
Material Design
implementation
with AngularJS

—
V. Keerti Kotaru

 Material Design
Implementation with

AngularJS

 UI Component Framework
First Edition

 V. Keerti Kotaru

Material Design Implementation with AngularJS

V. Keerti Kotaru
Hyderabad, Andhra Pradesh, India

ISBN-13 (pbk): 978-1-4842-2189-1 ISBN-13 (electronic): 978-1-4842-2190-7
DOI 10.1007/978-1-4842-2190-7

Library of Congress Control Number: 2016950454

Copyright © 2016 by V. Keerti Kotaru

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Pramila Balan
Technical Reviewer: Sathish VJ
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Prachi Mehta
Copy Editor: Brendan Frost
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com . For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

 I dedicate the book to my true support system, my parents,
Lakshmi and Rama Rao, and my wife, Sowmya.

v

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

 ■Chapter 1: Introduction to Angular Material 1

 ■Chapter 2: Getting Started .. 7

 ■Chapter 3: Layout Management .. 29

 ■Chapter 4: Navigation & Container Elements 41

 ■Chapter 5: Action Buttons .. 57

 ■Chapter 6: Themes .. 77

 ■Chapter 7: Forms .. 91

 ■Chapter 8: Lists and Alerts ... 113

 ■Chapter 9: Mobile-Friendly Elements ... 137

 ■Chapter 10: Miscellaneous—Icons and ARIA 149

 ■Chapter 11: Miscellaneous ... 159

 ■Chapter 12: Responsive Design Patterns 167

Index .. 189

vii

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

 ■Chapter 1: Introduction to Angular Material 1

Scenarios .. 1

More Power, More Responsibility .. 2

What Is Material Design? .. 2

Why Material Design? ... 3

Why Angular Material? .. 3

Angular Material Basics: ... 4

Theming .. 4

Layout ... 4

Typography ... 4

Directives and Services .. 5

 ■Chapter 2: Getting Started .. 7

Scripts ... 7

Code Editor/Integrated Development Environment (IDE) 8

Get Started with Angular Material ... 8

Step 1: Code “Hello World—Angular Material” .. 8

Step 2: Set up a developer class web server and run the sample 10

 ■ CONTENTS

viii

Working with Code Samples ... 13

Run Samples .. 13

Folder Structure .. 13

AngularJS Basics .. 14

Data Binding ... 15

Directive ... 16

AngularJS Module .. 16

DI .. 16

Controller .. 17

View/HTML template .. 17

Services .. 18

Provider .. 18

Making the Code Minifi cation Safe ... 19

Pakage Managers and JavaScript Modules .. 20

Setup Node Package Manager - NPM .. 20

Download Angular Material using NPM .. 20

Download Angular Material using Bower ... 21

SystemJS & JSPM (JavaScript Package Manager) .. 23

Notes on ES2015 (Also Called ES6) .. 27

Summary ... 27

References .. 27

 ■Chapter 3: Layout Management .. 29

Flexbox .. 29

Layout .. 29

Layout-Align ... 31

More Layout Attributes ... 32

Flex .. 32

Responsive Design .. 34

Real Estate .. 34

 ■ CONTENTS

ix

Feedback for User Actions .. 34

Breakpoints .. 35

Show/Hide .. 37

Responsive Layout .. 38

Summary ... 39

References .. 40

 ■Chapter 4: Navigation & Container Elements 41

Content (md-content) .. 41

Usage .. 42

Toolbar (md-toolbar) ... 42

Sidenav (md-sidenav) ... 44

Tabs .. 47

Cards .. 53

Summary ... 56

References .. 56

 ■Chapter 5: Action Buttons .. 57

Button Directive (md-button) ... 57

Style and Intention .. 58

FAB .. 60

Speed Dial .. 62

FAB Toolbar ... 66

Menu ... 68

Alignment ... 70

Wider Menu Options ... 72

Separator .. 72

Menu Bar .. 73

Summary ... 76

References .. 76

 ■ CONTENTS

x

 ■Chapter 6: Themes .. 77

Angular Material Theming ... 77

Palette .. 77

Basic Usage ... 79

Shade or Hue .. 81

Customize Themes .. 81

Defi ne a New Theme .. 84

Hue Confi guration ... 86

Create Custom Palette ... 87

Summary ... 88

References .. 89

 ■Chapter 7: Forms .. 91

Input Container Directive ... 91

Usage .. 91

Form Validations ... 92

More Form Elements ... 95

Drop-down .. 95

Autocomplete Drop-down ... 99

Chips ... 101

Contact Chips ... 104

Radio Buttons ... 105

Check Box ... 106

Slider .. 107

Date Picker ... 107

Summary ... 111

References .. 111

 ■ CONTENTS

xi

 ■Chapter 8: Lists and Alerts ... 113

List... 113

Grid List ... 117

Grid List Element (md-grid-list) .. 118

Grid Tile Directive (md-grid-tile) ... 118

Responsive Attributes ... 120

Alerts and Dialogs ... 121

md-dialog Element ... 123

Alert Dialog ... 124

Confi rm Dialog .. 126

Toast .. 128

Basic Customizations ... 130

Advanced Customizations .. 132

Summary ... 135

References .. 136

 ■Chapter 9: Mobile-Friendly Elements ... 137

Bottom Sheet ... 137

Bottom Sheet—List View ... 138

Bottom Sheet—Grid View ... 141

Handle Bottom Sheet Actions ... 142

Swipe .. 145

Summary ... 147

References .. 147

 ■Chapter 10: Miscellaneous—Icons and ARIA 149

Icons .. 149

Icon Fonts ... 150

Using SVGs for Icons... 152

 ■ CONTENTS

xii

Preload Individual Icons .. 154

Font Sets .. 155

ARIA ... 156

Summary ... 157

References .. 157

 ■Chapter 11: Miscellaneous ... 159

Whiteframe .. 159

Tooltip .. 160

Subheader ... 161

Usage .. 162

Divider .. 162

Progress Bar .. 162

Linear Progress Bar .. 163

Circular Progress Bar .. 164

Summary ... 165

References .. 165

 ■Chapter 12: Responsive Design Patterns 167

Refl ow ... 167

Position.. 170

Transform .. 175

Reveal.. 179

Reveal—Toolbar Actions Example .. 180

Summary ... 186

References .. 187

Index .. 189

xiii

 About the Author

 Keerti Kotaru has been associated with various
software development projects from 2002. He has
acquired knowledge and expertise designing and
developing web and mobile applications. In recent
times he has used AngularJS and related JavaScript
technologies extensively.

 He has a Masters in Software Systems degree from
the University of St. Thomas, Minneapolis/St. Paul,
Minnesota, USA.

 Keerti Kotaru is awarded Microsoft Most Valuable
Professional (MVP) in 2016. He is a regular speaker
and organizer for an AngularJS Hyderabad Meetup
group (meetup.com/ngHyderabad). He is involved in
technology activities and events for Google Developer

Groups (GDG) Hyderabad. He presented multiple sessions
for this group, including the annual events DevFest 2014 and
DevFest 2015.

 He has also presented sessions for TechGig, AngularJS
Pune, and AngularJS Chicago Meetup groups.

 He blogs at http://bit.ly/kotaru . Learn more about him at
 http://bit.ly/keertikotaru .

http://bit.ly/kotaru
http://bit.ly/kotaru

xv

 About the Technical
Reviewer

 Sathish VJ is a technologist who is passionate about
science and all sorts of technologies. Among other things
as a full-stack engineer, he has previously been a front-end
architect developing solutions using AngularJS and
Angular Material. In the area of Angular, he is currently
working on Angular2 and Ionic2 alongside related
technologies.

xvii

 Acknowledgments

 My ongoing journey with software development has been overwhelming and yet
thoroughly enjoyable. Along the way, I have been trained and mentored by individuals,
institutions, organizations, and last but not least, software developer communities.

 ngHyderabad and GDG Hyderabad (Google Developer Groups) are two developer
communities in my city that have had an enormously positive influence on me. The
communities include engaging discussions, sharing of ideas, and proactive volunteering
efforts from each member. They created an opportunity for showcasing my knowledge.
This book is a direct result of my interactions and learning with the communities.

 I thank CDK Global for providing initial direction, space, and the opportunity for
learning the latest programming languages and tools.

1© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_1

 CHAPTER 1

 Introduction to Angular
Material

 Web application development has evolved in recent years. Earlier JavaScript was
primarily used for form validations; to check if user provided data in required form fields
or if a phone number followed a pattern and so on. With the advent of Ajax, integration
with services (on server) is possible without reloading the whole page. Due to more
powerful client machines and browsers, rich front-end development is done with
JavaScript, HTML, and CSS.

 Multiple frameworks including AngularJS helped organize JavaScript code better.
AngularJS is a superheroic JavaScript framework that enables developing an application
using MV* framework (Model-View-Controller and its variants).

 It is a similar story with HTML and CSS. HTML is now customizable. It is possible to
create elements, attributes, or CSS classes in markup and reuse. CSS3 has been powerful
with advanced styling and animation capabilities.

 Scenarios
 As capabilities to develop rich applications using HTML, JavaScript, and CSS got better,
there arose a variety of scenarios and hence challenges. Consider the following use cases.

 Multiple form factors : With the advent of mobile technologies, there are a variety of
screen sizes. Content needs to fit multiple of screen sizes and still be legible.

 Rich UI development : With new capabilities in HTML, CSS, and JavaScript, it is
possible to develop better user interactions, controls, and user experience.

 Earlier browser plug-ins were used for rich UI (User Interface). Flex, Silverlight, or a
similar plug-in needed to be installed on the browser. Many times these were heavy and
took time to load. Browser understands HTML, JavaScript, and CSS and the plug-ins were
another layer on top of the browser.

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-2190-7_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-2190-7_1

CHAPTER 1 ■ INTRODUCTION TO ANGULAR MATERIAL

2

 Single Page Application (SPA) : Many applications tend to be developed as SPAs.
With this approach, the whole page does not always have to reload. Rather, it dynamically
gets content for sections of the page and renders the UI. This helps improve page
performance and avoid unnecessary network calls and browser activity. In addition, the
user does not lose context between pages.

 More Power, More Responsibility
 As more logic moves to the client or browser, there is a need for better processes and
quality. HTML, CSS, and JavaScript code organization needs to be better. Code reusability
is more important than ever.

 Design Patterns : A pattern could be identified in a problem. For quite a long time,
web applications have had a variety of design patterns implemented. A common scenario
with web applications has been that

 1. It has multiple screens or views. They could be forms, reports,
or widgets.

 2. Data objects (also called model) in the application need to be
associated with UI controls. As user edits data in UI controls,
changes need to reflect in the object and vice versa.

 3. These changes to the data need to be persisted and
propagated to data store and other views.

 4. Application of logic, validations, and in some cases,
transformation of data to a different type of object has to
happen.

 A design pattern MVC (Model-View-Controller) is apt for these problem statements
or requirements. MVC and its variants (MVVM [Model-View-View-Model] and MVP
[Model-View-Presenter]) are widely used.

 I am bringing up an opinionated scenario here. However, in my experience I have
seen this happen many times.

 Unit Testing : It has great influence on code quality. Teams find Test-Driven
Development (TDD) very effective. Such practices need to be applied to JavaScript code
as well.

 Dependency Injection (DI) : This is important for loose coupling among artifacts.
An object not instantiating its dependencies allow caller to swap implementation. This
makes object immune to changes in dependency.

 Better unit testing is a major advantage of this approach. When we unit test code,
we should focus only on the current object, not its dependencies. Unit tests should not
invoke end-to-end calls. All dependencies should be mocked or stubbed to invoke a
dummy implementation. This is made possible with DI.

 Angular Material inherits goodness from these concepts as it is built using AngularJS.
These concepts are not directly related to Angular Material. Hence, we do not go into an in-
depth discussion on these topics. However, teams and individuals developing applications
using AngularJS (including Angular Material) can take advantage of the features.

CHAPTER 1 ■ INTRODUCTION TO ANGULAR MATERIAL

3

 What Is Material Design?
 Material Design is a visual language that aims to provide consistent experience across
devices, screen, sizes, and form factors. The term Material is analogous to real-world
paper and ink. Yet, it is open to capabilities of digital world.

 3D aspects of Material Design are a result of studying light and shadow. They convey
feeling of surface and real-world material. Motion and animations are integral to Material
Design. They maintain continuity between user actions and screen changes. They also
provide subtle feedback to the user.

 Refer to the following URL for Material Design spec. It is a living document and
expected to be updated often. http://www.google.com/design/spec/material-design/
introduction.html#introduction-principles.

 Why Material Design?
 Google went into great detail trying to develop the visual language. They have observed
material objects, light, shadows, and so on and came up with a design specification,
which to an extent resembles real-world materials and interactions.

 On Material Design, there is quite a bit of adoption already. Multiple products
including many of Google’s own applications have used Material Design concepts .

 Imagine, for an application in development, that using such a system allows you to
take advantage of current state. Many users are already acquainted with the design and
hence intuitively relate to screen layout, transitions, positioning of elements, and so on.
The concepts have evolved for some time. The new application has a great starting point
instead of reinventing the wheel.

 Recently talking to an UX expert, I have realized there are two approaches to UX design .

 1. Reuse existing design guidelines , UI controls , and components .
 This allows one to develop fast. Users readily understand
the app. More importantly, the app team has high focus on
real application logic rather than user experience. Part of the
puzzle is already solved.

 2. Develop something new. Invest great energy and money
developing a completely new user experience. UX is not easy.
It needs experts and the subject is a science unto itself.

 Nevertheless, with this approach your application will be
unique. A tech-savvy audience might like such an approach.
However, there is always a learning curve. The general
population might fail to understand the concept.

 While both approaches have pros and cons, using Material Design, we are likely to
fall into the former category.

http://www.google.com/design/spec/material-design/introduction.html
http://www.google.com/design/spec/material-design/introduction.html

CHAPTER 1 ■ INTRODUCTION TO ANGULAR MATERIAL

4

 Why Angular Material?
 For implementing Material Design on AngularJS application , Angular Material is a great
choice. It is a Google open source project. It provides ready-made controls and services
for Material Design.

 There are advantages using AngularJS. It is a comprehensive framework that
provides the following:

 1. Routing, which allows associating a view (and controller) to a
route in a SPA

 2. Karma for Unit Testing

 3. DI

 4. Services and factories for encapsulating functionality

 5. Data binding between model objects and views

 Angular Material Basics
 Here is a high-level overview of Angular Material.

 Theming
 Theming is important for providing consistent look and feel across the application and
feeling of brand to the application. One of the important aspects of theming is colors. The
two colors we care about in Material Design are primary and accent colors. Primary colors
best fit title bars, status bars, and so on, while accent colors aim to grab attention: they are
bright. It could be a button at a corner of a page, slider control’s knob, and so on. Angular
Material also defines “warn” colors, which are used for warning and error messages.
This means that the user needs to be careful about making a choice (in the context of the
application): for example, an alert to check if user really wants to delete a record.

 Angular Material theming allows definition of these colors, which convey the
meaning of the brand along with consistency.

 Layout
 Angular Material uses adaptive layout . Content on the screens adjust to various screen
sizes and resolutions. It is a classic problem while developing an application for multiple
form factors and screen sizes. A table of data with eight columns might be readable on
laptop screen but would make no sense on a mobile screen. The table needs to wrap
around and get rid of secondary information on a mobile screen. Adaptive design
addresses this problem. Angular Material uses flexbox, a layout mode in CSS3.

CHAPTER 1 ■ INTRODUCTION TO ANGULAR MATERIAL

5

 Typography
 With Angular Material, CSS classes define text font and size (see Figure 1-1). They provide
consistent look and feel across the application. Out of the box, they are confined to
Material Design specification for Typography.

 Figure 1-1. Sample typography classes in Angular Material CSS. Reference: Angular
Material website: https://material.angularjs.org

 ■ Note Material Design spec for typography: www.google.com/design/spec/style/
typography.html

 Directives and Services
 We use various directives and services for controls and functionality in Angular Material.
These are at the heart of Angular Material. They provide ready-made Material Design
features and functionality to the application.

 ■ Note All Material Design directives and services are prefixed with md .

https://material.angularjs.org/
http://www.google.com/design/spec/style/typography.html
http://www.google.com/design/spec/style/typography.html

7© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_2

 CHAPTER 2

 Getting Started

 This chapter discusses multiple options for getting started with a project based on
Angular Material. Along with referencing Angular Material and AngularJS JavaScript
libraries, the chapter will elaborate on development environment setup, package
manager options, and so on. In addition, the chapter will focus on setting up the
environment for ES5 as well as ES2015 (ES6). The approaches described in the chapter
should help a medium or large project setup.

 Scripts
 The following scripts are required for running an Angular Material application :

 1. AngularJS: Primary dependency, AngularJS framework
library.

 2. Angular Animate: AngularJS animations library.

 3. Angular ARIA : ARIA (Accessible Rich Internet Applications)
provide state and semantic information for tools used by
persons with disabilities. ngAria in AngularJS provides out-
of-the-box support and improves default accessibility of the
application.

 Angular Material scripts:

 4. Stylesheet: the angular-material.css provides CSS classes and
styles for Angular Material.

 5. Angular Material library.

 Optional dependencies :

 6. Angular Messages is for showing messages and errors within
the HTML templates. It includes the module ngMessages .
Typically, the module is used while performing client-side
validations for a form. Include this library when directives and
other artifacts that are part of the ngMessages module are used
in the application.

CHAPTER 2 ■ GETTING STARTED

8

 7. Angular Sanitize is to sanitize HTML by escaping tags keyed
into input elements (or by other means). The library includes
the module ngSanitize. Include the library when the service,
provider, or filter that is part of the ngSanitize module is used.
Not a mandatory dependency.

 Code Editor /Integrated Development
Environment (IDE)
 All the concepts discussed in this book are implemented using JavaScript, HTML, and
CSS. To get started, we can even code in a simple code editor like Notepad. However,
a good code editor helps with better code formatting, editing features, autocomplete
function signatures and elements, debugging aspects, and so on.

 The following are recommended to use. They are easy to install, free for non-
commercial use, and installable on both Windows and Mac.

 1. Sublime Text

 2. Visual Studio Code

 3. Atom

 4. Chrome Dev Editor

 Get Started with Angular Material
 Use this section to set up a sample code repository for trying out Angular Material samples
on your machine. Practice various code samples demonstrated during course of this book.

 To get started, create an empty directory and open it in a code editor of your choice.
Create a new file and name it index.html. Next, run through the following steps.

 1. Code “Hello World—Angular Material.”

 2. Set up a developer class web server and run the sample.

 Let us look into each step in detail.

 Step 1: Code “Hello World —Angular Material”
 Let us get started by referencing all needed libraries for an Angular Material application.
The easiest way to reference needed JavaScript libraries is by using a CDN (Content Delivery
Network) URL. Refer to the preceding “Scripts” section for a list of required libraries.

 Copy-paste the following code in the index.html we just created.

 <!DOCTYPE html>
 <html>
 <head>

CHAPTER 2 ■ GETTING STARTED

9

 <!-- Reference Angular Material stylesheet -->
 <link rel="stylesheet" href="https://cdn.gitcdn.link/cdn/angular/bower-

material/v1.0.8/angular-material.css">
 <title>Hello World</title>
 </head>

 <body ng-app="sampleApp" layout="column">

 <!-- Bootstrap Angular Material Application. We create a module with
ngMaterial as a dependency. Learn more about an AngularJS module in a
later section of the chapter -->

 <script>
 angular.module("sampleApp", ["ngMaterial"]);
 </script>

 <!-- Create a title: Here we are creating a simple toolbar. We will get
into details of various controls in Angular Material during course of
this book. For the moment, understand that it is an Angular Material
element for creating a title and a toolbar -->

 <md-toolbar layout-padding>
 <div class="md-toolbar-tools">
 <h2>Welcome to Angular Material</h2>
 </div>
 </md-toolbar>

 <!-- Reference needed scripts. See scripts section above for details on

each script-->
 <script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.8/

angular.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/

angularjs/1.4.8/ angular-animate .min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/

angularjs/1.4.8/ angular-aria .min.js"></script>
 <script src="https://ajax.googleapis.com/ajax/libs/

angularjs/1.4.8/ angular-messages .min.js"></script> <!—Angular Messages
is optional for this sample -->

 <script src="https://cdn.gitcdn.link/cdn/angular/bower-material/
v1.0.8/ angular-material.js "></script>

 </body>
 </html>

 At the time of writing this book, version 1.5.6 for the first four scripts and 1.0.9
for Angular Material were the most recent. Look for a newer version while trying your
samples and preferably use the latest version.

CHAPTER 2 ■ GETTING STARTED

10

 Step 2: Set up a developer class web server
and run the sample
 We need to run samples on a local web server . As a developer running samples on a
laptop/desktop, we do not need the high-end features of a web server. The following are
easy to install and lightweight options. You may choose to follow these instructions and
set up on a developer machine, or you can run very well an existing web server that you
are comfortable with.

 Option A: Live Server
 Live server autorefreshes the browser window as we make changes to the files in the
editor. Often, by the time we switch to the browser for results, will see the window
updated with the latest code.

 Prerequisite : Make sure Node Package Manager (NPM) is already installed on the
machine. Refer to Setup Node Package Manager Section, later in the chapter for details.

 Install : Live Server is available as an NPM package. Install by using the following
command.

 npm install -g live-server

 Note that -g option installs the package globally on the machine. It allows using the
package from any directory without performing another local install.

 On a Mac or Linux machine, you might need sudo access to install the package
globally. Consider running the command as follows:

 sudo npm install -g live-server

 On a Windows machine, run command prompt as administrator.

 Run the app

 Open terminal (or command prompt) and CD (change directory) into the newly created
directory with index.html.

 Next run the following at the prompt.

 live-server

 This should run the live server on current directly and open the default browser with
index.html loaded. See Figure 2-1 for the result.

 At this point we are all set. We can use this setup to code more samples
demonstrated during the course of this book and run them.

CHAPTER 2 ■ GETTING STARTED

11

 Furthermore, notice that it defaults to port 8080. To see all available options with live
server, run

 live-server -h

 Option B: Serve
 If you are uncomfortable with live reload of web pages, consider using serve. Effectively, it
is similar to live server without the live reload option.

 Prerequisite : Make sure NPM is already installed on the machine. Refer to Setup
Node Package Manager Section, later in the chapter for details.

 Install : Serve is available as an NPM package. Install by using the following
command.

 npm install -g serve

 Note that the -g option installs the package globally on the machine. It allows using
the package from any directory without performing another local install.

 On a Mac or Linux machine, you might need sudo access to install the package
globally. Consider running the command as follows:

 sudo npm install -g serve

 On a Windows machine, run command prompt as an administrator.

 Run the app

 Open terminal (or command prompt) and CD into the newly created directory with
index.html.

 Next run the following at the prompt.

 serve

 This should serve current directly and its files on an HTTP URL for browsers.
Notice that it defaults to port number 3000. Open the browser of your choice and run
localhost:3000. See Figure 2-1 for the result.

 At this point we are all set. We can use this setup to code more samples
demonstrated during the course of this book and run them.

 Furthermore, to see all available options with serve, run

 serve -h

CHAPTER 2 ■ GETTING STARTED

12

 Option C: IIS Express
 If you are on a Windows machine, you might consider this option. Download and install
the latest version of IIS Express from Microsoft’s download page: www.microsoft.com/
en-us/download . Run through the setup wizard to install IIS Express.

 Typically, IIS Express will be installed on “C:\Program Files\IIS Express” or “C:\
Program Files (x86)\IIS Express.”

 Run the app

 Run the following command:

 C:\IIS-installed-location\iisexpress /path:C:\your-sample-folder /port:3001

 3001 is a sample port number. Run on any available port number.
 Files in your sample folder now can be accessed over an HTTP URL. Open the

browser of your choice and run http://localhost:3001. See Figure 2-1 for the result.

 At this point we are all set. We can use this setup to code more samples
demonstrated during the course of this book and run them.

 For more information on IIS Express run,

 C:\IIS-installed-location\iisexpress /help

 Figure 2-1. Rendered output for “Hello World—Angular Material”

http://www.microsoft.com/en-us/download
http://www.microsoft.com/en-us/download

CHAPTER 2 ■ GETTING STARTED

13

 Working with Code Samples
 All code samples developed for this book are available at this GitHub URL: https://
github.com/kvkirthy/Angular-Material-Samples . Clone or download the repository.

 Run Samples
 Use a web server of your choice. There are three options—live server, serve, and IIS
express—described in the preceding section. Run the web server at root level. As we open
samples in a browser, will see a layout depicted in Figure 2-2 .

 On the left, in the navbar, notice a complete list of chapters. Links to individual
samples are on the right. Click the link; the sample opens in a new window.

 Folder Structure
 Open the downloaded samples’ code repository in an IDE of your choice.

 The code samples follow a simple directory structure. You will see a directory
for each chapter. Browse through code samples for each chapter, under its folder. See
Figure 2-3 .

 For many samples, within the chapter, a folder named “app” has JavaScript code
(modules, controllers, etc.).

 All the libraries are included in the bower_components folder at the root level.

 Figure 2-2. Code samples

https://github.com/kvkirthy/Angular-Material-Samples
https://github.com/kvkirthy/Angular-Material-Samples

CHAPTER 2 ■ GETTING STARTED

14

 AngularJS Basics
 This section describes AngularJS basics . It is intended to provide context for
understanding Angular Material. If you are familiar with AngularJS, you should be good
to skip this section and move on to the next section.

 As mentioned earlier, AngularJS is an MVW framework. That is, Model-View-
Whatever. Effectively we can use AngularJS to implement Model-View-Controller or
Model-View-View-Model patterns. In either case a model (or view model) is in the
browser. It is a JSON object, which could be bound to a view or an HTML template. A
property in the model JSON object could be bound to a control like text field, drop-down,
radio button, and so on.

 Figure 2-3. Code samples folder structure

CHAPTER 2 ■ GETTING STARTED

15

 Data Binding
 AngularJS supports two-way data binding. A change made to the model is updated in the
view. If view makes changes, they are updated in the model.

 Consider the following sample. It has a text field and a label. A model object
 aModelObject is bound with a text field and a label in “strong” HTML element. Curly braces
are used for writing the value of an object or an expression directly in HTML. Using a
directive ng-init , we initialize the variable aModelObject with an initial value. We use another
directive ng-model for binding a value with an HTML element, in this case an input tag.

 <div ng-app>

 <input type="text" ng-model="aModelObject">
 <div>
 {{aModelObject}}
 </div>
 </div>

 Initially, the text field and the label show “Initial Value” as they are bound to the
model object (aModelObject). See Figure 2-4 .

 As we change value in the text field (change triggered in the UI), the model object is
updated. And hence, the label shows the new value. See Figure 2-5 .

 Figure 2-4. Initial value as the controller loads

 Figure 2-5. As user edits the field, the label is udpated

CHAPTER 2 ■ GETTING STARTED

16

 Directive
 AngularJS directives allow creating custom HTML elements, attributes, comments, and
CSS classes. In the preceding example, we used three built-in directives.

 1. ng-app: Used for initializing the AngularJS application.

 2. ng-init: Used for initializing a variable or model object.

 3. ng-model: Used for binding model and view.

 There are many built-in directives, and we can create custom directives specific to an
application. Explore more about directives at docs.angularjs.org/guide/directive.

 ■ Note All built-in directives are prefixed with ng-.

 AngularJS Module
 Logical units in AngularJS app could be grouped together to create a module. Every
application bootstraps with one module. All other modules would be its dependencies or
dependencies of dependencies.

 Create a module using the following application programming interface (API).

 var myModule = angular.module("sampleApp",["module1", "module2"]);

 Find out more about modules at https://docs.angularjs.org/guide/module .

 DI
 DI helps with loose coupling among code units, functions, and objects. AngularJS uses
DI quite effectively. The following are some of the code artifacts we could create in
AngularJS:

 1. Service

 2. Factory

 3. Provider

 4. Value

 5. Constant

 6. Controller

 7. Filter

 In an example, a service could be injected in a controller or another service or a
factory. During this process, AnguarJS ensures that a given object is ready for use and
that API or functions on the object may be invoked. For example, every controller needs
 $scope object injected. Variables and objects on $scope are accessible in the HTML view.

https://docs.angularjs.org/guide/module

CHAPTER 2 ■ GETTING STARTED

17

 Controller
 It binds view (HTML template) and model objects created in JavaScript together. In the
earlier example, we initialized and used a model variable in HTML. It might work for
simple flags. However, for complex data representations, which could also be obtained
from a server-side API, we need to use JavaScript code.

 A controller could be a JavaScript function. Create a controller using the following API.

 myModule.controller("firstController", function($scope){
 $scope.title = "Select a City";
 $scope.cities = ["San Francisco", "New York", "Bengaluru",
"Mumbai", "Hyderabad"];
 });

 Here the first parameter is used as name of the controller. The controller definition is
the second parameter, a callback function. This function has been injected with a scope
object, $scope.

 Scope ($scope) provides context and is used to hold model objects. A JavaScript
variable or an object could be set on scope. It will be available to use on view or HTML
template. In this example, title could be used in associated HTML template.

 Find out more about controllers at https://docs.angularjs.org/guide/controller.

 View / HTML template
 HTML templates (markup) renders the view or the UI. The user interacts with the
elements in the view. We use various AngularJS directives and filters for providing
additional power and functionality to HTML.

 Consider the following code and explanation of the HTML template.

 <div ng-app="sampleApp">
 <div ng-controller="firstController">
 <h2>{{title}}</h2>
 <select name="dpCities" id="dpCities" ng-model="selectedCity" ng-

options="city for city in cities"></select>
 </div>
 </div>

 1. As for the earlier sample, use ng-app to bootstrap Angular.
Here we specify the module name. Hence, it is the main or
root module. All other modules are dependencies of this
module or dependencies of dependencies.

 2. Use a directive ng-controller and set the context of controller
within a div tag.

 3. The title is shown as an h2 element. “title” is a variable on
scope bound on the UI as a label.

https://docs.angularjs.org/guide/controller

CHAPTER 2 ■ GETTING STARTED

18

 4. Notice the select element with ng-options directive. The
controller’s scope has list of cities. It is being set to the drop-
down using the ng-options directive. The selected value will
bind to a variable selectedCity .

