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introduction

his book is designed for all practitioners working in equity-linked

insurance, whether in product design, marketing, pricing and valuation,
or risk management. It is written with actuaries in mind, but it should also
be interesting to other investment professionals. The material in this book
forms the basis of a one-semester graduate course for students of actuarial
science, insurance, and finance. The aim is to provide a comprehensive
and self-contained introduction to modeling and risk management for
equity-linked life insurance. A feature of the book is the combination of
econometric analysis of investment models with their application in pricing
and risk management.

The focus is on the stochastic modeling of embedded guarantees that
depend on equity performance. In the major part of the book the contracts
that are used to illustrate the methods are single premium, separate account
products. This class includes variable annuities in the United States, seg-
regated fund contracts in Canada, and unit-linked contracts in the United
Kingdom. The investment guarantees associated with this type of product
are usually payable contingent on the policyholder’s death, and in some
cases also apply to survival benefits. For these contracts, the insurer’s lia-
bility at the expiry of the contract is the excess, if any, of the guaranteed
minimum payout and the amount of the policyholder’s separate account.
Generally, the probability of the guarantee actually resulting in a benefit is
small. In the language of finance, we say that the guarantees are usually deep
out-of-the-money. In the past this has led to a certain complacency, but it
is now recognized that the risk management of these contracts represents
a major challenge to insurers, particularly where the investment guarantee
applies to maturity benefits, and where separate account products have
proved popular with policyholders.

This book took shape as a result of my membership in the Canadian
Institute of Actuaries Task Force on Segregated Fund contracts. After
that Task Force completed its report, there was a clear demand for some
educational material to help actuaries understand the methods that were
recommended in the report, and that were subsequently mandated by the
regulators. Also, many actuaries and regulators in the United States took a
great interest in the report, and the demand for relevant educational material
began to come also from across the United States. Meanwhile, in the United
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Kingdom, it was becoming clear that investment guarantees associated with
annuitization were creating a crisis in the industry.

Much of the material in this book is not new; there are many excellent
texts available on time series modeling, on financial engineering, and on
the principles of stochastic simulation, for example. There are numerous
papers available on the pricing of investment guarantees in insurance, from
the financial engineering viewpoint. The objective of this work is to put all
the relevant models and methods that are useful in the risk management of
equity-linked insurance into a single volume, and to focus specifically on the
parts of the theory that are most relevant. This also enables us to develop
the theory into practical methods for insurance companies, and to illustrate
these with specific reference to equity linked contracts.

There are two common approaches to risk management of equity-linked
insurance, particularly separate account products such as variable annuities
or segregated funds. The “actuarial” approach uses the distribution of
the guarantee liabilities discounted at the risk-free rate of interest. The
dynamic-hedging approach uses financial engineering, and assumes that a
portfolio of bonds and stocks is used to replicate the guarantee payoff.
The replicating portfolio must be rebalanced at frequent intervals, as the
underlying stock price changes. The actuarial approach is commonly used
for risk management of investment guarantees by insurance companies in
North America and in the United Kingdom. The dynamic-hedging approach
is used by financial engineers in banks and hedge funds, and occasionally
in insurance companies. It has been the case since the earliest equity-linked
contracts were issued that many practitioners who use one of these methods
harbor a deep distrust of the other method, often based on a lack of
understanding of the other side’s methodology.

In this book both approaches are presented, discussed, and extensively
illustrated with examples. This should help practitioners on either side of
the fence talk to each other, at the very least. My own view is that both
methods have their merits, and that the best approach is to use both, in
appropriate combination.

I have included in Chapter 7 an introduction to the concepts of no-
arbitrage pricing, replication, and the risk-neutral measure. I am aware that
many people who read this book will be very familiar with this material,
but I am also aware of a great deal of misunderstanding surrounding these
very fundamental issues. For example, there are many actuaries working
with investment guarantees who do not fully comprehend the role of the O-
measure. By focusing solely on the important concepts, I hope to facilitate
a better understanding of the financial economics approach. In order to
keep the book to a manageable project, I have not generally included the
complication of stochastic interest rates, except in Chapter 12, where it is
necessary to explain the annuitization liability under the guaranteed annuity
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option (GAO) contract. This is often dealt with in the more technical
literature on equity-linked insurance, such as Persson and Aase (1994) and
Lin and Tan (2001).

The book is presented in a progressive, linear structure, starting with
models, progressing through modeling, and finally moving on to risk man-
agement. In more detail, the structure of the book is as follows.

The first chapter introduces the contracts and some of the basic ideas
from financial economics that will be utilized in later chapters. The next
four chapters cover some of the econometrics of modeling equity processes.

In Chapter 2, we introduce a number of families of models that have
been proposed for equity returns.

In Chapter 3, we discuss parameter estimation for some of the models,
using maximum likelihood estimation (MLE). We also discuss ways of using
the likelihood to rank the appropriateness of the models for the data.

Because MLE tends to fit the center of the distribution, and may not fit
the tails particularly well for some processes, in Chapter 4 we discuss how
to adjust the maximum likelihood parameters to improve the fit in other
parts of the distribution. This may be important where the far tail of the
equity return distribution is critical in the distribution of the investment
guarantee payout. This chapter, incidentally, explains how to satisfy the
calibration requirements of the Canadian Institute of Actuaries task force
report on segregated funds (SFTF 2000).

Chapter 5 describes how to use the Markov chain Monte Carlo
(MCMC) method for parameter estimation. This is a Bayesian method
for parameter estimation that provides a powerful method for assessing
parameter uncertainty.

Having decided on a model for equity returns, and estimated appropriate
parameters, we can start to model the investment guarantees. In Chapter 6,
we explain how to use stochastic simulation to model the distribution of the
liability outgo for an equity-linked contract. This is the basis of the actuarial
approach to risk management.

We then move on to the dynamic-hedging approach. This needs
some elementary results from financial economics, which are presented in
Chapter 7.

Then, in Chapter 8, we apply the methods to investment guarantees.
This chapter goes beyond the pure pricing information provided by the
Black-Scholes-Merton framework. We also assess the liability that is not
covered by the Black-Scholes hedge. The three sources of this unhedged
liability are

1. Transactions costs from rebalancing the hedge.

2. Hedging errors arising from discrete hedging intervals.

3. Additional hedging costs arising from the use of realistic equity models,
under which the Black-Scholes hedge is no longer self-financing.
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In Chapter 9, we discuss how to use risk measures to quantify the tail
risk from a distribution; risk measures can also be used for pricing. The most
common risk measure in finance is value at risk (VaR). This is a quantile
risk measure. More recent theory favors the conditional tail expectation risk
measure, also known as Tail-VaR. Both are described in Chapter 9, with
examples of application to benefits such as variable annuities and segregated
funds.

Chapter 10 describes stochastic emerging cost modeling. This allows
us to bring together the actuarial and dynamic-hedging approaches and
compare them in a systematic way. Emerging cost modeling is a powerful
tool for making decisions about policy design, pricing, and risk management.

Because stochastic simulation is the fundamental tool for analyzing the
liabilities for equity-linked insurance, it is useful to discuss the error and
uncertainty associated with the method and to consider ways to reduce
the variability of results. In Chapter 11, we examine three sources of
forecast uncertainty. The first is random sampling variation. It is possible
to reduce the effect of this using variance reduction techniques, and these
are described with examples where they are useful in modeling embedded
investment guarantees. The second is uncertainty in parameter estimation;
this is where the Bayesian approach of Chapter 5 is particularly useful. We
discuss how to apply Bayesian methods to quantify the effect of parameter
uncertainty. Finally, we discuss model uncertainty—that is, how to assess
the risk from the possibility that stock returns in the future follow a different
model than that used in forecasts.

The final two chapters expand the application of the methods to two
different types of equity-linked contracts. The first is the U.K. unit-linked
contract with guaranteed annuity option (GAO). This has similarities with
the guaranteed minimum income benefit associated with some variable
annuity contracts. Issued in the early 1980s, at a time of very high long-
term interest rates, the problems of stochastic interest rates and lack of
diversification of risk associated with investment guarantees are, unfortu-
nately, exemplified in the serious problems experienced by a number of
U.K. insurers arising from maturing GAO contracts. Chapter 12 discusses
the actuarial and the dynamic-hedging approaches to risk management of
GAOs. In Chapter 13, we discuss equity-indexed annuities (EIA). These
offer a combination of minimum return guarantee plus participation in
stock appreciation for some equity index. The benefits appear quite sim-
ilar to the variable annuity with maturity guarantee. However, as we
shall demonstrate, the structure of the product is quite different. The
actuarial approach is not appropriate for EIA contracts, and a com-
mon approach to risk management is a static strategy, effectively using
options purchased from a third party to reinsure the investment guarantee
liability.
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Although many models are presented in the early chapters of the book,
most of the examples in later chapters use the regime-switching lognormal
model (RSLN) with two regimes. Part of the justification for this is given
in Chapter 3, where this model is shown to provide a superior fit to
monthly stock return data. Also, the model is easy to understand and is
mathematically tractable. However, although I am partial to the RSLN
model myself, nothing in the later chapters depends on it, so feel free to use
your own favorite model, subject to some quantitative assessment (along the
lines of Chapters 3 through 5) of how well it models the stock return process.
For those interested in exploring the RSLN model further, the Society of
Actuaries intends to make available a Microsoft Excel workbook for fitting
the two-regime model to stock return data. The workbook calculates the
likelihood for given parameters and data; calculates the maximum likelihood
for given data; calculates the distribution function; tests the left tail against
a left-tail calibration table (see Chapter 4); and generates random paths for
the stock index for a given set of parameters (see Hardy and Hardy 2002).

After I had written the major part of the book, one of the extensively
used stock return indices changed its name and composition. The TSE 300
index has been repackaged as the S&P/TSX Composite index. It is still the
broad-based Canadian total return index, but is no longer restricted to 300
companies.

Although many people have helped with this work at various stages, all
remaining errors are my responsibility. I am receptive to hearing of any; feel
free to e-mail me at mrhardy@uwaterloo.ca.
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1

Investment Guarantees

INTRODUCTION

he objective of life insurance is to provide financial security to policy-

holders and their families. Traditionally, this security has been provided
by means of a lump sum payable contingent on the death or survival of the
insured life. The sum insured would be fixed and guaranteed. The policy-
holder would pay one or more premiums during the term of the contract for
the right to the sum insured. Traditional actuarial techniques have focused
on the assessment and management of life-contingent risks: mortality and
morbidity. The investment side of insurance generally has not been regarded
as a source of major risk. This was (and still is) a reasonable assumption,
where guaranteed benefits can be broadly matched or immunized with
fixed-interest instruments.

But insurance markets around the world are changing. The public has
become more aware of investment opportunities outside the insurance sec-
tor, particularly in mutual fund type investment media. Policyholders want
to enjoy the benefits of equity investment in conjunction with mortality
protection, and insurers around the world have developed equity-linked
contracts to meet this challenge. Although some contract types (such as uni-
versal life in North America) pass most of the asset risk to the policyholder
and involve little or no investment risk for the insurer, it was natural for
insurers to incorporate payment guarantees in these new contracts—this is
consistent with the traditional insurance philosophy.

In the United Kingdom, unit-linked insurance rose in popularity in
the late 1960s through to the late 1970s, typically combining a guaranteed
minimum payment on death or maturity with a mutual fund type investment.
These contracts also spread to areas such as Australia and South Africa,
where U.K. insurance companies were influential. In the United States,
variable annuities and equity-indexed annuities offer different forms of
equity-linking guarantees. In Canada, segregated fund contracts became
popular in the late 1990s, often incorporating complex guaranteed values on
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death or maturity. Germany recently introduced equity-linked endowment
insurance. Similar contracts are also popular in many other jurisdictions. In
this book the term equity-linked insurance is used to refer to any contract that
incorporates guarantees dependent on the performance of a stock market
indicator. We also use the term separate account insurance to refer to the
group of products that includes variable annuities, segregated funds, and
unit-linked insurance. For each of these products, some or all of the premium
is invested in an equity fund that resembles a mutual fund. That fund is the
separate account and forms the major part of the benefit to the policyholder.
Separate account products are the source of some of the most important risk
management challenges in modern insurance, and most of the examples in
this book come from this class of insurance. The nature of the risk to the
insurer tends to be low frequency in that the stock performance must be
extremely poor for the investment guarantee to bite, and high severity in
that, if the guarantee does bite, the potential liability is very large.

The assessment and management of financial risk is a very different
proposition to the management of insurance risk. The management of
insurance risk relies heavily on diversification. With many thousands of
policies in force on lives that are largely independent, it is clear from
the central limit theorem that there will be very little uncertainty about
the total claims. Traditional actuarial techniques for pricing and reserving
utilize deterministic methodology because the uncertainties involved are
relatively minor. Deterministic techniques use “best estimate” values for
interest rates, claim amounts, and (usually) claim numbers. Some allowance
for uncertainty and random variation may be made implicitly, through an
adjustment to the best estimate values. For example, we may use an interest
rate that is 100 or 200 basis points less than the true best estimate. Using
this rate will place a higher value on the liabilities than will using the best
estimate as we assume lower investment income.

Investment guarantees require a different approach. There is generally
only limited diversification amongst each cohort of policies. When a market
indicator becomes unfavorable, it affects many policies at the same time.
For the simplest contracts, either all policies in the cohort will generate
claims or none will. We can no longer apply the central limit theorem. This
kind of risk is referred to as systematic, systemic, or nondiversifiable risk.
These terms are interchangeable.

Contrast a couple of simple examples:

B An insurer sells 10,000 term insurance contracts to independent lives,
each having a probability of claim of 0.05 over the term of the contract.
The expected number of claims is 500, and the standard deviation is
22 claims. The probability that more than, say, 600 claims arise is less
than 1073, If the insurer wants to be very cautious not to underprice
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or underreserve, assuming a mortality rate of 6 percent for each life
instead of the best estimate mortality rate of 5 percent for each life will
absorb virtually all mortality risk.

B The insurer also sells 10,000 pure endowment equity-linked insurance
contracts. The benefit under the insurance is related to an underlying
stock price index. If the index value at the end of the term is greater
than the starting value, then no benefit is payable. If the stock price
index value at the end of the contract term is less than its starting value,
then the insurer must pay a benefit. The probability that the stock price
index has a value at the end of the term less than its starting value is
S percent.

The expected number of claims under the equity-linked insurance is
the same as that under the term insurance—that is 500 claims. However,
the nature of the risk is that there is a 5 percent chance that all 10,000
contracts will generate claims, and a 95 percent chance that none of
them will. It is not possible to capture this risk by adding a margin to
the claim probability of 5 percent.

This simple equity-linked example illustrates that, for this kind of risk,
the mean value for the number (or amount) of claims is not very useful. We
can also see that no simple adjustment to the mean will capture the true
risk. We cannot assume that a traditional deterministic valuation with some
margin in the assumptions will be adequate. Instead we must utilize a more
direct, stochastic approach to the assessment of the risk. This stochastic
approach is the subject of this book.

The risks associated with many equity-linked benefits, such as variable-
annuity death and maturity guarantees, are inherently associated with fairly
extreme stock price movements—that is, we are interested in the tail of the
stock price distribution. Traditional deterministic actuarial methodology
does not deal with tail risk. We cannot rely on a few deterministic stock
return scenarios generally accepted as “feasible.” Our subjective assessment
of feasibility is not scientific enough to be satisfactory, and experience—from
the early 1970s or from October 1987, for example—shows us that those
returns we might earlier have regarded as infeasible do, in fact, happen. A
stochastic methodology is essential in understanding these contracts and in
designing strategies for dealing with them.

In this chapter, we introduce the various types of investment guarantees
commonly used in equity-linked insurance and describe some of the contracts
that offer investment guarantees as part of the benefit package. We also
introduce the two common methods for managing investment guarantees:
the actuarial approach and the dynamic-hedging approach. The actuarial
approach is commonly used for risk management of investment guarantees
by insurance companies in North America and in the United Kingdom. The
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dynamic-hedging approach is used by financial engineers in banks, in hedge
funds, and (occasionally) in insurance companies. In later chapters we will
develop both of these methods in relation to some of the major contract
types described in the following sections.

MAJOR BENEFIT TYPES

Equity Participation

All equity-linked contracts offer some element of participation in an under-
lying index or fund or combination of funds, in conjunction with one or
more guarantees. Without a guarantee, equity participation involves no risk
to the insurer, which merely acts as a steward of the policyholders’ funds. It
is the combination of equity participation and fixed-sum underpinning that
provides the risk for the insurer. These fixed-sum risks generally fall into
one of the following major categories.

Guaranteed Minimum Maturity Benefit (GMMB) The guaranteed minimum
maturity benefit (GMMB) guarantees the policyholder a specific monetary
amount at the maturity of the contract. This guarantee provides downside
protection for the policyholder’s funds, with the upside being participation
in the underlying stock index. A simple GMMB might be a guaranteed
return of premium if the stock index falls over the term of the insurance
(with an upside return of some proportion of the increase in the index if the
index rises over the contract term). The guarantee may be fixed or subject
to regular or equity-dependent increases.

Guaranteed Minimum Death Benefit (GMDB) The guaranteed minimum
death benefit (GMDB) guarantees the policyholder a specific monetary sum
upon death during the term of the contract. Again, the death benefit may
simply be the original premium, or may increase at a fixed rate of interest.
More complicated or generous death benefit formulae are popular ways of
tweaking a policy benefit at relatively low cost.

Guaranteed Minimum Accumulation Benefit (GMAB) With the guaranteed
minimum accumulation benefit (GMAB), the policyholder has the option to
renew the contract at the end of the original term, at a new guarantee level
appropriate to the maturity value of the maturing contract. It is a form of
guaranteed lapse and reentry option.

Guaranteed Minimum Surrender Benefit (GMSB) The guaranteed minimum
surrender benefit (GMSB) is a variation of the guaranteed minimum maturity
benefit. Beyond some fixed date the cash value of the contract, payable
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on surrender, is guaranteed. A common guaranteed surrender benefit in
Canadian segregated fund contracts is a return of the premium.

Guaranteed Minimum Income Benefit (GMIB) The guaranteed minimum in-
come benefit (GMIB) ensures that the lump sum accumulated under a
separate account contract may be converted to an annuity at a guaranteed
rate. When the GMIB is connected with an equity-linked separate account,
it has derivative features of both equities and bonds. In the United Kingdom,
the guaranteed-annuity option is a form of GMIB. A GMIB is also commonly
associated with variable-annuity contracts in the United States.

CONTRACT TYPES

Introduction

In this section some generic contract types are described. For each of these
types, individual insurers’ product designs may differ in detail from the
basic contract described below. The descriptions given here, however, give
the main benefit details.

The first three are all separate account products, and have very similar
risk management and modeling issues. These products form the basis of
the analysis of Chapters 6 to 11. However, the techniques described in
these chapters can be applied to other type of equity-linked insurance. The
guaranteed annuity option is discussed in Chapter 12, and equity-indexed
annuities are the topic of Chapter 13.

Segregated Fund Contracts—Canada

The segregated fund contract in Canada has proved an extremely popular
alternative to mutual fund investment, with around $60 billion in assets
in 1999, according to Risk magazine. Similar contracts are now issued by
Canadian banks, although the regulatory requirements differ.

The basic segregated fund contract is a single premium policy, under
which most of the premium is invested in one or more mutual funds on the
policyholder’s behalf. Monthly administration fees are deducted from the
fund. The contracts all offer a GMMB and a GMDB of at least 75 percent
of the premium, and 100 percent of premium is common. Some contracts
offer enhanced GMDB of more than the original premium. Many contracts
offer a GMAB at 100 percent or 75 percent of the maturing value.

The rate-of-administration fee is commonly known as the management
expense ratio or MER. The MER differs by mutual fund type.

The name “segregated fund” refers to the fact that the premium, after
deductions, is invested in a fund separate from the insurer’s funds. The
management of the segregated funds is often independent of the insurer.
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A policyholder may withdraw some or all of his or her segregated fund
account at any time, though there may be a penalty on early withdrawals.

The insurer usually offers a range of funds, including fixed interest,
balanced (a mixture of fixed interest and equity), broad-based equity, and
perhaps a higher-risk or specialized equity fund. For policyholders who
invest in several funds, the guarantee may apply to each fund separately (a
fund-by-fund benefit) or may be based on the overall return (the family-of-
funds approach).

Variable Annuities—United States
The U.S. variable-annuity (VA) contract is a separate account insurance,
very similar to the Canadian segregated fund contract. The VA market is
very large, with over $100 billion of annual sales each year in recent times.
Premiums net of any deductions are invested in subaccounts similar
to the mutual funds offered under the segregated fund contracts. GMDBs
are a standard contract feature; GMMBs were not standard a few years
ago, but are beginning to become so. They are known as VAGLBs or
variable-annuity guaranteed living benefits. Death benefit guarantees may
be increased periodically.

Unit-Linked Insurance—United Kingdom

Unit-linked insurance resembles segregated funds, with the premium less
deductions invested in a separate fund. In the 1960s and early 1970s, these
contracts were typically sold with a GMMB of 100 percent of the premium.
This benefit fell into disfavor, partly resulting from the equity crisis of 1973
to 1974, and most contracts currently issued offer only a GMDB.

Some unit-linked contracts associated with pensions policies carry a
guaranteed annuity option, under which the fund at maturity may be
converted to a life annuity at a guaranteed rate. This is a more complex
option, of the GMIB variety. This option is discussed in Chapter 12.

Equity-Indexed Annuities—United States

The U.S. equity-indexed annuity (EIA) offers participation at some specified
rate in an underlying index. A participation rate of, say, 80 percent of the
specified price index means that if the index rises by 10 percent the interest
credited to the policyholder will be 8 percent. The contract will offer a
guaranteed minimum payment of the original premium accumulated at a
fixed rate; a rate of 3 percent per year is common.

Fixed surrender values are a standard feature, with no equity linking.
Other contract features vary widely by company. A form of GMAB may be
offered in which the guarantee value is set by annual reset according to the
participation rate.
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Many features of the EIA are flexible at the insurer’s option. The MERs,
participation rates, and floors may all be adjusted after an initial guarantee
period.

The EIAs are not as popular as VA contracts, with less than $10 billion
in sales per year. EIA contracts are discussed in more detail in Chapter 13.

Equity-Linked Insurance—Germany

These contracts resemble the U.S. EIAs, with a guaranteed minimum interest
rate applied to the premiums, along with a percentage participation in a
specified index performance. An unusual feature of the German product
is that, for regulatory reasons, annual premium contracts are standard
(Nonnemacher and Russ 1997).

EQUITY-LINKED INSURANCE AND OPTIONS

Call and Put Options

Although the risks associated with equity-linked insurance are new to
insurers, at least, relative to life-contingent risks, they are very familiar
to practitioners and academics in the field of derivative securities. The
payoffs under equity-linked insurance contracts can be expressed in terms
of options.

There are many books on the theory of option pricing and risk manage-
ment. In this book we will review the relevant fundamental results, but the
development of the theory is not covered. It is crucially important for prac-
titioners in equity-linked insurance to understand the theory underpinning
option pricing. The book by Boyle et al. (1998) is specifically written with
actuaries and actuarial applications in mind. For a general, readable intro-
duction to derivatives without any technical details, Boyle and Boyle (2001)
is highly recommended.

The simplest forms of option contracts are:

B A European call option on a stock gives the purchaser the right (but not
the obligation) to purchase a specified quantity of the underlying stock
at a fixed price, called the strike price, at a predetermined date, known
as the expiry or maturity date of the contract.

B A European put option on a stock gives the purchaser the right to sell
a specified quantity of the underlying stock at a fixed strike price at the
expiry date.

American options are defined similarly, except that the option holder
has the right to exercise the option at any time before expiry. Asian options
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have a payoff based on an average of the stock price over a period, rather
than on the final stock price.

To summarize the benefits under the option contracts, we introduce
some notation. Let K be the strike price of the option per unit of stock; let
S; be the price of one unit of the underlying stock at time #; and let T be the
expiry date of the option. The payoff at time T under the call option will be:

(S7 — K)* = max(Sy — K, 0) (1.1)
and the payoff under the put option will be
(K= 87)" = max(K — S1,0) (1.2)

In subsequent chapters we shall see that it is natural to think of
the investment guarantee benefits under separate account products as put
options on the policyholder’s fund. On the other hand, it is more natural to
use call options to value the benefits under an equity-indexed annuity.

We often use the terms in-the-money, at-the-money, and out-of-the-
money in relation to options and to equity-linked insurance guarantees. A
put option that is in-the-money at time ¢ < T has an underlying stock price
S, < K, so that if the stock price at maturity were to be the same as the
current stock price, there would be a payment under the guarantee. For
a call option, in-the-money means that S; > K, and at-the-money means
that the stock and strike prices are roughly equal. Out-of-the-money for
a put option means S, > K, and for a call option means S, < K; in either
case, if the stock price at maturity is the same as the current stock price,
no payment would be required under the guarantee or option contract. We
say a contract is deep out-of-the-money or in-the-money if the difference
between the stock price and strike price is large, so that it is very likely
that a deep out-of-the-money contract will remain out-of-the-money, and
similarly for the deep in-the-money contract.

The No-Arbitrage Principle

The no-arbitrage principle states that, in well-functioning markets, two
assets or portfolios having exactly the same payoffs must have exactly the
same price. This concept is also known as the law of one price; it is a
fundamental assumption of financial economics. The logic is that if prices
differ by a fraction, it will be noticed by the market, and traders will move
in to buy the cheaper portfolio and sell the more expensive, making an
instant risk-free profit or arbitrage. This will pressure the price of the cheap
portfolio back up, and the price of the expensive portfolio back down,
until they return to equality. Therefore, any possible arbitrage opportunity
will be eliminated in an instant. Many studies show consistently that the
no-arbitrage assumption is empirically indisputable in major stock markets.
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This simple and intuitive assumption is actually very powerful, particu-
larly in the valuation of derivative securities. To value a derivative security
such as an option, it is sufficient to find a portfolio, with known value, that
precisely replicates the payoff of the option. If the option and the replicating
portfolio do not have the same price, one could sell the more expensive and
buy the cheaper, and make an arbitrage profit. Since this is assumed to be
impossible, the value of the option and the value of the replicating portfolio
must be identical under the no-arbitrage assumption.

Put-Call Parity

Using the no-arbitrage assumption allows us to derive an important con-
nection between the put option and the call option on a stock.

Let ¢, denote the value at ¢ of a European call option on a unit of stock,
and p; the value of a European put option on a unit of the same stock. Both
options are assumed to mature at the same date T > # with the same strike
price, K. Assume the stock price at ¢ is S;, then an investor who holds both
a unit of stock and a put option on that unit of stock will have a portfolio
at time ¢ with value p; + S;. The payoff at expiry of the portfolio will be

pr + ST = max(K, ST) (13)

Similarly, consider an investor who holds a call option on a unit of
stock together with a pure discount bond maturing at T with face value
K. We assume the pure discount bond earns a risk-free rate of interest of »
per year, continuously compounded, so that the value at time ¢ of the pure
discount bond plus call option is ¢, + Ke "T~?, The payoff at maturity of
the portfolio of the pure discount bond plus call option will be

cr + K = max(K, S7) (1.4)

In other words, these two portfolios—“put plus stock” and “call plus
bond”—have identical payoffs. The no-arbitrage assumption requires that
two portfolios offering the same payoffs must have the same price. Hence
we find the fundamental relationship between put and call options known
as put-call parity, that is,

pr+ S = ¢, + Ke T (1.5)

Options and Equity-Linked Insurance

Many benefits under equity-linked insurance contracts can be regarded as
put or call options. For example, the liability under the maturity guarantee
of a Canadian segregated fund contract can be naturally regarded as an
embedded put option. That is, the policyholder who pays a single premium
of $1000 with a 100 percent GMMB is guaranteed to receive at least
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K = $1000 at maturity, even if the market value of her or his portfolio is
less than $1000 at that time. It is the responsibility of the insurer to pay
(1000 — S7)*, the excess of the guaranteed amount over the market value
of the assets, meaning that the insurer pays the payoff under a put option.

Therefore, the total segregated fund policy benefit is made up of the
policyholder’s fund plus the payoff from a put option on the fund. From
put-call parity we know that the same benefit can be provided using a bond
plus a call option, but that route is not sensible when the contract is designed
in the separate account format. Put-call parity also means that the U.S. EIA
could either be regarded as a combination of fixed-interest security (meeting
the minimum interest rate guarantee) and a call option on the underlying
stock (meeting the equity participation rate benefit), or as a portfolio of
the underlying stock (for equity participation) together with a put option
(for the minimum benefit). In fact, the first method is a more convenient
approach from the design of the contract.

The fundamental difference between the VA-type guarantee, which
we value as a put option to add to the separate account proceeds, and
the EIA guarantee, which we value as a call option added to the fixed-
interest proceeds, arises from the withdrawal benefits. On withdrawal, the
VA policyholder takes the proceeds of the separate account, without the
put option payment. The EIA policyholder withdraws with their premium
accumulated at some fixed rate, without the call-option payment.

American options may be relevant where equity participation and min-
imum accumulation guarantees are both offered on early surrender. Asian
options are relevant for some EIA contracts where the equity participation
can be based on an average of the underlying stock price rather than on the
final value.

There is a substantial and rich body of theory on the pricing and
financial management of options. Black and Scholes (1973) and Merton
(1973) showed that it is possible, under certain assumptions, to set up a
portfolio that consists of a long position in the underlying stock together
with a short position in a pure discount bond and has an identical payoff
to the call option. This is called the replicating portfolio. The theory of
no-arbitrage means that the replicating portfolio must have the same value
as the call option because they have the same payoff at the expiry date. Thus,
the famous Black-Scholes option-pricing formula not only provides the price
but also provides a risk management strategy for an option seller—hold the
replicating portfolio to hedge the option payoff. A feature of the replicating
portfolio is that it changes over time, so the theory also requires the balance
of stocks and bonds to be rearranged at frequent intervals over the term of
the contract.

The stock price, S;, is the random variable in the payoff equations
for the options (we assume that the risk-free rate of interest is fixed). The
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probability distribution of S, is know as the real-world measure, the physical
measure, or the P-measure. The fundamental result of Black, Scholes, and
Merton was that securities may be valued and the replicating portfolio
derived by taking the expected value of the payoff, but under a different,
artificial distribution known as the Q-measure (or risk-neutral measure). In
Chapter 7 we discuss the relationship between these two measures.

There are some complications in applying this theory to the options
embedded in equity-linked insurance. The major problem is the very long-
term nature of the equity-linked options. The contract term for standard
traded options might be a few weeks—an option with a term of more than
six months would be considered long term. In contrast, the options implicit
in equity-linked insurance commonly have terms of over 10 years, and some
may be in force for 30 years or more. A challenge for actuaries managing
equity-linked contracts is to adapt the methods of financial economics to
the long time scales in which insurance companies work.

PROVISION FOR EQUITY-LINKED LIABILITIES

Reinsurance

An easy way for the insurer to manage the liability from options embedded
in equity-linked contracts is to buy options, equivalent to those they have
sold, from third parties. This is equivalent to reinsuring the entire risk;
indeed, reinsurers have been involved in selling such options to insurers. As
with reinsurance, the insurer is likely to pass on a substantial proportion
of the expected profit on the contracts along with the risk. Also, (as with
reinsurance) the insurer must be aware of the counterparty risk; that is, the
risk that the option provider will not survive to the maturity date, which
may be decades away.

For some markets, such as that for segregated fund contracts in Canada,
reinsurers and other option providers are increasingly unwilling to provide
the options at prices acceptable to the insurers.

Dynamic Hedging

As mentioned in the section on equity-linked insurance and options, the
Black-Scholes analysis provides a risk management strategy for option
providers; use the Black-Scholes equation to find the replicating portfolio.
The portfolio will change continuously, so it is necessary to recalculate
and adjust the portfolio frequently. Although the Black-Scholes equation
contains some strong assumptions that cannot be realized in practice, the
replicating portfolio still manages to provide a powerful method of hedging
the liability. This method is explored in detail in Chapters 7 and 8.
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Most of the academic literature relating to equity-linked insurance
assumes a dynamic-hedging management strategy. See, for example, Boyle
and Schwartz (1977), Brennan and Schwartz (1975, 1979), Bacinello and
Ortu (1993), Ekern and Persson (1996), and Persson and Aase (1994); these
papers appear in actuarial, finance, and business journals. Nevertheless,
although the application by actuaries in practice of financial economic
theory to the management of embedded options is growing, in many areas
it is still not widely accepted.

The Actuarial Approach

In the mid 1970s the ground-breaking work of Black, Scholes, and Mer-
ton was relatively unknown in actuarial circles. In the United Kingdom,
however, maturity guarantees of 100 percent of premium were a common
feature of the unit-linked contracts, which were then proving very popular
with consumers. The prolonged low stock market of 1973 to 1974 had
awakened the actuaries to the possibility that this benefit, which had been
treated as a relatively unimportant policy “tweak” with very little value
or risk, constituted a serious potential liability. The then recent theory of
Black and Scholes was considered to be too risky and unproven to be
used for unit-linked guaranteed maturity benefits by the U.K. actuarial
profession.!

In 1980, the Maturity Guarantees Working Party (MGWP) suggested,
instead, using stochastic simulation to determine an approximate distribu-
tion for the guarantee liabilities, and then using quantile reserving to convert
the distribution into a usable capital requirement. The quantile reserve had
already been used for many years, particularly in non-life insurance. To
calculate the quantile reserve, the insurer assesses an appropriate quantile
of the loss distribution, for example, 99 percent. The present value of the
quantile is held in risk-free bonds, so that the office can be 99 percent certain
that the liability will be met. This principle is identical to the value-at-risk
(VaR) concept of finance, though generally applied over longer time periods
by the insurance companies than by the banks.

The underlying principle of this method of calculating the capital
requirements is that the capital is assumed to be invested in risk-free bonds.
The use of the quantile of the distribution as a risk measure is not actually
fundamental to this approach, and other risk measures may be preferable
(this is discussed further in Chapter 9).

!This was a decision that has had unfortunate consequences. If the actuarial
profession had taken the opportunity to learn and apply option pricing theory
and risk management at that time, then the design and management of embedded
options in insurance contracts in the last 20 years would have been very different and
actuaries would have been better placed to participate in the derivatives revolution.
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This method of using stochastic simulation to project the liabilities, and
then using the long-term fixed rate of interest to discount them, is referred
to in this book (and elsewhere) as the “actuarial” approach. It is inherently
different from the dynamic-hedging approach, in which assets are assumed
to be invested in the replicating portfolio, not in the bonds. However, it
should not be inferred that dynamic hedging is somehow not actuarial.
Nor should it be assumed that the actuarial approach is incompatible with
dynamic hedging. A synthesis of the two approaches may lead to better risk
management than either provides separately.

The actuarial method is still popular (particularly with actuaries) and
offers a valid alternative to the dynamic-hedging approach for some equity-
linked contracts. The Canadian Institute of Actuaries’ Task Force on Segre-
gated Funds (SFTF 2000) uses the actuarial approach as the underpinning
methodology for determining capital requirements, although a combined
hedging-actuarial approach is also accommodated. In Chapter 6, the actu-
arial approach to equity-linked liabilities is investigated.

The Ad Hoc Approach

There is a (diminishing) body of opinion amongst actuaries that the statistical
analysis that forms the subject of this book is unnecessary or even irrelevant.
Their approach to valuation and management of financial guarantees might
be described as guesswork, or “actuarial judgment.” This is most common
for the very low-frequency type options, where there is very little chance
of any liability. An example might be a GMMB, which guarantees that the
benefit after a 10-year investment will be no less than the original premium.
There is very little chance that the separate account will fall to less than the
original investment over the course of 10 years. Rather than model the risk
statistically, it was common for actuaries to assume that there would never
be a liability under the guarantee, so little or no provision was made. This
view is uncommon now and tends to be unpopular with regulators.

For any actuary tempted by this approach, the Equitable Life (U.K.)
story provides a clear demonstration of the risks of ignoring statistical
methodology. Along with many U.K. insurers in the early 1980s, Equitable
Life (U.K.) issued a large number of contracts carrying guaranteed-annuity
options, under which the guarantee would move into the money only
if interest rates fell below 6.5 percent. At the time the contracts were issued,
interest rates were higher than 10 percent, and a cautious long-term view
was that they might fall to 8 percent. Many actuaries, relying on their
personal judgment, believed that these contracts would never move into the
money, and therefore made little or no provision for the potential liability.
This conclusion was made despite the fact that interest rates had been below
6.5 percent for decades up to the later 1960s. Of course, in the mid-1990s
rates fell, the guarantees moved into the money, and the guarantee liabilities
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were so large that Equitable Life (U.K.), a large mutual company more than
200 years old, was forced to close to new business. Many other companies
were also hit hard and only substantial free surplus kept them trading.
Yang (2001) has demonstrated that, had actuaries in the 1980s used the
stochastic models and methods then available, it would have been clear that
substantial provision would be required for this option.

PRICING AND CAPITAL REQUIREMENTS

There are several issues that are important for actuaries and risk man-
agers involved in any area of policy design, marketing, valuation, or risk
management of equity-linked insurance. The following are three main con-
siderations:

1. What price should the policyholder be charged for the guarantee benefit?

2. How much capital should the insurer hold in respect of the benefit
through the term of the contract?

3. How should this capital be invested?

Much work in equity-linked insurance has focused on pricing without
very much consideration of the capital issues. But the three issues are
crucially interrelated. For example, using the option approach for pricing
maturity guarantees gives a price, but that price is only appropriate if it
is suitably invested (in a dynamic-hedge portfolio, or by purchasing the
options externally). Also, as we shall see in later chapters, different risk
management strategies require different levels of capital (for the same level
of risk), and therefore the implied price for the guarantee would vary.

The approach of this book is that all of these issues are really facets
of the same issue. The first requirement for pricing or for determination
of capital requirements is a credible estimate of the distribution of the
liabilities, and that is the main focus of this book. Once this distribution
is determined, it can be used for both pricing and capital requirement
decisions. In addition, the liability issue is really an asset-liability issue, so
the estimation of the liability distribution depends on the risk management
decision.
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Modeling Long-Term
Stock Returns

INTRODUCTION

It has been stated firmly in the previous chapter that this book will
use stochastic methods to analyze and manage risks from investment
guarantees. To model the investment guarantee risks, we need to model the
underlying equity process upon which the guarantee depends. There are
many stochastic models in common use for equity returns. The objective
of this chapter is to introduce some of these and discuss their different
characteristics. This should assist in the choice of an appropriate model for
a given contract.

First, we discuss briefly the case for stochastic models, and some of the
interesting features of stock return data. We also demonstrate how often the
guaranteed minimum maturity benefit (GMMB) under a 10-year contract
would have ended up greater than the fund using the historical returns.

The rest of this chapter introduces the various models. These include
the lognormal model, the autoregressive model, the ARCH-type models,
the regime-switching lognormal model, the empirical model (where returns
are drawn from historic experience), and the Wilkie model. Where it is
sufficiently straightforward, we have derived probability functions for the
models, but in many cases this is not possible.

DETERMINISTIC OR STOCHASTIC?

Traditional actuarial techniques assume a deterministic, usually constant
path for returns on assets. There has been some effort to adapt this technique
for equity-linked liabilities; for example, the Office of the Superintendent of
Financial Institutions (OSFI) in Canada mandated a deterministic test for
the GMMB under segregated fund contracts. (This mandate has since been

15
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superseded by the recommendations of the Task Force on Segregated Funds
(SFTF) in 2000.) However, there are problems with this approach:

1. Itislikely that any single path used to model the sort of extreme behavior
relevant to the GMMB will lack credibility. The Canadian OSFI scenario
for a diversified equity mutual fund involved an immediate fall in asset
values of 60 percent followed by returns of 5.75 percent per year for
10 years. The worst (monthly) return of this century in the S&P total
return index was around — 35 percent. Insurers are, not surprisingly,
rather sceptical about the need to reserve against such an unlikely
outcome.

2. It is difficult to interpret the results; what does it mean to hold enough
capital to satisfy that particular path? It will not be enough to pay the
guarantee with certainty (unless the full discounted maximum guarantee
amount is held in risk-free bonds). How extreme must circumstances be
before the required deterministic amount is not enough?

3. A single path may not capture the risk appropriately for all contracts,
particularly if the guarantee may be ratcheted upward from time to
time. The one-time drop and steady rise may be less damaging than
a sharp rise followed by a period of poor returns, for contracts with
guarantees that depend on the stock index path rather than just the
final value. The guaranteed minimum accumulation benefit (GMAB) is
an example of this type of path-dependent benefit.

Deterministic testing is easy but does not provide the essential qualitative
or quantitative information. A true understanding of the nature and sources
of risk under equity-linked contracts requires a stochastic analysis of the
liabilities.

A stochastic analysis of the guarantee liabilities requires a credible
long-term model of the underlying stock return process. Actuaries have
no general agreement on the form of such a model. Financial engineers
traditionally used the lognormal model, although nowadays a wide variety
of models are applied to the financial economics theory. The lognormal
model is the discrete-time version of the geometric Brownian motion of
stock prices, which is an assumption underlying the Black-Scholes theory.
The model has the advantage of tractability, but it does not provide
a satisfactory fit to the data. In particular, the model fails to capture
extreme market movements, such as the October 1987 crash. There are also
autocorrelations in the data that make a difference over the longer term
but are not incorporated in the lognormal model, under which returns in
different (nonoverlapping) time intervals are independent. The difference
between the lognormal distribution and the true, fatter-tailed underlying
distribution may not have very severe consequences for short-term contracts,
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but for longer terms the financial implications can be very substantial.
Nevertheless, many insurers in the Canadian segregated fund market use
the lognormal model to assess their liabilities. The report of the Canadian
Institute of Actuaries Task Force on Segregated Funds (SFTF (2000)) gives
specific guidance on the use of the lognormal model, on the grounds that
this has been a very popular choice in the industry.

A model of stock and bond returns for long-term applications was
developed by Wilkie (1986, 1995) in relation to the U.K. market, and
subsequently fitted to data from other markets, including both the United
States and Canada. The model is described in more detail below. It has been
applied to segregated fund liabilities by a number of Canadian companies. A
problem with the direct application of the Wilkie model is that it is designed
and fitted as an annual model. For some contracts, the monthly nature
of the cash flows means that an annual model may be an unsatisfactory
approximation. This is important where there are reset opportunities for the
policyholder to increase the guarantee mid-policy year. Annual intervals are
also too infrequent to use for the exploration of dynamic-hedging strategies
for insurers who wish to reduce the risk by holding a replicating portfolio
for the embedded option. An early version of the Wilkie model was used
in the 1980 Maturity Guarantees Working Party (MGWP) report, which
adopted the actuarial approach to maturity guarantee provision.

Both of these models, along with a number of others from the econo-
metric literature, are described in more detail in this chapter. First though,
we will look at the features of the data.

ECONOMICAL THEORY OR STATISTICAL METHOD?

Some models are derived from economic theory. For example, the efficient
market hypothesis of economics states that if markets are efficient, then all
information is equally available to all investors, and it should be impossible
to make systematic profits relative to other investors. This is different from
the no-arbitrage assumption, which states that it should be impossible to
make risk-free profits. The efficient market hypothesis is consistent with the
theory that prices follow a random walk, which is consistent with assuming
returns on stocks are lognormally distributed. The hypothesis is inconsistent
with any process involving, for example, autoregression (a tendency for
returns to move toward the mean). In an autoregressive market, it should be
possible to make systematic profits by following a countercyclical investment
strategy—that is, invest more when recent returns have been poor and
disinvest when returns have been high, since the model assumes that returns
will eventually move back toward the mean.

The statistical approach to fitting time series data does not consider
exogenous theories, but instead finds the model that “best fits” the data,
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in some statistical sense. In practice, we tend to use an implicit mixture of
the economic and statistical approaches. Theories that are contradicted by
the historic data are not necessarily adhered to, rather practitioners prefer
models that make sense in terms of their market experience and intuition,
and that are also tractable to work with.

THE DATA

Description of the Data

For segregated fund and variable-annuity contracts, the relevant data for
a diversified equity fund or subaccount are the total returns on a suitable
stock index. For the U.S. variable annuity contracts, the S&P 500 total
return (that is with dividends reinvested) is often an appropriate basis. For
equity-indexed annuities, the usual index is the S&P 500 price index (a price
index is one without dividend reinvestment). A common index for Canadian
segregated funds is the TSE 300 total return index! (the broad-based index
of the Toronto Stock Exchange); and the S&P 500 index, in Canadian
dollars, is also used. We will analyze the total return data for the TSE 300
and S&P 500 indices. The methodology is easily adapted to the price-only
indices, with similar conclusions.

For the TSE 300 index, we have annual data from 1924, from the
Report on Canadian Economic Statistics (Panjer and Sharp 1999), although
the TSE 300 index was inaugurated in 1956. Observations before 1956 are
estimated from various data sources. The annual TSE 300 total returns on
stocks are shown in Figure 2.1. We also show the approximate volatility,
using a rolling five-year calculation. The volatility is the standard deviation
of the log-returns, given as an annual rate. For the S&P 500 index, earlier
data are available. The S&P 500 total return index data set, with rolling
12-month volatility estimates, is shown in Figure 2.2.

Monthly data for Canada have been available since the beginning of the
TSE 300 index in 1956. These data are plotted in Figure 2.3. We again show
the estimated volatility, calculated using a rolling 12-month calculation. In
Figure 2.4, the S&P 500 data are shown for the same period as for the TSE
data in Figure 2.3.

Estimates for the annualized mean and volatility of the log-return
process? are given in Table 2.1. The entries for the two long series use
annual data for the TSE index, and monthly data for the S&P index. For

Now superseded by the S&P/TSX-Composite index.
2The log-return for some period is the natural logarithm of the accumulation of a
unit investment over the period.
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TABLE2.1 Means, standard deviations, and autocorrelations of log returns.

Series (%) (%)

TSE 300 1924-1999 9.90 (5.5, 15.0) 18.65 (15.7,21.7)
S&P 500 1928-1999 10.61 (6.2, 15.0) 19.44 (18.7, 20.5)
TSE 300 1956-1999 9.77 (5.1, 14.4) 15.63 (14.3,16.2)
S&P 500 1956-1999 11.61 (7.4, 15.9) 14.38 (13.4, 15.1)
Autocorrelations:

Series 1-Month Lag 6-Month Lag 12-Month Lag
TSE 300 1956-1999 0.082 0.013 -0.024
S&P 500 1956-1999 0.027 -0.057 0.032

the shorter series, corresponding to the data in Figures 2.3 and 2.4, we use
monthly data for all estimates. The values in parentheses are approximate 95
percent confidence intervals for the estimators. The correlation coefficient
between the 1956 to 1999 log returns for the S&P 500 and the TSE 300
1s 0.77.

A glance at Figures 2.3 and 2.4 and Table 2.1 shows that the two
series are very similar indeed, with both indices experiencing periods of high
volatility in the mid-1970s, around October 1987, and in the late 1990s.
The main difference is an extra period of uncertainty in the Canadian index
in the early 1980s.

Selecting the Appropriate Data Series
for Calibration

There is some evidence, for example in French et al. (1987) and in Pagan
and Schwert (1990), of a shift in the stock return distribution at the end of
the great depression, in the middle 1930s. Returns may also be distorted by
the various fiscal constraints imposed during the 1939-1945 war. Thus, it
is attractive to consider only the data from 1956 onward.

On the other hand, for very long term contracts, we may be forecasting
distributions of stock returns further forward than we have considered in
estimating the model. For segregated fund contracts, with a GMAB, it is
common to require stock prices to be projected for 40 years ahead. To use
a model fitted using only 40 years of historic data seems a little incautious.
However, because of the mitigating influence of mortality, lapsation, and
discounting, the cash flows beyond, say, 20 years ahead may not have a
very substantial influence on the overall results.
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Investors, including actuaries, generally have fairly short memories. We
may believe, for example, that another great depression is impossible, and
that the estimation should, therefore, not allow the data from the prewar
period to persuade us to use very high-volatility assumptions; on the other
hand, another great depression is what Japan seems to have experienced in
the last decade. How many people would have also said a few years ago
that such a thing was impossible? It is also worth noting that the recent
implied market volatility levels regularly substantially exceed 20 percent.
Nevertheless, the analysis in the main part of this paper will use the post-
1956 data sets. But in interpreting the results, we need to remember the
implicit assumption that there are no substantial structural changes in the
factors influencing equity returns in the projection period.

In Hardy (1999) some results are given for models fitted using a longer
1926 to 1998 data set; these results demonstrate that the higher-volatility
assumption has a very substantial effect on the liability.

Current Market Statistics

Perhaps the world is changing so fast that history should not be used at all
to predict the future. This appears to be the view of some traders and some
actuaries, including Exley and Mehta (2000). They propose that distribution
parameters should be derived from current market statistics, such as the
volatility. The implied market volatility is calculated from market prices at
some instant in time. Knowing the price-volatility relationship in the market
allows the volatility implied by market prices to be calculated from the
quoted prices. Usually the market volatility differs very substantially from
historical estimates of long-term volatility.

Certainly the current implied market volatility is relevant in the
valuation of traded instruments. In application to equity-linked insur-
ance, though, we are generally not in the realm of traded securities—the
options embedded in equity-linked contracts, especially guaranteed maturity
benefits, have effective maturities far longer than traded options. Market
volatility varies with term to maturity in general, so in the absence of very
long-term traded options, it is not possible to state confidently what would
be an appropriate volatility assumption based on current market conditions,
for equity-linked insurance options.

Another problem is that the market statistics do not give the whole
story. Market valuations are not based on true probability measure, but on
the adjusted probability distribution known as the risk-neutral measure. In
analyzing future cash flows under the equity-linked contracts, it will also be
important to have a model of the true unadjusted probability measure.

A third difficulty is the volatility of the implied volatility. A change
of 100 basis points in the volatility assumption for, say, a 10-year option
may have enormous financial impact, but such movements in implied
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volatility are common in practice. It is not satisfactory to determine long-
term strategies for the actuarial management of equity-linked liabilities on
assumptions that may well be deemed utterly incorrect one day later.

GMMB Liability: The Historic Evidence

It is a piece of actuarial folk wisdom, often quoted, that the long-term
maturity guarantees of the sort offered with segregated fund benefits would
never have resulted in a payoff greater than zero. In Figure 2.5 the net
proceeds of a 10-year single-premium investment in the S&P 500 index are
given. The premium is assumed to be $100, invested at the start date given
by the horizontal axis. Management expenses of 2.5 percent per year are
assumed. A nonzero liability for the simple 10-year put option arises when
the proceeds fall below 100, which is marked on the graph. Clearly, this has
not proved impossible, even in the modern era. Figure 2.6 gives the same
figures for the TSE 300 index. The accumulations use the annual data up to
1934, and monthly data thereafter.

For both the S&P and TSE indices, periods of nonzero liability for the
simple 10-year put option arose during the great depression; the S&P index
shows another period arising in respect of some deposits in 1964 to 1963,
the problem caused by the 1974 to 1975 oil crisis. Another hypothetical
liability arose in respect of deposits in December 1968, for which the
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FIGURE 2.9 Proceeds of a 10-year $100 single-premium investment in the
S&P 500 index.
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FIGURE 2.6 Proceeds of a 10-year $100 single-premium investment in the
TSE 300 index.

proceeds in 1978 were 99.9 percent of deposits.> These figures show that,
even for a simple maturity guarantee on one of the major indices, substantial
payments are possible. In addition, extra volatility from exchange-rate risk,
for example for Canadian S&P mutual funds, and the complications of
ratchet and reset features of maturity guarantees would lead to even higher
liabilities than indicated for the simple contracts used for these figures.

THE LOGNORMAL MODEL

The traditional approach to modeling stock returns in the financial eco-
nomics literature, including the original Black-Scholes paper, is to assume
that in continuous time stock returns follow a geometric Brownian motion.
In discrete time, the implications of this are the following:

1. Over any discrete time interval, the stock price accumulation factor is
lognormally distributed. Let S; denote the stock price at time ¢ > 0.
Then the lognormal assumption means that for some parameters, w and
o, and for any w > 0,

3We are using monthly intervals. Different starting dates within each month give
slightly different results.
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St;’” ~ LN(wu, Jwo) => log Sf; Y ~ N(wwp, wo?) (2.1)
t t
where LN denotes the lognormal distribution and N denotes the normal
distribution. Note that u is the mean log-return over a unit of time, and
o is the standard deviation for one unit of time. In financial applications,
o is referred to as the volatility, usually in the form of an annual rate.
2. Returns in nonoverlapping intervals are independent. That is, for any
t,u,v,wsuchthatt< u = v < w,

Su and Sw are independent (2.2)
S; S,

Parameter estimation for the lognormal model is very straightforward.
The maximum likelihood estimates of the parameters w and o are the
mean and variance* of the log returns (i.e., the mean and variance of
Y, = log Sg—ﬂ). Table 2.1, discussed earlier, shows the estimated parameters
for the lognormal model for the various series. In Figure 2.7, we show the
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FIGURE 2.7 Lognormal model, density functions of annual stock returns for
TSE 300 and S&P 500 indices; maximum likelihood parameters.

*Actually the maximum likelihood estimation (MLE) for % is “-1s* where s? is the
variance of the log-returns. However, we generally use s? because it is an unbiased
estimator of o?.
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probability density functions for the four sets of parameters from Table 2.1.
This shows the significance of the choice of data to use to fit the distribution.
Including the great depression data gives density functions with much fatter
tails for both indices, which means a greater probability of very low or very
high returns.

The probability density function of a lognormal distribution with pa-
rameters ww, Jwo is

f(x)

_ 1 (log(x) - wm2] 2.3)

1
= ————exp
xo /2mw [ 2 wa?

The model is very attractive to use; probabilities are easily calculated using
the standard normal distribution function ®, since

Strw - _ log(x) — wpu
Pr{ s, = x] @(4\/50 ) (2.4)

and both option prices and probability distributions for payoffs under
standard put options can be derived analytically. The mean and variance of
the stock accumulation function under the lognormal model are given by
the following expressions.

E|:St+w:| — ew,u,eru'z,w’/Z (2.5)

S

V|:St+w:| — 62wu+wa'2(ew02 — 1) (26)
St

Other models we discuss later use conditional lognormal distributions but
do not have the serial independence of its independent lognormal model.
The independent lognormal (LN) model is simple and tractable, and
provides a reasonable approximation over short time intervals, but it is
less appealing for longer-term problems. Empirical studies indicate, in
particular, that this model fails to capture more extreme price movements,
such as the October 1987 crash. We need a distribution with fatter tails
(leptokurtic) to include such values. The LN model also does not allow for
autocorrelation in the data. From Table 2.1 the one-month autocorrelation is
small but potentially significant in the tail of the distribution of accumulation
factors. Also important, the LN model fails to capture volatility bunching—
periods of high volatility, often associated with severe downward stock price
movements. Bakshi, Cao, and Chen (1999) identify stochastic variation in
volatility as the critical omission with respect to the LN model. In the models
that follow, various ways of introducing stochastic volatility are proposed.
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AUTOREGRESSIVE MODELS

The autoregressive models described here are discrete processes where the
deviation of the process from the long-term mean influences the distribution
of subsequent values of the process. In all cases, we work with the log-return
variable, Y; = log S‘S—tl If we assume a long-term mean for Y; of w, then the
deviations from the mean used to define the distribution of Y, are the values
of Yo — u forsomes = ¢ — 1.

In each of the cases below, the white noise process, denoted &, is
assumed to be a sequence of independent random innovations, each with
Normal(0,1) distribution. It is common to assume a normal distribution but
not essential, and other distributions may prove more appropriate for some
series. The necessary assumptions are that the values of &, are uncorrelated,
each with zero mean and unit variance.

AR(1)

The LN model implies independent and identically distributed variables,
Y;. This is not true for AR (autoregressive) processes, which incorporate a
tendency for the process to move toward the mean. This tendency is effected
with a term involving previous values of the deviation of the process from
the mean, meaning that, if the long-term mean value for the process is u,
the AR(q) process variable Y, has terms in (Y,—, — w) forr = 1,2, ...,4.
The parameter q is called the order of the process.

The AR(1) process is the simplest version, and can be defined for a
process Y; as

Yi= pw+alYio1 — u) + og
g, independent and identically distributed (iid), &, ~ N(0, 1) (2.7)

The process only makes sense if |a| < 1, and so we assume this is true.
The process reverts to a LN process when @ = 0. If a is near 1, then the
process moves slowly back to the mean, on average. If a is near zero, then
the process tends to return to the mean more quickly. Negative values for
a indicate a tendency to bounce beyond the mean with each time step,
meaning that if the process is above the mean at ¢ — 1, it will tend to fall
below the mean at #, and from there it will tend to jump back above the
mean at ¢ + 1. If 4 is negative and near zero, these oscillations are very
dampened; if a is near —1, the successive oscillations are only a little smaller
in severity each time step.

