite a bit of time and the
project was delayed, all because I thought a single silver bullet code library
was going to be able to take care of a significant portion of the application.

[103]

Chapter 24

Becoming a sharp shooter with code libraries
So, does this mean that I'm suggesting that you stay away from code libraries
entirely? No, not at all! Part of the reason why freelancing is possible (and
affordable for clients) is that you don't have to create 100% of an app's
functionality from scratch.

Instead, I've learned to be selective about the code libraries that I
integrate. Let's look at a couple of the code libraries that I regularly use on
projects:

•	 Pundit, for building a permission structure. Pundit is a lightweight
code library that is easy to customize and doesn't lock you into a
narrow set of permission features.

•	 Devise, for authentication. Writing an authentication system from
scratch is time consuming. The Devise gem allows Rails developers
to quickly integrate features such as registration, login, logout,
and advanced components such as secure password retrieval.
Additionally, Devise is customizable and I've rarely run into a
situation where it didn't work for an app's requirements.

Do you notice how these code libraries operate like helper libraries for
specific features? My rule for integrating code libraries into projects is that I
pick out packages that assist with small elements of a project. And I shy away
from silver bullets that promise to take care of large portions of a project's
functionality, but are difficult to customize.

[105]

25
A Freelance Guide to
Managing Advanced

Features
One issue that every freelancer comes across at some time or another is
managing advanced features. And by advanced features I mean that a client
asks you to build functionality that you've never built before when this
happens to you.

Notice that I said when and not if? That's because every freelancer, no
matter how experienced, has been asked to build something they've never
created before.

Managing advanced features
Over the years, I've been asked to build a wide range of features. Some of
them I had experience with, and others… not so much. A good example of
this was a number of years ago when I was asked to build out a GPS tracking
iPhone app. The client wanted to track their employees in the field and allow
them to remotely submit tickets. Sounds like a great idea, right? I thought so
too. There were just a couple of issues:

•	 At the time, I hadn't built a single mobile application, much less a
production app

•	 My experience with real-time GPS tracking was minimal

A Freelance Guide to Managing Advanced Features

[106]

Due to my lack of experience, my first thought was to pass on the
project. However, the client was a Fortune 500 company and at the time I did
have long-term plans on building out my mobile portfolio. Not to mention
that the job paid well over $100,000. With these factors in mind I took the
offer.

The talent pool
Now I would have been insane if I thought I could build an application
like the one they requested by myself. With zero experience and no domain
expertise in mobile apps, the project would have died before it even started.
Therefore, as soon as I signed the contract I searched Upwork for a mobile
specialist to help build the application.

I found a great iOS developer and we agreed on a mutually beneficial
contract where I would manage the client and he would build out the
application. This was a foreign concept to me since all the other projects I
worked on were ones where I built out 100% of the functionality.

However, if you decide to take on projects that you have limited
expertise in, partnering with other developers is a great way to expand into
new markets.

The process
The application development process was different than any I had ever
experienced before. I was used to working on every component of a client
application. However, for this application I limited my work to the web API
development. This allowed me to work with the mobile developer on a daily
basis and after around six months we completed the project.

As a controlling person, I found the process challenging on a number
of levels. The main issue I ran into was due to feature scheduling. Since the
mobile developer was remote, I had to work with his schedule. There were
a number of times when this caused issues because I would have an API
component completed and I had to wait until he completed a mobile feature,
and vice versa.

However, after switching to a Kanban project management board we
could schedule our tasks in a more organized manner.

[107]

Chapter 25

Kanban
To review Kanban boards, remember that they are a project management
system where you have a number of columns designated as:

•	 Pending
•	 Working
•	 Under review
•	 Completed

We organized each of our tasks into each of these columns. And from
that point we were both able to see what features needed to be worked on.
Being able to see the stage for each component allowed us to move forward
in a more organized fashion than when we were working independently.

The result
After a number of sleepless nights and few frustrated back and forth emails
we finished the project. And not only was the project a success, the application
has processed tens of millions of dollars worth of tickets and is still used to
this day by one of the world's largest energy companies.

Summary
So, when a client asks you to build a feature that you have zero experience
with, my advice is to partner with a specialist in that area. The example I gave
in this chapter was specific to situations where a freelancer has literally no
experience building a feature.

There have also been times where I was asked to build a feature I
had experience with, but I wasn't comfortable committing to building a
production application. In those cases, I hired a mentor to answer questions
that I had during the development process, and those projects turned out
quite well. And they had the added bonus of teaching me how to build
advanced features I had limited experience with.

In summary, when it comes to managing advanced features for clients,
don't let your lack of experience stop you from getting jobs. As a freelancer,
you have access to a nearly limitless supply of resources to help you build
any project.

A Freelance Guide to Managing Advanced Features

[108]

A caveat
Before you go out and take on a dozen jobs that you have no clue how to
build, let me add a word of caution.

I have seen freelancers and even large software development agencies
take the approach of believing that they can simply hire outsourcers to do all
their work for them. This approach will fail every time.

To work with outside contractors, you need to work with them daily. Did
you notice how one of the prerequisites to the mobile application I worked
on in this chapter was that I had a clear communication channel with the
mobile developer?

If I would have simply sent him a list of requirements and waited for
the finished product the project would have failed miserably. Working with
contractors is typically just as time consuming as writing the code yourself.
So, don't think that outside contractors are a magic bullet that will do all of
your work for you.

[109]

26
Freelancer Interviews

– Practical Tips for
Taking Over a Legacy

Application
In this chapter, I interview a freelance developer that I have a tremendous
amount of respect for, Derek Harrington. In fact, when I decided to launch
DevCamp, I had to let go of a number of my freelance clients. And Derek
was who I handed the majority of my clients to. Based on my experience with
him over the years, I knew he would take great care of the clients and that
they would be pleased with his expertise.

In this chapter, I ask Derek a few questions related to freelancing.
Specifically, we discuss practical tips for taking over a legacy application.

Derek's tips can of course apply to any developer whether you're a
freelancer or not in your current situation – which is why I recommend for
any developer to learn from Derek's freelance approach to this common
coding situation!

What is the first thing you do when you take over a legacy
application?

Write tests. When you identify the pieces of the code that need refactoring,
write specs first to cover the functionality of the feature, then refactor the code

and ensure your tests still pass.

Freelancer Interviews – Practical Tips for Taking Over a Legacy Application

[110]

What other practical tips for taking over a legacy application that
have worked for you in the past?

In evaluating a legacy codebase, use the previous developer if you have access
to him/her. Lean on them for info. Ask questions like "what would he do
differently?", "what bits of code did he really want to refactor but never got
around to it?", "what part of the code is he/she the most proud of ?". Lean

on their experience to help guide your evaluation. Many times, bad legacy
code isn't so much the result of an incompetent developer, but of poor project

management and deadline-driven developer pressure.

What are your thoughts on refactoring a code base Skill Up: A
Software Developer's Guide to Life and Career starting over from
scratch?

Resist the need to rewrite everything so it's perfect. We've all inherited some
nasty codebases and if we're going to be honest about it, we've all been that

culprit more than once in our careers. But don't rewrite for the sake of
rewriting. That's irresponsible.

If you're going to re-write from scratch, make sure you're doing it for the right
reasons. We all want to work on brand new projects using the most recent

versions of every new technology framework. It's much more enjoyable.

Sometimes it's not the best thing for the project and the client though. Make
sure your decision is justified by more than "you wanting to do it". Sloppy code

can be cleaned up. Tests can be added. Versions can be upgraded. Old code
with poor app architecture riddled with brittle, unstable features and a failure
to use any general best practices or third-party tools can be a good justification
for rewriting. Lack of understanding of a confusing app is not a justifiable

reason.

When is the best time to work on fixing poorly written code?

Just like re-writing an application from scratch, it's irresponsible to leave messy
code that every developer on the team is going to touch. There's a time to let bad
code be. But not when you're tripping it over it every time you work on the app.

[111]

27
Five Tips for Taking

Over a Legacy
Application

Let`s continue discussing the topic of taking over a legacy application. It's
one of the dirty little secrets in the freelance world that a high percentage of
the projects that you'll be asked to work on are actually legacy applications,
which means that you'll be taking over or working with other developers on
pre-existing apps.

There have been a number of times where I've had great experiences
taking over a legacy application. Notably I was hired a few years ago to work
on a legacy app for Eventbrite, and I was very pleased to find a very well
configured codebase. It only took me about a week to become familiar with
the inner workings of the application, and I could start building new features
right away, it was a great experience.

However, that rarely occurs, typically freelancers are taking over a legacy
application because the previous developer was fired from the project or due
to the app owner having issues with the performance of the software.

As a case in point, a few years ago I was asked to become the lead
developer for a legacy Rails application that had been around for a while
and already had multiple developers. This was already a bit of a red flag since
well-written applications are typically much easier to maintain, and therefore
the original developers are usually still around in some fashion or another.
And to put it nicely the app code was convoluted and even after a year it
was still difficult to add new features. The legacy code was so fragile that one
change could have a domino effect and break other features, with a number
of the bugs not showing up until weeks later.

Five Tips for Taking Over a Legacy Application

[112]

Needless to say, the situation was a mess. I was explaining my predicament
to a good friend of mine who was a pretty experienced developer, and he
recommended I read Working Effectively with Legacy Code by Michael Feathers.
Thankfully, I could take what I learned in that book to help completely
revamp the application that I had been having issues with. I'll now share with
you the tips and techniques I learned there about taking over legacy projects.

Tips for taking over a legacy application
While there are a number of techniques you need to apply to work with a
legacy application, the first should be building a comprehensive test suite.

Creating a test suite
No matter what language or framework that you work in, you will be able to
create automated tests that capture the functionality of the application. So,
in the legacy application I was working on I started creating tests for each
model.

I began with basic unit tests and then started branching out to
integration tests that ensured that the various elements of the codebase were
communicating properly with each other. Going through this process had the
added bonus that I became more familiar with the structure of the app and I
could refactor the code as I implemented the tests.

Adding new features via TDD
Once the test suite was built, I started building all new features via the TDD
(test-driven development) method, which ensured that the test suite was up
to date. By utilizing this process, it also made it possible to ensure that the
new features that I added wouldn't break pre-existing functionality. This is
called regression testing.

Breaking out specific features into
microservices
The further I got into the codebase, I started to notice that the app had
become bloated with features, and many of the components didn't need to
be included in the core application.

[113]

Chapter 27

Therefore, I slowly started creating microservice applications that
handled isolated pieces of functionality. Some examples were: creating a
microservice that managed the user notification system and building an app
that processed the reporting engine. After creating the microservices, I could
get rid of significant portions of the legacy code and then simply wire up
the legacy application with the new microservices so they communicated
properly.

DRY up the codebase
In many legacy applications, you'll run into duplicate code that causes a
number of problems, including the issue of having to make one change in
multiple places in the codebase.

An example of this was how the application I was working on dealt with
view templates. There were a number of view files with identical HTML
code. I could refactor these components into partials that could be shared
across the application, which allowed me to make a single code change that
would populate throughout the app.

The topic of taking over a legacy application is important to understand,
not only for the reason of being prepared for what steps you need to take to
work on a legacy app, but also so you will have a better idea of how to build
applications from scratch.

Remembering the Eventbrite application that I mentioned earlier, that
application was easy to work with and add features to because it had been
built from day one using each of the techniques mentioned in this chapter.

If you develop an application from scratch using these best of breed
techniques, you will make it easier on yourself when you're adding features
in the future. It will have the added benefit that any new developers that may
work on the application in the future will be able to start adding new features
easily and they'll appreciate the extra work you put into the development
process.

Summary
I hope that this has been a helpful guide for taking over a legacy application
and that you can apply it on the projects that you're working on.

[115]

28
Guide to Freelancing

– Starting Over Versus
Refactoring

As a freelancer or as part of an organization, you will come across many
times where you make a decision on starting over versus refactoring on a
legacy project. Over the years I have come across this issue more times than
I can count.

The legacy scenario
Typically, the situation sounds something like this. I'll get hired by a client
who has a legacy application. The application is usually a few years old and
has been managed by a number of developers. I've discovered that usually the
code project started out small, and it grew from there.

Somewhere along the way the application lost its way. Instead of using
a scalable application design approach, the previous developer patched new
features on and the codebase devolved into a convoluted mess. Eventually,
every new feature causes another component to break and the client gets so
frustrated he decides to hire me.

Does this scenario sound familiar to you at all? As a freelancer, I've been
on both sides of the legacy code spectrum. When I was a new developer
I built new projects that got out of hand and I lost the clients. And as I
matured as a developer I started getting hired to take over legacy projects.

I can tell you from experience that neither side of this scenario are fun,
especially when the client brings up the dreaded topic of starting over versus
refactoring.

Guide to Freelancing – Starting Over Versus Refactoring

[116]

Starting over versus refactoring
When I was a young and naive freelancer I dreaded the idea of re-factoring
a legacy application. The second that the client brought up the possibility of
starting over from scratch, I jumped on it!

However, the more projects I work on, the more my mindset has
changed. Over the years I've put together a system to help me decide between
starting over versus refactoring a project. And that's what I'm going to walk
through here. The steps I follow are:

1.	 Removing the fear factor.
2.	 Analyzing the 80/20 principle.
3.	 Building an automated bug list.
4.	 Becoming the client.

#1 – removing the fear factor
One of the reasons why inexperienced freelancers tend to opt for starting a
project over is because of fear. And fear is rarely a good reason to make any
decision (unless you're running away from a wild animal or something like
that). So, before I make a decision, the first task I perform is taking fear out
of the equation. I'll ask myself:

"If you weren't afraid of the unknown issues with this codebase, what would your
decision be?"

Once fear has been removed I can look at the project from an unbiased
viewpoint.

#2 – analyzing the 80/20 principle
The 80/20 principle has a number of practical ramifications. You may have
heard it being used to say that 20% of the people make 80% of the wealth.
Or that 20% of a customer base generates 80% of a company's revenue.
However, I've also seen that the 80/20 principle can work well for deciding
between starting over versus refactoring.

Too many times I've seen a freelancer start a project from scratch when
the legacy application already contained 80% of the functionality needed
from the client. This means that the developer only needed to take care of
the remaining 20%.

If you look at the numbers the answer becomes readily apparent. Would
you rather perform 100% of the work (which is what would be needed when
starting from scratch), or only 20%?

[117]

Chapter 28

So, in this step I take a step back and I analyze what features the client
is asking me to build. If the legacy application is functional and simply has
a messy codebase, it's rarely the smart move to start over from scratch.
Typically, in this case I'll add the new feature and then start refactoring the
application one module at a time.

#3 – building an automated bug list
Moving down my list I'll next use automated tools for analyzing the
application. Pretty much every programming language and framework has a
wide range of analysis tools. I'll utilize these tools to generate a set of issues
for the legacy application. I like this step because it accomplishes two key
goals:

1.	 It gives me a practical strategy for what needs to be fixed in the
application.

2.	 Since it's automated, these types of tools are unbiased. Your
personal judgments on the previous developer's coding style are
taken out of the equation. And the focus is centered solely around
the project itself.

While each project is unique, the tests I run usually focus on giving me
a report on:

•	 Potential security issues
•	 Best practices
•	 Code that is not being utilized (this is vital!)

#4 – becoming the client
Lastly, I try my best to remove my personal feelings from the decision.
Instead, I focus on taking the perspective of the client. I'll ask myself:

"If I was a fully informed client, would I really want to pay for a developer to start
the project over from scratch?"

Using some fuzzy math, I'd estimate that around 9/10 times my answer
to this question is that an informed client would request a refactor over
starting over. Starting a project over is expensive, and there's no guarantee
that the new codebase is going to be perfect.

In fact, I can pretty much guarantee that there will be issues with a
brand-new application. I've seen multiple times where a legacy application
was replaced by a new piece of software that had the same number of bugs.

Guide to Freelancing – Starting Over Versus Refactoring

[118]

When should you start over?
So far, this chapter has heavily favored refactoring an application. However,
there are times when starting over from scratch is a better approach. Some
of the rationales that make starting over a wise decision for the client are:

•	 A complete change in architecture: I have had clients who
requested that I migrate an application from being a monolith (a
large single application) to becoming microservice-based (a number
of applications that each perform a single feature). In cases like
this, it wouldn't make any sense to try to keep the legacy application
since the core application structure would have to change.

•	 Moving to a different language/framework: Over the years,
I've had a number of clients who had old ASP .NET and PHP
applications approach me to rebuild their systems in Ruby. When
it comes to changes languages or web frameworks it wouldn't be
possible to retain the legacy application.

Notice how both these key reasons had nothing to do with bugs or
messy code? The only time I'd recommend for a client to start over from
scratch is if it's literally impossible to retain the legacy application.

Summary
In summary, the key to remember is to go through the system of checks
whenever you're asked to decide between starting over versus refactoring.
The more experienced you get as a developer, the more you'll realize that it's
incredibly rare that a functioning legacy application cannot be saved.

[119]

29
Should You Use

TDD on Freelance
Projects? – Comparing
Quality Versus Speed

When approaching a new freelance project, one of the first questions many
developers and designers ask is:

Do you want it done fast… or properly?
In this chapter, I'm going to specifically discuss if you should use TDD

on freelance projects. However, the concepts I'll discuss now apply to any
type of quality control system. So, this is great advice for any developer.

Should You Use TDD on Freelance Projects? – Comparing Quality Versus Speed

[120]

Quality versus Speed
There's an old software engineering rule that states that there are three
options you have when building a project:

•	 Quality
•	 Speed
•	 Cost

This diagram represents the principle as a Venn diagram. The elusive
center is where you have a project that's built quickly, for a low price, and
was created with industry-wide best practices. In my experience, it's rare for
a project to reside inside of this sweet spot. Instead, I'll tell clients that they
can pick two out of the three. For example:

•	 You can have the project built properly for a low cost, but it's going
to take quite a while to develop. This is because the project will need
to sit on the back burner since higher paying projects will need to
take precedence.

•	 Alternatively, the project can be built quickly at a low cost. However,
this approach won't allow for the time needed to follow best
practices, such as building automated tests into the application. I
rarely offer this option to clients because it's too tempting for them,
and I've seen from experience that these projects always end badly.

[121]

Chapter 29

TDD on freelance projects
In this chapter, I've selected the concept of test-driven development
(TDD) as a measurement of project quality for one key reason. Every time
that I've been handed a messy legacy project to work on, there is always one
common characteristic that they share:

The code doesn't have a comprehensive test suite.
On the other hand, whenever I start working on a high-quality

application I've discovered that these projects pretty much always have solid
test coverage.

So, I'm not saying that a full test suite is required for a project to be
considered a high-quality product. However, in my experience tests seem to
be a key indicator that determines how well an application was built.

Making the decision
When you are embarking on a new project how should you decide if you
should use TDD?

Giving no choice
I know plenty of developers who simply do not give clients a choice in the
matter. All the code that they write will be tested, period and full stop. This
helps make the decision process more straightforward. This is the approach
I take now, but that's only because I now have the ability to be more picky
when it comes to the clients I take on.

However, if you are new to freelancing and you need clients, it can be
difficult to tell a client that a project will be around double the time and cost.
If you don't have a strong set of pre-existence, you may find yourself in a
situation where you price yourself out of the market.

Letting the client decide
Alternatively, you can let the client decide on what approach they want you
to take. In this situation, you propose the pros and cons to building a full
test suite compared with only building the application itself. If you have an
intelligent client they will most likely see the benefits of including tests and
choose for the pricier option.

This is an effective strategy because it allows for you to bring the client
into the decision-making process, which will make them feel involved in the
work. And if the client is still looking at other freelancers, this approach may
help win him over.

Should You Use TDD on Freelance Projects? – Comparing Quality Versus Speed

[122]

Another benefit to letting the client decide is that his response may give
you insight into how he thinks. If he acts like tests are a pointless luxury and
says that he simply cares about getting the project complete, he might be a
nightmare client. And in cases like that you are better off moving onto more
informed people to work for.

Using common sense
Lastly, make sure that you're using common sense. Imagine being asked to
build out a simple corporate website. In cases like this you only need to write
some basic tests. At the most this should only add an hour or so to the
project.

There is no need to bog down the process writing tests that verify that
every CSS class and ID are shown on the page. As with most concepts in
freelancing and life, common sense is one of your greatest tools.

[123]

30
Automating Client

Updates as a
Freelance Developer

If you have limited freelancing experience, it may surprise you to discover
that a significant portion of a developer's day is spent detailing the work
performed for that day. In this chapter, I'm going to walk through automating
client updates so that you can be as efficient as possible.

Importance of daily updates
Before diving into how we can automate updates to clients, let's discuss what
a proper update is and what it entails. An update is a message sent to a client,
usually every day or at least every day that you're working on the client's
project. The days are long gone where clients would hire a freelancer and
the developer would disappear for a few months until they brought back a
finished product.

Nowadays, clients want to have a transparent view of the work
performed. This is especially true if a client is paying you on an hourly basis.
This makes sense because if you hired someone and paid them for their time,
wouldn't you want to know how the time was spent?

Regular and explicit updates are also an important way that you can
distinguish yourself from offshore development teams. Over the years I've
worked with development teams across the world. And the number one issue
I constantly had with them was finding out what they did each day. So, if you
can give a transparent view into the work that you perform for a client, it can
give you an edge over cheaper, offshore freelancers.

Automating Client Updates as a Freelance Developer

[124]

An example of client update
So, what does a good daily update look like? Here is one I took from a real-
world client update:

•	 Integrated CSS fix for the location widget
•	 Continued working on bug fix for the well on the right side of the

page
•	 Updated CSS for the locations widget on the city pages
•	 Integrated the checker for posts on the city-specific show pages
•	 Updated sign up buttons
•	 Temporarily hide sponsor text
•	 Implemented changes to the contact us text
•	 Implemented custom sub division with master division annotation

for the forms
•	 Updated the edit label on the post show view

Notice how these updates are practical and informative. None of the
items are too technical, since overly technical updates would simply confuse
clients.

Automating client updates
So, we've established that client updates are important and we know what a
good client update looks like. However, if we have to type these updates in
from scratch every day for multiple clients, it would tally up to quite a bit of
time. I'm not a fan of wasting time and I doubt you are either, which poses
a dilemma:

1.	 We need to create a detailed updates of all the work we do each day.
2.	 But we don't want to waste time writing reports (and isn't our hatred

of writing boring reports what made us want to become freelancers
in the first place?!).

Whenever I come across a situation like this, I try to see if there is any
way that I can automate a boring task. Thankfully there is.

Version control to the rescue
In the beginning, I was writing out all the daily updates manually. However, if
I wrote them at the end of the day, I had to go back through all my GitHub
commit messages to reference the work that I did.

