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Foreword

“Written by a group of the most active researchers in the field, led by Dr. Deng, an
internationally respected expert in both NLP and deep learning, this book provides
a comprehensive introduction to and up-to-date review of the state of art in applying
deep learning to solve fundamental problems in NLP. Further, the book is highly
timely, as demands for high-quality and up-to-date textbooks and research refer-
ences have risen dramatically in response to the tremendous strides in deep learning
applications to NLP. The book offers a unique reference guide for practitioners in
various sectors, especially the Internet and AI start-ups, where NLP technologies
are becoming an essential enabler and a core differentiator.”

Hongjiang Zhang (Founder, Sourcecode Capital; former CEO of KingSoft)

“This book provides a comprehensive introduction to the latest advances in deep
learning applied to NLP. Written by experienced and aspiring deep learning and
NLP researchers, it covers a broad range of major NLP applications, including
spoken language understanding, dialog systems, lexical analysis, parsing, knowl-
edge graph, machine translation, question answering, sentiment analysis, and social
computing.

The book is clearly structured and moves from major research trends, to the
latest deep learning approaches, to their limitations and promising future work.
Given its self-contained content, sophisticated algorithms, and detailed use cases,
the book offers a valuable guide for all readers who are working on or learning
about deep learning and NLP.”

Haifeng Wang (Vice President and Head of Research, Baidu; former President
of ACL)

“In 2011, at the dawn of deep learning in industry, I estimated that in most speech
recognition applications, computers still made 5 to 10 times more errors than human
subjects, and highlighted the importance of knowledge engineering in future
directions. Within only a handful of years since, deep learning has nearly closed the
gap in the accuracy of conversational speech recognition between human and
computers. Edited and written by Dr. Li Deng—a pioneer in the recent speech
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recognition revolution using deep learning—and his colleagues, this book elegantly
describes this part of the fascinating history of speech recognition as an important
subfield of natural language processing (NLP). Further, the book expands this
historical perspective from speech recognition to more general areas of NLP,
offering a truly valuable guide for the future development of NLP.

Importantly, the book puts forward a thesis that the current deep learning trend is
a revolution from the previous data-driven (shallow) machine learning era, although
ostensibly deep learning appears to be merely exploiting more data, more com-
puting power, and more complex models. Indeed, as the book correctly points out,
the current state of the art of deep learning technology developed for NLP appli-
cations, despite being highly successful in solving individual NLP tasks, has not
taken full advantage of rich world knowledge or human cognitive capabilities.
Therefore, I fully embrace the view expressed by the book’s editors and authors that
more advanced deep learning that seamlessly integrates knowledge engineering will
pave the way for the next revolution in NLP.

I highly recommend speech and NLP researchers, engineers, and students to read
this outstanding and timely book, not only to learn about the state of the art in NLP
and deep learning, but also to gain vital insights into what the future of the NLP
field will hold.”

Sadaoki Furui (President, Toyota Technological Institute at Chicago)
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Preface

Natural language processing (NLP), which aims to enable computers to process
human languages intelligently, is an important interdisciplinary field crossing
artificial intelligence, computing science, cognitive science, information processing,
and linguistics. Concerned with interactions between computers and human lan-
guages, NLP applications such as speech recognition, dialog systems, information
retrieval, question answering, and machine translation have started to reshape the
way people identify, obtain, and make use of information.

The development of NLP can be described in terms of three major waves:
rationalism, empiricism, and deep learning. In the first wave, rationalist approaches
advocated the design of handcrafted rules to incorporate knowledge into NLP
systems based on the assumption that knowledge of language in the human mind is
fixed in advance by generic inheritance. In the second wave, empirical approaches
assume that rich sensory input and the observable language data in surface form are
required and sufficient to enable the mind to learn the detailed structure of natural
language. As a result, probabilistic models were developed to discover the regu-
larities of languages from large corpora. In the third wave, deep learning exploits
hierarchical models of nonlinear processing, inspired by biological neural systems
to learn intrinsic representations from language data, in ways that aim to simulate
human cognitive abilities.

The intersection of deep learning and natural language processing has resulted in
striking successes in practical tasks. Speech recognition is the first industrial NLP
application that deep learning has strongly impacted. With the availability of
large-scale training data, deep neural networks achieved dramatically lower
recognition errors than the traditional empirical approaches. Another prominent
successful application of deep learning in NLP is machine translation. End-to-end
neural machine translation that models the mapping between human languages
using neural networks has proven to improve translation quality substantially.
Therefore, neural machine translation has quickly become the new de facto tech-
nology in major commercial online translation services offered by large technology
companies: Google, Microsoft, Facebook, Baidu, and more. Many other areas of
NLP, including language understanding and dialog, lexical analysis and parsing,
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knowledge graph, information retrieval, question answering from text, social
computing, language generation, and text sentiment analysis, have also seen much
significant progress using deep learning, riding on the third wave of
NLP. Nowadays, deep learning is a dominating method applied to practically all
NLP tasks.

The main goal of this book is to provide a comprehensive survey on the recent
advances in deep learning applied to NLP. The book presents state of the art of
NLP-centric deep learning research, and focuses on the role of deep learning played
in major NLP applications including spoken language understanding, dialog sys-
tems, lexical analysis, parsing, knowledge graph, machine translation, question
answering, sentiment analysis, social computing, and natural language generation
(from images). This book is suitable for readers with a technical background in
computation, including graduate students, post-doctoral researchers, educators, and
industrial researchers and anyone interested in getting up to speed with the latest
techniques of deep learning associated with NLP.

The book is organized into eleven chapters as follows:

• Chapter 1: A Joint Introduction to Natural Language Processing and to Deep
Learning (Li Deng and Yang Liu)

• Chapter 2: Deep Learning in Conversational Language Understanding (Gokhan
Tur, Asli Celikyilmaz, Xiaodong He, Dilek Hakkani-Tür, and Li Deng)

• Chapter 3: Deep Learning in Spoken and Text-Based Dialog Systems
(Asli Celikyilmaz, Li Deng, and Dilek Hakkani-Tür)

• Chapter 4: Deep Learning in Lexical Analysis and Parsing (Wanxiang Che and
Yue Zhang)

• Chapter 5: Deep Learning in Knowledge Graph (Zhiyuan Liu and Xianpei Han)
• Chapter 6: Deep Learning in Machine Translation (Yang Liu and Jiajun Zhang)
• Chapter 7: Deep Learning in Question Answering (Kang Liu and Yansong Feng)
• Chapter 8: Deep Learning in Sentiment Analysis (Duyu Tang and Meishan

Zhang)
• Chapter 9: Deep Learning in Social Computing (Xin Zhao and Chenliang Li)
• Chapter 10: Deep Learning in Natural Language Generation from Images

(Xiaodong He and Li Deng)
• Chapter 11: Epilogue (Li Deng and Yang Liu)

Chapter 1 first reviews the basics of NLP as well as the main scope of NLP
covered in the following chapters of the book, and then goes in some depth into the
historical development of NLP summarized as three waves and future directions.
Subsequently, in Chaps. 2–10, an in-depth survey on the recent advances in deep
learning applied to NLP is organized into nine separate chapters, each covering a
largely independent application area of NLP. The main body of each chapter is
written by leading researchers and experts actively working in the respective field.

The origin of this book was the set of comprehensive tutorials given at the 15th
China National Conference on Computational Linguistics (CCL 2016) held in
October 2016 in Yantai, Shandong, China, where both of us, editors of this book,
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were active participants and were taking leading roles. We thank our Springer’s
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and who has been providing much of timely assistance needed to complete this
book. We are grateful also to Springer’s Assistant Editor, Jane Li, for offering
invaluable help through various stages of manuscript preparation.
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preparing the content of their chapters: Gokhan Tur, Asli Celikyilmaz, Dilek
Hakkani-Tur, Wanxiang Che, Yue Zhang, Xianpei Han, Zhiyuan Liu, Jiajun Zhang,
Kang Liu, Yansong Feng, Duyu Tang, Meishan Zhang, Xin Zhao, Chenliang Li,
and Xiaodong He. The authors of Chaps. 4–9 are CCL 2016 tutorial speakers. They
spent a considerable amount of time in updating their tutorial material with the
latest advances in the field since October 2016.

Further, we thank numerous reviewers and readers, Sadaoki Furui, Andrew Ng,
Fred Juang, Ken Church, Haifeng Wang, and Hongjiang Zhang, who not only gave
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Chapter 1
A Joint Introduction to Natural
Language Processing and to Deep
Learning

Li Deng and Yang Liu

Abstract In this chapter, we set up the fundamental framework for the book. We
first provide an introduction to the basics of natural language processing (NLP) as an
integral part of artificial intelligence. We then survey the historical development of
NLP, spanning over five decades, in terms of three waves. The first two waves arose
as rationalism and empiricism, paving ways to the current deep learning wave. The
key pillars underlying the deep learning revolution for NLP consist of (1) distributed
representations of linguistic entities via embedding, (2) semantic generalization due
to the embedding, (3) long-span deep sequence modeling of natural language, (4)
hierarchical networks effective for representing linguistic levels from low to high,
and (5) end-to-end deep learning methods to jointly solve many NLP tasks. After
the survey, several key limitations of current deep learning technology for NLP are
analyzed. This analysis leads to five research directions for future advances in NLP.

1.1 Natural Language Processing: The Basics

Natural language processing (NLP) investigates the use of computers to process or to
understand human (i.e., natural) languages for the purpose of performing useful tasks.
NLP is an interdisciplinary field that combines computational linguistics, computing
science, cognitive science, and artificial intelligence. From a scientific perspective,
NLP aims to model the cognitive mechanisms underlying the understanding and pro-
duction of human languages. From an engineering perspective, NLP is concerned
with how to develop novel practical applications to facilitate the interactions between
computers and human languages. Typical applications in NLP include speech recog-
nition, spoken language understanding, dialogue systems, lexical analysis, parsing,
machine translation, knowledge graph, information retrieval, question answering,

L. Deng (B)
Citadel, Seattle & Chicago, USA
e-mail: l.deng@ieee.org

Y. Liu
Tsinghua University, Beijing, China
e-mail: liuyang2011@tsinghua.edu.cn

© Springer Nature Singapore Pte Ltd. 2018
L. Deng and Y. Liu (eds.), Deep Learning in Natural
Language Processing, https://doi.org/10.1007/978-981-10-5209-5_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-5209-5_1&domain=pdf


2 L. Deng and Y. Liu

sentiment analysis, social computing, natural language generation, and natural lan-
guage summarization. These NLP application areas form the core content of this
book.

Natural language is a systemconstructed specifically to conveymeaning or seman-
tics, and is by its fundamental nature a symbolic or discrete system. The surface or
observable “physical” signal of natural language is called text, always in a sym-
bolic form. The text “signal” has its counterpart—the speech signal; the latter can
be regarded as the continuous correspondence of symbolic text, both entailing the
same latent linguistic hierarchy of natural language. FromNLP and signal processing
perspectives, speech can be treated as “noisy” versions of text, imposing additional
difficulties in its need of “de-noising” when performing the task of understanding the
common underlying semantics. Chapters2 and 3 as well as current Chap. 1 of this
book cover the speech aspect of NLP in detail, while the remaining chapters start
directly from text in discussing a wide variety of text-oriented tasks that exemplify
the pervasive NLP applications enabled by machine learning techniques, notably
deep learning.

The symbolic nature of natural language is in stark contrast to the continuous
nature of language’s neural substrate in the human brain.Wewill defer this discussion
to Sect. 1.6 of this chapter when discussing future challenges of deep learning inNLP.
A related contrast is how the symbols of natural language are encoded in several
continuous-valued modalities, such as gesture (as in sign language), handwriting
(as an image), and, of course, speech. On the one hand, the word as a symbol is
used as a “signifier” to refer to a concept or a thing in real world as a “signified”
object, necessarily a categorical entity. On the other hand, the continuous modalities
that encode symbols of words constitute the external signals sensed by the human
perceptual system and transmitted to the brain, which in turn operates in a continuous
fashion. While of great theoretical interest, the subject of contrasting the symbolic
nature of language versus its continuous rendering and encoding goes beyond the
scope of this book.

In the next few sections, we outline and discuss, from a historical perspective, the
development of general methodology used to study NLP as a rich interdisciplinary
field. Much like several closely related sub- and super-fields such as conversational
systems, speech recognition, and artificial intelligence, the development of NLP can
be described in terms of three major waves (Deng 2017; Pereira 2017), each of which
is elaborated in a separate section next.

1.2 The First Wave: Rationalism

NLP research in its first wave lasted for a long time, dating back to 1950s. In 1950,
AlanTuring proposed theTuring test to evaluate a computer’s ability to exhibit intelli-
gent behavior indistinguishable from that of a human (Turing 1950). This test is based
on natural language conversations between a human and a computer designed to gen-
erate human-like responses. In 1954, theGeorgetown-IBMexperiment demonstrated

http://dx.doi.org/10.1007/978-981-10-5209-5_2
http://dx.doi.org/10.1007/978-981-10-5209-5_3
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1 A Joint Introduction to Natural Language Processing and to Deep Learning 3

the first machine translation system capable of translating more than 60 Russian sen-
tences into English.

The approaches, based on the belief that knowledge of language in the human
mind is fixed in advance by generic inheritance, dominated most of NLP research
between about 1960 and late 1980s. These approaches have been called rationalist
ones (Church 2007). The dominance of rationalist approaches in NLP was mainly
due to the widespread acceptance of arguments of Noam Chomsky for an innate
language structure and his criticism of N-grams (Chomsky 1957). Postulating that
key parts of language are hardwired in the brain at birth as a part of the human
genetic inheritance, rationalist approaches endeavored to design hand-crafted rules
to incorporate knowledge and reasoning mechanisms into intelligent NLP systems.
Up until 1980s, most notably successful NLP systems, such as ELIZA for simulating
a Rogerian psychotherapist andMARGIE for structuring real-world information into
concept ontologies, were based on complex sets of handwritten rules.

This period coincided approximately with the early development of artificial
intelligence, characterized by expert knowledge engineering, where domain experts
devised computer programs according to the knowledge about the (very narrow)
application domains they have (Nilsson 1982; Winston 1993). The experts designed
these programs using symbolic logical rules based on careful representations and
engineering of such knowledge. These knowledge-based artificial intelligence sys-
tems tend to be effective in solving narrow-domain problems by examining the
“head” or most important parameters and reaching a solution about the appropriate
action to take in each specific situation. These “head” parameters are identified in
advance by human experts, leaving the “tail” parameters and cases untouched. Since
they lack learning capability, they have difficulty in generalizing the solutions to new
situations and domains. The typical approach during this period is exemplified by
the expert system, a computer system that emulates the decision-making ability of a
human expert. Such systems are designed to solve complex problems by reasoning
about knowledge (Nilsson 1982). The first expert system was created in 1970s and
then proliferated in 1980s. The main “algorithm” used was the inference rules in the
form of “if-then-else” (Jackson 1998). The main strength of these first-generation
artificial intelligence systems is its transparency and interpretability in their (limited)
capability in performing logical reasoning. Like NLP systems such as ELIZA and
MARGIE, the general expert systems in the early days used hand-crafted expert
knowledge which was often effective in narrowly defined problems, although the
reasoning could not handle uncertainty that is ubiquitous in practical applications.

In specificNLP application areas of dialogue systems and spoken language under-
standing, to be described in more detail in Chaps. 2 and 3 of this book, such ratio-
nalistic approaches were represented by the pervasive use of symbolic rules and
templates (Seneff et al. 1991). The designs were centered on grammatical and onto-
logical constructs, which, while interpretable and easy to debug and update, had
experienced severe difficulties in practical deployment. When such systems worked,
they often worked beautifully; but unfortunately this happened just not very often
and the domains were necessarily limited.

http://dx.doi.org/10.1007/978-981-10-5209-5_2
http://dx.doi.org/10.1007/978-981-10-5209-5_3


4 L. Deng and Y. Liu

Likewise, speech recognition research and system design, another long-standing
NLP and artificial intelligence challenge, during this rationalist era were based
heavily on the paradigm of expert knowledge engineering, as elegantly analyzed
in (Church and Mercer 1993). During 1970s and early 1980s, the expert system
approach to speech recognition was quite popular (Reddy 1976; Zue 1985). How-
ever, the lack of abilities to learn from data and to handle uncertainty in reasoningwas
acutely recognized by researchers, leading to the second wave of speech recognition,
NLP, and artificial intelligence described next.

1.3 The Second Wave: Empiricism

The second wave of NLP was characterized by the exploitation of data corpora and
of (shallow) machine learning, statistical or otherwise, to make use of such data
(Manning and Schtze 1999). As much of the structure of and theory about natural
language were discounted or discarded in favor of data-driven methods, the main
approaches developed during this era have been called empirical or pragmatic ones
(Church andMercer 1993;Church2014).With the increasing availability ofmachine-
readable data and steady increase of computational power, empirical approaches have
dominated NLP since around 1990. One of the major NLP conferences was even
named “Empirical Methods in Natural Language Processing (EMNLP)” to reflect
most directly the strongly positive sentiment of NLP researchers during that era
toward empirical approaches.

In contrast to rationalist approaches, empirical approaches assume that the human
mind only begins with general operations for association, pattern recognition, and
generalization. Rich sensory input is required to enable the mind to learn the detailed
structure of natural language. Prevalent in linguistics between 1920 and 1960, empiri-
cism has been undergoing a resurgence since 1990. Early empirical approaches to
NLP focused on developing generative models such as the hidden Markov model
(HMM) (Baum and Petrie 1966), the IBM translation models (Brown et al. 1993),
and the head-driven parsing models (Collins 1997) to discover the regularities of
languages from large corpora. Since late 1990s, discriminative models have become
the de facto approach in a variety of NLP tasks. Representative discriminative mod-
els and methods in NLP include the maximum entropy model (Ratnaparkhi 1997),
supporting vector machines (Vapnik 1998), conditional random fields (Lafferty et al.
2001), maximum mutual information and minimum classification error (He et al.
2008), and perceptron (Collins 2002).

Again, thiseraofempiricisminNLPwasparalleledwithcorrespondingapproaches
in artificial intelligence as well as in speech recognition and computer vision. It came
about after clear evidence that learning and perception capabilities are crucial for
complex artificial intelligence systems but missing in the expert systems popular in
the previous wave. For example, when DARPA opened its first Grand Challenge for
autonomous driving,most vehicles then relied on the knowledge-based artificial intel-
ligenceparadigm.Much like speech recognitionandNLP, theautonomousdrivingand
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computer vision researchers immediately realized the limitation of the knowledge-
based paradigm due to the necessity for machine learning with uncertainty handling
and generalization capabilities.

The empiricism in NLP and speech recognition in this second wave was based
on data-intensive machine learning, which we now call “shallow” due to the general
lack of abstractions constructed by many-layer or “deep” representations of data
which would come in the third wave to be described in the next section. In machine
learning, researchers do not need to concern with constructing precise and exact rules
as required for the knowledge-based NLP and speech systems during the first wave.
Rather, they focus on statisticalmodels (Bishop 2006;Murphy 2012) or simple neural
networks (Bishop 1995) as an underlying engine. They then automatically learn or
“tune” the parameters of the engine using ample training data to make them handle
uncertainty, and to attempt to generalize from one condition to another and from one
domain to another. The key algorithms andmethods formachine learning include EM
(expectation-maximization), Bayesian networks, support vector machines, decision
trees, and, for neural networks, backpropagation algorithm.

Generally speaking, the machine learning based NLP, speech, and other artificial
intelligence systems performmuch better than the earlier, knowledge-based counter-
parts. Successful examples include almost all artificial intelligence tasks in machine
perception—speech recognition (Jelinek 1998), face recognition (Viola and Jones
2004), visual object recognition (Fei-Fei and Perona 2005), handwriting recognition
(Plamondon and Srihari 2000), and machine translation (Och 2003).

More specifically, in a core NLP application area of machine translation, as to be
described in detail in Chap. 6 of this book as well as in (Church andMercer 1993), the
field has switched rather abruptly around 1990 from rationalistic methods outlined in
Sect. 1.2 to empirical, largely statistical methods. The availability of sentence-level
alignments in the bilingual training data made it possible to acquire surface-level
translation knowledge not by rules but from data directly, at the expense of discarding
or discounting structured information in natural languages. The most representative
work during this wave is that empowered by various versions of IBM translation
models (Brown et al. 1993). Subsequent developments during this empiricist era of
machine translation further significantly improved the quality of translation systems
(Och and Ney 2002; Och 2003; Chiang 2007; He and Deng 2012), but not at the
level of massive deployment in real world (which would come after the next, deep
learning wave).

In the dialogue and spoken language understanding areas of NLP, this empiri-
cist era was also marked prominently by data-driven machine learning approaches.
These approaches were well suited to meet the requirement for quantitative evalua-
tion and concrete deliverables. They focused on broader but shallow, surface-level
coverage of text and domains instead of detailed analyses of highly restricted text
and domains. The training data were used not to design rules for language under-
standing and response action from the dialogue systems but to learn parameters of
(shallow) statistical or neural models automatically from data. Such learning helped
reduce the cost of hand-crafted complex dialogue manager’s design, and helped
improve robustness against speech recognition errors in the overall spoken language

http://dx.doi.org/10.1007/978-981-10-5209-5_6


6 L. Deng and Y. Liu

understanding and dialogue systems; for a review, see He and Deng (2013). More
specifically, for the dialogue policy component of dialogue systems, powerful rein-
forcement learning based on Markov decision processes had been introduced during
this era; for a review, see Young et al. (2013). And for spoken language understand-
ing, the dominant methods moved from rule- or template-based ones during the first
wave to generative models like hidden Markov models (HMMs) (Wang et al. 2011)
to discriminative models like conditional random fields (Tur and Deng 2011).

Similarly, in speech recognition, over close to 30years from early 1980s to around
2010, the field was dominated by the (shallow) machine learning paradigm using the
statistical generative model based on the HMM integrated with Gaussian mixture
models, along with various versions of its generalization (Baker et al. 2009a, b;
Deng and O’Shaughnessy 2003; Rabiner and Juang 1993). Among many versions of
the generalized HMMs were statistical and neural-network-based hidden dynamic
models (Deng 1998; Bridle et al. 1998; Deng and Yu 2007). The former adopted EM
and switching extended Kalman filter algorithms for learning model parameters (Ma
and Deng 2004; Lee et al. 2004), and the latter used backpropagation (Picone et al.
1999).Both of themmade extensive use ofmultiple latent layers of representations for
the generative process of speech waveforms following the long-standing framework
of analysis-by-synthesis in human speech perception. More significantly, inverting
this “deep” generative process to its counterpart of an end-to-end discriminative
process gave rise to the first industrial success of deep learning (Deng et al. 2010,
2013; Hinton et al. 2012), which formed a driving force of the third wave of speech
recognition and NLP that will be elaborated next.

1.4 The Third Wave: Deep Learning

While the NLP systems, including speech recognition, language understanding, and
machine translation, developed during the second wave performed a lot better and
with higher robustness than those during the first wave, they were far from human-
level performance and left much to desire. With a few exceptions, the (shallow)
machine learning models for NLP often did not have the capacity sufficiently large to
absorb the large amounts of training data. Further, the learning algorithms, methods,
and infrastructures were not powerful enough. All this changed several years ago,
giving rise to the thirdwaveofNLP, propelled by the newparadigmof deep-structured
machine learning or deep learning (Bengio 2009; Deng and Yu 2014; LeCun et al.
2015; Goodfellow et al. 2016).

In traditional machine learning, features are designed by humans and feature
engineering is a bottleneck, requiring significant human expertise. Concurrently,
the associated shallow models lack the representation power and hence the ability
to form levels of decomposable abstractions that would automatically disentangle
complex factors in shaping the observed language data. Deep learning breaks away
the above difficulties by the use of deep, layered model structure, often in the form of
neural networks, and the associated end-to-end learning algorithms. The advances in
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deep learning are one major driving force behind the current NLP and more general
artificial intelligence inflection point and are responsible for the resurgence of neural
networks with a wide range of practical, including business, applications (Parloff
2016).

More specifically, despite the success of (shallow) discriminative models in a
number of importantNLP tasks developedduring the secondwave, they suffered from
the difficulty of covering all regularities in languages by designing features manually
with domain expertise. Besides the incompleteness problem, such shallow models
also face the sparsity problem as features usually only occur once in the training
data, especially for highly sparse high-order features. Therefore, feature design has
become one of the major obstacles in statistical NLP before deep learning comes
to rescue. Deep learning brings hope for addressing the human feature engineering
problem, with a view called “NLP from scratch” (Collobert et al. 2011), which was
in early days of deep learning considered highly unconventional. Such deep learning
approaches exploit the powerful neural networks that contain multiple hidden layers
to solve general machine learning tasks dispensing with feature engineering. Unlike
shallow neural networks and related machine learning models, deep neural networks
are capable of learning representations fromdata using a cascade ofmultiple layers of
nonlinear processing units for feature extraction. As higher level features are derived
from lower level features, these levels form a hierarchy of concepts.

Deep learning originated from artificial neural networks, which can be viewed as
cascadingmodels of cell types inspired by biological neural systems.With the advent
of backpropagation algorithm (Rumelhart et al. 1986), training deep neural networks
from scratch attracted intensive attention in 1990s. In these early days, without large
amounts of training data and without proper design and learning methods, during
neural network training the learning signals vanish exponentially with the number
of layers (or more rigorously the depth of credit assignment) when propagated from
layer to layer, making it difficult to tune connection weights of deep neural networks,
especially the recurrent versions. Hinton et al. (2006) initially overcame this problem
by using unsupervised pretraining to first learn generally useful feature detectors.
Then, the network is further trained by supervised learning to classify labeled data.
As a result, it is possible to learn the distribution of a high-level representation using
low-level representations. This seminal workmarks the revival of neural networks. A
variety of network architectures have since been proposed and developed, including
deep belief networks (Hinton et al. 2006), stacked auto-encoders (Vincent et al. 2010),
deep Boltzmann machines (Hinton and Salakhutdinov 2012), deep convolutional
neural works (Krizhevsky et al. 2012), deep stacking networks (Deng et al. 2012),
and deep Q-networks (Mnih et al. 2015). Capable of discovering intricate structures
in high-dimensional data, deep learning has since 2010 been successfully applied to
real-world tasks in artificial intelligence including notably speech recognition (Yu
et al. 2010; Hinton et al. 2012), image classification (Krizhevsky et al. 2012; He et al.
2016), and NLP (all chapters in this book). Detailed analyses and reviews of deep
learning have been provided in a set of tutorial survey articles (Deng 2014; LeCun
et al. 2015; Juang 2016).
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As speech recognition is one of core tasks in NLP, we briefly discuss it here due to
its importance as the first industrial NLP application in real world impacted strongly
by deep learning. Industrial applications of deep learning to large-scale speech recog-
nition started to take off around 2010. The endeavor was initiatedwith a collaboration
between academia and industry, with the original work presented at the 2009 NIPS
Workshop on Deep Learning for Speech Recognition and Related Applications. The
workshop was motivated by the limitations of deep generative models of speech, and
the possibility that the big-compute, big-data era warrants a serious exploration of
deep neural networks. It was believed then that pretraining DNNs using generative
models of deep belief nets based on the contrastive divergence learning algorithm
would overcome the main difficulties of neural nets encountered in the 1990s (Dahl
et al. 2011; Mohamed et al. 2009). However, early into this research at Microsoft, it
was discovered that without contrastive divergence pretraining, but with the use of
large amounts of training data together with the deep neural networks designed with
corresponding large, context-dependent output layers and with careful engineering,
dramatically lower recognition errors could be obtained than then-state-of-the-art
(shallow) machine learning systems (Yu et al. 2010, 2011; Dahl et al. 2012). This
finding was quickly verified by several other major speech recognition research
groups in North America (Hinton et al. 2012; Deng et al. 2013) and subsequently
overseas. Further, the nature of recognition errors produced by the two types of sys-
tems was found to be characteristically different, offering technical insights into how
to integrate deep learning into the existing highly efficient, run-time speech decod-
ing system deployed by major players in speech recognition industry (Yu and Deng
2015; Abdel-Hamid et al. 2014; Xiong et al. 2016; Saon et al. 2017). Nowadays,
backpropagation algorithm applied to deep neural nets of various forms is uniformly
used in all current state-of-the-art speech recognition systems (Yu and Deng 2015;
Amodei et al. 2016; Saon et al. 2017), and all major commercial speech recogni-
tion systems—Microsoft Cortana, Xbox, Skype Translator, Amazon Alexa, Google
Assistant, Apple Siri, Baidu and iFlyTek voice search, and more—are all based on
deep learning methods.

The striking success of speech recognition in 2010–2011 heralded the arrival of
the third wave of NLP and artificial intelligence. Quickly following the success of
deep learning in speech recognition, computer vision (Krizhevsky et al. 2012) and
machine translation (Bahdanau et al. 2015) were taken over by the similar deep
learning paradigm. In particular, while the powerful technique of neural embedding
of words was developed in as early as 2011 (Bengio et al. 2001), it is not until more
than 10 year later it was shown to be practically useful at a large and practically useful
scale (Mikolov et al. 2013) due to the availability of big data and faster computation.
In addition, a large number of other real-world NLP applications, such as image
captioning (Karpathy and Fei-Fei 2015; Fang et al. 2015; Gan et al. 2017), visual
question answering (Fei-Fei and Perona 2016), speech understanding (Mesnil et al.
2013), web search (Huang et al. 2013b), and recommendation systems, have been
made successful due to deep learning, in addition to many non-NLP tasks including
drug discovery and toxicology, customer relationshipmanagement, recommendation
systems, gesture recognition, medical informatics, advertisement, medical image
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analysis, robotics, self-driving vehicles, board and eSports games (e.g., Atari, Go,
Poker, and the latest, DOTA2), and so on. For more details, see https://en.wikipedia.
org/wiki/deep_learning.

In more specific text-based NLP application areas, machine translation is perhaps
impacted the most by deep learning. Advancing from the shallow statistical machine
translation developed during the second wave of NLP, the current best machine
translation systems in real-world applications are based on deep neural networks. For
example, Google announced the first stage of its move to neural machine translation
in September 2016 and Microsoft made a similar announcement 2 months later.
Facebook has been working on the conversion to neural machine translation for
about a year, and by August 2017 it is at full deployment. Details of the deep learning
techniques in these state-of-the-art large-scale machine translation systems will be
reviewed in Chap.6.

In the area of spoken language understanding and dialogue systems, deep learning
is also making a huge impact. The current popular techniques maintain and expand
the statistical methods developed during second-wave era in several ways. Like the
empirical, (shallow) machine learning methods, deep learning is also based on data-
intensive methods to reduce the cost of hand-crafted complex understanding and
dialogue management, to be robust against speech recognition errors under noise
environments and against language understanding errors, and to exploit the power
of Markov decision processes and reinforcement learning for designing dialogue
policy, e.g., (Gasic et al. 2017; Dhingra et al. 2017). Compared with the earlier
methods, deep neural network models and representations are much more powerful
and they make end-to-end learning possible. However, deep learning has not yet
solved the problems of interpretability and domain scalability associated with earlier
empirical techniques. Details of the deep learning techniques popular for current
spoken language understanding and dialogue systems as well as their challenges
will be reviewed in Chaps. 2 and 3.

Two important recent technological breakthroughs brought about in applying deep
learning to NLP problems are sequence-to-sequence learning (Sutskevar et al. 2014)
and attention modeling (Bahdanau et al. 2015). The sequence-to-sequence learning
introduces a powerful idea of using recurrent nets to carry out both encoding and
decoding in an end-to-end manner. While attention modeling was initially developed
to overcome the difficulty of encoding a long sequence, subsequent developments
significantly extended its power to provide highly flexible alignment of two arbitrary
sequences that can be learned together with neural network parameters. The key
concepts of sequence-to-sequence learning and of attention mechanism boosted the
performance of neuralmachine translation based on distributedword embedding over
the best system based on statistical learning and local representations of words and
phrases. Soon after this success, these concepts have also been applied successfully
to a number of other NLP-related tasks such as image captioning (Karpathy and
Fei-Fei 2015; Devlin et al. 2015), speech recognition (Chorowski et al. 2015), meta-
learning for program execution, one-shot learning, syntactic parsing, lip reading, text
understanding, summarization, and question answering and more.

https://en.wikipedia.org/wiki/deep_learning
https://en.wikipedia.org/wiki/deep_learning
http://dx.doi.org/10.1007/978-981-10-5209-5_6
http://dx.doi.org/10.1007/978-981-10-5209-5_2
http://dx.doi.org/10.1007/978-981-10-5209-5_3
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Setting aside their huge empirical successes, models of neural-network-based
deep learning are often simpler and easier to design than the traditional machine
learning models developed in the earlier wave. In many applications, deep learning
is performed simultaneously for all parts of the model, from feature extraction all
the way to prediction, in an end-to-end manner. Another factor contributing to the
simplicity of neural network models is that the same model building blocks (i.e., the
different types of layers) are generally used in many different applications. Using
the same building blocks for a large variety of tasks makes the adaptation of models
used for one task or data to another task or data relatively easy. In addition, software
toolkits have been developed to allow faster and more efficient implementation of
these models. For these reasons, deep neural networks are nowadays a prominent
method of choice for a large variety of machine learning and artificial intelligence
tasks over large datasets including, prominently, NLP tasks.

Although deep learning has proven effective in reshaping the processing of speech,
images, and videos in a revolutionary way, the effectiveness is less clear-cut in inter-
secting deep learningwith text-basedNLPdespite its empirical successes in a number
of practical NLP tasks. In speech, image, and video processing, deep learning effec-
tively addresses the semantic gap problem by learning high-level concepts from raw
perceptual data in a direct manner. However, in NLP, stronger theories and structured
models onmorphology, syntax, and semantics havebeen advanced to distill the under-
lying mechanisms of understanding and generation of natural languages, which have
not been as easily compatible with neural networks. Compared with speech, image,
and video signals, it seems less straightforward to see that the neural representations
learned from textual data can provide equally direct insights onto natural language.
Therefore, applying neural networks, especially those having sophisticated hierar-
chical architectures, to NLP has received increasing attention and has become the
most active area in both NLP and deep learning communities with highly visible
progresses made in recent years (Deng 2016; Manning and Socher 2017). Surveying
the advances and analyzing the future directions in deep learning for NLP form the
main motivation for us to write this chapter and to create this book, with the desire
for the NLP researchers to accelerate the research further in the current fast pace of
the progress.

1.5 Transitions from Now to the Future

Before analyzing the future dictions of NLP with more advanced deep learning, here
we first summarize the significance of the transition from the past waves of NLP to
the present one. We then discuss some clear limitations and challenges of the present
deep learning technology for NLP, to pave a way to examining further development
that would overcome these limitations for the next wave of innovations.
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1.5.1 From Empiricism to Deep Learning: A Revolution

On the surface, the deep learning rising wave discussed in Sect. 1.4 in this chapter
appears to be a simple push of the second, empiricist wave of NLP (Sect. 1.3) into
an extreme end with bigger data, larger models, and greater computing power. After
all, the fundamental approaches developed during both waves are data-driven and
are based on machine learning and computation, and have dispensed with human-
centric “rationalistic” rules that are often brittle and costly to acquire in practical
NLP applications. However, if we analyze these approaches holistically and at a
deeper level, we can identify aspects of conceptual revolutionmoving fromempiricist
machine learning to deep learning, and can subsequently analyze the future directions
of the field (Sect. 1.6). This revolution, in our opinion, is no less significant than the
revolution from the earlier rationalist wave to empiricist one as analyzed at the
beginning (Church and Mercer 1993) and at the end of the empiricist era (Charniak
2011).

Empiricist machine learning and linguistic data analysis during the second NLP
wave started in early 1990s by crypto-analysts and computer scientists working
on natural language sources that are highly limited in vocabulary and application
domains. As we discussed in Sect. 1.3, surface-level text observations, i.e., words
and their sequences, are counted using discrete probabilistic models without relying
on deep structure in natural language. The basic representations were “one-hot” or
localist, where no semantic similarity between words was exploited. With restric-
tions in domains and associated text content, such structure-free representations and
empirical models are often sufficient to cover much of what needs to be covered.
That is, the shallow, count-based statistical models can naturally do well in limited
and specific NLP tasks. But when the domain and content restrictions are lifted for
more realistic NLP applications in real-world, count-basedmodels would necessarily
become ineffective, no manner how many tricks of smoothing have been invented
in an attempt to mitigate the problem of combinatorial counting sparseness. This
is where deep learning for NLP truly shines—distributed representations of words
via embedding, semantic generalization due to the embedding, longer span deep
sequence modeling, and end-to-end learning methods have all contributed to beat-
ing empiricist, count-based methods in a wide range of NLP tasks as discussed in
Sect. 1.4.

1.5.2 Limitations of Current Deep Learning Technology

Despite the spectacular successes of deep learning in NLP tasks, most notably in
speech recognition/understanding, language modeling, and in machine translation,
there remain huge challenges. The current deep learning methods based on neu-
ral networks as a black box generally lack interpretability, even further away from
explainability, in contrast to the “rationalist” paradigm established during the first
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NLPwave where the rules devised by experts were naturally explainable. In practice,
however, it is highly desirable to explain the predictions from a seemingly “black-
box” model, not only for improving the model but for providing the users of the
prediction system with interpretations of the suggested actions to take (Koh and
Liang 2017).

In a number of applications, deep learning methods have proved to give recog-
nition accuracy close to or exceeding humans, but they require considerably more
training data, power consumption, and computing resources than humans. Also,
the accuracy results are statistically impressive but often unreliable on the individ-
ual basis. Further, most of the current deep learning models have no reasoning and
explaining capabilities,making themvulnerable to disastrous failures or attackswith-
out the ability to foresee and thus to prevent them.Moreover, the current NLPmodels
have not taken into account the need for developing and executing goals and plans
for decision-making via ultimate NLP systems. A more specific limitation of current
NLP methods based on deep learning is their poor abilities for understanding and
reasoning inter-sentential relationships, although huge progresses have been made
for interwords and phrases within sentences.

As discussed earlier, the success of deep learning in NLP has largely come from a
simple strategy thus far—given an NLP task, apply standard sequence models based
on (bidirectional) LSTMs, add attention mechanisms if information required in the
task needs to flow from another source, and then train the full models in an end-to-
end manner. However, while sequence modeling is naturally appropriate for speech,
human understanding of natural language (in text form) requires more complex
structure than sequence. That is, current sequence-based deep learning systems for
NLP can be further advanced by exploiting modularity, structured memories, and
recursive, tree-like representations for sentences and larger text (Manning 2016).

To overcome the challenges outlined above and to achieve the ultimate success
of NLP as a core artificial intelligence field, both fundamental and applied research
are needed. The next new wave of NLP and artificial intelligence will not come until
researchers create new paradigmatic, algorithmic, and computation (including hard-
ware) breakthroughs. Here, we outline several high-level directions toward potential
breakthroughs.

1.6 Future Directions of NLP

1.6.1 Neural-Symbolic Integration

A potential breakthrough is in developing advanced deep learning models and meth-
ods that are more effective than current methods in building, accessing, and exploit-
ing memories and knowledge, including, in particular, common-sense knowledge.
It is not clear how to best integrate the current deep learning methods, centered
on distributed representations (of everything), with explicit, easily interpretable, and
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localist-represented knowledge about natural language and theworld andwith related
reasoning mechanisms.

One path to this goal is to seamlessly combine neural networks and symbolic
language systems. These NLP and artificial intelligence systems will aim to discover
by themselves the underlying causes or logical rules that shape their prediction and
decision-making processes interpretable to humanusers in symbolic natural language
forms. Recently, very preliminary work in this direction made use of an integrated
neural-symbolic representation called tensor-product neural memory cells, capable
of decoding back to symbolic forms. This structured neural representation is provably
lossless in the coded information after extensive learning within the neural-tensor
domain (Palangi et al. 2017; Smolensky et al. 2016; Lee et al. 2016). Extensions
of such tensor-product representations, when applied to NLP tasks such as machine
reading and question answering, are aimed to learn to process and understand mas-
sive natural language documents. After learning, the systems will be able not only to
answer questions sensibly but also to truly understand what it reads to the extent that
it can convey such understanding to human users in providing clues as to what steps
have been taken to reach the answer. These stepsmay be in the form of logical reason-
ing expressed in natural language which is thus naturally understood by the human
users of this type of machine reading and comprehension systems. In our view, natu-
ral language understanding is not just to accurately predict an answer from a question
with relevant passages or data graphs as its contextual knowledge in a supervised
way after seeing many examples of matched questions–passages–answers. Rather,
the desired NLP system equipped with real understanding should resemble human
cognitive capabilities. As an example of such capabilities (Nguyen et al. 2017)—
after an understanding system is trained well, say, in a question answering task
(using supervised learning or otherwise), it should master all essential aspects of the
observed text material provided to solve the question answering tasks. What such
mastering entails is that the learned system can subsequently perform well on other
NLP tasks, e.g., translation, summarization, recommendation, etc., without seeing
additional paired data such as raw text data with its summary, or parallel English and
Chinese texts, etc.

One way to examine the nature of such powerful neural-symbolic systems is
to regard them as ones incorporating the strength of the “rationalist” approaches
marked by expert reasoning and structure richness popular during the first wave of
NLP discussed in Sect. 1.2. Interestingly, prior to the rising of deep learning (third)
wave of NLP, (Church 2007) argued that the pendulum from rationalist to empiri-
cist approaches has swung too far at almost the peak of the second NLP wave, and
predicted that the new rationalist wave would arrive. However, rather than swinging
back to a renewed rationalist era of NLP, deep learning era arrived in full force in just
a short period from the time of writing by Church (2007). Instead of adding the ratio-
nalist flavor, deep learning has been pushing empiricism of NLP to its pinnacle with
big data and big compute, and with conceptually revolutionary ways of representing
a sweeping range of linguistic entities by massive parallelism and distributedness,
thus drastically enhancing the generalization capability of new-generationNLPmod-
els. Only after the sweeping successes of current deep learning methods for NLP
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(Sect. 1.4) and subsequent analyses of a series of their limitations, do researchers
look into the next wave of NLP—not swinging back to rationalism while abandon-
ing empiricism but developing more advanced deep learning paradigms that would
organically integrate the missing essence of rationalism into the structured neural
methods that are aimed to approach human cognitive functions for language.

1.6.2 Structure, Memory, and Knowledge

As discussed earlier in this chapter as well as in the current NLP literature (Man-
ning and Socher 2017), NLP researchers at present still have very primitive deep
learning methods for exploiting structure and for building and accessing memories
or knowledge. While LSTM (with attention) has been pervasively applied to NLP
tasks to beat many NLP benchmarks, LSTM is far from a good memory model
for human cognition. In particular, LSTM lacks adequate structure for simulating
episodic memory, and one key component of human cognitive ability is to retrieve
and re-experience aspects of a past novel event or thought. This ability gives rise
to one-shot learning skills and can be crucial in reading comprehension of natural
language text or speech understanding, as well as reasoning over events described by
natural language. Many recent studies have been devoted to better memory model-
ing, including external memory architectures with supervised learning (Vinyals et al.
2016; Kaiser et al. 2017) and augmented memory architectures with reinforcement
learning (Graves et al. 2016; Oh et al. 2016). However, they have not shown general
effectiveness, but have suffered from a number of of limitations including notably
scalability (arising from the use of attention which has to access every stored element
in the memory). Much work remains in the direction of better modeling of memory
and exploitation of knowledge for text understanding and reasoning.

1.6.3 Unsupervised and Generative Deep Learning

Another potential breakthrough in deep learning for NLP is in new algorithms for
unsupervised deep learning, which makes use of ideally no direct teaching signals
paired with inputs (token by token) to guide the learning.Word embedding discussed
in Sect. 1.4 can be viewed as a weak form of unsupervised learning, making use of
adjacent words as “cost-free” surrogate teaching signals, but for real-world NLP pre-
diction tasks, such as translation, understanding, summarization, etc., such embed-
ding obtained in an “unsupervised manner” has to be fed into another supervised
architecture which requires costly teaching signals. In truly unsupervised learning
which requires no expensive teaching signals, new types of objective functions and
new optimization algorithms are needed, e.g., the objective function for unsupervised
learning should not require explicit target label data aligned with the input data as
in cross entropy that is most popular for supervised learning. Development of unsu-
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pervised deep learning algorithms has been significantly behind that of supervised
and reinforcement deep learning where backpropagation and Q-learning algorithms
have been reasonably mature.

The most recent preliminary development in unsupervised learning takes the
approach of exploiting sequential output structure and advanced optimization meth-
ods to alleviate the need for using labels in training prediction systems (Russell and
Stefano 2017; Liu et al. 2017). Future advances in unsupervised learning are promis-
ing by exploiting new sources of learning signals including the structure of input data
and themapping relationships from input to output and vice versa. Exploiting the rela-
tionship from output to input is closely connected to building conditional generative
models. To this end, the recent popular topic in deep learning—generative adversar-
ial networks (Goodfellow et al. 2014)—is a highly promising direction where the
long-standing concept of analysis-by-synthesis in pattern recognition and machine
learning is likely to return to spotlight in the near future in solving NLP tasks in new
ways.

Generative adversarial networks have been formulated as neural nets, with dense
connectivity among nodes and with no probabilistic setting. On the other hand,
probabilistic and Bayesian reasoning, which often takes computational advantage
of sparse connections among “nodes” as random variables, has been one of the
principal theoretical pillars to machine learning and has been responsible for many
NLP methods developed during the empiricist wave of NLP discussed in Sect. 1.3.
What is the right interface between deep learning and probabilistic modeling? Can
probabilistic thinking help understand deep learning techniques better and motivate
new deep learning methods for NLP tasks? How about the other way around? These
issues are widely open for future research.

1.6.4 Multimodal and Multitask Deep Learning

Multimodal and multitask deep learning are related learning paradigms, both con-
cerning the exploitation of latent representations in the deep networks pooled from
different modalities (e.g., audio, speech, video, images, text, source codes, etc.) or
from multiple cross-domain tasks (e.g., point and structured prediction, ranking,
recommendation, time-series forecasting, clustering, etc.). Before the deep learning
wave, multimodal andmultitask learning had been very difficult to bemade effective,
due to the lack of intermediate representations that share across modalities or tasks.
See a most striking example of this contrast for multitask learning—multilingual
speech recognition during the empiricist wave (Lin et al. 2008) and during the deep
learning wave (Huang et al. 2013a).

Multimodal information can be exploited as low-cost supervision. For instance,
standard speech recognition, image recognition, and text classificationmethodsmake
use of supervision labels within each of the speech, image, and text modalities sepa-
rately. This, however, is far from how children learn to recognize speech, image, and
to classify text. For example, children often get the distant “supervision” signal for
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speech sounds by an adult pointing to an image scene, text, or handwriting that is
associated with the speech sounds. Similarly, for children learning image categories,
they may exploit speech sounds or text as supervision signals. This type of learning
that occurs in children canmotivate a learning scheme that leveragesmultimodal data
to improve engineering systems for multimodal deep learning. A similarity measure
needs to be defined in the same semantic space, which speech, image, and text are all
mapped into, via deep neural networks that may be trained using maximum mutual
information across different modalities. The huge potential of this scheme has not
been explored and found in the NLP literature.

Similar to multimodal deep learning, multitask deep learning can also benefit
from leveraging multiple latent levels of representations across tasks or domains.
The recent work on joint many-task learning solves a range of NLP tasks—from
morphological to syntactic and to semantic levels, within one single, big deep neu-
ral network model (Hashimoto et al. 2017). The model predicts different levels of
linguistic outputs at successively deep layers, accomplishing standard NLP tasks of
tagging, chunking, syntactic parsing, as well as predictions of semantic relatedness
and entailment. The strong results obtained using this single, end-to-end learned
model point to the direction to solve more challenging NLP tasks in real world as
well as tasks beyond NLP.

1.6.5 Meta-learning

A further future direction for fruitful NLP and artificial intelligence research is the
paradigm of learning-to-learn or meta-learning. The goal of meta-learning is to learn
how to learn new tasks faster by reusing previous experience, instead of treating each
new task in isolation and learning to solve each of them from scratch. That is, with
the success of meta-learning, we can train amodel on a variety of learning tasks, such
that it can solve new learning tasks using only a small number of training samples.
In our NLP context, successful meta-learning will enable the design of intelligent
NLP systems that improve or automatically discover new learning algorithms (e.g.,
sophisticated optimization algorithms for unsupervised learning), for solving NLP
tasks using small amounts of training data.

The study of meta-learning, as a subfield of machine learning, started over three
decades ago (Schmidhuber 1987; Hochreiter et al. 2001), but it was not until recent
years when deep learning methods reasonably matured that stronger evidence of the
potentially huge impact of meta-learning has become apparent. Initial progresses
of meta-learning can be seen in various techniques successfully applied to deep
learning, including hyper-parameter optimization (Maclaurin et al. 2015), neural
network architecture optimization (Wichrowska et al. 2017), and fast reinforcement
learning (Finn et al. 2017). The ultimate success of meta-learning in real world
will allow the development of algorithms to solve most NLP and computer science
problems to be reformulated as a deep learning problem and to be solved by a
uniform infrastructure designed for deep learning today. Meta-learning is a powerful
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emerging artificial intelligence anddeep learning paradigm,which is a fertile research
area expected to impact real-world NLP applications.

1.7 Summary

In this chapter, to set up the fundamental framework for the book, we first provided
an introduction to the basics of natural language processing (NLP), which is more
application-oriented than computational linguistics, both belonging to a field of arti-
ficial intelligence and computer science. We survey the historical development of the
NLP field, spanning over several decades, in terms of three waves of NLP—starting
from rationalism and empiricism, to the current deep learning wave. The goal of the
survey is to distill insights from the historical developments that serve to guide future
directions.

The conclusion from our three-wave analysis is that the current deep learning
technology for NLP is a conceptual and paradigmatic revolution from the NLP tech-
nologies developed from the previous two waves. The key pillars underlying this
revolution consist of distributed representations of linguistic entities (sub-words,
words, phrases, sentences, paragraphs, documents, etc.) via embedding, semantic
generalization due to the embedding, long-span deep sequence modeling of lan-
guage, hierarchical networks effective for representing linguistic levels from low to
high, and end-to-end deep learning methods to jointly solve many NLP tasks. None
of these were possible before the deep learning wave, not only because of the lack of
big data and powerful computation in the previous waves but, equally importantly,
due to missing the right framework until the deep learning paradigm emerged in
recent years.

After we surveyed the prominent successes of selected NLP application areas
attributed to deep learning (with a much more comprehensive coverage of the NLP
successful areas in the remaining chapters of this book), we pointed out and analyzed
several key limitations of current deep learning technology in general, aswell as those
for NLP more specifically. This investigation led us to five research directions for
future advances in NLP—frameworks for neural-symbolic integration, exploration
of bettermemorymodels, and better use of knowledge, as well as better deep learning
paradigms including unsupervised and generative learning,multimodal andmultitask
learning, and meta-learning.

In conclusion, deep learning has ushered in a world that gives our NLP field a
much brighter future than any time in the past. Deep learning not only provides a
powerful modeling framework for representing human cognitive abilities of natural
language in computer systems but, as importantly, it has already been creating supe-
rior practical results in a number of key application areas of NLP. In the remaining
chapters of this book, detailed descriptions of NLP techniques developed using the
deep learning framework will be provided, and where possible, benchmark results
will be presented contrasting deep learning with more traditional techniques devel-
oped before the deep learning tidal wave hit the NLP shore just a few years ago. We
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hope this comprehensive set of material will serve as a mark along the way where
NLP researchers are developing better and more advanced deep learning methods
to overcome some or all the current limitations discussed in this chapter, possibly
inspired by the research directions we analyzed here as well.
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Chapter 2
Deep Learning in Conversational
Language Understanding

Gokhan Tur, Asli Celikyilmaz, Xiaodong He, Dilek Hakkani-Tür
and Li Deng

Abstract Recent advancements in AI resulted in increased availability of conversa-
tional assistants that can help with tasks such as seeking times to schedule an event
and creating a calendar entry at that time, finding a restaurant and booking a table
there at a certain time. However, creating automated agents with human-level intelli-
gence still remains one of the most challenging problems of AI. One key component
of such systems is conversational language understanding, which is a holy grail area
of research for decades, as it is not a clearly defined task but relies heavily on the AI
application it is used for. Nevertheless, this chapter attempts to compile the recent
deep learning based literature on such goal-oriented conversational language under-
standing studies, starting with a historical perspective, pre-deep learning era work,
moving toward most recent advances in this field.

2.1 Introduction

In the last decade, a variety of practical goal-oriented conversation language under-
standing (CLU) systems have been built, especially as part of the virtual personal
assistants such as Google Assistant, Amazon Alexa, Microsoft Cortana, or Apple
Siri.
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In contrast to speech recognition, which aims to automatically transcribe the
sequence of spoken words (Deng and O’Shaughnessy 2003; Huang and Deng 2010),
CLU is not a clearly defined task. At the highest level, CLU’s goal is to extract
“meaning” from natural language in the context of conversations, spoken or in text. In
practice, this may mean any practical application allowing its users to perform some
task with natural (optionally spoken) language. In the literature, CLU is often used
to denote the task of understanding natural language in spoken form in conversation
or otherwise. So CLU discussed in this chapter and book is closely related to and
sometimes synonymous with spoken language understanding (SLU) in the literature
(Tur and Mori 2011; Wang et al. 2011).

Here, we further elaborate on the connections among speech recognition, CLU/
SLU, and natural language understanding in text form. Speech recognition does not
concern understanding, and is responsible only for converting language from spoken
form to text form (Deng and Li 2013). Errors in speech recognition can be viewed as
“noise” in downstream language processing systems (He and Deng 2011). Handling
this type of noisy NLP problems can be connected to the problem of noisy speech
recognition where the “noise” comes from acoustic environments (as opposed to
from recognition errors) (Li et al. 2014).

For SLU and CLU with spoken input, the inevitable errors in speech recognition
would make understanding harder than when the input is text, free of speech recog-
nition errors (He and Deng 2013). In the long history of SLU/CLU research, the
difficulties caused by speech recognition errors forced the domains of SLU/CLU to
be substantially narrower than language understanding in text form (Tur and Deng
2011). However, due to the recent huge success of deep learning in speech recogni-
tion (Hinton et al. 2012), recognition errors have been dramatically reduced, leading
to increasingly broader application domains in current CLU systems.

One category of conversational understanding tasks roots in old artificial intelli-
gence (AI) work, such as the MIT Eliza system built in 1960s (Weizenbaum 1966),
mainly used for chit-chat systems, mimicking understanding. For example, if the
user says “I am depressed”, Eliza would say “are you depressed often?”. The other
extreme is building generic understanding capabilities, using deeper semantics and
are demonstrated to be successful for very limited domains. These systems are typ-
ically heavily knowledge-based and rely on formal semantic interpretation defined
as mapping sentences into their logical forms. In its simplest form, a logical form
is a context-independent representation of a sentence covering its predicates and
arguments. For example, if the sentence is John loves Mary, the logical form would
be love(john,mary). Following these ideas, some researchers worked toward
building universal semantic grammars (or interlingua), which assume that all lan-
guages have a shared set of semantic features (Chomsky 1965). Such interlingua-
based approaches also heavily influenced machine translation research until the late
90s, before statistical approaches began to dominate. (Allen 1995) may be consulted
for more information on the artificial intelligence-based techniques for language
understanding.

Having a semantic representation for CLU that is both broad coverage and simple
enough to be applicable to several different tasks and domains is challenging, and
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Fig. 2.1 An example
semantic parse of an
utterance (W ) with slot (S),
domain (D), intent (I )
annotations, following the
IOB (in-out-begin)
representation for slot values

W find flights to new york tomorrow

S O O O B-Dest I-Dest B-Date
D flight
I find flight

hence most CLU tasks and approaches depend on the application and environment
(such as mobile vs. TV) they have been designed for. In such a “targeted understand-
ing” setup, three key tasks are domain classification (what is the user talking about,
e.g., “travel”), intent determination (what does the user want to do, e.g., “book a
hotel room”), and slot filling (what are the parameters of this task, e.g., “two bed-
room suite near disneyland”) (Tur and Mori 2011), aiming to form a semantic frame
that captures the semantics of user utterances/queries. An example semantic frame
is shown in Fig. 2.1 for a flight-related query: find flights to boston tomorrow.

In this chapter, we will review the state-of-the-art deep learning based CLUmeth-
ods in detail, mainly focusing on these three tasks. In the next section, wewill provide
the task definitions more formally, and then present pre-deep learning era literature.
Then in Sect. 2.4 we will cover the recent studies targeting this task.

2.2 A Historical Perspective

In the United States, the study of the frame-based CLU started in the 1970s at
DARPA Speech Understanding Research (SUR) and then the resource management
(RM) tasks. At this early stage, natural language understanding (NLU) techniques
like finite state machines (FSMs) and augmented transition networks (ATNs) were
applied for SLU (Woods 1983).

The study of targeted frame-based SLU surged in the 1990s, with the DARPA
Air Travel Information System (ATIS) project evaluations (Price 1990; Hemphill
et al. 1990; Dahl et al. 1994). Multiple research labs from both academia and indus-
try, including AT&T, BBN Technologies (originally Bolt, Beranek and Newman),
Carnegie Mellon University, MIT, and SRI, developed systems that attempted to
understand users’ spontaneous spoken queries for air travel information (including
flight information, ground transportation information, airport service information,
etc.) and then obtain the answers from a standard database. ATIS is an important
milestone for frame-based SLU, largely thanks to its rigorous component-wise and
end-to-end evaluation, participated by multiple institutions, with a common test set.
Later, ATIS was extended to cover multi-turn dialogs, via DARPA Communicator
program (Walker et al. 2001). In themeantime, theAI community had separate efforts
in building a conversational planning agent, such as the TRAINS system (Allen et al.
1996), and parallel efforts were made on the other side of the Atlantic. The French
EVALDA/MEDIA project aimed at designing and testing the evaluation methodol-
ogy to compare and diagnose the context-dependent and context-independent SLU
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capability in spoken language dialogs (Bonneau-Maynard et al. 2005). Participants
included both academic organizations (IRIT, LIA, LIMSI, LORIA, VALORIA, and
CLIPS) and industrial institutions (FRANCETELECOMR&D, TELIP). Like ATIS,
the domain of this study was restricted to database queries for tourist and hotel infor-
mation. The more recent LUNA project sponsored by the European Union focused
on the problem of real-time understanding of spontaneous speech in the context of
advanced telecom services (Hahn et al. 2011).

Pre-deep learning era researchers employed known sequence classification meth-
ods for filling frame slots of the application domain using the provided training
dataset and performed comparative experiments. These approaches used generative
models such as hidden Markov models (HMMs) (Pieraccini et al. 1992), discrimina-
tive classification methods (Kuhn and Mori 1995), knowledge-based methods, and
probabilistic context-free grammars (CFGs) (Seneff 1992; Ward and Issar 1994),
and finally conditional random fields (CRFs) (Raymond and Riccardi 2007; Tur
et al. 2010).

Almost simultaneouslywith the slot filling approaches, a relatedCLU task,mainly
used for machine-directed dialog in call center IVR (Interactive Voice Response)
systems have emerged. In IVR systems, the interaction is completely controlled by
the machines. Machine-initiative systems ask user-specific questions and expect the
users input to be one of predetermined keywords or phrases. For example, a mail
delivery system may prompt the user to say schedule a pick-up, track a package, get
rate or order supply or a pizza delivery system may ask for possible toppings. Such
IVR systems are typically extended to form a machine-initiative directed dialog in
call centers and are now widely implemented using established and standardized
platforms such as VoiceXML (VXML).

The success of these IVR systems has triggered more sophisticated versions of
this very same idea of classifying users’ utterances into predefined categories (called
as call types or intents), employed by almost all major players, such as AT&T (Gorin
et al. 1997, 2002; Gupta et al. 2006), Bell Labs (Chu-Carroll and Carpenter 1999),
BBN (Natarajan et al. 2002), and the France Telecom (Damnati et al. 2007).

While this is a totally different perspective for the task of CLU, it is actually
complementary to frame filling. For example, there are utterances in the ATIS corpus
asking about ground transportation or the capacity of planes on a specific flight, and
hence the users may have other intents than basically finding flight information.

A detailed survey of pre-deep learning era approaches for domain detection, intent
determination, and slot filling can be found in (Tur and Mori 2011).

2.3 Major Language Understanding Tasks

In this section, we mainly cover the key tasks of targeted conversational language
understanding as used in human/machine conversational systems. These include
utterance classification tasks for domain detection or intent determination and slot
filling.
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2.3.1 Domain Detection and Intent Determination

The semantic utterance classification tasks of domain detection and intent deter-
mination aim at classifying a given speech utterance Xr into one of M semantic
classes, Ĉr ∈ C = {C1, . . . ,CM} (where r is the utterance index). Upon the observa-
tion of Xr , Ĉr is chosen so that the class-posterior probability given Xr , P(Cr |Xr ),
is maximized. Formally,

Ĉr = argmax
Cr

P(Cr |Xr ). (2.1)

Semantic classifiers require operation with significant freedom in utterance varia-
tions. A user may say “I want to fly from Boston to New York next week” and another
user may express the same information by saying “I am looking to flights from JFK
to Boston in the coming week”. In spite of this freedom of expression, utterances in
such applications have a clear structure that binds the specific pieces of information
together. Not only is there no a priori constraint on what the user can say, but the
system should be able to generalize well from a tractably small amount of training
data. For example, the phrase “Show all flights” and “Give me flights” should be
interpreted as variants of a single semantic class “Flight”. On the other hand, the
command “Show me fares” should be interpreted as an instance of another semantic
class, “Fare”. Traditional text categorization techniques devise learning methods to
maximize the probability of Cr given the textWr , i.e., the class-posterior probability
P(Cr |Wr ). Other semantically motivated features like domain gazetteers (lists of
entities), named entities (like organization names or time/date expressions) and con-
textual features (such as the previous dialog turn), can be used to enrich the feature
set.

2.3.2 Slot Filling

The semantic structure of an application domain is defined in terms of the semantic
frames. Each semantic frame contains several typed components called “slots”. For
example, in Fig. 2.1, the Flights domain may contain slots like Departure_City,
Arrival_City, Departure_Date, Airline_Name, etc. The task of slot filling is then to
instantiate the slots in semantic frames.

Some SLU systems have adopted a hierarchical representation as that is more
expressive and allows the sharing of substructures. This is mainly motivated by
syntactic constituency trees.

In statistical frame-based conversational language understanding, the task is often
formalized as a pattern recognition problem. Given the word sequenceW , the goal of
slot filling is to find the semantic tag sequence, S, that has the maximum a posteriori
probability P(S | W ):

Ŝ = argmax
S

P(S | W). (2.2)
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2.4 Elevating State of the Art: From Statistical
Modeling to Deep Learning

In this section,we review the recent deep learning based efforts for conversational lan-
guage understanding, both task by task, and also covering joint,multitask approaches.

2.4.1 Domain Detection and Intent Determination

The first applications of deep learning for utterance classification started as deep
belief networks (DBNs) (Hinton et al. 2006) gained popularity in various areas
of information processing applications. DBNs are stacks of restricted Boltzmann
machines (RBMs) followed by fine-tuning. RBM is a two-layer network, which can
be trained reasonably efficiently in an unsupervised fashion. Following the intro-
duction of this RBM learning and layer-by-layer construction of deep architectures,
DBNs have been successfully used for numerous tasks in speech and language pro-
cessing, and finally for intent determination in a call routing setup (Sarikaya et al.
2011). This work has been extended in (Sarikaya et al. 2014), where additional
unlabeled data is exploited for better pretraining.

Following the success of DBN, Deng and Yu proposed the use of deep convex
net (DCN), which directly attacks the scalability issue of DBN-like deep learning
techniques (Deng and Yu 2011). DCN is shown to be superior to DBN, not only in
terms of accuracy but also in training scalability and efficiency. A DCN is a regular
feed-forward neural network, but the input vector is also considered at each hidden
layer.

Figure2.2 shows the conceptual structure of a DCN, whereW denotes input, and
U denotes weights. In this study, mean square error is used as the loss function, given
the target vectors, T. However, the network is pretrained using DBN as described
above.

Fig. 2.2 A typical DCN
architecture
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In this early work, since vocabulary size was too big for the input vector, instead of
feature transformation, a boosting (Freund and Schapire 1997)-based feature selec-
tion was employed to find the salient phrases for the classification task and results
were compared with this boosting baseline.

After this early work, DBNs have been used more rarely for pretraining, and
the state of the art is using convolutional neural networks (CNNs), and its varieties
(Collobert and Weston 2008; Kim 2014; Kalchbrenner et al. 2014 among others).

Figure2.3 shows a typical CNN architecture for sentence or utterance classifica-
tion. A convolution operation involves a filter, U, which is applied to a window of h
words in the input sentence to produce a new feature, ci . For example,

ci = tanh(U.Wi :i+h−1 + b),

where b is the bias, W is the input vector of words, and ci is the new feature. Then,
max-over-time pooling operation is applied over c = [c1, c2, . . . , cn−h+1] to take the
maximum valued feature, ĉ = maxc. These features are passed to a fully connected
softmax layer whose output is the probability distribution over labels:

P(y = j |x) = ex
Tw j

∑k
k=1 e

xTwk
.

There are few studies trying to use methods for domain detection inspired from
recurrent neural networks (RNNs), and combining with CNNs, trying to get the best
out of twoworlds. Lee and Dernoncourt (2016) tried to build an RNN encoder, which
can then be fed into a feed-forward network and compared that with a regular CNN.
Figure2.4 shows the conceptual model of the RNN-based encoder employed.

One notable work which is not using a feed-forward or convolutional neural
network for utterance classification is by Ravuri and Stolcke (2015). They have

Fig. 2.3 A typical CNN architecture
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Fig. 2.4 An
RNN–CNN-based encoder
for sentence classification

Fig. 2.5 An
RNN-only-based encoder for
sentence classification

simply used an RNN encoder to model the utterance where the end of sentence token
decodes the class as shown in Fig. 2.5. While they have not compared their results
with CNN or simple DNN, this work is significant because one can simply extend
this architecture to a bidirectional RNN, and also load the begin-of-sentence token
as the class, and as presented in (Hakkani-Tür et al. 2016), support not only utterance
intent but also slot filling towards a joint semantic parsing model, which is covered
in the next section.

Aside from these representativemodeling studies, one approachworthmentioning
is the unsupervised utterance classification work by Dauphin et al. (2014). This
approach relies on search queries associatedwith their clickedURLs. The assumption
is that the queries will have a similar meaning or intent if they result in clicks to
similar URLs. Figure2.6 shows an example query-click graph. This data is used to
train a simple deep network with multiple hidden layers, last of which is supposed
to capture the latent intent of a given query. Note that this is different from other
word embedding training methods and can directly provide an embedding to a given
query.

The zero-shot classifier then simply finds the category whose embedding is the
semantically closest to the query, assuming that the class names (e.g., restaurants or
sports) are given in a meaningful way. Then, the probability of belonging to a class is
a simply softmax over all classes, based on the Euclidean distance of the embeddings
of the query and the class name.
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Fig. 2.6 A bi-partite
query-click graph from
queries to clicked URLs

2.4.2 Slot Filling

The state of the art in slot filling relies on RNN-based approaches and its variations.
Pre-RNN approaches include neural network Markov models (NN-MMs) or DNN
with conditional randomfields (CRFs). In one of the pre-RNN eraworks, among sev-
eral approaches, Deoras and Sarikaya (2013) have investigated deep belief networks
for slot filling. They propose discriminative embedding technique which projects the
sparse and large input layer onto a small, dense, and real-valued feature vector, which
is then subsequently used for pretraining the network and then to do discriminative
classification using local classification. They apply it to the well-studied spoken lan-
guage understanding task of ATIS and obtained new state-of-the-art performances,
outperforming the best CRF-based system.

CNNs are used for feature extraction and have been shown to perform well for
learning sentence semantics (Kim 2014). CNNs have also been used for learning
hidden features for slot tagging as well. Xu and Sarikaya (2013) have investigated
using CNN as a lower layer that extracts features for each word in relation to its
neighboring words, capturing the utterance local semantics. A CRF layer sits on top
of the CNN layer which produces hidden features for the CRF. The entire network is
trained end-to-end with backpropagation and applied on personal assistant domains.
Their results showed significant improvements over the standard CRF models while
providing a flexibility in feature engineering for the domain expert.

With the advances in recurrent neural network (RNN)-based models, they have
first been used for slot filling by Yao et al. (2013) and Mesnil et al. (2013) simul-
taneously. For example, Mesnil et al. implemented and compared several important
architectures of the RNN, including the Elman-type (Elman 1990) and Jordan-type
(Jordan 1997) recurrent networks and their variants. Experimental results show that
both Elman- and Jordan-type networks, while giving similar performance, outper-
form the widely used CRF baseline substantially. Moreover, the results also show
that the bidirectional RNN that take into account both past and future dependencies
among slots gave the best performance. The effectiveness of word embeddings for
initializing the RNNs for slot filling is studied in both papers, too. The work is fur-
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ther extended in (Mesnil et al. 2015), where the authors performed a comprehensive
evaluation of the standard RNN architectures, and hybrid, bidirectional, and CRF
extensions, and set a new state of the art in this area.

More formally, to estimate the sequence of tags Y = y1, . . . , yn in the form of
IOB labels as in (Raymond and Riccardi 2007) (with three outputs corresponding
to “B”, “I”, and “O”), and as shown in Fig. 2.1 corresponding to an input sequence
of tokens X = x1, . . . , xn , the Elman RNN architecture (Elman 1990) consists of an
input layer, a number of hidden layers, and an output layer. The input, hidden, and
output layers consist of a set of neurons representing the input, hidden, and output
at each time step t , xt , ht , and yt , respectively. The input is typically represented by
one-hot vectors or word-level embeddings. Given the input layer xt at time t , and
hidden state from the previous time step ht−1, the hidden and output layers for the
current time step are computed as follows:

ht = φ(Wxh
[
ht−1
xt

]
)

pt = softmax(Whyht )

ŷt = argmax pt ,

where Wxh and Why are the matrices that denote the weights between the input and
hidden layers and hidden and output layers, respectively. φ denotes the activation
function, i.e., tanh or sigm.

In contrast, the Jordan RNN computes the recurrent hidden layer for the current
time step from the output layer of the previous time step plus input layer at the current
time step, i.e.,

ht = φ(Wxp
[ pt−1

xt

]
).

The architectures of the feed-forward NN, the Elman RNN, and the Jordan RNN are
illustrated in Fig. 2.7.