The autocorrelation function for an AR(1) process is p, = a* where
a is the AR parameter. The AR(1) model captures autocorrelation in the
data in a simple way. However, it does not, in general, capture the extreme
values or the volatility bunching that have been identified as features of the
monthly stock return data.
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ARCH(1)

It was observed very early in empirical studies that the volatility of stock
prices is not constant, as assumed in the LN model. There are many ways of
modeling stochastic changes in volatility, and the class of AR conditionally
heteroscedastic (ARCH) models has been a popular choice in many areas
of econometrics, including stock return modeling. Using ARCH models,
the volatility is a stochastic process, more than one step ahead. Looking
forward a single step the volatility is fixed.

There are many variations of the ARCH process, and we describe two
here: ARCH and generalized ARCH (GARCH). The basic ARCH model
has a variance process that is a function of the evolving return process as
follows:

Y: = n + oy (2.8)
o} = ao+ a1(Ye—1 — p)? (2.9)

The ARCH model was introduced by Engle (1982) who applied the
model to quarterly U.K. inflation data. The rationale is that the uncertainty
in forecasting from period to period, which is represented by the conditional
variance oy, depends on the evolving process Y;. The ARCH approach was
designed by Engle to model volatility clustering. A value of Y;_1 falling a long
way from the mean increases the conditional variance oy, leading to a greater
probability of the next value, Y;, also falling a long way from the mean. The
variance process, 7 looks like an AR(1) process, but without the random
innovation. This means that, conditional on knowing Y;_1, the variance is
not random. Unconditionally, the variance is stochastic through Y;—1. The
fact that the variance is fixed conditional on Y, significantly improves the
tractability of this model compared with conditionally stochastic variance
models. Essentially, this means that volatility clustering is modeled, with
periods of higher volatility generated by the random, occasional extreme value
for Yy, after which the volatility gradually returns to the longer-term value.

In the original form of equations 2.8 and 2.9, the ARCH model does
not allow for autocorrelation, because all covariances are zero. However,
we can combine the AR(1) structure with ARCH variance to give a model:

Yi = pw+a(Y — pn) + ove;
g 1id ~ N(0,1) (2.10)

and

o =ap+a (Y1 — u) (2.11)
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This version of the model allows for volatility bunching and for autocorre-
lations in the data.

GARCH(1,1)

The GARCH model, developed by Bollerslev (1986), is an extension of the
ARCH model. The GARCH model is more flexible and has been found to
provide a significantly better fit for many econometric applications than the
ARCH model. The simplest version of the GARCH model for the stock
log-return process is

Yt = M + J;:&; (2.12)
of = ao + a1 (Yi1 — p)* + Bot (2.13)

The variance process for the GARCH model looks like an AR moving-
average (ARMA) process, except without a random innovation. As in the
ARCH model, conditionally, (given Y;,—; and o,—1) the variance is fixed. If
a; + B < 1, then the process is wide-sense stationary. This is a necessary
condition for a credible model, otherwise it will have a tendency to explode,
with ever-increasing variance. For the parameters fitted to the stock returns
data summarized in Table 2.1, we have oy + 8 < 1.

As with the ARCH model, we can capture autocorrelation by combining
the AR(1) model with the GARCH variance process, for a model where:

Yt = MK + a(thl - [.L) + o0& & lld ~ N(O, 1) (214)
and

of = ao + ar(Yi1 — p)* + Bot (2.15)

Using ARCH and GARCH Models

The ARCH and GARCH processes are easily simulated. In Figure 2.8 are
shown probability density functions of the proceeds of a unit investment,
accumulated for 10 years assuming a three-parameter ARCH process or a
four-parameter GARCH process. The ARCH and GARCH density func-
tions are estimated by simulation. The LN distribution is also plotted for
comparison. The parameters used are estimated from the TSE 300 data
summarized in Table 2.1.

The method of parameter estimation does not automatically match
means, and clearly the ARCH and GARCH models estimated have higher
means and variances than the LN. However, they are not substantially
fatter-tailed on the crucial left side of the distribution.
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FIGURE 2.8 Distribution of the proceeds of a 10-year $100 single-premium
investment, assuming LN, ARCH, and GARCH log return processes

REGIME-SWITCHING LOGNORMAL MODEL (RSLN)

Regime-switching models assume that a discrete process switches between,
say, K regimes randomly. Each regime is characterized by a different
parameter set. The process describing which regime the price process is
in at any time is assumed here to be Markov—that is, the probability of
changing regime depends only on the current regime, not on the history of
the process.

One of the simplest regime-switching models is the regime-switching
LN model (RSLN), where the process switches randomly at each time step
between K LN processes. This approach maintains some of the attrac-
tive simplicity of the independent LN model, in particular mathematical
tractability, but more accurately captures the more extreme observed be-
havior. This is one of the simplest ways to introduce stochastic volatility;
the volatility randomly moves between the K values corresponding to the K
regimes.

The rationale behind the regime-switching framework is that the market
may switch from time to time between, for example, a stable, low-volatility
regime and a more unstable high-volatility regime. Periods of high volatility
may arise because of some short-term political or economic uncertainty.
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Regime-switching models for economic series were introduced by
Hamilton (1989), who described an AR regime-switching process. In Hamil-
ton and Susmel (1994), several regime-switching models are analyzed, vary-
ing the number of regimes and the form of the model within regimes. The
models within each regime are assumed to follow ARCH and GARCH pro-
cesses, with the residuals, &;, having normal or Student’s # distribution. The
simpler form using LN models within regimes was used by Bollen (1998),
who constructed a lattice for valuing American options. Harris (1999) has
developed a vector AR regime-switching model for actuarial use, fitted to
quarterly Australian data.

It emerges in Chapter 3 that the two-regime RSLN model provides a
very good fit to the stock index data relevant to equity-linked insurance.
For that reason, it will be the main model used throughout the rest of the
book. We will derive the relevant probability functions in some detail here.

Under the RSLN model we assume that the stock return process lies
in one of K regimes or states. We let p, denote the regime applying in
the interval [¢,¢ + 1) (in months), p, = 1,2, ... K, and let S; be the total
return index value at ¢, and let Y; be the log-return process, then if
Y, = 10g(5t+1/5t):

Yt| pr ~ Ny, 0',3,)

where pug, of are the mean and variance parameter of the Rth regime.

Users of regime-switching models have found, in general, that two
or three regimes are sufficient (that is, K = 2 or K = 3). Hamilton and
Susmel (1994), looking at weekly economic data (from 1962 to 1987), and
assuming ARCH models for returns within each state, found some evidence
for using three regimes—adding a very low-volatility regime applied for a
single period of the early 1960s. Harris (1999), using quarterly economic
data, and assuming AR models within each regime, found no evidence for
using more than two regimes. In Chapter 3 we will demonstrate the relative
merits of using two or three regimes for the total return data. Generally,
the two-regime model (RSLN-2) appears to be sufficient. The two-regime
process can be illustrated by the diagram in Figure 2.9.

FIGURE 2.9 RSLN, with two regimes.
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The transition matrix P denotes the probabilities of switching regimes.
Regime switching is assumed to take place at the end of each time unit, so
that, for example, p1,1 is the probability that the process stays in regime 1,
given that it is in regime 1 for the previous time period, and in general:

Dy = Prlps = jlp =il i=12 j=1.2 (2.16)
So for a RSLN model with two regimes, we have six parameters to estimate,
Ox=2 = {m1, p2, o1, 02, P12, P21} (2.17)

With three regimes we have 12 parameters,
Ok=3 = {w, o, pij} 7=12,3, i=123,i#] (2.18)

In the following chapter we discuss issues of parsimony. This is the
balance of added complexity and improvement of the fit of the model to the
data. In other words—do we really need 12 parameters?

Using the RSLN-2 Model

Although the regime-switching model has more parameters than the ARCH
and GARCH models, the structure is very simple and analytic results are
readily available. In this section, we will derive the distribution function for
the accumulated proceeds at some time # of a unit investment at time ¢ = 0.
Let S,, denote the proceeds, so that

S, = exp| > Y, (2.19)
i=1

The key technique is to condition on the time spent in each regime.
Let R denote the number of months spent in regime 1, so that # — R is the
number of months spent in regime 2. Then the conditional sum >27_; Y; | R
is the sum of both the following;:

B R independent, normally distributed random variables with mean u,
and variance o7.
B 5 — R independent, normally distributed random variables with mean

: 2
p2 and variance o3

This sum is also (conditionally) normally distributed, with mean Ru; +
(n — R)ua and variance Ro + (7 — R)oj. This means that the conditional
variable S,|R is lognormally distributed. So, if we can derive a probability
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function for the total time spent in regime 1, then we can use that function
to find the distribution function, density function, and moments of the sum
of the log-returns and therefore of S,,.

Probability Function for Total Sojourn in Regime 1

Let R, be the total number of months spent in regime 1 for a process
{St}:lzo, then R, €{0, 1, ..., n}. We want to derive the probability function
Pr[R,, = 7| = p.(r). Let R,(¢) be the total sojourn in regime 1 in the interval
[z, n), and consider

Pr[R,(t) = rlpr-1]

forr =0,1,...,n—tand¢ = 1, ...,n —1. Clearly Pr[R,(t) = 7|p;—1] = O
for r > n — t or r < 0. For example, Pr[R,(n — 1) = O|p;—; = 1] is the
probability that the last time unit is not spent in regime 1, given that the
process is in regime 1 in the previous period, that is, for t € [n — 2,1 — 1),
so that Pr[R,(n — 1) = O|p,—1 = 1] = py. Similarly,

Pr[Ru(n—1) = 1lp—1 = 1] = p11
Pr[R,(n — 1) = 0lp—1 = 2] = pan
Pr[R,(n — 1) = 1|p—1 = 2] = pas

We can work backward from these values to the required probabilities
for R,, = R,(0) using the relationship:

Pr[R,(t) = 7lpr—1] = pp 1 Pr[R,(t + 1) = r — 1|p; = 1]
+ Pp 2 Pr[Ry(t + 1) = 1lp, = 2] (2.20)

The justification for this is that, in the unit of time ¢ — ¢ + 1, one of the
following is true:

B The process is in regime 1 (p, = 1) with probability p,, , 1, which leaves
r — 1 time periods to be spent in regime 1 subsequently.

® The process is in regime 2 (p; = 2) with probability p,_, , in which
case r time periods must be spent in regime 1 in the interval [t + 1, ).

Ultimately, this recursion will deliver the probability functions for Ry
conditional on regime 1 as the starting point, Pr[R,(0) = 7|p-1 = 1], and
conditional on regime 2 as a starting point, Pr[R,(0) = 7|p—; = 2]. In
Chapter 4, an example of the distribution of R for » = 12 is given.
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For the unconditional probability distribution, use the invariant distri-
bution of the regime-switching Markov chain. The invariant distribution
7 = (w1, m) is the unconditional probability distribution for the Markov
process. This means that at any time, with no information about the process
history, the probability that the process is in regime 1 is 71, and the proba-
bility that it is in regime 2 is m, = 1 — 1. Under the invariant distribution,
each transition returns the same distribution; that is

7P = (2.21)
= mp11+ mpr1 = m (2.22)
and

T P12 T MmpPry = M (2.23)

and since
pi1tpi2 =1 (2.24)
m=—L2 and m—1-m = P2 (205

P12+ D21 P12+ P21

Using the invariant distribution for the regime-switching process, the
probability function of R,,(0) is Pr[R,(0) = 7] = p,(r) where

pu(r) = 1 Pr[R,(0) = rlp—1 = 1] + m Pr[R,(0) = rlp-1 = 2] (2.26)

Probability Functions for S,
Using the probability function for R,, the distribution of the total return

index at time # can be calculated analytically. Let S, represent the total
return index at z, assume Sy = 1, then

Su| Ry ~ LN(1*(R,)), 0"(R,,)) where u"(R,) = Ry p1 +(n—Ry) pa (2.27)

and

o"(R) = JRu0% + (n— R,)o? (2.28)
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Then, if p,,(r) is the probability function for R,

Fg, (x) = Pr(S, = x) = ipr(sn = x|R, = r)palr) (229
r=0

n 1 o
- Z@(%:;m)pn(r) (2.30)
r=0

o

where ®() is the standard normal probability distribution function.
Similarly, the probability density function for S,, is:

n 1 l _ ES
folr) = > — ¢<°gx Mm)m(r) (2.31)

= (1) o (7)

where ¢() is the standard normal density function.
Equation 2.31 has been used to calculate the density functions shown
in Figure 2.10. This shows the RSLN and LN density functions for the
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stock price at £ = 10 years, given Sy = 1.0, using both the TSE and S&P
parameters. In both cases, over this long term, the left tail is substantially
fatter for the RSLN model than for the LN model. This difference has
important implications for longer-term actuarial applications.

The probability function for the sojourn times can also be used to find
unconditional moments of the stock price at any time 7.

ELSW!] = ELEL(S,)*| Rl
2

k
= Elexp(k (Rn/Jfl + (7’1 - Rn)lu*Z) + B

koo ko
Elexp (R, (k(m1 — ) + 5 (01 = a3) ||lexp k nu, + 5 03

kz n kZ
exp (kn,uz + 7710'%) Zexp (1’ (k(/lm - u2) + 7(012 - U%)))Pn(”)
r=0

(Ryof + (n — R,,)azz)}

THE EMPIRICAL MODEL

Under the empirical model of stock returns, we use the historic returns
as the sample space for future returns, each being equally likely, sampling
with replacement. That is, assume we have n observations of the total stock
return:

Return on stocks in [t — 1,t) =4 t=1,2,3,...,n

Then we may simulate future values for stock returns for any period [r —1, 7)
as I, where

Pr[l, = i] = % fort =1,2,...,n
The empirical model assumes returns in successive periods are independent
and identically distributed. It provides a simple method for simulation,
though, obviously, analytical development is not possible.

This distribution is useful as a simple, quick method to obtain simulated
returns. It suffers from the same problems in representing the data as the
LN model (which it closely resembles in distribution). Although we are
sampling from the historical returns, by assuming independence we lose the
autocorrelation in the data. The autocorrelation means that low returns
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tend to be bunched together, giving a larger probability of very poor
returns than we get from random sampling of individual historical returns.
The autocorreleation is the source of fatter left tails in the accumulation
factor distribution. Similarly, high returns also tend to be bunched together,
giving fatter right tails. So the empirical model tends to be too thin-
tailed, and the assumption of independence also means that volatility
bunching is not modeled. One adaptation that would reintroduce some of
the autocorrelation is to sample in blocks of several months at a time.

The empirical method is used by some financial institutions for value-
at-risk calculations, but these tend to be quite short-term applications.
One particularly useful feature of the method, though, is the ease of
constructing multivariate distributions. Suppose we are interested in a
bivariate distribution of long-term interest rates and stock returns. These
are not independent, but by sampling the pair from the same date using the
empirical method, some of the relationship is automatically incorporated.
We lose any lagged correlation, however.

THE STABLE DISTRIBUTION FAMILY

Stable distributions appear in some econometrics literature, for example,
McCulloch (1996). Panneton (1999) and Finkelstein (1995) both used
stable distributions for valuing maturity guarantees. One reason for their
popularity is that stable distributions can be very fat-tailed, and are also
easy to combine, as the sum of stable distributions is always another stable
distribution. Stable distributions are related to Levy processes; if {Y};~o
is a Levy process, then at any fixed time Y, has a corresponding stable
distribution.

A distribution with distribution function F is a stable distribution if for
independent, indentically distributed X, X;, X, and for any a, b > 0, there
exists ¢ > 0, d such that:

aXi + bXo ~cX +d (2.32)

(We use ~ here to mean having the same distribution.) This relationship
is clearly true for the normal distribution—the sum of any two normal
random variables is also normal, and all normal random variables can be
standardized to the same distribution. It is not true of, for example, the
Poisson distribution. The sum of two independent, identically distributed
Poisson random variables is also Poisson, but cannot be expressed in terms
of the same Poisson parameter as the original distribution.

It is not possible, in general, to describe stable distributions in terms of
their probability or distribution functions, which require special functions.
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It is possible to summarize the family in terms of the characteristic function,
(X) = E[e™] = exp{iyt — clt|*(1 — i sign(t) 2(2, @))} (2.33)
where ¢ > 0,0 € (0,2],8 € [—1,1] and

tan (Z¢) ifa 1

2t a) =
(5 a) —2 log t] ifa =1

(2.34)

The y parameter is a location parameter; the @ component is called the
characteristic exponent and is used to classify distributions within the stable
family. We say that a distribution is a-stable if it is stable with characteristic
component «. The case a = 2 corresponds to the normal distribution
and @ = 1 is the Cauchy distribution. The inverse Gaussian distribution
corresponds to a = 1/2, B = 1. For a < 2, the distribution is fat-tailed,
with infinite variance. If 8 = 0, then the distribution is symmetric.

As with the normal distribution, stable distributions can be used to
describe stochastic processes. Let {Y;} be a stochastic process, such as the
log-return process. If Y, has independent and stationary increments (for
any time unit), then Y, is a stable or Levy process and Y; has an a-stable
distribution.

Stable processes have been popular for modeling financial processes
because they can be very fat-tailed, and because of the obvious attraction
of being able to convolute the distribution. However, they are not easy to
use; estimation requires advanced techniques and it is not easy to simulate
a stable process, although a method is given in Chambers et al. (1976),
and software using that method is available from Nolan (2000). The model
specifically does not incorporate autocorrelations arising from volatility
bunching, and therefore does not, in fact, fit the data sets in the section
on data particularly well. An excellent source of explanatory and technical
information on the use of stable distributions is given in Nolan (1998);
also, on his Web site (2000), Nolan provides software for analyzing stable
distributions.

GENERAL STOCHASTIC VOLATILITY MODELS

We can allow volatility to vary stochastically without the regime constraints
of the RSLN model. For example, let y, = u + ov&, and o = o2, +
a(oy—1 — 0)* + &7 where &, and &7 are random innovations. It is convenient
to assume &7 are distributed on (0,%). For example, we might use a
gamma distribution. These models, and more complex varieties, are highly

adaptable. However, in general, it is very difficult to estimate the parameters.
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THE WILKIE MODEL

The Wilkie Model Structure

The Wilkie model (Wilkie 1986, 1995) was developed over a number of
years, with an early version applied to GMMBs in the MGWP Report
(1980) and the full version first applied to insurance company solvency by
the Faculty of Actuaries Solvency Working Party (1986). The Wilkie model
differs in several fundamental ways from the models covered so far:

B It is a multivariate model, meaning that several related economic series
are projected together. This is very useful for applications that require
consistent projections of, for example, stock prices and inflation rates
or fixed interest yields.

B The model is designed for long-term applications. Wilkie (1995) looks
at 100-year projections, and suggests that it is ideally suited for appli-
cations requiring projections more than 10 years ahead.

B The model is designed to be applied to annual data. Without changing
the AR structure of the individual series, it cannot be easily adapted
to more frequent data. Attempts to produce a continuous form for the
model, by constructing a Brownian bridge between the end-year points
(e.g., Chan 1998) add complexity. The annual frequency means that the
model is not ideal for assessing hedging strategies, where it is important
that stocks are bought and sold at intervals much shorter than the
one-year time unit of the Wilkie model.

The Wilkie model makes assumptions about the stochastic processes
governing the evolution of a number of key economic variables. It has the
cascade structure illustrated in Figure 2.11; this is not supposed to represent

|Consumer Price Index|

‘ | Share Yield |
| Share Dividends | | Long Bond Yield |
| Short Bond Yicld |

FIGURE 2.11 Structure of the Wilkie investment model.
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a causal development, but is related to the chronological processes. Each
series incorporates some factor from connected series higher up the cascade,
and each also incorporates a random component.

The Wilkie model is widely used in the United Kingdom and elsewhere
in actuarial applications by insurance companies, consultants, and academic
researchers. It has been fitted to data from a number of different countries,
including Canada and the United States. The Canadian data (1923 to 1993)
were used for the figures for quantile reserves for segregated fund contracts
in Boyle and Hardy (1996).

The integrated structure of the Wilkie model has made it particularly
useful for actuarial applications. For the purpose of valuing equity-linked
liabilities, this is useful if, for example, we assume liabilities depend on stock
prices while reserves are invested in bonds. Also, for managed funds it is
possible to project the correlated returns on bonds and stocks.

What is commonly called the Wilkie model is actually a collection of
models. We give here the equations of the most commonly used form of the
model. However, the interested reader is urged to read Wilkie’s excellent
1995 paper for more details and more model options (e.g., for the ARCH
model of inflation).

The notation can be confusing because there are many parameters and
five integrated processes. The notation used here is derived from (but is
not the same as) Wilkie (1995). The subscript g refers to the inflation
series, subscript y to the dividend yield, d to the dividend index process,
¢ to the long-term bond yield, and b to the short-term bond vyield series.
The w terms all indicate a mean, although it may be a mean of the log
process, so ug is the mean of the inflation process modeled, which is the
force of inflation process. The term a indicates an AR parameter; o is a
(conditional) variance parameter; and w is a weighting applied to the force
of inflation within the other processes. For example, the share dividend
yield process includes a term wy 8,(¢), which is how the current force’
of inflation (8,(¢)) influences the current logarithm of the dividend yield
(see equation 2.36). The random innovations are denoted by z(¢), with a
subscript denoting the series. These are all assumed to be independent N(0,1)
variables.

The Inflation Model

Let 8,(t) be the force of inflation in the year [ — 1,¢), then §,(¢) follows an
AR(1) process:

8(t) = pg + ag(d,(t — 1) — py) + 0, 2,(t) (2.35)

S A force of interest or inflation is the continuously compounded annualized rate.
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where
84(t) is the force of inflation in the tth year,
g 1s the mean force of inflation, assumed constant.
agis the parameter controlling the strength of the AR
(or rather the weakness, since large a, implies weak
autoregression)—that is, how strong is the pull back to the
mean each year.
oy is the standard deviation of the white noise term of the
inflation model.
24(t) is a N(0,1) white noise series.

The ultimate distribution for the force of inflation is N(ug, o / (1-a3)),
so that, if O(¢) is an index of inflation, the ultimate distribution of
Q(t)/Q(t — 1) is LN. However, unlike the LN model, successive years
are correlated through the AR.

Share Prices and Dividends

We model separately the dividend yield on stocks, and the force of dividend
inflation. The share dividend yield in year #, y(¢) is generated using:

y(t) = exp{wy Oq(t) + py + yn(t)} (2.36)
where
yn(t) = ayyn(t — 1) + oy 2,(t) (2.37)
So yn(t) is an AR(1) process, independent of the inflation process, z,(t) being
a Normal(0,1) white noise series.
Clearly
Ely(z)] = e* Elexp(wy 64(¢))] E[exp(yn(t))] (2.38)
because ,(¢) and yn(t) are independent. E[exp(twy 8,(2))] is M5, (w,), where
M, () is the moment generating function of §,(¢). For large ¢, the moment
generating function of 8,(t) is

Ms, (1) = exp(u pg + u* (04)*/2) (2.39)

So

2
E[y(t)] = e M,(w,) [exp (MW + 2(10—:‘%))] (2.40)
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The force of dividend growth, 6,(¢), is generated from the following
relationship:
84(t) = wysDM(t) + (1 — wy) 84(2) + dy oy 2y (2 — 1) + g + byoazs(t — 1)
+ 0424()

where
DM(t) = dg8,(t) + (1 — dg)DM(z — 1) (2.41)

The force of dividend then comprises:

B A weighted average of current and past inflation—the total weight
assigned to the current 8,(¢) being w, dy + (1 —w,). The weight attached
to past forces of inflation is wy dy(1 — dy)™ for the force of inflation in
the 7th year before ¢.

B A dividend yield effect where a fall in the dividend yield is associated
with a rise in the dividend index, and vice versa (i.e., d, < 0).

B An influence from the previous year’s white noise term.

B A white noise term where z,4(¢) is a Normal(0,1) white noise sequence.

The force of dividend can be used to construct an index of dividends,
D(t) = D(t — 1) X %"

A price index for shares, P(¢), can be constructed from the dividend
index and the dividend yield, P(¢) = D(z) / y(¢). The overall return on shares
each year py(t) can be summarized in the gross rolled up yield,

P(t) + D(t)

P L

py(t) =

Long-Term and Short-Term Bond Yields

The yield on long-term bonds, ¢(¢), is split into a real part, cn(t), and an
inflation-linked part, cm(t), so that

c(t) = cm(t) + cn(t)
where

em(t) = d.84(t) + (1 — dc)em(t — 1)
and

cn(t) = pe CXP(flc en(t — 1) + Ye Oy zy(t) + 0. 2.(1))
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The inflation part of the model is a weighted moving-average model.
The real part is essentially an autoregressive model of order one (i.e., AR(1)),
with a contribution from the dividend yield. The yield on short-term bonds,
b(t), is calculated as a multiple of the long-term rate ¢(¢), so that

b(t) = c(t) exp(—bd(¢))
where
bd(t) = wp + ap(bd(t — 1) — wp,) + b 0c 2(t) + 03 23, (2)

These equations state that the model for the log of the ratio between the
long-term and the short-term rates is AR(1), with an added term allowing
for a contribution from the long-term residual term.

Other Series

Wilkie (1995) also describes integrated models for wage inflation, property,
bonds linked to an inflation index (“index-linked stocks”), and exchange
rates. The paper also presents and investigates alternative models, including
ARCH models in place of the AR models used, transfer functions, and a
vector autoregression model.

Parameters

The parameters suggested in Wilkie (1995) for Canada and the United States
are given in Table 2.2. Note that figures for the short-term interest rate for
the United States are not available. These parameters were fitted using 1923
to 1993 data for the Canadian figures, and data from 1926 to 1989 for the
United States.

To run the Wilkie model, one can start the simulations at neutral
values of the parameters. These are the stationary values we would obtain
if all the residuals were zero. Alternatively, we can start the model at
the current date and let the past data determine the initial parameter
values. For general purposes, it is convenient to start the simulations at the
neutral values of the parameters so that the results are not distorted
by the particular nature of the current investment conditions. If new
contracts are to be written for some time ahead, the figures using neutral
Wilkie starting parameters are close to the average figures that would be
obtained at different dates using formerly current starting values. However,
for strategic decisions that are designed for immediate implementation
it is appropriate to use the contemporary data for starting values for
the series.
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TABLE 2.2 Parameters for Wilkie model, Canada and
United States, from Wilkie (1995).

Parameter Canada U.S.
Inflation Model
Mg 0.034 0.030
a, 0.64 0.65
o 0.032 0.035
Dividend Yield
w, 1.17 0.50
a, 0.7 0.7
Hy 0.0375 0.0430
ay 0.19 0.21
Dividend Growth
wy 0.19 1.00
dy 0.26 0.38
Hd 0.0010 0.0155
Ve -0.11 ~0.35
b, 0.58 0.50
oy 0.07 0.09
Long-Term Interest Rates
d. 0.040 0.058
a. 0.95 0.96
e 0.0370 0.0265
Ve 0.10 0.07
o, 0.185 0.210
Short-Term Interest Rates
b 0.26
ap 0.38
cp 0.73
agyp 0.21

Some Comments on the Wilkie Model

The Wilkie model has been subject to a unique level of scrutiny. Many
companies employ their own models, but few issue sufficient detail for
independent validation and testing. The most vigorous criticism of the
Wilkie model has come from Huber (1997). Huber’s work is concerned

with:
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B Evidence of a permanent change in the nature of economic time series
in Western nations around the second world war is not allowed for.
This criticism applies to all stationary time-series models of investment,
but nonstationary models can have even more serious problems in
generating impossible scenarios with explosive volatility, for example.
It is useful to be aware of the limitations of all models—to be aware, for
example, that in the event of a major world conflagration the predicted
distributions from any stationary model may well be incorrect. On the
other hand, in such circumstances this may not be our first worry.

B The inconsistency of the Wilkie model with some economic theories,
such as the efficient market hypothesis. Note, however, that the Wilkie
model is very close to a random walk model over short terms, and
the random walk model is consistent with the efficient market hypoth-
esis. Huber himself points out that there is significant debate among
economists about the applicability of the efficient market hypothesis
over long time periods, and the Wilkie approach is not out of line with
those of other econometricians.

B The problem of “data mining,” by which Huber means that a statistical
time-series approach, which finds a model to match the available data,
cannot then use the same data to test the model. Thus, with only
one data series available, all non-theory-based time-series modeling is
rejected. One way around the problem is to use part of the available
data to fit the model, and the rest to test the fit. The problem for a
complex model with many parameters is that data are already scarce.

This argument is, as Huber noted, not specifically or even accurately
aimed at the Wilkie model. The Wilkie model is substantially theory
driven, informed by standard statistical time-series analysis.

Huber’s work is not intended to limit actuaries to a deterministic
methodology, although it has often been quoted in support of that view.
However, it is certainly important that actuaries make themselves aware of
the provenance, characteristics, and limitations of the models they use.

VECTOR AUTOREGRESSION

The Wilkie model is an example of a vector AR approach to modeling
financial series. The vector represents the various economic series. The
cascade structure makes parameter estimation easier and, perhaps, makes
the model more transparent. The more general vector AR is to use an AR(q)
structure for a vector of relevant financial series, with correlations between
the series captured in a variance-covariance matrix.
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The vector AR equation is used to generate a vector of economic
indicators at each time step. Let x; = (1.5, X2.4» - ..»Xm;:)! be the vector, so
that, for example, x1; represents the inflation rate in the period (¢ — 1, #], x7 ;
represents the total return on shares, x3, represents the yield on long-term
bonds, and so forth. The vector AR equation with order ¢ is then:

Xe = p+ Zf:lA,(xt,,~ — ) +LZ, (2.42)

where p is a (m X 1) vector of conditional mean values for the processes,
A;j is a (m Xm) matrix of AR coefficients, for j = 1,2, ...,g; Z, is an
independent, identically distributed, standard multivariate normal random
variable with mean 0 and variance-covariance matrix 1; and L.LT = 3, the
variance-covariance matrix of the series residuals.

An example of a vector AR model for stock returns, inflation, and bond
yields is given in Wright (1997). Wright’s model is slightly more complex,
as inflation is treated as an exogenous variable—that is, it is modeled
independently of the other series and then included as an extra term in the
vector autoregression equation. The advantage of this model is that much
of the correlation between series is explained by correlations with inflation.
By removing inflation from the formula, many of the covariance terms in 3,
can be set to zero.



Maximum Likelihood Estimation for
Stock Return Models

INTRODUCTION

In order to use any of the models in Chapter 2, we need to determine
appropriate parameters. There are two major approaches to parameter
estimation in common use. The first is maximum likelihood estimation
(MLE), which is the subject of this chapter. The second approach, less
common but also with important advantages, is the Bayesian approach,
which is described in Chapters5.

In this chapter, we discuss some of the features of MLE, particularly
in the context of time series estimation. We also show how to apply
MLE to determine parameters for some of the univariate models discussed
in Chapter 2. These include the regime-switching lognormal (RSLN) and
the autoregressive conditionally heteroscedastic (ARCH) and generalized-
ARCH (GARCH) models.

Likelihood is also commonly used as a basis for model selection. Reading
Chapter 2 one might wonder which model is the best for stock returns. The
answer is not clear cut, but using some of the model selection criteria in
common use, it is possible to rank the models to some extent, and we do
this in the section on likelihood-based model selection in this chapter.

Intuitively, the MLE is the parameter value giving the highest prob-
ability of observing the data values, represented by x = (x1,x2, ..., x,).
This is found by maximizing the likelibood function, which is just the joint
probability function of the data expressed as a function of the parameters.
For example, suppose we have a sample of three independent observations,
x = (2.8,3.2,3.9) and we are interested in fitting a normal distribution with
mean w and variance o to this data. Since the observations are independent,
the likelihood function, which is the joint probability density function (pdf)
for the data, is simply the product of the individual density functions. It is
unlikely, looking at the three values, that the u parameter for the model is, for

47
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example, 2.0. This is confirmed by calculating the likelihood function for these
data, using parameters u = 2.0 and o = 1.4 for the normal distribution, we
get a joint pdf equal to 0.0054 (which is the best we can do for this value of
w). If instead we use w = 3.3 and o = 0.454606, the joint pdf increases to
0.15079. So, we say that the second set of parameters is more likely than the
first; in fact, no other pair of values for u and o will give a higher value for
the joint pdf, so these are the maximum likelihood parameters.

The likelihood function can be also be expressed in terms of a sample
of random variables X = (X4, X5, ..., X,,). In this case, it is also a random
variable. The maximum likelihood estimators can be found in terms of the
sample X and are random variables. It is not usually specified whether we are
using the observed likelihood function with the observed data x or the random
function with the random sample X; the context determines which is meant.

For an unknown parameter 6 (scalar) or @ = (64, 6, ..., 6,)" (a vector
of parameters), the likelihood function is the value of the joint probability
(density) function of X or x. This function depends on the unknown 6.
The maximum likelihood estimate @ of @ is the value that gives the highest
value for the joint probability (density) over all the possible parameters.
The parameter @ here is regarded as fixed but unknown. The estimator
6 is a function of the sample X. Like the data, @ is considered as a
random variable for random X, or as an observed value for observed x. The
likelihood function is defined as

L(0) = f(X1, X2, X3, ..., X,30) (3.1)

In the case of discretely distributed random variables, the likelihood
function is the joint probability of X, which depends on the parameter 8. For
continuous random variables, the likelihood is the pdf for the multivariate
random variable X. Again, this joint density is a function of the parameter
0. In both cases, the likelihood must be nonnegative, and therefore finding
the maximum of L(@) is equivalent to finding the maximum of the log-
likelihood /(@) = log L(0): It is almost always simpler to work with the
log-likelihood function rather than with the likelihood itself.

If the model being fitted assumes individual observations are indepen-
dent and identically distributed, then the joint probability (density) function
is simply the product of the individual probability functions, so

L(0) = | [ f(x:;0)
t=1

and

1(0) = > logf(x1;6) (3.2)
t=1



Properties of Maximum Likelihood Estimators 49

For models that assume some serial dependence, things are not quite so
straightforward. Iteratively, using the fact that a bivariate random variable
(X, Y) has probability function f(x,y) = f(x|y)f(y), the joint probability
function for the multivariate series{x1, x2, ..., x,} can be written as

L(0) = f(x150)f(x2; 0x1)f (x3;0|x1,x2) ... f(x030x1, ..., x0—1) (3.3)
so that .,
1(0) = > logf(xs; 0lx1, ..., x,-1) (3.4)
=1

In some cases, it is possible to determine the parameters that maximize
the log-likelihood for a given data set analytically. If this is not possible,
maximization of the log-likelihood is generally relatively easily determined
using computer software, provided the likelihood function can be calculated.
Further details for some individual models are given in the section on using
MLE for the TSE and SSP.

The MLE is described in many textbooks covering statistical inference,
including Klugman, Panjer, and Willmot (1998). The application to financial
time series is covered admirably in Campbell, Lo, and MacKinlay (1996),
which is an excellent, comprehensive reference. Subject to some regularity
conditions, estimates found using maximum likelihood have many attractive
properties. Considered as a function of the random sample X, the estimator
0 is a random variable, so we can talk about its distribution and its moments.
This enables us to estimate the accuracy associated with a parameter estimate
by considering its mean and variance.

PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS

Stationary Distributions

The asymptotic properties for maximum likelihood estimators are generally
derived using independent samples. With dependent time series samples it
can be shown that the same results hold provided the time series is strictly
stationary, which we now define.

A series Y; = Yy, Y,, ...is strictly stationary if for any sequence
t1,t, ..., the joint distribution of (Ytl, Yoo oo Yt,) is identical to that
of (Ytl—k: Ytz—k, ey Yt,—k)-

A series Y; = Y1, Ys, ... is weakly stationary or covariance stationary
if the unconditional mean is constant, and all covariances Cov[Yy, Y;-/]
depend only on j. In other words, there must exist u and a covariance
function v; such that

E[Y;] = n forallz (3.5)

and
E[(Y; = u)(Y;; —n)| = forallt andj (3.6)
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If the joint density of any selection (Y,l, ) Y,y) is multivariate
normal and the process is covariance stationary, then it is also strictly
stationary, because the mean and covariances completely determine the
multivariate normal distribution. The reason this is important here is
that the most attractive properties of maximum likelihood estimators for
independent samples also apply to maximum likelihood estimators for any
strictly stationary time series.

Asymptotic Unbiasedness

Taken as a function of the random sample X, the bias of an estimator 6 of
a parameter 6 is

b(6) = E[6 — 0] (3.7)

If an estimator is unbiased then it has expected value equal to the unknown
parameter.

The maximum likelihood estimator 6 is asymptotically unbiased; this
means that for large sample sizes, the expected value of the estimate 6 tends
to the parameter 0. In many cases § may be an unbiased estimator for all
sample sizes.

Asymptotic Minimum Variance

Provided an estimator is unbiased or nearly unbiased, a low variance
estimator is preferred. The variance of an estimator measures how much the
estimate will change from one sample to the next. A low variance indicates
that different samples will give similar values for the parameter estimate.

The asymptotic (or large sample) variance of the maximum likelihood
estimator is related to the expected information, 1(0), defined as follows:
for scalar 6

42
I(6) = El—ﬁl(f))l

For vector @, with s elements, I(0) is an s X s matrix with i, entry:
&2

1), = E[— 7 Omil(e)}

The expectation is with respect to the random vector X. In the scalar case,
the asymptotic variance of the estimator is I(6) . In the vector case, 1(0) !
gives the asymptotic variance-covariance matrix for the estimator.
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The inverse information function is the Cramer-Rao lower bound for
the variance of an estimator. It doesn’t get better than this for large samples,
although for small samples other estimation methods may perform better
than maximum likelihood for both bias and variance.

The asymptotic variance I(6) ! is often used as an approximate variance
of an estimator, even where the sample size is not large. A problem in practice
is that, in general, I(0) is a function of the unknown parameter 6. To put
an approximate value on the variance of @, we use the estimator  in place
of 0. Another problem arises if the likelihood function is very complicated,
because then the information matrix is difficult to find analytically. In these
cases, we can use numerical methods.

Asymptotic Normal Distribution

Estimates are asymptotically normal (multivariate normal if @ is a vector),
with mean equal to the parameter(s) being estimated, and variance (matrix)
1(6)~', where I(0) is the information function defined above. For large
samples, this can be used to set confidence intervals for the parameters.

MLE of g(0) — The Delta Method
The maximum likelihood estimate of a function of 6, say g(6), is simply
g(6). The value of this can be seen with the lognormal model, for example.
Given parameters u and o (the mean and variance of the associated normal
distribution), the mean of the lognormal distribution is
glw o) = et

If we use maximum likelihood to determine parameter estimates i and

0, the maximum likelihood estimate of the mean is

g, 6) = o702

The asymptotic variance of the MLE g(f) is

V =209'%9
where
o - <&g<0>’ a(0) ag(@))
301~ 96, 30,
and

S =1(0)"!
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Investment Guarantees

INTRODUCTION

he objective of life insurance is to provide financial security to policy-

holders and their families. Traditionally, this security has been provided
by means of a lump sum payable contingent on the death or survival of the
insured life. The sum insured would be fixed and guaranteed. The policy-
holder would pay one or more premiums during the term of the contract for
the right to the sum insured. Traditional actuarial techniques have focused
on the assessment and management of life-contingent risks: mortality and
morbidity. The investment side of insurance generally has not been regarded
as a source of major risk. This was (and still is) a reasonable assumption,
where guaranteed benefits can be broadly matched or immunized with
fixed-interest instruments.

But insurance markets around the world are changing. The public has
become more aware of investment opportunities outside the insurance sec-
tor, particularly in mutual fund type investment media. Policyholders want
to enjoy the benefits of equity investment in conjunction with mortality
protection, and insurers around the world have developed equity-linked
contracts to meet this challenge. Although some contract types (such as uni-
versal life in North America) pass most of the asset risk to the policyholder
and involve little or no investment risk for the insurer, it was natural for
insurers to incorporate payment guarantees in these new contracts—this is
consistent with the traditional insurance philosophy.

In the United Kingdom, unit-linked insurance rose in popularity in
the late 1960s through to the late 1970s, typically combining a guaranteed
minimum payment on death or maturity with a mutual fund type investment.
These contracts also spread to areas such as Australia and South Africa,
where U.K. insurance companies were influential. In the United States,
variable annuities and equity-indexed annuities offer different forms of
equity-linking guarantees. In Canada, segregated fund contracts became
popular in the late 1990s, often incorporating complex guaranteed values on
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death or maturity. Germany recently introduced equity-linked endowment
insurance. Similar contracts are also popular in many other jurisdictions. In
this book the term equity-linked insurance is used to refer to any contract that
incorporates guarantees dependent on the performance of a stock market
indicator. We also use the term separate account insurance to refer to the
group of products that includes variable annuities, segregated funds, and
unit-linked insurance. For each of these products, some or all of the premium
is invested in an equity fund that resembles a mutual fund. That fund is the
separate account and forms the major part of the benefit to the policyholder.
Separate account products are the source of some of the most important risk
management challenges in modern insurance, and most of the examples in
this book come from this class of insurance. The nature of the risk to the
insurer tends to be low frequency in that the stock performance must be
extremely poor for the investment guarantee to bite, and high severity in
that, if the guarantee does bite, the potential liability is very large.

The assessment and management of financial risk is a very different
proposition to the management of insurance risk. The management of
insurance risk relies heavily on diversification. With many thousands of
policies in force on lives that are largely independent, it is clear from
the central limit theorem that there will be very little uncertainty about
the total claims. Traditional actuarial techniques for pricing and reserving
utilize deterministic methodology because the uncertainties involved are
relatively minor. Deterministic techniques use “best estimate” values for
interest rates, claim amounts, and (usually) claim numbers. Some allowance
for uncertainty and random variation may be made implicitly, through an
adjustment to the best estimate values. For example, we may use an interest
rate that is 100 or 200 basis points less than the true best estimate. Using
this rate will place a higher value on the liabilities than will using the best
estimate as we assume lower investment income.

Investment guarantees require a different approach. There is generally
only limited diversification amongst each cohort of policies. When a market
indicator becomes unfavorable, it affects many policies at the same time.
For the simplest contracts, either all policies in the cohort will generate
claims or none will. We can no longer apply the central limit theorem. This
kind of risk is referred to as systematic, systemic, or nondiversifiable risk.
These terms are interchangeable.

Contrast a couple of simple examples:

B An insurer sells 10,000 term insurance contracts to independent lives,
each having a probability of claim of 0.05 over the term of the contract.
The expected number of claims is 500, and the standard deviation is
22 claims. The probability that more than, say, 600 claims arise is less
than 1073, If the insurer wants to be very cautious not to underprice
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or underreserve, assuming a mortality rate of 6 percent for each life
instead of the best estimate mortality rate of 5 percent for each life will
absorb virtually all mortality risk.

B The insurer also sells 10,000 pure endowment equity-linked insurance
contracts. The benefit under the insurance is related to an underlying
stock price index. If the index value at the end of the term is greater
than the starting value, then no benefit is payable. If the stock price
index value at the end of the contract term is less than its starting value,
then the insurer must pay a benefit. The probability that the stock price
index has a value at the end of the term less than its starting value is
S percent.

The expected number of claims under the equity-linked insurance is
the same as that under the term insurance—that is 500 claims. However,
the nature of the risk is that there is a 5 percent chance that all 10,000
contracts will generate claims, and a 95 percent chance that none of
them will. It is not possible to capture this risk by adding a margin to
the claim probability of 5 percent.

This simple equity-linked example illustrates that, for this kind of risk,
the mean value for the number (or amount) of claims is not very useful. We
can also see that no simple adjustment to the mean will capture the true
risk. We cannot assume that a traditional deterministic valuation with some
margin in the assumptions will be adequate. Instead we must utilize a more
direct, stochastic approach to the assessment of the risk. This stochastic
approach is the subject of this book.

The risks associated with many equity-linked benefits, such as variable-
annuity death and maturity guarantees, are inherently associated with fairly
extreme stock price movements—that is, we are interested in the tail of the
stock price distribution. Traditional deterministic actuarial methodology
does not deal with tail risk. We cannot rely on a few deterministic stock
return scenarios generally accepted as “feasible.” Our subjective assessment
of feasibility is not scientific enough to be satisfactory, and experience—from
the early 1970s or from October 1987, for example—shows us that those
returns we might earlier have regarded as infeasible do, in fact, happen. A
stochastic methodology is essential in understanding these contracts and in
designing strategies for dealing with them.

In this chapter, we introduce the various types of investment guarantees
commonly used in equity-linked insurance and describe some of the contracts
that offer investment guarantees as part of the benefit package. We also
introduce the two common methods for managing investment guarantees:
the actuarial approach and the dynamic-hedging approach. The actuarial
approach is commonly used for risk management of investment guarantees
by insurance companies in North America and in the United Kingdom. The
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dynamic-hedging approach is used by financial engineers in banks, in hedge
funds, and (occasionally) in insurance companies. In later chapters we will
develop both of these methods in relation to some of the major contract
types described in the following sections.

MAJOR BENEFIT TYPES

Equity Participation

All equity-linked contracts offer some element of participation in an under-
lying index or fund or combination of funds, in conjunction with one or
more guarantees. Without a guarantee, equity participation involves no risk
to the insurer, which merely acts as a steward of the policyholders’ funds. It
is the combination of equity participation and fixed-sum underpinning that
provides the risk for the insurer. These fixed-sum risks generally fall into
one of the following major categories.

Guaranteed Minimum Maturity Benefit (GMMB) The guaranteed minimum
maturity benefit (GMMB) guarantees the policyholder a specific monetary
amount at the maturity of the contract. This guarantee provides downside
protection for the policyholder’s funds, with the upside being participation
in the underlying stock index. A simple GMMB might be a guaranteed
return of premium if the stock index falls over the term of the insurance
(with an upside return of some proportion of the increase in the index if the
index rises over the contract term). The guarantee may be fixed or subject
to regular or equity-dependent increases.

Guaranteed Minimum Death Benefit (GMDB) The guaranteed minimum
death benefit (GMDB) guarantees the policyholder a specific monetary sum
upon death during the term of the contract. Again, the death benefit may
simply be the original premium, or may increase at a fixed rate of interest.
More complicated or generous death benefit formulae are popular ways of
tweaking a policy benefit at relatively low cost.

Guaranteed Minimum Accumulation Benefit (GMAB) With the guaranteed
minimum accumulation benefit (GMAB), the policyholder has the option to
renew the contract at the end of the original term, at a new guarantee level
appropriate to the maturity value of the maturing contract. It is a form of
guaranteed lapse and reentry option.

Guaranteed Minimum Surrender Benefit (GMSB) The guaranteed minimum
surrender benefit (GMSB) is a variation of the guaranteed minimum maturity
benefit. Beyond some fixed date the cash value of the contract, payable
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on surrender, is guaranteed. A common guaranteed surrender benefit in
Canadian segregated fund contracts is a return of the premium.

Guaranteed Minimum Income Benefit (GMIB) The guaranteed minimum in-
come benefit (GMIB) ensures that the lump sum accumulated under a
separate account contract may be converted to an annuity at a guaranteed
rate. When the GMIB is connected with an equity-linked separate account,
it has derivative features of both equities and bonds. In the United Kingdom,
the guaranteed-annuity option is a form of GMIB. A GMIB is also commonly
associated with variable-annuity contracts in the United States.

CONTRACT TYPES

Introduction

In this section some generic contract types are described. For each of these
types, individual insurers’ product designs may differ in detail from the
basic contract described below. The descriptions given here, however, give
the main benefit details.

The first three are all separate account products, and have very similar
risk management and modeling issues. These products form the basis of
the analysis of Chapters 6 to 11. However, the techniques described in
these chapters can be applied to other type of equity-linked insurance. The
guaranteed annuity option is discussed in Chapter 12, and equity-indexed
annuities are the topic of Chapter 13.

Segregated Fund Contracts—Canada

The segregated fund contract in Canada has proved an extremely popular
alternative to mutual fund investment, with around $60 billion in assets
in 1999, according to Risk magazine. Similar contracts are now issued by
Canadian banks, although the regulatory requirements differ.

The basic segregated fund contract is a single premium policy, under
which most of the premium is invested in one or more mutual funds on the
policyholder’s behalf. Monthly administration fees are deducted from the
fund. The contracts all offer a GMMB and a GMDB of at least 75 percent
of the premium, and 100 percent of premium is common. Some contracts
offer enhanced GMDB of more than the original premium. Many contracts
offer a GMAB at 100 percent or 75 percent of the maturing value.

The rate-of-administration fee is commonly known as the management
expense ratio or MER. The MER differs by mutual fund type.

The name “segregated fund” refers to the fact that the premium, after
deductions, is invested in a fund separate from the insurer’s funds. The
management of the segregated funds is often independent of the insurer.
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A policyholder may withdraw some or all of his or her segregated fund
account at any time, though there may be a penalty on early withdrawals.

The insurer usually offers a range of funds, including fixed interest,
balanced (a mixture of fixed interest and equity), broad-based equity, and
perhaps a higher-risk or specialized equity fund. For policyholders who
invest in several funds, the guarantee may apply to each fund separately (a
fund-by-fund benefit) or may be based on the overall return (the family-of-
funds approach).

Variable Annuities—United States
The U.S. variable-annuity (VA) contract is a separate account insurance,
very similar to the Canadian segregated fund contract. The VA market is
very large, with over $100 billion of annual sales each year in recent times.
Premiums net of any deductions are invested in subaccounts similar
to the mutual funds offered under the segregated fund contracts. GMDBs
are a standard contract feature; GMMBs were not standard a few years
ago, but are beginning to become so. They are known as VAGLBs or
variable-annuity guaranteed living benefits. Death benefit guarantees may
be increased periodically.

Unit-Linked Insurance—United Kingdom

Unit-linked insurance resembles segregated funds, with the premium less
deductions invested in a separate fund. In the 1960s and early 1970s, these
contracts were typically sold with a GMMB of 100 percent of the premium.
This benefit fell into disfavor, partly resulting from the equity crisis of 1973
to 1974, and most contracts currently issued offer only a GMDB.

Some unit-linked contracts associated with pensions policies carry a
guaranteed annuity option, under which the fund at maturity may be
converted to a life annuity at a guaranteed rate. This is a more complex
option, of the GMIB variety. This option is discussed in Chapter 12.

Equity-Indexed Annuities—United States

The U.S. equity-indexed annuity (EIA) offers participation at some specified
rate in an underlying index. A participation rate of, say, 80 percent of the
specified price index means that if the index rises by 10 percent the interest
credited to the policyholder will be 8 percent. The contract will offer a
guaranteed minimum payment of the original premium accumulated at a
fixed rate; a rate of 3 percent per year is common.

Fixed surrender values are a standard feature, with no equity linking.
Other contract features vary widely by company. A form of GMAB may be
offered in which the guarantee value is set by annual reset according to the
participation rate.
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Many features of the EIA are flexible at the insurer’s option. The MERs,
participation rates, and floors may all be adjusted after an initial guarantee
period.

The EIAs are not as popular as VA contracts, with less than $10 billion
in sales per year. EIA contracts are discussed in more detail in Chapter 13.

Equity-Linked Insurance—Germany

These contracts resemble the U.S. EIAs, with a guaranteed minimum interest
rate applied to the premiums, along with a percentage participation in a
specified index performance. An unusual feature of the German product
is that, for regulatory reasons, annual premium contracts are standard
(Nonnemacher and Russ 1997).

EQUITY-LINKED INSURANCE AND OPTIONS

Call and Put Options

Although the risks associated with equity-linked insurance are new to
insurers, at least, relative to life-contingent risks, they are very familiar
to practitioners and academics in the field of derivative securities. The
payoffs under equity-linked insurance contracts can be expressed in terms
of options.

There are many books on the theory of option pricing and risk manage-
ment. In this book we will review the relevant fundamental results, but the
development of the theory is not covered. It is crucially important for prac-
titioners in equity-linked insurance to understand the theory underpinning
option pricing. The book by Boyle et al. (1998) is specifically written with
actuaries and actuarial applications in mind. For a general, readable intro-
duction to derivatives without any technical details, Boyle and Boyle (2001)
is highly recommended.

The simplest forms of option contracts are:

B A European call option on a stock gives the purchaser the right (but not
the obligation) to purchase a specified quantity of the underlying stock
at a fixed price, called the strike price, at a predetermined date, known
as the expiry or maturity date of the contract.

B A European put option on a stock gives the purchaser the right to sell
a specified quantity of the underlying stock at a fixed strike price at the
expiry date.

American options are defined similarly, except that the option holder
has the right to exercise the option at any time before expiry. Asian options
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have a payoff based on an average of the stock price over a period, rather
than on the final stock price.

To summarize the benefits under the option contracts, we introduce
some notation. Let K be the strike price of the option per unit of stock; let
S; be the price of one unit of the underlying stock at time #; and let T be the
expiry date of the option. The payoff at time T under the call option will be:

(S7 — K)* = max(Sy — K, 0) (1.1)
and the payoff under the put option will be
(K= 87)" = max(K — S1,0) (1.2)

In subsequent chapters we shall see that it is natural to think of
the investment guarantee benefits under separate account products as put
options on the policyholder’s fund. On the other hand, it is more natural to
use call options to value the benefits under an equity-indexed annuity.

We often use the terms in-the-money, at-the-money, and out-of-the-
money in relation to options and to equity-linked insurance guarantees. A
put option that is in-the-money at time ¢ < T has an underlying stock price
S, < K, so that if the stock price at maturity were to be the same as the
current stock price, there would be a payment under the guarantee. For
a call option, in-the-money means that S; > K, and at-the-money means
that the stock and strike prices are roughly equal. Out-of-the-money for
a put option means S, > K, and for a call option means S, < K; in either
case, if the stock price at maturity is the same as the current stock price,
no payment would be required under the guarantee or option contract. We
say a contract is deep out-of-the-money or in-the-money if the difference
between the stock price and strike price is large, so that it is very likely
that a deep out-of-the-money contract will remain out-of-the-money, and
similarly for the deep in-the-money contract.

The No-Arbitrage Principle

The no-arbitrage principle states that, in well-functioning markets, two
assets or portfolios having exactly the same payoffs must have exactly the
same price. This concept is also known as the law of one price; it is a
fundamental assumption of financial economics. The logic is that if prices
differ by a fraction, it will be noticed by the market, and traders will move
in to buy the cheaper portfolio and sell the more expensive, making an
instant risk-free profit or arbitrage. This will pressure the price of the cheap
portfolio back up, and the price of the expensive portfolio back down,
until they return to equality. Therefore, any possible arbitrage opportunity
will be eliminated in an instant. Many studies show consistently that the
no-arbitrage assumption is empirically indisputable in major stock markets.



Equity-Linked Insurance and Options 9

This simple and intuitive assumption is actually very powerful, particu-
larly in the valuation of derivative securities. To value a derivative security
such as an option, it is sufficient to find a portfolio, with known value, that
precisely replicates the payoff of the option. If the option and the replicating
portfolio do not have the same price, one could sell the more expensive and
buy the cheaper, and make an arbitrage profit. Since this is assumed to be
impossible, the value of the option and the value of the replicating portfolio
must be identical under the no-arbitrage assumption.

Put-Call Parity

Using the no-arbitrage assumption allows us to derive an important con-
nection between the put option and the call option on a stock.

Let ¢, denote the value at ¢ of a European call option on a unit of stock,
and p; the value of a European put option on a unit of the same stock. Both
options are assumed to mature at the same date T > # with the same strike
price, K. Assume the stock price at ¢ is S;, then an investor who holds both
a unit of stock and a put option on that unit of stock will have a portfolio
at time ¢ with value p; + S;. The payoff at expiry of the portfolio will be

pr + ST = max(K, ST) (13)

Similarly, consider an investor who holds a call option on a unit of
stock together with a pure discount bond maturing at T with face value
K. We assume the pure discount bond earns a risk-free rate of interest of »
per year, continuously compounded, so that the value at time ¢ of the pure
discount bond plus call option is ¢, + Ke "T~?, The payoff at maturity of
the portfolio of the pure discount bond plus call option will be

cr + K = max(K, S7) (1.4)

In other words, these two portfolios—“put plus stock” and “call plus
bond”—have identical payoffs. The no-arbitrage assumption requires that
two portfolios offering the same payoffs must have the same price. Hence
we find the fundamental relationship between put and call options known
as put-call parity, that is,

pr+ S = ¢, + Ke T (1.5)

Options and Equity-Linked Insurance

Many benefits under equity-linked insurance contracts can be regarded as
put or call options. For example, the liability under the maturity guarantee
of a Canadian segregated fund contract can be naturally regarded as an
embedded put option. That is, the policyholder who pays a single premium
of $1000 with a 100 percent GMMB is guaranteed to receive at least
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K = $1000 at maturity, even if the market value of her or his portfolio is
less than $1000 at that time. It is the responsibility of the insurer to pay
(1000 — S7)*, the excess of the guaranteed amount over the market value
of the assets, meaning that the insurer pays the payoff under a put option.