 Services
 Services are reusable code artifacts in AngularJS. They are singleton objects and maintain
state once the application bootstraps.

 In an example, code to make HTTP API calls is encapsulated in a built-in service
called $http.

 ■ Note All built-in services in AngularJS are prefixed with $

 We can create our own services using the following API. Consider the following code.

 myModule.service("sampleService", function(){
 // sample service definition.
 });

 The service () API creates a new service. The first parameter is the service name. The
second parameter is a callback function with definition of the service.

 The “sampleService” could be used anywhere in the module (and in other modules
with the current module as a dependency).

 Provider
 A provider is very similar to service. In fact, a service is a type of provider. We create
a provider in a special case, which is a function or JSON object required while
bootstrapping the module.

 AngularJS module has an API “config,” which accepts a callback function. It is
invoked only once, while bootstrapping the application (as the browser loads the app).

 A provider is a specialized object which could be injected/used in a config function.
A provider is expected to have a $get function. When a provider is injected/used in
another service or a controller, only the code in $get is exposed. The $get function is a
factory. It is expected to return an object (or a function) that could be used in a service.

 However, while it is used in a config function, API (functions) and fields on “this”
object could be used.

 Consider the following sample. It defines a provider with a function on this object
and $get factory function.

 myModule.provider("aSample", function(){
 this.aProviderFunction = function(){ // This could be invoked directly

in a config function
 return "Provider Function";
 };

CHAPTER 2 ■ GETTING STARTED

19

 this.$get = function(){ // This is used in a factory, service, or
controller.

 console.log("$get invoked. A factory function");
 return this.aProviderFunction;
 };
 });

 When the provider is injected into a controller, $get is invoked. In the current sample,
it prints “$get invoked. A factory function.”

 As mentioned earlier, the $get function acts as a factory. It returns a function for use
in the controller.

 // Provider injected in the controller.
myModule.controller("sampleController", function($scope, aSample){
 console.log(aSample()); // use the function returned by $get
 })

 When it is injected into config function, whole provider object and its API are
accessible. Consider the following code. As we call aProviderFunction() , it prints the
returned string, “Provider Function” on console.

 myModule.config(function(aSampleProvider){
 console.log(aSampleProvider.aProviderFunction());
 });

 Learn more about providers here: https://docs.angularjs.org/guide/providers.

 Making the Code Minification Safe
 Unlike function parameters, objects may be injected in any order. The object is identified
by its name. When the JS is minified, the variables are renamed and DI no longer works.
The following syntax solves this problem. It injects an object using its name as a string.

 Here is the syntax we used earlier.

 myModule.controller("firstController", function($scope, aSample){
 // Controller definition
 });

 To make it minification safe, use the following array syntax.

 myModule.controller("firstController", ["$scope","aSample",function(scope,
sample){
 // Controller definition
 });

 Notice parameters on the function that are named scope and sample. They could be
named anything now. DI uses string values provided before the function. As the string
values are untouched during DI, it is minification safe. DI will not break with minified
code as well.

 Learn more about DI here: https://docs.angularjs.org/guide/di.

https://docs.angularjs.org/guide/providers
https://docs.angularjs.org/guide/di

CHAPTER 2 ■ GETTING STARTED

20

 Pakage Managers and JavaScript Modules
 Setup Node Package Manager - NPM
 NPM is a popular package manager. Many open source developer tools, JavaScript
libraries, and frameworks are available as NPM packages. Hence, it has become a one-
stop source for downloading such packages.

 A package manager downloads and installs a given package and all of its
dependencies at once. As a consumer of the package, we do not need to keep track of
dependencies or separately download or install them.

 NPM is part of a larger NodeJS offering. Download the node installer from nodejs.
org. For the purposes of this book, we will primarily be using NPM.

 You can install a package by running the following command:

 npm install <package name>

 It downloads the package (and its dependencies) to node_modules folder in the
current directory. As an option, -g helps install a package globally on the machine. Use
this option to install packages that are environment specific and are not directly related to
the code base; for example, task runners, tools, web servers, and so on. This helps make
project folder self-contained and not polluted with things beyond the application.

 Often, we need elevated access to run the npm install with -g option. Hence use sudo
on a Mac or Linux machine (that is sudo npm install -g <package name>). On a Windows
machine, run command prompt as administrator.

 The preceding section “Get Started with Angular Material” explains the easiest
implementation for referencing required JavaScript libraries and writing the JavaScript
code. The following are more sophisticated and effectively help to set up a medium- to
large-scale JavaScript project.

 Download Angular Material using NPM
 Angular Material is available as an NPM package. To get started with NPM, create a new
directory and open a command prompt or terminal at this directory. Install Angular
Material with the following commands:

 npm install angular-material

 It downloads Angular Material and its dependencies to node_modules
directory.

 ■ Note Creating an NPM package for the sample will help maintain repository and
dependencies in one place. This may not be a necessity for the unsophisticated sample we are
working on. However, this process saves time and energy for a big and complex code repository.

CHAPTER 2 ■ GETTING STARTED

21

 npm init
 (Initializes an NPM package)

 npm install angular-material –save
 (Saves Angular Material as dependency of current project in package.json, so
that next time just running npm install downloads all given packages)

 Reference scripts

 Create an index.html in the newly created directory (at the level of node_modules).
Reference the downloaded scripts. References could be script tags (and link tags) in
index.html or any module loader like RequireJS (Asynchronous Module Definition - AMD
implementation), CommonJS, and so on.

 Let us use the simplistic approach and include scripts in index.html

 <link rel="stylesheet" type="text/css" href="node_modules/angular-material/
angular-material.min.css">

 <script type="text/javascript" src="node_modules/angular/angular.min.js"></script>

 <script type="text/javascript" src="node_modules/angular-animate/angular-
animate.min.js"></script>

 <script type="text/javascript" src="node_modules/angular-aria/angular-aria.
min.js"></script>

 <script type="text/javascript" src="node_modules/angular-material/angular-
material.min.js"></script>

 Download Angular Material using Bower
 Bower is a popular package manager for front-end artifacts. It is optimized for front-end
libraries and scripts. It is lightweight due to its flat dependency tree. While using ES5
(current JavaScript version at the time of writing this book), bower is a good package
manager to use for front-end libraries.

 Install bower globally on your machine with NPM. This is a one-time activity.
Subsequently, as we download more packages using bower on the same machine,
running this step will not be required again.

 npm install -g bower

 To avoid running into access issues, consider running the preceding command with
sudo (that is, sudo npm install -g bower) on a Mac or Linux machine. Run the command
prompt as administrator on a Windows machine.

 Then use bower to download Angular Material.

 bower install angular-material

CHAPTER 2 ■ GETTING STARTED

22

 It downloads the entire Angular Material library and all of its dependencies under
bower_components folder. See Figure 2-6 .

 ■ Note Creating a bower package for the sample will help maintain repository and
dependencies at one place. This may not be a necessity for the unsophisticated sample
we are working on. However, this process is a must and saves time and energy for a big,
complex code repository.

 bower init
 (Initializes a bower package)

 bower install angular-material –save
 (Saves Angular Material as dependency of current project in bower.json, so
that next time just running bower install downloads all needed packages)

 Reference scripts

 Create an index.html at root folder of the project. Reference the downloaded scripts in
bower_components. References could be script tags (and link tags) in index.html or any
module loader like RequireJS (AMD implementation), CommonJS, and so on.

 Let us begin with the simplistic approach and include scripts in index.html.

 Figure 2-6. Angular Material and its dependencies downloaded with bower

CHAPTER 2 ■ GETTING STARTED

23

 <link rel="stylesheet" type="text/css" href="bower_components/angular-
material/angular-material.min.css">

 <script type="text/javascript" src="bower_components/angular/angular.min.
js"></script>

 <script type="text/javascript" src="bower_components/angular-animate/
angular-animate.min.js"></script>

 <script type="text/javascript" src="bower_components/angular-aria/angular-
aria.min.js"></script>

 <script type="text/javascript" src="bower_components/angular-material/
angular-material.min.js"></script>

 SystemJS & JSPM (JavaScript Package Manager)
 SystemJS is a good module loader until browsers support the ES2015 way of importing
them. This is one step in the right direction. As browsers start supporting new format,
SystemJS gets out of the way easily. SystemJS understands existing JavaScript module
loaders like RequireJS or CommonJS and of course the ES6 module loader.

 JSPM is a package manager for SystemJS-based system. It is a node package . Install it
with the following command.

 npm install jspm - g

 ■ Note This is a one-time command that installs JSPM globally on the machine (with
-g option). For future package installations, this step need not run again.

 However, JSPM could install locally to the project. Replace -g option with --save-dev
option to save it as a Dev dependency of the project’s package.

 To install Angular Material and dependencies , use the following command.

 jspm install angular-material

 ■ Note We could configure to use Babel, Traceur, or TypeScript transpilers. While setting
up the package for the first time, JSPM will prompt to choose a transpiler.

 Install CSS plug-in for loading CSS files .

 jspm install css

CHAPTER 2 ■ GETTING STARTED

24

 Code “Hello World —Angular Material”

 Add references to SystemJS and its configuration. JSPM install command downloads
packages to jspm_packages folder. It downloads SystemJS as well, which supports
multiple module formats and allows loading them.

 <script src="./jspm_packages/system.js" type="text/javascript"></script>
 <script src="./config.js" type="text/javascript"></script>

 The following script in Index.html will load main file (root)—main.js in app folder.
Every other file that loads is a dependency of this file or dependencies of its dependencies.

 Import function loads main file and its dependencies asynchronously. It returns a
promise, which is resolved once all files load.

 <script type="text/javascript">
 System
 .import('app/main')
 .then(() => console.log("Angular Material Sample loaded
successfully"))
 </script>

 ■ Note The then function called on resolving the promise uses arrow function syntax of
ES2015.

 Config file has reference paths to modules and script files :

 "angular": "jspm_packages/github/angular/bower-angular@1.5.0",
 "angular-animate": "jspm_packages/github/angular/bower-angular-
animate@1.5.0",
 "angular-aria": "jspm_packages/github/angular/bower-angular-aria@1.5.0",
 "angular-material": "jspm_packages/github/angular/bower-material@1.0.5",

 Import these scripts in main.js. Here we are using ES6 syntax. It is transpiled to ES5
format by Babel or Traceur.

 import 'angular';
 import 'angular-animate';
 import 'angular-aria';
 import 'angular-material';

 Controller : export the function and register it with AngularJS as a controller. Similar
to the previous example, it has a single data element on $scope, message.

 controller.js

 export default function($scope){
 $scope.message = "Hello World";
 };

CHAPTER 2 ■ GETTING STARTED

25

 “ export default ” is ES2015 syntax for modules. The given function is exported and
available for all that import the current module.

 Consider main.js or root file that acts as starting point to the application in
JavaScript.

 main.js

 import 'github:angular/bower-material@1.0.5/angular-material.min.css!';
 import 'angular';
 import 'angular-animate';
 import 'angular-aria';
 import 'angular-material';
 import controller from './controllers';

 angular.module('es6Sample', ['ngMaterial'])
 .controller('firstController', controller);

 This file imports all of its dependencies. Each dependency might have more
 dependencies .

 As for the ES5 sample, create a new Angular module, es6Sample. Add ngMaterial
dependency for Angular Material services and directives. Import controller function from
controllers.js and register with the module.

 ■ Note Angular Material CSS file loads with the help of CSS plug-in.

 Limit Scope Using Closure
 Consider the following coding practice . If you are not using any module loader in
JavaScript, this is a good alternative. For the purposes of this book, it is only for reference.
The code sample in the “Bower” section of Chapter 2 uses this approach.

 The start point for the app is main.js , and controller.js has the first sample controller.
Consider code for the following two files. In this sample, a coding style that helps to avoid
creating global variables and objects is shown. A global variable could be accessed across
the application, causing unforeseen behavior and hence resulting in bugs. We limit the
scope by writing code in a self-executing function: self-executing because code needs to
run as soon as script loads. All variables declared in it have local scope, accessible only
within the function.

 main.js

 // ngMaterialSample is an Angular module used across the application. Hence
it is intentionally a global variable.
 var ngMaterialSample = (function(angularRef){
 'use strict';
 return angularRef.module('ngMaterialSample', ['ngMaterial']);
 })(angular);

http://dx.doi.org/10.1007/978-1-4842-2190-7_2

CHAPTER 2 ■ GETTING STARTED

26

 Here, angular (comes from angular.min.js script) is passed-in as a parameter. We
create a new Angular module ngMaterialSample . It has dependency on ngMaterial . This
will enable using Angular Material directives and services in the application.

 controller.js

 (function(app){
 'use strict';

 app.controller("sampleController", function($scope){
 $scope.title = "Welcome to Angular Material";
 });

 })(ngMaterialSample); // ngMaterialSample is the module object to use for
creating a controller.

 In controller.js (it should load after main.js), pass-in ngMaterialSample global object
as a parameter. We create a controller in module/self-executing function. Controller has
one data element, title on Scope .

 Include the following scripts in index.html

 <script type="text/javascript" src="app/main.js"></script>
 <script type="text/javascript" src="app/controller.js"></script>

 Index.html - template to show title :

 <body ng-app="ngMaterialSample">
 <div ng-controller="sampleController" >
 <md-toolbar>
 <h2>{{title}}</h2>
 </md-toolbar>
 </div>
 </body>

 ng-app is set on body tag. The ngMaterialSample module bootstraps here.
Controllers (and other artifacts) of this module could be used on any child elements of
body tag. The sampleController is scoped to div element.

 md-toolbar is an element/directive in ngMaterial module. ngMaterial is referenced
as a dependent module for ngMaterialSample . The directive helps render Material
Design–style toolbar on the page.

 ■ Note In AngularJS, a directive helps create custom DOM elements, attributes, CSS
classes, or comments. More often, with directives we can provide custom functionality to
HTML elements or attributes. There are many directives available out of the box with the
framework. We can create our own custom directives as well.

CHAPTER 2 ■ GETTING STARTED

27

 Notes on ES2015 (Also Called ES6)
 Everyone in the JavaScript world is excited about ES2015 . It has great language features,
inbuilt module support, classes, arrow functions, better variable scope management, and
so on.

 However, we are not fully there yet (at least at the time of writing this book). Browser
support is growing, but it will be a while before all current browsers run ES2015 out of the box.

 To start using ES2015 features on unsupported browsers, we could use transpilers
like Traceur, Babel, or TypeScript.

 Angular Material features demonstrated in this book are based on Angular 1.x
version. It is still based on ES5 JavaScript. Angular2 can fully take advantage of ES2015
(ES6). Having said that, we can code in ES2015 today. Use transpilers and convert it to
ES5 so that browsers can run the code.

 Summary
 This chapter aims to provide various options to get started with Angular Material. It not
only focuses on ways to reference Angular Material and its dependencies in the project
but also helps set up the project. It aims to look beyond samples demonstrated.

 At the time of writing this book (2016), a JavaScript project should brace itself for
migrating to ES2015 (ES6). The language features in the newer version of JavaScript are
too good to ignore. With such migration in the context, SystemJS and JSPM fit the bill.
Create your Angular Material project with SystemJS and JSPM the approach described in
the chapter. SystemJS supports multiple module formats. AMD (RequireJS) and Node-
style CommonJS are today’s famous module systems. ES2015 has come up with new
syntax and features for module loading. SystemJS supports these module formats.

 If you are planning on a small-scale Angular Material project, it is possible that such
a setup could be overwhelming. Get started with Google CDN or the bower approach. It is
easy to begin and saves time up front.

 References
 For live server NPM package, see https://www.npmjs.com/package/live-server
 For Serve NPM package, see https://www.npmjs.com/package/serve

https://www.npmjs.com/package/live-server
https://www.npmjs.com/package/serve

29© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_3

 CHAPTER 3

 Layout Management

 In this chapter, we will explore layout management and styling aspects. The focus of this
chapter will be markup or templates. We will also explore aspects of responsive design
and adjusting view and screen content based on screen resolution.

 For the project setup, continue to use a sample created in the previous chapter. Of
the multiple approaches detailed, it does not matter which you followed.

 Flexbox
 Angular Material uses CSS3 Flexbox for responsive design. In the HTML markup,
combining Angular Material directives and Flexbox CSS we can build rich UI. This
combination (Angular Material & Flexbox) distinguishes between layout management
and styling. HTML attributes for layouts and CSS for styles helps with clear separation of
concerns. The Angular Material library provides attribute directives, which are primarily
used for layout management.

 Layout
 With Angular Material, layout is one of the basic attributes required for layout
management. It is one of the many directives provided by the framework. It transforms to
apply Flexbox CSS classes while rendering the HTML page.

 We can provide two possible values to the directive (attribute): “ row” and “ column .”
Any element with a row layout applied on it will align child elements horizontally. It will
behave as a single row. Similarly, the element with the layout value column will align
child elements vertically. We can chain these layouts to get the desired layout structure.

 ■ Note In a later chapter, Angular Material–styled input elements (input text boxes, drop-
downs, etc.) have been discussed. For simplicity and focus on layouts, this chapter uses
basic HTML input elements.

CHAPTER 3 ■ LAYOUT MANAGEMENT

30

 Consider the following code:

 <div layout="column" >
 <textarea rows="5" cols="50" placeholder="text field 1"></textarea>
 <textarea rows="5" cols="50" placeholder="text field 2"></textarea>
 </div>

 This will result in two text areas aligned vertically, in a column. See Figure 3-1 .

 Change the layout value to row , will and you will see the text fields aligned next to
each other—horizontally, in one row. See Figure 3-2 .

 <div layout="row" >
 <textarea rows="5" cols="50" placeholder="text field 1"></textarea>
 <textarea rows="5" cols="50" placeholder="text field 2"></textarea>
 </div>

 Use a combination of layout options to get desired results. For example, align title on
top and form fields under it. Column has two elements: title (h2) and the form (div). Form
is a row, and it in turn has more elements like labels and input boxes. See Figure 3-3 .

 <div layout="column" >
 <h2>Welcome to Angular Material Sample</h2>
 <div layout="row">
 <strong flex="15">Enter first name
 <input flex="20" type="text"/>
 </div>
 </div>

 Figure 3-1. Vertically aligned when layout is set to the value “column”

 Figure 3-2. Horizontally aligned when layout is set to the value “row”

CHAPTER 3 ■ LAYOUT MANAGEMENT

31

 Layout-Align
 Manages horizontal and vertical alignment of child elements. It works in combination
with layout a ttribute value. Possible values are start , center , and end . Provide two values.
Depending on layout, the first value is either horizontal or vertical. That is, if layout is
column, then the first value of layout-align is vertical, and the second value is horizontal.
It flips if layout is row. See Figure 3-4 and Figure 3-5 .

 Figure 3-3. A layout arrangement

 Figure 3-4. layout=“column” layout-align=“start end”

 Figure 3-5. layout=“row” layout-align=“start end”

 Consider the following sample, aligning child element to bottom-right.

 <div layout=" column " style="min-height: 500px; background-color: skyblue"
 layout-align="end end" >

 </div>

CHAPTER 3 ■ LAYOUT MANAGEMENT

32

 ■ Note Consider using space-around or space-between values for the first parameter.
It is applied horizontally or vertically based on layout value.

 More Layout Attributes

 layout-padding Provides padding around the element

 layout-fill Fills the available space in the container

 layout-wrap/layout-nowrap Control wrapping content of an element to next line

 layout-margin Provides margin for the element

 Flex
 Flex lets content adjust to the layout container element (a parent element with layout
value row or column). Content can grow and shrink to fit the available space. Specify
required behavior on the flex attribute. See Figure 3-6 for the result.

 Consider the following code. This demonstrates how flex fills available space, based
on a given container's layout.

 <!-- Following row has two text fields. Both together fill the row -->
 <div layout="row" layout-padding>
 <input flex type="text" placeholder="Text box 1 in a row"></input>
 <input flex type="text" placeholder="Text box 2 in a row"></input>
 </div>

 <!-- Following row has just one text field. Whole row is taken by the text
field-->
 <div layout="row" layout-padding>
 <input flex type="text" placeholder="Only text box in a row">
</input>
 </div>

 <!-- Here container is a column. Hence second element moves to the next row
in the column-->
 <div layout="column" layout-padding>
 <input flex type="text" placeholder="Text field 1 in a column">
</input>
 <input flex type="text" placeholder="Text field 2 in a column">
</input>
 </div>

CHAPTER 3 ■ LAYOUT MANAGEMENT

33

 To the flex attribute (directive), you can provide a numeric or a set of predefined
values. The following are the possible flex values.

 flex Merely specifying flex attribute on an element allows it to grow or
shrink as needed.

 none Do not grow or shrink.

 nogrow Do not grow. However, can shrink.

 noshrink Do not shrink. However, can grow.

 initial Can shrink. Set to initial height and width.

 auto Can grow and shrink. Set to initial height and width

 Numeric values Numbers between 0 and 100 (the value is considered to be a
percentage). Only multiples of 5 and values 33 and 66 are allowed.

 Consider the following code sample. A text field for a person's name is expected to
take less space than a complete address. Use a smaller number like 33 for name. Use 66
for the address. See Figure 3-7 .

 Figure 3-6. Flex streching and skewing with available space in the layout

 Figure 3-7. Using flex values 33 and 66

 ■ Note On the HTML element, if you apply flex=“33”, it results in 100/3. And flex=“66”
results in 200/3. Two elements with flex=“33” and flex =“66” together will take up 100%
space. Sum of the two numbers is 100.

 <div layout="row" layout-padding>
 <input flex="33" type="text" placeholder="Provide full name">
</input>
 <input flex="66" type="text" placeholder="Provide complete
address"></input>
 </div>

CHAPTER 3 ■ LAYOUT MANAGEMENT

34

 ■ Note The preceding specified percentages and relative space each control occupies
are the same even when you resize the window (or view the page on a smaller resolution
screen). The layout remains similar.

 When you need controls to adapt and move around, so that they are usable on a
smaller screen (mobile phones and tablets), CSS breakpoint alias in combination with
Angular Material directives could be used. We will look at them later in the chapter.

 Responsive Design
 As described in previous chapter, web front-end is no more about developing for desktop
or laptop screens. Applications need to render on much smaller screens like tablets and
mobile phones. Of late, many devices are touch enabled. It is an important factor while
presenting and interacting with the content.

 Next few chapters explore the following scenarios, challenges, and solutions.

 Real Estate
 Imagine a big table of data, half a dozen columns and tens of rows. It provides snapshot of
information on a laptop screen. It is quite useful to see the big picture and take full advantage
of the available real estate. However, the same table on a mobile phone is not so useful. The
user cannot read all the information at one shot. Columns and cells will not be legible.

 The table need to realign and resize to show in one column. Show only the important
information and hide nitty-gritty details. When user taps on the cell and navigates to
details screen, provide more information.

 Feedback for User Actions
 On mobile devices, feedback for user actions like tap (click) on a button becomes even more
important. The user is directly interacting with the content. The user is touching the content.
Feedback that a button was pressed (with a tap) needs to be instantaneous and apparent.

 Screen transitions between views need to be intuitive for the user. Imagine that the
user tapped on a Create Document button. If the action results in navigation to a new
form screen, it needs to be obvious for the user. Animation should depict that tapping on
the button is resulting in transition.

 ■ Note Do not attempt to solve user feedback with ngTouch and Ionic Framework library
functions in Angular Material. Version 1.x has issues integrating with those libraries. It might
change in the future. Make sure to understand fully before attempting to integrate with the
two libraries.

CHAPTER 3 ■ LAYOUT MANAGEMENT

35

 Breakpoints
 Angular Material has CSS breakpoint alias defined for certain screen resolutions
(primarily screen width). It helps define layout, alignment, and other CSS behavior for a
given screen resolution. This is a powerful feature for responsive UI development.

 Use breakpoint alias in combination with other Angular Material directives and
attributes. Examples are provided later in the chapter.

 The following are the default breakpoints provided by Angular Material.

 Breakpoint Alias Resolution Description

 xs Screen width less than 600
pixels (not equal to)

 Very small screen. Most mobile phone
screens come under this category.

 gt-xs Any screen with width
equal to or above 600px

 Greater than extra-small. Use this
breakpoint when we need to code
for all non-mobile phone screens.
Eliminates mobile phone screens.
Include everything ranging from
tablets, laptops, desktops, or even
TVs.

 sm Screen width ranging from
600px (including 600px) to
960px (excluding)

 Small screen. This breakpoint
addresses most tablet screens in
portrait mode. Often a tablet tilted
in landscape mode is greater than
small.

 gt-sm Screen width greater than
or equal to 960px

 Greater than small. Include all
devices greater than small. This
excludes tablets in portrait mode and
mobile phones. It includes tables
in landscape mode, low-resolution
laptop/desktop screens, high-
resolution laptop/desktop screens,
and even high-definition TVs.

 md Screen width ranging from
960px (including) to 1280px
(excluding)

 Medium-size screen. Most laptops in
landscape mode and low-resolution
laptops/desktops come under this
category.

 gt-md Screen width greater than
or equal to 1280px

 Greater than medium. Excludes
tablets (in either landscape or
portrait mode), low-resolution
laptop/desktop screens. This
breakpoint addresses high-resolution
laptop/desktop screens and TVs.

 lg Screen width ranging from
1280 (including) to 1920px
(excluding)

 Large screens. This breakpoint
addresses most laptop/desktop
screens.

(continued)

CHAPTER 3 ■ LAYOUT MANAGEMENT

36

 Breakpoint Alias Resolution Description

 gt-lg or xl Screen width greater than
or equal to 1920px

 Greater than large screens or
extra-large screens. This breakpoint
excludes most laptop, tablet, and
mobile phone screens. All super-
high-resolution desktop/laptop
screens and high-definition TV
screens come under this category.

 Use breakpoints along with any layout/alignment directives or attributes (layout,
flex, etc.). Suffix breakpoint alias (sm, gt-sm, etc.) to the directive name. Most directives
have implementation to support breakpoints. For building responsive UI, built-in
breakpoints are quite useful.

 Consider the following code. Among the three div elements, the first and last are for
providing margins to the page. Margins collapse on a medium or smaller screen. That
allows content to take complete available space on a smaller screen. See Figures 3-8 and
 3-9 for results. Read comments for details on code.

 <div layout="row" flex layout-padding>
 <!-- flex-gt-md=10. Flex 10% on a greater than medium screen -->
 <div flex-gt-md="10" ></div>

 <div flex-gt-md="80" flex>
 <!-- flex fills available space by default. For a screen greater
than medium fill up to 80% -->
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 <!-- Saving space. Can have paragraphs of information here.
-->
 </div>

 <!-- flex-gt-md=10. Flex 10% on a greater than medium screen -->
 <div flex-gt-md="10 "></div>
 </div>

 Figure 3-8. Large screen (gt-md)

CHAPTER 3 ■ LAYOUT MANAGEMENT

37

 On a small screen, emulating screen width of 414px, left and right div elements
collapse. Space around the paragraph of text is with layout-padding directive. It stretches
to 100% of available screen width (flex).

 ■ Note At the time of writing this book, layout-padding and layout-margin do not support
breakpoint alias. Expect enhancement to support alias with the directives in future releases.
Here is the GitHub issue tracking progress: https://github.com/angular/material/
issues/1984

 Show/Hide
 Use show or hide directives to display or hide elements in markup. It is similar to ng-show
or ng-hide. However, show or hide could be used with breakpoint alias.

 Consider the following code:

 <div layout="row" layout-padding>
 <!-- show only on screens greater than small -->
 <div show-gt-sm hide>

 </div>
 <div>
 AngularJS

 Figure 3-9. Small screen (emulated to 414px width)

https://github.com/angular/material/issues/1984
https://github.com/angular/material/issues/1984

CHAPTER 3 ■ LAYOUT MANAGEMENT

38

 <div>Superheroic JavaScript framework</div>
 <div>Website: angularjs.org</div>
 <div>Twitter: @angularjs</div>
 </div>
 </div>

 The element is laid out as a row. The first cell on the left shows an image. On a
smaller screen, hide the image div element. Show on all screens larger than small
(>= 960px). Always show the second element. It shows textual information that fits even a
small screen. See Figures 3-10 and 3-11 .

 Responsive Layout
 Another regular use case would be to fill page horizontally (grow the row) on bigger
screens. On a mobile screen with smaller width, skew the page to show content in a
column.

 Consider the following code: it is laid out as a row on gt-sm breakpoint (greater than
small, which is a screen at least 960px wide). On the other hand, it is skewed to a column
on smaller screens. See Figures 3-12 and 3-13 .

 <div layout="column" layout-gt-sm="row" layout-padding>
 <div>
 AngularJS
 <div>Superheroic JavaScript framework</div>
 <div>Website: angularjs.org</div>

 Figure 3-10. On a screen gt-sm

 Figure 3-11. On an xs (extra-small) screen (emulated to a mobile phone)

CHAPTER 3 ■ LAYOUT MANAGEMENT

39

 <div>Twitter: @angularjs</div>
 </div>
 <div>
 Angular Material
 <div>AngularJS and Material Design</div>
 <div>material.angularjs.org</div>
 <div>Twitter: @angularjs</div>
 </div>
 </div>

 Summary
 This chapter detailed out basics of layout management and responsive design in Angular
Material. The focus of this chapter has been HTML markup. We used various attribute
directives for layout management.

 Angular Material uses CSS Flexbox. It encapsulates layout-related CSS classes in
attribute directives. As a developer, while managing layout, we use Angular Material API
and provide values for attributes.

 Figure 3-13. On an emulated small screen

 Figure 3-12. On a screen gt-sm

CHAPTER 3 ■ LAYOUT MANAGEMENT

40

 Angular Material achieves better separation of concerns by using attributes and
values in an HTML element for layout and CSS classes for styling. Under the hood, it
transforms given directive values to elements with CSS classes applied.

 The next set of chapters will focus on sophisticated code samples. We explore
Angular Material services and directives.