An alternative approach would be augmenting these with explicit sequence-level
optimization. This is important as, for example, the model can model an I tag cannot
follow an O tag. Liu and Lane (2015) propose such an architecture where the hidden
state also uses the previous prediction as shown in Fig. 2.8:

ht = f (Uxt + Wht−1 + Qy_outt−1),

where y_outt−1 is the vector representing output label at time t − 1, and Q is the
weight matrix connecting output label vector and the hidden layer.

A recent paper byDupont et al. (2017) should also bementionedhere for proposing
a new variant RNN architecture where the output label is also concatenated into the
next input.

Especially with the re-discovery of LSTM cells (Hochreiter and Schmidhuber
1997) for RNNs, this architecture has started to emerge (Yao et al. 2014). LSTM cells
are shown to have superior properties, such as faster convergence and elimination of
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Fig. 2.7 a Feed-forward NN; b Elman RNN; c Jordan RNN

Fig. 2.8 Sequence-level
optimization with RNN

the problem of vanishing or exploding gradients in sequences via self-regularization.
As a result, LSTM is shown to be more robust than RNN in capturing long-span
dependencies.

We have compiled a comprehensive review of RNN-based slot filling approaches
in (Mesnil et al. 2015). While pre-LSTM/GRU RNN studies focused on look-
ahead and look-back features (e.g., Mesnil et al. 2013; Vu et al. 2016), nowadays,
state-of-the-art slot filling methods usually rely on bidirectional LSTM/GRU mod-
els (Hakkani-Tür et al. 2016; Mesnil et al. 2015; Kurata et al. 2016a; Vu et al. 2016;
Vukotic et al. 2016) among others.

Extensions include encoder–decoder models (Liu and Lane 2016; Zhu and Yu
2016a among others) or memory (Chen et al. 2016) as we will describe below.
In this respect, common sentence encoders include sequence-based recurrent neu-
ral networks with LSTMs or GRU units, which accumulate information over the
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sentence sequentially; convolutional neural networks, which accumulate information
using filters over short local sequences of words or characters; and tree-structured
recursive neural networks (RecNNs), which propagate information up a binary parse
tree (Socher et al. 2011; Bowman et al. 2016).

Related to recursive neural networks (RecNNs), two papers are worth mentioning
here. The first is by Guo et al. (2014) where the syntactic parse structure of an input
sentence is tagged instead of the words. The conceptual figure is shown in Fig. 2.9.
Every word is associated with a word vector, and these vectors are given as input to
the bottom of the network. Then, the network propagates the information upward by
repeatedly applying a neural network at each node until the root node outputs a single
vector. This vector is then used as the input to a semantic classifier, and the network
is trained via backpropagation to maximize the performance of this classifier. The
nonterminals correspond to slots to be filled and at the top the whole sentence can
be classified for intent or domain.

While this architecture is very elegant and expensive, it did not result in superior
performance due to various reasons: (i) the underlying parse trees can be noisy, and
the model cannot jointly train a syntactic and semantic parser, (ii) the phrases do not
necessarily correspond to slots one to one, and (iii) the high-level tag sequence is not
considered, hence needs a final Viterbi layer. Hence, an ideal architecture would be
a hybrid RNN/RecNN model.

A more promising approach is presented by Andreas et al. (2016) for question
answering. As shown in Fig. 2.10, a semantic parse is built bottom up using the
composition of neural modules corresponding to six key logical functions in the task,
namely, lookup, find, relate, and, exists, and describe. An advantage over RecNNs is
that the model jointly learns the structure or layout of the parse during training using
these primitives, starting from an existing syntactic parser.

Fig. 2.9 Recursive neural
networks building on top of a
given syntactic parse tree
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Fig. 2.10 Composition of
neural modules for semantic
parsing

Vu et al. (2016) have proposed to use a ranking loss function, instead of the
conventional cross entropy loss. One benefit of this is that it does not force the
model to learn a pattern for the artificial class O (which might not exist). It learns
to maximize the distance between the true label y and the best competitive label c
given a data point x . The objective function is

L = log(1 + exp(γ (mcor sθ (x)y))) + log(1 + exp(γ (minc + sθ (x)c))),

where sθ (x)y and s?(x)c being the scores for the classes y and c, respectively. The
parameter ? controls the penalization of the prediction errors, and mcor and minc are
margins for the correct and incorrect classes. ?, mcor , and minc are hyperparameters
which can be tuned on the development set. For the classO, only the second summand
of equation is calculated. By doing this, the model does not learn a pattern for class O
but nevertheless increase its difference to the best competitive label. During testing,
the model will predict class O if the score for all the other classes is lower than 0.

Besides tagger LSTMmodels, there are few studies focusing on encoder/decoder
RNN architectures after advances in similar studies (Sutskever et al. 2014; Vinyals
and Le 2015). Kurata et al. (2016b) proposed using an architecture like in Fig. 2.11,
where the input sentence is encoded into a fixed length vector by the encoder LSTM.
Then, the slot label sequence is predicted by the labeler LSTMwhose hidden state is
initialized with the encoded vector by the encoder LSTM. With this encoder-labeler
LSTM, the label sequence can be predicted using the whole sentence embedding
explicitly.

Note that in this model, since the output is the usual tag sequence, the words are
also fed into the tagger (reversed as usually done by other encoder/decoder studies)
in addition to the previous prediction.

Another benefit of such an approach comes with the attention mechanism
(Simonnet et al. 2015), where the decoder can attend longer distance dependen-
cies while tagging. The attention is another vector, c, which is a weighted sum of
all the hidden state embeddings on the encoder side. There are multiple ways to
determine these weights:
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Fig. 2.11 Encoder/decoder RNN using both words and labels

ct =
T∑

i=1

αti hi .

Consider the example sentence flights departing from london no later than next
Saturday afternoon, the tag for theword afternoon is departure_time and only evident
by the head verb which is eight words away. In such cases, an attention mechanism
can be useful.

Zhu andYu (2016b) have further extended this encoder/decoder architecture using
“focus” (or direct attention) mechanism, which is emphasizing the aligned encoders
hidden states. In other words, attention is no longer learned but simply assigned to
the corresponding hidden state:

ct = ht .

Zhai et al. (2017) have later extended the encoder/decoder architecture using
pointer networks (Vinyals et al. 2015) on the chunked outputs of the input sentence.
The main motivation is that RNNmodels still need to treat each token independently
using the IOB scheme, instead of a complete unit. If we can eliminate this drawback,
it could result in more accurate labeling, especially for multiword chunks. Sequence
chunking is a natural solution to overcome this problem. In sequence chunking, the
original sequence labeling task is divided into two subtasks: (1) Segmentation, to
identify scope of the chunks explicitly; and (2) Labeling, to label each chunk as
a single unit based on the segmentation results. Hence, the authors have proposed
a joint model which chunks the input sentence during the encoding phase and the
decoder simply tags those chunks as shown in Fig. 2.12.

Regarding unsupervised training of slot filling models, one paper worth men-
tioning is by Bapna et al. (2017) proposing an approach that can utilize only the slot
description in context without the need for any labeled or unlabeled in-domain exam-
ples, to quickly bootstrap a new domain. The main idea of this work is to leverage
the encoding of the slot names and descriptions within a multitask deep learned slot
filling model, to implicitly align slots across domains, assuming an already trained
background model.
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Fig. 2.12 Pointer encoder/decoder RNN using chunked input

If one of the already covered domains contains a similar slot, a continuous repre-
sentation of the slot obtained from shared pretrained embeddings can be leveraged
in a domain agnostic model. An obvious example would be adding United Air-
lines when the multitask model can already parse queries for American Airlines and
Turkish Airlines. While the slot names may be different, the concept of departure
city or arrival city should persist and can be transferred to the new task of United
Airlines using their natural language descriptions. Such an approach is promising
for solving the domain scaling problem and eliminating the need for any manually
annotated data or explicit schema alignment.

2.4.3 Joint Multitask Multi-domain Modeling

Historically, intent determination has been seen as an example classification problem
and slot filling as sequence classification problem, and in the pre-deep-learning era
the solutions for these two tasks are typically not the same, they have been modeled
separately. For example, SVMs are used for intent determination and CRFs are used
for slot filling. With the advances in deep learning, it is now possible to get the
whole semantic parse using a single model in a multitask fashion. This allows the
slot decisions to help intent determination and vice versa.

Furthermore, domain classification is often completed first, serving as a top-level
triage for subsequent processing. Intent determination and slot filling are then run
for each domain to fill a domain-specific semantic template. This modular design
approach (i.e., modeling semantic parsing as three separate tasks) has the advantage
of flexibility; specific modifications (e.g., insertions, deletions) to a domain can
be implemented without requiring changes to other domains. Another advantage
is that, in this approach, one can use task-/domain-specific features, which often
significantly improve the accuracy of these task-/domain-specific models. Also, this
approach often yields more focused understanding in each domain since the intent
determination only needs to consider a relatively small set of intent and slot classes
over a single (or limited set) of domains, and model parameters could be optimized
for the specific set of intent and slots.
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However, this approach also has disadvantages: First of all, one needs to train
these models for each domain. This is an error-prone process, requiring careful engi-
neering to ensure consistency in processing across domains. Also, during run-time,
such pipelining of tasks results in transfer of errors from one task to the following
task. Furthermore, there is no data or feature sharing between the individual domain
models, resulting in data fragmentation, whereas some semantic intents (such as find-
ing or buying a domain-specific entity) and slots (such as dates, times, and locations)
could actually be common to many domains (Kim et al. 2015; Chen et al. 2015a).
Finally, the users may not know which domains are covered by the system and to
what extent, so this issue results in interactions where the users do not know what to
expect and hence resulting in user dissatisfaction (Chen et al. 2013, 2015b).

To this end, Hakkani-Tür et al. (2016) proposed a single RNN architecture that
integrates the three tasks of domain detection, intent detection, and slot filling for
multiple domains in a single RNN model. This model is trained using all available
utterances from all domains, paired with their semantic frames. The input of this
RNN is the input sequence of words (e.g., user queries) and the output is the full
semantic frame, including domain, intent, and slots, as shown in Fig. 2.13. This is
similar to the multitask parsing and entity extraction work by Tafforeau et al. (2016).

For joint modeling of domain, intent, and slots, an additional token is inserted at
the beginning and end of each input utterance k,<BOS> and<EOS>, and associate
a combination of domain and intent tags dk and ik to this sentence initial and final
tokens by concatenating these tags. Hence, the new input and output sequence are

Fig. 2.13 Bidirectional RNN for joint domain detection, intent determination, and slot filling
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Fig. 2.14 Joint slot filling
and intent determination
model with max-pooling
layer

X = <BOS>, x1, . . . , xn,<EOS>

Y = dk_ik, s1, . . . , sn, dk_ik,

where X is the input and Y is the output (Fig. 2.13).
The main rationale of this idea is similar to the sequence-to-sequence modeling

approach, as used in machine translation (Sutskever et al. 2014) or chit-chat (Vinyals
and Le 2015) systems approaches: The last hidden layer of the query (in each direc-
tion) is supposed to contain a latent semantic representation of the whole input
utterance, so that it can be utilized for domain and intent prediction (dk , ik).

Zhang and Wang (2016) extended this architecture so as to add a max-pooling
layer is employed to capture global features of a sentence for intent classification
(Fig. 2.14). A united loss function, which is a weighted sum of cross entropy for slot
filling and intent determination, is used while training.

Liu and Lane (2016) proposed a joint slot filling and intent determination model
based on an encoder/decoder architecture as shown in Fig. 2.15. It is basically a
multi-headed model sharing the sentence encoder with task-specific attention, ci .

Note that such a joint modeling approach can be extremely useful for scaling
to new domains, starting from the larger background model trained from multiple
domains, analogous to language model adaptation (Bellegarda 2004). Jaech et al.
(2016) presented such a study where the multitask approach is exploited for scal-
able CLU model training via transfer learning. The key to scalability is reducing
the amount of training data needed to learn a model for a new task. The proposed
multitask model delivers better performance with less data by leveraging patterns
that it learns from the other tasks. The approach supports an open vocabulary, which
allows the models to generalize to unseen words, which is particularly important
when very little training data is used.
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Fig. 2.15 Joint slot filling and intent determination model using encoder/decoder model

2.4.4 Understanding in Context

Natural language understanding involves understanding the context in which the lan-
guage is used. But understanding context involvesmultiple challenges. First, inmany
languages certain words can be used in multiple senses. That makes it important to
eliminate the ambiguity of all such words so that their usage in a particular docu-
ment can be accurately detected. Word-sense disambiguation is an ongoing research
area in natural language processing and specifically important when building natural
language understanding systems. Second, understanding task involves documents
from different domains such as travel reservation, understanding legal documents,
news articles, arxiv articles, and the like. Each of these domains carries a certain
property, hence domain-specific context, that the natural language understanding
models should learn to capture. Third, in spoken and written text, many words are
used as proxies for other concepts. For instance, most commonly, “Xerox” is used
for “copy” or “fedex” for “overnight courier”, and so on. Finally, documents contain
words or phrases which refer to knowledge which is not explicitly included in the
text. Only with intelligent methods, we can learn to use “prior” knowledge to be able
to understand such information that exist in text.

Recently, deep learning architectures have been applied to various natural lan-
guage processing tasks and have shown the advantages to capture the relevant seman-
tic and syntactic aspects of units in context. As word distributions are composed to
form the meanings of phrases or multiword expressions, the goal is to extend dis-
tributed phrase-level representations to single- andmulti-sentence (discourse) levels,
and produce hierarchical structure of entire texts.

With the goal of learning context in natural language text, Hori et al. (2014) pro-
posed an efficient context-sensitive spoken language understanding approach using
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role-based LSTM layers. Specifically, to understand speaker intentions accurately in
a dialog, it is important to consider the sentence in the context of the surrounding
sequence of dialog turns. In their work, LSTM recurrent neural networks are used to
train a context-sensitive model to predict sequences of dialog concepts from the spo-
ken word sequences. Thus, to capture long-term characteristics over an entire dialog,
they implemented LSTMs representing intention using consequent word sequences
of each concept tag. To train such a model, they build LSTMs from a human-to-
human dialog corpus annotated with concept tags which represent client and agent
intentions for hotel reservation. The expressions are characterized by each role of
agent and client.

As shown in Fig. 2.16, there are two LSTM layers that have different parameters
depending on the speaker roles. The input vector is thus processed differently by the
left layer for the clients’ utterances, and by the right layer for the agents’ utterances
representing these different roles. The recurrent LSTM inputs thus receive the output
from the role-dependent layer active at the previous frame, allowing for transitions
between roles. This approach can learn themodel context froman intelligent language
understanding system by characterizing expressions of utterances varied among each
different role.

In (Chen et al. 2016), one of the first end-to-end neural network based conver-
sational understanding models is proposed that uses memory networks to extract
the prior information as context knowledge for the encoder in understanding natural
language utterances of conversational dialogs. As shown in Fig. 2.17, their approach

Fig. 2.16 LSTM with role-dependent layers. Layer (A) corresponds to client utterance states and
Layer (B) corresponds to agent utterance states. Role gates control which role is active
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Fig. 2.17 The illustration of the proposed end-to-endmemory networkmodel formulti-turn spoken
language understanding

is combined with an RNN-based encoder which learns to encode prior information
from a possibly large external memory before parsing the utterance from the dia-
log. Provided that there are input utterances and their corresponding semantic tags,
their model can be trained end-to-end directly from input–output pairs. employing
an end-to-end neural network model to model long-term knowledge carryover for
multi-turn spoken language understanding.

citeankur:arxiv17 have extended this approach using hierarchical dialog encoders,
an extension of hierarchical recurrent encoder–decoders (HRED) proposed by
Sordoni et al. (2015), where the query level encodings are combined with a rep-
resentation of the current utterance, before feeding it into the session level encoder.
In the proposed architecture, instead of a simple cosine-based memory network, the
encoder employed a feed-forward network whose input is the current and previous
utterances in context which is then feeding into an RNN as shown in Fig. 2.18. More
formally, the current utterance encoding c is combined with each memory vectormk ,
for 1, . . . , nk , by concatenating and passing them through a feed-forward (FF) layer
to produce context encodings, denoted by g1, g2, . . . gt−1

gk = sigmoid(FF(mk, c))

for k = 0, . . . , t − 1. These context encodings are fed as token-level inputs into
the bidirectional GRU RNN session encoder. The final state of the session encoder
represents the dialog context encoding ht .
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Fig. 2.18 Architecture of the hierarchical dialog encoder network

As mentioned earlier in the chapter, CNNs have mainly used in natural language
understanding tasks to learn latent features that are otherwise impossible to learn.
Celikyilmaz et al. (2016) introduced a pretraining method for deep neural network
models, using CNNs in particular to jointly learn the context as the network structure
from large unlabeled data, while learning to predict task-specific contextual informa-
tion from labeled sequences. Extending the supervised CNN with CRF architecture
of (Xu and Sarikaya 2013), they use CNN as the bottom layer to learn the feature
representations from labeled and unlabeled sequences by the way of semi-supervised
learning. At the top layer, they use twoCRF structures to decode the output sequences
as semantic slot tags as well as latent class labels per each word as output sequences.
This allows the network to simultaneously learn the transition and emission weights
for slot tagging and class labeling of the words in utterances in a single model.

2.5 Summary

Advances in deep learning based approaches lead the CLU field in two dimensions.
The first dimension is end-to-end learning. Conversational language understand-
ing is one of the many subsystems in a complete conversation system. For exam-
ple, it usually takes the speech recognition results as the input and its output will
be fed into the dialog manager for state tracking and response generation. There-
fore, an end-to-end optimal design of the whole conversational system usually leads
to better user experience. He and Deng (2013) discussed an optimization-oriented
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statistical framework for the overall system design, which exploits the uncertainty
in each subsystem output and the interactions between the subsystems. In the frame-
work, parameters of all subsystems are treated as correlating with each other and
are trained end-to-end to optimize the final performance metric of the whole conver-
sation system. Furthermore, more recently, reinforcement learning based methods
combined with user simulators also started to invade the CLU task, providing seam-
less end-to-end natural language dialog (see next chapter).

The second dimension in CLU enabled by deep learning is efficient encoders
implemented without RNN unrolling. RNNs are powerful models that are uniquely
capable of dealing with sequential data, like natural language, speech, video, etc.
With RNNs, we can now understand sequential data and make decisions. Traditional
neural networks are stateless. They take a fixed size vector as input and produce a
vector as output. Having this unique property of being stateful RNNs has been the
most used tools in language understanding systems today.

Networks without hidden layers are very limited in the input–output mappings
that they canmodel. Adding a layer of hand-coded features (as in perceptrons) makes
them much more powerful, but the hard bit is designing these features. We would
like to find good features without requiring insights into the task or repeated trial and
error of different features. We need to automate the trial-and-error feature designing
loop. Reinforcement learning can learn such structures by perturbing weights. How
reinforcement learning help in deep learning is actually not that complex. They ran-
domly perturb oneweight and see if it improves performance—if so, save the change.
This could be inefficient and hence the machine learning community, especially in
deep reinforcement learning has been focusing on this in recent years.

Since meaning in natural language sentences is known to be constructed recur-
sively according to a tree structure, more efficient encoders study tree-structured
neural network encoders, specifically TreeLSTMs (Socher et al. 2011; Bowman
et al. 2016). The idea is to be able to encode faster and efficiently while maintaining
the efficiency. On the other hand, models that can learn a network structure predictor
jointly with module parameters themselves have shown to improve natural language
understanding while reducing the issues that come with longer text sequences, thus
the backpropagation in RNNs. Andreas et al. (2016) present such a model that uses
natural language strings to automatically assemble neural networks from a collec-
tion of composable modules. Parameters for these modules are learned jointly with
network-assembly parameters via reinforcement learning, with only (world, ques-
tion, answer) triples as supervision.

To conclude, we believe advances in deep learning have led to exciting new
research frontiers for human/machine conversational systems, especially for CLU.
The studies mentioned here would be considered as scratching the surface over the
next decade, tackling toy tasks with manually annotated data. The future research
includes transfer learning, unsupervised learning, and reinforcement learning more
than ever for any high-quality scalable CLU solution.
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Chapter 3
Deep Learning in Spoken and Text-Based
Dialog Systems

Asli Celikyilmaz, Li Deng and Dilek Hakkani-Tür

Abstract Last few decades have witnessed substantial breakthroughs on several
areas of speech and language understanding research, specifically for building human
to machine conversational dialog systems. Dialog systems, also known as interactive
conversational agents, virtual agents or sometimes chatbots, are useful in a wide range
of applications ranging from technical support services to language learning tools
and entertainment. Recent success in deep neural networks has spurred the research
in building data-driven dialog models. In this chapter, we present state-of-the-art
neural network architectures and details on each of the components of building a
successful dialog system using deep learning. Task-oriented dialog systems would
be the focus of this chapter, and later different networks are provided for building
open-ended non-task-oriented dialog systems. Furthermore, to facilitate research in
this area, we have a survey of publicly available datasets and software tools suitable
for data-driven learning of dialog systems. Finally, appropriate choice of evaluation
metrics are discussed for the learning objective.

3.1 Introduction

In the past decade, virtual personal assistants (VPAs) or conversational chatbots
have been the most exciting technological developments. Spoken Dialog Systems
(SDS) are considered the brain of these VPAs. For instance Microsoft’s Cortana,1

1https://www.microsoft.com/en-us/mobile/experiences/cortana/.

A. Celikyilmaz (B)
Microsoft Research, Redmond, WA, USA
e-mail: asli@ieee.org

L. Deng
Citadel, Chicago & Seattle, USA
e-mail: l.deng@ieee.org

D. Hakkani-Tür
Google, Mountain View, CA, USA
e-mail: dilek@ieee.org

© Springer Nature Singapore Pte Ltd. 2018
L. Deng and Y. Liu (eds.), Deep Learning in Natural
Language Processing, https://doi.org/10.1007/978-981-10-5209-5_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-10-5209-5_3&domain=pdf
https://www.microsoft.com/en-us/mobile/experiences/cortana/


50 A. Celikyilmaz et al.

Table 3.1 Type of tasks that dialog systems are currently used

Types of tasks Examples

Information consumption “what is the conference schedule”

‘which room is the talk in?”

Task completion “set my alarm for 3pm tomorrow”

“find me kid-friendly vegetarian restaurant in
downtown Seattle”

“schedule a meeting with sandy after lunch.”

Decision support “why are sales in south region far behind?”

Social interaction (chit-chat) “how is your day going”

“i am as smart as human?”

“i love you too.”

Apple’s Siri,2 Amazon Alexa,3 Google Home,4 and Facebook’s M,5 have incorpo-
rated SDS modules in various devices, which allow users to speak naturally in order
to finish tasks more efficiently. The traditional conversational systems have rather
complex and/or modular pipelines. The advance of deep learning technologies has
recently risen the applications of neural models to dialog modeling.

Spoken dialog systems have nearly 30 years of history, which can be divided
into three generations: symbolic rule or template based (before late 90s), statistical
learning based, and deep learning based (since 2014). This chapter briefly surveys
the history of conversational systems, and analyzes why and how the underlying
technology moved from one generation to the next. Strengths and weaknesses of
these three largely distinct types of bot technology are examined and future directions
are discussed.

Current dialog systems are trying to help users on several tasks to complete
daily activities, play interactive games, and even be a companion (see examples
in Table 3.1). Thus, conversational dialog systems have been built for many pur-
poses, however, a meaningful distinction can be made between goal-oriented dialogs
(e.g., for personal assistant systems or other task completion dialogs such as pur-
chasing or technical support services) and non-goal-oriented dialog systems such
as chit-chat, computer game characters (avatars), etc. Since they serve for different
purses, structurally their dialog system designs and the components they operate on
are different. In this chapter, we will provide details on the components of dialog
systems for task (goal)-oriented dialog tasks. Details of the non-goal-oriented dialog
systems (chit-chat) will also be provided.

As shown in Fig. 3.1, the classic spoken dialog systems incorporate several com-
ponents including Automatic Speech Recognition (ASR), Language Understanding
Module, State Tracker and Dialog Policy together forming the Dialog Manager, the

2http://www.apple.com/ios/siri/.
3https://developer.amazon.com/alexa.
4https://madeby.google.com/home.
5https://developers.facebook.com/blog/post/2016/04/12/bots-for-messenger/.

http://www.apple.com/ios/siri/
https://developer.amazon.com/alexa
https://madeby.google.com/home
https://developers.facebook.com/blog/post/2016/04/12/bots-for-messenger/
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Automatic Speech 
Recognition (ASR)

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking
• System Action/Policy Decision

Hypothesis
are there any action movies 
to see this weekend

Semantic Frame (Intents, Slots)
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input Are there any action movies to see this weekend?

Speech Signal

Natural Language 
Generation (NLG)

Fig. 3.1 Pipeline framework of spoken dialog system

Natural Language Generator (NLG), also known as Response Generator. In this
chapter, we focus on data-driven dialog systems as well as interactive dialog sys-
tems in which human or a simulated human is involved in learning dialog system
components using deep learning on real-world conversational dialogs.

The spoken language or speech recognition have huge impact on the success of the
overall spoken dialog system. This front-end component involves several factors that
make it difficult for machines to recognize speech. The analysis of continuous speech
is a difficult task as there is huge variability in the speech signal and there are no clear
boundaries between words. For technical details of such and many other difficulties
in building spoken language systems, we refer readers to Huang and Deng (2010),
Deng and Li (2013), Li et al. (2014), Deng and Yu (2015), Hinton et al. (2012), He
and Deng (2011).

The speech recognition component of the spoken dialog systems is often speaker
independent and does not take into account that it is the same user during the whole
dialog. In an end-to-end spoken dialog system, the inevitable errors in speech recog-
nition would make the language understanding component harder than when the input
is text—free of speech recognition errors (He and Deng 2013). In the long history of
spoken language understanding research, the difficulties caused by speech recogni-
tion errors forced the domains of spoken language understanding to be substantially
narrower than language understanding in text form (Tur and Deng 2011). However,
due to the huge success of deep learning in speech recognition in recent years (Yu
and Deng 2015; Deng 2016), recognition errors have been dramatically reduced,
leading to increasingly broader application domains in the current conversational
understanding systems.6

Most early goal-driven dialog systems were primarily based on handcrafted rules
(Aust et al. 1995; Simpson and Eraser 1993) which immediately followed machine
learning techniques for all components of the dialog system (Tur and De Mori
2011; Gorin et al. 1997). Most of these work formulate dialog as a sequential
decision-making problem based on Markov Decision Processes. With the deep
neural networks, especially the research in speech recognition, spoken language

6We refer the reader to the “Deep Learning in Conversational Language Understanding” chapter in
this book for more details in discussing this issue.
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understanding (e.g., Feed-forward neural networks) (Hastie et al. 2009), RNNs
(Goller and Kchler 1996) including LSTMs (Graves and Schmidhuber 2005), and
dialog modeling (e.g., deep reinforcement learning methods) have showed incredible
success in robustness and coherency of the dialog systems (Wen et al. 2016b; Dhingra
et al. 2016a; Lipton et al. 2016). On the other hand, most earlier non-goal-oriented
systems have used simple rules, topic models, and modeled dialog as a stochas-
tic sequence of discrete symbols (words) using higher order Markov chains. Only
recently, deep neural network architectures trained on large-scale corpora have been
investigated and promising results have been observed (Ritter et al. 2011; Vinyals and
Le 2015; Lowe et al. 2015a; Sordoni et al. 2015a; Serban et al. 2016b, 2017). One of
the biggest challenges of non-goal-oriented systems that use deep neural networks
is that they require substantially large corpora in order to achieve good results.

This chapter is structured as follows. In the next in Sect. 3.2, a high-level overview
of the deep learning tools that are used in building subcomponents of the current
dialog systems are provided. Section 3.3 describes the individual system components
of the goal-oriented neural dialog systems and provides the examples of recently
presented research work. In Sect. 3.4, types of user simulators that are use deep
learning technologies are discussed. Later methods on how deep learning methods
are utilized in natural language generation are presented in Sect. 3.5. Later section
delves into the deep learning methods that are relevant for building end-to-end dialog
systems in Sect. 3.6. In Sect. 3.7, the open-domain non-goal-oriented dialog systems
are presented followed by the current datasets used to building deep dialog models
and provide links to the each corpus in turn while emphasizing how the dialogs were
generated and collected. Section 3.9 briefly touches on open source neural dialog
system modeling software. Evaluating dialog systems and the measures used to
evaluate them are presented in Sect. 3.10. Finally in Sect. 3.11, this chapter concludes
with a survey of projections into the future of dialog modeling.

3.2 Learning Methodology for Components of a Dialog
System

In this section, we summarize some of the deep learning techniques that are used
in building conversational agents. Deep learning technologies have been used to
model nearly all of the components of the dialog systems. We investigate such meth-
ods below under three different categories: discriminative, generative, and decision-
making based, specifically reinforcement learning.

3.2.1 Discriminative Methods

Deep learning methods that model the posterior p(y|x) directly with abundance
of supervised data have been one of the most investigated approaches in dialog
modeling research. Most advanced and prominent approaches have been investigated
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for the Spoken Language Understanding (SLU) tasks such as goal estimation and
intention identification from users commands, which are essential components in
spoken dialog systems and they are modeled as multi-output classification tasks. Most
research work in this area use Deep Neural Networks for classification specifically
multilayered feed-forward neural networks or multilayered perceptrons (Hastie et al.
2009). These models are called feed-forward because information flows through the
function being evaluated from x , through the intermediate computations used to
define f , and finally to the output y.

Deep Structured Semantic Models (DSSM), or more general, Deep Semantic Simi-
larity Models, are one of the approaches in deep learning research which is
commonlyusedformulti/singleclass textclassificationwhich intrinsically learnssim-
ilarities between two text while discovering latent features. In dialog system model-
ing, DSSM approaches are mainly for SLU’s classification tasks (Huang et al. 2013).
DSSMs are a Deep Neural Network (DNN) modeling technique for representing text
strings (sentences, queries, predicates, entity mentions, etc.) in a continuous semantic
spaceandmodelingsemanticsimilaritybetweentwotextstrings(e.g.,Sent2Vec).Also
commonly used are the Convolutional Neural Networks (CNN) which utilize layers
with convolving filters that are applied to local features (LeCun et al. 1998). Originally
invented for computer vision, CNN models have subsequently been shown to be effec-
tive for SLU models mainly for learning latent features that are otherwise impossible
to extract with standard (non-)linear machine learning approaches.

Semantic slot filling is one of the most challenging problems in SLU and is
considered as a sequence learning problem. Similarly, belief tracking or dialog state
tacking are also considered sequential learning problems for the reasons that they
mainly maintain the state of the dialog through each conversation in the dialog.
Although CNNs are a great way to pool local information, they do not really capture
the sequentiality of the data and not the first choice when it comes to sequential
modeling. Hence to tackle sequential information in modeling user utterances in
dialog systems, most research has focused on using Recurrent Neural Networks
(RNN) which help tackle sequential information.

Memory networks (Weston et al. 2015; Sukhbaatar et al. 2015; Bordes et al.
2017) are a recent class of models that have been applied to a range of natural lan-
guage processing tasks, including question answering (Weston et al. 2015), language
modeling (Sukhbaatar et al. 2015), etc. Memory networks in general work by first
writing and then iteratively reading from a memory component (using hops) that can
store historical dialogs and short-term context to reason about the required response.
They have been shown to perform well on those tasks and to outperform some other
end-to-end architectures based on Recurrent Neural Networks. Also, attention-based
RNN networks such as Long Short-Term-Memory Networks (LSTM) take different
approach to keep the memory component and learn to attend dialog context (Liu and
Lane 2016a).

Obtaining large corpora for every new applications may not be feasible to build
deep supervised learning models. For this reason, the use of other related datasets
can effectively bootstrap the learning process. Particularly in deep learning, the use
of related datasets in pre-training a model is an effective method of scaling up to
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complex environments (Kumar et al. 2015). This is crucial in open-domain dialog
systems, as well as multi-task dialog systems (e.g., travel domain comprising of
several tasks from different domains such as hotel, flight, restaurants, etc.). Dialog
modeling researchers have already proposed various deep learning approaches for
applying transfer learning to build data-driven dialog systems such as learning sub-
components of the dialog system (e.g., intent and dialog act classification) or learning
end-to-end dialog system using transfer learning.

3.2.2 Generative Methods

Deep generative models have recently become popular due to their ability to model
input data distributions and generate realistic examples from those distributions and
in turn has recently entered in the dialog system modeling research field. Such
approaches are largely considered in clustering objects and instances in the data,
extracting latent features from unstructured text, or dimensionality reduction. A large
portion of the category of dialog modeling systems that use deep generative models
investigate open-domain dialog systems specifically focusing on neural generative
models for response generation. Common to these work are encoder–decoder based
neural dialog models (see Fig. 3.5) (Vinyals and Le 2015; Lowe et al. 2015b; Serban
et al. 2017; Shang et al. 2015), in which the encoder network used the entire history
to encode the dialog semantics and the decoder generates natural language utterance
(e.g., sequence of words representing systems’ response to user’s request). Also used
are RNN-based systems that map an abstract dialog act into an appropriate surface
text (Wen et al. 2015a).

Generative Adversarial Networks (GANs) (Goodfellow et al. 2014) is one topic
in generative modeling which has very recently appeared in the dialog field as neural
dialog modeling tasks specifically for dialog response generation. While Li et al.
(2017) use deep generative adversarial networks for response generation, Kannan
and Vinyals (2016) investigate the use of an adversarial evaluation method for dialog
models.

3.2.3 Decision-Making

The key to a dialog system is its decision-making module, which is also known as
the dialog manager or also referred to as dialog policy. The dialog policy chooses
system actions at each step of the conversation to guide the dialog to successful task
completion. The system actions include interacting with the user for getting specific
requirements for accomplishing the task, as well as negotiating and offering alter-
natives. Optimization of statistical dialog managers using Reinforcement Learning
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(RL) methods is an active and promising area of research (Fatemi et al. 2016a, b; Su
et al. 2016; Lipton et al. 2016; Shah et al. 2016; Williams and Zweig 2016a; Dhingra
et al. 2016a). The RL setting fits the dialog setting quite well because RL is meant
for situations when feedback may be delayed. When a conversational agent carries
a dialog with a user, it will often know whether or not the dialog was successful and
the task was achieved only after the dialog is ended.

Aside from the above categories, deep dialog systems have also been introduced
with novel solutions involving applications of transfer learning and domain adapta-
tion for next generation dialog systems, specifically focusing on domain transfer in
spoken language understanding (Kim et al. 2016a, b, 2017a, b) and dialog modeling
(Gai et al. 2015, 2016; Lipton et al. 2016).

3.3 Goal-Oriented Neural Dialog Systems

The most useful applications of dialog systems can be considered to be the goal-
oriented and transactional, in which the system needs to understand a user request
and complete a related task with a clear goal within a limited number of dialog
turns. We will provide description and recent related work for each component of
goal-oriented dialog systems in detail.

3.3.1 Neural Language Understanding

With the power of deep learning, there is increasing research work focusing on
applying deep learning for language understanding. In the context of goal-oriented
dialog systems, language understanding is tasked with interpreting user utterances
according to a semantic meaning representation, in order to enable with the back-
end action or knowledge providers. Three key tasks in such targeted understanding
applications are domain classification, intent determination, and slot filling (Tur and
De Mori 2011), aiming to form a semantic frame to capture the semantics of user
utterances/queries. Domain classification is often completed first in spoken language
understanding (SLU) systems, serving as a top-level triage for subsequent processing.
Intent determination and slot filling are then executed for each domain to fill a
domain-specific semantic template. An example semantic frame for a movie-related
utterance, “find recent action movies by Jackie Chan”, is shown in Fig. 3.2.

With the advances on deep learning, Deep Belief Networks (DBNs) with Deep
Neural Networks (DNNs) have been applied to domain and intent classification
tasks (Sarikaya et al. 2011; Tur et al. 2012; Sarikaya et al. 2014). More recently,
Ravuri and Stolcke (2015) proposed an RNN architecture for intent determination,
where an encoder network first predicts a representation for the input utterance, and
then a single step decoder predicts a domain/intent class for the input utterance using
a single step decoder network.
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Fig. 3.2 An example utterance with annotations of semantic slots in IOB format, domain, and
intent, B-dir and I-dir denote the director name

For slot filling task, deep learning has been mostly used as a feature generator. For
instance (Xu and Sarikaya, 2013) extracted features using convolutional neural net-
works to feed into a CRF model. Yao et al. (2013) and Mesnil et al. (2015) later used
RNNs for sequence labeling in order to perform slot filling. More recent work focus on
sequence-to-sequencemodels (Kurataetal.2016), sequence-to-sequencemodelswith
attention (Simonnet et al. 2015), multi-domain training (Jaech et al. 2016), multi-task
training (Tafforeau et al. 2016), multi-domain joint semantic frame parsing (Hakkani-
Tür et al. 2016; Liu and Lane 2016b), and context modeling using end-to-end memory
networks (Chen et al. 2016; Bapna et al. 2017). These will be described in more detail
in the language understanding chapter.

3.3.2 DialogStateTracker

The next step in spoken dialog systems pipeline is Dialog State Tracking (DST), which
aims to track system’s belief on user’s goal through the course of a conversation. The
dialogstate isusedforqueryingtheback-endknowledgeorinformationsourcesandfor
determining the next state action by the dialog manager. At each turn in a dialog, DST
gets as input the estimated dialog state from the previous user turn, st−1, and the most
recent system and user utterances and estimates the dialog state st for the current turn.
In the past few years, the research on dialog state tracking has accelerated owing to the
data sets and evaluations performed by the dialog state tracking challenges (Williams
et al. 2013;Hendersonet al. 2014).Thestate-of-the-artdialogmanagers focusonmon-
itoring the dialog progress by neural dialog state tracking models. Among the initial
models are the RNN based dialog state tracking approaches (Henderson et al. 2013)
that has shown to outperform Bayesian networks (Thomson and Young 2010). More
recentworkonNeuralDialogManagers thatprovideconjoint representationsbetween
the utterances, slot-value pairs as well as knowledge graph representations (Wen et al.
2016b; Mrkšić et al. 2016) demonstrates that using neural dialog models can overcome
current obstacles of deploying dialog systems in larger dialog domains.

3.3.3 DeepDialogManager

A dialog manager is a component of a conversational dialog system, which interacts
in a natural way to help the user complete the tasks that the system is designed to sup-
port. It is responsible for the state and flow of the conversation, hence determines what
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policy should be used. The input to the dialog manager is the human utterance, which
is converted to some system-specific semantic representation by the natural language
understanding component. For example, in a flight-planning dialog system, the input
may look like “ORDER(from = SFO, to = SEA, date = 2017-02-01)”. The dialog man-
ager usually maintains state variables, such as the dialog history, the latest unanswered
question, the recent user intent and entities, etc., depending on the domain of the dia-
log. The output of the dialog manager is a list of instructions to other parts of the dia-
log system, usually in a semantic representation, for example “Inform (flight-num =
555,flight-time = 18:20)”. This semantic representation is converted into natural lan-
guage by the natural language generation component.

Typically, an expert manually designs a dialog management policy and incorpo-
rates severaldialogdesignchoices.Manualdialogpolicydesign is intractableanddoes
not scale as the performance of the dialog policy depends on several factors including
domain-specific features, robustness of the automatic speech recognizer (ASR) sys-
tem, the taskdifficulty, tonamea few. Insteadof lettingahumanexpertwriteacomplex
set of decision rules, it is more common to use reinforcement learning. The dialog is
represented as a Markov Decision Process (MDP)—a process where, in each state, the
dialog manager has to select an action, based on the state and the possible rewards from
each action. In this setting, the dialog author should only define the reward function,
for example: in restaurant reservation dialogs, the reward is the user success in reserv-
ing a table successfully; in information seeking dialogs, the reward is positive if the
humanreceives the information,but there is alsoanegative reward foreachdialogstep.
Reinforcement learning techniques are then used to learn a policy, for example, what
type of confirmation should the system use in each state (Lemon and Rieserr 2009). A
different way to learn dialog policies is to try to imitate humans, using Wizard of Oz
experiments, in which a human sits in a hidden room and tells the computer what to say
(Passonneau et al. 2011).

For complex dialog systems, it is often impossible to specify a good policy a pri-
ori and the dynamics of an environment may change over time. Thus, learning policies
onlineandinteractivelyviareinforcementlearninghaveemergedasapopularapproach
(Singh et al. 2016; Gasic et al. 2010; Fatemi et al. 2016b). For instance, the ability to
compute an accurate reward function is essential for optimizing a dialog policy via
reinforcement learning. In real-world applications, using explicit user feedback as the
reward signal is often unreliable and costly to collect. Su et al. (2016) propose an online
learning framework in which the dialog policy is jointly trained alongside the reward
modelviaactive learningwithaGaussianprocessmodel.Theypropose threemainsys-
tem components which include dialog policy, dialog embedding creation, and reward
modeling based on user feedback (see Fig. 3.3). They use episodic turn-level features
extracted from a dialog and build a Bidirectional Long Short-Term Memory network
(BLSTM) for their dialog embedding creation.

Efficient dialog policy learning with deep learning technologies has recently been
the focus of dialog researcher with the recent advancements in deep reinforcement
learning. For instance, Lipton et al. (2016) investigate understanding boundaries of the
deepneuralnetworkstructureof thedialogpolicymodel toefficientlyexploredifferent
trajectories via Thompson sampling, drawing Monte Carlo samples from a Bayesian
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neural network (Blundell et al. 2015). They use deep Q-network to optimize the pol-
icy. They explore a version of their approach that incorporates the intrinsic reward
from Variational Information Maximizing Exploration (VIME) (Blundell et al. 2015).
TheirBayesianapproachaddressesuncertainty in theQ-valuegiven thecurrentpolicy,
whereas VIME addresses uncertainty of the dynamics of under-explored parts of the
environment. Thus, there is a synergistic effect of combining the approaches. On the
domainextensiontask, thecombinedexplorationmethodprovedespeciallypromising,
outperforming all other methods.

There are several other aspects that affect the policy optimization for dialog man-
agers. Some of which include learning policies under multi-domain systems (Gasic
et al. 2015; Ge and Xu 2016), committee-based learning for multi-domain systems
(Gasic et al. 2015), learning domain-independent policies (Wang et al. 2015), adapting
togroundedwordmeanings(Yuetal.2016),adapting tonewuserbehaviors (Shahetal.
2016), to name a few. Among these systems, Peng et al. (2017) investigate hierarchal
policy learning for task-oriented systems that have composite subtasks. This domain
is particularly challenging and the authors tackle with the issue of reward sparsity, sat-
isfying slot constraints across subtasks. This requirement makes most of the existing
methods of learning multi-domain dialog agents (Cuayahuitl et al. 2016; Gasic et al.
2015) inapplicable: these methods train a collection of policies, one for each domain,
and there are no cross-domain constraints required to successfully complete a dialog.
As shown in Fig. 3.4, their composite task completion dialog agent consists of four
components: (1) an LSTM-based language understanding module for identifying user
intents and extracting associated slots; (2) a dialog state tracker; (3) a dialog policy
which selects the next action based on the current state; and (4) a model-based natural
languagegenerator forconvertingagentactions tonatural languageresponses.Follow-
ing the options over MDP’s formalism (Sutton and Singh 1999), they build their agent
to learn a composite tasks such as travel planning, subtasks like book flight ticket and
reserve hotel which can be modeled as options.

Fig. 3.3 Schematic of the dialog policy learning with deep encoder–decoder networks. The three
main system components: dialog policy, dialog embedding creation, and reward modeling based on
user feedback
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Fig. 3.4 Illustration of the composite task completion dialog system

3.4 Model-BasedUserSimulators

User simulators for spoken dialog systems aim at generating artificial interactions sup-
posed to be representative of what would be an actual dialog between a human user and
a given dialog system. Model-based simulated users for building dialog models are not
as common as the other components of the dialog systems; detailed reviews of some of
these methods are presented in Schatzmann et al. (2006), Georgila et al. (2005, 2006).
In this section, we only investigate deep learning methods for user simulation, that is,
methods purely based on data and deep learning approaches models.

Theearlyspokendialogsystemsoptimizationrequiredalotofdatabecauseofineffi-
ciency of reinforcement learning algorithms, justifying the use of simulation. In recent
years, sample efficient reinforcement learning methods were applied to spoken dialog
systemsoptimization.Withthis,modelscanbetrainedtolearnoptimaldialogstrategies
directlyfromlargeamountsofdatacollectedevenfromsuboptimalsystemswithactual
users (Li et al. 2009; Pietquin et al. 2011b) but also from online interactions (Pietquin
et al. 2011a). This makes it much more appealing for the dialog systems to be trained
using a simulated user with user feedback and corrected as the process continues.

There are several reasons that make learning parameters of a user simulation model
hard to optimize because most of the system features are hidden (e.g., user goal, mental
states, dialog history, etc.). Focusing on this problem, Asri et al. (2016) presented a
sequence-to-sequence base user simulator on non-goal-oriented domains (e.g., chit-
chat) that takes into account the entire dialog history. Their user simulator does not rely
on any external data structure to ensure coherent user behavior, and it does not require
mapping to a summarized action space, which makes it able to model user behavior
with finer granularity.

Crook and Marin (2017) explore sequence-to-sequence learning approach for NL-
to-NL simulated user models for goal-oriented dialog systems. They present several
extensions to their architecture to incorporate context in different ways and investi-
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gate the efficacy of each method in comparison to language modeling baseline simu-
lator on a personal assistant system domain. Their findings showed that context-based
sequence-to-sequence method can generate human like utterances outperforming all
other baselines.

3.5 NaturalLanguageGeneration

Natural Language Generation (NLG) is the process of generating text from a meaning
representation. It can be taken as the reverse of the natural language understanding.
NLG systems provide a critical role for text summarization, machine translation, and
dialog systems. While several general-purpose rule-based generation systems have
been developed (Elhadad and Robin 1996), they are often quite difficult to adapt to
small, task-oriented applications because of their generality. To overcome this, sev-
eral people have proposed different solutions. Bateman and Henschel (1999) have
described a lower cost and more efficient generation system for a specific applica-
tion using an automatically customized sub-grammar. Busemann and Horacek (1998)
describe a system that mixes templates and rule-based generation. This approach takes
advantage of templates and rule-based generation as needed by specific sentences
or utterances. Stent (1999) has also proposed a similar approach for a spoken dia-
log system. Although such approaches are conceptually simple and tailored to the
domain, they lack generality (e.g., repeatedly encode linguistic rules such as subject–
verb agreement), have little variation in style and difficult to grow and maintain (e.g.,
usually each new utterance is added by hand). Such approaches impose the require-
ment of writing grammar rules and acquiring the appropriate lexicon, which requires a
specialist activity.

Machine learning based (trainable) NLG systems are more common in today’s dia-
log systems. Such NLG systems use several sources as input such as: content plan, rep-
resenting meaning representation of what to communicate with the user (e.g., describe
a particular restaurant), knowledge base, structured database to return domain-specific
entities, (e.g., database of restaurants), user model, a model that imposes constraints
on output utterance (e.g., user wants short utterances), dialog history, the information
from previous turns to avoid repetitions, referring expressions, etc. The goal is to use
these meaning representations that indicate what to say (e.g., entities described by fea-
turesinanontology)tooutputnatural languagestringdescribingtheinput(e.g.,zucca’s
food is delicious.).

Trainable NLG systems can produce various candidate utterances (e.g., stochas-
tically or rule base) and use a statistical model to rank them (Dale and Reiter 2000).
The statistical model assigns scores to each utterance and is learnt based on textual
data. Most of these systems use bigram and trigram language models to generate utter-
ances. The trainable generator approach exemplified by the HALOGEN (Langkilde
and Knight 1998) and SPaRKy system (Stent et al. 2004) are among the most notable
trainable approaches. These systems include various trainable modules within their
framework to allow the model to adapt to different domains (Walker et al. 2007), or
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reproduce certain style (Mairesse and Walker 2011). However, these approaches still
require a handcrafted generator to define the decision space. The resulting utterances
are therefore constrained by the predefined syntax and any domain-specific colloquial
responsesmustbeaddedmanually.Inadditiontotheseapproaches,corpus-basedmeth-
ods (Oh and Rudnicky 2000; Mairesse and Young 2014; Wen et al. 2015a) have been
shown to have flexible learning structures with the goal of learning generation directly
from data by adopting an over-generation and re-ranking paradigm (Oh and Rudnicky
2000), inwhichfinal responsesareobtainedbyre-rankingasetofcandidatesgenerated
from a stochastic generator.

With the advancement of deep neural network systems, more sophisticated NLG
systems can be developed that can be trained from un-aligned data or produce longer
utterances.RecentstudyhasshownthatespeciallywiththeRNNmethods(e.g.,LSTMs,
GRUs, etc.), more coherent, realistic, and proposer answers can be generated. Among
these studies, the work by Vinyals and Le (2015), on Neural Conversational Model has
opened a new chapter in using encoder–decoder based models for generation. Their
modelisbasedontwoLSTMlayers.Oneforencodingtheinputsentenceintoa“thought
vector”, and another for decoding that vector into a response. This model is called
sequence-to-sequence or seq2seq. The model only gives simple and short answers to
questions.

Sordoni et al. (2015b) propose three neural models to generate a response (r) based
on a context and message pair (c, m). The context is defined as a single message. They
propose several models, the first one of which is a basic Recurrent Language Model
that is fed the whole (c, m, r) triple. The second model encodes context and message
into a BoW representation, puts it through a feed-forward neural network encoder, and
then generates the response using an RNN decoder. The last model is similar but keeps
the representations of context and message separate instead of encoding them into a
single BoW vector. The authors train their models on 29M triple data set from Twitter
and evaluate using BLEU, METEOR, and human evaluator scores. Because (c, m) is
very longonaverage theauthorsexpect theirfirstmodel toperformpoorly.Theirmodel
generates responses degrade with length after eight tokens.

Lietal.(2016b)presentamethodwhichaddscoherencytotheresponsegeneratedby
sequence-to-sequence models such as the Neural Conversational Model (Vinyals and
Le 2015). They define persona as the character that an agent performs during conversa-
tional interactions.Theirmodelcombines identity, language,behavior, and interaction
style. Their model may be adapted during the conversation itself. Their proposed mod-
els yield performance improvements in both perplexity and BLEU scores over base-
linesequence-to-sequencemodels.ComparedtoPersonabasedNeuralConversational
Model, thebaselineNeuralConversationalModelfails tomaintainaconsistentpersona
throughout the conversation resulting in incoherent responses. A similar approach in
Li et al. (2016a) uses a Maximum Mutual Information (MMI) objective function to
generate conversational responses. They still train their models with maximum like-
lihood, but use MMI to generate responses during decoding. The idea behind MMI is
that it promotes more diversity and penalizes trivial responses. The authors evaluate
their method using BLEU scores, human evaluators, and qualitative analysis and find
that the proposed metric indeed leads to more diverse responses.
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Serban et al. (2017) presents a hierarchical latent variable encoder–decoder model
for generating dialogs. Their goal is to generate natural language dialog responses.
Their model assumes that each output sequence can be modeled in a two-level hierar-
chy: sequences of subsequences, and subsequences of tokens. For example, a dialog
may be modeled as a sequence of utterances (subsequences), with each utterance mod-
eled as a sequence of words. Given this, their model consists of three RNN modules:
an encoder RNN, a context RNN and a decoder RNN. Each subsequence of tokens
is deterministically encoded into a real-valued vector by the encoder RNN. This is
given as input to the context RNN, which updates its internal hidden state to reflect
all information up to that point in time. The context RNN deterministically outputs a
real-valued vector, which the decoder RNN conditions on to generate the next subse-
quence of tokens (see Fig. 3.5).

Recent work in natural language generation has focused on using reinforcement
learning strategies to explore different learning signals (He et al. 2016; Williams and
Zweig 2016b; Wen et al. 2016a; Cuayahuitl 2016). The motivation for this renewed
interest in reinforcement learning stems from issues of using teacher forcing for learn-
ing. Text generation systems trained using word-by-word cross-entropy loss with gold
sequences as supervision have produced locally coherent generations, but generally
fail to capture the contextual dynamics of the domain they are modeling. Recipe gener-
ation systems that are conditioned on their ingredients and recipe title, for example, do
not manage to combine the starting ingredients into their end dish in a successful way.
Similarly, dialog generation systems often fail to condition their responses on previ-
ousutterances in theconversation.Reinforcement learningallowsmodels tobe trained
withrewards thatgobeyondpredicting thecorrectword.Mixingrewardschemesusing
teacher forcing and other more “global” metrics has recently become popular for pro-
ducing more domain-relevant generations.

Fig. 3.5 Hierarchal Encoder–Decoder Model computational graph. Diamond boxes represent deter-
ministicvariablesandroundedboxesrepresent stochasticvariables.Full lines represent thegenerative
model and dashed lines represent the approximate posterior model
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3.6 End-to-EndDeepLearningApproaches toBuilding
DialogSystems

End-to-end dialog systems are considered a cognitive system, which has to carry out
natural language understanding, reasoning, decision-making, and natural language
generation within the same network in order to replicate or emulate the behavior of
the agents in the training corpus. This has not been fully investigated before the deep
learning technologies have started to be used for dialog system building. Building such
systems with today’s deep learning technologies are much easier because of the fact
that with the deep learning systems and backpropagation all parameters can be trained
jointly. In the next, we will briefly investigate the recent end-to-end dialog models for
goal- and non-goal-oriented systems.

One of the major obstacles in building end-to-end goal-oriented dialog systems is
that the database calls made by the system to retrieve the information requested by the
user are not differentiable. Specifically, the query generated by the system and sent to
knowledge base is done in a manual way, which means that part of the system is not
trained and no function is learnt. This cripples the deep learning model into incorpo-
rating the knowledge base response and the information it receives. Also, the neural
response generation part is trained and run as separate from the dialog policy network.
Putting all this together, training the whole cycle end-to-end has not been fully inves-
tigated until recently.

Recently, there has been a growing body of literature focusing on building end-to-
end dialog systems, which combine feature extraction and policy optimization using
deep neural networks. Wen et al. (2015b) introduced a modular neural dialog agent,
which uses a hard knowledge base lookup, thus breaking the differentiability of the
whole system. As a result, training of various components of the dialog system is per-
formed separately. The intent network and belief trackers are trained using supervised
labelsspecificallycollectedfor them;while thepolicynetworkandgenerationnetwork
are trained separately on the system utterances.

Dhingra et al. (2016b) introduce a modular approach, consisting of: a belief tracker
module for identifying user intents, extracting associated slots, and tracking the dialog
state; an interface with the database to query for relevant results (Soft-KB lookup); a
summary module to summarize the state into a vector; a dialog policy which selects
the next system action based on current state and a easily configurable template-based
Natural Language Generator (NLG) for converting dialog acts into natural language
(seeFig.3.6).Themaincontributionoftheirworkisthat it retainsmodularityoftheend-
to-end network by keeping the belief trackers separate, but replaces the hard lookup
with a differentiable one. They propose a differentiable probabilistic framework for
querying a database given the agents’ beliefs over its fields (or slots) showing that the
downstream reinforcement learner can discover better dialog policies by providing it
more information.

The non-goal-oriented end-to-end dialog systems investigate the task of building
open-domain, conversational dialog systems based on large dialog corpora. Serban
et al. (2015) incorporate generative models to produce system responses that are
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Fig. 3.6 High-level overview of the end-to-end Knowledge-Base-InfoBot: a multi-turn dialog agent
which helps users search knowledge bases without composing complicated queries. Such goal-
oriented dialog agents typically need to interact with an external database to access real-world
knowledge. This model replaces symbolic queries with an induced soft posterior distribution over the
knowledge base that indicates which entities the user is interested in. The components with trainable
parameters are highlighted in gray

autonomouslygeneratedwordbyword,openingupthepossibility for realistic,flexible
interactions. They demonstrate that a hierarchical recurrent neural network generative
model can outperform both n-gram based models and baseline neural network models
on the task of modeling utterances and speech acts.

3.7 DeepLearning forOpenDialogSystems

Open-domain dialog systems, also known as non-task-oriented systems, do not have a
stated goal to work towards. These types of dialog systems are mainly useful for inter-
actions in social environments (e.g., social bots) as well as many other useful scenarios
(e.g., keeping elderly people company) (Higashinaka et al. 2014), or entertaining users
(Yu et al. 2015), to name a few. Open-domain spoken dialog systems support a natural
conversation about any topic within a wide coverage Knowledge Graph (KG). The KG
can contain not only ontological information about entities but also the operations that
might be applied to those entities (e.g., find flight information, book a hotel room, buy
an ebook, etc.)

The non-task-oriented systems do not have a goal, nor have a set of states or slots to
follow but they do have intentions. Due to this, there have been several work on non-
goal-oriented dialog systems that focus preliminarily on response generation which
use dialog history (human–agent conversations) as input to propose a response to the
user. Among these work are machine translation (Ritter et al. 2011), retrieval-based
response selection (Banchs and Li 2012), and sequence-to-sequence models with dif-
ferent structures, such as, vanilla recurrent neural networks (Vinyals and Le 2015),
hierarchical neural models (Serban et al. 2015, 2016a; Sordoni et al. 2015b; Shang
et al. 2015), and memory neural networks (Dodge et al. 2015). There are several moti-
vations for developing non-goal-driven systems. They may be deployed directly for
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tasks which do not naturally exhibit a directly measurable goal (e.g., language learn-
ing)orsimplyforentertainment.Also if theyare trainedoncorporarelated to the taskof
agoal-drivendialogsystem(e.g., corporawhichcoverconversationsonsimilar topics)
then these models can be used to train a user simulator, which can then train the policy
strategy.

Until very recently, there has been no research on combining the goal-oriented and
non-goal-orienteddialogsystems.Inarecentwork,afirstattempttocreateaframework
that combines these two types of conversations in a natural and smooth manner for the
purpose of improving conversation task success and user engagement is presented (Yu
et al. 2017). Such a framework is especially useful to handle users who do not have
explicit intentions.

3.8 Datasets forDialogModeling

In the last years, there has been several publicly available conversational dialog dataset
released.Dialogcorporamayvarybasedonseveralcharacteristicsoftheconversational
dialog systems. Dialog corpora can be classified based on written, spoken or multi-
model properties, or human-to-human or human-to-machine conversations, or natural
or unnatural conversations (e.g., in a Wizard-of-Oz system, a human thinks (s)he is
speaking to a machine, but a human operator is in fact controlling the dialog system).
In this section, we provide a brief overview of these publicly available datasets that
are used by the community, for spoken language understanding, state tracking, dialog
policy learning,etc., specifically for taskcompletion task.Weleaveout foropen-ended
non-task completion datasets in this section.

3.8.1 TheCarnegieMellonCommunicatorCorpus

This corpus contains human–machine interactions with a travel booking system. It is a
medium-sized dataset of interactions with a system providing up-to-the-minute flight
information, hotel information, and car rentals. Conversations with the system were
transcribed, along with the users comments at the end of the interaction.

3.8.2 ATIS—AirTravel InformationSystemPilotCorpus

The Air Travel Information System (ATIS) Pilot Corpus (Hemphill et al. 1990) is one
of the first human–machine corpora. It consists of interactions, lasting about 40 min
each, between human participants and a travel-type booking system, secretly operated
by humans. Unlike the Carnegie Mellon Communicator Corpus, it only contains 1041
utterances.
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3.8.3 DialogStateTrackingChallengeDataset

The Dialog State Tracking Challenge (DSTC) is an ongoing series of research com-
munity challenge tasks. Each task released dialog data labeled with dialog state infor-
mation, such as the users desired restaurant search query given all of the dialog history
up to the current turn. The challenge is to create a “tracker” that can predict the dialog
state for new dialogs. In each challenge, trackers are evaluated using held-out dialog
data. Williams et al. (2016) provide an overview of the challenge and datasets which
we summarize below:
DSTC1.7 Thisdatasetconsistsofhuman–computerdialogsinthebustimetabledomain.
Results were presented in a special session at SIGDIAL 2013.
DSTC2 and DSTC3.8 DSTC2 consists of human–computer dialogs in the restau-
rant information domain. DSTC2 comprises of large number of training dialog related
to restaurant search. It has changing user goals, tracking “requested slots”. Results
were presented in special sessions at SIGDIAL 2014 and IEEE SLT 2014. DSTC3
is in tourist information domain which addressed the problem of adaptation to a new
domain. DSTC2 and 3 were organized by Matthew Henderson, Blaise Thomson, and
Jason D. Williams.
DSTC4.9 The focus of this challenge is on a dialog state tracking task on human–
human dialogs. In addition to this main task, a series of pilot tracks is introduced for the
core components in developing end-to-end dialog systems based on the same dataset.
Results were presented at IWSDS 2015. DSTC4 was organized by Seokhwan Kim,
Luis F. DHaro, Rafael E Banchs, Matthew Henderson, and Jason D. Williams.
DSTC5.10 DSTC5consistsofhuman–humandialogsinthetouristinformationdomain,
where training dialogs were provided in one language, and test dialogs were in a differ-
ent language. Results are presented in a special session at IEEE SLT 2016. DSTC5 was
organized by Seokhwan Kim, Luis F. DHaro, Rafael E Banchs, Matthew Henderson,
Jason D. Williams, and Koichiro Yoshino.

3.8.4 MaluubaFramesDataset

Frames11 is presented to for research in conversational agents which can support
decision-making in complex settings, i.e., booking a vacation including flights and a
hotel. With this dataset the goal is to teach conversational agents that can help users
explore a database, compare items, and reach a decision. The human–human conver-
sation frames data is collected using Wizard-of-Oz, which is designed for composite
task completion dialog setting. we consider an important type of complex task, called

7https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/.
8http://camdial.org/~mh521/dstc/.
9http://www.colips.org/workshop/dstc4/.
10http://workshop.colips.org/dstc5/.
11https://datasets.maluuba.com/Frames.

https://www.microsoft.com/en-us/research/event/dialog-state-tracking-challenge/
http://camdial.org/~mh521/dstc/
http://www.colips.org/workshop/dstc4/
http://workshop.colips.org/dstc5/
https://datasets.maluuba.com/Frames
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composite task, which consists of a set of subtasks that need to be fulfilled collectively.
For example, in order to make a travel plan, the user first needs to book air tickets,
reserve a hotel, rent a car, etc., in a collective way so as to satisfy a set of cross-subtask
constraints, which are called slot constraints. Examples of slot constraints for travel
planning are: hotel check-in time should be later than the departure flight time, hotel
check-out time may be earlier than the return flight depart time, the number of flight
tickets equals to that of hotel check-in people, and so on.

3.8.5 Facebook’sDialogDatasets

In the last year, Facebook AI and Research (FAIR) has released task oriented dialog
datasets tobeusedby thedialog researchcommunity (Bordeset al. 2017).12 Theobjec-
tive of their project is to explore neural network architectures for question answering
and goal-oriented dialog systems. They designed a set of five tasks within the goal-
oriented context of restaurant reservation (see example in Fig. 3.7). Grounded with an
underlying KB of restaurants and their properties (location, type of cuisine, etc.), these
tasks cover several dialog stages and test if models can learn various abilities such as
performing dialog management, querying KBs, interpreting the output of such queries
to continue the conversation or dealing with new entities not appearing in dialogs from
the training set.

3.8.6 UbuntuDialogCorpus

The Ubuntu Dialog Corpus Lowe et al. (2015b)13 consists of almost one million two-
person conversations extracted from the Ubuntu chat logs about technical support
for various Ubuntu-related problems. The dataset targets a specific technical support
domain.Therefore, itcanbeusedasacasestudyfor thedevelopmentofAIagents in tar-
geted applications, in contrast to chatbox systems. All conversations are carried out in
text form (not audio). The dataset is orders of magnitude larger than structured corpora
such as those of the DSTC. Each conversation in their dataset includes several turns, as
well as long utterances.

3.9 OpenSourceDialogSoftware

Conversational dialog systems have been the focus of many leading companies and
researchers in the field have been building systems to improve several components of

12https://github.com/facebookresearch/ParlAI.
13https://github.com/rkadlec/ubuntu-ranking-dataset-creator.

https://github.com/facebookresearch/ParlAI
https://github.com/rkadlec/ubuntu-ranking-dataset-creator
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Fig. 3.7 A sample dialog between a virtual agent and a customer, in restaurant domain

the conversational dialog systems. Some work just focus on proving trainable datasets
and labeling platforms, or machine learning algorithms that can learn through inter-
action, others provide environment (simulators) to train interactive dialog systems.
Below,webrieflysummarizetheopensourcesoftware/platformsthatarereadilyacces-
sible for dialog researchers.
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• OpenDial14:ThetoolkithasbeenoriginallydevelopedbytheLanguageTechnology
Group of the University of Oslo (Norway), with Pierre Lison as main developer. It
is a Java-based, domain-independent toolkit for developing spoken dialog systems.
OpenDialprovidesa tool tobuildfull-fledged,end-to-enddialogsystem, integrating
speech recognition, language understanding, generation and speech synthesis. The
purpose of OpenDial is to combine the benefits of logical and statistical approaches
to dialog modeling into a single framework. The toolkit relies on probabilistic rules
to represent the domain models in a compact and human-readable format. Super-
vised or reinforcement learning techniques can be applied to automatically estimate
unknown rule parameters from relatively small amounts of data (Lison 2013). The
tool also enables to incorporate expert knowledge and domain-specific constraints
in a robust, probabilistic framework.

• ParlAI: Along with the datasets, Facebook AI and Research (FAIR) have released a
platformentitledParlAI15 withthegoalofprovidingresearchersaunifiedframework
for training and testing dialog models, multitask training over many datasets at once
as well as seamless integration of Amazon Mechanical Turk for data collection and
human evaluation.

• AlexDialogSystemsFramework16:This isadialogsystemsframework that facili-
tatesresearchintoanddevelopmentofspokendialogsystem.Itisprovidedbyagroup
at UFAL17— the Institute of Formal and Applied Linguistics, Faculty of Mathemat-
ics and Physics, Charles University in Prague, Czech Republic. The tool provides
baseline components that are required for a building spoken dialog systems as well
as provides additional tools for processing dialog system interactions logs, e.g., for
audio transcription, semantic annotation, or spoken dialog system evaluation.

• SimpleDS:Thisisasimpledeepreinforcementlearningdialogsystem18 thatenables
training dialog agents with as little human intervention as possible. It includes the
Deep Q-Learning with experience replay (Mnih et al. 2013) and provides support
for multi-threaded and client–server processing, and fast learning via constrained
search spaces.

• CornellMovieDialogsCorpus: This corpus contains a large metadata-rich collec-
tionoffictionalconversationsextractedfromrawmoviescripts(MizilandLee2011).
It contains several conversational exchanges between pairs of movie characters.

• Others: There are numerous software applications (some open sourced) that also
provide non-task-oriented dialog systems, e.g., chit-chat dialog systems. Such sys-
tems provide machine learning tools and conversational dialog engine for creat-
ing chat bots. Examples include Chatterbot,19 a conversational dialog engine for

14https://github.com/plison/opendial.
15https://github.com/facebookresearch/ParlAI.
16https://github.com/UFAL-DSG/alex.
17http://ufal.mff.cuni.cz/.
18https://github.com/cuayahuitl/SimpleDS.
19https://github.com/gunthercox/ChatterBot.

https://github.com/plison/opendial
https://github.com/facebookresearch/ParlAI
https://github.com/UFAL-DSG/alex
http://ufal.mff.cuni.cz/
https://github.com/cuayahuitl/SimpleDS
https://github.com/gunthercox/ChatterBot
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creatingchatbots,chatbot-rnn,20 atoychatbotpoweredbydeeplearningandtrained
on data from Reddit, to name a few. In metaguide.com,21 top 100 chatbots are listed.

3.10 DialogSystemEvaluation

Throughout thischapter,wehavebeen investigatedseveral typesofdialogmodels, i.e.,
task oriented, which are considered domain dependent as well as open-domain dialog
software, which are semi-domain dependent which can open ended or can switch back
and froth between task-oriented and open-domain conversational dialogs.

The task-oriented dialog systems, which are typically component base, are evalu-
ated based on the performance of each individual component. For instance, the CLU
is evaluated based on the performance of the intent detection model, the slot sequence
tagging models (Hakkani-Tür et al. 2016; Celikyilmaz et al. 2016; Tur and De Mori
2011; Chen et al. 2016), etc., whereas the dialog state tracker is evaluated based on
the accuracy of the state changes discovered during the dialog turns. The dialog pol-
icy for task-oriented systems is typically evaluated based on the success rate of the
completed task judged by either user or the real human. Typically, evaluation is done
using human-generated supervised signals, such as a task completion test or a user
satisfaction score. Also the length of the dialog has played role in shaping the dialog
policy (Schatzmann et al. 2006).

The real problem in evaluating the dialog models performance arises when the dia-
logsystemsareopendomain.Mostapproaches focusonevaluating thedialogresponse
generation systems, which are trained to produce a reasonable utterance given a con-
versational context. This is a very challenging task since automatically evaluating lan-
guage generation models is intractable to the availability of possibly very large set of
correct answers. Nevertheless, today, several performance measures are used to auto-
matically evaluate how appropriate the proposed response is to the conversation (Liu
et al. 2016). Most of these metrics compare the generated response to the ground truth
responseof theconversationusingwordbasedsimilaritymetricsandword-embedding
based similarity metrics. Below, we will summarize some of the metrics that are most
commonly used in the dialog systems:

BLEU (Papinenietal.2002) isanalgorithmforevaluating thequalityof textbyinvesti-
gating the co-occurrences of n-grams in the ground truth sequence (text) and the gener-
ated responses. BLEU uses a modified form of precision to compare a candidate trans-
lation against multiple reference translations:

Pn(r, r̂) =
∑

k min(h(k, r), h(k, r̂i ))
∑

k h(k, ri )
,

20https://github.com/pender/chatbot-rnn.
21http://meta-guide.com/software-meta-guide/100-best-github-chatbot.

https://github.com/pender/chatbot-rnn
http://meta-guide.com/software-meta-guide/100-best-github-chatbot
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where k represents all possible n-grams and h(k, r) is the number of n-grams k in r .
The metric modifies simple precision since text generation systems have been known
to generate more words than are in a reference text. Such a score would favor shorter
sequences. To remedy that, in Papineni et al. (2002) a brevity score is used which yields
BLUE-N score, where N is the maximum length of the n-grams and is defined as :

BLEU-N = b(r, r̂) exp(

N∑

n=1

)βn log Pn(r, r̂)),

where βn is the weight factor and b(·) is the brevity penalty.

METEOR (Banerjee and Lavie 2005) is another method which is based on BLEU and
is introduced to address several weaknesses of BLEU. As with BLEU, the basic unit of
evaluation is the sentence, the algorithm first creates an alignment between the refer-
ence and candidate generated sentences. The alignment is a set of mappings between
unigrams and has to comply with several constraints including the fact that every uni-
gram in the candidate translation must map to zero or one unigram in the reference fol-
lowed by WordNet synonym matching, stemmed tokens and paraphrases of text. The
METEOR score is calculated as the harmonic mean of precision and recall between the
proposed and ground truth sentence given the set of alignments.