Therefore, the total segregated fund policy benefit is made up of the
policyholder’s fund plus the payoff from a put option on the fund. From
put-call parity we know that the same benefit can be provided using a bond
plus a call option, but that route is not sensible when the contract is designed
in the separate account format. Put-call parity also means that the U.S. EIA
could either be regarded as a combination of fixed-interest security (meeting
the minimum interest rate guarantee) and a call option on the underlying
stock (meeting the equity participation rate benefit), or as a portfolio of
the underlying stock (for equity participation) together with a put option
(for the minimum benefit). In fact, the first method is a more convenient
approach from the design of the contract.

The fundamental difference between the VA-type guarantee, which
we value as a put option to add to the separate account proceeds, and
the EIA guarantee, which we value as a call option added to the fixed-
interest proceeds, arises from the withdrawal benefits. On withdrawal, the
VA policyholder takes the proceeds of the separate account, without the
put option payment. The EIA policyholder withdraws with their premium
accumulated at some fixed rate, without the call-option payment.

American options may be relevant where equity participation and min-
imum accumulation guarantees are both offered on early surrender. Asian
options are relevant for some EIA contracts where the equity participation
can be based on an average of the underlying stock price rather than on the
final value.

There is a substantial and rich body of theory on the pricing and
financial management of options. Black and Scholes (1973) and Merton
(1973) showed that it is possible, under certain assumptions, to set up a
portfolio that consists of a long position in the underlying stock together
with a short position in a pure discount bond and has an identical payoff
to the call option. This is called the replicating portfolio. The theory of
no-arbitrage means that the replicating portfolio must have the same value
as the call option because they have the same payoff at the expiry date. Thus,
the famous Black-Scholes option-pricing formula not only provides the price
but also provides a risk management strategy for an option seller—hold the
replicating portfolio to hedge the option payoff. A feature of the replicating
portfolio is that it changes over time, so the theory also requires the balance
of stocks and bonds to be rearranged at frequent intervals over the term of
the contract.

The stock price, S;, is the random variable in the payoff equations
for the options (we assume that the risk-free rate of interest is fixed). The
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Most of the academic literature relating to equity-linked insurance
assumes a dynamic-hedging management strategy. See, for example, Boyle
and Schwartz (1977), Brennan and Schwartz (1975, 1979), Bacinello and
Ortu (1993), Ekern and Persson (1996), and Persson and Aase (1994); these
papers appear in actuarial, finance, and business journals. Nevertheless,
although the application by actuaries in practice of financial economic
theory to the management of embedded options is growing, in many areas
it is still not widely accepted.

The Actuarial Approach

In the mid 1970s the ground-breaking work of Black, Scholes, and Mer-
ton was relatively unknown in actuarial circles. In the United Kingdom,
however, maturity guarantees of 100 percent of premium were a common
feature of the unit-linked contracts, which were then proving very popular
with consumers. The prolonged low stock market of 1973 to 1974 had
awakened the actuaries to the possibility that this benefit, which had been
treated as a relatively unimportant policy “tweak” with very little value
or risk, constituted a serious potential liability. The then recent theory of
Black and Scholes was considered to be too risky and unproven to be
used for unit-linked guaranteed maturity benefits by the U.K. actuarial
profession.!

In 1980, the Maturity Guarantees Working Party (MGWP) suggested,
instead, using stochastic simulation to determine an approximate distribu-
tion for the guarantee liabilities, and then using quantile reserving to convert
the distribution into a usable capital requirement. The quantile reserve had
already been used for many years, particularly in non-life insurance. To
calculate the quantile reserve, the insurer assesses an appropriate quantile
of the loss distribution, for example, 99 percent. The present value of the
quantile is held in risk-free bonds, so that the office can be 99 percent certain
that the liability will be met. This principle is identical to the value-at-risk
(VaR) concept of finance, though generally applied over longer time periods
by the insurance companies than by the banks.

The underlying principle of this method of calculating the capital
requirements is that the capital is assumed to be invested in risk-free bonds.
The use of the quantile of the distribution as a risk measure is not actually
fundamental to this approach, and other risk measures may be preferable
(this is discussed further in Chapter 9).

!This was a decision that has had unfortunate consequences. If the actuarial
profession had taken the opportunity to learn and apply option pricing theory
and risk management at that time, then the design and management of embedded
options in insurance contracts in the last 20 years would have been very different and
actuaries would have been better placed to participate in the derivatives revolution.
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This method of using stochastic simulation to project the liabilities, and
then using the long-term fixed rate of interest to discount them, is referred
to in this book (and elsewhere) as the “actuarial” approach. It is inherently
different from the dynamic-hedging approach, in which assets are assumed
to be invested in the replicating portfolio, not in the bonds. However, it
should not be inferred that dynamic hedging is somehow not actuarial.
Nor should it be assumed that the actuarial approach is incompatible with
dynamic hedging. A synthesis of the two approaches may lead to better risk
management than either provides separately.

The actuarial method is still popular (particularly with actuaries) and
offers a valid alternative to the dynamic-hedging approach for some equity-
linked contracts. The Canadian Institute of Actuaries’ Task Force on Segre-
gated Funds (SFTF 2000) uses the actuarial approach as the underpinning
methodology for determining capital requirements, although a combined
hedging-actuarial approach is also accommodated. In Chapter 6, the actu-
arial approach to equity-linked liabilities is investigated.

The Ad Hoc Approach

There is a (diminishing) body of opinion amongst actuaries that the statistical
analysis that forms the subject of this book is unnecessary or even irrelevant.
Their approach to valuation and management of financial guarantees might
be described as guesswork, or “actuarial judgment.” This is most common
for the very low-frequency type options, where there is very little chance
of any liability. An example might be a GMMB, which guarantees that the
benefit after a 10-year investment will be no less than the original premium.
There is very little chance that the separate account will fall to less than the
original investment over the course of 10 years. Rather than model the risk
statistically, it was common for actuaries to assume that there would never
be a liability under the guarantee, so little or no provision was made. This
view is uncommon now and tends to be unpopular with regulators.

For any actuary tempted by this approach, the Equitable Life (U.K.)
story provides a clear demonstration of the risks of ignoring statistical
methodology. Along with many U.K. insurers in the early 1980s, Equitable
Life (U.K.) issued a large number of contracts carrying guaranteed-annuity
options, under which the guarantee would move into the money only
if interest rates fell below 6.5 percent. At the time the contracts were issued,
interest rates were higher than 10 percent, and a cautious long-term view
was that they might fall to 8 percent. Many actuaries, relying on their
personal judgment, believed that these contracts would never move into the
money, and therefore made little or no provision for the potential liability.
This conclusion was made despite the fact that interest rates had been below
6.5 percent for decades up to the later 1960s. Of course, in the mid-1990s
rates fell, the guarantees moved into the money, and the guarantee liabilities
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were so large that Equitable Life (U.K.), a large mutual company more than
200 years old, was forced to close to new business. Many other companies
were also hit hard and only substantial free surplus kept them trading.
Yang (2001) has demonstrated that, had actuaries in the 1980s used the
stochastic models and methods then available, it would have been clear that
substantial provision would be required for this option.

PRICING AND CAPITAL REQUIREMENTS

There are several issues that are important for actuaries and risk man-
agers involved in any area of policy design, marketing, valuation, or risk
management of equity-linked insurance. The following are three main con-
siderations:

1. What price should the policyholder be charged for the guarantee benefit?

2. How much capital should the insurer hold in respect of the benefit
through the term of the contract?

3. How should this capital be invested?

Much work in equity-linked insurance has focused on pricing without
very much consideration of the capital issues. But the three issues are
crucially interrelated. For example, using the option approach for pricing
maturity guarantees gives a price, but that price is only appropriate if it
is suitably invested (in a dynamic-hedge portfolio, or by purchasing the
options externally). Also, as we shall see in later chapters, different risk
management strategies require different levels of capital (for the same level
of risk), and therefore the implied price for the guarantee would vary.

The approach of this book is that all of these issues are really facets
of the same issue. The first requirement for pricing or for determination
of capital requirements is a credible estimate of the distribution of the
liabilities, and that is the main focus of this book. Once this distribution
is determined, it can be used for both pricing and capital requirement
decisions. In addition, the liability issue is really an asset-liability issue, so
the estimation of the liability distribution depends on the risk management
decision.
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Modeling Long-Term
Stock Returns

INTRODUCTION

It has been stated firmly in the previous chapter that this book will
use stochastic methods to analyze and manage risks from investment
guarantees. To model the investment guarantee risks, we need to model the
underlying equity process upon which the guarantee depends. There are
many stochastic models in common use for equity returns. The objective
of this chapter is to introduce some of these and discuss their different
characteristics. This should assist in the choice of an appropriate model for
a given contract.

First, we discuss briefly the case for stochastic models, and some of the
interesting features of stock return data. We also demonstrate how often the
guaranteed minimum maturity benefit (GMMB) under a 10-year contract
would have ended up greater than the fund using the historical returns.

The rest of this chapter introduces the various models. These include
the lognormal model, the autoregressive model, the ARCH-type models,
the regime-switching lognormal model, the empirical model (where returns
are drawn from historic experience), and the Wilkie model. Where it is
sufficiently straightforward, we have derived probability functions for the
models, but in many cases this is not possible.

DETERMINISTIC OR STOCHASTIC?

Traditional actuarial techniques assume a deterministic, usually constant
path for returns on assets. There has been some effort to adapt this technique
for equity-linked liabilities; for example, the Office of the Superintendent of
Financial Institutions (OSFI) in Canada mandated a deterministic test for
the GMMB under segregated fund contracts. (This mandate has since been

15
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superseded by the recommendations of the Task Force on Segregated Funds
(SFTF) in 2000.) However, there are problems with this approach:

1. Itislikely that any single path used to model the sort of extreme behavior
relevant to the GMMB will lack credibility. The Canadian OSFI scenario
for a diversified equity mutual fund involved an immediate fall in asset
values of 60 percent followed by returns of 5.75 percent per year for
10 years. The worst (monthly) return of this century in the S&P total
return index was around — 35 percent. Insurers are, not surprisingly,
rather sceptical about the need to reserve against such an unlikely
outcome.

2. It is difficult to interpret the results; what does it mean to hold enough
capital to satisfy that particular path? It will not be enough to pay the
guarantee with certainty (unless the full discounted maximum guarantee
amount is held in risk-free bonds). How extreme must circumstances be
before the required deterministic amount is not enough?

3. A single path may not capture the risk appropriately for all contracts,
particularly if the guarantee may be ratcheted upward from time to
time. The one-time drop and steady rise may be less damaging than
a sharp rise followed by a period of poor returns, for contracts with
guarantees that depend on the stock index path rather than just the
final value. The guaranteed minimum accumulation benefit (GMAB) is
an example of this type of path-dependent benefit.

Deterministic testing is easy but does not provide the essential qualitative
or quantitative information. A true understanding of the nature and sources
of risk under equity-linked contracts requires a stochastic analysis of the
liabilities.

A stochastic analysis of the guarantee liabilities requires a credible
long-term model of the underlying stock return process. Actuaries have
no general agreement on the form of such a model. Financial engineers
traditionally used the lognormal model, although nowadays a wide variety
of models are applied to the financial economics theory. The lognormal
model is the discrete-time version of the geometric Brownian motion of
stock prices, which is an assumption underlying the Black-Scholes theory.
The model has the advantage of tractability, but it does not provide
a satisfactory fit to the data. In particular, the model fails to capture
extreme market movements, such as the October 1987 crash. There are also
autocorrelations in the data that make a difference over the longer term
but are not incorporated in the lognormal model, under which returns in
different (nonoverlapping) time intervals are independent. The difference
between the lognormal distribution and the true, fatter-tailed underlying
distribution may not have very severe consequences for short-term contracts,
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but for longer terms the financial implications can be very substantial.
Nevertheless, many insurers in the Canadian segregated fund market use
the lognormal model to assess their liabilities. The report of the Canadian
Institute of Actuaries Task Force on Segregated Funds (SFTF (2000)) gives
specific guidance on the use of the lognormal model, on the grounds that
this has been a very popular choice in the industry.

A model of stock and bond returns for long-term applications was
developed by Wilkie (1986, 1995) in relation to the U.K. market, and
subsequently fitted to data from other markets, including both the United
States and Canada. The model is described in more detail below. It has been
applied to segregated fund liabilities by a number of Canadian companies. A
problem with the direct application of the Wilkie model is that it is designed
and fitted as an annual model. For some contracts, the monthly nature
of the cash flows means that an annual model may be an unsatisfactory
approximation. This is important where there are reset opportunities for the
policyholder to increase the guarantee mid-policy year. Annual intervals are
also too infrequent to use for the exploration of dynamic-hedging strategies
for insurers who wish to reduce the risk by holding a replicating portfolio
for the embedded option. An early version of the Wilkie model was used
in the 1980 Maturity Guarantees Working Party (MGWP) report, which
adopted the actuarial approach to maturity guarantee provision.

Both of these models, along with a number of others from the econo-
metric literature, are described in more detail in this chapter. First though,
we will look at the features of the data.

ECONOMICAL THEORY OR STATISTICAL METHOD?

Some models are derived from economic theory. For example, the efficient
market hypothesis of economics states that if markets are efficient, then all
information is equally available to all investors, and it should be impossible
to make systematic profits relative to other investors. This is different from
the no-arbitrage assumption, which states that it should be impossible to
make risk-free profits. The efficient market hypothesis is consistent with the
theory that prices follow a random walk, which is consistent with assuming
returns on stocks are lognormally distributed. The hypothesis is inconsistent
with any process involving, for example, autoregression (a tendency for
returns to move toward the mean). In an autoregressive market, it should be
possible to make systematic profits by following a countercyclical investment
strategy—that is, invest more when recent returns have been poor and
disinvest when returns have been high, since the model assumes that returns
will eventually move back toward the mean.

The statistical approach to fitting time series data does not consider
exogenous theories, but instead finds the model that “best fits” the data,
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in some statistical sense. In practice, we tend to use an implicit mixture of
the economic and statistical approaches. Theories that are contradicted by
the historic data are not necessarily adhered to, rather practitioners prefer
models that make sense in terms of their market experience and intuition,
and that are also tractable to work with.

THE DATA

Description of the Data

For segregated fund and variable-annuity contracts, the relevant data for
a diversified equity fund or subaccount are the total returns on a suitable
stock index. For the U.S. variable annuity contracts, the S&P 500 total
return (that is with dividends reinvested) is often an appropriate basis. For
equity-indexed annuities, the usual index is the S&P 500 price index (a price
index is one without dividend reinvestment). A common index for Canadian
segregated funds is the TSE 300 total return index! (the broad-based index
of the Toronto Stock Exchange); and the S&P 500 index, in Canadian
dollars, is also used. We will analyze the total return data for the TSE 300
and S&P 500 indices. The methodology is easily adapted to the price-only
indices, with similar conclusions.

For the TSE 300 index, we have annual data from 1924, from the
Report on Canadian Economic Statistics (Panjer and Sharp 1999), although
the TSE 300 index was inaugurated in 1956. Observations before 1956 are
estimated from various data sources. The annual TSE 300 total returns on
stocks are shown in Figure 2.1. We also show the approximate volatility,
using a rolling five-year calculation. The volatility is the standard deviation
of the log-returns, given as an annual rate. For the S&P 500 index, earlier
data are available. The S&P 500 total return index data set, with rolling
12-month volatility estimates, is shown in Figure 2.2.

Monthly data for Canada have been available since the beginning of the
TSE 300 index in 1956. These data are plotted in Figure 2.3. We again show
the estimated volatility, calculated using a rolling 12-month calculation. In
Figure 2.4, the S&P 500 data are shown for the same period as for the TSE
data in Figure 2.3.

Estimates for the annualized mean and volatility of the log-return
process? are given in Table 2.1. The entries for the two long series use
annual data for the TSE index, and monthly data for the S&P index. For

Now superseded by the S&P/TSX-Composite index.
2The log-return for some period is the natural logarithm of the accumulation of a
unit investment over the period.
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TABLE2.1 Means, standard deviations, and autocorrelations of log returns.

Series (%) (%)

TSE 300 1924-1999 9.90 (5.5, 15.0) 18.65 (15.7,21.7)
S&P 500 1928-1999 10.61 (6.2, 15.0) 19.44 (18.7, 20.5)
TSE 300 1956-1999 9.77 (5.1, 14.4) 15.63 (14.3,16.2)
S&P 500 1956-1999 11.61 (7.4, 15.9) 14.38 (13.4, 15.1)
Autocorrelations:

Series 1-Month Lag 6-Month Lag 12-Month Lag
TSE 300 1956-1999 0.082 0.013 -0.024
S&P 500 1956-1999 0.027 -0.057 0.032

the shorter series, corresponding to the data in Figures 2.3 and 2.4, we use
monthly data for all estimates. The values in parentheses are approximate 95
percent confidence intervals for the estimators. The correlation coefficient
between the 1956 to 1999 log returns for the S&P 500 and the TSE 300
1s 0.77.

A glance at Figures 2.3 and 2.4 and Table 2.1 shows that the two
series are very similar indeed, with both indices experiencing periods of high
volatility in the mid-1970s, around October 1987, and in the late 1990s.
The main difference is an extra period of uncertainty in the Canadian index
in the early 1980s.

Selecting the Appropriate Data Series
for Calibration

There is some evidence, for example in French et al. (1987) and in Pagan
and Schwert (1990), of a shift in the stock return distribution at the end of
the great depression, in the middle 1930s. Returns may also be distorted by
the various fiscal constraints imposed during the 1939-1945 war. Thus, it
is attractive to consider only the data from 1956 onward.

On the other hand, for very long term contracts, we may be forecasting
distributions of stock returns further forward than we have considered in
estimating the model. For segregated fund contracts, with a GMAB, it is
common to require stock prices to be projected for 40 years ahead. To use
a model fitted using only 40 years of historic data seems a little incautious.
However, because of the mitigating influence of mortality, lapsation, and
discounting, the cash flows beyond, say, 20 years ahead may not have a
very substantial influence on the overall results.
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Investors, including actuaries, generally have fairly short memories. We
may believe, for example, that another great depression is impossible, and
that the estimation should, therefore, not allow the data from the prewar
period to persuade us to use very high-volatility assumptions; on the other
hand, another great depression is what Japan seems to have experienced in
the last decade. How many people would have also said a few years ago
that such a thing was impossible? It is also worth noting that the recent
implied market volatility levels regularly substantially exceed 20 percent.
Nevertheless, the analysis in the main part of this paper will use the post-
1956 data sets. But in interpreting the results, we need to remember the
implicit assumption that there are no substantial structural changes in the
factors influencing equity returns in the projection period.

In Hardy (1999) some results are given for models fitted using a longer
1926 to 1998 data set; these results demonstrate that the higher-volatility
assumption has a very substantial effect on the liability.

Current Market Statistics

Perhaps the world is changing so fast that history should not be used at all
to predict the future. This appears to be the view of some traders and some
actuaries, including Exley and Mehta (2000). They propose that distribution
parameters should be derived from current market statistics, such as the
volatility. The implied market volatility is calculated from market prices at
some instant in time. Knowing the price-volatility relationship in the market
allows the volatility implied by market prices to be calculated from the
quoted prices. Usually the market volatility differs very substantially from
historical estimates of long-term volatility.

Certainly the current implied market volatility is relevant in the
valuation of traded instruments. In application to equity-linked insur-
ance, though, we are generally not in the realm of traded securities—the
options embedded in equity-linked contracts, especially guaranteed maturity
benefits, have effective maturities far longer than traded options. Market
volatility varies with term to maturity in general, so in the absence of very
long-term traded options, it is not possible to state confidently what would
be an appropriate volatility assumption based on current market conditions,
for equity-linked insurance options.

Another problem is that the market statistics do not give the whole
story. Market valuations are not based on true probability measure, but on
the adjusted probability distribution known as the risk-neutral measure. In
analyzing future cash flows under the equity-linked contracts, it will also be
important to have a model of the true unadjusted probability measure.

A third difficulty is the volatility of the implied volatility. A change
of 100 basis points in the volatility assumption for, say, a 10-year option
may have enormous financial impact, but such movements in implied
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volatility are common in practice. It is not satisfactory to determine long-
term strategies for the actuarial management of equity-linked liabilities on
assumptions that may well be deemed utterly incorrect one day later.

GMMB Liability: The Historic Evidence

It is a piece of actuarial folk wisdom, often quoted, that the long-term
maturity guarantees of the sort offered with segregated fund benefits would
never have resulted in a payoff greater than zero. In Figure 2.5 the net
proceeds of a 10-year single-premium investment in the S&P 500 index are
given. The premium is assumed to be $100, invested at the start date given
by the horizontal axis. Management expenses of 2.5 percent per year are
assumed. A nonzero liability for the simple 10-year put option arises when
the proceeds fall below 100, which is marked on the graph. Clearly, this has
not proved impossible, even in the modern era. Figure 2.6 gives the same
figures for the TSE 300 index. The accumulations use the annual data up to
1934, and monthly data thereafter.

For both the S&P and TSE indices, periods of nonzero liability for the
simple 10-year put option arose during the great depression; the S&P index
shows another period arising in respect of some deposits in 1964 to 1963,
the problem caused by the 1974 to 1975 oil crisis. Another hypothetical
liability arose in respect of deposits in December 1968, for which the
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FIGURE 2.9 Proceeds of a 10-year $100 single-premium investment in the
S&P 500 index.
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FIGURE 2.6 Proceeds of a 10-year $100 single-premium investment in the
TSE 300 index.

proceeds in 1978 were 99.9 percent of deposits.> These figures show that,
even for a simple maturity guarantee on one of the major indices, substantial
payments are possible. In addition, extra volatility from exchange-rate risk,
for example for Canadian S&P mutual funds, and the complications of
ratchet and reset features of maturity guarantees would lead to even higher
liabilities than indicated for the simple contracts used for these figures.

THE LOGNORMAL MODEL

The traditional approach to modeling stock returns in the financial eco-
nomics literature, including the original Black-Scholes paper, is to assume
that in continuous time stock returns follow a geometric Brownian motion.
In discrete time, the implications of this are the following:

1. Over any discrete time interval, the stock price accumulation factor is
lognormally distributed. Let S; denote the stock price at time ¢ > 0.
Then the lognormal assumption means that for some parameters, w and
o, and for any w > 0,

3We are using monthly intervals. Different starting dates within each month give
slightly different results.
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St;’” ~ LN(wu, Jwo) => log Sf; Y ~ N(wwp, wo?) (2.1)
t t
where LN denotes the lognormal distribution and N denotes the normal
distribution. Note that u is the mean log-return over a unit of time, and
o is the standard deviation for one unit of time. In financial applications,
o is referred to as the volatility, usually in the form of an annual rate.
2. Returns in nonoverlapping intervals are independent. That is, for any
t,u,v,wsuchthatt< u = v < w,

Su and Sw are independent (2.2)
S; S,

Parameter estimation for the lognormal model is very straightforward.
The maximum likelihood estimates of the parameters w and o are the
mean and variance* of the log returns (i.e., the mean and variance of
Y, = log Sg—ﬂ). Table 2.1, discussed earlier, shows the estimated parameters
for the lognormal model for the various series. In Figure 2.7, we show the
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FIGURE 2.7 Lognormal model, density functions of annual stock returns for
TSE 300 and S&P 500 indices; maximum likelihood parameters.

*Actually the maximum likelihood estimation (MLE) for % is “-1s* where s? is the
variance of the log-returns. However, we generally use s? because it is an unbiased
estimator of o?.
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probability density functions for the four sets of parameters from Table 2.1.
This shows the significance of the choice of data to use to fit the distribution.
Including the great depression data gives density functions with much fatter
tails for both indices, which means a greater probability of very low or very
high returns.

The probability density function of a lognormal distribution with pa-
rameters ww, Jwo is

f(x)

_ 1 (log(x) - wm2] 2.3)

1
= ————exp
xo /2mw [ 2 wa?

The model is very attractive to use; probabilities are easily calculated using
the standard normal distribution function ®, since

Strw - _ log(x) — wpu
Pr{ s, = x] @(4\/50 ) (2.4)

and both option prices and probability distributions for payoffs under
standard put options can be derived analytically. The mean and variance of
the stock accumulation function under the lognormal model are given by
the following expressions.

E|:St+w:| — ew,u,eru'z,w’/Z (2.5)

S

V|:St+w:| — 62wu+wa'2(ew02 — 1) (26)
St

Other models we discuss later use conditional lognormal distributions but
do not have the serial independence of its independent lognormal model.
The independent lognormal (LN) model is simple and tractable, and
provides a reasonable approximation over short time intervals, but it is
less appealing for longer-term problems. Empirical studies indicate, in
particular, that this model fails to capture more extreme price movements,
such as the October 1987 crash. We need a distribution with fatter tails
(leptokurtic) to include such values. The LN model also does not allow for
autocorrelation in the data. From Table 2.1 the one-month autocorrelation is
small but potentially significant in the tail of the distribution of accumulation
factors. Also important, the LN model fails to capture volatility bunching—
periods of high volatility, often associated with severe downward stock price
movements. Bakshi, Cao, and Chen (1999) identify stochastic variation in
volatility as the critical omission with respect to the LN model. In the models
that follow, various ways of introducing stochastic volatility are proposed.
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AUTOREGRESSIVE MODELS

The autoregressive models described here are discrete processes where the
deviation of the process from the long-term mean influences the distribution
of subsequent values of the process. In all cases, we work with the log-return
variable, Y; = log S‘S—tl If we assume a long-term mean for Y; of w, then the
deviations from the mean used to define the distribution of Y, are the values
of Yo — u forsomes = ¢ — 1.

In each of the cases below, the white noise process, denoted &, is
assumed to be a sequence of independent random innovations, each with
Normal(0,1) distribution. It is common to assume a normal distribution but
not essential, and other distributions may prove more appropriate for some
series. The necessary assumptions are that the values of &, are uncorrelated,
each with zero mean and unit variance.

AR(1)

The LN model implies independent and identically distributed variables,
Y;. This is not true for AR (autoregressive) processes, which incorporate a
tendency for the process to move toward the mean. This tendency is effected
with a term involving previous values of the deviation of the process from
the mean, meaning that, if the long-term mean value for the process is u,
the AR(q) process variable Y, has terms in (Y,—, — w) forr = 1,2, ...,4.
The parameter q is called the order of the process.

The AR(1) process is the simplest version, and can be defined for a
process Y; as

Yi= pw+alYio1 — u) + og
g, independent and identically distributed (iid), &, ~ N(0, 1) (2.7)

The process only makes sense if |a| < 1, and so we assume this is true.
The process reverts to a LN process when @ = 0. If a is near 1, then the
process moves slowly back to the mean, on average. If a is near zero, then
the process tends to return to the mean more quickly. Negative values for
a indicate a tendency to bounce beyond the mean with each time step,
meaning that if the process is above the mean at ¢ — 1, it will tend to fall
below the mean at #, and from there it will tend to jump back above the
mean at ¢ + 1. If 4 is negative and near zero, these oscillations are very
dampened; if a is near —1, the successive oscillations are only a little smaller
in severity each time step.

The autocorrelation function for an AR(1) process is p, = a* where
a is the AR parameter. The AR(1) model captures autocorrelation in the
data in a simple way. However, it does not, in general, capture the extreme
values or the volatility bunching that have been identified as features of the
monthly stock return data.
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ARCH(1)

It was observed very early in empirical studies that the volatility of stock
prices is not constant, as assumed in the LN model. There are many ways of
modeling stochastic changes in volatility, and the class of AR conditionally
heteroscedastic (ARCH) models has been a popular choice in many areas
of econometrics, including stock return modeling. Using ARCH models,
the volatility is a stochastic process, more than one step ahead. Looking
forward a single step the volatility is fixed.

There are many variations of the ARCH process, and we describe two
here: ARCH and generalized ARCH (GARCH). The basic ARCH model
has a variance process that is a function of the evolving return process as
follows:

Y: = n + oy (2.8)
o} = ao+ a1(Ye—1 — p)? (2.9)

The ARCH model was introduced by Engle (1982) who applied the
model to quarterly U.K. inflation data. The rationale is that the uncertainty
in forecasting from period to period, which is represented by the conditional
variance oy, depends on the evolving process Y;. The ARCH approach was
designed by Engle to model volatility clustering. A value of Y;_1 falling a long
way from the mean increases the conditional variance oy, leading to a greater
probability of the next value, Y;, also falling a long way from the mean. The
variance process, 7 looks like an AR(1) process, but without the random
innovation. This means that, conditional on knowing Y;_1, the variance is
not random. Unconditionally, the variance is stochastic through Y;—1. The
fact that the variance is fixed conditional on Y, significantly improves the
tractability of this model compared with conditionally stochastic variance
models. Essentially, this means that volatility clustering is modeled, with
periods of higher volatility generated by the random, occasional extreme value
for Yy, after which the volatility gradually returns to the longer-term value.

In the original form of equations 2.8 and 2.9, the ARCH model does
not allow for autocorrelation, because all covariances are zero. However,
we can combine the AR(1) structure with ARCH variance to give a model:

Yi = pw+a(Y — pn) + ove;
g 1id ~ N(0,1) (2.10)

and

o =ap+a (Y1 — u) (2.11)
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This version of the model allows for volatility bunching and for autocorre-
lations in the data.

GARCH(1,1)

The GARCH model, developed by Bollerslev (1986), is an extension of the
ARCH model. The GARCH model is more flexible and has been found to
provide a significantly better fit for many econometric applications than the
ARCH model. The simplest version of the GARCH model for the stock
log-return process is

Yt = M + J;:&; (2.12)
of = ao + a1 (Yi1 — p)* + Bot (2.13)

The variance process for the GARCH model looks like an AR moving-
average (ARMA) process, except without a random innovation. As in the
ARCH model, conditionally, (given Y;,—; and o,—1) the variance is fixed. If
a; + B < 1, then the process is wide-sense stationary. This is a necessary
condition for a credible model, otherwise it will have a tendency to explode,
with ever-increasing variance. For the parameters fitted to the stock returns
data summarized in Table 2.1, we have oy + 8 < 1.

As with the ARCH model, we can capture autocorrelation by combining
the AR(1) model with the GARCH variance process, for a model where:

Yt = MK + a(thl - [.L) + o0& & lld ~ N(O, 1) (214)
and

of = ao + ar(Yi1 — p)* + Bot (2.15)

Using ARCH and GARCH Models

The ARCH and GARCH processes are easily simulated. In Figure 2.8 are
shown probability density functions of the proceeds of a unit investment,
accumulated for 10 years assuming a three-parameter ARCH process or a
four-parameter GARCH process. The ARCH and GARCH density func-
tions are estimated by simulation. The LN distribution is also plotted for
comparison. The parameters used are estimated from the TSE 300 data
summarized in Table 2.1.

The method of parameter estimation does not automatically match
means, and clearly the ARCH and GARCH models estimated have higher
means and variances than the LN. However, they are not substantially
fatter-tailed on the crucial left side of the distribution.
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FIGURE 2.8 Distribution of the proceeds of a 10-year $100 single-premium
investment, assuming LN, ARCH, and GARCH log return processes

REGIME-SWITCHING LOGNORMAL MODEL (RSLN)

Regime-switching models assume that a discrete process switches between,
say, K regimes randomly. Each regime is characterized by a different
parameter set. The process describing which regime the price process is
in at any time is assumed here to be Markov—that is, the probability of
changing regime depends only on the current regime, not on the history of
the process.

One of the simplest regime-switching models is the regime-switching
LN model (RSLN), where the process switches randomly at each time step
between K LN processes. This approach maintains some of the attrac-
tive simplicity of the independent LN model, in particular mathematical
tractability, but more accurately captures the more extreme observed be-
havior. This is one of the simplest ways to introduce stochastic volatility;
the volatility randomly moves between the K values corresponding to the K
regimes.

The rationale behind the regime-switching framework is that the market
may switch from time to time between, for example, a stable, low-volatility
regime and a more unstable high-volatility regime. Periods of high volatility
may arise because of some short-term political or economic uncertainty.
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Regime-switching models for economic series were introduced by
Hamilton (1989), who described an AR regime-switching process. In Hamil-
ton and Susmel (1994), several regime-switching models are analyzed, vary-
ing the number of regimes and the form of the model within regimes. The
models within each regime are assumed to follow ARCH and GARCH pro-
cesses, with the residuals, &;, having normal or Student’s # distribution. The
simpler form using LN models within regimes was used by Bollen (1998),
who constructed a lattice for valuing American options. Harris (1999) has
developed a vector AR regime-switching model for actuarial use, fitted to
quarterly Australian data.

It emerges in Chapter 3 that the two-regime RSLN model provides a
very good fit to the stock index data relevant to equity-linked insurance.
For that reason, it will be the main model used throughout the rest of the
book. We will derive the relevant probability functions in some detail here.

Under the RSLN model we assume that the stock return process lies
in one of K regimes or states. We let p, denote the regime applying in
the interval [¢,¢ + 1) (in months), p, = 1,2, ... K, and let S; be the total
return index value at ¢, and let Y; be the log-return process, then if
Y, = 10g(5t+1/5t):

Yt| pr ~ Ny, 0',3,)

where pug, of are the mean and variance parameter of the Rth regime.

Users of regime-switching models have found, in general, that two
or three regimes are sufficient (that is, K = 2 or K = 3). Hamilton and
Susmel (1994), looking at weekly economic data (from 1962 to 1987), and
assuming ARCH models for returns within each state, found some evidence
for using three regimes—adding a very low-volatility regime applied for a
single period of the early 1960s. Harris (1999), using quarterly economic
data, and assuming AR models within each regime, found no evidence for
using more than two regimes. In Chapter 3 we will demonstrate the relative
merits of using two or three regimes for the total return data. Generally,
the two-regime model (RSLN-2) appears to be sufficient. The two-regime
process can be illustrated by the diagram in Figure 2.9.

FIGURE 2.9 RSLN, with two regimes.
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The transition matrix P denotes the probabilities of switching regimes.
Regime switching is assumed to take place at the end of each time unit, so
that, for example, p1,1 is the probability that the process stays in regime 1,
given that it is in regime 1 for the previous time period, and in general:

Dy = Prlps = jlp =il i=12 j=1.2 (2.16)
So for a RSLN model with two regimes, we have six parameters to estimate,
Ox=2 = {m1, p2, o1, 02, P12, P21} (2.17)

With three regimes we have 12 parameters,
Ok=3 = {w, o, pij} 7=12,3, i=123,i#] (2.18)

In the following chapter we discuss issues of parsimony. This is the
balance of added complexity and improvement of the fit of the model to the
data. In other words—do we really need 12 parameters?

Using the RSLN-2 Model

Although the regime-switching model has more parameters than the ARCH
and GARCH models, the structure is very simple and analytic results are
readily available. In this section, we will derive the distribution function for
the accumulated proceeds at some time # of a unit investment at time ¢ = 0.
Let S,, denote the proceeds, so that

S, = exp| > Y, (2.19)
i=1

The key technique is to condition on the time spent in each regime.
Let R denote the number of months spent in regime 1, so that # — R is the
number of months spent in regime 2. Then the conditional sum >27_; Y; | R
is the sum of both the following;:

B R independent, normally distributed random variables with mean u,
and variance o7.
B 5 — R independent, normally distributed random variables with mean

: 2
p2 and variance o3

This sum is also (conditionally) normally distributed, with mean Ru; +
(n — R)ua and variance Ro + (7 — R)oj. This means that the conditional
variable S,|R is lognormally distributed. So, if we can derive a probability
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function for the total time spent in regime 1, then we can use that function
to find the distribution function, density function, and moments of the sum
of the log-returns and therefore of S,,.

Probability Function for Total Sojourn in Regime 1

Let R, be the total number of months spent in regime 1 for a process
{St}:lzo, then R, €{0, 1, ..., n}. We want to derive the probability function
Pr[R,, = 7| = p.(r). Let R,(¢) be the total sojourn in regime 1 in the interval
[z, n), and consider

Pr[R,(t) = rlpr-1]

forr =0,1,...,n—tand¢ = 1, ...,n —1. Clearly Pr[R,(t) = 7|p;—1] = O
for r > n — t or r < 0. For example, Pr[R,(n — 1) = O|p;—; = 1] is the
probability that the last time unit is not spent in regime 1, given that the
process is in regime 1 in the previous period, that is, for t € [n — 2,1 — 1),
so that Pr[R,(n — 1) = O|p,—1 = 1] = py. Similarly,

Pr[Ru(n—1) = 1lp—1 = 1] = p11
Pr[R,(n — 1) = 0lp—1 = 2] = pan
Pr[R,(n — 1) = 1|p—1 = 2] = pas

We can work backward from these values to the required probabilities
for R,, = R,(0) using the relationship:

Pr[R,(t) = 7lpr—1] = pp 1 Pr[R,(t + 1) = r — 1|p; = 1]
+ Pp 2 Pr[Ry(t + 1) = 1lp, = 2] (2.20)

The justification for this is that, in the unit of time ¢ — ¢ + 1, one of the
following is true:

B The process is in regime 1 (p, = 1) with probability p,, , 1, which leaves
r — 1 time periods to be spent in regime 1 subsequently.

® The process is in regime 2 (p; = 2) with probability p,_, , in which
case r time periods must be spent in regime 1 in the interval [t + 1, ).

Ultimately, this recursion will deliver the probability functions for Ry
conditional on regime 1 as the starting point, Pr[R,(0) = 7|p-1 = 1], and
conditional on regime 2 as a starting point, Pr[R,(0) = 7|p—; = 2]. In
Chapter 4, an example of the distribution of R for » = 12 is given.
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For the unconditional probability distribution, use the invariant distri-
bution of the regime-switching Markov chain. The invariant distribution
7 = (w1, m) is the unconditional probability distribution for the Markov
process. This means that at any time, with no information about the process
history, the probability that the process is in regime 1 is 71, and the proba-
bility that it is in regime 2 is m, = 1 — 1. Under the invariant distribution,
each transition returns the same distribution; that is

7P = (2.21)
= mp11+ mpr1 = m (2.22)
and

T P12 T MmpPry = M (2.23)

and since
pi1tpi2 =1 (2.24)
m=—L2 and m—1-m = P2 (205

P12+ D21 P12+ P21

Using the invariant distribution for the regime-switching process, the
probability function of R,,(0) is Pr[R,(0) = 7] = p,(r) where

pu(r) = 1 Pr[R,(0) = rlp—1 = 1] + m Pr[R,(0) = rlp-1 = 2] (2.26)

Probability Functions for S,
Using the probability function for R,, the distribution of the total return

index at time # can be calculated analytically. Let S, represent the total
return index at z, assume Sy = 1, then

Su| Ry ~ LN(1*(R,)), 0"(R,,)) where u"(R,) = Ry p1 +(n—Ry) pa (2.27)

and

o"(R) = JRu0% + (n— R,)o? (2.28)
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Then, if p,,(r) is the probability function for R,

Fg, (x) = Pr(S, = x) = ipr(sn = x|R, = r)palr) (229
r=0

n 1 o
- Z@(%:;m)pn(r) (2.30)
r=0

o

where ®() is the standard normal probability distribution function.
Similarly, the probability density function for S,, is:

n 1 l _ ES
folr) = > — ¢<°gx Mm)m(r) (2.31)

= (1) o (7)

where ¢() is the standard normal density function.
Equation 2.31 has been used to calculate the density functions shown
in Figure 2.10. This shows the RSLN and LN density functions for the
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FIGURE 2.10 Probability density curves for independent LN and RSLN models,
TSE and S&P data.
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stock price at £ = 10 years, given Sy = 1.0, using both the TSE and S&P
parameters. In both cases, over this long term, the left tail is substantially
fatter for the RSLN model than for the LN model. This difference has
important implications for longer-term actuarial applications.

The probability function for the sojourn times can also be used to find
unconditional moments of the stock price at any time 7.

ELSW!] = ELEL(S,)*| Rl
2

k
= Elexp(k (Rn/Jfl + (7’1 - Rn)lu*Z) + B

koo ko
Elexp (R, (k(m1 — ) + 5 (01 = a3) ||lexp k nu, + 5 03

kz n kZ
exp (kn,uz + 7710'%) Zexp (1’ (k(/lm - u2) + 7(012 - U%)))Pn(”)
r=0

(Ryof + (n — R,,)azz)}

THE EMPIRICAL MODEL

Under the empirical model of stock returns, we use the historic returns
as the sample space for future returns, each being equally likely, sampling
with replacement. That is, assume we have n observations of the total stock
return:

Return on stocks in [t — 1,t) =4 t=1,2,3,...,n

Then we may simulate future values for stock returns for any period [r —1, 7)
as I, where

Pr[l, = i] = % fort =1,2,...,n
The empirical model assumes returns in successive periods are independent
and identically distributed. It provides a simple method for simulation,
though, obviously, analytical development is not possible.

This distribution is useful as a simple, quick method to obtain simulated
returns. It suffers from the same problems in representing the data as the
LN model (which it closely resembles in distribution). Although we are
sampling from the historical returns, by assuming independence we lose the
autocorrelation in the data. The autocorrelation means that low returns
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tend to be bunched together, giving a larger probability of very poor
returns than we get from random sampling of individual historical returns.
The autocorreleation is the source of fatter left tails in the accumulation
factor distribution. Similarly, high returns also tend to be bunched together,
giving fatter right tails. So the empirical model tends to be too thin-
tailed, and the assumption of independence also means that volatility
bunching is not modeled. One adaptation that would reintroduce some of
the autocorrelation is to sample in blocks of several months at a time.

The empirical method is used by some financial institutions for value-
at-risk calculations, but these tend to be quite short-term applications.
One particularly useful feature of the method, though, is the ease of
constructing multivariate distributions. Suppose we are interested in a
bivariate distribution of long-term interest rates and stock returns. These
are not independent, but by sampling the pair from the same date using the
empirical method, some of the relationship is automatically incorporated.
We lose any lagged correlation, however.

THE STABLE DISTRIBUTION FAMILY

Stable distributions appear in some econometrics literature, for example,
McCulloch (1996). Panneton (1999) and Finkelstein (1995) both used
stable distributions for valuing maturity guarantees. One reason for their
popularity is that stable distributions can be very fat-tailed, and are also
easy to combine, as the sum of stable distributions is always another stable
distribution. Stable distributions are related to Levy processes; if {Y};~o
is a Levy process, then at any fixed time Y, has a corresponding stable
distribution.

A distribution with distribution function F is a stable distribution if for
independent, indentically distributed X, X;, X, and for any a, b > 0, there
exists ¢ > 0, d such that:

aXi + bXo ~cX +d (2.32)

(We use ~ here to mean having the same distribution.) This relationship
is clearly true for the normal distribution—the sum of any two normal
random variables is also normal, and all normal random variables can be
standardized to the same distribution. It is not true of, for example, the
Poisson distribution. The sum of two independent, identically distributed
Poisson random variables is also Poisson, but cannot be expressed in terms
of the same Poisson parameter as the original distribution.

It is not possible, in general, to describe stable distributions in terms of
their probability or distribution functions, which require special functions.
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It is possible to summarize the family in terms of the characteristic function,
(X) = E[e™] = exp{iyt — clt|*(1 — i sign(t) 2(2, @))} (2.33)
where ¢ > 0,0 € (0,2],8 € [—1,1] and

tan (Z¢) ifa 1

2t a) =
(5 a) —2 log t] ifa =1

(2.34)

The y parameter is a location parameter; the @ component is called the
characteristic exponent and is used to classify distributions within the stable
family. We say that a distribution is a-stable if it is stable with characteristic
component «. The case a = 2 corresponds to the normal distribution
and @ = 1 is the Cauchy distribution. The inverse Gaussian distribution
corresponds to a = 1/2, B = 1. For a < 2, the distribution is fat-tailed,
with infinite variance. If 8 = 0, then the distribution is symmetric.

As with the normal distribution, stable distributions can be used to
describe stochastic processes. Let {Y;} be a stochastic process, such as the
log-return process. If Y, has independent and stationary increments (for
any time unit), then Y, is a stable or Levy process and Y; has an a-stable
distribution.

Stable processes have been popular for modeling financial processes
because they can be very fat-tailed, and because of the obvious attraction
of being able to convolute the distribution. However, they are not easy to
use; estimation requires advanced techniques and it is not easy to simulate
a stable process, although a method is given in Chambers et al. (1976),
and software using that method is available from Nolan (2000). The model
specifically does not incorporate autocorrelations arising from volatility
bunching, and therefore does not, in fact, fit the data sets in the section
on data particularly well. An excellent source of explanatory and technical
information on the use of stable distributions is given in Nolan (1998);
also, on his Web site (2000), Nolan provides software for analyzing stable
distributions.

GENERAL STOCHASTIC VOLATILITY MODELS

We can allow volatility to vary stochastically without the regime constraints
of the RSLN model. For example, let y, = u + ov&, and o = o2, +
a(oy—1 — 0)* + &7 where &, and &7 are random innovations. It is convenient
to assume &7 are distributed on (0,%). For example, we might use a
gamma distribution. These models, and more complex varieties, are highly

adaptable. However, in general, it is very difficult to estimate the parameters.
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THE WILKIE MODEL

The Wilkie Model Structure

The Wilkie model (Wilkie 1986, 1995) was developed over a number of
years, with an early version applied to GMMBs in the MGWP Report
(1980) and the full version first applied to insurance company solvency by
the Faculty of Actuaries Solvency Working Party (1986). The Wilkie model
differs in several fundamental ways from the models covered so far:

B It is a multivariate model, meaning that several related economic series
are projected together. This is very useful for applications that require
consistent projections of, for example, stock prices and inflation rates
or fixed interest yields.

B The model is designed for long-term applications. Wilkie (1995) looks
at 100-year projections, and suggests that it is ideally suited for appli-
cations requiring projections more than 10 years ahead.

B The model is designed to be applied to annual data. Without changing
the AR structure of the individual series, it cannot be easily adapted
to more frequent data. Attempts to produce a continuous form for the
model, by constructing a Brownian bridge between the end-year points
(e.g., Chan 1998) add complexity. The annual frequency means that the
model is not ideal for assessing hedging strategies, where it is important
that stocks are bought and sold at intervals much shorter than the
one-year time unit of the Wilkie model.

The Wilkie model makes assumptions about the stochastic processes
governing the evolution of a number of key economic variables. It has the
cascade structure illustrated in Figure 2.11; this is not supposed to represent

|Consumer Price Index|

‘ | Share Yield |
| Share Dividends | | Long Bond Yield |
| Short Bond Yicld |

FIGURE 2.11 Structure of the Wilkie investment model.
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a causal development, but is related to the chronological processes. Each
series incorporates some factor from connected series higher up the cascade,
and each also incorporates a random component.

The Wilkie model is widely used in the United Kingdom and elsewhere
in actuarial applications by insurance companies, consultants, and academic
researchers. It has been fitted to data from a number of different countries,
including Canada and the United States. The Canadian data (1923 to 1993)
were used for the figures for quantile reserves for segregated fund contracts
in Boyle and Hardy (1996).

The integrated structure of the Wilkie model has made it particularly
useful for actuarial applications. For the purpose of valuing equity-linked
liabilities, this is useful if, for example, we assume liabilities depend on stock
prices while reserves are invested in bonds. Also, for managed funds it is
possible to project the correlated returns on bonds and stocks.

What is commonly called the Wilkie model is actually a collection of
models. We give here the equations of the most commonly used form of the
model. However, the interested reader is urged to read Wilkie’s excellent
1995 paper for more details and more model options (e.g., for the ARCH
model of inflation).

The notation can be confusing because there are many parameters and
five integrated processes. The notation used here is derived from (but is
not the same as) Wilkie (1995). The subscript g refers to the inflation
series, subscript y to the dividend yield, d to the dividend index process,
¢ to the long-term bond yield, and b to the short-term bond vyield series.
The w terms all indicate a mean, although it may be a mean of the log
process, so ug is the mean of the inflation process modeled, which is the
force of inflation process. The term a indicates an AR parameter; o is a
(conditional) variance parameter; and w is a weighting applied to the force
of inflation within the other processes. For example, the share dividend
yield process includes a term wy 8,(¢), which is how the current force’
of inflation (8,(¢)) influences the current logarithm of the dividend yield
(see equation 2.36). The random innovations are denoted by z(¢), with a
subscript denoting the series. These are all assumed to be independent N(0,1)
variables.

The Inflation Model

Let 8,(t) be the force of inflation in the year [ — 1,¢), then §,(¢) follows an
AR(1) process:

8(t) = pg + ag(d,(t — 1) — py) + 0, 2,(t) (2.35)

S A force of interest or inflation is the continuously compounded annualized rate.
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where
84(t) is the force of inflation in the tth year,
g 1s the mean force of inflation, assumed constant.
agis the parameter controlling the strength of the AR
(or rather the weakness, since large a, implies weak
autoregression)—that is, how strong is the pull back to the
mean each year.
oy is the standard deviation of the white noise term of the
inflation model.
24(t) is a N(0,1) white noise series.

The ultimate distribution for the force of inflation is N(ug, o / (1-a3)),
so that, if O(¢) is an index of inflation, the ultimate distribution of
Q(t)/Q(t — 1) is LN. However, unlike the LN model, successive years
are correlated through the AR.

Share Prices and Dividends

We model separately the dividend yield on stocks, and the force of dividend
inflation. The share dividend yield in year #, y(¢) is generated using:

y(t) = exp{wy Oq(t) + py + yn(t)} (2.36)
where
yn(t) = ayyn(t — 1) + oy 2,(t) (2.37)
So yn(t) is an AR(1) process, independent of the inflation process, z,(t) being
a Normal(0,1) white noise series.
Clearly
Ely(z)] = e* Elexp(wy 64(¢))] E[exp(yn(t))] (2.38)
because ,(¢) and yn(t) are independent. E[exp(twy 8,(2))] is M5, (w,), where
M, () is the moment generating function of §,(¢). For large ¢, the moment
generating function of 8,(t) is

Ms, (1) = exp(u pg + u* (04)*/2) (2.39)

So

2
E[y(t)] = e M,(w,) [exp (MW + 2(10—:‘%))] (2.40)
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The force of dividend growth, 6,(¢), is generated from the following
relationship:
84(t) = wysDM(t) + (1 — wy) 84(2) + dy oy 2y (2 — 1) + g + byoazs(t — 1)
+ 0424()

where
DM(t) = dg8,(t) + (1 — dg)DM(z — 1) (2.41)

The force of dividend then comprises:

B A weighted average of current and past inflation—the total weight
assigned to the current 8,(¢) being w, dy + (1 —w,). The weight attached
to past forces of inflation is wy dy(1 — dy)™ for the force of inflation in
the 7th year before ¢.

B A dividend yield effect where a fall in the dividend yield is associated
with a rise in the dividend index, and vice versa (i.e., d, < 0).

B An influence from the previous year’s white noise term.

B A white noise term where z,4(¢) is a Normal(0,1) white noise sequence.

The force of dividend can be used to construct an index of dividends,
D(t) = D(t — 1) X %"

A price index for shares, P(¢), can be constructed from the dividend
index and the dividend yield, P(¢) = D(z) / y(¢). The overall return on shares
each year py(t) can be summarized in the gross rolled up yield,

P(t) + D(t)

P L

py(t) =

Long-Term and Short-Term Bond Yields

The yield on long-term bonds, ¢(¢), is split into a real part, cn(t), and an
inflation-linked part, cm(t), so that

c(t) = cm(t) + cn(t)
where

em(t) = d.84(t) + (1 — dc)em(t — 1)
and

cn(t) = pe CXP(flc en(t — 1) + Ye Oy zy(t) + 0. 2.(1))
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The inflation part of the model is a weighted moving-average model.
The real part is essentially an autoregressive model of order one (i.e., AR(1)),
with a contribution from the dividend yield. The yield on short-term bonds,
b(t), is calculated as a multiple of the long-term rate ¢(¢), so that

b(t) = c(t) exp(—bd(¢))
where
bd(t) = wp + ap(bd(t — 1) — wp,) + b 0c 2(t) + 03 23, (2)

These equations state that the model for the log of the ratio between the
long-term and the short-term rates is AR(1), with an added term allowing
for a contribution from the long-term residual term.

Other Series

Wilkie (1995) also describes integrated models for wage inflation, property,
bonds linked to an inflation index (“index-linked stocks”), and exchange
rates. The paper also presents and investigates alternative models, including
ARCH models in place of the AR models used, transfer functions, and a
vector autoregression model.

Parameters

The parameters suggested in Wilkie (1995) for Canada and the United States
are given in Table 2.2. Note that figures for the short-term interest rate for
the United States are not available. These parameters were fitted using 1923
to 1993 data for the Canadian figures, and data from 1926 to 1989 for the
United States.

To run the Wilkie model, one can start the simulations at neutral
values of the parameters. These are the stationary values we would obtain
if all the residuals were zero. Alternatively, we can start the model at
the current date and let the past data determine the initial parameter
values. For general purposes, it is convenient to start the simulations at the
neutral values of the parameters so that the results are not distorted
by the particular nature of the current investment conditions. If new
contracts are to be written for some time ahead, the figures using neutral
Wilkie starting parameters are close to the average figures that would be
obtained at different dates using formerly current starting values. However,
for strategic decisions that are designed for immediate implementation
it is appropriate to use the contemporary data for starting values for
the series.
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TABLE 2.2 Parameters for Wilkie model, Canada and
United States, from Wilkie (1995).

Parameter Canada U.S.
Inflation Model
Mg 0.034 0.030
a, 0.64 0.65
o 0.032 0.035
Dividend Yield
w, 1.17 0.50
a, 0.7 0.7
Hy 0.0375 0.0430
ay 0.19 0.21
Dividend Growth
wy 0.19 1.00
dy 0.26 0.38
Hd 0.0010 0.0155
Ve -0.11 ~0.35
b, 0.58 0.50
oy 0.07 0.09
Long-Term Interest Rates
d. 0.040 0.058
a. 0.95 0.96
e 0.0370 0.0265
Ve 0.10 0.07
o, 0.185 0.210
Short-Term Interest Rates
b 0.26
ap 0.38
cp 0.73
agyp 0.21

Some Comments on the Wilkie Model

The Wilkie model has been subject to a unique level of scrutiny. Many
companies employ their own models, but few issue sufficient detail for
independent validation and testing. The most vigorous criticism of the
Wilkie model has come from Huber (1997). Huber’s work is concerned

with:
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B Evidence of a permanent change in the nature of economic time series
in Western nations around the second world war is not allowed for.
This criticism applies to all stationary time-series models of investment,
but nonstationary models can have even more serious problems in
generating impossible scenarios with explosive volatility, for example.
It is useful to be aware of the limitations of all models—to be aware, for
example, that in the event of a major world conflagration the predicted
distributions from any stationary model may well be incorrect. On the
other hand, in such circumstances this may not be our first worry.

B The inconsistency of the Wilkie model with some economic theories,
such as the efficient market hypothesis. Note, however, that the Wilkie
model is very close to a random walk model over short terms, and
the random walk model is consistent with the efficient market hypoth-
esis. Huber himself points out that there is significant debate among
economists about the applicability of the efficient market hypothesis
over long time periods, and the Wilkie approach is not out of line with
those of other econometricians.

B The problem of “data mining,” by which Huber means that a statistical
time-series approach, which finds a model to match the available data,
cannot then use the same data to test the model. Thus, with only
one data series available, all non-theory-based time-series modeling is
rejected. One way around the problem is to use part of the available
data to fit the model, and the rest to test the fit. The problem for a
complex model with many parameters is that data are already scarce.

This argument is, as Huber noted, not specifically or even accurately
aimed at the Wilkie model. The Wilkie model is substantially theory
driven, informed by standard statistical time-series analysis.

Huber’s work is not intended to limit actuaries to a deterministic
methodology, although it has often been quoted in support of that view.
However, it is certainly important that actuaries make themselves aware of
the provenance, characteristics, and limitations of the models they use.