[125]

Chapter 30

After going through this process for a while, it dawned on me that if I
simply added a little more detail to my GitHub updates, I could simply copy
and paste them each day and I wouldn't have to write them from scratch
again.

This process ended up saving me a considerable amount of time each
day because for best practice reasons, I had already been writing GitHub
commit messages for each new feature I implemented. So, now I can remove
the duplicate work I had been doing.

Here is a screenshot of a GitHub project where I used the technique of
leveraging commit messages for automating client updates:

Summary
I hope that this has been a helpful guide for automating client updates, and
that you can leverage it with your own clients.

[127]

31
Freelance Requirement
Elicitation – A Guide for

Feature Development
Imagine for a minute that you're a freelance developer who was handed a new
feature to build by a client. Then picture yourself building an elegant feature,
all the code working perfectly. You follow best practices and ensure that all
the potential edge case scenarios are covered.

Now imagine that you're demoing the bright and shiny new feature to
the client. But instead of telling you that you're the best developer in the
world and they're going to name their first child after you, they look at the
application confused, because what you built didn't match what they had in
their mind at all.

This is a scenario that is played out all too often in the freelance
development world. And in many cases, it's due to a poor requirement
elicitation process. The story I just mentioned is not a made-up parable, it
happened to me recently. And when I say recently, I mean yesterday (at the
time I wrote this).

My Name is Jordan and I Wrote a Poor Requirements Doc… "Hi Jordan…"
So, what did I do wrong? The issue was caused by me rushing through

the requirement elicitation phase. I have worked for this specific client for
over 5 years and I got lazy confirming the exact set of requirements needed
for the feature.

Freelance Requirement Elicitation – A Guide for Feature Development

[128]

Freelance requirement elicitation
Let's walk through what happened so you can avoid the same embarrassment
and wasted time.

How it started
A few weeks ago, the client contacted me and said that an application I built
for them needed a new feature. The application is an invoicing system that
their drivers utilize to generate invoices for clients:

In an email, the client attached this spreadsheet. He said that the
application had to generate this invoice to give to the customer.

The build
After receiving the email, I spent a few days modeling the new feature. I put
a list of all the messages that would be passed between modules. I built UML
diagrams to ensure the data was modeled properly. After careful planning, I
spent two weeks building the new feature and it came out perfectly.

[129]

Chapter 31

To be 100% honest, I was very proud of the work that I did. The feature
was flawless and completely bug free. It also fit in perfectly with the rest of
the application. I deployed the code to the staging server and I waited for the
client to start showering me with praise… but the praise never happened.

The problem
I emailed the client and gave a video demo of the feature. A few hours later
I received an email from the client that said:

I'm confused, what exactly is all of this? In my email, I just meant that we
need the invoices to be formatted like this spreadsheet.

So, it turned out that the client didn't want a new module built into the
application at all. Instead, they simply wanted an additional format option for
their invoices.

Who was at fault?
So, who exactly was at fault? It may seem natural to put the blame on the
client since they didn't make their request clear at all. And I was tempted to
get upset and blame them (especially for the first 10-20 seconds of my fury).
But then I realized that this issue was completely within my control.

As freelancers, it's our job to manage each stage of a project. If we rush
through the requirement elicitation phase, anything that happens after that
stage will fall on us.

A better way
So how could this have been avoided? Let's walk through the process I should
have followed and that would have led to a better outcome for myself and
the client.

Step 1
Right after getting the email I should have responded to the client with
clarification questions. Examples might have been:

•	 Do you want this to be on a new page of the application? This is better than
saying something like: Do you want this to be a new module? Because a
nontechnical client isn't going to know what a module is. But they
will understand what a new page on the site is.

Freelance Requirement Elicitation – A Guide for Feature Development

[130]

•	 How will this interact with other parts of the website? This question would
have instantly given me the feedback to know that this spreadsheet
was simply meant to be a different invoice formatting option.

•	 Can you describe the flow of how this will be generated? This is one of my
favorite questions to ask because it forces the client to be explicit
with how a new feature should work. Many times, I'll ask a client
to create a PowerPoint slide deck showing the flow they want from
a feature.

Step 2
After asking clarification questions, I should have followed up with a
prototype. I could use a tool such as InVision or even a simple PowerPoint
deck where each slide held a different page of the proposed new feature.
Examples would be:

•	 Starting with slide 1, this is where you can click on a button to get
to the new page.

•	 On slide 2 I'd show the form page where the user would enter the
information.

•	 Lastly, on slide 3 I would show the invoice that was generated by
the new feature.

A better ending
If I would have followed these two steps, it would have taken me anywhere
from few minutes to hours to establish what feature was actually needed. As
you can imagine, this is a much better option compared to wasting weeks of
development time.

Summary
I hope that this has been a helpful chapter to freelance requirement elicitation
and that you'll be able to learn from my mistake and apply it to your own
business.

[131]

32
How to Remotely

Demo Work for
Freelance Clients?

So, you have a freelance client and you're ready to show off your work, but
how can you showcase a project when you work remotely? If the entire
application is completed, you could simply send the client a link to test it out.
However, it's been my experience that this approach is not a great idea. As the
designer or developer, you know the inner workings of the app.

The client, on the other hand, especially if they're of the non-technical
variety, will stumble through testing the application out. Even if you did a
great job on the project, if the client doesn't know how to use the software
they're not going to be happy with your work.

Why proper demonstrations are
important
Over the years, I've discovered that well thought-out demonstrations are a
key to successful projects. There are two main reasons for this:

1.	 A proper demo will let you control the flow of the app. You can
control the focus of the work and spend time showcasing how the
system works. This will essentially function as a tutorial for the
client of the app. A well-organized demo will educate the client on
the application and remove many of the common issues related to
user experience confusion.

How to Remotely Demo Work for Freelance Clients?

[132]

2.	 You will get practical feedback. No matter how well you think
you understood the client requirements, there will always be
misunderstandings, especially early in the development process.

Thankfully, if you put together a proper demonstration of the software
you can get a clearer view of the client's vision. If you simply sent off a
link to the app for the client to test, many of the feedback items they would
send back would be related to not understanding how the system functions.
However, if you can clearly show how the app works, it will shortcut this
process and let you understand the actual fixes sooner.

Review of services to remotely demo
work
There are a number of ways that you can remotely demo work for clients. I'm
going to go through the processes I've used throughout the past few years
and discuss when each option is ideal.

Screencast
The first option I'll review is creating a screencast. This is a great option if
there are a number of clients that will need to review the feature:

[133]

Chapter 32

At its core, a screencast is you recording yourself walking through the
application. If it's a web-based application, you can have the video showcase
each feature of the application. In my own work, I use tools such as:

•	 Zooming in to specific screen zones
•	 I highlight sections of the screen that I want to focus on

This process only takes a short period of time. However, it is well worth
it because it enables clients to have a tangible walk-through of the system.

You can use a number of tools for recording screencasts. My
personal favorite is Camtasia; however, it is a little expensive. So, if you
are trying to keep a low budget, there are countless free options, such as
Screencast-O-Matic.

After you finish filming a screencast demo, you can upload it to YouTube,
Vimeo, or a video hosting site. From there, you can have the client view the
link at their convenience.

A remote desktop
Next on the list of tools to remotely demo work is remote desktop sessions.
Every client is slightly different. Many clients are fine with email and video
demonstrations. However, other clients want more of a personal touch:

How to Remotely Demo Work for Freelance Clients?

[134]

If a client likes to have full interaction with you during the demo, a
remote desktop tool may be the best choice for showcasing your work. I have
also found that this option is ideal when I'm working for other developers.
This is mainly because remote desktop demos allow for pair programming.
There are a few different options when it comes to remote desktop tools:

•	 GoToMeeting: If your client wants to have a traditional live
demonstration, services such as GoToMeeting or Join.me work
nicely. They will let clients view your screen and they also come
with dedicated conference call lines if you're working with multiple
stakeholders.

•	 Screen sharing: There are times when you need the ability for you
and a client to simultaneously walk through a demo. This is for the
scenario I just mentioned where you're working for a developer and
he wants to be able to go through the app at the same time as you.
My favorite service for this type of demo is Screenhero. It offers an
easy way to have multiple users control a screen at the same time
and it's pretty affordable.

•	 Free options: If you're on a budget, there are a number of free
screen sharing and remote desktop options. Some of the notable
ones are Google Hangouts, TeamViewer, and Skype.

PowerPoint
Last on the list of tools to remotely demo work are PowerPoint-type
presentations. I say type because you don't have to actually use PowerPoint.
I've used PowerPoint, Google Slides, and Keynote for product demos. I like
using slide-based demos early in the project development process.

[135]

Chapter 32

There are many times where I've built backend functionality that I
wanted to confirm was configured properly. However, I realized that if the
client saw an ugly user interface, they wouldn't be able to appreciate the work
that was performed. So, I took a play out of the Google Venture's playbook
and I created a Keynote slide deck. I designed the deck to mimic the user
interface that I planned on eventually adding.

From there, I simply loaded the slides with the behavior I had built into
the actual application. This approach worked quite well and the client was
happy. More importantly, this option let the client focus on what I had built
as opposed to requirements that were still on the to-do list.

This option also works quite well for mobile app demonstrations. Mobile
apps are pretty complex for clients to demo on their phones. So, a slide-based
approach makes it possible to show an app's design and behavior in a more
efficient manner.

Summary
I hope that this has been a helpful freelance guide and will help you remotely
demo work for clients.

[137]

33
Defining Project

Success as a
Freelance Developer

When it comes to freelancing, defining project success is a surprisingly challenging
task.

A clear end
Imagine that you're competing in a marathon. When do you know it's the
right time to stop running? For me, it's when I cross the finish line. It seems
borderline insane to picture running a race without knowing where the
finish line is, so why do so many freelancers work on projects without a
clear concept of completion? If you don't establish mutually agreed upon
project completion criteria with a client, you may find yourself subject to
scope creep.

What is scope creep?
Scope creep in a project is when a client asks for changes in the application
that exceed the original set of features. Many times, the client doesn't do
this on purpose. A normal progression is for a client to see the development
progress and then realize that they forgot a "key" feature.

Defining Project Success as a Freelance Developer

[138]

When scope creep isn't scope creep
There are times when the right thing to do is incorporate the feature they're
asking for. I can think of examples where the client hadn't listed a specific
feature, but the feature was truly necessary and was required by pure common
sense.

Recently, I headed up the development of an iOS project where the
client didn't specify that a push notification needed to be directed to a post.
After the application was completed, the client was frustrated that the system
didn't have dynamic and clickable push notifications. I could have pointed
to the fact that they never asked for the feature. However, in my mind the
behavior was a common-sense feature, so I had it added for no extra cost to
the client.

When scope creep goes badly
Scope creep is rarely that easy. You'll discover that typically clients will come
up with new ideas and then try to get you to implement them for free. If you
haven't established a clear definition for project success, you'll end up with
an angry client who thinks that you're trying to overcharge him. Remember
that in the client's mind they may not realize that they're asking for a feature
outside of the original set of requirements. There are two ways for defining
project success. We'll walk through both of them.

Based on requirements
First and foremost is the traditional approach, which is based on a set of
requirements. This approach is OK; however, it rarely works in the real
world. This process goes through the following workflow:

1.	 Write out a comprehensive set of project requirements.
2.	 The requirements sound something like: user should be able to

log in.
3.	 Each feature has its own requirement.
4.	 Once all the requirements are implemented, the project is considered

complete.

Theoretically, this seems like a great plan. However, in real-world
projects, it rarely works. The issue is mainly that even the most experienced
developer or project manager won't be able to list every… single… little
feature. What will happen is that features will be missed and either you or the
client is going to have to compromise to get the project completed.

[139]

Chapter 33

Based on a story
So, if defining project success based on requirements isn't practical, what's a
better approach? Personally, I have had the most success by building easy-to-
follow application stories. What is an application story? Let's take a look at
one I wrote for a recent project:

When an admin user logs into the application she will be shown a custom dashboard
that renders all the projects that she manages. From there she can edit project details. She
also can navigate to the resource section, user management dashboard, and user audit log.

Notice how a story is different from a set of requirements? When clients
are presented with stories it is easier for them to visualize the final product.
This leads to them supplying you with the full set of required behavior in the
beginning, instead of at the end. Lastly, well-constructed user stories give you
a clear definition of project success. Are the stories functioning properly?
Then the project is completed, it's that easy.

The sign off
After the client has approved the full set of application stories, make sure to
get a formal sign off from the client. Typically, this means having them sign
a document that contains all the stories. This provides a practical agreement
that you can point to when all the features have been implemented.

Summary
I hope that this has been a helpful guide for defining project success as a
freelancer and that you can use this approach on your next project.

[141]

34
Top Project

Management Tools for
Freelancers

In this chapter, I'm going to discuss the top project management tools I've
used on coding projects. In preparing for this chapter, I went through some
directories that listed all the known project management software applications
on the market.

To be 100% honest, I was a bit shocked. There are literally thousands
of project management options available to freelancers. Thankfully, I've
been able to work for a number of clients and worked with various project
management apps over the years.

For this chapter, I want to give you a list of the top project management
tools along with their respective strengths and weaknesses. With this
knowledge, you can decide on which one is the best fit for your project and
freelance business.

The following are six of the top project management tools that I've
used. I've probably used around a dozen tools; however, I only wanted to list
applications that:

•	 I had actually used on production projects
•	 I had a good experience with and that I'd recommend to others

Top project management tools
We'll now look at each tool one by one.

Top Project Management Tools for Freelancers

[142]

Basecamp
My favorite application for project management is Basecamp. I'm probably
partial to it since its founder, David Heinemeier Hansen, also happens to be
the creator of the Ruby on Rails framework, which I use daily:

With that being said, Basecamp has a clean interface focused around
to-dos and messaging. Here is a set of the to-dos assigned to me and various
DevCamp team members right now:

[143]

Chapter 34

In addition to project management, I also use Basecamp as my daily
planner. Essentially, I move each of my to-dos from one day to another. I like
how I can have a number of my projects and their respective to-do lists all
shown on one page, as shown here:

And for when I'm wanting a filtered list of what is assigned to myself, I
can see only the projects that I'm tagged in as the owner:

Top Project Management Tools for Freelancers

[144]

For the negatives of using Basecamp, depending on your prior experience
with project management software, Basecamp may not feel very natural.
If you're used to dashboards based on Gantt charts and similar tracking
mechanisms, Basecamp will take some getting used to.

It does have the ability to have all those features via their add-on module.
However, at its core Basecamp focuses more on messaging between team
members, to-do lists, and scheduling.

Basecamp also doesn't have the best suite of mobile options, I have its
iOS app on my phone. However, it's not the most intuitive, especially when
compared with a few of its competitors such as Trello.

With that being said, Basecamp is still my go-to choice when it comes
to project management software due to its simplicity, speed, and because I'm
drawn to its to-do list structure.

Trello
Another great tool that I've used on a large number of projects is Trello.
Trello utilizes a Kanban style of project management. Kanban is a workflow
popularized by lean manufacturing proponents, and at a high level it uses the
concept of moving cards through different stages of a project's development
until they're complete:

[145]

Chapter 34

Trello essentially gives you a virtual Kanban board and lets you move
tasks through each stage of the product development life cycle. For example,
here in the image I would move a task from being a To-Do to being Assigned,
to Working, to Under Review, and finally to Finished:

This approach makes it straightforward to visualize each task that's
assigned to you, and it also has a good interface for managing a team of
developers.

I also like how you can add images and attachments to tasks, which
lets you encapsulate all of a task's conversations, data, and statuses in a
single screen. Another bonus that Trello offers is that it works nicely on
smartphones and tablets, so it's easy to track the progress of applications
when you're not at your desk.

Trello has worked well for me on small-to-medium sized projects, but
for large projects or complex applications I'll usually opt for Basecamp or the
next one on the list: LeanKit.

LeanKit
When I was managing an entire IT organization, LeanKit was the software
I went with for tracking the projects that were being worked on. It doesn't
have the attractive user interface that Trello offers and it takes longer to learn.

However, it worked quite well for me when I was managing very large-
scale projects, such as enterprise application rollouts to 800+ employees.

Top Project Management Tools for Freelancers

[146]

Much like Trello, LeanKit utilizes the Kanban strategy of project
management. However, it focuses more on enterprises compared with
smaller teams. The mobile and tablet applications offered by LeanKit were
intuitive and helped me to manage projects even when I was traveling, which
was a nice bonus.

LeanKit's strength is in how well it allows you to nest and organize
projects and subprojects. After you've learned how the system works, it's
relatively straightforward to manage large teams.

One of the biggest negatives of LeanKit was something that I considered
very odd. They have a pretty archaic method for payment that requires quite
a bit of manual work. I remember times where I was forced to contact the
company via email simply to add new users to our account plan. This wasn't a
deal killer for me. However, it does make it a poor choice for freelancers who
want to work multiple projects from the same account.

ProWorkflow
ProWorkflow is one of the more standard project management options on
this list of top project management tools. It does a good job of combining
features such as timelines, task management, and working with teams. I
only worked one project that utilized ProWorkflow. However, it was a good
experience and I didn't have any complaints using the software.

Wrike
I have a bit of a love/hate relationship with Wrike as a project management
tool. If you're managing a team of developers, Wrike is a great application
to use. As a project manager, you're able to use it to see the status of each
project along with detailed analytics for every task that is being worked on.

However, if you are a developer working on Wrike, there is a pretty steep
learning curve. I would like to think that I'm pretty adept at understanding
how to use a new piece of software. However, I kept getting lost in Wrike's
dashboard and had a difficult time finding where to post updates to clients.
Eventually, I asked the client to go through a screen sharing session where we
walked through each dashboard that I would use.

With all that being said, Wrike is a good option if you're managing a
team of freelancers on multiple projects, and that's why I put it on this list.

[147]

Chapter 34

GitHub
This may seem like an odd option to put on a list of top project management
tools since technically, GitHub doesn't market itself as project management
software.

However, when I'm working on a project that only has developers,
I've found that using GitHub's issue tracking module doubles as a project
management tool:

Top Project Management Tools for Freelancers

[148]

And it makes sense since some of the largest frameworks and languages
are open source projects that base all the tasks on issues and features that can
be easily tracked on GitHub:

As you can see in this screenshot of a specific issue, you're able to:
•	 Create issues, which can also be features
•	 Assign users to each task
•	 Add links and images via the Markdown syntax
•	 Mark the issue as being completed

Additionally, with an experienced development team, using GitHub to
manage a project has the added benefit of making task management efficient.
For example, developers can close tasks automatically based on Git commits.
And the easier you make a piece of software to use, the more development
teams are going to like it.

Summary
I hope that this has been a helpful list of the top project management tools
that you can use in your development projects and that it will help you decide
on what software to use on your next project!

[149]

35
Top Freelance

Bookkeeping Options
for Developers

In this chapter, I'm going to review the top freelance bookkeeping options.
Keeping track of finances is probably one of my least favorite parts of being
a freelancer. To properly manage a freelance business, you have to manage a
wide range of accounting components:

•	 Profit and loss reports to capture your overall profitability
•	 Aging reports to see how long it takes to get paid
•	 Expense logging to ensure you capture all potential deductions
•	 Accounts receivable system so that you can get paid
•	 Project tracking tools if you're working on large-scale projects

for clients

Freelance bookkeeping options
I've used a number of bookkeeping solutions over the years, and the following
are some of the ones that I've had the best experience with.

Top Freelance Bookkeeping Options for Developers

[150]

FreshBooks
FreshBooks is the system that I use for my freelance business. As far as
accounting software goes, it covers 100% of the requirements I have:

Thankfully, it is also easy to use, which means that I didn't have to spend
time learning how to use the software. It has an intuitive interface and allows
me to log in, perform whatever tasks I have to, and then get back to working.

[151]

Chapter 35

How it works
Here's an important screen for me in FreshBooks:

On this page, I can:
•	 Select a client.
•	 Add additional accounting information. This includes items such as

a purchase order number.
•	 Add items to the invoice. I also like how easy it is to add fractional

quantity units. If I worked a little over 14 hours, I can enter 14.1
hours and FreshBooks calculates the amount.

•	 Enter the payment method. This portion of the system makes it
easy to let clients know if I want to be paid via standard PayPal,
PayPal Business, or via FreshBooks's payment system.

•	 Add comments. You can post any additional information that will
be sent to the client.

Top Freelance Bookkeeping Options for Developers

[152]

FreshBooks additional features
It would take hours to go through the full system, so I will simply gloss over
some of the other features I find the most useful:

•	 Invoice sending flexibility: As great as it is to send invoices
electronically, I still have a few clients who prefer paper-based
invoices. Thankfully, not only does FreshBooks allow me to print
out invoices, they actually mail them for me directly to the client.

•	 Expense tracking: Tracking business expenses is a tedious exercise.
However, with the FreshBooks mobile app I can take pictures from
my phone, enter the expense details, and the expense will be logged
into the system.

•	 Creating estimates: In the past, I would create an estimate in
Excel or Word, and then send it to the client. If they approved it I
would then have to enter the details into an invoice. However, with
FreshBooks I can create an estimate and email that directly to the
client. If they decide to move forward with the project, the estimate
will automatically transfer into an invoice.

Weaknesses
As much as I love the FreshBooks system, it does have a few weaknesses.
First and foremost, it can get a little expensive if you get a large number of
clients. Also, if you start hiring a large number of employees it can become
a little unwieldy to manage. Personally, I'd recommend using Freshbooks for
any business with under 20 employees. When you grow beyond that point,
you'll want to move to a more scalable system.

QuickBooks
If you've grown out of FreshBooks, QuickBooks may be a good option for
our business. QuickBooks has been the industry leader for small business
accounting software as long as I've been around. Even though the company
has acquired the reputation for being difficult to manage, over the past few
years they've done a good job in making the system more flexible.
When you list all the potential features needed by accounting software for a
small business, QuickBooks has it all. Also, due to its popularity, there is a
good chance that any admins that you hire will already have experience using
the system.

[153]

Chapter 35

With all that being said, I personally wouldn't choose to use QuickBooks
for DevCamp or any of the companies I work with. The main reason is
because I've seen too many times where companies grow out of QuickBooks
and found it very hard to migrate to a new system. I also don't like the
reporting engine that the software uses. For example, if you plan on running
your financial data through a big data analysis reporting engine, QuickBooks
makes it difficult to export it in a format that's easy to use.

NetSuite
If your business is growing, both in clients and employees, NetSuite is a great
bookkeeping option. Technically, NetSuite is probably overkill for the typical
freelance business. However, if your development shop starts to turn into a
full-fledged digital agency you'll need a robust ERP system. ERP systems are
different from traditional bookkeeping software, they'll offer tools such as:

•	 Resource planning: This means you can allocate developer time
on a project basis.