ROUGE (Lin 2004) is another evaluation metric mainly used to evaluate the auto-
matic summarization systems. There are five different extensions of ROUGE avail-
able:ROUGE-N,onN-grambasedco-occurrencestatistics;ROUGE-L,LongestCom-
mon Subsequence (LCS) based statistics (Longest common subsequence problem
takes into account sentence-level structure similarity naturally and identifies longest
co-occurring in sequence n-grams automatically.); ROUGE-W, weighted LCS-based
statistics that favorsconsecutiveLCSes;ROUGE-S, skip-bigrambasedco-occurrence
statistics (Skip-bigram is any pair of words in their sentence order.); and ROUGE-SU,
skip-bigram plus unigram-based co-occurrence statistics. In text generation,
ROUGE-L is the most commonly used metric in text generation tasks because the LCS
is easy to measure the similarity between two sentences in the same order.

Embedding-Based approaches consider the meaning of each word as defined by a
word embedding, which assigns a vector to each word as opposed to the rest of the
above metrics that consider n-gram matching scenarios. A word embedding learning
methodsuchastheonefromMikolovetal. (2013)isusedtocalculate theseembeddings
using distributional semantics; that is, they approximate the meaning of a word by con-
sideringhowoftenitco-occurswithotherwordsinthecorpus.Theseembedding-based
metrics usually approximate sentence-level embeddings using some heuristic to com-
binethevectorsoftheindividualwordsinthesentence.Thesentence-levelembeddings
between the generated and reference response are compared using a measure such as
cosine distance.

RUBER (Tao et al. 2017) is a Referenced metric and Unreferenced metric Blended
Evaluation Routine for open-domain dialog systems. RUBER has the following dis-
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Fig. 3.8 Overview of
RUBER metric

tinct features: (i) An embedding-based scorer named referenced metric, which mea-
sures the similarity between a generated reply and the ground truth. Instead of using
word-overlapping information (as in BLEU and ROUGE), RUBER’s reference metric
measures the similarity by pooling of word embeddings (Forgues et al. 2014) which is
moresuitedtodialogsystemsduetothediversityofreplies. (ii)Aneuralnetwork-based
scorer named unreferenced metric that measures the relatedness between the gener-
ated reply and its query. This scorer is unreferenced because it does not refer to ground
truth and requires no manual annotation labels. (iii) The referenced and unreferenced
metrics are combined with strategies like averaging further improves the performance
(see Fig. 3.8).

3.11 Summary

This chapter presents an extensive survey on current approaches in data-driven dialog
modeling that use deep learning technologies, after some detailed introduction to var-
ious components of a spoken dialog system including speech recognition, language
understanding (spoken or text-based), dialog manager, and language generation (spo-
kenor text-based) .Thechapteralsodescribesavailabledeepdialogmodelingsoftware
and datasets suitable for research, development, and evaluation.

Deep learning technologies have yielded recent improvements in dialog systems
as well as new research activities. Most of the current dialog systems and research on
them are moving towards large-scale data-driven and specifically end-to-end trainable
models. In addition to the current new approaches and datasets, also highlighted in
this chapter are potential future directions in building conversational dialog systems
including hierarchical structures, multi-agent systems as well as domain adaptation.

Dialog systems, especially the spoken version, are a representative instance of
multiple-stageinformationprocessingexemplifiedinNLP.Themultiplestagesinclude
speech recognition, language understanding (Chap. 2), decision-making (via dialog
manager), and language/speech generation. Such multiple-stage processing schemes
suit ideally well deep learning methodology, which is based on end-to-end learning
in multiple-layered (or deep) systems. The current progress in applying deep learning
to dialog systems as reviewed, in this chapter, has largely been limited to using deep

http://dx.doi.org/2
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learning to modeling and optimizing each individual processing stage in the overall
system. The future progress is expected to broaden such a scope and to succeed in the
fully end-to-end systems.
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Chapter 4
Deep Learning in Lexical Analysis
and Parsing

Wanxiang Che and Yue Zhang

Abstract Lexical analysis and parsing tasks model the deeper properties of the
words and their relationships to each other. The commonly used techniques involve
word segmentation, part-of-speech tagging and parsing. A typical characteristic of
such tasks is that the outputs are structured. Two types of methods are usually
used to solve these structured prediction tasks: graph-based methods and transition-
based methods. Graph-based methods differentiate output structures based on their
characteristics directly, while transition-based methods transform output construc-
tion processes into state transition processes, differentiating sequences of transition
actions.Neural networkmodels have been successfully used for both graph-based and
transition-based structured prediction. In this chapter, we give a review of applying
deep learning in lexical analysis and parsing, and compare with traditional statistical
methods.

4.1 Background

The properties of a word include its syntactic word categories (also known as part
of speech, POS),morphologies, and so on (Manning and Schütze 1999). Obtaining
these information is also known as lexical analysis. For languages like Chinese,
Japanese, and Korean that do not separate words with whitespace, lexical analysis
also includes the task of word segmentation, i.e., splitting a sequence of characters
into words. Even in English, although whitespace is a strong clue for word bound-
aries, it is neither necessary nor sufficient. For example, in some situations, we might
wish to treat New York as a single word. This is regarded as a named entity recog-
nition (NER) problem (Shaalan 2014). On the other hand, punctuation marks are
always adjacent to words. We also need to judge whether to segment them or not.
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For languages like English, this is often called tokenization which is more a matter
of convention than a serious research problem.

Oncewe know some properties of words, wemay be interested in the relationships
between them.Theparsing task is tofind and labelwords (or sequences ofwords) that
are related to each other compositionally or recursively (Jurafsky and Martin 2009).
There are two commonly used parses: phrase-structure (or constituency) parsing
and dependency parsing.

All of these tasks can be regarded as structured prediction problems which is a
term for supervised machine learning, i.e., the outputs are structured and influenced
each other. Traditionally, huge amounts of human-designed handcrafted features are
fed into a linear classifier to predict a score for each decision unit and then combine
all of these scores together with satisfying some structured constraints. With the
help of deep learning, we can employ an end-to-end learning paradigm which does
not need costly feature engineering. The technology can even find more implicit
features which are difficult to be designed by humans. Nowadays, deep learning has
dominated these natural language processing tasks.

However, because of the pervasive problem of ambiguity, none of these tasks is
trivial to predict. Some ambiguities may not even be noticed by humans.

This chapter is organized as follows. We will first select some typical tasks
as examples to see where these ambiguities come from (Sect. 4.2). Then, we will
review two typical structured prediction methods (Sect. 4.3): graph-based method
(Sect. 4.3.1) and transition-based method (Sect. 4.3.2). Sections4.4 and 4.5 are
devoted to neural networks for graph-based and transition-based methods respec-
tively. The chapter closes with a conclusion (Sect. 4.6).

4.2 Typical Lexical Analysis and Parsing Tasks

A natural language processing (lexical analysis and parsing here) pipeline usually
includes three stages: word segmentation, POS tagging, and syntactic parsing.

4.2.1 Word Segmentation

As mentioned above, some languages, such as Chinese, are written in contiguous
characters (Wong et al. 2009). Even though there are dictionaries to list all words,
we cannot simply match words in a sequence of characters because ambiguity exists.
For example, a Chinese sentence

• yanshouyibashoujiguanle (Shouyi Yan turned off the mobile phone)

can match words

• yanshouyi (Shouyi Yan)/ba (NA)/shouji (mobile phone)/guan (turn off)/le (NA)

which is a correct word segmentation result. However,
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• yanshou (strictly)/yibashou (leader)/jiguan (office)/le (NA)
• yanshou (strictly)/yiba (handful)/shouji (mobile phone)/guan (turn off)/le (NA)
• yanshouyi (Shouyi Yan)/bashou (handle)/jiguan (office)/le (NA)

are also valid matching results but the sentence becomes meaningless with the seg-
mentations. Obviously, the word matching method cannot distinguish which seg-
mentation result is better than others. We need some kinds of scoring functions to
assess the results.

4.2.2 POS Tagging

POS tagging is one of the most basic tasks in NLP, and it is useful in many natural
language applications.1 For example, the word loves can be a noun (plural of love) or
a verb (third person present form of love). We can determine that loves is a verb but
not noun in the following sentence.

• The boy loves a girl

The determent can bemade independentlywithout knowing the tags assigned to other
words. Better POS taggers, however, take the word tags into consideration, because
the tags of nearby a word can help to disambiguate its POS tag. In the example above,
the following determiner a can help to indicate that loves is a verb.

Therefore, the complete POS tagging output of above sentence is a tag sequence,
for example.

• D N V D N

(here we use D for a determiner, N for noun, and V for verb). The tag sequence has
the same length as the input sentence, and therefore specifies a single tag for each
word in the sentence (in this example D for the, N for boy, V for loves, and so on).
Usually, the output of POS tagging can be written into a tagged sentence, where each
word in the sentence is annotated with its corresponding POS tag, i.e., The/D boy/N
loves/V a/D girl/N.

Like word segmentation, some sentences may have different meanings, if they
are assigned with different POS tag sequences. For instance, two interpretations
are possible for the sentence “Teacher strikes idle kids”, depending on the POS
assignments of the words in the sentence,

4.2.3 Syntactic Parsing

Phrase structures are very often constrained to correspond to the derivations of
context-free grammars (CFGs) (Carnie 2012). In such a derivation, each phrase that

1https://en.wikipedia.org/wiki/Part-of-speech_tagging.

https://en.wikipedia.org/wiki/Part-of-speech_tagging
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Fig. 4.1 Constituent tree (above) versus dependency tree (below)

is longer than one word is made of a sequence of non-overlapping “child” phrases
or words, such that the children “cover” the yield of the parent phrase.

Another syntactic structure widely used in NLP is dependency parse tree (Kbler
et al. 2009). A dependency parse is a directed tree where the words are vertices.
Edges (also know as arcs) correspond to syntactic relations between two words and
may be labeled with relation types. One extra pseudo word is the root of the tree, and
each other word has a single in-bound edge from its syntactic head. For example,
Fig. 4.1 shows constituent and dependency trees for the sentence, Economic news
had little effect on financial markets.2

Dependency parsing can be classified into two categories: projective parsing (if
there are no crossing arcs in the trees) and non-projective parsing (if there are cross-
ing arcs in the trees). English and Chinese structures are predominantly projective.

A primary reason for using dependency structures instead of more informative
constituent structures is that they are usually easier to be understood. For example, in
Fig. 4.1, it is hard to point out that the news is the subject of had from the constituent
structure, while the dependency structure can clearly indicate this relation between
the two words. In addition, dependency structures are more amenable to annotators
who have good knowledge of the target domain but lack deep linguistic knowledge.

2From Joakim Nivre’s tutorial at COLING-ACL, Sydney 2006.
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Fig. 4.2 The processing results of LTP

Syntactic parsing can provide useful structural information for applications. For
example, the following two Chinese sentences “nin zhuan zhe pian wen zhang hen
wu zhi” (You are ignorant to retweet the article) and “nin zhuan de zhe pian wen
zhang hen wu zhi” (The article you retweeted is ignorant) have completely different
meanings, although the second one only has an additional word “de”, which is a
possessive particle in Chinese. The main difference between the two sentences is
that they have different subjects.

Dependency parsing can tell us this syntactic information directly. One example is
LTP (Language Technology Platform)3 developed by HIT (Harbin Institute of Tech-
nology), which provides a ChineseNLP preprocessing pipeline that includes Chinese
word segmentation, POS tagging, dependency parsing, and so on. The LTP’s pro-
cessing results of the above two sentences are shown in Fig. 4.2. From these results,
we can easily know that subjects of the two sentences are wenzhang (article) and
zhuan (retweet) respectively. Many applications, such as sentiment analysis, can
take advantage of these syntactic information. Although the sentiment of the two
sentences can be easily determined by the polarity word wuzhi (ignorant), it is diffi-
cult to identify its targets or aspects if we do not know their syntactic structures.

3http://www.ltp.ai.

http://www.ltp.ai


84 W. Che and Y. Zhang

4.2.4 Structured Predication

These different natural language processing tasks can fall into three types of struc-
tured prediction problems (Smith 2011):

• Sequence segmentation
• Sequence labeling
• Parsing.

4.2.4.1 Sequence Segmentation

Sequence segmentation is the problem of breaking a sequence into contiguous
parts called segments. More formally, if the input is x = x1, . . . , xn, then a seg-
mentation can be written as 〈x1, . . . , xy1〉, 〈xy1+1, . . . , xy2〉, . . . , 〈xym+1, . . . , xn〉, and
the output is y = y1, . . . , ym which corresponds to the segmental points, where
∀i ∈ {1, . . . ,m}, 1 ≤ yi ≤ n.

Besides word segmentation, there exist other sequence segmentation problems
such as sentence segmentation (breaking a piece of string into sentences which
is an important postprocessing stage for speech transcription) and chunking (also
known as shallow parsing to find important phrases from sentences, such as noun
phrases).

4.2.4.2 Sequence Labeling

Sequence labeling (also named as tagging) is the problem of assigning a corre-
sponding label or tag for each item of an input sequence. More formally, if the input
sequence is x = x1, . . . , xn, then the output tag sequence is y = y1, . . . , yn, where
each input xi has a single output tag yi.

POS tagging is perhaps the most classical, and most famous, example of this type
of problem, where xi is a word in a sentence, and yi is its corresponding POS tag.

Besides POS tagging, many NLP tasks can be mapped to sequence labeling prob-
lems such as named entity recognition (locating and classifying named entities in
text into predefined categories such as the names of persons, locations, and organi-
zations). For this problem, the input is again a sentence. The output is the sentence
with entity boundaries tags. We assume there are three possible entity types: PER,
LOC, and ORG. Then for input sentence

• Rachel Holt, Uber’s regional general manager for U.S. and Canada, said in a
statement provided to CNNTech.4

the output of named entity recognition can be

4http://money.cnn.com/2017/04/14/technology/uber-financials/.

http://money.cnn.com/2017/04/14/technology/uber-financials/
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• Rachel/B-PERHolt/I-PER,/OUber/B-ORG’s/O regional/O general/Omanager/O
for/O U.S./B-LOC and/O Canada/B-LOC , /O said/O in/O a/O statement/O pro-
vided/O to/O CNNTech/B-ORG. /O

where eachword in the sentence is either tagged as being the beginning of a particular
entity type, B-XXX (e.g., the tag B-PER corresponds to words that are the first word
in a person), as being the inside of a particular entity type, I-XXX (e.g., the tag I-PER
corresponds to words that are part of a person name, but are not the first word), or
otherwise (the tag O, i.e., not an entity).

Once this mapping has been performed on training examples, we can train a
tagging model on these training examples. Given a new test sentence we can then
predict a sequence of tags by the model, and then it is straightforward to identify the
entities from the tagged sequence.

The above sequence segmentationproblems can evenbe transformed into sequence
tagging problems by designing proper tag sets. For Chinese word segmentation as an
example, each character in a sentence can be annotated with either tag B (beginning
of a word) or I (inside a word) (Xue 2003).

The purpose of transforming a sequence segmentation problem into a sequence
labeling problem is that the latter is much easier to be modeled and decoded. For
example,wewill introduce a traditional popular sequence labelingmodel, conditional
random field (CRF), in Sect. 4.3.1.1.

4.2.4.3 Parsing Algorithms

In general, we use parsing to denote all kinds of algorithms converting sentences
to syntactic structures. As mentioned in Sect. 4.2.3, there are two popular syntac-
tic paring representations, phrase-structure (or named as constituency) parsing and
dependency parsing.

For constituent parsing, in general, a grammar is used to derive syntactic struc-
tures. In brief, a grammar consists of a set of rules, each corresponding to a deriva-
tion step that is possible to take under particular conditions. Context-free gram-
mars (CFGs) are most frequently used in constituency parsing (Booth 1969). The
parsing is viewed as choosing the maximum-scoring derivation from a grammar.

Graph-based and transition-based methods are currently two dominant depen-
dency parsing algorithms (Kbler et al. 2009).Graph-based dependency parsing can be
formalized as finding the maximum spanning tree (MST) from a directed graph with
vertices (words) and edges (dependency arcs between twowords). A transition-based
dependency parsing algorithm can be formalized as a transition system consisting of
a set of states and a set of transition actions. The transition system begins in start state
and transitions are iteratively followed until a terminal state is reached. The common
critical problem for graph-based and transition-based dependency parsing is how to
calculate the score of a dependency arc or a transition action. We will introduce the
two methods in detail at Sects. 4.3.1.2 and 4.3.2.1 respectively.
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4.3 Structured Prediction Methods

In this section, we will introduce two types of state-of-the-art structured predic-
tion methods: graph-based and transition-based respectively. Most deep learning
algorithms for structured prediction problems are also derived from these methods.

4.3.1 Graph-Based Methods

The graph-based structured prediction methods differentiate output structures based
on their characteristics directly. The conditional random fields (CRFs) are typical
graph-based methods, which aim to maximize the probability of the correct output
structure. The graph-basedmethods can also be applied to dependency parsing,where
the aim changes to maximize the score of the correct output structure. Next, we will
introduce these two methods in detail.

4.3.1.1 Conditional Random Fields

Conditional random fields, strictly speaking, are a variant of undirected graphical
models (also called Markov random fields or Markov networks) in which some
random variables are observed and others are modeled probabilistically. CRFs were
introduced by Lafferty et al. (2001) for sequence labeling. They are also known as
linear-chain CRFs. It has been the de facto method for sequence labeling problems
before deep learning.

The CRFs define the distribution over label sequences y = y1, . . . , yn, given an
observed sequence x = x1, . . . , xn, by a special case of log-linear models:

p(y|x) = exp
∑n

i=1 w · f(x, yi−1, yi, i)
∑

y′∈Y (x) exp
∑n

i=1 w · f(x, y′
i−1, y

′
i, i)

, (4.1)

where Y (x) is a set of all possible label sequences; f(x, yi−1, yi, i) is the feature
function that extracts a feature vector from position i of sequence x, which can
include the labels at the current position yi and at the previous position yi−1.

The attraction of the CRFs is that it permits the inclusion of any (local) features.
For example, in POS tagging, the features can be word-tag pairs, pairs of adjacent
tags, spelling features, such as whether the word starts with a capital letter or contains
a digit, and prefix or suffix features. These features may be dependent, but the CRFs
permit over-lapping features and learn to balance their effect on prediction against
the other features. The reason why we name these features as local features is that
we assume the label yi only depends on yi−1, but longer history. This is also named
as (first order) Markov assumption.



4 Deep Learning in Lexical Analysis and Parsing 87

The general Viterbi algorithm, a kind of dynamic programming algorithm, can
be applied for decoding with CRFs. Then the first-order gradient-based (such as
gradient descent) or second-order (such as L-BFGS) optimization methods can be
used to learn proper parameters to maximize conditional probability in Eq. (4.1).

Besides sequence labeling problems, CRFs have been generalized in many ways
for other structured prediction problems. For example, Sarawagi and Cohen (2004)
proposed the semi-CRF model for sequence segmentation problems. In semi-CRF,
the conditional probability of a semi-Markov chain on the input sequence is explicitly
modeled, whose each state corresponds to a subsequence of input units. However,
to achieve good segmentation performance, conventional semi-CRF models require
carefully handcrafted features to represent the segment. Generally, these feature
functions fall into two types: (1) the CRF style features which represent input unit-
level information such as the specific words at a particular position; (2) the semi-CRF
style features which represent segment-level information such as the length of the
segment.

Hall et al. (2014) proposed a CRF-based constituency parsing model, where the
features factor over anchored rules of a small backbone grammar, such as basic span
features (first word, last word, and length of the span), span context features (the
words immediately preceding or following the span), split point features (words at
the split point inside the span), and span shape features (for each word in the span,
indicating whether that word begins with a capital letter, lowercase letter, digit, or
punctuation mark). The CKY algorithm5 can be used to find the tree with maximum
probabilities given learned parameters.

4.3.1.2 Graph-Based Dependency Parsing

Consider a directed graph with vertices V and edges E. Let s(u, v) denote the score
of an edge from vertex u to vertex v. A directed spanning tree is a subset of edges
E′ ⊂ E such that all vertices have exactly one incoming arc in E, except the root
vertex (which has none), and such that E′ contains no cycles. Let T (E) denote the
set of all possible directed spanning trees for E. The total score of a spanning tree
E′ is the sum of the scores of edges in E′. The maximum spanning tree (MST) is
defined by

max
E′∈T (E)

∑

s(u,v) ∈E′
s(u, v). (4.2)

Then the (unlabeled) dependency parsing decoding problem can be reduced to
the maximum spanning tree problem if we view words in a sentence as vertices and
edges as dependency arcs, where u is often named as a head (or parent) and v as a
modifier (or child).

It is straightforward to extend this approach to labeled dependency parsing, if we
have multiple edges from u to v, one associated with each label. The same algorithm

5https://en.wikipedia.org/wiki/CYK_algorithm.

https://en.wikipedia.org/wiki/CYK_algorithm
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applies. Themost widely used decoding algorithm for theMST problem is the Eisner
algorithm (Eisner 1996) for projective parsing andChu-Liu-Edmonds algorithm (Chu
and Liu 1965; Edmonds 1967) for non-projective parsing.

Here, we introduce the basic graph-based method, which is called the first-order
model. The first-order graph-based model makes a strong independence assumption:
the arcs in a tree are independent from each other. In other words, the score of an
arc is not affected by other arcs. This method is also called the arc-factorization
method.

So, the critical problem is, given an input sentence, how to determine the score
s(u, v) of each candidate arc. Traditionally, discriminative models were used which
represent an arc with a feature vector extracted with feature function f(u, v). Then,
the score of the arc is the dot product of a feature weight vector w and f , i.e.,
s(u, v) = w · f(u, v).

Then how to define f(u, v) and how to learn optimizing parameters w?

Feature Definition

The choice of features is central to the performance of a dependency parsing
model. For each possible arc, the following features are readily considered:

• for each word involved, the surface form, its lemma, its POS, and any shape,
spelling, or morphological features;

• words involved include the head, the modifier, context words on either side of the
head and modifier, words in between the head and modifier;

• the length of the arc (number ofwords between the head andmodifier), its direction,
and (if the parse is to be labeled) the syntactic relation type.

Besides these atomic features, all kinds of combination features and back-off
features can also be extracted.

Parameter Learning

Online structured learning algorithms such as the averaged perceptron (AP)
(Freund and Schapire 1999; Collins 2002), online passive-aggressive algorithms
(PA) (Crammer et al. 2006), or margin infused relaxed algorithm (MIRA) (Crammer
and Singer 2003; McDonald 2006) are commonly used for learning parameters w in
graph-based dependency parsing.

4.3.2 Transition-Based Methods

Different from graph-based methods, which differentiate structural outputs directly,
a transition-based method can be formalized as a transition system consisting of a
set of states S (possibly infinite), including a start state s0 ∈ S and a set of terminal
states St ∈ S, and a set of transition actions T (Nivre 2008). The transition system
begins in s0 and transitions are iteratively followed until a terminal state is reached.
Figure4.3 shows a simple finite state transducer, where the start state is s0, and the
terminal states include s6, s7, s8, s14, s15, s16, s17 and s18. The goal of a transition-
based structured prediction model is to differentiate sequences of transition actions
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Fig. 4.3 Transition-based
method for structured
prediction

that lead to the terminal states, so that those that correspond to the correct output
state are scored higher.

4.3.2.1 Transition-Based Dependency Parsing

The arc-standard transition system (Nivre 2008) is widely used for projective depen-
dency parsing. In this system, each state corresponds to a stack σ containing partially
built subtrees, a bufferβ of as-yet-unprocessedwords, and a set of dependency arcsA.
The transition actions are shown as deductive rules in Fig. 4.4. A transition sequence
for the sentence

• Economic1 news2 had3 little4 effect5 on6 financial7 markets8.9

in Fig. 4.1 generated by the arc-standard algorithm is presented in Table4.1.
In a greedy parser, the decision about what to do in state s ∈ S is made by a

classifier. Training the classifier is accomplished by considering gold-standard trees
in the training section of a treebank, from which we can derive canonical gold-
standard sequences (oracle sequences) of transition state and action pairs.

Information that can be obtained from a state s = 〈σ, β,A〉 includes:
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Fig. 4.4 Transition actions
in the deduction system
(Nivre 2008)

Start state ([ROOT], [0...,n], /0)

LEFTARCl (LAl)
([ | s1,s0], ,A)

([ | s0], ,A∪{s1 l←− s0})

RIGHTARCl (RAl)
([ | s1,s0], ,A)

([ | s1], ,A∪{s1 l−→ s0})

SHIFT (SH)
( , [b | ],A)
([ | b], ,A)

Terminal state ([ROOT], [ ],A)

Table 4.1 Transitions by the arc-standard algorithm

State Action σ β A

0 Initialization [0] [1, . . . , 9] ∅
1 SH [0, 1] [2, . . . , 9]
2 SH [0, 1, 2] [3, . . . , 9]
3 LAnmod [0, 2] [3, . . . , 9] A ∪ {1 nmod←−−− 2}
4 SH [0, 2, 3] [4, . . . , 9]
5 LAsbj [0, 3] [4, . . . , 9] A ∪ {2 sbj←− 3}
6 SH [0, 3, 4] [5, . . . , 9]
7 SH [0, 3, 4, 5] [6, . . . , 9]
8 LAnmod [0, 3, 5] [6, . . . , 9] A ∪ {4 nmod←−−− 5}
9 SH [0, 3, 5, 6] [7, . . . , 9]
10 SH [0, 3, 5, 6, 7] [8, 9]
11 SH [0, 3, 5, 6, 7, 8] [9]
12 LAnmod [0, 3, 5, 6, 8] [9] A ∪ {7 nmod←−−− 8}
13 RApc [0, 3, 5, 6] [9] A ∪ {6 pc−→ 8}
14 RAnmod [0, 3, 5] [9] A ∪ {5 nmod−−−→ 6}
15 RAobj [0, 3] [9] A ∪ {3 obj−→ 5}
16 SH [0, 3, 9] [ ]
17 RAp [0, 3] [ ] A ∪ {3 p−→ 9}
18 RAroot [0] [ ] A ∪ {0 root−−→ 3}

• all the words and their corresponding POS tags;
• the head of a word and its label from partial parsed dependency arcs A;
• the position of a word on the stack σ and buffer β.

For example, Zhang and Nivre (2011) proposed 72 feature templates which include
26 baseline and 46 new feature templates. The baseline features mainly describe
the words and POS tags at top of stack and buffer and their combination. The new
features are: direction and distance between a pair of head and modifier; the number
of modifiers to a given head; higher order partial parsed dependency arcs; the set of
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unique dependency labels from the modifiers of the top word in the stack and buffer.
Finally, these new features boost about 1.5% UAS (unlabeled attachment score).

We usually use the term “feature engineering” to describe the need of the amount
of linguistic expertise that has gone into designing features for various linguistic
structured prediction tasks.

NLP researchers tend to adopt the strategy of incorporating as many features as
they can think of into learning and allowing the parameter estimation method to
determine which features are helpful and which should be ignored. Perhaps because
of the heavy-tailed nature of linguistic phenomena and the continued growth in
computational power available to researchers, the current consensus seems to be that
more features are always welcome in an NLP model, especially in frameworks like
log-linear models that can incorporate them.

To reduce error propagation in greedy transition-based algorithms, beam search
decoding with global normalization is usually applied and large margin training with
early update (Collins and Roark 2004) is used for learning from inexact search.

4.3.2.2 Transition-Based Sequence Labeling and Segmentation

Besides dependency parsing, the transition-based framework can be applied to most
structured prediction tasks in NLP, to which a mapping can be found between struc-
tured outputs and state transition sequences. Take sequence labeling for example.
The output can be constructed by incrementally assigning labels to each input from
left to right. In this setting, the state is a pair (σ, β), where σ represents a partially
labeled sequence and β represents a queue of unlabeled words. With the start state
being ([ ], input) and the terminal states being (output, [ ]), each action advances a
state by assigning a particular label on the front of β.

Sequence segmentation, such as word segmentation is a second example, for
which a transition system can process input characters incrementally from left to
right. A state takes the form (σ, β), where σ is a partially segmented word sequence
and β is a queue of next incoming characters. In the start state, σ is empty and β

consists of the full input sentence. In any terminal state, σ contains a full segmented
sequence and β is empty. Each transition action advances the current state by pro-
cessing the next incoming character, either separating (sep) it at the beginning of a
new word or appending (app) it to the end of the last word in the partially segmented
sequence. A gold-standard state transition sequence for the sentence “wo xi huan du
shu (I like reading)” is shown in Table 4.2.

4.3.2.3 Advantages of Transition-Based Methods

Transition-basedmethods do not reduce structural ambiguity—the search space does
not shrink in size for a given structured prediction task when the solution changes
from a graph-based model to a transition-based model. The only difference is that
structural ambiguities are transformed into ambiguities between different transition
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Table 4.2 Gold state transition sequence for word segmentation

State σ β Next action

0 [] [wo, xi, huan, du, shu] SEP

1 [wo (I)] [xi, huan, du, shu] SEP

2 [wo (I), xi] [huan, du, shu] APP

3 [wo (I), xihuan (like)] [du, shu] SEP

4 [wo (I), xihuan (like),
dushu (reading)]

[] APP

actions at each state. A question that naturally arises is why transition-basedmethods
have attracted significant research attention.

The main answer lies in the features that can be utilized by transition-based mod-
els, or the information that is made available for ambiguity resolution. Traditional
graph-basedmethods are typically constrainedby efficiencyof exact inference,which
limits the range of features to use. For example, to train CRF models (Lafferty
et al. 2001), it is necessary to efficiently estimate the marginal probabilities of small
cliques, the sizes of which are decided by feature ranges. To allow efficient train-
ing, CRF models assume low-order Markov properties of their features. As a second
example, CKY parsing (Collins 1997) requires that the features are constrained to
local grammar rules, so that a tolerable polynomial dynamic program can be used to
find the highest scored parse tree among an exponential of search candidates.

In contrast, early work on transition-based methods employ greedy local models
(Yamada andMatsumoto 2003; Sagae and Lavie 2005; Nivre 2003), and are typically
regarded as a very fast alternative to graph-based systems, running in linear timewith
regard to the input size. Thanks to the use of arbitrary nonlocal features, their accu-
racies are not far behind the state-of-the-art models. Since global training has been
utilized for training sequences of actions (Zhang and Clark 2011b), fast and accurate
transition-based models were made, which gives the state-of-the-art accuracies for
tasks such as CCG parsing (Zhang and Clark 2011a; Xu et al. 2014), natural language
synthesis (Liu et al. 2015; Liu and Zhang 2015; Puduppully et al. 2016), dependency
parsing (Zhang and Clark 2008b; Zhang and Nivre 2011; Choi and Palmer 2011)
and constituent parsing (Zhang and Clark 2009; Zhu et al. 2013). Take constituent
parsing for example, ZPar (Zhu et al. 2013) gives competitive accuracies to Berkeley
parser (Petrov et al. 2006), yet runs 15 times faster.

The efficiency advantage of transition-based systems further allows joint struc-
tured problems with highly complex search spaces to be exploited. Examples include
joint word segmentation and POS tagging (Zhang and Clark 2010), joint segmen-
tation, POS tagging and chunking (Lyu et al. 2016), joint POS tagging and pars-
ing (Bohnet and Nivre 2012; Wang and Xue 2014), joint word segmentation, POS
tagging and parsing (Hatori et al. 2012; Zhang et al. 2013, 2014), joint segmentation
and normalization for microblog (Qian et al. 2015), joint morphological generation
and text linearization (Song et al. 2014), and joint entity and relation extraction (Li
and Ji 2014; Li et al. 2016).
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4.4 Neural Graph-Based Methods

4.4.1 Neural Conditional Random Fields

Collobert and Weston (2008) was the first work to utilize deep learning for sequence
labeling problems. This was almost the earliest work successfully using deep learn-
ing for addressing natural language processing tasks. They not only embedded words
into a d -dimensional vector, but also embedded some additional features. Thenwords
and corresponding features in a window were fed into an MLP (multiple layer per-
ceptron) to predict a tag. Word-level log-likelihood, each word in a sentence being
considered independently, was used as the training criterion. As mentioned above,
there is often a correlation between the tag of a word in a sentence and its neighboring
tags. Therefore, in their updated work (Collobert et al. 2011), tag transition scores
were added in their sentence-level log-likelihood model. In fact, the model is the
same with the CRF models except that the conventional CRF models use a linear
model instead of a nonlinear neural network.

While, limited byMarkov assumption, the CRFmodels can onlymake use of local
features. It leads to the long-termdependency between tags cannot bemodeled,which
sometimes is important in many natural language processing tasks. Theoretically,
recurrent neural networks (RNNs) can model arbitrarily sized sequence into fixed-
size vectors without resorting to the Markov assumption. Then the output vector is
used for further prediction. For example, it can be used to predict the conditional
probability of a POS tag given an entire previous word sequence.

In more detail, RNNs are defined recursively, by means of a function taking as
input a previous state vector and an input vector and returning a new state vector. So,
intuitively, RNNs can be thought of as very deep feedforward networks, with shared
parameters across different layers. The gradients then include repeatedmultiplication
of the weight matrix, making it very likely for the values to vanish or explode.
The gradient exploding problem has a simple but very effective solution: clipping
the gradients if their norm exceeds a given threshold. While the gradient vanishing
problem is much more complicated. The gating mechanism, such as the long short-
term memory (LSTM) (Hochreiter and Schmidhuber 1997) and the gated recurrent
unit (GRU) (Cho et al. 2014), can solve it more or less.

A natural extension of RNN is a bidirectional RNN (Graves 2008) (BiRNN, such
as BiLSTM and BiGRU). In sequence labeling problems, predicting a tag not only
depends on the previous words, but also depends on the successive words, which
cannot be seen in a standard RNN. Therefore, BiRNN use two RNNs (forward and
backward RNN) to represent the word sequences before and behind the current word.
Then, the forward and backward states of the current word are concatenated together
as input to predict the probability of a tag.

In addition, RNNs can be stacked in layers, where the inputs of an RNN are the
outputs of the RNN below it. Such layered architectures are often called deep RNNs.
Deep RNNs have shown power in many problems, such as semantic role labeling
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(SRL) with sequence labeling method (Zhou and Xu 2015, https://www.aclweb.org/
anthology/P/P17/P17-1044.bib).

Although RNNs have been successfully applied in many sequence labeling prob-
lems, they do not explicitly model the dependency between output tags like CRFs.
Therefore, the transition score matrix between any tags can also be added to form a
sentence-level log-likelihoodmodel usually named as RNN-CRFmodel where RNN
can also be LSTM, BiLSTM, GRU, BiGRU, and so on.

Like conventional CRFs, the neural CRFs can also be extend to handle the
sequence segmentation problems. For example, Liu et al. (2016) proposed a neural
semi-CRF, which used a segmental recurrent neural network (SRNN) to represent
a segment by composing input units with an RNN. At the same time, additional
segment-level representation using segment embedding is also regarded as inputs
which encodes the entire segment explicitly. Finally, they achieve the state-of-the-art
Chinese word segmentation performance.

Durrett and Klein (2015) extended their CRF phrase-structure parsing (Hall et al.
2014) to neural one. In their neural CRF parsing, instead of linear potential functions
based on sparse features, they use nonlinear potentials computed via a feedforward
neural network. The other components, such as decoding, are unchanged from the
conventional CRF parsing. Finally, they achieve the state-of-the-art phrase-structure
parsing performance.

4.4.2 Neural Graph-Based Dependency Parsing

Conventional graph-based models rely heavily on an enormous number of hand-
crafted features, which brings about serious problems. First, a mass of features could
put the models in the risk of overfitting, especially in the combinational features
capturing interactions between head and modifier could easily explode the feature
space. In addition, feature design requires domain expertise, which means useful
features are likely to be neglected due to a lack of domain knowledge.

To ease the problem of feature engineering, some recent works propose some
general and effective neural network models for graph-based dependency parsing.

4.4.2.1 Multiple Layer Perceptron

Pei et al. (2015) used an MLP (multiple layer perceptron) model to score an edge.
Instead of using millions of features as in conventional models, they only use atomic
features such as word unigrams and POS tag unigrams, which are less likely to
be sparse. Then these atomic features are transformed into their corresponding dis-
tributed representations (feature embeddings or feature vector) and push into MLP.
Feature combinations are automatically learnedwith novel tanh−cub activation func-
tion at the hidden layer, thus alleviating the heavy burden of feature engineering in
conventional graph-based models.

https://www.aclweb.org/anthology/P/P17/P17-1044.bib
https://www.aclweb.org/anthology/P/P17/P17-1044.bib
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The distributed representation can discover useful new features that have
never been used in conventional parsers. For instance, context information of the
dependency edge (h,m), such as words between h and m, has been widely believed
to be useful in graph-based models. However, in conventional methods, the complete
context cannot be used as features directly because of the data sparseness problem.
Therefore, they are usually backed off to low-order representation such as bigrams
and trigrams.

Pei et al. (2015) proposed to use distributed representation of the context. They
simply average all word embeddings in a context to represent it. The method can
not only effectively use every word in the context, but also can capture semantic
information behind context, because similar words have similar embeddings.

At last, max-margin criterion is used to train the model. The training object is that
the highest scoring tree is the correct one and its score will be larger up to a margin to
other possible tree. The structured margin loss is defined as the number of word with
an incorrect head and edge label in the predicted tree.

4.4.2.2 Convolutional Neural Networks

Pei et al. (2015) simply average embeddings in context to represent them, which
ignore the word position information and cannot assign different weights for dif-
ferent words or phrases. Zhang et al. (2016b) introduce convolutional neural net-
works (CNN) to compute the representation of a sentence. Then use the represen-
tation to help scoring an edge. While the pooling regimes make CNN invariant to
shifting, that is CNN ignore the position of words which is very important for depen-
dency parsing. In order to overcome the problem, Zhang et al. (2016b) input the
relative positions between a word and a head or modifier to CNN. Another differ-
ence from Pei et al. (2015) is that they utilize the probabilistic treatment for training:
calculating the gradients according to probabilistic criteria. The probabilistic criteria
can be viewed as a soft version of the max-margin criteria, and all the possible fac-
tors are considered when calculating gradients for the probabilistic way, while only
wrongly predicted factors have nonzero subgradients for max-margin training.

4.4.2.3 Recurrent Neural Networks

Theoretically, recurrent neural networks (RNN) can model sequences with arbitrary
length which is sensitive to the relative positions of words in the sequence. As an
improvement of conventional RNN, LSTMcan better represent a sequence. The BiL-
STM (bidirectional LSTM) particularly excels at representing words in the sequence
together with their contexts, capturing the word and an “infinite” window around it.
Therefore, Kiperwasser and Goldberg (2016) represent each word by its BiLSTM
hidden layer output, and use the concatenation of the head andmodifier words’ repre-
sentation as the features, which is then passed to a nonlinear scoring function (MLP).
To speedupparsing,Kiperwasser andGoldberg (2016) proposed a two-stage strategy.
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First, they predict the unlabeled structure using the method given above, and then
predict the label of each resulting edge. The labeling of an edge is performed using
the same feature representation as above fed into a different MLP predictor. Finally,
the max-margin criterion is used to train the model, i.e., let the correct tree is scored
above incorrect ones with a margin.

Wang and Chang (2016) also use BiLSTM to represent the head and modifier
words. Moreover, they introduce some additional features, such as distance between
the two words and context like Pei et al. (2015). Different from Pei et al. (2015), they
utilize LSTM-Minus to represent a context, in which distributed representation of a
context is learned by using subtraction between LSTM hidden vectors. The similar
idea was also been used by Cross and Huang (2016) for transition-based constituent
parsing.

All above work contact the distributed representation of head and modifier words
outputted by LSTM as input to MLP to calculate the score of a potential dependency
edge. Borrowing the idea from Luong et al. (2015), Dozat and Manning (2016) used
a bilinear transformation between representation of the head and modifier words to
calculate the score. While, they also notice that there are two disadvantages of using
the representation directly. The first is that they contain much more information than
is necessary for calculating the score, because they are recurrent, they also contain
information needed for calculating scores elsewhere in the sequence. Training on the
entire vector then means training on superfluous information, which is likely to lead
to overfitting. The second disadvantage is that the representation ri consists of the
concatenation of the left recurrent state ←−ri and the right recurrent state −→ri , meaning
using by itself in the bilinear transformation keeps the features learned by the two
LSTMs distinct; ideally we would like the model to learn features composed from
both. Dozat and Manning (2016) address both of these issues simultaneously by first
applying (distinct) MLP functions with a smaller hidden size to the two recurrent
states ri and rj before the bilinear operation. This allows the model to combine the
two recurrent states together while also reducing the dimensionality. Another change
to the bilinear scoring mechanism is to add a linear transformation of the head word
representation to scoring function, which captures the prior probability of a word
taking any dependent. They name the new method as biaffine transformation. Their
model is a two-stage one with additional dependency relation classification stage.
The biaffine transformation scoring function again is used to predict a label for each
dependency edge. Finally, they achieve the state-of-the-art performance on English
Penn Treebank test set.
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4.5 Neural Transition-Based Methods

4.5.1 Greedy Shift-Reduce Dependency Parsing

The outputs of dependency parsing are syntactic trees, which is a typical structure
as sequences are. Graph-based dependency parsers score elements in dependency
graphs, such as labels and sibling labels. In contrast, transition-based dependency
parsers utilize shift-reduce actions to construct outputs incrementally. Seminal work
use statistical models such as SVM to make greedy local decisions on the actions
to take, as exemplified by MaltParser (Nivre 2003). Such greedy parsing processes
can be illustrated in Table4.1. At each step, the context, or parser configuration, I
can be abstracted in Fig. 4.5, where the stack σ contains partially processed words
s0, s1, from the top, and the buffer β contains the incoming words q0, q1, from the
sentence. The task of a greedy local parser is to find the next parsing action given
the current configuration, where an example set of actions is shown in Sect. 4.3.2.

MaltParser works by extracting features from the top nodes of σ and the front
words of β. For example, the form and POS of s0, s1, q0 and q1 are all used as
binary discrete features. In addition, the forms, POS, and dependency arc labels of
dependents of s0, s1 and other nodes on σ can be used as additional features. Here,
the dependency arc label of a word refers to the label of the arc between the word
and the word it modifies. Given a parser configuration, all such features are extracted
and fed to an SVM classifier, the output of which is a shift-reduce actions over a set
of valid actions.

Chen and Manning (2014) built a neural network alternative of MaltParser, the
structure of which is shown in Fig. 4.6a. Similar to MaltParser, features are extracted
from the top of σ and the front of β given a parser configuration, and then used
for predicting the next shift-reduce action to take. Chen and Manning (2014) fol-
low Zhang and Nivre (2011) in defining the range of word, POS and label features.
On the other hand, different from using discrete indicator features, embeddings are
used to represent words, POS and arc labels. As shown in Fig. 4.6a, a neural net-
work consisting of three layers is used to predict the next action given the input
features. In the input layer, word, POS, and arc label embeddings from the context
are concatenated. The hidden layer takes the resulting input vector, and apply a linear
transformation before a cube activation function:

h = (Wx + b)3.

Fig. 4.5 Context of
shift-reduce dependency
parsing
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Fig. 4.6 Two greedy parsers

The motivation behind using a cube function as the nonlinear activation function
instead of the standard sigmoid and tanh functions is that it can achieve arbitrary
combination of three elements in the input layer, which has been traditionally defined
manually in statistical parsing models. This method empirically worked better than
alternative activation functions. Finally, the hidden layer is passed as input to a
standard softmax layer to choose the action.

The parser of Chen andManning (2014) outperformedMaltParser significantly on
several benchmarks. Themain reasons are twofold. First, the use ofword embeddings
allows syntactic and semantic information of words to be learned from large raw data
via unsupervised pretaining, which increases the robustness of the model. Second,
the hidden layer achieves the effect of complex feature combinations, which is done
manually in statistical models. For example, a combined feature can be s0wq0p,
which captures the form of s0 and the POS of q0 simultaneously. This can be a strong
indicator of certain actions to take. However, such combinations can be exponentially
many, which requires significant manual efforts in feature engineering. In addition,
they can be highly sparse if more than two features are combined into one feature.
Such sparsity can cause issues in both accuracies and speeds, since they can result
in a statistical model with tens of millions of binary indicator features. In contrast,
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the neural model of Chen and Manning (2014) is compact and less sparse, making
it strong in rendering contexts while less subject to overfitting.

The dense input feature representations of Chen and Manning (2014) are highly
different from the manual feature templates of traditional statistical parsers, the for-
mer being real-valued and low-dimensional, while the latter being binary 0/1 valued
and high-dimensional. Intuitively, they should capture different aspects of the same
input sentences. Inspired by this observation, Zhang and Zhang (2015) built an exten-
sion of Chen and Manning (2014)’s parser, integrating traditional indicator features
by concatenating a large sparse feature vector to the hidden vector of Chen andMan-
ning (2014), before feeding it to the softmax classification layer. This combination
can be regarded as an integration of decades of human labor in feature engineering,
and the strong but relatively less interpretable power of automatic feature combi-
nation using neural network models. The results are much higher compared to the
baseline Chen andManning (2014) parser, showing that indicator features and neural
features are indeed complimentary in this case.

Similar to the observation of Xu et al. (2015) over the super tagger of Lewis and
Steedman (2014), Kiperwasser and Goldberg (2016) found the use of local context
of Chen and Manning (2014) a potential limitation of their model. To address this
issue, they extracted nonlocal features by using LSTMs over the input word and
POS features of each word, resulting in a sequence of hidden vector representations
for input words. Compared with the feature vectors of Chen and Manning (2014),
these hidden feature vectors contain nonlocal sentential information. Kiperwasser
and Goldberg (2016) utilized bidirectional LSTMs over the input word sequence,
and stacked two LSTM layers to derive hidden vectors. Stack and buffer features are
extracted from the corresponding hidden layer vectors, before being used for action
classification. This method showed large accuracy improvements over Chen and
Manning (2014), demonstrating the power of LSTM in collecting global information.

As shown in Fig. 4.6b, Dyer et al. (2015) took a different method to address the
lack of nonlocal features in Chen and Manning (2014)’s model, using LSTMs to
represent the stack σ , the buffer β and the sequence of actions that have already
been take. In particular, words on the stack are modeled left to right, recurrently,
while words on the buffer are modeled right-to-left. The action history is modeled
recurrently in temporal order. Since the stack is dynamic, it is possible for words
to be popped off the top of it. In this case, Dyer et al. (2015) use a “stack LSTM”
structure to model the dynamics, recording the current top of stack with a pointer.
When a word is pushed on top of s0, the word and the hidden state of the stack LSTM
for s0 are used to advance the recurrent state, resulting in a new hidden vector for
the new word, which becomes s0, and s0 becomes s1 after the pushing step. In the
reverse direction, if s0 is popped off the stack, the top pointer is updated, moving
from the hidden state of s0 to that of s1 of the stack LSTM, with s1 becoming s0 after
the action. By using the hidden states of the top of σ , the front of β and the last action
to represent the parser configuration, Dyer et al. (2015) obtained large improvements
over the model of Chen and Manning (2014).

Dyer et al. (2015) represented input words with a retrained embedding, a ran-
domly initialized but fine-tuned embedding and the embedding of their POS.
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Ballesteros et al. (2015) extended the model of Dyer et al. (2015), by further using an
LSTM to model the character sequence in each word. They experimented with mul-
tilingual data and observed consistently strong results. Further along this direction,
Ballesteros et al. (2016) address the issue of inconsistence between action histories
during training and during testing, by simulating testing scenarios during training,
where the history of actions is predicted by the model rather than gold-standard
action sequences, when a specific action is predicted. This idea is similar to the idea
of scheduled sampling by Bengio et al. (2015).

4.5.2 Greedy Sequence Labeling

Given an input sentence, a greedy local sequence labelerworks incrementally, assign-
ing a label to each input word bymaking a local decision, and treating the assignment
of labels as classification tasks. Strictly speaking, this form of sequence labeler can
be regarded as either graph-based or transition-based, since each label assignment
can be regarded as either disambiguating the graph structure ambiguities or transition
action ambiguities. Here, we classify greedy local sequence labeling as transition-
based due to the following reason. Graph-based sequence labeling models typically
disambiguatewhole sequences of labels as a single graph bymakingMarkov assump-
tions on output labels, so that exact inference is feasible using the Viterbi algorithm.
Such constraints imply that features can only be extracted over local label sequences,
such as second-order and third-order transmission features. In contrast, transition-
based sequence labelingmodels do not imposeMarkov properties on the outputs, and
therefore typically extract highly nonlocal features. In consequence, they typically
use greedy search or beam search algorithms for inference. All the examples below
are greedy algorithms, and some use highly nonlocal features.

A strand ofwork has been done using neuralmodels for CCG super tagging,which
is a more challenging tasks compared to POS tagging. CCG is a lightly lexicalized
grammar,wheremuch syntactic information is conveyed in lexical categories, namely
supertags in CCG parsing. Compared with shallow syntactic labels such as POS,
super tags contain rich syntactic information, and also denote predicate-argument
structures. There are over 1000 super tags that frequently occur in treebanks, which
makes super tagging a challenging task.

Traditional statistical models for CCG super tagging employ CRF (Clark and
Curran 2007)where features for each label are extracted over awordwindow context,
and POS information is used as crucial features. This makes POS tagging a necessary
preprocessing step before super tagging, thus making it possible for POS tagging
errors to negatively affect super tagging quality.

Lewis and Steedman (2014) investigated a simple neural model for CCG super
tagging, the structure of which is shown in Fig. 4.7a. In particular, given an input
sentence, a three-layer neural network is used to assign super tags to each word. The
first (bottom) layer is an embedding layer, which maps each word into its embed-
ding form. In addition, a few binary-valued discrete features are concatenated to the
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Fig. 4.7 Neural models for CCG supertagging

embedding vector, which include the two-letter suffix of the word, and a binary indi-
cator whether the word is capitalized. The second layer is a hidden layer for feature
integration. For a given word wi, a context window of word wi−k ,wi,wi+k is used
for feature extraction. Augmented input embeddings from each word in the context
window are concatenated, and fed to the hidden layer, which uses a tanh activation
function to achieve nonlinear feature combination. The final (top) layer is a softmax
classification function, which assigns probabilities to all possible output labels.
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This simple model worked surprisingly well, leading to better parsing accuracies
for both in-domain data and cross-domain data compared to the CRF baseline tagger.
Being a greedy model, it also runs significantly faster compared to a neural CRF
alternative, while giving comparable accuracies. The success can be attributed to the
power of neural network models in automatically deriving features, which makes
POS tagging unnecessary. In addition, word embeddings can be retrained over large
raw data, thereby alleviating the issue of feature sparsity in baseline discrete models,
allowing better cross-domain tagging.

The context window of Lewis and Steedman (2014) follows the work of
Collobert and Weston (2008), which is local and comparable to the context win-
dow of CRF (Clark and Curran 2007). On the other hand, recurrent neural networks
have been used to extract nonlocal features from thewhole sequence, achieving better
accuracies for a range of NLP tasks. Motivated by this observation, Xu et al. (2015)
extended the method of Lewis and Steedman (2014), by replacing the window-based
hidden layer with a recurrent neural network layer (Elman 1990). The structure of
this model is shown in Fig. 4.7b.

In particular, the input layer of Xu et al. (2015) is identical to the input layer of
Lewis and Steedman (2014), where a word embedding is concatenated with two-
character suffix and capitalization features. The hidden layers are defined by an
Elman recurrent neural network, which recurrently computes the hidden state for
wi using the previous hidden state hi−1 and the current embedding layer of wi. A
sigmoid activation function is used to achieve nonlinearity. Finally, the same form
of output layers is used to label each word locally.

Compared with the method of Lewis and Steedman (2014), the RNN method
gives improved accuracies for both super tagging and subsequent CCG parsing using
a standard parser model. In addition, the RNN super tagging also gives better 1-best
super tagging accuracy compared to the CRF method of Clark and Curran (2007),
while the NNmethod of Lewis and Steedman did not achieve. The main reason is the
use of recurrent neural network structure, which models unbounded history context
for the labeling of a word.

Lewis and Steedman (2014) made further improvements to the model of Xu et al.
(2015) by using LSTMs to replace the Elman RNN structure in the hidden layer. In
particular, a bidirectional LSTM is used to derive the hidden features h1, h2, hn given
the embedding layer. The input representations are also adjusted slightly, where the
discrete components are discarded, and the 1- to 4-letter prefixes and suffixes of each
word are represented with embedding vectors, and concatenated to the embeddings
of words as input features. Thanks to these changes, the final model gives much
improved accuracies for both super tagging and subsequentCCGparsing. In addition,
by using tri-training techniques, the results are further raised, reaching 94.7% F1 on
1-best tagging.

The models of Xu et al. (2015) and Lewis and Steedman (2014) consider nonlocal
dependencies betweenwords in the input, yet does not capture nonlocal dependencies
between output labels. In this respect, they are less expressive compared with the
CRF model of Clark and Curran (2007), which considers the dependencies between
three consecutive labels. To address this issue, Vaswani et al. (2016) leverage LSTM
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on the output label sequence also, by considering the label history s1, s2, si−1 when
the word wi is labeled. The model structure is shown in Fig. 4.7c.

The input layer of thismodel uses the same representations as Lewis andSteedman
(2014), and the hidden layer is similar to that of Lewis and Steedman (2014). In the
output layer, the classification of each label si is based on both the corresponding
hidden layer vector hi and the previous label sequence, represented by the hidden
states hsi−1 of a label LSTM. The label LSTM is unidirectional, where each state hsi is
derived from its previous state hsi−1 and the previous label si. To further improve the
accuracies, scheduled sampling (Bengio et al. 2015) is used to find training data that
are more similar to test cases. During training, the history label sequence s1, s2, si−1

for labeling si is sampled by choosing the predicted supertag at each position with a
sampling probability p. This way, the model can learn better how to assign a correct
label even if errors are made in the history during test time.

Vaswani et al. (2016) showed that by adding the output label LSTM, the accuracies
can be slightly improved if scheduled sampling is applied, but decreases compared
with the greedy local output model of Lewis and Steedman (2014) without scheduled
sampling. This shows the usefulness of scheduled sampling, which avoids overfitting
to gold label sequences and consequent tossing of test data robustness.

4.5.3 Globally Optimized Models

Greedy local neural models have demonstrated their advantage over their statistical
counterparts by leveraging word embeddings to alleviate sparseness, and using deep
neural networks to learn nonlocal features. Syntactic and semantic information over
the whole sentence has been utilized for structured prediction, and nonlocal depen-
dencies over labels are also modeled. On the other hand, the training of such models
is local, and hence can potentially lead to label bias, since the optimal sequence of
actions does not always contain locally topical actions. Globally optimized models,
which have been the dominant approach for statistical NLP, have been applied to
neural models also.

Such models typically apply beam search (in Algorithm 1), where an agenda is
used to keep the B highest scored sequences of actions at each step. The beam search
process for arc-eager dependency parsing is shown in Fig. 4.8. Here the blue circle
illustrates the gold-standard sequence of actions. As shown in Fig. 4.8, at some steps,
the gold-standard state may not be the highest scored in the agenda. In case of local
search, such situation leads to search errors. For beam search, however, it is possible
for the decoder to recover the gold-standard state in subsequent stages as the highest
scored item in the agenda.

The beam search algorithm for transition-based structured prediction is formally
shown in Algorithm 1. Initially, the agenda contains only the start state in the state
transition system. At each step, all items in the agenda are expanded by applying
all possible transition actions, leading to a set of new states. From these states, the
highest scoredB are selected, and used as agenda items for the next step. Such process
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Algorithm 1 The generic beam search algorithm
1: function Beam- Search(problem, agenda, candidates,B)
2: candidates ← {StartItem(problem)}
3: agenda ← Clear(agenda)
4: loop
5: for each candidate ∈ candidates do
6: agenda ← Insert(Expand(candidate, problem), agenda)
7: end for
8: best ← Top(agena)
9: if GoalTest(problem, best) then
10: return best
11: end if
12: candiates ← Top − B(agenda,B)

13: agenda ← Clear(agenda)
14: end loop
15: end function

repeats until terminal states have been reached, and the highest scored state in the
agenda is taken as the output. Similar to greedy search, the beam search algorithm
has a linear time complexity with respect to the action sequence length.

The items in the agenda are ranked using their global scores, which are the total
scores of all transition actions in the sequence. Different from greedy local models,
the training objective of globally optimized models is to different full sequences
of actions based on their global scores. There are two general training approaches,
with one being to maximize the likelihood of gold-standard sequences of actions,
other being to maximize the score margin between the gold-standard sequence of

Fig. 4.8 Parsing process given state transition system with beam search
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action and non-gold-standard sequences of actions. Other training objectives are
occasionally used, as will be shown later.

FollowingZhang andClark (2011b),most globally optimizedmodels regard train-
ing as beam search optimization, where negative training examples are sampled by
the beam search process itself, and used together with the gold-standard positive
example to update the model. Here we use Zhang and Clark (2011b) as one example
to illustrate the training method. Online learning is used, where an initial model is
applied to decode the training examples. During the decoding of each sample, the
gold-standard sequence of actions is available. The same beam search algorithm
above is used, as in test cases. At any step, if the gold-standard sequence of actions
falls out of the agenda, a search error is unavoidable. At this situation, search is
stopped, and the model is updated by using the gold-standard sequence of actions
till this step as the positive example, and the current highest scored sequence of
actions in the beam as a negative example. Zhang and Clark (2011b) used a statis-
tical model, where model parameters are updated using the perceptron algorithm of
Collins (2002). The early stopping of beam search is known as early update (Collins
and Roark 2004). In the case where the gold-standard sequence of action remains in
the agenda until decoding finishes, the training algorithm checks if it is the highest
scoring in the last step. If so, the current training sample is finishedwithout parameter
update; otherwise the current highest scored sequence of actions in the beam is taken
as a negative example to update parameters. The same process can repeat over the
training examples for multiple iterations, and the final model is used for testing.

We discuss a strand of work using global training for neural transition-based
structured prediction below, categorized by their training objectives.

4.5.3.1 Large Margin Methods

The large margin objective maximizes the score difference between gold-standard
output structures and incorrect output structures; it has been used by discrete
structured prediction methods such as the structured perceptron (Collins 2002) and
MIRA (Crammer and Singer 2003). The ideal large margin training objective should
ensure that the gold-standard structure is scored higher than all incorrect structures
by a certainmargin. However, for structured prediction tasks, the number of incorrect
structures can be exponentially many, hence making the exact objective intractable
in most cases. The perceptron approximates this objective by making model adjust-
ments for the most violated margin, and has theoretical guarantee of convergence
in training. In particular, given the gold-standard structure as a positive example,
and the max-violation incorrect structure as a negative example, the perceptron algo-
rithm adjusts model parameters by adding the feature vector of the positive example
to the model, and subtracting the feature vector of the negative example from the
model parameter vector. By repeating this procedure for all training examples, the
model converges to scoring gold-standard structures higher than incorrect structures.
The perceptron algorithm finds a negative example for each gold-standard training
example, such that the violation of the ideal score margin is the largest. This typi-
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cally implies the searching for a highest scored incorrect output, or one that ranks
the highest by considering both its current model score and it deviation from the
gold-standard. In the latter case, the structured dilation is the cost of the incorrect
output, where outputs with similar structures to the gold-standard have less cost. By
considering not only the model score but also the cost, this training objective allows
model scores to differentiate not only gold-standard and incorrect structures, but also
between different incorrect structures by their similarity to the correct structure.

With neural networks, the training objective translates to maximizing the score
difference between a given positive example and a corresponding negative example.
This objective is typically achieved by taking the derivative of the score difference
with respect to all model parameters, updating model parameters using gradient-
based methods such as AdaGrad (Duchi et al. 2011).

Zhang et al. (2016a) used such a large margin objective for transition-based word
segmentation. As shown in Sect. 1.1, a state for this task can be encoded in a a pair
s = (σ, β), where σ contains a list of recognized words, and β contains the list of
next incoming characters. Zhang et al. (2016a) use a word LSTM to represent σ ,
and a bidirectional character LSTM to represent β. In addition, following Dyer et al.
(2015), they also use an LSTM to represent the sequence of actions that have been
taken. Given a state s, the three LSTM context representations are integrated and
used to score Sep and App actions. Formally, given a state s, the score of action a
can be denoted as f (s, a), where f is the network model. As a global model, Zhang
et al. (2016a) calculate the score of a sequence of actions for ranking the state they
lead to, where

score(sk) =
k∑

i=1

f (si−1, ai).

Following Zhang and Clark (2011b), online learning with early update is used.
Each training example is decoded using beam search, until the gold-standard
sequence of transition actions fall out of beam, or does not rank highest by a score
margin after decoding finishes. Here the margin between the gold-standard structure
and an incorrect structure is defined by the number of incorrect actions �, weighted
by a factor η. Therefore, given a state after k actions, the corresponding loss function
for training the network is defined as follows:

L(sk) = max
(
score(sk) − score(sgk ) + η�(sk , s

g
k ), 0

)
,

where sgk is the corresponding gold-standard structure after k transitions.
During training, Zhang et al. (2016a) use the current model score score(sk) plus

�(sk , s
g
k ) to rank states in the agenda, so that structural differences are considered for

finding themaximumviolation. Given this ranking, a negative example can be chosen
in the early update and final update cases. Model parameters are updated according
to the less function between sk and s

g
k above. Since score(sk) is the sum of all action

scores, the loss is evenly distributed to each action. In practice, back-propagation is
used to train the network,where the derivative of the lost function is takenwith respect

http://dx.doi.org/10.1007/978-981-10-5209-5_1
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to model parameters via the network f (si−1, ai) for i ∈ [1..k]. Since each action ai
shares the same representation layers as described earlier, their losses accumulate
for model parameter updates. AdaGrad is used to change the model.

Cai and Zhao (2016) adopted a very similar neural model for word segmentation.
Both the models of Zhang et al. (2016a) and Cai and Zhao (2016) can be regarded
as extensions of the method of Zhang and Clark (2007) using neural network. On
the other hand, the scoring function of Cai and Zhao (2016) is different from that
of Zhang et al. (2016a), Cai and Zhao (2016) also uses beam search, segmenting a
sentence incrementally. But their incremental steps are based on words, rather than
characters. Theyusedmultiple beams to store partial segmentation outputs containing
the same numbers of characters, which is similar to Zhang and Clark (2008a). As a
result, constraints to the word size must be used to ensure linear time complexity.
For training, exactly the same large margin objective is taken.

A slightly different largemargin objective is used byWatanabe and Sumita (2015)
for constituent parsing. They adopt the transition system of Sagae et al. (2005)
and Zhang and Clark (2009), where a state can be defined as a pair (σ, β), similar
to the dependency parsing case in Sect. 1.1. Here σ contains partially constructed
constituent trees, and β contains next incoming words. A set of transition actions
including Shift,Reduce andUnary are used to consume input words and construct
output structures. Interested readers can refer to (Sagae and Lavie 2005) and (Zhang
and Clark 2009) for more details on the state transition system.

Watanabe and Sumita (2015) represent σ using a stack LSTM structure, which
dynamically change, and is similar to that of Dyer et al. (2015). β is represented
using a standard LSTM. Given this context representation, the score of a next action
a can be denoted as f (s, a), where s represents the current state and f is the network
structure. Similar to the case of Zhang et al. (2016a), the score of a state sk is the
sum of all actions that lead to the state, as shown in Fig. 4.9:

score(sk) =
k∑

i=1

f (si−1, ai)

Similar to Zhang et al. (2016a), beam search is used to find the highest scored
state over all structures. For training, however,max-violation update is used instead of
early update (Huang et al. 2012), where the negative example is chosen by running
beam search until the terminal state is reached, and then finding the intermediate
state that gives the largest violation of the score margin between gold-standard and
incorrect structures. Update is executed at the max-violation step. In addition, rather
than using themaximumviolation state as the negative example, all incorrect states in
the beam are used as negative examples to enlarge the sample space, and the training
objective is defined to minimize the loss:

L = max
(
Esk∈Ascore(sk) − score(sgk + 1)

)
.

http://dx.doi.org/10.1007/978-981-10-5209-5_1
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Here A represents the agenda, and the expectation Esk∈Ascore(sk) is calculated
based on probabilities of each sk in the agenda using model scores:

p(sk) = exp(score(sk))
∑

sk∈A exp(score(sk))
.

4.5.3.2 Maximum Likelihood Methods

Maximum likelihood objectives for neural structured prediction are inspired by log-
linear models. In particular, given the score of an output y score(y), a log-linear
model calculates its probability as

p(y) = exp(score(y))
∑

y∈Y exp(score(y))
,

where Y represents the set of all outputs. When y is a structure, this log-linear model
becomes CRF under certain constraints.

A line of work investigate a similar objective by assuming the structured score
calculation in Fig. 4.9 for transition-based models, where the score for a state sk is
calculated as

score(sk) =
k∑

i=1

f (si−1, ai).

The definition of f and a are the same as in the previous section. Given this score
calculation, the probability of the state sk is

p(sk) = exp(score(sk))
∑

sk∈S exp(score(sk))
,

Fig. 4.9 Structured score calculation
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where S denotes all possible states after k transition actions. Apparently, the number
of states in S grows exponentially with k, as the number of structures they contain. As
a result, it is difficult to estimate the denominator for maximum likelihood training,
as in the case of CRF. For CRF, the issue is solved by imposing constraints on feature
locality, so that marginal probabilities of features can be used to estimate the partition
function. For transition-based models, however, such feature locality is nonexistent.

Zhou et al. (2015) first addressed this issue by using all states in the agenda to
approximate S during beam search. They perform beam search and online learning,
using early update in the same way as Zhang et al. (2016a). On the other hand,
during each update, rather than calculating a score margin between positive and
negative examples, Zhou et al. (2015) maximize the approximated likelihood of the
gold-standard stage sg , where

p(sg) = exp(score(sg))
∑

sk∈A exp(score(sk))
,

where A represents the agenda, as in the last section.
This method uses the probability mass of states in the agenda to approximate the

partition function, and hence is referred to as beam contrastive learning by Zhou et al.
(2015). Zhou et al. (2015) applied the training objective to the task of transition-based
dependency parsing, achieving better results compared to Zhang and Nivre (2011).

Andor et al. (2016) applied thismethod tomore structured prediction tasks, includ-
ing part-speech-tagging. They also obtained significantly better results than Zhou
et al. (2015) by using a better baseline method and doing more thorough hyper-
parameter search. In addition, Andor et al. (2016) gave a theoretical justification that
the globally normalized model outperforms locally trained baselines.

4.5.3.3 Maximum Expected F1

Another training objective that has been tried is maximum F1, which Xu et al. (2016)
used for transition-based CCG parsing (Zhang and Clark 2011a). In particular, Xu
et al. (2016) use beam search to find the highest scored state, where the score of
each state is given by the calculation method of Fig. 4.9. Given state sk , the score is
calculated as

score(sk) =
k∑

i=1

g(si−1, ai).

Here the function g represents a network model, and a represents a transition
action. The difference between the network function g of Xu et al. (2016) and the
network function of all aforementioned methods is that g uses a softmax layer to
normalize the output actions, while f does not use nonlinear activation functions
over scores of different actions given a state.

The training objective of Xu et al. (2016) is
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Esk∈AF1(sk) =
∑

sk∈A
p(sk)F1(sk),

where A denotes the beam after parsing finishes, and F1(sk) denotes the F1 score of
sk as evaluated by standard metrics against the gold-standard structure.

Xu et al. (2016) calculates p(sk) using

p(sk) = exp(score(sk))
∑

sk∈A exp(score(sk))

which is consistent to all aforementioned methods.

4.6 Summary

In this chapter, we provided an overview on the application of deep learning to lexical
analysis and parsing, two standard tasks in NLP, and compare the deep learning
approach with traditional statistical methods.

First, we introduced the definitions of lexical analysis and parsing. They model
structured properties of words and their relationships to each other. The commonly
used techniques in these tasks include word segmentation, part-of-speech tagging,
and parsing. The most important characteristic of lexical analysis and parsing is that
the outputs are structured.

Then, we introduced two types of traditional methods usually used to solve
these structured prediction tasks: graph-basedmethods and transition-basedmethods.
Graph-basedmethods exploit output structures based on their characteristics directly,
while transition-basedmethods transform the output construction processes into state
transition processes, and subsequently process sequences of transition actions.

Finally, we in this chapter introduced methods using neural network and deep
learning models in both graph-based and transition-based structured prediction.

While recent advances have shown that neural network models can be used effec-
tively to augment or replace statistical models in the traditional graph-based and
transition-based frameworks for lexical analysis and parsing, they have begun to
illustrate the strong representation power of neural networks which can go beyond
the function of mere modeling. For example, in the traditional statistical modeling
approach, it has been commonly understood that local training leads to weaknesses
such as label bias (Lafferty et al. 2001). However, the model and method described
in (Dozat andManning 2016) achieve state-of-the-art accuracy results using a neural
model that factors out single dependency arcs as training objectives, without globally
training the probabilities of a dependency tree. This suggests that structural corre-
lations between output labels can be obtained by the strong representation of word
sequences using LSTMs. The future direction for lexical analysis and parsing in NLP
will likely be a unification between well-established research on structured learning
and the emerging power of deep learning.
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Chapter 5
Deep Learning in Knowledge Graph

Zhiyuan Liu and Xianpei Han

Abstract Knowledge Graph (KG) is a fundamental resource for human-like com-
monsense reasoning and natural language understanding, which contains rich knowl-
edge about the world’s entities, entities’ attributes, and semantic relations between
different entities. Recent years have witnessed the remarkable success of deep learn-
ing techniques in KG. In this chapter, we introduce three broad categories of deep
learning-based KG techniques: (1) knowledge representation learning techniques
which embed entities and relations in a KG into a dense, low-dimensional, and
real-valued semantic space; (2) neural relation extraction techniques which extract
facts/relations from text, which can then be used to construct/complete KG; (3) deep
learning-based entity linking techniqueswhich bridgeKnowledgeGraphwith textual
data, which can facilitate many different tasks.

5.1 Introduction

With the thriving development of Internet in twenty-first century, the amount of web
information shows an explosive trend, during which people find it is getting harder
and less efficient to extract valuable information, or more precisely, knowledge, from
the huge noisy plaintexts. And then, people start to realize that the world is made
up of entities instead of strings, just as Dr. Singhal said, “things, not strings”. As a
result, the concept of Knowledge Graph comes into the public view.