VECTOR AUTOREGRESSION

The Wilkie model is an example of a vector AR approach to modeling
financial series. The vector represents the various economic series. The
cascade structure makes parameter estimation easier and, perhaps, makes
the model more transparent. The more general vector AR is to use an AR(q)
structure for a vector of relevant financial series, with correlations between
the series captured in a variance-covariance matrix.
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The vector AR equation is used to generate a vector of economic
indicators at each time step. Let x; = (1.5, X2.4» - ..»Xm;:)! be the vector, so
that, for example, x1; represents the inflation rate in the period (¢ — 1, #], x7 ;
represents the total return on shares, x3, represents the yield on long-term
bonds, and so forth. The vector AR equation with order ¢ is then:

Xe = p+ Zf:lA,(xt,,~ — ) +LZ, (2.42)

where p is a (m X 1) vector of conditional mean values for the processes,
A;j is a (m Xm) matrix of AR coefficients, for j = 1,2, ...,g; Z, is an
independent, identically distributed, standard multivariate normal random
variable with mean 0 and variance-covariance matrix 1; and L.LT = 3, the
variance-covariance matrix of the series residuals.

An example of a vector AR model for stock returns, inflation, and bond
yields is given in Wright (1997). Wright’s model is slightly more complex,
as inflation is treated as an exogenous variable—that is, it is modeled
independently of the other series and then included as an extra term in the
vector autoregression equation. The advantage of this model is that much
of the correlation between series is explained by correlations with inflation.
By removing inflation from the formula, many of the covariance terms in 3,
can be set to zero.



Maximum Likelihood Estimation for
Stock Return Models

INTRODUCTION

In order to use any of the models in Chapter 2, we need to determine
appropriate parameters. There are two major approaches to parameter
estimation in common use. The first is maximum likelihood estimation
(MLE), which is the subject of this chapter. The second approach, less
common but also with important advantages, is the Bayesian approach,
which is described in Chapters5.

In this chapter, we discuss some of the features of MLE, particularly
in the context of time series estimation. We also show how to apply
MLE to determine parameters for some of the univariate models discussed
in Chapter 2. These include the regime-switching lognormal (RSLN) and
the autoregressive conditionally heteroscedastic (ARCH) and generalized-
ARCH (GARCH) models.

Likelihood is also commonly used as a basis for model selection. Reading
Chapter 2 one might wonder which model is the best for stock returns. The
answer is not clear cut, but using some of the model selection criteria in
common use, it is possible to rank the models to some extent, and we do
this in the section on likelihood-based model selection in this chapter.

Intuitively, the MLE is the parameter value giving the highest prob-
ability of observing the data values, represented by x = (x1,x2, ..., x,).
This is found by maximizing the likelibood function, which is just the joint
probability function of the data expressed as a function of the parameters.
For example, suppose we have a sample of three independent observations,
x = (2.8,3.2,3.9) and we are interested in fitting a normal distribution with
mean w and variance o to this data. Since the observations are independent,
the likelihood function, which is the joint probability density function (pdf)
for the data, is simply the product of the individual density functions. It is
unlikely, looking at the three values, that the u parameter for the model is, for

47



43 MAXIMUM LIKELIHOOD ESTIMATION FOR STOCK RETURN MODELS

example, 2.0. This is confirmed by calculating the likelihood function for these
data, using parameters u = 2.0 and o = 1.4 for the normal distribution, we
get a joint pdf equal to 0.0054 (which is the best we can do for this value of
w). If instead we use w = 3.3 and o = 0.454606, the joint pdf increases to
0.15079. So, we say that the second set of parameters is more likely than the
first; in fact, no other pair of values for u and o will give a higher value for
the joint pdf, so these are the maximum likelihood parameters.

The likelihood function can be also be expressed in terms of a sample
of random variables X = (X4, X5, ..., X,,). In this case, it is also a random
variable. The maximum likelihood estimators can be found in terms of the
sample X and are random variables. It is not usually specified whether we are
using the observed likelihood function with the observed data x or the random
function with the random sample X; the context determines which is meant.

For an unknown parameter 6 (scalar) or @ = (64, 6, ..., 6,)" (a vector
of parameters), the likelihood function is the value of the joint probability
(density) function of X or x. This function depends on the unknown 6.
The maximum likelihood estimate @ of @ is the value that gives the highest
value for the joint probability (density) over all the possible parameters.
The parameter @ here is regarded as fixed but unknown. The estimator
6 is a function of the sample X. Like the data, @ is considered as a
random variable for random X, or as an observed value for observed x. The
likelihood function is defined as

L(0) = f(X1, X2, X3, ..., X,30) (3.1)

In the case of discretely distributed random variables, the likelihood
function is the joint probability of X, which depends on the parameter 8. For
continuous random variables, the likelihood is the pdf for the multivariate
random variable X. Again, this joint density is a function of the parameter
0. In both cases, the likelihood must be nonnegative, and therefore finding
the maximum of L(@) is equivalent to finding the maximum of the log-
likelihood /(@) = log L(0): It is almost always simpler to work with the
log-likelihood function rather than with the likelihood itself.

If the model being fitted assumes individual observations are indepen-
dent and identically distributed, then the joint probability (density) function
is simply the product of the individual probability functions, so

L(0) = | [ f(x:;0)
t=1

and

1(0) = > logf(x1;6) (3.2)
t=1
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For models that assume some serial dependence, things are not quite so
straightforward. Iteratively, using the fact that a bivariate random variable
(X, Y) has probability function f(x,y) = f(x|y)f(y), the joint probability
function for the multivariate series{x1, x2, ..., x,} can be written as

L(0) = f(x150)f(x2; 0x1)f (x3;0|x1,x2) ... f(x030x1, ..., x0—1) (3.3)
so that .,
1(0) = > logf(xs; 0lx1, ..., x,-1) (3.4)
=1

In some cases, it is possible to determine the parameters that maximize
the log-likelihood for a given data set analytically. If this is not possible,
maximization of the log-likelihood is generally relatively easily determined
using computer software, provided the likelihood function can be calculated.
Further details for some individual models are given in the section on using
MLE for the TSE and SSP.

The MLE is described in many textbooks covering statistical inference,
including Klugman, Panjer, and Willmot (1998). The application to financial
time series is covered admirably in Campbell, Lo, and MacKinlay (1996),
which is an excellent, comprehensive reference. Subject to some regularity
conditions, estimates found using maximum likelihood have many attractive
properties. Considered as a function of the random sample X, the estimator
0 is a random variable, so we can talk about its distribution and its moments.
This enables us to estimate the accuracy associated with a parameter estimate
by considering its mean and variance.

PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS

Stationary Distributions

The asymptotic properties for maximum likelihood estimators are generally
derived using independent samples. With dependent time series samples it
can be shown that the same results hold provided the time series is strictly
stationary, which we now define.

A series Y; = Yy, Y,, ...is strictly stationary if for any sequence
t1,t, ..., the joint distribution of (Ytl, Yoo oo Yt,) is identical to that
of (Ytl—k: Ytz—k, ey Yt,—k)-

A series Y; = Y1, Ys, ... is weakly stationary or covariance stationary
if the unconditional mean is constant, and all covariances Cov[Yy, Y;-/]
depend only on j. In other words, there must exist u and a covariance
function v; such that

E[Y;] = n forallz (3.5)

and
E[(Y; = u)(Y;; —n)| = forallt andj (3.6)
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If the joint density of any selection (Y,l, ) Y,y) is multivariate
normal and the process is covariance stationary, then it is also strictly
stationary, because the mean and covariances completely determine the
multivariate normal distribution. The reason this is important here is
that the most attractive properties of maximum likelihood estimators for
independent samples also apply to maximum likelihood estimators for any
strictly stationary time series.

Asymptotic Unbiasedness

Taken as a function of the random sample X, the bias of an estimator 6 of
a parameter 6 is

b(6) = E[6 — 0] (3.7)

If an estimator is unbiased then it has expected value equal to the unknown
parameter.

The maximum likelihood estimator 6 is asymptotically unbiased; this
means that for large sample sizes, the expected value of the estimate 6 tends
to the parameter 0. In many cases § may be an unbiased estimator for all
sample sizes.

Asymptotic Minimum Variance

Provided an estimator is unbiased or nearly unbiased, a low variance
estimator is preferred. The variance of an estimator measures how much the
estimate will change from one sample to the next. A low variance indicates
that different samples will give similar values for the parameter estimate.

The asymptotic (or large sample) variance of the maximum likelihood
estimator is related to the expected information, 1(0), defined as follows:
for scalar 6

42
I(6) = El—ﬁl(f))l

For vector @, with s elements, I(0) is an s X s matrix with i, entry:
&2

1), = E[— 7 Omil(e)}

The expectation is with respect to the random vector X. In the scalar case,
the asymptotic variance of the estimator is I(6) . In the vector case, 1(0) !
gives the asymptotic variance-covariance matrix for the estimator.
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The inverse information function is the Cramer-Rao lower bound for
the variance of an estimator. It doesn’t get better than this for large samples,
although for small samples other estimation methods may perform better
than maximum likelihood for both bias and variance.

The asymptotic variance I(6) ! is often used as an approximate variance
of an estimator, even where the sample size is not large. A problem in practice
is that, in general, I(0) is a function of the unknown parameter 6. To put
an approximate value on the variance of @, we use the estimator  in place
of 0. Another problem arises if the likelihood function is very complicated,
because then the information matrix is difficult to find analytically. In these
cases, we can use numerical methods.

Asymptotic Normal Distribution

Estimates are asymptotically normal (multivariate normal if @ is a vector),
with mean equal to the parameter(s) being estimated, and variance (matrix)
1(6)~', where I(0) is the information function defined above. For large
samples, this can be used to set confidence intervals for the parameters.

MLE of g(0) — The Delta Method
The maximum likelihood estimate of a function of 6, say g(6), is simply
g(6). The value of this can be seen with the lognormal model, for example.
Given parameters u and o (the mean and variance of the associated normal
distribution), the mean of the lognormal distribution is
glw o) = et

If we use maximum likelihood to determine parameter estimates i and

0, the maximum likelihood estimate of the mean is

g, 6) = o702

The asymptotic variance of the MLE g(f) is

V =209'%9
where
o - <&g<0>’ a(0) ag(@))
301~ 96, 30,
and

S =1(0)"!
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The asymptotic distribution of g(#) is N(g(6), V). An approximate
95 percent confidence interval for g(0) is, therefore,

¢()=1.96 JV (3.8)

SOME LIMITATIONS OF MAXIMUM
LIKELIHOOD ESTIMATION

Although MLE is the first method that most statisticians would use for
parameter estimation, and despite the fact that the estimates have all the
attractive properties listed above, there are some disadvantages. The first
problem is that the asymptotic results do not apply for models that are
not strictly stationary. For nonstationary models, other methods may be
preferable. The time series that we use in this book are stationary (subject
to some parameter constraints).

The asymptotic results cannot be relied on if a parameter is estimated
near the boundaries of the parameter space. For example, in the stable
distribution described in the section on the stable distribution family in
chapter 2, the B8 parameter must lie in [—1, 1]. Using the S&P 500 data, and
using MLE, the value estimated is 8 = — 1. Therefore, the asymptotic MLE
properties do not apply for this estimator. This problem has also arisen for
GARCH and three-regime RSLN models for some stock index data, and
the problem should be considered carefully when estimating parameters,
especially for more complex models.

The asymptotic properties are only useful if we have a reasonably
large sample. For small samples, other estimation methods may have bet-
ter performance in terms of bias and variance than the MLE. Also, the
information available on association between parameter estimates is an
asymptotic result—for smaller samples or nonstationary distributions we
may have no information about the relationships between the parameter
estimates.

Maximum likelihood will find parameters that fit the data for a given
model; it will not tell you how close the fit is. For example, we may fit
a lognormal model to data and have a very small standard error for the
parameters. It should not be assumed however, that a small standard error
means the model is a good fit; it just means that, given the lognormal
model, there is little uncertainty about the parameters. The model may
still provide a worse fit than another model with larger standard errors.
However, we can use likelihood as a basis for comparing different mod-
els, and we do so in the section on likelihood-based model selection, in
this chapter.
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USING NILE FOR TSE AND S&P DATA
The Lognormal (LN) Model

Under the lognormal (LN) assumption, the log returns Y; are assumed to be
normally distributed with parameters u and . (The maximum likelihood
estimators of the parameters of the normal distribution for Y, are the same as
the maximum likelihood parameters of the LN distribution for the monthly
stock returns.) The returns are assumed to be independent, so the version of
the log-likelihood given in equation 3.2 can be used; that is, for a sample of
nobservations, y1, y2, ..., ¥, withmean y and sample standard deviation sy:

n 1 1 — 2
lu, o) = log exp ——( ) (3.9)

; V2mo 2 g

T log2m - mlogo — L (MR

=3 log2m — nlogo 2;( - ) (3.10)

So

‘91(5’ o) _ 1( ye — ,,,L> (3.11)
K T\i=

A, 1

) o 2y 2> - wl? (3.12)
o o o

The maximum likelihood estimates for w and o are found by setting the
partial derivatives equal to O for parameter estimates, signified by " This
gives

(3.13)

=
Il
1

and

S
Il

(3.14)

So the MLE for the mean of the log-returns is the mean of the log-data. The
MLE for the variance is -%;s;.

The estimator for u is unbiased for all sample sizes. The estimator for
o is asymptotically unbiased but is biased for finite samples. The standard
deviation of the log-data, sy, is an unbiased estimator for o for any sample
size. The sample standard deviation is, therefore, often used in preference
to the MLE discussed previously. However, MLE software routines will

output the biased estimator.
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To find the approximate standard errors for these estimates, first take
the second partial derivatives for the likelihood using the random sample
Y, ...Y,:

2
J gﬁ’zﬂ _ _E (3.15)
2 n
% _ %( Y, - ) (3.16)
t=
il w, o) 3 n

t=1

Next, take expectations with respect to the variables Y;, which are indepen-
dent and identically distributed by assumption, with common distribution
N(u, o); that is, E[Y,] = w and E[(Y,— w)?] = o2. The elements of the
information matrix then are:

2
E _L’L’Zo) - (3.18)
au o
, _
E _ o) | _ 0 (3.19)
udo
_c?zl(/.L, 0')_ _ 2n
B[~ - 2 (3.20)
So
Hwo = 77 (3.21)
,0) = .
a 0 2n/o?

and the asymptotic covariance matrix for the estimators i and & is the

inverse:
o2 /n 0
3 = (3.22)
0 o?/2n

Since we do not know the parameter o, we approximate with the estimated
value & for an approximate asymptotic covariance matrix:

G2
2z< /0 ) (3.23)

0 &2/2m
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TABLE 3.1 LN model parameter estimates, per month, with approximate
standard errors.

Series 1l lig
TSE 300 1956-2001 0.00767 (0.002) 0.04591% (0.0014)
S&P 500 1956-2001 0.00947 (0.001) 0.04167% (0.0013)

Using the fact that the estimators are approximately normally dis-
tributed allows us to construct approximate confidence intervals for the
estimators.

The results for the United States and Canadian total return indices are
given in Table 3.1; approximate standard errors are given in parentheses.

Maximum Likelihood for the AR(1) Model for Log-Returns

Under the AR(1) model with N(0, 1) error terms, successive returns are
assumed to be dependent. Given the return in the ¢th time interval, the next
return has a normal distribution such that

Y|Y,—1 ~ N(w(1 —a) +aY,—q, 0%) t=2,3,...,n (3.24)
So, in the likelihood calculation,

L (Y- (- Y,
f(Y;0Y1, Y2, ..., Y q) = ;¢ ( (( ‘Z,Uv +a 1))

This leaves just the first term in the likelihood, f(Y1;0). Unconditionally,
(i.e., if we have no information on earlier returns) the return distribution is

0_2
Y, ~ N(u ——

For the initial value Y, we use this unconditional distribution. So, the
log-likelihood function for the three parameters is

1-a 1((Ys = w21 - )
log 2m0? P T2 o?
1((Y,~ (1 —a)p —aY,)?
+Zlog(/ p{ 2(< ( ‘2;‘ a¥e) )]) (3.25)

log(2m) + = log(l —a*) —nlogo

(Yy — ) 1—a%) —(1-a)u —aY, 1)
[ S

I, 0, a)

|
= NI
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TABLE 3.2 AR(1) model parameter estimates per month, with approximate
standard errors.

Series I a o
TSE 300 1956-2001 0.0077 (0.22) 0.0918 (0.043) 0.0457 (0.14)
S&P 500 1956-2001 0.0090 (0.19) 0.0250 (0.044) 0.0421 (0.13)

The equations &l(@)/ﬁ@i = 0, where 60 = (u,a, o), form a system of
nonlinear equations in w, a, 0. However, it is quite straightforward to
maximize the likelihood with standard computer routines. The “solver”
tool in Microsoft Excel works well.!

For large samples, the variances of the estimators are approximately:

. 1-—a?
vm]xﬁ V[&]x;’—n Via] ~ n" (3.27)

The asymptotic covariances of the estimators are all zero, using the expected
information matrix.

The maximum likelihood estimators for the United States and Canadian
total return indices are given in Table 3.2. Again, approximate standard
errors are given in parentheses.

Maximum Likelihood Estimation
of ARCH and GARCH Models

For the ARCH(1) and GARCH(1,1) models, we adopt a similar approach
to that used for the AR(1) estimation. Conditional on the previous value or
values of the series, each value is normally distributed with fixed volatility,
leaving only the first term of the series, for the probability density for Yy, to
be determined.

That is, for the ARCH(1) model where

Y: = p+ oee (3.28)
of = ao +ai(Yy-y — p)’ (3.29)

we have:
Y|Vt ~ N(,u, a0 + a1 (Y1 — mz) t=23 .. ..n (3.30)

'All the likelihoods in this chapter were maximized using solver in Excel. As with
all optimization routines, it is necessary to find reasonable starting values to avoid
finding local maxima. We found no great difficulty getting good results.
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TABLE 3.3 ARCH model parameter estimates (per month).

A A

Series ) ao a

TSE 300 1956-2001  0.00925 (0.00193)  0.0018 (0.0001)  0.1607 (0.063)
S&P 500 1956-2001  0.01000 (0.00178)  0.0016 (0.0001)  0.0790 (0.039)

TABLE 3.4 GARCH model parameter estimates (per month).

Series o ao a B

TSE 300 0.0087 (0.0018) 0.0004 (0.00004) 0.1395 (0.030) 0.7033 (0.024)
S&P 500 0.0088 (0.0017) 0.0000 (0.00001) 0.0765 (0.009) 0.8708 (0.008)

and for the GARCH(1,1) model, where

Y: = pn+ oves (3.31)
(rtz = ap+ a1(Yi—1 — ,u,)2 + ,80'3_1 (3.32)

we have:
YY1 ~ N(w, o) t=2,3,...,n (3.33)

In both cases, the only problem is with the initial value for the variance
process, 7. One simple approach is to treat this as an extra parameter. The
effect of this “parameter” on the final likelihood will be small if the data
series is a reasonable size.

The ARCH and GARCH models are stationary, and approximate large
sample variances for the estimators can be found. Parameter estimates and
approximate standard errors are given in Tables 3.3 and 3.4.

Maximum Likelihood Estimation for the RSLN-2 Model

The RSLN-2 model is the two-regime LN model, introduced in the section
on the RSLN model in Chapter 2. The log-returns Y; are assumed to depend
on an underlying two-state Markov process, where the state in the interval
ttot+ 1 is denoted by p, = 1,2, and within each regime the log-returns
are normally distributed, with parameters specific to the regime.

The six parameters of the RSLN-2 distribution are the values of u and o
for either regime, denoted w1, oy, w2, 02, and the two transition probabilities
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p12 and pai. Then Yip, = w,, + 0,6 where the & are independent,
identically distributed, N(0, 1) random innovations. The contribution to the
log-likelihood of the ¢th observation is

logf(ytb}t—]s %—2, .. ~;)’l, 0)

We can calculate this recursively, following Hamilton and Susmel
(1994), for example, by calculating for each ¢:

f( Pt, ptfl)yt |yt*1’ .. ~1y1)0 ) =
P(p1]Vets -y, 0) plpelor—1,0) f(velpe, 0)  (3.34)

On the right-hand side of this equation:

" p(p; = jlp—1 = i,0),fori,j = 1,2 is the transition probability between
the regimes, which we have denoted p;;.

B If we know the regime the process is in, then the return has a straight-
forward normal distribution with the parameters of that regime. So,
given p, there is no dependence on earlier values of y,, and

1
f()’t|Pt, 0) = o d((yr — I-Lpt)/a-pt)
Pt

where ¢ is the standard normal probability density function.
B The probability function p (pt_l | Vie1s Vi=2s -+ s Y1s 0) is found from the
previous recursion; it is equal to

i F(Prt1s Pr—2. V-1 | Vi-2, -5 Y2, 91, 0)
ot fe-1lye-2, 92,91, 0)

Now, if we sum over the four values of equation 3.34, with p, = 1,2 and
pi—1 = 1,2, the sum is £(y:|[y;~1, ¥1-2, - .., 1, @), which is the contribution
of the tth value in the series to the likelihood function. To start the
recursion, we need a value (given @) for p(pg), which we can find from the
invariant distribution of the regime-switching Markov chain. The invariant
distribution 7 = (4, m) is the unconditional probability distribution for
the process.

Under the invariant distribution 7, each transition returns the same
distribution; that is 7P = 7, giving

m P11+ mpPr1 = T
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and
P12 + MmPrr = m
Clearly
pi1+pi2 = 1.0
so that

S P21
P12+ D21

and similarly

_ _ P12
m=1-m=—
P12 + P2

Hence, we can start the recursion by calculating for a given parameter set

g1 o1

flp1 = 1,y1|0) = (771)1¢(w>

1 —
flp1 = 2,y1|0) = (772)0_2¢(w>

o
f(y110) = f(p1 = L,y1]0) + f(p1 = 2,71(0)

and we calculate for use in the next recursion the two values of

f(pl: y1|6)
’0 = 1o/ 17

Results for the S&P and TSE data are given in Table 3.5. Relatively
minor adaptations of this method will yield the likelihood for a three-regime
RSLN model, or a two-regime AR(1) model.

We have also fitted the model to the U.K. FTSE? All-Share total return
index for the guaranteed annuity option contract discussed in Chapter 12.
The parameters indicate a thinner tail here than for the TSE 300 results,
and a fatter tail than for the S&P 500. The maximum likelihood parameters
indicate higher volatility in both regimes than the North American data,
with a smaller probability of transition from regime 1 to regime 2.

2Financial Times Stock Exchange.
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TABLE 3.9 Maximum likelihood parameters for RSLN-2 model, with estimated
standard errors.

TSE 300 (1956-2001)

a1 = 0.0127(0.002) o1 = 0.0348 (0.001) P12 = 0.0398 (0.013)
f2 = —0.0161 (0.010) 0, = 0.0748 (0.007) P21 = 0.1896 (0.064)

S&P 500 (1956-2001)
e 0.0127 (0.002) o1 = 0.0351 (0.001) b2

- 0.0468 (0.014)
f = —0.0162 (0.015) & = 0.0691 (0.010) P

0.3232 (0.125)

LIKELIHOOD-BASED MODEL SELECTION

Introduction

The principle of parsimony indicates that more complex models require
significant improvement in fit to be worthwhile. More complex, here, means
using more parameters. The tests described in this section use the maximum
values of the likelihood functions attained by each of the models, that is
the value of the likelihood function evaluated using the MLE parameter
estimates. In all cases listed in Table 3.6, except the Stable distribution, the
maximum likelihood has been found using the “solver” tool from Excel.

For models with an equal number of parameters, it is appropriate to
choose the model with the higher log-likelihood. For models with differ-
ent numbers of parameters, common selection criteria are the likelihood
ratio test, the Akaike information criterion (AIC) (Akaike 1974), and the
Schwartz-Bayes criterion (SBC) (Schwartz 1978). This comparison uses
models fitted to the TSE 300 and S&P 500 data between 1956 and 1999,
which is two fewer years than used in Tables 3.3, 3.4, and 3.5.

The Likelihood Ratio Test

The likelihood ratio test (see, for example, Klugman, Panjer, and Willmot
1998) compares embedded models, where a model with k; parameters is a
special case of a more complex model with k, > ki parameters. Let /; be
the log-likelihood of the simpler model, and [, be the log-likelihood of the
more complex model. The test statistic is 2(/ — I). The null hypothesis is

Hj: No significant improvement in Model 2
Under the null hypothesis, the test statistic has a y* distribution, with degrees

of freedom equal to the difference between the number of parameters in the
two models.
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TABLE 3.6 Comparison of selection information for lognormal, autoregressive,

and regime-switching models.

TSE 300 (1956-1999 Monthly Total Returns)

Model Parameters logL SBC AIC LRT
i k/' l,' l/' - %k/ logn l,‘ - k/' p
LN 2 885.7 879.4 883.7 <1078
AR(1) 3 887.4 878.0 884.4 <1078
ARCH 3 889.4 880.0 886.4 <10°®
AR-ARCH 4 889.4 876.9 885.4 <1078
STABLE 4 912.2 899.7 908.2 <107
GARCH 4 896.2 883.7 892.2 <1078
AR-GARCH 5 900.2 884.5 895.2 <1078

RSLN-2 6 922.7 903.9 916.7

RSAR-2 8 923.0 898.7 915.0 0.82

RSLN-3 12 925.9 888.3 913.9 0.38
S&P 500 (1956-1999 Monthly Total Returns)

Model Parameters logL SBC AIC LRT
j ki l lj = skilogn =k p
LN 2 929.8 923.5 927.8 <10°%
AR(1) 3 930.0 920.6 927.0 <1078
ARCH 3 933.8 924.4 930.8 <1078
AR-ARCH 4 935.0 922.5 931.0 <10°%
STABLE 4 945.2 932.7 941.2 0.0003
GARCH 4 939.1 926.6 935.1 <107¢
AR-GARCH 5 939.1 923.4 934.1 <10°°

RSLN-2 6 953.4 934.6 947 .4
RSAR-2 8 953.8 928.7 945.8 0.98
RSLN-3 12 962.7 925.1 950.7 0.01

We use likelihood ratio test to compare the models discussed above,
and a few that are not dealt with in detail above. The following models are
compared with this test:

B LN—the independent lognormal model.
B AR(1)—the first-order autoregressive model.
B ARCH—the first-order autoregressive conditionally heteroscedastic

model.

B AR-ARCH—the ARCH model with an additional autoregressive com-
ponent for the mean, described in the section on ARCH in Chapter 2.
B STABLE—the stable distribution described in the section on the stable

distribution family in Chapter 2.
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B GARCH—the first-order generalized autoregressive conditionally het-
eroscedastic model.

B AR-GARCH—the GARCH model with an additional autoregressive
component for the mean, described in the section on GARCH(1,1) in
chapter 2.

B RSLN-2—the regime-switching lognormal model with two regimes.

B RSAR-2—a regime-switching, first-order autoregressive model with two
regimes.

B RSLN-3—the regime-switching lognormal model with three regimes.

Not all of the models we consider are embedded; if we denote embed-
dedness by C, we have LN C RSLN-2 C RSLN-3 and RSLN-2 C RSAR(1).
However, even where models are not embedded, the likelihood ratio test
may be used for model selection, although the y? distribution is, in this case,
only an approximation. Even where models are embedded, there may be
theoretical problems with the likelihood ratio test. In particular, Hamilton
(1994) points out that the likelihood ratio test is not a valid test for the
number of regimes in a regime-switching model. The results of the likelihood
ratio tests, then, should be viewed with caution.

In Table 3.6, the final column gives the p-value for a likelihood ratio
test of the RSLN model against each of the other models listed. For models
with fewer than six parameters, the null hypothesis is that the simpler model
is a “better” fit than the RSLN. Low p-values indicate rejection of the null
hypothesis. Comparing the two-regime RSLN-2 model with models that
have more than six parameters, acceptance of the null hypothesis (high
p-value) implies acceptance of the RSLN-2 model.

The Akaike Information Criterion (AIC)

The Akaike information criterion (AIC) uses the model that maximizes
li — k;, where [; is the log-likelihood under the jth model, and &; is the
number of parameters. Using this criterion, each extra parameter must
improve the log-likelihood by at least one.

The Schwartz-Bayes Griterion

The Schwartz-Bayes criterion uses the model that maximizes [; — }k;logn,
where 7 is the sample size. For a sample of 527 (corresponding to the
monthly data from 1956 to 1999), each additional parameter must increase
the log-likelihood by at least 3.1.

Results—TSE and S&P Data

Table 3.6 shows that the RSLN-2 model provides a significant improvement
over all other models for the TSE data, using each of the three selection
criteria. For the S&P data, the ranking is not quite so definite. According
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TABLE 3.7 Maximum likelihood parameters for RSLN-3 model,
1956 to 2001 data.

S&P 500
g1 = 0.0106 &1 = 0.0353 pra = 0.0291 P13 = 0.0000
b = —0.0238 6, = 0.0695 P21 = 0.0000 P23 = 0.2318
A3 = 0.0504 &3 = 0.0150 D31 = 0.4643 P32 = 0.0000

to the likelihood ratio test and the AIC, there is a marginal improvement
in fit for RSLN-3 compared with RSLN-2. The third regime is an ultra-low
volatility regime that is always visited between the high-volatility regime
and the low-volatility regime. Maximum likelihood parameters are given in
Table 3.7. The Schwartz-Bayes criterion still favors the two-regime model.
This illustrates the useful message that model selection is usually not very
clear cut. The results of the comparisons of this section inform the decision
process, but there is room for judgment too. The evidence in favor of the
three-regime model may not outweigh the added complexity.

MOMENT MATCHING

A quick method of fitting parameters is to match the mean, variance,
covariances, and (if necessary) higher moments of the data to the mean,
variance, covariance, and so forth, of the distribution. For the LN distribution,
working with the log-returns and a normal distribution assumption, set

p=y &=s (3.35)

where y and s are the mean and variance of the data.

It is interesting to note that if we match moments of the observed
one-month accumulation factors, x; = StH/St (so x; = exp(y;)), we would
match the LN mean and variance to the moments of x; giving

% = exp(ip + 6%/2)
s2 = (exp(2i + &7%))(exp(5?) — 1)

These two ways of matching moments for the same distributional assump-
tion would give quite different results. For the monthly S&P data set we
have been using in this chapter, the first formulation, using the log-returns
and the normal distribution, would give

= 0.987 percent o = 4.145 percent (3.36)
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and using the accumulation factors and the LN distribution we find
= 0.977 percent o = 4.096 percent (3.37)

The first version is very close to the maximum likelihood estimates and will
have smaller variance than the second.

In general, matching moments is an unreliable method of fitting parame-
ters. The overall fit may not be very satisfactory, and the standard errors can
be large. For a satisfactory overall fit it is better to employ more of the distri-
bution than the first two moments. A common use for the matched moments
estimators is as starting values for an iterative optimization procedure.

Both MLE and moment matching emphasize the fit in the center of the
distribution. In the next chapter, we see how to adapt the estimates if we
are interested in other parts of the distribution.



4

The Left-Tail Galibration Method

INTRODUCTION

IVI aximum likelihood has many advantages for large samples, but there
are circumstances where other methods may be preferable. Maximum
likelihood estimation (MLE) provides a fit of the whole distribution, with
an emphasis on the center of the distribution, which contributes more to
the likelihood than the tails. For separate account products though, we may
be more interested in the probability that the stock returns over a period
are very poor. That probability depends on the left tail of the stock return
distribution. In this chapter, we discuss a method of matching the left tail
by matching quantiles. This is the method recommended in the Task Force
on Segregated Funds (SFTF 2000) to be required of actuaries assessing
segregated fund guarantee risk. In other jurisdictions, similar calibration
requirements are being discussed; and even where it is not required, it
is highly recommended that some detailed examination of the tail of the
returns model should be undertaken where the guarantee liability depends
on that part of the distribution.

Although the left-tail matching illustrated in this chapter is important
for the guaranteed minimum maturity benefits (GMMBs) associated with
separate account insurance, for other applications other parts of the dis-
tribution are more critical. It may be appropriate to examine the fit in the
center or right tail, or in both tails, for other applications.

In this chapter, we first look at the method of the Canadian Institute
of Actuaries (CIA) report (SFTF 2000), and consider some of the empirical
evidence. We then demonstrate the method using distributions introduced
in the previous chapters. In some cases the calibration can be calculated an-
alytically. For less tractable distributions, the calibration requires stochastic
simulation. Both methods are discussed in the following sections.
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QUANTILE MATCHING

A p-quantile of a distribution with distribution function F(y) is the value z,
such that:

Flzp) = p (4.1)

We can determine parameters for a model by matching the model and
empirical quantiles. For example, to fit the lognormal distribution we need
any two quantiles of the empirical distribution. Say we decide to use the
10th and 25th percentiles of the empirical and lognormal distributions. The
10th percentile of the log-return for the TSE 300 monthly data from 1956
to 2001 is —0.04682 and the 25th percentile is —0.01667.

We equate these empirical percentiles with the model percentiles. The
model 25th percentile is zp 5 where

CD(L% _ ) =25 (4.2)
g
= (MT_“> — —0.6745 (4.3)
— 2025 = —0.67450 + (4.4)
Similarly, 24 = —1.28160 + u. We equate these with the empirical
percentiles to get:
— u = 0.0168 and o = 0.0497 (4.5)

Now these are quite different values to those found by using maximum
likelihood (u = 0.0081 and o = 0.0451), or by matching moments. The
reason is that by choosing to match the 10th and 25th percentiles, we have
chosen to fit the left side of the distribution rather than the center. It should
be noted, though, that the precise choice of quantiles to match will have a
substantial effect on the resulting calibrated parameters.

We have seen in Chapter 3 that the lognormal distribution does not
actually give a very good fit to the observed data. In Figure 2.10, the density
functions of the 10-year accumulation functions are plotted, using MLE
parameters. It is clear that the left tail of the lognormal distribution is very
thin compared with the regime-switching lognormal (RSLN) model, which
provides a far superior overall fit. The lognormal distribution is also far
too thin-tailed compared with the empirical evidence; that is, we see far
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more examples of very poor returns in the historical data than we would
expect to, using the lognormal model with MLE parameters. Using quantile
matching, we can get a better fit in the tail if we want to use the lognormal
distribution despite the poor overall fit.

THE CANADIAN CALIBRATION TABLE

Quantile matching is the basis of the CIA Task Force on Segregated Funds
calibration requirement (SFTF 2000). The Task Force does not mandate
a specific distribution because they do not want to constrain companies
unnecessarily, or to discourage the development of new models. However,
some restriction was thought necessary to avoid the overly optimistic
assessment of the guarantee liabilities that would emerge from, for example,
a lognormal model fitted using maximum likelihood. The recommended
approach is to allow any model to be used, provided it can be adjusted to
give an adequate fit in the left tail of the distribution, since that is the critical
area for segregated fund guarantees. The calibration method details how
the left-tail adjustment should be effected.

The Task Force calibration does not work with the distribution of the
log-returns, but with the associated accumulation factors using one-year,
five-year, and 10-year time periods. The accumulation factor is the amount
that a unit investment accumulates to over some period.

If Yy, Ys, ... are the random monthly log-returns on equities, then the
n-month accumulation factor random variable is

Sp=exp(Yi1+ Yo+ -+ Y,) (4.6)
The calibration table used by the Task Force relates to TSE 300 total

monthly returns data, from 1956 to 1999. The table is reproduced here as
Table 4.1.

TABLE 4.1 Calibration table of maximum acceptable quantiles from the
CIA SFTF report (2000).

Accumulation 2.5th Sth 10th
Period Percentile Percentile Percentile

1-year 0.76 0.82 0.90

S-year 0.75 0.85 1.0

10-year 0.85 1.05 1.35




68 THE LEFT-TAIL CALIBRATION METHOD

In SFTF (2000) it is recommended that any model used by an insurer,
when fitted to the TSE 300 (1956-1999) data, must generate accumulation
factors with at least as much left-tail probability as those in the table. For
example, the one-year accumulation factor must have a probability of at
least 2.5 percent of falling below 0.76, a probability of at least 5 percent of
falling below 0.82, and a probability of at least 10 percent of falling below
0.90. Similarly, for a 10-year accumulation factor, the probability of falling
below 0.85 must be at least 2.5 percent. Setting calibration standards for
different durations allows for duration dependent models, where successive
values of stock returns are not independent.

In addition, the calibration requirements state that the mean one-year
accumulation factor should lie in the range 1.10 to 1.12, and the standard
deviation of the one-year accumulation factor should be at least 0.175.
The report suggests that maximum likelihood, or some other suitable
method should be used first to estimate parameters, and that the quantile
matching should be used to adjust parameters to get an adequate left-tail
fit. The standards set by the report do not necessarily uniquely define the
parameters for any model but can be used to estimate parameters. The
objective of the standard is to ensure that the left tail and the center of the
distribution match. The sacrifice may be a poor fit in the right tail.

The calibration exercise does not determine the precise parameters to
be used in risk modeling. It is used to derive adjustments to the fitted
parameters found using a relevant data set.

QUANTILES FOR ACCUMULATION FACTORS:
THE EMPIRICAL EVIDENCE

Table 4.1 surprises some people. Accumulation factors such as these appear
barely credible, given the recent history of stock markets in North America.
Is it really possible that over a 10-year period an investment in the TSE 300
index could fall by 15 percent? In fact, the data on 10-year accumulation
factors is very limited. Since the introduction of the TSE index in 1956,
we have seen only four nonoverlapping 10-year periods. We therefore have
little empirical evidence on the lower percentiles of the 10-year accumulation
factor distribution. For the five-year accumulation factors, we have eight
nonoverlapping observations, and for the one-year accumulation factors we
have 43 nonoverlapping observations. Since it is possible to choose different
starting points for the accumulation factors, there are several different series to
choose from;forexample, fortheannual factorsthereare 12 setscorresponding
to the different monthly starting points. But we cannot treat the 12 sets as
giving a sample of 12X 43 independent observations, when for each successive
value 11 out of 12 months are repeated. This is an often repeated error.
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TABLE 4.2 Observed and fitted quantiles for accumulation factors (SFTF 2000).

Accumulation Empirical
Period Quantile Range RSLN
1-year 1/44 = 2.27% (0.61, 0.82) 0.74
2/44 = 4.55% (0.76, 0.85) 0.82
4/44 = 9.09% (0.85, 0.92) 0.89
5-year 1/9 = 11.11% (0.98, 1.41) 1.05
10-year 1/5 = 20.00% (1.60, 2.59) 1.88

The calibration points used by the CIA Task Force were found by
extrapolating from the available data. This was done by looking at a number
of different models that appeared to fit well where there is more data, and
using these models to generate percentiles for the longer accumulation
factors where the data is sparse. (Further details are given in Appendix C of
SFTF (2000).)

In Table 4.2, the range of values for the available left-tail percentiles
are given. The 2.27 percentile for the one-year return is based on the worst
result of 43 nonoverlapping periods of annual returns; 2.27% = 1/ 44.
The 4.55 percent result is the second smallest. The final column shows the
quantiles generated using a model. RSLN is the regime-switching lognormal
model with two regimes, with parameters fitted to the monthly TSE 300
1956 to 1999 data by maximum likelihood. This was one of the models
used to set the percentile requirements.

The instinct of some that we should be able to extract more information
about the 10-year accumulation factor from 45 years of monthly data
than just the 20th percentile does have some basis. We cannot, as we
have mentioned, treat each overlapping 10-year period of the data as an
independent observation. We may, however, use the bootstrap method of
statistics to derive some information about the tails of the distribution. The
bootstrap method, broadly speaking, expands the inference available from
a sample of data by creating new pseudosamples. In our case, we can do
this by sampling from the monthly data with replacement. So, if we have
528 monthly observations of the log-return y; (representing the 1956 to
1999 monthly data), we can sample, with replacement, 120 values to get
a new “observation” of the 10-year accumulation factor. We repeat this a
number of times to construct a new “sample” of hypothetical observations
of the 10-year accumulation factor. We can then use this pseudosample to
estimate quantiles of the original distribution. The bootstrap method works
best when successive monthly values of y, are independent. In fact, successive
values of the monthly log-return on stocks are positively correlated. One
way of managing this is to take blocks of successive monthly values.
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TABLE 4.3 Bootstrap estimates of accumulation factor quantiles.

Bootstrap Estimate

Accumulation Approx.
Period 2.5% 5% 10% Standard Error
1-year 0.75 0.83 0.90 0.011
5-year 0.76 0.86 1.00 0.014
10-year 0.92 1.08 1.32 0.025

Rather than sample 120 individual months for each hypothetical 10-year
accumulation factor, we have used 20 six-month blocks of successive values
with random starting points to generate bootstrap estimates of quantiles
for the 10-year accumulation factors from the TSE 300 monthly data. We
have also generated bootstrap estimates of quantiles for the one-year and
five-year accumulation factors, again using six-month blocks. The bootstrap
estimates are given in Table 4.3. They are remarkably consistent with the
factors used in the SFTF (2000) report, which were derived using stochastic
volatility models fitted to the data, with only the 2.5 percent factor for the
10-year accumulation factor appearing a little low in the CIA table.

Having given the case for the quantiles of the left tail of the accumulation
factors, we now discuss how to adjust the model parameters to comply with
the calibration requirements.

THE LOGNORMAL MODEL

For the lognormal model, with Y; ~ N(u, )

factor is

, the one-year accumulation

12
S =exp(Yi+ Yo+ - +Y) = logSn = >V,
i=1

= logS12 ~ N(12p, 1207)

So, the one-year accumulation factor has a lognormal distribution with
parameters u* = 12 p and o* = J120.

It is possible to use any two of the table values to solve for the two
unknown parameters u* and o, but this tends to give values that lie
outside the acceptable range for the mean. So the recommended method
from Appendix A of SFTF (2000) is to keep the mean constant and equal
to the empirical mean of 1.116122 (the data set is TSE 300, from 1956 to
1999). This gives the first equation to solve for u* and o*, that

exp{u* + o*/2} = 1.1161 (4.7)
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Then we can use each of the nine entries in Table 4.1 as the other equation.
Since each entry represents a separate test of the model, we will use the
parameters that satisfy the most stringent of the tests. For the lognormal
model the most stringent test is actually the 2.5 percentile of the one-year
accumulation factor. This gives the second equation for the parameters:

<1><1°g0'76_“*)= 0.025 (4.8)
o
Together the two equations imply:

log1.1161 — u* — /2 = 0 (4.9)

and
log0.76 — pn* + 1.9600" = 0 (4.10)
— (log1.1161 — log 0.76) — 1.960c" — 0.5¢™* = 0 (4.11)
— o = 0.18714 (4.12)

and
w' = 0.09233 (4.13)

So
o = 0.05402 and p = 0.007694 (4.14)

To check the other eight table entries, use these values to calculate the
quantiles. For example, the 2.5 percentile of Sgo must be less than 0.735,
which is the same as saying that the probability that Seo is less than 0.75
must be greater than 2.5 percent.

Pr[Seo < 0.75|u = .007694, 0 = .05402] = ® 10g0.75—_60,LL
V600

(4.15)
= 3.67% (4.16)

This means that, given the parameters calculated using the 2.5 percentile for
S12, the probability of the five-year accumulation factor falling below 0.75
is a little over 3.6 percent, which is greater than the required 2.5 percent,
indicating that the test is passed. Similarly, these parameters pass all the
other table criteria. It remains to check that the standard deviation of the
one-year accumulation factor is sufficiently large:

V[S12] = (exp(12u + 120 /2))*(exp(1202) — 1.0) = (21.1%)> (4.17)
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FIGURE 4.1 Comparison of lognormal and RSLN distributions, before and after
calibration.

Figure 4.1 shows the effect of the calibration on the distribution for the
10-year accumulation factors. Plotted in the top diagram are the lognormal
and RSLN distributions using maximum likelihood parameters. In the lower
diagram, the calibrated lognormal distribution is shown against the RSLN
model. The critical area is the part of the distribution below S1,9 = 1.
The figure shows that the lognormal model with maximum likelihood
parameters is much thinner than the (better-fitting) RSLN model in the left
tail. After calibration, the area left of Sy59 = 1 is very similar for the two
distributions; the distributions are also similarly centered because of the
requirement that the calibration does not substantially change the mean
outcome. The cost of improving the left-tail fit, as we predicted, is a very
poor fit in the rest of the distribution.

ANALYTIC CALIBRATION OF OTHER MODELS

Calibration of AR(1) and the RSLN models can be done analytically,
similarly to the lognormal model, though a little more complex.
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AR(1)

When the individual monthly log-returns are distributed AR(1) with normal
errors, the log-accumulation factors are also normally distributed. Using the
AR(1) model with parameters u, a, o

log S, ~ N(nu, (o h(a,n))*) (4.18)

where

h(a,n) = ! Zn:(l —a’)?

i=1

This assumes a neutral starting position for the process; thatis, Yo = wu,
so that the first value of the series is Y1 = u + oe;.

To prove equation 4.18, it is simpler to work with the detrended process
Z:= Y, —p,sothat Z, = aZ; 1 + os;.

logS, —nu =21+27Z,+ -+ + 27, (4.19)
= oe1 + (a(oey) + o8y) + (ala(oey) + 08)) + T83) + -+

(4.20)

+ (@ Yo +a" 2oes + o 4+ ace,q + o8y) (4.21)

%a [Z & (1 - a"“—”)] (4.22)

i=1

The &, are independent, identically distributed N(0, 1), giving the result
in equation 4.18, so it is possible to calculate probabilities analytically for
the accumulation factors.

Once again, we use as one of the defining equations the mean one-year
accumulation,

E[S12] = exp(u* + ¢*?/2) = 1.1161

where w* = 12u and o = oh(a, 12). Use as a second the 2.5 percentile
for the one-year accumulation factor for u* = .09233 and ¢* = 0.18714
as before. Hence we might use w = 0.007694, as before. This also gives
oh(a,12) = 0.18714. It is possible to use one of the other quantiles in the
table to solve for a and, therefore, for 0. However, no combination of table
values gives a value of a close to the MLE. A reasonable solution is to
keep the MLE estimate of a, which was 0.082, and solve for o = 0.05224.
Checking the other quantiles shows that these parameters satisfy all nine
calibration points as well as the mean and variance criteria.
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TABLE 4.4 Distribution for Ry;.

r Pr[Ry; = 7] r Pr[Ry; = 7]
0 0.011172 7 0.041055
1 0.007386 8 0.051291
2 0.010378 9 0.063082
3 0.014218 10 0.076379
4 0.019057 11 0.091925
S 0.025047 12 0.557573
6 0.032338

The RSLN Model

The distribution function of the accumulation factor for the RSLN-2 model
was derived in equation 2.30 in the section on RSLN in Chapter 2. In that
section, we showed how to derive a probability distribution for the total
number of months spent in regime 1 for the #» month process. Here we
denote the total sojourn random variable R,,, and its probability function
pn(r). Then S,|R,, ~lognormal with parameters

1 (Ry) = (R, 1 + (n — Ry) pa) and 0*(R,) = \/(R,, o? + (n— R,) 02)

So
Fsg (x) = S = x ZPr S, = x|R pn( ) (4.23)

= Zcb(logx wlr )>pn< ") (4.24)

Using this equation, it is straightforward to calculate the probabilities
for the various maximum quantile points in Table 4.1. For example, the
maximum likelihood parameters for the RSLN distribution for the TSE 300
distribution and the data from 1956 to 1999 are:

Regime 1 pnr = 0.012 o = 0.035 p12 = 0.037
Regime 2 my = —0.016 o = 0.078 p21 = 0.210

Using these values for pi, and p,1, and using the recursion from
equations 2.20 and 2.26, gives the distribution for Ry, shown in Table 4.4.

Applying this distribution, together with the estimators for wy, w2, oy,
072, gives

Pr[S12 < 0.76] = 0.032  Pr[S1, < 0.82] = 0.055 Pr[S1, <0.90] = 0.11
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and similarly for the five-year accumulation factors:
Pr[Sep < 0.75] = 0.036 Pr[Sgo < 0.85] = 0.060 Pr[Sep < 1.05] = 0.13
and for the 10-year accumulation factors:

Pr[S120 < 0.85]1=0.030 Pr[Si2 < 1.05]=0.057 Pr[S120 < 1.35]=0.12

In each case, the probability that the accumulation factor is less than
the table value is greater than the percentile specified in the table. For
example, for the top left table entry, we need at least 2.5 percent probability
that Sy, is less than 0.76. We have probability of 3.2 percent, so the RSLN
distribution with these parameters satisfies the requirement for the first entry.
Similarly, all the probabilities calculated are greater than the minimum
values. So the maximum likelihood estimators satisfy all the quantile-
matching criteria. The mean one-year accumulation factor is 1.1181, and
the standard deviation is 18.23 percent.

CALIBRATION BY SIMULATION

The Simulation Method

The CIA calibration criteria allow calibration using simulation, but stipulate
that the fitted values must be adequate with a high (95 percent) probability.
The reason for this stipulation is that simulation adds sampling variability to
the estimation process, which needs to be allowed for. Simulation is useful
where analytic calculation of the distribution function for the accumulation
factors is not practical. This would be true, for example, for the conditionally
heteroscedastic models.
The simulation calibration process runs as follows:

1. Simulate for example, 7 values for each of the three accumulation
factors in Table 4.1.

2. For each cell in Table 4.1, count how many simulated values for the
accumulation factor fall below the maximum quantile in the table. Let
this number be M. That is, for the first calibration point, M is the
number of simulated values of the one-year accumulation factor that
are less than 0.76.

3. p = Y is an estimate of p, the true underlying probability that the
accumulation factor is less than the calibration value. This means that
the table quantile value lies at the p-quantile of the accumulation-factor
distribution, approximately.
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4. Using the normal approximation to the binomial distribution, it is
approximately 95 percent certain that the true probability p = Pr[S1; <
0.76] satisfies

W (4.25)

p>p—1.645

So,ifp — / w is greater than the required probability (0.025, 0.035,
or 0.1), then we can be 95 percent certain that the parameters satisfy
the calibration criterion.

5. If the calibration criteria are not all satisfied, it will be necessary to
adjust the parameters and return to step 1.

The GARCH Model

The maximum likelihood estimates of the generalized autoregressive condi-
tionally heteroscedastic (GARCH) model were given in Table 3.4 in Chap-
ter 3. Using these parameter estimates to generate 20,000 values of Sy, Seo,
and S50, we find that the quantiles are too small at all durations. Also,
the mean one-year accumulation factor is rather large, at around 1.128.
Reducing the u term to, for example 0.0077 per month, is consistent with
the lognormal model and will bring the mean down. Increasing any of the
other parameters will increase the standard deviation for the process and,
therefore, increase the portion of the distribution in the left tail. The a1 and
B parameters determine the dependence of the variance process on earlier
values. After some experimentation, it appears most appropriate to increase
ao and leave a1 and B. Here, appropriateness is being measured in terms of
the overall fit at each duration for the accumulation factors.

Increasing the ap parameter to 0.00053 satisfies the quantile criteria.
Using 100,000 simulations of Sy, we find 2,629 are smaller than 0.76, giving
an estimated 2.629 percent of the distribution falling below 0.76. Allowing
for sampling variability, we are 95 percent certain that the probability for
this distribution of falling below 0.76 is at least

0.02629 — 1.645(0.02629 (1 — .02629)/100000)° = 0.02546

All the other quantile criteria are met comfortably; the 2.5 percent quan-
tile for the one-year accumulation factor is the most stringent test for
the GARCH distribution, as it was for the lognormal distribution. Using
the simulated one-year accumulation factors, the mean lies in the range
(1.114,1.117), and the standard deviation is estimated at 21.2 percent.



Markov Chain Monte Carlo (MCMC)
Estimation

BAYESIAN STATISTICS

In this chapter, we describe modern Bayesian parameter estimation and
show how the method is applied to the RSLN model for stock returns. The
major advantage of this method is that it gives us a scientific but straight-
forward method for quantifying the effects of parameter uncertainty on our
projections. Unlike the maximum likelihood method, the information on
parameter uncertainty does not require asymptotic arguments. Although we
give a brief example of how to include allowance for parameter uncertainty
in projections at the end of this chapter, we return to the subject in much
more depth in Chapter 11, where we will show that parameter uncertainty
may significantly affect estimated capital requirements for equity-linked
contracts.

The term “Bayesian” comes from Bayes’ theorem, which states that for
random variables A and B, the joint, conditional, and marginal probability
functions are related as:

f(A,B) = f(A|IB)f(B) = f(B|A)f(A)

This relation is used in Bayesian parameter estimation with the unknown
parameter vector 6 as one of the random variables and the random sample
used to fit the distribution, X, as the other. Then we may determine
the probability (density) functions for X|0, 8|X, X, 0 as well as the marginal
probability (density) functions for X and 6.

Originally, Bayesian methods were constrained by difficulty in combin-
ing distributions for the data and the parameters. Only a small number of

This chapter contains some material first published in Hardy (2002), reproduced
here by the kind permission of the publishers.
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combinations gave tractable results. However, the modern techniques de-
scribed in this chapter have very substantially removed this restriction,
and Bayesian methods are now widely used in every area of statistical
inference.

The maximum likelihood estimation (MLE) procedure discussed in
Chapter 3 is a classical frequentist technique. The parameter 6 is assumed
to be fixed but unknown. A random sample X;, X3, ..., X,, is drawn
from a population with distribution dependent on 6 and used to draw
inference about the likely value for 8. The resulting estimator, 6, is assumed
to be a random variable through its dependence on the random sample.
The Bayesian approach, as we have mentioned, is to treat @ as a random
variable. We are really using the language of random variables to model the
uncertainty about .

Before any data is collected, we may have some information about ;
this is expressed in terms of a probability distribution for 8, 7(0) known as
the prior distribution. If we have little or no information prior to observing
the data, we can choose a prior distribution with a very large variance or
with a flat density function. If we have good information, we may choose
a prior distribution with a small variance, indicating little uncertainty
about the parameter. The mean of the prior distribution represents the best
estimate of the parameter before observing the data. After having observed
the datax = x1, x5, ..., x,, itis possible to construct the probability density
function for the parameter conditional on the data. This is the posterior
distribution, f(0|x), and it combines the information in the prior distribution
with the information provided by the sample.

We can connect all this in terms of the probability density functions
involved, considering the sample and the parameter as random variables. For
simplicity we assume all distribution and density functions are continuous,
and the argument of the density function f indicates the random variables
involved (i.e., f(x|0) could be written fx|o(x|@), but that tends to become
cumbersome). Where the variable is 8 we use 7() to denote the probability
density function.

Let £(X]0) denote the density of X given the parameter . The joint
density for the random sample, conditional on the parameter 6 is

L(oa (X1:X2’ . ‘,Xn)) = f(Xh XZ; .. ,Xn|0)

This is the likelihood function that was used extensively in Chapter 3. The
likelihood function plays a crucial role in Bayesian inference as well as in
frequentist methods.

Let 7(0) denote the prior distribution of 8, then, from Bayes’ theorem,
the joint probability of X1, X5, ..., X,, 0 is

[(X1,Xa, o, X, 0) = L(0;(X1, Xa, ..., X)) 7(0) (5.1)
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Given the joint probability, the posterior distribution, again using Bayes’

theorem, is

L(6; (X1, X3, ..., X)) m(0)
f(Xl,XZ) .. ;Xﬂ)

m(01X1, X2, ..., Xp) = (5.2)

The denominator is the marginal joint distribution for the sample. Since
it does not involve 0, it can be thought of as the constant required so that
m(0|X1, ..., X,) integrates to 1.

The posterior distribution for 6 can then be used with the sample
to derive the predictive distribution. This is the marginal distribution of
future observations of x, taking into consideration the information about
the variability of the parameter 0, as adjusted by the previous data. In terms
of the density functions, the predictive distribution is:

flxlxt, ...,x,) = L f(x|0)7(O|x1, ..., x,)d0O (5.3)

In Chapter 11, some examples are given of how to apply the predictive
distribution using the Markov chain Monte Carlo method, described in
this chapter, as part of a stochastic simulation analysis of equity-linked
contracts.

We can use the moments of the posterior distribution to derive estima-
tors of the parameters and standard errors. An estimator for the parameter
0 is the expected value E[0]|X1, X3, ..., X,]. For parameter vectors, the
posterior distribution is multivariate, giving information about how
the parameters are interrelated.

Both the classical and the Bayesian methods can be used for statistical
inference—estimating parameters, constructing confidence intervals, and so
on. Both are highly dependent on the likelihood function. With maximum
likelihood we know only the asymptotic relationships between parameter
estimates; whereas, with the Bayesian approach, we derive full joint dis-
tributions between the parameters. The price paid for this is additional
structure imposed with the prior distribution.