•	 Advanced tax planning tools: Once your business hits a certain
size, it's important to ensure you're taking advantage of all the
potential tax deductions available. Tools such as an ERP system do
this for you.

•	 Payroll integrations: Being able to manage your employees, track
turnover, and tasks such as that get important as your business
grows. However, they're hard to track manually. A system such as
NetSuite calculates all your employee tracking metrics so you can
use them to manage your team.

Summary
I hope that this has been a helpful set of freelance bookkeeping options that
will help you decide on the right system for your business.

[155]

36
Learning the Secret to
Get New Clients as a

Freelancer
If you're wanting to start a freelance business, the most pressing challenges
typically revolve around getting new clients. When I initially launched my
freelance business, I struggled to acquire customers.

However, after a few months of trudging through the traditional channels
I discovered a great solution that resulted in generating over $290,000 in
revenue last year. And it's what I want to discuss in this chapter.

Where to find new clients
Let's begin by reviewing the list of options for where you can find new clients
as a freelancer. I've read countless blog posts and a number of books on the
subject, and the following were the most popular recommendations:

•	 Friends and family: This may seem like a natural place to start;
however it's been my experience that friends and family typically
expect you to work for free or incredibly cheap. This channel can
be good if you're just starting out and you need to build a portfolio;
however, it is not scalable and usually not too profitable.

•	 Network events: For networking, you can join your local chamber
of commerce or find networking groups where you can promote
your business. This approach can work well in some cases. However,
each time I've tried it I've discovered that there were already several
other developers attending working on getting new clients for their
own freelance businesses.

Learning the Secret to Get New Clients as a Freelancer

[156]

I wouldn't let my experience with this option stop you from trying it,
but make sure you're prepared to compete with others. I remember
attending a chamber of commerce "meet and greet" a few years
ago. When everyone around the room introduced themselves and
their business, there were half a dozen freelance developers who
were all offering the same services.

•	 Outsourcing services. This is the option that I want to focus on
here. Interestingly enough, I was told by a number of freelance
"experts" that this avenue was too difficult. However, I found a
great way to use it for getting new clients as a freelancer.

The challenge in getting new clients with
outsourcing services
As I have already mentioned, I had a difficult time in the beginning getting
new clients. Using services such as oDesk and Elance (which have now
merged and are now Upwork) were especially challenging. Even though I
had a solid portfolio and a decade of experience, I couldn't get a single client.
Some of the challenges were the following:

1.	 I didn't have any ratings or reviews. Not many clients are willing to
take a risk on a developer without some type of recommendation
from others.

2.	 I was priced higher than the majority of other freelancers. The
majority of the freelance teams marketing services on outsourcing
sites are offshore. This meant that I was having to compete against
developers offering to work for, at times, 90% cheaper than my rate.
I charge $100 per hour, while the majority of offshore teams are
charging $10-$20 per hour.

3.	 I didn't have the time to pitch each potential client. In regard to
marketing my freelance services, I was very streaky. I would get
motivated for a few days and send out a large number of pitches.
And then I would get depressed that I wasn't getting any replies and
I wouldn't send any proposals for weeks.

After struggling for a few months, I knew I didn't have any control
over challenges #1 or #2. However, I could do something about #3. I was
working a full-time job at the time, while also attending grad school, so my
time was very limited. With that in mind I came up with a marketing system.
And it actually worked!

[157]

Chapter 36

Getting new clients as a freelancer
Since I'm a little bit on the stubborn side it took me a while to admit it, but
I finally came to terms with the fact that I wasn't getting new clients as a
freelancer, especially with the methods that I'd been trying up to that time.
So, I put a plan into action that involved hiring some freelancers of my own.
I assembled a team that helped fill in my weak areas.

To start getting new clients as a freelancer, I knew I had to have clearly
written proposals that described my services. And I also knew that the
proposals would have to be sent out 24/7.

Proposal material
With that in mind I researched sales copy writers on Upwork and hired a
talented marketer who created three different proposals that I could use.

This included sales copy that advertised my experience, portfolio, and
expertise as a developer. I had three versions created because I wanted each
one to be targeted to a specific type of project. For example, one of the
proposals focused on enterprise projects. Another proposal was targeted at
building APIs, while the third had content geared toward startups.

Sending out constant proposals
With a full set of professional proposals, I was ready to implement the
second step of my plan: consistently sending out proposals. For this, I hired
a detail-oriented and fluent virtual assistant from the Philippines named Sy.

I could hire Sy for $6.50 an hour and he paid for himself in the first
week! I walked him through the proposals and described the types of projects
that I wanted to get hired for.

After I was confident that Sy clearly understood my goals, I let him loose
on Elance. He reviewed the full set of potential projects on the marketplace
and sent my targeted proposals to each project that fit my criteria. Within
a week I was getting responses back from clients and within two weeks I
had been hired for multiple projects. Three months later, I had to hire my
own developers because I was getting so many clients hiring me to build
applications.

Learning the Secret to Get New Clients as a Freelancer

[158]

The result
So how did my strategy for getting new clients as a freelancer work out? Well,
here is a screenshot of my FreshBooks dashboard. Last year, my freelance
business generated over $290,000 in revenue:

One month hit over $40,000:

I'm not going to pretend that this was easy. This is pretty much the
opposite of a get-rich-quick kind of scheme. However, by implementing this
strategy, I could cost-efficiently outsource the marketing for my freelance
business so that I could focus on actual development.

Summary
I hope that this has been a helpful guide for getting new clients as a freelancer
and has given you some ideas on how you can build your own business.

[159]

37
Managing Client

Conflicts as a
Freelancer

In this chapter, I'm going to discuss managing client conflicts. It's simply a matter
of life and business that you will run into conflicts with clients. Some of the
most common confrontations seem to be:

•	 Going over the time you originally estimated
•	 Going over the budget for the project
•	 Not delivering a feature that matched the client's expectations
•	 A bug occurring in an application

None of these are fun to work through, and most of them can be
avoided if the proper care is taken at each stage of the project management
process. However, I want to discuss what happens when conflicts occur and
how to best manage them.

Strategies for managing client conflicts
First and foremost, do not let emotions take over. This is probably one of the
hardest ones for me because I love what I do and when bad things happen
in a project my first response is to get defensive, which is one of the worst
responses to have. So, when I see an angry message come through from a
client or take a phone call, I make sure that before I respond I sit back and try
to look at the situation from the client's perspective.

Managing Client Conflicts as a Freelancer

[160]

It's pretty rare that a client will get upset for no reason. The majority of
people are rational and prefer to stay away from confrontation, so if the client
is mad there is probably a legitimate reason for it. Therefore, the first step I
take is pretending that I'm the client and then I feel like I can give a better
response from that perspective.

If a project went over budget and I'm imagining that I'm the client, I
can understand why they're not happy because I don't like spending more
money on something than I originally was told it would cost. So instead of
responding with some defensive messages, such as:

"It wasn't my fault, you were the ones that changed the scope"
Or
"I can't control that the fact that the designer took twice as long to deliver the mocks"
I'll start with saying things that show that I understand their perspective,

for example I'll say:
"I completely understand how frustrating it is, the project scope has grown and it's

been hard to meet all of the requirements based on the original timeline"
Or
"I am sorry, I should have allotted more time for the design phase, it's my fault and

I will work to get it taken care of"
If you pretend that you're a client hearing those four responses, which

ones would put you more at ease? The ones where I was defensive and tried
to blame everyone else or the ones where I took responsibility for the project
and gave a calm reply?

The easy thing to do in a confrontation is to become defensive or
respond aggressively; however, neither of those approaches will fix the issue
and they'll most likely make things worse.

Your first goal when a conflict arises between yourself and a client should be to see if
you can see the issue from their perspective.

With that being said, there will be times where the core
problem is the client's fault. They may be very bad at stating
project requirements or they may simply be poor communicators.
I once had a client who hired me a few years ago and asked me to build an
application and simply gave me about 4-5 screenshots from another website
and then they completely disappeared. I did my best to build what I guessed
they wanted and I sent daily updates to them, and then a month later he
messaged me furious that the app wasn't what he wanted and then went on
to list all of the features it was missing, even though they were features he had
never asked for originally.

[161]

Chapter 37

I calmly fired him as a client on the spot and informed him that I
wouldn't be able to work on the project any longer. I didn't raise my voice, I
didn't explain how he gave me little to no guidance for building the app, but
I knew it wasn't the type of client I could work effectively for.

I hope that this has been a good set of tips for how to manage conflict
with your clients. I did quite a bit of research on this guide prior to writing
it to see if there were any things that I was missing and I discovered a full
library could be made out of the information based on conflict resolution.

There are discussions about personality types and more acronyms than
I care to list here, however, what I've written for you in this guide is what
I've used over the years and it's worked very well for me through a number
of challenging situations and many different client personality types. I'm
confident it will also work well for you and your clients.

[163]

38
Examples of Freelance

Portfolios That Help
Acquire New Clients

In this chapter, I'm going to discuss examples of freelance portfolios that you can
use to attract clients. Before deciding on the types of projects you want to
include in your portfolio, it's important to answer a few key questions:

•	 Who will I be showing this portfolio to?
•	 What type of features do I love developing?

The first question is pretty standard; you need to know you your audience
to ensure that your work will have its greatest impact. For example, if you
want to attract small mom and pop businesses, it wouldn't make much sense
to fill your portfolio with 3D Unity zombie game renderings.

The second question speaks to your passions as a developer. Too many
coders create a portfolio full of generic projects that they don't truly love and
it's apparent to potential employers and clients. Make sure that the projects
you build fit your personality as a developer and that you are happy with the
end result. Portfolio projects are not an item meant to be simply crossed off
your developer checklist, they should be projects that you're personally proud
of and enjoyed building.

Examples of freelance portfolios
The following examples of freelance portfolio projects entail a comprehensive
feature set and should impress a wide variety of clients. However, they are
simply starting points, not hard and fast rules.

Examples of Freelance Portfolios That Help Acquire New Clients

[164]

Social network utility
This is where you build a basic social network with a clean design and features
such as having posts, followers, and comments, and integrate at least one
unique/advanced feature, such as giving users the ability to edit each other's
posts.

When I'm looking to hire a new developer, I like to see that they know
how to work comfortably with complex data models such as the ones required
by a social networking application, and being able to work with advanced
permissions structures is very important, so this makes a good portfolio
project.

An API tool
An example would be to develop a search engine for Stack Overflow that
enables more advanced features than the main web application. A project like
this would show that you can work with APIs and can implement a search
engine feature.

An accounting application
You don't have to rebuild QuickBooks. However, an accounting project can
illustrate that you know how to work with financial calculations, callbacks,
advanced database queries, and information security.

A scheduling application
I've built several scheduling applications. This type of app will show that
you know how to work with dates and times (which is no easy task for any
developer), along with complex validations.

A frontend application
Create an app using a frontend framework such as AngularJS or React and
integrate it with a server-side backend such as Ruby on Rails. This will show
that you know how to work with service-based architecture and design, which
is a prerequisite for my clients.

[165]

Chapter 38

If you build these apps (or apps that contain the same level of
sophistication), you will be able to clearly showcase your expertise to potential
clients, colleagues, and future employers. These projects will also give you a
great code library that you can reference for future projects.

I've lost count of how many times I've reviewed past portfolio projects
to see how I implemented a specific feature so I could use it on an app I was
working on at the moment. I hope this list has inspired you to build out your
own portfolio of projects.

[167]

39
Importance of

Test-Driven
Development for

Coders
Let`s discuss the importance of test-driven development. First and
foremost, if the terms TDD or BDD, which are short for test- and behavior-
driven development, are foreign to you, they are the practice of building code
tests for applications.

And even more specifically, TDD and BDD are software development
processes in which you create a test that sets an expectation before implementing any code.

An example of using TDD to create a feature for returning a full name
from a user class would be to:

1.	 Create a test that calls a new method, such as full_name, that
combines the first and last name of a user and returns a string
combining the names into a single value:

Importance of Test-Driven Development for Coders

[168]

2.	 Then we'd run the test, knowing that it will fail:

3.	 Then we would go and add a barebones implementation of the
code:

This will get the test passing:

[169]

Chapter 39

4.	 Then we'd go back and refactor the implementation to ensure
it conforms to best practices and that the refactor doesn't break
anything:

This process is known as the Red, Green, Refactor workflow and is a
pretty standard practice across all languages and frameworks.

Importance of test-driven development
With that dead simple explanation of how TDD works, let's discuss the
importance of TDD and the best way to answer this coding interview
question.

There's quite a bit of debate on the topic, with a number of prominent
developers who are against the practice of TDD, with one of the main
arguments being that many coders don't use it properly and are essentially
just testing pre-existing functionality instead of behavior unique to the
application.

However, with that being said, if you're looking to get hired as a
developer there is a very good chance that you will need to be fully versed in
how to work with TDD and BDD since I don't know of very many software
organizations that don't require tests.

Importance of Test-Driven Development for Coders

[170]

There are four main reasons why I use TDD for all the production
applications that I build or manage:

1.	 Regression: If you add a new feature into your application, you
need to have 100% certainty that the new code you added won't
break any pre-existing functionality in the app.
For example, if I create a new method that will break if any nil
values are passed to it and I call that method on legacy data that
could contain some nil values, I want to know that before the new
feature goes live. Without tests, I'd have to go and manually test
every part of the application each time I implement a new piece of
functionality. However, if I have a full test suite I can simply run
the tests, and if they're all passing it is a good indicator that the new
changes can be pushed live.

2.	 Team management: If you're managing a team, having a team
of developers that follows TDD processes will give you a level of
transparency into what they're doing. In fact, in Kent Beck's book
Extreme Programming, Beck says that testing is one of the biggest
keys for a development process to stay on track and budget.

3.	 Documentation: When an application that was built with TDD
is finished, the tests should be able to provide 100% of the
documentation for the software. Certain testing frameworks, such
as RSpec, even have the ability to print out tests in a documentation
form that provides a full description on the app's behavior and can
be understood even by non-technical individuals.

4.	 Leads the development process: One of the most important
keys to writing good software is to break code into as many
small, manageable chunks as possible. When you use TDD you
should naturally write small methods, efficient class definitions,
and you should have minimal code bloat. When you're following
TDD practices the tests themselves should lead the software's
development, and the end result should be a well-organized and
scalable code base.

One caveat to TDD is that testing is pointless if the test suite is not well
structured. If you simply create a myriad of tests that do nothing more than
test the core functionality of a language or framework, your test suite isn't
going to have any benefit. However, if you build an application and let the
tests drive your development and code structure, you will end up with a great
application that you should be proud of.

[171]

Chapter 39

For further information, I recommend reading the full series by Martin
Fowler, which is seen as one of the most in-depth discussions on TDD ever
produced.

Summary
I hope that this chapter will help you answer questions relating to the
importance of TDD, and good luck with the interview!

[173]

40
SEO Best Practices

and Strategies for
Freelancers

If you build applications that users access on the web, you have most likely
been asked by clients to provide an SEO-friendly website to help drive new
customers to their site. You may also have realized that the world of SEO is
so expansive that you could spend the rest of your career studying it and you
still wouldn't have it mastered.

With that being said, I've found that if I follow a set of SEO best
practices, the websites I create are search engine-friendly and clients are
happy with the organic traffic sent their way. Search trends seem to change on
a daily basis, and I personally don't have time to keep track of each Google
search algorithm change. Instead, I focus on SEO best practices and they
have worked well for me and they follow search engine white hat marketing
practices so that I don't risk getting penalized by Google or Bing.

SEO best practices tutorial
First and foremost, content is king. Unique quality content is always going to be
the most important criteria for SEO.

Content is king
Coming from someone who has spent countless hours studying Google's
search algorithm from a computer science perspective, I can say that all the
algorithm is attempting to do is connect search users with the best, most
relevant content that they're looking for.

SEO Best Practices and Strategies for Freelancers

[174]

All the nuances to the algorithm, such as page ranking, counting links,
and so on, are all simply ways that Google is trying to automatically find the
best content on the internet. With that being said, quality content by itself
is not a guarantee of traffic, but without it you won't be able to gain search
engine traction for very long.

One question I get asked quite often is how many words a post should
be. My answer is always "let the content determine the wordcount." A good rule of
thumb is to have around 500-1,500 words per post, but don't waste time
worrying about hitting a specific word count, focus on creating high-quality
content and the word count will take care of itself.

Creating an XML sitemap
Next, make sure that your site has a XML sitemap that you supply to Google
and Bing. This will make it much easier for the search engines to index your
pages. The best content in the world won't be found on a search engine if
Google's spider can't find it.

Mixing text, images, and videos
Third, users, and therefore search engines, like seeing images and video on
pages. A very important criteria for following SEO best practices is to have
a solid mix of text, images, and videos on a page. This helps not only for
standard searches, but also for Google Image search, which can be another
great source of website traffic.

Managing your site speed
Fourth, there is site speed. Kissmetrics research shows that sites with slow
load times have dramatically higher page abandonment rates, and not only is
this bad for business, but your ranking with Google will decrease if your site
is slow.

Site responsiveness
Fifth is the important modern SEO best practice of site responsiveness.
Responsiveness is the ability of your site to dynamically adjust in size and
layout based on the device viewing it. This is about making you're your
site looks and works great on, say, a standard web browser, a tablet, and a
smartphone. Search engines have added responsiveness as a key criteria for
site rankings, since traffic coming from mobile users is now so significant.

[175]

Chapter 40

Backlinks
Sixth are the backlinks to your site. Now this is a dangerous one, because
backlinks used to be the top criteria that determined a site's page rank. I
remember around 15 years ago when I started building websites that if I
could get a popular site to link to a site I published, the new site would
start getting search engine traffic and would show up higher in search results
within 24 hours.

However, quite a bit has changed and now backlinks aren't as important
as they used to be, but they are still very helpful. I mentioned that backlinks
could be dangerous because Google has gotten ridiculously good at detecting
users trying to game the system. If you use black hat techniques for acquiring
backlinks you'll soon find your site penalized or even completely delisted
from Google entirely.

So, what I do now for backlinks is to message journalists and other
bloggers using tools such as HARO and contribute quotes and perform
interviews on other sites. In return, they will typically link to one of my sites.

This is a slower way of building backlinks, but in the long run it's a good
strategy. Google also watches for sites that offer to charge you to guest post
and link back to your site, so I'd strongly recommend to stay away from those
types of service.

Focused content
The last for this list is for your content to be focused. If you are shooting
an arrow, it helps to have a target and when you're writing a blog post or
publishing a page, it's important to have a keyword to target. When I'm
creating content, I select a phrase and aim to have the entire content revolve
around it.

Without a focus word or phrase, it will be difficult for your post to
gain traction. So, make sure you always stay focused with each post that you
create. There are also plenty of great tools out there for ensuring that you're
following search engine best practices. Generally, I use a tool called Yoast that
uses a checkbox approach to each post.

Summary
I hope that this has been a helpful summary of SEO best practices that you
can utilize in your own projects and help you drive more traffic to you or
your clients' site.

[177]

41
Client Communication

Freelancing Tips
When I was originally building up my freelance business, I heard a common
complaint from clients talking about previous developers that worked on
their projects: poor communication and a lack of transparency.

As a developer, I know how easy it is to fall into the trap of wanting
to dive into the code and build a project. However, without proper client
communication you'll run into the following issues:

•	 Clients will think that no work is being performed. Regardless of
reality, if you don't tell a client what you did their first assumption
is going to be that you didn't do anything. This can get very messy
when you send your bill and the hours that you charged don't match
what the client estimated based on your updates.

•	 You may be building a feature in a way that the client didn't
expect. I've had it happen a number of times where I understood
a requirement to mean one thing, but the client had a completely
different expectation in mind.

While the immediate reaction to try and fix communication issues may
be to be in constant communication with the client, this approach will waste
your time and it will also give them the mindset that you'll always be available,
which will limit your freedom, which kills one of the main reasons you
became a freelancer in the first place.

Client Communication Freelancing Tips

[178]

A system to maintain proper client
communication
With these issues in mind, if you can perfect this part of being a freelancer,
you'll see that it leads to happy customers while also being a healthy
environment for you as a freelancer.

I've put together a system for client communication that is balanced,
meaning that the client will feel informed about the project but it will not
inhibit your personal freedom:

1.	 Create a project management dashboard. I'll typically use Basecamp
or Trello; however, you can use anything that you prefer and is easy
for the client to use.

2.	 At the beginning of the day, schedule when you'll work on the
project. Each morning I write down on a dry erase board all the
projects I'm going to work on, and I list what time slots I'm going
to work on them. For example, I'm going to work on a Rails project
for XYZ client from 2 PM to 3.30 PM.

3.	 After the schedule is set, I message the clients and I let them know
when I'll be working on their project, so they can contact me during
that time slot if they need something immediate. In this way. they
will also know that work is going to be performed that day.

4.	 After each project time slot that day, I post on the project dashboard
an update on the tasks that were worked on that day. Because I like
being efficient with time, I'll usually copy and paste the GitHub
commit comments as bullet points.

Summary
If you follow this system, your clients will be happy because they will know
what you're doing each day, and it lets you stay in control of your schedule.

[179]

42
Outsource Web

Developers Properly
with System-Based

Processes
When it comes to working on client projects, I've worked on applications
ranging from apps that I could build in a few days to applications that have
taken over a year of development time and involved over a dozen different
developers. So, what the best way to work with outsource web developers?

Whenever I have a large project that requires a development team that I
need to bring onboard, it presents a series of challenges, such as:

•	 Do the programmers specialize in the features that need to be
built out?

•	 Will bringing on other developers allow the project to stay on
budget?

•	 How can I make sure that the code quality meets the client
expectations?

I could pretend that the outsource web developers I've worked with were
managed properly for every project, but that would be not be telling you the
truth. In fact, I decided to write this chapter based on the many times that
I've had poor experiences managing development teams.

Outsource Web Developers Properly with System-Based Processes

[180]

A system to manage outsourced web
developers
Based on my mixed experiences in managing outsourced web developers,
I've built the following system to ensure that I have picked the right set of
developers and that they are producing code that will help make clients happy:

1.	 Automated testing: Whether you work by yourself or with
outsourced developers, it's vital that you use automated testing. This
can include BDD or unit testing. However, this process will help to
ensure that all the features of an application are working and also
that new features do not break pre-existing functionality.

2.	 Daily reports: Depending on the situation that you have with
your clients, it's important that you receive daily reports on the
development work performed for that day. If you're not getting
daily updates there is a good chance that no work was performed.