Knowledge Graph (KG), also known as Knowledge Base, is a significant dataset
organizing human knowledge about the world in a structured form, where the knowl-
edge is represented as concrete entities and the multi-relational abstract concepts
among them. There are mainly two methods when it comes to the construction of
Knowledge Graph. One is using the existing semantics web datasets in Resource
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Description Framework (RDF) with the help of manually annotation. The other is
using machine learning or deep learning method to automatically extract knowledge
from enormous plaintexts in Internet.

Due to such well-structured united knowledge representation, KG can provide
effective structured information about the complicated real world. Hence, it starts to
play an important role in many applications of artificial intelligence, especially the
field of natural language processing and information retrieval such as web search,
question answering, speech recognition, etc., in recent years, attractingwide attention
from both academia and industry.

In this chapter, we will first introduce the basic concepts and typical Knowledge
Graphs in Sect. 5.1, and then, we introduce recent advances of knowledge repre-
sentation learning in Sect. 5.2, relation extraction in Sect. 5.3, and entity linking in
Sect. 5.4. Finally, we give a brief conclusion in Sect. 5.5.

5.1.1 Basic Concepts

A typical KG is usually composed of two elements, entities (i.e., concrete entities and
abstract concepts in real world) and relations between entities. Thus, it arranges all
kinds of knowledge into large quantities of triple facts in the form of (e1,relation,
e2) where e1 indicates the head entity and e2 indicates the tail entity. For instance,
we know thatDonald Trump is the president ofUnited States. This knowledge could
be represented as (Donald Trump, president_of,United States). Furthermore, it
should be noted that in real world, the same head entity and relation may have several
different tail entities. For example, Kaká was a soccer player in Real Madrid and
A.C. Milan football club. We can get such two triples from this common knowledge:
(Kaká, player_of_team, Real Madrid FC), (Kaká, player_of_team, A.C.
Milan). Reversely this situation could also happen when tail entity and relation are
fixed. It is also possible when head and tail entity are both multiple (e.g., the relation
author_of_paper). From this aspect, we can see that KG has great flexibility as
well as the ability to represent knowledge. Through all these triples, knowledge is
thus represented as a huge directed graph, in which entities are considered as nodes
and relations as edges.

5.1.2 Typical Knowledge Graphs

The current Knowledge Graphs can be divided into two categories from the aspect
of capacity and knowledge domain. The graphs in the first category contain great
quantities of triples and well-known common relation, such as Freebase. The graphs
in the second category are comparatively smaller but focus on specific knowledge
domain and usually fine-grained.
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There are several Knowledge Graphs widely used in applications and having great
influence. In the following sections, we will introduce some well-known Knowledge
Graphs.

5.1.2.1 Freebase

Freebase is one of the most popular Knowledge Graphs in the world. It is a large col-
laborative database consisting of data composed mainly of its community members.
It is an online collection of structured data harvested from many sources, including
Wikipedia, Fashion Model Directory, NNDB, MusicBrainz, and other individual,
user-submitted wiki contributions. It also announced an open API, RDF endpoint
and a dataset dump for its users for both commercial and noncommercial use.

Freebase was developed by the American software company Metaweb and ran
publicly since March 2007. In July 2010, Metaweb was acquired by Google, and
Google Knowledge Graph was powered in part by Freebase. In December 2014, the
Freebase team officially announced that the Freebase website would be shut down
together with its API by June 2015. Up to March 24, 2016, Freebase has 58,726,427
topics and 3,197,653,841 facts.

For instance, Fig. 5.1 is the example page of former American president John F.
Kennedy in Freebase. It is easy to notice that the information such as date of birth,
gender, and career are listed in structured form just like a resume.

5.1.2.2 DBpedia

DBpedia (“DB” stands for “dataset”) is a crowdsourced community effort to extract
structured information from Wikipedia and make this information available on the
web. DBpedia allows users to ask sophisticated queries againstWikipedia, and to link
the different datasets on the web to Wikipedia resources, which will make it easier
for the huge amount of information in Wikipedia to be used in some new interesting
ways. The project was started by people at the Free University of Berlin and Leipzig
University, in collaboration with OpenLink Software, and the first publicly available
dataset was published in 2007. The whole DBpedia dataset describes 4.58 million
entities, out of which 4.22 million are classified in a consistent ontology, including
1,445,000 persons, 735,000 places, 123,000 music albums, 87,000 films, 19,000
video games, 241,000 organizations, 251,000 species and 6,000 diseases. The dataset
also features labels and abstracts for these entities in up to 125 different languages.
What is more, due to the reason that DBpedia is linked to Wikipedia’s infobox, it
can make dynamic updates as the information changes.

5.1.2.3 Wikidata

Wikidata is a collaboratively edited Knowledge Base operated by the Wikimedia
Foundation. It is intended to provide a common source of data which can be used by
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Fig. 5.1 The Freebase page of John F. Kennedy

Wikimedia projects such asWikipedia, and by anyone else. The creation of the project
was funded by donations from the Allen Institute for Artificial Intelligence, the
Gordon and BettyMoore Foundation, and Google, Inc., totaling euro 1.3 million. As
for the inside detailed structure, Wikidata is a document-oriented database, focused
on items. Each item represents a topic (or an administrative page used to maintain
Wikipedia) and is identified by a unique number. Information is added to items by
creating statements. Statements take the form of key-value pairs, with each statement
consisting of a property (the key) and a value linked to the property. Up toMay 2017,
the Knowledge Base contains 25,887,362 data items that anyone can edit.
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Fig. 5.2 The Wikidata page of John F. Kennedy

For instance, Fig. 5.2 is the example page of John F. Kennedy inWikidata. It could
be noticed that each relation is also attached to references which anyone can add or
edit.

5.1.2.4 YAGO

YAGO, which stands for Yet Another Great Ontology, is a huge high-quality Knowl-
edge Base developed byMax Planck Institute for Informatics and the Telecom Paris-
Tech University. The knowledge inside is derived from Wikipedia, WordNet, and
GeoNames. Currently, it has knowledge of more than 10 million entities (like per-
sons, organizations, cities, etc.) and contains more than 120 million facts about these
entities. The highlight spots in YAGO could be concluded as follows: First, the accu-
racy of YAGO has been manually evaluated, proving a confirmed accuracy of 95%
and every relation is annotated with its confidence value. Second, YAGO combines
the clean taxonomy of WordNet with the richness of the Wikipedia category system,
assigning the entities to more than 350,000 classes. Third, YAGO is an ontology that
is anchored in both time and space which means it attaches a temporal dimension
and a spacial dimension to many of its facts and entities.
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5.1.2.5 HowNet

HowNet (Dong and Dong 2003) is an online commonsense Knowledge Base unveil-
ing inter-conceptual relations and inter-attribute relations of concepts as connoting in
lexicons of the Chinese and their English equivalents. The main philosophy behind
HowNet is its understanding and interpretation of the objective world. HowNet states
that allmatters (physical andmetaphysical) are in constantmotion and are ever chang-
ing in a given time and space. Things evolve from one state to another as recorded in
the corresponding change in their attributes. Take the instance “human”, for exam-
ple, it is described by the following state of living: birth, aging, sickness, and death.
As a person grows, his age (the attribute-value) also adds up. At the meantime, his
hair color (an attribute) turns white (the attribute-value). It could be concluded that
every object carries a set of attributes and the similarities and the differences between
the objects are determined by the attributes they each carries. Besides attribute,
part is also a significant key philosophy concept in HowNet. It could be understood
that all objects are probably parts of something else while at the same time, all objects
are also the whole of something else. For example, doors and windows are parts of
buildings while meantime buildings are also part of a community. In total, HowNet
contains 271 information structure patterns, 58 semantic structure patterns, 11,000
word instances, and 60,000 Chinese words in all (Fig. 5.3).

In addition, HowNet also lays emphasis on sememes in the construction process,
which are defined as the minimum semantic units of word meanings, and there exists
a limited close set of sememes to compose the semantic meanings of an open set
of concepts. HowNet annotates precise senses to each word, and for each sense,
HowNet annotates the significance of parts and attributes represented by sememes.
For example, the word “apple” actually has two main senses: one is a sort of fruit

Fig. 5.3 The YAGO page of John F. Kennedy
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and the other is a computer brand. Thus, in the first sense, it has the sememe fruit
and in the second it has sememes computer, bring, and SpeBrand.

5.2 Knowledge Representation Learning

In the past years, various specific algorithms have been designed to store and utilize
the information in KG according to its traditional representation (i.e., network rep-
resentation), which is usually very time-consuming and suffers from data sparsity.
Recently, representation learning, which is a subarea of deep learning, has attracted
lots of attentions in different areas including natural language processing and arti-
ficial intelligence. Representation learning aims at embedding the objects into a
dense, low-dimensional, and real-valued semantic space. And knowledge represen-
tation learning is a subarea of representation learning, which focuses on embedding
the entities and relations in KG.

Recent studies reveal that translation-based representation learning methods are
efficient and effective to encode relational facts in KG with low-dimensional repre-
sentations of both entities and relations, which can alleviate the issue of data sparsity
and be further employed to knowledge acquisition, fusion, and inference. TransE
(Bordes et al. 2013) is one of typical translation-base knowledge representation
learning methods, which learns low-dimensional vectors for both entities and rela-
tions and is very simple and effective. TransE regards the relation in a relational
triple as a translation between the embeddings of the head and tail entities, that is,
h + r ≈ t when the triple (h, r, t) holds. And it achieves amazing performance in
the task of Knowledge Graph completion.

Although TransE has achieved great success, it still has issues when modeling
1-to-N, N-to-1, and N-to-N relations. The entity embeddings learnt by TransE are
lacking in discrimination due to these complex relations. Therefore, how to deal with
complex relations is one of the key challenges in knowledge representation learning.
Recently, there are lots of extensions of TransEwhich focus on this challenge. TransH
(Wang et al. 2014b) and TransR (Lin et al. 2015b) are proposed to represent an entity
with different representationswhen involved in different relations. TransHmodels the
relation as a translation vector on a hyperplane and projects the entity embeddings
into the hyperplane with a normal vector. TransR represents entities in the entity
semantic space and uses a relation-specific transform matrix to project it into the
different relation spaces when involved in different relations. Further, researchers
propose two extension of TransR including TransD (Ji et al. 2015) which considers
the information of entities in the projecting matrices and TranSparse (Ji et al. 2016)
which considers the heterogeneity and imbalance of relations via sparse matrices.
In addition, there are many other extensions of TransE which focus on different
characteristics of relations including TransG (Xiao et al. 2015) and KG2E (He et al.
2015) adopt Gaussian embeddings to model both entities and relations; ManifoldE
(Xiao et al. 2016) employs a manifold-based embedding principle in knowledge
representation learning; and so on.
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Besides, TransE still has a problem that only considering direct relations between
entities. To address this issue, Lin et al. (2015a) propose Path-based TransE which
extends TransE to model relational paths by selecting reasonable relational paths and
representing them with low-dimensional vectors. Almost at the same time, there are
others researchers considering relational paths in KG successfully (Garcıa-Durán
et al. 2015) using neural network. Besides, relational path learning has also been
used in the KG-based QA (Gu et al. 2015).

Most existing knowledge representation learning methods discussed above only
focus on the structure information in KG, regardless of the rich multisource infor-
mation such as textual information, type information, and visual information. These
cross-modal information can provide supplementary knowledge of the entities spe-
cially for those entities with less relational facts and is significant when learning
knowledge representations. For textural information, Wang et al. (2014a) and Zhong
et al. (2015) propose to jointly embed both entities and words into a unified seman-
tic space by aligning them with entity names, descriptions, and Wikipedia anchors.
Further, Xie et al. (2016b) propose to learn entity representations based on their
descriptions with CBOW or CNN encoders. For type information, Krompaß et al.
(2015) take type information as constraints of head and tail entity set for each relation
to distinguish entities which belong to the same types. Instead of merely consider-
ing type information as type constraints, Xie et al. (2016c) utilize hierarchical type
structures to enhance TransR via guiding the construction of projection matrices.
For visual information, Xie et al. (2016a) propose image-embodied knowledge rep-
resentation learning to take visual information into consideration via learning entity
representations using their corresponding figures. It is natural that we learn things in
real world with all kinds of multisource information. Multisource information such
as plaintexts, hierarchical types, or even images and videos is of great importance
whenmodeling the complicatedworld and constructing cross-modal representations.
Moreover, other types of information could also be encoded into knowledge repre-
sentation learning to enhance the performance.

5.3 Neural Relation Extraction

To enrich existing KGs, researchers have invested in automatically finding unknown
relational facts, i.e., relation extraction (RE). Relation extraction aims at extracting
relational data from plaintexts. In recent years, as the development of deep learning
(Bengio 2009) techniques, neural relation extraction adopts an end-to-end neural
network to model the relation extraction task. The framework of neural relation
extraction includes a sentence encoder to capture the semantic meaning of the input
sentence and represents it as a sentence vector, and a relation extractor to generate
the probability distribution of extracted relations according to sentence vectors. We
will give an in-depth review of recent works on neural relation extraction.
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Neural relation extraction (NRE) has two main tasks including sentence-level
NRE and document-level NRE. In this section, we will introduce these two tasks in
detail, respectively.

5.3.1 Sentence-Level NRE

Sentence-level NRE aims at predicting the semantic relations between the entity (or
nominal) pair in a sentence. Formally, given the input sentence x which consists
of m words x = (w1,w2, . . . ,wm) and its corresponding entity pair e1 and e2 as
inputs, sentence-level NRE wants to obtain the conditional probability p(r |x, e1, e2)
of relation r (r ∈ R) via a neural network, which can be formalized as

p(r |x, e1, e2) = p(r |x, e1, e2, θ), (5.1)

where θ is parameter of the neural network, and r is a relation in the relation set R.
A basic form of sentence-level NRE consists of three components: (a) an input

encoder which gives a representation for the input words, (b) a sentence encoder
which computes either a single vector or a sequence of vectors representing the orig-
inal sentence, and (c) a relation classifier which calculates the conditional probability
distribution of all relations.

5.3.1.1 Input Encoder

First, a sentence-level NRE system projects discrete source sentence words into
continuous vector space, and obtain the input representation w = {w1; w2; · · · ; wm

of the source sentence.
Word embeddings learn low-dimensional real-valued representation of words,

which can reflect syntactic and semantic relationships between words. Formally,
each word wi is encoded by the corresponding column vector in an embedding
matrix V ∈ R

da×|V |, where V indicates a fix-sized vocabulary.
Position embeddings aim to specify the position information of the word with

respect to two corresponding entities in the sentence. Formally, each word wi is
encoded by two position vectors with respect to the relative distances from the word
to two target entities, respectively. For example, in the sentence New York is a city of
United States, the relative distance from the word city to New York is 3 and United
States is −2.

Part-of-speech tag embeddings represent the lexical information of target word
in the sentence. Due to the fact that word embeddings are obtained from a generic
corpus on a large scale, the information they contain may not be in accordance
with the meaning in a specific sentence, it is necessary to align each word with its
linguistic information, e.g., noun, verb, etc. Formally, each word wi is encoded by
the corresponding column vector in an embedding matrix Vp ∈ R

d p×|V p |, where d p
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is the dimension of embedding vector and V p indicates a fix-sized part-of-speech
tag vocabulary.

WordNet hypernym embeddings aim to take advantages of the prior knowledge
of hypernym to contribute to relation extraction. It is easier to build the link between
different but conceptual similarwordswhengiven eachword’s hypernym information
in WordNet, e.g., noun.food, verb.motion, etc. Formally, each word wi is encoded
by the corresponding column vector in an embedding matrix Vh ∈ R

dh×|V h |, where
dh is the dimension of embedding vector and V h indicates a fix-sized hypernym
vocabulary.

5.3.1.2 Sentence Encoder

Next, the sentence encoder encodes input representations into either a single vector
or a sequence of vectors x. We will introduce the different sentence encoders in the
following.

Convolution neural network encoder (Zeng et al. 2014) is proposed to embed
input sentence using a convolutional neural network (CNN) which extracts local
feature by a convolution layer and combines all local features via a max-pooling
operation to obtain a fixed-sized vector for the input sentence. Formally, as illustrated
in Fig. 5.4, convolution operation is defined as a matrix multiplication between a
sequence of vectors and a convolution matrix W and a bias vector b with a sliding
window. Let us define the vector qi as the concatenation of a sequence of input
representations in the i-th window, we have

[x] j = max
i

[ f (Wqi + b)] j , (5.2)

Fig. 5.4 The architecture of
CNN encoder
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Fig. 5.5 The architecture of
recurrent encoder

where f indicates a nonlinear function such as sigmoid or tangent function.
Further, to better capture the structural information between two entities, piece-

wisemax-pooling operation (Zeng et al. 2015) is proposed instead of traditionalmax-
pooling operation. Piecewise max-pooling operation returns the maximum value in
three segments of the input sentence which are divided into two target entities.

Recurrent neural network encoder (Zhang and Wang 2015) is proposed to
embed input sentence using a recurrent neural network (RNN)which has the capabil-
ity to learn the temporal features. As illustrated in Fig. 5.5, each word representation
vectors are put into recurrent layer step-by-step. For each step i , the network takes
the word representation vector wi and the previous step i − 1’s output hi−1 as inputs,
and then we have

hi = f (wt , hi−1), (5.3)

where f indicates the transform function inside theRNNcell,which can be theLSTM
units (Hochreiter and Schmidhuber 1997) (LSTM-RNNs) or the GRU units (Cho
et al. 2014) (GRU-RNNs). In addition, a bidirectional RNN network is employed to
fully utilize the information of future words when predicting the semantic meaning
in the middle of a sentence.

Next, RNN combines the information from forward and backward network as a
local feature and uses a max-pooling operation to extract the global feature, which
forms the representation of the whole input sentence. The max-pooling layer could
be formulated as

[x] j = max
i

[hi ] j . (5.4)



128 Z. Liu and X. Han

Fig. 5.6 The architecture of
dependency tree-structured
LSTM

Besides max-pooling, word attention can also combine all local feature vectors
together. It uses attentionmechanism (Bahdanau et al. 2014) to learn attentionweights
on each step. Suppose H = [h1, h2, . . . , hm] is the matrix consisting of all output
vectors that produced by the recurrent layer, the whole sentence’s feature vector x is
formed by a weighted sum of each step’s output:

α = softmax(sT tanh(H)) (5.5)

x = HαT , (5.6)

where s is a trainable query vector and sT indicates its transposition.
Besides, Miwa and Bansal (2016) proposed a model that captures both word

sequence and dependency tree substructure information by stacking bidirectional
path-based LSTM-RNNs (i.e., bottom-up and top-down) on bidirectional sequential
LSTM-RNNs. As illustrated in Fig. 5.6, it focuses on the shortest path between the
target entities in the dependency tree because experimental result in (Xu et al. 2015)
shows that these paths are effective in relation classification.

Recursive neural network encoder aims to extract features from the information
of syntactic parsing tree structure because the syntactic information is important for
extracting relations from sentences. Generally, these encoders treat the tree structure
inside the syntactic parsing tree as a strategy of composition as well as direction for
recursive neural network to combine each word’s embedding vector.

Socher et al. (2012) proposed a recursive matrix-vector model (MV-RNN) which
captures constituent parsing tree structure information by assigning a matrix-vector
representation for each constituent. The vector captures the meaning of constituent
itself and the matrix represents how it modifies the meaning of the word it combines
with. Suppose we have two children components l, r and their father component p,
the composition can be formulated as follows:
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Fig. 5.7 The architecture of matrix-vector recursive encoder

p = f1(l, r) = g

(
W1

[
Ba
Ab

])
(5.7)

P = f2(l, r) = W2

[
A
B

]
, (5.8)

where a, b, p are embedding vectors for each components and A, B, P are matri-
ces, W1 is a matrix that maps transformed words into another semantic space, the
element-wise function g is an activation function, and W2 is a matrix that maps two
matrices into one combined matrix P with the same dimension. The whole process
is illustrated in Fig. 5.7. And then, MV-RNN selects the highest node of the path in
the parse tree between the two target entities to represent the input sentence.

In fact, the RNN unit here can be replaced by LSTM units or GRU units. Tai et al.
(2015) propose two types of tree-structured LSTMs including the Child-Sum Tree-
LSTM and the N-ary Tree-LSTM to capture constituent or dependency parsing tree
structure information. For the Child-Sum Tree-LSTM, given a tree, let C(t) denote
the set of children of node t . Its transition equations are defined as follows:
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ĥt =
∑
k∈C(t)

hk, (5.9)

it = σ(W(i)wt + Ui ĥt + b(i)), (5.10)

ftk = σ(W( f )wt + U f hk + b( f )) (k ∈ C(t)), (5.11)

ot = σ(W(o)wt + Uoĥt + b(o)), (5.12)

ut = tanh(W(u)wt + Uu ĥt + b(u)), (5.13)

ct = it � ut +
∑
k∈C(t)

ftk � ct−1, (5.14)

ht = ot � tanh(ct ). (5.15)

The N-ary Tree-LSTM has similar transition equations with the Child-Sum Tree-
LSTM. The only difference is that it limits the tree structures has at most N branches.

5.3.1.3 Relation Classifier

Finally, when obtaining the representation x of the input sentence, relation classifier
calculates the conditional probability p(r |x, e1, e2) via a softmax layer as follows:

p(r |x, e1, e2) = softmax(Mx + b), (5.16)

where M indicates the relation matrix and b is a bias vector.

5.3.2 Document-Level NRE

Although existing neural models have achieved great success for extracting novel
relational facts, it always suffers from the insufficiency of training data. To address the
issue, researchers proposed distant supervision assumption to automatically generate
training data via aligning KGs and plaintexts. The intuition of distant supervision
assumption is that all sentences that contain two entities will express their relations
in KGs. For example, (New York, city of, United States) is a relational fact in
KGs. Distant supervision assumption will regard all sentences that contain these two
entities as valid instances for relation city of. It offers a natural way to utilize
information from multiple sentences (document-level) rather than single sentence
(sentence-level) to decide if a relation holds between two entities.

Therefore, document-level NRE aims to predict the semantic relations between
an entity pair using all involved sentences. Given the input sentence set S which
consists of n sentences S = (x1, x2, . . . , xn) and its corresponding entity pair e1
and e2 as inputs, document-level NRE wants to obtain the conditional probability
p(r |S, e1, e2) of relation r (r ∈ R) via a neural network, which can be formalized as
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p(r |S, e1, e2) = p(r |S, e1, e2, θ). (5.17)

A basic form of document-level NRE consists of four components: (a) an input
encoder similar to sentence-level NRE, (b) a sentence encoder similar to sentence-
level NRE, (c) a document encoder which computes either vector representing all
related sentences, and (d) a relation classifier similar to sentence-level NRE which
takes document vector as input instead of sentence vector. In this next, we will
introduce the document encoder and in detail.

5.3.2.1 Document Encoder

The document encodes all sentence vectors into either single vector S. We will
introduce the different document encoders in the following.

Random Encoder. It simply assumes that each sentence can express the rela-
tion between two target entities and randomly select one sentence to represent the
document. Formally, the document representation is defined as

S = xi (i = 1, 2, . . . , n), (5.18)

where xi indicates the sentence representation of xi and i is a random index.
Max Encoder. In fact, as introduced above, not all sentences containing two

target entities can express their relations. For example, the sentence “New York City
is the premier gateway for legal immigration to the United States” does not express
the relation city_of. Hence, in (Zeng et al. 2015), they follow the at-least-one
assumption which assumes that at least one sentence that contains these two target
entities can express their relations, and select the sentence with highest probability
for the relation to represent the document. Formally, the document representation is
defined as

S = xi (i = argmaxi p(r |xi , e1, e2)). (5.19)

Average Encoder. Both random encoder or max encoder use only one sentence to
represent the document, which ignores the rich information of different sentences. To
exploit the information of all sentences, Lin et al. (2016) believe that the representa-
tion S of the document depends on all sentences’ representations x1, x2, . . . , xn . Each
sentence representation xi can give the relation information about two entities for
input sentence xi . The average encoder assumes that all sentences contribute equally
to the representation of the document. It means the embedding S of the document is
the average of all the sentence vectors:

S =
∑
i

1

n
xi . (5.20)
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Attentive Encoder. Due to the wrong label issue brought by distant supervision
assumption inevitably, the performance of average encoder will be influenced by
those sentences that contain no related information. To address this issue, Lin et al.
(2016) further propose to employ a selective attention to de-emphasize those noisy
sentence. Formally, the document representation is defined as a weighted sum of
sentence vectors:

S =
∑
i

αixi , (5.21)

where αi is defined as

αi = exp(xiAr)∑
j exp(x jAr)

, (5.22)

where A is a diagonal matrix and r is the representation vector of relation r .

5.3.2.2 Relation Classifier

Similar to sentence-level NRE, when obtaining the document representation S, rela-
tion classifier calculates the conditional probability p(r |S, e1, e2) via a softmax layer
as follows:

p(r |S, e1, e2) = softmax(M′S + b′), (5.23)

where M′ indicates the relation matrix and b′ is a bias vector.

5.4 Bridging Knowledge with Text: Entity Linking

KnowledgeGraph contains rich knowledge about theworld’s entities, their attributes,
and semantic relations between different entities. Bridging Knowledge Graph with
textual data can facilitate many different tasks, such as information extraction, text
classification, and question answering. For example, it is helpful for understanding
“Jobs leaves Apple” if we knew “Steve Jobs is CEO of Apple Inc.”.

Currently, the main research issue in bridging Knowledge Graph with tex-
tual data is entity linking (EL) (Ji et al. 2010). Given a set of name mentions
M = {m1,m2, . . . ,mk} in a document d, and a Knowledge Graph K B containing a
set of entities E = {e1, e2, . . . , en}, an entity linking system is a function δ : M → E
which maps name mentions to their referent entities in K B. Fig. 5.8 shows an exam-
ple, where an EL systemwill identify the referent entities of the three entity mentions
WWDC, Apple, and Lion correspondingly are Apple Worldwide Developers Confer-
ence, Apple Inc. and, Mac OS X Lion. Based on the entity linking results, all knowl-
edge about these entities in K B can be used to understand the text, for example, we
can classify the given document into IT category, rather than into Animal category
based on the knowledge “Lion is an Operation System”.
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The main challenges for entity linking are the name ambiguity problem and the
name variation problem. The name ambiguity problem is related to the fact that a
name may refer to different entities in different contexts. For example, the name
Apple can refer to more than 20 entities in Wikipedia, such as fruit Apple, the IT
company Apple Inc., and the Apple Bank. The name variation problem means that an
entity can be mentioned in different ways, such as its full name, aliases, acronyms,
and misspellings. For example, the IBM company can be mentioned using more than
10 names, such as IBM, International Business Machine, and its nickname Big Blue.

To solve the name ambiguity problem and the name variation problem, many
approaches have been proposed for entity linking (Milne and Witten 2008; Kulkarni
et al. 2009; Ratinov et al. 2011; Han and Sun 2011; Han et al. 2011; Han and Sun
2012). In the following, we first describe a general framework for entity linking,
and then we introduce how deep learning techniques can be used to enhance EL
performance.

5.4.1 The Entity Linking Framework

Given a document d and a Knowledge Graph K B, an entity linking system links the
name mentions in the document as follows.

Name Mention Identification. In this step, all name mentions in a document
will be identified for entity linking. For example, an EL system should identify
three mentions {WWDC, Apple, Lion} from the document in Fig. 5.8. Currently,
most EL systems employ two techniques for this task. One is the classical named
entity recognition (NER) technique (Nadeau and Sekine 2007), which can recognize
names of Person, Location, and Organization in a document, and then these entity
names will be used as name mentions for entity linking. The main drawback of NER
technique is that it can only identify limited types of entities, while ignores many

At the WWDC 
conference, 

Apple  
introduces its 
new operating 

system release - 
Lion. 

Document Knowledge Base

Apple Inc. 

MAC OS X Lion 

Steve Jobs 

iPhone

Apple Worldwide 
Developers 
Conference 

California

Fig. 5.8 A demo of entity linking



134 Z. Liu and X. Han

commonly used entities such as Music, Film, and Book. The other technique for
name mention detection is dictionary-based matching, which first constructs a name
dictionary for all entities in a Knowledge Graph (e.g., collected from anchor texts in
Wikipedia Mihalcea and Csomai 2007), and then all names matched in a document
will be used as name mentions. The main drawback of dictionary-based matching
is that it may match many noisy name mentions, e.g., even the stop words is and
an are used as entity names in Wikipedia. To resolve this problem, many techniques
(Mihalcea and Csomai 2007; Milne and Witten 2008) have been proposed to filter
out noisy name mentions.

Candidate Entity Selection. In this step, an EL system selects candidate entities
for each name mention detected in Step 1. For example, a system may identify
{Apple(fruit), Apple Inc., Apple Bank} as the possible referents for name Apple.
Due to the name variation problem, most EL systems rely on a reference table for
candidate entity selection. Specifically, a reference table records all possible referents
of a name using (name, entity) pairs, and reference tables can be collected from
Wikipedia anchor texts (Milne and Witten 2008), web (Bollegala et al. 2008), or
query log (Silvestri et al. 2009).

Local Compatibility Computation. Given a namementionm in document d and
its candidate referent entities E = {e1, e2, . . . , en}, a critical step of EL systems is
to compute the local compatibility sim(m, e) between mention m and entity e, i.e.,
estimate how likely the mention m will be linked to the entity e. Based on the local
compatibility scores, a name mention m will be linked to the entity which has the
largest compatibility score with it:

e∗ = argmaxe sim(m, e). (5.24)

For example, to determine the referent entity of the name apple in the following
sentence:

The apple tree is a deciduous tree in the rose family

we need to compute its compatibility with entities Apple(fruit) and Apple Inc., and
finally link apple with Apple(fruit) based on the contextual words “tree”, “rose fam-
ily”, etc.

Currently, many approaches have been proposed for local compatibility compu-
tation (Milne andWitten 2008; Mihalcea and Csomai 2007; Han and Sun 2011). The
essential idea is to extract discriminative features (e.g., important words, frequent
co-occur entities, attribute values) from the mention’s context and the description of
a specific entity (e.g., the Wikipedia page of the entity), and then the compatibility
is determined by their shared common features.

Global Inference. It has long been proven that global inference can significantly
increase the performance of entity linking. The underlying assumption of global
inference is the topic coherence assumption, i.e., all entities in a document should
semantically related to the document’s main topics. Based on this assumption, a
referent entity should not only compatible with its local context but also should
coherent with other referent entities in the same document. For example, if we know



5 Deep Learning in Knowledge Graph 135

the referent entity of the name mention Lion is Mac OSX(Lion) in Fig. 5.8, we can
easily determine the referent entity of Apple is Apple Inc. using the semantic rela-
tion Product-of(Apple Inc., Mac OSX(Lion)). These examples strongly suggest that
the entity linking performance could be improved by resolving the entity linking
problems in the same document jointly, rather than independently.

Formally, given all mentions M = {m1,m2, . . . ,mk} in a document d, a global
inference algorithm aims to find the optimal referent entities which will maximize
the global coherence score:

[e∗
1, . . . , e

∗
k ] = argmax

(∑
i

sim(mi , ei ) + Coherence(e1, e2, . . . , ek)

)
. (5.25)

In recent years, many global inference algorithms have been proposed for entity
linking, including graph-based algorithms (Han et al. 2011; Chen and Ji 2011), topic
model-based methods (Ganea et al. 2016; Han and Sun 2012), and optimization-
based algorithms (Ratinov et al. 2011; Kulkarni et al. 2009). These methods differ
with each other in how their model the document coherence, and how they infer the
global optimal EL decisions. For example, Han et al. (2011) model the coherence as
the sum of semantic relatedness between all referent entities:

Coherence(e1, e2, . . . , ek) =
∑
(i, j)

SemanticRelatedness(ei , e j ) (5.26)

then the global optimal decisions are obtained through a graph random walk algo-
rithm. By contrast, Han and Sun (2012) propose an entity-topic model, where the
coherence is modeled as the probability of generating all referent entities from a
document’s main topics, and the global optimal decisions are obtained through a
Gibbs sampling algorithm.

5.4.2 Deep Learning for Entity Linking

In this section, we introduce how to employ deep learning techniques for entity link-
ing. As introduced above, one main problem of EL is the name ambiguity problem;
thus, the key challenge is how to compute the compatibility between a namemention
and an entity by effectively using contextual evidences.

It has been observed that the performance of entity linking heavily depend on
the local compatibility model. Existing studies typically use handcrafted features to
represent different types of contextual evidences (e.g., mention, context, and entity
description), and measure the local compatibility using heuristic similarity measures
(Milne and Witten 2008; Mihalcea and Csomai 2007; Han and Sun 2011). These
feature-engineering-based approaches, however, have the following drawbacks:
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• Feature engineering is labor-intensive, and it is difficult to manually design dis-
criminative features. For example, it is challenging to design features which can
capture the semantic similarity between the words cat and dog.

• The contextual evidences for entity linking are usually heterogeneous andmaybe at
different granularities. The modeling and exploitation of heterogeneous evidences
are not straightforward using handcrafted features. Till now, many different kinds
of contextual evidences have been used for entity linking, including entity name,
entity category, entity description, entity popularity, semantic relations between
entities, mention name, mention context, mention document, etc. It is hard to
design features which can project all these evidences into the same feature space,
or to summarize all these evidences into a uniform framework for EL decisions.

• Finally, traditional entity linkingmethods usually define the compatibility between
a mention and an entity heuristically, which is weak in discovering and capturing
all useful factors for entity linking decisions.

To resolve the above drawbacks of feature-engineering-based approaches, in
recent years many deep learning techniques have been employed for entity link-
ing (He et al. 2013; Sun et al. 2015; Francis-Landau et al. 2016; Tsai and Roth
2016). In following, we first describe how to represent heterogeneous evidences via
neural networks, then we introduce how to model the semantic interactions between
different types of contextual evidences, and finally, we describe how to optimize
local compatibility measures for entity linking using deep learning techniques.

5.4.2.1 Representing Heterogeneous Evidences via Neural Networks

One main advantage of neural network is it can learn good representations automat-
ically from different types of raw inputs, such as text, image, and video (Bengio
2009). In entity linking, neural networks have been exploited to represent hetero-
geneous contextual evidences, such as mention name, mention context and entity
description. By encoding all contextual evidences in the continuous vector space
which are suitable for entity linking, neural networks avoid the need of designing
handcrafted features. In following, we introduce how to represent different types of
contextual evidences in detail.

Name Mention Representation. A mention m = [m1,m2, ...] is typically com-
posed of one to three words, such as Apple Inc., President Obama. Previous methods
mostly represent a mention as the average of embeddings of the words it contains

vm = average(em1 , em2 , . . .), (5.27)

where emi is the embeddings of word mi , which can be learned using CBOW or
Skip-Gram models (Mikolov et al. 2013).

The above embedding average representation fails to take the importance and the
position of a word into consideration. To resolve this problem, somemethods employ
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Fig. 5.9 Representing local
context via convolutional
neural network

convolutional neural networks (CNN) (Francis-Landau et al. 2016) to represent a
mention, which provides more flexible ability to represent name mentions.

Local Context Representation. The local context around a mention provides
critical information for entity linking decisions. For example, the context words
{tree, deciduous, rose family} in “The apple tree is a deciduous tree in the rose
family” provide critical information for linking the name mention apple. Sun et al.
(2015) propose to represent local context using CNN, where the representation of a
context is composed of the words it contains, by taking both the semantics of words
and their relative positions to the mention into consideration.

Figure5.9 demonstrates how to represent local context using CNN. Formally,
given the words in a context c = [w1,w2, . . . ,w|c|], we represent each word w as
x = [ew, ep], where ew is the embeddings ofwordw and ep is the position embeddings
of word w, with dw and dp are the dimensions of word vector and position vector. A
word wi ’s position is its distance to the mention in the local context.

To represent the context c, we first concatenate all vectors of its words as

X = [x1, x2, . . . , x|c|] (5.28)

then a convolution operation is applied to X, and the output of convolution layer is

Z = [MgX[1,K+1], MgX[2,K+2], . . . , MgX[|c|−K ,|c|]], (5.29)

where Mg ∈ R
n1×n2 is the linear transformation matrix, and K is the context size of

convolution layer.
Since the local context is of variable length, and in order to determine the most

useful feature in each dimension of the feature vector, we perform a max-pooling
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operation(or other pooling operations) to the output of the convolution layer as

mi = max Z(i, .) 0 ≤ i ≤ |c|. (5.30)

Finally, we use the vector mc = [m1,m2, . . .] to represent the local context c of
mention m.

Document Representation. As described in previous researches (He et al. 2013;
Francis-Landau et al. 2016; Sun et al. 2015), the document and the local context of
a name mention provide information at different granularities for entity linking. For
example, a document usually captures larger topic information than local context.
Based on this observation, most entity linking systems treat document and local
context as two different evidences, and learn their representations individually.

Currently, two types of neural networks have been exploited for document rep-
resentation in entity linking. The first is the convolutional neural network (Francis-
Landau et al. 2016; Sun et al. 2015), which is the same as we introduced in local
context representation. The second is denoising autoencoder (DA) (Vincent et al.
2008), which seeks to learn a compact document representation which can retain
maximum information in original document d. Specifically, a document is first rep-
resented as a binary bag-of-words vector xd (He et al. 2013), where each dimension
of x indicates whether word wi is appeared. Given the document representation x,
a denoising autoencoder seeks to learn a model which can reconstruct x given a
random corruption x′ of x through the following process: (1) randomly corrupt x by
applying masking noise(randomly mask 1 or 0) to the original x; (2) encode x into
a compact representation h(x) through an encoding process; (3) reconstruct x from
h(x) through a decoding process g(h(x)). The learning goal of DA is to minimize
the reconstruction error L(x, g(h(x))). Figure5.10 demonstrates the encoding and
decoding process of DA.

DA has several advantages for document representation (He et al. 2013). First, the
autoencoder tries to learn a compact representation of a document, and therefore can
group similar words into clusters. Second, by randomly corrupting original inputs,
DA can capture general topics and ignore meaningless words, such as function words

Fig. 5.10 DA and reconstruction sampling
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is, and, or, etc. Third, autoencoder can be repeatedly stacked on top of previous
learned h(x); therefore, DA can learnmultiple levels of representation of a document.

Entity Knowledge Representation. Currently, most entity linking systems use
Wikipedia (or Knowledge Bases derived from Wikipedia, such as Yago, DBPedia,
etc.) as its target Knowledge Base.Wikipedia contains rich knowledge about entities,
such as title, description, infobox containing its important attributes, semantic cate-
gories, and sometimes its relations with other entities. For example, Fig. 5.11 shows
Apple Inc.’s knowledge contained in Wikipedia. In following, we describe how to
represent the evidence from entity knowledge using neural networks.

• Entity Title Representation. As the same with name mention, an entity title is
typically composed of one to three words; therefore, most entity linking systems
employ the same neural networks as in name mention representation to represent
entity titles, i.e., average of word embeddings or CNN.

• Entity Description. Currently, most entity linking systems model entity descrip-
tion as a plain document, and learn its representation as the same with document
representation, i.e., via CNN or DA.

From the above introduction, deep learning techniques propose a family of neural
networks for representing contextual evidences, from word embeddings, denoising
auto-encoder, to convolutional neural networks. These neural networks can effec-
tively learn the representations of contextual evidences, without the need of hand-
crafted features.

In recent years, many other types of evidences have also been exploited for entity
linking. For instance, entity popularity which tells the likelihood of an entity appear-
ing in a document, semantic relationswhich capture the semantic association/relation
between different entities (e.g., CEO-of(Steve Jobs, Apple Inc.) and Employee-
of(Michael I. Jordan, UC Berkeley)), categories which provide key generalization
information for an entity(e.g., apple ISA fruit, Steve Jobs is a Businessman, Michael
Jeffery Jordan ISA NBA player). The representation of these contextual evidences
using neural networks is still not straightforward. For future work, it may be help-
ful to design other neural networks which can effectively represent these contextual
evidences.

5.4.2.2 Modeling Semantic Interactions Between Contextual Evidences

As shown in above, there exist many types of contextual evidences for entity link-
ing. To make accurate EL decision, an EL system needs to take all different types
of contextual evidences into consideration. Furthermore, in recent years, the task
of cross-lingual entity linking makes it essential to compare contextual evidences
in different languages. For example, an EL system needs to compare the Chinese
name mention “pingguo(Apple) fabu(released) xin(new) iPhone” with the English
description of “Apple Inc.” in Wikipedia for Chinese-to-English entity linking.

To take all contextual evidences into consideration, recent studies have employed
neural networks to model the semantic interactions between different context evi-
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Fig. 5.11 The information of Apple Inc. in Wikipedia

dences. Generally, two strategies have been used to model the semantic interactions
between different contextual evidences:

• The first is to map different types of contextual evidences to the same continuous
feature space via neural networks, and then the semantic interactions between
contextual evidences can be captured using the similarities (mostly the cosine
similarity) between their representations.

• The second is to learn a new representationwhich can summarize information from
different contextual evidences, and then to make entity linking decisions based on
the new representation.

In following, we describe how these two strategies are used in entity linking
systems.

In Francis-Landau et al. (2016), it learns convolutional neural networks to project
name mention, mention’s local context, source document, entity title, and entity
description into the same continuous feature space; then, the semantic interactions
between different evidences are modeled as the similarities between their represen-
tations. Specifically, given the continuous vector representations learned by CNN,
Francis-Landau et al. (2016) capture the semantic interactions between a mention
and an entity as

f(c, e) = [cos(sd , en), cos(sc, en), cos(sm, en), cos(sd , ed), cos(sc, ed), cos(sm, ed)],
(5.31)

where sd , sm , and sc correspondingly are the learned vectors of mention’s document,
context, and name, and en and ed are correspondingly the learned vectors of entity’s
name and description. Finally, the above semantic similarities are combined with
other signals such as link counts to predict the local compatibility.

In Sun et al. (2015), it learns a new representation for every mention, which con-
sists of evidences from mention’s name and local context based on their represen-
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tations. Specifically, the new representation uses neural tensor network to compose
mention vector(vm) and context vector(vc):

vmc = [vm, vc]T [Mappr
i ][1,L][vm, vc]. (5.32)

In this way, the semantic interactions between different contextual evidences are
summarized into the new feature vector vmc. Sun et al. (2015) also learn a new
representation for each entity by composing its entity name representation and entity
category representation. Finally, the local compatibility between a mention and an
entity is calculated as the cosine similarity between their new representations.

In Tsai and Roth (2016), it proposes a multilingual embedding method for cross-
lingual entity linking. Cross-lingual entity linking aims to ground mentions written
in non-English documents to entries in the English Wikipedia. Tsai and Roth (2016)
project words and entity names in both the foreign language and in English into a new
continuous vector space, and then the similarity between a foreign language men-
tion and English Wikipedia entries can be effectively calculated for entity linking.
Specifically, given the embeddings of the aligned English and foreign language titles
Aen ∈ R

a×k1 and A f ∈ R
a×k2 , where a is the aligned title number, k1 and k2 corre-

spondingly are the embedding dimensions of English and foreign language, Tsai and
Roth (2016) apply a canonical correlation analysis (CCA) to these two matrices:

[Pen, P f ] = CCA(Aen, A f ). (5.33)

Then, the English embeddings and the foreign language embeddings are projected
into a new feature space as

E′
en = EenPen, (5.34)

E′
f = E f P f , (5.35)

where Een and E f is the original embeddings of all words in English and foreign
language, and E′

en and E′
f is the new embeddings of all words in English and foreign

language.

5.4.2.3 Learning Local Compatibility Measures

Both the contextual evidence representation learning and the semantic interaction
modeling rely on a large set of parameters for good performance. Deep learning
techniques provide an end-to-end framework, which can effectively optimize all
parameters using back-propagation algorithm and gradient-based optimization algo-
rithms. In Fig. 5.12, we show a commonly used architecture for local compatibility
learning. We can see that mention’s evidence and entity’s evidence will be first
encoded into a continuous feature space using contextual evidence representation
neural networks, then compatibility signals between mention and entity will be com-
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puted using semantic interaction modeling neural networks, and finally, all these
signals will be summarized into the local compatibility score.

To learn the above neural network for local compatibility, we need to collect
entity linking annotations (d, e,m) from different resources, e.g., from Wikipedia
hyperlinks. Then, the training objective is to minimize the ranking loss:

L =
∑
(m,e)

L(m, e), (5.36)

where L(m, e) = max{0, 1 − sim(m, e) + sim(m, e′)} is the pairwise ranking cri-
terion for each training instance (m, e), which gives a penalize if the top 1 ranked
entity e′ is not the true referent entity e.

We can see that, in the above learning process, deep learning techniques can
optimize the similarity measure by fine-tuning the mention representation and entity
representation, and learning the weights for different compatibility signals. In this
way, it usually can achieve better performance than heuristically designed similarity
measures.

5.5 Summary

KnowledgeGraph is a fundamental knowledge repository for natural language under-
standing and commonsense reasoning, which contains rich knowledge about the
world’s entities, their attributes, and semantic relations between entities.

Fig. 5.12 A general framework for local compatibility learning
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In this chapter, we introduce several important Knowledge Graphs, including
DBPedia, Freebase, Wikidata, Yago, and HowNet. Afterwards, we introduce three
important tasks for Knowledge Graph and describe how deep learning techniques
can be applied to these issues: the first is representation learning, which can be used
to embed entities, relations into a continuous feature space; the second is neural
relation extraction, which shows how to construct Knowledge Graph by extracting
knowledge from web pages and texts; the third is entity linking, which can be used
to bridge knowledge with text. The deep learning techniques are used to embed
entities and relations for Knowledge Graph representation, and to represent relation
instances in relation extraction for Knowledge Graph construction, and to represent
heterogeneous evidences for entity linking. The above techniques will provide a
solid foundation for understanding, representing, constructing, and utilizing KGs
in different tasks, e.g., question answering, text understanding and commonsense
reasoning.

Besides benefiting KG construction, knowledge representation learning provides
us an exciting approach for the application of KGs. In future, it will be important
to explore how to better take KGs into consideration of deep learning models for
natural language understanding and generation, and develop knowledgeable neural
models for natural language processing.
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Chapter 6
Deep Learning in Machine Translation

Yang Liu and Jiajun Zhang

Abstract Machine translation (MT) is an important natural language processing
task that investigates the use of computers to translate human languages automati-
cally. Deep learning-based methods have made significant progress in recent years
and quickly become the new de facto paradigm ofMT in both academia and industry.
This chapter introduces two broad categories of deep learning-based MT methods:
(1) component-wise deep learning for machine translation that leverages deep learn-
ing to improve the capacity of the main components of SMT such as translation
models, reordering models, and language models; and (2) end-to-end deep learning
for machine translation that uses neural networks to directly map between source
and target languages based on the encoder–decoder framework. The chapter closes
with a discussion on challenges and future directions of deep learning-based MT.

6.1 Introduction

Machine translation, which aims at translating natural languages automatically using
machines, is an important task in natural language processing. Due to the increasing
availability of parallel corpora, data-drivenmachine translation has become the dom-
inant method in the MT community since 1990s. Given sentence-aligned bilingual
training data, the goal of data-driven MT is to acquire translation knowledge from
data automatically, which is then used to translate unseen source language sentences.

Statisticalmachine translation (SMT) is a representative data-driven approach that
advocates the use of probabilistic models to describe the translation process. While
early SMT focused on generative models treating words as the basic unit (Brown
et al. 1993), discriminative models (Och and Ney 2002) that use features defined on
phrases and parses (Koehn et al. 2003; Chiang 2007) have been widely used since
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2002. However, discriminative SMT models face a severe challenge: data sparsity.
Using discrete symbolic representations, SMT is prone to learn poor estimates of
model parameters on low-count events. In addition, it is hard to design features
manually to capture all translation regularities due to the diversity and complexity
of natural languages.

Recent years have witnessed the remarkable success of deep learning applica-
tions in MT. Surpassing SMT in leading international MT evaluation campaigns,
deep learning-based MT has quickly become the new de facto paradigm for com-
mercial online MT services. This chapter introduces two broad categories of deep
learning-based MT methods: (1) component-wise deep learning for machine trans-
lation (Devlin et al. 2014) that leverages deep learning to improve the capacity of the
main components of SMT such as translation models, reordering models, and lan-
guage models; and (2) end-to-end deep learning for machine translation (Sutskever
et al. 2014; Bahdanau et al. 2015) that uses neural networks to directly map between
source and target languages based on an encoder–decoder framework.

This chapter is organized as follows. We will first introduce the basic concepts
of SMT (Sect. 6.2.1) and discuss existing problems of string matching-based SMT
(Sect. 6.2.2). Then, we will review the applications of deep learning in SMT in detail
(Sects. 6.3.1–6.3.5). Section6.4 is devoted to end-to-end neural machine translation,
covering the standard encoder–decoder framework (Sect. 6.4.1), the attention mech-
anism (Sect. 6.4.2), and recent advances (Sects. 6.4.3–6.4.6). The chapter closes with
a summary (Sect. 6.5).

6.2 Statistical Machine Translation and Its Challenges

6.2.1 Basics

Let x be a source language sentence, y be a target language sentence, θ be a set of
model parameters, and P(y|x; θ) be the translation probability of y given x. The goal
of machine translation is to find the translation with the highest probability ŷ:

ŷ = argmax
y

{
P(y|x; θ)

}
. (6.1)

Brown et al. (1993) use the Bayes’ theorem to rewrite the decision rule in Eq.
(6.1) equivalently as

ŷ = argmax
y

{
P(y; θ lm)P(x|y; θ tm)

P(x)

}
, (6.2)

= argmax
y

{
P(y; θ lm)P(x|y; θ tm)

}
. (6.3)
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where P(x|y; θ tm) is referred to as a translation model and P(y; θ lm) as a language
model. θ tm and θ lm are translation and language model parameters, respectively.

The translationmodel P(x|y; θ tm) is usually defined as a generativemodel, which
is further decomposed via latent structures (Brown et al. 1993):

P(x|y; θ tm) =
∑
z

P(x, z|y; θ tm), (6.4)

where z denotes a latent structure such as word alignment that indicates the corre-
spondence between words in source and target languages.

However, a key limitation of latent-variable generative translation models is that
they are hard to extend due to the intricate dependencies between sub-models. As
a result, Och and Ney (2002) advocate the use of log-linear models for statistical
machine translation to incorporate arbitrary knowledge sources:

P(y|x; θ) =
∑

z exp(θ · φ(x, y, z))∑
y′

∑
z′ exp(θ · φ(x′, y, z′))

, (6.5)

where φ(x, y, z) is a set of features that characterize the translation process and θ is a
set of corresponding feature weights. Note that the latent-variable generative model
in Eq. (6.4) is a special case of the log-linear model because both translation and
language models can be treated as features.

The phrase-based translation model (Koehn et al. 2003) is the most widely used
SMT method in both academia and industry due to its simplicity and effectiveness.
The basic idea of phrase-based translation is to use phrases to memorize word selec-
tion and reordering sensitive to local context, making it very effective in handling
word insertion and omission, short idioms, and free translation.

As shown in Fig. 6.1, the translation process of phrase-based SMT can be divided
into three steps: (1) segmenting the source sentence into a sequence of phrases,
(2) transforming each source phrase to a target phrase, and (3) rearranging target
phrases in an order of target language. The concatenation of target phrases forms

Fig. 6.1 The translation process of phrase-based SMT. It involves three steps: phrase segmentation,
phrase translation, and phrase reordering
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a target sentence. Therefore, phrase-based translation models often consist of three
sub-models: phrase segmentation, phrase reordering, and phrase translation. These
sub-models serve as main features in the log-linear model framework.

The central feature in discriminative phrase-based translation model is translation
rule table or bilingual phrase table. Figure6.2 illustrates translation rule extraction
for phrase-based SMT. Given a parallel sentence pair, word alignment first runs to
find the correspondence between words in the source and target sentences. Then,
bilingual phrases (i.e., translation rules) satisfying a heuristic constraint defined on
word alignment (Och and Ney 2002) are extracted from the word-aligned sentence
pair. Then, the probabilities and lexical weights of bilingual phrases can be estimated
from the training data. Note that the phrase reordering model can also be trained on
the word-aligned parallel corpus.

In a latent-variable log-linear translationmodel, a latent structure z is often referred
to as a derivation, which describes how a translation is generated. During decoding,
searching for the translation with the highest probability needs to take all possible
derivations into consideration:

Fig. 6.2 Translation rule extraction for phrase-based SMT. Given a sentence-aligned parallel cor-
pus, word alignment that indicates the correspondence betweenwords in source and target sentences
is first calculated. Then, bilingual phrases that capture semantically equivalent source and target
word sequences are extracted from the word-aligned parallel corpus
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ŷ = argmax
y

{∑
z

exp
(
θ · φ(x, y, z)

)}
. (6.6)

Unfortunately, it is intractable to calculate the summation because there are expo-
nentially many latent derivations. As a result, standard SMT systems usually approx-
imate Eq. (6.6) with the derivation with the highest probability:

ŷ ≈ argmax
y

{
max

z

{
θ · φ(x, y, z)

}}
. (6.7)

Then, polynomial-time dynamic programming algorithms can be designed to gener-
ate translations efficiently.

6.2.2 Challenges in Statistical Machine Translation

From the SMT training procedure, we can easily see that word alignment is the
core basis and directly influences the quality of the translation rules and the reorder-
ing model. The SMT decoding shows that the probability estimation of translation
rules, the reordering model, and the language model are three key factors which are
combined within a log-linear framework to produce the final translation results.

Forword alignment, the popular solution in SMT is to use unsupervised generative
models (Brown et al. 1993). The generative approaches use symbolic representations
of words, calculate the statistics of word co-occurrences, and learn word-to-word
mapping probabilities to maximize the likelihood of training data. Then, translation
rule probabilities are calculated using maximum likelihood estimation according to
their co-occurrence statistics in the word-aligned sentence pairs (Koehn et al. 2003).
The phrase reordering instances are extracted from the word-aligned bitexts, and the
reordering model is then formalized as a classification problem using the discrete
words as features (Galley andManning 2008). The languagemodel is often built with
an n-gram model and the conditional probability of the current word given the n − 1
history words is estimated based on the relative frequency of the word sequence
(Chen and Goodman 1999).

According to the above analysis, two crucial challenges hinder the improvement
of conventional SMT. The first challenge is data sparsity. Using discrete symbolic
representations, conventional SMT is prone to learn poor estimates of model param-
eters on low-count events. This is undesirable because complex features, which can
capture more contextual information, tend to be observed infrequently on the train-
ing data. As a result, conventional SMT has to use simple features. For example, the
maximum phrase length is usually set to 7 and the language model only uses 4-grams
(Koehn et al. 2003).

The second challenge is feature engineering. Although log-linear models are
capable of incorporating a large number of features (Chiang et al. 2009), it is still
hard to find features expressive enough to cover all translation phenomena. Standard
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practice in feature design for SMT usually begins with designing feature templates
manually, which capture local lexical and syntactic information. Then, millions of
features can be generated by applying the templates to training data. Most of these
features are highly sparse, making it very challenging to estimate feature weights.

In recent years, deep learning techniques have been exploited to address the above
two challenges for SMT. Deep learning is not only capable of alleviating the data
sparsity problem by introducing distributed representations instead of discrete sym-
bolic representations, but also circumventing the feature engineering problem by
learning representations from data. In the following, we will introduce how deep
learning is used to improve a variety of key components of SMT: word alignment
(Sect. 6.3.1), translation rule probability estimation (Sect. 6.3.2), phrase reordering
model (Sect. 6.3.3), language model (Sect. 6.3.4), and model feature combination
(Sect. 6.3.5).

6.3 Component-Wise Deep Learning for Machine
Translation

6.3.1 Deep Learning for Word Alignment

6.3.1.1 Word Alignment

Word alignment aims to identify the correspondence between words in parallel
sentences (Brown et al. 1993; Vogel et al. 1996). Given a source sentence x =
x1, . . . , x j , . . . , xJ and its target translation y = y1, . . . , yi , . . . , yI , the word align-
ment between x and y is defined as z = z1, . . . , z j , . . . , ..., z J in which z j ∈ [0, I ]
and z j = i indicates that x j and yi are aligned. Figure6.2 shows an alignment matrix.

In SMT, word alignment often serves as a latent variable in generative translation
models [see Eq. (6.4)]. As a result, a word alignment model is usually represented
as P(x, z|y; θ). The HMMmodel (Vogel et al. 1996) is one of the most widely used
alignment models, which is defined as

P(x, z|y; θ) =
J∏

j=1

p(z j |z j−1, I ) × p(x j |yz j ), (6.8)

where alignment probabilities p(z j |z j−1, I ) and translation probabilities p(x j |yz j )
are model parameters.

Let {〈x(s), y(s)〉}Ss=1 be a set of sentence pairs. The standard training objective is
to maximize the log-likelihood of the training data:

θ̂ = argmax
θ

{ S∑
s=1

log P(x(s)|y(s); θ)

}
. (6.9)
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Given learned model parameters θ̂ , the best alignment of a sentence pair 〈x, y〉
can be obtained by

ẑ = argmax
z

{
P(x, z|y; θ̂)

}
. (6.10)

6.3.1.2 Feed-Forward Neural Networks for Word Alignment

Although simple and tractable, classical alignment models that use discrete symbolic
representations suffer from a major limitation: they fail to capture more contex-
tual information due to data sparsity. For example, both the alignment probabilities
p(z j |z j−1, I ) and translation probabilities p(x j |yz j ) fail to include the surrounding
context in x and y to better capture alignment regularities.

To address this problem, Yang et al. (2013) propose a context-dependent deep
neural network for word alignment. The basic idea is to enable the alignment model
to capture more context information by exploiting continuous representations. This
can be done by using feed-forward neural networks.

Given a source sentence x = x1, . . . , x j , . . . , xJ , we use x j to denote the vec-
tor representation of the j-th source word x j . Similarly, yi denotes the vector
representation of the i-th target word yi . Yang et al. (2013) propose to model
p(x j |yi ,C(x, j,w),C(y, i,w)) instead of p(x j |yi ) to includemore contextual infor-
mation, where w is a window size and the source and target contexts are defined as

C(x, j,w) = x j−w, . . . , x j−1, x j+1, . . . , x j+w (6.11)

C(y, i,w) = yi−w, . . . , yi−1, yi+1, . . . , yi+w. (6.12)

Therefore, the feed-forward neural network takes the concatenation of word
embeddings of the source and target sub-strings as input:

h(0) = [x j−w; . . . ; x j+w; yi−w; . . . ; yi+w]. (6.13)

Then, the first hidden layer is calculated as

h(1) = f (W(1)h(0) + b(1)), (6.14)

where f (·) is a nonlinear activation function,1 W(1) is the weight matrix at the first
layer, and b(1) is the bias term at the first layer.

Generally, the l-th hidden layer can be recursively computed by

h(l) = f (W(l)h(l−1) + b(l)). (6.15)

1Yang et al. (2013) employ f (·) = htanh(·) in their work.
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Yanget al. (2013) define thefinal layer as a linear transformationwithout activation
function:

tlex (x j , yi ,C(x, j,w),C(y, i,w), θ) = W(L)h(L−1) + b(L). (6.16)

Note that tlex (x j , yi ,C(x, j,w),C(y, i,w), θ) ∈ R is a real-valued score that indi-
cates how likely x j is a translation of yi .

Therefore, the context-dependent translation probability can be obtained by nor-
malizing the scores:

p(x j |yi ,C(x, j,w),C(y, i,w) = exp
(
tlex (x j , yi ,C(x, j,w),C(y, i,w), θ)

)
∑

x∈Vx exp
(
tlex (x, yi ,C(x, j,w),C(y, i,w), θ)

) , (6.17)

where Vx is the source language vocabulary.
In practice, as it is computationally expensive to enumerate all source words

to compute translation probabilities, Yang et al. (2013) only use the translation
score tlex (x j , yi ,C(x, j,w),C(y, i,w), θ) instead. Figure6.3a illustrates the net-
work structure for the translation score calculation.

As for the alignment probability p(z j |z j−1, I ), Yang et al. (2013) employ the
unnormalized alignment score taign(z j |z j−1, x, y) and simplify the calculation as
follows:

talign(z j |z j−1, x, y) = talign(z j − z j−1), (6.18)

where talign(z j − z j−1) ismodeled by 17 parameters, each ofwhich is associatedwith
a specific alignment distance d = z j − z j−1 (from d = −7 to d = 7 and d ≤ −8,
d ≥ 8).

(a) (b)

Fig. 6.3 Deep learning-based word alignment model: a feed-forward neural network for the lexical
translation score prediction; b recurrent neural network for distortion score calculation
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6.3.1.3 Recurrent Neural Networks for Word Alignment

The feed-forward neural network considers only the previous alignment z j−1 when
computing the alignment score talign(z j |z j−1, x, y)) and neglects the history informa-
tion before z j−1. Instead of applying the generative model (see Eq. 6.8) to search the
best word alignment, Tamura et al. (2014) resort to using a recurrent neural network
(RNN) to directly calculate the alignment score of z = z J1 :

sRNN (z J1 |x, y) =
J∏

j=1

talign(z j |z j−1
1 , x j , yz j ). (6.19)

It is easy to see that RNN predicts the alignment score of z j by conditioning it on all
of the history alignments z j−1

1 . Figure 6.3b gives an illustration of the RNN structure
to calculate the score of z j (talign(z j |z j−1

1 , x j , yz j )).
First, the source word x j and the target word yz j are projected into the vector rep-

resentations which are further concatenated to form an input v j . The previous RNN
hidden stateh j−1 is another input and the newhidden stateh j is calculated as follows:

h j = f (Wdv j + Udh j−1 + bd) (6.20)

inwhich f (·) = htanh(·),Wd andUd areweightmatrices, andbd is thebias term.Note
that, in contrast to the classicRNN inwhich the sameweightmatrix is used at different
time steps, Wd , Ud and bd are dynamically determined according to the alignment
distanced = z j − z j−1.FollowingYangetal. (2013),Tamuraet al. (2014)alsochoose
17valuesford,andthereare17differentmatricesforWd (W≤−8,W−7, · · · ,W7,W≥8).
Ud and bd are similar.

Then, thealignmentscoreofz j isobtainedwithalineartransformationofthecurrent
RNN hidden state:

talign(z j |z j−1
1 , x j , yz j ) = Wh j + b. (6.21)

Through extensive experiments, Tamura et al. (2014) report that recurrent neural
networks outperform feed-forward neural networks in word alignment quality on the
same test set and suggest that recurrent neural networks are able to capture longdepen-
dency by trying tomemorize all the history information.

6.3.2 DeepLearning forTranslationRuleProbability
Estimation

Given the word-aligned training sentence pairs, all the translation rules satisfying the
wordalignment canbeextracted. Inphrase-basedSMT,wemayextract ahugenumber
of phrasal translation rules for one source phrase. It becomes a key issue to choose the
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most appropriate translation rules during decoding. Conventionally, translation rule
selection is usually performed according to the rule’s translation probability which is
calculated using the co-occurrence statistics in the bilingual training data (Koehn et al.
2003).Forexample,theconditionalprobability p(yi+l

i |x j+k
j )forthephrasaltranslation

rule 〈x j+k
j , yi+l

i 〉 is computed withmaximum likelihood estimation (MLE):

p(yi+l
i |x j+k

j ) = count (x j+k
j , yi+l

i )

count (x j+k
j )

. (6.22)

TheMLEmethod is prone to encounter the data sparsity problemand the estimated
probability will be incorrect for infrequent phrasal translation rules. Furthermore, the
MLE method cannot capture the deep semantics of the phrasal rules and explore the
largercontextsbeyondthephraseofinterest. Inrecentyears,deeplearning-basedmeth-
ods are proposed to better estimate the quality of a translation rule using distributed
semantic representations andmore contextual information.

For a phrasal translation rule 〈x j+k
j , yi+l

i 〉, Gao et al. (2014) attempt to calculate the

translation score score(x j+k
j , yi+l

i ) in a low-dimensional vector space. Themain idea
of themethod is shown in Fig. 6.4.

Afeed-forwardneuralnetworkwith twohidden layers is employed tomap theword
string (phrase) into an abstract vector representation. Take the source phrase x j+k

j , for
example, it startswith bag-of-words one-hot representationh(0)

x , followed by two hid-
den layers:

Fig. 6.4 Bag-of-words distributed phrase representations for phrasal translation rules and the goal is
to learn evaluation metric (BLEU) sensitive phrase embeddings. The dot product similarity between
source and target phrase is employed as the translation score in SMT
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h(1)
x = f (W(1)

x h(0)
x + b(1)

x ), (6.23)

h(2)
x = f (W(2)

x h(1)
x + b(2)

x ), (6.24)

where theactivation function is set f (·) = tanh(·).h(2)
y for the target phrase yi+l

i canbe
learned in the samemanner.Then, thedotproductbetween the sourceand targetphrase
representationsisusedasthetranslationscore,namely,score(x j+k

j , yi+l
i ) = h(2)

x
Th(2)

y .
The network parameters, such as word embeddings and weight matrix, are optimized
to maximize the score of the phrase pairs which can lead to better translation quality
(e.g., BLEU) in the validation set.

The distributed representation for phrases alleviates the data sparsity problem to
large extent, and the learned phrase presentations are sensitive to evaluation metrics.
However, it is worth noting that, due to bag-of-words modeling, this method cannot
capture thewordorder informationof aphrase,which is very important todetermining
themeaning of a phrase. For example, cat eats fish is totally different from fish eats cat
even though they share the same bag-of-words.

Accordingly,Zhangetal. (2014a, b)propose tomodel thewordorder inaphraseand
capture the semantics of the phrase by using bilingually constrained recursive autoen-
coders(BRAE).Thebasic ideabehindis thatasourcephraseanditscorrect target trans-
lation share the samemeaning, and should share the same semantic vector representa-
tion.TheframeworkofthismethodisillustratedinFig. 6.5.Tworecursiveautoencoders
are employed to learn the initial embeddings (x31, y

4
1) of the source and target phrases

for the rule 〈x31 , y41 〉. A recursive autoencoder applies the same autoencoder for each
node in the binary tree. The autoencoder takes two vector representations (e.g., x1 and
x2) as inputs, and generates the phrase representation (x21) as follows:

Fig. 6.5 Bilingually constrained phrase embeddings using recursive autoencoders that take word
order into consideration. The goal is to learn semantic representation of a phrase
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x21 = f (Wx [x1; x2] + bx ). (6.25)

From x21, the autoencoder tries to reconstruct the inputs:

[x′
1, x′

2] = f (W′
xx21 + b′

x ). (6.26)

Thenetworkparametersareoptimized tominimize thefollowingreconstructionerror:

Erec[x1, x2] = 1

2
‖[x1, x2] − [x′

1, x′
2]‖2. (6.27)

In the recursive autoencoder, the network parameters are trained to minimize the
sum of the reconstruction errors at each node. To capture the semantics of a phrase,
besidesthereconstructionerror, theobjectiveisalsodesignedtominimizethesemantic
distancebetween translationequivalents andmaximize the semanticdistancebetween
non-translationpairssimultaneously.Afterthenetworkparametersandthewordembed-
dingsareoptimized,themethodcanlearnsemanticvectorrepresentationsofanysource
andtargetphrase.Thesimilaritybetweentwophrasesinthesemanticvectorspace(e.g.,
cosine similarity) is used as the translation confidence of the corresponding phrasal
translationrule.Withthehelpofsemanticsimilarities,translationruleselectionismuch
more accurate. Su et al. (2015) andZhang et al. (2017a) propose to enhance theBRAE
model and further improve the translation quality.

The above two methods focus on the phrasal translation rule itself and do not con-
sider much more contexts. Devlin et al. (2014) propose a joint neural network model
aiming at modeling both of the source and target-side contexts to predict translation
probability. The idea is very simple: for a targetword yi to predict,we can track its cor-
respondingsource-sideword(centralsourcewordx j )accordingtothetranslationrule.2

Then, thesourcecontext inawindowcenteringx j canbeobtained, x j−w · · · x j · · · x j+w

(e.g., w = 5). The vector representations of the source context and the target history
translation yi−3yi−2yi−1 are concatenated as the input of a feed-forward neural net-
workas shown inFig. 6.6. Following twohidden layers, a softmax functionoutputs the
probability of the word yi . Since much more contextual information is captured, the
predicted translation probability becomesmuchmore reliable.

However, the source-side context depends on thefix-sizedwindowand cannot cap-
ture the global information. To solve this problem, Zhang et al. (2015) andMeng et al.
(2015) try to learn the semantic representation for the source-side sentence anduse the
global sentence embedding as the additional input to augment the above joint network
model. This kind of methods can perform better when a target word translation needs
the sentence-level knowledge to disambiguate.

2For example, if a phrasal rule 〈you bangjiao, have diplomatic relations〉matches the source
sentence “aozhou shi yu beihan you bangjiao de shaoshu guojia zhiyi”, the central
source word will be bangjiao for predicting the target word relations.
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Fig. 6.6 Joint learning for target translation word prediction with a feed-forward neural network.
The input includes the source-side context surrounding the central word and the target-side history.
The output is the predicted conditional probability of next target word

6.3.3 DeepLearning forReorderingPhrases

For a source language sentence x = x J
1 , phrasal translation rules match the sentence,

segment theword sequence x J
1 into phrase sequence, andmap each source phrase into

the target language phrase using the neural rule selectionmodel discussed in the previ-
oussection.Thenexttaskneedstorearrangethetargetphrasestoproduceawell-formed
translation.Thisphrase reordering task isusuallycastedasabinaryclassificationprob-
lem for any two neighboring target phrases: keep the two phrases in order (mono-
tone)or swap the twophrases.For the twoneighboringsourcephrases x0 = yu beihan,
x1 = you bangjiao, and their translation candidates y0 = with North Korea and
y1 = have the diplomatic relations, the reorderingmodel utilizes only the bound-
arydiscretewordsof the fourphrasesas featuresandadoptsamaximumentropymodel
to predict the reordering probability (Xiong et al. 2006):

p(o|x0, x1, y0, y1) =
∑

i {λi fi (x0, x1, y0, y1, o)}∑′
o

∑
i {λi fi (x0, x1, y0, y1, o′)} , (6.28)

where fi (x0, x1, y0, y1, o) and λi denote the discrete word features and their corre-
sponding feature weights. o indicates the reordering type, o = mono or o = swap.
The reordering model using discrete symbols as features faces a serious issue of data
sparseness. Furthermore, it cannot make full use of the whole phrase information and
fails to capture the similar reordering patterns.
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Fig. 6.7 Aneural phrase reorderingmodel in which four phrases in two phrasal translation rules are
mapped into distributed representations using recursive autoencoders, and a feed-forward network
is employed to predict the probability of reordering

Learning feature representations of the phrases in the real-valued vector space can
alleviate the data sparsity problem and fully exploit the whole phrase information for
reordering. Li et al. (2013, 2014) propose a neural phrase reordering model as shown
inFig. 6.7.Theneural phrase reorderingmodelfirst applies the recursive autoencoders
to learn the distributed representations of the four phrases, x0, y0, x1, y1. Then, a feed-
forwardneural network is employed to convert the four vectors into a scorevector con-
sisting of two elements smono and sswap using the following equation:

[smono, sswap] = tanh(W[x0, y0, x1, y1] + b). (6.29)

Finally, a softmax function is leveraged to normalize the two scores smono and
sswap into twoprobabilities p(mono) and p(swap). Thenetworkparameters andword
embeddings in the neural reordering model are optimized to minimize the following
semi-supervised objective function:

Err = αErec(x
0, x1, y0, y1) + (1 − α)Ereorder ((x

0, y0), (x1, y1)). (6.30)

In which, Erec(x0, x1, y0, y1) is the sum of the reconstruction errors of recursive
autoencodersfor thefourphrasesandEreorder ((x0, y0), (x1, y1)) is thephrasereorder-
ing losswhich iscalculatedwithcross-entropyerror function.α is employed tobalance
these two kinds of errors. This semi-supervised recursive autoencoder demonstrates
that it can automatically group the phrases sharing the similar reordering patterns and
leads tomuch better translation quality.
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6.3.4 DeepLearning forLanguageModeling

Duringphrase reordering, any twoneighboringpartial translations (target phrases) are
composed into a bigger partial translation. The language model performs the task to
measurewhetherthe(partial)translationhypothesisismorefluentthanothers.Thecon-
ventional SMTemploys themost popular count-based n-gram languagemodelwhose
conditional probability is calculated as follows:

p(yi |yi−1
i−n+1) = yii−n+1

yi−1
i−n+1

. (6.31)

Similar to the rule probability estimation and the reordering model, the string-
match-basedn-gramlanguagemodel faces theseveredatasparsityproblemandcannot
take full advantageof the semantically similar but surfacedifferent contexts.Toallevi-
ate this problem, deep learning-based languagemodels are introduced to estimate the
probabilityofawordconditionedon thehistorycontext in thecontinuousvector space.