MARKOV CHAIN MONTE CARLO—AN INTRODUCTION

For all but very simple models, direct calculation of the posterior distribution
is not possible. In particular, for a parameter vector @, an analytical
derivation of the joint posterior distribution is, in general, not feasible. For
some time, this limited the applicability of the Bayes approach. In the 1980s
the Markov chain Monte Carlo (MCMC) technique was developed. This
technique can be used to simulate a sample from the posterior distribution
of 6. So, although we may not know the analytic form for the posterior
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distribution, we can generate a sample from it, to give us any information
required, including parameter estimates, confidence intervals, and parameter
correlations.

Technically, the MCMC algorithm is used to construct a Markov chain
{09,0M,02), ..}, which has as its stationary distribution the required
posterior, my. So, if we generate a large number of simulated values of the
parameter set using the algorithm, after a while the process will reach a
stationary distribution. From that point, the algorithm generates random
values from the posterior distribution for the parameter vector. We can use
the simulated values to estimate the marginal density and distribution
functions for the individual parameters or the joint density or distri-
bution functions for the parameter vector.

The early values for the chain, before the chain achieves the limiting
distribution, are called the “burn in.” These values are discarded. The
remaining values, {§*+1), (k+2) g(k+3) (N} are a random, noninde-
pendent sample from the posterior distribution g, enabling estimation of
the joint moments of the posterior distribution.

One of the reasons that the MCMC method is so effective is that we
can update the parameter vector one parameter at a time. This makes the
simulation much easier to construct. For example, assume we are estimating
a three-parameter distribution @ = (u, , 8). We can update @) to @+1)
by changing only one parameter at a time, conditioning on the current
values of the other parameters. In other words, given the data y and

we find

m(wly, o, ")

and simulate a value w1 from this distribution; we can then use this value
in the next distribution and so proceed, simulating:

(r+1) ( aly, u (r+1) B(r)) (54)
B (r+1) Bly! (r+1) , (r)) (55)
This gives us 7D = (w1 o1 g+ and the iteration proceeds.

The problem then reduces to simulating from the posterior distributions
for each of the parameters, assuming known values for all the remaining
parameters.

For a general parameter vector @ = (04, 62, ..., 6,), the posterior dis-
tribution of interest with respect to parameter 6; is

7(6i]y, 0-;) < f(y/0) p(0) (5.6)
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where 0, represents the set of parameters excluding 6;, and p(6;) is the
prior distribution for 6; (we assume the prior distributions for the individ-
ual parameters are independent). The joint density f(y|@) is the likelihood
function described in Chapter 3. If we can find a closed form for the condi-
tional probability function, we can simulate directly from that distribution
(This is the Gibbs sampler method). In many cases, however, there is no
closed form available for any of the posterior distributions; in these cases,
we may be able to use the Metropolis-Hastings algorithm. Both of these
methods are described in much more detail, along with full derivations for
the algorithms, in Gilks, Richardson, and Spiegelhalter (1996). Their book
also gives other examples of MCMC in practice and discusses implemen-
tation issues around, for example, convergence, which are not discussed in
detail here.

THE METROPOLIS-HASTINGS ALGORITHM (MHA)

The Metropolis-Hastings algorithm (MHA) is relatively straightforward to
apply, provided the likelihood function can be calculated. The algorithm
steps are described in the following sections. Prior distributions are assigned
before the simulation; the other steps are followed through in turn for each
parameter for each simulation. In the descriptions below, we assume that
the rth simulation is complete, and we are now generating the (r + 1)th
values for the parameters.

Prior Distributions =+ (0;)

For each parameter in the parameter vector we need to assign a prior dis-
tribution. These can be independent, or if there is a reason to use joint
distributions for subsets of parameters that is also possible. In the examples
that we use, the prior distributions for all the parameters are independent.

The center of the prior distribution indicates the best initial estimate of
where the parameter lies. If the maximum likelihood estimate is available,
that will be a good starting point. The variance of the prior distribution
indicates the uncertainty associated with the initial estimate. If the variance
is very large, then the prior distribution will have little effect on the posterior
distribution, which will depend strongly on the data alone. If the variance
is small, the prior will have a large effect on the shape and location of the
posterior distribution. The exact form of the prior distribution depends on
the parameter under consideration. For example, a normal distribution may
be appropriate for a mean parameter, but not for a variance parameter,
which we know must be greater than zero. In practice, prior distributions
and candidate distributions for parameters will often be the same family.
The choice of candidate distributions is discussed in the next section.
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The Candidate Distribution g(£0;)

The algorithm uses an acceptance-rejection method. This requires a random
value, ¢ say, from a candidate distribution with probability density func-
tion g(&6;). This value will be accepted or rejected as the new value 9}”1)
using the acceptance probability a defined below.

For the candidate distribution we can use any distribution that spans
the parameter space for 6;, but some candidate distributions will be more
efficient than others. “Efficiency” here refers to the speed with which the
chain reaches the stationary distribution. Choosing a candidate distribu-
tion usually requires some experimentation. For unrestricted parameters
(such as the mean parameter for an autoregressive [AR], autoregressive
conditionally heteroscedastic [ARCH], or generalized autoregressive condi-
tionally heteroscedastic [GARCH] model), the normal distribution centered
on the previous value of the parameter has advantages and is a common
choice. That is, the candidate value ¢ for the (r + 1)th value of param-
eter 0; is a random number generated from the N(Hi(’), a?) distribution
for some o?, chosen to ensure that the acceptance probability is in an
efficient region.

The normal distribution can sometimes be used even if the param-
eter space is restricted, provided the probability of generating a value
outside the parameter space is kept to a near impossibility. For exam-
ple, with the AR(1) model, the normal distribution works as a candidate
distribution for the autoregressive parameter a, even though we require
la| < 1. This is because we can use a normal distribution with vari-
ance of around 0.1 with generated values for the parameter in the range
(—0.1,0.2).

For variance parameters that are constrained to be strictly positive,
popular distributions in the literature are the gamma and inverted gamma
distributions. Again, there are advantages in centering the candidate distri-
bution on the previous value of the series.

The Acceptance-Rejection Procedure

The candidate value, & may be accepted as the next value, 01-(7“), or it may

be rejected, in which case the next value in the chain is the previous
| 0"+t = 9" Acceptance or rejection is a random process; the

value, 6, ; p j p ;

algorithm provides the probability of acceptance.

For the (r + 1)th iteration for the parameter 6;, we have the most recent
value denoted by 01-(’); we also have the most current value for parameter
set excluding 6;:

0"t = (oY, e, 0 L o) (5.7)

~1
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The value from the candidate distribution is accepted as the new value for
6; with probability

. w(ély, 0"7") q(6"]¢)
a = min(1, — 00— ")
(0, |y’ - )‘J<§|0i )

~i

(5.8)

where 7 (6,]y, 08:1”)) is the posterior distribution for 6;, keeping all other

parameters at their current values, and conditioning on the data, y. From
equation 5.2:

m(éy, 0" ") L& ev ) m(g) )
7(6"]y, 077" f(y) Li(6"0" ") m(6")

~1 1 ~1 1

(5.9)

where L;(z,0-;) is the likelihood calculated using z for parameter 6;; all
other parameters are taken from the vector @-;; and the () terms give
the values of the prior distribution for 6;, evaluated at the current and the
candidate values. The acceptance probability then becomes:

) (r,r+1) (r)
. =min(l, Li(& 0%"") m(8) q(618) ) (5.10)

L6077 ) w(6) q(&l6”)

i ~i i

If « = 1, then the candidate ¢ is assigned to be the next value of the
parameter 9}”1). If o < 1, then we sample a random value U from a uniform
(0,1) distribution. If U < «, set Hi(rﬂ) = & otherwise set 01-('“) = 01-(').

It is worth considering equation 5.10. If the prior distribution is disperse,
it will not have a large effect on the calculations because it will be numerically
much smaller than the likelihood. So a major part of the acceptance proba-
bility is the ratio of the likelihood with the candidate value to the likelihood
with the previous value. If the likelihood improves, then @ = 1, depending
on the g ratio, and we probably accept the candidate value. If the likelihood
decreases very strongly, @ will be small and we probably keep the previous
value. If the likelihood decreases a little, then the value may or may not
change. So the process is very similar to a Monte Carlo search for the joint
maximum likelihood, and the posterior density for @ will be roughly propor-
tional to the likelihood function. The results from the MHA with disperse
priors will therefore have similarities with the results of the maximum likeli-
hood approach; in addition, we have the joint probabilities of the parameter
estimates.
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Did It Work?

It is important to look at the sample paths and the acceptance frequencies
to assess the appropriateness of the distributions. A poor choice for the
candidate distribution will result in acceptance probabilities being too low
or too high. If the acceptance probability is too low, then the series takes
a long time to converge to the limiting distribution because the chain will
frequently stay at one value for long periods. If it is too large, the values tend
not to reach the tails of the limiting distribution quickly, again resulting in
slow convergence. Roberts (1996) suggests acceptance rates should lie in
the range [0.15,0.5].

In Figure 5.1 are some examples of sample paths for the mean parameter
generated for an AR(1) model, using the MHA sample of parameters and
using the TSE 300 data for the years 1956 to 1999. In the top figure, the
candidate distribution is N(u, 0.05%). The acceptance probability is very
low; the relatively high variance of the candidate distribution means that
candidates tend to generate low values for the likelihood, and are therefore
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FIGURE 5.1 Sample paths for u parameter for AR(1) model.
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usually rejected. The process gets stuck for long periods, and convergence
to the stationary distribution will take some time. In the middle figure, the
candidate distribution has a very low standard deviation of 0.00025. The
process moves very slowly around the parameter space, and it takes a long
time to move from the initial value (u'” = 0) to the area of the long-term
mean value (around 0.009). Values are very highly serially correlated. The
bottom figure uses a candidate standard distribution of 0.005. This looks
about right; the process appears to have reached a stationary state and the
sample space appears to be fully explored. Serial correlations are very much
lower than the other two diagrams. The correlation between the rth and
(r + 5)th values is 0.73 for the top diagram, 0.96 for the second, and 0.10
for the third. These correlations ignore the first 200 values.

MCMC FOR THE RSLN MODEL

In this section, the application of the MCMC method to the RSLN model is
described in detail. Many other choices of prior and candidate distribution
would work equally well and give very similar results. The choices listed
were derived after some experimentation with different distributions and
parameters. Without strong prior information, it is appropriate to set the
variances for the prior distributions to be large enough that the effect of the
prior on the acceptance probability is very small in virtually all cases.

M1, M2

For the means of the two regimes, we use identical normal prior distribu-
tions; that is w1, wo ~ N(0,0.02?). The candidate distribution for the first
regime is N(u!”,0.0052) and for the second regime is N(,uy), 0.02%). The
candidate density for u, is therefore:

2
‘/(27T)exp<—%<)\_l'“>) (5.11)

1
g(Alp1) = 0,005

0.005

This is an example of a random-walk Metropolis algorithm, where the ratio

a(pld) _
q(Alp1)

and the acceptance probability for w; reduces to

@ = min<1, L ()(‘;)6”(1)) ¢>()(\r/).02) ) (5.12)
Li(n,07) ¢(u)”/.02)

and similarly for w,.
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The candidate variance is chosen to give an appropriate probability
of acceptance. The acceptance probabilities for w; and w, depend on
the distributions used for the other parameters; using those described
below, we have acceptance probabilities of around 40 percent for both
variables.

g1, 02

It is conventional to work with the inverse variance, 7 = o2, known as
the precision. The prior distribution for 7 is the gamma distribution with
prior mean 865 and variance 8497; the prior distribution for 7, is gamma
with mean 190 and variance 1,0002. The prior distributions are centered
around the likelihood estimates, but are both very disperse, providing little
influence on the final distribution.

The candidate dlstrlbutlons are also gamma; for 7', we use a dis-
tribution with mean Tl ) and standard deviation 7'1 / 2.75. For 72’“), we
use a distribution with mean ’Té and standard deviation, 7'2 / 1.5. The
different coefficients of variation (CV = variance/mean?) are determined
heuristically to give acceptance probabilities within the desired range. The
acceptance probabilities for 7 and 7 candidates are approximately 20
percent to 35 percent.

(r+1)

P12, P21

Obviously, the p;; parameters are constrained to lie in (0, 1), which indi-
cates the beta distribution for prior and candidate distributions. The prior
distributions used for the transition probabilities are pq1, ~ Beta(2,48)
and py1 ~ Beta(2, 6), giving prior means of 0.04 and 0.25 and standard
deviations of 0.027, 0.145 respectively for p1, and py.1.

The candidate distributions are also beta, with A ~ Beta(1.2,28.8)
for P12, and for p;4, candidate A ~ Beta(1,3). These have the same
means as the prior distributions but are more widely distributed, to
ensure that candidates from the tails of the distribution are adequately
sampled.

The acceptance rates for p1 and p,q are approximately 35 percent.

MCMC Results for RSLN Model

The results given here are from 10,000 simulations of the parameters,
separately for the TSE and S&P data. The first 500 simulations are ignored
in both cases to allow for burn-in.

Table 5.1 gives the means and standard deviations of the posterior pa-
rameter distributions. The means of the posterior distributions are Bayesian
point estimates for the individual parameters. These are very similar to
the maximum likelihood estimates in Table 3.5. This is not surprising,
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TABLE®.1 MCMC mean parameters, with standard deviations.

TSE 300
fi = 0.0122 (0.002) & = 0.0351 (0.002) Pra = 0.0334 (0.012)
f = —0.0164 (0.010) & = 0.0804 (0.009) Pa1 = 0.2058 (0.065)
S&P 500
i = 0.0121 (0.002) & = 0.0355 (0.002) Pra = 0.0286 (0.014)
f = —0.0167 (0.014) & = 0.0802 (0.016) Pr1 = 0.2835 (0.098)

because the method is very close to maximum likelihood, especially with
such disperse prior distributions. Although the standard deviations also cor-
respond closely to the estimated standard errors of the maximum likelihood
estimates, these slightly understate the standard errors for the parameters
because the estimates are serially correlated. The effect of this is reduced
by using every 20th value in the standard deviation calculations. With this
spacing, the serial correlations are very small.

Figure 5.2 shows the estimated marginal density functions for the
parameters. The solid lines show the TSE results, and the broken lines
show the results for the S&P 500 data. The results for regime 1 (the low-
volatility regime) are very similar. For the high volatility, the two sets of
data appear different. An analysis of the timing of regime switches shows
that whenever the S&P 500 is in regime 2, so is the TSE 300, but the TSE
also makes the occasional foray into the high-volatility regime when the
S&P is comfortably in the low-volatility regime. The explanation appears
to be that jitters in the U.S. market affect the Canadian market at the same
time, but there are also influences specific to the Canadian market that can
cause a switch into the high-volatility regime, but that do not affect the
U.S. market.

Figure 5.2 demonstrates one of the advantages of the MCMC method-
ology in this case; typically, using maximum likelihood methods, we
assume estimates are normally distributed (which is approximately true
for very large sample sizes). Here, our sample size is small and it is
clear from the graphs that the parameter estimates are not all normally
distributed.

Table 5.2 gives the correlations for the parameters, but Figure 5.3
demonstrates the relationships between the parameters more clearly than
the correlations. This figure shows, for example, that higher values of the
transition probability from regime 1 to regime 2 are associated with higher
values for the opposite transition from regime 2 to regime 1. It also shows
that higher values for the regime 1 to regime 2 transition probability seem to
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FIGURE 5.2 Simulated marginal posterior parameter distributions.

be compatible only with lower values for the regime 2 standard deviation,
and with relatively high values for the regime 2 mean.

In Figure 5.4, we show the sample paths for the MCMC estimation
for the six parameters of the TSE data. These are useful for an indication
of the serial correlations, and to assess whether the candidate densities are

TABLE 5.2 Parameter correlations using MCMC estimation.

TSE 300
151 o1 P12 M2 (o)) P21
Jo 1.0000 —-0.1630 0.1681 —-0.1043 -0.1678 0.0552
] 1.0000 —0.3438 —0.1094 0.2235 —-0.0374
P12 1.0000 0.0796 -0.2517 0.3385
753 1.0000 -0.1476 —0.1433
o 1.0000 0.1238

P21 1.0000
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appropriate (is the process reasonably stable). It is always important to
check the sample paths when using the MHA. The paths for the parameters
appear satisfactory; they resemble the third diagram of Figure 5.1, and not
either of the first two. Determining when the process has converged to the
ultimate stationary distribution is complex and technical. In practice, a way
of checking is to rerun the simulations from a few different seed values, to
ensure that the results are stable.

The log-likelihood using the MCMC mean parameter estimates for the
TSE 300 data is 922.6 compared with the maximum of 922.7. In Figure 5.5,
some contour plots of the likelihood function for the S&P data are given,
with the point (posterior mean) MCMC estimate also marked. This shows
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the relationship between the MCMC point estimates and the maximum
likelihood estimates.

SIMULATING THE PREDICTIVE DISTRIBUTION

The Predictive Distribution

Once we have generated a sample from the posterior distribution for
the parameter vector, we can also generate a sample from the predictive
distribution, which was defined in equation 5.3. This is the distribution
of future values of the process X;, given the posterior distribution (0)
and given the data x. Let Z = (Yy,Ys, ..., Y,,) be a random variable
representing m consecutive monthly log-returns on the S&P/TSX composite
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index. Let y represent the historic data used to simulate the posterior sample
under the MHA. The predictive distribution is

f(zly) = L flz

0,y)m(0]y)do (5.13)

This means that simulations of the m future log-returns under the regime-
switching lognormal process, generated using a different value for @ for each
simulation, (generated by the MCMC algorithm) form a random sample
from the predictive distribution.

The advantage of using the predictive distribution is that it implicitly
allows for parameter uncertainty. It will be different from the distribution
for z using a central estimate, E[@]y], from the posterior distribution—the
difference is that the predictive distribution can be written as

Eg), [£(210, y)] (5.14)

while using the mean of the posterior distribution as a point estimate for
is equivalent to using the distribution:

f(z[E[6]y]) (5.15)

Around the medians, these two distributions will be similar. However,
since the first allows for the process variability and the parameter variability,



0.0
g 0.06
= -0.01 _
a i)
2 i
g L 0.04
5, —0.02 =
oy A
~
~0.03 - 0.02 +
L2
T T T T T T T
0.008 0.010 0.012 0.014 0.016 0.030 0.032 0.034 0.036 0.038 0.040
Regime 1 Mean Regime 1 SD
9
0.09 - 48 ? 0.09 /—%-L\
2 0.08 2 0.08 ‘
o a4 52
£ E
& 0.07 & 0.07 A \_/
[~ o~
0067 94/ 0067 \\—///%?
6 8 6 944 6
T T T T T T T T T T
0.030 0.032 0.034 0.036 0.038 0.040 -0.03  -0.02  -0.01 0.0
Regime 1 SD Regime 2 Mean
9 2
0.5 H 52
7 0.4 7
= =
] =
= 03 =
o8
02~ Taso W
T T T
0.02 0.04 0.06 -0.03 -0.02 -0.01 0.0
Pr[1->2] Regime 2 Mean
0.040 —
0.038 4
o
7] —
— 0.036 4 N
o 1
g =
B 0.034 z
2
0.032
0.030 — 4
0.008 0.010 0.012 0.014 0.016 0.06 0.07 0.08 0.09
Regime 1 Mean Regime 2 SD
N
0.06 —
ﬁ S,
N
L 0.04
= 9
0.02 H 9::;6
T T T

T T
0.008 0.010 0.012 0.014 0.016

Regime 1 Mean

FIGURE 5.9 Likelihood contour plots, with MCMC point estimates; S&P data.



9 MARKOV CHAIN MONTE CARLO (MCMC) ESTIMATION

0.35
—— RSLN, no parameter uncertainty

ozo0d 7 RSLN with parameter uncertainty

(simulated)

o

o

93
|

0.20

Probability Density Function
=
=
(2]
!

e

-

o
I

0.05

0.0 T T T T T
0 2 4 6 8 10 12

Accumulated Proceeds of 10-Year Unit Investment, TSE Parameters

FIGURE 5.8 Ten-year accumulation factor density function; with and without
parameter uncertainty (TSE parameters).

whereas the second only allows process variability, we would expect the
variance of the predictive distribution to be higher than the second distribution.

Simulating the Predictive Distribution for the
10-Year Accumulation Factor
We will illustrate the ideas of the last section using simulated values for
the 10-year accumulation factor, using TSE parameters. First, using the
approach of equation 5.15, the point estimates of the parameters given
in Table 5.1 were used to calculate the density plotted as the unbroken
curve in Figure 5.6. We then simulated 15,000 values for the accumulation
factor. For each simulation of the accumulation factor, we sampled a new
vector from the set of parameters generated using MCMC. The parameter
sample generated by the MCMC algorithm is a dependent sample. To lessen
the effect of serial correlation, only every fifth parameter set was used in
the simulation of the accumulation factor. The first 300 parameter vectors
generated by the MCMC algorithm were ignored as burn-in. The resulting
simulated density function is plotted as the broken line in Figure 5.6.

The result is that incorporating parameter uncertainty gives a distribu-
tion with fatter left and right tails. This will have financial implications for
equity-linked liabilities, which we explore more fully in Chapter 11.



Modeling the Guarantee Liability

INTRODUCTION

R isk management of equity-linked insurance requires a full understanding
of the nature of the liabilities. In this chapter, we will discuss how to
use stochastic simulation to determine the liability distribution under the
guarantee.

In the section on provision for equity-linked liabilities in Chapter 1, four
approaches to making provision for the guarantee liability were discussed.
Two of these, the actuarial approach and dynamic hedging (or the financial
engineering approach), form the subject of the next four chapters.

Under the actuarial approach to risk management, sufficient assets are
placed in risk-free instruments to meet the liabilities, when they fall due,
with high probability. We need to determine the distribution of the liabilities
and, as the assets are assumed to be “lock-boxed,” we can do this without
reference to the assets held. This is the subject of this chapter.

Under the financial engineering approach, the capital requirement is
used to construct a replicating portfolio that will, at least approximately,
meet the guarantee when it becomes due. However, stochastic simulation
of the liabilities is also important to the financial engineering approach
to risk management for the following reasons: there will be transactions
costs; the rebalancing of the hedge will be at discrete time intervals rather
than continuously; and the stock returns will not precisely follow the model
assumed or the parameters assumed. In this case, the assets and liabilities are
very closely linked, and we need to model both simultaneously. Nevertheless,
many of the issues raised in this chapter will also be important in Chapter 8,
where the financial engineering approach to risk management is discussed
in more detail.
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THE STOCHASTIC PROCESSES

The liability under an individual equity-linked contract depends largely
on two stochastic processes. The first is the equity process on which the
guarantee is based. We assume a suitable equity model is available, selected
perhaps from the models of Chapter 2. We also assume parameters have
been estimated for the equity model. Given the model and parameters, it is
possible to simulate an equity process modeling the returns earned by the
separate fund account before the deduction of charges. In other words, we
may simulate individual realizations of the accumulation factors for each
time unit ¢ — 1 to ¢, {Rt}, so that an equity investment of $1 at ¢t — 1
accumulates to R; at 2.

The second stochastic process models policyholder transitions—that is,
whether the contract is still fully in force or whether the policyholder has
died, surrendered a proportion of the fund, or withdrawn altogether. We
could construct a stochastic process to model the policyholder behavior
and simulate the policyholder transition process. In general we do not do
this. For mortality it is usually sufficient to take a deterministic approach,
provided the portfolio is sufficiently large. The underlying reason for this
is that mortality is diversifiable, which means that for a large portfolio of
policyholders the experienced mortality will be very close to the expected
mortality.

Withdrawals are more problematic. Withdrawals are, to some extent,
related to the investment experience, and the withdrawal risk is, therefore,
not fully diversifiable. However, there is insufficient data to be confident
of the nature of the relationship. We also know a reasonable amount
about the withdrawal experience of pure investment contracts, such as
mutual funds, but, crucially, we do not know how this translates to
the separate account contract with maturity guarantees. It is certainly to
be expected that the guarantee would materially affect the withdrawal
behavior. The relatively recent surge in the sale of contracts carrying
maturity guarantees, both in Canada and in the United States, means that
the data available to companies is all based on recent investment experience.
For example, despite having many thousands of contracts, we still only
have around 10 years of data on segregated fund policyholder behavior
in Canada.

The usual approach to all this uncertainty about withdrawals is to use a
very simple approach, but bear in mind the possible inaccuracy in analyzing
the results. The simplest approach is to treat withdrawals deterministically.
Some work on stochastic modeling of withdrawals has been done, for
example, Kolkiewicz and Tan (1999), but until some substantial relevant
data is available, all models (including the deterministic constant withdrawal
rate model) are highly speculative.
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SIMULATING THE STOCK RETURN PROCESS

For most of the univariate equity models described in Chapter 2, it is fairly
easy to simulate scenarios. The first requirement is a reliable random number
generator; most models will need values generated from the standard normal
distribution, but some may need Uniform(0,1) values. Many commercial
software packages offer random number generators, some of which are
more reliable than others. It is very important to check any generator you
use for accuracy (does it actually produce the distribution it is supposed to,
with serial independence?) and periodicity.

All random number generators use deterministic principles to generate
numbers that behave as if they were truly random. All generators will
eventually repeat themselves; the number of different values generated
before the sequence starts again is called the period of the generator.
Some generators have very high periodicity. However, software that is
not designed for serious statistical purposes may use built-in generators
with rather low periodicity. This can have a significant effect on the
accuracy of inference from a simulation exercise. For more information
on the generation of uniform and other random numbers, a good text is
Ross (1996); the Numerical Recipes books (e.g., Press et al. 1992) also
provide reliable algorithms for programming random number generators.

Given the appropriate random number generator, generating the stock
price or return process is straightforward for many models. For example,
for the lognormal (LN) model with parameters w and o per time unit, the
process is as follows:

1. Generate a standard random normal deviate z;.

2. Y1 = p + oz gives the log-return in the first time unit, and S; =
So exp(Y7) is the stock price at# = 1.

3. Repeat (1) and (2) for ¢t = 2,3,...,n where 7 is the projection period
for the simulation.

4. Repeat (1) to (3) for N scenarios, where N is chosen to give the desired
accuracy for the inference required.

For the generalized autoregressive conditionally heteroscedastic, or
GARCH(1,1), model, the distribution of Y; depends on the value of Y,
and o,—1, which causes problems at the start of the simulation. If the
simulation is designed to apply at a specific date, then the current values
of Y and o at that time may be used for Yy and oy, though oy must be
estimated because it is unobservable directly. If the simulation is not for
inference relating to a specific starting date, then “neutral” starting values
may be used; in this case, reasonable starting values would be the long-term
mean values of the variables, that is set
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o
Y, = 2 %0
0= M a0 T—a - B
Given the starting values and generated independent standard normal
random deviates, apply the GARCH equation to generate the log-returns:

Y, = p+ o (6.1)
of = ag+ ay(Yr1 — p)? + Boi, (6.2)

For the regime-switching LN (RSLN-2) model with two regimes, the
distribution of Y; depends on the starting regime. This is unobservable, but
the probability that the process is in a specific regime can be estimated based
on the information from current and previous returns. The probability is

plpolyo,y-1,...,0) (6.3)

and it was used in the calculation of the likelihood function for the RSLN-2
model in the section on maximum likelihood estimation (MLE) for the
RSLN-2 model in Chapter 3, where the description of the calculation of this
function is described.

A neutral starting value that does not assume a specific starting date
would use the stationary distribution of the regime-switching process for
the probability for the starting regime. That is,

P12

Pr =1l=m = ——
Leo ] ! P12 + D21

So the simulation for the RSLN-2 model could go as follows:

1. Generate a uniform random number z ~ U(0, 1).
2. If u < Pr[pyp = 1], assume py = 1; otherwise assume py = 2.
3. Then generate z ~ N(0, 1).
4. Yy = py, + 0p 2 gives the log-return in the first time unit and $; =
So exp(Y7) is the stock price at ¢ = 1.
5. Generate a new u ~ U(0, 1).
6. If u < pp, 1, then assume p; = 1; otherwise assume p; = 2.
7. Repeat from (3) on fort = 2,...,n.
8. Repeat (1) to (7) for the required number of scenarios.
NOTATION

In this section, we set out some of the notation used in this chapter. A
full list of the actuarial notation is given in Appendix C. Let ,pZ, ,¢%, and
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:q%, 4|:q% denote the double decrement survival and exit probabilities for
a life aged x, where w denotes withdrawal and d denotes death. The term
variables # and ¢ are measured in the time step used in the simulation—this
is months for all the examples of this and subsequent chapters, which is
playing loose with standard actuarial notation.

The fund and cash-flow variables are as follows:

G denotes the guarantee level per unit investment, subscripted G; if it
can change over time.

F; denotes the market value of the separate account at ¢ assuming the
policy is still fully in force. We assume that the management charge
or management expense ratio (MER) is deducted from the fund at
the beginning of each month; also for the guaranteed accumulation
benefit, the fund may be increased at some month ends. It is convenient
sometimes to distinguish between the fund immediately before these
month-end transactions and the fund immediately after. Let F,- denote
the month-end fund at # before these transactions, and let F;
denote the month-end fund after the transactions. Where the sign
— or + Is missing, assume +.

S, denotes the value of the underlying equity investment at ¢, where
Sop is assumed for convenience to be equal to 1.0; that is, S, is the
accumulation factor from 0 to z. S; is randomly generated from an
appropriate distribution. Y; is the associated log-return process, so that
SeexplY, + Yo + -+ + Y1} = Siprn

m denotes the management charge rate deducted from the separate
account, per month. The portion available for funding the guarantee
cost is m,, called the margin offset. This may be split by benefit so that,
for example, for a joint guaranteed minimum maturity benefit (GMMB)
and guaranteed minimum death benefit (GMDB) contract the total risk
charge per month would be m, = m,, + m,, where m,, is allocated to
the GMMB and m, is allocated to the GMDB.

M; represents the income at # from the guarantee risk charge.

C; represents the liability cash flow at ¢ from the contract, net of the
income from M;, allowing for deaths and withdrawals.

Lo is the present value of future liabilities, discounted at a constant
risk-free force of interest of » per year.

The relationships between these variables, assuming that the margin

offset is collected monthly in advance, are

\Y
Si-1

F- = Fi_q+ (6.4)

S
Si-1

Fﬁ = Ft’ (1 - m) = F(t71> (1 - m) (65)
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so, for integer ¢ and u, and assuming no cash injections into the fund
between ¢ and ¢ + u,

Stvu(l —m)"
e o

Fiiuy+ = F S
t

(6.6)

Now, let Fo- be the fund at the valuation date (or at policy issue date,
in which case it is the policy single premium), then

Se(1—m)

Ft = FO* SO

(6.7)

The margin offset income, which is the income allocated to funding the
guarantee, 1s

M; = (F;-) m. (6.8)
S(1 —m)’

= m. F()f SO

(6.9)

GUARANTEED MINIMUM MATURITY BENEFIT

In this section, we show how to generate the distribution of the present
value of the guarantee liability for a simple GMMB policy held by a life
aged x with remaining duration # years. We assume a monthly discrete
time model for equity returns and management charges. Withdrawals and
deaths are assumed to occur at month ends. As discussed, exits are treated
deterministically, so the only random process simulated is the equity price
process.

Clearly other assumptions and approaches are possible; the aim here is
to demonstrate the basic principles. Since S; is a stock index, we assume
So = 1.0 so that S; is the accumulation factor for the period from time 0 to
time . Recall that (G — F,)* = max(0, G — F,,). Then,

C = —pi M, t=01,...,n—-1 (6.10)

and
Cy = —upl (G—F,)" (6.11)

Then,

Ly=> Ce™ (6.12)
t=0
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So C; and L can be calculated for each stock index scenario, and distribu-
tions for the cash flows in different years and for the present value random
variable can all be simulated.

GUARANTEED MINIMUM DEATH BENEFIT

Assume no reset or rollover benefit; the death benefit is the greater of
the initial investment and the fund value at death. Using a deterministic
approach to the death benefit is equivalent to assuming that ;q, lives per
policy die in the interval (0, t). (See Appendix C for an explanation of the
actuarial notation used here.) The liability cash flow for the benefit at # is
therefore:

G
o

—DIM + 11gf(G—F)" t=0,1,...,n (6.13)
— T Fo- So1 — m) Yy + 1-1)1q% (G — Fo- S (1 — m)")*  (6.14)

M¢ is the risk charge income in respect of the death benefit.

EXAMPLE

We will work through an example of a combined GMMB and GMDB
contract to show how easy this is. All the details to follow this example are
given in Appendix A. For any useful information, we would need at least
1,000 simulated stock return scenarios, but for the purpose of demonstrating
the calculation we will use just one.

Suppose we have a contract with a GMMB and a GMDB at a fixed
guarantee level, with the following features:

B Letx = 50, Fp- = 100, G = 100, m = .02/12 per month, and m, =
.005/12 per month.

B Let the remaining contract term be 12 months.

B Let the dependent death and withdrawal rates be as given in Appendix A.

B Let the equity index given be a single, randomly generated scenario,
generated using the RSLN model.

The result of the single scenario is given in Table 6.1. The margin offset
is received in advance, so there is no income at the end of the final month.
The death benefit under the guarantee is greater than zero only on death in
the first or last months; for the rest of the period the fund is larger than the
guarantee. At the end of the contract, the fund is worth slightly less than
the guarantee, so a small GMMB is due.
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TABLE 6.1 GMMB/GMDB liability cash flow projection, single random
stock scenario.

Equity Margin DB and
Month Index S, Offset MB
t (Simulated) F,- D (|1g¢% Income Outgo C,
0 1.0000 100.00 1.0000 0.0003  0.042 —0.042
1 9935 99.19 0.9931 0.0003  0.041 0.0002 —0.041
2 1.0227 101.93 0.9862 0.0003 0.042 0 —0.042
3 1.0399 103.48 0.9793 0.0003 0.042 0 —0.042
4 1.0761 106.90 0.9725 0.0003 0.043 0 —0.043
S 1.1095 110.03  0.9658 0.0003 0.044 0 —0.044
6 1.0800 106.93 0.9591 0.0003 0.043 0 —0.043
7 1.1195 110.65 0.9524 0.0003 0.044 0 —0.044
8 1.2239 120.77 0.9458 0.0003 0.048 0 —0.048
9 1.0894 107.32  0.9392 0.0003 0.042 0 —0.042
10 1.0865 106.86 0.9327 0.0003 0.042 0 —0.042
11 1.0573 103.81 0.9262 0.0003 0.040 0 —0.040
12 1.0150 99.49 0.9198 0.0003 0.000 0.471 0.471

At a risk-free annual rate of interest of 6 percent per year, the net
present value of future liability for this scenario (the sum of the cash flow
present values) is — 0.145. The negative sign implies a net income.

GUARANTEED MINIMUM ACCUMULATION BENEFIT

Under a guaranteed minimum accumulation benefit (GMAB) policy there
may be multiple maturity dates. The design offers guaranteed renewal of the
contract. On renewal the minimum term applies (typically 10 years). There
may be an upper limit to the number of allowable renewals.

The effect of renewal is that if the guarantee is in-the-money, G > Fr,
then the insurer must pay out the difference. Then, on renewal, the fund
value is G. The contract then starts again at the same guarantee level.
If the guarantee is out-of-the-money, that is G < Fr, the guarantee is
automatically reset at renewal to the fund value at that time. So, the
minimum of Fr and G is always increased to the maximum of Fr and G at
renewal, with a cash payment due if G > Fr. This is sometimes referred to
as a rollover option. Although expense charges are typically not guaranteed,
increases are rare and it is prudent to assume no changes. Some policyholders
may choose not to renew. This can be allowed for in the decrement rate g*.
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Assume that the next renewal is in 71 months, and subsequent renewals
occur at times 7, ..., 7, given that the contract is in force at those dates.
Since the fund may increase at the renewal dates, we distinguish between
the fund before and after the injection of cash, denoting by F,- the fund
immediately before renewal and by F,,: the fund immediately after renewal.

The guarantee in force at the start of the projection period is Go = F,
from the last reset before the projection. Subsequently,

Gy

F.-
max(Go, F,;) = Go max(l.O, 1.0 + F—l) (6.15)

N
g

2
E,-
Gy = max(Gy, Fyy) = Go Hmax(l.o, 1.0 + Fn+ ) (6.16)

r=1 —1

G
k F,.

r—1

k
E,-
max(Gy_1, Fr ) = Goﬂmax(m, 10+ - ) (6.17)

r=1

Now the fund growth between renewal dates arises from the underlying
index growth, S, / Su,_,» with management charges deducted, so that

Fn’ — n
g = (= Sn (6.18)

-1

ny—1

So the guarantee in force can be tracked through each individual projection.

Between maturity dates, say at month # where 7, < t < 7,41, the income
is from the risk charge and the outgo is from the death benefit, which applies
at guarantee level G,. The liability cash flow then is:

Ct = 171|1qz(Gr — Ft)+ - tp_;Mt ny << Nyt (6.19)
At renewal or maturity dates 4, ..., n the cash flow is

Cn = n,71|1qz(Gr - Fn,’)+ + n,p; (Gr - Fn,’)+ - n,-p;Mnr (620)

where the first term allows for the GMDB in the final month, the second
term is the maturity benefit, and the third term is the risk-charge income at
renewal.
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GMAB EXAMPLE

In this section, we will again work through a single scenario to show how
the process described above works in practice. The scenario is set out in a
spreadsheet format because this gives a convenient layout for following an
individual projection. In practice, spreadsheets are generally not the most
suitable framework for a large number of simulations. The main reasons for
this are, first, that a spreadsheet approach may be very slow compared with
other methods. A spreadsheet approach may, therefore, limit the maximum
number of simulations that can be carried out in a reasonable time much
more severely than using a more direct programming approach. Secondly,
the built-in random number generators of proprietary spreadsheets are often
not suitable for a large number of simulations or for complex problems. The
example we show is a GMAB benefit with the following contract details:

B The separate fund value at the beginning of the projection period
is $100.

® The guarantee level at the start of the projection is $80.

B There are rollover dates where the fund is made up to the guarantee, or
vice versa, in two years, in 12 years with final maturity, and in 22 years
from the start of the projection.

B Management charges of 3 percent per year are deducted monthly in
advance.

B A margin offset of 0.5 percent per year, collected monthly from the
management charge, is available to fund the guarantee liability.

Stochastic simulation has been used to generate a stock index path
using the RSLN-2 model with MLE parameters as shown in Table 6.21.
Mortality is assumed to follow the Canadian Institute of Actuaries (CIA)
insured lives summarized in Appendix A. Lapses are assumed to be constant
at two-thirds percent per month. The precise mortality rates used in the
example are given in full in Appendix A.

TABLE 6.2 RSLN parameters for examples.

Regime 1 w1 = 0.012 o = 0.035 P12 = 0.037
Regime 2 w = —0.016 o, = 0.078 P21 = 0.210

!These are maximum likelihood parameters for TSE 300 data, 1956 to 1999 period.
These parameters are used for most of the examples in this and subsequent chapters.
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TABLE 6.3 Fund cash flows under example scenario assuming contract is in

force.

(t-1)—¢t Fi 1 M;—4 I F; G (G—F,)"
0-1 100.00 0.0417 —0.427% 99.32 80 0
1-2 99.32 0.0414 4.70% 103.73 80 0
2-3 103.73 0.0432 —-0.770% 102.67 80 0
3-4 102.67 0.0428 —-1.685% 100.69 80 0
4-5 100.69 0.0420 —1.428% 99.00 80 0
5-6 99.00 0.0413 1.530% 100.27 80 0
6-7 100.27 0.0418 8.098% 108.12 80 0
7-8 108.12 0.0450 —6.316% 101.03 80 0
8-9 101.03 0.0421 —-0.879% 99.89 80 0
9-10 99.89 0.0416 10.708% 110.31 80 0

10-11 110.31 0.0460 —6.302% 103.40 80 0
23-24 148.47 0.0619 7.356% 158.99 80 0
24-25 158.99 0.0662 1.917% 161.63 158.99 0
25-26 161.63 0.0673 —7.004% 149.94 158.99 9.05
26-27 149.94 0.0625 4.738% 156.65 158.99 2.34
27-28 156.65 0.0653 0.546% 157.11 158.99 1.88
141-142 107.01 0.0446 12.339% 119.91 158.99 39.08
142-143 119.91 0.0500 1.251% 121.11 158.99 37.88
143-144 121.11 0.0505 1.206% 122.26 158.99 36.73
144-145 158.99 0.0662 —1.649% 155.98 158.99 3.01
145-146 155.98 0.0650 4.362% 162.38 158.99 0
263-264 471.99 0.1967 6.755% 512.61 158.99 0

In Table 6.3, we show the fund at the start of the month, before
management charges are deducted, F,—1-; the income from the risk premium,
M, _1; the interest rate earned on the fund in the #th month, I;; and the end-
year fund, F,, after deducting management charges and adding the year’s
interest. All these figures are calculated assuming that the contract is still in
force. In this table Fy- starts at $100 at time ¢ = 0. The total management
charge deducted at the start of the year is 0.25, of which 0.0417 (= M) is
received as risk-premium income to offset the guarantee cost. The net fund
after expenses is $99.75, which earns a return of Iy = — 0.427 percent,
leading to an end-year fund of F; = $99.32. This is still greater than the
current guarantee of $80, so there is no guarantee liability for death benefits
in the first month.
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All through the first two years, the fund exceeds the guarantee at the end
of each month. At the end of the 24th month the first renewal date applies.
In this scenario F4- = 158.99, compared with the guarantee of $80. There
is, therefore, no survival benefit due, and the guarantee value is increased for
the renewed 10-year contract to the month-end fund value, $158.99.

In the 10 years following the first renewal under this single stock return
scenario, the index rises very slowly. After the guarantee has been reset to
the fund value, the fund value drifts below the new guarantee level, leaving
a potential death benefit liability. In fact, over the entire 10-year period the
accumulation is only 3.8 percent. Since expenses of 0.25 percent per month
are deducted from the fund, by the end of 144 months the fund has fallen
$36.73 below the guarantee that was set at the end of 24 months.

At the second renewal, then, the insurer must pay the difference to make
the fund up to the guarantee, provided the policy is still in force. Therefore,
at the start of the 145th month the fund has been increased to the guarantee
value of $158.99.

Since the fund was less than the guarantee at the renewal date, the
guarantee remains at $158.99 for the final 10 years of the contract. After
the 145th month the fund is never again lower than the guarantee value,
and there is no further liability. However, the risk-premium portion of
the management charge continues to be collected at the start of each
month. In Table 6.4, we show the liability cash flows under this particular
scenario.

Each month a negative cash flow comes from the income from the
risk-premium management charge. The amount from the third column of
Table 6.3 is multiplied by the survival probability ,_1p" for the expected
cash flow.

A death benefit liability arises in months for which (G — F,) is greater
than zero at the month end. For example, if the policyholder dies in the
26th month, the death benefit due at the month end would be (G — Fy5) =
$9.05. Since we allow for mortality deterministically, we value this death
benefit at the month end by multiplying by the probability of death in
the 26th month, 25|q§¢d), which is an expected payment of $0.00273. The
probability of the policyholder’s surviving, in force, to the second renewal
date is 144[)@ = 0.35212, and the payment due under the survival benefit
is $36.73, leading to an expected cash flow under the survival benefit of
144 36.73 = $12.93.

In the final column, the cash flows from the #th month are discounted
to the start of the projection at the assumed risk-free force of interest of 6
percent per year. The management charge income is discounted from the
start of the month, and any death or survival benefit is discounted from
the end of the month.
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TABLE 6.4 Expected nonfund cash flows allowing for survivorship.

In-Force = Mortality Expected Expected
Probability Probability = Death  Survival

(t—1)—>t +—1D% —1lq? Benefit Benefit C; Ca'
0-1 1.00000 0.000287 0 —-0.0417 —-0.0417
1-2 0.99307  0.000288 0 —-0.0411 —0.0409
2-3 0.98619 0.000289 0 —0.0426 —0.0422
34 0.97934 0.000289 0 —0.0419 —0.0413
4-5 0.97255 0.000290 0 —0.0408 —0.0400
5-6 0.96580 0.000290 0 —0.0398 —0.0389
6-7 0.95909 0.000291 0 —0.0401 —0.0389
7-8 0.95243 0.000292 0 —0.0429 -0.0414
8-9 0.94581 0.00029 0 —0.0398 —0.0383
9-10 0.93923 0.000293 0 —-0.0391 —0.0374

10-11 0.93270 0.000293 0 —0.0429 —0.0408
23-24 0.85157  0.000301 0 —0.0527 —0.0470
24-25 0.84561 0.000301 O 0 —0.0560 —0.0497
25-26 0.83970 0.000302  0.00273 —0.0538 —0.0475
26-27 0.83382 0.000303  0.00071 —-0.0514 —0.0451
27-28 0.82797  0.000303  0.00057 —0.0535 —0.0467
141-142 0.36032 0.000359  0.01402 —-0.0021 —0.0010
142-143 0.35757  0.000359 0.01360 —0.0043 —0.0021
143-144 0.35483 0.000359 0.01319  12.932  12.9276  6.2925
144-145 0.35212 0.000359  0.00183 —0.0222 —0.0108
145-146 0.34942 0.000360 0 -0.0228 —0.0110
263-264 0.12938 0.000351 0 0 —0.0254 —0.0068

For this example scenario, the net present value (NPV) of the guarantee
liability is $2.845. The contribution of the death benefit guarantee is $1.338,
and the survival benefit expected present value is $6.295. The management
charge income offsets these expenses by $4.788.

In fact, this example is unusual; in most scenarios there is no survival
benefit at all, and the management charge income generally exceeds the
expected outgo on the death benefit, leading to a negative NPV of the
guarantee liability.
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STOCHASTIC SIMULATION OF LIABILITY CASH FLOWS

For a stochastic analysis of the guarantee liability, we repeat the calculations
described in the previous section many times using different sequences of
investment returns. If we consider a contract with monthly cash flows
over, say, 22 years (such as the example above), applying 10,000 different
simulations will give a lot of information and there are different ways of
analyzing the output. In this section, we examine how to summarize that
information and give an example of the simulated liability for the GMAB
contract of the example in Tables 6.3 and 6.4.

The NPV of the Liability

One method of summarizing the output is to look at the simulated NPVs
for the liability under each simulation. As an example, we have repeated
the GMAB example above for 10,000 simulations, all generated using the
same stock return model. The range of net liability present values generated
is —$24.6 to $37.0. The number of NPVs above zero (implying a raw loss
on the contract) is 1,380. The mean NPV is —$4.0.

The principle of stochastic simulation is that the simulated empirical
distribution function is taken as an estimate of the true underlying distribu-
tion function. This means that, for example, since 8,620 projections out of
10,000 produced a negative NPV, the probability that the NPV is negative
is estimated at 0.8620. We can, therefore, generate a distribution function
for the NPVs. Let F(x) denote the empirical distribution function for the
NPV at some value x. Then

_ Number of simulations giving NPV < x
B 10,000

F(x)

This gives the distribution function in Figure 6.1.

It may be easier to visualize the distribution from the simulated density
function. The density can be estimated from the distribution using the
procedure:

1. Partition the range of the NPV output into, say, 100 intervals, indicated
by (x0,1,...,%100). The intervals do not have to be equal; for best
results use wider intervals in the tails and smaller intervals in the center
of the distribution.

2. The estimated density function at the partition midpoints is

~ (xt + xt+1> _ F(x:41) — Flx)

f 2 Xt+1 — Xt
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FIGURE 6.1 Simulated distribution function for GMAB NPV example.

Altering the partition will give more or less smoothness in the function. The
simulated density function for the 10,000 simulations of the GMAB NPV of
the liability is presented in the first diagram of Figure 6.2; in the right-hand
diagram we show a smoothed version.

The density function demonstrates that although most of the distribu-
tion lies in the area with a negative liability value, there is a substantial right
tail to the distribution indicating a small possibility of quite a large liability,
relative to the starting fund value of $100. We can compare the distribution
of liabilities under this contract with other similar contracts—for example,
with a two-year contract with no renewals, otherwise identical to that
projected in Figures 6.1 and 6.2.

A set of 10,000 simulations of the two-year contract produced a range
of outcomes for the NPV of the liability of — $1.6 to $37.1, compared
with —$24.6 to $37.0 for the contract including renewals. The mean of
the NPVs under the two-year contract is — $0.30 compared with — $4.00
when renewals are taken into consideration. Thus, at first inspection it
looks advantageous to incorporate the renewal option—after all, if the
contract continues for 20 years, that’s a lot more premium collected with
only a relatively small risk of a guarantee payout. But, when we take risk
into consideration, the situation does not so clearly favor the with-renewal
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FIGURE 6.2 Simulated probability density function for GMAB NPV example;
original and smoothed.

contract. The simulated probability of a positive liability NPV under the
two-year contract is 7.5 percent, compared with 13.8 percent for the
contract with renewals. So, if we ignore the renewal option, we ignore both
upside (an extra 20 years of premiums) and downside (two further potential
liabilities under the maturity guarantee).

Liability Cash-Flow Analysis

In addition to the NPV, which is a summary of the nonfund cash flows for
the contract, we can use simulation to build a picture of the pattern of cash
flows that might be expected under a contract. In the GMAB example, the
nonfund cash flows are the management charge income, the death benefit
outgo, and the maturity benefit outgo. Any picture of all three sources is
dominated by the rare but relatively very large payments at the renewal
dates. In Figure 6.3, we show 40 example projections of the cash flows
for the GMAB contract. The income and the death benefit outgo are on
the same scale, but the maturity benefit outgo is on a very different scale.
For this contract, the death benefit rarely exceeds the management charge.
An interesting feature of the death benefit outgo is the fact that the larger
payments increase after each renewal. As the guarantee moves to the fund
level, both the frequency and severity of the death benefit liability increase.
In most projections there is no maturity benefit outgo, but when there is a
liability, it may be very much larger than the management charge income.
The cash flows plotted allow for survival and are not discounted.

This type of cash-flow analysis can help with planning of appropriate
asset strategy, as well as product design and marketing. We can also examine
the projections to explore the nature of the vulnerability under the contract.
For a simple GMMB with no resets or renewals, the risk is clearly that
returns over the entire contract duration are very low. For the GMAB, there
is an additional risk that returns start high but become weaker after the
fund and guarantee have been equalized at a renewal date. By isolating the
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FIGURE 6.3 Simulated projections of nonfund cash flows for GMAB contract.

stock return projections for those cases where a maturity benefit was paid,
we may be able to identify more accurately what the risks are in terms of
the stock returns.

In Figure 6.4, we show the log stock index for the simulations leading
to a maturity benefit at the first, second, and third renewal date. In the final
diagram we show 100 paths where there was no maturity benefit liability.

The risk for the two-year maturity benefit is, essentially, a catastrophic
stock return in the early part of the projection. This is simply a two-year
put option, well out-of-the-money because at the start of the projection the
guarantee is assumed to be only 80 percent of the fund value. For the second
and third maturity benefits, the stock index paths are flat or declining,
on average, from the previous renewal date to the payment date. For this
contract the 10-year accumulation factor has a substantial influence on
the overall liability. In addition, the two-year accumulation factor plays the
major role in the liability at the first renewal date. The calibration procedure
discussed in Chapter 4 considers accumulation factors between 1 and 10
years to try to capture this risk. However, the right-tail risk is not tested in
that procedure.
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FIGURE 6.4 Simulated projections of log-stock index separated by maturity
benefit liability.

THE VOLUNTARY RESET

A common feature of the more generous segregated fund contracts in
Canada is a voluntary reset of the guarantee. The policyholder may opt
at certain times to reset the guarantee to the current fund value, or some
percentage of it; the term would normally be extended.

The simple way to explain the voluntary reset is as a lapse and reentry
option. Suppose that a policyholder is six years into a GMAB contract,
with, say, two rollover dates before final maturity. The next rollover date
is in four years. Stocks have performed well, and the separate fund is
now worth, say, 180 percent of the guarantee. If the same contract is still
offered, the policyholder could lapse the contract, receive the fund value, and
immediately reinvest in a new contract with the same fund value but with
guarantee equal to the current fund value. The term to the next rollover
under a new contract would generally be 10 years, so the policyholder
replaces the rollover in 4 years with another in 10 years with a higher
guarantee.
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Perhaps in order to avoid the lapse and reentry issue, many insurers
wrote the option into the contract. A typical reset feature would allow
the policyholder to reset the guarantee to the current fund value; the next
rollover date is, then, extended to 10 years from the reset date. The number
of resets per year may be restricted, or the option may be available only on
certain dates.

The reset feature can be incorporated in the liability modeling without
too much extra effort, although we need to make some somewhat speculative
assumptions about how policyholders will choose to exercise the option.
The assumptions used to produce the figures in this section are described
below, but it should be emphasized that modeling policyholder behavior is
an enormous open problem.

So, we adapt the GMAB contract described in the previous section to
incorporate resets. We assume the same true term for the contract, and
that the policyholder does not reset in the final 10 years. We assume
also that the policyholder will reset when the ratio of the fund to the
guarantee hits a certain threshold—we explore the effect of varying this
threshold later in this section. We also assume the effect of restricting the
maximum number of resets each year. The figures given are for a GMAB
with a 10-year nominal term (between rollover terms, if the policyholder
does not reset) and a 30-year effective term. The starting fund to guarantee
ratio is 1.0.

In Table 6.5, some quantiles of the NPV distributions are given for
the various reset assumptions. These result from identical sets of 10,000
scenarios. Figures are per $100 starting fund.

This table shows that the effect of the reset option is not very large,
although the right-tail difference is sufficiently significant that it should
be taken into consideration. This will be quantified in Chapter 9. The
effect of different threshold choices is relatively small, as is the choice in
the policy design of restricting the number of resets permitted per year,
although that will clearly affect the expenses associated with maintaining
the policy. Having a restricted number of possible resets does not matter
much because infrequent use of the reset appears to be the best strategy.

TABLE 6.5 Quantiles for the NPV of the guarantee liability for a GMAB contract
with resets; percentage of starting-fund value.

Reset Assumption Threshold 5% 25% 50% 75% 95%

No resets —10.7 =7.0 =52 -3.3 5.1
2 resets per year 115% -9.9 —6.2 —4.2 -1.1 7.8
No limit 105% -9.5 -5.8 -3.9 -1.1 8.2
No limit 115% -9.7 —6.2 —4.2 -1.3 8.0

No limit 130% -10.1 —6.5 —-4.4 -1.6 7.6
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FIGURE 6.9 Simulated cash flows, with and without resets.

Resetting every time the fund exceeds 105 percent of the guarantee may lead
to lost rollover opportunities, so that the contract may pay out less than the
contract without resets.

From these figures it does not appear that the reset feature is all that
valuable, on average, but the tail risk is significantly increased (as repre-
sented by the 95th percentile). In addition, the reset will constrain the risk
management of the contract, for two major reasons. The first is a liquidity
issue—without the reset option, the maturity benefit is due at dates set at
issue. Allowing resets means that the maturity benefit dates could arise at
any time after the first 10 years of the contract have expired. This will make
planning more difficult. For example, in Figure 6.5 we show 50 simulated
cash flows from a contract without resets; then, with everything else equal,
the same contract cash flows are plotted if resets are permitted, and a
threshold of 105 percent is used as a reset threshold.

The other problem with voluntary resets is that the option has the
effect of concentrating risk across cohorts. Consider a GMAB policy written
in 2000 and another written in 2003. Without resets, there is a certain
amount of time diversification here, because the first rollover dates for these
contracts are 2010 and 2013, respectively, and it is unlikely that very poor
stock returns will affect both contracts. Now assume that both policies carry
the reset option and that stocks have a particularly good year in 2004. Both
policyholders reset at the end of 2004, which means that both now have
identical rollover dates at the end of 2014, and the time diversification is
lost. In the light of these problems, the voluntary reset feature is becoming
less common in new policy design.

For a more technical discussion of the financial engineering approach to
risk management for the reset option see Windcliff et al. (2001) and (2002).
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A Review of Option Pricing Theory

INTRODUCTION

I n Chapter 1 we discussed how the investment guarantees of equity-linked
insurance may be viewed as financial options. Since the seminal work
of Black and Scholes (1973) and Merton (1973), the theory and practice of
option valuation and risk management has expanded phenomenally. Ac-
tuaries in some areas have been slow to fully accept and implement the
resulting theory. Although some actuaries feel that the no-longer-new the-
ory of option pricing and hedging is too risky to use, for contracts involving
investment guarantees it may actually be more risky not to use it.