 References
 See Angular Material official documentation at https://material.angularjs.org/

latest/layout/children
 For information on Flexbox styles for layout features, refer to the following URL:

 https://gist.github.com/ThomasBurleson/88152ec57c9133dec57a
 For issue status on layout margin and layout padding support for breakpoints, refer to the

following: https://github.com/angular/material/issues/1984
 For AngularJS documentation and logo (used in samples): https://angularjs.org/

https://material.angularjs.org/latest/layout/children
https://material.angularjs.org/latest/layout/children
https://gist.github.com/ThomasBurleson/88152ec57c9133dec57a
https://github.com/angular/material/issues/1984
https://angularjs.org/

41© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_4

 CHAPTER 4

 Navigation & Container
Elements

 This chapter will detail some more Angular Material directives. We will primarily deal
with navigation and container elements . This chapter helps build the skeleton for the
application.

 What are directives ? Reiterating an AngularJS concept, directives help create new
HTML elements.

 In HTML, we use various elements (or tags) for describing, formatting, and
managing the behavior of the content on the web page. For example, elements like h1
and h2 define headers in the web page. A tag "strong" applies bold style on text, useful
for emphasis. Use input elements for various UI controls and components like buttons,
textboxes, drop-downs, and so on.

 If we need to create new elements in addition to what we already have, directives are
the way to go in AngularJS. This is one place to manipulate DOM. From the best-practices
point of view, directives could access and manipulate DOM directly. (It is not preferred to
directly deal with DOM elsewhere.)

 Many times, they are packaged as UI components, which could be reused across the
application.

 What are services ? In AngularJS, Services are reusable JavaScript objects. They can
be injected into controllers and other services.

 ■ Note All Material Design directives are prefixed md- . Services are prefixed $md .

 Content (md-content)
 This directive is a container element for workspaces in the application. The content this
directive holds could be text, images, and/or other controls user interacts with. It applies
styles that allow content to scroll. Optionally add layout-padding attribute to the directive
for padding a little bit of empty space around margins.

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

42

 Usage
 <md-content layout-padding>
 Welcome, This is the scrollable content on the workspace.
 s...
 </md-content>

 ■ Note This directive makes content inside scrollable. If it is nested with other scroll-
enabled directives, it could create multiple scroll bars on the page (which is a bad user
experience). Hence it is advised to use md-content as a sibling of other containers and not
nest them.

 Toolbar (md-toolbar)
 Often, the toolbar presents the page title. It describes the purpose of the page or screen. It
could have one or more page-level actions.

 Usage
 The following is a very basic usage of the directive. See Figure 4-1 .

 <md-toolbar layout-padding class="md-toolbar-tools">
 <h2>Page Title</h2>
 </md-toolbar>

 Figure 4-1. Basic toolbar

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

43

 Let us now explore more toolbar features .

 1. Apply CSS class md-tall for larger toolbar as the page loads.
The other possible value is md-medium-tall .

 2. Use attribute md-scroll-shrink="true". The user scrolling the
page will collapse the title bar and allow more workspace to
be seen.

 3. Optionally, use CSS class md-toolbar-tools-bottom for better
scroll experience. It vertically aligns titles and buttons to the
bottom of the toolbar. As user scrolls up, blank space on the
toolbar collapses, leaving the title and actions still visible.

 4. We may also use CSS classes md-warn or md-accent for
showing warning or accent colors for the toolbar. Chose them
such that if you are alerting the user, you may use warn color.

 5. Group all toolbar items under an element with CSS class
“md-toolbar-tools”.

 Actions: Page-level actions take their place in the toolbar.

 6. Use a flex element with buttons followed by it, so that they are
aligned right. Use md-button directive for the Material Design
button.

 7. For icon buttons, use CSS class md-icon-but ton. This will
adjust the button to size of the icon. It won’t be wide like a text
button. Use md-ico n element (directive) in md-button.

 Here is the complete sample . See Figure 4-2 .

 <md-toolbar md-scroll-shrink="true" layout-padding class="md-tall md-
toolbar-tools-bottom">

 <div class="md-toolbar-tools">
 <md-button class="md-icon-button">
 <md-icon md-svg-src="/img/ic_menu_black_24px.svg"></md-icon>
 </md-button>
 <h2>Page Title</h2>

 <md-button>An Action</md-button>
 </div>
 </md-toolbar>

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

44

 ■ Note There are better ways to use the md-icon directive for using icons in the applications
(be it a button or not). A later Chapter 10 in the book details icons in Angular Material.

 Sidenav (md-sidenav)
 Sidenav, a navigation control, is often seen in mobile and desktop web applications. A typical
sidenav is used to provide a site-map. It lists actions and links to various functionalities in the
application. We could expand and collapse the sidenav on a need basis.

 Basic Usage

 <md-sidenav class="md-sidenav-left">
 <!-- toolbar specific markup goes here -->
 </md-sidenav>

 Notice md-sidenav-left CSS class. On the page, it aligns sidenav to the left. Use the
CSS class md-sidenav-right for it to align on the right.

 By default, the navbar will not show. Use attribute md-is-open="true" for it appear
straightaway. Attribute value could also be an expression that returns a Boolean.

 <md-sidenav md-is-open="true" class="md-sidenav-left">
 <md-toolbar layout-padding class="md-medium-tall">
 <h2 class="md-toolbar-tools">All Actions</h2>
 </md-toolbar>
 </md-sidenav>

 <md-content layout="row">
 <div layout-padding >
 Lorem ipsum
 ...
 </div>
 </md-content>

 Figure 4-2. A tall toolbar

http://dx.doi.org/10.1007/978-1-4842-2190-7_10

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

45

 In the samples so far, sidenav is in parallel to md-content . It has its own toolbar with a
title. Navbar appears on top of the content (like a menu) and hides if user clicks anywhere
in the workspace. Consider Figure 4-3 . Click anywhere on the text; it hides.

 Sidenav Along with the Content
 Consider using md-is-locked-open . It takes an expression as the input. When true, clicking
away (in the workspace) doesn’t close the sidenav. Preferably, make sidenav part of the
workspace. When locked open, it does not override the content and will show the sidenav
on the side, along with the content. See Figure 4-4 .

 Consider the following code snippet. As it is part of the workspace now, unlike the
earlier sample, it is preferred to be coded within the md-content . Also use row layout for
sidenav to appear in the content.

 <md-content layout="row">
 <md-sidenav md-is-locked-open="true" flex class="md-sidenav-left">
 <h4>side nav content</h4>
 </md-sidenav>

 Figure 4-3. Sidenav overlapping the page content

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

46

 <div layout-padding flex="80">
 Lorem ipsum
 ...
 </div>
 </md-content>

 Show/Hide Sidenav On Demand
 Another common scenario is to use the menu button on the top-left, clicking which will
 show/hide sidenav . Consider the following code snippet.

 <md-sidenav md-is-open="showLeftSidenav" class="md-sidenav-left">
 <md-toolbar layout-padding class="md-medium-tall">
 <h2 class="md-toolbar-tools">All Actions</h2>
 </md-toolbar>
 </md- sidenav>

 Notice that md-is-open is using a variable on scope, showLeftSidenav . Unlike the first
sample, it is dynamically showing or hiding sidenav. Consider the following controller code.

 $scope.showLeftSidenav = false;

 $scope.toggleLeftSidenav = function(){
 $scope.showLeftSidenav = !$scope.showLeftSidenav;
 };

 In the HTML template, the menu button in the toolbar calls (ng-click) the function
 toggleLeftSidenav . It flips current value. Shows if sidenav is hidden and or not. Here is the
code for menu button in the toolbar.

 <md-button class="md-icon-button" ng-click="toggleLeftSidenav()"
 <md-icon md-svg-src="/img/ic_menu_black_24px.svg"></md-icon>
 </md-button>

 Figure 4-4. Sidenav along with the page content

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

47

 Responsive —Show/Hide Sidenav Based on Screen Width
 Instead of opening or closing the sidenav upon the click of a menu button in the toolbar,
we may choose to dynamically decide by the screen size. If there is enough space for
sidenav, show it. On a smaller screen, hide it by default.

 Consider the following code. It uses a service $mdMedia , which evaluates media
query and returns true/false for a given screen size.

 <md-sidenav md-is-locked-open="$mdMedia('gt-sm') " flex="20" class="md-
sidenav-left" layout-padding>
 <h4>side nav content</h4>
 </md-sidenav>

 It shows the navbar for a screen greater than small (greater than 960px width).

 $md Sidenav Service
 $mdSidenav is another related service. A controller function could use API on the service.
The following is the API.

 1. It is possible to have multiple sidenavs on the page. In
the controller select a specific sidenav using the service
$mdSidenav(‘sidenavId1’).

 Provide id in the HTML markup, <md-sidenav md-
component-id=‘sidenavId1’ >

 2. $mdSidenav(‘sidenavId1’).open(): shows sidenav with id
sidenavId1.

 3. $mdSidenav(‘sidenavId1’).close(): collapses sidenav wih id
sidenavId1.

 ■ Note The open and close functions return a promise. The promise is resolved once the
respective action is complete. A promise allows asynchronously perform another action only
after open or close operation.

 4. $mdSidenav(‘sidenavId1’).isOpen(): returns true if sidenav is
open.

 5. $mdSidenav(‘sidenavId1’).isLockedOpen(): returns true if
sidenav is locked open.

 Tabs
 Tabs are one way of categorizing content on a page. See Figure 4-5 . They provide high-
level organization of view elements and an easy way to switch to and fro among them.
They create a sense of grouping. A logical unit of information, for example, text, images,
video, and so on, could be in a tab.

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

48

 The Angular Material component for tabs provides a subtle ripple effect as feedback
on click. It is easy to identify the selected tab. It also shows animation while switching
between tabs, which provides a sense of navigation.

 Angular Material tabs are built with the following directives.

 1. md-tabs : holds all tabs together.

 2. md-tab : each tab’s content and title are encapsulated in this
element/directive.

 3. md-tab-label : optional element. Useful if tab title is not
simple text and needs additional markup.

 4. md-tab-body : used for separation of title from tab’s content.
This element is mandatory only if md-tab-label is used. It
allows separation of tab content from the title.

 Usage
 The following is basic usage of tabs. We will make it more sophisticated by using many
other features of these directives.

 <md-content layout-padding flex>
 <md-tabs>
 <md-tab label="Tab-A">
 <h4>Welcome, This is the first tab !</h4>
 </md-tab>
 <md-tab label="Tab-B" >
 <h4>There you go, I stand second</h4>
 </md-tab>
 <md-tab label="Tab-C">
 <h4>At last, you got to me.</h4>
 </md-tab>
 </md-tabs>
 </md-content>

 Figure 4-5. Sample tabs

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

49

 Now, let us explore the md-tabs directive .

 1. md-selected: Use this attribute to select a different tab by
default. Provide tab index value (0 based). In the preceding
example, the following will select second tab.

 <md-tabs md-selected="1">

 2. md-stretch-tabs="always": will let tab titles take full
horizontal space. In the preceding example, the clickable area
for "tab-a", "tab-b", and so on stretches horizontally to take up
all available space. Other possible values are

 a. auto: stretched to take full width on a smaller screen like
mobile phone and tablet in portrait mode. It does not
stretch tabs on a mobile screen in landscape mode or a
desktop screen (greater screen width).

 b. never: will not stretch tabs on any screen size. Their size
is decided by the space taken by the label.

 3. md-center-tabs: With horizontal space available, it aligns
tabs to center. If we use auto or never for md-stretch-tabs,
preferably set md-center- tabs .

 4. md-swipe-content: It allows user to swipe on content of the
tab right or left to move to next or previous tabs. For a better
mobile/table or any other touch screen experience, set
md-swipe-content.

 ■ Note A cosmetic aspect: for any attribute with Boolean value (like md-center-tabs or
 md-swipe-content) providing the attribute on parent directive is good enough. It will set the
value to true . The following does the same task.

 <md-tabs md-center-tabs>
 <md-tabs md-center-tabs="true">

 If you need to provide a value false to the attribute, simply do not use the attribute.
 md-dynamic-height : Tabs’ content area has fixed height. If content goes over it, will

show a vertical scrollbar within the page. The attribute md-dynamic-height lets tab adjust
height dynamically. If the tab content is even more than the page height, will only show
one vertical scrollbar for the whole page. No scrollbar will show for the tab.

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

50

 5. md-no-pagination: Tab titles could grow beyond the available
horizontal space. Default behavior will show pagination arrow
icons to move left/right. Setting md-no-pagination will jam tab
titles to fit all tabs in the available horizontal space.

 6. md-align-tabs="bottom": A ligns tabs at the bottom of the
control (directive). Default value is " top ".

 7. md-border-bottom: Shows a separator below tab titles.

 Consider the following code for enhanced tab. See Figure 4-6 .

 <md-tabs md-selected="1" md-stretch-tabs="auto" md-align-tabs="bottom" md-
dynamic-height md-border-bottom md-center-tabs md-swipe-content>
 <md-tab label="Tab-A">
 <md-tab-body layout-padding="true">
 <h4>Welcome, This is the first tab !</h4>
 </md-tab-body>
 </md-tab>
 <md-tab label="Tab-B" >
 <md-tab-body layout-padding="true" >
 <h4>There you go, I stand second</h4>
 <div>
 <!-- Removing Lorem ipsum for readability -->

 </div>
 </md-tab-body>
 </md-tab>
 <md-tab label="Tab-C">
 <md-tab-body layout-padding="true">
 <h4>At last, you got to me.</h4>
 </md-tab-body>
 </md-tab>
 </md-tabs>

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

51

 md-tab
 This is child or a nested element of md-tabs . It represents "a tab" in the group. We may
specify a label attribute and provide title to the tab. Alternatively we can use md-tab-label
element nested within the md-tab.

 md-tab-label allows additional formatting to the tab title. Consider the following
code snippet and Figure 4-7 . It adds a rower icon and label to the tab label.

 <md-tab>
 <md-tab-label>
 <md-icon md-svg-src="/img/ic_rowing_black_24px.svg"></md-icon>
 Rower
 </md-tab-label>
 </md-tab>

 Figure 4-6. Tabs positioned at the bottom

 Figure 4-7. Tabs with icon

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

52

 ■ Note If md-tab-label is used, it’s mandatory to use md-tab-body , which otherwise is
an optional element.

 Attributes:

 1. md-on-select and md-on-deselect evaluate a given expression
or run a function on scope. The former runs when tab is
selected, and the latter runs as the user navigates away by
selecting a different tab. Consider the following code snippet.
It calls functions on scope on tab selected and deselected.

 <md-tab md-on-select="tabSelected()" md-on-deselect="tabDeselected() ">

 .controller('sampleController', function($scope){
 $scope.tabSelected = function(){
 ...
 console.log('tab selected');
 };

 $scope.tabDeselected = function(){
 ...
 console.log('tab deselected');
 };

 2. Use ng-disabled to disable a tab. A variable on scope could
dynamically enable or disable the tab. Consider the following
code, which enables/disables tab-3 based on checkbox
selection.

 <input type="checkbox" ng-model="isTab3Enabled" >
 Disable Tab 3

 <md-tab label="Tab-C" ng-disabled="isTab3Enabled" >
 ...
 </md-tab>

 3. md-active : when set true on an md-tab , selects the tab by
default. Only one md-tab is expected to have this attribute.
This is an alternative to md-tabs element’s md-selected
attribute.

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

53

 Cards
 A card is a container. It is a logical unit of information. Material Design spec defines it as
“a sheet of material that serves as an entry point to more detailed information.” It may
have text, images, captions, and so on. See Figure 4-8 .

 Use the following elements/directives to create a card.

 1. md-card : It is the root element encapsulating the card control.

 2. md-card-header : It is an optional element. It is header for the
whole card. Usually, card header shows category details. The
specific information on the card could have another title or
caption. A card header may have the following elements.

 md-card-avatar : As the term indicates, it provides a persona
for the card. Figure 4-8 shows an icon as the card avatar.
Consider the following code.

 <md-card-header>
 <md-card-avatar class="md-user-avatar">
 <md-icon md-svg-src="img/ic_code_black_24px.svg"></md-

icon>
 </md-card-avatar>
 <!—Additional elements -->
 </md-card-header>

 Figure 4-8. A sample card

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

54

 In the preceding sample, we may use an image element
instead of md-icon . Consider using CSS class md-user-avatar
for a person’s photograph or image.

 md-header-text : It is another element md-card-header. It can
contain elements that show card title and short description.
Use CSS class md-title on title element and md-subhead on
short description. Consider the following code.

 <md-card-header>
 <!—Additional elements -->
 <md-header-text>
 <div class="md-title">JavaScript Library</div>
 <div class="md-subhead">Explore and share</div>
 </md-header-text>
 </md-card-header>

 3. md-card-footer : Optional element for card’s footer. See
Figure 4-8 ; footer was used for sample copyright text.

 4. md-card-content : It is the workspace of the card. If you choose
to show image within the content, for bigger dimensions
consider using CSS class md-media-xl.

 5. md-card-title : It represents the caption and description text
for specific content on the card. In the preceding example,
card for Angular Material and its description is coded within
the card title. A card title element can have the following
elements.

 6. md-card-title-text : Use it to show the title text and the
description. Use CSS classes md-headline and md-subhead
for HTML elements that has the title and description.
Consider following code.

 <md-card-title layout-align="center center">
 <!-- Title caption and description -->
 <md-card-title-text flex="50">
 Angular Material
 Material Design Implementation

with AngularJS
 </md-card-title-text>
 </md-card-title>

 7. md-card-title-media : Use this element to show card title
image. In Figure 4-8 , it is AngularJS logo. On the image
element, you may choose one of the three sizes by applying a
CSS class from the following.

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

55

 1. md-media-sm

 2. md-media-md

 3. md-media-lg

 Consider the following code for the card title image.

 <md-card-title layout-align="center center">
 <md-card-title-media flex="50">
 <img src="img/angular-logo.png" class="md-media-md"

alt="AngularJS">
 </md-card-title-media>
 <!—More elements here. -->
 </md-card-title>

 Refer to the complete code for the following card sample.

 <md-card >
 <!-- Header for the card. Usually describes category -->
 <md-card-header>
 <!-- Avatar - symbolic representation of content in the card -->
 <md-card-avatar class="md-user-avatar">
 <md-icon md-svg-src="img/ic_code_black_24px.svg"></md-icon>
 </md-card-avatar>
 <!-- Header content -->
 <md-header-text>
 <div class="md-title">JavaScript Library</div>
 <div class="md-subhead">Explore and share</div>
 </md-header-text>
 </md-card-header>
 <!-- Workspace or the main content of the card -->
 <md-card-content>
 <!-- Card title content -->
 <md-card-title layout-align="center center">
 <md-card-title-media flex="50">
 <img src="img/angular-logo.png" class="md-media-md"

alt="AngularJS">
 </md-card-title-media>
 <!-- Title caption and description -->
 <md-card-title-text flex="50">
 Angular Material
 Material Design

Implementation with AngularJS
 </md-card-title-text>
 </md-card-title>

CHAPTER 4 ■ NAVIGATION & CONTAINER ELEMENTS

56

 <p>For building great applications that are responsive
and adhers to Material Design specifications, Angular
Material is an obvious choice</p>

 </md-card-content>
 <!-- Actions or buttons that you might need on card -->
 <md-card-actions layout-align="end end">
 <md-button class="md-raised md-primary">Share</md-

button>
 <md-button class="md-raised md-primary">More...</md-

button>
 </md-card-actions>
 <!-- Card footer -->
 <md-card-footer>
 Copyright - sample text.
 </md-card-footer>
 </md-card>

 Summary
 This chapter is one step toward building a complete application with Angular Material. It
helps design the skeleton for the application. After reading this chapter, think about the
high-level view of your application. Think which aspects of it communicate purpose and
provide a title, how navigation should be managed, how these aspects adjust on smaller
screen sizes. More importantly be consistent with the approach across the application, so
that the user is not lost while working with one of many functionalities.

 In this chapter, we began describing md-content element/directive. It often is the
workspace of the page. It allows content to scroll.

 Then, we delved into aspects of the toolbar. We explored the md-toolbar element/
directive for showing the title for the page. It could also be used on other components. In
this chapter, we saw an example of navbar using its own title.

 Navbar provides a site-map for the application. It is an easy way to access the most-
used links and actions in the application. We explored the md-navbar element/directive,
including responsive aspects that adjust navbar according to the screen size.

 Tabs are effective in segregation of UI elements and functionality. md-tabs and other
child elements are used for creating tabs in Angular Material.

 At the end, this chapter detailed cards. It is a container element/directive. We
discussed using md-cards and other child elements to create cards in Angular Material.

 References
 For Material Design specification on cards refer to the following URL:
 https://www.google.com/design/spec/components/cards.html

https://www.google.com/design/spec/components/cards.html

57© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_5

 CHAPTER 5

 Action Buttons

 Angular Material provides variety of action buttons . The directives or elements define
Material Design style, behavior, and experience. From a developer point of view, they are
easy to integrate within a web application.

 One of the important aspects of Material Design is the feedback the user receives
while interacting with the controls in the UI. The user will clearly know that he/she
tapped on a button, used a link, navigated to a different view, and so on. Animations
are subtle yet effective in providing context to the user. Primarily, buttons trigger most
actions on a web page. By default, Angular Material provides a ripple effect on the click
of a button. This is a common feedback mechanism in Angular Material for many other
controls like tabs, menus, and so on.

 Angular Material integrates well with ngAnimate , an AngularJS module for
animations. Lots of animations for the purpose of feedback on user actions come from
this module. As discussed in Chapter 2 , this is a mandatory script to include in an Angular
Material application.

 This chapter will begin by detailing a simple Angular Material button directive. We
will explore variations of Angular Material buttons and the user experience value they
provide. The chapter will also describe the concept of FAB (Floating Action Buttons) in
Material Design. It will describe directives, which are ready-made FAB controls.

 Button Directive (md-button)
 For the Material Design button, use md-button instead of the default button element.

 <md-button>Click Me</md-button>

 Use ng-href attribute and use the button as a link.

 <md-button ng-href="https://material.angularjs.org/" target="__blank">Use as
a link</md-button>

 Use the CSS class md-raised for an elevated 3D effect on the button.

 <md-button class="md-raised">Raised Button</md-button>

http://dx.doi.org/10.1007/978-1-4842-2190-7_2

CHAPTER 5 ■ ACTION BUTTONS

58

 Use the CSS class md-icon-button for an icon button (without a label and only an
icon/image). It is styled accordingly and adjusts height and width to fit the icon. To show
the icon, use the md-icon directive. The following code shows using an SVG file (for icon)
on the button. See Figure 5-1 for sample buttons.

 <md-button class="md-icon-button">
 <md-icon md-svg-src="/images/ic_menu_black.svg"></md-icon>
 </md-button>

 Figure 5-1. Various Angular Material buttons

 Style and Intention
 Use a button as one of the following. They depict intention.

 1. Primary: It represents default or primary action in the view.
Consider a form and a submit or a save button. It preferably is
a primary button.

 Apply CSS class md-primary to make it a primary button.

 2. Accent: Use accent colors on a highlighted action. In general,
these are special actions. These are expected to grab user
attention. In some scenarios, they are the most used actions.

 For example, on a shopping application, add to shopping cart could be an
accent button.

 Apply CSS class md-accent .

 3. Warning: As the term indicates, the user needs to use this
action carefully; for example, an action that results in deleting
a document or a record.

 Apply CSS class md-warn .

CHAPTER 5 ■ ACTION BUTTONS

59

 4. Hue: A primary, accent, or warning action might need to be
identified distinctly. It could be done with a subtle change
in the color shade. Consider a delete action/button. It is a
warning button intended to delete a record. Along with it,
“Delete Permanently” could be a warning action with subtle
change. Hence, use a hue, along with warning style.

 Apply CSS class md-hue-1 , md-hue-2 , or md-hue-3.

 Consider the following code and Figure 5-2 . On a raised button, we used the style
intentions mentioned previously.

 <md-button class="md-raised md-primary">Primary Button</md-button>
 <md-button class="md-raised md-accent"> Accent Button</md- button>
 <md-button class="md-raised md-warn">Warning Button</md-button>
 <md-button class="md-raised md-warn md-hue-1">Hue-1 Button</md-button>

 Figure 5-2. Styled buttons

 Consider the following code and Figure 5-3 for styles applied on a default button and
an icon button.

 <div>
 <md-button class="md-icon-button md-warn">
 <md-icon md-svg-src="/images/ic_menu.svg"></md-icon>
 </md-button>
 (Menu Button)
 </div>

 <div>
 <md-button class="md-warn">Default Button</md-button>
 </div>

 Figure 5-3. Other styled buttons

CHAPTER 5 ■ ACTION BUTTONS

60

 ■ Note While using SVG for an icon button as in the preceding, ensure SVG does not have
a fill attribute of its own. That could override warn or any other theme color from the CSS
class.

 SVG with fill color

 <svg fill="#000000" height="24" viewBox="0 0 24 24" width="24"
xmlns="http://www.w3.org/2000/svg">
 <path d="M0 0h24v24H0z" fill="none"/>
 <path d="M3 18h18v-2H3v2zm0-5h18v-2H3v2zm0-7v2h18V6H3z"/>
 </svg>

 Button click/tap feedback :

 1. md-no-ink: Angular Material buttons show ripple effect on
clicking/tapping the button. For any reason if it needs to be
disabled, use an attribute md-no-ink on md-button. It will
disable the feedback, ripple effect.

 2. md-ripple-size: Modify ripple effect’s size. Possible values are
 full , partial , and auto.

 ■ Note Like any other control in Angular Material, we can disable a button by using
 ng-disabled . We can programmatically disable or enable by attaching a model value
(on the controller).

 FAB
 FAB are a distinct aspect of Material Design. They are above the UI controls on the page.
They highlight and promote an action. See Figure 5-4 . “Compose e-mail in Google Inbox”
is a familiar example. The plus button indicating an action to open the compose dialog is
floating above the Inbox controls.

CHAPTER 5 ■ ACTION BUTTONS

61

 To create a FAB control, use the CSS class md- fab . Use an icon in the button directive.
Consider the following code.

 <md-button class="md-fab">
 <md-icon md-svg-src="/images/ic_power_settings.svg"></md-icon>
 </md-button>

 Use md-mini CSS class for a smaller-sized FAB control .
 A FAB control by default uses the accent color. We can apply CSS classes for Primary

and Warning on the directive. See Figure 5-5 .

 <section>
 <md-button class="md-fab md-primary ">
 <md-icon md-svg-src="/images/ic_power_settings.svg"></md-icon>
 </md-button>
 <div class="label">(Primary FAB Control)</label>
 </section>

 <section>
 <md-button class="md-fab md-warn ">
 <md-icon md-svg-src="/images/ic_power_settings.svg"></md-icon>
 </md-button>
 <div class="label">(Warning FAB Control)</div>
 </section>

 Figure 5-4. FAB control

 Figure 5-5. FAB controls , styled primary and warn

CHAPTER 5 ■ ACTION BUTTONS

62

 Position the FAB control on any of the four corners of the view/screen. Apply one of
the following CSS classes to do so.

 1. md-fab-top-left

 2. md-fab-top-right

 3. md-fab-bottom-left

 4. md-fab-bottom-right

 Speed Dial
 It is a FAB control designed for frequently used actions. Tapping or clicking this button
pops open a list of related actions. At most, in two taps or clicks you should be performing
the desired action.

 Consider Figure 5-6 . It shows frequently accessed settings as speed dial . Tapping on
the Settings FAB control (button) results in a list of available settings.

 Figure 5-6. Settings speed dial

 Material Design guidelines suggest the following.

 1. All actions that speed dial expands should be related. It
should be a logical grouping.

 2. A minimum of three frequent actions should be included in
speed dial. We are reaching desired action in two clicks/taps.
For a single action, it is not useful to expand with an extra
click. For two actions, decide which action is more important
and use that one action (as a separate FAB, without using
speed dial).

CHAPTER 5 ■ ACTION BUTTONS

63

 3. A maximum of six actions should be included in speed dial.
More than that would make the grouping complex and will be
counterintuitive.

 4. Do not use speed dial as miscellaneous actions or as a
replacement for the “more actions” button on the toolbar. It
should highlight frequently used functionality.

 md-fab-speed-dial
 This is the root directive for creating a speed dial using Angular Material. The child
directives are as follows:

 1. Speed Dial Trigger (md-fab-trigger): defines the floating FAB
control.

 2. Actions (md-fab-actions): individual actions that pop out from
speed dial.

 (Review Figure 5-6 for better understanding.)

 The md-fab-speed-dial has the following attributes.

 1. md-direction : define direction to show actions. Possible
values are “ up ,” “down ,” “left ,” and “ right.”

 2. md-open : By default, speed dial opens on clicking the fab
control. Use this attribute to programmatically manage
opening and closing the speed dial. It takes a Boolean value.

 ■ Note Use ngCloak for md-open to be effective. Otherwise, when the view loads for the
first time, it always shows the speed dial open. There is an open issue in Angular Material
project to change this behavior. Follow the link to see details about the issue.
 https://github.com/angular/material/issues/6788

 Typically, ngCloak is used to hide Angular HTML template or code while it is not
yet ready. Without this attribute, for a brief moment, users might see HTML template or
code. However, it will ultimately render with bindings applied.

 Instead of click-opening the speed dial, if it needs to open on mouse-over, consider
the following approach. Use the attribute ng-mouseenter and set the model value for md-
open to true. Set it back to false for when the mouse leaves the button area. The attribute
for mouse leave is ng-mouseleave. Consider the following code.

 <md-fab-speed-dial md-open="isOpen" md-direction="up" class="md-fab-bottom-
right" ng-mouseenter="isOpen=true" ng-mouseleave="isOpen=false" >

https://github.com/angular/material/issues/6788

CHAPTER 5 ■ ACTION BUTTONS

64

 ■ Note If you need the hover to work even when mouse enters/leaves the action buttons
area (not just the speed dial trigger), use a class md-hover-full. This opens the speed dial
even when mouse hovers in the intended action buttons area. Otherwise, speed dial opens
only on hovering over the trigger button.

 We can also control the animation while opening action buttons. Use CSS class
 md-fling or md-scale . The former is the default.

 Like a FAB control, position the speed dial on any of the four corners of the view/
screen. Apply one of the following CSS classes to do so.