3.	 Access to applications: If you happen to only be managing the
application and not actually developing, make sure that you have
proper access. This includes command-line database access, your
public keys on the server that the application is being deployed on,
and any error logging system, such as Honeybadger or AppSignal.

Summary
If you're bringing on an outsourced development team, it typically means
that your time is limited. However, if you follow these three steps, it should
help your project to be successful.

[181]

43
How to Create Accurate

Freelance Bids?
Being able to give good estimates is one of the most critical tasks you can do
as a freelancer. If you quote too low, you'll end up with an angry customer
because even if you did great work, he's having to pay more than he budgeted.
And if you bid too high, there's a good chance you won't get the job and the
potential client will go to a competitor who gave a lower bid.

Over the years, I've been guilty of erring on both sides of the spectrum
and I've had to deal with the consequences. Those consequences were not
fun, which is why I've put together a formula for you in this chapter that I
follow for building bids:

1.	 Get a detailed drill down of the project requirements. Without this
you won't be able to create an accurate bid no matter what else you
do. Imagine if an architect had to give an estimate to a client who
said, "I want a nice house with a cool fence." He wouldn't be able
to accurately estimate how much the house would cost to build. An
architect will get a detailed breakdown of square footage, number
of bedrooms, along with a list of all the bells and whistles. In the
same way, you need a detailed breakdown of every feature that the
application needs to have.

2.	 After you have the list of features, break them into categories, such
as: database setup, frontend design, user permission configurations,
and so on. And then put each of the features into one of the
category buckets.

3.	 Put all the data into a spreadsheet segmented by the categories you
created in step two.

How to Create Accurate Freelance Bids?

[182]

4.	 Give a conservative estimate on each feature in the spreadsheet.
5.	 Have the spreadsheet tally up the total hours or cost and that is the

project estimate.

Does this formula seem like common sense? Good, because creating
accurate freelance bids should be a simple process!

If you came up and asked me how long it would take to build a payroll
system, I wouldn't have a clue what the bid should be. However, I do know
how long building a user database will take, and I know how long it will take
to implement the design, and so on. And by breaking down the project into
small, specific chunks, I'm now able to feel more confident about how long
the individual features will take to build.

I also update the spreadsheet as I progress through the project. That
way, I'll actually have a guide for future projects. For example, if I originally
estimated that building a video upload feature would take 8 hours but it ended
up taking 14 hours, I will be able to more accurately estimate that feature in
future projects.

Summary
I hope that this has been a helpful chapter for learning how to systematize
your process for creating estimates as a freelancer.

[183]

44
Freelancer Tips –

Three Ways to Get
New Clients

In this chapter, I'm going to discuss some strategies that I've used successfully
over the years for getting new clients. There have been three main ways that
I've gotten new clients:

•	 Outsourcing services such as oDesk and Elance (which have now
merged to be Upwork)

•	 LinkedIn
•	 Referrals

So, I'll now share some of the ways that I've had success in each one of
those channels so that you can take on some of the experiences I've had and
apply them to your own freelance career.

Freelancing services
Freelance services such as Upwork are great for finding new clients. The keys
to success are to constantly send out proposals, dozens per day, and be quick
to communicate with potential clients.

If you're a US- or UK-based developer, make sure you understand
that you'll be competing from developers from all over the world, which
means that the bids that you'll be competing with could be dramatically lower
than what you'd want to charge. However, I've been able to get dozens of
long-term clients from these services, including large organizations such as
Eventbrite and Quip.

Freelancer Tips – Three Ways to Get New Clients

[184]

LinkedIn
LinkedIn is an interesting tool for freelancers. I've gotten several clients from
the service simply by having a filled-out profile and joining user groups for
the languages and frameworks that I specialize in.

I've gotten clients such as AppDev and the Flatiron School from
LinkedIn. Interestingly enough, I was never proactive with reaching out to
clients. If you have a good profile showcasing your skills and you have joined
enough groups, jobs start to come in. It's incremental growth, but I've found
some great clients though LinkedIn.

Referrals
Referrals are one of the best ways to get clients. This marketing channel
typically takes the most time depending on your own social and client network.
When I say referral, I'm not simply referencing referrals from other clients,
I've gotten referrals from coworkers, friends, family, and through networking
events, such as local Chamber of Commerce organizations.

Summary
I hope this has been a helpful chapter to different freelancer strategies to
grow your client base. If you're an employer who works with freelancers,
then I hope you also read this section closely, and it gives you a better insight
into freelancers' minds, and how to get the most from them.

[185]

Part 3
Career Skills

[187]

45
Should I Learn to

Code? – A Balanced
Perspective on

Programming
To start off this part of the book that covers all about what it takes to have a
successful career as a developer, I'm going to talk about the question: should
I learn to code?

This question was sparked by the controversial post on TechCrunch
by Basel Farag (https://techcrunch.com/2016/05/10/please-
dont-learn-to-code/), where he urges people to not learn coding. As
the founder of Rails bootcamp you may think that my reaction would be to
spout off a full list of all the reasons why everyone should learn how to code,
because that's good for business, right?

However, I went through his post in detail and I also reviewed a slew of
response posts that called for Basel's head, denouncing him as a modern-day
heretic.

Should I Learn to Code? – A Balanced Perspective on Programming

[188]

Should I learn to code? – a balanced look
at both sides
After going through all the content around Basel Farag's argument, my belief
is that both sides of the argument have valid points that should be considered
by anyone deciding whether to learn to code or not!

Let's first explore the idea that not everyone should learn to program. Farag
proposes that coding is hard, which it is, and therefore, the dream that you
can take a few online tutorials and become a professional developer is a lie…
and he's 100% right about that. Development, especially for true production
applications, is very hard and takes years of study to become truly proficient.
It's not enough to simply learn how to build an application that lets users
create records in a database from a form, for example. A professional
developer needs to have expertise in:

•	 Managing dependencies between code libraries
•	 Working with object-oriented programming best practices
•	 Having clean code
•	 Implementing automated testing for continuous development
•	 Knowing how to transition seamlessly between various frameworks

And the list goes on and on…
In fact, even though I'm a professional developer and have worked for

clients as big as Eventbrite and Chevron, I spend several hours a day going
through development books and online guides to simply keep up with all of
the new coding techniques and systems that are continually emerging.

So, all that is to say that Basel Farag is right in that if you want to become
a professional developer, you have a challenging road ahead of you. Of
course, if you make it through, you will have gained a tremendous skill and
you could well find yourself in demand by a number of industries.

Let's now explore the opposite side of the argument, that everyone
should learn how to code. I really appreciate the VentureBeat article by Edward
Chiu (https://venturebeat.com/2016/05/22/how-coding-kick-
started-my-sales-career/), where he describes how he went through a
coding bootcamp and he did not become a professional developer… but that
he did get a great job as a sales engineer that he never would have gotten if
he wouldn't have learned coding!

[189]

Chapter 45

This is the side of the argument that is ignored all too often, because
learning to code does not mean that you have to become a professional
developer, but it will give you a new skill set that can be used across many
different jobs. Steve Jobs said it best when he said:

"I think everybody in this country should learn how to program a computer
because it teaches you how to think."

To me, Jobs hit the nail on the head here: learning how to code is not
simply a prerequisite for becoming a professional developer, even though
that can happen as well. It gives your mind a system for structured thinking
that you can apply across all disciplines.

From a personal example, I used to have a hard time taking notes. I
would randomly write down words all over a page without any really coherent
flow and when I'd look back at them later they would be completely worthless
to study from. However, after I learned to code I started actually taking my
notes in code form to give them structure, I'd set up loops for repeating
items, classes to hold a topic's attributes and processes, and return statements
for the end results of whatever I was trying to learn. That may sound nerdy,
and it probably is, but it gave me an organized system for taking notes and
learning new topics.

Summary
In summary, I hope that this balanced view has help you answer the question:
should I learn to code?

[191]

46
Following Your

Passion – Good or Bad
Advice for Developers?

As a developer, should you follow your passion? I hear this term and this
advice quite often and I'm not a fan of taking things at face value, so I wanted
to look into the concept and review it here.

At a high level, the advice centers around the idea that if you do work in
a field that you truly love, you will be happy. Many people point to Steve Job's
Stanford commencement speech when he says:

" And most important, have the courage to follow your heart and intuition.
They somehow already know what you truly want to become."

Following your passion – a case study
While writing and researching this book, I came across Cal Newport's book,
So Good They Can't Ignore You, where he took a deep look at Steve Job's life.
He shows that if Jobs would have spent his life adhering to the advice of
following your passion, he never would have started Apple, but instead would
have become a Buddhist monk living in Asia.

Jobs started Apple for the practical reason that he saw a way to make
some quick money selling a set of computers to a local electronics store, and
that sale sparked his interest in technology. So, it seems like following your
passions is not a cut and dried process of doing work that you love.

However, my advice to you is not to ignore your passions, but instead to
use them to build a career that you truly love and can excel in.

Following Your Passion – Good or Bad Advice for Developers?

[192]

Sticking with the Steve Jobs example, one of the other passions Jobs
had was calligraphy, which is essentially fancy handwriting if you've never
seen it before. When creating the user interface for Apple's operating system,
Jobs leveraged his extensive expertise in calligraphy to integrate fonts into
the programs. Here was an example of Jobs combining his passions with a
practical implementation.

As developers, we're in a unique position where we can work in a wide
assortment of industries: if you love sports you can work for a professional
sports team, or if entertainment is your flavor then you can work for a media
company. The possibilities are really endless.

One of my biggest passions is baseball. I grew up around the game and
I love everything about it. I wasn't skilled enough to play professionally, but
right now I'm working towards my PhD in computer science and my topic of
research is big data analysis in baseball.

It wouldn't have been practical for me to waste who knows how many
years trying to make it as a professional baseball player, but I can leverage my
skill as a developer and still perform work that I love to do. I've also have
the privilege of having multiple clients that are in the sports industry, which
has allowed me to work in the sector that I'm passionate about while still
leveraging the skills I have as a developer.

Summary
Hopefully, my research and personal experiences can help you decide if
following your passion is the right decision, or if there is a middle group that
would lead to a better end result.

[193]

47
How to Learn to Code

from Scratch? – A
Practical Strategy

Becoming a developer is a rewarding yet challenging task. One of the greatest
blocks for people to understand programming is simply having a plan and
deciding where to start.

In this chapter, I'm doing to walk through strategies to help you learn
how to code from scratch. I've been a developer for a number of years. I
taught myself how to code and I've witnessed a wide variety of educational
techniques for learning programming over the past decade.

Some of the strategies I've seen are good, others are a waste of time.
This chapter contains the strategies that have stood the test of time and will
help you launch your coding journey.

Small bites
First and foremost on the list of tips to learn how to code from scratch is the
principle of small bites.

I have a friend who trains professional and Olympic athletes for Adidas,
named Mark Verstegen. Back when I used to train at his institute, he would
always say something that really stuck with me. When any athlete presented
a tough goal, such as qualifying for the Olympics or making it to the big
leagues, he'd ask them:

"How would you eat an elephant?"

How to Learn to Code from Scratch? – A Practical Strategy

[194]

After the athlete would look at him with a confused look, he'd follow
by saying:

"It's not a trick question, the only way to eat an elephant is
one bite at a time."

This is great advice for many aspects of life. However, I've discovered
that it's an especially important concept for developers to understand. When
I think back to when I was learning development, my greatest obstacles and
challenges came when I tried to do too much.

For example, when I was trying to build a new feature I would attempt
to code the entire feature at once. Most of the time this would end up with
the program not working, and then I'd have to go through every line of code
until I figured out what was wrong.

However, the more experienced I've become as a developer the
more I realize the importance of breaking concepts down into small,
easy-to-manage chunks.

Let's imagine that you are building a connection to the Twitter API.
Instead of trying to build the entire feature, focus first on connecting to the
API. Then print the values returned from Twitter. Finally, you can format
the data so that it looks nice. By breaking what you're learning into small
components, you'll discover that you will have a better understanding of the
processes going on. You will also be able to remember how to implement
the features later in real-world projects because the concepts will be more
tangible.

Tutorials
Over the past few years the online educational space has grown exponentially.
Whether you are looking to learn Java or Ruby, you'll be able to find countless
tutorials that will help you understand programming. These types of tools
most likely won't turn you into a professional developer by themselves, since
achieving a professional level of skill takes years and typically requires you to
work on a wide range of real-world projects.

However, tutorials can be a great introduction to programming.
In addition to giving step-by-step guides for how to build applications,
screencasts are also great for showing you what types of apps a specific
language or framework can build. When I'm learning a new language I'll
watch a full series of tutorials without even trying to type in the code. I do
this so that I can familiarize myself with the capabilities of the language.

[195]

Chapter 47

One of the weaknesses with tutorials is that it's hard for them to
replicate your own environment. For example, if you're working on a Java
programming language tutorial from a few years ago, there's a good chance
that the instructor will have a different language version than you do. This
will cause some confusing bugs, and without any assistance many individuals
have quit their programming dreams out of frustration.

But don't let that scare you away from using tutorials. I credit a number
of tutorials with helping me teach myself development. And I highly
recommend them as a great place to start, especially when you want to learn
how to code from scratch.

Reading
Next on the list is reading. Libraries could be filled to the brim with the
number of programming books that are on the market. I have even written
a few!

I like going through coding books because they allow me to go at my
own pace. When I go through video tutorials, it usually means that I need
to dedicate a specific amount of time to go through the videos each day.
However, with a book I can read a few paragraphs or I can go through a few
chapters. When you have a full-time job and you're learning programming on
the side books are a great resource.

This is because they allow you to learn at your own pace. Books can
also be a good resource later when you need to reference a specific topic.
Also, when you go through a programming book I highly recommend you
write and run the code from the book. This will help you remember the
programming language syntax much better than simply reading it.

Remember that reading retention is incredibly low in most individuals.
However, if you combine reading with actually writing the code as you're
going through the content, you'll see much better results.

Another trick to use when reading programming books is to not look
at the book when you're writing the code. For example, if you are reading
my Ruby programming book you'll see a code snippet when you're learning
how to use object-oriented programming. If you force yourself to type the
code without looking at the book the entire time, you'll discover that your
retention will increase dramatically.

How to Learn to Code from Scratch? – A Practical Strategy

[196]

Real-world projects
Last on the list to learn how to code from scratch is building real-world
projects. After you've gone through a number of tutorials and read a few
books, you'll be ready to try your hand at building applications.

A natural question to ask is: "What types of projects should I build?" There's
really no right or wrong answer to this question. If you have an idea for a
business then you could start with trying to build it with your newfound
coding knowledge.

You could also look at re-building current applications, such as creating
a Pinterest clone. I've found this technique of creating cloned sites very
beneficial since it allowed me to focus on building functionality instead of
having to waste time on coming up with ideas.

For example, when I learned the Swift programming language, I built an
Instagram clone. Years ago, when I was learning HTML and CSS, I recreated
the Google homepage from scratch. The most important factor to remember
about building real-world projects is to stretch yourself. No developer ever
improved by duplicating functionality they are already comfortable building.
Instead, make sure you are challenging yourself to implement features that
you've never created before.

Coding is hard
On a final note, don't let anyone tell you different: coding is hard! From
setting up a development environment to building functional applications,
programming will greet you with challenges at every stage.

But you can learn programming
However, with that being said, you can become a developer. There's not
a magical programmer gene that coders are born with. It simply comes
down to:

•	 How determined you are
•	 If you're willing to work consistently
•	 How good your strategy is when it comes to learning

[197]

48
How to Choose a

Developer Specialty?
Through many years of training developers, I've discovered that it's vital for
coders to decide about their specialty and focus. In this chapter, I'll share
with you how I personally view the different developer directions and areas
of expertise that are available.

You'll quite possibly make this choice more than once in your career as
a developer, so I recommend that you always observe and be aware of the
choices that can be made in your career.

How to choose a developer specialty?
The world of software development is so vast that it's impossible for someone
to master every aspect of the process. Consider if I approached a world-class
track and field coach and said that I wanted to train for the Olympics and win
a gold medal in track and field. The coach would most likely give me a once
over and chuckle to himself. But after that his first question would be: "What
event do you want to train in?" He would ask this question because the training
regime for the 100-yard dash is dramatically different from the high jump.

In the same way, as a developer, you need at least once, and quite possibly
several times, to narrow your focus on what type of developer you want to
be in the years ahead.

I'm going to walk you through each type of developer category so you
can see what they entail.

How to Choose a Developer Specialty?

[198]

#1 – the full stack developer
In deciding how to choose a developer specialty I always like to start off
with the full stack option. I start with this option because many new coding
students I've spoken with assume that all developers are full stack developers.
And this is simply not true.

Full stack development means that you feel comfortable working with
every stage of an application's development. Referencing our track and field
analogy, a full stack developer would be like a decathlete. This is the category
that I personally fall into. My focus on the full stack side of programming is
due to a number of factors:

•	 To teach students and write development curriculum I need to be
familiar with all of the key development types.

•	 I've spent years as a freelance developer. And in many cases,
freelance coders are asked to build an application from the ground
up, create all the features, design the system, and deploy it to the
web or app store.

Full stack developers need to be a jack of all trades! Much like a decathlete,
full stack developers are usually good at a number of technologies. However,
a common pattern you'll see is that it's very difficult to be world class at every
layer of the development stack.

Programming is simply too complex, and languages/frameworks change
versions so rapidly that it makes it nearly impossible to excel at every stage of
the app development life cycle. Because of how time consuming each level of
the development process is, full stack developers simply don't have the time
to become true masters at any one aspect.

As a full stack developer myself, I mitigate this issue by focusing my
time on the components that I excel in, such as server-side development, and
then working with other developers to help cover my weaker areas, such as
UI/UX.

#2 – the server-side developer
Next on the list of developer types is server-side programming. This is
probably my favorite layer of the developer stack. Server-side specialists
spend most of their time working on building and implementing algorithms
that enable programs to work properly.

[199]

Chapter 48

Additionally, server-side developers typically spend quite a bit of time
building APIs. This is because most server-based applications need to
communicate with the outside world in some form or another. This layer
of the development stack will require you to specialize in a language, such as
Ruby, Python, Java, or C++.

#3 – the frontend developer
When it comes to choosing a developer specialty, the third layer to choose
from is the frontend component. Not too long ago a frontend developer was
considered someone who spent all day working with HTML and CSS. Their
main goal was to make applications look pretty.

However, the definition of a frontend developer has changed
dramatically with the advent of client-side frameworks. These frameworks,
such as Angular and React, have made it possible for frontend programmers
to build complete apps with little server-side interaction.

These applications are rendered completely in the browser because
they're written in JavaScript. And whenever the app needs to get additional
data it simply communicates with APIs. A common pattern that I work with
is building a number of server-side Ruby applications and then having a
single Angular frontend app that renders the user interface in the browser.

So, if you love building applications that users will directly interact
with and the idea of working with APIs doesn't scare you off, frontend
development might be the right choice for you.

#4 – the mobile developer
Next on the list of developer types is mobile. If the idea of building the next
Angry Birds or Instagram excites you, the mobile development field may be
a good fit.

Mobile programming used to be a very difficult field to enter. Only a
few years ago you would have had to master multiple languages (Objective C
and Java) to build smartphone apps. However, JavaScript frameworks such as
Ionic and React Native have made it possible to use JavaScript to build apps
that behave like native smartphone applications.

You can still use languages such as Swift, Objective C, and Java to build
truly native applications. And there will always be a great set of jobs for
developers who specialize in these languages. However, if you are a freelance
or full stack developer, by leveraging a JavaScript framework you can build
smartphone and tablet-based apps for all platforms.

How to Choose a Developer Specialty?

[200]

And it's been my experience that the learning curve for these JavaScript
frameworks is quite a bit lower than the traditional mobile languages.
Additionally, you may have noticed that the tools used for JavaScript-based
mobile apps and frontend programming are similar. Because of this synergy,
I have had a number of developer friends who have moved away from
server-side development and moved into frontend coding because it allows
them to tackle building applications for desktops, tablets, and phones.

#5 – the data scientist
This used to be considered the data field, and a few years ago I'd have called
this something like the data developer category. However, data and big data
have rapidly morphed into the fields of statistic data analysis and using
artificial intelligence, such as neural networks, to gain insight into the huge
amount of information now available.

These new fields are changing the face of how we process data and
understand information, and it's a huge new career field for developers to
explore. Right now, the mathematics involved can be quite intimidating, so
you'll need to decide if you're ready for some heavy math and deep algorithmic
learning. The math is going to become more abstracted over time, and if
you're drawn to the idea of artificial intelligence and deep algorithmic learning
systems, this is certain an area to consider for an ambitious developer today.
Some of the most modern Python libraries provide an excellent way for a
developer to immerse themselves into this field.

Making the decision
If you are new to development, don't feel pressured to pick out a specialty
immediately. Instead, my recommendation is to explore each type of
development layer until you find a focus that you truly love.

In this chapter, I've provided a very high-level view of the developer
types. However, in reality, you will need to become even more specific with
your development focus.

For example, if you're a server-side developer, you may want to focus
on building eCommerce applications or implementing accounting systems.
If you are an aspiring frontend developer, you may want to become a
world-class security specialist.

[201]

Chapter 48

A key insight that I've discovered helps quite a few people, especially
newer programmers, is to look at developer job boards. Job boards are great
for listing out the specialties that companies are hiring for. And by going
through a list of potential job descriptions it may help you figure out what
you want to focus on next in your career.

[203]

49
How to Choose Your

Next Programming
Language?

We have discussed the importance of picking a development specialty, such
as frontend, server side, or mobile. However, simply choosing a specialty is
not enough. You also need to decide on what programming language you
want to focus on for the initial, or next, stage of your career.

No book or guide can tell you what language you should learn next, of
course. That's a decision that can be made only by your. So, in this chapter
my goal is to help you decide how to pick a programming language based on
your current objectives.

How to pick a programming language?
If you went through the exercise for picking your developer specialty, you
will notice a similar pattern for deciding on a programming language. A
quick perusal of Wikipedia will reveal that there are literally hundreds of
programming languages to choose from. If you take the approach of looking
at each language one at a time, you might be able to make an informed
decision sometime in the next hundred or so years!

Since iteratively going through the full list of languages isn't practical, I
recommend two processes for helping you decide how to pick a programming
language.

How to Choose Your Next Programming Language?

[204]

The next job you want
First on the list is basing your programming language choice on the job you
want. If you've heard the phrase "dress for the job you want", it also applies to
development.

For example, if you want to work for Microsoft or with Microsoft-based
products it wouldn't make sense for you to spends years learning Python and
Django. Instead, you will want to focus on learning the .NET development
stack and languages such as C#.