In this chapter, we revise the elementary results of the financial eco-
nomics of option or contingent claims valuation. Many readers will know
this well, and they should feel free to skip to the next chapter. For read-
ers who have not studied any financial economics (or who may be a
little rusty), the major assumptions, results, and formulae of the theory
of Black, Scholes, and Merton are all discussed. We do not prove any
of the valuation formulae; there are plenty of books that do so. Boyle et
al. (1998) and Hull (1989) are two excellent works that are well known
to actuaries.

This chapter will demonstrate the crucial concepts of no-arbitrage
pricing with a simple binomial model. Using this very simple model all of
the major, often misunderstood, results of financial economics can be clearly
derived and discussed, including:

B The ideas of valuation through replication.

B The difference between the true probability distribution for the risky
asset outcome (the P-measure), and the risk-neutral distribution (the
QO-measure), and why it is correct to use the latter when it is clearly not
realistic.

B The idea of rebalancing the replicating portfolio without cost.

115
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All of these concepts are demonstrated in the section on replication and
no-arbitrage pricing. Even though it is very elementary, any reader who
does not feel confident about these issues should study that section.

In the section on the Black-Scholes-Merton assumptions, later in this
chapter, we write down the important assumptions underlying the theory.
We then show how to determine the valuation and replicating portfolio for
a general uncertain liability, based on an underlying risky asset.

In the final sections of the chapter, we give the formulae and methods
for the options that arise in the context of equity-linked insurance. We
find in later chapters that knowing the formulae for European call and put
options is surprisingly helpful for more complicated benefits.

THE GUARANTEE LIABILITY AS A DERIVATIVE SECURITY

A European put option is a derivative security based on an underlying asset
with (random) value F; at ¢. If T is the maturity date of the option and K
is the strike price, then the put option pays at time T, either (K — Fr) if
K = Fr or nothing if K < Fr. This structure is identical to the standard
guaranteed minimum maturity benefit (GMMB), where K is the guarantee,
T is the maturity date, and Fr is the segregated fund value at T, so the
payoff under the guarantee is (K — Fr)™".

In fact, all of the financial guarantees that were described in Chapter 1
can be viewed as derivative securities, based on some underlying asset. In the
segregated fund or variable-annuity (VA) contract, the underlying security
is the separate fund value. Similarly to derivative securities in the banking
world, financial guarantees in equity-linked insurance can be analyzed using
the framework developed by Black, Scholes, and Merton.

REPLICATION AND NO-ARBITRAGE PRICING

First, we give a very simplified example of option pricing, using a binomial
model for stock returns, to illustrate the ideas of replication and no arbitrage
pricing.

Suppose we have a liability that depends on the value of a risky asset.
The risky asset value at any future point is uncertain, but it can be modeled
by some random process, which we do not need to specify.

The no-arbitrage assumption (or law of one price) states that two iden-
tical cash flows must have the same value. Replication is the process of
finding a portfolio that exactly replicates the option payoff—that is, the
market value of the replicating portfolio at maturity exactly matches
the option payoff at maturity, whatever the outcome for the risky as-
set. So, if it is possible to construct a replicating portfolio, then the price
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of that portfolio at any time ¢ must equal the price of the option at time ¢,
because there can only be one price for the same cash flows.

For example, suppose an insurer has a liability to pay in one month
an amount exactly equal to the price of one unit of the risky asset at that
time. The amount of that liability at maturity is uncertain. The insurer
might take the expected value of the risky asset price in one month, using
some realistic probability distribution, and discount the expected value
at some rate. That method of calculation would be the traditional actuarial
approach. The beautiful insight of no-arbitrage pricing says that such a
calculation is essentially worthless in terms of a market valuation of the
liability. If the insurer buys one unit of the risky asset now, it will have
enough to precisely meet the liability due in one month. If the liability is
valued at any amount lower or higher than the current price of one unit
of the risky asset, then an arbitrage opportunity exists that would quickly
be exploited and therefore eliminated. So, the replicating portfolio is one
unit of risky asset, and the valuation is the price of one unit of risky asset.
Replication and valuation are inextricably linked.

To see how the theory is applied to a more complicated contingent
liability, such as an option, we use a simple binomial model in which two
assets are traded:

1. A risk-free asset that earns a risk-free force of interest of r = .05 per time
unit, so an investment of 100e™" at time ¢t = 0 will pay 100 at¢ = 1.

2. A risky asset (or a stock) that pays S, = 110 if the market goes up
over one time unit, and S; = 85 if the market goes down. No other
outcomes are possible in this simple model. Assume that the time O
price of the risky asset is Sy = 100.

Suppose we sell a put option on the stock. The option gives the buyer
the right to sell the stock at a fixed price of, say, 100 at time # = 1. This
right will be exercised if the stock price goes down, because in that case the
purchaser receives 100 under the contract compared with 85 in the market.
If the stock price goes up, the purchaser can sell the asset in the market for
110 and, therefore, has no incentive to exercise the option and sell for only
100. The option seller then has a liability of K- §; = 15 if the market goes
down (since they have to buy the stock at K but end up with an asset worth
only S;) and 0 if the market goes up.

Now assume the option seller buys a mixed portfolio of the risk-free
asset and the risky asset; the portfolio has a units of the risk-free asset and
b units of the risky asset, so its value at t = 0 is Pg = ae™" + bSy and at
t =1 its value is

p, = lat bS, if the market goes up
! a + bS; if the market goes down
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S, =110

So =100 < The Risky Asset
S, =85

0

P, < The Option Liability
K-S;=15

a+bS,=a+110b
ae~" + bS, The Portfolio
a+bSy=a+85b

FIGURE 7.1 One-period binomial model.

The situation is illustrated in Figure 7.1.
Now, we can make the portfolio exactly match the option liability by
solving the two equations for a and b:

a+bS,=0 (7.1)
a+bS; =K-35, (7.2)
That is,
a+110b =0 (7.3)
a+85b =15 (7.4)
— a= 66 b=-0.6 (7.5)

This solution means that if the option seller buys the portfolio at time 0
that consists of a short holding of —0.6 units of stock (with price —$60, since
So = 100) and a long holding of ae™ = 62.78114 in the risk-free asset,
then whether the stock goes up or down, the portfolio will exactly meet
the option liability. The option is perfectly hedged by this portfolio. Since
the portfolio and the option have the same payout at time ¢ = 1, then they
must, by the no-arbitrage principle, also have the same price at time ¢ = 0.
Hence the price of the option at ¢ = 0 must be the same as the price of the
matching portfolio at ¢ = 0; the option price is 2.78114.



Replication and No-Arbitrage Pricing 119

A very interesting feature of the result is that we never needed to know
or specify the probability that the stock rises or falls. We have not used the
expected value of the payoff anywhere in this argument.

In general, this binomial setup for the put option gives a price:

_ B S.e " — 8o
Py = (K Sd)isu s, (7.6)
= (K—=S,)e "p" (7.7)
* Su B SOer
where p* = S =S, (7.8)

In fact, if we consider a more general option in this framework, where
the payoff in the up-state is C, and the payoff in the down state is Cy, then
the replicating portfolio will always have value at time ¢t = 0

P = (Ci1=p")+ Cypile”

Based on our results, we know that S; < Spe” < S, (since any other
ordering breaches the no-arbitrage assumption) so that 0 < p* < 1. Now
p* looks like a probability and the portfolio value P looks like an expected
present value, because if we treat p* as the probability that the market falls
and (1 — p*) is the probability that the market rises, (C,(1 — p*) + Czp*)
is the expected payoff at # = 1 under the option, and the ¢~ term discounts
the expected payoff to the time zero value at the risk-free force of interest.
So, even though we have not used expectation anywhere, and even though
p* is not the true probability that the market falls, we can use the language
of probability to express the option as an expectation under this artificial
probability distribution.

This illustrates the third concept of option valuation: the risk-neutral
probability measure. Using the artificial probabilities p* for the down market
and (1 — p*) for the up market, the expected value of the risky asset at time
t=1is

_ Su - Soe’

i . Soe” — Sy
Sq+(1—p"S, = Sq + Su
pSq+ (1—p7) S, =s, 4t s, =,

= Soe’

So under this artificial probability distribution, the expected value of
So at t = 1 is the same as if the stock earned the risk-free rate of interest.
This is why the probability distribution p* and (1 — p*) is known as the
risk-neutral probability distribution. In financial economics literature, it is
also commonly known as the Q-measure (measure is just used to mean
probability distribution). The real probability distribution for the stock



120 A REVIEW OF OPTION PRICING THEORY

price (which we have not needed here) is known as “nature’s measure,” the
“true measure,” or the “subjective measure,” but is always shortened in the
finance literature to the P-measure.

The difference between the Q and P probability distributions is very
important, and is the source of much misunderstanding. In particular, the
theory does not assume that equities earn the risk-free rate of interest
on average, even though the O-measure might give this impression. The
O-measure is a device for a simple formulation for the price of an option
as an expected value, even though we are not using expectation to value
it but replication. The Q-measure is therefore crucial to pricing, but also,
crucially, is only relevant to pricing and replication. Any attempt to project
the true distribution of outcomes for an equity-type fund or portfolio must
be based on an appropriate P-measure. Say we wanted to predict how
frequently the option in the binomial example above ends up in-the-money,
which is the probability that the stock ends up in the “down” state, the
QO-measure “down” probability p* is quite irrelevant to this frequency, and
can give us no useful information.

The derivation of the risk-neutral measure from the market model, in
general, does require some information about the underlying P-measure:

1. The risk-neutral measure must be equivalent to the P-measure. Equiv-
alence means (loosely) that the two measures have the same null
space—or in simple terms, that all outcomes that are feasible under the
P-measure are also feasible under the O-measure, and vice versa.

2. The expected return on the risky asset using the O-measure must be
equal to the return on the risk-free asset.

These two requirements are sufficient in the binomial example to
determine the risk-neutral probabilities. The first requires that the only
possible outcomes under the Q-measure are p,, the probability of moving
to the “up” state, and py, the probability of moving to the “down” state.
Clearly, under the first requirement,

Putpa=1 (7.9)
The second requirement states that
PuSu+ paSa = Soe’ (7.10)
These equations together give the probability distribution in equation 7.8.
Now we extend the binomial model above to two periods to illustrate the

principle of dynamic hedging. The term hedging is used to mean replication
of a liability.
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121
110<
Sp =100 93.50 The Risky Asset
85 <
72.25
0
So =100 100 - 93.50  The Option Liability
Py <
100 -72.25

FIGURE 7.2 Two-period binomial model.

We keep the same structure so that, over each time period, the price
of the risky asset rises by 10 percent or falls by 15 percent, and we make
no assumptions about the relative probabilities of these events. The stock
worth 100 at ¢ = 0 then follows one of the paths in the top diagram of
Figure 7.2.

Now consider a put option that matures after two time units. The strike
price is K = 100, giving a liability at the end of the period of 0 if the stock
has risen in both time units, 6.50 if it has risen once and fallen once, and
27.75 if the stock price fell in both time units. We can replicate the option
payoff in this model by working backwards through the various paths. The
idea is to break the two-period model down into two one-period models.
At time 1 we know if we are in the up state or the down state. If we are in
the up state, then we need a portfolio

P, = aye " + byS, (7.11)

which will exactly meet the liabilities after the next time step, that is:

a, +121b, = 0 (7.12)
a, + 93.5b, = 6.5 (7.13)
= a, =286 b, =—-65/27.5 (7.14)

which gives a portfolio value attime ¢t = 1of P, = a,e”"+b,S, = 1.20516.
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Similarly, if we are in the down state at time 1, we need a portfolio
P; = age™ + b,;S, (7.15)

which will exactly meet the liabilities after the next time step, that is:

ag +93.5b; = 6.5 (7.16)
ag +72.25by = 27.75 (7.17)
= a; =100 b; = —1.0 (7.18)

which gives a portfolio value at time 1 of P; = age™" + byS; = 10.12294.

Now move back one time step; at # = 0 we need a portfolio Py that will
give us exactly P, at time 1 if the asset price rises, which will enable us to set
up the portfolio P, = a,e™" +b,S, and will give us exactly P, at time 1 if the
asset price falls, so that we can construct the portfolio Py = aze™" + b;S,.
Say

Py = ae”" + bS (7.19)
then

a+bS, =P, thatisa+ 1106 = 1.20516 (7.20)
a+bSy =P, thatisa+ 85b = 10.12294 (7.21)
— g = 40.44340 b = —0.356711 (7.22)

So Py = 2.7998.
This example demonstrates that if we invest ae™” = 38.4709 in the
risk-free asset and bSy = —35.6711 in the risky asset, we will have enough

to fund P, if the market rises and P, if the market falls. Then at time 1
we rearrange the portfolio, investing a,e™" in the risk-free asset and b,,S, in
the risky asset if the risky-asset value rises, or ayse™" in the risk-free asset
and b,S, in the risky-asset if the risky asset price falls. Either way, no extra
money is required at time 1. The rearranged portfolio will exactly meet the
option liability at time 2, regardless of whether the market rises or falls.
Note that, even with the two time steps, we have not used any probability
in the pricing argument.

The previous example illustrates a dynamic hedge of the option; it is a
hedge because the option liability is exactly met by the rearranged portfolio,
and dynamic because the hedge portfolio needs to be adjusted according to
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the outcome of the risky-asset price process.! It is important to note that
no extra funds are needed during the term of the contract. Such hedges are
called self-financing.

Note also that we do not have to construct the replicating portfolio
to find the price of the option. We can use the artificial, risk-neutral
probabilities p* and 1 — p* to find the expected payoff under the Q-measure,
and then discount at the risk-free rate to give

Py = e Eg[(100 — S,)*] = {2;}*(1 —9"6.5 + (p*)227.75} (7.23)
= 2.7998

where Eg denotes expectation under the artificial, risk-neutral probability
measure, and p* is defined in equation 7.8. Equation 7.23 gives the same cost
as that derived by working through the replicating portfolio, in equations
7.12 through 7.22, but it does not give the strategy required to hedge the
liability.

In these two simple examples we have demonstrated four very important
concepts from financial economics:

1. Replication of the option payoff with a mixed portfolio of the risky and
the risk-free assets.

2. The no-arbitrage assumption, which requires that the replicating port-
folio has the same price as the option.

3. The risk-neutral probability distribution, which allows us to use the
shorthand of expectation for the option value, even though we are not
using (and do not need) the true probabilities.

4. Dynamic hedging, which requires rearrangement of the portfolio as the
stock price process evolves.

All of these concepts carry directly into the more general framework, where

stocks may take infinitely many values, and where prices are changing
continuously, not just over a single time unit.

THE BLACK-SCHOLES-MERTON ASSUMPTIONS

The binomial model, of course, has its limitations. In particular, for real-
world application it is reasonable to assume that the stochastic process

A static hedge is one that does not have to be rearranged; a trivial example would
be if the seller of the option bought an identical option at the contract inception.
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describing the price of a risky asset is a continuous time process. The Black-
Scholes-Merton framework for option valuation is a continuous time model,
and is based on more sophisticated market assumptions. In this section, we
list the major assumptions underlying the theory. The major assumptions
are as follows:

B The asset price S; follows a geometric Brownian motion (GBM) with
constant variance o2. This implies that asset returns over any period
have a lognormal distribution, and that asset returns over two disjoint
periods of equal length are independent and identically distributed.

B Markets are assumed to be “frictionless”—that is, no transactions costs
or taxes and all securities are infinitely divisible.

B Short selling is allowed without restriction, and borrowing and lending
rates of interest are the same.

B Trading is continuous.

B Interest rates are constant.

All of these assumptions are clearly unrealistic to some extent. In Chap-
ter 3, we have shown that the lognormal model is not a very accurate model
for stock prices historically. Clearly, markets are not open continuously and
trading costs money. Nevertheless, the Black-Scholes-Merton model has
proved to be remarkably robust to such departures from the assumptions.

In Chapter 8, in the section on unhedged liability, we discuss how
to quantify and manage the risks associated with departures from the
assumptions.

THE BLACK-SCHOLES-MERTON RESULTS

The framework created from the assumptions listed in the previous section
can be used to value any option (though some require numerical methods).
The most famous equations are the Black-Scholes equations for a European
call or put option.

The Price

The most general result from the Black-Scholes-Merton framework is that
any derivative security can be valued using the discounted expected value
under the artificial, risk-neutral probability distribution, where the force
of interest for discounting is the risk-free rate, denoted 7. That is, for a
security with a payoff W at time T, where the payoff is contingent on a risky
asset with price process Sy, the cost of the self-financing, replicating portfolio
att < Tis

P, = e T EL[W] (7.24)
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where Q represents the risk-neutral measure. I emphasize here that the
O-measure does not in any sense represent the true distribution of outcomes
for the equity. It is a valuation device for the option.

The Hedge

The price P, represents the cost of the replicating portfolio at z. The
general Black-Scholes result goes further than this, telling us exactly how to
construct a hedging portfolio out of the underlying risky asset S; and the
risk-free asset. Let

P,

v, = 7.2
£ = s, (7.25)

The portfolio that comprises W,S; in the risky asset and P, — WS, in the
risk-free asset at time ¢ will exactly replicate the option, and will be self-
financing, under the Black-Scholes assumptions. By self-financing we mean
that the change in value of the stock part of the hedge in each infinitesimal
time step must be precisely sufficient to finance the change in bond price in

the hedge.

The Risk-Neutral Probability Distribution (Q-Measure)

Under the first assumption of the previous section on the Black-Scholes-
Merton assumptions, the stock price process is assumed to follow a GBM,
with drift parameter u and variance parameter o*. This is assumed to be
the true probability distribution, or P-measure.

We derive the risk-neutral distribution using the same requirements
as used in the binomial model, described in the section on replication
and no-arbitrage pricing. The risk-neutral distribution must be equivalent
to the P-measure, and the expected annual return under the risk-neutral
distribution must be at the risk-free rate  (continuously compounded).

For a given risk-free force of interest r per unit time, the risk-neutral
distribution generated by the GBM is another GBM, with drift parameter
r— 0'2/ 2 and with variance parameter 2. This gives a risk-neutral dis-
tribution that is lognormal over any period of length ¢ time units. It
is convenient to work with the accumulation factor A, = S, /So (where
t = 0 is any arbitrary starting point). Under the risk-neutral distribution,
A; ~ lognormal(t(r — o[ 2), to?). Note that the mean of this distribution is

exp(t(r — a%/2) + ta*/2) = e
which is the accumulation factor at the risk-free rate of interest.

The original drift parameter u does not affect the risk-neutral dis-
tribution. This is analogous to the redundancy of the true up and down
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probabilities in the binomial example. It is important to remember that the
O-measure is just as artificial a probability distribution as the p* probabilities
above; it does not represent the true underlying probability distribution for
the stock returns. This is a subtle but crucially important point that is often
misunderstood.

The stock price process may be assumed to follow a more complex
process than GBM, for example with stochastic variance parameter (such
as GARCH or regime-switching distribution). In this case, there is no
unique risk-neutral distribution. In fact, there are infinitely many risk-
neutral distributions. Pricing using these distributions will not, in general,
have the self-financing property that we have in the GBM case.

THE EUROPEAN PUT OPTION

In this section, we derive the value of a put option at time ¢ using the principle
of discounted expected value under the Q-measure. Let # denote the current
time; T the time of maturity of the contract; o> the constant variance per
unit time of the GBM; S, the price process of the underlying risky asset
on which the option is written; and ®() the standard normal distribution
function (often denoted by N() in the financial literature). The payoff is
(K= St)*. Let fo() denote the risk-neutral density for the accumulation
factor Ar_;. Then the price of the replicating portfolio at time # < T is
denoted BSP; (for Black-Scholes put) where:

BSP, = Eg[(K — St)"]e T (7.26)
= StEQ[(K/St —Ar—) ]e_r(T_t> (7.27)
K/S;
= ¢ "T71g, J (K/S; = s)fols) (7.28)
0

Evaluation of this integral is relatively straightforward, since Ar_; has a
lognormal distribution with mean parameter (T — t)(r — 0'2/ 2) and variance
parameter o /T — ¢ (see, for example, Appendix A of Klugman, Panjer,
and Willmot 1998), giving

log( K/St (r — 02/2 — 1)
[“’( =

5, T log (K/S)) = (r+ o2/2)(T — 1) =T
oJT—t

= Ke7"700(~dy) — S,0(—d1) (7.29)

BSP,
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where d; and d, are functions:

g log(S,/K) + (T — t)(r + 0%/2) (7.30)

JT —to

g, = 1088/ K+ (T—0)r=0?/2) _ ) ) 75

JT —to

The terms d; and d, are the common terms from the finance literature. It
is important to remember, however, that these are functions of the variables
S, K, time to expiry, 7, and o. This is particularly relevant for the next step:
establishing the hedge portfolio.

The stock part of the hedge portfolio is S, ¥, where

J
d(—d —nT—p O(—d
= —a(=dy) - 5, U8 g(-dy) + ke U8 g
t t

where ¢( ) is the standard normal density function. Since d, =
di — o /(T — t), the partial derivatives of dy and d> with respect to S,

are the same. Also,

gy = € 7.32
d(—dy) = N (7.32)
and
: J ) e (di— (T—t)0)?/2
d(—=d2) = —\/ﬁ
= ¢(—dy)exp{dio J(T —t) — o*(T — 1)/2}
= ¢(—di) exp{(log(S;/K) + (T — #) + o*(T — 1)/2) — (T — 1)/2}
= dt-dn )
so that

v,

_d St
—d(—dy) — &(&Stl) ¢>(—d1){St — Ke 7170 (W>] (7.33)

. T S
—®(—d;) since {St—Ke 1 (W)} =0 (7.34)
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Now, this result is actually fairly obvious from the form of the Black-
Scholes equation; this shows that the hedge portfolio is always — ®(—dy)
units of the underlying risky asset together with ®(—d,)Ke "T~* invested
in the risk-free asset. The purpose of the derivation of W; is to demonstrate
how to find the stock part of the hedge portfolio, with emphasis on the fact
that d; and d, are both functions of the risky-asset price.

THE EUROPEAN CALL OPTION

Most of the options in this book most closely resemble put-type options.
However, call options are also relevant, especially for the equity-indexed
annuities (EIAs), which are discussed in Chapter 13.

Under a European call option, the holder has the right to buy a share in
the underlying stock at the strike price K at a fixed maturity date T. If the
share price at maturity St is higher than the strike price K, the option holder
buys the share for K, and may immediately sell for St, giving a payoff at
maturity of (St — K). Obviously, if K > St, then the option is not exercised
and the contract expires with zero payoff.

The price of the call option at time ¢t < T is found in the same way
as for the put option, shown earlier, by taking the expectation under the
risk-neutral measure of the payoff, discounted at the risk-free rate. If we also
use the standard Black-Scholes-Merton assumption for S; that the process
is a GBM, so that St has a lognormal distribution, then the standard Black-
Scholes price at time ¢ for a call option is denoted BSC (for Black-Scholes
call), where

BSC, = Egle ""7(St — K)] = S,®(d1) — Ke """ ®(d,) (7.35)

where dy and d; are defined exactly as in equations 7.30 and 7.31.

As with the put option, the Black-Scholes equation for a call option
immediately provides the hedge portfolio at time # > 0 for replicating the
option. It comprises a long position of ®(d;(¢)) units of stock and a short
position of ®(d,(t)) units of zero-coupon bond, face value K, and therefore
price at ¢ of Ke "%,

PUT-CALL PARITY

Put-call parity was mentioned in Chapter 1, but it is relevant to give a
reminder here. Suppose an investor buys a put option on a unit of stock and
holds a unit of the stock. The option has strike price K, and the stock has
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price S, at t. The option matures at T. The total value of the stock plus the
put option at maturity is

St + (K = Sp)* = max(St, K)

Now suppose the investor holds a call option on the same stock with the
same strike price K, maturing at T, together with a risk-free zero-coupon bond
that matures at T with face value K. The bond plus call option pays at T:

K+ (Sp — K)* = max(St, K)
So, the two portfolios—stock plus put and bond plus call—have exactly the
same payoff, and must therefore have the same price (remember the law of
one price).
The price at ¢ of a unit of stock is S;; the price at # of the zero-coupon
bond with face value K is K e "T~%, Put-call parity implies that:

Ke "T=8 4+ BSC, = S, + BSP,

This identity can be easily verified for the equations for BSP and BSC.

DIVIDENDS

In most of the contracts examined in this book, the equity linking is by
reference to a stock index in which dividends are reinvested. In this case,
we do not need to consider the effect of dividends on the hedging of
the embedded option. However, for some insurance options, notably those
associated with the EIAs of Chapter 13, the payout is linked to an index that
does not allow for reinvested dividends. In this case the replicating portfolio,
which comprises a holding in the underlying stocks and a holding in bonds,
must make allowance for the receipt of dividends on the stock holding. For
a call option, where the replicating portfolio includes a long position in the
stock, the incoming dividends allow the option seller to hold less stock in
the hedge portfolio, anticipating the future dividend income. The dividends
are assumed to be proportional to the stock price. This is a reasonable
assumption that makes allowance for dividends easier to incorporate.

As a simple example, assume we have a one-year call option on one unit
of stock, with strike price 1.10 and current price 1.00, and with volatility
o = 20 percent and risk-free rate = .06. The replicating portfolio for this
call option with no dividend income is (from equation 7.35)

1.0D(dy) — 1.1e” 2% P(d,)
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That is, the hedge comprises a long holding of ®(d;) units of stock and a
short holding of bonds. But, if we have incoming dividends guarantees of,
say, 2 percent of the stock, delivered at t = 1, when the contract matures,
then we can reduce the long stock position by .02 units of stock. So the net
stock position for the replicating portfolio is only 1.0 ®(d;) — 0.02, making
the replication cheaper.

In practice, we will assume that dividend income is a continuous stream.
This is a rough approximation for a single stock, but is more reasonable
for an index comprising a large variety of stocks with a range of dividend
dates. If we assume a dividend stream at a fixed rate of d per year, then a
stock holding of 100 units at time 0 accumulates through reinvesting the
dividend income to 100e¢T units at time T} therefore, if we need S in stock
at T, then at time ¢ = 0 we need only Sye 47,

The call-option value allowing for dividend income can then be obtained
by replacing S; in equation 7.35 by S, e ¢(T~% remembering to replace the
stock price in the calculation of di and d,.

The option price for a Black-Scholes call option at time ¢ = 0 allowing
for dividend income, is then:

Soe Td(dy) — Ke T d(ds) (7.36)

where, now,

In (26 ) 4 (r + 02/2)T
o JT
ln(%) +(r—d+o2/2)T

o JT

andd, = dy — o JT.

EXOTIC OPTIONS

The put and call options featured in the previous sections are sometimes
called “plain vanilla” contracts, being the simplest forms of derivative
contracts. However, there are many other forms of option contracts. One
more complex option is the GMAB benefit valued in Appendix B. Other
examples will arise in Chapter 13, where we look at more complicated
guarantees associated with U.S. EIA contracts. Options that are more
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complicated than the plain vanilla forms are often referred to as “exotic.”
These might include options based on the average value of the underlying
stock price process S; over some period, rather than simply the end value
(these are also called Asian options). That is, where the payoff for a call
option is

(Save _ K)+

where S2¥¢ is the average value of the stock process over a defined period
(which may be the entire term). Another form of exotic option uses the
maximum value of the stock price process over some period of the contract
term, so that the payoff is

+
(max {8} — K)
LE(to,11)

This is a form of “lookback” option.

Valuation and risk management of exotic options follows exactly the
same principles as used for the plain vanilla contracts. For the value, we
take the expectation of the option payoff discounted at the risk-free rate of
interest. For the delta-neutral hedge, we differentiate the value of the option
with respect to the price of the risky asset, that is the underlying stock or
equity index. In some cases differentiation can be done analytically. This
is true for the GMAB option, for Asian options if the geometric average
is used rather than the arithmetic, and for the lookback option provided
the lookback feature is continuous; that is, it is true if we consider the
maximum of all values of S; to be viewed as a process in continuous time. If
we consider the maximum only at discrete points, then no analytic solution
is available.

Where no analytic solution is available, it is still possible to determine
a value and a hedge for exotic options. Boyle (1977) introduced the Monte
Carlo method for option valuation. For many options the expectation that
cannot be derived analytically can be accurately estimated by simulation.
Using the risk-neutral distribution, we can simulate a large number of
outcomes for the option, and discount at the risk-free rate. The simulated
expectation is simply the mean of the individual simulated-payout present
values. As with all simulation, the estimate is subject to random-sampling
uncertainty (which is discussed in detail in Chapter 11), but the sampling
error and price uncertainty can be calculated and minimized by using
a sufficiently large number of simulations or other techniques to reduce
sampling error (variance reduction).
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Using simulation it is also possible to find the hedge portfolio by
determining the Monte Carlo estimate of the derivative of the simulated
price with respect to the underlying stocks. This simply requires a sensitivity
test of the mean value, changing the starting value of the stock price process,
but using the same random numbers.

The work by Boyle, Broadie, and Glasserman (1997) provides a full
review of the use of simulation for option valuation.



Dynamic Hedging for Separate
Account Guarantees

INTRODUCTION

In this chapter, we apply the theory of Chapter 7 to separate account
products such as variable annuities and unit-linked and segregated fund
contracts.

In the section on Black-Scholes formulae for segregated fund guarantees,
we derive valuation formulae using option pricing for the guaranteed
minimum maturity benefit (GMMB), the guaranteed minimum death benefit
(GMDB), and guaranteed minimum accumulation benefit (GMAB) contracts
described in Chapter 1. These formulae will include allowances for mortality
and exits.

In the section on pricing by deduction from the separate account, we
show how the price of the option can be translated into a regular amount of
charge deducted from the policyholder’s fund. This “margin offset” is the
usual method of charging for the guarantee in separate account products in
North America.

The section on the unhedged liability is where we utilize both actuarial
and financial engineering techniques to quantify the additional costs associ-
ated with the dynamic-hedging approach to risk management that are not
allowed for in the option valuation. This includes allowance for deviation
from the Black, Scholes, and Merton assumptions of Chapter 7. This is an
important part of the book, and the ideas from this section are used again
in all the subsequent chapters.

Finally, we follow all these ideas through for some examples of GMMB,
GMDB, and GMAB contracts in the final section of the chapter.

133
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BLACK-SCHOLES FORMULAE FOR SEGREGATED
FUND GUARANTEES

Adapting the Black-Scholes results for guarantees embedded in insurance
contracts requires a little work. In this section, we continue to assume the
Black-Scholes framework, including all the assumptions listed in Chapter 7.

We need to adapt the formula for the put option to reflect the fact
that the underlying asset is not the stock price itself, but the segregated
fund value, and that this differs from the stock price through the deduc-
tion of the management charge. In addition, for the GMDB, the option
matures at death, giving a random term to maturity rather than the fixed
term of a European option. For the GMAB, payable on death or matu-
rity, the payoff of the option is more complicated than the standard put
option.

Black-Scholes Formula for the GMMB

The GMMB is a straightforward put option on the segregated fund. Assume
a fund value at the valuation date = 0 of Fy. Let G denote the guarantee,
and assume first that the guarantee is fixed. The insurer’s liability under
the GMMB at maturity in, say, T years is (G — Fr)". This is identical to
the put option, with strike price G and underlying asset F;. Under standard
Canadian contract terms for policies of this type, G is typically 75 percent
or 100 percent of the initial single premium for the contract. Let 7 denote
the monthly management charge deducted. Then

S
Fr = FOS—T(l —m)T
0

where S; is the stock index used for equity linking. The payoff under the
GMMB is W = (G — Fr)*. Let Fy = Sy, then the option price is

Py = e "TEg[(G — Fr)*]
e "TEol(G — St(1 —m)T)*] (8.1)
= (1 -me TEQl(G(1 —m)"T = S)* ]} (8.2)

Either of equations 8.1 and 8.2 can be used to determine the Black-Scholes
price allowing for the management charge. Using equation 8.1 we just use
So (1 = m)T in place of Sy in the Black- Scholes formula. Using equation 8.2
we increase the guarantee G to G(1 — )~ T and multiply the whole formula
by (1 — m)T; this seems the more complicated approach.
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Using the first approach, that is, replacing Sy by So(1 — )T in the
standard Black-Scholes formula, the put option price at time ¢ = 0 is:!

Py = Ge "Td(—d,) — So(1 — m)Td(—d,) (8.3)
where

_log(So(1 —m)T/G) + (r+ 0?/2)T
(e V/T)
log(So/G) + (r + log(1 — m) + a/2)T

o VT)

and d> = dy — o /T. This price does not allow for mortality or lapses;
not all policyholders will survive in force to maturity. The mortality risk
(that is, the risk that more than the expected number of policyholders
survive to maturity) can be hedged by diversification. In other words, by
selling a sufficiently large number of contracts, the mortality experience
will be known accurately, with decreasing relative error. This provides a
justification for a deterministic approach. This was used in the context of
guaranteed death benefits by Boyle and Schwartz (1977) and Brennan and
Schwartz (1976).

The lapse risk is also treated as diversifiable in most applications.
However, this is only true to the extent that lapses are independent of
the guarantee liability. It is known that lapses are, to some extent, related
to the segregated fund performance, but no credible model has yet been
proposed. In the absense of a satisfactory stochastic model of lapsation,
we adopt a deterministic model, treating lapses similarly to mortality. We
therefore assume that lapses are also diversifiable and that exits may be
treated as independent of the guarantee liability under the Q-measure. This
assumption just means that if BSPy is the option price with no allowance for
lapses, and 7p7 is the probability that the contract is in force at maturity,
then the option price allowing for lapses is simply 7pZ BSP.

In general, the GMMB replicating portfolio allowing for exits may be
found by multiplying the option price by the survival probability. That is,
if the probability that the policyholder lapses or dies before the maturity
date is 7q7 = 0.25, and we know that BSPy is the amount required for a
guaranteed maturity benefit with no allowance for exits, then the amount
required allowing for exits is simply 0.75BSP,.

IThis is identical to the standard adaptation of the Black-Scholes formula to allow
for dividends on the risky asset.
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TABLE 8.1 Example hedge costs, percentage of fund at the valuation date, for a
GMMB, with allowance for policyholder exits following Appendix A.

Term to Maturity T

Guarantee
% of Fund 5 10 20
60 0.552 0.607 0.218
80 2.341 1.704 0.477
100 5.883 3.438 0.833
120 11.125 5.747 1.270
9% 0.65520 0.42247 0.15972

This relationship may be demonstrated with an example. Consider a
50-year-old life holding a separate account product with GMMB. Assume
that mortality and lapses follow those of the double decrement table in
Appendix A.

The GMMB matures in 5, 10, or 20 years. We assume that the annual
volatility of the underlying segregated fund is o = 20 percent, the risk-free
force of interest is 7 = 6 percent and the management charge is 3 percent
nominal per year, deducted monthly. The replicating portfolio cost for
various guarantee levels are given in Table 8.1, for a fund of $100 at the
valuation date.

The table shows that, even for a fund that is significantly less than
the guarantee (i.e., the option is in-the-money) at the valuation date, if the
term is long enough, the hedge cost is small. This happens because the
cost of a put option decreases over the long term (though it increases in
the short term) and because of the survival effect. On the other hand, the
shorter-dated options have substantial cost, even when the guarantee is only
80 percent of the fund value at the valuation date.

Black-Scholes Formula for the GMDB

Under the GMDB the liability is identical to the GMMB, except that
the maturity date is contingent on the policyholder’s death rather than
his or her survival. The term of the option is, therefore, itself a random
variable.

Let BSPy(T) denote the cost at time 0 of a put option that matures in
T years. Under the GMDB, T is a random variable representing the future
lifetime of the policyholder, corresponding to Ty in actuarial literature. Let
Er[ ] denote expectation over the distribution of T, then the cost of the
hedge portfolio is simply the expected value of BSPy(T) over the distribution
of T. Let 7pZ denote the double decrement survival probability, as before,

and let ;Lfcfit) represent the force of mortality at time ¢ for a life aged x at time
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t = 0. Then the cost of the hedge portfolio at time # = 0 for a contract with
a maximum term 7 time units is

Er[BSPo(T)] = | BSPo(t)pf ulf ds (3.4)
0

and this can be easily evaluated numerically. An approximation would be
to use

H(0) = > BSPy(t) 155 1451 (8.5)
t=1

where ¢ is measured in a suitably small time step (perhaps months), ;—1p7
is the survival probability for ¢ — 1 time units, and 1q§:lt)_1 is the probability
that the policyholder dies in the time interval ¢ — 1 to ¢, given that she or he
has survived for ¢t — 1 time units.

Sample values are given in Table 8.2, using the same parameters as for
Table 8.1. These values were calculated using equation 8.5 with monthly
time steps. Decrement rates are from Appendix A.

The hedge portfolio can be found by splitting BSPy(#) in equation 8.5
into the risky asset part and the risk-free asset part. That is, the total hedge
cost allowing for mortality at time 0 is

n

H(0) = f BSPo (), pr ) dr (8.6)
0

- f "(Ge D (~dy) — So(1 — m)d(~dy)) L Wt (8.7)
0

- fo (GeTd(—dy)) o7 wlds

n Jn(—So(l — ) B(—dy)) o7 Dt (8.8)
0

TABLE 8.2 Example hedge costs, percentage of fund, for GMDB.

Term to Maturity T

Guarantee
% of Fund 5 10 20
60 0.0062 0.0307 0.0957
80 0.0393 0.1194 0.2758
100 0.1395 0.3154 0.6058

120 0.3329 0.6426 1.1045
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so the first part is the risk-free asset portion of the hedge portfolio, whereas
the second part is the risky asset portion.

The GMDB costs are rather less than the GMMB for this sample
contract, even for an in-the-money option, because the mortality rates are
fairly low for a 50-year-old life. The cost of hedging a combination of
options is simply the sum of the individual options. This is easily seen
because the option cost is an expected value, and the expected value of the
sum of contingent payoffs is simply the sum of the expected values of
the contingent payoffs. For example, for a contract offering both a GMMB
and GMDB, the cost of the hedge portfolio is the sum of the individual
hedge portfolio costs.

Equation 8.5 can be easily adapted for more complex death benefits
simply by adapting the definition of BSPy(T). We have assumed in equation
8.8 that BSPy(T) is the price of a straightforward European put option with
fixed strike price G. A common feature of variable-annuity contracts is a
death benefit guarantee that increases at a compound rate. Suppose, for
example, that the death benefit increases at 5 percent per year. In this case
the put option, contingent on death in the Tth month, has a strike price

Gr = Go(1.05)"/12

If the guarantee is increased at the end of each year, then use the integer
part of the exponent: G = G(1.05)7/121,

In Table 8.3 we show the hedge costs for a GMDB identical to that of
Table 8.2 except that the guarantee is increasing at 5 percent per year; in

TABLE 8.3 Example hedge costs expressed as a percentage of fund for variable-
annuity GMDB with guarantee increasing at 5 percent per year.

. Term to Maturity T
Initial Guarantee

% of Starting Fund 5 10 20
80 0.088 0.360 1.299
100 0.249 0.754 2.227
120 0.509 1.296 3.363

Monthly guarantee increases

. Term to Maturity T
Initial Guarantee

% of Starting Fund 5 10 20
80 0.078 0.333 1.229
100 0.233 0.694 2.016
120 0.472 1.218 3.205

Annual guarantee increases
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the top part of the table, the increase is applied at each month end, and in
the bottom part the increases apply annually.

Black-Scholes Formula for the GMAB

The GMAB is a more complicated option with curious put- and call-type
features. Ignoring exits for the moment, we will derive the hedge portfolio
at time ¢t = 0 for a GMAB with renewals at ; > 0 and at ¢, > #;, maturing
at t3 > fp. The starting guarantee is G, and the starting separate fund is Fy.
At #1, if the fund value is more than G, then the guarantee is reset to the
fund level. On the other hand, if the guarantee is greater than the fund at
t1, then the insurer pays the difference into the fund so that the next period
starts with the fund and guarantee equal. The process is repeated at time #,,
similarly. At #3 the policy matures, and the insurer must pay the difference
between the final guarantee and final fund value if the guarantee exceeds
the fund amount at that time.
Let Sy be the stock price at t = 0 for the underlying stock, and let

P(¢) = BSP((1 — m)', 1,#) and Ps(t;) = BSP(So(1 — m)"', G, t1)

where BSP(S, K, T) represents the price of a European put option using the
standard Black Scholes formula, equation 7.29, with time zero stock price S,
strike price K, and term T. So P(¢) is the price of a European put option with
strike price of 1, starting stock price of (1 — )", and term #; Pg(¢) is the price
of a European put option with strike price G, the starting guarantee value,
with starting stock price Sp (1 — m)" and term ¢. Note that Pg(¢) depends on
the stock price S;, but P(#) does not.

With these two straightforward European put-option price formulae,
we can construct the option price formula for the much more complicated
GMARB benefit. The derivation is given in Appendix B; the principle is the
same as used for all the options of Chapters 7 and 8, that is, to take the
expected value of the payout under the risk-neutral measure and discount
at the risk-free rate of interest.

The total hedge cost at ¢t = 0 for the GMAB survival benefit, assuming
final maturity at #3 is, then,

H(0,t3) = (Ps(t1) + So(1 — m)")
X{1+ Pty —t:1)(1 + P(ts — ) + (1 —m)? "' P(t5 — 1)}
— Sp(1 — m)" (8.9)

Generally the dates between renewals are fixed at 10-year intervals, in which
caset; — 1, = tp — t; = 10, giving:

H(0) = (Ps(t1) + So(1 —m)"){1 + P(10)(1 + P(10) + (1 =) "")} = So(1 = m)"
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If, in addition, the management charge is set to zero, H(0, #3) reduces to the
form:

(So + Ps(1))(1 + P(10))* = So

We can split equation 8.9 into the benefit due at each maturity (or
renewal or rollover) date, which allows us to apply survival probabilities.
Furthermore, we can generalize to include the death benefit under the GMAB
contract. On death between #; and #,, say, the insurer is liable for the first
rollover benefit at #; as part of the survival benefit; the insurer is also liable
for the guarantee liability at the date of death, when the amount due is the
guarantee (which has been reset at #1) less the fund value at . We define
Py () for t = t; to be the option price at time ¢ = 0 for the survival benefit
due at #;, given that the policy is still in force at that time, and Pj(¢) for
ty < t = tp41 to be the option price at ¢ = 0 for the death benefit due if the
life dies at time ¢, after k rollovers. Then H(0, t3) = Py(t1) + P2(t2) + P3(23),
and:

Py(t) = Ps(2) (8.10)

Py(t) = (So(1 — m)"" + Ps(t1)) P(t — t1) t>1 (8.11)
P3(t) = {So(1 — m)™ + Pg(t1)(1 —m)?""

+ (Sp(1 —m)t’ + Pg(t1))P(t> —tl)}P(t_ 1) t>1t (8.12)

The only terms in H(0, #) that involve the stock price Sy are Pg(), and

the terms in So(1 — m)’. The first is a straightforward put option, and the

derivative with respect to Sy was derived in Chapter 7, so deriving the split

between stocks and bonds for the hedge portfolio for the GMAB is not
difficult, giving the stock part of the hedge at time ¢ = 0 as:

d H(0, t3)

S
0 adSo

= (=So ®(—di(t1)) + So(1 — m)")

X{1 + P(ty — t1)(1 + P(t3 — 12)) + (1 = m)> 7" P(t3 — 1)}
= So(1 —m)"

Allowing for exits, the cost of the GMAB survival benefit hedge for a
policyholder age x, assuming final maturity at age 73, is

Pi(t1) npx + Pa(t2) by + P3(83) 135

For the additional death benefit, the hedge price at time ¢t = 0 is

11 5] 13
R R R X R e

0 2] t
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TABLE 8.4 Example hedge price, percentage of fund, for GMAB death and
survival benefit.

t/t/t

Guarantee
% of Fund 2/12/22 5/15/25 10/20/30
60 4.232 3.789 2.702
80 5.797 5.713 3.959
100 11.053 9.556 6.001
120 20.638 15.289 8.787

All this formula does is sum over all relevant dates of death the probability
that the policyholder dies at w, multiplied by the option cost for the
contingent benefit due at w, given that the life dies at that time. The benefit
depends on the previous rollovers, so the term of the contract is split into
periods between rollover dates.

Some values for the GMAB, including both death and survival benefits,
are given in Table 8.4, per $100 of fund value at valuation. The withdrawal
and mortality rates are from Appendix A, as used for the tables of the
previous sections. The option costs for the GMAB are much higher than the
longer-term GMMB and GMDB benefits, even where the option begins well
out-of-the-money. The nature of the contract is that at each renewal date
the next option becomes at-the-money, so only the first payout is reduced
substantially by starting out-of-the-money.

The costs without the renewal option (that is, assuming the policy
matures at #;) are given in Table 8.5, for comparison. These figures are
simply the sum of the GMMB and GMDB for each term and guarantee
level. The difference between the figures in Table 8.4 and Table 8.5 indicate
how costly the guaranteed renewal option may be. Note however that the
costs may be greatly reduced if a substantial proportion of policyholders
choose not to exercise the option.

TABLE 8.5 Example hedge price, percentage of fund, for death and survival
benefit with no renewals or rollover.

Term #
Guarantee
% of Fund 2 5 10
60 0.137 0.558 0.638
80 1.626 2.380 1.823
100 6.625 6.022 3.753

120 15.747 11.458 6.390
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PRICING BY DEDUCTION FROM THE SEPARATE ACCOUNT

The Black-Scholes-Merton framework that has been used in the previous
sections to calculate the lump-sum valuation of embedded options in insur-
ance contracts can also be employed to calculate the price under the more
common pricing arrangement for these contracts, where the income comes
from a charge on the separate account. The charge for the option forms
part of the MER (management expense ratio), which is a proportion of
the policyholder’s fund deducted at regular intervals to cover expenses and
other outgo; the part allocated to fund the guarantee liability is called the
margin offset. The resulting price is found by equating the arbitrage-free
valuation of the fund deductions with the arbitrage-free valuation of the
embedded option.

Assume that a monthly margin offset of 100« percent is deducted from
the fund at the end of each month that the policy is in force. Suppose that
the value of the option at time ¢ = 0 is calculated using the techniques of
the previous section, and is denoted by B. Then the arbitrage-free value for
«a is found by equating the expected present value of the total margin offset
to B, using the risk-neutral measure. That is, measuring ¢ in months and
using 7 for the monthly risk-free force of interest,

n—1
B = Eg [Z aFe tp;] (8.13)

t=0

Now, F; = S;(1 —m)" where S; is the stock process for the separate fund
account, and m is the monthly management charge deduction (assumed
constant). But under any risk-neutral measure, the expected rate of increase
of the stock index is the risk-free rate, so that

Eq[Sie™] = So

which gives us:

n—1
B =Soa > (1—m)pl = Soadl, (8.14)
t=0

where a4y 18 an n-month annuity factor, using standard actuarial notation,
evaluated at rate of interest i’ = (1 — m)~! — 1. The superscript 7 indicates
that the annuity takes both death and withdrawals into consideration. So
the appropriate margin offset rate for the contract is

B

a =
ST
SO ax:mi’

(8.15)
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TABLE 8.6 Example annual rate of hedge costs using monthly deduction from the
fund, for a GMDB with monthly increases of 5 percent per year.

Term to Maturity T (years)

5 10 20
Value of option B 0.249 0.754 2.227
Value of annuity
of $1 per month T 45.9 71.7 93.3
Annual margin offset rate
(basis points) 100(12«) 6 13 29

For example, consider a variable-annuity GMDB with annual increases
of 5 percent applied monthly to the guaranteed minimum payment. Under
the mortality assumptions of Appendix A and using a volatility of 20 percent
per year, as before, the values of the option on the 5-, 10-, and 20-year
contract, with both initial guarantee and fund values set at $100, are given
in Table 8.3. In Table 8.6 the annuity rates and annual rates of margin offset
are given; the annual rate is simply 12 times the monthly rate. The initial
guarantee level is assumed to be equal to the initial fund value of $100. One
basis point is 0.01 percent.

Note that we have assumed that increasing the margin offset does
not increase the total management charge m from which « is drawn. If
increasing « also increases 72, then B will also be affected and the solution
(if it exists) will generally require numerical methods.

THE UNHEDGED LIABILITY

The reaction of many actuaries to the idea of applying dynamic hedging
to investment guarantees in insurance is that it couldn’t possibly work in
practice—the assumptions are so simplified, and the uncertainty surrounding
models and parameters is so great. Although there is some truth in this, both
experience and experiment indicate that dynamic hedging actually works
remarkably well, even allowing for all the difficulty and uncertainties of
practical implementation. By this we mean that it is very likely that the hedge
portfolio indicated by the Black-Scholes analysis will, in fact, be sufficient
to meet the liability at maturity (or liabilities for the GMAB contract),
and it will be close to self-funding; that is, there should not be substantial
additional calls for capital to support the hedge during the course of the
contract. Of course, we do need to estimate transactions costs; these are not
considered at all in the Black-Scholes price.
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In this section, an actuarial approach is applied to the quantification
and management of the unhedged liability. The unhedged liability comprises
the additional costs on top of the hedge portfolio for a practical dynamic-
hedge strategy. For a more detailed analysis of discrete hedging error and
transactions costs from a financial engineering viewpoint, see Boyle and
Emmanuel (1980), Boyle and Vorst (1992), and Leland (1995).

Discrete Hedging Error with Certain Maturity Date

The Black-Scholes-Merton (B-S-M) approach assumes continuous trading;
every instant, the hedge portfolio is adjusted to allow for the change
in stock price. Under the B-S-M framework each instant the adjustment
required to the stock part of the hedge portfolio is exactly balanced by the
adjustment required to the bond part of the hedge. In practice we cannot
trade continuously, and would not if we could, since that would generate
unmanageable transactions costs.

Discrete hedging error is introduced when we relax the assumption of
continuous trading. With discrete time gaps, between which the hedge is not
adjusted, the hedge may not be self-financing; the change in the stock part
of the hedge over a discrete time interval will not, in general, be the same
as the change in the bond part of the hedge. The difference is the hedging
error. It is also known as the tracking error.

In Chapter 6 we used stochastic simulation to estimate the distribution
of the cost of the guarantee liability, assuming that the insurer does not
use a dynamic-hedging strategy, and invests the required funds in risk-free
bonds. In this section we use the same approach, but we apply it only to the
part of the liability that is not covered by the hedge itself. Then, the total
capital requirement for a guarantee will be the sum of the hedge cost and
the additional requirement for the unhedged liability.

The frequency with which a hedge portfolio is rebalanced is a trade-off
between accuracy and transactions costs. Hedging error may be modeled
assuming a time-based strategy or a move-based strategy. The time-based
approach assumes the hedge portfolio is rebalanced at regular intervals.
The move-based approach assumes the hedge portfolio is rebalanced when
the stock price moves by some specified triggering percentage. The move-
based approach has been shown to be more efficient, that is, generating
less hedging error for a given level of expected transactions costs. However,
it is more straightforward to demonstrate the method using regular time
steps, and that is the approach adopted here. One reason that it is more
straightforward is that it makes it simpler to incorporate mortality costs.
We will use monthly time steps, as we did in Chapter 6.

For a general option liability, let Y; be the value at ¢ (in months) of the
bond part of the hedge, and let S, ¥, be the stock part. Bonds are assumed
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to earn a risk-free rate of interest of /12 per month. In the month tto ¢ + 1,
the stock price changes from S; to S, + 1. The option price at # is:

H(t) = Yt + \Ift St

Immediately before rebalancing at ¢, the hedge portfolio from # — 1 has
accumulated to

H(t™) = Y2 + 9,45,

and the hedge required is H(z). The difference H(¢) — H (™) is the hedging
error. If this difference is negative, then the hedging error is a source of
profit. This means that the replicating portfolio brought forward is worth
more than we need to set up the rebalanced portfolio.

As an example, in Table 8.7 we show the results from a single simulation
of the hedging error for a two-year GMMB or European put option with
monthly hedging. The strike price or guarantee at ¢t = 0is K = $100, which
is equal to the fund at the start of the two-year projection. Management
charges of 3 percent per year are deducted from the fund. The risk-free
force of interest is assumed to be 6 percent; the volatility for the hedge is 20
percent per year.

The stock prices in the second column are calculated by simulating
an accumulation factor each month from a regime-switching lognormal
(RSLN) distribution. This is the real-world measure, not the Q-measure,
because we are interested in the real-world outcome. The Q-measure is only
used for pricing and constructing the hedge portfolio.

In column 3, the stock part of the hedge is calculated; this is

In(S, (0.97)2/K) + (r + 02/2)(2 — t/12)
—S,(0.97)* (-
077 ( ( oJ2-1t/12

In column 4, the bond part of the hedge is given:

Ke-r2-1/12 [ In(S,(0.97)2/K) + (r — 0/2)(2 — t/12)
oJ2—t/12

Column § is the sum of columns 3 and 4; this is the Black-Scholes price at ¢
months, using the projected stock price at that time (H(¢)). This represents
the cost of the hedge required to be carried forward to the next month.
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TABLE 8.7 Single simulation of the hedging error for a two-year GMMB.

Time Stock Bond
(Months) Part of Part of BSP Hedge b/f
t S; Hedge Hedge H(t) H(t) HE
0 100.000 —34.160 41.961 7.801 0.000
1 99.573 —35.145 43.096 7.951 8.157 -0.206
2 104.250 -31.296 37.708 6.412 6.516 -0.105
3 103.447 -32.577 39.209 6.632 6.842 -0.210
4 101.703 —34.901 42.081 7.180 7.377 -0.197
S 100.251 —37.081 44.759 7.679 7.889 -0.211
6 101.784 —36.104 43.203 7.099 7.336 -0.237
7 107.445 -30.419 35.665 5.246 5.308 —0.062
8 106.365 -32.111 37.603 5.492 5.730 -0.238
9 107.996 —30.682 35.618 4.936 5.188 —-0.252
10 119.560 —18.480 20.823 2.343 1.829 0.513
11 118.520 —19.363 21.755 2.393 2.608 -0.215
12 120.944 —16.811 18.714 1.903 2.106 -0.202
13 119.696 -17.767 19.718 1.951 2.171 -0.219
14 128.840 —9.442 10.280 0.838 0.693 0.145
15 131.346 —7.209 7.782 0.573 0.706 -0.133
16 133.677 —5.248 5.618 0.370 0.484 -0.114
17 136.096 —3.478 3.692 0.214 0.303 —0.089
18 141.205 —1.456 1.529 0.074 0.102 —0.028
19 150.057 -0.239 0.249 0.009 -0.010 0.019
20 154.164 —0.040 0.042 0.001 0.004 —0.003
21 165.900 0.000 0.000 0.000 —0.002 0.002
22 159.486 0.000 0.000 0.000 0.000 0.000
23 179.358 0.000 0.000 0.000 0.000 0.000
24 192.550 0.000 0.000 0.000 0.000 0.000

Column 6 is the value of the hedge brought forward from the previous
month. This is found by allowing the stock part to move in proportion to
the stock price from ¢ — 1 to ¢, and the hedge part accumulates for one
month at the risk-free rate. This means, for example, that the hedge brought
forward from# = Otot = 1is

H(17) = —34.1602—1 +41.961¢712 = 8.157
0

The hedging error in column 7 is, then, H(¢) — H(¢™). So, for example,
at t = 1 we need a hedge costing $7.951, and we have $8.157 available
from the previous rebalancing. Then, the error is — $0.206.
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We can calculate the total discounted hedging error; in this case,
discounting at the risk-free force gives a present value of —$2.0. Over
a large number of simulations the hedging error will be approximately
zero on average, if the volatility used for projections is the same as the
O-measure volatility used for hedging. In this example, the P-measure
volatility is actually less than the Q-measure (for this simulation); we are
using the RSLN model, and for the two years of the projection the process
is mainly in the low-volatility regime. The volatility experienced in this
scenario is the standard deviation of the log-returns, and is approximately
14 percent per annum. Because this is much lower than the 20 percent
used in the hedge, the hedging error tends to be negative. If we had used a
scenario that experienced more months of the high-volatility regime, then
the 20 percent volatility used to calculate the hedge would be less than the
experienced volatility, and the hedging error would be positive.

This example demonstrates the point that the vulnerability of the loss
using dynamic hedging is different in nature to the vulnerability using the
actuarial approach. In dynamic hedging the risk is large market movements
in either direction (i.e., high volatility). Using the actuarial approach of
Chapter 6, the source of loss is poor asset performance, and the volatility
does not, in itself, cause problems.