 1. md-fab-top-left

 2. md-fab-top-right

 3. md-fab-bottom-left

 4. md-fab-bottom-right

 md-fab-trigger
 The md-button acts as the FAB speed dial trigger. Clicking (or hovering on) this button
expands the list of actions in speed dial.

 Encapsulate md-button in md-fab-trigger directive. In the following sample, CSS
class md-fab is applied so that the speed dial is actually shown as a FAB control. Speed
dial should highlight the most-used actions. Hence, consider using md-accent class on
the md-button .

 <md-fab-trigger>
 <md-button class="md-fab">
 <md-icon md-svg-src="/images/ic_settings.svg"></md-icon>
 </md-button>
 </ md-fab-trigger>

 md-fab-actions
 Use this directive to encapsulate list of action buttons that pop out of speed dial trigger.
Design the functionality to use no less than three and no more than six action buttons.
These numbers are carefully chosen for better user experience.

 Use the CSS class md-fab for action button to be a FAB control. Consider using
another CSS class md-mini , which makes action buttons look smaller than the speed
dial button. This gives an impression that the action buttons are derivatives of the speed
dial trigger. Like the speed dial trigger, action buttons too are FAB controls. Hence, to
show an icon on the button, use md-icon within md-button . Consider the following code
(skeleton) for FAB actions.

CHAPTER 5 ■ ACTION BUTTONS

65

 <md-fab-actions>
 <md-button class="md-fab md-primary md-mini">
 ...
 </md-button>
 ...
 </md-fab-actions>

 Optionally, use tooltip to describe the button. Use the directive md-tooltip .

 <md-tooltip md-direction="left">Bluetooth Settings</md-tooltip>

 It will appear as the user hovers over the action button. Set the direction to show the
tooltip depending on available space in the app.

 Consider the following speed dial code. This is for building the speed dial shown in
Figure 5-6 .

 <md-fab-speed-dial md-open="isOpen" md-direction="up" class="md-fling md-
fab-bottom-right" ng-mouseenter="isOpen=true" ng-mouseleave="isOpen=false">
 <md-fab-trigger>
 <md-button class="md-fab">
 <md-icon md-svg-src="/images/ic_settings.svg"></md-icon>
 </md-button>
 </md-fab-trigger>

 <md-fab-actions>
 <md-button class="md-fab md-primary md-mini">
 <md-tooltip md-direction="left">Bluetooth</md-tooltip>
 <md-icon md-svg-src="/images/ic_settings_bluetooth.svg"></md-

icon>
 </md-button>
 <md-button class="md-fab md-primary md-mini">
 <md-tooltip md-direction="left">Brightness</md-tooltip>
 <md-icon md-svg-src="/images/ic_settings_brightness.svg"></md-

icon>
 </md-button>
 <md-button class="md-fab md-primary md-mini">
 <md-tooltip md-direction="left">Display Overscan</md-tooltip>
 <md-icon md-svg-src="/images/ic_settings_overscan.svg"></md-

icon>
 </md-button>
 <md-button class="md-fab md-primary md-mini">
 <md-tooltip md-direction="left">Voice</md-tooltip>
 <md-icon md-svg-src="/images/ic_settings_voice.svg"></md-icon>
 </md-button>
 </md-fab-actions>

 </md-fab-speed-dial>

CHAPTER 5 ■ ACTION BUTTONS

66

 FAB Toolbar
 Another variant of FAB is the FAB toolbar. It is a collapsed FAB control (a button) that
expands to become a full-fledged toolbar. See Figure 5-7 and Figure 5-8 . The following are
some guidelines while designing FAB toolbar.

 1. Always choose related items on a FAB toolbar. It should be a
logical grouping.

 2. Do not use FAB toolbar like a more action button on the
toolbar. For miscellaneous items, use “more button” on an
original toolbar.

 Figure 5-8. Clicking the FAB toolbar results in opening the toolbar.

 Figure 5-7. Settings, a FAB toolbar

 FAB toolbar is very similar to speed dial, with subtle differences.

 1. In a more obvious difference, FAB toolbar expands to show
the toolbar. Hence, it is possible to expand right or left. This is
unlike speed dial, which can expand up and down as well.

 2. FAB toolbar hides the FAB while showing the toolbar. It will
appear again as the toolbar closes.

 md-fab-toolbar (Directive)
 Use the Angular Material directive md-fab-toolbar for a FAB toolbar. Similarities between
 md-fab-speed-dial and md-tab-toolbar are as follows. These define the appearance and
behavior of the control.

 1. md-open : programmatically opens or closes the FAB toolbar.

 2. Use one of the following CSS classes to position the FAB
control. Class names are self-explanatory:

 a. md-fab-top-left

 b. md-fab-top-right

 c. md-fab-bottom-left

 d. md-fab-bottom-right

CHAPTER 5 ■ ACTION BUTTONS

67

 3. md-direction : Possible values are right and left. Preferably,
use right if positioned on top-left or bottom-left, and use left if
positioned on top-right or bottom-right. See Figure 5-9 .

 md-fab-toolbar is a parent directive for the following.

 1. FAB Trigger : A floating button, which expands to become
a toolbar. Directive is md-fab-trigger . (Same directive used
earlier for FAB speed dial.)

 2. The toolbar : Part of FAB toolbar. Directive is md-toolbar .
(Same directive used earlier for a page-level toolbar.)

 3. FAB Actions : A directive fab-action-buttons for buttons on
the toolbar. In the context of FAB toolbar, it is a child element
under md-toolbar . (Same directive used earlier for FAB speed
dial.)

 Usage
 <md-fab-toolbar md-open="isOpen" md-direction="right">
 <md-fab-trigger class="align-with-text">
 <md-button aria-label="Settings" class="md-fab md-primary">
 <md-icon md-svg-src="images/ic_settings.svg"></md-icon>
 </md-button>
 </md-fab-trigger>

 Figure 5-9. FAB toolbar—direction

CHAPTER 5 ■ ACTION BUTTONS

68

 <md-toolbar>
 <md-fab-actions class="md-toolbar-tools">
 <md-button aria-label="Bluetooth Settings" class="md-icon-button">
 <md-icon md-svg-src="images/ic_settings_bluetooth.svg">

</md-icon>
 </md-button>
 <md-button aria-label="Brightness Settings" class="md-icon-button">
 <md-icon md-svg-src="images/ic_settings_brightness.svg">

</md-icon>
 </md-icon>
 </md-button>
 <md-button aria-label="Overscan Settings" class="md-icon-

button">
 <md-icon md-svg-src="images/ic_settings_overscan.svg"></md-

icon>
 </md-button>
 </md-fab-actions>
 </md-toolbar>
 </md-fab-toolbar>

 Notice that on action buttons, we are using class md-icon-buttons (opposed to
md-fab-button). On toolbar, action buttons are icon buttons.

 ■ Note You might see warning wherever ARIA attributes are not provided. ARIA provide
screen readers and tools with the ability to interpret controls and read provided text for the
visually impaired. Angular Material integrates highly with ngAria, an AngularJS module for
these features. A separate chapter in the book describes ngAria features in Angular Material.
It is highly recommended to make use of these features.

 Menu
 Using a menu , multiple actions could be collapsed into a button. Click the button to
expand individual options. See Figure 5-10 . All page-level actions are collapsed into a
button on the toolbar. It acts as a trigger. As the user clicks it, each available option is
shown.

CHAPTER 5 ■ ACTION BUTTONS

69

 To create a menu, use the following elements/directives .

 1. md-menu : It is the root element while creating a menu. The
trigger button should be coded directly under it. Consider the
following code snippet.

 <md-menu>
 <!-- Trigger for menu -->
 <md-button ng-click="$mdOpenMenu()">
 Actions
 </md-button>
 ...
 </md-menu>

 Use $mdOpenMenu function to expand the menu. It is called on trigger
button’s click event.

 2. md -menu-content : Code it under md-menu . It encapsulates all
menu options.

 3. md-menu-item : Typically, a menu content element contains
one or more menu items. Use this element to code each menu
option.

 Typically, menu items are buttons. Use a controller function on scope to
handle events as these buttons are selected or clicked.

 Figure 5-10. Menu in the toolbar

CHAPTER 5 ■ ACTION BUTTONS

70

 Refer to the following complete code below:

 <!-- Page level actions positioned on toolbar. Actions are collapsed into a
menu -->
 <md-menu>
 <!-- Trigger for menu -->
 <md-button ng-click="$mdOpenMenu()">
 Actions
 </md-button>
 <!-- Individual menu options and buttons-->
 <md-menu-content>
 <md-menu-item>
 <md-button ng-click=”shareHandler()”>
 Share
 </md-button>
 </md-menu-item>
 <md-menu-item>
 <md-button ng-click=”tagHandler()”>
 Tag the page
 </md-button>
 </md-menu-item>
 <md-menu-item>
 <md-button ng-click=”copyHandler()”>
 Copy link
 </md-button>
 </md-menu-item>
 </md-menu-content>
 </md- menu>

 Alignment
 Menu options, by default, are aligned relative to the md-menu element. To align it to the
trigger button, specify the md-menu-origin attribute on md-button . Also, specify the
 md-menu-align-target attribute on individual menu options. Consider the following code.

 <!-- Page level actions positioned on toolbar. Actions are collapsed
into a menu -->
 <md-menu >
 <!-- Trigger for menu -->
 <md-button md-menu-origin ng-click="$mdOpenMenu()">
 Actions
 </md-button>

CHAPTER 5 ■ ACTION BUTTONS

71

 <!-- Individual menu options and buttons-->
 <md-menu-content >
 <md-menu-item>
 <md-button md-menu-align-target >
 Share
 </md-button>
 </md-menu-item>
 ...
 </md-menu-content>
 </md-menu>

 For subtle changes in positioning the menu relative to the trigger, use md-offset .
Provide values for the x and y axes. Consider the following sample and Figure 5-11 . We
repositioned the menu on the y axis. Compare it to Figure 5-10 ; trigger button “actions”
are visible here while the menu is expanded. Menu does not override the trigger.

 <md-menu md-position-mode="target-right target" md-offset="0 40 " >
 ...

 Figure 5-11. Offset y axis by 40

 Use md-position-mode to change the menu origin. The menu expands out of the
given x and y axis positions. However, possible values that we can provide are limited. The
default value is target on the x and y axes. We can change the x axis value to target-right
for flipping the default alignment. Consider the following code.

 <md-menu md-position-mode="target-right target" md-offset="0 40">
 <!-- Trigger for menu -->
 ...
 <!—rest of the menu code -->
 </md-menu>

CHAPTER 5 ■ ACTION BUTTONS

72

 Wider Menu Options
 Use the width attribute on md-menu-content to change the default width. See Figure 5-12 .

 Figure 5-12. Wider menu options

 The code snippet follows. Set width to 4 points. Possible values for this attribute are
2, 4, or 6.

 <md-menu-content width="4" >
 ...

 Separator
 Consider using a separator for better grouping. Use md-divider element/directive. Code it
as a menu item. See Figure 5-13 and the following code.

CHAPTER 5 ■ ACTION BUTTONS

73

 <md-menu>
 <md-menu-content>
 <!—More menus items -->
 <md-menu-item>
 <!-- Separator for grouping -->
 <md-divider></md-divider>
 </md-menu-item>
 <!—More menus items -->

 </md-menu-content>
 </md-menu>

 Menu Bar
 A menu bar is a traditional approach to menus. Typically, Windows and Mac applications
use menus on top of the screen or window. They list all possible actions with the window.
Sometimes menus are used in web apps as well.

 Angular Material provides elements/directives for creating such an interface in a
web application. Consider Figure 5-14 .

 Figure 5-13. Menu separator

CHAPTER 5 ■ ACTION BUTTONS

74

 Figure 5-14. Menu bar sample

 Use md-menu-bar element to create a menu bar. A menu bar contains one or more
menus (md-menu elements). As we have seen so far, each md-menu encapsulates a
complete menu and its options. As seen in Figure 5-14 , “file” is a menu (md-menu) with
three menu options: open, save, and close. The menu bar (md-menu-bar) wraps three
menus—file, edit, and help—each with multiple menu options.

 Refer to the following code sample for menu bar depicted in Figure 5-13 .

 <md-menu-bar>
 <md-menu md-offset="0 4">
 <button ng-click="$mdOpenMenu()">File</button>
 <md-menu-content width="2">
 <!—Menu options go here -->
 </md-menu-content>
 </md-menu>

CHAPTER 5 ■ ACTION BUTTONS

75

 <md-menu md-offset="0 4">
 <button ng-click="$mdOpenMenu()">Edit</button>
 <md-menu-content width="2">
 <!—Menu options go here-->
 </md-menu-content>
 </md- menu>

 <md-menu md-offset="0 4">
 <button ng-click="$mdOpenMenu()">Help</button>
 <md-menu-content width="2">
 <!—Menu options go here-->
 </md-menu-content>
 </md-menu>
 </md-menu-bar>

 We can nest menus. See Figure 5-15 .

 Figure 5-15. Nested menus

 Consider the following code. In the menu item for “paste,” instead of an md-button ,
an md-menu has been coded.

 <md-menu md-offset="0 4">
 <button ng-click="$mdOpenMenu()">Edit</button>
 <md-menu-content width="2">
 <md-menu-item>
 <md-button>
 Cut
 </md-button>
 </md-menu-item>

CHAPTER 5 ■ ACTION BUTTONS

76

 <md-menu-item>
 <md-button>
 Copy
 </md-button>
 </md-menu-item>
 <md-menu-item>
 <md-menu>
 <md-button>Paste</md-button>
 <md-menu-content width="2">
 <md-menu-item>
 <md-button>Paste Special</md-button>
 </md-menu-item>
 <md-menu-item>
 <md-button>Paste as text</md-button>
 </md-menu-item>
 </md-menu-content>
 </md-menu>
 </md-menu-item >
 </md-menu-content>
 </md-menu>

 Summary
 For the most part, buttons drive actions on the page. The controls or directives
demonstrated in this chapter help make our application use Material Design styles, visual
effects, and animations, and hence create an overall Material Design experience. These
directives are easy to integrate and provide high user experience value. Some of the
aspects to highlight are as follows.

 1. Feedback or ripple visual effect to the user on tap/click.

 2. Appearance, positioning, and behavior of FAB controls.

 3. Animation effects.

 In this chapter, we initially explored using md-button directive to create a button.
We explored variations in options with styling and themes.

 We delved into FAB, described using FAB controls as speed dial and toolbar. We also
used md-fab-speed-dial and md-fab-toolbar directives (and many other child elements)
to create respective controls.

 Finally, this chapter detailed using traditional menus and various options with it.
We used md-menu directive to create a menu and md-menu-bar for a menu bar.

 References
 For specification on Material Design FAB controls, see https://www.google.com/design/

spec/components/buttons-floating-action-button.html#buttons-floating-
action-button-floating-action-button

 For FAB control implementation in Angular Material and documentation, see https://
material.angularjs.org/

https://www.google.com/design/spec/components/buttons-floating-action-button.html#buttons-floating-action-button-floating-action-button
https://www.google.com/design/spec/components/buttons-floating-action-button.html#buttons-floating-action-button-floating-action-button
https://www.google.com/design/spec/components/buttons-floating-action-button.html#buttons-floating-action-button-floating-action-button
https://material.angularjs.org/
https://material.angularjs.org/

77© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_6

 CHAPTER 6

 Themes

 Themes provide consistency in look and feel. A theme is defined by set of colors and
shades.

 This chapter describes themes in Material Design and the implementation in
Angular Material. Terminology is described at the beginning of the chapter. It details
using themes out of the box and using the CSS classes provided by the library. For most
applications, it should be sufficient.

 Some might need to go in-depth and customize. Later sections of the chapter
describe creating custom theme, palette, and so on. It details directives, provider, and
other Angular Material API to customize themes.

 Angular Material Theming
 With Material Design, various color and styling aspects have already been carefully
designed. By adopting Material Design, we know we are adhering to the guidelines and
hence in the application are providing a consistent and beautiful user experience.

 Theming in Angular Material serves this purpose. Various aspects of theming help
our web application adhere to Material Design guidelines.

 Palette
 Color is an important aspect of theme. Color defines intention. A palette is set of shades/
hues of a color. In Angular Material, we work with the following palettes.

 1. Primary: As the term indicates, the control using this style is a
primary element. For example, in a form, the submit button is
a primary button.

 In Angular Material, the default primary color is indigo.

 2. Accent : These are highlighted controls and text. Preferably,
use accent colors on FAB, sliders, switches, highlighted text,
and so on.

 In Angular Material, the default accent color is pink.

CHAPTER 6 ■ THEMES

78

 3. Warn : Angular Material provides warn theme that indicates
caution while performing an action. It could be a prompt to
confirm deleting a document or a record or exiting without
saving work.

 In Angular Material, the default warn color is red.

 4. Background: By default, a grey palette is set for the
 background . White is a hue in the palette.

 Consider the palette for indigo , a default primary color, in Figure 6-1 . From the color
palette, we can select one or more hues/shades to indicate variation in purpose.

 Figure 6-1. Indigo palette

 Material Design recommends using up to three hues of the primary color. The accent
color could be a hue from secondary palette .

CHAPTER 6 ■ THEMES

79

 Basic Usage
 Use CSS classes to apply themes and color intentions in HTML markup. Class names are
self-explanatory.

 1. md-primary

 2. md-accent

 3. md-warn

 ■ Note By convention, CSS classes and directives provided by Angular Material are
prefixed with " md- ".

 Consider the following code and Figure 6-2 . It shows color intention usage on buttons.

 <div layout="row">
 <md-button class="md-raised">Cancel</md-button>
 <md-button class="md-raised md-warn ">Reset</md-button>
 <md-button class="md-raised md-primary ">Save And Close</md-button>
 </div>

 Figure 6-2. Color intention on buttons

 On a typical form,

 1. Save may be the primary button. Hence, md-primary CSS
class has been applied.

 2. Clicking reset will lose data. Hence md-warn CSS class is
applied.

 3. Cancel has the default color theme of a button.

 Accent color is not included in this sample, primarily because the accent color is
intended for special actions, cursors, the radio button knob, and so on. From a color
intention point of view, it does not fit the use case here. Multiple other samples in the
chapter explain accent colors.

 The default intention/color theme is different for different types of controls. Consider
the following code and picture. Toolbar and switch control have different colors even
without applying a CSS class. Following Material Design guidelines, these directives have
their respective styles applied by default.

CHAPTER 6 ■ THEMES

80

 The toolbar has primary color intention and the switch has accent color intention.
See Figure 6-3 .

 <md-toolbar >
 <div class="md-toolbar-tools ">
 Sample Header
 </div>
 </md-toolbar>

 <md-content layout-padding>
 <md-switch ng-model="true">Power On?</md-switch>
 </md-content>

 Figure 6-3. Primary and accent colors on toolbar & switch controls, respectively

 Figure 6-4. Override default color styles

 We could change this by applying a CSS class. Consider the following sample and
Figure 6-4 .

 <md-toolbar class="md-accent " >
 <div class="md-toolbar-tools ">
 Sample Header
 </div>
 </md-toolbar>
 <md-content layout-padding>
 <md-switch ng-model="true" class="md-primary" >Power On?</md-switch>
 </md-content>

CHAPTER 6 ■ THEMES

81

 It is not advisable to use accent colors on toolbar and primary colors on switch
control. Having said that, there are special cases. For example, while we show a warning
message to the user (say, confirm dialog to finally make a decision on deleting a
document), we might set the toolbar intention to warn. This draws extra attention while
making the critical decision.

 Shade or Hue
 We could show variation in selection by using hue on the color intention. The following is
a sample. It is not recommended to use too much variation. It could overwhelm the user
with too many colors/shades on the screen. However, in the whole app, we may choose to
use up to three hues other than the default on primary color intention.

 Consider the following code and Figure 6-5 .

 <md-button class="md-raised md-primary md-hue-1">Hue-1</md-button>
 <md-button class="md-raised md-primary md-hue-2">Hue-2</md-button>
 <md-button class="md-raised md-primary md-hue-3">Hue-3</md-button>
 <md-button class="md-raised md-primary">Default</md-button>

 Figure 6-5. Color hue

 Customize Themes
 Angular Material provides good flexibility in managing themes. The following are the
available palettes in Material Design and hence in Angular Material. All have multiple
hues/shades. See Figure 6-6 .

CHAPTER 6 ■ THEMES

82

 ■ Note Material Design includes explicit black and white palette as well. For Angular
Material they are hues on grey palette.

 By default, Material Design has indigo, pink, and red as primary, accent, and warn
colors, respectively. We can modify the default to use different color palettes. Consider
the following code to edit the default color theme.

 angular.module("ngMaterialSample", ["ngMaterial"])
 .config(function($mdThemingProvider){
 $mdThemingProvider
 .theme('default')
 .primaryPalette('cyan')
 .accentPalette('lime')
 .warnPalette(' orange');
 })

 config is an AngularJS function that is invoked at bootstrap time, while the module
is loading. Providers and constants can be injected into a config function. The preceding
code configures the default theme using a provider, $mdThemingProvider of ngMaterial .

 Figure 6-6. Available palettes

CHAPTER 6 ■ THEMES

83

 ■ Note In AngularJS, a provider is a JavaScript object. We can create providers and
expose a set of API or functions. It is one of the core artifacts in AngularJS. It could be
injected at bootstrap time into config functions. It is recommended while performing
application/module-wide configurations.

 Provider needs a $get function defined. While injecting a provider into controllers and other
services, this function works as a factory. However, in config function all methods on “this”
object of provider function could be used.

 The preceding code uses the default theme. It sets primary, accent, and warn
palettes to the respective colors.

 As we edited the default theme, these colors are applied in the UI already. No changes
are required in the markup/HTML. Refer to primary and accent colors in Figure 6-7 .

 Figure 6-7. Toolbar and FAB with edited default theme

 Here is the code to show toolbar and FAB control.

 <md-toolbar>
 <div class="md-toolbar-tools ">
 Sample Header
 </div>
 </md-toolbar>
 <div>
 <md-button aria-label="Settings" class="md-fab md-fab-top-right">
 <md-icon md-svg-src="images/ic_add.svg"></md-icon>
 </md-button>
 </div>

 For each theme, there are two contrast values available: dark and light. By default,
most themes including the default load light contrast. To set dark contrast, call the dark
function on the theme object. Consider the following code.

 $mdThemingProvider
 .theme('default')
 .dark();

CHAPTER 6 ■ THEMES

84

 Not calling the dark function causes light contrast to be used by default. However, if
we need to be explicit to use light contrast, call dark function with false as a parameter.

 Along with primary, accent, and warn, we could also edit background palette.
Consider the following sample.

 $mdThemingProvider
 .theme('default')
 .backgroundPalette('lime');

 It changes background palette on default theme. See Figure 6-8 .

 Figure 6-8. Background palette changed

 Define a New Theme
 We can create a custom theme of our own. Consider the following code. Unlike the earlier
code sample, here the theme name is a custom name.

 angular.module("ngMaterialSample", ["ngMaterial"])
 .config(function($mdThemingProvider){
 $mdThemingProvider
 .theme('aCustomTheme')
 .primaryPalette('cyan')
 .accentPalette('lime')
 .warnPalette('orange');
 });

 While using it in the markup, specify the new theme name using a directive/attribute
 md-theme on any element. The new theme is applied on the element itself and on all
child elements. Using the directive allows markup to use different themes with different
elements. Another section or another template file might continue to use the default
theme or yet another custom theme.

CHAPTER 6 ■ THEMES

85

 < div md-theme="aCustomTheme" >
 <md-toolbar>
 <div class="md-toolbar-tools ">
 Sample Header
 </div>
 </md-toolbar>
 <div>
 <md-button aria-label="Settings" class="md-fab md-fab-top-right">
 <md-icon md-svg-src="images/ic_add.svg"></md-icon>
 </md-button>
 </div>
 </div>

 This opens up the possibility to bind the theme value to a model on scope. However,
themes are not watched dynamically. Use an explicit directive md-theme-watch for it to
work. Consider the following code.

 <div md-theme="{{aThemeSelectedOnTheFly}}" md-theme-watch >
 ...
 </div>

 To apply the same behavior across the application use alwaysWatchTheme API on
 $mdThemingProvider (in config function).

 $mdThemingProvider.alwaysWatchTheme(true);

 However, do realize that applying the theme dynamically will have performance
implications.

 ■ Note To make a custom theme as the default theme, you could use setDefaultTheme
API on $mdThemingProvider . Unlike the earlier sample where we modified palettes on
default, we could create a completely new theme and set it as default on demand. However,
this does not provide flexibility to use different themes in different templates.

 $mdThemingProvider.setDefaultTheme('aCustomTheme');

CHAPTER 6 ■ THEMES

86

 Hue Configuration
 Consider the image in Figure 6-1 . Each palette has fifteen hue values. By default, in the
theme:

 1. For primary and warn, 500, 300, 800, and A100 are default,
hue-1, hue-2, and hue-3, respectively.

 2. For accent, A200, A100, A400, and A700 are default, hue-1,
hue-2, and hue-3, respectively.

 We configure different values on the palette as default, hue-1, hue-2, and hue-3.
Consider the following code. It is the same API used to configure theme. See Figure 6-9
for the result rendered.

 $mdThemingProvider
 .theme('aCustomTheme')
 .primaryPalette('cyan', {
 'default': '900',
 'hue-1': '50',
 'hue-2': '200',
 'hue-3': '600'});

 The JSON object as second parameter will provide hue configuration. The following
markup could make use of hue values in the template.

 <md-content md-theme="aCustomTheme" layout-padding layout="column">
 <md-button class="md-raised md-primary">
 Primary button
 </md-button>

 Figure 6-9. Multiple hue values

CHAPTER 6 ■ THEMES

87

 <md-button class="md-raised md-primary md-hue-1">
 Primary button (Hue-1)
 </md-button>
 <md-button class="md-raised md-primary md-hue-2">
 Primary button (Hue-2)
 </md-button>
 <md-button class="md-raised md-primary md-hue-3">
 Primary button (Hue-3)
 </md-button>
 </md-content>

 The same can be done for accent and warn colors as well; that is, provide hue
configuration as a parameter to accentPalette and warnPalette functions.

 Create Custom Palette
 Angular Material provides API to create a custom palette . If the out-of-the-box palettes
available (refer to Figure 6-3) are not sufficient, that is, if we need a new variation, we
could create a new palette altogether.

 $ mdThemingProvider API definePalette will let us create a new palette with a
given configuration. We need to make sure to provide color codes for all hues that are
mandatory for creating a palette.

 $mdThemingProvider
 .definePalette('aCustomPalette', {
 '50': '#ff7b82',
 '100': '#ff626a',
 '200': '#ff4852',
 '300': '#ff2f3a',
 '400': '#ff1522',
 '500': '#fb000d',
 '600': '#e1000c',
 '700': '#c8000a',
 '800': '#ae0009',
 '900': '#950008',
 'A100': '#ff959a',
 'A200': '#ffaeb3',
 'A400': '#ffc8cb',
 'A700': '#7b0006',
 'contrastDefaultColor': 'light'

 });

CHAPTER 6 ■ THEMES

88

 We could use the newly created custom palette on a theme. The following code is
using it as a primary palette on a custom theme.

 $mdThemingProvider
 .theme('aCustomTheme')
 .primaryPalette('aCustomPalette');

 In the palette object, valid values for 'contrastDefaultColor' are dark and light . See
Figure 6-10 and Figure 6-11 , which depict the difference in contrast.

 Figure 6-11. With contrastDefaultColor value dark

 Figure 6-10. With contrastDefaultColor value light

 Summary
 Out of the box, Angular Material provides everything needed for developing consistent
UI adhering to Material Design principles. It supports good variations so that each
application has its own identity and they all do not look the same. Yet for personalizing
the experience further, powerful customization API are provided.

 The default colors and hues are used with CSS classes md-primary , md-accent , and
 md-warn . Each depicts a purpose. Main action controls are ‘primary’; Highlighted actions
are ‘accent’ and the ones that could let user potentially lose data are 'warn'. We can
customize the color combination by editing the default theme.

CHAPTER 6 ■ THEMES

89

 If we need to use multiple themes, we can create additional themes with custom
theme names. $mdThemingProvider makes all these customizations possible.

 The provider also allows configuring three hues, namely, hue-1, hue-2, and hue-3 (in
addition to the default value) for each color purpose (primary, accent, and warn).

 $mdThemingProvider lets the application configure a custom palette, which is a
completely new set of color shades or hues.

 References
 For Material Design color schemes, refer to https://www.google.com/design/spec/

style/color.html#color-color-schemes
 For Material Design color palette information, refer to https://www.google.com/design/

spec/style/color.html#color-color-palette
 For Angular Material theming details, refer to https://material.angularjs.org/lat-

est/Theming/01_introduction

https://www.google.com/design/spec/style/color.html#color-color-schemes
https://www.google.com/design/spec/style/color.html#color-color-schemes
https://www.google.com/design/spec/style/color.html#color-color-palette
https://www.google.com/design/spec/style/color.html#color-color-palette
https://material.angularjs.org/latest/Theming/01_introduction
https://material.angularjs.org/latest/Theming/01_introduction

91© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_7

 CHAPTER 7

 Forms

 This chapter will detail various Angular Material input controls and directives. Beginning
with simple input text boxes, it will delve into many elements like sliders, drop-down,
radio buttons, and so on. Validations are an important aspect of working with forms in a
web application. This chapter details various out-of-the-box features for checking form
validity and pattern matching. It explains options in displaying and highlighting errors to
the user.

 Input Container Directive
 md-input-container is a parent directive for input elements on a form. It groups the label
and the input element (text field, text area, or a select drop-down).

 Usage

 <md-input-container>
 <label>Enter your full name</label>
 <input type="text">
 </md-input-container>

 This results in an Angular Material–style text field, which shows label similar to
placeholder text. As the user clicks the text field (or gets focus by placing the cursor), it
will move away with a little animation. See Figure 7-1 .

 Figure 7-1. Angular Material input textbox

CHAPTER 7 ■ FORMS

92

 Another usage is code with placeholder attribute on the input field, instead of a label
element.

 <md-input-container >
 <input type="text" placeholder="Enter full name">
 </md-input-container>

 There is also an option to disable floating animation of the placeholder text. Use
 md-no-float on md-input-container element. The placeholder text hides as the user starts
keying in values. It is the default behavior of HTML elements with placeholder.