This strategy can be smart in certain cases, such as with Microsoft, since
there are countless .NET framework positions available on the job market.
This means that even if you can't get hired on with Microsoft, you can still
get a job for an organization that utilizes the .NET stack.

However, this approach doesn't work quite as well for more specialized
languages and companies. For example, imagine that you spend years learning
Facebook's flavor of PHP, codenamed HipHop. If you fail to get a job
working for Facebook you will discover that not very many companies utilize
the HipHop framework and your job opportunities will be limited. I view this
approach as a bit risky because it tends to place all your eggs in one basket.

Your specialty
My personal favorite approach is to pick a language that fits in with your
development specialty. I'm partial to this strategy because it's what I used in
my development journey and it worked quite well for me.

Deciding how to pick a programming language based on your
development specialty means that you look at the types of applications
you want to build. And then you work backwards to put together a list of
languages that are best suited for your objectives.

For example, let's take the case study of you deciding that your
development specialty is going to be building big data applications. By taking
this approach, you can dramatically narrow down the list of programming
languages that fit with your goals. Many languages can perform big data
processing, but only a few languages truly specialize in it, such as:

•	 R
•	 Scala
•	 Python

So, by looking at your specialty first, you have just narrowed down the
list of languages from thousands… down to three.

[205]

Chapter 49

Specialty-based mapping
Since I find this approach to be the most effective, let's walk through a
mapping of development specialties to popular languages:

•	 Full stack development: If you want to be a full stack developer,
the Ruby on Rails stack may be the best choice for you. This stack
offers a great set of tools for web developers and allows for the
build out of robust applications.

•	 Frontend development: For frontend developers the path to
follow resides on the JavaScript track. The JavaScript programming
language has emerged as the clear winner in the frontend
development space. And by becoming fluent in JavaScript you will
be able to work with popular frontend frameworks such as React
and Angular.

•	 Server-side development: The world of server-side development
can be a bit intimidating. If you review the server-side languages
you'll discover lower-level languages such as C, C++, and Java.
However, programming languages such as Ruby, Python, and Go
also specialize in server-side development.

•	 The data scientist: The world of data science can appear at first
sight to have impossible demands on a developer to also be a
high mathematician. However, if you explore the modern Python
libraries, you'll find a rich set of ready-made algorithms so you can
be creating your own neural networks and machine learning systems
very quickly indeed. I'd recommend Python for this reason if you're
already familiar with the language. If you have a bit more of a
statistical background, then I'd recommend that you explore further
how the R language can get a gateway into a new career path.

Through my programming journey, I have worked to specialize in
one interpreted language and one compiled language. I chose Ruby for
my interpreted language, and for my compiled language I started with C.
However, I haven't found very many practical uses for my C knowledge over
the years. Also, I have moved onto the Scala language since it is a good fit for
building big data algorithms.

How to Choose Your Next Programming Language?

[206]

Summary
In summary, as with picking your development specialty, my recommendation
to aspiring students is to experiment with a number of languages before
deciding on which ones to learn extensively. There are a number of tools
online that make it helpful to see a side by side comparison for various
languages.

For example, one of the deciding factors that led me to learning Scala
was looking through the Scala algorithm implementations on Rosetta code
(https://rosettacode.org/wiki/Category:Scala). So, don't rush
into picking out a programming language. Give the decision plenty of
thought and research and you will put yourself in a better position for making
the right choice.

[207]

50
Developer Soft

Skills – Learning
How to Gain an Edge

in the Marketplace
I've talked quite a bit in this book about improving as a developer. Most of
the time I focus on how you can learn new technical skills, such as becoming
more proficient in a programming language or framework.

However, if you limit your knowledge to technical talent you will be
decreasing your chances for success in the marketplace. In this chapter, I'm
going to walk through five key developer soft skills that you can utilize to
become a well-rounded coder.

Developer soft skills
The list of developer soft skills I'm about to present you is by no means
comprehensive. But what it does offer you is a representation of the soft
skills that I've personally used and had success with.

From being the IT Director of a national energy company in my late 20s
to the CTO of a coding bootcamp with locations around the world, I've seen
these skills help me at every level of my career. And as you'll notice, they have
very little to do with actual technical ability.

As a caveat, I do not mean for this list to overshadow skills such as
practicing clean coding habits or focusing on improving as a developer.
Instead these skills should complement your engineering talent.

Developer Soft Skills – Learning How to Gain an Edge in the Marketplace

[208]

Writing
First on the list is the ability to write. In the book Rework, by Jason Fried and
David Hansson, who are also the founders of Basecamp and the Ruby on Rails
framework, wrote that one of the skills they look for in job candidates is
their ability to write. This includes positions that you would think writing skill
would be pointless, such as developers and system administrators.

Obviously, a developer needs to be able to be skilled as a coder. However,
the book explains that if a developer can write, it is a sign that he or she is
a good communicator. Writing skill doesn't mean that each memo you write
has to sound like a riveting novel. Instead it means that:

•	 You can organize your thoughts properly
•	 You can communicate what you want to say so that others can

understand

Conversation
Next on the list of developer soft skills is the ability to converse well with
others. Now if you're like me, this is by far the most challenging skill on this
list. If I had my way I'd stay behind my desk building applications all day and
never interact with another human. It's simply the way I was wired, and I
know I'm not alone in that desire.

However, conversational skills are an absolute requirement when it
comes to advancing in your career. Whether you are a freelance developer
looking for new clients or a software engineer looking to get promoted, you'll
discover that the top prerequisite to your success is not technical skill, it's
likability.

If someone likes you they are going to want to give you a chance to
succeed. And one of the most straightforward ways to get people to like you
is by becoming a good conversationalist.

Conversation tips
Thankfully, I've discovered that the system for having great conversations is
pretty straightforward. Here are some tips that I've used to improve at this
skill:

•	 Think back through your life and come up with some entertaining stories about
yourself. People love stories, especially if they are funny. And I've
discovered that telling a few well-timed stories has been able to get
me in the good graces with CEOs and executives over the years.

[209]

Chapter 50

•	 Make the focus of conversation be on the other person. People love talking
about themselves, so by simply asking insightful questions you will
be considered a great conversationalist… even though you let the
other person do all the talking! Like your stories, come up with a list
of questions that you can recall at a moment's notice.

•	 Do not complain. I have yet to find the person that likes to converse
with someone who constantly complains. With that being said,
countless people seem to enjoy bringing up every negative thing
that has happened in their lives when they meet someone. The
good thing about this is that if you can have a conversation without
complaining you will stand out as being an upbeat and likable
person.

Management
Moving down the list of developer soft skills, the next item is management.
Now if you're an entry-level developer, don't tune out. Management doesn't
have to mean managing people or projects.

When I say management, I'm referring to how you attack each task
you're given. For example, if you are handed a new feature to build, do
you jump right in and start coding? Or are you more organized with your
approach? If a client or managers see that you take a systematic approach to
every task you're given they are going to feel more confident giving you more
responsibility.

To improve this skill, I recommend you read up on project management
books or take an online course on the topic. The few days that you'll spend
learning about management practices will help serve you well the rest of your
career.

Design
Next on the list is design. In Scott Adams's (the creator of Dilbert) book How
to Fail at Almost Everything and Still Win Big, Adams describes how knowing the
basic fundamentals of design should be required knowledge for all engineers.

I can't tell you how many times I've heard a developer say something
like "design really isn't my thing". It's fine if your top skill isn't design. However,
learning the basics of what qualifies as a well-crafted design takes such little
work that anyone who doesn't learn about it is simply being lazy.

Developer Soft Skills – Learning How to Gain an Edge in the Marketplace

[210]

As a developer, if you haven't researched what it takes to create a good
design, you are going to be quickly bypassed by others who read a single book
on the topic. There have been multiple times early on in my career where I
neglected design and it cost me dearly.

I remember one time where I spent weeks building an incredibly
complex feature to only have management spend the entire meeting talk
about how much they hated the design, while completely ignoring the actual
functionality. If I would have spent a few hours to design the look and feel of
the product the meeting and project would have had a more favorable result.

Public speaking
Last on the list of developer soft skills is public speaking. This may seem
like a useless skill for a software developer. However, let me give you two
scenarios to think about:

•	 In scenario 1 there is a brilliant developer with poor public speaking
skills. When asked to present a project that he built, an incredibly
well-built project I may add, the developer talks in a monotone
voice during the whole presentation and the product demo is filled
with him simply moving from one page to another.

•	 In scenario 2 there is another great developer. But this engineer
has worked on his public speaking skills and gives a well-organized
demo. His time in front of the room is filled with clear language,
amusing anecdotes, and analogies for each feature to make the
project understandable for everyone in the room.

If you were in the room, which one of the projects would seem more
appealing? It doesn't take a MBA to know that the developer in scenario #2
will win each time.

Note that both the projects were great pieces of software. Like I
mentioned earlier, soft skills are not a replacement for technical skills. They
are something to layer on top of programming expertise. You could give a
Steve Jobs-level speech, but if the product doesn't work it won't matter.

[211]

Chapter 50

Becoming a better public speaker
Public speaking is ranked as one of the most feared tasks to perform.
However, I can tell you from experience that you can improve at public
speaking quite easily. There are two things that I've done to become a better
speaker:

•	 I am a member at a local Toastmasters group. Each week I attend a
group meeting where I can practice getting up and talking in front
of a group of people. By simply forcing myself to practice this skill
consistently my public speaking ability has improved dramatically.

•	 Additionally, I listen to one TED talk each day. The TED conference
lectures are given by some of the most skilled orators in the world.
By listening to a new talk each day, it has helped give me ideas of
ways that I can craft my own speeches and it has helped to build a
mental model for what makes a great speech.

The importance of soft skills
So, now that you know the list. How important are developer soft skills?
I can't tell you how many times I've seen an inferior developer promoted
to management simply based on their ability to speak well in meetings or
converse with co-workers.

Remember that the key to each of the skills on this list is that they
help people feel more comfortable being around you and that they will be
confident that you can get the job done. Likability and confidence are two key
prerequisites you'll need to gain an edge in the marketplace.

[213]

51
Developer Learning

Options – A Practical
Analysis

The entire world seems to be talking about the importance of becoming a
coder. However, many of these discussions aren't practical. This chapter will
walk through the various developer learning options available today, and help
you decide on which option is right for you and your goals.

Degrees of programming expertise
If you're new to development the first task you should complete is to decide
why you want to learn programming. There are a number of reasons for
learning how to code, including:

•	 Becoming a professional developer
•	 Improving your skill in your current profession
•	 Learning for fun or for hobby projects

It's important to decide on your goals since they will dictate what
learning strategy to take when it comes to how to learn programming. Let's
look at each of them.

Becoming a professional developer
If your goal is to become a professional developer, congratulations! You'll
be joining one of the fastest growing industries that the world has ever seen.
The pay is great and the right developer jobs are both fun and rewarding.
However, with all those benefits comes a strict set of learning requirements.

Developer Learning Options – A Practical Analysis

[214]

Pro coding jobs will require you to become proficient in a programming
language and several frameworks. And simply building applications that
function properly isn't enough for most jobs. Instead, you'll need to be able
to build apps that follow processes such as:

•	 Test- and behavior-driven development
•	 Clean coding styles that are scalable and adhere to industry best

practices
•	 Coordinate with developer teams and seamlessly work with code

version control systems

And the list goes on and on…

Developer bootcamps
Any platforms or guides that say you can become a professional developer in
a month or claims like that are simply lying to you. Becoming a professional
developer takes years. I've been a developer for over a decade and I'm still
learning each day. With that being said, if you want to make a career as a
developer there are countless resources for achieving your goal.

Personally, I'd recommend starting with a developer bootcamp.
Bootcamps allow you to become fully immersed in a language or framework
over a course of several months. And many of them, including the one I run,
DevCamp, offer job guarantees after you've completed the course.

These immersive programs aren't easy or cheap. They'll usually require
around 40 hours a week of study and practice. And you'll find they range
from around $5k to $20k. This may seem like a pricey option; however, how
many training platforms can guarantee that you'll get a job after a few months
of study?

Is this practical?
It may seem like I said a contradictory statement when I said that developer
bootcamps can help you get a coding job in a few months. But I also said it
takes years to become a professional developer. Let me let you in on a dirty
little secret in the software world… many individuals working in developer
jobs aren't professional programmers!

After getting hired from a coding bootcamp you'll most likely be a
junior developer. The companies that hire bootcamp graduates understand
that they're usually new to programming and they take it upon themselves to
continue the new hire's education.

[215]

Chapter 51

This is a win-win scenario. Developers can get great paying jobs with
limited experience. And software companies can train developers to follow
the procedures specific to their organization.

Improving your skill in your current
profession
Another great reason for taking interest in how to learn programming is to
improve in your current career. I'll give you a great example of how this
can work. I have a good friend who spent his whole education focused on
business. After graduating from college, he got a job working for an energy
company and he realized he wasn't climbing the corporate ladder quite as
fast as he wanted. He approached me initially to see what it would take for
him to transition and become a full-time developer. After a few minutes of
speaking with him it became apparent that he didn't really want to become a
programmer, he was simply frustrated with his current job.

So, I began asking him questions about what types of tasks he had at
work. He worked in the supply chain division for his company and it was his
job to comb through fleet management data and generate reports. I proposed
that he learn the basics of programming and then to focus on data science.

After a few months, he had successfully built a big data analysis program
that was able to manage his entire division. When he presented his work to
the company's executives they were so impressed with the program that he
was promoted and given a hefty raise. When I talk to him now he doesn't
mention leaving his job anymore. Instead he discusses how he loves it and
how he's constantly looking for new ways to integrate automated mechanisms
to improve the work he does.

Is this practical?
If you think this scenario fits with your goals. You can follow a much different
path than professional developers. You can take online courses that walk you
through practical projects that you can re-purpose for your own needs.

For example, the executive I just mentioned didn't learn how to build
a machine learning algorithm from scratch. In fact, he'd be completely lost
in even an entry level computer science class. Instead he took one of my
programming courses and saw how the decision tree I built could be used
in his division. After altering the data points, he could use it for his specific
needs.

Developer Learning Options – A Practical Analysis

[216]

Learning for fun or as a hobby
This is a fun and relaxed way to learn. If you have a pet project that you've
been wanting to build or if you simply like learning for the sake of learning,
you'll discover a wide variety of resources that will help you achieve your
goals.

When people ask me where to start when it comes to building code
projects for fun, I typically point them to practical tutorials. If you're simply
learning for fun you don't have to waste your time on complex computer
science topics. Instead, you can focus on following step-by-step guides that
walk you through how to build projects.

For these types of guides, you can access affordable ones on sites such as
Udemy. The great thing about these types of courses is that they come with:

•	 Videos
•	 Written guides
•	 The source code for the project that you'll be building

This approach to learning makes for a great way to be introduced to
development. And you never know, starting with hobby projects could end
up with you going to the next level and learning professional programming.

Summary
In summary, I hope that this has been a helpful discussion on the various
developer learning options that are available. I'd recommend checking out
each option and taking an honest look at which one is right for you. No
matter what you decide, learning how to code is a great experience and I
recommend everyone to study it in one form or another.

[217]

52
Is it Possible to Lose
Your Coding Skills?

This topic was inspired by a Boing Boing article (http://boingboing.
net/2016/06/08/coder-fired-after-6-years-for.html) that tells
the story of a QA developer who spent 6 years working for a company and
literally did nothing besides playing computer games, browsing Reddit, and
wasting his time.

The Reddit user, FiletOfFish1066, posted his story to the site and it
instantly became a supreme case study for what happens when you don't
continue to develop your coding skills.

After not working for 6 years, he says that he has completely forgotten
how to develop and now he's out of a job. The story goes that he started
working as a software tester and realized that, by writing some scripts, he
could fully automate his job. So, he worked for about 8 months building
testing scripts and after that he simply let the tests run. He didn't have to do
anything besides kick back and play video games all day. There are a number
of lessons that developers can learn from this story and that's what I want
to cover.

I don't really blame the employee in this case. Apparently, there was
such little oversight in his organization that he could get away with not
working for 6 years. That tells me that the company he worked for has serious
structural problems to let that go on for so long. It should be noted that many
organizations are employing people to do work that software can do, but
instead are choosing to waste money with archaic manual processes.

Is it Possible to Lose Your Coding Skills?

[218]

This developer started his job doing exactly what he should have done.
He recognized that there was a way to automate his job, which was a great
first step. If he would have gone to the management and shown what his
automated script did, he would have most likely been promoted for his
expertise and would have a great career right now.

It's possible to lose your coding skills. If a world class bodybuilder
would stop going to the gym, eventually he'd lose his muscles. In the same
way if you stop honing your craft as a developer, you'll eventually lose your
programming skills.

A few years ago, I met with a gentleman who was the vice president of
software development at a large energy services company. He got into the
position by selling software that he had built himself, which has become the
industry standard and currently processes billions of dollars in transactions
each month. Even though this individual used to be at the top of his field as
a developer, since he became an executive, he got further and further away
from coding the application, and he admitted to me that he wouldn't even be
able to build a simple program now.

I just finished reading the book Peak by Anders Ericsson and Robert Pool,
and it gives case studies from the medical field, that show that the most
experienced general practice doctors are not always the best in their field
compared with less experienced physicians. The book explains that, on
average, the longer a general practice doctor has been working in industry,
the less they focus on learning and therefore they start to lose some of their
expertise.

Surprisingly, it's actually doctors who have recently finished fellowships
and gone through extensive training that perform the best. The authors did
note exceptions when it came to specialists. For example, cancer specialists
that perform surgeries daily and are constantly working on their craft,
perform better than less experienced surgeons.

I thought that was a great example for developers because I know, from
my own experience, that if I'm not daily using my development skills, they
will atrophy. There really is no middle ground, when it comes to development
you're either getting better or worse, you won't stay the same.

So how can you ensure that you're always improving and that you won't
lose your coding skills? Here are a few practical tips that I use.

[219]

Chapter 52

Learn something new about development each day and be intentional
with how you learn. In fact, just yesterday I taught myself how to integrate
growl notifications into a Rails application (https://rails.devcamp.
com/professional-rails-development-course/advanced-user-
features/how-to-integrate-growl-type-notifications-rails-

app#.V2G-uD4TDUQ.twitter), which was something I hadn't done before.
If you simply repeat the work you've done in the past, you won't

improve. Thinking back to our case study of the general practice doctors,
the research showed that the reason why the older physicians skills decreased
was because they performed the same work day after day and eventually the
only tasks they could perform properly were the things that they had repeated
each day.

To be 100% honest, this part isn't very fun, which is why only a few
people do it. Learning new and challenging skills can be intimidating and
stressful. In the same book Peak, the authors said that a common trait among
all top performers, in every field they researched, was that they were willing
to deliberately practice skills that they found difficult, because it was only by
mastering those skills that they could grow in their profession.

A practical way for developers to implement this method of deliberate
practice is to write down a list of features that you have never built into an
application before. Then, spend time each day until you have successfully
built each component. After you're done with that list of features, create
another list. I personally have a list that I work and study from and it's helped
me to feel confident that I'm learning something new each day and that I'm
constantly improving as a coder.

On a final side note, I've had multiple people message me about the
story from Boing Boing asking how it was possible that the developer created
a script for automating his work. Without further details, it's impossible
to know for sure; however, since he was in the testing department my
guess is that he built a test suite, using tools such as Capybara (https://
rails.devcamp.com/professional-rails-development-course/

application-build/bdd-index-view) to run through the software and
generate reports on features. So that would be my guess.

Summary
I hope that this guide has helped to inspire you to be deliberate with your
practice and that you will continually improve as a developer.

[221]

53
Is Writing Bad

Code Immoral for
Developers?

In this chapter I'm going to discuss a slightly odd question: is writing bad
code immoral? This leads to the concept of the importance of developing
well-written code.

This may seem like a weird question to ask because the mindset of most
developers is that code projects are neither moral or immoral, they're simply
programming files that perform various functionalities. I would like to think
that most developers take pride in their work and therefore want to write
code that adheres to best practices. However, given schedule and budget
constraints many projects devolve, with the top goal becoming to simply work
and being completed as soon as humanly possible.

However, this mindset can lead to issues such as: missing edge cases
for features and poorly organized codebases that are difficult to maintain.
Regarding the question of is writing bad code immoral?, I heard a great story
from one of my Computer Science professors at Texas Tech, Dr. Michael
Gelfond, which is where I got the idea to write this chapter.

During one of our lectures, Dr. Gelfond posed the question and then
told a story. A few decades ago when he was a programmer working for
a software organization, he ran into a nasty code bug. It took him several
days to figure out that the previous developer had built a poorly constructed
function that was causing the module that he was working on to break.

Is Writing Bad Code Immoral for Developers?

[222]

After Dr. Gelfond told us the story, he asked us again if writing bad code
was immoral; most of the class answered that it wasn't. But then he asked
if we murder someone a few days before they were going to die, "is that
immoral?" To this, everyone answered with a unanimous "yes." He finished
his lecture by saying, "Well wasn't it immoral that the last developer's code
stole two days away from my life?"

That story and question has stuck with me for years, and now my answer
to the question "is writing bad code immoral?" is a resounding "yes"! As
developers, we should take pride in the work that we produce, not just for our
clients' or employers' interests, but simply due to the fact that our goal should
be to be true craftsmen in everything that we do.

Coding is the closest thing we have to magic in this world, and I feel
honored to be able to work with it on a daily basis along with being able to
teach others how to do the same. And with that in mind it should motivate us
to have a clearly defined goal of being excellent at our craft.

One of my all-time favorite baseball players was Joe DiMaggio and he
had a great quote that I think is very applicable to developers. He said:

There is always some kid who may be seeing me for the first time.
I owe him my best.

I try to apply this in all of the code projects that I do, it's easy to fall into
lazy habits. However, I remind myself that someone might be looking at this
project and it could be the first impression they have about me as a developer,
and if I took shortcuts, even if the application works, it could reflect badly
on the work that I do.

This doesn't mean that you can't make mistakes, quite the opposite
actually. I'm constantly striving to become a better developer and because of
that, I'm always trying to work on building features and projects that I haven't
created before, which naturally leads to mistakes during the learning process.
However, there is a clear distinction between mistakes that get made while
you're trying to build an ambitious feature compared with project bugs that
pop up due to laziness and poorly written code.

[223]

Chapter 53

How to write better code
So, if writing bad code is immoral, what can be done to combat it? Thankfully,
we have a nice set of tools and workflows that can be implemented. Here are
a few of the ones that I've found to be the most effective:

•	 TDD/BDD: Regardless of your thoughts on test- or behavior-
driven development, there's no denying that if they're implemented
properly it can lead to a well-constructed codebase. TDD naturally
leads to following best practices such as low coupling and small
methods, and with its refactoring step, I'm a huge fan of using it to
ensure that an application is built the right way.