Bengio et al. (2003) designed a feed-forward neural network as shown in Fig. 6.8a
to learn the n-gram model in the continuous vector space. Vaswani et al. (2013) inte-
grate this neural n-gram language model into SMT. During SMT decoding (phrase
reordering and composition in phrase-based SMT), it is easy to find the partial his-
tory context (e.g., fourwords yi−4, yi−3, yi−2, yi−1) before the currentword yi in each
decodingstep.Thus, theneuraln-grammodelcanbe incorporated into theSMTdecod-
ing stage. Just as Fig. 6.8a illustrates, the fix-sized history words are first mapped into
real-valued vectors which are then combined to feed the following two hidden layers.
Finally, the softmax layer outputs the probability of the current word given the history

(a) (b)

Fig.6.8 Twopopularneural languagemodels:a the feed-forwardneuralnetworkfor languagemodel
which exploits a fix-sized window context; b the recurrent neural network for language model that
takes full advantage of all the history context before the current word
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context p(yi |yi−1
i−4). Large-scale experiments indicate that the neural n-gram language

model could significantly improve the translation quality.
The n-gram language model assumes that generation of the current word depends

only on the previous n − 1 words, which is not the case in practice. In order to relax
this assumption, recurrent neural network (including LSTM andGRU) tries to model
all the history information when predicting the current word. As shown in Fig. 6.8b,
a sentence start symbol y0 =< s > and the initial history context h03 are input into a
recurrent neural network unit. It gets a new history context h1 which is used to predict
the probability of y1 using the following equation:

h1 = RNN (h0, y0). (6.32)

In addition to the simple function (e.g., tanh(Whh0 + Wyy0 + b)), RNN (·) can use
LSTMorGRU.h1 and y1 are thenemployedtoobtain thenewhistoryh2 that isbelieved
toremember y0 to y1.h2 isutilized topredict p(y2|y10).Thisprocess iterates.Whenpre-
dicting theprobabilityof yi , all thehistorycontext y

i−1
0 canbeused.Since the recurrent

neural language model needs the entire history to predict a word while it is very dif-
ficult to record all the history during SMT decoding, this language model is usually
employed to rescore thefinal n-best translation hypotheses.Auli andGao (2014) try to
integrate the recurrent neural languagemodel into the SMTdecoding stagewith addi-
tional efforts and some improvements can be achieved compared to only rescoring.

6.3.5 DeepLearning forFeatureCombination

Suppose that we have two phrasal translation rules4 (x1, y1) and (x2, y2), and they
happen toexactlymatch twoneighboring sourcephrases xki and x

j
k+1 in a test sentence.

Then, these two rules can be composed using the phrase reordering model to obtain
the translation candidate for the longer source phrase x j

i . In this case,weneed to deter-
minewhether themonotone composition y1y2 is better than the swapped composition
y2y1. Based on the above introductions in the previous sections, the two translation
candidates canbeevaluatedwith at least three sub-models: the ruleprobability estima-
tion model, the phrase reordering model, and the language model. We will have three
scores5 foreachof the translationcandidate: st (y1y2), sr (y1y2), sl(y1y2)and st (y2y1),
sr (y2y1),sl(y2y1).Thefinaltaskneedstodesignafeaturecombinationmechanismthat
maps the threemodel scores intooneoverall scoreso that the translationcandidatescan
be compared with each other.

In the lastdecade, the log-linearmodeldominates theSMTcommunity. It combines
all the sub-model scores in a linear way as shown in Fig. 6.9a. The log-linear model

3h0 is usually set to all zeros.
4For example, the two phrasal translation rules are, respectively, (yu beihan,with North Korea)

and (you bangjiao, have the diplomatic relations).
5The scores are usually log-probabilities.
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(a) (b)

Fig. 6.9 Different framework for model feature combination: a log-linear model that combines the
model features in a linear way; b nonlinear neural model which makes full use of the model features
in a nonlinear space

assumes that all the sub-model features interact linearlywith eachother and thus limits
the expressive power of the SMTmodel. In order to capture the complex interactions
between different sub-model features, Huang et al. (2015) propose a neural network
model to combine the feature scores in a nonlinear manner as illustrated in Fig. 6.9b.

Compared to the log-linearmodel, the neural combinationmodelmaps all the sub-
model scores into one overall score using the following equation:

sneural(e) = fo(Wo · fh(Wh · hm1 (x, y))). (6.33)

In which, we omit the bias term in the hidden layer and the output layer for sim-
plification. hm1 (x, y) denotes m sub-model feature scores, such as translation proba-
bility, reordering model probability and language model probability.Wh andWo are
weight matrices for the hidden layer and the output layer, respectively. fh(·) and fo(·)
are activation functions for the hidden layer and the output layer. It is found best to set
fh(·) = sigmoid(·) and set fo(·) to be a linear function.
Parameteroptimizationof theneuralcombinationmodel ismuchmoredifficult than

that of the log-linearmodel. In the log-linearmodel, theweights of the sub-models can
be efficiently tunedwith theMERT(minimumerror rate training)method (Och2003),
which searches the bestweights by enumerating themodel scores of all the translation
candidatesandutilizingtheinteractionsbetweenthelinearfunctionstogenerateawell-
formedsearchspace.However, it is infeasible toobtain the interactionsof thenonlinear
functions employed by the neural combination model. To solve this problem, Huang
et al. (2015) resort to the ranking-based training criteria, and the objective function is
designed as follows:

argminθ
1
N

∑
x∈D

∑
(y1,y2)∈T (x) δ(x, y1, y2; θ) + λ · ‖θ‖1 (6.34)

δ(x, y1, y2; θ) = max{sneural(x, y2; θ) − sneural(x, y1; θ) + 1, 0}. (6.35)

In the above equation, D is the sentence-aligned training data. (y1, y2) is the core
of this training algorithm and denotes the training hypothesis pair, in which y1 is a
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better translation hypothesis than y2 according to sentence-level BLEU+1 evaluation.
The model aims at optimizing the network parameters so as to guarantee that better
translation hypotheses get higher network scores. T (x) is the hypothesis pair set for
each training sentence x and N is the total number of hypothesis pairs in the training
data D.

Fora trainingsentence x , it remainsunclearhowtoefficientlysample thehypothesis
pairs(y1, y2). Ideally, y1 shouldbethecorrect translation(orreferencetranslation),and
y2 is any other translation candidate. However, the correct translation does not exist in
the search space of SMT in most cases due to many reasons, such as beam size limit,
reorderingdistanceconstraints, andunknownwords.Accordingly,Huanget al. (2015)
attempt to sample (y1, y2) in the n-best translation list Tnbest using three methods: (1)
Best versusRest: y1 is chosen tobe thebest candidate inTnbest and y2 canbe anyof the
rest; (2) Best versusWorst: y1 and y2 are chosen to be the best and worst candidates
in Tnbest , respectively; (3)Pairwise: sample two hypotheses from Tnbest , y1 is set to be
the better candidate and y2 is the worse one.

ExtensiveexperimentsonChinese-to-English translationdemonstrate that theneu-
ralnonlinearmodelfeaturecombinationsignificantlyoutperformsthelog-linearframe-
work in translation quality.

6.4 End-to-EndDeepLearning forMachineTranslation

6.4.1 TheEncoder–DecoderFramework

Research on component-wise deep learning for SMT is very active from2013 to 2015.
The log-linearmodel facilitates any integration of the deep learning-based translation
features. Various kinds of neural network structures have been designed to improve
different sub-modules, and the overall SMT performance has been upgraded signifi-
cantly, for example, the joint neuralmodel proposed byDevlin et al. (2014) achieved a
surprising improvement of more than six BLEU points on Arabic-to-English transla-
tion. However, although deep learning is used to improve key components, SMT still
useslinearmodelingthatisunabletodealwithnonlinearitiesintextualdata.Inaddition,
the global dependency required by newly introduced neural features makes it impos-
sible to design efficient dynamic programming training and decoding algorithms for
SMT.Therefore, it is necessary tofindnewways to improvemachine translation using
deep learning.

End-to-end neural machine translation (NMT) (Sutskever et al. 2014; Bahdanau
et al. 2015) aims to directly map natural languages using neural networks. The major
differencefromconventionalstatisticalmachine translation(SMT)(Brownetal.1993;
OchandNey2002;Koehnet al. 2003;Chiang2007) is thatNMTis capable of learning
representations from data, without the need to design features to capture translation
regularities manually.
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Givenasourcelanguagesentencex = x1, . . . , xi , . . . , xI andatarget languagesen-
tence y = y1, . . . , y j , . . . , yJ , standardNMTdecomposes the sentence-level transla-
tionprobabilityasaproductofcontext-dependentword-level translationprobabilities:

P(y|x; θ) =
J∏

j=1

P(y j |x, y< j ; θ), (6.36)

where y< j = y1, . . . , y j−1 is a partial translation.
The word-level translation probability can be defined as

P(y j |x, y< j ; θ) = exp
(
g(x, y j , y< j , θ)

)
∑

y exp
(
g(x, y, y< j , θ)

) , (6.37)

whereg(x, y j , y< j , θ) isareal-valuedscorethat indicateshowwell the j-thtargetword
y j is given the source context x and target context y< j .

Amajor challenge is that the sourceand target contexts arehighly sparse, especially
for long sentences. To address this problem, Sutskever et al. (2014) propose to use a
recurrentneuralnetwork(RNN),whichisreferredtoasanencoder, toencodethesource
context x into a vector representation.

Figure6.10 illustrates the basic idea of an encoder. Given a two-word source sen-
tence x = x1, x2, an end-of-sentence token 〈EOS〉 is appended to control the length of
its translation. After obtaining vector representations of source words, the recurrent
neural network runs to generate hidden states:

hi = f (xi ,hi−1, θ), (6.38)

wherehi is the i-th hidden state, f (·) is a nonlinear activation function, xi is the vector
representation of the i-th source word xi .

For the nonlinear activation function f (·), long short-term memory (LSTM)
(HochreiterandSchmidhuber1997)andgatedrecurrentunits (GRUs)(Choetal.2014)
are widely used to address the gradient vanishing or explosion problem. This leads
to a significant advantage of NMT over conventional SMT in predicting global word
reordering thanks to the capability of LSTM or GRUs to handle long-distance depen-
dencies.

As there is an end-of-sentence symbol “EOS” appended to the source, the length of
the source sentence is I + 1, and the last hidden state hI+1 is considered to encode the
entire source sentence x.

On the target side, Sutskever et al. (2014) use another RNN, which is called a
decoder, for generating translations in aword-by-wordmanner.As shown inFig. 6.10,
each target-side hidden state that represents the target context y< j is calculated as

s j =
{
hI+1 if j = 1
f ( y j−1, s j−1, θ) otherwise.

(6.39)
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x1 x2 x3

x1 x2 x3

h1 h2 h3 s2 s3 s4

y1 y2 y3 y4

y1 y2 y3 y4

Fig.6.10 Theencoder–decoderframeworkforend-to-endneuralmachinetranslation.Givenasource
sentence x = x1, x2, an end-of-sentence token (i.e., x3) is appended to help predictwhen to terminate
during generating target words. After mapping source words to their vector representations (i.e., x1,
x2, and x3), a recurrent neural network (i.e., encoder) is used to compute the source-side hidden
states h1, h2, and h3. Then, another recurrent neural network (i.e., decoder) runs to generate the
target sentence word by word. The last source hidden state h3 is used to initialize the first target
hidden state s1, from which the first target word y1 and its vector representation y1 are determined.
The first target hidden state s1 and word vector y1 are used to generate the second hidden state s2.
This process iterates until an end-of-sentence token (i.e., y4) is generated

Note that the source sentence representation hI+1 is only used to initialize the first
target-side hidden state s1.

With the target-side hidden state s j , the scoring function g(x, y j , y< j , θ) can be
simplified to g(y j , s j , θ) that is calculated by another neural network. Please refer to
(Sutskever et al. 2014) for more details.

Given a set of parallel sentences {〈x(s), y(s)〉}Ss=1, the standard training objective is
to maximize the log-likelihood of the training data:

θ̂ = argmax
θ

{
L(θ)

}
, (6.40)

where the log-likelihood is defined as

L(θ) =
S∑

s=1

log P(y(s)|x(s); θ). (6.41)

Standardmini-batch stochasticgradientdescent algorithmscanbeused tooptimize
model parameters.

Givenlearnedmodelparameters θ̂ , thedecisionrulefor translatinganunseensource
sentence x is given by

ŷ = argmax
y

{
P(y|x; θ̂)

}
. (6.42)
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6.4.2 NeuralAttention inMachineTranslation

In the original encoder–decoder framework (Sutskever et al. 2014), the encoder needs
to represent the entire source sentence as a fixed-length vector regardless of the sen-
tence length,which isused to initialize thefirst target-sidehiddenstate.Bahdanauet al.
(2015) indicate that this may make it difficult for neural networks to deal with long-
distance dependencies. Empirical results reveal that the translation quality of the orig-
inal encoder–decoder frameworkdecreases significantlywith the increase of sentence
length (Bahdanau et al. 2015).

To address this problem, Bahdanau et al. (2015) introduce an attentionmechanism
todynamically select relevant source context for generatinga targetword.As shown in
Fig. 6.11, the attention-based encoder leverages bidirectional RNNs to capture global
contexts:

−→
h i = f (xi ,

−→
h i−1, θ) (6.43)

←−
h i = f (xi ,

←−
h i+1, θ), (6.44)

where
−→
h i denotes the forward hidden state of the i-th source word xi that captures

the context on the left,
←−
h i denotes the backward hidden state of xi that captures the

context on the right. Therefore, the concatenation of forward and backward hidden

states hi = [−→h i ;←−
h i ] is capable of capturing sentence-level context.

The basic idea of attention is to find relevant source context for target word gener-
ation. This is done by first calculating attention weight:

Fig. 6.11 Attention-based neural machine translation. Unlike the original encoder–decoder frame-
work, the new encoder exploits bidirectional RNNs to compute forward and backward hidden states,
which are concatenated to serve as context-dependent representations of each sourceword. Then, the
attention mechanism is used to calculate a dynamic source context c j ( j = 1, . . . , 4) for each target
word, which involves the generation of corresponding target hidden state s j
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α j,i = exp
(
a(s j−1,hi , θ)

)
∑I+1

i ′=1 exp
(
a(s j−1,hi ′ , θ)

) , (6.45)

where thealignment functiona(s j−1,hi , θ)evaluateshowwell the inputsaroundposi-
tion i and the output at position i are related.

Then, the source context vector c j is computed as aweighted sumof source hidden
states:

c j =
I+1∑
i=1

α j,ihi . (6.46)

As a result, the target hidden state can be calculated as

s j = f (y j−1, s j−1, c j , θ). (6.47)

Themajordifferenceofattention-basedNMT(Bahdanauetal.2015)fromtheorigi-
nalencoder–decoder framework(Sutskeveretal.2014) is thewaytocalculatingsource
context. Theoriginal frameworkonly uses the last hidden state to initialize thefirst tar-
get hidden state. It is unclear how the source context controls the generation of target
words, especially for words near the end of long sentences. In contrast, the attention
mechanism enables each source word to contribute to the generation of a target word
according to attention weight regardless of the position of the target word. This strat-
egy proves to be very effective in improving translation quality, especially for long
sentences. Therefore, the attention-based approach has become the de facto approach
in neural machine translation.

6.4.3 AddressingTechnicalChallenges ofLargeVocabulary

Although end-to-endNMT(Sutskever et al. 2014;Bahdanau et al. 2015) has delivered
state-of-the-art translation performance across a variety of language pairs, one of the
major challengesNMTfaces is how to address the efficiencyproblemcausedby target
language vocabulary.

As the word-level translation probability requires normalization over all target
words [(see Eq. (6.37)], the log-likelihood of the training data 〈x(s), y(s)〉 is given by

L(θ) =
S∑

s=1

log P(y(s)|s(s); θ) (6.48)

=
S∑

s=1

J (s)∑
j=1

log P(y(s)
j |x(s), y(s)

< j ; θ) (6.49)

=
S∑

s=1

J (s)∑
j=1

(
g(x(s), y(s)

j , y(s)
< j , θ) − log

∑
y∈Vy

exp
(
g(x(s), y, y(s)

< j , θ)
))

, (6.50)



6 Deep Learning in Machine Translation 169

where J (s) denotes the length of the s-th target sentence, and Vy denotes the target
vocabulary.

Training NMTmodels requires to compute the gradients of log-likelihood:

∇L(θ) =
S∑

s=1

J (s)∑
j=1

(
∇g(x(s), y(s)

j , y(s)
< j , θ) −

∑
y∈Vy

P(y|x(s), y(s)
< j ; θ)∇g(x(s), y, y(s)

< j , θ)
)
. (6.51)

It is clear that calculating the gradients involves the enumeration of all targetwords
in Vy , which makes training NMTmodel prohibitively slow. In addition, predicting a
target word at position j during decoding also requires enumerating all target words:

ŷ j = argmax
y∈Vy

{
P(y|x, y< j ; θ)

}
. (6.52)

Therefore, Sutskever et al. (2014) andBahdanau et al. (2015) have touse a subset of
thefullvocabulary,whichisrestrictedtocontain30,000to80,000frequenttargetwords
duetothelimitofGPUmemory.Thissignificantlydeterioratesthetranslationqualityof
source sentences that contain rarewords falling out of the subset or out-of-vocabulary
(OOV)words.Hence,itisimportanttoaddressthelargevocabularyproblemtoimprove
the efficiency of NMT.

Toaddress thisproblem,Luonget al. (2015)propose to identify thecorrespondence
betweenOOVwords in source and target sentences and translateOOVwords in apost-
processingstep.Table6.1showsanexample.Givenasourcesentence“meiguodaibiao-
tuan baokuo laizi shidanfu de zhuanjia”, twowords “daibiaotuan” and “shidanfu” are
identifiedasOOV(row1).Therefore, the twowordsarereplacedwith“OOV”s(row2).
ThesourcesentencewithOOVwords is translated toa targetsentencewithOOVwords
“the us OOV1 consists of experts from OOV3” (row 3), where the subscripts indicate
the relative positions of corresponding source-side OOVs. In this example, the third
target word “OOV1” corresponds to the second source word “OOV” (i.e., 3 − 1 = 2)
and the eighth target word “OOV3” is aligned to the fifth source word “OOV” (i.e.,
8 − 3 = 5). Finally, “OOV1” is replaced with “delegation”, which is a translation of
“daibiaotuan”. This can be done byusing external translation knowledge sources such
as bilingual dictionaries.

Analternativeapproach is toexploit sampling toaddress the large targetvocabulary
problem(Jeanetal.2015).Asthemajorchallengeforcalculatingthegradients ishowto
efficiently compute the expectedgradient of the energy function [(i.e., the second term
inEq. (6.51)], Jeanet al. (2015)propose to approximate the expectationby importance
sampling with a small number of samples. Given a predefined proposal distribution
Q(y) and a set of V ′ samples from Q(y), their approximation is given by
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Table 6.1 Addressing out-of-vocabulary (OOV) words in neural machine translation. Identified
as OOV, infrequent source words such as “daibiaotuan” and “shidanfu” are translated in a post-
processing step using external knowledge sources such as bilingual dictionaries. The subscripts of
target OOVs indicate the correspondence between source and target OOVs

source w/o OOV meiguo daibiaotuan baokuo laizi shidanfu de
zhuanjia

source w/ OOV meiguo OOV baokuo laizi OOV de zhuanjia

target w/ OOV the us OOV1 consists of experts from OOV3

target w/o OOV the us delegation consists of experts from
stanford

∑
y∈Vy

P(y|x(s), y(s)
< j ; θ)∇g(x(s), y, y(s)

< j , θ)

≈
∑
y∈V ′

exp
(
g(x(s), y, y(s)

< j , θ) − log Q(y)
)

∑
y′∈V ′ exp

(
g(x(s), y′, y(s)

< j , θ) − log Q(y′)
)∇g(x(s), y, y(s)

< j , θ).(6.53)

As a result, computing the normalization constant during trainingonly requires to sum
overa small subsetof the targetvocabulary,whichsignificantly reducescomputational
complexity for each parameter update.

Another important direction is to model neural machine translation at character
(Chung et al. 2016; Luong and Manning 2016; Costa-jussà and Fonollosa 2016) or
sub-word (Sennrich et al. 2016b) levels. The intuition is that using characters or sub-
words as the basic unit of translation significantly reduces the vocabulary size since
there are alwaysmuch fewer characters and sub-words as compared with words.

6.4.4 End-to-EndTraining toOptimizeEvaluationMetric
Directly

The standard training objective for neuralmachine translation ismaximum likelihood
estimation (MLE), which aims to find a set of model parameters maximizing the log-
likelihood of the training data [(seeEqs. (6.40) and (6.41)]. Ranzato et al. (2016) iden-
tifytwodrawbacksofMLE.First, translationmodelsareonlyexposedtogold-standard
data during training. In other words, when generating a word in training, all context
words are from ground-truth target sentences. However, during decoding, the con-
text words are predicted bymodels, which are inevitably erroneous. This discrepancy
between training and decoding has a negative effect on translation quality. Second,
MLEonlyusesa loss functiondefinedat theword levelwhilemachine translationeval-
uation metrics such as BLEU (Papineni et al. 2002) and TER (Snover et al. 2006) are
often defined at corpus and sentence levels. This discrepancy between training and
evaluation also hinders neural machine translation.
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Toaddress this problem,Shenet al. (2016) introduceminimumrisk training (MRT)
(Och2003;SmithandEisner2006;HeandDeng2012)intoneuralmachinetranslation.
The basic idea is to use evaluation metrics as loss functions to measure the difference
betweenmodelpredictions andground-truth translationandfinda set ofmodelparam-
eters to minimize the expected loss (i.e., risk) on the training data.

Formally, the new training objective is given by

θ̂ = argmin
θ

{
R(θ)

}
. (6.54)

The risk on the training data is defined as

R(θ) =
S∑

s=1

∑
y∈Y(x(s))

P(y|x(s); θ)Δ(y, y(s)) (6.55)

=
S∑

s=1

Ey|x(s);θ
[
Δ(y, y(s))

]
, (6.56)

whereY(x(s)) is a set of all possible translations of x(s), y is a model prediction, y(s) is
a ground-truth translation, andΔ(y, y(s)) is a loss function calculated using sentence-
level evaluationmetrics such as BLEU.

Shen et al. (2016) argue that MRT has the following advantages over MLE. First,
MRTiscapableofdirectlyoptimizingmodelparameterswithrespecttoevaluationmet-
rics. This has proven to effectively improve translation quality byminimizing the dis-
crepancybetween training and evaluation (Och2003). Second,MRTaccepts arbitrary
sentence-level loss functions, which are not necessarily differentiable. Third, MRT is
transparent tomodel architectures and can be applied to arbitrary neural networks and
artificial intelligence tasks.

However, amajor challenge forMRT is that calculating the gradients requires enu-
merating all possible target sentences:

∇R(θ) =
S∑

s=1

∑
y∈Y(x(s))

∇P(y|x(s); θ)Δ(y, y(s)). (6.57)

To alleviate this problem, Shen et al. (2016) propose to only use a subset of the full
search space to approximate the posterior distribution P(y|x(s); θ) as

Q(y|x(s); θ , β) = P(y|x(s); θ)β∑
y′∈S(x(s)) P(y′|x(s); θ)β

, (6.58)

whereS(x(s)) ⊂ Y(x(s)) is a subset of the full search space that can be constructed by
sampling, and β is a hyper-parameter for controlling the sharpness of the distribution.

Then, the new training objective is defined as
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R̃(θ) =
S∑

s=1

∑
y∈S(x(s))

Q(y|x(s); θ , β)Δ(y, y(s)). (6.59)

Ranzato et al. (2016) also propose an approach very similar with MRT. They cast
thesequencegenerationproblemin the reinforcement learning framework (Suttonand
Barto 1988). The generative model can be viewed as an agent, which takes actions to
predict the next word in the sequence at each time step. The agent receives a reward
when it has reached the end of the sequence. Wiseman and Rush (2016) introduce a
beam search training scheme to avoid biases associatedwith local training and unifies
the training loss with the test-time usage.

In summary, as these evaluation metrics-oriented training criteria are capable of
minimizing the discrepancy between training and evaluation, they have proven to be
very effective in practical NMT systems (Wu et al. 2016).

6.4.5 IncorporatingPriorKnowledge

Another important topic in neuralmachine translation is how to integrate prior knowl-
edge into neural networks. As a data-driven approach, NMT acquires all translation
knowledge from parallel corpora. It is difficult to integrate prior knowledge into neu-
ral networks due to the difference in representations. Neural networks use continuous
real-valued vectors to represent all language structures involved in the translation pro-
cess. While these vector representations prove to be capable of capturing translation
regularities implicitly (Sutskever et al. 2014), it is hard to interpret each hidden state in
neural networks froma linguistic perspective. In contrast, prior knowledge inmachine
translation is usually represented in discrete symbolic forms such as dictionaries and
rules (Nirenburg 1989) that explicitly encode translation regularities. It is challenging
to transform prior knowledge represented in discrete forms to continuous representa-
tions required by neural networks.

Therefore, a number of authors have endeavored to integrate prior knowledge into
NMTinrecentyears.Thefollowingpriorknowledgesourceshaveexploitedtoimprove
NMT:

1. Bilingual dictionary: a set of source and target word pairs that are translationally
equivalent (Arthur et al. 2016);

2. Phrase table: a set of source and target phrase pairs that are translationally equiv-
alent (Tang et al. 2016);

3. The coverage constraint: each source phrase should be translated into exactly one
target phrase (Tu et al. 2016;Mi et al. 2016);

4. The agreement constraint: the attention weight on which source-to-target and
target-to-sourcetranslationmodelsagreeisreliable(Chengetal.2016a;Cohnetal.
2016);

5. The structural biases: position bias, Markov condition, and fertility that capture
the structural divergence between source and target languages (Cohn et al. 2016);
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Fig. 6.12 Position bias for
neural machine translation.
Translation equivalents tend
to have similar relative
positions in source and target
sentences. This prior
knowledge source can be
used to guide the learning of
attentional NMTmodels

6. Linguistic syntax: exploiting syntactic trees toguide the learningprocessofneural
machine translation (Eriguchi et al. 2016;Li et al. 2017;Wuet al. 2017;Chenet al.
2017a).

Thereare twobroadcategoriesofapproaches topriorknowledge integration inneu-
ralnetworks.Thefirstcategoryistomodifymodelarchitectures.Forexample,asshown
in Fig. 6.12, the position bias is based on the observation that aword at a given relative
position in the source tends to be align to aword at a similar relative position in the tar-
get (i.e., i/I ≈ j/J ), especially for closely related language pairs such as English and
French. Inotherwords, aligned source and targetwords tend tooccur near thediagonal
of the alignment matrix.

Toinclude thisbias intoNMT,Cohnetal. (2016)appendabias termto thealignment
function:

a(hi , s j−1, θ) = v� f
(
W1hi + W2s j−1 + W3 ψ( j, i, I )︸ ︷︷ ︸

position bias

)
, (6.60)

where v,W1,W2, andW3 are model parameters.
Thepositionbias termisdefinedasafunctionof thepositionsinthesourceandtarget

sentences and the source length:

ψ( j, i, I ) =
[
log(1 + j), log(1 + i), log(1 + I )

]�
. (6.61)

Note that the target length J is excluded because it is unknown during decoding.
Althoughmodifyingmodel architectures to inject prior knowledge into neural net-

works has shown its effectiveness in improving NMT, it is still hard to combine mul-
tiple overlapping, arbitrary prior knowledge sources. This is because neural networks
usually impose strong independence assumptions between hidden states. As a result,
extending a neural model requires that the interdependence of information sources be
modeled explicitly.

This problem can be partly alleviated by appending additional additive terms to
training objectives (Cheng et al. 2016a;Cohn et al. 2016),which keeps theNMTmod-
els unchanged. For example,Chenget al. (2016a) introduce anew trainingobjective to
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encourage source-to-target and target-to-source translation models to agree on atten-
tion weight matrices:

J (
−→
θ ,

←−
θ ) =

S∑
s=1

log P(y(s)|x(s);−→
θ ) +

S∑
s=1

log P(x(s)|y(s);←−
θ ) −

λ

S∑
s=1

Δ
(
x(s), y(s),−→α (s)(

−→
θ ),←−α (s)(

←−
θ )

)
︸ ︷︷ ︸

agreement

, (6.62)

where
−→
θ is a set of source-to-target translationmodel parameters,

←−
θ is a set of target-

to-source translation model parameters, −→α (s)(
−→
θ ) is the source-to-target attention

weight matrix for the s-th sentence pair, ←−α (s)(
←−
θ ) is the target-to-source attention

weightmatrix for the s-th sentence pair, andΔ(·)measures the disagreement between
two attention weight matrices.

However, the termsappended to trainingobjectiveshavebeen restricted to a limited
number of simple constraints because it is hard to manually tune the weight of each
term.

More recently, Zhang et al. (2017b) have proposed a general framework for incor-
poratingarbitraryknowledgesourcesbasedonposterior regularization (Ganchevet al.
2010). The central idea is to encode prior knowledge sources into a probability distri-
bution,which guides the learning process of translationmodels byminimizing theKL
divergence between two distributions:

J (θ , γ ) = λ1

S∑
s=1

log P(y(s)|x(s); θ) − λ2

S∑
s=1

KL
(
Q(y|x(s); γ )|P(y(s)|x(s); θ)

)
, (6.63)

where prior knowledge sources are encoded in a log-linear model:

Q(y|x(s); γ ) = exp
(
γ · φ(x(s), y)

)
∑

y′ exp
(
γ · φ(x(s), y′)

) . (6.64)

Note that prior knowledge sources are represented as featuresφ(·) in conventional dis-
crete symbolic forms.

6.4.6 Low-ResourceLanguageTranslation

Parallel corpora, which are collections of parallel texts, play a critical role in training
NMTmodels because they are themain source for translation knowledge acquisition.
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It iswidelyaccepted that thequantity, quality, andcoverageofparallel corporadirectly
influence the translation quality of NMT systems.

Although NMT has delivered state-of-the-art performance for resource-rich lan-
guagepairs, the unavailability of large-scale, high-quality, andwide-coverageparallel
corpora still remains amajor challenge forNMT,especially for low-resource language
translation. Formost language pairs, parallel corpora are nonexistent. Even for the top
handful of resource-rich languages, the available parallel corpora are usually unbal-
anced because themajor sources are restricted to government documents or news arti-
cles. Due to the large parameter space, neural models usually learn poorly from low-
count events, makingNMT a poor choice for low-resource language pairs. Zoph et al.
(2016) indicate that NMT obtains much worse translation quality than conventional
statistical machine translation on low-resource languages.

To address this problem, a straightforward solution is to exploit abundantmonolin-
gualdata.Gulcehreet al. (2015)propose twomethods,whichare referred toas shallow
fusion and deep fusion, to integrate a language model into NMT. The basic idea is to
use the languagemodel trained on large-scalemonolingual data to score the candidate
words proposed by the neural translationmodel at each time step or concatenating the
hidden states of the languagemodel and the decoder. Although their approach leads to
significant improvements, one possible downside is that the network architecture has
to bemodified to integrate the languagemodel.

Alternatively, Sennrich et al. (2016a) propose two approaches to exploitingmono-
lingual corpora that are transparent to network architectures. The first approach pairs
monolingual sentenceswith dummy input. Then, the parameters of encoder and atten-
tion model are fixed during training on these pseudo-parallel sentence pairs. The sec-
ond approach first trains a neural translation model on the parallel corpus and then
uses the learnedmodel to translate amonolingual corpus.Themonolingual corpus and
its translations constitute an additional pseudo-parallel corpus. Similar methods are
investigated by (Zhang and Zong 2016) to exploit the source-sidemonolingual data.

Chenget al. (2016b) introducea semi-supervised learningapproach tousingmono-
lingual data forNMT.As shown in Fig. 6.13, given a source sentence in amonolingual
corpus,Chengetal. (2016b)usesource-to-targetand target-to-source translationmod-

Fig. 6.13 Autoencoders for
exploiting monolingual
corpora for NMT. Given a
source sentence, a
source-to-target NMTmodel
transforms it into a latent
target sentence, from which a
target-to-source model is
used to recover the input
source sentence
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els to build an autoencoder that recovers the input source sentence via a latent target
sentence.More formally, the reconstruction probability is given by

P(x′|x;−→
θ ,

←−
θ ) =

∑
y

P(y|x;−→
θ )P(x′|y;←−

θ ). (6.65)

Therefore, both parallel andmonolingual corpora can be used for semi-supervised
learning. Let {〈x(s), y(s)〉}Ss=1 be a parallel corpus, {x(m)}Mm=1 be a monolingual corpus
of source language, and {y(n)}Nn=1 be amonolingual corpusof target language.Thenew
training objective is given by

J (
−→
θ ,

←−
θ ) =

S∑
s=1

log P(y(s)|x(s);−→
θ )

︸ ︷︷ ︸
source-to-target likelihood

+
S∑

s=1

log P(x(s)|y(s);←−
θ )

︸ ︷︷ ︸
target-to-source likelihood

+

M∑
m=1

log P(x′|x(m);−→
θ ,

←−
θ )

︸ ︷︷ ︸
source autoencoder

+
N∑

n=1

log P(y′|y(n);−→
θ ,

←−
θ )

︸ ︷︷ ︸
target autoencoder

. (6.66)

Another interesting direction is to exploit multilingual data for NMT (Firat et al.
2016; Johnson et al. 2016). Firat et al. (2016) present amulti-way,multilingualmodel
with shared attention to achieve zero-resource translation.Theyfine-tune the attention
part using pseudo-bilingual sentences for the zero-resource language pair.
Johnson et al. (2016) develop a universal NMTmodel inmultilingual scenarios. They
use parallel corpora ofmultiple languages to train one singlemodel,which is then able
to translate a language pair without parallel corpora available.

Using a pivot language to bridge source and target languages has also been investi-
gated in neuralmachine translation (Nakayama andNishida 2016; Cheng et al. 2017).
The basic idea is to use source-pivot and pivot-target parallel corpora to train source-
to-pivot and pivot-to-target translation models. During decoding, a source sentence
is first translated into a pivot sentence using the source-to-pivot model, which is then
translated to a target sentence using the pivot-to-targetmodel. Nakayama andNishida
(2016) achieve zero-resource machine translation by utilizing image as a pivot and
trainingmultimodal encoders to share common semantic representation. Cheng et al.
(2017) propose pivot-based NMT by simultaneously improving source-to-pivot and
pivot-to-target translationquality inorder to improvesource-to-target translationqual-
ity. As pivot-based approaches face the error propagation problem resulted from indi-
rectmodeling, directmodeling approaches such as teacher–student framework (Chen
et al. 2017b) and maximum expected likelihood estimation (Zheng et al. 2017) have
been proposed recently.
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6.4.7 NetworkStructures inNeuralMachineTranslation

Recurrentmodels, suchasLSMTandGRU,dominate thenetwork structuredesign for
encoder and decoder in neural machine translation. Recently, convolution networks
(Gehring et al. 2017) and self-attention networks (Vaswani et al. 2017) are fully inves-
tigated and promising improvements are achieved.

Gehringet al. (2017)argue thatparallel computation is inefficient in sequencemod-
eling using the recurrent network since it needs tomaintain a hidden state of the entire
history. In contrast, convolution networks learn representations for fixed-length con-
text and do not depend on the computations of all the history information. Thus, each
element in the sequence can be calculated in parallel for both encoding and decoding
(during training). Furthermore, the convolution layers can be deeply stacked to cap-
ture the long-distancedependency relationship. Figure6.14a illustrates the translation
process of the convolutional sequence to sequencemodel. Kernel size of the convolu-
tion is set k = 3. For encoder, multiple convolution and nonlinearity layers (only one
is displayed in Fig. 6.14a for simplicity) are adopted to create the hidden state of each
input position.When decoder tries to generate the fourth targetword y4,multiple con-
volution and nonlinearity layers are employed to obtain the hidden representation of
previous k words. Then, standard attention is applied to predict y4.

Recurrent networks requireO(n) operations tomodel the dependency between the
first and n-th word, while convolution models need O(logk(n)) stacked convolution
operations.Without using any recurrence and convolution, Vaswani et al. (2017) pro-
pose to directly model the relationship between any word pair with a self-attention
mechanism, as shown in Fig. 6.14b. To learn the hidden state of each input position
(e.g., second word) in encoder, self-attentionmodel and feed-forward network calcu-
late the relevance between the secondword and other words and obtain a hidden state.

(a) (b)

Fig. 6.14 Convolution model (a) and self-attention model (b) for neural machine translation
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Wecanstackmultipleself-attentionandfeed-forwardlayers toyieldthehighlyabstract
representation of the second position. To decode y4, another self-attention model is
employed to capture the dependency between the current target position and any pre-
vious ones. Then, we use conventional attentionmechanism tomodel the relationship
between source and targetwords, andpredict the next targetword y4.Due to the highly
parallelizable network structure anddirect connection between any twopositions, this
translationmodelsignificantlyspeedsuptrainingprocessandremarkablyimprovesthe
translation performance. However, decoding is not efficient when translating unseen
sentences since parallelism cannot be used in the target side.

Currently, there is no consensus on which network structure is best for neural
machine translation. Network structure design will still be a hot research topic in the
future.

6.4.8 Combination of SMTandNMT

AlthoughNMT is superior to SMT in translation quality (especially in translation flu-
ency), NMT sometimes lacks reliability in translation adequacy and generates trans-
lations having different meanings with the source sentences, particularly when rare
words occur in the input. In comparison, SMTcan usually produce adequate but influ-
ent translations. It is, therefore, a promising direction to combine the merits of both
NMT and SMT.

Recent2yearswitnessed thegreat efforts to takebothadvantagesofNMTandSMT
(Heet al. 2016;Niehueset al. 2016;Wanget al. 2017;Zhouet al. 2017).Heet al. (2016)
andWanget al. (2017) attempt to enhance theNMTsystemwithSMTfeaturesorSMT
translation recommendations.Forexample,Wangetal. (2017)utilizeSMTtogenerate
a recommendation vocabulary Vsmt by using the partial translation of NMT as prefix.
Then, the following formula is employed to predict the next target word:

P(yt |y<t , x) = (1 − αt )Pnmt (yt |y<t , x) + αt Psmt (yt |y<t , x). (6.67)

In which Psmt (yt |y<t , x) = 0 if yt /∈ Vsmt .
Niehues et al. (2016) adopt an SMT system to pre-translate the input into the target

language sentence. Then, a neural machine translation system is developed to take as
input the pre-translation or the combination of pre-translation and source sentence.

Zhou et al. (2017) argue that this kind of methods can make use of only one SMT
system. Accordingly, they propose a neural system combinationmethod that can take
advantages ofmultiple SMTandNMTsystems.As illustrated in Fig. 6.15, the outputs
of SMT andNMT systems serve as the input to the neural system combination frame-
work. Then, the hierarchical attentionmechanism is designed to determinewhich part
ofwhich systemshouldbepaidmoreattention towhenpredicting thenext targetword.
Due to efficient combination, thismethod leads to promising gains in translation qual-
ity. However, translation n-best list cannot be used in this framework and we believe
that there is much room to explore in the direction of system combination.



6 Deep Learning in Machine Translation 179

Fig. 6.15 Neural system combination framework for machine translation, in which multiple SMT
andNMTsystemscanbecombinedusingahierarchical attentionmodel togeneratebetter translations

6.5 Summary

Inthischapter,wehaveintroducedhowdeeplearningisusedtoimprovemachinetrans-
lation. As traditional statistical machine translation faces the data sparsity and feature
engineeringproblems,earlyeffortshavefocusedonusingdeeplearningtoimprovekey
componentsoflineartranslationmodelssuchasruletranslationprobabilities(Gaoetal.
2014), reorderingmodels (Li et al. 2013), and languagemodels (Vaswani et al. 2013).
Since 2014, end-to-end neural machine translation (Sutskever et al. 2014; Bahdanau
et al. 2015) that aims to directlymapbetweennatural languages using neural networks
has become increasingly popular in the MT community. NMT has made remarkable
progress in the last 2years andquickly replacedSMTtobe thenewde facto technology
of commercial translation systems.

Although deep learning has proven to revolutionize machine translation, there are
still a number of key limitations of current NMTmethods. First, it is hard to interpret
the internal workings of neural networks and design linguistically motivated neural
translation models. While recent work on using layer-wise relevance propagation to
quantify the connectionbetween twoarbitrary neurons in anetwork (Ding et al. 2017),
it is still hard to associate hidden states in neural networkswith interpretable language
structures.As a result, it is also challenging to incorporate prior knowledgeusing sym-
bolic representations into neural networks using continuous representations.

Anothermajorchallengeisdatascarcity.NMTisadata-hungryapproachwhilethere
is only limited or even no parallel data available for most language pairs in the world.
Howtomakeabetteruseof limited labeleddataandabundantunlabeleddatacontinues
to be a hot topic in the future. The universal NMT model proposed by Johnson et al.
(2016) is an interesting direction for addressing the data scarcity problem. Although
their experiments show promising results for themany-to-one direction (i.e., multiple
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source languages and a single target language), there are no consistent and significant
improvements for one-to-many andmany-to-manydirections. It is still unclear how to
represent and exploit the common knowledge of all natural languages in NMT from a
linguistic point of view.

Finally, most existingNMT systems are still restricted to dealingwith textual data.
Fortunately, the use of continuous representations makes it possible to combine text,
speech, and vision information to develop multimodal NMT models. Duong et al.
(2016)proposetodevelopspeechtranslationsystemswithouttranscription.Thiscanbe
doneby enabling theNMTmodel to take the continuous representations of source lan-
guage speechas input.However, they fail to report significant improvement in termsof
translationquality.Calixtoetal.(2017)introduceadoublyattentivedecodertoincorpo-
rate both text and image to improve NMT. However, the training data for their system
only contains 30K images and five descriptions for each image. Therefore, building
large-scale multimodal parallel corpora and designing new multimodal neural trans-
lationmodels is also an interesting future direction to explore.
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Chapter 7
Deep Learning in Question Answering

Kang Liu and Yansong Feng

Abstract Question answering (QA) is a challenging task in natural language pro-
cessing. Recently, with the remarkable success of deep learning on many natural
language processing tasks, including semantic and syntactic analysis, machine trans-
lation, relation extraction, etc., more and more efforts have also been devoted to the
task of question answering. This chapter briefly introduces the recent advances in
deep learning methods on two typical and popular question answering tasks. (1)
Deep learning in question answering over knowledge base (KBQA) which mainly
employs deep neural networks to understand the meaning of the questions and try to
translate them into structured queries, or directly translate them into distributional
semantic representations compared with candidate answers in the knowledge base.
(2) Deep learning in machine comprehension (MC) which manages to construct an
end-to-end paradigm based on novel neural networks for directly computing the deep
semantic matching among question, answers and the given passage.

7.1 Introduction

Web search is on the cusp of a profound change, from simple document retrieval
to natural language question answering (QA) (Etzioni 2011). It needs to precisely
understand the meaning of the users’ natural language questions, extract useful facts
from various information on theweb, and select appropriate answers. Similar to other
natural language processing (NLP) tasks, such as part-of-speech tagging, parsing,
andmachine translation,most traditional QAmethodswere based on symbolic repre-
sentation. In such paradigm, all elements in questions and answers, including words,
phrases, clauses, sentences, documents, etc., are usually processed through NLP
basic modules and then converted into certain structured or unstructured formats,
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like bag-of-words, parsing trees, logical forms, etc. Then, in the given documents or
webpages, the semantic similarity or relatedness between the question and candidate
answer is computed and the candidate with the highest score will be the final answer.
Unfortunately, the key weakness of such paradigm is the so-called “semantic gap”,
that text spans with similar meanings may have different symbolic representations.

In neural networks, texts are usually represented into distributed vectors. Then,
the exact matching between text spans could be replaced by the operations among
distributed vectors. In this way, the semantic gap problem in traditional approaches
could be alleviated to a certain extent.

This chapter briefly introduces those deep learning-based QA efforts. More-
over, there are several branches in question answering, including retrieval-based QA
(IRQA), community QA (cQA), question answering over knowledge base (KBQA),
and machine comprehension (MC). Here, we mainly focus on KBQA andMC, since
these two QA tasks demand more semantic analysis and understanding of texts,
from questions to documents. In the rest of this chapter, we will first discuss recent
advances in KBQA from two perspectives, and further review the deep learning
efforts targeting MC, as well as the resources involved.

7.2 Deep Learning in Question Answering
over Knowledge Base

There have been many successful attempts to extend novel neural network models
to improve the performance of question answering systems over knowledge bases
(KBQA). Various novel neural network components or architectures and their vari-
ants, e.g., CNN, RNN (LSTM, BLSTM), attention mechanism, and memory net-
works, have been examined within the task. These efforts can be categorized into
two main paradigms, either the information extraction style (IE), or the semantic
parsing style (SP). The former usually retrieves a set of candidate answers from
KB using various relation extraction techniques, which are then compared with the
questions in a condensed feature space. While the semantic parsing style methods
manage to distill the formal/symbolic representations or structured queries from the
sentence with the help of novel components or network structures (Fig. 7.1).

From another point of view, in the context of deep learning-inspired paradigms,
recent works in applying deep learning methods to facilitate knowledge-based ques-
tion answering (KBQA) can also be categorized into two types, using novel neural
networkmodels to improve specific components within the traditional KBQA frame-
work, and formalizing the task in a unified neural network architecture. The former
view mainly focuses on utilizing advanced neural network models to improve exist-
ing components, e.g., feature extraction, relation identification, semanticmatching or
similarity computation, etc., while the latter puts their emphasis on using novel deep
learning frameworks to project natural language questions and candidate answers
into the same low-dimensional semantic space. Consequently, this KBQA task can
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Natural Language Question

Topic Entity
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Retrieve KB Graph
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(a) The information extraction style

Natural Language Question

Meaning Representation
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Fig. 7.1 The illustrations for the information extraction- styled KBQA framework (a) and the
semantic parsing-styled framework (b)

be converted into the problem of similarity computation between the embeddings of
the questions and candidate answers in this space, often in an information extraction
style.

In the following, we will review the recent deep learning-based KBQA efforts in
two mainstreams, the information extraction style and the semantic parsing based.
Note that there are not strict differences between them, and most advances actually
benefit from both paradigms. We will try to highlight the advantages of different
components or specific treatments.

7.2.1 The Information Extraction Style

The mainstream of works using deep learning methods put their emphasis on finding
better ways to embed natural language questions and candidate answers from a KB
in the same, condensed, semantic space. These works usually formalize the solu-
tion in a retrieval–embedding–comparing pipeline, within a unified neural network
architecture.

7.2.1.1 Simple Vector Representation

The pioneer work out of the information extraction style approaches is contributed
by Bordes et al. (2014a, b). Instead of mapping categories, entity mentions, and rela-
tion patterns to corresponding types, entities, and predicates in the KB individually,
Bordes et al. (2014b) propose a more straightforward approach: they design a joint
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Fig. 7.2 Illustration for simple vector representation in (Bordes et al. 2014a)

embedding framework to learn vector representations of words, entities, relations,
and other semantic items in a structured knowledge base, and manage to map a
natural language question with a subgraph in the KB (Fig. 7.2).

When the natural language questions and the candidate subgraphs are represented
by low-dimensional embeddings, one can easily compute the similarity between
a question and a subgraph. The model requires annotated question–answer pairs
as training data, but they are also designed to automatically collect more training
instances through simple patterns and a multitask paradigm. By simultaneously opti-
mizing over other resources or related side tasks, e.g., a paraphrase task, the model
intends to ensure similar utterances with higher similarities, thus relieves the require-
ment of human effort.

This framework follows a simple and clear pipeline structure, i.e., retrieval–
embedding–comparing, without relying on human-crafted features, extra syntactic
analysis, or empirical rules as traditional extraction models do, and achieve compet-
itive performances on benchmark datasets.

However, for ease of implementation, both natural language questions are first rep-
resented by bag-of-words and then go through a condensing process, which ignores
the syntactic structures within questions. Similar approaches also apply to the candi-
date answers, where a subgraph is simply represented by a multi-hot representation
of its involved entities and relations. This simplification prevents the model from
utilizing more sources of clues, in either natural language utterances or the KB itself,
e.g., relational phrase or answer type indicators in the questions, or entity-predicate
consistencies in the KB.
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Moreover, current treatments from neural network models are unable to properly
dealwith semantic compositionality and various constraints beyond the bag-of-words
or bag-of-entities-relations representations, e.g., Tom’s father’s mother’s son versus
Tom’s mother’s father’s son. This, to some extent, could be handled by more deep
syntactic analysis for the questions, or frequent structure mining for the KB.

7.2.1.2 Embedding Features with CNN

Different from treating everythingwithin a bag (Bordes et al. 2014a), Yih et al. (2014)
propose to target single-relation questions with the help of convolutional neural
networks (CNN). They use a CNN-based semantic model (CNNSM) to construct
two different mapping models, one for identifying the entities in the questions and
the other one for mapping relations to the KB relations. Note that the target questions
are assumed to contain one entity and one relation only, which indeed take a large
proportion of variousKBQAbenchmark datasets. And the structured queries for such
questions are relatively simple, only one<subject, predicate, object> triple involved,
thus one does not need a structure prediction process to recover the inherent query
structure among multiple entities and relations.

The key idea is, similar to (Bordes et al. 2014a), that relational patterns expressed
in the natural language questions and the relations/predicates in the structuredKBcan
be projected into the same low-dimensional semantic space throughCNNs. Similarly,
the surface form of an entity in the KB is treated as the same as the entity mention
in a question, and can be captured by a CNN. Thus, the CNNSM can provide the
similarity between a natural language question and candidate triples in the KB and
select the top scoring one as the final answer.

This solution benefits from convolutional neural network models, which is supe-
rior to the simple bag-of-words format, andworkswith letter-trigramsvectors as input
to deal with the out-of-vocabulary (OOV) issue, to some extent. But, this reminds
us two important issues in the KBQA task, entity linking and relation identification.
Both of them are challenging enough by themselves, and require sufficient training
data, i.e., mention–entity pairs and natural language pattern–KB relation pairs, to
train the model. Especially, there have been a large volume of entities and relations
in current large-scale knowledge bases, e.g., Freebase, making it more challenging
to handle questions with multiple entities and relations.

On the other hand, Dong et al. (2015) propose to use CNNs to encode differ-
ent kinds of features between a question and a candidate answer. They propose a
multicolumn convolutional neural networks (MCCNNs) model to capture different
aspects for a question, and further score a pair of question and answer through three
channels, answer path, answer context, and answer type.

Comparingwith simple vector representation (Bordes et al. 2014a),MCCNNs use
CNNs to extract different features, which can explicitly capture the path between the
topic entity in the question and a candidate answer on the KB, and also the expected
answer types. These two are shown to be more important in evaluating a candidate
answer. The framework is also easy to extend more kinds of features by adding
required columns to the networks.
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Again, entity linking is still an open question for these feature-based models. The
encoding of answer path helps MCCNNs to be able to perform shallow inference
along the path, to some extent. However, due to the nature of typical retrieval–
embedding –comparing framework,MCCNNs are still unable to find better solutions
to deal with comparisons among candidate answers, e.g., the highest mountain, or
his first son.

7.2.1.3 Embedding Features with Attention

Moreover, Hao et al. (2017) employ a bidirectional RNNmodel to capture the seman-
tics of a given question. They believe a question should be represented differently
according to the different focuses of various answer aspects (An answer aspect could
be the answer entity itself, the answer type, the answer context, etc.). Take the ques-
tion “Who is the president of France?” and one of its candidate answers “Fran-
cois Hollande” as an example. When dealing with the answer entity Francois
Holland, “president” and “France” in the question is more focused, and the ques-
tion representation should bias toward the two words. While facing the answer type
/business/board_member, “Who” should be themost prominentword.Mean-
while, some questions may value answer type more than other answer aspects. While
in some other questions, answer relation may be the most important information we
should consider, which is dynamic and flexible corresponding to different questions
and answers. Obviously, this requires an attention mechanism, which reveals the
mutual influences between the representation of questions and the corresponding
answer aspects.

Instead of representing questions using three CNNs with different parameters
(Dong et al. 2015) when dealing with different answer aspects including answer
path, answer context, and answer type, Hao et al. (2017) proposed a cross-attention-
based neural network to perform KBQA.

The cross-attention model, which stands for the mutual attention between the
question and the answer aspects, contains two parts: the answer-towards-question
attention part and the question-towards-answer attention part. The former could help
learn flexible and adequate question representation, and the latter helps adjust the
question–answer weight. Finally, the similarity scores between the question and
each corresponding candidate answer on different aspects are calculated, and the
final score for each candidate is combined by all similarity scores according to the
corresponding question–answer weights. Then the candidates with the highest score
will be selected as the final answers.

7.2.1.4 Question Answering with Memory

Memory network is a novel learning framework that is designed around a memory
mechanism that can be read and modified/appended during a specific task (Weston
et al. 2015b). There have been a few attempts to investigate the task of knowledge-
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Fig. 7.3 Illustration for the
key-value memory networks
in (Miller et al. 2016)

based question answering under the memory network paradigm, mostly following
the information extraction style’s retrieval–comparing routine.

The first attempt (Bordes et al. 2015) focuses on simple questions, which can be
answered with one <subject, relation, object> triple. In the input component, struc-
tured knowledge bases, in a bag-of-symbols form, are read and stored in the memory,
and questions are processed into a bag-of-ngrams form. The output component will
then compare the bag-of-ngrams question with the entries in the memory to find
candidate triples, which are in turn evaluated with the input question. The object of
the top scoring triple will be provided as the answer by the response component.
This should be considered as a straightforward application of memory networks in
the KBQA task, but actually shows the potential of memory networks in managing
large scale of KB entries, even from multiple resources (Fig. 7.3).

Miller et al. (2016) further extend the idea by investigating various forms of Key-
Value knowledge in the memory. The improved model also allows multiple address-
and-read from the memory to collect evidence/context to dynamically update the
question for the final answers. An advantage of the Key-Value design is to make
the memory mechanism more flexible to store various knowledge, from KB triples
(subject + relation as the key, and obj as the value), to documents (sentences or
a window of words as the key or value), which potentially supports to answer more
complicated questions with heterogeneous resources.

7.2.2 The Semantic Parsing Style

The retrieval–embedding–comparing framework benefits from various neural net-
work components to capture the question–answer similarity and works better in
simple questions, where the entities and relations are within a simple subgraph in the
KB. But, they are not good at solving complex composition of semantics, since there
is no explicit mechanism for information extraction- styled approaches to capture
such composition when understanding a question. By contrast, other mainstream of
works in KBQA, the semantic parsing styled models, try to formally represent the
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Fig. 7.4 Illustration for the
staged query graph
generation model (STAGG)
in (Yih et al. 2015)

meaning of a question, and then instantiate with a KB to construct a structured query
over the KB, which makes it possible to explicitly capture complex queries.

The core components of such models are, therefore, recovering the formal mean-
ing representations, e.g., logical forms or structured query representations, from the
natural language questions, and further find answers from a KB by mapping the
representations with KB components and querying over the KB. The efforts of deep
learning methods are mostly designed to improve certain components of the frame-
work.

The CNNSM model (Yih et al. 2014) discussed in Sect. 7.2.1.2 can also be con-
sidered as a semantic parsing- styled method, which can only produce one <subject,
predicate, object> triple as the query, where the CNNs are used to perform entity
linking and relation identification. But it does not work for slightly complex ques-
tions, e.g., involving multiple entities and relations, let alone constraints. The main
reason is that the neural network components are only responsible for mapping
with KB components, either entities or relations, but there is no explicit mecha-
nism responsible for identifying the inherent structure among multiple entities or
relations. In fact, such structures have been intensively investigated in traditional
semantic parsing-based models via either PCCG, PCFG, dependency structures, or
other syntactic/semantic parsing paradigms (Cai and Yates 2013; Kwiatkowski et al.
2013; Berant and Liang 2014; Reddy et al. 2014; Kun et al. 2014).

7.2.2.1 STAGG: Semantic Parsing While Searching and Pruning

Beyond single-relation questions, Yih et al. (2015) propose to use a query graph to
represent the meaning of a question, which contains four kinds of nodes: grounded
entities, existential variables, lambda variables and constraints/functions. Here,
lambda variables are ungrounded entities and expected to be the final answers. The
existential variables could refer to middle nodes, e.g., the father in the utterance
Tom’s father’s mother, or abstract nodes, e.g., a compound value-typed (CVT) node1

in Freebase. And the constraints or functions are designed to filter a set of entities
according to certain numerical properties, e.g., argmin. In the query graph, nodes are
connected by directed edges, indicating the relationship between two nodes, which
is expected to be mapped with KB predicates (Fig. 7.4).

1A CVT node is usually not a real-world entity, but often refers to an event, e.g., a marriage event,
or a presidency event, which can represent an entry of data with multiple fields.
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Then, the task becomes how to convert a natural language question into such
a query graph. Yih et al. (2015) propose a staged query graph generation model
(STAGG) to leverage KB from beginning to incrementally prune the search space,
and construct the structured queries.

The key components of STAGG include linking topical entity, identifying the
core inferential chain, and finally augmenting with constraints and functions, which
is basically a parsing-and-ranking process with step-by-step searching. Here, the
core inferential chain captures the relationship between the topical entity and the
lambda variable, and provides the backbone for a query. Yih et al. (2015) use a deep
convolutional neural networkmodel to semanticallymatch a question and a sequence
of predicates (up to length of 2 with a CVT node in the middle).

Despite its success on the benchmark dataset, we can learn several lessons from
the design of STAGG.

Topic Entities: Finding topic entities and linking to the KB is the very first but
a crucial step. STAGG uses S-MART (Yang and Chang 2015), a statistical model
for entity linking in short text, which plays an important role to the upcoming steps
and then the overall performance. When changing to Freebase API for topical entity
linking, STAGG will have an absolute 4.1% drop in the overall F1 score.

Identifying the Core Inferential Chain: Basically, this is a relation extraction
step to capture how one can get to the lambda variable starting from the topical
entity on the graph of the KB, which is captured through CNNs, similar to the
CNNSM (Yih et al. 2014). Given the huge space of all candidate relations, STAGG
only considers those related to the topical entities and captures how a question is
semantically matched with a sequence of KB relation around the topical entity. This
process of identifying core inferential chain thus becomes a match-and-rank step,
while avoiding a large-size multi-class classification style.

Augmenting Constraints and Aggregations: STAGG considers other entities or
time expressions in the questions as constraint nodes to the core inferential chain, and
also introduces certain functions to further filter the answers, e.g., converting first,
smallest into argmin.And it is promising to see aKBQAsystem formally introducing
aggregation functions as part of the formal representations, though through a set of
rules.

UnderstandingSuperlativeExpressions: As also discussed in (Berant andLiang
2014; Zhang et al. 2015), superlative utterances are common to see in questions.Most
KBQA works adopt templates or rules to analyze superlative expressions, by sim-
ply choosing from argmin or argmax (Berant and Liang 2014; Yih et al. 2015).
However, formally analyzing a superlative expression into a structured compara-
tive construction against a KB will help a KBQA system to better handle not only
superlative utterances, but also those with ordinal constraints. Zhang et al. (2015)
design a neural network model to learn the underlying correspondence between a
superlative utterance and KB relations, which serve as the comparison dimension
within the comparative construction. For example, from the longest river into a tuple
<river.length, descending, 1>, we expect that all rivers are compared upon
a KB predicate river.length, sorted in descending and the top ranked is the
target.
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7.2.2.2 Improving Relation Identification

As being discussed in many previous semantic parsing-styled works (Kwiatkowski
et al. 2013; Berant et al. 2013; Berant and Liang 2014), identifying the KB rela-
tions/predicates from a question is the key to success, where traditional feature-based
models are hard to capture the mismatch between sentences and KB relations and
also the variance among natural language utterances. There have beenmany attempts
in applying deep learning methods for relation extraction using either CNN or RNN
models to explore lexical or syntactic features (Zeng et al. 2014; Liu et al. 2015; Xu
et al. 2015).

The relation extraction component in KBQA is designed to deal with KB-based
relations within a short context, where there could be up to thousands of candidates.
One possible solution is to perform a semantic match between a natural language
utterance and a KB relation through CNN (Yih et al. 2014, 2015), avoiding direct
classification over hundreds of relations (Fig. 7.5).

Xu et al. (2016) propose a multichannel convolutional neural networks (MCC-
NNs) model to learn compact and robust relation representations from both lexical
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and syntactic views. These approaches better suit the open-domain KBQA scenario
for good a reason. There are often thousands of relations in an open-domain KB, and
traditional feature-based models inevitably suffer from the data sparsity issue and
their poor generalization ability on unseen words.

7.2.2.3 Neural Symbolic Machines

There is another interesting line of semantic parsing-styled work trying to combine
advantages of neural networks and symbolic reasoning to improve question answer-
ing. Liang et al. (2017) introduce a neural symbolic machine (NSM) that is equipped
with a neural network component responsible for mapping from natural language
representations to executable code, and a symbolic component to execute the code
to prune the search space or find the answers.

Specifically, the neural network component, called programmer, is basically a
sequence-to-sequence model which maintains a key-variable memory to deal with
intermediate results when generating a sequence of program. However, the mixture
design of neural network component and symbolic interpreter will make the whole
framework hard to train, which is then cast and solved as a reinforcement learning
problem.

7.2.3 The Information Extraction Style Versus the Semantic
Parsing Style

Given the discussion above, it is easy to find that we do not need to draw a clear
distinction between the information extraction style and the semantic parsing style.
The two streams indeed have their own advantages. The IE style efforts take more
advantages of novel neural network models and architectures to better represent
questions and candidate answers in a condensed semantic space, and are easier to
incorporate various feature representations in themodel structures.On the other hand,
deep learning models provide SP models with more accurate relation or constraint
identification/mapping, and enable or support more accurate/complex meaning rep-
resentations and derivations.

In fact, many previous works can be considered to be with both sides, especially
those targeting simple questions or benefiting from both the styles. For example,
the STAGG follows the traditional semantic parsing style to construct the structured
query from a question, but its staged rank-and-prune helps prune the search space,
leading to better query construction and overall performance. We believe that several
novel paradigms with merits from both IE and SP styles, such as memory network
models and neural symbolic frameworks, are flexible enough to be adapted to more
complicated questions.
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7.2.4 Datasets

There have been several datasets available for evaluating knowledge-based question
answering systems.

WebQuestions: The widely used WebQuestions dataset is originally con-
structed by Berant et al. (2013), containing 5,810 question–answer pairs, which are
crawled via Google Suggest service, and annotated with Freebase answers through
Amazon Mechanical Turk. There is a publicly available training/testing split as well
as evaluation script for comparisons.2

Yih et al. (2016) further augment the WebQuestions dataset with semantic
parse tags,WebQuestionsSP,where, despite of original answers, eachanswerable
question is annotated using SPARQL queries with Freebase entity identifiers, 4,737
questions in total.3

Free917: The Free917 dataset is constructed by Cai and Yates (2013), contain-
ing 917 questions, each annotatedwith a logical form,where the entities and relations
are grounded to Freebase. Kun et al. (2014) further annotate each question with its
ungrounded semantic parse, where the entity phrases, relational phrases, categories,
and variables as well as the dependency structure among them are explicitly labeled.

SimpleQuestions: SimpleQuestions is constructed by Bordes et al. (2015),
containing 108,442 questions, each of which is manually annotated with a <subject,
relation, object> triple from Freebase. The questions in SimpleQuestions are
relatively simple, and one can answer such a question by retrieving and utilizing only
one triple from the KB, e.g., What do Jamaican people speak ? paired with a KB
query (jamaica, language_spoken, ?).

WikiMovies: WikiMovies is contributed by Miller et al. (2016), containing
around 100k questions in the movie domain. This dataset is designed to be answered
by either Wikipedia documents (containing the movies’ Wikipedia pages), human
cured structured KB (carefully created from the Open Movie Database4 and Movie-
Lens5), or KB triples automatically obtained with OpenIE tools. Each question is
guaranteed to be equally answered with Wikipedia documents or the cured KB.

QALD: Question answering over linked data (QALD) challenge is a series of
open evaluations on question answering over linked data since 2011.6 The theme
of QALD evaluations is to properly represent users’ natural language questions into
standard, executable queries, e.g., SPARQL queries, which can be executed over
large-scale knowledge bases, e.g., DBpedia.

There have been several classical KBQA tasks with several hundreds of question-
answer pairs, including the multilingual question answering task which contains
pairs of natural language questions (in multiple languages, e.g., English, French,
German, etc.) and DBpedia answers or corresponding SPARQL queries which can

2More details can be found in https://nlp.stanford.edu/software/sempre/.
3Obtained through https://www.microsoft.com/en-us/download/details.aspx?id=52763.
4Obtained through http://beforethecode.com/projects/omdb/download.aspx.
5Obtained through http://grouplens.org/datasets/movielens/.
6http://qald.sebastianwalter.org/.

https://nlp.stanford.edu/software/sempre/
https://www.microsoft.com/en-us/download/details.aspx?id=52763
http://beforethecode.com/projects/omdb/download.aspx
http://grouplens.org/datasets/movielens/
http://qald.sebastianwalter.org/
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Table 7.1 Example questions from the currently popular KBQA datasets

WebQuestions

Which country in Europe has the largest land area

Who did Shaq first play for

What is the largest city in the county in which Faulkner spent most of his life

Free917

Who was nominated for the academy award for best director in 2011

How many countries use euros

What was the strongest storm in the 1992 Atlantic Hurricane season

SimpleQuestions

What American cartoonist is the creator of Andy Lippincott?

Which forest is fires creek in?

what is an active ingredient in children’s earache relief?

WikiMovies

What movies did Harrison Ford star in?

Can you describe movie blade runner in a few words?

Which films can be described by dystopian?

QALD

What countries do Queen Elizabeth II reign

What is the best sandals resort in St. Lucia

What currency do they use in Switzerland

be executed over DBpedia. Another related task is the hybrid question answering
task, where each natural language question should be answeredwith both a structured
knowledge base, DBpedia, and free text, e.g., DBpedia abstracts (Table7.1).

7.2.5 Challenges

Along with the development of knowledge-based question answering systems, there
have been several issues that are mostly concerned or discussed, especially in the
context of employing deep learning models.

7.2.5.1 Compositionality

Traditional semantic parsing-based KBQA works usually rely on combinatory cate-
gorial grammar (CCG) (Steedman 2000) or probabilistic CCG to derive its meaning
representation from a question (Cai and Yates 2013; Kwiatkowski et al. 2013), which
is relatively hard to explicitly capture in a unified model without considerations for
such syntactic structures, e.g., information extraction-styled methods. Therefore,
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many existing works rely on manually defined rules or templates to handle compo-
sitionality (Yih et al. 2015). However, the neural symbolic framework may provide
a new direction to augment neural network models with the ability for shallow sym-
bolic reasoning (Liang et al. 2017).

7.2.5.2 Gap Between Natural Language and Knowledge Base

We have discussed that entity linking and relation extraction are two main hurdles
when we try to retrieve candidate answers or match natural language utterances with
knowledge base items. The main reason is the mismatch between natural language
and knowledge bases, including limited or omission of context in the language side,
sub-lexical compositionality, or even the defect in the KB design. Various neural
network models have been proposed to improve the relation matching or extraction,
but far less attention is given to the entity linking task, which is the fundamental step
in a KBQA system.

7.2.5.3 Training Data

Training data has been a long-standing problem in various machine learning-based
methods, especially for neural network models which are assumed to require more
training data than traditional methods. And in the question answering scenario, it
is very expensive to collect question–answer pairs, let alone any fine annotations,
e.g., logical forms, structured queries, or even entity and relation annotations. Possi-
ble solutions include using question–answer pairs as indirect supervision to collect
pseudo labels (Yih et al. 2015; Xu et al. 2016), or automatically collecting training
data with noisy labels or templates (Miller et al. 2016; Bordes et al. 2014a).

Question answering over knowledge bases is a challenging task, which requires
many NLP or IR techniques, such as lexical analysis, syntactic analysis, information
extraction, entity linking, reasoning, and so on. Recent advances in deep learning
provide helpful tools or novel frameworks to improve knowledge-based question
answering, which are admitted on the earlier stage. We believe that deep fusion of
neural network modeling and question answering will bring more opportunities in
this field.

7.3 Deep Learning in Machine Comprehension

7.3.1 Task Description

Machine comprehension (MC) is a recently proposed application that has gained
significant popularity over the past few years within the natural language processing
and artificial intelligence communities. MC tests the ability of the machine to read
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the text, process it, and understand its meaning.MC follows the traditional QA setup,
but still remains some differences as follows:

• In traditional QA, for a given question, the answer may come from various
resources, such as knowledge base (KBQA), web searching results, and even some
question answering platforms (also known as community QA). However, in MC,
the context knowledge is restricted to a single given document.