 For another useful feature, we could provide hints on the fields. Write an additional
element (could be a div tag). Use a CSS class hint to render the element as a guide for the
field. Consider the following sample and Figure 7-2 .

 <md-input-container flex >
 <input type="text" placeholder="Phone number" flex name="phone"

ng-model="phone" required >
 <div class="hint">+ xx (yyy) zzz-zzzz; x= Country code; y= Regional code;
z= Phone number </div>
 </md-input-container>

 Figure 7-2. Hint text on textbox

 Form Validations
 Angular Material uses module ngMessages for form field validation. Make sure to include
this dependency while creating our application module.

 angular.module('sampleApp', ['ngMaterial', 'ngMessages'])

 Validation messages are shown using two directives, ng-messages and ng-message . The
latter is a child element of the former. A specific validation error message (like required filed
value not provided or an incorrect e-mail format) is written using ng-message directive. The
ng-messages directive groups all these for a single form field (first name field, e-mail field,
or a phone number field). In most cases, there are more than one ng-message directive for
each ng-messages . Code them on each field under md-input-container .

 Validation attributes are added on the fields to be validated. Validation error/
warning messages are shown on child elements of the ng-messages directive. Consider
the following sample. A required field validation needs to happen on full name. Hence,
the required attribute is specified on the input element. Next to the input element, code
an element with an error/warning message for any validation failures. This element has
 ng-messages directive applied.

CHAPTER 7 ■ FORMS

93

 <md-input-container >
 <input type="text" placeholder="Enter full name" name="fullName" ng-
model="fullName" required md-no-asterisk>

 <div ng-messages ="userApplication.fullName.$error">
 <div ng-message ="required">Fullname is mandatory.</div>
 </div>
 </md-input-container>

 A $ error object will be added on fullName field for any validation errors. The object
structure for accessing the error message is formName.fieldName.$error . In this sample it
is userApplication.fullName.$error.

 A required filed validation has been coded in this sample. There could be more
validations as well. The ng-message directive (child div element) looks for a specific
message to be shown in case of error. Refer to Figure 7-3 . It displays a validation message
as the field loses focus.

 Figure 7-3. Validation error message on textbox

 Max Length Validation
 The md-maxlength directive validates the maximum length specified in the directive.
Consider the following example and Figure 7-4 . The directive shows the character count
and the validation error message.

 <md-input-container flex >
 <input type="text" placeholder="Enter full name" flex name="fullName" ng-
model="fullName" required md-maxlength="20">
 <div ng-messages="userApplication.fullName.$error">
 <div ng-message="required">Fullname is mandatory</div>
 <div ng-message="md-maxlength">This field can not accept more than

twenty characters</div>
 </div>
 </md-input-container>

 Figure 7-4. Max length validation error

CHAPTER 7 ■ FORMS

94

 E-mail Address Validation
 Use input element type e-mail. It performs e-mail validation. Use ng-messages directive to
show a specific validation message. See Figure 7-5 .

 <md-input-container flex >
 <input type="email" placeholder="Primary e-mail" flex name="email" ng-

model="email" required >
 <div ng-messages=" userApplication.email.$error ">
 <div ng-message="required">Email address is mandatory</div>
 <div ng-message="email">Invalid email address</div >
 </div>
 </md-input-container>

 Figure 7-5. E-mail address validation error message

 RegEx Validation
 Use ng-pattern attribute for RegEx validation. Consider the following example for RegEx
validation for a number format, including country code.

 +xx (yyy) zzz-zzzz; x= Country code; y= Regional code; z= Phone number

 Specify RegEx in the ng-pattern directive. Use ng-message directive with value
 pattern . Consider the complete code,

 <md-input-container flex >
 <input type="text" placeholder="Phone number" flex name="phone" ng-

model="phone" required ng-pattern="/^\+[0-9]{1,2} \([0-9]{3}\) [0-9]{3}
[0-9]{4}$/" >

 <div class="hint">+xx (yyy) zzz-zzzz; x= Country code; y= Regional code;
z= Phone number </div>

 <div ng-messages="userApplication.phone.$error">
 <div ng-message="required">Phone number is mandatory</div>
 <div ng-message="pattern">Invalid phone number</div >
 </div>
 </md-input-container>

CHAPTER 7 ■ FORMS

95

 Multiple Validation Messages
 There are scenarios where multiple validation messages need to be shown on a field.
Consider the following example. A basic e-mail validation is required and all the e-mails
on this form should end with @mycompany.com. By default, the top validation message
in ng-messages is shown. As the user fixes it, the next error message is shown (if it fails).
If we need to show all validation messages that failed at a time, use multiple attribute on
 ng-messages . Consider the following sample and Figure 7-6 .

 <md-input-container flex>
 <input type="email" placeholder="Primary e-mail" flex name="email" ng-

model="email" required ng-pattern="/^[a-z0-9]*@mycompany.com$/">
 <div ng-messages="userApplication.email.$error" multiple >
 <div ng-message="required">Email address is mandatory</div>
 <div ng-message="email">Invalid email address</div>
 <div ng-message="pattern">Not a useful email. All on this form

should end with mycompany.com</div>
 </div>
 </md-input-container>

 Figure 7-6. Multiple validation messages

 More Form Elements
 The following are useful Angular Material form or input elements:

 Drop-down
 Use md-select for Angular Material–style drop-down. Consider the following array object
on $scope.

 $scope.superHeroes = [
 "Iron Man",
 "Mowgli",
 "Spiderman",
 "Superman",
 "Chhota Bheem"
];

CHAPTER 7 ■ FORMS

96

 Values of the array are used as options on select drop-down. The md-option
element/directive shows each item on the drop-down. Consider the following template
code. The md-option iterates through the array for each option on the drop-down. It uses
Angular’s ng-repeat to iterate.

 <md-select ng-model="selectedSuperHero" placeholder="Select your favorite
super hero">
 <md-option ng-repeat="item in superHeroes" >{{item}}</md-option>
 </md-select>

 See Figure 7-7 for the drop-down rendered.

 Figure 7-7. A drop-down

 Figure 7-8. Drop-down with multiple values selected

 The default text before selection is specified on the placeholder attribute of md-select
element. ng-model on md-select will hold the selected value.

 md-select allows multiple selection. Set the multiple attribute value to true for
making it a multiselect drop-down. See Figure 7-8 .

CHAPTER 7 ■ FORMS

97

 Dynamically Retrieve Drop-down Options
 Consider the following sample. It uses attributes md-on-open and md-on-close attributes.
They expect an expression as an input. If a function (on scope) is provided, it will be
invoked when the drop-down is open and when the selection is complete, respectively.
The md-on-open could be used to load drop-down options dynamically .

 <md-select ng-model="selectedSuperHero" md-on-open="loadSuperHeroes()" md-
on-close="superHeroSelectionComplete()" placeholder="Select your favorite
super hero">

 <md-option ng-value="item" ng-repeat="item in superHeroes">{{item.
name}}</md-option>

 </md-select>

 Also, consider the following controller function.

 .controller('selectSampleController', function($scope, $timeout){
 $scope.loadSuperHeroes = function(){
 $timeout(function(){
 $scope.superHeroes = [
 {id:1, name:"Iron Man"},
 {id:2, name:"Mowgli"},
 {id:3, name: "Spiderman"},
 {id:4, name:"Superman"},
 {id:5, name:"Chhota Bheem"}
];
 },1000);
 };

 $scope.superHeroSelectionComplete = function(){
 console.log("Selected Hero - " + $scope.selectedSuperHero.name);
 };

 The timeout is mimicking time delay if we are retrieving options from an external API
over HTTP.

 Notice that in this sample we are using objects for options instead of simple strings.
A new attribute, ng-value , is set on md-options.

 <md-option ng-value="item" ng-repeat="item in superHeroes">{{item.name}}
</md-option>

 With this, when the user selects an option, the complete object is set on ng-model .
Remember, the ng-model variable name is selectedSuperHero . It holds the selected option.
The superHeroSelectionComplete function is invoked once the user makes a selection
from the drop-down options. As the ngModel now holds an object of superhero, it is
logging $scope.selectedSuperHero.name.

CHAPTER 7 ■ FORMS

98

 More Options
 1. While strings were used for drop-down options, a comparison

with selected option is simple. However, with objects, it is a
shallow equality check, which means that the selected object
on model is not equal to the object in options array.

 Use an additional option, trackBy in ng-model-options, to fix this.
We could use id or any other similar field on the model.

 ng-model-options=“{trackBy:‘$value.uniqueId’}” // uniqueId is a
property on model object or the item in options array.

 2. Select options could be grouped using md-optgroup
directive/element . Use the label attribute to set group title.
Consider the following code and Figure 7-9 .

 <md-select ng-model="selectedSuperHero" md-on-open="loadSuperHeroes()" md-
on-close="superHeroSelectionComplete()" placeholder="Select your favorite
super hero">
 <md-optgroup label="Marvel">
 <md-option ng-value="item" ng-repeat="item in superHeroes|filter:'Ma

rvel'">{{item.name}}</md-option>
 </md-optgroup>

 <md-optgroup label="Disney">
 <md-option ng-value="item" ng-repeat="item in superHeroes|filter:'D

isney'">{{item.name}}</md-option>
 </md-optgroup>

 <md-optgroup label="Indian">
<md-option ng-value="item" ng-repeat="item in superHeroes|filter:'India
n'">{{item.name}}</md-option>

 </md-optgroup>
 </md-select>

 It creates three option groups: Marvel, Disney, and Indian . Consider the model
object on scope as well.

 $scope.superHeroes = [
 {id:1, name:"Iron Man", category: "Marvel"},
 {id:2, name:"Mowgli", category: "Disney"},
 {id:3, name: "Spiderman", category: "Marvel"},
 {id:4, name:"Superman", category: "DC Comics"},
 {id:5, name:"Chhota Bheem", category: "Indian"}
];

CHAPTER 7 ■ FORMS

99

 Autocomplete Drop-down
 This directive/element allows the user to start typing to filter values in a drop-down. See
Figure 7-10 . We could even dynamically retrieve values from a server-side API. Consider
states in the United States. Assuming the list is available in the browser (in a JSON object),
as the user starts typing, the controller could filter and show a subset of values that match
a given string. On the other hand, if it is a stock ticker, the number of available values is
huge. Hence, the controller can initiate a server API call on each key store (or set of key
strokes) and filter the results.

 Figure 7-9. Drop-down with groupings

 Figure 7-10. Filter in a drop-down

CHAPTER 7 ■ FORMS

100

 Use md-autocomplete element/directive. It is a parent element, which includes a
template (md-item-template) and a placeholder message (md-no-results) when filter
does not yield results. Use md-item-template element/directive for showing filtered
results. When there are no results for given filter string, use md-not-found for placeholder
message.

 Consider the following code .

 <md-autocomplete md-search-text="filterString" md-items="item in filterSuper
heroes(filterString)">
 <md-item-template>
 {{item}}
 </md-item-template> <md-not-found>
 No results.
 </md-not-found>
 </md-autocomplete>

 The variable set on md-search-text property will hold keyed-in text in filter string. In
the sample, filter String property on $scope will hold the filter text keyed in by the user.
The md-items attribute loops through results. Each result item is represented by a variable
named “ item ”.

 filterSuperheroes() is a function on $ scope with the logic to filter by a given string.
This function takes filterString from md-search-text to apply the filter. Note that this
variable is on $scope as well. We could also use it directly on $scope , instead of a
parameter to filterSuperheroes function.

 md-item-template holds an HTML template for each item in the drop-down.
Optionally, use md-menu-class attribute and specify the CSS class to be applied on drop-
down items. In the code sample, for simplicity, we are using a span for item template.

 Highlight the Filter Results
 The md-highlight-text property helps highlight given text. Here, we pass the filterString
variable on $scope . That would result in keyed-in text on autocomplete highlighted on
items in the drop-down.

 We could provide additional options for highlight logic. Consider using attribute md-
highlight-flags. Possible options are:

 1. “i” for case-insensitive match on highlighted text.

 2. “^” for highlighting only items beginning with the filter string.

 3. “$” for highlighting only items ending with the filter string.

 More Options
 1. As user selects an option from the drop-down, use md-selected-

item to hold the selected item. This variable could be used in
other elements on the markup or even in the controller. The
following sample shows the selected item in the template.

CHAPTER 7 ■ FORMS

101

 User selected {{selectedVariableOnScope}}
 <md-autocomplete md-selected-item="selectedVariableOnScope" ... >
 </md-autocomplete>

 2. md-no-cache could be used to disable implicit caching of
results in the directive.

 3. In case of making an API call to get filtered results, it is
advisable to make calls after a given number of milliseconds.
Otherwise, each keystroke could result in a call to the API,
which could be too many for the server to handle. Use md-
delay to specify this delay in milliseconds.

 4. Another variation useful while making API calls is md-min-
length . Set a number representing the number of characters.
Only after user keys in so many characters is filter logic
applied.

 5. Use md-input-maxlength and md-input-minlength to set a
limit on filter string. This limit is applied for validation only.

 6. Use md-select-on-match=“true” to autoselect an item if exact
filter string has been typed in.

 Chips
 Chips is a good UI for selecting multiple custom values. We see this commonly used for
tags on a document or an article, recipient list in an e-mail, and so on. See Figure 7-11 .

 Figure 7-11. Chips

 Create chips using md-chips element/directive. Set array on ng-model to show them
as pre-existing tags. User can add new chips and remove the existing. The ngModel is
updated accordingly.

 <!-- Template -->
 <md-chips ng-model="tagsOnMowgli">

 // Variable on scope in the controller.
 $scope.tagsOnMowgli = ["Jungle Book", "Disney"];

CHAPTER 7 ■ FORMS

102

 Use placeholder and secondary-placeholder attributes. When secondary placeholder
is present, the placeholder value is shown only if the chips text field is empty. If there is at
least one chip, secondary placeholder value is shown. See Figure 7-12 and Figure 7-13 . The
former does not have a chip selected. Hence, the placeholder value is shown. With two
chips selected in Figure 7-13 , value from the secondary placeholder is shown (Mowgli).

 Figure 7-12. Empty field for chips

 Figure 7-13. With chips selected, placeholder text changed

 Consider the following code.

 <md-chips ng-model="tagsOnMowgli" placeholder="AddEnter tags on Mowgli"
secondary-placeholder="Mowgli">

 </md-chips>

 Use shorter secondary placeholder. If there is a chip already, more often than
not, the user will understand the purpose already. The user will not need a complete
explanation (which is required when the text field is empty).

 Like any other control, we could mark chips read-only with readonly = true . At this
point, the user cannot add or remove chips.

 Transform Chips
 As the user keys in values for chips, it is a good idea to transform them to be consistent.
For example, consider a state field. Users key in state names in various forms. Some might
key in Minnesota, while others provide MN.

 We could write a transform function to get state code and replace it with full string
provided by the user. Consider the following controller function.

CHAPTER 7 ■ FORMS

103

 $scope.transformChip = function(chip){
 if(chip){
 for(var state in $scope.uSStateList){
 if($scope.uSStateList[state] === chip
 || state === chip){
 return state; // return state code when you find a match.
 }
 }
 return null; // return null - so the chip won't be added.
 }
 };

 The transform function returns null, indicating that if the given string is not a name
in the US states list, it will be ignored and not added as a chip. However, if the given string
matches one of the state names, state code will be returned.

 There could be other scenarios where given value should be added as a chip even
when there is no match. To handle such a case, return undefined instead of null.

 Use the following code, md-transform - chip attribute, to invoke the transform
function while adding a chip. The $ chip represents the chip being added.

 <md-chips name="states" ng-model="selectedStateList" md-transform-
chip="transformChip($chip)" placeholder="Enter States" secondary-
placeholder="States">

 Use md-on-add , md-on-remove , or md-on-select to execute an expression or run a
function when user adds, removes, or selects a chip, respectively.

 Custom Templates
 We could customize a chip by using a template. Use md-chip-template element. Consider
the following code. It is adding additional text to the given chip value.

 <md-chips name="states" ng-model="selectedStateList" md-transform-
chip="transformChip($chip)" placeholder="Enter States" secondary-
placeholder="States">
 <md-chip-template>
 Send the package to {{$chip}}
 </md-chip-template>
 </md-chips>

 Again, the $chip represents the chip being added.

CHAPTER 7 ■ FORMS

104

 Contact Chips
 Chips use input field while adding/editing/removing chips. See Figure 7-14 . Contact
chips use an autocomplete drop-down, so that values could be selected from a list.

 Figure 7-14. Autocomplete in chips

 Consider the following code. Controller functions first:

 $scope.filterSuperheroesForContactChip = function(filterString){
 var superheroes = [
 {id:1, name:"Iron Man", category: "Marvel"},
 {id:2, name:"Mowgli", category: "Disney"},
 {id:3, name: "Spiderman", category: "Marvel"},
 {id:4, name:"Superman", category: "DC Comics"},
 {id:5, name:"Chhota Bheem", category: "Indian"}
];
 if(filterString){
 return superheroes.filter(function(item){
 return item.name.toLowerCase().indexOf(filterString.

toLowerCase()) >= 0;
 });
 }else{
 return superheroes;
 }

 Out of available array of superhero objects, the filter function selects ones that match
the filter query and returns them.

 An attribute md-contacts is invoking the filter function. It could get a list of objects
or a promise. If promise is returned, until it is resolved a loading indicator is shown. In
the preceding sample, the template gets a list of objects. md-contact-name is one of the
fields on the template. The value name is passed, which is a property on each item in the
drop-down.

CHAPTER 7 ■ FORMS

105

 <md-contact-chips ng-model="contactChipSuperHeroes" md-contacts="filterSup
erheroesForContactChip($query)" md-contact-name="name" placeholder="Select
your superhero"></md-contact-chips>

 Other possible values on the template are md-contact-email and md-contact-image.
Also, consider using ng-model to get a list of all selected chips.

 Similar to md-chips , secondary-placeholder is another attribute on the element. It
could be used to set a placeholder when there is at least one chip selected.

 Radio Buttons
 Use md-radio-group and md-radio-button directives/elements to create Angular
Material–style radio buttons. The later (radio buttons) are grouped as child elements of
radio group. See Figure 7-15 for Angular Material–styled radio buttons.

 Consider the following code.

 Selected {{radioSelectedSuperHero.name}}</ strong>
 <md-radio-group ng-model="radioSelectedSuperHero" >
 <md-radio-button ng-value="item" ng-repeat="item in

radioSuperHeroes">{{item.name}}</md-radio-button>
 </md-radio-group>

 The selected radio button/option is set to ng-model on radio button group. Use
ng-repeat on md-radio-button and iterate through object array. In the preceding sample,
 ng-value on the radio button is set as the whole object. Hence, when selected whole
object is set on ng-model (of radio group). Hence, while showing the selected value use
 selecteditem.name .

 Figure 7-15. Radio buttons

CHAPTER 7 ■ FORMS

106

 ■ Note A radio button uses accent color by default.

 Check Box
 Use md-checkbox directive to show a check box. Consider the following code sample. It
iterates through superheroes array and shows check boxes. See Figure 7-16 .

 <div ng-repeat="item in checkSuperHeroes">
 <md-checkbox ng-model="item.isChecked">{{item.name}}</md-checkbox>
 </div>

 Figure 7-16. Check boxes

 ng-model on the check box sets true or false based on selection. However, if you
need to set different values than true or false, use ng-true-value and ng-false-value .
For example:

 <md-checkbox ng-model="selected" ng-true-value="MowgliSelected" ng-false-
-value="MowgliUnselected" >Mowgli</md-checkbox>

 Value of selected (on ngModel) will be MowgliSelected or MowgliUnselected based
on the user action.

 A check box could be in a third state (other than selected or unselected): that is
indeterminate. To represent an unknown value or partially selected set, this could be
used. When ngModel is not set or when md-indeterminate attribute is set to true, check
box will be in this state.

CHAPTER 7 ■ FORMS

107

 Slider
 Use slider to set a value on a range. Imagine feedback on a scale of one to ten. Slider is a
good choice for representing such an item on the form. See Figure 7-17 .

 Figure 7-17. Slider

 Figure 7-18. Slider

 Use md-slider directive to create a slider. Consider the following code.

 <md-slider min="1" max="10" step="1" ng-model="spidermanRating">Spiderman
</md-slider>{{spidermanRating || 'unrated'}} on a scale of 10

 The attributes min and max specify lowest and highest values possible on the
control. ngModel holds the input (rated) value. " step " represents the increment/
decrement as the user drags the slider. As the value set is 1, each drag will increment the
value by one. We can even use decimal values like 0.5.

 Use md-discrete to show selected value as a bubble on the slider itself. See Figure 7-18 .

 At the time of writing this book, the md-vertical attribute is added in a release
candidate for 1.0.10 to show a flipped slider. It could be used for controls such as a
volume slider.

 Date Picker
 For date values in a form, date picker is effective and useful. See Figure 7-19 for Angular
Material date picker.

CHAPTER 7 ■ FORMS

108

 Figure 7-19. Date picker

 Use md-datepicker to create a date picker. Consider the following code.

 <md-datepicker md-placeholder="Select a date" ng-model="dateValue">
</md-datepicker>

 Use md-placeholder for default text before selecting a date. ng-model has the selected
date by the user.

 We can restrict selecting within a date range. Use md-min-date and md-max-date
attributes to do so. See Figure 7-20 .

CHAPTER 7 ■ FORMS

109

 <md-datepicker style="width:400px" md-placeholder="Select a date" ng-
model="dateBetweenYears" md-min-date="minDate" md-max-date="maxDate">
</md-datepicker>

 $scope.minDate = new Date('01/01/2016');//min date
set to 1 st Jan ‘16

 $scope.maxDate = new Date(); // Max date set to
current date.

 As shown in Figure 7-20 , dates after the current date are disabled.
 We could code a custom validator. Consider the following sample. It does not let

the user select a Sunday or a Wednesday. Use this option to code custom rules that are
specific to an application. See Figure 7-21 .

 Figure 7-20. Date picker with min date and max date set

CHAPTER 7 ■ FORMS

110

 Use the attribute md-date-filter . In the following sample, validateDate is a function
on $scope.

 <md-datepicker md-placeholder="Select a date" ng-model="noWedSun" md-date-
filter="validateDate"></md-datepicker>

 The validateDate function has access to the selected date, which is passed in as a
parameter. The code in the function checks the day for whether a given date is a Sunday
or Wednesday and returns true only if it is not one of those days.

 $scope.validateDate = function(selectedDate){
 if(selectedDate.getDay() == 0 || selectedDate.getDay() == 3){
 return false; // return false for Sunday and Wednesday
 }else{
 return true; // return true for all other days.
 }
 }

 Figure 7-21. Custom rules for date selection

CHAPTER 7 ■ FORMS

111

 Summary
 This chapter described many elements and directives needed to create forms on a web
page. These are the most-used input controls. They conform to an Angular Material style
of coding. They provide a Material Design user experience all along.

 We began by using a simple input text box and wrapping it in md-input-container
element. It allows creating Angular Material–style input elements. We explored validation
controls and services. We could make use of validation across the form and provide
out-of-the-box support for showing error messages, when the user keys in incorrect and
inconsistent values.

 Check boxes, radio buttons, and drop-downs explored in this chapter are traditional
HTML controls; however, we used Angular Material directives to get Material Design
styling. The multiselect feature of drop-down is highly useful in many forms we create.
The following special controls provide additional flexibility and a better user experience
while working a form.

 1. Autocomplete drop-down makes it easy for the user to quickly
select the option he/she is looking for. The filter allows quick
narrow-down to the desired option.

 2. Chips provide a great user experience while the user is making
free-form selection of items like tags or e-mail addresses.
Unlike a drop-down, any text could be provided as input.
This is true in most cases, as there are ways to restrict users to
provide predefined values only.

 3. Slider allows quick drag approach to select a value on a range.
An example would be feedback on a scale of one to ten.

 Finally, we explored date picker control, the md-datepicker element/directive for
Angular Material–style date selector.

 References
 For Angular Material documentation, use https://material.angularjs.org

https://material.angularjs.org/

113© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_8

 CHAPTER 8

 Lists and Alerts

 In this chapter, we will explore some more Angular Material directives and services. We
will begin with list and grid list. They are quite effective controls to represent complex
data. The controls are easy to use and are highly configurable. They provide flexibility in
look-and-feel and functionality.

 We will then detail dialog and toast elements that alert and inform data to the user.
An application will have a variety of alerting requirements. Some are information only.
Certain others are critical and need user attention. The Angular Material elements/
directives cater many of these requirements. Adhering to Material Design specifications,
they provide efficient controls.

 List
 List view is a frequently used UI element. Angular Material provides directives which give
the list UI and functionality out of the box. See Figure 8-1 .

 Figure 8-1. Angular Material list

CHAPTER 8 ■ LISTS AND ALERTS

114

 Use directives md- list and md-list- item to create a list. The directive/element md-list
is a container of multiple list items. Use md-list-item to create each list item. Consider the
following code sample.

 <md-list>
 <md-list-item class="md-2-line" ng-repeat="item in superheroes"

 ng-click="null" >

 <div class="md-list-item-text" layout="column" >
 {{item.name}}
 <div>{{item.category}}</div>
 </div>
 </md-list-item>
 </md-list>

 Using ng-repeat , we iterate through the array of items (superheroes) on md-list-item .
Consider using CSS classes md-2-line or md-3-line . As the name suggests, they define the
number of lines of text in each list item. The CSS class adjusts the height of the list item
accordingly.

 Optionally, we can show an image on each list item. If we show an image, use the
following CSS classes .

 1. md-avatar for an image file. It could be a png or jpeg file.

 2. md-avatar-icon for an icon to be used as an image on the list
item.

 Using the preceding CSS classes , fit the image to the list item (with respect to height
and width). Review Figure 8-1 , which demonstrates how images fit to the height and
width of the list item.

 The text part of the list item, titles, description, and so on should be wrapped in any
HTML element (say div) with md-list-item-text CSS class applied on it.

 Notice ng-click on each md-list-item . As the value provided is null, on click, no action
is performed. Nevertheless, we may provide a controller function. Use it to navigate to the
details screen after clicking a list item. We may choose to exclude ng-click altogether. If
we do so, the list item will not show a highlight on hovering. Moreover, clicking does not
generate an animation (like a button click).

 If we need to show a paragraph of information in each list item, maybe similar to
description text, use md-long-text CSS class. See Figure 8-2 .

CHAPTER 8 ■ LISTS AND ALERTS

115

 Figure 8-2. List box with long text formatting

 The following is another sample with some of these variations.

 <md-list>
 <md-list-item class="md-3-line md-long-text" ng-repeat="item in

superheroes">
 <!-- no ng-click -->

 <div class="md-list-item-text" layout="column" >
 {{item.name}}
 <div>{{item.category}}</div>
 <div>Lorem ipsum ... </div>
 </div>
 </md-list-item>
 </md-list>

CHAPTER 8 ■ LISTS AND ALERTS

116

 Further exploring options with lists, we could use a secondary button on a list item. It
is aligned to the right end of the row. It could act similar to more action buttons. Consider
the following code and Figure 8-3 .

 <md-list>
 <md-list-item class="secondary-button-padding" ng-repeat="item in

superheroes" ng-click="buttonClickHandler()">

 <div class="md-list-item-text" layout="column" >
 {{item.name}}
 {{item.category}}
 </div>
 <md-button class="md-secondary " ng-click="secondaryButtonClickHandl

er()">
 Actions
 </md-button>
 </md-list-item>
 </md-list>

 Figure 8-3. List with secondary action buttons

CHAPTER 8 ■ LISTS AND ALERTS

117

 On the list item element/directive, using a CSS class secondary-button-padding aligns
 the secondary button to the right edge of the screen. Another CSS class md-secondary is
applied on the button. You may choose to make the whole list item a primary button. If
done, the secondary button action will not trigger primary action even though it is part of
the row. It will trigger secondary action in isolation. In the sample, if we click anywhere on
the list item, it triggers buttonClickHandler (this is a function defined on $scope). If we click
the “Actions” button, it triggers secondaryButtonClickHandler in isolation.

 Grid List
 Grid list is a special representation of data compared to list view. It highlights content
better and fits descriptive text and images on each item in the list.

 Angular Material provides a grid component, set of directives out of the box. It takes
a different approach from ng-grid, which (ngGrid) supports functionalities like sort and
filter. Consider this grid as an alternative to list. It is a different and unique depiction of
data. Each list item here is represented as a tile. See Figure 8-4 .

 Figure 8-4. Grid list sample

CHAPTER 8 ■ LISTS AND ALERTS

118

 The following is a basic sample.
 Consider the following code.

 <md-grid-list md-cols="2" md-row-height="300px">
 <md-grid-tile ng-class="item.background" ng-click="null" ng-repeat="item

in superheroes">

 <md-grid-tile-footer layout-padding>
 {{item.category}}
 </md-grid-tile-footer>
 <md-grid-tile-header layout-padding>
 <h2>{{item.name}}</h2>
 </md-grid-tile-header>
 </md-grid-tile>
 </md-grid-list>

 Grid List Element (md-grid- list)
 md-grid- list directive encapsulates all the elements of a grid list.

 1. Use an attribute "md-cols" to configure number of columns or
cells in a row. In the preceding sample, we have two columns.

 2. Consider making the grid responsive. Configure different
numbers of columns depending on screen size. There is
another example later in the chapter, which demonstrates this
behavior.

 3. Configure row height with an attribute md-row-height . In the
preceding sample, we set it to 300px. We could set a value in
rem or ratio of width and height. For example, 38rem and 3:4
are valid values.

 4. Configure gutter size between tiles with the md-gutter
attribute. Provide a value in px (pixels).

 Grid Tile Directive (md-grid-tile)
 Each tile/item/cell is represented by a child element/directive md-grid-tile . In the
preceding sample, we are iterating through the superheroes array (on scope) to create
multiple grid tile elements.

 A grid tile may contain the following. These are child elements/directives for a grid tile.