•	 Continuous integration: Assuming that you have a comprehensive
automated test suite, continuous integration tools such as Codeship
or Travis will make sure that code will not be pushed to production
until it's passed the full test suite. I've had a number of times where
Codeship has blocked a bad deploy that would've taken down a site.
Additionally, it gives the development team a report on what needs
to be fixed if a bad deploy is attempted.

•	 Pair programming: This is one of the most powerful tools you can
use as a developer. If you're not familiar with it, pair programming
is the process where you and another developer both take turns
working on a project at the same time, preferably in the same room
and on the same computer. When one of you is coding, the other
developer is watching and giving advice or warnings. Whenever I'm
building a complex feature, I will always use pair programming since
it's akin to working with two brains on the same feature.

•	 Continuing education: No matter how long you've been a
developer, you'll never reach a stage where the learning ends. Each
day I try to learn something new, whether it's from tutorials, books,
or blog posts from other programmers.

Summary
I hope that this has been a thought-provoking chapter and will help you on
your journey towards becoming a code craftsman.

[225]

54
Inspirational

Programming Advice
from Howard Roark

In this chapter, I'm going to discuss one of the quotes that I've always turned
to for inspiration as a developer.

It's from Ayn Rand's book, The Fountainhead. The main character in the
book, Howard Roark, is a skilled architect and typifies the concept of being a
true craftsman, in the same way that all of us, as developers, should approach
our own projects.

This quote discusses how every project is special and deserves a unique
implementation, and it goes as follows:

"Rules? Here are my rules: what can be done with one substance must never
be done with another. No two materials are alike. No two sites on earth are
alike. No two buildings have the same purpose. The purpose, the site, the

material determine the shape. Nothing can be reasonable or beautiful unless
it's made by one central idea, and the idea sets every detail. A building is alive,
like a man. Its integrity is to follow its own truth, its one single theme, and to

serve its own single purpose."

—Howard Roark, The Fountainhead

Inspirational Programming Advice from Howard Roark

[226]

Even though this was written in the early 1900s and was for the
architecture industry, Roark's approach to craftsmanship can be applied just
as easily to programming. It can be easy to fall into the trap of staying in a
comfort zone and simply duplicating implementation and functionality from
project to project. However, that can create two problems:

1.	 You don't grow as a developer. The only way to get better is to step
out of your comfort zone and build features that you've never done
before so you can learn new concepts.

2.	 Projects suffer, becoming square pegs in round holes. Each
application has its own set of unique requirements and therefore,
should have a custom implementation.

I hope that you found Roark's wisdom inspirational and that you can
apply it to your own development projects.

[227]

55
Best Practices

Versus Creativity as a
Developer

In this chapter, I'm going to discuss how you can find the balance of best
practices versus creativity as a developer.

To be honest, this was initially a difficult chapter to write, mainly because
I had a hard time organizing my thoughts on the topic since it's a little
abstract. I had the high-level concept of the strained relationship between
best practices vs creativity as a developer, in the sense that many developers,
especially the ones new to coding who will fall into two camps:

•	 Those attempting to follow standardized conventions in every
way, essentially duplicating code from tutorials and a language or
framework's documentation page.

•	 Those ignoring all common practices and building applications in
whatever way that makes the most sense to them (at the time).

There are pros and cons with both approaches, and like many other
topics, a cross between the two is going to result in the best strategy. Let's
look at the pros and cons of following best practices and ignoring the idea
of being creative.

Pros:
•	 Application code will be easier for future developers to pick up and

add features to since they'll know how the code is structured and
where all of the methods and classes are located.

•	 Programs should be well-tested via unit and integration tests.

Best Practices Versus Creativity as a Developer

[228]

Cons:
•	 Code structure may have more of a cookie-cutter approach.
•	 Code may suffer from the square peg/round hole syndrome.

Before I go on, please don't misunderstand me by thinking that I'm
saying that developers who follow best practices have these issues. I'm simply
referring to developers who throw creativity out the door and simply try to
build programs using standardized methods and attempt to copy code that
they see from other developers.

Now let's take a look at the pros and cons of developers who only
embrace creativity:

Pros:
•	 They have fun, this is very important since it keeps them motivated

to build interesting projects. They're also able to express their
unique perspectives on how applications should be structured.

•	 They're constantly trying new things and finding new ways to build
features. This can result in learning quite a bit about the language or
framework that they're using.

Cons:
•	 Programs that only rely on the developer's creativity can be nearly

impossible to manage later. Even the developer who built the
application may have a hard time understanding his own code if he
has to go back and add new features.

•	 Even though programs built ignoring best practices and relying
solely on the developer's creativity are fun to build at first, as the
codebase grows the level of fun decreases exponentially. In fact,
it's common for new developers to kill an entire project and have
to start from scratch because the codebase became such a mess
following a non-standardized approach.

So, if there are pros and cons to both approaches, which is the best way
to go? I am a self-taught developer, and originally, I definitely fell into the
second camp of building apps simply using creativity.

However, I ended up building some horrible applications, I did learn a
lot about various languages through the process, so it was a beneficial strategy
from a learning perspective. Over the years, since I matured as a developer,
I realized that I had to find a balance between following standardized best
practices and being able to add my own creative touches into a program.

[229]

Chapter 55

It's simply ignorant to disregard industry-wide accepted best practices.
Concepts such as properly structured, object-oriented code increase a
project's maintainability and also makes it more efficient to add new features
in the future. Some of the most brilliant minds in the world have spent the
past century refining development procedures, and a good developer should
build upon that cumulative knowledge.

With all that being said, there is still a place for being able to integrate
your own creativity into a development project. The more skilled I've become
as a developer, I've realized that I'm more creative with my code than I ever
was before. When I originally started programming, my creativity was really just
an unorganized attempt to get features to work the way I thought they should
be structured in my own mind. However, around a decade of experience has
refined how I build programs, and that experience has allowed me to learn
how to be more expressive with how I write applications.

The more confident I've become as a developer, the more I've been able
to explore different ways of building projects and I'm having more fun now
than ever I had before. I'll leave you with this thought from Sandi Metz, one
of the software developers I personally admire the most and the author of
the book Practical Object-Oriented Design in Ruby when she described the balance
between following cookie-cutter approaches vs implementing creativity in
development, she said:

"Design is not an assembly line where similarly trained workers construct
identical widgets, it's a studio where like-minded artists sculpt custom

applications. Design is thus an art, the art of arranging code."

I hope that this has been a helpful discussion and will help you find the
balance of best practices versus creativity as a developer in your own projects.

[231]

56
A Practical Guide to
Approaching Project

Development
One of my favorite parts of being a teacher is interacting with students. And
this chapter will focus on answering a viewer's question regarding strategies
to approaching project development.

Student question
The following is a letter I received from Christian, a developer from Germany:

Starting web development a year ago, I'm currently building my first own
commercial product (a classified ad site) using Rails. I really would like to

hear your advice on how you approach building features on apps, as I have the
following problems:

I can't really plan a feature from start to end because I always think I'm
missing something important

Procrastination and being afraid to make errors that will be costly to correct in
the future

How do you approach building features when you don't know the scope
exactly?

What`s your process, how do you get unstuck?

Best regards,

Christian

A Practical Guide to Approaching Project Development

[232]

Strategies to approaching project
development
In this letter, each of the questions revolve around having a strategy for
approaching project development. And in this chapter, I'm going to walk
through an answer for each question.

Planning a feature from start to end
The first question from our developer Christian asks:

"How do you approach building features when you don't know the scope
exactly?"

This is a great question. As helpful as it would be to have a clearly
defined scope from the beginning of the project, it rarely ever happens. And
even if you were given a perfectly crafted project scope, it would most likely
change during some stage of development. This would essentially render the
scope pointless anyways. In our developer's (Christian) email, he said he was
building out a classified ads site, so we'll use that as an example case study
throughout this chapter.

Moving from requirements to stories
One of the statements made was that you don't feel comfortable planning
features from start to end because you think you're missing something. This
is a common issue when you approach an application built based on a set
of requirements. You probably tried putting together a list of requirements,
such as:

•	 A user should be able to register
•	 Records can only be edited by the user that created the posting

If you take this approach, it's natural to feel like you're missing a feature,
especially if you're new to development. Instead of using requirements, I'd
recommend creating user stories. I'll give you one from a classified's app I
built last year:

A user logs in to the application. From there, she sees buttons for creating new posts or
editing ones that she has created before. She only sees posts that she personally created and
she can't access this page without logging in to the app. In addition to seeing her posts, she
can click on a post to review all the responses from users to that post.

[233]

Chapter 56

Notice how much more practical this is than simply listing off
requirements? Your app should have dozens of user stories that contain all
the initial functionality that you want to build.

Starting with a base case
Now that your app has a nice set of user stories, how detailed should they
be? Honestly, I would recommend that you keep the functionality as basic
as possible. When I'm building applications, I don't even include all of the
parameters that I know I'll need later.

When it comes to approaching project development I take a base case
strategy. This means that I drill down a feature to its most basic component.
Getting back to your classified ad app, let's say, it has a story such as:

When a user is on the page to create a new listing, she can add a title, a description,
and up to 5 pictures. From there she can click on save to create the post, which redirects
her to the post show page.

If you try to build that entire feature it would be very intimidating. So,
my approach would be to first simply create a form page. From there I would
only add in the ability to create a post with a title. The description can be
added easily in the future.

Therefore, I don't see any point in wasting time on it in the beginning. I
would completely ignore the picture uploading functionality in the beginning
since that will require using tools such as nested attributes. So, after a user
can create a post with a title I can circle back and add each of the other
components one at a time. Taking this approach makes the entire process
less intimidating.

Fear of the unknown
In the email, he mentioned being afraid of missing something important.
This fear of the unknown is completely natural and let me say: you will be
missing something important. Creating user stories should help to catch
the critical items. However, I promise there will always be components that
initially fall through the cracks. However, don't let that scare you off, you can
add new features in later.

From my personal experience, I remember one time where I was building
an enterprise application and completely forgot to give managers the ability
to view posts they were supposed to approve! However, after I realized that I
left out a key feature I could add it in and the client was happy.

So, don't let the fear of missing a key feature stop you from building.
Remember the initial Facebook developer strategy.

A Practical Guide to Approaching Project Development

[234]

Moving fast and breaking things
After becoming a public company, Facebook has moved away from
approaching project development in this way slightly. However, when it
comes to building applications it's still a strategy that I embrace. And I've
discovered that it leads to getting more done. Additionally, moving fast and
breaking things will also help remedy your second problem.

Battling procrastination
I greatly appreciate Christian's candor (which was a huge reason why I
decided to give him a 1,500-word response instead of pointing him to some
other resources). In the email, he admits to struggling with procrastination.
And I'm glad that he did because procrastination is something that every
developer I've ever known, including myself, have to fight against.

One of the top tools I use to battle procrastination is thinking small.
We, as developers, naturally tend to push challenging features away. Instead,
we like to focus on working with components that we're already comfortable
with. That's natural for everyone, however it's not good. And I have to
remind myself of this fact daily.

In his book Deep Work, Cal Newport discusses how deep work (the type
of work that takes someone from good to great) is not fun. In fact, when
researching top performers, Newport found that 100% of the individuals did
not enjoy working on challenging tasks. So, when it comes to approaching
project development, please understand that the scariest features might be
your greatest catalyst for improving as a programmer.

Small, practical steps
So, my personal recommendation is that you embrace the difficult features,
but take an incremental approach. For example, imagine that you're
intimidated to build in the ability to let users upload multiple images per
listing in your classified app. This feature can intimidate even experienced
developers. You'll need to use nested attributes and incorporate a number of
JavaScript elements to allow for dynamic behavior.

This is the type of feature that could lead you to procrastinate since it's
a bit on the scary side. However, I'd recommend that you tackle the feature
right away. You can write down a strategy for how you're going to build the
component, such as:

1.	 Integrate nested attributes for posts.
2.	 Build a JavaScript script that can dynamically create new file upload

elements.

[235]

Chapter 56

3.	 Hard code some image URLs in a sample record in the database.
4.	 Finally connect the system to the storage engine.

And then guess what, you're done! Notice how much less intimidating
the feature seems when you break it down into smaller steps? This is the key
to fighting procrastination.

Getting unstuck
When it comes to development there are a number of ways developers can
get stuck.

Application bugs
If you find yourself getting stuck on a bug, I highly recommend isolating
the feature that isn't working. Too many times developers attempt to fix
a component while still trying to keep the rest of the system functioning
properly.

When it comes to debugging, I throw best practices and form out
the window. Everything is on the table when it comes to fixing a bug. For
example, if data isn't showing up properly on a page, put a database query in
the view template. Gasp! Don't worry, after you've discovered what the bug
is, you can then immediately refactor the code to conform to best practices.

Other techniques I find very helpful when it comes to getting unstuck is
using the Rails console to run scripts and working with debugging tools such
as Pry. These tools allow you to isolate the issue and focus on the problem
instead of letting the rest of the application get in the way.

Messages over models
Lastly, a key differentiator I've discovered between good and great developers
is in the way they look at application development. A good developer can
look at a program or feature and start by listing out all the models, their
attributes and relationships.

However, great developers first focus on the messages that will be
sent from class to class. This is a completely different way to think about
development. Instead of looking at classes like static object blueprints, it
forces you to think about the actual behavior of the classes.

A Practical Guide to Approaching Project Development

[236]

This isn't an idea I came up with. The esteemed developer Sandi Metz
described this concept the best when she said:

"You don't send messages because you have objects, you have objects because you
send messages."

[237]

57
How to Practice

Programming
Techniques and

Improve as a
Developer?

Whether you are new to programming or have been at it for years, practice
is important. The more you practice your programming skills, the better you
will be. You have various options to practice programming techniques. These
options will help you brush up on your skills and continually improve as a
developer.

Engaging in pair programming
Programming doesn't have to be a solitary activity. Instead of taking in on
by yourself, engage in pair programming. Since pair programming has people
working together from a single computer, it is a great way to learn different
strategies for tackling problems and approaching the process. This type of
practice will quickly make you a better programmer, as long as you choose a
good partner.

How to Practice Programming Techniques and Improve as a Developer?

[238]

Utilizing open source software
Open source software is a great way to practice your programming techniques.
Start by reading code from various open source projects. This will help you
understand how the programmers managed to create such a successful
project.

Then, participate in various open source projects. As you work, people
will give you immediate feedback. It might be hard to hear the criticism from
time to time, but it will help you fine-tune your skills, which will make you a
better programmer.

Visiting the DailyProgrammer subreddit
on Reddit
Reddit is a community full of people who share ideas and help one another.
You can get in on the action with the DailyProgrammer subreddit (https://
www.reddit.com/r/dailyprogrammer/). This subreddit posts three
programming challenges each week. The first challenge is relatively easy, and
then they increase in difficulty. The community reviews the solutions and
provides feedback. Use this subreddit to improve your skills while having
some fun.

Taking online courses
Sometimes you don't need to go back to school to develop your programming
skills. Massive Open Online Courses (MOOCs) are an excellent way to
brush up on your skills. You can learn at your own pace and practice the
techniques that you need to work on without getting rushed. Best of all,
you can get feedback during the course, which will help you become a better
programmer.

You can check out my Professional Rails Course (https://www.udemy.
com/professional-ruby-on-rails-coding-course/) if you want to
learn how to best utilize the Rails framework.

[239]

Chapter 57

Code katas
The term kata was first introduced by Dave Thomas in the book, The
Pragmatic Programmer. He borrowed it from martial arts and applied it to the
programming world. To code katas, you need to take a small requirement and
create the code. Then do it over and over again, improving it until it is perfect.
This is an easy way to practice coding while making your code better.

Summary
Don't make the mistake of thinking that you don't need to practice
programming. You should practice as often as possible. You can leverage
these recommendations to practice programming techniques to improve
your skills so that you can take your career or your hobby to the next level.

[241]

58
What Does It Take
to Become a Great

Developer?
Whether you've been programming for years or if you're just now learning
how to code, it's natural to ask yourself: what does it take to become a great
developer?

I'm going to start off by saying that there is no right or wrong answer to
this question. If you ask 100 experienced software engineers this question,
you'll get 100 different responses. The reason why there's no clear-cut answer
is because development is truly an art. Therefore, asking this question about
programming is similar to asking what makes a great artist.

Tips for becoming a great developer
In preparation for this chapter, I asked various developers, I read blog posts,
and I listened to a number of podcasts discussing the topic. As I expected,
the components of becoming a great programming are extensive.

In this chapter, I want to give an overview of the processes and
requirements that I've found the most effective. The following are six traits
that encapsulate the key characteristics found among great developers.
I've also included some practical strategies for working with each of these
attributes on a regular basis.

What Does It Take to Become a Great Developer?

[242]

Working through difficult features
Starting off with one of the most challenging traits, I've found that the only
way I improve as a developer is to work through challenging concepts.

I find it disturbingly easy to fall into a routine where I only perform the
same tasks again and again. I've been working as a developer for a number
of years and I therefore have a nice arsenal of tools and features that I'm
comfortable building.

However, I've discovered that if I simply keep building features that I'm
already comfortable creating, I won't grow as a developer. It's only when I
bear down and dedicate myself to work through a difficult task that I've never
performed before that I become better myself.

Having the requirement of working through difficult practice isn't a
concept related solely to development. The book Peak by Anders Ericsson and
Robert Pool researched peak performers in music, athletics, and essentially every
other skilled profession. The results of the research revealed that individuals
only show improvement when working through challenging concepts. This
means that if concert violists played the same music day after day and never
challenged themselves, their skill would stagnate.

The same concept holds true for developers. If you want to become
a great developer, you need to work through difficult topics constantly. If
you don't know where to start with finding challenging features to build,
visit some of your favorite websites. You could look at Twitter, Airbnb, or
Pinterest. From there you can compile a list of advanced features that you've
never built before. Examples would be components such as: infinite scrolling,
asynchronous notifications, or multi page authentication.

Community contribution
With the growth of the programming industry, the open source community
has expanded exponentially. The most popular languages and frameworks in
the world, such as Python and Ruby, were created not by corporations, but by
programmers interested in the common good.

Depending on your level of experience, community contributions
will vary pretty widely. If you're a senior-level engineer, you could build an
open source code library or build a feature for a programming language.
However, even if you barely have any experience, you can still contribute.
New developers can assist other individuals who are just starting to code.

[243]

Chapter 58

As great as it is to give back to the developer community, there are also
significant benefits to contributing. If you're building a code library that
other developers will see, you'll most likely be very careful to ensure that the
codebase is properly tested and functions properly. This type of development
will make you an even better programmer and will help you in the long run.

Artistry
When it comes to development, it's easy to get caught up in the day-to-day
minutia of a project and forget that, at its core, programming is an art. For
code to be artistic, it must be elegant, and for it to be elegant, it must be
simple. Some of the best projects that I've worked on ended up having the
most straightforward codebases. However, writing simple code is not as easy
as you may think. Sandi Metz said this about simple code:

"Novice programmers don't yet have the skills to write simple code."

Einstein said this about simplicity:

"If you can't explain it to a six year old, you don't understand it yourself."

This may seem like an odd concept. However, if you've ever attempted
to build a complex project that maintained an easy-to-follow code design
you know it to be true. The more you improve as a developer, the most
straightforward your work should be.

Craftsmanship
Craftsmanship is closely related to artistry. However, there is an important
distinction. When you're a craftsman you truly take pride in your work.

Over the years I've met all kinds of developers—from programmers who
simply treated each project like a widget on an assembly line, to developers
who made sure that every code file they worked on looked like a piece of art.

Personally, I've found a cross between the two concepts to be the most
effective. Like many other concepts, craftsman is not isolated to programming.
Growing up, my Dad, who was a Major League baseball player and is now a
coach, always taught me to have what he called a Spirit of Excellence. This
meant that no matter what I did or what I was working on, I had to take pride
in it. He would tell me that if I was taking the time to perform a task, I might
as well do it properly.

What Does It Take to Become a Great Developer?

[244]

While I feel that I take pride in my work, craftsmanship is one of the
concepts that I struggle with the most. I find this principle challenging
because it can be difficult to find the balance between well-written code and
perfect code. As the saying goes, perfection is the enemy of great. Therefore, it's
important to ensure that you work hard to properly design your codebase.

However, don't pressurize yourself to achieve perfection. It's also
important to have the mindset that no project is ever truly completed. This
means that if you attempt to achieve perfection you'll constantly be frustrated.
Mainly, due to the fact that you will never reach a stage where your codebase
will ever be considered done.

Steve Jobs's craftsmanship
When it comes to craftsmanship, few have taken the same level of pride in
their work as Steve Jobs. This is what he had to say about craftsmanship:

"When you're a carpenter making a beautiful chest of drawers, you're not
going to use a piece of plywood on the back, even though it faces the wall and

nobody will ever see it. You'll know it's there, so you're going to use a beautiful
piece of wood on the back. For you to sleep well at night, the aesthetic, the

quality, has to be carried all the way through."

—Steve Jobs

Adapting to change
If you've worked on any real-world code projects you can attest that there is
only one true constant: change. Great developers set themselves apart from
novices by how they adjust to changing requirements for an application.
There are two ways that new coders struggle with change:

•	 No flexibility with the code design. This means that when a new
requirement is added to the project, they will need to completely
reconfigure the code to allow for the additional functionality.

•	 Planning for the wrong future. A developer may have developed a mental
model of what the end project will look like, however that estimation
rarely matches reality. Imagine that you're building an accounting
application and you think the client is going to eventually ask for
the system to be completely project based. You will make design
decisions based on the workflow hierarchy that you have in your
mind. However, if you're wrong, you will be forced to reconfigure
the entire application.

[245]

Chapter 58

Both these pitfalls are normal to come across on a coding journey.
However, a great developer finds the balance between no design and
premature design.

By building well-constructed codebases, the great programmer writes
modules that have flexible interfaces that can adapt to change. They also
understand that project requirements change and that the code they write has
low coupling.

This means that changes to one feature in the application should have
little to no impact on other parts of the program. For example, back with
the accounting application, if a change is required to the payroll module, it
shouldn't require you to rewrite the personnel management feature.

Tireless learning
Lastly, in answering the question: "What does it take to become a great
programmer?" I'm going to discuss the importance of tireless learning.

One of the most important factors in reaching your development goals
is having a thirst for knowledge. Thankfully, you have 100% control over this
requirement. Regardless of how much experience you have as a programmer,
you won't ever reach a stage where you should stop learning. There will
always be improved processes, new frameworks, and new languages to learn.