If the real-world and risk-neutral measures used are consistent, then the
mean hedging error is zero. By consistent we mean that Q is the unique
equivalent risk-neutral measure for P. This is not the case for this example.

Discrete Hedging Error: Life-Contingent Maturity

The hedging error for an option contingent on death or maturity must take
survival into consideration. The specific example worked in this section is a
guarantee payable on death or maturity, that is a combined GMMB/GMDB
contract, but the final formulae translate directly to other similar embedded
options.

For the combined GMMB/GMDB contract, the death benefit (G — F;)*
is paid at the end of the month of death, if death occurs in the month
t —1 — t, and the maturity benefit (G — F,))" is paid on survival to the end
of the contract. Let P(¢,w) be the Black-Scholes price at ¢ for a put option
maturing at w = t, and let ,,—|q¢, denote the probability that a life age x
years and ¢ months survives as a policyholder for a further w — ¢t months,
and dies in the following month. Let ,—,p], denote the probability that a
policyholder age x years and # months survives, and does not lapse, for a
further » — ¢ months. Then the total hedge price at ¢ for a GMMB/GMDB
contract, conditional on the contract being in force at t, is

n—1

HY@t) = > woilgl Pt w) + ueipl Pt 1) (8.16)

w=t
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The hedge price at ¢ unconditionally (that is, per policy in force at time
t = 0) is determined by multiplying (8.16) by ;pI to give

n—1
H(t) = > WlqP(t,w) + .p7P(t, n) (8.17)

w=t

The hedging error is calculated as the difference between the hedge
required at ¢, including any payout at that time, and the hedge brought
forward from ¢ — 1. Using the conditional payments, we split the hedge H(#)
into the stock and bond components: S;, W/ is the stock component of the
hedge required at # conditional on the contract being in force at ¢, and Y is
the bond part of the hedge required at ¢ conditional on the policy being in
force at that time:

He(r) = Y¢ + V7S,

where
V= ——H) and Y = Ht)— S, VS (8.18)

Similarly,
H(t) = Yt + ‘Pt St

where W, = ;p7 W and, similarly, Y, = ,—,pZ,Y{ for the split of the uncon-
ditional hedge price between stocks and bonds. The unconditional values
are the expected amounts required per policy in force at ¢ = 0. Similarly to
the certain maturity date case, before rebalancing at ¢, the hedge portfolio
from ¢ — 1 accumulates to

H(t) = Y1/ +W,4 8,

exactly as before, whether or not the contract remains in force.

Now consider the hedging error at ¢ given that the contract is in force
at t — 1. If the life survives, the hedging error is the difference between the
hedge portfolio required at # and the hedge portfolio brought forward from
t — 1. If the life dies or lapses, the hedging error is the difference between
the benefit at ¢ (if any) and the hedge brought forward. Taking each of these
cases and multiplying by the appropriate probability, which is conditional
on survival in force to # — 1, gives the hedging error at ¢ conditional on
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surviving to ¢ — 1. The term g/, | is the probability that the life withdraws
in the month ¢ — 1 to ¢, given that the policy is in force at time ¢ — 1. The
hedging error conditional on surviving to # — 1 then is

Pr—1(H (1) = H (7))

+ g, 1((G = F)Y = H()

+ e (—HE)

= PLi H() + 48,1 ((G = F)) — H( )
The unconditional hedging error at #, denoted HE,, is found by multi-

plying by the probability that the contract is in force at ¢ — 1, that is the
survival probability from age x to age x plus ¢ — 1 months, giving:

HE, = ,1pl{pZ, (H(t) +q%, (G — F)*") — H(t")}
H(t) + 1-1]q2(G — E)*) = H(t") (8.19)

This equation shows that it is not necessary to apply lapse and survival
probabilities individually each month. For the GMMB described in the
previous section, the hedging error, allowing for life contingency, is found
simply by multiplying the hedging errors calculated for the certain maturity
date by the probability of survival for the entire term of the contract.

Transactions Costs

Transactions costs on bonds are negligibly small for institutional investors.
It is common in finance to assume transactions costs are proportional to the
absolute change in the value of the stock part of the hedge. That is, for an
option with certain maturity date, assume transaction costs of 7 times the
change in the stock part of the replicating portfolio at each hedge. Then,
the transactions costs arising at the end of the #th month are

TS, |\I,t - q’t—1| (8.20)

To allow for life-contingent maturity, let V¢ now be defined as in
equation 8.18, that is, calculated assuming the contract is in force at ¢
and allowing for life contingencies from # to final maturity 7. Let ¥, be
the unconditional equivalent, then W, = 7 Wf is the stock portion of the
projected hedge required at z. The expected stock amount required at ¢ if
the contract is in force at ¢ — 1 is

Pri1 VS S
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The transactions costs at ¢ conditional on survival to t— are
TS, |pr1 Y — V| (8.21)

Multiply by the # — 1 month survival probability for the unconditional
transactions costs at #:

TC, = 1-1ps {TSt |p;+t—1 Wy - qff—l“‘
TSt |’\Ift - q’t—1| (8'2‘2‘)

In the examples that follow, transactions costs are assumed to be 7 = 0.2
percent of the change in the stock component of the hedge.

Model Error

In the example given in Table 8.7, we simulated the stock price assuming an
RSLN process. Under any stochastic volatility process, such as the RSLN
model, the Black-Scholes hedge loses the self-financing property, and we use
simulation to derive the distribution of additional hedging costs where the
hedge is not self-financing. In fact, this emerges naturally from the simulation
process as part of the hedging error, and examples are given in the following
section. This is the approach we will follow through the rest of the book
when we look at the implications of following a dynamic-hedging strategy.
That is, we calculate the hedge using a constant volatility assumption, then
project the hedge using the stochastic volatility RSLN model. The resulting
hedging errors then capture both the error arising from discrete hedging
and the error arising from the fact that the real-world measure assumes
stochastic volatility.

Another approach is to calculate a hedge using a O-measure consistent
with the stock model. For example, with the RSLN-2 model a consis-
tent Q-measure would be another RSLN-2 model with the same param-
eters for the variance and the transition probabilities, but with the mean
parameters for the two regimes adjusted to give the risk-neutral property
(it is necessary that E[S;|S;—1] = ¢"S,—1). Option prices calculated using this
O-measure are derived in Hardy (2001), and do reflect the structure of
market prices more accurately than the lognormal distribution. However,
the process of calculating the hedge portfolio is much more complex, and the
benefits in terms of accuracy are limited. Also, for any stochastic volatility
model there are infinitely many risk-neutral measures that we may use to
price the option. Only in the constant volatility model is the price unique
and self-financing. So whatever price we use for the stochastic volatility pro-

jection, it will be necessary to assess the distribution of the possible hedge
shortfall.



Examples 151

e e <
S [O8) EN
1 1 1

Probability Density Function
o
-
1

=]
(=)
1

1 1 1 1
-8 -6 -4 ) 0 2 4

PV of Outgo - Income

FIGURE 8.1 Simulated probability density function for net present value
of outgo of the joint GMMB/GMDB contract, using hedging, expressed as
percentage of premium.

EXAMPLES

Joint GMMB and GMDB Contract

In Figure 8.1 we show the probability density function for the net present
value of outgo random variable for a straightforward contract offering a
guarantee of 100 percent of premium on death or survival. The contract
details are as follows:

Mortality: See Appendix A

Premium: $100

Guarantee: 100 percent of premium on death or maturity
MER: 0.25 percent per month

Margin offset: 0.06 percent per month

Term: 10 years

The simulation details are as follows:

Number of simulations: 5,000
Volatility used to calculate
the hedge: 20 percent per year
Stock price process: RSLN-2, with parameters from
Table 6.2
Transactions costs: 0.2 percent of the change

in market value of stocks
Rebalancing frequency: Monthly
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At each month end, the outgo is calculated as the sum of any mortality
payout, plus transactions costs from rebalancing the hedge, plus the hedge
required in respect of future guarantees minus the hedge brought forward
from the previous month. In the first month of the contract there is no hedge
brought forward, so that the initial rebalancing hedging error comprises the
entire cost of establishing the hedge portfolio (around 3.8 percent of the
premium in this case). Income is calculated as the margin offset multiplied
by the segregated-fund value at each month end, except the last. The present
value is calculated at the risk-free rate of interest, that is 6 percent per year
compounded continuously. Since we are simulating a loss random variable,
negative values indicate that at the risk-free rate income exceeded outgo. We
can see that most of the distribution falls in the negative part of the graph.
This means that, in most cases, the margin offset is adequate to meet all the
hedging costs and leave some profit. However, there is a substantial part of
the distribution in the positive quadrant, indicating a significant probability
of a loss.

If the hedge portfolio is calculated using a volatility that is equal to the
volatility of the stock price process, then the hedging error will be zero,
on average. In this example, the stock price process volatility is around
15.5 percent, whereas the hedge is calculated using a 20 percent volatility
assumption. This leads in most cases to overbedging, so that the average
hedging error is negative.

On the other hand, the stock price process here is assumed to be
following a regime-switching (RS) model. The process occasionally moves
to the high-volatility regime, under which the volatility is approximately 26
percent per year. During these periods, the hedging error may be positive
and relatively large. The consequence is that the path of monthly hedging
errors under these simulations generally lies below zero, with spikes arising
from the short periods of high volatility. Some sample paths are given in
Figure 8.2.

It is worth nothing that, in practice, hedging error will also be generated
by deviations from the lapse and mortality assumptions in the model.

GMAB

In Chapter 6, in the section on stochastic simulation of liability cash flows,
the cash flows for a GMAB contract were simulated assuming no hedging
strategy is followed. In this section, the same GMAB contract cash flows are
projected assuming a Black-Scholes hedge is used, with monthly rebalancing.
As with the GMMB/GMDB example in the previous section, deviations from
the strict Black-Scholes assumptions are explicitly modeled in the form of
transactions costs (at 0.2 percent of the change in market value of stocks),
plus hedging error (allows for discrete hedging and model error). The hedge
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FIGURE 8.2 Simulated hedging errors for GMMB/GMDB

contract, given in five simulations; percentage of premium.

portfolio assumes lognormal stock price process with volatility 20 percent,
whereas the stock price is simulated as an RSLN process with parameters
from Table 6.2. This is assumed to be an ongoing product, and we project
the future cash flows under stochastic simulation. It is assumed that an
amount equal to the initial hedge portfolio is available at the start of the
simulation. All values are percentages of the fund value at the start of
the projection. The guarantee value at that time is assumed to be 80 percent

of the market value.

Contract Details

Guarantee

Mortality:
Initial guarantee:

Hedging

GMARB with:

e 10-year terms between rollover dates

e two years to next rollover

* maximum of two further rollovers

* guarantee paid on death or maturity

Canadian Institute of Actuaries (CIA),
see Appendix A

80 percent of starting market value

Black-Scholes hedge using formula in Appendix B, with:

Volatility:
Risk-free rate:

20 percent
6 percent continuously compounded
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Rebalancing frequency: Monthly
Transactions costs: 0.2 percent of change in market value
of stocks

Hedge brought forward: 5.797 percent of fund (see Table 8.4)

Asset-Liability Simulation

Asset model: RSLN
Parameters: From Table 6.2
No. of simulations: 2,000

The resulting simulated probability density function for the future net
costs is given in Figure 8.3. Most of the distribution is in the negative cost
sector; that is, there is little probability of a future loss. This is because
the hedge already purchased has substantially reduced future liability risk;
all that remains is from hedging error and transactions costs. The hedge
portfolio acts to immunize the insurer against the guarantee liability.

An interesting feature of the GMAB contract emerges from the indi-
vidual cash-flow analysis. The GMAB hedge portfolio is more complex
than the “plain vanilla”? GMMB and GMDB contracts. For the simple
European option, the hedge always comprises a long position in bonds and
a short position in equities. The GMAB may be long or short in equities
at different times, and it is liable to swing dramatically from long to short
at the rollover dates.
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FIGURE 8.3 Simulated probability density function for net
present value of outgo for the GMAB contract, using hedging;
percentage of starting fund value.
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We can illustrate this with a GMAB contract with one renewal in T
years and maturity in T + 10 years. Mortality and lapses are ignored for
now. Suppose the previous renewal was at T — 10 when the guarantee was
set to Ky. The option price at ¢, using the notation of the section on the
Black-Scholes formula for GMAB in this chapter, is

H = Ps((1 = m)'", T) + (S; (1 = m)'” + Ps((1 — m)'°, T)) P(10)

As T — 0, if the fund value is greater than Ky, then Pg((1 — m)'°, T) — 0
and the option price

H — S;(1 — m)'°P(10)

The stock part of the hedge is found from S, dP/ dS;, which just before
the rollover is just S; (1 — #2)'°P(10), which is greater than zero. This shows
that the entire option price is invested in stocks just before rebalancing at
renewal, provided the fund is greater than the guarantee in force. However,
immediately after rebalancing, the option becomes a straight European put
with strike S,y 7e 19", for which the hedge requires a short stock position.
Therefore, at renewal, the hedge moves from a long 100 percent stock
position to a short stock position—that is, more than the entire option price
is transacted. So transactions costs are high. Moreover, this swing from long
to short makes the hedge very sensitive to stock price movements, which
increases the potential hedging error compared with a standard European
option. In terms of the “greeks” of financial economics, the hedge involves
dramatic gamma (dzP/ dS?) spikes at each renewal date.
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FIGURE 8.4 Simulated stock part for 100 simulations of the
GMAB hedge, with median value in bold.
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In Figure 8.4 the heavy line shows the median stock part of the hedge
portfolio as it evolves through the simulations. The broken lines show
individual simulation paths, to give a picture of the variation in this feature.
The rollovers happen at 24 months and at 144 months, and these dates
correspond to the plunge in the stock part seen in most of the simulations.
Although these gamma spikes are a highly undesirable feature of the GMAB
contract, the effect is mitgated substantially in practice where a portfolio
has a spread of maturity or rollover dates over time.



Risk Measures

INTRODUCTION

n Chapters 6 and 8, we developed the distribution of liabilities for equity-

linked insurance using the actuarial and dynamic-hedging approaches,
respectively. In this chapter, we discuss how to apply risk measures to the
liability distribution to compare products, particularly focusing on risk and
return.

A risk measure is a method of encapsulating the riskiness of a distri-
bution in a single number or in a real-valued function. The most familiar
risk measures to actuaries are premium principles, which determine how
a risk distribution is to be used to set a policy premium. Most finance
professionals are familiar with the value-at-risk (VaR) risk measure, by
which the distribution of future losses on a portfolio is used to determine a
capital requirement for solvency management in relation to that portfolio.
Regulators use risk measures as a succinct way of quantifying risk.

More formally, a risk measure is functional, mapping a distribution to
the real numbers; if we represent the distribution by the appropriate random
variable X and let ¥ represent the risk-measure functional, then

#H:X—>R

In Chapter 6, the net present value (NPV) random variable for the
outgo was simulated for the different contracts assuming that no risk-
mitigation strategy (such as hedging) is adopted. This is known as the
actuarial approach (though many actuaries do not use it). Because
the liability is discounted at the risk-free rate, the NPV represents the
amount required that, if invested at the risk-free rate, will be exactly suffi-
cient to meet the guarantee at maturity. In Chapter 8, we also discounted
the NPV of the guarantee, but this time assuming that some of the funds are
used to establish and support a hedge portfolio to mitigate the liability risk.
In this chapter, risk measures are applied to both of the NPV distributions
derived using actuarial and dynamic-hedging risk management.

157
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In this chapter we first introduce the quantile risk measure. Value-at-
risk, or VaR, is a well-known financial application of the quantile risk
measure. We also describe the conditional tail expectation (CTE) risk
measure, which is related to the quantile risk measure. This risk measure
is gaining ground in many financial applications. It is also known as zail-
VaR (by Artzner et al. (1999) and as expected shortfall. Although exact
calculation of the risk measures is discussed in these sections, the most
practical method of determining the risk measure in most applications
explored in this book is by stochastic simulation. The CTE measure has
many advantages over the quantile measure, which we discuss. To illustrate
the application of risk measures, we have used two examples in this chapter.
First, we consider the liability from a guaranteed minimum accumulation
benefit (GMAB) contract. Next we consider the guaranteed minimum
death benefits (GMDBs) commonly embedded in variable-annuity contracts.
In both cases the risk measures will be applied to the NPV of future loss
random variable, denoted by Lg. If the actuarial strategy is adopted, we
have an NPV random variable

Lo = NPV of guarantee cost — NPV of margin offset

and if the insurer uses a dynamic-hedge strategy to manage the risk, then
the NPV random variable is

Lo = Initial hedge cost + NPV of hedging errors
+ NPV of transactions costs — NPV of margin offset

In either case, the question is how to use the distribution to determine a
suitable reserve, to determine appropriate solvency capital!, or to determine
whether the margin offset is a suitable charge for the guarantee. All of the
risk measures discussed can be equally applied to the NPV random variable
with or without allowance for dynamic hedging.

Actuarial science has long experience of risk measures through premium
principles, discussed for example in Gerber (1979). A premium principle
describes a method of using a distribution for an insurable loss X to calculate
a premium. Simple examples are the following:

The expected value principle: #[X] = (1 + a)E[X]
The variance principle: #[X] = E[X] + « V[X]

'The solvency capital may be the same as the reserve, but generally the reserve is
determined on accounting principles and solvency capital is added to satisfy risk
management and regulatory requirements.
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1

Although we call these risk measures “premium principles,” we also use
them for other risk management issues, such as calculating reserves and
solvency requirements.

The expected value and variance premium principles are more appro-
priate for diversifiable risks than for the systematic risks of equity-linked
contracts. For a sufficiently large number of independent risks, the law of
large numbers states that the sum of losses will be close to the mean, and the
distance from the mean is a function of the distribution variance, making
the expected value and variance principles both reasonable choices. For
equity-linked insurance where the losses within each cohort are not diversi-
fiable, we cannot rely on the law of large numbers. Two risk measures are in
common use for this type of loss, the quantile risk measure (which includes
VaR) and the CTE.

THE QUANTILE RISK MEASURE

Introduction

Let the random variable Ly be the present value of losses, discounted at
the risk-free rate of interest. The quantile risk measure for L is defined for
parameter o, 0 = a = 1, as

H[Lo] = Vo = inf{V:Pr[Lo = V] = a} (9.1)

So, V, is the 100« percentile of the loss distribution, hence the quantile risk
measure. This expression is easily interpreted: V,, is the smallest sum to hold
in risk-free assets in order that at maturity, when combined with the fund F,
and all the margin offset received over the term ¢ = 0tot = 7, accumulated
at the risk-free rate of interest, the probability of having a sufficient amount
to pay the guarantee G is at least a. For a guaranteed death benefit,
this is averaged over the different possible claim dates according to the
mortality rates. The probability distribution used is the real-world measure,
or P-measure, because we are interested in the real-world outcome. The
O-measure is only used for pricing or determining the hedge portfolio. The
quantile risk measure is the basis of the VaR calculation used in banking risk
management. Generally a 99 percent quantile (or ninety-ninth percentile)
for 10-day losses must be held as solvency capital.

Simulation

The quantile risk measure is very easy to estimate when the liability distribu-
tion is constructed by stochastic simulation. By ordering the simulations, the
estimated a-quantile risk measure is the (Na)th value of the ordered liability
values, where N is the number of simulations. That is, if the jth smallest
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simulated loss present value is Lo, then the estimate of the a-quantile
is L() (Na)-

This a-quantile estimate will vary as a result of sampling variability.
It is useful to quantify the variability in the estimate—in other words, to
calculate the standard error? of the estimate. The quantile risk measure is an
order-statistic of the loss distribution, and from the theory of order statistics
we can calculate the standard error of the simulation estimate?.

A nonparametric 1008 percent confidence interval for the a-quantile
from the ordered simulated loss costs Ly ;) is given by an interval

(Lo(Na—a)> Lo(N,+4))

where

A= cpl(”TB) Ne(l — ) (9.2)

It is usual to round A to an integer, but it is also reasonable to interpolate for
noninteger values. This formula is derived using the binomial distribution
for the count of simulations below the true a-quantile. The number of
simulations below the a@-quantile is a random variable, M, say. It has
a binomial distribution with parameters N and «, with mean Na and
variance Na(1 — ). We use Na as an estimate for M, which is unknown as
the true a-quantile is unknown. Then (Na — A, Na + A) is a B-confidence
interval for M where, if Fg() is the distribution function of the binomial(N, «)
distribution,

Fg(Na + A) — Fg(Na — A) = B

Using the normal approximation to the binomial distribution gives the
equation 9.2. This is a reasonable approximation, provided Na is sufficiently
large, that is greater than about 30.

The implementation of all this is very simple. Suppose we have a
set of 10,000 simulations of the present value of loss for an equity-
linked contract, and we are interested in the ninetieth percentile. Then
N = 10,000, @ = 0.9, and the estimate of the a-quantile is the 9,000th
ordered value of the simulated losses.

Now suppose we are interested in a 95 percent confidence interval for
the quantile, so that 8 = 0.95. Calculate

A = ®71(.975) /10,000(0.1)(0.9) = (1.96)(30) = 58.8

2The standard error is the standard deviation of a random estimator.
3See David (1981) for a comprehensive text on order statistics theory.
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Round A to 59, to give a 95 percent confidence interval of
(Lo (8941)> L0 (9059))

That is, we have 95 percent confidence that the distribution 0.9-quantile lies
between the 0.8941 quantile and the 0.9059 quantile of the simulation.

Exact Calculation

In some circumstances, it is possible to calculate the quantile risk measure
exactly. If the insurer does not use dynamic hedging, and stock returns
follow a lognormal distribution, then the cost of the guaranteed minimum
maturity benefit (GMMB) guarantee has a distribution with a probability
mass at zero and a lognormal-type density above zero (because it has a
censored, transformed lognormal distribution). However, once the margin
offset income is added in, exact calculation becomes impractical. The present
value of the GMMB net of the margin offset income is a sum of dependent
lognormal random variables that is not very tractable.

For some purposes, the cost of the guarantee before allowing for mar-
gin offset income is interesting—for example, as a numerical check, for a
rough calculation, or for use as a control variate in variance reduction (see
Chapter 11).

The first step required is to determine whether the probability of the
guarantee ending up out-of-the-money* is greater or less than the quantile
level of interest. Using obvious notation, the present value of the guarantee,
ignoring margin offset income and mortality, is

Lo = {(G —F)e™ G =F, (9.3)
0 G <EF,

and we are interested in the a-quantile of L. Let the stock process be
denoted S;, as usual, with So = Fy so that the fund at # is simply the stock
reduced by the management charge, F, = S.(1 — m)* for integer k.

Now, define ¢ = Pr[Ly = 0]. This is the probability that the final fund
value is greater than the guarantee, meaning that there is no payment under
the guarantee.

G S,(1—m)

E=Pr[G<E,] =Pr[G<S,(1—-m)"] =Pr|— <
So So

“Recall that in-the-money means that the guarantee is greater than the fund level,
out-of-the-money means that the fund is greater than the guarantee.
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If it is further assumed that stock returns follow a lognormal process, then

Sn (1 —m)”

2
So )

~ log N(n(n + log(1 — m)), no

and we can easily calculate the probability that the guarantee cost is equal
to zero, &, as

Jno

As an example, let the term n = 120 months, let St/St_l have a
lognormal distribution with parameters u = .0081 and o = 0.0451 per
month, and let 7 = 0.25 percent per month. Assume a starting fund value
of Fy = Sp = $100 and a guarantee of 100 percent of the starting fund.
Then

b1 (D(logG/So — n(p + log(1 — m))

Jao

So, if assets follow the lognormal distribution in this example there is
a probability of 0.913 that there will be no payment under the guarantee.
The quantile risk measure for any a-parameter less than 91.3 percent must,
therefore, be zero. We do not need to hold any extra funds to ensure
a probability of 90 percent, say, of meeting the guarantee liability; that
probability is adequately covered by the fund alone.

For the quantile risk measure with a > ¢ we know that the quantile
falls in the part of the distribution where Ly > 0, so, from equation 9.3,
L = (G = F,) e ™. In this case, the quantile risk measure is V,, defined as
the smallest amount satisfying

‘e 1_(D(logG/So—n(p,+log(l—m))) 5.4)

): 1—d(—1.3594) = 0.9130

Pr[F, + Vo > G] = a (9.5)
and (assuming F, is a continuous random variable) this gives

Vo = (G-F'(1—a)e™ (9.6)

where F () is the distribution function for the fund value at maturity, F,.
If we again assume that returns on the assets underlying the fund have a
lognormal distribution with parameters w and o per year, and let z, =
@~ 1(p), then

Vo = (G = Fy exp(—za J/no + n(p + log(1 — m)))) e (9.7)
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TABLE 9.1 Ten-year GMMB quantile risk measures with no
mortality or lapses; guarantee 100 percent of starting market value.

Model/Parameters & Voo Voso, Voo
Lognormal/MLE 0.9130 0 7.22 20.84
= 0.0081
o = 0.0451
m = 0.0025
Lognormal/Calibrated 0.8541 6.90 16.18 29.02
w = 0.0077
o = 0.0542
m = 0.0025
RSLN/MLE 0.8705 5.12 15.78 30.76
Table 6.2 parameters
m = 0.0025

It is also possible to calculate the quantile risk measures for other
distributions analytically. In Table 9.1 some quantile risk measure fig-
ures are given for the lognormal distribution and for the regime-switching
lognormal (RSLN) distribution, in both cases using maximum likelihood
parameters from the TSE 300 1956 to 1999 data. Figures are also given
for the lognormal model using the calibrated parameters from Chapter 4.
These parameters are found by calibrating the left tail of the lognor-
mal distribution to the left tail of the data, rather than using maximum
likelihood.

The table shows the effect of the heavier tail of the RSLN model,
with higher quantiles at all three levels. The effect of calibration brings
the results closer together, as intended. In the uncalibrated lognormal
case, the probability of a zero liability under the guarantee is & = 0.913,
so the 90 percent quantile falls in the probability mass at zero. In
other words, the 90 percent quantile must be sufficient to meet the
guarantee with probability 0.90; but holding zero will meet the guaran-
tee with probability 0.9130, so the 90 percent quantile risk measure is
also zero.

THE CONDITIONAL TAIL EXPECTATION RISK MEASURE

Introduction

There are some practical and theoretical problems associated with the
quantile risk measure, which in some circumstances outweigh the ease
of application (particularly with simulation output) and the simple
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interpretation. See Wirch and Hardy (1999) and Boyle, Siu, and Yang (2002)
for examples.

In modern applications, a popular alternative to the quantile risk
measure is the CTE risk measure. The CTE risk measure is closely connected
with the quantile risk measure, and like the quantile risk measure is
determined with respect to a parameter «, where « lies between 0 and 1 as
in the quantile risk measure in the previous section. Given «, the CTE is
defined as the expected value of the loss given that the loss falls in the upper
(1-a) tail of the distribution.

We start with the quantile risk measure V,. For a continuous loss
distribution (or, more strictly, if Vo1, > V, for any ¢ > 0), the CTE with
parameter «, is

CTE.(L) = E[Lo|Lo > V.] (9.8)

where V,, is defined as in equation 9.6.

Note that this definition, though intuitively appealing, does not give
suitable results where V,, falls in a probability mass. This will happen for
example where a < &, in which case V, = 0. Suppose, for example, that
the loss random variable has the following distribution:

I = 0 with probability 0.98
100 with probability 0.02

Then the 95 percent quantile is clearly Vo5 = 0;the value of E[L|L > 0]
is clearly 100. But the 95 percent CTE is the mean of the losses given such
that the losses fall in the worst 5 percent of the distribution, which is

CTEyos = (0.03)(0.0)0320.02)(100) — 40

In the more general case, the CTE with parameter « is calculated as
follows. Find

B' = max{B:V, = Vg}

then

(1-BEX|X>Vel+ (B —a)Va

11—«

CTE,(L) = (9.9)

This complication is automatically managed when the CTE is estimated by
simulation.
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Simulation

Using simulation output to calculate the CTE risk measure estimate is very
straightforward. Start by ordering the simulated losses so that Ly is the
jth smallest. To estimate CTE, with N simulations, calculate the mean of
the largest N(1 — «) simulations. That is, provided (N «) is an integer, the
CTE estimate is

N
CTEu(Lo) = > Loj/N(1-a) (9.10)
j=Na+1

So, whereas the estimate of the a-quantile is Ly (Nq), the estimate of the CTE
is the average of all outcomes greater than Lo nq)-

As with the quantile estimate, with simulation output the estimate will
have uncertainty attached from sampling variability. This may be quantified
by the standard error or by a confidence interval, but these are much more
difficult to determine for the CTE than for the quantile.

Suppose the quantile of the underlying distribution were known with
certainty, V,, say. Then apply standard statistical inference to the sample
of observations of Lg|Lo > V,, and the standard error of the mean is
the standard deviation of the sample divided by the square root of the
sample size.

Where we use simulation to estimate V, there is an added source of
uncertainty, and that causes the problems. Ignoring the second source
of uncertainty gives a biased low estimate of the standard error for the
sample, of

SD(L(/') :7 > Na)
N - a)

(9.11)

where SD() denotes the sample standard deviation of the L’s. For a more
accurate estimate of the uncertainty surrounding the CTE estimate, the
simplest method is to use the Monte Carlo version of the sledgehammer;
repeat the simulation many times using different (independent) starting
seed values for the random number generators, determine separate CTE
estimates for each set of simulations and calculate the standard deviation
of the estimates. Another approach, described in Manistre and Hancock
(2002), is to approximate the tail of the loss distribution using a generalized
Pareto distribution. This leads to quite straightforward formulae that are
both practical and accurate.

Exact Calculation

As with the quantile risk measure, it is possible to calculate the CTE risk
measure for a plain vanilla GMMB, with no allowance for margin offset
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and no dynamic hedging. The term ¢ is again used as Pr[F, > G|, which is
the probability that there is no payment under the guarantee. The two cases,
a = ¢and a < £ are dealt with separately. Assume first that @ = & and
let the fund value F,, = S, (1 — m)" have density function and distribution
function fg,() and Fg, () respectively, then

CTE.(L) = E[L|L > V,] (9.12)
= E[(G = Fy)e ™ |Fy < (G = Vae™) ] (9.13)

The probability Pr[F, < (G — V,e™)] = (1 — a) from the definition of
Ve, sO

e G—Vue™
CTE(L) = £ [ | e y)fpnmdy] (9.14)
e G—Vze™
- = [GFF,,<G - Vae™) - | yan(wdy] (9.15)
a 0
1[G Vee”
- [c - fF,.(y>dy] 916

If S, ~LN(npu, ﬁa’), then fora = &

CTE.(L) =

en(nﬂogu—m)mz,/z)
e-?’n G _
1—«

y q)<log(G - Vae™) — n(u + log(1l —m) + 0'2)>]

N

en<u+1og(1fm)+(r2/2)
e*?’n G _

11—«

D(—z4 — ﬁa>] (9.17)

which is a nice simple formula.

If S, ~ RSLN, then things are not much more complicated. Remem-
ber that if R denotes the number of time units spent in regime 1, then
SR ~LN(u*(R), o*(R)) where u*() and o*() are weighted averages defined
in equations 2.27 and 2.28. It is straightforward to sum over all possible
values of R and multiply by the probability function for R, p,(k) from
equation 2.20 to obtain the CTE for the RSLN distribution, for @ = &

CTE,(L) = em{c _domy iPn(k)(e““’”*”*(k“"’"z<I>(Yk))}
k=0

11—«
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TABLE 9.2 Ten-year GMMB CTE risk measures with no mortality or lapses,
no margin offset, and guarantee 100 percent of starting market value.

Model/Parameters & CTEogo, CTEoso, CTEggq,

Lognormal/MLE 0.9130 8.89 15.50 25.77

Lognormal/Calibrated 0.8541 17.65 24.00 33.39

RSLN/MLE 0.8705 17.51 24.86 35.76
where

_ log(G — V™) — u*(k) — nlog(1 — m) — o™ (k)?

i o (k)

(9.18)

If @ < ¢ then the quantile falls in the probability mass at zero of the
loss distribution. Use equation 9.9, with 8' = £and V, = Vi = 0 so that
CTE¢(X) = E[X|X > 0] and

(1-9
(1-a)

CTE,(X) = CTEg(X) (9.19)

For illustration, in Table 9.2 some examples of CTE measures are
given using the same model/parameter combinations as in Table 9.1. Again,
mortality and lapses are ignored. As with the quantiles in Table 9.1, the
effect of calibration in bringing the tail measures closer together is clear.

QUANTILE AND CTE MEASURES COMPARED

Both the quantile and CTE risk measures are very simple to work with,
particularly in the usual context of estimating the measure from standard
stochastic simulation output. Obviously, because the CTE is related to the
quantile risk measure as

CTEq(Lo) = E[Lo|Lo > V4]

then the CTE must be greater than the quantile until the maximum value of
Ly is reached, when they will be equal.

If the distribution of Lo|Ly > V. is uniform, then CTE,(Lo) = V(14a)/2,
and this relationship is approximately true for other distributions of the tail
of Ly. For most GMMB, GMDB, and GMAB contracts the right tail of the
loss distribution is heavier than the uniform, so that CTE,(Lo) > V(1 44)/2-
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There is an extensive literature on risk measures, including Wang (1995),
Artzner et al. (1997 and 1999), and Wirch and Hardy (1999). The latter
three papers are concerned with the coberence of risk measures. A risk
measure #[X] is said to be coherent if it has the following, obviously
desirable, properties:

Bounded above by the maximum loss:  #[X] = max(X) (9.20)
Bounded below by the mean loss:  #[X] = E[X] (9.21)
Scalar additive and multiplicative:  #[aX + b] = a#[X] +b (9.22)

fora,b >0
Subadditive:  #[X + Y] = #[X] + #[Y] (9.23)

Quantile risk measures fail both property 9.21 and property 9.23. The first
is easy to see—from Table 9.1 the 90 percent quantile for the GMMB loss is
zero, because the probability of a nonzero loss is less than 10 percent. But
the mean outgo is

E[L] = ¢ LG<G — ) fr, (y)dy 5-24)
- [GFF,,(G) - LG yff,,(y)dy] (9.23)
- e—m{cu — & — Foexp(n(p + log(1 — m) + ‘72/2))‘D<A>}
(9.26)
where
4 _ (10 Gr, — nip + log(1 —m)) — na?) (9.27)

(Jno)

which gives an expected discounted cost using the lognormal model of
$0.90. At all quantiles up to a = 0.92 the quantile measure will be less
than the mean. This means, for example, that if the 90 percent risk measure
is used as the basis for the reserve or solvency capital, on average it will be
inadequate, although it will usually be sufficient.
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The CTE does not suffer from this disadvantage. Clearly, CTE, —o(L¢) =
E[Ly] and for any a > 0, CTE, > E[L¢] provided Ly is not degenerate
at E[Lg]. In fact, the CTE satisfies all the criteria for coherence and,
therefore, does not create the anomalies that are associated with the
quantile measure. The quantile measure is determined by one point on
the loss distribution; no consideration is taken in the quantile of the
shape of the distribution either side of that point. The CTE uses all of
the loss distribution to the right of the quantile; two distributions may
have the same 90 percent quantile, but one may be much heavier tailed
than the other beyond the ninetieth percentile of the distribution. The
CTE takes this into consideration, whereas the quantile risk measure
does not.

Another consideration is robustness under simulation; the quantile
approach takes a single (ordered) outcome from, perhaps, 5,000 simulations
to determine the risk measure. The CTE approach takes an average of a set
of the largest outcomes. The average should be less sensitive to sampling
variability. This is investigated further in Chapter 11.

The Canadian Institute of Actuaries (CIA) Taskforce (SFTF 2000)
recommended that the CTE should form the risk measure for both the
reserve and the solvency capital calculations for segregated fund contracts
in Canada. This recommendation was accepted by the Office of the Su-
perintendent of Financial Institutions (OSFI), which regulates insurers. In
principle, the reserves for segregated fund contracts will be determined using
the CTE with a of around 80 percent (varying according to the contract
details), and total solvency capital (including the reserve) set at the CTE with
a = 95 percent. Because the liabilities are to be determined by stochastic
simulation, the CTE approach has proved quite practical for insurers to
implement.

RISK MEASURES FOR GMAB LIABILITY

Introduction

All the examples in this section are estimates from simulation of the liabilities
of a GMAB contract. Two sets of projections are run: one using the actuarial
approach, without any hedging, and the other using the dynamic-hedging
approach. The basic contract details are as follows:

B A 10-year renewable contract, maximum one renewal.

B A 3 percent per year management charge, applied monthly.

m A (.5 percent per year margin offset applied monthly.

B Guarantee 100 percent of fund immediately following previous renewal.
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The following are simulation details for all projections in this section:

B RSLN stock returns with TSE 300 parameters from Table 6.2.

B Mortality follows tables in Appendix A.

B The same 5,000 simulations of the stock return process are used for
both sets of projections (actuarial and dynamic hedge).

u All cash flows are discounted at the risk-free rate of interest of 6 percent
per year.

The projection output is the NPV of the total outgo for the contract
discounted at the risk-free rate on interest. In the case of the dynamic-
hedging approach this includes the cost of the hedge.

GCTE and Quantile Risk Measure for Actuarially
Managed GMAB

In Figure 9.1 the quantile and CTE risk measures are compared for a
10-year GMAB contract with two renewals; both the starting fund and
the starting guarantee are $100, so that the numbers can be interpreted
as percentages of the fund for an at-the-money guarantee. This contract is
managed according to the principles of Chapter 6—the actuarial method,
which assumes solvency capital is invested in bonds. Note that CTEq, is the
mean loss, so that the figure shows that the quantile falls below the mean
at all values of «a less than around 60 percent. Clearly, the CTE curve lies
above the quantile curve until the maximum value is reached.

20

10

Quantile

Risk Measure, % of Fund
)
|

-10

=20 -

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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FIGURE 9.1 CTE and quantile risk measures for 10-year
once-renewable, at-the-money GMAB contract.
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The CTE curve is somewhat smoother than the quantile curve, though
they are both plotted with the same partition of the a-values. This illustrates
the robustness point mentioned in the previous section: The CTE, being
mean based, will generally be more robust to sampling variability than the
quantile, which is based on a single ordered value.

In Table 9.3 we show some of the tail risk measures for this GMAB
contract. We also show the same risk measures for a similar contract, with
the additional benefit of the voluntary reset feature described in Chapter 6.
The voluntary reset allows the policyholder to reset the guarantee to the
fund value at the reset date, at the expense of an extension of the term
to 10 years from the reset date. We show the CTE risk measures for the
contract with no resets, for the contract with monthly optional resets, and
for the contract with up to two resets per year. The reset option is assumed
to be exercised when the separate account fund value exceeds the guarantee
by the reset threshold given in the table. The table shows a significant tail
risk arising from offering the reset option, with around 3 percent of the
fund value required for the reset above the requirement for the regular
GMAB without the reset option at each of these CTE standards. We also
see that restricting the option to two “shouts,” or resets, per year does not
significantly help control the tail risk; the difference between two shouts
and 12 shouts is small.

Gomparison of Actuarial and Hedging Approaches to Risk
Management of GMAB
In the top graph of Figure 9.2, the quantile risk measures are plotted for
all values of o for the GMAB contract using the actuarial and the dynamic-
hedging approach. In the lower figure, the CTE risk measures are given
for the same contract, with and without hedging. The risk measure using
dynamic hedging includes the cost of the hedge.

Now suppose the risk is to be managed by solvency capital determined
using the quantile risk measure with @ = 90 percent. This is simply the

TABLE 9.3 CTE risk measure for GMAB contract with resets
with actuarial risk management; $100 starting fund value and $100
starting guarantee.

CTE
Reset
Contract Threshold 90% 95% 99%
No reset GMAB — 5.92 8.60 13.61
2 resets per year 1.15 8.24 11.35 16.36

12 resets per year 1.05 8.54 11.70 16.65
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4,500th value of the sorted NPVs. For the actuarial approach, this is
569, = 1.29 percent of fund

For the dynamic-hedging approach, it is

vdh,, = 1.06 percent of fund

g 20
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= I Actuarial
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X
)
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FIGURE 9.2 Risk measures for 10-year once-renewable,
at-the-money GMAB contract; actuarial and hedging risk
management.
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These results indicate a very similar risk under the two approaches.
This is deceptive, though, because it ignores the shape of the loss above the
quantile.

If, instead, the CTE method is used with the same « value, the heavy
right tail of the actuarial approach is taken into consideration in the mean
calculation, so that the CTE values are

CTE{,, = 5.92 percent of fund
CTE®,, = 1.74 percent of fund
which indicates more of a difference. As the lower graph of Figure 9.2

indicates, the difference increases as the @ parameter increases. At @ = 95
percent, the CTEs are

CTE(Y, = 8.60 percent of fund
CTEZ,, = 2.32 percent of fund

RISK MEASURES FOR VA DEATH BENEFITS

Many VA contracts do not carry guaranteed living benefits, and the only
guarantee to be considered is a death benefit. We consider a VA-type
contract with 30-year term sold to a life age 50; mortality and withdrawal
rates are assumed to be the same as for the GMAB contract discussed
earlier, with the actual rates given in Appendix A. Implicit in these is an
assumption of 8 percent withdrawals per year; this is 8 percent of funds,
so it could comprise both whole and partial withdrawals of funds. As with
mortality, withdrawals are treated deterministically. It is not proposed that
these are necessarily realistic, and the analysis of VA-GMDB liabilities is
hampered by the lack of information on policyholder behavior, just as
with GMMB.

In Figure 6.3 in the section on stochastic simulation of liability cash
flows, the contributions to the net liability present value from margin offset,
death benefit, and maturity benefits are shown separately for some sample
cash flows. This shows that for the GMAB contract the death benefit outgo
is generally small, considerably smaller than the margin offset income,
except for the very rare simulation. We might infer that where the only
guarantee is a death benefit, the costs are fairly low, and simulation evidence
supports this.

In the figures shown later in this section, we consider net liability present
value for a GMDB liability. The margin offset figures used are a little higher
than those found from the arbitrage-free method of the section on pricing by
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deduction from the separate account in Chapter 8. We use 10 basis points

(b.p.) for the fixed guarantee compared with 6 b.p. for the arbitrage-free

rate, and 40 b.p. for the increasing guarantee compared with 38 b.p. for

the arbitrage-free rate. Also, because we used 20 percent per year volatility

in that calculation, which is somewhat higher than the true rate, there is

substantial margin in the figures of 10 b.p. and 40 b.p. used in this example.
The contract details used in this section are as follows:

B A 30-year single premium contract.
B A 2.25 percent per year management charge, applied monthly.
B Guarantee: We consider two variants,

1. One-hundred percent of premium paid on death with no guarantee
increases and 10 b.p. per year margin offset.

2. Guarantee starts at 100 percent of premium, increasing by 5 percent
compounded at each year-end and 40 b.p. per year margin offset.

The simulation details for all projections are as follows:

B RSLN stock returns with TSE 300 parameters from Table 6.2.

B Mortality follows the tables in Appendix A.

B The same 5,000 simulations of the stock return process are used for all
projections.

B All cash flows are discounted at the risk-free rate of interest of 6 percent
per year.

In addition, for the dynamic-hedging risk management we assume as
before:

B Black-Scholes-Merton hedging using 20 percent per year fixed volatility
and 6 percent risk-free rate of interest.

B Monthly rebalancing of hedge.

B Transactions costs of 0.2 percent of change in stock holding at rebal-
ancing dates.

Table 9.4 shows CTE and quantile risk measures for the two contracts.
The results are shown separately for the actuarial and dynamic-hedging risk
management strategies. The risk measures are illustrated in Figure 9.3.

The fixed GMDB carries relatively little risk, with more than a 95
percent estimated probability that the income is greater than the outgo.
There is a slight tail risk from the fixed guarantee, with a 95 percent CTE
of nearly 1 percent using actuarial risk management, but this is damped by
using a hedging strategy, which virtually eliminates the risk.
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TABLE 9.4 Risk measures for VA-type GMDB benefits, 30-year contract;
percentage of initial fund value.

Risk Quantile CTE
Management
Guarantee Strategy 90% 95% 90% 95%
Fixed Actuarial -0.350 —-0.072 0.317 0.798
Fixed Hedging -0.294  —-0.161 -0.119  -0.003
5% p.a. increasing Actuarial —0.086 1.452 1.857 3.044
5% p.a. increasing Hedging 0.071 0.579 0.706 1.102

The increasing GMDB is a more substantial risk, with a 95 percent
CTE of around 3 percent of the initial single premium using actuarial
risk management. Again, the hedging strategy significantly reduces the
tail risk.

The comparisons provided in Figures 9.2 and 9.3 between actuarial and
dynamic-hedging strategies give rise to the question: Which is better? The
CTE curves show that, on average (i.e., at CTEq¢,), the actuarial approach
is substantially more profitable than the dynamic-hedging approach. On the
other hand, at the right tail the risk associated with the actuarial approach is
greater than the dynamic-hedging approach, in some cases very substantially
so. If solvency capital is to be determined using, for example, the 95 percent

2 4 —— Dynamic hedging 2 4 —— Dynamic hedging

—— Actuarial —— Actuarial

Risk Measure, % of Premium
Risk Measure, % of Premium

2

—4 Fix.ed G}larantee 4 Fixed Guarantee
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-6 -6
T T T T T T T T T T T T
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Alpha Alpha

(continued)

FIGURE 9.3 Risk measures for 30-year VA-GMDB benefits,
comparing actuarial and dynamic-hedging risk management.
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FIGURE 9.3 (Continued)

CTE, then the actuarial approach will require considerably more solvency
capital to be maintained than the dynamic-hedging approach, and the cost
of retaining this capital needs to be taken into consideration in determining
whether to hedge or not. Indeed, it needs to be considered for all aspects
of the management of equity-linked contracts, including decisions about
commercial viability and pricing. Such decisions are the topic of the next
chapter.
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Emenrging Cost Analysis

DECISIONS

I n this chapter, we show how to use the results of the analysis described
in previous chapters to make strategic decisions about pricing and risk
management for equity-linked contracts. The first decision is whether to
sell the policy at all; if so, then at what price and with what benefits. If
the contract has been sold, then the insurer must decide how much capital
to hold in respect of the contract, and how that capital is to be managed.
Market and competition issues are important in the decision process—for
example, what are competitors charging for similar products? However,
pure market considerations are not sufficient for actuarial pricing decisions.
It is also essential to have some quantitative analysis available to ensure
that business is sold with appropriate margins, to avoid following others on
potentially ruinous paths.

Emerging cost analysis (also called profit testing) is a straightforward
and intuitive approach to this analysis. It is very similar to the techniques
of Chapters 6 and 8 in that it involves the projection of all the cash flows
under the contract, according to the risk management strategy that the
insurer proposes to adopt. The major difference between the projections in
this chapter and those in earlier chapters is that here we take into account
the capital requirements, so that the cash flows projected represent the loss
or profit emerging each year after capital costs are taken into consideration.
These cash flows are the returns to the shareholder funds and should be
analyzed from the shareholders’ perspective.

Emerging cost analysis has been part of the actuarial skill set for
some time; it is a standard feature of most actuarial curricula. However,
it is commonly presented as a deterministic technique. Deterministically,
emerging costs are projected under a single scenario for stock returns.
The scenario may be called “best estimate,” and may be derived from a
mean or median projection of a stochastic process. Although deterministic
projections may be useful in traditional insurance, they provide very little

177



178 EMERGING COST ANALYSIS

insight for equity-linked insurance, for exactly the reasons that deterministic
methods were discussed and rejected in Chapter 2. Given the systematic
risk of equity-linked insurance, no single scenario can adequately capture
the risk return relationship of the contracts. That is why, in this chapter, the
emerging costs are random processes. The processes are generally too
complex for analytic analysis, so stochastic simulation will be used to derive
the distributions of interest.

In this chapter, we discuss and illustrate with examples the use of
emerging cost analysis for separate account-type products. The worked
example is a guaranteed minimum accumulation benefit (GMAB) contract
with both death and survival benefits.

The formulation that we use for the cash flows and for defining the
net present value of a contract adopts a traditional actuarial approach and
ignores many factors that are important for practical implementation. In
particular, we ignore the distinction between policy reserves and additional
solvency capital. The total of reserves plus additional required solvency
capital is the total balance sheet provision. In practice, the allocation of
the total balance sheet provision to reserves and additional solvency capital
may have a substantial impact on the financial management of the insurance
portfolio, as a result of taxation and regulatory requirements. Hancock
(2002) writes of finanacial projections that

If you are ignoring taxes, the distinction between reserves and capital
is moot, but in practice there is a very significant difference—capital
is “after tax” and hence a $1 provision in capital is generally more
expensive than $1 in reserves. Also, on a going-concern basis, the
company may need to hold some multiple (more than 100%) of solvency
(regulatory) capital. This is another reason that holding $1 of provision
in capital is more expensive than the $1 allocated to liabilities (all else
being equal, including tax reserves).

Emerging Costs Using Actuarial Risk Management

For the emerging cost analysis for the actuarially managed risk, we simulate
the cash flows each month using the following:

B MO, is the margin offset at #, conditional on the contract being in force
att.

® G¢ is the guarantee in force if the policyholder dies in the month # — 1
tot.

B G is the guarantee in force for any survival benefit due at z. In most
months this would be zero, but it is required for the maturity benefit
under a guaranteed minimum maturity benefit (GMMB) or for the
rollover maturity benefits under a GMAB.
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B F, is the separate fund.

B ,V is the required solvency capital at ¢ given that the contract is still in
force.

B Interest of j; is assumed to be earned on the solvency capital, and it
would be reasonable to take this to be the risk-free rate. This implicitly
assumes that the solvency capital is invested in bonds.

B Mortality is treated deterministically, for the reasons discussed earlier
in Chapter 6.

Then the outgo cash flow emerging at the end of month ¢ is

oV —MOg =0

—1g2 (G = F)* + (G — F)t — ,pI MO,

CF, = +(py:V = -1pr -1 V(1 +4p)) t=1,...,n—1

wegd (GE = F) " + ,p7 (G, — F,)*
_nflp; n*lv(l + Zn) t=n

(10.1)

We are using cash flow in a broad sense. For example, the initial
required solvency capital, )V — MOy, is not, of course, a cash flow out of
the company, but may be considered as the cost of writing the contract. This
equation just sums the outgo each month and deducts the income. Income
comes from the margin offset; outgo is required for any death or maturity
benefit, plus required increase in solvency capital.

It may be more realistic to assume annual revision of capital require-
ments, rather than monthly. It is easy to adapt equation 10.1 appropriately.
In the equation, the only element of the cash-flow projection that has not
been derived in previous chapters is the capital requirement ,V.

Emerging Costs Using Dynamic-Hedging Risk Management
For the dynamic-hedging approach we use again the cash flows defined in
Chapter 8:

B HE, is the hedging error emerging at ¢ derived in the section on discrete
hedging error in Chapter 8, allowing for survival and exit probabilities.

B TC, is the transaction cost at £, derived in the section on transaction
costs in Chapter 8, allowing for survival and exit probabilities.

B H(t) is the market value of the hedge required at #, given that the
contract is in force at the start of the projection.
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Because in practice the hedge will not be self-financing, we need to carry
some capital in addition to the hedge to meet the unhedged liability—that is,
the hedging error and transactions costs.® Let VT denote the capital re-
quired at # for the additional risks associated with hedging, given the contract
is in force at #. Then the projected cash-flow outgo at each month end is

H(0) + TCy + oVI&H — MO, t=0
cF, = JHE +TC 4 pl VIR = ypl VIR ) = pT MO,
' t=1,...,n—1
HE, + TC, — o 1pl p i VI¥H(1 +4) t = n (10.2)

Note that the hedging error term includes all actual payouts—so that,
for example, the hedging error at maturity is the difference between the
actual guarantee cost and the hedge carried forward from the previous
month. The only element of the cash-flow projection in equation 10.2 that
has not already been derived is the capital requirement for transaction costs
and hedging error, VT In the following sections, we discuss allowance
for capital requirements using the actuarial and dynamic-hedging strategies.

CAPITAL REQUIREMENTS: AGTUARIAL
RISK MANAGEMENT

The capital requirements for equity-linked insurance differ by jurisdiction.
Although many contracts in the United States have minimum requirements
based on simple deterministic projection, some actuaries have recognized
the potential inadequacy of this method and have moved to stochastic
simulation to determine the requirements. In Canada, regulations permitting
the determination of capital requirements by stochastic simulation of the
liabilities are due to come into full effect by 2004; the method is already in use
for statement liabilities. In the United Kingdom also, valuation by stochastic
simulation is required for unit-linked contracts with maturity guarantees.
Taking the Canadian regulations as an example, described in SFTF
(2002), it is proposed that the total capital requirement should be determined
by simulating the liabilities and taking the 95 percent conditional tail
expectation (CTEgso,) risk measure of the output.* This seems like a

3Other risks, such as liquidity or basis risk, may also need to be allowed for in the
additional capital requirement.

*This only applies if the office does not use a risk mitigation strategy such as dynamic
hedging. Requirements are more complex and relatively more onerous for offices
that use dynamic hedging.
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reasonable approach and, with the techniques of the last few chapters,
is perfectly feasible. For the example in Chapter 9, a GMAB contract
with a 10-year initial term and one potential rollover, and with guarantee
100 percent of the premium or fund after rollover, managed without
dynamic hedging, the 95 percent CTE capital requirement is $8.60% of
the premium. However, that figure only applies to the contract at issue. At
every subsequent revaluation the requirement will be different, depending
on the relationship between the market value of the fund and the guarantee
level and the remaining term. The relationship between the fund market
value and the guarantee is summarized in the ratio of the fund value to the
guarantee amount, denoted F/G.

In Table 10.1, 95 percent CTE values are given for a 10-year initial
term GMAB (with mortality and survival benefits), with a single rollover
option at the tenth policy anniversary. The contract details are the same
as the section on risk measures for GMAB liability in Chapter 9. Each

TABLE 10.1 Ninety-five percent CTE for 20-Year GMAB contract maturing at
age 70. Figures given as percentage of fund value.

Term to Fund Value/Guarantee
Maturity 0.7 0.8 1.0 1.2 1.4 1.6 1.8 2.0
20 19.14 14.69 8.60 499 3.01 1.92 1.32 0.99
19 22.21 17.11 10.11 5.95 3.69 2.52 1.93 1.59
18 26.03 20.17 12.12 737 4.88 3.62 2.97 2.61
17 30.42 23.70 14.44 8.81 5.72 4.12 3.30 2.83
16 36.01 28.30 17.59 10.92 7.20 5.29 4.26 3.74
15 40.62 31.75 1942 1194 797 6.02 5.1 4.68
14 47.28 37.19 2295 1405 9.14 6.71 5.59 5.05
13 52.69 41.11 24.75 14.59 9.55 7.36 6.50 6.16
12 57.92 4445 2567 1425 923 7.53 6.95 6.80
11 62.44 4692 2533 1331 932 8.16 7.82 7.73
Rollover
10 20.06 15.37 8.92 482 205 039 -0.52 -—1.01
9 23.57 1822 10.85 6.17 296 096 —0.15 —-0.79
8 27.39 2129 12.87 7.48 3.76 1.40 0.10 —-0.62
7 3143 2447 14.85 8.66 437 1.63 0.19 0.55
6 3621 2827 17.28 10.20 5.26 2.08 0.47 —0.40
S 42.01 3293 2034 1219 649 2.69 0.78 —0.16
4 47.60 3722 2280 1342 6.84 2.72 0.80 —0.10
3 53.72  41.85 25.33 14.54 694 2.54 0.68 —0.13
2 60.23 46.64 27.68 1521 6.47 2.15 0.49 —0.13
1 62.63 48.07 26.29 11.89 3.05 046 -—-0.17 —0.34
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number in the table is the CTE determined from 10,000 simulations for
a contract with final maturity at age 70. The CTEs are given for a range
of terms to maturity and F/G ratios. This table is quite extensive because
we will use the entries later in this chapter for forward projection of
capital requirements.

The table shows that the CTE requirements are substantial at all
terms if the guarantee is at-the-money or in-the-money; or for out-of-the-
money guarantees the requirements are substantial at all terms if there is a
rollover remaining. The bold figure in the F/G = 1.0 column is particularly
important. At the rollover date the F/G ratio returns to 1.0, which means
that the value in bold is the capital requirement factor (per $100 fund
value) immediately after the rollover, regardless of the starting F/G ratio.
The contract illustrated has only one rollover.