 1. Header: Use md-tile-header for header on the tile. In general,
it could be used for showing a title on the tile.

 2. Footer: Use md-tile-footer for footer on the tile. In the sample,
we are showing category information on the footer.

 3. Workspace: We could show text or images in a tile. In the
sample, we show images of superheroes.

CHAPTER 8 ■ LISTS AND ALERTS

119

 It is not necessary to use all the child elements of md-grid-tile . A tile may contain a
header, a footer, both of them, or neither of them. All possible combinations can be used.

 On md-grid-tile, consider using attributes md-colspan and md-rowspan. This
specifies number of columns or rows a given tile should occupy. This allows defining
different sizes for each tile. We may choose to show a bigger first tile. Alternatively, a
dynamic grid list layout where each tile’s size is defined by length of the content inside.

 The following sample takes a simplistic approach. It marks the beginning of the grid
list with a bigger tile. On the first tile, row span value is set to two. See Figure 8-5 .

 Figure 8-5. Grid list with row span on first tile

 Consider the following code. Code in boldface uses an expression to identify the
first tile and resize to occupy two rows. ng-repeat tracks index of an item while iterating
through the list using a variable $index . If the value is 0, set rowspan to 2; for all other tiles
set it to 1 (default size).

 <md-grid-tile md-rowspan="{{($index===0)?2:1}}" ng-class="item.background"
ng-click="null" ng-repeat="item in superheroes">

 ■ Note md-colspan value should not be greater than md-cols value set on the parent
 md-grid-list.

CHAPTER 8 ■ LISTS AND ALERTS

120

 Responsive Attributes
 Use responsive attributes to let the grid list adapt to different screen sizes. See Figure 8-6
and Figure 8-7 .

 Figure 8-6. Three columns on a large screensize (gt-md)

 Figure 8-7. Single column and default row span for first tile on a small screen

CHAPTER 8 ■ LISTS AND ALERTS

121

 Consider the following code.

 <md-grid-list md-cols-sm="1" md-cols-md="2" md-cols-gt-md="3" md-row-
height="16:9">
 <md-grid-tile md-rowspan-gt-sm="{{($index===0)?2:1}}"

ng-class="item.background" ng-click="null" ng-repeat="item in
superheroes">

 <md-grid-tile-footer layout-padding>
 {{item.category}}
 </md-grid-tile-footer>
 <md-grid-tile-header layout-padding>
 <h2>{{item.name}}</h2>
 </md-grid-tile-header>
 </md-grid-tile>
 </md-grid-list>

 As the boldface code shows, md-cols sets the number of columns to one on a small
screen, two on a medium-size screen, and three on a greater-than-medium screen. Also
notice that on md-grid-tile, the rowspan logic described previously is applied to greater-
than-small screens only. Thus, on a small screen a default value of one is applied for row
span.

 Alerts and Dialogs
 Alerts and dialogs are important UI elements. To the user, they provide information or
alert a critical action and allow acceptance of a final confirmation or provide a choice
to select from a series of options. We could even show a pop-up window (not a browser
window) within the page with any additional content. The service and elements/
directives being discussed in this section will help create Material Design style dialog
boxes in Angular Material. See Figure 8-8 .

CHAPTER 8 ■ LISTS AND ALERTS

122

 Consider the following code . This template has been used in the dialog window.

 <script type="text/ng-template" id="dialogTemplate.html">
 <md-dialog>
 <md-toolbar>
 <div class="md-toolbar-tools">
 <h2>Welcome</h2>
 </div>
 </md-toolbar>
 <md-dialog-content class="md-dialog-content">

 Dialog begins here. Click anywhere outside the dialog to close it.

 ^{Lorem ipsum …}
 </md-dialog-content>
 </md-dialog>
 </script>

 The template is referenced as dialogTemplate.html .

 Figure 8-8. An elaborate Angular Material dialog

CHAPTER 8 ■ LISTS AND ALERTS

123

 md-dialog Element
 A dialog is encapsulated in md-dialog element/directive. It may contain one or more
child elements/directives.

 1. To show dialog content, use the element/directive md-dialog-
content. On it, apply a CSS class md-dialog-content if padding
is required.

 2. Group all dialog action buttons (for example, OK, Cancel
buttons) in md-dialog-actions element/directive.

 3. These two elements take care of alignment and positioning for
the dialog.

 4. Like any other window, for a toolbar and title use md-toolbar
element/directive.

 The preceding template could be in a separate HTML file. For the sample, it has
been included in the index.html page (in a template script) and provided with id
" dialogTemplate.html ". This template or the dialog is not shown until we explicitly make a
call to show.

 Inject a service $mdDialog into the controller. Use the show function on the service
to show the dialog.

 $mdDialog.show({
 templateUrl: "dialogTemplate.html",
 parent: angular.element(document.body), // dialog is a child element

of body
 clickOutsideToClose: true
 });

 Notice clickOutsideToClose set to true. If this value is set to false, we might have to
add a button to close the dialog (in md-dialog-actions).

 The following are certain other configurations we can take advantage of, while
showing a dialog.

 1. template : Use template: ' <!-- template --> ' to provide template
as a string instead of linking a template file.

 2. onComplete : function(){} - Use onComplete callback function
to run an action after show is complete.

 3. openFrom : "#idOfTheElement" - The animation that depicts
opening dialog zooms in from this element. This element
could be placed on left, right, center (center is default for the
dialog anyway), or any corner of the page.

 4. closeTo : "#idOfTheElement" - The animation that depicts
closing dialog zooms out to this element. This element could
be placed on left, right, center (default for dialog anyway), or
any corner of the page.

CHAPTER 8 ■ LISTS AND ALERTS

124

 Pass Values to the Dialog
 Many times, the launching controller will have dynamic values to pass to the dialog. Also,
using a separate controller for the dialog will isolate its logic from parent controller. It will
be a better separation of concerns. Consider the following code.

 $scope.message = "Good Morning";
 $mdDialog.show({
 templateUrl: "dialogTemplate.html",
 parent: angular.element(document.body), // alert is a child element of

body

 clickOutsideToClose: true,
 locals: {
 aTitle: $scope.message
 },
 controller: function($scope, aTitle){
 $scope.title = aTitle;
 }
 });

 The " locals" variable can hold one or more value providers. Here we added aTitle to
it. And aTitle is injected into the controller. Use value from aTitle on scope . Refer to the
following template code to see the scope variable used in the template.

 <md-dialog-content class="md-dialog-content">
 <h2>{{title}}</h2>

 Dialog be... <!-- rest of the template as in earlier example -->

 Alert Dialog
 Alert is used for information purposes and will only contain an OK button to close the
dialog.

 Consider Figure 8-9 and the following code. This approach allows creating an alert
reference and reusing it. We create an alert with the following code. It is not shown to the
user yet.

CHAPTER 8 ■ LISTS AND ALERTS

125

 var aSimpleAlert = $mdDialog
 .alert()
 .title("Welcome")
 .textContent(" This is a simple alert message")
 .ok("Ahaa")
 ;

 Use alert function on $ mdDialog to create an alert instance. Set title and content of
the alert using title and textContent functions, respectively. If an OK button needs to be
shown, use the API/function ok to set text for the button.

 Show the Alert
 Show the alert when needed. It could be used when the user clicks a button or on certain
other events that require the alert to be shown.

 $mdDialog.show(aSimpleAlert);

 As mentioned, $mdDialog.alert() creates an alert/dialog. The sample uses more API
functions (title, textContent, and ok) to configure the dialog. There are more sophisticated
API available on an alert object. Consider the following.

 1. htmlContent (' <!-- Html template --> '): Unlike textContent
API, we can provide HTML templates to this function. Note
that ngSanitize module needs to be added as a dependency to
use this function.

 2. templateUrl ('templates/yourTemplate.html'): Specify
a template file for the alert. Template should have alert’s
content.

 3. theme ('themeName'): Provide a theme name as parameter
to apply a custom theme while showing the dialog box.

 Figure 8-9. Simple Angular Material–styled alert box sample

CHAPTER 8 ■ LISTS AND ALERTS

126

 4. clickOutsideToClose (true): Passing a value true allows the
dialog to close when clicked outside the alert box. Default is
false. Hence, an action button to close the dialog is needed.

 5. ariaLabel ('a descriptive message'): Sets a string as a
description for accessibility requirements. Screen reader/
tools use this string.

 6. openFrom ("#idOfTheElement"): The animation that depicts
opening alert zooms in from this element. This element could
be placed on left, right, center (default for the dialog anyway)
or any corner of the page.

 7. closeTo ("#idOfTheElement"): The animation that depicts
closing alert zooms out to this element. This element could be
placed on left, right, center (default for the dialog anyway) or
any corner of the page.

 Hide the Alert
 To hide an alert, use $mdDialog.show(alertDialogReference) . Consider the following code.
It hides the dialog 5 seconds after showing it.

 $scope.showSimpleMessage = function(event){
 $mdDialog.show(aSimpleAlert);
 $timeout(function(){
 $scope.hideAlertMessage();
 }, 5000);
 };

 Confirm Dialog
 Confirm allows the user to make a choice. It could be used for warning messages, which
allow the user to make a final choice. See Figure 8-10 .

 Figure 8-10. Angular Material– styled confirm dialog

CHAPTER 8 ■ LISTS AND ALERTS

127

 Consider the following code . Similar to alert, we create an object of the confirm
dialog. We could reuse it across the controller (whichever is the scope of the object).

 var aConfirmDialog = $mdDialog
 .confirm()
 .parent(angular.element(document.body))
 .title("Confirm")
 .textContent(" Are you sure to continue?")
 .ok("Yes")
 .cancel("No")
 .openFrom("#left")
 ;

 Create a confirm dialog reference using confirm () function on $mdDialog service.
 Configure multiple aspects about the dialog.

 1. Set parent using parent () API. The sample sets the whole body
element in the HTML as the parent.

 2. Similar to alert, set title and textContent on the confirm
dialog.

 3. Unlike alert dialog, confirm has two buttons: OK and Cancel.
Set text on the button using ok() and cancel() API.

 4. ariaLabel('a descriptive message'): Sets a string as a
description for accessibility requirements. Screen reader/
tools use this string.

 5. Use openFrom(elementReference) to open the confirm dialog
from given element in the template. The open animations
zoom in from this element in the template. It could be placed
on left or on right or at any corner of the page.

 6. Use closeTo(elementReference) to close the confirm dialog to
a given element in the template. The close animations zoom
out to this element in the template. It could be placed on left
or on right or at any corner of the page.

 7. theme('themeName'): Provide a theme name as parameter to
apply a custom theme while showing the dialog box.

 8. htmlContent('<!-- Html template -->'): Unlike textContent
API, we can provide HTML templates to this function. Note
that ngSanitize module needs to be added as a dependency to
use this function.

 9. templateUrl('templates/yourTemplate.html'): Specify
template file for the confirm dialog.

CHAPTER 8 ■ LISTS AND ALERTS

128

 Show the Confirm Dialog
 Show the confirm dialog using $mdDialog.show API . However, it returns a promise. As
the user makes a selection, it will call success callback or error callback if user selects OK
or Cancel button, respectively. Consider the following code.

 $mdDialog.show(aConfirmDialog).then(function(result){
 console.log(result + " - User selected yes"); // Success callback on OK

click. Output will be "true - User selected yes”.
 }, function() {
 console.log("User selected no"); // Error callback on Cancel click
 });

 Notice success callback accepts a result variable as parameter. When the user selects
yes, the result value will be true.

 Hide the Dialog Box
 To hide the dialog box , use $mdDialog.hide API. Consider the following code. In the
sample, we close the dialog automatically after 5 seconds. This is only to demonstrate
using hide.

 $timeout(function(){
 $mdDialog.hide(aConfirmDialog);
 }, 5000);

 It resolves the promise with success callback. However, result value will not be true
but rather will contain the whole confirm dialog object. This can be used to check if user
closed the dialog by clicking OK or it was closed by the alternate logic to hide the dialog.

 Toast
 Toast is another approach to interact and provide information to the user. More often
than not, toast does not obstruct the user’s actions. It pops up a message at a corner and
shows the required information. Toast can automatically close itself (disappear) after a
few seconds. See Figure 8-11 .

CHAPTER 8 ■ LISTS AND ALERTS

129

 It might not suit critical information messages. It is possible that the user might
miss the information popped up by the toast. Systems generally will have another view
or screen to show alerts shown by toast. However, toast provides a quick non-obstructive
way to show the information to the user.

 Angular Material service $mdToast encapsulates toast functionality.
 To show a simple toast, consider using the following code . It uses $mdToast service,

which is injected into the controller.

 Figure 8-11. A toast message at the bottom, on a mobile view

CHAPTER 8 ■ LISTS AND ALERTS

130

 .controller('toastSampleController', function($scope, $mdToast){
 $scope.showBasicToast = function(){
 $mdToast
 .showSimple("It calls for a toast")
 .then(function(){
 console.log("Done with the toast");

 });
 }

 The showSimple function shows a ready-made toast with the given message. The
toast will appear at the bottom of the screen.

 Notice that the function returns a promise. Promise is resolved once toast
disappears. If an action needs to be performed after the toast message, we can write code
here. In the sample, we are logging a message ("Done with the toast") to the console.

 Basic Customizations
 We can customize and reuse a simple toast message. $mdToast exposes an API simple,
which returns an object $mdToastPreset . This object stores the configured toast. We could
reuse this toast message in the application.

 Consider the following code. It creates $mdToastPreset object.

 var toastRef = $mdToast
 .simple() // creates a toast message reference ($mdToastPreset)
 .textContent("Welcome to a reusable toast") // set text to be shown on

the message.
 .capsule(true); // round edges

 These functions are chained, which helps create the whole configuration with one line
of JavaScript code. Notice the capsule API. It gives round edges to the toast. See Figure 8-12 .

 Figure 8-12. Toast message styled with round edges

 Remember, this toast is not shown yet. Use the following line of code to show it on
the screen.

CHAPTER 8 ■ LISTS AND ALERTS

131

 $mdToast
 .show(toast)
 .then(function(){
 console.log("Done with the toast");
 });

 Use show function for a preset toast. Similar to the showSimple function, show
function too returns a promise, which is resolved as the toast is closed.

 Additional Options with simple() API
 The following are the additional options while creating a preset toast.

 1. Action: A toast message can have an action button. See
Figure 8-13 . It has a button “star it” at the end of the row. The
user could click or tap on it to perform related action for the
toast message. For example, consider a "new message" alert by
toast message; the user could star/favorite it using the action.

 toast = $mdToast
 .simple()
 .textContent("A new message arrived")
 .action("Star it!");

 Figure 8-13. Toast messages with action defined on it

 As the user clicks the action button, promise resolved on the show function provides
a value " ok " indicating button click.

 $mdToast
 .show(toast)
 .then(function(result){
 console.log(result); // result will be "ok"
 });

 2. Use highlightAction(true) API to highlight the button.

 3. Use theme("themeName") to show the toast with a different
theme (defined by $mdThemingProvider).

CHAPTER 8 ■ LISTS AND ALERTS

132

 Advanced Customizations
 Use build API/function to take advantage of advanced options with toast messaging.
Similar to simple (), build () function also returns $ mdToastPreset object. We could reuse
the object across the controller (whichever is the scope of the object). Consider the
following code.

 var toastPreset = $mdToast
 .build()
 .template("<md-toast> Advanced Toast</md-toast>")
 .position("top right")
 .hideDelay(10000);

 $mdToast.show(toastPreset);

 Here, we are chaining the result to add additional configuration.
 Unlike simple () API, build allows configuring a template (instead of just a text

message). Use template function to provide HTML for the template. However, the md-
toast element/directive is mandatory in the template.

 Use templateUrl ('url/to/the/template.html') to configure a template file.

 Configure a Controller
 Toast can have its own controller . Use controller () API and pass a function. It helps better
isolation and separation of concerns from the parent controller.

 $mdToast
 .build()
 .controller(function($scope){
 // Controller definition
 });

 Hide a Toast Message
 hideDelay () configures the number of milliseconds the toast should stay on. We can
provide a value of 0, which will show the toast forever. In this scenario, create an action
button to close the toast. The action button needs to be created in the template.

 To close the toast, use $mdToast.hide(toastPresetObject). Add this line in a controller
function, which is called upon clicking the action button .

 Consider the following code.

CHAPTER 8 ■ LISTS AND ALERTS

133

 var toastPreset = $mdToast
 .build()
 .template("<md-toast> <strong flex='85'> ^{Highly}advanced

toast <md-button ng-click='closeToast()'>Close </md-
button></md-toast>")

 .hideDelay(0)
 .controller(function($scope, $mdToast){
 $scope.closeToast = function(){
 $mdToast.hide(toastPreset);
 };
 });

 $mdToast.show(toastPreset);

 Position a Toast Message
 Position() API allows configuring the position of the toast on the page. Possible values
are top , left , right , bottom . We could use a combination of these values, that is, " top left ",
" bottom right ", and so on. See Figure 8-14 for the toast positioned top-right.

 Figure 8-14. Position a toast message

 However, on a sm screen (small) it resets the position to bottom. This fits better with
small screens. See Figure 8-15 .

CHAPTER 8 ■ LISTS AND ALERTS

134

 However, if you need to show it at a particular position on all screen sizes, use the
following approach. Let that position be "top right" all the time or in the middle of the
page, next to the element the user is interacting with.

 Use parent() api/function and set a particular element on the HTML page as the
parent for the toast. That enforces the toast shown at that element’s position all the time.

 Consider the following sample. This shows toast in the div element, which is in the
middle of a page, in the workspace.

 <div id="advancedButton">
 <md-button ng-click="showAdvCustomizedShow()">Advanced Toast</md-button>
 </div>

 var toastPreset = $mdToast
 .build()
 .position("top right")
 .parent(angular.element(document.getElementById("advancedButton")))
 .template("<md-toast> ^{Highly}advanced toast

</md-toast>")
 .hideDelay(0);

 $mdToast.show(toastPreset);

 The div element has an id "advancedButton". It is selected in the JavaScript code
with document.getElementById() function . The selected element is passed as a parameter
to parent() (for toast) function.

 Figure 8-15. On a mobile view, toast positioned at the bottom

CHAPTER 8 ■ LISTS AND ALERTS

135

 Show with Options
 Consider using show function without a toastPreset . It is best suited when toast references
are not reused.

 $mdToast.show({
 position: "top right",
 parent: angular.element(document.getElementById("advancedButton")),
 template: "<md-toast> <strong flex='85'>^{Highly}advanced toast

 <md-button ng-click='closeToast()'>Close </md-button>
</md-toast>",

 hideDelay: 0,
 locals: {
 dynamicValue: parentVal
 },
 controller: function($scope, $mdToast, dynamicValue){
 console.log(dynamicValue);
 $scope.closeToast = function(){
 $mdToast.hide(toastPreset);
 };
 }
 });

 ■ Note Similar to alert dialogs, a dynamic value can be passed from parent controller
using locals. The key value pairs in locals are injected into the controller as a value type.

 Summary
 This chapter details two important data representations in any web application: list and
grid list. We start by exploring directives md-list and md-list-item for creating a list view.
We discuss configuring and taking advantage of variations in the list view. Depending on
the data that need to be represented onscreen, we could take advantage of CSS styling
to show a two-line or three-line view of the control. We go through options to show even
larger description (of a record). We also learn creating action buttons on list items.

 Grid list represents data that are more complex and provides a different perspective.
We explore md-grid-list and md-grid-tile elements/directives. We explore nuances of
creating a set number of columns in a grid, configuring size, alignment, and so on. We
also look at responsive attributes and making the grid adaptive to the screen size.

CHAPTER 8 ■ LISTS AND ALERTS

136

 After data representation, we start exploring alerting or showing dialog boxes with
Angular Material elements/directives. At first, we look at creating a dialog pop-up using
 md-dialog element/directive. We explore showing alerts for warning and information
messages. We use $mdDialog service as well. We also go through using confirm dialogs.

 Finally, we look at toast messages. Toast messages are more often than not used for
information-only messages. We look at using $mdToast service and md-toast element/
directive in the template. We begin by making use of ready-made API for creating a
simple toast message. We also look at configuring and customizing the toast messages.

 References
 For Angular Material documentation use http://material.angularjs.org

http://material.angularjs.org/

137© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_9

 CHAPTER 9

 Mobile-Friendly Elements

 Some of the controls and elements provided by Angular Material are very relevant on a
mobile device. Technically, there is nothing stopping these controls from being used on
a bigger screen, like a laptop or a desktop. However, they are designed to look better and
more usable on a mobile device. Let us have a look at some of those controls.

 Bottom Sheet
 This is a directive or control for showing a menu of options. Typically, this is used upon
clicking a button. The menu or list of available options pops up at the bottom of the
screen. See Figure 9-1 .

 Figure 9-1. A basic bottom sheet for demonstration

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

138

 A directive md-bottom-sheet and a service $mdBottomSheet are used for this control.
Consider the following code. It is basic implementation of bottom sheet. For simplicity
in the first sample, the bottom sheet menu does not show any list of options. A better
example is demonstrated later in the section to depict real usage.

 angular.module("sampleApp", ["ngMaterial"])
 .controller('sampleController',function($scope, $mdBottomSheet){
 $scope.showBottomSheet = function(){
 $mdBottomSheet.show({
 template: "< md-bottom-sheet > Welcome to the Bottom

Sheet Sample </md-bottom-sheet>"
 });
 };
 })

 Notice that the $mdBottomSheet service is being injected in the controller. An API
 show() on this service draws the bottom sheet. We have a sample button in the HTML
template, which invokes showBottomSheet() function on scope.

 <md-button ng-click=" showBottomSheet()" class="md-primary">Show Bottom
Sheet</md-button>

 As the user clicks the button, the function on scope, showBottomSheet() , calls show()
API on $mdBottomSheet service. We pass a JSON object with a template for the bottom
sheet. The bottom sheet template must contain the md-bottom-sheet element/directive.

 Let us now make it little more sophisticated. We could show buttons, a list of related
actions in the bottom sheet. The component provides two default views for actions: list
and grid.

 Bottom Sheet— List View
 Consider Figure 9-2 . It shows the bottom sheet for login options.

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

139

 The following code is used for creating the sample.

 angular.module("sampleApp", ["ngMaterial"])
 .controller('sampleController',function($scope, $mdBottomSheet){
 $scope.showBottomSheet = function(){
 $mdBottomSheet.show({
 templateUrl: "/bottom-sheet-template.html"
 });
 };
 })

 Figure 9-2. Bottom sheet depicting login options

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

140

 Unlike the previous sample, here we are using template URL. This is a preferred
option because as templates grow in size, it becomes difficult to fit it all in the template
field (of the JSON object). Consider the following template .

 <md-bottom-sheet class=" md-list ">
 <md-subheader>
 Choose Login Mechanism
 </md-subheader>
 <md-list>
 <md-list-item>
 <div>
 <md-button >
 <md-icon md-svg-src="icons/ic_verified_user_black_24px.

svg"></md-icon>
 UserId & Password
 </md-button>
 </div>
 </md-list-item>
 <md-list-item>
 <div>
 <md-button >
 <md-icon md-svg-src="icons/ic_fingerprint_black_24px.

svg"></md-icon>
 <spanFingerprint
 </md-button>
 </div>
 </md-list-item>
 <md-list-item>
 <div>
 <md-button >
 <md-icon md-svg-src="icons/ic_camera_black_24px.svg">

</md-icon>
 Facial Recognition
 </md-button>
 </div>
 </md-list-item>
 </md-list>
 </md-bottom-sheet>

 Notice the CSS class md-list on the root element of the template, md-bottom-sheet . It
ensures that the bottom sheet options are aligned vertically, like a list.

 We are using md-subheader element for the header on the bottom sheet. We could
use an h1, h2, or h3 element. Nevertheless, a subheader directive provides proper spacing
and font size for the subheader. It is also a personal choice. We could choose to use a
different element altogether.

 The second element in md-bottom-sheet is the md-list itself. It has a list of options
arranged by the list directive. We are using buttons with icons for descriptive information
about each option.

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

141

 Bottom Sheet— Grid View
 The other view option with bottom sheet is to arrange actions on it like a grid. See
Figure 9-3 .

 Figure 9-3. Bottom sheet aligned to a grid

 Changes are straightforward. Compared to the list view, change the CSS class on md-
bottom-sheet to md-grid (from md-list). Considering the available space on the bottom
sheet, you might choose to remove textual titles below or adjust the font accordingly. The
following are the snippets that are different from the preceding sample.

 <md-bottom-sheet class="md-grid">

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

142

 Here is the list item template in the sample.

 <md-list-item>
 <div>
 <md-button >
 <md-icon md-svg-src="icons/ic_verified_user.svg"

style="width:48px; height:48px; color:red;"></md-icon>

 ^{User Id & Password}
 </md-button>
 </div>
 </md-list-item>

 Handle Bottom Sheet Actions
 The buttons on bottom sheet are only meaningful if an action occurs on clicking them.
We need to code handlers for those events. Review show() function on $ mdBottomSheet
service. The JSON object passed in as parameter also accepts a controller. Here, we can
write handlers for each button on the bottom sheet. Consider the following code.

 $mdBottomSheet.show({
 templateUrl: "/bottom-sheet-template.html",
 controller: function($scope){
 $scope.defaultAuthenticationHandler = function(){
 console.log("Take user to login form");
 }
 $scope.fingerprintHandler = function(){
 console.log("Let's authenticate user by

fingerprints");
 };
 $scope.facialRecognitionHandler = function(){
 console.log("Use camera and identify the user");
 };
 }
 });

 We have three handler functions written on scope, namely,
 defaultAuthenticationHandler, fingerprintHandler , and facialRecognitionHandler.

 Next, we bind them on the HTML template on ng-click . As the user clicks one of the
three buttons, the appropriate handler is called. Consider the following HTML template
code. For the sample, as the user clicks one of the buttons, the log statement is printed
on the browser’s console. In a full-fledged app, we can navigate to the appropriate
login screen or invoke hardware functionality (for example, switch on camera for facial
recognition).

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

143

 <md-list >
 <md-list-item>
 <div>
 <md-button ng-click="defaultAuthenticationHandler()" >
 <md-icon md-svg-src="icons/ic_verified_user.svg"

style="width:48px; height:48px; color:red;">
</md-icon>

 ^{User Id & Password}
 </md-button>
 </div>
 </md-list-item>
 <md-list-item>
 <div>
 <md-button ng-click="fingerprintHandler()">
 <md-icon md-svg-src="icons/ic_fingerprint.svg"

style="width:48px; height:48px; color:red;">
</md-icon>

 ^{Fingerprint}
 </md-button>
 </div>
 </md-list-item>
 <md-list-item>
 <div>
 <md-button ng-click="facialRecognitionHandler()">
 <md-icon md-svg-src="icons/ic_camera.svg" style="width:48px;

height:48px; color:red;">
</md-icon>

 ^{Facial Recognition}
 </md-button>
 </div>
 </md-list-item>
 </md-list>

 The show() API returns a promise. The promise is resolved or rejected on calling
 hide() or cancel() API, respectively. That is, $mdBottomSheet.hide() resolves the promise,
whereas $mdBottomSheet.cancel() rejects the promise. Hence, in the handler we can
invoke the appropriate API. Consider the following code.

 $scope.fingerprintHandler = function(){
 console.log("Let's authenticate user by fingerprints");
 $mdBottomSheet.hide();
 };

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

144

 The fingerprint handler can call hide() API, indicating that the bottom sheet’s job is
done. If we have a cancel button, to recognize withdrawing the bottom sheet, use cancel()
API . It rejects the promise. Consider the following code.

 $mdBottomSheet.show({
 ... // show function definition
 }).then(function(){
 console.log("Promise resolved"); // promise returned by show is

resolved.
 }, function(){
 console.log("Promise rejected"); // promise returned by show is

rejected.
 });

 The following are additional options while using $mdBottomSheet .

 1. Scope: Use it to pass scope values between parent controller
and bottom sheet directive. If no value is provided, it will
create an isolated scope for the bottom sheet.

 2. preserveScope: true: Scope value is retained between multiple
instances of show/hide of the bottom sheet.

 3. clickOutsideToClose: false: Default value is true. When set to
false, the bottom sheet will not be closed on losing focus or on
clicking outside the control.

 4. disableBackdrop: true: Default value is false. When set to true,
does not fade the backdrop. See Figure 9-4 .

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

145

 5. escapeToClose: false: Default value is true. If set to false, does
not close the bottom sheet on Esc key press on the keyboard.

 6. disableParentScroll: false: Default value is true. If set to false,
allows backdrop to scroll even when bottom sheet is open.

 Swipe
 Swipe is a common gesture with mobile devices. It in fact makes sense on any touch
screen, even on a laptop with touch screen.

 Angular material supports four directives that make it easy to support swipe in an
application. Consider the following code.

 <any md-swipe-left="swipeHandler()"></any>

 Figure 9-4. Backdrop enabled on the left and disabled on the right

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

146

 It is an attribute directive. Use it on any element (for example div). It supports swipe
gesture and calls the handler function attached on the $scope .

 The following are the available directives .

 1. md-swipe-left

 2. md-swipe-right

 3. md-swipe-up

 4. md-swipe-down

 Consider the following code snippet for usage.

 <div md-swipe-right ="swipeHandler()" class = "md-raised md-primary"> Swipe
Right </div>
 <div md-swipe-left ="swipeHandler()" > Swipe Left </div>
 <div md-swipe-up ="swipeHandler()" > Swipe Up </div>
 <div md-swipe-down ="swipeHandler()" > Swipe Down
</div>

 The sample is simplistic and just prints a console statement .

 angular.module("sampleApp", ["ngMaterial"])
 .controller('swipeSampleController', function($scope){
 $scope.swipeHandler = function(){
 console.log("Swiped !");
 }
 });

 However, in the real world, on swipe, we could perform actions like navigate to a
new view/page (possibly swipe left for forward and swipe right for backward navigation),
refresh view with new content (possibly swipe down), and so on. Figure 9-5 depicts swipe
directions.

 Figure 9-5. Swipe directions

CHAPTER 9 ■ MOBILE-FRIENDLY ELEMENTS

147

 Summary
 Many Angular Material controls and features help build a responsive UI. The screen
adjusts content based on the screen size. However, certain features provide mobile-
specific behavior and functionality. These help to create a better mobile experience and
easier use. It functionally works on bigger screens as well. However, they are designed for
mobile views and touch screens.