I've asked some senior developers that I work with how they organize
their learning methods. They gave the following recommendations:

•	 Learn one new language or framework each year. This should also mean
that you're building a production application during that year. It's
easy to follow tutorials and build hello world applications. However,
when you create a real-world program you'll be forced to work
through challenging constructs.

•	 Read multiple books daily. I personally have over a dozen books that I
read daily related to development. In fact, many of the topics that
I discuss in this book were informed directly by the things I was
reading at the time.

•	 Follow advanced tutorials. Many of the developers that I work with
admitted that they prefer to learn new coding techniques by reading
blogs from other programmers. There are a number of guides
available online that you can go through that will teach you how to
build advanced features into your applications.

What Does It Take to Become a Great Developer?

[246]

•	 Subscribe to newsletters. I subscribe to a number of newsletters that are
sent to me each week. This includes newsletters on Ruby, Rails, and
JavaScript. These types of newsletters are a great way to stay up to
date with changes in a language. They curate some of the best blog
posts and tutorials from around the web.

Summary
I hope that this has been a helpful chapter and will help you answer the
question, "What does it take to become a great programmer?"

[247]

59
How to Stay Sharp as a

Developer?
When I think of the concept of staying sharp, images of focused skill come
to my mind. From a programming perspective, a sharp developer is one who
feels confident working with challenging projects and can calmly adjust to
changing requirements.

I've mentioned in previous chapters that developers never remain at the
same skill level. As a programmer, you're either improving or losing your
expertise, there's no middle ground. So how can you stay sharp as a developer?

Tips to stay sharp as a developer
Here are my five great tips to staying sharp as a developer. If you follow
these, you'll always feel ready to focus on the next goal or challenge in your
career.

#1 – coding exercises
First on my list are coding exercises. At the end of the day, nothing is going to
help you improve as a programmer as diving straight into the code.

You may think that working on work or hobby projects are enough
to keep your skills sharp. However, it's been my experience that many of
the projects I manage for work don't test my skill as a developer. There are
exceptions of course, but much of the coding I do on work projects revolve
around application configuration as opposed to algorithm design.

How to Stay Sharp as a Developer?

[248]

Growing up, I could watch the baseball players that my Dad coached.
These were Major League athletes who were at the peak of their profession.
I still remember how they stayed sharp as hitters. Playing in games was not
how they improved, games were where they showed off their skill. Instead
they became better players by going through drills and exercises that focused
on improving specific components of their game.

In the same way, we, as developers, need to dedicate time on improving
specific elements of our coding techniques.

This image is a GitHub gist of some coding exercises (https://gist.
github.com/jordanhudgens/8033986) that I go through regularly. Above
each code snippet is a task, and my job is to place the implementation code
below the objective. These programming exercises force me to continually
refine my skill and find new and better solutions to complex problems.

Example coding exercises
Some example questions could include:

•	 Remove strings from an array that start with "system.": This requires me to
work with the array data structure, integrate a Regular Expression
matcher, and know how to remove selected elements.

•	 Convert an array of strings into a hash that has the string as the key and
value as the string's length.: This exercise forces me to understand how
the Hash data structure functions, how to use the enumerable Map
method, and work with blocks.

[249]

Chapter 59

And the list goes on and on. I'm continually adding new problems to solve
and I try to spend some time each day. Around 30 minutes to an hour working
through these exercises. If you are looking for a great list of programming
problems check out Project Euler (https://projecteuler.net/). There
you'll find hundreds of great challenges that you can work through.

#2 – teaching others to code
Next on the list is to teach others how to code. I was homeschooled growing
up, and at around age 12 I had to start teaching myself algebra. I initially
struggled with learning new concepts and I was getting frustrated. My Mom
realized that when I studied by myself I had a hard time understanding
what I was reading. But it was when I explained the lesson to her that my
comprehension skyrocketed.

She was teaching all of my siblings, so she couldn't be by my side all day.
So instead, she got one of my sisters' dolls and sat it next to me at the table.
She instructed me to read the lesson plan and then explain it to the doll.

At first, I thought it was the dumbest idea I'd ever heard. Explaining
algebra to a doll, aptly named Big Dolly due to her size, seemed akin to a
homeless person talking to himself at a bus stop. So, I did what every 12-year
old would do and I ignored the advice…. Until I went through my next lesson
and realized that I had no idea what I just read. So, after staring at the doll for
a few awkward seconds I started to explain the concept to her. Shockingly,
by walking through the lesson with the doll I started to understand it! And
no one was more surprised than myself. So, Big Dolly helped get me through
algebra, trig, and calculus.

How does this apply to development?
So how does my weird story about teaching a doll algebra apply to staying
sharp as a developer? Well, when I started to learn programming I didn't pick
it up right away. In fact, I really struggled with how to build applications. But
then I remembered back to my high school math era. But instead of bringing
Big Dolly back from the attic I started creating programming tutorials.

It was through teaching others that I started to understand development
better than I ever have. In fact, the origins of DevCamp and CronDose can
be traced back to my desire to improve by own skills by teaching others.
So, if you're looking to learn coding or to improve as a developer, I highly
recommend that you teach others and your own expertise will grow.

How to Stay Sharp as a Developer?

[250]

#3 – reading
Next on the list of tips for staying sharp as a developer is reading. I have
a membership to Safari Books Online, which is essentially a Netflix for
developers. Through that membership I have access to thousands of coding
books. On my daily to-do list, I have around 7-8 books that I go through.

Sometimes I read a few small sections and other times I'll read a few
chapters, depending on how much time I have. Going through development
books has helped me continually refine my skills as a programmer and I'm
constantly on the hunt for new great books to go through.

#4 – newsletters
Fourth on the list are development newsletters. I try to keep my time very
focused. Therefore, I limit the number of newsletters that I subscribe to so
that I can dedicate time to reviewing each of them when they get published.

Some of my favorites are the newsletters from: thoughtbot and Codeship.
These types of resources contain comprehensive guides that will help give you
a unique perspective on development and how to implement new features.

#5 – tutorials
Last on the list of tips for staying sharp as a developer are tutorials. Whenever
I'm learning a new language or framework tutorials are one of my favorite
resources for studying.

Screencasts are the closest you can get to having an instructor in the
room with you. Providing you with step by step guides that you can follow
to build applications from scratch. Thankfully, with the growth of the online
educational industry there are tutorials for essentially everything that you
want to learn.

Summary
I hope that this has been a helpful set of tips that will help you stay sharp as
a developer, and good luck with the coding!

[251]

60
Developer Resume

Tips – How to Create
an Effective Resume?

Over the years, I've heard programmers say that they only need a resume
if they want a normal job. However, it's been my experience that a resume
is required for traditional job interviews, freelance clients, and even raising
money for a startup. With that in mind I've put together this collection of
developer resume tips.

Developer resume tips
I've been on both sides of the hiring process. I have been in the place of
sending out resumes to hundreds of companies, hoping for a response. And
I've also been on the receiving end where I was sent countless resumes from
applicants.

The list I've developed has been fine-tuned throughout the years. With
the strategies coming from the resumes that resonated the most with me
along with the elements that worked best when I sent them to potential
employers. In this chapter, I've compiled three straightforward developer
resume tips that will optimally position you with hiring managers.

Keep it simple
Starting off the list is keep it simple. I have passed over many resumes that
included pages of extensive descriptions and explanations of a developer's
experience. If a developer sends me a resume that's over 1 page it's rare that
I will take the time to go through the information.

Developer Resume Tips – How to Create an Effective Resume?

[252]

The resume firm, Novorésumé, created a resume for Elon Musk where
they condensed Musk's career down to a single page. And if Musk can have a
single page resume, so can you. So, with this in mind, what pertinent should
you include in your resume? A well-crafted resume will typically include
information such as:

•	 Your name and contact information: You'd be shocked how many
individuals will write multiple pages listing their accomplishments
but forget to leave their email, phone, and social media links.

•	 Your education: And when I say education, I don't only mean
traditional education sources such as your high school and college.
The education portion of a resume should include any bootcamps
or online educational institutions that you completed.

•	 Your work experience: In your work experience section, brevity is a
virtue. Hiring managers don't want to read through every little
detail of every project you've been involved in. They simply want to
ensure that you will be a fit for the position that they're looking to
fill. That's it. It's not that complicated.

•	 Your skills: Another common mistake I see from applications is
forgetting to list out their full set of skills. As with all the other
resume elements, keep this list simple as well. For example, I
summarize my list of skills down to a few lines that discuss the
programming languages and frameworks that I work with.

•	 Your achievements: Lastly, you should list out any achievements or
certifications that you've earned in your career.

Keep it relatable
Next on the list is to keep it relatable. If you are applying for a frontend
developer position, customize your resume to revolve around your frontend
skills and experience. When I was sending out my resume to companies, I
customized the content of the resume for each organization. If a company
said that it was looking for a server-side specialist, I created a resume that
highlighted my server-side expertise.

If you think that creating custom resumes is sneaky you'd be wrong.
Hiring mangers typically decide on whether or not to contact you within a
few seconds of glancing at your resume. By creating a custom resume that
outlines a set of skills and experiences that fit the company's needs you are
helping to make the hiring manger's job easier. So, it's a win-win scenario.

[253]

Chapter 60

Keep it professional
Third on the list of developer resume tips is to keep it professional.
Companies hiring managers really could care less that you like animals or
that you enjoy running marathons. You can discuss your hobbies during the
interview process. However, on a resume, hobbies take up precious page real
estate that can be utilized by listing out additional skills or experiences.

Summary
In summary, writing a resume is truly an art. Resumes should be succinct,
customized to the job position, and clearly describe why you are the best
person to fill a position. If you have never written a resume before, I highly
recommend that you work with a service or individual that can help you with
the process. Services such as Novorésumé are great for this type of work and
you can also hire an experienced resume writer from sites such as Upwork for
under $100. Considering that a well written resume can make the difference
between getting a job or not, I think it's a wise investment.

[255]

61
Developer Salary

Negotiation Strategies
Talking about money is a sensitive subject for many individuals, and when it
comes to negotiating how much you'll be paid it also comes with the added
stress of knowing that if you ask for too much you may not get the job and if
you ask for too little it could negatively affect your lifestyle. With that in mind
I've put together a list of developer salary negotiation tips.

Knowing your skill set
This may seem like common sense, however it's vital that you know and
can articulate your full set of skills since this is going to be one of the main
factors that dictate your salary.

You can start with listing out the programming languages you know, the
frameworks that you've used, and put together a portfolio that showcases
your expertise. As an example, if you're a full stack developer who also
has experience with data science, you will be more a more valuable asset to
companies that require a unique skill set like yours.

Knowing the industry
Over the years I've been fortunate to work as a VP of Engineer and a
software Director in the oil and gas industry. The oil and gas industry has
historically had a difficult time attracting software developers compared
with other sectors, and because of that developers are able to command a
premium salary. I would make a much different salary if I applied to work for
the automobile manufacturing industry compared with the oil and gas space.

Developer Salary Negotiation Strategies

[256]

Therefore it's important to understand what industries pay for developers
and not to simply assume that the same skill set is paid the same amount
across all sectors.

Knowing the organization
No matter what your skill set is and what industry you're working in, no
factor will determine your salary as much as the organization itself. If you're
applying to work for a bootstrapped startup you'll be paid significantly less
compared with a startup that just finished raising $20 million of venture
capital.

It's been my experience that small to medium sized companies, with
around 500-1000 employees pay the most. If you are applying to work with
a bootstrapped startup, they may be willing to negotiate with stock options
which could eventually lead to a much larger payday than any salary would, so
that is also important to keep in mind.

Researching salary rates
With all of that in mind, how can you research salary rates? You can always
simply Google software developer salary and then name the industry that you
are interested in. Typically, career sites with job adverts will give you a huge
indicator. However, I typically like to use Glassdoor, which I've found to have
the most accurate salary rates.

You can also have Glassdoor filter by the location that you want to
work in. One key item to keep in mind is to test out multiple job types. For
example, when I search for web developer jobs in Scottsdale, AZ, it showed an
average salary of $65,000, however when I looked up 'software developer'
jobs in Scottsdale it returned an average salary of $78,000. That's a pretty big
salary bump for a single word difference, so make sure that you check out all
of the potential job types that you're interested in.

Another interesting option is to watch some of the yearly developer
surveys that some large sites conduct, such as the annual developer survey
at Stack Overflow. These kinds of surveys will break the industry down into
various sectors and request information about typical salary rates. While you
can't take surveys like this as facts, they are an excellent indicator.

I hope that this guide has given you a system for negotiating your
next salary.

[257]

62
Best Questions to Ask
During a Job Interview

In this chapter, I'm going to discuss the best questions to ask during a job
interview, and I will also discuss the other side of the spectrum and list out
some key interview questions to avoid at all costs.

If you haven't been through many job interviews for a while, or haven't
really ever prepared for one before, you may have the thought:

"I thought the interview was about them asking me questions."
However, one very important, and many times overlooked facet of a

good interview is asking strategic questions of the interviewer. In fact, Forbes
researchers have outlined three goals that your questions should achieve:

•	 Make sure the interviewer has no reservations about you
•	 Demonstrate your interest in the employer
•	 Find out if you feel the employer is the right fit for you

Interviewers like being asked questions. The questions you ask can reveal
quite a bit about yourself, good and bad, therefore it's critical to ask the right
questions. If you don't ask an interviewer questions, he or she may assume
that you don't really care about the job itself and you're simply looking to
make enough money to pay your rent.

Interviewers want to find candidates excited about working with their
company. Remember that if you're hired, you are going to be a reflection of
the interviewer and will help or hurt their reputation. Anytime that I've hired
an employee that turned out to be bad for an organization, the management
has approached me and asked why I hired them and how did I miss their
shortcomings.

Best Questions to Ask During a Job Interview

[258]

I kid you not, I hired an individual for a job around five years ago that
turned out to be a horrible employee and our CEO still gives me a hard
time about the hire half a decade later! So, make sure to take all of that into
account when you're interviewing for a position.

The following is a list of the best questions to ask during a job interview
along with rationales on why they're good questions to ask. I've picked
these up through my years as a manager for several software companies and
through researching the topic.

Best questions to ask during a job
interview

"How is performance measured for this position?"
This is probably my favorite question to be asked. It shows that

the individual is not only interested in the job, but also wants to have an
understanding of what it takes to be successful. A key component of this
question is also that the question focuses on how the company measures
performance. This will give you a good idea of how data-driven the
organization is and focuses on the key metrics that are important to the
company.

"What are some specific challenges that I will be tasked with?"
Asking this question will show that you are not naive and that you

understand that the job will have challenges and that you want to prepare for
them in advance.

"Are there any responsibilities with the position that were not mentioned in the job
posting?"

This type of question will tell the interviewer that you're savvy
and experienced enough to know that 100% of the requirements don't
always make it to the job website. For example, the job may be a software
development job, however they may also want you to perform search engine
optimization on the web application. This question not only positions you
well with the interviewer but also will help you understand the full set of roles
and responsibilities that the position will entail.

"What is the corporate culture like?"
I like this question because it will give you a feel for how employees

interact with each other and management, it will also let the interviewer know
that you aren't purely looking for a 9-5 job, you are interested in working with
the team and fitting in.

[259]

Chapter 62

"On average, how long do employees stay with the organization?"
Similar to the corporate culture question, this will subtly let the interviewer

know that you are not looking for a short stint at the organization, but that
you are looking for a long-term relationship with the company.

The answer to this question will also help provide you with the
understanding of how tolerant the company is with regard to keeping
employees. If the average employee has been with the company for only a
few years there may be some issues causing the rapid turnover. Whereas, if
employees stay on for over a decade, it's a good sign that the organization is
a great place to work.

"Do you have any hesitations about my qualifications or experience?"
This is a bold question and you may or may not want to ask it depending

on your confidence level. However, it will let the interviewer know that you're
not afraid to ask tough questions and that you're willing to hear constructive
criticism. I've personally never been asked this question by an applicant but I
would admire anyone that would be willing to ask it.

Poor questions to ask during a job
interview
You will want to stay away from questions that appear that you want to get out
of work such as asking about the amount of paid time off, tiers of vacation
days, and so on. It's important to know these parts of the job, however it will
reflect better on you if you instead ask questions such as:

"What types of benefits are associated with the position?"
This question will get the interviewer to give answers to the PTO and

vacation time without you coming across like someone who's already trying
to see when they won't have to work, but still get paid.

Typically, you will also want to not ask questions that start with why,
because why questions will immediately make the interviewer defensive and
will give the conversation a feeling of being confrontational. These types
of questions can usually be changed to start with how, which will tell the
interviewer that you are wanting to know more about the company instead
of accusing the company of doing something wrong.

An example of this would be "Why does the company pay by check instead of
direct deposit?" This makes it seem like you're saying that the organization isn't
staying up with modern payroll procedures (which may or may not be the
case), however nothing good can come from this type of question.

Best Questions to Ask During a Job Interview

[260]

Hopefully this gives you an idea of what questions not to ask, but just in
case a few more case studies would help, here are some more questions that
you should avoid:

"Is telecommuting a possibility for the position?"
If it was they would've already mentioned it, if telecommuting is your

top goal you should consider freelancing.
"How much does the position pay?"
You should already have a decent idea of how much the job pays if

you're interviewing for it. You can worry about the wage after it's been
offered to you, it's never a good thing when the interviewer thinks that you're
top priority is how much money you're going to make because they'll assume
that you will leave the company if another organization offers you a modest
raise.

"What type of hours would I be expected to work?"
Interviewers and managers hate this question! Based on the job you

should already know this. However, you can reframe this question by asking
something like "What does a typical day for this position look like?".

Lastly, never ask "How did I do?" or "Do I have the job?". Asking how you
did sounds like you just finished a spelling test in 3rd grade and doesn't reflect
much confidence. And if you had the job they would have told you. Wait and
follow up with the interviewer in a week and you'll be considered a mature
and experienced candidate.

Summary
I hope that this has been a helpful guide and will help you put together a
strategy of the best questions to ask during a job interview. Many aspects
of an interview aren't known going into it, however you will always have the
ability to control the questions you ask, so it is good to put together a list of
questions to ask so you can maintain some level of control over the interview
process.

[261]

63
Answering in an

Impossible Interview

Questions
How would you like to be asked this question in an interview:

"How long would it take to sort 1 trillion numbers?"
Or
"How many planes are there in the sky at a given moment?"
If that doesn't sound like your idea of fun you're not alone and many

organizations have stopped asking impossible or seemingly impossible
questions; however, there are still interviewers who like to ask them, so I
thought it would be helpful to discuss.

First and foremost, if you get asked one of these questions, the
interviewer's top goal is not seeing if you know the answer or not, instead
they are looking to observe your problem-solving skills. Typically, the best
approach is to take a systematic strategy so you can show that you have an
organized thought process.

Answering impossible interview
questions – case studies
Let's take the first question as an example: "How long would it take to sort 1
trillion numbers?" That seems like a challenging task until you establish a base
case, such as: "How long would it take to sort 10 numbers?"

Answering in an Impossible Interview

[262]

If you know your algorithms, you would most likely choose to use a
sorting algorithm, such as Quicksort, since it has an average sorting time of
O(n lg n), which would be O(100 lg 100) after swapping out n for the total
number of integers. So, it's actually trivial to sort 1 trillion integers, since it
would be O(1,000,000,000,000 lg 1,000,000,000,000).

In this question, the interviewer is first wanting to ensure that you
know popular algorithms and that you have a clear understanding on which
algorithm would be the right fit for the task.

For "How many planes are there in the sky at a given moment?" this is a
guesstimate question and the actual answer doesn't matter at all, instead the
interviewer wants to see how you walk-through an analytical problem and
also how detailed oriented you are.

For this I would start by asking the interviewer filtering questions, such
as: all the planes in the world or only in the US? Does this only include
commercial planes or private jets and military aircraft? And questions that
show that you know how to properly think through each of the parameters
you would need to know to properly answer the question.

From there break down the problem into subproblems; for instance, if
the interviewer says that they only want the list of commercial planes in the
air in the US, then you can start to create an estimate on how many flights
leave an airport each hour, set an average duration of the flights, and so on.
Then you can multiply that base case by the estimated number of airports
in the US and you will have your guesstimate, and more importantly you will
show the interviewer that you have thought through the problem.

I hope that this guide has helped give you a strategy on answering
impossible interview questions and good luck with the job hunt!

[263]

64
Greatest Weakness
Answers for Coding

Interviews
What's your greatest weakness? To be 100% honest, I'm not a huge fan of
this question since it's a lose-lose question: if the individual being interviewed
is completely honest, they probably won't get the job, and if they give a flat
out lie it will be evident very quickly.

However, throughout the years I have had several managers ask me this
question, so it's important to have a well thought out answer ready. Since I've
been on both sides of the interview chair, I have put together a list of the
worst ways to answer this question and then some of the best answers.

Bad answers to your greatest weakness
So first of all, these are the kinds of answers you should avoid to the
infamous question about what is your great weakness when you're in that
coding interview:

•	 Hard time saying no: This will say that you are weak and will take on
too many projects, typically resulting in poor performance.

•	 Can have a hard time staying on a single task: This means you should
probably either learn how to focus or that you are supposed to be
an entrepreneur, working for a company usually means long hours
on long, repetitive tasks, and if someone is bouncing from project
to project they're not going to be a good asset to the team.

Greatest Weakness Answers for Coding Interviews

[264]

•	 Can be arrogant: I had a professor in grad school, Dr. Richard
Gelfond, who is one of the most brilliant computer scientists I've
ever known, who said this about arrogance: "Being arrogant occasionally
doesn't matter, but it's never good". An arrogant employee won't be able
to work well with others and will have a hard time taking correction
or learning anything new… because they already know it all.

Good answers to your greatest weakness
Now let's see some great answers to the question about what is your great
weakness when you're in that interview:

•	 Can be slow to take action: This is an interesting answer because it
could be a bad answer if you leave it at this since it might tell the
interviewer that you are timid, which would be a poor character trait.
However, if you follow it up by saying that you are very detailed and
that before you start a task you want to have a clear strategy for how
to move forward, that is an employee I want to have on my team!

•	 Can be overly critical on myself: This will tell the interviewer that you
care about your work and that doing it well is very important to you.
Make sure to follow up with how you're working on yourself so that
you still are working on being a craftsman at your work but to not
get on yourself for irrelevant reasons.

•	 Can be quiet: This is one of my favorite things to hear, assuming that
the individual follows it up by saying that they can be quiet because
he or she thinks that it's important to listen to all of the details of a
project or challenge before giving an answer. This tells me that the
individual is going to be detail oriented and won't miss key items
because they were too busy thinking what they were going to say
next.

I hope that these strategies help you answer the question of: What's your
greatest weakness? And good luck with the interview!