• Compared to traditional QA, especially for IRQA andKBQA,MCmainly focused
on those questions which could not be answered directly and need to be reasoned
according to multiple entities or events in the given document. In the way, the
reasoning ability is more required in MC.

• Compared to traditional QA, the answer types in MC are more diverse and vary
from a single word to multiple sentences. In addition, the question forms of the
MC are also diverse, such as multiple-choice questions (the answer candidates are
provided previously) and cloze-style questions (candidates are not provided and
the answer should be generated from the system).

7.3.1.1 Datasets

MCTest: The task of machine comprehension started from NLP community. In
2013, Microsoft researchers proposed MCTest (Richardson et al. 2013) dataset to
evaluate the comprehension ability of a machine. InMCtest, each document (stories)
is associated with four questions. For each question, four candidate answers are
provided and the system is required to select the correct one. An example of the
MCTest is shown in Fig. 7.6.

Obviously, MCTest is a standard reading comprehension dataset in which the
stories are fictitious and some questions could be answered from several sentences
(labeled as multiple). The author divides the dataset into two subsets, including
MC160 and MC500, which contains 160 and 500 stories, respectively. However, the
size of this dataset is too small which sometimes only serves as a test setup. Many
recent researchers usually resort to external linguistic tools to extract features and
then make the inference based on them. Started from MCtest, several MC datasets
have been released. Here, we mainly introduce four standard resources as follows.

bAbi: bAbi (Weston et al. 2015a) is a MC dataset that is AI-complete according
to the author’s description. In total, bAbi contains 20 subtasks, where each subtask
requires different answer skills. Some subtask examples are shown in Fig. 7.7.

As this dataset has been divided into different categories, the performance on
different subtasks could expose the advantages or disadvantages of one model on
different question types. Moreover, the whole dataset is auto-synthesized and auto-
generated with several human-designed rules. Although the rules are supposed to be
unlimited, in fact, the generation rules are merely based on no more than 100 words.
As a result, some questions or documents in this dataset are duplicated. Furthermore,
as bAbi is auto-synthesized by rules, the exploited algorithms or systems are more
likely to approximate the used generation rules.
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Fig. 7.6 An example of MCTest stories and questions

John is in the playground. 
Bob is in the office. 
Where is John?  playground

single suppor ng fact

John is in the playground.
Bob is in the office. 
John picked up the football. 
Bob went to the kitchen. 
Where is the football? playground
Where was Bob before the kitchen? office

two supporting facts

The office is north of the bedroom. 
The bedroom is north of the bathroom. 
What is north of the bedroom? office
What is the bedroom north of? bathroom

Subject vs. Object

John is in the playground. 
Daniel picks up the milk. 
Is John in the classroom? no 
Does Daniel have the milk? yes

Yes or No ques ons

Fig. 7.7 Examples of bAbi questions

SQuAD: SQuAD (Rajpurkar et al. 2016) denotes Stanford question answering
dataset, which is a recently released human-created large machine comprehension
dataset. This dataset contains nearly 100,000 document–question pairs. The docu-
ments are derived from Wikipedia pages, then crowdsourcing annotators are asked
to propose some questions based on these documents and label the corresponding
answer in the document. Note that, in SQuAD, no candidate answer is provided. And
the system could ‘generate’ the answer by predicting the start and end position of
the answer in the document. An example of the question is shown in Fig. 7.8.
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In meteorology, precipitation is any product of the condensation 
of atmospheric water vapor that falls under gravity. The main 
forms of precipitation include drizzle, rain, sleet, snow, graupel 
and hail... Precipitation forms as smaller droplets coalesce via 
collision with other rain drops or ice crystals within a cloud. Short, 
intense periods of rain in scattered locations are called “showers”.

Where do water droplets collide with ice crystals to form precipitation?

Fig. 7.8 An example of SQuAD questions

CONTEXT:
( @entity4 ) if you feel a ripple in the force today , it may be the news that the 
official @entity6 is getting its first gay character . according to the sci-fi website 
@entity9 , the upcoming novel " @entity11 " will feature a capable but flawed 
@entity13 official named @entity14 who " also happens to be a lesbian . " 
comics and books approved by @entity6 franchise owner @entity22 -- according 
to @entity24 , editor of " @entity6 " books at @entity28 imprint @entity26 .

QUESTION:
characters in " @placeholder " movies have gradually become more diverse
ANSWER:
@entity6

Fig. 7.9 An example of CNN questions

Moreover, recently, several MC datasets with similar scales and similar form to
SQuAD have also been released, such as NewsQA7 and Marco.8

Cloze-StyleMachineComprehensionDataset: Besides the aforementionedQA
forms in MC, the Cloze-style queries (Taylor 1953) is one of the fundamental forms.
Such type sharesmost of the characteristics of reading comprehension, but the answer
is a single word in the document. Recently many datasets have been proposed for
this type, such as CNN/Daily Mail (Hermann et al. 2015) and CBT (Hill et al. 2015).
In CNN/Daily Mail, the authors proposed a semiautomatic method to generate the
cloze from two news corpora. Each news story is accompanied with a headline or
summary. The authors remove one specific noun in the headline, and the system is
required to fill this placeholder based on the given document. In order to avoid the
impact of language modeling or real-world knowledge beyond text comprehension,
the authors anonymized all entities in the documents and queries. In CBT, each
document contains 20 consecutive sentences in book story. One word in the twenty-
first sentence is removed. To avoid the usage of the methods based on language
modeling in reading comprehension, the answers are restricted to proper nouns. An
example of CNN/Daily Mail is shown in Fig. 7.9.

7https://datasets.maluuba.com/NewsQA.
8http://www.msmarco.org.

https://datasets.maluuba.com/NewsQA
http://www.msmarco.org
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Skills Descriptions or examples
List/Enumeration Tracking, retaining, and list/enumeration of entities or states

Mathematical operations Four arithmetic operations and geometric comprehension
Coreference resolution Detection and resolution of coreference

Logical reasoning Induction, deduction, conditional statement, and quantifier
Analogy Trope in figures of speech, e.g., metaphor

Spatiotemporal relations Spatial and/or temporal relations of events
Causal relations Relations of events expressed by why, because, the reason for, and so on

Commonsense reasoning Taxonomic knowledge, qualitative knowledge, action and event changes
Schematic/Rhetorical clause 

relations
Coordination or subordination of clauses in a sentence

Special sentence structure Scheme in figures of speech, constructions, and punctuation marks in a sentence

Fig. 7.10 Machine comprehension skills

7.3.1.2 Knowledge Requirement to Achieve Machine Comprehension

Machine comprehension is a comprehensive inference task that requires the deep
understanding of natural languages. In psychology, comprehension comes from the
interaction between the words how they trigger knowledge inside/outside the given
passages/documents. And it is a creative, multifaceted process dependent upon four
language skills: phonology, syntax, semantics, and pragmatics. For machine com-
prehension problem, achieving genuine comprehension even requires the abilities to
understand the relations amongmultiple clauses. For example, the skill of understand-
ing temporal relations between events implicitly requires the recognition of expres-
sions such as conjunctions (when, as, since, …), time indexicals (morning, evening,
…), tense, and aspects (went, is going, will go, …). Moreover, other inference skills
are needed. For example,mathematical operations are required to answer the question
related to arithmetic problem such as ‘Tom has four pencils and he gave his desk-mate
2 of them, how much pencils did he have at hand ?.’ Systems required to answer this
type of questions should inference the equation ‘4 – 2 = 2’. Sugawara et al. (2017)
proposed 10 roughly skills that are required forMCwhich are listed in Fig. 7.10.

General speaking, machine comprehension involves dealing with many linguistic
patterns, such as lexical, syntactical, or high-level discourse, paraphrase. To model
these features, according to the methodology perspective, the current methods could
bedivided into twoparts: featureengineering-basedmethodsanddeep learning-based
methods.We briefly introduce them as follows.

7.3.2 FeatureEngineering-BasedMethods inMachine
Comprehension

The existing feature engineering-based methods often model the text comprehension
task as a task of computing semantical similarity between the given question and



7 Deep Learning in Question Answering 203

the document or passage. These methods try to model the semantics of sentence
and document through several shallow linguistic features, including POS tag-based
features, dependency parsing features, coreference, reference etc. Based on different
features, different types of semantics are captured, such as lexical level semantic,
discourse-level semantics, and so on.

7.3.2.1 LexicalMatching

The lexical matching method is a simple yet effective approach for machine compre-
hension task. This kind of approach usually adopts a slidingwindow-based algorithm
that could rank the answer candidates by forming a bag-of-words vector for each
answer paired with the question text. Then each candidate is scored according to their
overlapwith the story text, and the candidatewith the highest scorewill be figured out.
Moreconcretely, thisalgorithmpassesaslidingwindowover thewholestory texts, and
the size of such window is equal to the number of words in the question–answer pair.
The highest overlap score between a story text window and the question–answer pair
is taken as the corresponding score for the answer. The algorithm detail is illustrated
in Algorithm 2.

Algorithm 2 Sliding window
Require: Passage P , set of passage words PW , i th word in passage Pi , set of words in question Q,
set of words in hypothesized answer A1..4, and a set of stop words U .
Define: C(W ) = ∑

i I(Pi = w)

Define: I C(W ) = log(1 + 1
c(w)

)

1: for i = 1 to 4 do
2: S = Ai ∪ Q

3: swi = max j=1..|s|
∑

w=1..|S|

{
I C(Pj+w) i f Pj+w ∈ S

0 otherwise
4: end forReturn: sw1..4

However, theused textwindowinabovealgorithmisfixed.Smithet al. (2015) score
each answer bymakingmultiple passes and summing the obtained scores. In specific,
they start from window size 2 and increase it to 30 tokens. Then they combine these
scores with the overall number of matches for question–answer pair across the story.
As they declared, this solution could enable the system to capture the long-distance
relationsinthestory.Thecomparedresultsoftheoriginalandenhancedslidingwindow
lexical matchingmethods onMCTest is shown in Table7.2.
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Table 7.2 The performance of lexical matching method on MCtest

Sliding window (%) Enhanced sliding window (%)

MC160 69.43 72.65

MC500 63.01 63.57

7.3.2.2 Discourse Relations

Moreover, the required and relevant information for answering a question may dis-
tribute acrossmultiple sentences.Understanding the semantic relation(s) among these
sentences is important to find the correct answer. Take the example in Fig. 7.11 for
instance. To answer the question about ‘why Sally put on her shoes’, we need to infer
that ‘She put on her shoes’ and ‘Shewent outside towalk’ are connected by a causality
relation.

Some prior works have demonstrated the values of discourse relations in related
applications suchasquestionanswering (Jansenet al. 2014).NarasimhanandBarzilay
(2015)proposedthreemodels to incorporate thediscourserelation into theMCsystem.

Denote the sentence in a document as z, and questions as q, answer as a.
Model 1:

P(a, z|q j ) = P(z|q j )P(a|z, q j ) (7.1)

Equation7.1 defines a joint probability as a product of two distributions. The first
is the conditional distribution of sentences in the paragraph given in the question. This
is to help identify those sentences which are required to answer the question. The
second componentmodels the conditional probability of selecting an answer by given
a question q and a sentence z. We can use exponential family for these component
probabilities, that is : P(z|q) ∝ expθ1φ1(q,z) and P(z|a, q) ∝ expθ2φ2(q,a,z), where φ is
the feature vector and θ represent the associate weight. Sums over all sentences zn in
document and we can get the probability for a specific answer a j :

Sally liked going outside. She put on her shoes. She went outside to 
walk. [...] Missy the cat meowed to Sally. Sally waved to Missy the cat 
[...] Sally hears her name. ”Sally, Sally, come home”, Sally’s mom calls 
out. Sally runs home to her Mom. Sally liked going outside.

Why did Sally put on her shoes?

A) To wave to Missy the cat
B) To hear her name
C) Because she wanted to go outside
D) To come home

Fig. 7.11 An example of question that requires multiple sentence inference
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P(a j |q j ) =
∑

n

P(a j , zn|q j ). (7.2)

In this way, a likelihood objective function could be written as

L1(θ) = log
∑

j

∑

n

P(a j , zn|q j ). (7.3)

Model 2: The abovemodel could only consider one support sentence (i.e., z) once.
Naturally, we could extend it for the multi-sentence case where we make use of more
than a single relevant sentence for the given question. In this scenario, a joint model is
defined as follows.

P(a, z1, z2|q) = P(z1, |q)P(z2|z1, q)P(a|z1, z2, q). (7.4)

Given a question q, we first predict the first sentence support sentence z1 that relate
to q with probability P(z1, |q), then given q and z1, the second support sentence z2 is
inferenced. Finally, the answer a is predicted.

Model3:Thismodel tries todirectlyspecify thediscourserelationamongquestions
and then employs this relation to inference other related sentences in a document.
In specific, Model 3 adds a hidden variable r ∈ R to represent the relation type.
It incorporates features that tie in the question type with the relation type. It also
employes the type of relation to compute the lexical and syntactic similarities between
sentences. Relation set R consists of the following relations: (1) Causal: Causes of
events or reasons for facts. (2) Temporal: Time-ordering of events (3) Explanation:
Predominantly dealing with how-type questions. (4) Other: A relation other than the
above three relations (including non-relation).

Now the joint probability fromEq.7.4 is modified through adding relation type r :

P(a, r, z1, z2|q) = P(z1|q)P(r |q)P(z2|z1, r, q)P(a|z1, z2, r, q). (7.5)

The extra component P(r |q) is the conditional probability of the relation type r
depending on the question. Thus, this model could learn, for instance, that why-
questions correspond to the causal relation.

The results of threemodels are shown in Table7.3.

Table 7.3 Accuracy on MCtest of three models. Single refers to the questions that only need one
support sentence to answer, and Multi refers to questions requiring multiple sentences to answer

MC160 MC500

Single (%) Multi (%) All (%) Single (%) Multi (%) All (%)

Model 1 78.45 60.57 68.47 70.58 57.77 63.58

Model 2 74.68 60.07 66.52 66.17 59.9 62.75

Model 3 72.79 60.07 65.69 68.38 59.9 63.75
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7.3.2.3 Answer-Entailing Structures

SomepreviousworksofNLPhavebenefitedfromlearning the latent structurebetween
twotextsnippets.Forexample, inrecognizingtextualentailment(RTE), thehypothesis
could be inferred from its premise by some latent alignment between them. InMC,we
could also incorporate this entailing structures information into account. For instance,
in the exampleofFig. 7.6, to answer the secondquestionWhat did c ?,wecanuse some
syntactic rules to transform the question and a candidate answer into statements. For
example, oneof the candidates’ answer is catfish,we combine itwith thequery to form
a statement: Alyssa eat catfish at the restaurant. Deem this statement as a hypothesis,
and the document as the premise, we can infer the probability of this entailment. The
structure is illustrated in Fig. 7.12.

The answer-entailing structures considered here could align multiple sentences
in the text to the hypothesis. The sentences in the text considered for alignment
are not restricted to occur contiguously in the text. To allow such a discontinuous
alignment, Sachan et al. (2015) make use of the document structure. In particular,
they take help from rhetorical structure theory which could capture the event or entity
coreference links across sentences. They specifically trained a max-margin fashion
using a latent structural SVM (LSSVM) where the answer-entailing structures are
latent. The experiment results of this answer-entailing model on MC500 is shown in
Table7.4.

7.3.2.4 Challenges in Feature Engineering-BasedMethods

Feature engineering-based methods are efficient and explicit ways to dealing with
machine comprehension problem, they usually utilize several linguistic features to
model the semantical relations between the given document and question. Then, it
makes an inference based on these features. The process is clear and easy to follow

What did Alyssa eat at the restaurant ? catfish

Question: Answer:

Alyssa eat catfish at the restaurantStatement:

… The restaurant had a special on catfish … Alyssa enjoyed the restaurant's special…Document:

Fig. 7.12 An answer-entailing structure example fromMCTest

Table 7.4 Answer-entailing model accucary on MC500

Single Multiple All

Accuracy (%) 67.65 67.99 67.83
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what is goingwrong in themethod.However, these linguistic features sometimesneed
to be extracted by empirical or heuristic experiences. And they may not cover much
deeper semantic information. Moreover, they heavily rely on standalone linguistic
tools, such as part-of-speech tagging, parser etc., which may introduce noises to the
system. Therefore, the feature engineering methods usually focus on MC data with
such asMCTest. And for some large-scaleMCdatasets such as SQuADand bAbi, it is
difficult for existing feature engineering-basedmethods todesign andextract effective
features from texts. Recently, as deep learning gained great successes on computer
vision and speech recognition, more and more researchers began to focus on deep
learning-based techniques forMC task.

7.3.3 DeepLearningMethods inMachineComprehension

In this section, forMCtask,wewould like to introduceseveralprevalentdeep learning-
based methods on different datasets. Formally, given a document d and a question q,
the probability of selecting the answer a could bemodeled as follows:

P(a|d, q) ∝ exp(W (a)g(d, q)), (7.6)

where W (a)means the embedding of the answer candidate a and g(d, q) denotes the
embedding of document d under the given question q. The critical part is to compute
the function of g(d, q), where several deep neural network could be applied, such as
RNN, LSTM, andMemoryNetwork (Weston et al. 2015b).

7.3.3.1 LSTM-Based Encoder

Long short-term memory networks (LSTM) have been proved to be effective for
modeling sequence data into vectors. Thus, tomodel function g(d, q), Hermann et al.
(2015) feed documents on word at a time into a LSTM-based encoder. Then the
question q is also fed into this encoder after a delimiter. In this way, the pair of the
given document d and the question q could be as a long single sequence as shown in
Fig. 7.13. The details are omitted here and could refer to (Hermann et al. 2015).

7.3.3.2 Bidirectional Attention Encoder

Unidirectional LSTM is difficult to propagate dependencies over long distances. As
a result, information would decay in the transport from a component to another and
the semantics of the document could not be encoded precisely. Thus, more and more
researchers adopt bidirectional LSTM model to encode sequential data. Moreover,
not all sentences or contexts in a document d have related to the given question q.
For example, d is “Michael Jordan abruptly retired from Chicago Bulls before the
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Fig. 7.13 An answer-entailing structure example fromMCTest

beginning of the 1993–94 NBA season to pursue a career in baseball.” When q is
“When did Michael Jordan retired from NBA?”, the focused contexts in d should be
“before the beginning of the 1993–94 NBA.”When q is “Which sports doesMichael
Jordan participate after his retirement from NBA?,” the focused contexts in d should
be “pursue a career in baseball.” That is to say that we should pay different attention
of different parts in d when dealing with different questions. Therefore, it is natural
to introduce attention mechanism into the deep neural network. Chen et al. (2016)
proposed a bidirectional encoding model with attention mechanism (BiDEA), which
did get a promising performance on CNN/DailyMail dataset.

The structure of this model is quite intuitive. Its procedure of predicting a answer
mainly contains the following three steps:

1. Encoding: After all the words being mapped to d-dimensional vectors, the pas-
sage p (d) and query q can be represented as p1, p2, . . . , pm and q1, q2, . . . , ql

respectively. Therefore, the contextual information of p can be calculated as

−→
hi = L ST M(

−−−−→
hi−1, pi ), i = 1, . . . , m

←−
hi = L ST M(

←−−−−
hi+1, pi ), i = m, . . . , 1

p̃i = concat (
−→
hi ,

←−
hi ).

Meanwhile, the question can be embedding into q (a single vector) by another
LSTM layer in the sameway.

2. Attention: All textual information in p̃i can be combined into output vector o in
the followingway:

αi = so f tmaxi q
�Ws p̃i

o =
∑

i

αi p̃i
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Table 7.5 Results of BiDEA and other models on CNN/Daily mail

CNN Daily mail

Val Test Val Test

Attentive reader (Hermann et al. 2015) 61.6 63.0 70.5 69.0

MemNN (Sukhbaatar et al. 2015) 63.4 6.8 – –

AS reader (Hermann et al. 2015) 68.6 69.5 75.0 73.9

Stanford AR (Chen et al. 2016) 68.6 69.5 75.0 73.9

DER network (Kobayashi et al. 2016) 71.3 72.9 – –

Iterative attention (Sordoni et al. 2016) 72.6 73.3 – –

EpiReader (Trischler et al. 2016) 73.4 74.0 – –

GAReader (Dhingra et al. 2016) 73.0 73.8 76.7 75.7

AoA reader (Cui et al. 2017) 73.1 74.4 – –

ReasoNet (Shen et al. 2017) 72.9 74.7 77.6 76.6

BiDAF (Seo et al. 2016) 76.3 76.9 80.3 79.6

BiDEA (Chen et al. 2016) 72.4 72.4 76.9 75.8

In the above equations, Ws ∈ R
h×h is used for measuring similarity between the

question q and a word in passage pi .
3. Prediction: The predicted answer a is computed as follows:

a = argmaxa∈p∩E W �
a o,

where E is the embedding matrix and Wa is the measurement matrix between
output o and candidate word a.

Although the computation of aforementioned model is quite straightforward, it
gains pretty promising performance on CNN/Daily Mail (experimental results are
listed in Table7.5). According to the analysis of Chen et al. (2016), the effectiveness
of the proposed model are caused by (i) reasoning and inference level in CNN/Daily
Mail are still simple enough to be handled by a simple model; (ii) all kinds of models
have reached a performance ceiling on CNN/DailyMail, and this corpusmay even be
handled well by an information retrieve system.

Moreover, in order to represent the context at different granularities and achieve
a query-aware context representation without early summarization, Seo et al. (2016)
adopt amultistage hierarchical process and also propose a bidirectional attention flow
networks (BiDAF) forMC task.

As showed in Fig. 7.14, the proposed model is mainly composed by the following
6 layers:

1. CharacterEmbeddingLayer: a character-level CNNs that canmap characters in
a word to a continuous vector.

2. WordEmbedding Layer: a pre-trained word embeddingmatrix.
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Char Embedding Layer

Word Embedding Layer

LSTM Encoder LSTM Encoder

Attention Flow Layer
Query2Context and 

Context2Query Attention

Phrase Embedding Layer

2-layer LSTM Encoder

Hidden State Sequence Hidden State Sequence

Modeling Layer

Dense+
Softmax

LSTM+
Softmax

Output Layer

Fig. 7.14 Diagram of bi-directional attention flow model

3. Phrase Embedding Layer: a bidirectional LSTM layer that can catch contextual
information of a word.

4. Attention FlowLayer: a similaritymatrix, S, measures similarity betweenwords
of context and query from two directions, i.e., Context-to-Query and Query-to-
Context.

5. ModelingLayer: a two-layer bidirectional LSTMcontaining contextual informa-
tion about all the words.

6. Output Layer: two logistic regression models that capture the start-index and
end-index respectively.

Theexperimental results,asshowedinTable7.6,onSQuADindicates thatBiDAF’s
idea brings an improvement in performance, which may be caused by BiDAF’s capa-
bility on finding start and end of support evidence in a hierarchical level.

7.3.3.3 MemoryNetworks

Memory Networks (MemNNs) (Weston et al. 2015b) are proposed to address the
decaying of information in sequential neural networks. And it can reason with infer-
ence components combined with a long-term memory component (actually a matrix
or tensor, where its name came from). In general, it contains four major important
components:

I (input feature map) converts input vectors to internal feature representation.
G (generalization) updates the existingmemory according to the new input.
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Table 7.6 Results of BiDAF and other models on SQuAD test set

Single model Ensemble

EM F1 EM F1

Logistic regression baseline (Rajpurkar et al. 2016) 40.4 51.0 – –

Dynamic chunk reader (Yu et al. 2016) 62.5 71.0 – –

Fine-grained gating (Yang et al. 2016) 62.5 73.3 – –

Match LSTM (Wang and Jiang 2016) 64.7 73.7 67.9 77.0

Multi-perspective matching (Wang et al. 2016) 65.5 75.1 68.2 77.2

Dynamic coattention networks (Xiong et al. 2016) 66.2 75.9 71.6 80.4

R-Net (Wang et al. 2017) 68.4 77.5 72.1 79.7

BiDAF (Seo et al. 2016) 68.0 77.3 73.3 81.1

Question q

Pa
ss

ag
e

M
em

or
y

O
ut

pu
t

I

G

O

R

Answer a

Fig. 7.15 Diagram of memory networks for bAbI task

O (output feature map) calculates a new output based on the new input and current
memory states.

R (response) converts the output to desired response format.

The diagram ofMemNNs is shown in Fig. 7.15. An important form ofMemNNs is
End2EndMemory Networks and we will abbreviate it as MemN2Ns. One advantage
of MemN2Ns is that it can be trained in an end-to-end way, which means it requires
less-supervised information and ismore generally applicable in realistic settings. The
following equations are computation in I , G, O , and R respectively:

I pi = Sof tmax(uT mi ),
wheremi = Axi (xi istheembeddingvectorsoftheinputsentences)andu = Bq(q
is the input query).
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G inMemN2Ns, memory has not been updated.
O o = ∑

i pi ci where ci = Cxi .
R â = Sof tmax(W (o + u)).

Also, it is easy to insert layers intoMemN2Ns in the following way:

• u of (k + 1)th layer can be calculated as uk+1 = uk + ok .
• Each layer has its own Ak andCk .
• Prediction can be computed by â = Sof tmax(W uK+1)

MemN2N is originally applied to 20 tasks in bAbI task. And, as demonstrated by
experiments in Table7.7, the best MemN2N performance are close to the supervised
models,thepositionencoding(PE)representationimprovesoverbag-of-words(BoW),
the linear start (LS) to training seems help avoid local minima and joint training helps
on all tasks.

Beyond the MemNNs or MemN2Ns themselves, it is worthy noting that the com-
putation inG is actually a kind of attentionmechanism.Andmemory networks are the
first model that keep external knowledge in a specific matrix, which has a significant
effect on the development of memory mechanism in various deep models for natural
language processing.

7.4 Summary

This chapter presents a brief introduction of deep learning-based methods for the
tasks of question answering, especially for question answering over knowledge base
and machine comprehension. The advantages of the usage of deep learning is that it
couldconvert all text spans, includingdocuments, questions, and thepotential answers
into vector embeddings. As a result, all texts could be handled in a unified semantic
space. Thus, the existing semantic gap problem in traditional QA approaches based
on symbolic representation could be alleviated to a certain degree. Moreover, such
paradigm makes that the QA system could be constructed in a end-to-end way. As
a result, the existing complicated pipeline-based QA process could be replaced by a
more straightforward or easy way. The results are expected to be improved.

Nevertheless, there are many challenges in deep learning-based QA models. For
example, theexistingneural networks, suchasRNNandCNN,could still not precisely
capture the semanticmeaning of the given questions. Especially for the document, the
topical or logical structure in a document could not be easilymodeled by a neural net-
work.Moreover, therearestillnoeffectivemethods forembedding items inknowledge
base. And, the reasoning process inQA is difficult to bemodeled by simply numerical
operations between vectors. These problems are the key challenges for QA task and
should be paidmore attention in the future.
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Chapter 8
Deep Learning in Sentiment Analysis

Duyu Tang and Meishan Zhang

Abstract Sentiment analysis (also known as opinion mining) is an active research
area in natural language processing. The task aims at identifying, extracting, and
organizing sentiments from user-generated texts in social networks, blogs, or product
reviews. Over the past two decades, many studies in the literature exploit machine
learning approaches to solve sentiment analysis tasks from different perspectives.
Since the performance of a machine learner heavily depends on the choices of
data representation, many studies devote to building powerful feature extractor
with domain expertise and careful engineering. Recently, deep learning approaches
emerge as powerful computational models that discover intricate semantic rep-
resentations of texts automatically from data without feature engineering. These
approaches have improved the state of the art in many sentiment analysis tasks,
including sentiment classification, opinion extraction, fine-grained sentiment analy-
sis, etc. In this paper, we give an overview of the successful deep learning approaches
sentiment analysis tasks at different levels.

8.1 Introduction

Sentiment analysis (also known as opinion mining) is a field that automatically ana-
lyzes people’s opinions, sentiments, emotions from user-generated texts (Pang et al.
2008; Liu 2012). Sentiment analysis is a very active research area in natural language
processing (Manning et al. 1999; Jurafsky 2000), and is also widely studied in data
mining, web mining,and social media analytics as sentiments are key influencers of
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Table 8.1 An example that illustrates the definition of sentiment

Target Sentiment Holder Time

iPhone Positive Alice June 4, 2015

Touch screen Positive Alice June 4, 2015

Price Negative Alice June 4, 2015

human behaviors.With the rapid growth of social media such as Twitter,1 Facebook2,
and review sites such as IMDB,3 Amazon,4 Yelp,5 sentiment analysis draws growing
attention from both the research and industry communities (Table8.1).

According to the definition from (Liu 2012), sentiment (or an opinion) is repre-
sented as a quintuple e, a, s, h, t , where e is the name of an entity, a is the aspect
of e, s is the sentiment on aspect a of entity e, h is the opinion holder, and t is
the time when the opinion is expressed by h. In this definition, a sentiment s can
be a positive, negative, or neutral sentiment, or a numeric rating score expressing
the strength/intensity of the sentiment (e.g., 1–5 stars) in review sites like Yelp and
Amazon. The entity can be a product, service, topic organization, or event (Hu and
Liu 2004; Deng and Wiebe 2015).

Let us use an example to explain the definition of “sentiment”. Supposing a
user named Alice posted a review “I bought an iPhone a few days ago. It is such a
nice phone. The touch screen is really cool. However, the price is a little high.” at
June 4, 2015. Three sentiment quintuples are involved in this example, as shown in
Table 8.1.

Based on the definition of “sentiment”, sentiment analysis aims at discovering all
the sentiment quintuples in a document. Sentiment analysis tasks are derived from
the five components of the sentiment quintuple. For example, document/sentence-
level sentiment classification (Pang et al. 2002; Turney 2002) targets at the third
component (sentiment such as positive, negative, and neutral) while ignoring the
other aspects. Fine-grained opinion extraction focuses on the first four components
of the quintuple. Target-dependent sentiment classification focuses on the second
and the third aspects.

Over the past twodecades,machine learning-drivenmethods havedominatedmost
sentiment analysis tasks. Since feature representation greatly affects the performance
of a machine learner (LeCun et al. 2015; Goodfellow et al. 2016), a lot of studies in
the literature focus on effective features in hand with domain expertise and careful
engineering. But this can be avoided by representation learning algorithms, which
automatically discover discriminative and explanatory text representations fromdata.
Deep learning is a kind of representation learning approach, which learns multiple
levels of representation with nonlinear neural networks, each of which transforms

1https://twitter.com/.
2https://www.facebook.com.
3http://www.imdb.com/.
4https://www.amazon.com/.
5https://www.yelp.com/.

https://twitter.com/
https://www.facebook.com
http://www.imdb.com/
https://www.amazon.com/
https://www.yelp.com/
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the representation at one level into a representation at a higher and more abstract
level. The learned representations can be naturally used as features and applied
to detection or classification tasks. In this chapter, we introduce successful deep
learning algorithms for sentiment analysis. The notation of “deep learning” in this
chapter stands for the use of neural network approaches to learning continuous and
real-valued text representation/feature automatically from data.

We organize this chapter as follows. Since word is the basic computational unit
of natural language, we first describe the methods to learn continuous word rep-
resentation, also called word embedding. These word embeddings can be used as
inputs to subsequent sentiment analysis tasks. We describe semantic compositional
methods that compute representations of longer expressions (e.g., sentence or docu-
ment) for sentence/document-level sentiment classification task (Socher et al. 2013;
Li et al. 2015; Kalchbrenner et al. 2014), followed by neural sequential models for
fine-grained opinion extraction. We finally conclude this paper and provide some
future directions.

8.2 Sentiment-Specific Word Embedding

Word representation aims at representing aspects of word meaning. For example, the
representation of “cellphone” may capture the facts that cellphones are electronic
products, that they include battery and screen, that they can be used to chat with
others, and so on. A straightforward way is to encode a word as a one-hot vector.
It has the same length as the size of the vocabulary, and only one dimension is 1,
with all others being 0. However, the one-hot word representation only encodes the
indices of words in a vocabulary, while failing to capture rich relational structure of
the lexicon.

One common approach to discover the similarities between words is to learn word
clusters (Brown et al. 1992;Baker andMcCallum1998). Eachword is associatedwith
a discrete class, and words in the same class are similar in some respect. This leads to
a one-hot representation over a smaller vocabulary size. Instead of characterizing the
similarity with a discrete variable based on clustering results which correspond to a
soft or hard partition of the set of words, many researchers target at learning a contin-
uous and real-valued vector for each word, also known as word embedding. Existing
embedding learning algorithms are typically based on the distributional hypothesis
(Harris 1954), which states that words in similar contexts have similar meanings.
Towards this goal, many matrix factorization methods can be viewed as modeling
word representations. For example, Latent Semantic Indexing (LSI) (Deerwester
et al. 1990) can be regarded as learning a linear embedding with a reconstruction
objective, which uses a matrix of “term–document” co-occurrence statistics, e.g.,
each row stands for a word or term and each column corresponds to an individual
document in the corpus.HyperspaceAnalogue toLanguage (Lund andBurgess 1996)
utilizes a matrix of term–term co-occurrence statistics, where both rows and columns
correspond towords and the entries stand for the number of times a givenword occurs
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in the context of another word. Hellinger PCA (Lebret et al. 2013) is also investigated
to learn word embeddings over “term–term” co-occurrence statistics. Since standard
matrix factorization methods do not incorporate task-specific information, it is not
clear whether they are useful enough for a target goal. Supervised Semantic Indexing
(Bai et al. 2010) tackles this problem and takes the supervised information of a spe-
cific task (e.g. information retrieval) into consideration. They learn the embedding
model from click-through data with amargin ranking loss. DSSM (Huang et al. 2013;
Shen et al. 2014) also could be considered as learning task-specific text embeddings
with weak supervision in information retrieval.

A pioneering work that explores neural network approaches is given by (Ben-
gio et al. 2003), which introduces a neural probabilistic language model that learns
simultaneously a continuous representation for words and a probability function for
word sequences based on these word representations. Given a word and its preced-
ing context words, the algorithm first maps all these words to continuous vectors
with a shared lookup table. Afterward, word vectors are fed to a feed-forward neu-
ral network with softmax as output layer to predict the conditional probability of
next word. The parameters of neural network and lookup table are jointly estimated
with backpropagation. Following Bengio et al. (2003)’s work, several approaches are
proposed to speed-up training processing or capturing richer semantic information.
Bengio et al. (2003) introduce a neural architecture by concatenating the vectors of
context words and current word, and use importance sampling to effectively opti-
mize the model with observed “positive sample” and sampled “negative samples”.
Morin and Bengio (2005) develop hierarchical softmax to decompose the conditional
probability with a hierarchical binary tree. Mnih and Hinton (2007) introduce a log-
bilinear language model. Collobert and Weston (2008) train word embeddings with
a ranking-type hinge loss function by replacing the middle word within a window
with a randomly selected one. Mikolov et al. (2013a, b) introduce continuous bag-
of-words (CBOW) and continuous skip-gram, and release the popular word2vec6

toolkit. The CBOW model predicts the current word based on the embeddings of
its context words, and the skip-gram model predicts surrounding words given the
embedding of current word. Mnih and Kavukcuoglu (2013) accelerate the word
embedding learning procedure with Noise Contrastive Estimation (Gutmann and
Hyvärinen 2012). There are also many algorithms developed for capturing richer
semantic information, including global document information (Huang et al. 2012),
word morphemes (Qiu et al. 2014), dependency-based contexts (Levy and Goldberg
2014), word–word co-occurrence (Levy and Goldberg 2014), sense of ambiguous
words (Li and Jurafsky 2015), semantic lexical information in WordNet (Faruqui
et al. 2014), hierarchical relations between words (Yogatama et al. 2015).

The aforementioned neural network algorithms typically only use the contexts of
words to learn word embeddings. As a result, the words with similar contexts but
opposite sentiment polarity like “good” and “bad” are mapped into close vectors in
the embedding space. This is meaningful for some tasks such as POS tagging as
the two words have similar usages and grammatical roles, but this is problematic

6https://code.google.com/p/word2vec/.

https://code.google.com/p/word2vec/
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for sentiment analysis as “good” and “bad” have the opposite sentiment polarity. In
order to learn word embeddings tailored for sentiment analysis tasks, some studies
encode sentiment of texts in continuous word representation. Maas et al. (2011)
introduce a probabilistic topic model by inferring the polarity of a sentence based
on the embedding of each word it contains. Labutov and Lipson (2013) re-embed an
existingword embeddingwith logistic regression by regarding sentiment supervision
of sentences as a regularization item. Tang et al. (2014) extend the C&Wmodel and
develop three neural networks to learn sentiment-specific word embedding from
tweets. Tang et al. (2014) use the tweets that contain positive and negative emoticons
as training data. The positive and negative emoticon signals are regarded as weak
sentiment supervision.

We describe two sentiment-specific approaches that incorporate sentiment of sen-
tences to learn word embeddings. The model of Tang et al. (2016c) extends the
context-based model of Collobert and Weston (2008), and the model of Tang et al.
(2016a) extends the context based model of Mikolov et al. (2013b). We describe the
relationships between these models.

The basic idea of the context-basedmodel (Collobert andWeston 2008) is to assign
a real word-context pair (wi , hi ) a higher score than an artificial noise (wn, hi ) by a
margin. The model is learned to minimize the following hinge loss function, where
T is the training corpora:

loss =
∑

(wi ,hi )∈T
max(0, 1 − fθ (wi , hi ) + fθ (w

n, hi )). (8.1)

The scoring function fθ (w, h) is achieved with a feed forward neural network. Its
input is the concatenation of the current wordwi and context words hi , and the output
is a linear layer with only one node which stands for the compatibility betweenw and
h. During training, an artificial noise wn is randomly selected from the vocabulary.

The basic idea of sentiment-specific approach of Tang et al. (2014) is that if the
gold sentiment polarity of a word sequence is positive, the predicted positive score
should be higher than the negative score. Similarly, if the gold sentiment polarity of
a word sequence is negative, its positive score should be smaller than the negative
score. For example, if a word sequence is associated with two scores [ f rankpos , f rankneg ],
then the values of [0.7, 0.1] can be interpreted as a positive case because the positive
score 0.7 is greater than the negative score 0.1. By that analogy, the result with [−0.2,
0.6] indicates a negative polarity. The neural network-based ranking model is given
in Fig. 8.1b, which shares some similarities with (Collobert and Weston 2008). As
is shown, the ranking model is a feed-forward neural network consisting of four
layers (lookup → linear → hTanh → linear ). Let us denote the output vector of
ranking model as f rank , where C = 2 for binary positive and negative classification.
The margin ranking loss function for model training is described as below.

loss =
T∑

t

max(0, 1 − δs(t) f
rank
0 (t) + δs(t) f

rank
1 (t)) (8.2)
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Fig. 8.1 An extension on ranking-based model for learning sentiment-specific word embeddings
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Fig. 8.2 An extension on skip-gram for learning sentiment-specific word embeddings

where T is the training corpus, f rank0 is the predicted positive score, f rank1 is the pre-
dicted negative score, δs(t) is an indicator function which reflects the gold sentiment
polarity (positive or negative) of a sentence.

δs(t) =
{
1 if f g(t) = [1, 0]
−1 if f g(t) = [0, 1] (8.3)

Holding a similar idea, an extension of skip-gram (Mikolov et al. 2013b) is devel-
oped to learn sentiment-specificword embeddings. Given awordwi , skip-grammaps
it into its continuous representation ei , and utilizes ei to predict the context words of
wi , namely wi−2, wi−1, wi+1, wi+2, et al. The objective of skip-gram is to maximize
the average log probability:

fSG = 1

T

T∑

i=1

∑

−c≤ j≤c, j �=0

log p(wi+ j |ei ), (8.4)

where T is the occurrence of each phrase in the corpus, c is the window size, ei is the
embedding of the current phrase wi , wi+ j is the context words of wi , p(wi+ j |ei )
is calculated with hierarchical softmax. The basic softmax unit is calculated as
softmaxi = exp(zi )/

∑
k exp(zk).
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Fig. 8.3 Different ways to learn sentiment-specific word embeddings (a), and to incorporate topic
information of texts (b)

The sentiment-specific model is given in Fig. 8.2b. Given a triple 〈wi , sj, polj〉 as
input, wherewi is a phrase contained in the sentence sj whose gold sentiment polarity
is polj, the training objective is to not only utilize the embedding of wi to predict
its context words, but also to use the sentence representation sej to predict the gold
sentiment polarity of sj, namely polj. The sentence vector is calculated by averaging
the embeddings of words contained in a sentence. The objective is to maximize the
weighted average loss function as given below.

f = α · 1

T

T∑

i=1

∑

−c≤ j≤c, j �=0

log p(wi+ j |ei ) + (1 − α) · 1
S

S∑

j=1

log p(pol j |sej),
(8.5)

where S is the occurrence of each sentence in the corpus, α weights the context, and
the sentiment parts,

∑
k pol jk = 1. For binary classification between positive and

negative, the distribution of [0, 1] is for positive and [0, 1] is for negative.
There are different ways to guide the embedding learning process with sentiment

information of texts. For example, themodel of Tang et al. (2014) extends the ranking
model of Collobert and Weston (2008) and use the hidden vector of text span to
predict the sentiment label. Ren et al. (2016b) extend SSWE and further predicts the
topic distribution of text based on input n-grams. These two approaches are given in
Fig. 8.3.

8.3 Sentence-Level Sentiment Classification

Sentence-level sentiment analysis focuses on classifying the sentiment polarities of
a given sentence. Typically, for one sentence w1w2 . . . wn , we divide its polarities
into two (±) or three (±/0) categories, where + denotes positive, - denotes negative,
and 0 denotes neutral. The task is a representative sentence classification problem.

Under the neural network setting, sentence-level sentiment analysis can be mod-
eled as a two-phase framework, one being a sentence representation module by using
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Fig. 8.4 Framework of
sentiment classification

sophisticated neural structures, and the other being a simple classification module
which can be resolved by a softmax operation. Figure8.4 shows the overall frame-
work.

Basically, with word embeddings for each sentential word, one can use pooling
strategies to obtain a simple representation for a sentence, A pooling operation is able
to summary salient features from a sequential input with variable length. Formally,
we can use the equation h = ∑n

i=1 aixi to define popular pooling functions. For
example, the widely adopted average (avg), max, and min pooling operations can be
formalized as follows:

aavg
i = 1

n
, amin

i j =

⎧
⎪⎨

⎪⎩

1, if i = argminkxk j

0, otherwise,

, amax
i j =

⎧
⎪⎨

⎪⎩

1, if i = argmaxkxk j

0, otherwise.
(8.6)

Tang et al. (2014) exploit the three pooling methods to verify their proposed
sentiment-encoded word embeddings, The method is just one simple example to
represent sentences. In fact, recent advances on sentence representation for sentence
classification are far beyond it. A number of sophisticated neural network structures
have been proposed in the literature. As a whole, we summarize the related work
by four categories: (1) convolutional neural networks, (2) recurrent neural networks,
(3) recursive neural networks, (4) enhanced sentence representation by auxiliary
resources. We introduce these works in the following subsections, respectively.

8.3.1 Convolutional Neural Networks

In the pooling neural network, we are only able to use word-level features. When
the order of words changes in a sentence, the sentence representation result remains
unchanged. In traditional statistical models, n-gram word features are adopted in
order to alleviate the issue, showing improved performances. For neural network
models, a convolution layer can be exploited to achieve a similar effect.
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Formally, a convolution layer performs nonlinear transformations by traversing
a sequential input with a fixed-size local filter. Give an input sequence x1x2 . . . xn ,
assuming that the size of local filter is K , then we can obtain a sequential output of
h1h2 . . . hn−K+1:

hi = f

(
K∑

k=1

Wkxi+K−k

)
,

where f is an activation function such as tanh(·) and sigmoid(·). When K = 3
and xi is the input word embedding, the resulting hi is a nonlinear combination of
xi , xi+1, and xi+2, similar to the mixed unigram, bigram, and trigram features, which
concatenate the surface forms of the corresponding words in a hard way.

Typically, convolutional neural network (CNN) is a certain network that integrates
a convolution layer and a pooling layer together, as shown in Fig. 8.5, which has
been widely studied for sentence-level sentiment classification. An initial attempt by
directly applying of a standard CNN is introduced by Collobert et al. (2011). The
study obtains the final sentence representation by using a convolutional layer over
a sequence of input word embeddings, and using a further max pooling over the
resulting hidden vectors.

Kalchbrenner et al. (2014) extend the basic CNNmodel for better sentence repre-
sentation by two aspects. On the one hand, they use dynamic k-max pooling, where
top-k values are reserved during pooling instead of only one value for each dimen-
sion in the simple max pooling. The value k is defined according to sentence length
dynamically. On the other hand, they enlarge the layer number of CNN, using mul-
tilayer CNN structures, motivated by the intuition that deeper neural networks can
encode more sophisticated features. Figure8.6 shows the framework of multilayer
CNNs.

Several CNN variations have been studied to better represent sentences. Onemost
representative work is the nonlinear, nonconsecutive convolution operator proposed
by Lei et al. (2015), as shown in Fig. 8.7. The operator aims to extract all n-word
combinations through tensor algebra, no matter whether the words are consecutive.
The process is conducted recursively, first one word, then two-word and further

Fig. 8.5 Framework of
CNN
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Fig. 8.6 Multilayer CNNs

Fig. 8.7 Nonlinear,
nonconsecutive convolution

three-word combinations, respectively. They extract all unigram, bigram, and trigram
features by the following formulas:

f1i = Pxi

f2i = s1i−1 � Qxi where s1i = λs1i−1 + f1i
f3i = s2i−1 � Rxi where s2i = λs2i−1 + f2i ,

where P, Q, and R are model parameters, λ is a hyper-parameter, and � denote
element-wise product. Finally, theymake compositions of the three kinds of features,
forming the representation of a sentence.

A number of studies have focused their attention on the exploration of hetero-
geneous input word embeddings. For example, Kim (2014) studies three different
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Fig. 8.8 Multichannel
CNNs

Fig. 8.9 Enhanced word
representations with
character features

methods of using word embedding. The author concerns two different embeddings, a
randomly initialized embedding and a pretrained embedding, considering the effect
of dynamic fine-tuning over these embeddings. Finally, it combines the two kinds
of embeddings and proposes the multichannel CNNs based on heterogeneous word
embeddings, as shown in Fig. 8.8. The work is extended by Yin and Schütze (2015),
who use several different word embeddings by multichannel multilayer CNNs. And,
in addition, they exploit extensive pretraining techniques for the model weight ini-
tialization. However, a simpler version of it is presented by Zhang et al. (2016d),
which meanwhile shows better performances.

Another extension of word embeddings is to enhance word representation by
character-level features. The neural network to build word representations based
on input character sequences is in spirit similar to that of sentence representations
from input word sequences. Thus, we can also apply a standard CNN structure over
the character embedding sequences to derive word representations. dos Santos and
Gatti (2014) study the effect of such an extension. The resulting character-level
word representations are concatenated with the original word embeddings, shown in
Fig. 8.9, thus can enhance the final word representations for sentence encoding.

8.3.2 Recurrent Neural Networks

TheCNN structure uses a fixed-size of wordwindow to capture the local composition
features around a given position, achieving promising results. However, it ignores the
long-distance dependency features that reflect syntactic and semantic information,
which are particularly important in understanding natural language sentences. These
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Fig. 8.10 Sentence representation by using RNN

dependency-based features are addressed by recurrent neural network (RNN) under
the neural setting, achieving great success. Formally, a standard RNN computes the
output hidden vectors sequentially by hi = f (Wxi +Uhi−1 + b), where xi denotes
the input vector. According to the equation, we can see that the current output hi
relies not only on the current input xi , but also on the previous hidden output hi−1.
In this manner, the current hidden output can have connections with previous input
and output vectors without bound.

Wanget al. (2015) propose thefirstworkof using long short-termmemory (LSTM)
neural networks for tweet sentiment analysis. Figure8.10 shows the sentence repre-
sentation method by using RNN, as well as the internal structures of standard and
LSTM-RNN. First they apply a standard RNN over an input embedding sequence
x1x2 . . . xn , and exploit the last hidden output hn as the final representation of one
sentence. Then the authors suggest a substitution by using LSTM-RNN structure,
since standardRNNsmay suffer the gradient explosion and diminish problems, while
LSTM is much better by using three gates and a memory cell to connect input and
output vectors. Formally, LSTM can be computed by

ii = σ(W1xi +U1hi−1 + b1)

f i = σ(W2xi +U2hi−1 + b2)

c̃i = tanh(W3xi +U3hi−1 + b3)

ci = f i � ci−1 + ii � c̃i
oi = σ(W4xi +U4hi−1 + b4)

hi = oi � tanh(ci ),

where W,U,b are model parameters and σ denotes the sigmoid function.
Further, Teng et al. (2016) extend theirwork by two points. Figure8.11 shows their

framework. First, they exploit bidirectional LSTM instead, rather than a single left-
to-right LSTM. The bidirectional can represent a sentence more comprehensively,
where the hidden output of each point can have connections with both previous
and future words. Second, they model sentence-level sentiment classification as a
structural learning problem, predicting polarities for all sentimentwords in a sentence
and accumulating together as the evidence to determine the sentential polarity. By
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Fig. 8.11 The framework of
Teng et al. (2016)

Fig. 8.12 A combination of
RNN and CNN

the second extension, their model can effectively integrate the sentiment lexicons,
which has been widely used in traditional statistical models.

CNN and RNN model natural language sentences in totally different ways. For
example, CNN can better capture local window-based compositions, while RNN
is efficient in learning implicit long-distance dependencies. Thus, one natural idea
is to combine them together, taking advantages of both neural structures. Zhang
et al. (2016c) propose a dependency-sensitive CNNmodel, which combines a LSTM
and a CNN, making a CNN network structure being able to capture long- distance
word dependencies as well. Concretely, first they construct a left-to-right LSTM on
the input word embeddings, and then a CNN is built on the hidden outputs of the
LSTM. Thus the final model can make full use of both local window-based features
and global dependency-sensitive features. Figure8.12 shows the framework of their
combination model.

8.3.3 Recursive Neural Networks

Recursive neural network is recently proposed to model tree structural inputs,
which are produced by explicit syntactic parsers. Socher et al. (2012) present a
recursive matrix-vector neural network to compose two leaf nodes, resulting in
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Fig. 8.13 Recursive neural network

the representation of the parent node. By this way, the sentence representation is con-
structed recursively from bottom to up. They first preprocess the input constituent
trees, converting them into a binarized tree, where each parent node has two leaf
nodes. Then they apply a recursive neural network over the binary tree by using
matrix-vector operations. Formally, they represent each node by a hidden vector h
and a matrix A. As shown in Fig. 8.13a, given the representations of the two child
nodes, (hl , Al) and (hr , Ar ), respectively, the representation of the parent node is
computed as follows: (1) hp = f (Arhl , Alhr ) and (2) Ap = g(Al, Ar ), where f (·)
and g(·) are transformation functions with model parameters.

Further, Socher et al. (2013) adopt low-rank tensor operations to substitute the
matrix-vector recursion, by using hp = f (hl Thr ) to compute the representation of
parent nodes, as shown in Fig. 8.13b, where T denotes a tensor. The model achieves
better performances due to the tensor composition, which is intuitively simple than
matrix-vector operation and has much less number of model parameters. In addition,
they define the sentiment polarities over the non-root nodes of syntactic trees, thus
can better capture the transition of sentiments from phrases to sentences.

The line of work is extended with three different directions. First, several work
tries to find stronger composition operations for tree composition. For example, a
number of works simply use hp = f (W1hl ,W2hr ) to compose the leaf nodes, as
shown in Fig. 8.13c. The method is much simpler, but suffers from the problem of
gradient explosion or diminish, making the parameter learning extremely difficult.
Motivated by the work of LSTM-RNN, several studies propose the LSTM adaption
for recursive neural network. The representative work includes (Tai et al. 2015) and
(Zhu et al. 2015), both of which show the effectiveness of LSTM over tree structures.

Second, sentence representation-based recursive neural network can be strength-
ened by usingmultichannel compositions. Dong et al. (2014b) study the effectiveness
of such an enhancement. They apply C homogeneous compositions, arriving at C
output hidden vectors, which are further used to represent the parent node by using
an attention integration. Figure8.14 shows the framework of their neural network.
They apply the method on simple recursive neural networks, achieving consistent
better performances on several benchmark datasets.

The third direction is to investigate recursive neural network by using deeper
neural network structures, similar to the work of multilayer CNN. Briefly speaking,
as the first layer, recursive neural network is applied over the input word embeddings.
When all output hidden vectors are ready, the same recursive neural network can be
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Fig. 8.14 Recursive neural
network with
multi-compositions
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Fig. 8.15 Multilayer
recursive neural network

applied byonce again. Themethod is empirically studied by Irsoy andCardie (2014a).
Figure8.15 shows their framework by using a three-layer recursive neural network.
The experimental results demonstrate that deeper recursive neural network can bring
better performances than a single-layer recursive neural network.

The above studies all construct recursive neural network over well-formed binary
syntactic trees, which is seldom satisfied. Thus, they require certain preprocessing to
convert original syntactic structures into binarized ones, which may be problematic
without expert supervision. Recently, several studies propose to model trees with
unbounded leaf nodes directly. For example, Mou et al. (2015) and Ma et al. (2015)
both present a pooling operation based on the child nodes to compose variable length
of inputs. Teng and Zhang (2016) perform the pooling process considering the left
and right children. In addition, they suggest bidirectional LSTM recursive neural
network, considering the top-to-down recursive operation, which is similar with the
bidirectional LSTM-RNN.

It is worth to notice that, several works consider sentence representation by
using recursive neural network without syntactic tree structures. These work sug-
gest pseudo tree structures based on raw sentence inputs. For example, Zhao et al.
(2015) construct a pseudo- directed acyclic graph in order to apply recursive neural
network, as shown in Fig. 8.16. In addition, Chen et al. (2015) use a simpler method
as shown in Fig. 8.17 to build a tree structure for a sentence automatically. Both the
works achieve competitive performances for sentence-level sentiment analysis.
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Fig. 8.16 Pseudo-directed
acyclic graph of Zhao et al.
(2015)

Fig. 8.17 Pseudo binary tree
structure of Chen et al.
(2015)

8.3.4 Integration of External Resources

The above subsections concern various neural structures for sentence representation,
with the information from the source input sentences only, including words, parsing
trees. Recently, another line of important work is to enhance sentence representation
by integration with external resources. The major resources can be divided into
three categories, including the large-scale raw corpus to pretrain supervised model
parameters, external human-annotated or automatically extracted sentiment lexicons,
and the backgroundknowledge under a certain setting, for example, Twitter sentiment
classification.

The exploration of large-scale corpus to enhance sentence representation has been
investigated by a number of studies. Among these studies, the sequence autoencoder
model proposed by Hill et al. (2016) are most representative. Figure8.18 shows an
example for themodel, which first represents sentences by LSTM-RNN encoder, and
then tries to generate the original sentential word step by step, thus model parameters
are learned by this supervision, which are further used as external information for
sentence representation. In particular, Gan et al. (2016) suggest a CNN encoder
instead, aiming to solve the low-efficiency problem in LSTM-RNN.

External sentiment lexicons have been largely investigated in the statistical mod-
els, while there remains relatively little work under the neural setting, although there
has been much work on automatically constructing sentiment lexicons. There are
two exceptions. Teng et al. (2016) incorporate context-sensitive lexicon features in a
LSTM-RNN neural network, treating sentence-level sentiment scores as a weighted
sum of prior sentiment scores of negation words and sentiment words. Qian et al.
(2017) go further, investigating the sentiment shifting effect of sentiment, negation,
and intensity word, proposing a linguistically regularized LSTMmodel for sentence-
level sentiment analysis.

There are several studies to investigate other information for sentence-level sen-
timent analysis under certain settings. In the Twitter sentiment classification, we
can use several contextual information, including the tweet author’s history tweets,
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Fig. 8.18 Autoencoder by LSTM-RNN

Fig. 8.19 Sentiment classification with contextual features

the conversational tweets surrounding the tweet, and the topic-related tweets. These
information can be all severed as background information,which is intuitively helpful
to decide the sentiment of a tweet. Ren et al. (2016a) exploit these related information
in a neural network model by an additional contextual part, as shown in Fig. 8.19,
to enhance sentiment analysis in Twitter. For the source input sentences, they apply
a CNN to represent it, while for the contextual part, they apply a simple pooling
neural network over a set of salient contextual words. Recently, Mishra et al. (2017)
suggest an integration of cognitive features from gaze data to enhance sentence-level
sentiment analysis, which is achieved by using an additional CNN structure to model
the gaze features.

8.4 Document-Level Sentiment Classification

Document-level sentiment classification aims at identifying the sentiment label of a
document (Pang et al. 2002; Turney 2002). The sentiment labels could be two cate-
gories such as thumbs up and thumbs down (Pang et al. 2002) or multiple categories
such as the 1–5 stars on review sites (Pang and Lee 2005).7

In the literature, existing sentiment classification approaches could be grouped
into two directions: lexicon- based approach and corpus-based approach. Lexicon-
based approaches (Turney 2002; Taboada et al. 2011) mostly use a dictionary of

7In practice, it is time consuming to obtain the document- level sentiment labels via human anno-
tation. Researchers typically leverage the review documents from IMDB, Amazon, and Yelp, and
regard the associated rating stars as the sentiment labels.
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sentiment words with their associated sentiment polarity, and incorporate negation
and intensification to compute the sentiment polarity for each document. A repre-
sentative lexicon-based method is given by (Turney 2002), which consists of three
steps. Phrases are first extracted, if their POS tags conform to the predefined pat-
terns. Afterward, the sentiment polarity of each extracted phrase is estimated through
pointwise mutual information (PMI), whichmeasures the degree of statistical depen-
dence between two terms. In Turney’s work, the PMI score is calculated by feeding
queries to a search engine and collecting the number of hits. Finally, he averages
the polarity of all phrases in a review as its sentiment polarity. Ding et al. (2008)
apply negation words like “not”, “never”, “cannot”, and contrary words like “but” to
enhance the performance of lexicon-based method. Taboada et al. (2011) integrate
intensifications and negation words with the sentiment lexicons annotated with their
polarities and sentiment strengths.

Corpus-based methods treat sentiment classification as a special case of text cat-
egorization problem (Pang et al. 2002). They mostly build a sentiment classifier
from documents with annotated sentiment polarity. The sentiment supervision can
be manually annotated, or automatically collected by sentiment signals like emoti-
cons in tweets or human ratings in reviews. Pang et al. (2002) pioneer to treat the
sentiment classification of reviews as a special case of text categorization problem
and first investigate machine learning methods. They employ Naive Bayes, Maxi-
mum Entropy, and Support Vector Machines (SVM) with a diverse set of features.
In their experiments, the best performance is achieved by SVM with bag-of-words
features. Following Pang et al.’s work, many studies focus on designing or learning
effective features to obtain a better classification performance. Onmovie and product
reviews,Wang andManning (2012) present NBSVM,which trade-off betweenNaive
Bayes and NB-feature enhanced SVM. Paltoglou and Thelwall (2010) learn feature
weights by investigating variants weighting functions from Information Retrieval,
such as tf.idf and its BM25 variants. Nakagawa et al. (2010) utilize dependency
trees, polarity-shifting rules and conditional random fields with hidden variables to
compute the document feature.

The intuition of developing neural network approach is that feature engineering
is typically labor intensive. Neural network approaches instead have the ability to
discover explanatory factors from the data and make the learning algorithms less
dependent on extensive feature engineering. Bespalov et al. (2011) represent each
word as a vector (embedding), and then get the vectors for phrases with temporal con-
volutional network. The document embedding is calculated by averaging the phrase
vectors. Le and Mikolov (2014) extend the standard skip-gram and CBOW models
Mikolov et al. (2013b) to learn the embeddings for sentences and documents. They
represent each document by a dense vector which is trained to predict words in the
document. Specifically, the PV-DM model extends the skip-gram model by averag-
ing/concatenating the document vector with context vectors to predict the middle
word. The models of Denil et al. (2014); Tang et al. (2015a); Bhatia et al. (2015);
Yang et al. (2016); Zhang et al. (2016c) have the same intuition. They model the
embedding of sentences from the words, and then use sentence vectors to compose
the document vector. Specifically, Denil et al. (2014) use the same convolutional
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Fig. 8.20 A neural network architecture for document-level sentiment classification (Tang et al.
2015a).

neural network as the sentence modeling component and the document modeling
component. Tang et al. (2015a) use convolutional neural network to calculate the
sentence vector, and then use bidirectional gated recurrent neural network to calcu-
late the document embedding. The model is given in Fig. 8.20. Bhatia et al. (2015)
calculate document vector based on the structure obtained from theRSTparse. Zhang
et al. (2016c) calculate sentence vector with recurrent neural network, and then use
convolutional network to calculate the document vector. Yang et al. (2016) use two
attention layers to get the sentence vectors, and the document vector, respectively. In
order to calculate the weights of different words from a sentence and the weights of
different sentences of a document, they use two “context” vectors, which are jointly
learned in the training process. Joulin et al. (2016) introduces a simple and efficient
approach, which averages the word representations into a text representation, and
then feeds the results to a linear classifier. Johnson and Zhang (2014, 2015, 2016)
develop convolutional neural networks that take one-hot word vector as input and
represent a document with the meanings of different regions. The aforementioned
studies regard word as the basic computational unit, and compose the document vec-
tor based on word representation. Zhang et al. (2015b) and Conneau et al. (2016)
use characters as the basic computational units, and explore convolutional architec-
tures to calculate the document vector. The vocabulary for characters is dramatically
smaller than the standard vocabulary of words. In Zhang et al. (2015b), the alphabet
consists of 70 characters, including 26 English letters, 10 digits, 33 other characters,
and the new line character. The model of Zhang et al. (2015b) has 6 convolution
layers, and the model of Conneau et al. (2016) consists of 29 layers.

There also exist studies that explore side information such as individual prefer-
ences of users or overall qualities of products to improve document-level sentiment
classification. For example, Tang et al. (2015b) incorporate user-sentiment consis-
tency and user-text consistency to an existing convolutional neural network. In the
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Fig. 8.21 The neural network approach that incorporates user and product information for
document- level sentiment classification (Tang et al. 2015b).

user-text consistency, each user is represented as a matrix to modify the meaning of
a word. In the user-sentiment consistency, each user is encoded as a vector, which is
directly concatenated with the document vector and regarded as a part of the features
for sentiment classification. The model is given in Fig. 8.21. Chen et al. (2016) make
an extension and develop attention models to take into account the importance of
words.

8.5 Fine-Grained Sentiment Analysis

In this section, we introduce the recent advances in fine-grained sentiment analysis
using deep learning. Different from sentence/document-level sentiment classifica-
tion, fine-grained sentiment analysis involves a number of tasks, most of which have
their own characteristics. Thus, these tasks are modeled differently, carefully con-
sidering their special application settings. Here, we introduce five different topics of
fine-grained sentiment analysis, including opinion mining, targeted sentiment anal-
ysis, aspect-level sentiment analysis, stance detection, and sarcasm detection.

8.5.1 Opinion Mining

Opinion mining has been a hot topic in the NLP community, which aims to extract
structured opinions from user- generated reviews. Figure8.22 shows several exam-
ples of opinionmining.Typically, the task involves two subtasks. First opinion entities
such as holders, targets, and expressions are identified, and second we build relations
over these entities, for example, the IS-ABOUT relation which specifies the target
of a certain opinion expression, and the IS-FROM relation which links an opinion
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(a)

(b)

Fig. 8.22 Examples of opinion mining

Fig. 8.23 A three-layer Bi-LSTM model for opinion entity detection

expression with its holder. In addition, the classification of sentiment polarities is an
important task as well.

Opinion mining is a typical structural learning problem, which has been stud-
ied extensively by using traditional statistical models with human-designed discrete
features. While recently, motivated by the great success of deep learning models
on other NLP tasks, especially on sentiment analysis, neural network-based models
have received grown attentions on the task as well. In the below, we describe several
representative studies of this task by using neural networks.

The early work of neural network models focuses on the detection of opinion
entities, treating the task as a sequence labeling problem to recognize boundaries of
opinion entities. Irsoy and Cardie (2014b) investigate the RNN structure for the task.
They apply the Elman-type RNNs, studying the effectiveness bidirectional RNN, and
observing the influence of the RNN depth, as shown in Fig. 8.23. Their results show
that bidirectionalRNNcanobtain better performances, and a three-layer bidirectional
RNN can achieve the best performance.
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A similar work is proposed by Liu et al. (2015). They make a comprehensive
investigation of RNN variations, including Elman-type RNN, Jordan-type RNN,
and LSTM. They study the bidirectionality as well. In addition, they compare three
kinds of input word embeddings. They compare these neural network models with
discrete models, and make a combination of the two different types of features. Their
experiments show that the LSTM neural network combining with discrete features
can achieve the best performance.

The above two studies do not involve the identification of the relation between
opinion entities. Most recently, Katiyar and Cardie (2016) propose the first neu-
ral network that exploits LSTM to jointly perform entity recognition and opinion
relation classification. They treat the two subtasks by a multitask learning paradigm,
introducing sentence-level training considering both entity boundaries and their rela-
tions, based on a sharedmultilayer bidirectional LSTM. In particular, they define two
sequences to denote the distance to their left and right entities of certain relations,
respectively. Experimental results on benchmark MPQA datasets show that their
neural model achieve the top-performing results.

8.5.2 Targeted Sentiment Analysis

Targeted sentiment analysis studies the sentiment polarity toward a certain entity
in one sentence. Figure8.24 shows several examples for the task, where {+, −, 0}
denote the positive, negative, and neutral sentiment, respectively.

The first neural network model for targeted-dependent sentiment analysis is pro-
posed byDong et al. (2014a). Themodel is adapted from their previouswork of Dong
et al. (2014b), which we have introduced in the sentence-level sentiment analysis.
Similarly, they build recursive neural networks from a binarized dependency tree
structure, by using multi- compositions from the child nodes. However, this work
is different in that they convert the dependency tree according to the input target,
making the headword of the target as the root in the resulting tree, not the original
head word of the input sentence. Figure8.25 shows the composition methods and the
resulting dependency tree structure, where “phone” is the target.

The above work highly relies on the input dependency parsing trees, which are
produced by automatic syntactic parsers. The trees can have errors, thus suffering
from the error propagation problem. To avoid the problem, recent studies suggest

Fig. 8.24 Targeted sentiment analysis
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Fig. 8.25 The framework of
Dong et al. (2014a)

Fig. 8.26 The framework of
Vo and Zhang (2015)

conducting targeted sentiment analysis with only raw sentence inputs. Vo and Zhang
(2015) exploit various pooling strategies to extract a number of neural features for
the task. They first divide the input sentence into three segments by a given target,
and then apply different pooling functions over the three segments together with the
whole sentence, as shown in Fig. 8.26. The resulting neural features are concatenated
for further sentiment polarity prediction.

Recently, several works investigate the effectiveness of RNN for the task, which
has brought promising performances in other sentiment analysis tasks. Zhang et al.
(2016b) propose to use gated RNN to enhance the representation of sentential words.
By using RNN, the resulting representations can capture context-sensitive informa-
tion, as shown in Fig. 8.27. Further, Tang et al. (2016a) exploit LSTM-RNN as one
basic neural layer to encode the input sequential words. Figure8.28 shows the frame-
work of their work. Both the works have achieved state-of-the-art performances in
targeted sentiment analysis.
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Fig. 8.27 The framework of Zhang et al. (2016b)

Fig. 8.28 The framework of Tang et al. (2016a)
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Fig. 8.29 Open domain-targeted sentiment analysis

Besides the use of RNN, Zhang et al. (2016b) present a gated neural network to
compose the features of the left, right contexts by target supervision, as shown in
Fig. 8.27. The main motivation behind is that the context-neural features should not
be equally treated by simply pooling. The task should carefully consider the target as
well in order to choose effective features. Liu and Zhang (2017) improve the gated
mechanism further, by applying an attention strategy. With the attention, their model
achieves the top performances on two benchmark datasets.

Previouswork demonstrated that boundaries of the input target is important for the
inferring of its sentiment polarities. They assume that well-posed targets are already
given, which is not always a real scenario. For example, if we want to determine the
sentiment polarities of open targets, it is required to recognize the these targets in
advance. Zhang et al. (2015a) study the open domain-targeted sentiment analysis by
using neural networks. They investigate the problemunder various settings, including
pipeline, joint, and collapsed frameworks. Figure8.29 shows the three frameworks.
In addition, they combine the neural and traditional discrete features in a single
model, finding that better performances can be obtained consistently under the three
settings.

8.5.3 Aspect-Level Sentiment Analysis

Aspect-level sentiment analysis aims to classify the sentiment polarities in a sentence
for an aspect. An aspect is one attribute of a target, over which human can express
their opinions. Figure8.30 shows several examples of the task. Usually, the task is
aimed to analyze user comments for a certain product, e.g., a hotel, an electronics,
or a movie. Products may have a number of aspects. For example, the aspects of
a hotel include environment, price, and service, and users usually post a review
to express their opinions over certain aspects. Different from targeted sentiment
analysis, aspects can be enumerated when the product is given, and the aspect may
not be expressed regularly in one review in some cases.

Initially, the task is modeled as a sentence classification problem, thus we can
exploit the same method as the sentence-level sentiment classification, expect that
the categories are different. Typically, assuming that a product has N aspects which
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Fig. 8.30 Aspect-level sentiment analysis

are predefined by expert, the aspect-level sentiment classification is actually a 3N -
classification problem, since each aspect can have three sentiment polarities: positive,
negative, and neutral. Lakkaraju et al. (2014) propose a recursive neural network
model-based matrix-vector composition for the task, which is similar to Socher et al.
(2012) that performs sentence-level sentiment classification.

In later work, the task has been simplified by assuming that aspect has been given
in an input sentence, thus it is equivalent to the aforementioned targeted sentiment
analysis. Nguyen and Shirai (2015) propose a phrase-based recursive neural network
model to the aspect-level sentiment analysis, where the input phrase structure trees
are converted from dependency structures along with the input aspects. Tang et al.
(2016b) apply a deep memory neural network under the same setting, without using
syntactic trees. Their model achieves state-of-the-art performances, and meanwhile
is highly efficient in speed in comparison with the neural models that exploit LSTM
structures. Figure8.31 shows their three-layer deep memory neural network. The
final features for classification are extracted by attentions with aspect supervision.