 This chapter elaborates mobile-specific services and directives initially. It details
usage and features of md-bottom-sheet directive. We may perceive bottom sheet as a
mobile-friendly menu. It has a set of actions or buttons that the user could tap on.

 A bottom sheet supports two layouts: grid and list. Use CSS class md-list or md-grid
to apply respective layout.

 Then we delved into swipe functionality for touch screens. Angular Material provides
four directives, which could be used as attributes on an HTML element. The directives
are md-swipe-left , md-swipe-right , md-swipe-up , and md-swipe-down . On a touch screen,
they have intuitive behaviour for moving forward, going back, pulling actions, and
refreshing a screen, respectively. Implementing such gestures will be very effective for a
touch screen.

 References
 For Angular Material documentation use https://material.angularjs.org

https://material.angularjs.org/

149© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_10

 CHAPTER 10

 Miscellaneous—Icons
and ARIA

 In this chapter, let us explore two important features of Angular Material. We will begin
by looking at options for using icons in an application. Angular Material provides API,
directives, and services to effectively download and show icons in an application. We will
explore using SVGs and fonts for Icons.

 Later in the chapter, we will explore ARIA, an important accessibility feature.
Following ARIA standards, a web application will be easy to use for the visually impaired.
Screen readers will make use of ARIA functionality in the web application for letting the
differently abled use the app.

 ngAria is an AngularJS module that provides accessibility features. Angular Material
is highly dependent on this module and takes advantage of the features to the fullest.

 Icons
 Icons are widely used in web and mobile applications. Icons add visual clues on the
screen and make the UI easily understandable. With an icon, users can instantly relate to
the UI control. Many buttons or links show icons along with the title. Certain UI elements
like tabs, icon buttons, and FAB controls may exclude text completely (possibly to save
space on a smaller screen).

 On a mobile screen, where the real estate needs to be used with austerity, icons
become even more important. The rest of the chapter offers details on approaches to
show icons in an Angular Material application. See Figure 10-1 for a set of Material Design
icons shown on a page.

CHAPTER 10 ■ MISCELLANEOUS—ICONS AND ARIA

150

 Icon Fonts
 It is one of the effective ways to show icons in an application. We could use font glyphs
as icons in the Angular Material application. They help download fonts as a single unit,
instead of downloading multiple images for each icon.

 Using Material Design Icons (CDN Option)
 To use Material Design icons as fonts, include the following style sheet in your project/
page.

 <link href="https://fonts.googleapis.com/icon?family=Material+Icons"
rel="stylesheet">

 Use md-icon directive. Consider the following code. It uses the material-icons font
set. The attribute md-font-set with a value material-icons specifies the same. Outside
Angular Material, if you noticed HTML elements using font-set, it needs a special code
mapped to each icon. However, with the md-icon directive we use a friendly name to
select an icon (among many icons available in the font file).

 <md-icon md-font-set="material-icons" style="font-size:42px" > face </md-icon>

 Using Material Design Icons (with Files on Your Server)
 As you might have also noticed, we are using CDN locations for style sheets and fonts.
The preceding link element downloads the CSS, which in turn requests for font files.

 If you prefer to render styles and fonts from your infrastructure rather than from
the CDN, add the following styles to your project. This is copied from the previously
mentioned material icons’ link element, https://fonts.googleapis.com/icon?family=
Material+Icons .

 Figure 10-1. Material icons on a web page

https://fonts.googleapis.com/icon?family=Material+Icons
https://fonts.googleapis.com/icon?family=Material+Icons

CHAPTER 10 ■ MISCELLANEOUS—ICONS AND ARIA

151

 Create a style sheet with the following styles.

 @font-face {
 font-family: 'Material Icons';
 font-style: normal;
 font-weight: 400;
 src: local('Material Icons'), local('MaterialIcons-Regular'), url(your-
url/your-font.woff2) format('woff2');

 }

 .material-icons {
 font-family: 'Material Icons';
 font-weight: normal;
 font-style: normal;
 font-size: 24px;
 line-height: 1;
 letter-spacing: normal;
 text-transform: none;
 display: inline-block;
 white-space: nowrap;
 word-wrap: normal;
 direction: ltr;
 -webkit-font-feature-settings: 'liga';
 -webkit-font-smoothing: antialiased;
 }

 Notice the highlighted URL for font location. Preferably, use bower or npm to
download Angular Material icons. Copy the WOFF2 file from the downloaded packages.
The following is a bower install command for downloading the package.

 bower install material-design-icons

 Using Custom Icons
 As specified earlier, for Material Design icons, we get the friendly name for an icon out of
the box. If we need to use custom icons, copy your font files in a folder. Use a style sheet
with class names for each icon. The following is a sample.

 .icon-home:before {
 content: "\e900";
 }

 Use Angular Material element/directive md-icon and reference the CSS class as a
value for md-font-icon.

 <md-icon md-font-icon="icon-home" style="font-size:42px" ></md-icon>

CHAPTER 10 ■ MISCELLANEOUS—ICONS AND ARIA

152

 ■ Note The style sheet referenced previously and the icons downloaded are from IcoMoon
app: https://icomoon.io/app/# . You could select a subset of icons and download only the
ones you need. It also creates a style sheet with classes and codes for icons out of the box.

 Using SVGs for Icons
 SVG are vector graphics, which do not lose quality as we scale the image/icon up or
down. If we prefer to use SVGs for icons, we could do that using an attribute md-svg-src on
 md-icon element/directive. Consider the following code.

 <md-icon md-svg-src="svg-icons/ic_alarm.svg" style="width:48px;
height:48px; color:red" ></md-icon>

 Specify path to the SVG file on md-svg-src attribute. Consider using a custom CSS
class or style to change the size and color of the icon. The sample has inline style for
simplicity. However, a CSS class for all icons is preferable.

 ■ Note You could change color and size for both SVGs and font icons.

 Ensure that SVG file does not have fill property set. If we open the SVG in a text editor,
should see an XML file with various details of the image. Ensure that you remove the fill
property if you choose to control color from the HTML view.

 We could download Material Design icons from the following URL: https://
design.google.com/icons .

 Angular Material Icon Sets
 We could also use icon sets to preload SVGs up front. We could load an icon set as a
default icon set. That means we could reference the SVG icons by name anywhere in the
HTML templates.

 Consider the following code.

 angular.module("sampleApp", ["ngMaterial", "material.svgAssetsCache"])
 .config(function($mdIconProvider){
 $mdIconProvider.defaultIconSet('img/icons/sets/core-icons.svg', 24);
 });

https://icomoon.io/app/
https://design.google.com/icons
https://design.google.com/icons

CHAPTER 10 ■ MISCELLANEOUS—ICONS AND ARIA

153

 In the sample, we are using icon sets pre-created and available on CDN. The
CDN location used in the sample is https://s3-us-west-2.amazonaws.com/s.cdpn.
io/t-114/svg-assets-cache.js . All the icons in the sample are packaged in AngularJS
module material.svgAssetsCache. As we create the sample module, add this module as a
dependency. (material.svgAssetsCache : review the preceding highlighted code) .

 In the config function which runs as we bootstrap the module, inject
 $mdIconProvider . Using an API defaultIconSet() , we could set a default iconset. In the
sample, we are considering core-icons.svg as the default icon sets. This icon set is available
in svg-assets-cache.js.

 Notice the second parameter, 24. It is the default view box size, in pixels for the given
icon set. A bigger number shows a bigger icon by default.

 Use md-icon element/directive and md-svg-icon attribute to use an icon out of the
default icon set.

 <md-icon md-svg-icon="account-balance" style="width:48px; height:48px;
color:red" ></md-icon>

 Similar to earlier examples, we are keeping style attributes as is, except that the way
SVG file loads has changed. Instead of referencing the SVG file directly, we are using a
friendly name referenced in the icon set. See Figure 10-2 .

 Figure 10-2. Account balance icon with styling applied

 Additional Icon Sets
 We could preload additional icon sets as well. Consider the following code .

 angular.module("sampleApp", ["ngMaterial", "material.svgAssetsCache"])
 .config(function($mdIconProvider){
 $mdIconProvider
 .defaultIconSet('img/icons/sets/core-icons.svg', 24)
 .iconSet('communication','img/icons/sets/communication-icons.svg',24);

 });

https://s3-us-west-2.amazonaws.com/s.cdpn.io/t-114/svg-assets-cache.js
https://s3-us-west-2.amazonaws.com/s.cdpn.io/t-114/svg-assets-cache.js

CHAPTER 10 ■ MISCELLANEOUS—ICONS AND ARIA

154

 Here we used an API iconSet . It has an additional first parameter to name the icon
set. In the sample, we are naming it communication . Consider the following HTML
template.

 <md-icon md-svg-icon="account-balance" style="width:48px; height:48px;
color:red" ></md-icon>
 <md-icon md-svg-icon="communication:business" style="width:48px;
height:48px; color:red" ></md-icon>

 Notice iconsetName:icon-name syntax (md-svg-icon=“communication:business”).
As we are not loading the icon from default icon set, we identify the icon set that has the
given icon named business. See Figure 10-3 for a page rendered using this approach.

 Figure 10-3. Icon set sample

 There is an alternative syntax to show an icon in the icon set. Consider the following.

 <md-icon md-icon-set="communication" >business</md-icon>

 Specify the icon id as the value for md-icon element/directive. The icon set is
provided through an attribute md-icon-set .

 Preload Individual Icons
 In the earlier section, we used $mdIconProvider to preload SVG icon sets . Using API
provided by $mdIconProvider , we can load individual icons at the module bootstrap time.
This helps preload all icons up front and the individual views load faster (when needed).
Consider the following sample.

 angular.module("sampleApp", ["ngMaterial", "material.svgAssetsCache"])
 .config(function($mdIconProvider){

CHAPTER 10 ■ MISCELLANEOUS—ICONS AND ARIA

155

 $mdIconProvider
 .icon('account-circle','svg-icons/ic_account_circle.svg');
 });

 Here, an icon ic_account_circle.svg is preloaded in the config function. This function
is called as the sampleApp module bootstraps. The icon is available with an id account-
circle in the application.

 Consider the following code. We could now use the icon in the HTML template (with
the image provided to the icon API earlier).

 <md-icon md-svg-icon='account-circle' ></md-icon>

 Font Sets
 Similar to icon sets, we could also use font sets. By default, the font set ' angular material '
is applied on the application. We could use a different font set as the default using
 $mdIconProvider and its API defaultFontSet().

 Use the following.

 $mdProvider.defaultFontSet('a-custom-font-set')

 We could also load other font sets using fontSet API.

 $mdProvider.fontSet('another-font-set', 'font-class-name')

 While using another font set, in the HTML template specify the font set on md-icon
directive.

 <md-icon md-font-set="another-font-set" style="font-size:42px" > fontAlias
</md-icon>

 ■ Note Consider using defaultViewBoxSize(aNumberValue) API with $mdIconProvider . It
changes icons’ default view box size across the module. The value is in pixels.

 md-icon directive internally uses a service $mdIcon . It is used for making an HTTP request
for the icon and in turn cache it in the browser.

CHAPTER 10 ■ MISCELLANEOUS—ICONS AND ARIA

156

 ARIA
 ARIA is a W3C standard for allowing persons with disabilities access applications
(especially web applications). AngularJS provides extensive support to ARIA through
a module named ngAria . This module is a primary requirement of Angular Material. It
is included as a module dependency with ngMaterial (Angular Material module). All
directives and controls in Angular Material provide support for these features through
 ngAria .

 If we get started with Angular Material using a package manager like npm, bower,
or JSPM, ngAria is already downloaded. If we are using CDN, make sure to include the
 ngAria script. Consider the following URL. X.Y.Z are AngularJS versions.

 //ajax.googleapis.com/ajax/libs/angularjs/X.Y.Z/angular-aria.js

 ARIA features are usable through screen readers for persons with disabilities. The
screen reader will read description and state of the control aloud. ngAria integrates well
with ngModel , ngChecked , ngValue , ngShow , and so on. This means that when a check
box is selected/checked, the screen reader through the ARIA attribute could pick this
state information.

 Consider the following code sample.

 <md-button ng-click="submitFunction()" aria-label="Submit customer
form" >Submit</md-button>

 We provide a description in aria-label attribute for screen readers. This should be
done for all controls in the application.

 For any control with label, screen reader can pick up the label text. Using aria-label ,
we can provide text that is more descriptive for screen readers. When there is no default
label value, the ngAria API expects aria-label attribute on the control. If neither is on the
control, it shows a warning in the browser (Figure 10-4).

 Figure 10-4. Example browser warning

 Tab Index : ngAria sets tab index on controls automatically. This will help the
accessibility feature to move focus to the next control using the keyboard.

 Hidden for accessibility features : Any control not visible on the screen will also
automatically be hidden from ARIA features. It is achieved by automatically applying an
attribute aria-hidden=“true”. However, for any reason if it does not hide automatically
(possibly it is hidden by changing opacity, which the ARIA logic will not pick up) or a
control needs to be excluded from accessibility features, use the aria-hidden attribute
explicitly.

CHAPTER 10 ■ MISCELLANEOUS—ICONS AND ARIA

157

 Summary
 This chapter explores icons in a little more detail. Icons have been used in earlier
chapters as well. Nevertheless, they were basic implementations. When we need a holistic
strategy for using icons in the application, review the approaches in this chapter.

 We could use icon fonts, which would allow downloading icons as a unit. It also
provides great ease of use. Material Design provides many frequently used icons out of
the box. Of course, you could create and use custom fonts. This chapter described ways to
implement the same.

 If you decide to use SVG icons, with icon sets, all the needed icons could be grouped
into a single file. On the other hand, the API also supports loading individual SVG icons.
Unless a very small number of icons are used in your application, creating an icon set is
preferred.

 The chapter later describes ARIA features; aria-label is almost always seen on
many directives and controls of the Angular Material application. Take advantage of the
simplicity of ngAria and make your application accessible for the differently abled.

 References
 For Material icons, see https://design.google.com/icons
 For IcoMoon, see https://icomoon.io/app/#
 For accessibility and ngAria documentation, see https://docs.angularjs.org/guide/

accessibility and https://docs.angularjs.org/api/ngAria
 For ARIA specification and documentation, see https://www.w3.org/TR/wai-aria/

https://design.google.com/icons
https://icomoon.io/app/
https://docs.angularjs.org/guide/accessibility
https://docs.angularjs.org/guide/accessibility
https://docs.angularjs.org/api/ngAria
https://www.w3.org/TR/wai-aria/

159© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_11

 CHAPTER 11

 Miscellaneous

 The following are some useful miscellaneous elements and attributes in Angular
Material. These are simple to use and provide value in improving the user experience.

 Whiteframe
 On an element, Whiteframe provides an elevated, 3D appearance with shadow effect. It is
an attribute directive. It could be used on an element link div in HTML. See Figure 11-1 .

 Figure 11-1. Whiteframes with various values of elevation

 Use an element/directive md-whiteframe to create a whiteframe. Consider the
following code. For the four elements, dp values of 4 (default), 10, 16, and 24 are provided.
Possible values are -1 to 24. The first value -1 will not show any elevation. It is useful if we
dynamically need to remove the effect on an element.

 <div md-whiteframe flex layout-margin style="min-height:200px">
 Default
 </div>
 <div md-whiteframe="10dp" flex layout-margin style="min-height:200px">
 Whiteframe - 10dp
 </div>
 <div md-whiteframe="16dp" flex layout-margin style="min-height:200px">
 Whiteframe - 16dp
 </div>

CHAPTER 11 ■ MISCELLANEOUS

160

 <div md-whiteframe="24dp" flex layout-margin style="min-height:200px">
 Whiteframe - 24dp
 </div>

 Tooltip
 Tooltips can provide useful help on various controls in the application. In an unobtrusive
way, it can provide additional information about a text field, button, and so on. For an
Angular Material tooltip, see Figure 11-2 .

 Figure 11-2. Angular Material tooltip

 Use md-tooltip element/ directive to create a tooltip. Refer to the following usage.

 <md-input-container>
 <md-tooltip>Use last name, first name format.

</md-tooltip>
 <label>Enter your fullname</label>
 <input type="text">
 </md-input-container>

 Consider using one of the following options with tooltip.

 1. Use the attribute md-direction , with a value left, right, top, or
bottom for explicitly positioning the tooltip. Default is bottom.

 2. Use the attribute md-delay to delay showing the tooltip for a
certain number of milliseconds after focus. This ensures that
the tooltip is shown only when the form element really gets
focus, instead of popping it while the user is in motion and
quickly tabbing through the controls or moving the mouse
cursor across.

CHAPTER 11 ■ MISCELLANEOUS

161

 3. Use the attribute md-autohide to let the tooltip disappear after
moving the mouse out of the control’s region.

 4. Use the attribute md-visible with a value false to hide tooltip
programmatically.

 Sub header
 Use element md-subheader to create a subheader. It is in addition to default HTML
headers h1, h2, h3, and so on. Subheader indents a little to the right, indicating that it is a
section under one of the headers.

 md-subheader is simple to use. It has smaller font and emphasizes text for a
subheader. See Figure 11-3 .

 Figure 11-3. Headings and a subheader at the bottom

CHAPTER 11 ■ MISCELLANEOUS

162

 Usage

 < md-subheader > Sub Header </md-subheader>

 Divider
 It is a horizontal divider for sections of a view or screen. Use directive md-divider .

 Usage

 <div>Content Section A</div>
 <md-divider></md-divider>
 <div>Content Section B</div>
 <md-divider md-inset></md-divider>
 <div>Content Section C</div>

 md- divider is an empty element that results in a horizontal divider as shown in Figure 11-4 .
Notice md-inset on the second divider. It results in an inset style divider. Refer to Figure 11-4 .

 Figure 11-4. Divider

 Progress Bar
 Progress bars are an important aspect of any application. For a long-running process
within the application, it provides important feedback to the user that the application is
working in the background. The user will intuitively understand to wait and won’t see a
confusing frozen window. The long-running process could be a server-side API call, file
IO, and so on.

 Angular Material provides linear and circular progress bars.

CHAPTER 11 ■ MISCELLANEOUS

163

 Linear Progress Bar
 A linear progress bar is laid out horizontally. As it comparatively has bigger screen space,
will show elaborate status on the long-running process. See Figure 11-5 .

 Figure 11-5. Linear progress bar

 Create a linear progress bar with a directive md-progress-linear .
 Angular material provides four modes for the progress bar.

 1. Determinate : If we have definitive information on the
percentage of long-running job complete, this mode will be
effective. The progress bar fills up once the job is fully done.
Consider the following code.

 <md-progress-linear md-mode="determinate" value="{{progress}}">
</md-progress-linear>

 The precentage of job done is determined by the value attribute. The following code
mimics long-running process with a timeout service. Once the value of progress is above
100, it will quit. In the sample, it is a function defined in the controller.

 function updateProgress(){
 $timeout(function(){
 $scope.progress += 1; // increment progress by 1.
 if($scope.progress<=100){
 // Continue to call update progress recursively till progress is 100%
 console.log($scope.progress);
 updateProgress();
 }
 }, 200);
 }

 2. Indeterminate : When we are not certain about the percentage
of job done, this is a better mode. Hide the progress bar once
the job is complete. Till then, it keeps showing work-in-
progress animation.

 <md-progress-linear md-mode="indeterminate"></md-progress-linear>

CHAPTER 11 ■ MISCELLANEOUS

164

 3. Buffer : When there are two statuses to show, use this mode. For
example, consider video streaming. The extent video buffered
and the percentage of time that the user saw the video are two
statuses. See Figure 11-6 for buffer mode depiction.

 Figure 11-7. Circular progress bar

 Figure 11-6. Buffer mode

 Notice two progress statuses (light orange colored progress and dark orange
colored progress). On the directive, while value represents percentage of job
progress, the second buffer status is determined by md-buffer-value attribute.
In the sample, we use another $scope variable buffer. Based on its value, the
second status progress is shown.

 <md-progress-linear md-mode="buffer" value="{{progress}}" class="md-
warn" md-buffer-value="{{buffer}}"></ md-progress-linear>

 4. Query : Use this mode to depict pre-loading process. It
demonstrates that the real job hasn’t begun yet.

 <md-progress-linear md-mode="query "></md-progress-linear>

 Circular Progress Bar
 A circular progress bar is another depiction of progress for a long-running process.
See Figure 11-7 for a circular progress bar.

 Use the directive md-progress-circular for creating a circular progress bar. There are
two modes in which circular progress bar could be used.

 1. Determinate : It shows the extent of long-running process
complete. As the circle closes fully, the job is done 100%.

 Consider the following code. Use directive md-progress-circular with
 md-mode value “determinate” to create it in this mode. The extent of job
completion is determined by value property.

 <md-progress-circular md-mode="determinate" value="{{progress}}">
</md-progress-circular>

CHAPTER 11 ■ MISCELLANEOUS

165

 As for the linear progress bar, in the sample, we mimic a long-running
process with a $timeout service.

 function updateProgress(){
 $timeout(function(){
 $scope.progress += 1; // increment progress by 1.
 if($scope.progress<=100){
 // Continue to call update progress recursively till progress is 100%
 console.log($scope.progress);
 updateProgress();

 }
 }, 200);
 }

 2. Indeterminate : When we do not know the percentage of job done,
use this mode. Hide the progress bar once the long-running
process is fully done.

 <md-progress-circular md-mode="indeterminate" ></md-progress-circular>

 Summary
 The chapter describes miscellaneous directives that are simple to use and are effective.
We began by exploring attribute directive md-whiteframe . It provides 3D elevation and
shadow effects to an element.

 We explored md-tooltip for showing additional help with controls on the page. In
a web application, use this directive with forms, buttons, links, tabs, and so on to show
additional information about the control on mouse hover.

 A divider could be useful in certain cases to show logical separation between
controls and sections of the page. We use md-divider directive for the separator.

 Finally, we explored linear and circular progress bars to show status on a long-
running process. Such feedback to the user from the application is important. It avoids
confusion, multiple form submits, unnecessary page refresh, and so on. We used
directives md-progress-linear and md-progress-circular . Each has multiple modes to
support different use cases with long-running processes.

 References
 For Angular Material documentation, use https://material.angularjs.org

https://material.angularjs.org/

167© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7_12

 CHAPTER 12

 Responsive Design Patterns

 In Angular Material, we have used multiple controls and elements that adapt Material
Design principles and approaches. FAB is a popular component following Material
Design principles. The speed dial among FAB controls is widely used in Material Design
applications.

 In this chapter, we will explore responsive patterns recommended by Material
Design. They suggest an approach for adapting to multiple screen sizes, ranging from
mobile phones to desktop computers. We use flexbox and Material Design features to
achieve the same.

 Reflow
 This is a responsive design pattern recommended in Material Design. It allows controls
and content to reflow or take up the available space on a screen.

 The following example is useful on mobile devices in landscape and portrait modes.
On mobile devices, a view or arrangement of controls that makes sense on a landscape
mode might not always be relevant in portrait mode; the opposite is true too. There is a
need to reflow the content that better fits landscape or portrait mode.

 The example has two sections on the screen: one for selecting time and the other
with a greeting message. The idea is to adapt to the layout change and reflow. A real-world
example could be little more complex. However, the sample here is to get an idea on reflow
pattern. See Figure 12-1 and Figure 12-2 .

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

168

 We could achieve this layout by using layout attribute with a value "column". It has
two child elements:

 1. Sky blue colored time selection pane.

 2. Light green colored greeting message pane.

 Figure 12-1. A “reflow” sample in potrait mode

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

169

 Consider the following code .

 <div flex layout="column" ng-controller="sampleController" >
 <div style="background-color:skyblue" flex="25" layout="column"

layout-padding layout-align="center center">
 Select Time
 <!-- A div element that constructs time selection dropdowns.

Removing code for better readability. Down below, complete
snippet available. -->

 </div>

 <!-- following div element constructs the greeting message -->
 <div layout="column" layout-padding layout-align="center

center" flex="75" style="background-color:lightgreen">
 <h1>{{greetingMessage}}</h1>
 </div>
 </div>

 Notice the boldface text in the code. On the root element layout is set to be a column.
There are two sections or cells in a column. The first section flexes to 25% and the second
section flexes to 75%.

 Now, let us make it reflow in a landscape mode. See Figure 12-2 .

 Figure 12-2. A “reflow” sample in landscape mode

 When in landscape mode, the screen size is greater than extra-small. Now, reflow to
a row. On the root element, set layout value to be row. It overrides default layout value
without a breakpoint postfix (gt-xs).

 <div layout-gt-xs="row" flex layout="column" ng-
controller="sampleController" >

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

170

 This rearranges the two sections to become cells in a row instead of a column. Here
is the complete HTML template code .

 <div layout-gt-xs="row" flex layout="column" ng-
controller="sampleController" >

 <!--
 the rowFill CSS class forces the div to occupy full height in a row layout.
 ng-class uses a variable isGreaterThanXs to check the screensize and hence
identify landscape mode
 -->
 <div style="background-color:skyblue" ng-class="{rowFill:isGre

aterThanXs}" flex="25" layout="column" layout-padding layout-
align="center center">

 Select Time
 <div layout="row">
 <md-select ng-model="selectedHour">
 <md-option ng-repeat="hour in hours" ">
 {{hour}}
 </md-option>
 </md-select>
 <md-select ng-model="selectedMinute">
 <md-option ng-repeat="minute in minutes">
 {{minute}}
 </md-option>
 </md-select>
 <md-select ng-model="selectedAMPM">
 <md-option ng-repeat="item in AM_PM" ">
 {{item}}
 </md-option>
 </md-select>
 </div>
 </div>
 <div layout="column" layout-padding layout-align="center

center" ng-class="{rowFill:isGreaterThanXs}" flex="75"
style="background-color:lightgreen">

 <h1>{{greeting}}</h1>
 </div>
 </div>

 Position
 The pattern is about repositioning controls and actions to fit better with the view. Consider
menu as an example. On a bigger and wider screen, menu on toolbar is effective. On a
smaller mobile screen, a menu is difficult to work with, especially with a large number
of actions that could result in a scrollbar. Position pattern advocates making it a more
accessible control for a smaller screen. Here we make it a bottom sheet on a smaller screen.

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

171

 Consider Figure 12-3 and Figure 12-4 . We show menu on a larger and wider screen.

 Figure 12-3. Wider screen ; show actions as menu

 Figure 12-4. Smaller form factor resulting in bottom sheet

 We show menu options on a bottom sheet on a mobile view (Figure 12-4).

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

172

 Consider the following code. Notice that “menu content” is hidden by default. It is
shown on a screen greater than small (gt-sm), that is, medium and above.

 <md-toolbar>
 <div class="md-toolbar-tools" layout="row">
 <h2>Title</h2>

 <md-menu>
 <!-- Trigger element is a md-button with an icon -->
 <md-button ng-click=" showActions($mdOpenMenu,$event); ">
 <md-icon md-font-set="material-icons">more_vert

</md-icon>
 </md-button>
 <!-- hide details of menu for better readability -->
 < md-menu-content hide show-gt-sm>
 <md-menu-item>
 ...
 </md-menu-item>
 ...
 </md-menu-content>
 </md-menu>
 </div>
 </md-toolbar>

 Notice the md-button that triggers showing the menu. On clicking, we call a function
on the associated controller. The controller function has further logic for position.
Consider the following controller code .

 $scope.showActions = function($mdOpenMenu, event){
 if($mdMedia('gt-sm')){
 $mdOpenMenu(event);
 }else{
 $mdBottomSheet.show({
 templateUrl: "/bottom-sheet-template.html"
 });

 }
 };

 Notice the statement in the preceding code. On a screen size greater than small (gt-
sm), that is, medium and larger, $ mdOpenMenu will run. It results in showing a menu bar.
Otherwise, on a screen size that is small and extra-small, we show the bottom sheet.

 Review the complete code for a holistic understanding.
 Template for bottom sheet .

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

173

 <script type="text/ng-template" id="/bottom-sheet-template.html">
 <md-bottom-sheet class="md-list">
 <md-subheader>
 Menu
 </md-subheader>
 <md-list>
 <md-list-item>
 <md-button ng-click="null" >
 <md-icon md-font-set="material-icons">add_a_

photo</md-icon>
 Add a photo
 </md-button>
 </md-list-item>
 <md-list-item>
 <md-button ng-click="null" >
 <md-icon md-font-set="material-icons">favorite</

md-icon>
 Loved It!
 </md-button>

 </md-list-item>
 <md-list-item>
 <md-button ng-click="null" >
 <md-icon md-font-set="material-icons">bookmark</

md-icon>
 Tag It!
 </md-button>
 </md-list-item>
 <md-list-item>
 <md-button ng-click="null" >
 <md-icon md-font-set="material-icons">exit_to_

app</md-icon>
 Quit
 </md-button>
 </md-list-item>
 </md-list>
 </md-bottom-sheet>
 </script>

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

174

 Toolbar with menu included.

 <md-toolbar>

 <div class="md-toolbar-tools" layout="row">
 <h2>Title</h2>

 <md-menu>
 <!-- Trigger element is a md-button with an icon -->
 <md-button ng-click="showBottomSheet($mdOpenMenu,

$event); ">
 <md-icon md-font-set="material-icons">more_vert </

md-icon>
 </md-button>

 <md-menu-content hide show-gt-sm>
 <md-menu-item>
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">add_a_

photo</md-icon>
 Add a photo
 </md-button>
 </md-menu-item>
 <md-menu-item>
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-

icons">favorite</md-icon>
 Loved it
 </md-button>
 </md-menu-item>
 <md-menu-item>
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-

icons">bookmark</md-icon>
 Tag it
 </md-button>
 </md-menu-item>
 <md-menu-item>
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">exit_

to_app</md-icon>
 Exit App
 </md-button>
 </md-menu-item>
 </md-menu-content>
 </md-menu>
 </div>

 </md-toolbar>

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

175

 Complete Controller ,

 myModule.controller('positionSampleController', function($scope, $mdMedia,
$mdBottomSheet){
 $scope.showBottomSheet = function($mdOpenMenu, event){
 if($mdMedia('gt-sm')){
 $mdOpenMenu(event);
 }else{
 $mdBottomSheet.show({
 templateUrl: "/bottom-sheet-template.html"
 });

 }
 };
 });

 Transform
 Transform, another responsive design pattern, recommends realigning and rearranging
elements on the page for the best view on a given screen size.