[265]

65
Enterprise Software

Job Strategy and Guide
If you're a developer and have worked with startups or freelance clients,
you'll find that the world of enterprise software jobs is quite different, in
both good and challenging ways.

Some of the pros to working in the enterprise software industry
is that large organizations typically are stable, have systems in place for
development, and allow you to specialize on a specific piece of functionality
instead of having to cover the full range of software features.

Some of the challenges that are unique to enterprise development are
that there is typically quite a bit of red tape for developers. If you're used
to being able to grab any code library and stick it in your application you'll
find that enterprises are pretty picky about what outside libraries you bring
in. For example, I was just talking with a enterprise software developer a few
days ago who expressed how frustrating it was that it took two months for
his company to give him permission to use the jQuery library, which is one
of the most commonly used user interface libraries in the application space.

So what types of questions should be prepared for when applying for an
enterprise software job?

•	 Questions about how well you work with formal processes.
Depending on the company's level of formality you'll most likely
need to explain how you have worked with different project
management processes such as Scrum, Extreme Programming, and
processes such as that.

•	 At large enterprises software bugs can cause millions of dollars in
damages, so the testing systems are typically quite thorough. With
that in mind, make sure that you are prepared to answer questions
related to unit testing and behavior-driven development.

Enterprise Software Job Strategy and Guide

[266]

•	 Considering that we're living in a Microsoft-based enterprise
world, having a solid knowledge of how well you understand ways
to integrate with Windows servers, Active Directory, and tools such
as SharePoint will be very important. I've personally been asked
how I would integrate Active Directory single sign on (SSO)
into a Ruby on Rails application, along with how to run Rails on
a Windows server during various interviews. And if you know the
Rails development system you'll know that these are not standard
requirements at all.

•	 As with most development positions, you'll also need to have a solid
understanding of the technical skills of the position. This usually
includes being able to give accurate answers to questions related to
object-oriented principles and a walkthrough of popular algorithms.

The technical portion of interviews will most likely be specific to the
job. For example, if you're applying for a frontend enterprise software job
they probably won't ask you about Quicksort, but they will ask you about
how to properly manage JavaScript callbacks.

Summary
Hopefully, these four areas of questions will help you prepare and feel
confident about applying for an enterprise software job, and good luck with
the interview!

[267]

Index
A
accurate freelance bids

estimating 181, 182
advanced features

managing 105
application development

process 106
approaching project development

about 231
application bugs 235
base case 233
fear, of missing key feature 233
feature, planning 232
key feature, strategies 234
messages, over models 235
practical steps 234, 235
procrastination, battling 234
requisites 232, 233
strategies 232
unstuck, obtaining 235

B
balance of best practices

cons 228
pros 227
versus creativity as developer 227

Basecamp 142-144
BDD 223
blogging 94
bookkeeping options

about 149
FreshBooks 150
NetSuite 153
QuickBooks 152, 153

Build reporting engine 63

C
class

creating 85
instantiating 86

client communication
issues 177
maintaining, with system 178

client conflicts
managing, with strategies 159-161

clients
constant proposals, sending 157
friends and family 155
network events 155
obtaining 155
obtaining, as freelancer 157
obtaining, outsourcing services 156
outsourcing services 156
proposal material 157
result 158

code
better code, writing 223
poorly written code, fixing 110
refactoring 110

code faster
about 53, 55
Beethoven 55
default mind 54
hacking 54
slowing 54

code learning
deciding on 188, 189
reference 187, 188

[268]

code libraries
Devise 103
Pundit 103

coding 196, 222
coding exercises

reference link 248
coding interviews

weakness 263, 264
coding skills

about 217
losing, possibility 218
practical tips 219

compounded learning
about 37, 38
case study 38

comprehensive study system 19, 20
consistent study

versus cramming 33, 34
continuous integration 223
conversational skills

about 208
tips 208, 209

cramming
versus, consistent study 33, 34

creativity as developer
cons 228
pros 228
versus balance of best practices 227

D
DailyProgrammer subreddit

URL 238
visiting 238

deep work
action, taking 22
definition 22
distractions, removing 22
strategy, for developers 22
studying 23

demonstrations
importance 131

design 229

devcamp
URL 219

developer
about 12
significance 191, 192

developer resume, tips
about 251
professional 253
relatable 252
simple 251, 252

developers, characteristics
adapting, to change 244
artistry 243
challenging traits, handling 242
community contribution 242
craftsmanship 243
tireless learning 245

developer soft skills
about 207
conversational skills 208
conversational skills, tips 208, 209
design skill 209
importance 211
management skill 209
public speaking skill 210
public speaking skill, tips 211
writing skill 208

developer specialty
data scientist 200
decision making 200
frontend developer 199
full stack developer 198
mobile developer 199
selecting 197
server-side developer 198

E
effective study practices

case study 18
reification example 18, 19

enterprise software industry 265
enterprise software job

questions, while applying 265, 266

[269]

expert positioning 95

F
fear of success

hacking 63
forced repetition 89
freelance business

blogging 94
expert positioning 95
open source contribution 95
organically growing 93
referral requests 94
social media marketing 96

freelance developer
about 137
scope creep 137, 138
scope creep, approach 139
scope creep, requisites 138
scope creep, sign off 139

freelance portfolios, examples
about 163
accounting application 164
API tool, developing 164
frontend application,

creating 164, 165
scheduling application, creating 164
social network utility, building 164

freelance requirement elicitation
about 128
conclusion 130
feature, adding 128
feature, building 128
feature, issue 129
solution 129, 130

freelancing services 183
FreshBooks

about 150
drawbacks 152
features 152
working 151

Frustration Zone 44

G
GitHub 147, 148

H
hacking 62
hacking procrastination 61
hard way 19

I
impossible interview

answering 261, 262
case studies 261, 262
questions 261

J
job interview

best questions 258, 259
poor questions 259, 260
strategic questions 257, 258

K
Kanban boards

reviewing 107
katas

coding 239
Kouros

mental models 58

L
LeanKit 145, 146
learning curve

about 45, 46, 50, 51
liftoff 46, 47
twilight zone 48, 49
zone 49, 50

learn programming 196
legacy application

about 109
practical tips 110

[270]

legacy application, tips
about 112
codebase, drying up 113
new features, adding via TDD 112
specific features, breaking out into

microservices 112
test suite, creating 112

legacy scenario 115
LinkedIn 184
loop

executing 85

M
Massive Open Online Courses

(MOOCs) 238
memorization

avoiding 83
copy/paste 82
guidance 77
patterns, finding 81, 82
real-world example, taking 80, 81
repetition 78
short-term memory,

versus long-term memory 79
visual mental mapping 78, 79
visual mental mapping,

implementing 79, 80
mental models

about 58
for developers 59
for Kouros 58

Microsoft-based enterprise
world 266

mind works 12
reasoning 13
smarter approach 13

mistakes
creating 73, 74
force learning 74
kill pride 74

multiple sessions 23
multitasking 25

N
narrowed focus 88
negative effects

additional 19
NetSuite 153

O
online courses

utilizing 238
open source contribution

about 95
direct code contribution 95
pre-existing libraries,

contributing 96
tutorials 96

open source software
utilizing 238

outsourced web developers
applications, accessing 180
automated testing 180
daily reports 180
managing 180

P
pair programming

about 223
engaging in 237

perfectionism
hacking 62

plan
hacking 63

plateau
false ceiling 42
learning 41

Pomodoro Technique
implementation 71
lifestyle of productivity 71
lifestyle, versus fads 70
using 69, 70

PowerPoint 134, 135
practical system 55

[271]

procrastination
coding steps 66, 67
hacking 62
instant gratification 66
issues 65
root causes 61, 62

prodigies
about 7
developers 8
Mozart case study 7, 8
tipping point 8

prodigy myth 8, 9
profession

practical 215
skill, improving 215

professional developer 213, 214
developer bootcamps 214
practical 214

programming
inspirational advice 226

programming expertise
degrees of 213
learning 216

programming language
learning 85, 86
selecting 203
selecting, based on development

specialty 204
selecting, based on job 204

Project Euler
URL 249

ProWorkflow 146
public speaking

about 210
tips 211

Q
quality

versus speed 120
QuickBooks 152, 153

R
Rails application

reference link 219
Rails framework

online reference 238
reading 195

significance, for developers 37-39
reading schedule 39
reading system 39
real-world projects 196
Reddit

about 238
DailyProgrammer subreddit,

visiting 238
Red, Green, Refactor workflow 169
refactoring

80/20 principle, analyzing 116, 117
architecture, changing 118
automated bug list, building 117
client, becoming 117
fear factor, removing 116
language/framework, moving 118
versus starting over 116, 118

referral requests 94
referrals 184
reification example

controller 18
model 18
view 19

remote desktop
about 133, 134
free options 134
GoToMeeting 134
screen sharing 134

reverse note taking
about 88
benefits 88
forced repetition 89
narrowed focus 88
story-based mindset 89

running man 12

[272]

S
salary negotiation, tips

industry, knowing 255
organization, knowing 256
salary rates, researching 256
skill set, knowing 255

scope creep 137
screencast 132, 133
SEO, best practices

about 173
backlinks 175
focused content 175
relevant content 173, 174
site responsiveness, managing 174
site speed, managing 174
text, images, and videos, mixing 174
XML sitemap, creating 174

services
review, to remotely demo work 132

silver bullets
code libraries 103
customization 102
issues 101, 102

single sign on (SSO) 266
skill plateaus

about 43, 44
best practices 42
challenging 43
obtaining 42
proper information/resources 42

small bites 193, 194
social media marketing 96
specialty-based mapping

about 205
data scientist 205
frontend development 205
full stack development 205
server-side development 205

speed
versus quality 120

starting over
versus refactoring 116

staying sharp
about 247
code, teaching 249
coding exercises 247, 248
coding exercises, example 248, 249
development newsletters 250
reading 250
tips 247
tutorials 250

story-based mindset 89
system

for decreasing task
switching costs 26

studying 15, 16

T
task switching costs 25
test-driven development

(TDD)
about 167, 121, 223
choice, consideration 121
client, decision 121, 122
common sense, using 122
decision, creating 121
documentation 170
development process, leading 170
for coders 167-169
importance 169, 170
on freelance projects 121
regression 170
team management 170

tipping point
doubt machine 4
for developers 3
own experience 4
painful process 4
tipping point(s) 4-6

top project management tools
about 141
Basecamp 142-144
GitHub 147, 148
LeanKit 145, 146
ProWorkflow 146

[273]

Trello 144, 145
Wrike 146

traditional note taking
issues 87

traditional study habits
limitations 17, 18

Trello 144, 145
tutorials 194

U
updates

client update, automating 124
client update, example 124
importance 123
version control 124, 125

Upwork 106, 183
urgent client

about 97

employee, treating 98
firing 98, 99
toxic environment 99
tyranny 98

W
willpower limits

about 27, 29
copycat 30
decision, making 28
executing 29
focusing 30
importance 28
outfit 30
saving up 29

Wrike 146

	Cover
	Copyright
	Credits
	About the Author
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Part 1: Coder Skills
	Chapter 1: Discovering the Tipping Point for Developers
	Tipping point for developers
	My own experience
	The doubt machine
	The painful process
	The tipping point(s)
	The first tipping point
	The second tipping point
	The secret
	The book

	The solution

	Chapter 2: Are Developers Born or Made? – Debunking the Myth of Prodigies
	Are prodigies real?
	The Mozart case study
	Are developers born or made?
	The tipping point

	Why we love the prodigy myth

	Chapter 3: Do You Have to Be a Genius to Be a Developer?
	The running man
	Do you have to be a genius to be a developer?
	The way the mind works
	The reason
	A smarter approach

	Chapter 4: How to Study
and Understand Complex Topics?
	A system for how to study

	Chapter 5: Effective Study Practices for Developers
	Why traditional study habits don't work
	An effective study practices case study
	The reification example

	The hard way
	Additional negative effects

	The comprehensive study system
	Summary

	Chapter 6: Defining Deep Work and What It Means for Developers
	Definition of deep work
	The deep work strategy for developers
	Taking action
	Removing distractions
	Study hard and smart

	Multiple sessions
	Summary

	Chapter 7: Task Switching Costs for Developers
	A system for decreasing task switching costs

	Chapter 8: How to Use Willpower Limits Instead of Letting Them Use You?
	What are willpower limits?
	How many decisions do you make each day?
	Why is willpower important?
	Are willpower limits real?
	When the willpower well runs dry
	Saving up willpower
	One outfit to rule them all
	Being a copycat

	Focusing willpower

	Summary

	Chapter 9: Cramming Versus Consistent Study and a Study System that Works
	Chapter 10: Is Reading Important for Developers?
	Why is reading important for developers?
	CEOs and reading
	Compounded learning
	A compounded learning case study

	The CEO who didn't have time to read
	My reading system
	The reading schedule
	Audio books are books too!
	Books are too expensive

	Summary

	Chapter 11: Learning How to Code – Getting Past Skill Plateaus
	What is a learning plateau?
	False ceiling

	Getting past skill plateaus
	Proper information/resources
	Best practices
	Challenging/new tasks
	Frustration = skill

	Summary

	Chapter 12: Developer Learning Curve – Why Learning How to Code Takes
So Long
	Chapter 13: Slowing Down to Learn How to Code Faster
	Learn how to code faster
	Our default mind
	Hacking the mind
	Slowing it down
	Bend it like Beethoven
	From classical music to coding

	A practical system

	Chapter 14: Mental Models for Learning How to Code and Improve as a Developer
	Mental models for the Kouros
	What are mental models?
	Mental models for developers

	Summary

	Chapter 15: A Developer's Guide for Hacking Procrastination to Achieve Success
	Root causes of procrastination
	Hacking procrastination
	Hacking perfectionism
	Hacking the fear of success
	Hacking the plan

	Summary

	Chapter 16: The Problem with Procrastination for Developers
	The problem with procrastination
	Instant gratification
	Baby steps to knock out procrastination
	Baby coding steps

	Chapter 17: Practical Ways to Use the Pomodoro Technique as a Developer
	Practical ways to use the Pomodoro Technique
	Taking a break
	Lifestyle versus fads
	A lifestyle of productivity

	Practical implementation

	Chapter 18: The Power of Making Mistakes – Learning by Failing
	The secret weapon to mastery – making mistakes
	Making mistakes – memory steroids
	Mistakes force learning
	Mistakes kill pride

	Summary

	Chapter 19: Learn How to
Code – The Guide
to Memorization
	The guide to memorization
	Repetition
	Smarter, not harder
	Visual mental mapping
	Short-term versus long-term memory
	Implementing visual mental mapping
	Taking a real-world example
	Finding patterns
	Copy and paste is the enemy

	Not everything has to be memorized

	Chapter 20: A System for Learning a New Programming Language
	Chapter 21: Development Study Tips – Reverse
Note-Taking
	The problem with traditional note-taking
	Reverse note-taking
	Benefits of reverse note-taking
	Narrowed focus
	Story-based mindset
	Forced repetition

	Summary

	Part 2: Freelancer Skills
	Chapter 22: Tips for Organically Growing a Freelance Business
	Organically growing a freelance business
	Referral requests
	Blogging
	Expert positioning
	Open source contribution
	Social media marketing

	Summary

	Chapter 23: Freelancing Tips – Knowing When to Fire a Client
	My urgent client
	When to fire a client
	#1 – being treated like an employee
	#2 – tyranny of urgent
	#3 – toxic environment

	The joy of firing a client

	Chapter 24: Dodging Silver Bullets for Scalable Freelance Projects
	The problem with silver bullets
	Silver bullet customization
	Becoming a sharp shooter with code libraries

	Chapter 25: A Freelance Guide to Managing Advanced Features
	Managing advanced features
	The talent pool
	The process
	Kanban

	The result
	Summary
	A caveat

	Chapter 26: Freelancer Interviews – Practical Tips for Taking Over a Legacy Application
	Chapter 27: Five Tips for Taking Over a Legacy Application
	Tips for taking over a legacy application
	Creating a test suite
	Adding new features via TDD
	Breaking out specific features into microservices
	DRY up the codebase

	Summary

	Chapter 28: Guide to Freelancing – Starting Over Versus Refactoring
	The legacy scenario
	Starting over versus refactoring
	#1 – removing the fear factor
	#2 – analyzing the 80/20 principle
	#3 – building an automated bug list
	#4 – becoming the client

	When should you start over?
	Summary

	Chapter 29: Should You Use
TDD on Freelance Projects? – Comparing Quality Versus Speed
	Quality versus Speed
	TDD on freelance projects
	Making the decision
	Giving no choice
	Letting the client decide
	Using common sense

	Chapter 30: Automating Client Updates as a Freelance Developer
	Importance of daily updates
	An example of client update
	Automating client updates
	Version control to the rescue

	Summary

	Chapter 31: Freelance Requirement Elicitation – A Guide for Feature Development
	Freelance requirement elicitation
	How it started
	The build
	The problem
	Who was at fault?

	A better way
	Step 1
	Step 2

	A better ending
	Summary

	Chapter 32: How to Remotely
Demo Work for Freelance Clients?
	Why proper demonstrations are important
	Review of services to remotely demo work
	Screencast
	A remote desktop
	PowerPoint

	Summary

	Chapter 33: Defining Project Success as a Freelance Developer
	A clear end
	What is scope creep?
	When scope creep isn't scope creep
	When scope creep goes badly
	Based on requirements
	Based on a story
	The sign off

	Summary

	Chapter 34: Top Project Management Tools for Freelancers
	Top project management tools
	Basecamp
	Trello
	LeanKit
	ProWorkflow
	Wrike
	GitHub

	Summary

	Chapter 35: Top Freelance Bookkeeping Options for Developers
	Freelance bookkeeping options
	FreshBooks
	How it works
	FreshBooks additional features
	Weaknesses

	QuickBooks
	NetSuite

	Summary

	Chapter 36: Learning the Secret to Get New Clients as a Freelancer
	Where to find new clients
	The challenge in getting new clients with outsourcing services
	Getting new clients as a freelancer
	Proposal material
	Sending out constant proposals
	The result

	Summary

	Chapter 37: Managing Client Conflicts as a Freelancer
	Strategies for managing client conflicts

	Chapter 38: Examples of Freelance Portfolios That Help Acquire New Clients
	Examples of freelance portfolios
	Social network utility
	An API tool
	An accounting application
	A scheduling application
	A frontend application

	Chapter 39: Importance of
Test-Driven Development for Coders
	Importance of test-driven development
	Summary

	Chapter 40: SEO Best Practices and Strategies for Freelancers
	SEO best practices tutorial
	Content is king
	Creating an XML sitemap
	Mixing text, images, and videos
	Managing your site speed
	Site responsiveness
	Backlinks
	Focused content

	Summary

	Chapter 41: Client Communication Freelancing Tips
	A system to maintain proper client communication
	Summary

	Chapter 42: Outsource Web Developers Properly with System-Based Processes
	A system to manage outsourced web developers
	Summary

	Chapter 43: How to Create Accurate Freelance Bids?
	Summary

	Chapter 44: Freelancer Tips – Three Ways to Get New Clients
	Freelancing services
	LinkedIn
	Referrals
	Summary

	Part 3: Career Skills
	Chapter 45: Should I Learn to Code? – A Balanced Perspective on Programming
	Should I learn to code? – a balanced look at both sides
	Summary

	Chapter 46: Following Your
Passion – Good or Bad Advice for Developers?
	Following your passion – a case study
	Summary

	Chapter 47: How to Learn to Code from Scratch? – A Practical Strategy
	Small bites
	Tutorials
	Reading
	Real-world projects
	Coding is hard
	But you can learn programming

	Chapter 48: How to Choose a Developer Specialty?
	How to choose a developer specialty?
	#1 – the full stack developer
	#2 – the server-side developer
	#3 – the frontend developer
	#4 – the mobile developer
	#5 – the data scientist

	Making the decision

	Chapter 49: How to Choose Your Next Programming Language?
	How to pick a programming language?
	The next job you want
	Your specialty
	Specialty-based mapping

	Summary

	Chapter 50: Developer Soft
Skills – Learning
How to Gain an Edge in the Marketplace
	Developer soft skills
	Writing
	Conversation
	Conversation tips

	Management
	Design
	Public speaking
	Becoming a better public speaker

	The importance of soft skills

	Chapter 51: Developer Learning Options – A Practical Analysis
	Degrees of programming expertise
	Becoming a professional developer
	Developer bootcamps
	Is this practical?

	Improving your skill in your current profession
	Is this practical?

	Learning for fun or as a hobby
	Summary

	Chapter 52: Is it Possible to Lose Your Coding Skills?
	Summary

	Chapter 53: Is Writing Bad Code Immoral for Developers?
	How to write better code
	Summary

	Chapter 54: Inspirational Programming Advice from Howard Roark
	Chapter 55: Best Practices Versus Creativity as a Developer
	Chapter 56: A Practical Guide to Approaching Project Development
	Student question
	Strategies to approaching project development
	Planning a feature from start to end
	Moving from requirements to stories
	Starting with a base case
	Fear of the unknown
	Moving fast and breaking things

	Battling procrastination
	Small, practical steps
	Getting unstuck
	Application bugs
	Messages over models

	Chapter 57: How to Practice Programming Techniques and Improve as a Developer?
	Engaging in pair programming
	Utilizing open source software
	Visiting the DailyProgrammer subreddit on Reddit
	Taking online courses
	Code katas
	Summary

	Chapter 58: What Does It Take to Become a Great Developer?
	Tips for becoming a great developer
	Working through difficult features
	Community contribution
	Artistry
	Craftsmanship
	Steve Jobs's craftsmanship

	Adapting to change
	Tireless learning

	Summary

	Chapter 59: How to Stay Sharp as a Developer?
	Tips to stay sharp as a developer
	#1 – coding exercises
	Example coding exercises

	#2 – teaching others to code
	How does this apply to development?

	#3 – reading
	#4 – newsletters
	#5 – tutorials

	Summary

	Chapter 60: Developer Resume Tips – How to Create an Effective Resume?
	Developer resume tips
	Keep it simple
	Keep it relatable
	Keep it professional

	Summary

	Chapter 61: Developer Salary Negotiation Strategies
	Knowing your skill set
	Knowing the industry
	Knowing the organization
	Researching salary rates

	Chapter 62: Best Questions to Ask During a Job Interview
	Best questions to ask during a job interview
	Poor questions to ask during a job interview
	Summary

	Chapter 63: Answering in an Impossible Interview
	Questions
	Answering impossible interview questions – case studies

	Chapter 64: Greatest Weakness Answers for Coding Interviews
	Bad answers to your greatest weakness
	Good answers to your greatest weakness

	Chapter 65: Enterprise Software Job Strategy and Guide
	Summary

	Index