In real scenarios, one aspect of a certain product can have several different expres-
sions. Taking the laptop as an example, we can express the aspect screen by display,
resolution, and look, which are closely related to screen. If we can group similar
aspect phrases into one aspect, the results of aspect-level sentiment analysis are
more helpful for further application. Xiong et al. (2016) propose the first neural net-
work model for aspect phrase grouping. They learn representations of aspect phrase
by simple multilayer feed-forward neural networks, extracting neural features with
attention composition. The model parameters are trained by distant supervision with
automatic training examples. Figure8.32 shown their framework. He et al. (2017)
exploit an unsupervised auto-encoder framework for aspect extraction, which can
learn the scale of aspect words automatically by attention mechanism.

8.5.4 Stance Detection

The goal of stance detection is to recognize the attitude of one sentence toward
a certain topic. Generally, the topic is specified for the task as one input, and the
other input is the sentence that needs to be classified. Input sentences may not have
explicit relations with the given topic. which makes the task rather different with
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Fig. 8.31 The framework of Tang et al. (2016a)

Fig. 8.32 The framework of Xiong et al. (2016)
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target/aspect-level sentiment analysis, Thus stance detection is extremely difficult.
Figure8.33 shows several examples of the task.

Early work trains independent classifiers for each topic. Thus, the task is treated
as a simple 3-way classification problem. For example, Vijayaraghavan et al. (2016)
exploit a multilayer CNNmodel for the task. They integrate both word and character
embeddings as inputs in order to solve the unknown words. In the SemEval 2016
task 6 of stance detection, the model of Zarrella and Marsh (2016) achieved the top
performance, which builds a neural network based on LSTM-RNN, who has strong
capabilities of learning syntactic and semantic features. In addition, motivated by the
spirit of transfer learning, they learn the model parameters by the priori knowledge
from hashtags in the Twitter, because the raw input sentences of the SemEval task
are crawled from Twitter.

The above work models stance classification of different topics independently,
which has two main drawbacks. On the one hand, it is not as practical to annotate
training examples for each topic, in order to classify the attitudes of a sentence for
future topics. On the other hand, several topics may have close relations, for example,
“Hillary Clinton” and “Donald Trump” while training the classifiers independently
is unable of using this information. Augenstein et al. (2016) propose the first model
to train a single model no matter the input topics as a whole, using LSTM neural
networks. They model the input sentence and topic jointly, by using the resulting
representation of the topics as the input for LSTM over the sentences. Figure8.34
shows the framework of their method. Their model achieves significantly better
performances than the individual classifiers of previous work.

Fig. 8.33 Examples of stance detection

Fig. 8.34 Conditional
LSTM for stance detection
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8.5.5 Sarcasm Recognition

In this section, we discuss a special language phenomenon that has close connections
with sentiment analysis, namely sarcasm or irony. This phenomenon usually makes
change of a sentence’s literal meaning, and greatly influence the sentiment expressed
by the sentence. Figure8.35 shows several examples.

Typically, sarcasm detection is modeled as a binary classification problem, which
is similar with sentence-level sentiment analysis is essential. The major difference
between the two tasks lies in their goals. Ghosh andVeale (2016) study various neural
network models for the task in detail, including CNN, LSTM, and deep feed-forward
neural networks. They present several different neural models, and investigate their
effectiveness empirically. The experimental results show that a combination of these
neural networks can bring the best performances. The final model is composed by a
two-layer CNN, a two-layer LSTM and another one feed-forward layer, as shown in
Fig. 8.36.

For sarcasm detection in social media such as Twitter, author-based information
is one kind of useful features. Zhang et al. (2016a) propose a contextualized neu-
ral model for Twitter sarcasm recognition. Concretely, they extract a set of salient
words from the tweet authors’ historical posts, using these words to represent the
tweet author. Their proposed neural network model consists two parts, as shown in
Fig. 8.37, one being a gated RNN to represent sentences, and the other being a simple
pooling neural network to represent tweet author.

Fig. 8.35 Sarcasm examples

Fig. 8.36 The framework of Ghosh and Veale (2016)
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Fig. 8.37 The framework of Zhang et al. (2016a).

8.6 Summary

In this chapter, we give an overview on the recent success of neural network
approaches in sentiment analysis. We first describe how to integrate sentiment infor-
mation of texts to learn sentiment-specific word embeddings. Then, we describe
sentiment classification of sentences and documents, both of which require semantic
composition of texts. We then present how to develop neural network models to deal
with fine-grained tasks.

Despite deep learning approaches have achieved promising performances on sen-
timent analysis tasks in recent years, there are some potential directions to further
improvethisarea.Thefirstdirectionisexplainablesentimentanalysis.Thecurrentdeep
learningmodelsareaccurateyetunexplainable.Leveragingknowledgefromcognitive
science, common sense knowledge, or extracted knowledge from text corpusmight be
a potential direction to improve this area. The second direction is learning a robust
model for a new domain. The performance of a deep learning model depends on the
amount and the quality of the training data. Therefore, how to learn a robust sentiment
analyzer for adomainwith little/no annotated corpus is very challengingyet important
for real application. The third direction is how to understand the emotion. Majority
of existing studies focus on opinion expressions, targets, and holders. Recently, new
attributeshavebeensuggested tobetterunderstand theemotion, suchasopinioncauses
andstances.Pushingforwardthisarearequirespowerfulmodelsandlargecorpora.The
fourth direction is fine-grained sentiment analysis,which receives increasing interests
recently. Improving this area requires larger training corpus.
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Chapter 9
Deep Learning in Social Computing

Xin Zhao and Chenliang Li

Abstract The goal of social computing is to devise computational systems to learn
mechanisms and principles to explain and understand the behaviors of each individ-
ual and collective teams, communities, and organizations. The unprecedented online
data in social media provides a fruitful resource for this purpose. However, traditional
techniques have a hard time in handling the complex and heterogeneous nature of
social media for social computing. Fortunately, the recent revival and success of deep
learning brings new opportunities and solutions to address these challenges. This
chapter introduces the recent progress of deep learning on social computing in three
aspects, namely user-generated content, social connections, and recommendation,
which have covered most of the core elements and applications in social comput-
ing. Our focus lies in the discussions on how to adapt deep learning techniques to
mainstream social computing tasks.

9.1 Introduction to Social Computing

The essence of human behaviors is profoundly social, which is reflected by various
kinds of human activities in their social life. For example, people communicate with
their families, purchase products from business retailers, and watch movies with
friends. With these social activities, everyone is remarkably influenced by and affect
other people around us and beyond (Homans 1974). Social behaviors are not the
product of the development of ourmodern society or technical advances, but a critical
building block of human society. Back to the Stone Age, individuals gather together
to form the tribes, which can be considered as a kind of community. Within a tribe,
people share their experiences about the world and make exchange with other people
within or outside the tribe (Sahlins 2017). Through successive generations, social
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regulations and conventions regarding the individuals, organizations, and societies
are then developed to guide their behaviors.

In recent years, the rapid growth of Internet technology leads to the prosperity of
numerous online social media services, which not only refer to popular social net-
works, like Facebook, Twitter, or Sina Weibo, but also relate to any online services
that are powered by some Internet technology with social features. Online social
media has greatly changed or affected the way that people live. It is time to think
over how tomodel users’ social behaviors and improve online social services. That is
the topic that social computing focuses in the era of social media. Social computing
is defined to be systems that support the gathering, representation, processing, use,
and dissemination of information that is distributed across social collectives such as
teams, communities, organizations, and markets (Wang et al. 2007; Parameswaran
andWhinston 2007).Moreover, the information is not “anonymous” but is significant
precisely because it is linked to people, who are in turn linked to other people (Schuler
1994). In other words, social computing is the discipline of understanding the activ-
ities of individuals in a social context.

The advent of different online social media services brings about unprecedented
information explosion in humanhistory.Compared to traditionalwebsites that restrict
the users to be only information consumers, online social media enables the users
to produce information via diverse interactions with information items, such as
Wikipedia and Open Directory Project (ODP) for collaborative knowledge building;
Delicious, BibSonomy, and CiteULike for collaboratively tagging documents; Digg
for evaluating web content, Facebook, and Twitter; Weibo for information sharing
and commenting among friends; Netflix and IMDB for evaluating movies; YouTube
for sharing videos, Yahoo! Answers; Quora for knowledge sharing, etc.

A major feature of online social media is that users are highly connected via var-
ious linking mechanisms (Kaplan and Haenlein 2010). Due to the elaborate design
of online social networks, there exist multiple types of social connections between
users. Take Twitter as an instance. On Twitter, there are three major types of social
links between two users: (1) following, a user has added another user in her friend list;
(2) retweeting, a user has forwarded a tweet from another user; and (3) mentioning,
a user has included another user in her own tweet. Rich user connections signif-
icantly enhance the collaborative, interactive environment of online social media.
The connections are also likely to convey topic semantics or interest similarities to
some extent (Weng et al. 2010). For example, two users may edit the sameWikipedia
article because both are interested in some common topic.

Besides content and connection, another important issue is how to satisfy users’
complicated, diverse, and varying information needs on information resources. Fol-
lowing the convention in recommender system (Adomavicius and Tuzhilin 2005),
we refer to an information resource as an item on social media, which can be a
tweet, a movie, a song, a product, etc. Most social media platforms provide their
own recommender systems to facilitate the access of information by users. The rec-
ommendation scenario can be understood as a process of social interaction between
users and items. A user can provide either explicit or implicit feedbacks to the items
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during the interaction process. These feedback information encode important evi-
dence to infer users’ interests or needs over the items.

Given the explosive content, rich social connections, and complicated information
needs, social computing is strongly tied to user behaviors and user interests in social
media. The ultimate goal of social computing is to devise computational systems to
learn mechanisms and principles (or called knowledge/intelligence) to explain and
understand the behaviors of each individual and collective teams, communities, and
organizations (Wang et al. 2007). To achieve this goal, three fundamental aspects
underlying the success of social computing are highlighted here:

• Deep semantic understanding of user-generated text content. People participate
in online social media to write or share real-time posts, rate and leave opinions
for products and services, tag web pages, and so on. One critical step for social
computing is to enable semantic information extraction and understanding from
the user-generated text content in an automatic way. Moreover, given the flexible
mechanism of online social media services, social text can be presented in diverse
forms and with new features. Hence, an effective modeling approach is desired
to be developed, which could help us identify the needles from a huge pile of
haystacks efficiently and precisely.

• Effective representation learning for social connections. The rich social connec-
tions enable us to study and analyze user relations in a large social context. Online
social networks are complex in nature. A key technique toward network or link
analysis is to develop an effective network representation learning approach. The
solution to network representation should be general to characterize multiple types
of user links, and support a series of computation tasks such as community detec-
tion, influencemaximization, expert finding, and other tasks.Moreover, it is impor-
tant to combine knowledge from different perspectives by mining various explicit
and implicit relations.

• Accurate recommendation with information resources. Recommender systems
play an important role in online social media. Making recommendations or sug-
gestions to users are able to increase their degree of engagement for websites. It
will help reduce the efforts of a user in looking for interested items. Social media
brings new challenges to traditional recommender systems by incorporating more
social context information. The interaction between users and items has become
more complex, and multiple kinds of feedback information are available for con-
sideration. To develop an accurate recommender system, these new features from
social media platforms should be considered.

Traditional techniques fromnatural language process (NLP), information retrieval
(IR) (Manning et al. 2008), and machine learning (ML) (Alpaydin 2014) can be uti-
lized in social computing to some extent. However, these techniques have difficulty
in solving the challenges raised by social media. First, traditional data representa-
tions are usually based on the one-hot sparse representation. The high dimension-
ality of one-hot representations makes it difficult to discover the underlying knowl-
edge/relations from sparse data and process large-scale data efficiently. Moreover,
traditional data representations are powerless to capture deep semantics of social
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media data, e.g., the commonly used “bag-of-words” (BOW) scheme can not well
capture the polysemy and synonym that exist naturally in human languages or activ-
ities. Second, traditional data models may not be capable of characterizing the com-
plex nature of social media data. For example, matrix factorization essentially is a
linear factorization model which is not able to capture nonlinear data characteristics.
Although nonlinear models achieve more capacity in data modeling, they are usually
either shallow models or difficult to learn, which cannot effectively solve compli-
cated tasks on social media. Third, traditional techniques are not flexibly extended to
online social media, since online social media brings new data features or challenges
to social computing. For example, the user-generated content is a fruitful resource
and fast channel for understanding the trends and opinions expressed by the users,
and many social media platforms have added the news spreading mechanism, such
as retweet on Twitter (Kwak et al. 2010). Traditional techniques may not be easy to
adapt to these new features in social media.

Fortunately, the recent revival and success of deep learning brings us new oppor-
tunities and solutions to address these difficulties that traditional techniques are faced
with in social computing. Research in deep learning makes better data representa-
tions by using distributed representations and is able to learn these representations
from large-scale unlabeled data (Mikolov et al. 2013). Deep learning tries to build
more powerful data models using flexible deep nonlinear structures, which is loosely
based on interpretation of information processing and communication patterns in a
nervous system. Deep learning algorithms transform their inputs throughmore layers
than shallow learning algorithms, and the capacity of neural networks has been dis-
cussed and proved in the universal approximation theorem (Hornik 1991). Another
important feature of deep learning is that it is usually designed and trained in an end-
to-end way, which substantially reduces the accumulated discrepancy from multiple
separate model components. Besides powerful data modeling capacity, deep learning
is a fast-growing field, and new architectures, variants, or algorithms appear every
fewweeks, which provide us a flexible way to model new data types or features (e.g.,
sequence data models and tree-structured data models).

Based on the above discussions, in this chapter, the deep learning is the major
approach to social computing. As being introduced before, three aspects are mainly
considered here, namely user-generated content analysis, social connections, and
recommendation. Focusing on these three aspects, the major progress made on social
computing with deep learning will be reviewed. These three parts will be introduced
in Sects. 9.2, 9.3, and 9.4 respectively. Finally, the conclusion of this chapter is made
in Sect. 9.5.

9.2 Modeling User-Generated Content with Deep Learning

The major resource for social computing is the user-generated content across
different social media services (Cortizo et al. 2012). Because each individual can
share the stories, social events, and opinions without many constraints to the public
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in a real-time manner, a user in social media works as a social sensor, recording the
timely information happened around her. In this sense, the user-generated content
contains a wealth of timely information and beyond. The UGC has been widely rec-
ognized as an avenue for opinion extraction, expert finding, user profiling, user intent
understanding, and so on. For example, a government officer of the Social Security
department is likely to be made aware whenever a rumor outbreak is taking place.
A fated and complicated task inside these semantic tasks is to derive a semantic
representation for the information generated by social media users. Among different
kinds of UGC, text is a dominating resource form. Hence, many discussions will be
made about how to model user-generated text content in this section.1

Effective learning of word semantics is now feasible and practical with recent
developments in neural network techniques, which have contributed improvements
in many NLP tasks. Specifically, neural network language models (Mikolov et al.
2013) learn word embeddings (or dense word representations) with the aim of fully
retaining the contextual information for each word, including both semantic and syn-
tactic relations. Moreover, most task-driven neural networks are devised to learn the
embedding representations for words, documents, users, and many metadata infor-
mation. In this section, we first briefly review the traditional semantic representation
models, and then introduce the shallow embedding techniques such as CBOW and
skip-gram models, and deep neural network models such as convolutional neural
networks (CNN) and recurrent neural networks (RNN) that are task-driven. Finally,
an introduction about attentive mechanism for text-based neural network techniques
is given. As the emphasis through the entire section, the discussions about how to
adapt deep learning techniques to specific social tasks will be provided.

9.2.1 Traditional Semantic Representation Approaches

The conventional approaches to represent documents and words are one-hot vector
representations and bag-of-words (BOW) scheme (Manning et al. 2008). In one-hot
vector representation, a word w is represented as a sparse |V |-dimensional vector xw,
where every element in xw is zero and only the element corresponding to word w is
1, and |V | is the size of the vocabulary V . For example, assume the vocabulary V =
{“I”, “like”, “apple”} contains three distinct words. By sorting words in alphabetical
order, the one-hot vector representation xapple is then represented as [1, 0, 0]. With
the one-hot representation, a document can then be represented as a weighted sum
of xw for all the words contained in the document as follows:

xd =
∑

w∈d

f (w, d)xw, (9.1)

1Other data types such as images and videos are not considered, which are beyond the scope of this
chapter.
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where f (w, d) is the weighting function for word w in context of document d . The
widely used term weighting function is TF-IDF scheme, which takes term frequency
and inverse document frequency into account. Although this BOW representation
leads to promising performance for regular document retrieval, it results in much
poorer performance in many social media-related IR/NLP tasks, because of the short
and error-prone nature of the user-generated content. For example, words “car” and
“automobile” share the same semantic meaning and syntactic function. However,
by using one-hot sparse representation mentioned above, the cosine similarity based
measure gives a score of 0 for them. It is desired to derive a dense vector representation
such that the syntactic and semantic relations for a pair of words can bewell captured.

9.2.2 Semantic Representation with Shallow Embedding

Distributed representations have been successfully applied in many NLP and IR
tasks. Two popular models to learn word embeddings are Continuous Bag-of-Words
(CBOW) and continuous skip-gram models (Mikolov et al. 2013). To learn the
representation for text units of different lengths (e.g., sentences, paragraph, and doc-
uments) instead of single word, Le et al. propose two paragraph vector models, which
can derive the dense representation for sentences, paragraphs, and documents (Le
and Mikolov 2014). These models can be called as shallow embedding approaches
since they only involve a hidden layer. Because they can project text units of differ-
ent lengths and metadata information into the same hidden representation space, it
is flexible to apply these techniques and the variants in many semantic applications
(e.g., microblog recommendation). In what follows, the introduction about several
representative shallow embedding techniques will be provided as well as the dis-
cussion about how to adapt them to characterize additional social features besides
textual semantics.

The main idea of CBOW is to predict the target word with surrounding context
words. For convenient, the surrounding words are symmetric (so as in skip-gram),
i.e., a window with size m is predefined and the task is to predict the target word wc

with a sequence of words (wc−m,…,wc−1,wc+1,…,wc+m), where wi denotes the word
at position c. In the input layer, every word is represented by a one-hot sparse vector,
i.e., every word is represented as a R|V |∗1 vector where |V | is the size of vocabulary.
Then, an input word matrixV ∈ R

n×|V | is defined such that the ith column ofV is the
n-dimensional embedded vector for wordwi. From the input layer to the hidden layer,
each hidden embedding vector vi of word wi is calculated by multiplying matrix V
by xi, i.e., vi = Vxi. Recall word vector xi is a one-hot vector, so this multiplication
essentially performs a lookup operation (i.e., select the corresponding column inV as
output). Then, the embeddings of input word in awindow are averaged to form vector
v̂, i.e., v̂ = (vc−m + vc−m+1 + . . . + vc+m)/2m. To enable prediction, another output
word matrix U ∈ R

|V |×n is defined such that the jth row of U is an n-dimensional
embedded vector for word wj. The likelihood score vector z is then calculated by
multiplying U by v̂, i.e., z = Uv̂. Then, the softmax function takes z as the input to
get the output ŷ (note ŷ is a probabilistic distribution vector).
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The main idea of skip-gram model is opposite to CBOWmodel, i.e., surrounding
context words are predicted by using the target words. There are twomain differences
between skip-gram and CBOW models. The first is that only one-word vector is
taken in the input layer, instead of the context words in CBOW model. The second
is that 2 · m context words are predicted in the output layer separately. Following
CBOW model, a similar optimization approach can be adopted. As a follow-up
work, Le et al. propose two Paragraph Vector (PV) models to learn the distributed
representations for text units of different lengths (e.g., sentences, paragraphs, and
documents) (Le and Mikolov 2014). The main idea is to take the paragraph as an
extra word. The embedding vector associated with the paragraph is considered as
paragraph vector. There are two distinct models in PV framework. One is Distributed
Memory Model of Paragraph Vector (PV-DM), and the other is the Distributed Bag-
of-Words version of Paragraph Vector (PV-DBOW). In PV-DM, the main idea is
similar with CBOWmodel, in a paragraph (or sentence, document), paragraph vector
and context word vectors are averaged or concatenated to predict the next words (not
central words). In PV-DBOW, context words are ignored in the input, and paragraph
vectors are used alone to predict words randomly sampled from the paragraph (they
are in same window). Although both models can learn the vector representation for
a paragraph, but as pointed out by the authors, PV-DM is consistently better than
PV-DBOW.Moreover, by concatenating the vectors learnt from both models, further
improvement is observed in terms of document classification tasks.

Microblogging services, as a real-time information sharingplatform, have attracted
a huge number of users across different domains. Specifically, many researchers also
publish or share the academic advances in microblogging sites with their comments
and emotions. Identifying the expertise and research interest of these users could
enable us to recommend the relevant microblogs to them. The effective scholarly
microblog recommendation accuracy could enable the researcher to easily follow the
recent progress of the field of interest. To devise a personalized scholarly microblog
recommendation approach, Yu et al. propose two User2Vec models to learn the user
embedding as well as text/word embedding jointly (Yu et al. 2016). Then, the rec-
ommendation is accomplished by calculating the similarity between a user’s vector
and a scholarly microblog text’s vector. These two User2Vec models were built on
the basis of PV-DM model. In User2Vec#1 model (shown in Fig. 9.1a), the upper
architecture is the same as PV-DM. However, in User2Vec#1 model, the paragraph
vector is also estimated by using the average of the embedding vectors of the rele-
vant users. Here, the author of the microblog and the users that have forwarded the
microblog are considered as relevant users.

In User2Vec#1, every user is mapped to a vector represented by a column in
matrix U , in addition to the microblog text matrix D and the word matrix W . Given
a microblog text di, wi, w2, . . . , wT , our goal is to predict both wT+1 and microblog
token di. We define all users related to di as ui1, ui2, . . . , ujh. The objective function
that should be maximized is as follows:

J = 1

T

∑

t

[log p(wt |di, wt−k , . . . , wt+k) + log p(di|ui1, . . . , uih)]. (9.2)
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(a) The User Vec#1 model (b) The User Vec#2 model

Fig. 9.1 The network diagrams for user embeddings (Yu et al. 2016)

In User2Vec#2 model (shown in Fig. 9.1b), user vectors and text/word vectors are
in the same layer; these vectors are averaged to make prediction for next word. In this
framework, user embeddings are learned as the contexts of documents as follows:

J = 1

T

(
∑

t

log p(wt|di, wt−k , . . . , wt+k , ui1, . . . , uih)

)
. (9.3)

It has been shown that User2Vec#2 model achieves better performance because
it learns user embeddings directly from word embeddings.

9.2.3 Semantic Representation with Deep Neural Networks

9.2.3.1 Learning Representations by Recurrent Neural Networks

Many types of social content have presented as a sequential semantic structure. For
example, a social comment is a sequence of words in nature. Similarly, a conversation
made in social media between users is a sequence of sentences. Exploiting this first-
order sequential structure would lead us to better understand the social contexts. A
standard Recurrent Neural Network (RNN) processes an arbitrary sequence of data
by recurrently applying the transition function over the current input vector and last
hidden state vector. The output of the transition function is the current hidden state
vector. Given a sequence of words d = {w1, w2, . . . , wt}, the hidden state vector ht

at position t is computed by RNN as follows:

ht = σ(Wqt + Cht−1), (9.4)

where qt is the embedding of word wt at position t, W is the transition matrix from
the input embedding to the hidden state, C is the state-to-state recurrent weight
matrix, σ is the transition function and is often implemented by sigmoid, tanh, or
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ReLU function. The hidden state vector ht is expected to capture the hidden semantic
features for the sequence {w1, w2, . . . , wt}.

Although the RNN structure can process sequential input, the gradient becomes
smaller and smaller until it diminishes completely when the length of input is large.
This is the gradient vanishing problem. A simple solution is to magnify the val-
ues of weight matrices. However, the strategy could turn out to cause the gradient
exploding problem. Both of the problems will prevent RNN from learning the dis-
tant dependencies within the longer sequence appropriately. To address this problem,
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are proposed
with the gating mechanism to control the information flow. In recent years, recur-
rent neural networks have experienced great success in many fields. There are lots of
works utilizing the aforementioned structures such as languagemodeling, image cap-
tioning, speech recognition, machine translation, computer-composed music, click
prediction, etc. Since RNNs and their variants can be used to model a text unit of
variable length, they have been widely investigated to derive the task-specific repre-
sentation for the text units. We will introduce two representative works that address
the tasks of rumor detection and automatic conversation-response modeling.

In the modern information age, rumors can cause public panic and social unrest.
For example, a rumor about “salt can protect radiation” triggered the rush of salt
tide. At the early stage, detecting rumors is through manual verification; how-
ever, the effect is very limited and has long debunking delay. Many existing works
which employ machine learning methods rely on hand-crafted features and is time-
consuming. Several RNN-based models have been proposed to detect rumors in (Ma
et al. 2016). Given an event and a set of relevant tweets {(mi, ti)} where mi is a
specific tweet and ti is the corresponding publish time. First, the incoming streams
of tweets are converted into continuous variable-length time series, and then RNN-
based models are used to classify rumors. Three models are proposed in (Ma et al.
2016) to address this task. The corresponding architectures are illustrated in Fig. 9.2.

• tan h-RNN. It is a basic RNN structure whose input is the TF-IDF values of the
vocabulary terms in the time interval. The hidden unit is computed as

ht = tan h(Uxt + Wht−1 + b) (9.5)

ot = Vht + c, (9.6)

and then softmax operator will be employed to classify rumors and non-rumors.
The goal is to minimize the squared error between probability distribution of the
prediction and ground truth.

• Single-layer LSTM/GRU. An embedding layer is added in this model to trans-
form the TF-IDF weights into embeddings, and the basic RNN unit is replaced
with LSTM/GRU unit in order to capture long-distance dependencies, which is
important in rumor detection.

• Multilayer GRU. The authors further extend the second GRU-based model by
stacking another GRU layer. The higher level GRU layer is expected to capture
more abstract features for the prediction.
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Fig. 9.2 The RNN-based rumor detection models (Ma et al. 2016)

A B C <eos> W X Y Z

W X Y Z <eos>

Context
(Previous Sentences) Reply

Fig. 9.3 Using the seq2seq framework for modeling conversations (Vinyals and Le 2015)

The corresponding architectures are illustrated in Fig. 9.2. All the models are
trained using backpropagation to compute the derivatives of the loss and then update
their parameters. The experimental results show that the significantly better perfor-
mance is obtained byRNN-basedmodels, comparedwith the existing state-of-the-art
alternatives.

Building the intelligent conversation system is an important task in natural lan-
guage processing and artificial intelligence. Most of the existing works focus on
the development of task-oriented conversation systems. Although these works have
achieved promising performance for some specific tasks in some limited domain,
however, building an open domain conversation system that enables general-purpose
conversation with human beings is still challenging. The recurrent processing man-
ner of RNN models shed light on the further advance of open domain conversation,
because of its ability to model variable-length text. Vinyals and Le propose a neural
conversation model by modeling the word sequence with LSTMmodel (Vinyals and
Le 2015).

This sequence-to-sequence model takes in a sequence of tokens as input, and
produces an output sequence bygenerating each token recurrently (shown inFig. 9.3).
During training, the golden response in the form of a sequence of tokens is passed to
themodel, and backpropagation is utilized to update the parameters through the cross-
entropy loss function. And during inference, when to predict a token, the previous
prediction is passed as input to predict the current output. The proposedmodel makes
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some modifications by predicting the next sentence given the previous sentence
rather than the token. For example, the task is to predict “WXYZ” given “ABC”, the
sentence vector of the input is the hidden state after processing the symbol “<eos>”
which indicates the end symbol of a sentence. The model predicts the tokens in next
sentence one by one given the last hidden state. This neural network architecture
requires very little feature engineering or specific domain knowledge while retains
state-of-the-art performance.

9.2.3.2 Learning Representations by Convolutional Neural Networks

Besides its prevalence in the domain of computer vision, Convolutional Neural Net-
work (CNN) has also been applied in social computing. For example, the #TagSpace
model has been proposed to address the hashtag prediction task (Weston et al. 2014).
By projecting the words, textual post, and hashtags into the same vector space,
#TagSpace is able to calculate the relevance score between a hashtag and a post
using the inner product between their embeddings.

Figure 9.4 presents the framework of #TagSpace. Unlike image pixels in computer
vision, the inputs to most NLP tasks are words or sentences. So the authors first
convert each word of an input document into d -dimensional embedding vector by
using the word lookup table, resulting in a matrix of size ld × d , where ld is the
document length. This operation incorporates a matrix of N × d parameters, called
the lookup-table layer, where N is the vocabulary size. After that, a convolutional
operation is applied to the ld × d matrix. Specifically, the authors construct H filter
matrices of sizeK × d and slide each filter matrix over the original input matrix from
position 1 to ld , where K is the sliding window size. To account for words at two
boundaries of a document, the both ends are padded with special vectors, so that we

W1

W1

W1

lookup table hashtag 
lookup table

(l+K-1)*d l*H l*H H H d d

layer
tanh
layer

max
pooling

tanh
layer

linear
layer

f(w,t)

t

Fig. 9.4 The architecture of the TagSpace model (Weston et al. 2014)
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can apply the filter that can be applied to bordering elements of input matrix. After
convolutional step, we use nonlinearity activation function such as tanh function
for each element in the ld × H matrix. And then, we apply max pooling operation
over the ld × H matrix to extract a fixed-size (H -dimensional) global vector, which
contains the features of the input document. It is noted that the d -dimensional global
vector obtained from the CNN is independent of the length of the document. At last,
the tanh nonlinear activation function and a full connected linear layer of size H × d
are employed. Consequently, a single document is converted into a d -dimensional
vector, representing the entire content in the original embedding space.

Similarly, a candidate hashtag can be represented by a d -dimensional embedding
vector using a lookup table. In this way, textual post and hashtags have been rep-
resented by d -dimensional vectors, respectively, in the same embedding space. The
inner product is adopted to calculate the semantic relatedness between document w
and hashtag t:

f (w, t) = econv(w)� · elt(t), (9.7)

where econv(w) is the embedding of the document calculated by the CNN, and elt(t)
is the embedding of the candidate hashtag t using lookup table. We can rank all the
candidate hashtags according to the scores f (w, t). The larger the score is, the more
relevance the hashtag and the post are.

To train the #TagSpace model, the pairwise hinge loss is used as the objective
function:

L = max{0, m − f (w, t+) + f (w, t−)}, (9.8)

where t+ is a positive tag, t− is a negative example sampled from training set, and m
is the predefined margin. The lookup-table layers are initialized with the pretrained
embeddings to expedite the convergence.

9.2.4 Enhancing Semantic Representation with Attention
Mechanism

In this subsection, we will discuss how to apply the attention mechanism to model
social text. Originating from the field of computer vision (Mnih et al. 2014; Xu et al.
2015), attention mechanism enables the model to select important information to
attend to based on the input and what it has produced so far. In NLP field, attention
mechanism is used to enhance text modeling typically by

• handling long input sequences (e.g., sentences or documents) and ensuring that
the output can acquire useful information as much as possible (Luong et al. 2015).

• alleviating the order variation and discrepancy problem in some tasks (e.g.,
machine translation and text summarization) by producing soft alignment between
input and output (Bahdanau et al. 2014).
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Distributed representation models, such as skip-gram and CBOW, have been shown
to be effective in capturing word semantic relations. However, they are incapable
of capturing the syntactical relations between words because they do not consider
the word order. To tackle this issue, a simple extension which adds the attention
mechanism into CBOW has been proposed (Ling et al. 2015). The intuition behind
this model is that the prediction of a word mainly depends on certain words and their
positionswithin the context. For instance, in the sentence of“We won the game!”. The
prediction of the word “game” is mainly based on both the syntactic relation from
the word “the”, since it is always followed by nouns, and on the semantic relation
from the word “won”. The word “We” contributes very little to the prediction of
“game”. In this case, assigning different weights to words at different positions in a
fixed-length context is necessary for word prediction.

In this model, each word w ∈ V at position i is assigned with an attention score
ai(w):

ai(w) = exp(kw,i + si)∑
j∈[−b,b]−{0} exp(kw,j + sj)

, (9.9)

where kw,i denotes the importance of the word w at position i, si is an offset of
position i within the context window, and b is the window size. After the attention
calculation, the context vector c is calculated as follows:

c =
∑

i∈[−b,b]−{0}
ai(wi)vi, (9.10)

where vi denotes the embedding of word i. With CBOW, a weighted sum of the
individual word embeddings is taken in Eq. 9.10 instead of simply taking the average
of word embeddings within the context. Finally, the model predicts the target word
by maximizing the following probability:

p(v0|w[−b,b]−{0}) = exp(uT
0 c)∑

w∈V exp(uT
wc)

. (9.11)

pole making it a con nental desert 

antar ca has itli le rainfall with the 

south 

(a) Example: the CBOW inference for the
prediction of word “south”

antartica has little rainfall with the

south

pole making it a continental desert

(b) Example: the attention-based
CBOW inference for the prediction of
word “south”

Fig. 9.5 The comparison between attention-based CBOW and CBOW models (Ling et al. 2015)
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Figure 9.5a, b shows the different predictionmechanisms of CBOWand attention-
based CBOW. In CBOW, all context words contribute evenly to the prediction of
targetword south, including functionwords.While, in attention-basedCBOW,darker
cells indicate higher weights (ref. Eq. 9.9) for predicting target word south. The
experimental results in (Ling et al. 2015) have demonstrated that word embeddings
learnt by the attention-basedCBOWretain better syntactical relations betweenwords.
Attention mechanism has been widely used in different tasks. For example, several
works have adopted attention mechanism for hashtag recommendation and obtained
the state-of-the-art recommendation performance (Gong and Zhang 2016; Zhang
et al. 2017).

9.3 Modeling Social Connections with Deep Learning

9.3.1 Social Connections on Social Media

As already discussed in Sect. 9.1, a major feature of online social media platforms
is that they provide rich social connections. Social networking sites typically utilize
explicit or implicit linking mechanisms to enhance the interactions or connections
between users. User links can either unidirectional or bidirectional. For example, on
Twitter, a user can follow another user unilaterally. As a comparison, on Facebook,
the user link is constructed in a bidirectional way. Typically, these user links indicate
friendship or interest similarity (Weng et al. 2010). In some cases, the links can
also explicitly relate to trust information (e.g., EPinion2). In addition to explicit
links, the implicit relations are prevalent on social media. For example, a user can
forward (a.k.a., retweet) one’s tweet without following her. Such implicit links are
also important to consider in conveying useful semantic information (Welch et al.
2011; Zhao et al. 2013, 2015; Wang et al. 2014).

9.3.2 A Network Representation Learning Approach to
Modeling Social Connections

In this section, we discuss how to model user links in a general perspective. With the
revival of deep learning in recent years, network representation learning has become
a hot research topic (Perozzi et al. 2014; Tang et al. 2015), which aims to embed
vertices into a low-dimensional space, and the derived representations are usually
called node embeddings.

2http://www.epinionglobal.com/.

http://www.epinionglobal.com/
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Table 9.1 Categorization of network embedding models

Classes Models

Shallow Neighborhood DeepWalk (Perozzi et al. 2014),
node2vec (Grover and Leskovec 2016)

Proximity Line (Tang et al. 2015),
GraRep (Cao et al. 2015)

Heterogeneous HINE (Huang and Mamoulis 2017),
ESim (Shang et al. 2016)

Deep Neighborhood GruWalk (Li et al. 2016)

Proximity Sdne (Wang et al. 2016a),
GraRep (Cao et al. 2015)

Heterogeneous Hne (Chang et al. 2015)

Formally, let G = (V ,E ,W) denote a general social network representation,
where V is the vertex set, E is the edge set, and W is the weight matrix for edges.
If there exists an edge from vertex u to vertex v, then (u, v) ∈ E . Let wu,v denote
the weight of the edge from u to v. Both unidirectional or bidirectional, weighted
or unweighted networks can be modeled in this definition.3 Network representation
learning aims to generate a d -dimensional latent representation ev ∈ R

d for each
vertex v ∈ V . Usually, the dimensionality (i.e., d ) varies from 50 to several hundreds.
In Table 9.1, we introduce the methods for network representation learning in two
categories: (1) shallow embedding based methods; and (2) deep neural networks
based methods. The first category refers to the models which derive distributed
representations with a shallow neural architecture4. As a comparison, the second
category utilizes standard neural networkmodels for learningnetwork representation.

The learned representations in existing studies (Perozzi et al. 2014) are mainly
utilized for network reconstruction or node classification, but the approach can be
easily extended to solve some specific tasks (Chen and Sun 2016). Here, our focus
is the general network representation learning, while other types of information are
ignored here, such as text data (Yang et al. 2015). Especially, knowledge graphs can
be considered as a specific type of heterogeneous networks, and many studies from
natural language processing (Xie et al. 2016; Guo et al. 2016) are related to network
representation learning. In this section, we will only focus on the existing studies for
social network analysis.

3In our case, a vertex corresponds to a user, and the graph corresponds to the user network. Unless
specified, we will use “network” for short instead of “user network”, since our methods are general
and can be essentially applied to any networks of other types.
4Strictly speaking, the embedding based models are not standard neural networks, such as
word2vec (Mikolov et al. 2013).
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9.3.3 Shallow Embedding Based Models

9.3.3.1 Traditional Graph Embedding Models

In the early literature of machine learning and pattern recognition, an important task
is dimensionality reduction and data representation. These methods take the dyadic
data-feature matrix as the input, and each row in the data-feature matrix corresponds
to a high-dimensional observationpoint. The essenceof these earlymethods lies in the
transformation of high-dimensional observations into low-dimensional representa-
tions via dimensionality reduction. Somewell-knownmethods include IsoMap (Bal-
asubramanian and Schwartz 2002), LLE (Roweis and Saul 2000), and Laplacian
Eigenmaps (Belkin and Niyogi 2001). Typically, early studies largely borrow the
ideas of Principal Components Analysis (PCA), Multidimensional Scaling, Graph
Laplacian, and Manifold Learning. Usually, these algorithms have high computa-
tional complexity, which is not easy to deploy on large-scale datasets. In recent
years, matrix factorization technique is also applied to network embedding (Wang
et al. 2011), which decomposes the network matrix (e.g., the adjacency matrix) into
a product between two matrices.

9.3.3.2 Neighborhood-Based Embedding

The key idea of the neighborhood-based approach aims tomodel the relation between
a target vertex and its neighborhood constructed by random walks using some
strategy.

DeepWalk (Perozzi et al. 2014) is the first network embedding model which
borrows the idea from word embedding. In word embedding (e.g., word2vec), the
basic elements are sentences (or word sequences) and words, and the purpose is to
learn the latent representations of words by characterizing the relations between a
target word and its context information in local windows. Let w denote a word and
Cw denote the contexts (i.e., the context words) of word w. Word embedding models
essentially model the conditional probabilities of P(w|Cw) or P(Cw|w).DeepWalk
considers vertices as words and vertex sequences as sentences. While, there are
explicit vertices and links on a graph, but not vertex sequences. To solve this prob-
lem, DeepWalk first generates short random walks based on the graph structure.
These walks can be considered as short sentences, and it estimates the likelihood of
observing a specific vertex given the surrounding vertices visited in random walks.
More formally, DeepWalk models the conditional probability of P(Nv|v), where
Nv denotes the neighbors of vertex v in the generated random walks given the graph
G . The model is implemented by using the skip- gram architecture of word2vec
and optimized by the hierarchical softmax algorithm. The elegance of DeepWalk
lies in the connections between word sentences and vertex random walks.

Based onDeepWalk, an extendedmodelnode2vec (Grover andLeskovec 2016)
has been proposed. It defines a flexible notion of a node’s network neighborhood
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as the vertex set generated by a family of parameterized and biased random walks.
The resulting algorithm is flexible in the control of randomwalks through two tunable
parameters: return parameter p and in-out parameter q. Parameter p controls the
likelihood of immediately revisiting a node in the walk, while parameter q allows the
search to differentiate between inward and outward nodes. The two parameters p and
q allow the search procedure to (approximately) interpolate between Breadth-First
Search andDepth-First Search. Overall, node2vec generalizesDeepWalkwith the
parameterized control on the search of neighborhood.

9.3.3.3 Proximity-Based Embedding

The second class of embedding models aims to characterize the pairwise vertex sim-
ilarities using the latent node representations. There can be multiple ways to measure
pairwise vertex similarity on graphs. In particular, wewill present embeddingmodels
based on the k-order (k ≥ 1) similarity derived from the original graph.

Line (Tang et al. 2015) defines an objective function that preserves both the first-
order and second-order proximities, which aims to model arbitrary types of infor-
mation networks and scale to millions of nodes. Specially, the first-order proximity
characterizes the local structures reflected by the observed links in the networks.
As a complement, the second-order proximity characterizes the indirect similarity
between two vertices through the shared first-order neighborhood structures of the
vertices. Both kinds of proximities are modeled by probability values, and subse-
quently Kullback–Leibler divergence is adopted to derive the objective function.
Line has given several important practical considerations on efficiency, including
negative/edge sampling and alias table, which makes it efficient to scale to very large
datasets.

GraRep (Cao et al. 2015) is an embedding model which can capture k-order
proximity when k ≥ 2. The key idea is to estimate the proximity using the transition
probabilities derived from higher order transition matrices. The work is based on an
important property that skip- grammodel with negative sampling is mathematically
equivalent to matrix factorization over the (shifted) pointwise mutual information
(PMI) co-occurrencematrix. Specially,GraRepmodels the k-order transitions for all
k = 1, . . . , K , where K is a predefined parameter. For each k-order transition matrix,
we can derive the corresponding node representations. The final representation is
constructed by concatenating all the representations corresponding to each k-order
representation.GraRep extends Line by modeling high-order similarity, and setting
different representations for varying orders.

9.3.3.4 Community Enhanced Embedding

The abovemethodsmainly focus on the local vertex links, while group or community
structure has not beenmodeled. In this part,wediscuss embeddingwith community or
group structure information. The community structure characterizes the community
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member relations and considers the vertex relatedness in a wider range than local
neighborhood.

Gene (Chen et al. 2016) is an embeddingmodelwhich can incorporate community
structure for network representation. The key idea is to model the community as a
vertex. In this way, the community vertex is considered as the context for generating
a specific vertex. A community vertex is modeled as the shared context for all the
vertices from the corresponding community. Gene makes the analogy as follows: a
community is treated as a document, while a vertex is treated as a word belonging to
some document. Gene borrows the idea of doc2vec (Le and Mikolov 2014) in its
two architectures, namely Distributed Memory (DM) and Distributed Bag-of-Words
(DBOW). Gene combines both architectures and jointly models both neighboring
users and group information.

Similar to early works on community detection (Wang et al. 2011), aModularized
Nonnegative Matrix Factorization (M-NMF) (Wang et al. 2017) has been proposed
for learning the vertex representations and preserving the community structure. InM-
NMF, it first applies the classic modularity-based method for community detection.
Then, it builds the objective function which involves three factors, which corre-
sponds to the factorization of similarity matrix, the factorization of the community
membership matrix, and the community-preserving loss. The key to connect the first
two factors lies in the shared vertex representations, and the community-preserving
loss is defined based on the community membership matrix. In this way, a unified
nonnegative matrix factorization approach jointly optimizes the above three factors.

9.3.3.5 Heterogeneous Network Embedding

Previously, vertex similarity is evaluated based on homogeneous networks. In prac-
tice, many information networks are heterogeneous. For example, in the scientific
collections, different types of entities form a heterogeneous network, where there
may be author, paper, and venue vertices. These heterogeneous networks describe
the relations between objects (i.e., network vertices) of different types. To deal with
them, a commonly adopted method is the meta-path based algorithm (Sun et al.
2011). A meta-path is a sequence of object types with edge types in between mod-
eling a particular relationship. Next, we discuss how to apply the meta-path based
algorithm to enhance the network embedding models for heterogeneous networks.

A straightforward method is to transform meta-path based information into sim-
ilarities (Huang and Mamoulis 2017). In this way, we can build a meta-path based
graph, where the edge weights are derived from the meta-path based similarities.
Once the similarity matrix (i.e., the adjacency matrix in the graph) has been con-
structed, the problem becomes a standard network embedding task, and we can apply
any existing network embeddingmodels. For calculating themeta-path based similar-
ities, truncated k-length paths are considered and a dynamic programming algorithm
has been applied to efficiently calculate the similarities. After similarity calculation,
the first-order loss function of Line is adopted to learn the vertex representations.
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A note is that Line can characterize the edge weights by using a sampling-based
method.

Insteadof simply evaluatingmeta-path based similarities,ESim (Shang et al. 2016)
models the meta-path based similarity by incorporating path-specific embeddings.
Given two vertices, their path-specific similarities can be composed into four parts: a
path-specific constant, the inner product between vertex embeddings, and two inner
products between a vertex embedding and the path embedding. Formally, the path-
specific conditional probability from vertex v1 to v2 via the path type t can be given
as

Pr(v2|v1, t) = exp(f (v1, v2, t))∑
v′∈V exp(f (v1, v′, t))

, (9.12)

where f (v1, v2, t) is a score function measuring the importance of the path v1 →t v2
defined as f (v1, v2, t) = μt + e�

v1 · et + e�
v2 · et + e�

v1 · ev2 . To learn the vertex and
path embedding, ESim further proposes two kinds of optimization methods, namely
sequential and pairwise learning methods.

9.3.4 Deep Neural Network Based Models

Above, we have extensively discussed various embedding based models for learning
latent vertex representations. All these works share the common point that they
mainly rely on shallow embedding models for deriving the similarities. In some
cases, link information in a network can be very complex, which may be difficult for
shallow models to explain and generate. In this part, we turn to deep neural networks
for more powerful modeling capability.

9.3.4.1 Deep Random Walk Based Models

The essence of DeepWalk can be summarized in two points: first, transform graph
structure into node sequences; second, learn node representations based on sequence
embedding models. However, strictly speaking, Word2Vec model is not a real
sequence model: the context words are order insensitive. Indeed, we can apply any
kind of sequence neural network models to learn node and sequence representations
based on node sequences, e.g., the widely used recurrent neural network. To charac-
terize long sequences, Gated Recurrent Unit (GRU) and Long Short-Term Memory
(LSTM) are two well-known variants for improving basic RNNs. Li et al. (2016)
have applied the bidirectional GRU to encode node sequences, which applies a for-
ward GRU that reads the sequence from left to right, and a backward GRU from right
to left. We call such a model GruWalk. Similarly, other sequence neural networks
can apply here for learning node representations.
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9.3.4.2 Deep Proximity-Based Models

We consider two studies which model low-order and high-order proximity,
respectively.

Sdne (Wang et al. 2016a) is the first study to characterize low-order similar-
ity using deep neural networks. It emphasizes three important properties in net-
work reconstruction, namely high nonlinearity, structure-preserving, and sparsity-
resistant. In terms of methodology, Sdne can be loosely understood as a neuralized
generation of Line. To capture the nonlinear linking characteristics, a deep autoen-
codermodel is adopted,which takes the neighborhood information (using the one-hot
representation) of a vertex both as input and output. The autoencoder aims to recon-
struct the input by first projecting it into a low-dimensional embedding (with several
nonlinear layers) and then recovers the output from the embedding (with several non-
linear layers). The embeddings in the middlemost layer of the autoencoder model
can be considered as the latent representations of vertices, usually called code. With
these vertex codes, the first-order proximities are characterized via the graph-based
regularization loss, which forces the codes of connected vertices to be similar. The
autoencoder model implicitly characterizes the second-order proximities due to the
fact that the model parameters are shared by all the vertices. In this way, vertices with
similar neighborhood will have similar codes, since their neighborhood information
will be fed into the same autoencoder model.

For capturing high-order proximity, theDngrmodel (Cao et al. 2016) extends the
GraRep model (Cao et al. 2015) by using deep neural network models. Dngr first
performs the random surfing, and then estimates the transition probabilities using
random walk with restart. In the original DeepWalk, random walks are generated
without considering the effect of the start vertex. As a comparison, Dngr enhances
the effect of the start vertex via the restart vector, and it tends to assign a larger
probability to a vertex which is closer to the start vertex. The above random surfing
model is adopted to estimate the PMI co-occurrence matrix for the network vertices.
Unlike skip- gramwith negative sampling, which directly factorizes the PMImatrix
in a shallow way, Dngr tries to reconstruct the PMI matrix using stacked denois-
ing autoencoder. By combing the above two steps, Dngr is supposed to generate
better-quality random walks and enhance the capacity in characterizing the complex
relations, which is expected to perform better on network embedding.

9.3.4.3 Deep Heterogeneous Information Network Fusion

Heterogeneous information networks usually contain different types of nodes and
links, and it is more challenging to deriving effective representations for heteroge-
neous information. Chang et al. (2015) propose theHnemodel to fuse heterogeneous
information with different data types. The fusion approach is intuitive. For each data
type, we first project the data points into a latent space with deep neural networks, so
that the data characteristics for each local domain can be preserved. The model fur-
ther makes an assumption that after a series of nonlinear transformations, the local
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data features from different domains can be mapped into a shared space. By pre-
serving both the within-domain and cross-domain similarity, the final loss function
jointly optimizes the data embedding via a deep architecture.

9.3.5 Applications of Network Embedding

In social computing, analyzing user connections is a fundamental and important
step. The network embedding based approach can generate effective representa-
tions from social connection structures, which can be utilized in various downstream
tasks. The above network embedding models provide a general network representa-
tion approach for various applications related to social network analysis, including
network reconstruction, link prediction, node classification, node clustering, and
visualization (Perozzi et al. 2014; Tang et al. 2015). In these tasks, network embed-
ding serves as an automatic and unsupervised feature engineering procedure. More
recently, some studies have also tried to develop task-driven network embedding
models. For example, the network embedding approach has been extended by incor-
porating task-specific labeled information (Huang et al. 2017; Chen and Sun 2016).

9.4 Recommendation with Deep Learning

9.4.1 Recommendation on Social Media

On social media, recommendation is a ubiquitous task, which aims to match users’
interests or needs with suitable information resources (i.e., items) (Adomavicius and
Tuzhilin 2005; King et al. 2009). For example, a news portal website can recommend
news or tweets to users with potential interests. The resource items are defined in
a general way, which can be a news, a tweet, a friend, etc. In the recommendation
task, a set of users U and a set of items I are the core elements.

• Rating Prediction: It aims to infer the preference degree of a user u on an item i
given some context information C. Specially, let ru,i denote the rating of user u on
item i. Rating prediction aims to infer the missing values for ru,i.

• Top-N Recommendation: It aims to generate a recommendation ranklist ofN items
from I to a target user u ∈ U given some context information C.

The two tasks are highly correlated. In what follows, we mainly focus on the models
themselves but will not discriminate between the two tasks unless specified. The
introduced models are summarized in Table 9.2 by two approaches, namely shallow
embedding based and deep neural network based.
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Table 9.2 Categorization of deep learning recommendation models. “Integration” indicates the
utilization of side information

Classes Models

Shallow Word embedding product2vec (Zhao et al. 2016b),
MC-TEM (Zhou et al. 2016),
HRM (Wang et al. 2015b)

Network embedding NERM (Zhao et al. 2016a)

Embedding regularization CoFactor (Liang et al. 2016)

Deep Traditional RBM (Salakhutdinov et al. 2007)

Interaction (MLP) NeuMF (He et al. 2017), NMF (He and Chua 2017)

Interaction (Auoencoder) CDAE (Wu et al. 2017a)

Interaction (Sequence) NADE (Zheng et al. 2016), NASA (Yang et al. 2017)

Integration (Profile) DUP (Covington et al. 2016),
Wide and Deep (Cheng et al. 2016),
RRN (Wu et al. 2017b),
DeepCoNN (Zheng et al. 2017)

Integration (Content) SDAE (Wang et al. 2015a),
DCMR (van den Oord et al. 2013)

Integration (Knowledge) CKE (Zhang et al. 2016)

Integration (Cross-domain) MV-DSSM (Elkahky et al. 2015)

9.4.2 Traditional Recommendation Algorithms

Various recommendation methods have been proposed for recommender systems
in the past, including collaborative filtering methods (Su and Khoshgoftaar 2009),
content-based methods (Lops et al. 2011), and hybrid methods (De Campos et al.
2010). Collaborative filtering methods build a model from a user’s past behaviors
as well as the decisions made by other similar users. Content-based methods extract
a set of important features from an item in order to recommend other items with
similar features. In the collaborative filtering approach, Matrix Factorization (MF) is
widely adopted in various recommendation tasks (Koren et al. 2009). Different from
traditional methods such as UserKNN and ItemKNN,MF can generate a latent factor
for a user or an item, and the recommendation task can be solved by calculating the
similarity between these latent vectors. A major merit of MF is that it can be flexibly
modified to incorporate various kinds of contextual information for adapting to new
task settings. TheMFmethods perform verywell in practice and serve as competitive
baselines in many tasks to the date.
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9.4.3 Shallow Embedding Based Models

Shallow embedding based models largely borrow the idea of distributed representa-
tion learning, especially the works on word embedding (e.g.,word2vec). The basic
idea is tomap users, items, and related contextual information into a low-dimensional
space. Furthermore, the recommendation task can be casted into a similarity mea-
surement problem in the latent embedding space.

9.4.3.1 Recommendation as “Word” Embedding

The core idea of word embedding is that the semantics of a given word depends on its
contextual words. The similar idea can be utilized to model item adoption sequences,
where the items have shown sequential relatedness.

Zhao et al. (2016b) propose a straightforward application of word embedding
models in recommender systems. In this work, product purchase records are first
grouped by users, and then for each user the purchased products are sorted according
to their timestamps chronologically. We make the following analogy: a product is
considered as a word and the entire purchase sequence of a user is considered as a
document. In thisway,doc2vec canbe applied tomodel product purchase sequences,
called product2vec. The assumption made here is that the consecutive product
purchases by a user are highly related in terms of the product semantics. Hence, we
can infer the semantics of a product using its surrounding contexts in the purchase
sequence. In (Zhou et al. 2016), the doc2vec model is only used for learning high-
quality feature representations for both users and items. Subsequently, these features
are further utilized in feature-based recommendation algorithms, i.e.,LibFM (Rendle
2012).

The product2vec model mainly captures the interactions between users and
items. In some application scenarios, many kinds of contextual information can
be utilized in the recommendation algorithms. In (Zhou et al. 2016), the Dbow
architecture of doc2vec is extended to incorporate more contextual information,
calledMC-TEM model. The extension is relatively straightforward. It first discretizes
the contextual information into discrete values, and each valuewill be associatedwith
a unique embedding in the same latent space. To utilize various kinds of contexts,
average pooling is used to combinemultiple kinds of embeddings into a single context
embedding. Although the approach is simple, it can be implemented very efficiently.
Especially, all the contextual information has been modeled in the same latent space,
and it is convenient to analyze the relations between different contextual information
using simple similarity measurement on the embeddings (e.g., cosine similarity). A
potential problem is that the contextual information itselfmay not be additive in terms
of their latent representations, and using average pooling might lose information and
hurt the performance in some cases.

The above methods treat the purchase record of a user as a whole sequence.
Wang et al. (2015b) propose the HRM model which splits the purchase records
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into transactions, called baskets. It is essentially built on the Dbow architecture
of doc2vec. The major difference lies in the generation of the items for the next
basket, which is modeled in a hierarchical way. To generate an item, the contextual
information consists of the user and the items purchased in the last transaction.
Compared with (Zhou et al. 2016), HRM has a more clear and intuitive definition
about the sequential contexts: only the purchased products in the last transaction are
considered as the contexts for the current transaction. To aggregate the items from
the last transaction, different pooling operations have been proposed, such as max
pooling and average pooling.

In recommender systems, MF models decompose the observed rating or inter-
action matrix into user and item latent factors. Such an approach mainly charac-
terizes the two-way user–item interactions. While, for embedding models, such as
word2vec, their advantage lies in capturing the local or sequential relatedness in
the item sequences. Based on these considerations, the CoFactor model (Liang
et al. 2016) is proposed to combine the benefits of the two approaches into a unified
model. Specially, the skip- gram model with negative sampling can be mathemati-
cally equivalent as the factorization of the (shifted) PMI co-occurrence matrix (Levy
and Goldberg 2014). Based on this idea, the final model is built by incorporating the
factorization of the user–item matrix and the regularization of the item–item PMI
matrix. In this way, the global user–item preference relations and the local item–item
relatedness have been jointly considered.

9.4.3.2 Recommendation as “Network” Embedding

Recommendation problems can be solved in different perspectives. As a perspective,
the recommendation task can be casted as similarity evaluation on graphs, and adopt
the graph-based algorithm for recommendation, such as SimRank (Jeh and Widom
2002). In Sect. 9.3, we have extensively discussed the studies on network embedding.
If the recommendation problems can be formulated in a graph setting, it is possi-
ble to reuse the existing approaches from network embedding for recommendation.
Specially, the NERMmodel (Zhao et al. 2016a) is proposed to transform the recom-
mendation task into a task of embedding K-partite adoption network. A K-partite
network consists of K types of entities in the recommender systems. Most recom-
mendation settings can be characterized by a K-partite adoption network. Then, the
network embedding is performed for the K-partite graphs by treating all the types of
entities equivalently. The final recommendation task is solved by calculating the inner
product between corresponding embeddings for users, items, and related contexts.
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9.4.4 Deep Neural Network Based Models

9.4.4.1 Restricted Boltzmann Machines for Recommendation

The first study that applies deep learning for recommender systems can be dated
back to the work in (Salakhutdinov et al. 2007), which describes a class of two-layer
undirected graphical models that generalize Restricted BoltzmannMachines (RBM)
to modeling rating data. The RBM model consists of two major parts, namely the
binary hidden features and visible rating data (represented as one-hot vectors). A
weight matrix connects both parts. Overall, the number of parameters in the weight
matrix is large and the learning procedure is relatively difficult and slow. To reduce
the number of parameters, a commonly used technology is to factorize the weight
matrix into two small-sized matrices. Such a method is effective to reduce the num-
ber of parameters with little performance decreasing. As the first attempt, however,
the RBM model does not give very promising results: only a slight performance
improvement over the standard matrix factorization has been achieved.

9.4.4.2 Deep Learning Models for Interaction Characterization

Basically speaking, the recommendation task is mainly concerned about how we
model the interactions between users and items. In what follows, we will discuss
both non-sequential and sequential interaction-based models for recommendation.

Most existing traditional recommendationmethods capture linear relations between
the representations of users and items, which may not be effective to characterize
complex user–item interactions. He et al. (2017) propose the NeuMF model by uti-
lizing deep neural networks for learning arbitrary interaction function from data,
which presents a general framework for collaborative filtering based on neural net-
works. In NeuMF, it first maps the one-hot representations of users and items into
embeddings using a lookup-table layer. Then, it aggregates the user and item embed-
dings using some pooling operations, e.g., concatenation and element-wise product.
In this way, each user–item interaction pair will be modeled as an embedding vector.
The derived embedding vector will be subsequently fed into a Multilayer Perceptron
(MLP) model, which is composed of a series of nonlinear transformation layers.
The output of the MLP component will be directly tied with the loss function. The
NeuMF essentially exploits the capability of deep neural networks on capturing
complex data relations or characteristics. As a follow-up of NeuMF, the Neural
Factorization Machine (NFM) has been proposed in (He and Chua 2017), which
is a neuralized instantiation of linear Factorization Machine (Rendle 2012). NFM
incorporates a bi-interaction layer to perform the bi-interaction pooling for the two
embeddings corresponding to two features. The derived bi-interaction pooling vector
will be transformed into the predicted rating value with an MLP component.

Instead of predicting the outcome for an individual item separately, the CDAE
model (Wu et al. 2017a) treats the feedbacks of a user u on all the items as a vec-
tor y. Its purpose is to build a mapping function which takes the corrupted input
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ỹ and reconstructs the real feedback vector y. CDAE implements the corrupted
self-mapping function using the Denoising Autoencoders (DAE) model with only
a hidden layer. With a hidden layer, the model parameters needed to learn include
the weight parameters W connecting the input with hidden layers, and the weight
parametersW′ connecting the hidden with output layers. Formally, we can have the
following formulas:

z = g(W� · ỹ + b),

y = h(W′� · z + b′), (9.13)

where g(·) and h(·) are mapping functions consisting of multiple nonlinear layers.
The latent vector z is often called code. Note that the parameters of the DAE model
are shared for all the users. Hence, only taking the feedbacks as the input may
not be effective to characterize the personalization. CDAE makes an extension by
incorporating theuser-specific embedding eu into the input layer. Formally, the hidden
layer is derived using the following formula:

z = g(W� · ỹ + eu + b). (9.14)

In this way, the derived code (i.e., z) takes the users’ preference into consideration
for better personalization.

The interactions between users and items are essentially a sequential process,
while the above models cannot characterize sequential user behaviors. Hence, a
natural consideration is to apply sequential neural networks to model user behaviors
for recommendation. In the literature, Recurrent Neural Networks (RNN) are an
important class of sequential neural networks (Mikolov et al. 2010), in which they
maintain an internal state of the network which allows it to exhibit dynamic temporal
behavior. RNN-based models have been successfully applied in various domains,
including natural language processing and speech processing. A major obstacle in
applying RNN in dealing with long sequences is the vanishing gradient problem.
To tackle this problem, two well-known unit models have been proposed, namely
the Long Short-Term Memory unit (LSTM) (Hochreiter and Schmidhuber 1997)
and Gated Recurrent Unit (GRU) (Chung et al. 2014). With the improved RNN
models, it is relatively straightforward to apply them to recommender system, and
it is possible to build either an overall or user-specific RNN model to characterize
users’ behavior sequences. In (Yang et al. 2017), an extended RNN model (called
NASA model) is utilized for POI recommendation, in which both long- and short-
term sequential contexts have been considered. Meanwhile, the user’s preference has
also been incorporated into the recommendationmodel.As another kind of sequential
recommendation models, a neural autoregressive model (Zheng et al. 2016) has been
proposed for rating prediction. It is built based on Restricted Boltzmann Machine
(RBM) and the Neural Autoregressive Distribution Estimator (NADE). The main
idea is to treat the rating records of a user as a sequence, and the rating for the current
item is predicted conditioned on the previous ratings from the user. The parameters
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include item embeddings and weight parameters. Like the classic RBM model, the
preference of a specific user is not explicitly modeled by an embedding vector, but is
reflected in her rating records. They also propose twomajor improvement techniques
by sharing the parameters across ratings and factorizing the large-scaleweightmatrix.

The traditional user profiling method is usually static, which cannot reflect
dynamic nature of user interests. Wu et al. (2017b) propose the Recurrent Rec-
ommender Network (RRN) model to predict future behavioral traces by creating
dynamic user and item profiles. The key idea is to model user and item states and
characterize state transitions using recurrent neural networks. The final prediction
is from a combined model with the results from both dynamic and static profiling
models.

9.4.4.3 Deep Learning Models for Side-information Integration and
Utilization

Above, deep neural networks aremainly utilized to enhance themodeling of the user–
item interactions. The side information (a.k.a., context information) is not considered
in thesemodels. Inwhat follows,we discuss how to utilize deep learning formodeling
auxiliary information.

In many recommendation scenarios, the content information from the item side
can be leveraged to improve the recommendation performance. Indeed, this is the
key idea of the classic content-based approach (Lops et al. 2011), which performs
the recommendations based on the description of an item and builds the profile of the
user’s interests. For consistency, we call the descriptions of an item content informa-
tion. A major difficulty in achieving this purpose is that the content information itself
may not be in a form directly applicable to the recommendation task, even noisy or
sparse in some cases. It is necessary to transform or map the content information
in a suitable form, which can be effectively utilized by the recommender systems.
Fortunately, deep learning has the excellent capability of characterizing or learning
complex data characteristics. A solution will be integrating content information into
recommender systems using deep learning models. As a representative work, Wang
et al. (2015a) propose the CDL model, which utilizes the content information for
improving the recommender systems. It characterizes the content information by
using a Stacked Denoising Autoencoder Model (SDAE). The final item representa-
tion is derived by concatenating a bias vector with themiddlemost-layer code learned
from the SDAE model. The CDL model is a deep learning implementation of the
previous collaborative topic regression model (CTR) (Wang and Blei 2011). The
results reported in (Wang et al. 2015a) show that the performance of CDL is better
than CTR in the given tasks. A direct extension of the CDL model is to improve
the text modeling part. The CDL model makes the bag-of-words assumption by
using the SDAE for modeling text. The following work (Wang et al. 2016b) fur-
ther proposes a Collaborative Recurrent Autoencoder (CRAE) which is a Denoising
Recurrent Autoencoder (DRAE) that models the generation of content sequences in
the Collaborative Filtering (CF) setting. The major improvement lies in the sequen-
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tial modeling of text information. The content-based approaches are more appealing
when the interaction data is not sufficient, especially in a cold-start setting. The work
in (van den Oord et al. 2013) presents a solution to cold-start music recommendation
with deep content-based recommendation algorithms. For ease of understanding, we
will slightly simplify the original model in (van den Oord et al. 2013). Specially, a
standard matrix factorization approach to recommender systems can be formulated
as below:

min
x·,y·

∑

u,i

(ru,i − x�
u · yi) + λ

(∑

u

‖ xu ‖2 +
∑

i

‖ yi ‖2 )
, (9.15)

where the user–item matrix (with the ratings of ru,i) is factorized into the product
between a user latent vector (i.e., xu) and an item latent vector (i.e., yi). The latent
vectors are actually the parameters of the matrix factorization model. However, in
a cold-start setting, the goal is to recommend new items to users, and there is little
interaction information to train the MF model. The basic idea in (van den Oord
et al. 2013) is to first train the latent vectors with the existing interaction data of
“old” items, and then build the mapping relations between latent vectors and content
information. Formally, let fi denote the extracted content information for item i,
which can be transformed into the latent vector yi via a deep learning model

ŷi = g(fi), (9.16)

where the mapping function g(·) can be learned by minimizing the differences
between ŷi and yi. Once such a mapping model has been effectively learned, making
predictions on a new item becomes simple since its latent vector can be inferred using
the content information. We call the model Deep Cold-start Music Recommenda-
tion (DCMR). In the above two models, deep learning is utilized to transform side
information into a representation form that is ready in recommender systems.

In addition to content information, structural knowledge graph is another impor-
tant kind of information to improve the performance of recommender systems. The
items from the recommender systems can be also considered as the entities in knowl-
edge graphs. Knowledge graphs provide an effective way to organize and index
entities via the typed edge or relations.

Tomodel the items in these twodifferent views, theCKEmodel (Zhang et al. 2016)
is proposed to first embed entities using the structural knowledge graph, and then
utilize the derived structural item embedding for improving recommendation. For
embedding entities in knowledge graphs, a Bayesian structural embeddingmodel has
been adopted. For embedding entities in recommender systems, a similar approach
to the aforementioned CDL model was proposed by integrating multiple signals,
including visual, textual, and the structural embeddings. The CKE model makes an
important assumption that the embedding vectors extracted from knowledge graph,
images, and text can be fused in an additive way directly. In CKE, both visual and
textual features are extracted using the stacked autoencoders.
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For recommender systems, a key task is user profiling, which aims to build
an effective user model for accurate recommendation (Zhao et al. 2014, 2016c).
User profiling has become a fundamental task in various social media platforms,
not limited to recommender systems, since it is the first step to understand a user.
Covington et al. (2016) propose a deep neural network architecture for building effec-
tive user profiling model, called DUP model. The idea is to combine various kinds
of context information using deep learning, including search history, watch history,
demographic, and geographic information. After a series of nonlinear transforma-
tions (i.e., ReLU activation function), the final prediction is modeled by a softmax
function over the set of items. A note is that a two-stage recommendation method
has been adopted in (Covington et al. 2016), namely candidate generation and item
ranking. Both stages are implemented with the similar DUP model architecture. As
a representative of profile-enhanced models, the Wide and Deep model (Cheng et al.
2016) has built the similar deep neural network architecture for recommendation.
Amajor difference is that both original and deep features are utilized for final predic-
tion, that is why it is called Wide & Deep. As another interesting work, Zheng et al.
(2017) propose the Deep Cooperative Neural Networks (DeepCoNN) model, which
aims to build user and item profiles using review text. It consists of two parallel
neural networks, where one neural network learns user profiles using the reviews
written by the user, and the other learns item profiles using the reviews written for
the item. A shared layer further combines these two profiles (i.e., two embeddings)
as the input of factorization machines.

In real world, a user usually engages in multiple recommendation services. For
example, a user may have both news App and video App for reading news and watch-
ingmovies, respectively. Intuitively, the user information from different domainswill
complement each other. It is possible to build amore comprehensive and accurate user
profile if we can jointly leverage information frommultiple domains. Hence, a multi-
view recommender system is preferred to improve the recommendation performance.
The MV-DSSM model (Elkahky et al. 2015) is proposed to address the multi-view
recommendation task. Specially, it utilizes the single-viewDeep Structured Semantic
Model (DSSM) (Huang et al. 2013) as the component, which is originally proposed
in the field of information retrieval. The basic structure of DSSM is composed of
two separate DNN components: the first component is for modeling the queries,
while the second component is for modeling the documents. After a series of non-
linear transformations, the DSSM model ties the final embeddings from two parts
in a shared space. The loss function follows a typical pairwise ranking way. If we
would like to directly apply the single-view DSSM for recommendation in multiple
domains, a straightforward approach is to set up multiple isolated DSSM models in
different domains. Each DSSM model will be learned separately using the informa-
tion from the individual domain. However, such an approach ignores the sharing and
complementing of user information in multiple domains. The idea of MV-DSSM is
intuitive, and it only reserves a single DNN component for a user, but sets multiple
DNN components for items in each domain. The single-user DNN component will
be integrated with multiple domain-specific DNN item components for building a
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global recommendation model. In this way, the user information is shared in multiple
domains, which enhances the cross-domain recommendation performance.

9.5 Summary

Social computing is a multidisciplinary research area, where social science and
computational approaches may blend to answer important and challenging ques-
tions about user behavior through online social media platforms. It relates to various
interesting tasks which aim to produce intelligent and interactive social media appli-
cations. For a complete review of social computing, we suggest the readers refer to
the survey (King et al. 2009; Wang et al. 2007) and the classic textbook (Easley and
Kleinberg 2010).

This chapter focuses on three important aspects of social computing, namely social
content analysis, social connectionmodeling, and recommendation.The three aspects
cover most of the core elements and applications in social computing. Specially, we
take deep learning as the major approach to social computing, and mainly review
the recent progress made in social computing with deep learning. Deep learning
techniques that have been reviewed so far include both shallow embedding based
and deep neural network based methods. Our discussions emphasize how to adapt
existing deep learning techniques to social computing tasks.