 Consider an example we already discussed: a responsive grid list that adapts to
screen size on a mobile phone/tablet, laptop, or desktop. (Review Chapter 8 , Grid List
section, for reference.) Consider the following code and images that depict a transform
pattern. It renders a single-column grid list by default, a two-column grid list on a small
and medium-size screen, and a three-column grid list on an even bigger screen. See
Figure 12-5 and Figure 12-6 .

 <md-grid-list md-cols="1" md-cols-gt-xs="2" md-cols-gt-md="3" md-row-
height="16:9">
 <md-grid-tile md-rowspan-gt-sm="{{($index===0)?2:1}}" ng-
class="item.background" ng-click="null" ng-repeat="item in superheroes">

 <md-grid-tile-footer layout-padding>
 {{item.category}}
 </md-grid-tile-footer>
 <md-grid-tile-header layout-padding>
 <h2>{{item.name}}</h2>
 </md-grid-tile-header>
 </md-grid-tile>
 </md-grid-list>

http://dx.doi.org/10.1007/978-1-4842-2190-7_8

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

176

 Figure 12-5. Two columns on a medium screen size

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

177

 Let us consider a completely new approach on top of it. Instead of a single-column
grid list , we can hide the grid list on an extra-small screen and show a list view. The list
view is compact and better on a smaller screen. Consider the following code. Highlighted
code shows/hides the grid list. It is hidden by default. However, it will show if it is greater
than an extra-small screen (i.e., small, medium, large, and extra-large).

 <md-grid-list hide show-gt-xs md-cols="2" md-cols-gt-md="3" md-row-
height="16:9">
 <md-grid-tile md-rowspan-gt-sm="{{($index===0)?2:1}}" ng-

class="item.background" ng-click="null" ng-repeat="item in
superheroes">

 Figure 12-6. Single column and default row span for first tile on a small screen

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

178

 <md-grid-tile-footer layout-padding>
 {{item.category}}
 </md-grid-tile-footer>
 <md-grid-tile-header layout-padding>
 <h2>{{item.name}}</h2>
 </md-grid-tile-header>
 </md-grid-tile>
 </md-grid-list>

 On an extra-small screen, the following list view will show (see Figure 12-7). Notice
that it shows the same data and in the code has the same bindings (imageUrl, name,
category, etc.). Nevertheless, it is hidden on a bigger screen. It will show when grid list
does not (which is on an extra-small screen).

 <md-list hide show-xs >
 <md-list-item class="md-2-line" ng-repeat="item in

superheroes" ng-click="null">

 <div class="md-list-item-text" layout="column">
 {{item.name}}
 <div>{{item.category}}</div>
 </div>
 </md-list-item>
 </md-list>

 Figure 12-7. List view on an emulated mobile phone view

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

179

 Reveal
 Reveal is another responsive Material Design pattern. The UI reveals more options, content,
and actions on a bigger screen. These might be hidden or collapsed on a smaller screen.

 Consider the responsive approach to sidenav described in Chapter 4 . On a bigger
screen, sidenav could always be shown. Imagine a medium or large screen. It could be
a tablet in landscape mode or a browser on desktop/laptop full screen. We have enough
space to show all options. Hence, sidenav will always show. On a smaller screen, hide the
sidenav to give way to workspace and the main content of the view.

 Consider the following images of a browser emulated to iPad screen in portrait and
landscape modes (Figure 12-8 and Figure 12-9 , respectively). The former does not have
enough space for sidenav, whereas the latter reveals sidenav.

 Figure 12-8. Browser emulated to iPad in potrait dimentions . It does not show sidenav

http://dx.doi.org/10.1007/978-1-4842-2190-7_4

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

180

 Figure 12-9. Browser emulated to iPad in landscape dimentions . It has enough space for
sidenav

 Consider the following code to achieve the same. Notice that the code has a
responsive attribute to implement the reveal pattern. The sidenav is locked open on a
screen greater than small (gt-sm), which is medium and above.

 <md-sidenav md-component-id='content-sidenav' md-is-locked-
open="$mdMedia('gt-sm')" flex="20" class="md-sidenav-left" layout-padding>
 <h4>side nav content</h4>
 </md-sidenav>

 Review Chapter 4 for complete code snippets on sidenav.
 The sidenav, when it is hidden on a small screen, we could place a menu button on

toolbar to open and use available options.

 Reveal— Toolbar Actions Example
 Let us explore another implementation of reveal pattern with toolbar actions. These are
page-level buttons placed on the toolbar. We could use the pattern to show more options
on a larger screen. On a smaller screen we could collapse to show only the most used or
relevant actions.

http://dx.doi.org/10.1007/978-1-4842-2190-7_4

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

181

 Similar to sidenav, we may transform the remaining options into a menu. The
additional options that do not fit on a smaller screen could collapse into a more options
menu. This allows the screen to be clean and usable, with only a required set of actions or
buttons.

 Implementing a more options menu is analogous to a transform pattern, as the
buttons on toolbar transform to a menu. However, adjusting available buttons on a screen
is analogous to a reveal pattern.

 Consider Figure 12-10 . There are six toolbar actions available for a given page. As you
read through the rest of the section, you will realize that these buttons gradually collapse
under “more actions” buttons. A couple of them collapse initially on a small screen. More
will go under the menu as the screen size reduces further. See Figure 12-10 , Figure 12-11 ,
and Figure 12-12 .

 Figure 12-10. Medium screen size ; all buttons shown

 On a big enough screen, we could show all available buttons. On an extra-small
screen, we show only two action buttons with a “more” menu. See Figure 12-11 . The first
two action buttons are shopping and comments (icons). Consider using the most used
and relevant icons for a mobile screen. The more button acts like a menu and shows rest
of the actions. See Figure 12-12 .

 Figure 12-11. Toolbar with actions on extra-small screen

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

182

 Hide/Show Buttons on Toolbar
 At first, let us look at code to hide or show buttons on the toolbar depending on the screen
size. In the next section, will detail showing those on the menu.

 Consider the following code. On the toolbar, shopping and comments buttons are
shown irrespective of screen size. No flexbox, responsive attributes (breakpoints) for
these elements.

 <div class="md-toolbar-tools" layout="row">
 <h2>Title</h2>

 <md-button ng-click="null">
 <md-icon md-font-set="material-icons">shopping</md-icon>
 </md-button>
 <md-button ng-click="null">
 <md-icon md-font-set="material-icons">comment</md-icon>
 </md-button>

 However, the following actions are shown on a screen greater than extra-small, that
is, small and above. Review highlighted code for responsive breakpoints.

 <md-button ng-click="null" hide show-gt-xs >
 <md-icon md-font-set="material-icons">add_a_photo</md-icon>
 </md-button>

 <md-button ng-click="null" hide show-gt-xs >
 <md-icon md-font-set="material-icons">favorite </md-icon>
 </md-button>

 As the screen size increases, we could show more actions. Two more toolbar
buttons are shown on a medium and above screen size. On a smaller screen (small and
below) they are hidden under the menu. Review boldface code for breakpoints. Also see
Figure 12-13 and Figure 12-14 .

 Figure 12-12. Hidden actions revealed by clicking more button

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

183

 <md-button ng-click="null" hide show-gt-sm >
 <md-icon md-font-set="material-icons">exit_to_app</md-icon>
 </md-button>

 <md-button ng-click="null" hide show-gt-sm >
 <md-icon md-font-set="material-icons">bookmark</md-icon>
 </md-button>

 Figure 12-13. On a small screen size (breakpoint sm), two action buttons are hidden
under the “more action” button

 Figure 12-14. Small screen size. The menu shows only the two hidden menu options

 On the other hand, the menu for more options is shown on small and extra-small
screens only. Notice that the “more actions” menu needs to have inverse breakpoints
compared to other buttons on the toolbar. That is because if a button is already shown on
the toolbar, it need not be shown under the “more” menu. When it is hidden because of
space constraints on the toolbar, it needs to be available on the more actions menu.

 Review the following code: highlighted breakpoints for the menu. It is hidden on
a screen size greater than small (medium and larger). As you might have noticed in
the preceding, medium and larger screen sizes have no toolbar action buttons hidden.
Hence, the more button is not necessary.

 <md-menu hide-gt-sm >
 <!-- menu trigger, a button on the toolbar. -->
 <md-button ng-click="$mdOpenMenu($event)">
 <md-icon md-font-set="material-icons">more_vert </md-icon>
 </md-button>

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

184

 Hide/Show Buttons on the Menu
 Now that we saw code to manage buttons on the toolbar, let us look at hiding and
showing the same on menu. When a button is hidden on the toolbar due to space
constraints, it needs to be available under the menu.

 Use Angular Material menu control to implement the “more” button. The icon
button is a trigger for the menu.

 Consider the following code for buttons under the menu. As learnt while discussing
menu control in an earlier chapter, these buttons are coded under md-menu-content
element/directive.

 <md-menu-content>
 <md-menu-item hide-gt-xs >
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">add_a_photo</md-icon>
 Add a photo
 </md-button>
 </md-menu-item>
 <md-menu-item hide-gt-xs >
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">favorite</md-icon>
 Loved it
 </md-button>
 </md-menu-item>

 Each menu item is wrapped in md-menu-item. Review breakpoints on the menu,
which hide buttons on a screen size greater than extra-small (hide-gt-xs). This means that
screen sizes of small and larger show these buttons on the toolbar. Hence, the menu does
not need to have “add photo” and “favorite” (Loved it) buttons.

 The following is what remains of menu content. These are hidden on a greater than
small screen size (medium and above). If the menu button is shown, these buttons are
also visible.

 <md-menu-item hide-gt-sm >
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">bookmark</md-icon>
 Tag it
 </md-button>
 </md-menu-item>
 <md-menu-item hide-gt-sm >
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">exit_to_app</md-icon>
 Exit App
 </md-button>
 </md-menu-item>

 Here is the complete code.

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

185

 <md-toolbar class="md-secondary">
 <div class="md-toolbar-tools" layout="row">
 <h2>Title</h2>

 <md-button ng-click="null">
 <md-icon md-font-set="material-icons">shopping</md-icon>
 </md-button>
 <md-button ng-click="null">
 <md-icon md-font-set="material-icons">comment</md-icon>
 </md-button>
 <md-button ng-click="null" hide show-gt-xs>
 <md-icon md-font-set="material-icons">add_a_photo

</md-icon>
 </md-button>
 <md-button ng-click="null" hide show-gt-xs>
 <md-icon md-font-set="material-icons">favorite </md-icon>
 </md-button>
 <md-button ng-click="null" hide show-gt-sm>
 <md-icon md-font-set="material-icons">exit_to_app

</md-icon>
 </md-button>
 <md-button ng-click="null" hide show-gt-sm>
 <md-icon md-font-set="material-icons">bookmark</md-icon>
 </md-button>
 <md-menu hide-gt-sm>
 <!-- Trigger element is a md-button with an icon -->
 <md-button ng-click="$mdOpenMenu($event)">
 <md-icon md-font-set="material-icons">more_vert

</md-icon>
 </md-button>
 <md-menu-content>
 <md-menu-item hide-gt-xs>
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">add_a_photo</

md-icon>
 Add a photo
 </md-button>
 </md-menu-item>
 <md-menu-item hide-gt-xs>
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">favorite</md-

icon>
 Loved it
 </md-button>
 </md-menu-item>

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

186

 <md-menu-item hide-gt-sm>
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">bookmark</md-

icon>
 Tag it
 </md-button>
 </md-menu-item>
 <md-menu-item hide-gt-sm>
 <md-button ng-click="null" layout="row">
 <md-icon md-font-set="material-icons">exit_to_app</

md-icon>
 Exit App
 </md-button>
 </md-menu-item>
 </md-menu-content>
 </md-menu>
 </div>

 </md-toolbar>

 Summary
 Responsive design is one of the core features of Angular Material. In this chapter, we
explored multiple patterns which facilitate better user experiences on all screen sizes.
These patterns identify and provide solutions to commonly occurring screen layout
problems.

 The preceding implementations are my take on Material Design–responsive
patterns. They are implemented using flexbox and Angular Material features. I
acknowledge there could be multiple ways to implement the same pattern (within the
Angular Material context). The preceding examples should provide some context and an
initial idea.

 In this chapter, we discussed the following:

 1. Reflow: It rearranges controls and the content to fit various
screen sizes. There could be variations in landscape and
portrait layouts on the same device, or the app could be
opened on a bigger and better screen. The reflow pattern
suggests a way to rearrange content to fill available space.

 2. Position: It suggests repositioning the control or component
by screen size. A control like menu might not be suitable for a
small screen. We might need a different control, of positioning
at a different location on a smaller mobile screen. We may use
bottom sheet instead of menu on a smaller screen and fall
back to menu on a bigger screen.

CHAPTER 12 ■ RESPONSIVE DESIGN PATTERNS

187

 3. Transform: It suggests approaches to rearrange and use
different layouts by screen size. Transforming a grid to show
different number of columns on various screen sizes is one
effective approach. We could even take it to the next level
and use a better and compact control like “list” on a smaller
mobile screen.

 4. Reveal: It recommends using small and important actions
on smaller screens, like mobile phones. From there, reveal to
show more options on a bigger screen and hence make the
view or functionality more powerful on a bigger screen.

 References
 For Material Design–responsive patterns, see https://www.google.com/design/spec/

layout/responsive-ui.html#responsive-ui-patterns

https://www.google.com/design/spec/layout/responsive-ui.html#responsive-ui-patterns
https://www.google.com/design/spec/layout/responsive-ui.html#responsive-ui-patterns

189

 A
 Accessible rich internet application

(ARIA) , 156
 accessibility features , 156
 browser warning , 156
 features , 156
 ngAria , 156
 tab index , 156

 Action buttons , 57
 button

 ng-href attribute , 57
 style and intention , 58–60

 FAB (see Floating action button (FAB))
 menu

 alignment , 70–72
 elements/directives , 69
 menu bar , 73, 75–76
 nested menus , 75
 separator , 72
 source code , 70
 toolbar , 68

 Alert dialog , 121
 alert box , 124
 ariaLabel , 126
 clickOutsideToClose , 126
 closeTo , 126
 confi rm , 126–128
 hide , 126
 htmlContent , 125
 openFrom , 126
 shows , 125
 templateUrl , 125
 theme , 125

 AngularJS , 14
 controller , 17
 controller loads , 15

 data binding , 15
 DI , 16
 directives , 16
 HTML templates , 17–18
 minifi cation safe , 19
 module , 16
 provider , 18–19
 services , 18

 Angular material
 adaptive layout , 4
 advantages , 4
 AngularJS application , 4
 basics (see AngularJS)
 buttons (see Action buttons)
 code samples , 13

 code running , 13
 folder structure , 13–14

 coding practice , 25–26
 concepts

 downloading , 20–26
 ES2015 , 27
 NPM , 20

 dependency injection , 2
 design patterns , 2
 directives and services , 5
 layout (see Layout management)
 material design (see Material design)
 scenarios , 1–2
 source code (‘hello world’) , 8–9
 theming , 4
 typography , 5
 unit testing , 2
 web server

 IIS express , 12
 live server , 10
 Rendered output , 12
 serve , 11

 Index

© V. Keerti Kotaru 2016
V. K. Kotaru, Material Design Implementation with AngularJS,
DOI 10.1007/978-1-4842-2190-7

■ INDEX

190

 aProviderFunction() function , 19
 Autocomplete drop-down , 99

 fi lter , 99
 fi lterSuperheroes() , 100
 md-highlight-text , 100
 md-search-text , 100
 options , 100–101
 source code , 100

 B
 Bottom sheet

 demonstration , 137
 grid view , 141
 handle actions

 backdrop enable and disable , 145
 cancel() API , 144
 $mdBottomSheet , 144–145
 show() function , 143
 source code , 142–143

 list view
 login options , 138–139
 source code , 139
 template , 140

 md-bottom-sheet , 138
 source code , 137–138
 swipe , 145

 console statement , 146
 directions , 146
 directives , 146

 Bower , 21–23
 Breakpoint (Responsive design) , 35–37
 Button directive , 57–60

 C
 Check box , 106
 Chips

 contact chips , 104
 empty fi eld , 102
 list of , 101
 ng-model , 101
 source code , 102
 templates customization , 103
 transform function , 102–103

 Circular progress bar , 164–165
 Code editor/IDE , 8
 Confi rm dialog

 confi guration , 127
 confi rm() function , 127

 dialog box , 128
 $mdDialog.show API , 128
 source code , 127
 styled confi rm dialog , 126

 confi rm() function , 127
 Controller , 17

 D
 Data binding , 15
 Date picker , 107, 109–110
 Dependency injection (DI) , 2, 16
 Design patterns , 2
 Dialogs , 121

 md-dialog element , 123
 pass values , 124
 source code , 122

 Dialogs . See Alert dialog
 Divider , 162
 document.getElementById() function , 134

 E
 ES6 . See ES2015
 ES2015 , 27

 F
 fi lterSuperheroes() function , 100
 Flex

 attributes , 33
 source code , 32–33
 streching and skewing , 33
 values , 33

 fl exbox , 29
 Floating action button (FAB) , 60

 controls , 61–62
 CSS classes , 61–62
 md-fab class , 61–62
 source code , 61
 speed dial

 list of , 62
 material design guidelies , 62–63
 md-fab-actions , 64–65
 md-fab-speed-dial , 63–64
 md-fab-trigger , 64

 toolbar , 66
 md-fab-toolbar , 66–67
 results , 66
 usage , 67

■ INDEX

191

 Form elements , 95
 check cox , 106
 chips (see Chips)
 date picker , 107, 109–110
 drop-down

 autocompletion , 99–101
 comparison , 98
 dynamical value selection , 97
 groupings , 99
 md-optgroup directive/element , 98
 md-select , 95
 multiple values selection , 96

 radio buttons , 105
 slider , 107

 Form validations , 92
 e-mail address , 94
 error messages , 93
 maximum length , 93
 multiple validation messages , 95
 RegEx , 94

 G
 Grid list

 basic view , 117–118
 md-grid-list elements , 118
 md-grid-tile , 118–119
 responsive attributes , 120
 source code , 118

 H
 Horizontal divider , 162
 HTML templates , 17–18
 Hues

 confi guration , 86
 warnPalette functions , 87

 Hues . See Shade/hues

 I
 Icons

 customization , 151
 fonts , 150
 font sets , 155
 material design icons

 CDN option , 150
 fi les and server , 150

 preload individual sets , 154
 SVGs , 152

 sample fi le , 154
 sets , 152
 source code , 153

 web and mobile application , 149
 web page , 150

 IIS express , 12
 Input container , 91

 form validations , 92
 e-mail address , 94
 error messages , 93
 maximum length , 93
 multiple validation messages , 95
 RegEx , 94

 hint text , 92
 input textbox , 91
 md-input-container , 91
 source code , 92
 usage , 91

 Integrated development environment
(IDE) , 8

 J, K
 JavaScript Package Manager (JSPM) , 23–25

 L
 Layout management

 alignment , 31
 arrangement , 31
 attributes , 32
 fl ex , 32–33
 fl exbox , 29
 horizontal and vertical alignment , 30
 layout , 29
 responsive (see Responsive design)

 Linear progress bar , 163
 buff er , 164
 determinate , 163
 indeterminate , 163
 md-progress-linear , 163
 query , 164

 List view
 classes , 114
 long text formattion , 115
 md-long-text , 114
 secondary button , 116–117
 source code , 116
 UI element , 113

 Live server , 10

■ INDEX

192

 M
 Material design

 advantage , 3
 approaches (UX design) , 3
 concepts , 3
 defi nition , 3
 themes (see Th emes)

 material-icons , 150
 md-accent , 79
 $mdBottomSheet , 138
 md-bottom-sheet , 138
 md-button , 57
 md-card-avatar , 53
 md-card-content , 54
 md-card-footer , 54
 md-card-header , 53
 md-card-title , 54
 md-card-title-media , 54
 md-card-title-text , 54
 md-content , 41
 md-dialog element , 123
 md-divider element , 162
 md-fab-actions , 64–65
 md-fab-speed-dial , 63–64
 md-fab-toolbar , 66–67
 md-fab-trigger , 64
 md-font-set , 150
 md-grid-list element , 118
 md-grid-tile , 118–119
 md-header-text , 54
 md-icon , 150
 md-list directives , 114
 md-list-item directives , 114
 md-primary , 79
 md-progress-circular , 164
 md-progress-linear , 163
 md-search-text , 100
 md-sidenav , 44
 md-subheader element , 161
 md-swipe-down , 146
 md-swipe-left , 146
 md-swipe-right , 146
 md-swipe-up , 146
 md-tab , 48, 51–52
 md-tab-body , 48
 md-tab-label , 48
 md-toolbar , 42
 md-tooltip element/directive , 160

 md-warn , 79
 Minifi cation safe code , 19
 Multiple form factors , 1
 Multiple validation messages , 95

 N, O
 Navigation and container elements , 41

 cards
 code , 55–56
 container , 53
 elements/directives , 53–55

 content , 41
 directives , 41
 services , 41
 Sidenav

 $mdSidenav Service , 47
 overlapping , 45
 page content , 45
 responsive , 47
 show/hide sidenav , 46
 use of , 44

 tabs
 directives , 47
 md-tab , 51–52
 md-tabs directive , 49–50
 use of , 48–49

 toolbar
 basics , 42
 features , 43
 md-toolbar , 42
 page-level actions , 43
 sample code , 43
 tall toolbar , 44
 usage , 42

 ngAria , 156
 Node package manager (NPM) , 10

 concepts , 20
 downloading , 20
 reference scripts , 21

 P, Q
 Palette

 accent color , 77
 background , 78
 indigo color , 78
 primary button , 77
 warn , 78

■ INDEX

193

 Position , 170
 bottom sheet , 171–172
 controller , 175
 controller code , 172
 toolbar , 174
 wider screen , 171

 Progress bars , 162
 circular progress bar , 164–165
 linear progress bar , 163

 buff er mode , 164
 determinate , 163
 indeterminate , 163
 md-progress-linear , 163
 query , 164

 Provider function , 18–19

 R
 Radio buttons , 105
 Refl ow

 HTML template code , 170
 landscape mode , 169
 mobile devices , 167
 potrait mode , 167–168
 source code , 169

 RegEx validation , 94
 Responsive design , 34

 CSS breakpoint , 35–37
 feedback for user actions , 34
 layout , 38–39
 real estate , 34
 show/hide directives , 37–38

 Responsive design pattern
 position , 170

 bottom sheet , 171–172
 controller , 175
 controller code , 172
 toolbar , 174
 wider screen , 171

 refl ow
 HTML template code , 170
 landscape mode , 169
 mobile devices , 167
 potrait mode , 167–168
 source code , 169

 reveal , 179
 landscape dimentions , 180
 potrait dimentions , 179
 toolbar actions , 180–186

 transform
 list view , 178
 single-column grid list , 177
 three-column grid list , 175, 177
 two-column grid list , 175–176

 Reveal , 179
 landscape dimentions , 180
 potrait dimentions , 179
 toolbar actions , 180

 extra-small screen , 181
 hidden actions , 182
 hide/show buttons , 182–183
 medium screen size , 181
 menu buttons , 184, 186

 Rich UI development , 1

 S
 Scripts , 7

 angular material application , 7
 dependencies , 7

 Serve , 11
 Services , 18
 Shade/hues , 81
 Sidenav

 $mdSidenav service , 47
 overlapping , 45
 page content , 45
 responsive , 47
 show/hide sidenav , 46
 use of , 44

 Single page application (SPA) , 1–2
 Slider , 107
 Speed dial of FAB , 62–63
 Style and intention , 58
 Sub-header , 161

 divider , 162
 md-subheader , 161
 use of , 162

 SVGs fi le, Icons , 152
 sample fi le , 154
 sets , 152–153
 source code , 153

 Swipe , 145
 console statement , 146
 directions , 146
 directives , 146

 SystemJS and JSPM , 23
 controller , 24–25

■ INDEX

194

 CSS fi les , 23
 dependencies , 23–25
 export default , 25
 import function , 24
 modules and script fi les , 24
 node package , 23
 source code (‘hello world’) , 24–25

 T
 Tabs

 directives , 47
 md-tab , 51–52
 md-tabs directive , 49–50
 use of , 48–49

 Th emes , 77
 background palette , 84
 classes , 79
 color intention , 79
 customization , 81–82
 $get function , 83
 hue confi guration , 86–87
 new theme defi nition , 84
 override color styles , 80
 palette , 82

 accent , 77
 contrastDefaultColor , 88
 customization , 87
 indigo color , 78
 primary button , 77
 warn , 78

 primary and accent colors , 80
 shade/hue , 81
 source code , 82

 toolbar , 80
 toolbar and FAB controls , 83

 Toast
 controller() function , 132
 customizations

 hideDelay() function , 132
 position() function , 133–134
 simple() and build()

function , 132
 simple() API , 131
 source code , 130
 toastPreset , 135

 message , 128–129
 showSimple function , 130
 source code , 129

 Tooltip , 160
 Transform

 list view , 178
 single-column grid list , 177
 three-column grid list , 175, 177
 two-column grid list , 175–176

 Transform function , 102–103
 Typography , 5

 U
 Unit testing , 2

 V
 Validation . See Form validations

 W, X, Y, Z
 Whiteframe , 159–160

SystemJS and JSPM (cont.)

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Chapter 1: Introduction to Angular Material
	Scenarios
	More Power, More Responsibility
	What Is Material Design?
	Why Material Design?
	Why Angular Material?
	Angular Material Basics
	Theming
	Layout
	Typography
	Directives and Services

	Chapter 2: Getting Started
	Scripts
	Code Editor/Integrated Development Environment (IDE)
	Get Started with Angular Material
	Step 1: Code “Hello World—Angular Material”
	Step 2: Set up a developer class web server and run the sample
	Option A: Live Server
	Run the app

	Option B: Serve
	Run the app

	Option C: IIS Express
	Run the app

	Working with Code Samples
	Run Samples
	Folder Structure

	AngularJS Basics
	Data Binding
	Directive
	AngularJS Module
	DI
	Controller
	View / HTML template
	Services
	Provider
	Making the Code Minification Safe

	Pakage Managers and JavaScript Modules
	Setup Node Package Manager - NPM
	Download Angular Material using NPM
	Reference scripts

	Download Angular Material using Bower
	Reference scripts

	SystemJS & JSPM (JavaScript Package Manager)
	Code “Hello World—Angular Material”

	Limit Scope Using Closure
	Notes on ES2015 (Also Called ES6)

	Summary
	References

	Chapter 3: Layout Management
	Flexbox
	Layout
	Layout-Align
	More Layout Attributes

	Flex
	Responsive Design
	Real Estate
	Feedback for User Actions
	Breakpoints
	Show/Hide
	Responsive Layout

	Summary
	References

	Chapter 4: Navigation & Container Elements
	Content (md-content)
	Usage
	Toolbar (md-toolbar)
	Usage

	Sidenav (md-sidenav)
	Basic Usage
	Sidenav Along with the Content
	Show/Hide Sidenav On Demand
	Responsive—Show/Hide Sidenav Based on Screen Width
	$mdSidenav Service

	Tabs
	Usage
	md-tab
	Attributes:

	Cards

	Summary
	References

	Chapter 5: Action Buttons
	Button Directive (md-button)
	Style and Intention

	FAB
	Speed Dial
	md-fab-speed-dial
	md-fab-trigger
	md-fab-actions

	FAB Toolbar
	md-fab-toolbar (Directive)
	Usage

	Menu
	Alignment
	Wider Menu Options
	Separator
	Menu Bar

	Summary
	References

	Chapter 6: Themes
	Angular Material Theming
	Palette

	Basic Usage
	Shade or Hue

	Customize Themes
	Define a New Theme
	Hue Configuration

	Create Custom Palette
	Summary
	References

	Chapter 7: Forms
	Input Container Directive
	Usage
	Form Validations
	Max Length Validation
	E-mail Address Validation
	RegEx Validation
	Multiple Validation Messages

	More Form Elements
	Drop-down
	Dynamically Retrieve Drop-down Options
	More Options

	Autocomplete Drop-down
	Highlight the Filter Results
	More Options

	Chips
	Transform Chips
	Custom Templates

	Contact Chips
	Radio Buttons
	Check Box
	Slider
	Date Picker

	Summary
	References

	Chapter 8: Lists and Alerts
	List
	Grid List
	Grid List Element (md-grid-list)
	Grid Tile Directive (md-grid-tile)
	Responsive Attributes

	Alerts and Dialogs
	md-dialog Element
	Pass Values to the Dialog

	Alert Dialog
	Show the Alert
	Hide the Alert

	Confirm Dialog
	Show the Confirm Dialog
	Hide the Dialog Box

	Toast
	Basic Customizations
	Additional Options with simple() API

	Advanced Customizations
	Configure a Controller
	Hide a Toast Message
	Position a Toast Message
	Show with Options

	Summary
	References

	Chapter 9: Mobile-Friendly Elements
	Bottom Sheet
	Bottom Sheet—List View
	Bottom Sheet—Grid View
	Handle Bottom Sheet Actions

	Swipe
	Summary
	References

	Chapter 10: Miscellaneous—Icons and ARIA
	Icons
	Icon Fonts
	Using Material Design Icons (CDN Option)
	Using Material Design Icons (with Files on Your Server)
	Using Custom Icons

	Using SVGs for Icons
	Angular Material Icon Sets
	Additional Icon Sets

	Preload Individual Icons
	Font Sets

	ARIA
	Summary
	References

	Chapter 11: Miscellaneous
	Whiteframe
	Tooltip
	Subheader
	Usage
	Divider
	Usage

	Progress Bar
	Linear Progress Bar
	Circular Progress Bar

	Summary
	References

	Chapter 12: Responsive Design Patterns
	Reflow
	Position
	Transform
	Reveal
	Reveal—Toolbar Actions Example
	Hide/Show Buttons on Toolbar
	Hide/Show Buttons on the Menu

	Summary
	References

	Index