Nowadays, the exploration of applying deep learning techniques to social comput-
ing is still in an early stage. There are still many challenges or difficulties to address in
this direction. As a major challenge, compared with traditional NLP tasks, the input
and output of social computing tasks are much more flexible and diverse, and even
hard to be formally defined in some cases. It is important and meaningful to study
how to effectively model the varying settings of different social computing tasks,
in which multi-modality data fusion, noisy data reduction, and complicated output
prediction are possible issues to address. We believe this direction will increasingly
attract the attention from both research and industry communities. As a result, in the
near future, the improved social media platforms will provide better service to users
with the progress of machine intelligence.
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Chapter 10
Deep Learning in Natural Language
Generation from Images

Xiaodong He and Li Deng

Abstract Natural language generation from images, referred to as image or visual
captioning also, is an emerging deep learning application that is in the intersection
between computer vision and natural language processing. Image captioning also
forms the technical foundation for many practical applications. The advances in
deep learning technologies have created significant progress in this area in recent
years. In this chapter, we review the key developments in image captioning and their
impact in both research and industry deployment. Two major schemes developed for
image captioning, both based on deep learning, are presented in detail. A number
of examples of natural language descriptions of images produced by two state-of-
the-art captioning systems are provided to illustrate the high quality of the systems’
outputs. Finally, recent research on generating stylistic natural language from images
is reviewed.

10.1 Introduction

In this final technical chapter of the book, we will discuss a very important but
often lightly treated topic in natural language processing (NLP)—natural language
generation (NLG), which had been progressing quite slowly until the recent rise of
deep learning. As briefly discussed in Chap.3 in the context of dialog systems, NLG
is the process of generating text from a meaning representation and can be regarded
as the reverse of natural language understanding.

In addition to serving as an integral component of dialog systems, NLG also plays
a key role in text summarization, machine translation, image and video captioning,
and other NLP applications. Both the earlier general-purpose rule-based andmachine
learning-basedNLG systemswere reviewed in Chap.3, mainly for the specific dialog
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system application. In a few earlier chapters, more recent developments of deep
learning-based methods for NLG, including mainly those based on recurrent neural
nets and on the encoder–decoder deep neural architecture, were also briefly surveyed.
These deep learning models can be trained from unaligned natural language data and
can produce longer, more fluent utterances than previous methods.

In this chapter, rather than providing a comprehensive review of general NLG
technology, we limit our scope to NLG in a special application—generating natural
language sentences from images, or image captioning. This very difficult task had not
been possible until deep learning methods for encoding images and for subsequent
generation of natural language became matured within only past 2 years or so. The
success of deep learning in image captioning presents another powerful evidence for
the impact of deep learning in NLP in addition to several other NLP applications
described in detail in the preceding chapters.

Generating a natural language description from an image or image captioning
is an emerging interdisciplinary problem at the intersection of computer vision and
NLP, and it forms the technical foundation of many important applications, such as
semantic visual search, visual intelligence in chatting robots, photo and video sharing
in social media, and aid for visually impaired people to perceive surrounding visual
content. Thanks to the recent advances in deep learning, tremendous progress of this
specialized NLG task has been achieved in recent years. In the remainder of this
chapter, we will first summarize this exciting emerging NLG area, and then analyze
the key development and the major progress. We will also discuss the impact of this
progress both on research and on industry deployment, as well as potential future
breakthroughs.

10.2 Background

It has been long envisioned that machines one day can understand the visual world at
a human level of intelligence. Thanks to the progress in deep learning (Hinton et al.
2012; Dahl et al. 2011; Deng and Yu 2014), now researchers can build very deep
convolutional neural networks (CNN), and achieve an impressively low error rate for
tasks like large-scale image classification (Krizhevsky et al. 2012; He et al. 2015).
In these tasks, to train a model for predicting the category of a given image, one can
first annotate each image in a training set with a category label from a predefined
set of categories. Through such fully supervised training, the computer learns how
to classify an image.

However, in tasks like image classification, the content of an image is usually
simple, containing a predominate object to be classified. The situation could bemuch
more challenging when we want computers to understand complex scenes. Image
captioning is one of such tasks. The challenges come from two perspectives. First,
to generate a semantically meaningful and syntactically fluent caption, the system
needs to detect salient semantic concepts in the image, understand relationships
among them, and compose a coherent description about the overall content of the
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image, which involves language and commonsense knowledge modeling beyond
object recognition. In addition, due to the complexity of scenes in the image, it is
difficult to represent all fine-grained, subtle differences among them with the simple
attribute of category. The supervision for training image captioning models is a full
description of the content of the image in natural language, which is sometimes
ambiguous with a lack of fine-grained alignments between the subregions in the
image and the words in the description.

Further, unlike image classification tasks, where one can easily tell if the classi-
fication output is correct or wrong after comparing it to the ground truth, there are
multiple valid ways to describe the content of an image. It is not easy to tell if the
generated caption is correct or not and to what degree. In practice, human studies
are often employed to judge the quality of the caption given an image. However,
since human evaluation is costly and time-consuming, many automatic metrics are
proposed, which could serve as proxies mainly for speeding up the development
cycle of the system.

Early approaches to image captioning can be divided approximately into two
families. The first one is based on template matching (Farhadi et al. 2010; Kulkarni
et al. 2015). These approaches start from detecting objects, actions, scenes, and
attributes in images, and then fill them into a hand-designed and rigid sentence
template. The captions generated by these approaches are not always fluent and
expressive. The second family is grounded on retrieval-based approaches, which first
select a set of the visually similar images from a large database, and then transfer
the captions of retrieved images to fit the query image (Hodosh et al. 2013; Ordonez
et al. 2011). There is little flexibility to modify words based on the content of the
query image, since they directly rely on captions of training images and could not
generate new captions.

Deep neural networks can potentially address both of these issues by generating
fluent and expressive captions, which can also generalize beyond those in the train
set. In particular, recent successes of using neural networks in image classification
(Krizhevsky et al. 2012; He et al. 2015) and object detection (Girshick 2015) have
motivated strong interest in using neural networks for visual captioning.

10.3 Deep Learning Frameworks to Generate Natural
Language from an Image

10.3.1 The End-to-End Framework

Motivated by recent success of sequence-to-sequence learning inmachine translation
(Sutskever et al. 2014; Bahdanau et al. 2015), researchers studied an end-to-end
encoder–decoder framework for image captioning (Vinyals et al. 2015; Karpathy
and Fei-Fei 2015; Fang et al. 2015; Devlin et al. 2015; Chen and Zitnick 2015).
Figure10.1 illustrates a typical encoder–decoder-based captioning system (Vinyals
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Fig. 10.1 NLG from an image using a CNN and RNN trained together in an end-to-end manner
(figure from He and Deng 2017)

et al. 2015). In this framework, first the raw image is encoded by a global visual
feature vector which represents the overall semantic information of the image, via
deep CNN. As illustrated in Fig. 10.2, a CNN consists of several convolutional,
max-pooling, response-normalization, and fully connected layers. Here, the CNN
is trained for a 1000-class image classification task on the large-scale ImageNet
dataset (Deng et al. 2009). The last layer of this AlexNet contains 1000 nodes, each
corresponding to a category. Meanwhile, the second last fully connected dense layer
is extracted as the global visual feature vector, representing the semantic content of
the overall images. Given a raw image, the activation values at the second to the last
fully connected layer are usually extracted as the global visual feature vector. This
architecture has been very successful for large-scale image classification, and the
learned features have shown to transfer to a broad variety of vision tasks.

Once the global visual vector is extracted, it is then fed into another recurrent neu-
ral network (RNN)-based decoder for caption generation, as illustrated in Fig. 10.3.
At the initial step, the global visual vector, which represents the overall semantic
meaning of the image, is fed into the RNN to compute the hidden layer at the first
step. At the same time, the sentence-start symbol <s> is used as the input to the
hidden layer at the first step. Then, the first word is generated from the hidden layer.
Continuing this process, the word generated in the previous step becomes the input to
the hidden layer at the next step to generate the next word. This generation process
keeps going until the sentence-end symbol is generated. In practice, a long-short
memory network (LSTM) (Hochreiter and Schmidhuber 1997) or gated recurrent
unit (GRU) (Chung et al. 2015) variation of the RNN is often used, both of which
have been shown to be more efficient and effective in training and capturing long-
span language dependency (Bahdanau et al. 2015; Chung et al. 2015), and have found
successful applications in action recognition tasks (Varior et al. 2016).

The representative set of studies using the above end-to-end framework include
(Chen and Zitnick 2015; Devlin et al. 2015; Donahue et al. 2015; Gan et al. 2017a, b;
Karpathy and Fei-Fei 2015;Mao et al. 2015;Vinyals et al. 2015) for image captioning
and (Venugopalan et al. 2015a, b; Ballas et al. 2016; Pan et al. 2016; Yu et al. 2016)
for video captioning. The differences of the various methods mainly lie in the types
of CNN architectures and the RNN-based language models. For example, the vanilla
RNN was used in Karpathy and Fei-Fei (2015), Mao et al. (2015), while the LSTM
was used in (Vinyals et al. 2015). The visual feature vector was only fed into the
RNN once at the first time step in Vinyals et al. (2015), while it was used at each
time step of the RNN in Karpathy and Fei-Fei (2015). It is useful to point out that the
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Fig. 10.2 A deep CNN (e.g., AlexNet) used as a front-end encoder of the image captioning system
(figure from He and Deng 2017)

Fig. 10.3 An RNN used as a back-end decoder of the image captioning system (figure from He
and Deng 2017)

Fig. 10.4 The attentionmechanism in the image captioning system’s NLG process (figure fromHe
and Deng 2017)

deep CNN, which is essential for the success of image-to-text applications described
here, takes into account special translation-invariant properties of the image inputs.

Most recently, Xu et al. (2015) utilized an attention-based mechanism to learn
where to focus in the image during caption generation. The attention architecture
is illustrated in Fig. 10.4. Different from the simple encoder–decoder approach, the
attention-based approach first uses the CNN to not only generate a global visual
vector but also generate a set of visual vectors for subregions in the image. These
subregion vectors can be extracted from lower convolutional layer in the CNN. Then
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in language generation, at each step of generating a new word, the RNN will refer to
these subregion vectors, and determine the likelihood that each of the subregions is
relevant to the current state to generate theword. Eventually, the attentionmechanism
will form a contextual vector, which is a sum of subregional visual vectors weighted
by the likelihood of relevance, for the RNN to decode the next new word.

This work was followed by Yang et al. (2016), which introduced a review module
to improve the attentionmechanism and further byLiu et al. (2016), which proposed a
method to improve the correctness of visual attention. More recently, based on object
detection, a bottom-up attention model is proposed by Anderson et al. (2017), which
demonstrates state-of-the-art performance on image captioning. In this framework,
all the parameters, including the CNN, the RNN, and the attention model, can be
trained jointly from the start to the end parts of the overall model; hence the name
“end-to-end”.

10.3.2 The compositional framework

Different from the end-to-end encoder–decoder framework just described, a separate
class of image-to-text approaches uses an explicit semantic-concept-detection pro-
cess for caption generation. The detection model and other modules are often trained
separately. Figure10.5 illustrates a semantic-concept-detection-based compositional
approachproposedbyFang et al. (2015). This approach is akin to andmotivatedby the
long-standing architecture in speech recognition, consisting of multiple composed
modules of the acoustic model, the pronunciation model, and the language model
(Baker et al. 2009; Hinton et al. 2012; Deng et al. 2013; Deng and O’Shaughnessy
2003).

In this framework, the first step in the caption generation pipeline detects a set
of semantic concepts, as known as tags or attributes, that are likely to be part of the
images’ description. These tags may belong to any part of speech, including nouns,
verbs, and adjectives. Unlike image classification, standard supervised learning tech-
niques are not directly applicable for learning detectors since the supervision only
contains the whole image and the human-annotated whole sentence of caption, while

Fig. 10.5 A compositional approach based on semantic-concept-detection in image captioning
(figure from He and Deng 2017)
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the image bounding boxes corresponding to the words are unknown. To address this
issue, Fang et al. (2015) proposed learning the detectors using the weakly supervised
approach of multiple instance learning (MIL) (Zhang et al. 2005). While in Tran
et al. (2016), this problem is treated as a multi-label classification task.

In Fang et al. (2015), the detected tags are then fed into an n-gram-based Max-
Entropy language model to generate a list of caption hypotheses. Each hypothesis is
a full sentence that covers certain tags and is regularized by the syntax modeled by
the language model that defines the probability distribution over word sequences.

All these hypotheses were then re-ranked by a linear combination of features
computed over an entire sentence and the whole image, including sentence length,
language model scores, and semantic similarity between the overall image and an
entire caption hypothesis. Among them, the image-caption semantic similarity is
computed by a deepmultimodal similaritymodel, amultimodal extension of the deep
structured semantic model developed earlier for information retrieval (Huang et al.
2013). This “semantic” model consists of a pair of neural networks, one for mapping
each input modality, image, and language, to be vectors in a common semantic space.
Image-caption semantic similarity is then defined as the cosine similarity between
their vectors.

Compared to the end-to-end framework, the compositional approach provides
better flexibility in system development and deployment, and facilitates exploiting
various data sources to optimizing the performance of different modules more effec-
tively, rather than learn all the models on limited image-caption paired data. On the
other hand, end-to-end model usually has a simpler architecture and can optimize
different components of the overall system jointly for a better performance.

More recently, a class ofmodels have been proposed to integrate explicit semantic-
concept-detection in an encoder–decoder framework. For example, Ballas et al.
(2016) applied retrieved sentences as additional semantic information to guide the
LSTM when generating captions, while Fang et al. (2015), You et al. (2016), Tran
et al. (2016) applied a semantic-concept-detection process before generating sen-
tences. In Gan et al. (2017b), a semantic compositional network is constructed based
on the probability of detected semantic concepts for composing captions. This line
of methods also represents the current state-of-the-art in image captioning.

From the architectural and task-definition points of view, this type of composi-
tional framework for image captioning and for speech recognition shares a number
of common themes. Both of the tasks have the output of natural language sentences,
with different inputs of image pixels in the former and of speech waves in the latter.
The attribute detectionmodule in image captioning plays a similar role to the phonetic
recognition module in speech recognition (Deng and Yu 2007). The use of language
model to transform the detected attributes in the image to a list of caption hypotheses
in image captioning has the correspondence in the later stages of speech recogni-
tion that turn the acoustic features and phonetic units into a collection of lexically
correct word hypotheses (via a pronunciation model) and then into a linguistically
plausible word sequence (via a language model) (Bridle et al. 1998; Deng 1998). The
final, re-ranking module in image captioning is unique in that the earlier module of
attribute detection does not possess the global information of the full image, while to
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generate a meaningful natural sentence for the full image requires such information.
In contrast, this requirement for matching global properties of input and output is
not needed in speech recognition,

10.3.3 Other Frameworks

In addition to the two main frameworks for image captioning, other related frame-
works also learn a joint embedding of visual features and associated captions, For
example, Wei et al. (2015) have investigated to generate dense image captions for
individual regions in images, and a variational autoencoder was developed in Pu et al.
(2016) for image captioning. Further, motivated by the recent successes of reinforce-
ment learning, image captioning researchers also proposed a set of reinforcement
learning-based algorithms to directly optimize the captioning models for specific
rewards. For example, Rennie et al. (2017) proposed a self-critical sequence training
algorithm. It uses the REINFORCE algorithm to optimize an evaluation metric like
CIDEr, which is usually not differentiable and therefore not easy to optimize by
conventional gradient-based methods. In Ren et al. (2017), within the actor–critic
framework, a policy network and a value network are learned to generate the caption
by optimizing a visual semantic reward, which measures the similarity between the
image and generated caption. Relevant to image caption generation, models based on
the generative adversarial network (GAN) are proposed recently for text generation.
Among them, SeqGAN (Yu et al. 2017) models the generator as a stochastic policy in
reinforcement learning for discrete outputs like texts, and RankGAN (Lin et al. 2017)
proposes a ranking-based loss for the discriminator, which gives better assessment
of the quality of the generated text, and therefore leads to a better generator.

10.4 Evaluation Metrics and Benchmarks

The quality of the automatically generated captions is evaluated and reported in
the literature in both automatic metrics and human studies. Commonly used auto-
matic metrics include bilingual evaluation understudy BLEU (Papineni et al. 2002),
METEOR (Denkowski and Lavie 2014), CIDEr (Vedantam et al. 2015), and SPICE
(Anderson et al. 2016). BLEU (Papineni et al. 2002) is widely used in machine
translation and measures the fraction of N-grams (up to 4-gram) that are in common
between a hypothesis and a reference or set of references. METEOR (Denkowski
and Lavie 2014) instead measures unigram precision and recall, but extends exact
word matches to include similar words based on WordNet synonyms and stemmed
tokens. CIDEr (Vedantam et al. 2015) also measures the n-gram match between the
caption hypothesis and the references, while the n-grams are weighted by TF-IDF.
SPICE (Anderson et al. 2016), instead, measures the F1 score of semantic proposi-
tional content contained in image captions given the references, and therefore, it gives
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the best correlation to human judgment. These automatic metrics can be computed
efficiently, and therefore greatly speed up the development of image captioning algo-
rithms. However, all of these automatic metrics are known to only roughly correlate
with human judgment (Elliott and Keller 2014).

Researchers have created many datasets to facilitate the research of image cap-
tioning. The Flickr dataset (Young et al. 2014) and the PASCAL sentence dataset
(Rashtchian et al. 2010) were created for facilitating the research of image cap-
tioning. More recently, Microsoft sponsored the creation of the COCO (Common
Objects in Context) dataset (Lin et al. 2015), the largest image captioning dataset
available to the public today. The availability of the large-scale datasets significantly
prompted research in image captioning in the last several years. In 2015, about 15
groups participated in the COCOCaptioning Challenge (Cui et al. 2015). The entries
in the challenge are evaluated by human judgment. In the competition, all entries are
assessed based on the results ofM1—percentage of captions that are evaluated as bet-
ter or equal to human caption, and M2—the percentage of captions that pass Turing
test. Additional three metrics have been used as diagnostic and interpretation of the
results: M3—Average correctness of the captions on a scale 1–5 (incorrect–correct),
M4—average amount of detail of the captions on a scale 1–5 (lack of details—very
detailed), and M5—percentage of captions that are similar to human description.
More specifically, in evaluation, each task presents a human judge with an image
and two captions: one is automatically generated, and the other is a human caption.
For M1, the judge is asked to select which caption better describes the image, or to
choose the same option when they are of equal quality. For M2, the judge is asked
to tell which of the two captions are generated by human. If the judge chooses the
automatically generated caption, or choose “cannot tell” option, it is considered to
have passed Turing test.

The results, quantified byM1 toM5metrics above, obtained from the top 15 image
captioning systems in the 2015 COCO Captioning Challenge plus other recent top
entries measured by automatic metrics have been summarized and analyzed in (He
and Deng 2017). The success of these systems reflects the huge progress in this
challenging task from perception to cognition achieved by deep learning methods.

10.5 Industrial Deployment of Image Captioning

Propelled by the fast progress in the research community, the industry started deploy-
ing image captioning services. InMarch 2016,Microsoft released the image caption-
ing service as a cloud API to the public. To showcase the usage of the functionality,
it also deployed a web application called CaptionBot (http://CaptionBot.ai), which
captions arbitrary pictures users uploaded. More recently, Microsoft also deployed
the caption service in the widely used product Office, specifically, Word and Power-
Point, for automatically generating alter-text for accessibility. Facebook also released
an automatic image captioning tool that provides a list of objects and scenes iden-
tified in a photo. Meanwhile, Google open sourced their image captioning system

http://CaptionBot.ai
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for the community (https://github.com/tensorflow/models/tree/master/im2txt), as a
step toward public deployment of the captioning service.

With all these industrial-scale deployment and open-source projects, a massive
number of images and user feedbacks in real-world scenarios are being collected that
serve as the ever-increasing training data to steadfastly improve the performance of
the systems. This will in turn stimulate new research in deep learning methods for
visual understanding and natural language generation.

10.6 Examples: Natural Language Descriptions of Images

In this section, we provide typical examples of generating natural language captions
that describe the contents of digital images, using thevarious deep learning techniques
described in the preceding sections.

Given a digital image, such as a photo shown in the upper part of Fig. 10.6, the
machine-generated textual description of the contents of the image—“a woman in a
kitchen preparing food”—together with the human-annotated description—“woman
working on counter near kitchen sink preparing a meal”—are shown in the lower
part of the figure. In this case, an independent human (a mechanical Turker) slightly
prefers the machine-generated text. Among the many images fromMicrosoft COCO
database, about 30% of images are of this type, i.e., whose captions by the system
are preferred, or are viewed equally good as human-generated captions.

From Figs. 10.7, 10.8, 10.9 and 10.10, we provide several other examples where
mechanical Turkers prefer machine-generated textual descriptions of images to
human-annotated ones, or view them as equally good.

The image captioning system that provides the above examples has been imple-
mented in CaptionBot via callingMicrosoft Cognitive Services, which allowsmobile
phone users to upload any photo from the phone to obtain its corresponding natural
language caption. Several examples are provided from Figs. 10.11, 10.12 and 10.13.
In the last example, we include the result when the celebrity detection component is
added to the captioning system.

10.7 Recent Research on Generating Stylistic Natural
Language from Images

The natural language captions generated by deep learning systems from images, with
numerous techniques and examples provided in the preceding sections, usually gave
only a factual description of the image content (Vinyals et al. 2015; Mao et al. 2015;
Karpathy and Fei-Fei 2015; Chen and Lawrence Zitnick 2015; Fang et al. 2015;
Donahue et al. 2015; Xu et al. 2015; Yang et al. 2016; You et al. 2016; Bengio et al.
2015; Tran et al. 2016). The natural language style has often been overlooked in the

https://github.com/tensorflow/models/tree/master/im2txt


10 Deep Learning in Natural Language Generation from Images 299

Fig. 10.6 An example of
image captioning in contrast
with human annotation

Fig. 10.7 Another example
of image captioning in
contrast with human
annotation
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Fig. 10.8 Another example
of image captioning in
contrast with human
annotation

caption generation process. Specifically, the existing image captioning systems have
been using a language generation model that mixes the style with other linguistic
patterns of language generation, thereby lacking a mechanism to control the style
explicitly. The recent research aims to overcome this deficiency (Gan et al. 2017a)
and is reviewed here.

A romantic or humorous natural language description of an image can greatly
enrich the expressibility of the caption and make it more attractive. An attractive
image caption will add more visual interest to images and can even become a distin-
guishing trademark of the captioning system. This is particularly valuable for certain
applications; e.g., increasing user engagement in chatting bots or enlightening users
in photo captioning for social media.

Gan et al. (2017a) proposed the StyleNet, which is able to produce attractive visual
captions with styles only using monolingual stylized language corpus (i.e., without
paired images) and standard factual image/video–caption pairs. StyleNet is built
upon the recently developed methods that combine convolutional neural networks
(CNNs) with recurrent neural networks (RNNs) for image captioning. The work is
also motivated by the spirit of multitask sequence-to-sequence training Luong et al.
(2015). Particularly, it introduces a novel factored LSTM model that can be used
to disentangle the factual and style factors from the sentences through multitask
training. Then at running time, the style factors can be explicitly incorporated to
generate different stylized captions for an image.

The StyleNet has been evaluated on a newly collected Flickr stylized image cap-
tion dataset, with the results demonstrating that the proposed StyleNet significantly
outperforms previous state-of-the-art image captioning approaches, measured by a
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Fig. 10.9 Another example
of image captioning in
contrast with human
annotation

Fig. 10.10 A final example
of image captioning in
contrast with human
annotation
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Fig. 10.11 The image which
automatically generates
natural sentence of “I think
it’s a group of people
standing in front of a
mountain.” using Microsoft
Cognition Services

Fig. 10.12 The image which
automatically generates
natural sentence of “I think
it’s a view of a plane flying
over a snow covered
mountain.” using Microsoft
Cognition Services
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Fig. 10.13 The image which automatically generates a natural sentence usingMicrosoft Cognition
Services with an added celebrity detection component

F: A brown dog and a black dog play in the snow.

R: Two dogs in love are playing together in the snow.

H: A brown dog and a black dog are fighting for a bone.

F: A black dog stand in the water.

R: A  dog takes a shower in the water before dating.

H: A black dog Is running into the water to catch fish.

F: A man is riding a bike on a dirt road.

R: A bike rider races along a road, speed to finish the line.

H: A man rides the bike fast to avoid being late for a class.

F: Two men are sitting on a bench under a tree .

R: Two men are waiting for their true love.

H: Two men sit In the city park to catch pokemon go.

F: A boy sits on the swing.

R: A boy  swings to experience the highs and lows in his life.

H: A boy is sitting on a swing ready to fly.

F: A football player in a red uniform is running with football.

R: A football player in red is running to win the game.

H: A football player in red is challenging the player in a game.

Fig. 10.14 Six examples of natural language captions generated by the StyleNet from images each
with three different styles

set of automatic metrics and human evaluation. Some typical examples of stylistic
caption generation are shown in Fig. 10.14, where it is observed that the caption with
the standard factual style only describes the facts in the image in a dull language,
while both the romantic and humorous style captions not only describe the content
of the image but also express the content in a romantic or humorous way through
generating phrases that bear a romantic (e.g., in love, true love, enjoying, dating, win
the game, etc.) or humorous (e.g., find gold, ready to fly, catch Pokemon Go, bone,
etc.) sense. Further, it has been found that the phrases that the StyleNet generates fit
the visual content of the image coherently, making the caption visually relevant and
attractive.
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10.8 Summary

Natural language generation from images, or image captioning, is an emerging deep
learning application that intersects computer vision and natural language processing.
It also forms the technical foundation formany practical applications. Thanks to deep
learning technologies, we have seen significant progress in this area in recent years.
In this chapter, we have reviewed the key developments in image captioning that the
community has made and their impact on both research and industry deployment.
Twomajor frameworks developed for image captioning, both based on deep learning,
are reviewed in detail. A number of examples of natural language descriptions of
images produced by two state-of-the-art captioning systems are provided to illustrate
the high quality of the systems’ outputs.

Looking forward, while image captioning is a particular application of NLG in
NLP, it is also a subarea in the image-natural language multimodal intelligence field.
A number of new problems in this field have been proposed lately, including visual
question answering (Fei-Fei and Perona 2016; Young et al. 2014; Agrawal et al.
2015), visual storytelling (Huang et al. 2016), visually grounded dialog (Das et al.
2017), and image synthesis from text description (Zhang et al. 2017). The progress
in multimodal intelligence involving natural language is critical for building general
artificial intelligence abilities in the future. The review provided in this chapter can
hopefully encourage new students and researchers alike to contribute to this exciting
area.
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Chapter 11
Epilogue: Frontiers of NLP in the Deep
Learning Era

Li Deng and Yang Liu

Abstract In the first part of this epilogue, we summarize the book holistically from
two perspectives. The first, task-centric perspective ties together and categories a
wide range of NLP techniques discussed in book in terms of general machine learn-
ing paradigms. In this way, the majority of sections and chapters of the book can
be naturally clustered into four classes: classification, sequence-based prediction,
higher-order structured prediction, and sequential decision-making. The second,
representation-centric perspective distills insight from holistically analyzed book
chapters from cognitive science viewpoints and in terms of two basic types of natu-
ral language representations: symbolic and distributed representations. In the second
part of the epilogue, we update the most recent progress on deep learning in NLP
(mainly during the later part of 2017, not surveyed in earlier chapters). Based on
our reviews of these rapid recent advances, we then enrich our earlier writing on
the research frontiers of NLP in Chap. 1 by addressing future directions of exploit-
ing compositionality of natural language for generalization, unsupervised and rein-
forcement learning for NLP and their intricate connections, meta-learning for NLP,
and weak-sense and strong-sense interpretability for NLP systems based on deep
learning.

11.1 Introduction

Natural language processing (NLP) is amost important technology in our information
age, constituting a crucial branch of artificial intelligence via understanding complex
natural language in both spoken and text forms. The history of NLP is nothing short
of fascinating, with three major waves closely paralleling those of the development
of artificial intelligence. The current rising wave of NLP has been propelled by deep
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learning over the past few years. As of the time of writing this epilogue in November
of 2017, we see expansions of many deep learning and neural networks methods
presented in this book in multiple directions, with no sign of slowing down.

Since we started this book project about one year ago, the NLP field has witnessed
significant advances in both methods and applications, many empowered by deep
learning. For example, unsupervised learning methods have very recently emerged
in the literature; e.g. (Lample et al. 2017; Artetxe et al. 2017; Liu et al. 2017; Radford
et al. 2017). In addition, excellent tutorial and survey materials have been published
recently, offering new insight into numerous deep learning methods and comprehen-
sive state of the art results for NLP; e.g. (Goldberg 2017; Young et al. 2017; Couto
2017; Shoham et al. 2017). These new developments and literature prompted us to
make an excursion, in the later part of this final chapter of the book, to update and
enhance what we wrote in Chap.1 about the state-of-the-art and future directions of
NLP. Let us start first with the main goal of summarizing the entire technical content
of the book from novel and holistic perspectives next.

11.2 Two New Perspectives

This book starts with an introduction to the basics of NLP and deep learning, with
a survey of the historical development of NLP characterized as three waves with
representative research outlined: rationalism, empiricism (Brown et al. 1993; Church
and Mercer 1993; Och 2003, etc.), and the current deep learning wave (Hinton et al.
2012; Bahdanau et al. 2015; Deng and Yu 2014, etc.). We stressed that deep learning
technology for NLP is a paradigmatic shift from the NLP technologies developed
from the previous two waves. The historical survey sets up the context to outline a
selective few prominent successes of NLP tasks attributed with no controversy to
deep learning (speech recognition and understanding, language modeling, machine
translation, etc.), leading to much more detailed coverages of the applications of
deep learning to ten core areas of NLP.

Each of Chaps. 2–10 (and part of Chap. 1) is devoted to one of the following NLP
applications dominated by or impacted significantly by deep learning:

• Speech Recognition (part of Chap.1)
• Spoken Language Understanding (Chap. 2)
• Spoken Dialogue (Chap. 3)
• Lexical Analysis and Parsing (Chap. 4)
• Knowledge Graph (Chap. 5)
• Machine Translation (Chap.6)
• Question Answering (Chap.7)
• Sentiment Analysis (Chap. 8)
• Social Computing (Chap. 9)
• Language Generation (Chap.10)

To provide a summary that distills insight from the above chapters with a common
thread of exploiting deep semantic representations, we review them below from two
novel perspectives that cut across these separate chapters.
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11.2.1 The Task-Centric Perspective

Here, we take the perspective based on machine learning paradigms (e.g., Deng and
Li 2013) to analyze and cluster the NLP methods and applications in terms of the
“tasks and paradigms” covered in the entire book into four major categories.

The first category is classification, the most popular task in supervised ma-
chine learning. Text classification has a long history in NLP, with highly success-
ful applications including email spam detection and sentiment analysis. Sentiment
analysis (Chap. 8) is covered in detail in the book, where deep learning methods
equipped inherently with the capability of semantic composition of large chunks
of texts (e.g., sentences, paragraphs, and documents) have been shown to produce
excellent results. Two of the three main problems in spoken language understanding
(Chap.2)—domain detection, intent determination, (and slot filling)—both fall into
the category of text classification. Further, the current deep learning methods for
question answering and machine comprehension (Chap.7) can also be regarded as
classification. This is a more sophisticated type of classification problem in that con-
text information needs to be provided to constrain the complexity of answer classes
in current approaches. As pointed out in Chap.7, future research will need to relax
such constraints in order to achieve understanding and reasoning from text and then
to solve the question-answering problem in more principled ways.

The second category of NLP tasks is (sequence-based) structured prediction.
This is also called sequential pattern recognition/classification (He et al. 2008), in
contrast to the first category of classification, where the output is a single entity with
no sequential structure. Prominent examples of structured prediction in machine
learning have been drawn mostly from NLP applications. We have covered many
of them in this book, including slot filling in conversational language understand-
ing (Chap.2), speech recognition (Chap.1), word segmentation and part of speech
tagging in lexical and text analysis (Chap. 4), machine translation (Chap.6), natural
language generation from images (Chap.10), and advanced versions of question an-
swering (Chap. 7). Note a popular NLP application, document or text summarization,
is also well suited to sequence-to-sequence learning and prediction in this category
but we do not have this application covered in the book.

The third category of NLP tasks from the perspective of machine learning is
higher-order structured prediction (e.g., tree-based and graph-based). As discussed
in Chap.1, high-order structure is a distinctive characteristic of natural language. Our
book dedicates a full chapter to present deep learning models for the text parsing
problem formulated as high-order structured prediction (Chap. 4). It shows that deep
learning models can be used effectively to augment or replace statistical models
in the traditional graph-based and transition-based frameworks. Further, they also
demonstrate strong representation power of neural networks which goes beyond the
function of mere modeling. A separate chapter (Chap.5) is also devoted to graph-
based structured prediction and learning, where deep learning techniques are used
to embed entities and relations for knowledge graph representation. Deep learn-
ing is also used to represent relation instances in relation extraction for knowledge
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graph construction and to represent heterogeneous evidences for entity linking. Ex-
ploitation of deep learning to knowledge graphs holds a promising future since such
higher-order graph structures are expected to provide a solid foundation for princi-
pled ways of question answering, text understanding, and common sense reasoning.
All of these are challenging NLP applications that require deep semantic process-
ing, missing in most of the current NLP systems. Two of three main elements of
social computing (Chap.9), modeling user social connection structures and recom-
mendation, also involve graph-based learning and prediction via network embedding
accomplished by deep learning. Such network embedding facilitates an automatic
and unsupervised feature engineering procedure in numerous social network analy-
sis tasks including network reconstruction, link prediction, node classification, and
node clustering/visualization.

While the above three categories of NLP tasks motivated by machine learning
methods can be broadly grouped into supervised deep learning or pattern recognition,
the fourth category, sequential decision-making, goes beyond supervised learning.
Themodern dialogue systems surveyed inChap.3 of this bookmake use of sequential
decision-making process, as part of deep reinforcement learning in a key component
of the dialogue systems—dialogue manager. The output of the dialogue manager
component is natural language to be received by the user in performing multi-turn
conversations with the dialogue system. This type of NLP task—sequential decision-
making—is very different from supervised learning in the other three categories
summarized above. The difference is that there is no teaching signal at each turn of
the dialogue informing whether the natural language output, as the “action” in the
decision-making process of “managing” the dialogue. Rather, the overall goal of the
dialogue is measured by whether the dialogue is completed satisfactorily to the user
and whether the number of turns is desirable for the user. This type of “teacher”
signals is far more remote than that in supervised learning and is more challenging
from the technology standpoint.

11.2.2 The Representation-Centric Perspective

An alternative perspective, the representation-centric one, can be used to summarize,
analyze, and to distill insights from a diverse set of NLP methods and applications
described across all chapters in this book.

Throughout this book, two basic types of natural language representations have
been used. The first type is symbolic, localist, or one-hot representation, adopted
pervasively during the rationalist and empiricist waves in the NLP history discussed
in Chap.1. The most common example of symbolic presentation is bag-of-words
and N-grams for text, where words and text are treated as arbitrary symbols and their
(term) frequencies are extracted and exploited. For improving bag-of-words and
N-grams, weights based on inverse document frequencies can be added, forming
a vector-space model. Further improvements in symbolic representations of text
include topic models, where each topic is modeled as a distribution over words
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and each document modeled as a distribution over topics. In most of the chapters
in this book, various types of symbolic representations discussed above have been
used as baseline systems to compare with deep learning-based systems exploiting
sub-symbolic semantic representations. For example, in sentiment analysis from
text (Chap.8), one popular baseline system based on symbolic presentations of text
makes use of sentiment dictionary. The dictionary consists of two sets ofword list: the
positive set and the negative set. By symbolically counting positive versus negative
words in a document, sentiment values associated with all words can be determined.

Symbolic representations are often manually constructed, for example, by coding
into a computer the meanings of symbolic words via manually specifying relation-
ships between the words. Knowledge graphs (Chap.5) are a common way of compil-
ing such symbolic relationships over entities. Typical knowledge graphs of this sort
have been described and used in Chap. 5 in detail, serving as the basic data sources
with which knowledge-based representation learning using neural network methods
would subsequently proceed.

Improvements over the entity-based knowledge graphs (e.g., WordNet, Freebase,
etc.) are semantics-based networks such as FrameNet, ConceptNet, and YAGO. The
slot filling task in spoken language understanding (part of Chap. 2) and its use in
dialogue systems (part of Chap. 3) have been based on FrameNet in the empiricist
approach to language understanding developed during the second wave of NLP.

The second type of semantic representation of natural language text is sub-
symbolic or distributed representation, where each word, phrase, sentence, para-
graph, or a full document is represented as a dense embedding vector with each
element corresponding to and influencing not just one linguistic entity but many of
them. In all NLP applications presented in each of the chapters of this book, the use
of such distributed representations have been described to implement state of the art
systems, often contrasting the counterpart baseline system built with symbolic rep-
resentations with high-dimensional sparse vectors for linguistic entities. Note that
while all deep learning systems are based on distributed representations, shallow
machine learning methods can rely on either symbolic or distributed representations.
Section 9.2 of Chap.9 has provided an informative review on both symbolic and
distributed representations of user-generated textual content for use in social com-
puting. Associations of these two types of representations are made in Chap. 9 with
various NLP approaches including traditional (symbolic), shallow learning, and deep
learning ones.

The most important common thread cutting across all chapters in this book is
the pervasive use of distributed representations of text with various sizes (e.g., word,
phrase, sentence, paragraph, and document) as basic as well as automatically learned
intermediate features for solving NLP problems. In particular, the compositional
property of natural language, from low-level units (e.g., words) to high-level ones
(e.g., documents), is exploited to build deep learning architectures in the form of
hierarchical neural networks for representation learning in a naturally justifiable
manner. The embedding vectors at different linguistic granularity levels constructed
using deep models are learned typically by unsupervised methods, where no la-
bel information is provided by human. Rather, the “label” information is implicitly
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captured from context of the text, giving rise to distributional properties of the de-
rived distributed representation. One pioneering success of such unsupervised deep
learning approaches in NLP is language modeling using recurrent neural network-
s, as reviewed in Chap.6 and other places in the book. This type of unsupervised
learning is often called (contextual) predictive learning and has recently spread
its popularity from word sequence prediction in NLP to video sequence prediction
(Villegas et al. 2017; Lotter et al. 2017).

The embedding vectors with fully distributed representations learned by unsuper-
vised contextual prediction can be “fine-tuned” and learned in an end-to-end manner
if the ultimate NLP tasks are clearly specified and sufficient amounts of label data
are available for the training. Spoken language understanding in dialogue systems
(Chaps. 2 and 3), machine translation (Chap.6), question answering (Chap.7), senti-
ment analysis (Chap.8), recommendation in social computing (Chap.9), and image
captioning (Chap.10) presented in this book all contain successful examples of this
type of end-to-end learning bootstrapped from unsupervised representation learning.

11.3 Major Recent Advances in Deep Learning for NLP
and Research Frontiers

In Chap.1 of this book written several months ago, we analyzed a few well-known
challenges of deep learning that are general in machine learning as well as specific to
NLP. From that analysis, we then discussed research directions for future advances
in NLP including the frameworks for neural-symbolic integration, exploration of
better memory models and better use of knowledge, as well as better deep learning
paradigms including unsupervised and generative learning, multimodal and multi-
task learning, and meta-learning. Due to the rapid progress in both deep learning
and its tight connections to NLP, here we provide an update and elaboration on our
earlier analysis.

11.3.1 Compositionality for Generalization

A common drawback of current deep learning under supervised settings is that it re-
quires a large amount of training data with labels. In the NLP context, this drawback
results from the difficulty of deep learning methods in handling long-tail phenomena
since natural language data generally follows a power-law distribution. That is, any
large size of natural language training data will always leave cases the training data
cannot cover. This is an intrinsic problem for the localist or symbolic representation
in any learning system. However, this difficulty provides an excellent research di-
rection for deep learning approaches as they are based on distributed representations
free from the data coverage problem, at least in principle. The research frontier lies
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in how to design new deep learning architectures and algorithms that can effectively
exploit compositional properties of the distributed representations capable of disen-
tangling the underlying factors of variation in natural language data. Recent work on
the feasibility of such approaches for video and image data (Denton and Birodkar
2017; Gan et al. 2017) gives promises to solving the generalization problem without
formidable amounts of data for natural language data. As a first step, the very recent
study reported by Larsson and Nilsson (2017) developed disentangled representa-
tions that are shown to be effective in manipulating the sentiment of natural language
while preserving the semantics. The proposed algorithm generalizes better than all
sentiment analysis techniques surveyed in Chap.8 of this book.

11.3.2 Unsupervised Learning for NLP

Several months ago, we wrote in Chap. 1 about the preliminary promising work on
unsupervised learning with novel methods of exploiting sequential output structure,
relationships between inputs and outputs, and advanced optimization methods to
eliminate the need for costly parallel corpora (which pair data with labels for each
training token) in training prediction systems (Russell and Stefano 2017; Liu et al.
2017). Since then, similar types of unsupervised learning have been more recent-
ly scaled up to large-scale machine translation tasks (Artetxe et al. 2017; Lample
et al. 2017; Hutson 2017). (Chapter 6 did not include this new progress in machine
translation, which was published in November 2017 after the chapter was written.)

The two unsupervised learning methods published for machine translation in
Artetxe et al. (2017) and Lample et al. (2017) both use back translation and denoising
in the respective training systems. The training is performed without pairing inputs
and outputs, with the same setting as the earlier work on non-NLP tasks described
in Chen et al. (2016) and Liu et al. (2017) which made use of output structure and
the relationship between input (image) and output (text). The back translation step
proposed in both Lample et al. (2017) and Artetxe et al. (2017) is a more elegant way
of exploiting the relationship between input (source text) and output (target text),
taking advantage of the similarity of information rates in input and output (i.e., both
being natural language text). More specifically, in back translation, a sentence in
input source language is approximately translated into the output target language,
which is then translated back into the source. If the back-translated sentence is not
identical to the source, the deep neural network then learns to adjust its weights so
that next time they will become closer. The denoising step in both studies serves a
similar function but it is limited to one language only by adding noise to a sentence
and then recovering the original clean version using denoising auto-encoders. The
main idea is to build a common latent space between the source and target languages
and to learn to translate by reconstructing in both source and target domains. Effective
exploitationof the relationship between the source (input) and target (output) domains
enables huge cost saving in creating paired source and target sentences for training
the machine translation systems.
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Another interesting recent study related to unsupervised learning in NLP, sen-
timent analysis in particular, comes from Radford et al. (2017). The original goal
of the study was to explore the properties of byte-level LSTM language models for
predicting the next character from given texts (Amazon reviews). Accidentally and
somewhat surprisingly, one of the neurons in the multiplicative LSTM trained in an
unsupervised way was found to be able to accurately classify the reviews as posi-
tive or negative. When the same model is tested on another sentiment data, Stanford
Sentiment Treebank, the model also did extremely well.

11.3.3 Reinforcement Learning for NLP

The initial success of unsupervised learning for machine translation reported re-
cently in Artetxe et al. (2017) and Lample et al. (2017), as summarized above, is
reminiscent of the success of the self-play strategy in the setting of reinforcement
learning in AlphaGo Zero without human data, reported also recently in Silver et al.
(2017). With self-play, AlphaGo becomes its own teacher, where a deep neural net-
work is trained to predict AlphaGo Zero’s own move selections and also the winner
of AlphaGo’s games. This prediction is possible because there is a distant teacher
informing who wins and who loses in the self-play, which guides the reinforcement
learning algorithm. For unsupervised machine translation, back translation serves
the same role as self-play in AlphaGo Zero, except there is no analogous teacher
to win–loss information. However, if one replaces the win–loss signal used in re-
inforcement learning by a measure of how good the back-translated sentence is to
the original source sentence, such a measure can be used as an objective function to
guide unsupervised learning for the weight parameters in deep neural networks.

The above comparison points to the potential of reinforcement learning, which
has developed a set of powerful algorithms, for existing and new NLP applications.
Reinforcement learning is particularly promising if the NLP problems can be ele-
gantly formulated to enable the use of the concept of “self-play” or the input–output
relationship to define distant teaching signals. Successes in this research frontier
would add powerful methods from reinforcement learning to overcome a key aspect
of the current bottleneck in NLP and deep learning: They are grounded principal-
ly on pattern recognition and supervised learning paradigms and thus require large
amounts of labeled data and lack reasoning abilities.

A typical reinforcement learning scenario inNLP is dialogue systems.As surveyed
in Chap.3 of this book, dialogue management was one of the first major successes in
reinforcement learning in NLP, where standard tools of Markov decision processes
and their partial observed versions to handle uncertainty were used. In the recent past,
deep neural networks controlled and trained by reinforcement learning have been
applied to all three types of dialogue systems or chatbots (intelligent assistants) (Deng
2016;Dhingra et al. 2017).While the “rewards” for reinforcement learning have been
reasonably clearly defined in terms of a heuristic combination of task completion (or
otherwise), the number of turns in the dialogue, the level of engagement between
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the chatbot and the user, etc., the requirement for large amounts of conversation data
remains a challenging problem. Given that good “world” models or simulators for
human–chatbot conversations are very hard to develop, the common requirement
for large training data in reinforcement learning would not be easily overcome until
appropriate formalisms incorporating the concept of “self-play” are established. The
progress in this research frontier is gaining greater urgency as chatbot conversations
are expected to become more realistic in practical applications.

Other more recent developments of applying reinforcement learning to NLP prob-
lems include the SeqGANmethod for creative text generation, via effectively training
sequence generative adversarial networks by policy gradient (Yu et al. 2017). A re-
lated recent study on using another popular method in reinforcement learning, actor-
critic algorithm, is reported in Bahdanau et al. (2017). The analysis of the method
and experimental results showed promise in many natural language generation tasks
including machine translation, caption generation, and dialogue modeling. Further,
reinforcement learning also finds its effectiveness in solving NLP problems of text-
based gaming and predicting popular treads in text forums (e.g., Reddit discussion
threads). Specifically, the experiments reported in recent literature (He et al. 2016;
He 2017) show that separate modeling of state and action spaces, both taking the
form of natural language, is capable of extracting semantic information from text
rather than simply memorizing strings of text. Another application of reinforcement
learning to NLP published recently is in text summarization (an important NLP task
but since deep learning only started very recently in tackling text summarization,
we have not covered it in this book.). In (Paulus et al. 2017), it was shown that in
the neural encoder–decoder model, when standard word prediction using supervised
learning is combinedwith the global sequence prediction trainingwith reinforcement
learning, the resulting summarized texts become more readable.

Finally,we observewith high interest the recent success of applying reinforcement
learning in generating structure queries from natural language (Zhong et al. 2017).
This NLP task, which was called “slot filling” in Chap. 2 of this book, is the core of
language understanding within a restricted domain. It was handled in the past using
structured supervised learning as surveyed inChap.2. The research frontier of spoken
language understanding and dialogue systems would be advanced if reinforcement
learning candemonstrate its consistent superiority inmanypractically useful domains
as described in Chaps. 2 and 3.

11.3.4 Meta-Learning for NLP

Meta-learning has very different scopes and definitions for different researchers (as
can be witnessed at the NIPS Symposium onMeta-learning held in December 2017.)
Here, we adopt the general view in Vilalta and Drissi (2002). That is, meta-learning
aims to build self-adaptive and continual learners that improve their bias dynamically
through experience by accumulating knowledge about learning. Meta-learning is a
hallmark of intelligent beings, which can be rightfully characterized as having the

http://dx.doi.org/10.1007/978-981-10-5209-5_2
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ability to continually improve one’s own learning capabilities through experience as
well as knowledge acquisition.

In Chap.1 of this bookwritten several months ago, we briefly outlined some initial
progress of meta-learning in several non-NLP applications such as hyper-parameter
optimization, neural network architecture optimization, and fast reinforcement learn-
ing. We also pointed out that meta-learning is a powerful emerging artificial intelli-
gence and deep learning paradigm, which is a fertile research area expected to impact
real-world NLP applications.

In the recent past, huge advances in meta-learning applications have been made,
notably in navigation and locomotion (Finn et al. 2017a), robotic skills (Finn et al.
2017b), improved active learning (Anonymous-Authors 2018b), and one-shot image
recognition (Munkhdalai and Yu 2017). Applications of meta-learning to NLP tasks
are starting to appear, which we briefly review here.

In Anonymous-Authors (2018a), meta-learning is applied to continually adapt
word embeddings, which subsequently are used for solving down-stream NLP tasks.
Given the knowledge learned from a number of previous domains and a small corpus
in the new domain, the proposed method can effectively generate word embeddings
in the new domain in an incremental manner by leveraging an effective algorithm
and ameta-learner. The meta-learner provides word context similarity information at
the domain level. Experimental results show the effectiveness of the proposed meta-
learning method in forming embeddings in the new domain from a small corpus
and the old domain’s knowledge for three NLP tasks: text classification (for product
type), binary semantic classification, and aspect extraction.

The same goal of leveraging embeddings across several domains for improving
down-stream task performance in a new domain can be achieved by a different meta-
learningmethodproposed in another recent study (Bollegala et al. 2017). In this study,
an unsupervised, locally linear method is developed to learn the embeddings for a
newdomain,which are calledmeta-embeddings, froma given set of pretrained source
embeddings in previous domains. Experimental results on four NLP tasks—semantic
similarity, word analogy, relation classification, and short-text classification—show
that the new meta-embeddings significantly outperform prior methods in several
benchmark datasets.

Yet another interesting recent work on applying meta-learning to the NLP task
of questioning answering (from images) is reported by Anton and van den Hengel
(2017). The deep learning model is initially trained on a small set of questions and
answers and is provided with an additional support set of examples at test time.
Given this setting, the model must learn to learn, that is, to exploit the additional
data on-the-fly or incrementally and continually without the need for retraining the
model. The deep learning model proposed in this work is shown to take advantage of
the meta-learning scenario. It demonstrates strong performance in improved recall
of rare answers. It also provides better sample efficiency and a unique capability of
learning to produce novel answers. The research challenge is to extend the current
use of the support set of questions/answers as reported in this study to the future
use of more comprehensive datasets obtained from large knowledge bases and web
searches.

http://dx.doi.org/10.1007/978-981-10-5209-5_1
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Finally, we note the very recent study on a highly interesting problem of continu-
ous adaptation of deep learning systems under rapidly nonstationary and adversarial
environments, cast in the (gradient-based) meta-learning setting (Al-Shedivat et al.
2017). The novel method is designed to treat a nonstationary task as a sequence of
stationary tasks, thus turning the problem into a multitask learning one. Then, multi-
ple deep learning systems (i.e., multi-agents) are trained to exploit the dependencies
between consecutive tasks to the extent that the fast nonstationarity exhibited at test
time can be effectively handled. The general meta-learning paradigm is adopted,
which learns a high-level procedure used to generate a good policy. This is done
each time the environment changes. That is, the agents meta-learn to anticipate the
changes in the environment and update their policies accordingly.

An important characteristic of the multi-agent environments is that they are non-
stationary from the perspective of any individual agent since all actors are learning
and changing concurrently (Lowe et al. 2017; Foerster et al. 2017). The results show
that when an agent adopts a policy designed assuming other adversarial agents treat
it as a competitor, then this policy becomes superior to those that do not make this
assumption. The main reason for such superiority is that in this competitive multi-
agent setting, the agents have a model of the realistic environment that allows them
to exploit the dependencies between consecutive quasi-stationary tasks (modeled
as a Markov chain) such that they can handle similar nonstationarities at execution
time. More specifically, meta-learning provides optimal updates of an agent’s policy
with respect to transitions between pairs of tasks, enabling few-shot execution-time
adaptation that would otherwise degrade as the environment diverges from training
time.

While meta-learning methods for continuous adaptation in rapidly nonstationary
and competitive environments have been designed for and applied to robotics and
games as reported in Al-Shedivat et al. (2017), the implications for potential future
NLP and related applications are profound. This is especially so for a selected few
NLP application areas (e.g., finance), where the application environments are highly
competitive. Such fast competitions necessarily induce highly nonstationary environ-
ments, making the signals extracted for intended NLP applications from recent past
to lose their effectiveness quickly. As an exciting research frontier for NLP, modeling
such environments for advanced NLP systems using the meta-learning framework
is expected to help extend the effectiveness of extracted signals derived from NLP
analysis and other means.

11.3.5 Interpretability: Weak-Sense and Strong-Sense

The successes of deep learning models, especially those in NLP applications, often
come at a cost of interpretability due to the continuous representations and hierar-
chical nonlinearity of neural networks. The “black box” quality of most deep neural
networks makes them notoriously difficult to control and debug. This difficulty often
leads not only to the high cost of developing neural models for NLP but also to the
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rejection of deploying such non-interpretable models in practice. An obvious case in
point is dialogue systems as discussed in Chap.3. To this date, the majority of dia-
logue systems under deployment in industry are not based on deep learning despite
its technical superiority. Rather, rule-based systems are still common in practice due
principally to the ability to interpret, to debug, and to control.

For other NLP applications such as question answering and reading comprehen-
sion, similar challenges are prevalent. As an example, almost all existing datasets
designed for question answering and reading comprehension research are equipped
with a set of undesirable characteristics, including notably the requirement that the
answers to questions have to be restricted to an entity or a span from the existing
reading text. This turns the difficult text understanding problem that would require
often complex reasoning into a supervised pattern recognition problem with the
black box quality that requires no reasoning from and no interpretation of the read
texts. In making real advances in this research front, more advanced datasets and
deep learning methods must be developed to assess and facilitate research toward
real, human-like reading comprehension with interpretability as proposed in Nguyen
et al. (2017).

Starting from around 2010, most successes of deep learning have been demon-
strated in pattern classification and recognition tasks. Extending these successes over
the past two years or so, the more complex reasoning process in many current deep
learning-based question answering and reading comprehension methods has relied
on multiple stages of memory networks with attention mechanisms and with clean
supervision information for classification. These artificial memory elements are far
away from the human memory mechanism, and they derive their power mainly from
the labeled data (single or multiple answers as labels) which guides the learning of
network weights using a largely supervised learning paradigm. This is complete-
ly different from how human does reasoning. If we were to ask the current neural
reasoning models trained on question–answer pairs to do another task such as rec-
ommendation, dialogue, or language translation that are away from the intended
classification task (i.e., answering questions expressed in a prefixed vocabulary),
they would completely fail.

While to succeed in this endeavor requires long-term research efforts, during 2017
we have seen encouraging preliminary progress toward this goal by first making
the trained models interpretable (without injecting the goal of interpretability in
the training process). Interpretability in the weak sense here is loosely defined as
being able to draw insights from the already trained neural models that can provide
indirect explanation of how the models perform the desired NLP tasks (such as
machine translation). In Ding et al. (2017), in order to interpret neural machine
translation by visualization, relevance scores are computed to quantify how much a
particular neuron in a hidden layer contributes to neurons in another hidden layer
using the proposed layer-wise relevance propagation method. The relevance scores
are a directmeasure of howmuchoneneuron affects a down-streamneuron, indirectly
showing inner workings of the trained neural model. As another example, while little
is known about what end-to-end neural translation models learn about source and
target languages during the training process, the recent study reported by Belinkov
et al. (2017) carefully analyzed the representations learned by neural translation

http://dx.doi.org/10.1007/978-981-10-5209-5_3
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models at various levels of granularity. The quality of the representations for learning
morphology is evaluated through part of speech and morphological tagging tasks.
This data-driven, quantitative evaluation sheds light on important aspects in the neural
translation system in terms of its ability to capture word structure. In yet another
recent study (Trost andKlakow 2017), to overcome the difficulty of interpretingword
embedding vectors due to the continuous and high-dimensional nature, clustering
on word embeddings is carried out to create a hierarchical tree-like structure. The
hierarchy is shown to give geometrically meaningful representations of the original
relations between the words, thus providing a more human-interpretable way to
explore the neighborhood structure in the otherwise non-interpretable embedding
vectors.

The weak-sense interpretability studied above is relatively easy to achieve.
The deep learning models with strong-sense interpretability, i.e., those that are con-
structed and trained with interpretability as part of the training objective, are much
harder to build but are more useful. Neural-symbolic integration discussed earlier in
Sect. 6 in Chap.1 at a greater length pertains to the general principle for achieving
strong-sense interpretability. This principle, inspired by cognitive science (Smolen-
sky et al. 2016; Palangi et al. 2018; Huang et al. 2018) strives for a natural “harmony”
between the powerful continuous neural representations and the intuitive symbolic
representations more amenable to human understanding and logical reasoning using
natural language.

The strong-sense interpretability in deep NLP systems would enable powerful
practical applications, e.g., to accomplish multiple NLP tasks of question answering,
recommendation, dialogue, and translation, etc. mentioned earlier but require either
no labeled data or the labels for at most a small number of tasks. This would be
possible because the systems would have true understanding and reasoning abilities,
unlike the current NLP systems that rely largely on supervised pattern recognition.

One specific benefit of such deepNLP systemswith the strong-sense interpretabil-
ity is that human users would trust the responses from these systems since they can
provide logical reasoning (in the symbolic or natural language form) behind the
responses. For instance, an NLP system for reading comprehension may answer cor-
rectly a question about who murders a victim after reading a thriller book. But if the
logical reasoning steps (as the thought process inside the brain of a detective) are
also provided along with the answer, then the answer would be more trusted. A relat-
ed, simpler example is to learn to solve algebraic problems while showing the steps
toward the solution. The recent study (Ling et al. 2017) made a successful attempt in
doing so. The work addresses the specific problem of generating rationales for math
problems, where the task is to not only obtain the correct answer of the problem but
also generate a description of the method used to solve the problem. Experiments
show that the proposed (strongly interpretable) method outperforms earlier neural
models in both the fluency of the rationales that are generated and the ability to solve
the problem. Another very recent study reported in Lei (2017) is also aimed at the
strong-sense interpretability in deep NLP systems. Methods are developed to learn
to extract pieces of input text as justifications tailored to be short and coherent, which
are at the same time sufficient for making the same prediction. Experiments on the

http://dx.doi.org/10.1007/978-981-10-5209-5_1
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NLP task of multi-aspect sentiment analysis demonstrate the desired goal of making
the neural predictions justifiable and thus interpretable to human users.

Although very preliminary work on deep learning for NLP with strong-sense
interpretability has started only within the past one or two years, the line of direction
discussed in section represents an exciting frontier for NLP research in the current
deep learning era.

11.4 Summary

NLP and deep learning are both progressing fast. Over the past three years, especially
over the past several months since the earlier parts of this book were completed, deep
learning has been increasingly becoming a central paradigm and methodology in
solving a wide range of NLP problems. Therefore, this epilogue chapter, completed
by the end of 2017, serves not only the standard role of summarizing the full book
but also of somewhat unusual roles of updating the most recent progress on deep
learning in NLP and of updating our views on the research frontiers of NLP in the
deep learning era.

The first part of this chapter summarizes the book holistically from two perspec-
tives: the task-centric one and the representation-centric one. These perspectives are
inspired by machine learning paradigms and by cognitive science, respectively. In
the second part of this chapter, we update the most recent advances in deep learning
as applied to NLP, mainly those during the latter part of 2017 not surveyed in earlier
chapters. And supported by these rapid recent advances, we subsequently expand
our earlier writing on the research frontiers of NLP in Chap.1 by addressing future
directions in five areas: (1) Compositionality of natural language for generalization;
(2) Unsupervised learning for NLP; (3) Reinforcement learning for NLP; (4) Meta-
learning for NLP; and (5) Neuro-symbolic integration and interpretability for NLP
systems based on deep learning.

Deep learning offers a powerful tool to harness large amounts of computation
and data for end-to-end learning and information distillation. Armed with ever more
sophisticated distributed representations (e.g., McCann et al. 2017), ever more del-
icate modular design of functional blocks (e.g., hierarchical attentions), and highly
efficient gradient-based learning methods, deep learning has become a dominant
paradigm and new state of the art methodology for an increasing number of NLP
problems. In addition to the many of them we have surveyed in Chaps. 1–10 plus the
updated new NLP problems discussed in earlier parts of this chapter solved fully or
partially by deep learning individually, we also see the power of a single deep learn-
ing to jointly solve many NLP tasks by growing a neural network (Hashimoto et al.
2017). Moreover, the very difficult NLP task under extremely noisy conditions—
sentiment analysis on Twitter text—has recently been conquered by deep learning
to a large extent (Cliche 2017).

In Sect. 5 of Chap.1, we discussed and analyzed a number of limitations in current
deep learning technology, especially those relevant toNLPmethods and applications.

http://dx.doi.org/10.1007/978-981-10-5209-5_1
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As evident in all previous chapters and in earlier parts of this chapter, there have
been rapidly increasing improvements of the capabilities of deep learning methods
while the identified limitations have been overcome one by one, either partially or
completely. As new advances in deep learning move from the supervised paradigm
to those of unsupervised, reinforcement, and meta-learning, and as the deep models
become increasingly more complex, new fundamental insights into why and how
deep learning works extremely well in many tasks and when it may not work so well
in other tasks are needed. This is a grand challenge and research frontier in deep
learning research, especially for NLP.

Given the amazingly rich deep learning methodology and vibrant research activi-
ties devoted to almost all areas of NLP, as compiled in this book, we have confidence
that the trend we currently see will continue. We expect more and better deep learn-
ing model architectures to appear, and we also expect new NLP applications to be
enabled by deep reinforcement learning, unsupervised learning, and meta-learning
which would go beyond what we summarized earlier in this chapter.

As a final note to this chapter and the full book, we outline here some of the recent
popular discussions on a principled extension of the scope of (vanilla) deep learning
(the main topic of this book) to a more general one, called differentiable program-
ming, especially those relevant to NLP. The essence of the generalization is to make
the deep neural networks (as the computation graphs for parameterized functional
blocks) from being fixed to being dynamic. That is, after the generalization, the net-
work architecture consisting of many differentiable modules can now be created on
the fly in a data-dependent manner. In this differentiable programming paradigm,
the deep neural network architectures, including memory, attention, stacks, queue,
and pointer modules as we have seen in many chapters in this book, are composed
procedurally with logic expressions, conditionals, assignments, and loops. This type
of flexibility has been a goal provided by many of the current deep learning frame-
works (e.g., PyTorch, Tensorflow, Chainer,MXNet, CNTK, etc., and for the latter see
Chap.14 in Yu and Deng 2015). Once fully developed with highly efficient compil-
ers being built, we will have a brand new breed of software, which, instead of being
characterized by the traditional control structures in regular programming such as
loops and conditionals, will be established by assembling graphs of parameterized
functional blocks, each of which is a neural network in itself. Crucially, all parame-
ters (e.g., neural network weights and the parameters defining network nonlinearities
and memory modules) in the assembled graphs can be trained automatically from
data using highly efficient, gradient-based optimization methods. This is because no
matter how complex the assembled graphs are, differentiability ensures that they can
be learned end-to-end via back-propagation.

Differentiable programming has ushered in an exciting field of technology built
on top of our existing software stack that is now parameterized, differentiable, and
learnable with high efficiency. It represents not only a paradigm to bridge the gap
between general algorithms and ways of implementing deep learning, but also a path
toward artificial general intelligence where symbolic processing and neural-centric
deep learning are harmoniously integrated. This new way of thinking deep learning
has special relevance to NLP. First, while being developed at relatively later stages
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in human cognition, symbolic processing has high efficiency in logical reasoning
and is easily interpretable, both desirable in many NLP applications. With tensor-
product-like encoding schemes that aim to unify neural and linguistic-structured
representations, the high efficiency in learning in complex, flexible, and dynam-
ically constructed neural networks offered by differentiable programming would
complete the best of both symbolic and neural worlds. Second, the dynamic na-
ture of NLP models is becoming increasingly more prevalent in NLP methods, as
we have demonstrated in each of the chapters in this book. This is due to the very
nature of the studied object of NLP—language and text, which has inherently vari-
able dimensions, e.g., the (input) lengths and structures in documents, sentences, or
words. The popularity is also due to the capabilities of existing deep learning frame-
works in supporting the dynamically varied neural network architectures tailored
to the variable-dimensioned text inputs. Finally, natural language has recently been
shown to be a very useful latent space over which optimization can be carried out
to solve various kinds of difficult machine learning problems (Andreas et al. 2017).
The discreteness of language would not allow end-to-end learning to take advantage
of differentiability as a requirement for differentiable programming. However, a re-
laxation technique based on approximations via a proposalmodel has overcome this
difficulty, enabling broader opportunities for exploiting naturally occurring language
data to improve machine learning and NLP tasks.

In summary, equipped with the generalized deep learning or differentiable pro-
gramming framework, more powerful, flexible, and advanced deep learning archi-
tectures are expected in the near future to solve the remaining difficult NLP tasks
that we posed as research frontiers in this and previous chapters. The new success
beyond what we have presented in this book will push us closer to artificial general
intelligence of which NLP is an integral part.
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Glossary

Attention mechanism Inspired by human visual attention, the attention mechanism
is able to help the neural network learn what to “focus” on when making predictions.
Averaged perceptron The averaged perceptron (AP) is an extension of the standard
perceptron algorithm. It uses the averaged weight and bias which are estimated by
each training instance.
Back-propagation The back-propagation algorithm efficiently calculates the gradi-
ents in a neural network by applying the chain rule of differentiation starting from
the network output and propagating the gradients backward.
Belief tracker A statistical model that estimates the user’s goal at every step of the
dialog.
Bidirectional recurrent neural network A bidirectional recurrent neural network
(BiRNN) uses a finite sequence to predict or label each element of the sequence
based on the element’s past and future contexts. This is done by concatenating the
outputs of two RNNs, one processing the sequence from left to right, the other one
from right to left.
Compound value typed Compound value typed (CVT) is a special data type used
in Freebase to represent complex, structured data.
Combinatory categorial grammar The combinatory categorial grammar (CCG)
is a syntax formalism which assigns lexical categories to phrases and derives new
categories via application, composition, and type-raising.
Cocke-Younger-Kasami The Cocke–Younger–Kasami algorithm (alternatively
called CKY) is a parsing algorithm for context-free grammars, named after its inven-
tors, John Cocke, Daniel Younger, and Tadao Kasami. It employs bottom-up parsing
and dynamic programming.
Dialog manager A dialog manager is a component of a dialog system, responsible
for the state and flow of the conversation.
Dialog state tracker A component of spoken dialog systems that creates a “tracker”
that can predict the dialog state for new dialogs to understand a user request and
complete a related task with a clear goal within a limited number of dialog turns.
Dropout Dropout is a regularization technique for neural networks that prevents
overfitting by randomly setting a fraction of neurons to 0 at each training iteration.
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End-to-end dialog systems Training approach for dialog systems which does not
require feature engineering (only architecture engineering) can be transferred to
different domains and does not require supervised data for each module.
Goal-oriented dialog system A goal-oriented dialog system needs to understand a
user request and complete a related task with a clear goal within a limited number
of dialog turns.
Information extraction Information extraction (IE) is a task of automatically ex-
tracting structured information from unstructured and/or semi-structured machine-
readable documents.
Latent semantic indexingLatent semantic indexing (LSI) is a dimensionality reduc-
tion technique that projects queries and documents into a space with latent semantic
dimensions.
Limited-memoryBFGSLimited-memoryBFGS is a limited-memoryquasi-Newton
optimization algorithm that approximates the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm.
Long short-term memory Long short-term memory networks aim to prevent the
vanishing gradient problem in recurrent neural networks by using a memory gating
mechanism.
Machine comprehension Machine comprehension (MC) is an extension to the tra-
ditional question answering, it is to answer users’ questions only from a given doc-
ument.
Margin-infused relaxed algorithm The margin-infused relaxed algorithm (MIRA)
is an online algorithm for multi-class classification problems, where the current
training example is classified correctly with a margin against incorrect classifications
at least as large as their loss.
Maximum likelihood estimation Maximum likelihood estimation (MLE) is a
method for parameter estimation of statistical models and it finds the parameters
which can maximize the likelihood of the observation data.
Maximum spanning tree A maximum spanning tree (MST) is a spanning tree of a
weighted graph havingmaximumweight. It can be computed by negating theweights
for each edge and applying Kruskal’s algorithm.
Minimum error rate training Minimum error rate training (MERT) is a training
algorithm that searches for the optimal weights of SMT sub-model features to min-
imize a given error measure, or maximize a given translation metric such as BLEU
and TER.
Minimum risk training Minimum risk training (MRT) is a training algorithm that
finds parameters of the model to minimize the empirical risk of the training data.
Multiple layer PerceptronAmultilayer perceptron (MLP) is a class of feed-forward
artificial neural network which can distinguish data that is not linearly separable. An
MLP usually consists of at least two nonlinear layers.
Named entity recognitionNamed entity recognition (NER) is a task of locating and
classifying name entities in natural language documents into predefined categories
such as the names of people, organizations, locations, etc.
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Natural language generationNatural language generation (NLG) is the natural lan-
guage processing task of generating natural language from a machine representation
system such as a knowledge base or a logical form.
Neural machine translationNeural machine translation (NMT) is anMT paradigm
that models the translation process with neural networks in an end-to-end manner.
Out-of-vocabulary Out-of-vocabulary (OOV) denotes the set of words that do not
appear in the existing predefined vocabulary.
Part of speechApart of speech (POS) is a category of wordswhich generally display
similar behavior. In terms of syntax, they play similar roles within the grammatical
structure of sentences. In terms of morphology, they undergo inflection for similar
properties.
Point-wise mutual information Point-wise mutual information (PMI) is a measure
of association used in information theory and statistics.
Principal component analysis Principal component analysis (PCA) is a mathemat-
ical procedure that transforms a number of (possibly) correlated variables into a
(smaller) number of uncorrelated variables called principal components.
Semantic parsing Semantic parsing (SP) is a task of translating natural languages
into formal meaning representations.
Softmax The softmax function is used to convert a vector of raw scores into class
probabilities at the output layer of a neural network.
Spoken dialog systems A spoken dialog system (SDS) is a computer system that is
capable of conversing with a human with voice. It has two essential components that
do not exist in a written text dialog system: a speech recognizer and a text-to-speech
module (written text dialog systems usually use other input systems provided by an
OS).
Spoken language understanding Spoken language understanding (SLU) is a
subtopic of natural language processing in artificial intelligence that has largely
been coined for targeted understanding of human speech directed at machines.
Statistical machine translation Statistical machine translation (SMT) is an MT
paradigm that generates translation with a statistical model whose parameters are
learnt from parallel corpus.
Semantic role labeling Semantic role labeling (SRL) (also known as shallow seman-
tic parsing) is a task consisting of the detection of the semantic arguments associated
with predicates of a sentence and their classification into their specific semantic roles.
User-generated content User-generated content (UGC) is any type of content that
has been created by users of a system or service and made available to the public on
that system.
User goal The task of recognizing and interpreting the information seeking behavior
of a user.
User simulatorA statistical model acting as a user in the dialog system is an efficient
and effective way to train and evaluate the performance of a (spoken) dialog system.
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