The negative values in the final columns after the rollover indicate that
even allowing for the extreme circumstances using the CTE risk measure,
the possible outgo on guarantee is less than the income from margin offset.
Because treating a negative reserve as an asset leads to withdrawal risk, the
insurer may not take credit in these cases, so the actual solvency capital may
have a minimum of zero. In fact, it does not seem very important whether
there are one or two rollovers remaining; the main factor determining the
CTE level for a rollover contract is the term until next rollover. The CTE
requirements before a rollover are very similar whether there is one or more
than one rollover remaining. The requirements between the final rollover
and maturity do differ from the pre-rollover figures for the out-of-the-
money guarantees. This is illustrated in Figure 10.1 where the 95 percent
CTE estimates are plotted for a 30-year GMAB contract with two rollovers.
The results are plotted for four different F/G ratios, and by term since the
last rollover or inception. The 30-year contract is plotted in three separate
lines, one for each 10-year period.

For contracts at-the-money or in-the-money, the term to the next
rollover is the only important factor; it does not matter if, at the end of
the 10-year period, the contract rolls over or terminates. For contracts
out-of-the-money there is a difference; the bold line in each plot represents
the final 10 years. The requirements are lower in the final 10 years for these
contracts than in the earlier periods. This is because the ultimate liability in
the final 10 years for an out-of-the-money contract is zero, whereas in the
earlier periods the ultimate liability is the at-the-money CTE for a newly
rolled over policy. Note that any contract will vary in its F/G ratio over the
term, and so will not follow a particular column of this table but will jump
from column to column as the fund changes value over time.

It is good practice to determine some estimate of the standard errors
involved whenever stochastic simulation is used to estimate a measure.
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CT

For some of the numbers in Table 10.2 standard errors have been
calculated for the F/G = 1 case by repeating the 10,000 simulations
50 times, each time with an independent set of random numbers. The
95 percent CTE is calculated for each set of simulations, and the estimated
standard error is the standard deviation of these 50 estimates. The relative
standard error is the ratio of the estimated standard error to the esti-
mated CTE.

Standard errors vary by the “moneyness” of the guarantee, but not by
very much. For example, for a contract with 15 years to final maturity,

TABLE 10.2 Estimated standard errors for 95 percent CTE for 20-year GMAB
contract, F/G = 1.0.

Term to Maturity

20 15 12 10 5 2

Estimated standard error 0.22 0.34 0.46 0.25 0.37 0.50
Relative standard error 2.5% 1.7% 1.8% 2.6% 1.8% 1.8%
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FIGURE 10.2 Estimated standard errors and relative standard errors for
95 percent CTE, 20-year GMAB, with F/G = 1.

renewal in 5 years, the estimated standard error for F/G = 0.8 is 0.350, for
F/G = 1.0 is 0.340, and for F/G = 2.0 is 0.227.

The figures for F/G = 1.0 are also illustrated in Figure 10.2. In
the left-hand plot, the estimated standard errors are plotted for a 10-
year contract with a single rollover at time 10 (i.e., a maximum term
of 20 years), showing increasing standard errors as the contract nears
rollover or maturity. However, the right-hand plot shows the relative
standard errors—that is, the ratio of the standard errors to the estimated
CTEs, which indicates that the standard errors are increasing slower than
the CTEs.

CAPITAL REQUIREMENTS: DYNAMIC-HEDGING
RISK MANAGEMENT

The capital requirement under a dynamic-hedging strategy comprises the
capital allocated to the hedge itself, plus an allowance for the additional
costs that may be required to cover transactions costs and hedging error.
The income from the margin offset is taken away from these costs. Treating
these random liabilities in the same way as the random ultimate guarantee
liability in the previous section, a reasonable capital requirement might
be the 95 percent CTE for the present value of the projected net costs,
discounted at the risk-free rate of interest.

As an example, the GMAB contract already examined in the previous
section is reconsidered here, under the assumption of dynamic-hedging
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TABLE 10.3 Ninety-five percent CTE for 20-Year GMAB; figures given as
percentage of fund value and include hedge value.

Term to Fund Value/Guarantee
Final
Maturity 0.7 0.8 1.0 1.2 1.4 1.6 1.8 2.0
20 8.67 579 232 061 -0.31 -0.82 —-1.07 -1.20
19 10.53 7.00 296 099 —-0.07 -0.62 -092 —1.06
18 12.38 8.21 3.61 1.38 0.17 —0.43 -0.76 —-0.92
17 14.71 9.88 4.54 1.96 0.63 —-0.06 —-0.44 —-0.64
16 17.03 11.55 548 2.53 1.10 0.32 -0.13 —-0.36
15 20.19 13.57 6.46 3.18 1.58 0.66 0.12 -0.12
14 23.35 15.59 7.44 3.82 2.06 1.00 0.36 0.12
13 27.90 18.69 8.62 4.20 2.23 1.26 0.74 0.51
12 32.45  21.79 9.80 4.57 2.40 1.52 1.12 0.90
11 36.97 23.28 9.06 4.31 2.17 1.27 1.14 1.07
Rollover
10 9.50 6.03 213 024 -0.79 -1.31 -1.59 -1.75
9 11.33 715 287 071 —-044 —-1.07 -140 —1.58
8 13.16 827 3.62 1.18 —-0.08 -0.83 —-121 -—1.41
7 15.25 995 445 1.75 026 —-0.61 —-1.05 -—-1.26
6 1735 11.63 528 2.31 0.61 -0.39 -0.89 -—1.11
N 20.51 13.72 6.08 2.72 093 —-0.11 -0.68 —0.93
4 23.66 15.81 6.88 3.13 1.25 0.17 —-0.47 —-0.74
3 27.76 18.34 7.99 3.64 1.53 0.29 —-0.33 —0.60
2 31.86 20.88 9.11 4.15 1.81 0.41 -0.19 —-047
1 36.60 2391 9.92 3.58 0.87 —-0.11 —-0.37 —-0.42

risk management. Estimated values for the capital requirement figures for
various terms to maturity, and for various starting F/G ratios, are given
in Table 10.3. These figures are not definitive, they depend very strongly
on the particular assumptions, and contract details that we have used that
might not be appropriate for all contracts. The GMAB contract simulated
is the same as we have used in previous examples. It is further assumed
that the insurer holds a Black-Scholes hedge in respect of the liability, and
rebalances the hedge monthly.’ The volatility used to determine the hedge
is 20 percent. This is higher than the average volatility assumed in the stock
return model, which is a two-state regime switching lognormal (RSLN)
model with TSE parameters from Table 6.2. Using a higher volatility in the
hedge means that we are over-hedging; that is, the hedge error is generally

SIn practice, the insurer would use futures in the underlying stocks or index to
achieve the required position in the segregated fund.
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negative because the true liability cost is less than that assumed with the
higher volatility assumption.

The figures shown in Table 10.3 are for the total capital requirement.
That includes the hedge cost plus the reserve in respect of future hedging
errors and transactions costs. The reserve for the unhedged liability, V7H
is given in Table 10.4. These are the figures from Table 10.3 minus the
appropriate hedge cost for each entry. All entries are based on 1,000
scenarios.

Some interesting features of these two tables are:

B Most of the entries in the Table 10.4 are negative. As explained in
the introduction to the example in this section, most hedging errors
are negative, because we deliberately over-hedge by assuming a higher
value for volatility than that in the model. It would also be possible to

TABLE 10.4 Ninety-five percent CTE (or unhedged liablility 20-year GMAB;
figures given as percentage of fund value).

Term to Fund Value/Guarantee
Final
Maturity 0.7 0.8 1.0 1.2 1.4 1.6 1.8 2.0

20 -2.98 -2.80 -2.78 -—-2.78 —2.80 —2.81 -—-2.78 —2.73
19 —-2.84 -2.79 -2.74 -2.74 =279 -—-2.80 -—-2.78 —2.74
18 -2.71 =2.77 =270 =270 -=-2.79 =279 =279 -=2.75
17 —-2.64 —2.60 —245 -—-248 -—-2.55 —-2.60 —-2.64 —2.64
16 —-2.58 —243 -221 -226 —-231 —-240 —-249 -2.53
15 —2.44 =229 -193 -190 -2.00 —-222 —242 —-2.49
14 -2.30 -2.15 -—-1.65 —-1.55 —-1.69 —-2.04 -236 —2.46
13 -1.94 -136 -0.89 -1.15 -1.54 -191 -2.19 -2.33
12 -1.58 -0.57 -0.14 -0.75 -1.38 —-1.78 —-2.03 —2.20
11 -2.96 -185 -041 -0.39 -1.50 -223 -—-233 -—2.40
Rollover
1 -1.57 —-1.69 -1.79 -1.88 —-2.01 —-2.04 -2.04 -2.04

-1.19 -1.52 -144 -157 -1.72 —-1.82 —-1.85 -—1.86
-0.81 -135 -1.09 -127 -143 -1.60 —-1.67 —1.68
-0.60 -0.86 -0.70 -0.84 -1.10 -136 -—-1.48 -1.51
-0.40 -0.37 -0.32 -041 -0.78 -—-1.12 -1.29 -1.33
0.22 0.23 0.08 -0.03 -0.38 -0.76 -1.01 -1.10
0.84 0.83 0.48 0.36 0.02 -0.39 -0.73 —0.86
1.36 1.53 1.51 1.19 0.58 —0.09 -0.49 -0.68
1.87 2.23 2.54 2.03 1.15 0.21 -0.25 -0.49
1.44 3.03 4.16 2.41 0.68 —0.14 —-0.38 —0.42

=N WA O ] 0o O
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use a lower value for volatility, which would decrease the hedge cost but
increase the additional capital requirements. Also, these figures include
future margin offset income. The outgo is on transactions costs.

B The total capital figures from Table 10.3 behave similarly to those
for the actuarial approach in Table 10.1, with less capital required for
contract out-of-the-money, with requirements broadly increasing, and
with the discontinuity immediately after the rollover at the end of
the tenth year. However, the total capital requirements using dynamic
hedging are lower at all points than those required for actuarial risk
management, though for out-of-the-money options nearing maturity
the figures are very similar for the two approaches.

B The unhedged liability reserve table (Table 10.4) shows a slightly differ-
ent pattern to the total requirement figures in Table 10.3: Requirements
are broadly increasing with term without the sharp adjustment for the
rollover, and with higher values for at-the-money guarantees than for
in-the-money or out-of-the-money guarantees.

A graphical comparison of the difference between the capital require-
ments for the actuarial approach and the dynamic-hedging approach is
given in Figure 10.3. In this figure, the total balance sheet requirements are
plotted for various F/G ratios for both the actuarial risk management and
(in broken line) dynamic-hedging risk management strategies. The x-axis
represents the duration of a 20-year GMAB contract; the y-axis shows the
95 percent CTE, as a percentage of the fund value. The rollover is assumed
to occur at duration 10 years, and final maturity at duration 20 years.

The figure shows that for lower values of F/G (near the money guar-
antees) the actuarial approach requires substantially more capital than the
dynamic-hedging approach. This is also true even where the guarantee is
well out-of-the-money before the rollover. Only for the final 10 years of the
contract are the capital requirements under the two approaches similar.

However, this is not the whole story. Although the capital requirements
are generally higher for the actuarial approach, the overall cost may be
lower. It is important to remember that the solvency capital requirements
under the actuarial approach are held in the event of an unfavorable
investment experience. If an investment experience is favorable, then the
capital is not required and it is released back to the insurer; the only cost
here is the cost of carrying the capital for the period of the contract. For the
dynamic-hedging approach only the unhedged liability reserve is available
to the company if the experience is favorable; if the guarantee ends up
out-of-the-money, then the hedge will end up with zero value and none
of the hedge cost is returned to the company (except for that emerging in
hedging error). One of the objectives of the cash-flow analysis described
in this chapter is to provide a method of assessing the advantages and
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FIGURE 10.3 Comparison of capital requirements for a GMAB
contract, actuarial risk management (unbroken lines) and dynamic-
hedging risk management (broken lines).

disadvantages of the two approaches, taking the cost of additional solvency
capital into account, where appropriate.

EMERGING COSTS WITH SOLVENCY CAPITAL

In the previous two sections, the capital requirements were explored in some
detail for a GMAB contract with a 10-year nominal term and a 20-year
actual term, for a range of F/G ratios. Each CTE value in the previous tables
is a result of 1,000 or 10,000 simulations, and some of these projections take
significant computer time. The objective in this section is to use stochastic
simulation to project all the cash flows for a contract, including the capital
requirements. To use the methods of the last two sections would require
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a two-tier simulation process—that is, within a single simulation of the
emerging costs, we would need to rerun several thousand simulations every
time the capital requirements are assumed to be recalculated. This means
that if we want to run, say, just 1,000 projections of the emerging costs with
a 20-year horizon and annual recalculation of capital requirements, and
supposing that only 1,000 projections are used to determine the appropriate
capital requirements each year, then in total we have 20 million simulations.
Clearly this soon becomes impractical.
Several short cuts have been suggested to manage this problem:

B Use a much smaller number of simulations for the second-tier sim-
ulations (e.g., just 100); although the standard errors are large, this
approach is much more accurate than reducing the number of first-tier
simulations.

The 95 percent CTE used would be simply the average of the
five largest values from each second-tier simulation. The number of
simulations required is reduced to 2 million, which is still a large
number for a complex process.

B Use approximate analytic methods; for example, in the actuarial ap-
proach we can calculate the capital requirement for a simple GMMB
analytically, provided management charge income is ignored. For a
combined GMMB and guaranteed minimum death benefit (GMDB) it
may be possible to make a simple adjustment to allow roughly for the
income from margin offset and the outgo on death benefits. However,
no analytic approach is available for the GMAB.

B Use a factor-based approach. Using the tables developed in the pre-
vious two sections, the capital requirements at each year end can be
approximated by interpolating the table values for the projected F/G
ratio. For complex products, this appears a reasonable compromise of
computational efficiency and accuracy. This is the method adopted in
the example that is used in the remainder of this chapter.

EXAMPLE: EMERGING COSTS FOR 20-YEAR GMAB

Net Present Value of Future Loss

In this section, we use a 20-year GMAB contract, with both death and
survival benefits, to illustrate the information available from a stochastic
emerging cost analysis. Adopting actuarial tradition, in the graphs in this
section the random variable under consideration is the loss random variable
(finance tradition uses profit; actuaries in finance tend to use either depending
on the context). The net present value of future loss random variable is
denoted NPVFL.
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The 20-year GMAB that we use is assumed to have a rollover benefit
after 10 years and to mature on the twentieth policy anniversary if the
policyholder survives. The contract details and assumptions are identical to
the example in the section on risk measures for GMAB liability in Chapter 9.
Reserves are incorporated using the interpolated factor approach described
in the preceding section. This means that prior to the emerging cost analysis
we have calculated reserves for a range of F/G values and for all integer
terms for the 20-year contract.

The value to the insurance company shareholders of the GMAB segre-
gated fund portfolio should be calculated using an appropriate risk discount
rate. The risk discount rate represents the return required by the sharehold-
ers; it is also known as a hurdle rate. Typical risk discount rates would
vary from perhaps 10 percent to 20 percent, with higher values for riskier
contracts.

In Figure 10.4 the mean values for the NPVFL are given for a range
of risk discount rates for the actuarial and dynamic-hedging approaches.
These values are calculated from 1,000 scenarios for the 20-year contract,
generated using the RSLN stock return model. The same scenarios are
used for the two strategies. Using the same investment scenarios gives more
information, because it eliminates sampling error as a source of difference
between the methods.

A negative mean NPVFL implies that the expected outcome is a profit,
whereas positive indicates an expected loss. Figure 10.4 shows that the
actuarial method is profitable, on average, at risk discount rates less than
around 11 percent, and the dynamic-hedging approach is profitable, on
average, for risk discount rates less than around 14.5 percent. If the
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FIGURE 10.4 Mean NPVFL with actuarial and dynamic-
hedging risk management.
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shareholders’ required return on capital is higher than these figures, it will
be necessary to return to the contract design and adjust accordingly. Note
that setting a higher margin offset rate will increase the management charge
total, which will, in turn, increase the liability. Balancing income and outgo
requires some experimentation with the contract design.

The graph also shows that at very low discount rates the actuarial
approach results in a higher mean expected profit than dynamic hedging.
However, the actuarial approach is much more sensitive to the risk discount
rate, because the capital carried is so much higher than for the dynamic-
hedging approach, and the analysis includes the allowance for the cost of
higher capital requirements. So, for risk discount rates higher than around
10 percent per year, the dynamic-hedging approach is more profitable on
average.

We can also use the simulations to investigate risk by looking at the
whole distribution rather than just the mean. Using 3,000 simulations,
and using a risk discount rate of 12 percent, we can derive the simulated
density functions for the NPVFL random variable. These are plotted in
Figure 10.5. The plot shows that both approaches have median and mode
NPVFL of around zero—that is, either strategy will result, on average, at
roughly breakeven using a 12 percent interest rate. This means that the
company expects, on average, to return the hurdle rate of 12 percent to
the shareholders for the use of their capital using either strategy. However,
the two strategies are not equally risky. The actuarial strategy shows a
substantially heavier right tail, indicating that there is a much greater

e
[0F)
S

0.25 — Actuarial
2 Dynamic hedging

0.20
0.15 +
0.10

0.05 +

Simulated Probability Density Function

e
=}

g — T T T ;
-10 -5 0 S 10 15
Net Present Value of Loss at 12%

FIGURE 10.5 NPVFL probability density functions at 12
percent risk discount rate, with actuarial and dynamic-hedging
risk management.




192 EMERGING COST ANALYSIS

5 o
&
-_a o
&
T
2 04
=]
<
a
)
a
2 -5
[o\l
=
—
a9 ° o O
z 8
Z -10 4
o
T T T T
-10 -5 0 5 10 15

NPVFL(12%); Actuarial Strategy

FIGURE 10.6 Simulated NPVFLs (12 percent); actuarial and
dynamic-hedging risk management.

probability of a substantial loss experience on the contracts using the
actuarial strategy. This is, incidentally, consistent with results using different
contracts and assumptions in Hardy (1998).

Because we have used the same investment scenarios for the actuarial
and dynamic-hedging results, it is possible to explore the relationship
between the results. In Figure 10.6 the results of 1,000 simulations of
the NPVFL are plotted, with the x-axis representing the NPVFL under
the actuarial management strategy and the y-axis representing the NPVFL
under the dynamic-hedging strategy. This shows broadly that the two
methods are sensitive to the same scenarios, but the potential losses are
substantially greater under the actuarial strategy. However, it is certainly
not guaranteed that the hedging strategy will result in a lower future
loss; there is approximately a 65 percent probability that the dynamic-
hedging approach would be more profitable at the 12 percent risk dis-
count rate.

Simulated Cash Flows

In all the results of the previous section the cash flows generated by the
model have been summarized in a net present value. We can also look at
the cash-flow patterns. Some sample cash flows are plotted in Figure 10.7.
These are annual cash flows; intra-year income and outgo is accumulated
to the year-end at the risk-free rate of interest. The broken lines are the
cash flows using dynamic hedging, the regular lines are the cash flows for
the same investment scenarios using the actuarial risk-management strategy.
The initial cash flows for a contract with single premium of $100 are $8.55
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FIGURE 10.7 Sample cash flows for 20-year GMAB; actuarial and
dynamic-hedging risk management.

using the actuarial method (which is the initial capital required less the
initial margin offset income) and $2.35 for the dynamic-hedging strategy.

In each of these five sample simulations the cash flows using the actuarial
approach are more variable than the cash flows under the dynamic-hedging
strategy, though in one case not by very much. In the top right plot, the final
cash flow using the actuarial strategy is relatively large. In this scenario there
was a substantial final payment under the guarantee, which exceeded the
capital held using the actuarial approach. However, the payment does not
show up under the dynamic-hedging strategy because the hedge has done
the job of meeting the guarantee. The middle left example demonstrates the
same situation for the rollover guarantee liability in the tenth projection
year: A large payout drastically affects the payouts using the actuarial risk-
management approach, but is absorbed by the hedge and, therefore, does
not register any shock to the dynamic-hedging cash flows. This is actually
a dramatic demonstration of the hedge achieving its objective. The bottom
left plot shows a scenario where a substantial capital requirement was held
until the tenth year, indicating that the F/G ratio was low. However, the
capital was not actually required, because there was no rollover payment,
so it was released at the end of the tenth year. This release resulted in a large
negative cash flow under the actuarial approach; again, no major effect was
registered under the dynamic-hedging strategy.
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risk management.

The range of outcomes of the annual cash flows are shown again in
Figure 10.8. Here we have plotted some quantiles for the cash flows in each
year; the left hand plot shows the cash flow Sth, 25th, 50th, 75th, and
95th percentiles using the actuarial approach, and the right plot gives the
same percentiles for the dynamic-hedging approach, on the same axes. The
quantiles are calculated using 1,000 scenarios.

The difference in range is very striking. As we showed more informally
in Figure 10.7, it is clear that the cash flows under the dynamic-hedging
strategy are much less variable than those under the actuarial strategy. The
perturbations around the tenth projection year result from the additional
variation from the rollover payment at that time.

Decisions

For this example the pricing, at 50 basis points margin offset, only breaks
even at around 11 percent (actuarial strategy) or 14.5 percent (dynamic
hedging). The figure for the actuarial strategy is a relatively low hurdle
rate for a fairly risky contract, so the pricing or benefit design might need
reevaluating.

All of the results indicate that the dynamic-hedging approach to risk
management is preferred to the actuarial approach except at very low-risk
discount rates. Note, however, that this is just an example. For different
contracts or for different investment assumptions, a different conclusion
may be appropriate. The important message is that stochastic emerging costs
analysis provides solid evidence to support the decision-making process.
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Forecast Uncertainty

SOURCES OF UNCERTAINTY

W ith straightforward stochastic simulation, we assume that the model
used accurately mimics the true process, and that the parameters
adopted are correct. Under these assumptions, forecast error is entirely due
to random effects or sampling error, which is readily subject to statistical
analysis. Quantifying this potential error is the first topic of this chapter.
We also discuss practical methods of reducing the potential for sampling
error by using variance reduction techniques.

However, despite the efforts outlined in Chapter 3, the model that
provides the best fit historically may not be the best model prospectively,
and the error from using a model that is not an accurate predictor of
the equity price path distribution must be considered. We discuss model
uncertainty in the last section of this chapter.

Even if we have the best model structure, the parameters derived from
the historical data may not be accurate for prediction. The parameters used
for the results in previous chapters are those emerging from the maximum
likelihood exercise described in Chapter 3. However, estimating parameters
involves some uncertainty, and although the maximum likelihood parameter
set may be optimal in the sense of the overall fit to historic data, many other
parameter combinations provide a fit almost equally good and may be more
accurate for future forecasts. One source of parameter uncertainty is pure
random error in the estimation procedure. Another is that shifts in parameter
values have occurred over the term of the historic data, and we need to
consider carefully the period of observation used for estimation purposes.
Parameter uncertainty is discussed later in the chapter. In this chapter we
consider parameter uncertainty using Bayesian and stress-testing methods.

Finally, there are sources of forecast error that are not susceptible to
statistical analysis. Economic shocks that change the whole econometric
structure may strike at some time in the forecast period, rendering useless
the historical evidence used to determine the model and parameters. Those

195
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involved in econometric forecasting must be aware of this possibility. It
has been used as a reason not to attempt to forecast economic variables at
all. This was certainly the view of early economists such as Morganstern
and Persons in the early twentieth century; their views are described in
Morgan (1990). However, this view was gradually replaced by an ac-
ceptance of time series modeling of econometric data, using the standard
theory of statistical inference, but with an awareness that econometric and
social time series are more susceptible to structural shifts than physical
time series.

The nihilistic view that there is no point in using the past to forecast
the future is still espoused by some, so we should consider the alternatives.
One is pure guesswork. This has no advantages over statistical methods.
In fact, resorting to guessing or “actuarial judgment” without technical
analysis is likely to be very dangerous. A second conclusion drawn by
some actuaries is that stochastic models should be rejected in favor of
old-fashioned deterministic methods. But deterministic modeling misses so
much of the point with financial guarantees—especially the tail risks—
that it is certain to provide more inaccurate or inadequate results than
stochastic modeling, however uncertain the models and parameters. As
long as insurers issue contracts involving financial guarantees, stochastic
models are required for any useful guidance as to how to manage the risks
involved.

RANDOM SAMPLING ERROR

All the analysis of the liabilities discussed in previous chapters relied on
stochastic simulation. This starts with a random number generator that is
used to generate random paths for fund values, which in turn are used to
determine the contract cash flows. In this section we address the question of
how much the original random sample affected the results. In other words,
how might the results change if we repeated the projections using a different
set of random numbers with the same probability distribution as the first,
and can we reduce the effect of sampling variability?

The answer depends on what particular results we are interested in
and, crucially, on how many scenarios are used in the projection. For
example, the answer will differ if the output of interest is the mean future
loss compared with a tail measure such as the 95 percent conditional tail
expectation (CTE) of the future loss, and the uncertainty arising from a
sample of 1,000 projections will clearly be greater than if we use 100,000
projections. In fact, a simple method of reducing the effects of sampling
error from simulation is to increase the number of projections. This is not
always practical if the simulation is very complex.
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Expected Values

It is simplest to consider the effect of sampling error on expected values,
using elementary statistical theory. Ordinary stochastic simulation provides
a random, independent sample from the distribution in which we are
interested. Suppose, for example, that we generate N values for the present
value of future loss under an equity-linked contract, labeled [; for i =
1,2, ...,N. Let L represent the random variable. Obviously, the estimated
value of E[L] is the mean loss:

Z,‘I\illi

I==xX

Because the individual L; are independent and identically distributed, the
central limit theorem tells us that / is unbiased, that is, E[/] = E[L],
and that for sufficiently large N, [ is approximately normally distributed
with a standard deviation of O'L/_ N, where oy, is the standard deviation of
the L. So, the standard error of [ as an estimator of E[L] is of the order of

1 /\/ﬁ . A 95 percent confidence interval for the true mean is

1+1.96 2L

JN

which, using N = 100 projections, would have width of approximately 39
percent of the distribution standard deviation, decreasing to 3.9 percent
with 10,000 scenarios.

As an example, in Figure 11.1 we show the results of a simulation
comprising 10,000 projections of the net present value of liabilities under
a 20-year guaranteed minimum accumulation benefit (GMAB) contract,
with actuarial risk management. The graph shows the mean as well as
the upper and lower 95 percent confidence intervals, all estimated from
different numbers of projections. The contract is identical to that in Chapter
10 in the section on emerging costs for a 20-year GMAB. This is a 20-year
GMAB with initial fund value and guarantee value both equal to $100, and
with a single rollover due on the tenth anniversary of the valuation date.
There is no allowance for cost of capital requirement, and we discount at
the risk-free rate of interest, as we did in Chapter 9 to determine capital
requirements.

In Figure 11.2 we show the relative error in the estimated mean for
different numbers of scenarios, that is

oL/ k

Relative error for k scenarios = -
1000077, /10,000
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FIGURE 11.1 Estimated mean and 95 percent confidence
interval for E[L], based on different numbers of scenarios.
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FIGURE 11.2 Relative error for E[L] estimation for GMAB
contract.

For both Figures 11.1 and 11.2, the curve starts from 100 scenarios. Note
that estimates based on fewer than 1,000 scenarios are very unreliable.

Quantile Risk Measure

When we are concerned with the more extreme parts of the distribution,
the relative errors tend to increase. The quantile risk measure is described
in Chapter 9, and, in the section on simulation in Chapter 9, a method is
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given for constructing a nonparametric confidence interval for the quantile
risk measure.

The quantile risk measure is estimated by ordering the simulated quanti-
ties, so let /; represent the ith smallest simulated value from the N scenarios.
The estimated a-quantile is /). The 1008 percent confidence interval from
Chapter 9 is:

(Iina-4)> liNa+a))

where

A= <1>1<1;B> Na(1 — a) (11.1)

and the width of this interval depends on how heavy-tailed the simu-
lated distribution is. In Figure 11.3 the 95 percent quantile estimates for
the 20-year GMAB are plotted for 100 to 10,000 simulations, together
with the binomial confidence intervals. The scale is changed from Fig-
ure 11.2. The path is very much more volatile than that of the mean,
and the confidence intervals at lower scenario numbers are very wide.
Even after 10,000 simulations, the 95 percent confidence interval for
the 95 percent quantile risk measure is six times wider than that for
the mean.

—_
(=]
|

Q(0.95) Risk Measure, % of Premium

T T T T T T
0 2000 4000 6000 8000 10000

Number of Scenarios

FIGURE 11.3 Estimated 95 percent quantile risk measure and
95 percent confidence interval for the loss random variable,
based on different numbers of scenarios.
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FIGURE 11.4 Reclative errors for the 95 percent quantile
risk measure and its 95 percent confidence interval, based on
different numbers of scenarios.

Figure 11.4 shows the relative error for the quantile and the confidence
limits. The error is relative to the value from 100,000 scenarios. At the
start of the simulation, after 100 to 200 scenarios, the relative error of 0.5
means that the estimated value using, say, 200 scenarios is 50 percent higher
than the ultimate estimate, taken from 100,000 scenarios. The 95 percent
confidence interval ranges from 75 percent to 120 percent of the estimated
value after 10,000 simulations, compared with a confidence interval of 98
percent to 102 percent for the mean. The grey line on the plot is the relative
error for the mean from Figure 11.1, shown to the same scale to demonstrate
how much faster it converges. In fact, continuing the simulation to 100,000
scenarios gives an estimated quantile of 4.635, compared with 4.681 after
10,000 scenarios. Even after 100,000 scenarios the quantile risk measure is
only accurate to within around 1 percent of the value to which it converges
after 1,000,000 scenarios. Of course, convergence would be even slower for
higher values of « in the quantile risk measure.

The CTE Risk Measure

The CTE(«a) risk measure is defined in the section on the CTE risk measure
in Chapter 9, the broad explanation being that it is the expected loss given
that the loss is in the upper (1 — @) quantile of the loss distribution. Using
simulation, the CTE(«) is estimated from averaging the upper 100(1 — «)
percent of the simulations. One of the justifications given in Chapter 9 for
using the CTE rather than the quantile risk measure was that, in averaging
the upper part of the distribution, we expect less sampling error than the
quantile approach of picking out a single value. On the other hand, it
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FIGURE 11.5 Estimated 95 percent CTE risk measure with
95 percent confidence interval, based on different numbers
of scenarios.

was also noted that the calculation of confidence intervals is more difficult,
with no straightforward analytic calculation available unless the quantile
measure V, is known rather than estimated from the simulation. We can
estimate the 95 percent confidence interval using the standard deviation of
the upper 100(1 — «) percent of the sample, dividing by /N(1 — «) for
the standard error, and although this is biased low, because it ignores the
uncertainty around the use of the (Na)th value as an estimate of V,, it
appears from experiments to be reasonably accurate. Also, as mentioned
in Chapter 9, the work by Hancock and Manistre (2002) provides a good
analytic approximation.

In Figure 11.5 we show the CTE values for different scenario numbers.
In Figure 11.6 we show the estimated relative errors for both the quantile and
CTE risk measures, both using @ = 95 percent. Although both measures
are substantially more volatile than the mean, the CTE does prove to be
more stable than the quantile measure. In fact, the 95 percent CTE is a more
extreme risk measure than the 95 percent quantile, the CTE being closer to
the 98 percent quantile.

VARIANCE REDUCTION

Introduction

In the previous section, we demonstrated that uncertainty can be reduced
by increasing the number of scenarios, but that it may take a large number
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FIGURE 11.6 Relative errors for the 95 percent CTE(0.95)
risk measure and for quantile(0.95) risk measure, based on
different numbers of scenarios.

of extra scenarios to achieve the desired increase in accuracy. Variance
reduction is used to improve the accuracy of an estimate more efficiently
than just ploughing through larger and larger numbers of simulations.

The standard error of an estimate of a mean value from a distribution
with standard deviation o is (T/\/N . Recall that both the CTE and quantile
risk measures can be rewritten as mean values of a transformed distribution,’
so the standard error formulation applies to other risk measures as well as
mean values. By using an increased number of simulations, we are reducing
the standard error by increasing the denominator of the standard error.
With variance reduction our aim is to decrease o. The complication is that
where we are interested in a risk measure other than the mean, o represents
the variance of a transformed distribution, so variance reduction methods
depend on the output variable (e.g., the risk measure) of interest in a way
that straightforward stochastic simulation does not.

Variance reduction is discussed in general terms in simulation textbooks,
such as Ross (1996). Boyle, Broadie, and Glasserman (1997) survey appli-
cations of variance reduction in option pricing, and this section draws from
that paper. Boyle and Tan (2003) also give a very accessible introduction.

Most of the applications for variance reduction focus on the use of
simulation to estimate a mean value, and some do not adapt well where the
concern is around the tail of a distribution rather than a central location
measure. Some also are not readily applicable to problems involving a

'See Wirch and Hardy (1999).
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series of (dependent) cash flows. Importantly, some variance reduction
techniques designed for estimation of quantities dependent on the center
of the distribution will give worse estimates of tail measures than ordinary
simulation. Using standard simulation, the output variable need not affect
the simulation process; that is, we can use the same set of projections to
estimate both the mean loss and the 95 percent CTE, though we need fewer
scenarios to get an accurate estimate of the mean than for the CTE. Variance
reduction techniques do depend on the output variable, so different output
objectives may need to be simulated in separate exercises.

In the following sections we describe some of the variance reduction
techniques in common use. Even though not all are useful for the particular
applications of interest here, and some will actually make things worse,
they are all listed for ease of reference, and because readers may find
other uses.

Moment Matching

Very simple in concept, moment matching involves ensuring that the un-
derlying random variables used in a simulation exercise have moments that
exactly match the distributions from which they are drawn. For example,
generating N random variates from a lognormal distribution with param-
eters w and o requires drawing N normal random numbers with mean w
and variance o, denoted x1, x3, ..., xN, say. Because of sampling error, the
mean and variance of the sample, ¥ and s2, will differ a little from the
distribution mean and variance u and o. So we might translate the random

variables x; to
, X; — X
X, = S ot un

and we know, then, that the x; are a sample having mean and variance of
exactly u and o. In fact, the translated sample is no longer independent,
since each x; depends on all the original sample through . This is a slight
technical drawback.

Moment matching is very simple to implement and can dramatically
improve estimation in certain circumstances. It works well, for example,
for simple contracts, including options that are in-the-money. For typical
financial guarantees attached to variable-annuity (VA), segregated fund,
or unit-linked contracts, the risk is in the tail and the option is usually
well out-of-the-money. The expense of moment matching is large storage
requirements in the computing; for a single set of, say, 5,000 scenarios with
a 20-year contract, and monthly time units, there are over 107 random
variables with a regime-switching lognormal (RSLN) investment model.
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These would have to be generated, suitably translated, and stored for use in
generating the investment returns. For typical segregated fund or VA-type
contracts, the improvements in accuracy are not sufficiently large or reliable
to warrant this additional computational burden.

As an illustration, we have repeated the example used earlier in this
chapter using moment matching. The example is a 20-year GMAB contract
with a rollover after 10 years and a 3 percent per year expense charge, of
which 0.5 percent is margin offset income. The single premium is $100, and
the guarantee before the rollover is also $100. Mortality and withdrawal
experience follows the table in Appendix A.

The output variables are the 95 percent quantile and the 95 percent
CTE of the net present value of liability, discounted at the risk-free rate
of interest, without cost of capital. The contract is projected out to ma-
turity for between 100 and 10,000 scenarios. The investment model is, as
usual, the RSLN model. Simulating investment returns using this model
involves two random variates for each time unit. The first is uniformly
distributed and determines which regime the process is in. The second has
the standard Normal(0,1) distribution. The accumulation factor for the
month is, then, exp(z o, + w,), where p = 1 or 2 is the regime indicator.
We have used moment matching on the Normal(0,1) sample, matching the
mean and standard distribution. Table 11.1 shows some results from this
exercise. We have given the relative error, relative to the estimated value
from 10° scenarios of 4.635 for the 95 percent quantile and 8.692 for
the 95 percent CTE .

Moment matching appears to help for the quantile measure until 2,000
scenarios, when it gives a substantially worse estimate than that from the
unmatched scenarios. The CTE estimate without moment matching is better
than with moment matching at 100 and 2,000 scenarios. This result is typical
for the out-of-the-money type of option. The result is intuitive because the
effect of matching moments is to concentrate on getting accuracy in the
center of the distribution, but with most investment guarantee problems we
are more interested in the extremes.

Antithetic Variates

The method of antithetic variates is a common and simple variance reduction
technique that is related to moment matching. It is important to understand
the circumstances in which the method works, particularly because it can
actually decrease the accuracy of the estimate if used inappropriately.

The antithetic variate method is commonly used where the underlying
random variates are generated from a uniform or normal distribution.
Suppose we wish to estimate the mean cost under a guarantee liability,
arising in T months, using a lognormal distribution for stock returns. Let u
and o be parameters for the lognormal model, let G be the guarantee, and
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TABLE 11.1 Example of moment matching for quantile and CTE calculation.

Estimated Estimated
Number of 95% Quantile 95% CTE
Scenarios Relative Error Relative Error
100 No moment matching 0.272 0.139
Matching mean and
standard deviation -0.116 —0.238
500 No moment matching 0.176 0.124
Matching mean and
standard deviation 0.092 0.059
1,000 No moment matching 0.142 0.042
Matching mean and
standard deviation —-0.067 —-0.023
2,000 No moment matching 0.046 0.000
Matching mean and
standard deviation 0.092 0.025

let Fy be the starting fund. For the sake of simplicity, ignore management
charges and exits. Then a single scenario can be generated with a single
standard random normal deviate Z. That is, having generated N standard
random variates Z;, the estimated cost from the ith scenario is E;, say, where

E; = (G — Fy exp(Tp + VTo Z))*

Now, clearly —Z; has the same distribution as Z;, so we can calculate
the estimated cost again with —Z; in place of Z;; denote this estimate E/,
say. Then the average of these two estimates is

E; + E!
Fr=—2_—
! 2

and the mean of the E’s is a more efficient estimate of the mean guarantee
cost than the mean of the E;’s. That is, if we use N scenarios, each doubled
up by using Z; and —Z,, then the estimated mean cost

EN+E’
E

is a more efficient estimator of the mean cost than generating 2N values,
Of E,‘.
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The intuition is that because Z; and —Z; are negatively correlated, errors
will be, to some extent, evened out. The theory comes from considering the
variances, noting that E; and E; have the same variance, so

VIE;] = = (V[E;] + V[E]] + 2 Cov[E;, E]]) (11.2)

IR

(VIE;] + Cov[E; E]]) (11.3)

M| =

The variance of the mean of N values of E] is V[E]] /Nj the variance
of the mean of 2N values of E; is V[E;]/2N. For the antithetic variates to
improve the efficiency of the estimator, we require then:

VIE!]/N < V[E;]/2N < Cov[E;E/] <0 (11.4)

That is, that the antithetic estimates have negative covariance. Another
common application of antithetic pairs is where the underlying random
deviates are drawn from a Uniform(0,1) distribution, where if U; is drawn
from the uniform distribution, its antithetic variate is 1 — U,.

Boyle, Broadie, and Glasserman (1997) prove that for antithetic vari-
ates to improve the forecast accuracy for some output, the output must
be a monotonic function of the random variates used. This is very
important—the method may make the forecast less accurate for non-
monotonic functions.

An example where the output is not monotonic would be the 20-
year, one-rollover GMAB contract. Assume, for example, that a separate
fund account follows the lognormal model, and ignore death and survival,
management charges, and margin offset. We start with a fund and guarantee,
both with a value of $100. Let the lognormal parameters for the annualized
lognormal model be w = 0.08 and o = 0.2. The liability under the ith
scenario at time 10, at the first rollover is

(100 — 100 exp( /100 Z; 1 + 10u))*
and at the second rollover the liability is

(Fio — Fioexp(v/100 Z;5 + 10p))*
where

Fip = max(100, 100 exp(+/ 100 Z;1 + 10u))
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If F;- is the fund before any GMAB benefit due at #, we have for the
antithetic variate pairs:

Time 10 Time 20

(Zi1, Zi2) Fio- Fao- Liability Liability
(3,-3) $1,484 $495 0 $989
(0,0) $222 $495 0 0
(—3,3) $33 $1,484 $67 0

So we have a positive liability for variates (3, —3) and (—3,3) and a zero
liability for variates (0, 0). Clearly the payoff is not a monotonic function of
the normal random variates.

For contracts without rollover or reset features, the payoff may be
a monotonic function of the input normal deviates. However, Boyle and
Tan (2003) suggest that the method does not work well for deep out-of-
the-money options, nor for tail measures. Antithetic variates work best
where the output is clearly a monotonic function of the underlying random
numbers, and where the focus is the middle of the distribution.

Control Variate

In contrast with antithetic variates and the method of moments, the control
variate method has been used successfully for GMMB- and GMAB-type
options.

The control variate is a function of the projected scenarios with the
following two characteristics:

1. The value of the control variate can be calculated analytically (that is,
accurately without simulation).

2. The value of the control variate is highly correlated with the value of
the output variable of interest.

The control variate acts to calibrate the simulation.

A simple example would be the net present value of a simple fixed
guarantee on death or maturity type contract—that is, a joint GMDB
and GMMB contract. The major factor in the calculation is the payoff at
maturity and, if the equity index is assumed to follow a lognormal or RSLN
or similarly tractable model, the expected value of that payoff (or quantile
or CTE measure) can be calculated analytically. This can then be used as a
control variate. Then under the simulation we compare the simulated value
of the control variate with the known, true value. Provided the control
variate is closely correlated with the output we are calculating, it will help
the accuracy of the output to adjust by the difference between the known
and estimated values of the control variate.
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For example, for the joint GMMB and GMDB contract the future loss
random variable is

L = PV of GMMB + PV of GMDB — PV of margin offset

And, because the death benefit, maturity benefit, and margin offset are highly
co-dependent, even with a simple process for the fund F, it is generally not
possible to calculate moments of L analytically.

However, consider just the first term, PV of GMMB = L*, say. If we use
a suitably tractable distribution for the fund at maturity, F,, the quantiles,
CTEs, and moments of L* can be calculated analytically. For example,
assume a fixed guarantee, G, and let fr(x) denote the density function for
the fund value, and Q,(F,) denote the a-quantile of the distribution of F,,

O1-a(Fy)
CTE.(L") = abr L (G — x)*fp(x)dx (11.5)

Clearly, if we are interested in the CTE of L, a major part will come
from the distribution of L* and the CTE of L* can be used to calibrate the
simulation estimate of the CTE of L. So, say a set of 1,000 scenarios gives
an estimated 95 percent CTE for L of $5.00 and for L* of $4.15; and we
know from the analytic calculation that the true CTE for L* is $4.35. This
indicates that the scenario sample we are using is valuing a little low; a
simple adjustment is to add the difference of $0.20 back to the original CTE
for L, giving a control variate adjusted value of $5.20.

The simplest algorithm for estimating a value E using a control variate is:

1. Choose your control variate and calculate the true value Ecy.

2. Generate the scenarios for the simulation, and use them to estimate
both the control variate Ecy and the required output E.

3. Then the control variate adjusted estimate of E is

E' = E+ (Ecy — Ecv)

We will use the GMAB example from earlier in this chapter to demon-
strate the benefits from the control variate method with a fuller numerical
example. To repeat the critical features, this is a 20-year GMAB with a
single rollover at time 10. The fund and guarantee are both $100 at the
start of the contract.

Suppose we are interested in, for example, the 95 percent CTE of the net
present value of the liability for the contract. The liability includes payoffs at
both the rollover and final maturity dates, as well as death benefits. Income
from margin offset is also allowed for.



Variance Reduction 209

The control variate that we use is the 95 percent CTE of the liability
under the first rollover, allowing for management charges and survival
appropriately. This is highly correlated with the liability present value. The
rollover liability depends on the random accumulation factor from ¢ = 0 to
t = 10, which we denote S1y. We will assume this comes from the RSLN
distribution with parameters from Table 6.2. To determine the present value
of the liability at the first rollover, we assume

B Monthly time steps.

B A management charge of 25 basis points per month.

B Discount at the risk-free force of interest of r = 0.005 per month.
B A survival probability of 120pI = 0.422467.

These assumptions give
L* = max(100 — 100 S1¢(0.9975)12°, 0)e 120 ,opT

The accurate CTE for L* can be calculated by conditioning on R,
the total sojourn in regime 1, which we used in the section on RSLN in
Chapter 2. The detailed derivation is given in the section on exact calculation
in Chapter 9.

For the first rollover of a 20-year contract using the RSLN model as
before, with initial fund and guarantee both equal to $100 the 95 percent
CTE of the present value of the first rollover liability is $10.959. This is our
control variate Ecy.

Now we simulate the full net present value of the liability for, say
N = 1,000 scenarios. At the same time we pull out the simulated liability
for the first rollover. We find that the simulated CTE for the control variate is
Ecy = $11.265, indicating that this set of scenarios has slightly overvalued
the control variate. The same scenarios give a CTE of E = $9.006. This
gives an estimate of

E* = 9.006 + (10.959 — 11.265) = 8.700

which compares well with the estimate of $8.727 from 10° simulations.
This is not a coincidence; the control variate method actually converges
much more quickly than the straight simulation method for the CTE for
these contracts. This is demonstrated in Figure 11.7, which shows the
convergence of the CTE for 100 to 20,000 simulations, both with and
without the control variate; notice the fast convergence with the control
variate, and in particular the much greater accuracy around 1,000 scenarios.
This is very important because it is quite rare for actuaries to use more
than 1,000 simulations, but the CTE accuracy without variance reduction
is actually quite poor in that range.
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FIGURE 11.7 Estimated 95 percent CTE risk measure with and
without control variate.

The control variate method appears to work well with other distri-
butions for the stock price and for other contract designs. The additional
computation is small, and the payoff with a good control variate is high.

The more general form of the control variate method is to use

E* = E+ B(Ecy — Ecv) (11.6)
so that the variance of the estimate is
V[E*] = VIE] + B2V[Ecy] — 2BCov[E, Ecy] (11.7)

The variance is minimized when the parameter 8 is

_ Cov[E, Ecy]

* = 11.8
g V[Ecv] s
In general, we will not know 8* to get the minimum variance estimator, but
some experimentation with different simulated pairs {E, Ecy} can provide
an estimate using regression. For the GMAB example used in this section,
the parameter is around 1.0, so the estimate we have used is roughly optimal.

The control variate method is straightforward to apply, with little
additional computation over ordinary simulation, and, as we have seen,
using a control variate provides dramatic improvements in accuracy in
some cases. It works well for estimating the mean or the CTEs of the net
present value of the liability for investment guarantees. The use of guarantee
liabilities for estimating tail quantile measures has not achieved such good
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FIGURE 11.8 Estimated 95 percent quantile risk measure with
CTE and quantile control variates, and without control variate.

results. The quantile estimate comes from a specific simulation value, the
one that happens to be in the correct place in the ordered sample, and
it is not clear what control variate might be useful. In Figure 11.8 the
estimated 95 percent quantile for the 20-year GMAB is plotted with control
variates again based on the rollover cost at time 10 years. The grey line
indicates the estimate without variance reduction. The broken line uses the
95 percent quantile of the year 10 living benefit as a control variate, and
it does not improve accuracy substantially. The unbroken line does provide
some improvement. The control variate for that line is the CTE of the year 10
liability, which is the same control variate that we used for the CTE simulation.

Importance Sampling

Suppose we are interested in estimating E¢[A], where the subscript denotes
the model density function. Standard stochastic simulation uses N values
of A generated from the model distribution f(), say A4, ..., AN, giving an
estimate for Ef[A] of > A;/N. With importance sampling, we generate N
values of A from a different distribution, f*(), say. It can be chosen to cover
the important parts of the sample space with higher probability than the
model distribution. Let these values of A be denoted A], ..., AY. For each
value generated we also calculate the likelihood ratio?® for that value, &:

;f(ii:) (11.9)

P(A7) =

2 Also known as the Radon-Nikodym derivative.
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Then, provided the likelihood ratio is well defined for all possible values
of A*, the importance sampling estimate of the mean is

i=1

For the likelihood ratio to exist, the support of f*() must contain the
support of f( ), meaning that if f*(A}) = 0, then f(A]) must also equal zero,
so that the likelihood ratio is defined.

A simple example of importance sampling might be to use a distribution
with higher variance to sample the output variable where the important
part of the distribution is in the tails. This can ensure that the tail is
sampled sufficiently. What we are doing is dropping the usual Monte Carlo
assumption that each output is equally weighted; instead we weight with
the likelihood ratio. That way we can sample rare events with higher
probability, then reduce their weighting in the calculation appropriately.

Boyle, Broadie, and Glasserman (1997) explain the use of importance
sampling in more detail, for example, for valuation of deep out-of-the-money
options. It may be usefully applied to GMMB liabilities therefore, which
are essentially out-of-the-money options. However, the net liability—that
is, taking the income from margin offset and guarantee liability together—is
less conducive to importance sampling because of the path dependence,
and the different timing of the cash flows. Research continues in how to
adapt the method to actuarial cash-flow modeling.

Low Discrepancy Sequences

A relatively recent innovation in stochastic simulation techniques is the
use of low discrepancy (LD) sequences, also called quasi Monte Carlo or
QMC, methods. Standard Monte Carlo simulation uses a pseudo-random
number generator, which is a deterministic function that produces numbers
that appear to behave as if they are random. Often, we use Uniform(0,1)
numbers as the basis for generating random variates of other distributions.
We hope that our sample of U(0,1) variates are dispersed roughly evenly
over (0,1); we know the results will be inaccurate if, say, all the variates
fall in (0,0.5), though this is theoretically possible. We also use the fact that
the numbers are effectively serially independent. In contrast, LD sequences
are known deterministic sequences, which are selected to cover the sample
space evenly. LD methods are not random or even pseudo-random.
Suppose, for example, the problem was to estimate ﬁ) h(x)dx using a
sample size n. We could simulate # values for x from a U(0,1) distribu-
tion, X1, ..., X,, say, and estimate fé h(x)dx from the mean value of h(x;).
However, it would be more accurate to pick # evenly spaced values for x;
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between zero and one—for example, to use the trapezium rule. The random
nature of the first method is a disadvantage rather than an advantage, and
given a choice between stochastic simulation and numerical integration we
would always select the latter for accuracy where it is feasible.

Picking evenly spaced values is more difficult where the problem is more
complex. Modern LD sequences allow the use of nonrandom, evenly dis-
persed sequences in higher dimension simulations. Dramatic improvements
in accuracy have been achieved in some complex financial applications
using LD methods. Examples of applications are given in Boyle, Broadie,
and Glasserman (1997) and in Boyle and Tan (2002).

The problems surrounding equity-linked insurance tend to be very
high-dimensional, meaning many separate sequences of random numbers
are required. For a simple model of a 20-year GMMB contract with
monthly timesteps, we have a model with at least 240 dimensions, more if
the investment model is at all complex. At this level of complexity, the LD
methods tend to lose their advantage over ordinary Monte Carlo methods.
However, research in combining traditional Monte Carlo methods with the
new LD sequences is ongoing, and it seems likely that this approach will
prove to be very useful for a range of actuarial applications.

PARAMETER UNCERTAINTY

The effect of parameter uncertainty on forecast accuracy is often unexplored.
Having determined a parameter set for a model, by maximum likelihood
or by other means, that set is then deemed to be fixed and known, and we
draw all inference relying entirely without margin on that best-fit parameter
vector. In fact, parameter estimation, however sophisticated the method, is
subject to uncertainty. Even if the model itself is the best possible model
of the equity process, if the parameters used are inaccurate then the results
may not be reliable.

It is useful, then, to have some idea of the effect of parameter uncertainty.
In fact, this is part of the actuarial risk management responsibility. This is
quite specific in the context of Canadian valuation, where allowance for
parameter uncertainty in policy liabilities is a normal part of the required
provision for adverse deviation or PAD. This allowance currently tends to
be rather ad hoc. In this section we demonstrate a more rigorous approach.

Bayesian Methods for Parameter Uncertainty

Bayesian methods were introduced in Chapter 5, where Markov chain
Monte Carlo (MCMC) techniques were applied to parameter estimation for
the RSLN for equity returns. We give a very brief recap here. The Bayesian
approach to parameter uncertainty is to treat the parameters as random
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variables, with a distribution that models not intrinsic variability, but
rather intrinsic uncertainty. Thus, the mean of the parameter distribution
represents the best point estimate of the parameter (technically, minimizing
quadratic loss). The variance of the parameter distribution represents the
uncertainty associated with that estimate.

We assign a prior distribution to the parameters even before we start
working with data. We can then combine the information from the data
together with our prior distribution to determine a revised distribution for
the parameters, the posterior distribution. Using MCMC, the joint posterior
distribution for the entire parameter set is found by generating a sample
from that distribution; that is, the output from the MCMC calculations is a
sample of parameter vectors, the sample having the posterior distribution.

In our work in Chapter 5, the prior distributions used are very disperse,
and have negligible influence on the posterior distributions. We use the
same approach in this section. With disperse prior distributions the Bayesian
approach is connected to the frequentist approach to parameter uncertainty
through extensive reliance on the likelihood function, considered as a
function of the parameters. The posterior distribution of parameter vectors
is roughly proportional to the likelihood functions for the vectors.

The advantage of the MCMC method is that it leads very naturally to
a method of forecasting taking parameter uncertainty into consideration, as
we have already demonstrated in the final section of Chapter 5. We are not
interested so much in the distribution of the parameter vector, rather, our
goal is to quantify the effect of parameter uncertainty on the distribution of
equity-linked liabilities.

The predictive distribution for, say, the net present value of the guar-
antee liability under a separate account product is the expected value of the
distribution taken over the posterior distribution of the parameters. That
is, if the parameter vector is 6, with posterior distribution 7(6), and our
output random variable is X, then the predictive density function of X is:

flx) = Lf(x|0)77(0)d(9 (11.10)

In terms of stochastic simulation, this formula means that we simulate
from the predictive distribution by drawing a new parameter vector from
the MCMC output for each scenario used to generate the distribution of
guarantee costs. For example, if we want to generate the distribution of the
net present value of the liability (without cost of capital) for the GMMB
contracts studied in Chapter 9, we first generate a sample from the posterior
distribution for the parameters. We will use 5,000 simulations to examine
the GMMB liability. We need more projections of the posterior distribution
because (a) the first one-hundred values are discarded as “run-in” and (b)
successive values are highly dependent. Recall that each individual parameter
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only changes with probability according to an acceptance probability, which
means that the probability of changing at each point is generally between
30 percent and 50 percent. To reduce the influence of this serial dependence,
the GMMB liability is calculated using every tenth parameter set generated
from the MCMC procedure.

Two of the contracts studied in Chapter 9 were VA-style death benefit
guarantees (GMDBs). The first example has a fixed death benefit of 100
percent of the single premium, paid for by a margin offset of 10 basis points
per year. The second has a guaranteed death benefit that increases monthly
at an annual effective rate of 5 percent. The benefit in the first month is
equal to the $100 single premium, and the margin offset is 40 basis points
per year.

In Figure 11.9, we show the simulated probability density functions
for the net liability present value for the two contracts, separately for the
actuarial and the dynamic-hedging risk management approaches. These
plots show that the effect of parameter uncertainty is small in the mean
values, but does affect the spread of results, giving more extreme outcomes
in both tails. Although the effect appears more noticeable in the dynamic-
hedging plots, the effect on the tail of allowing for parameter uncertainty
is more expensive in the actuarial case, in terms of the percentage of fund
required for a tail measure capital requirement. For example, for the level
death benefit contract with a $100 premium, in the actuarial case allowing
for parameter uncertainty increases the 95 percent CTE from $0.79 to $1.13
premium. If we use dynamic hedging for the same contract, allowing for
parameter, uncertainty increases the 95 percent CTE from $0.00 to $0.08,
an increase of only 8 cents per $100 dollars of premium.

In Figure 11.10, we show the addition to the CTE risk measure resulting
from this approach to parameter uncertainty for the GMDB contract. This
shows that the dynamic-hedging approach appears to be less vulnerable to
parameter uncertainty than the actuarial approach. We get similar results
for GMMB and GMAB contracts. In some cases, the addition to the risk
measure can be significant. In Table 11.2 we give the 95 percent quantile
and 95 percent CTE risk measures for a 20-year GMAB contract. This is
the same contract that was described and used as an example in the sections
on risk measures for GMAB liability in Chapter 9 and capital requirements
in Chapter 10.

The influence of parameter uncertainty is very significant using actuarial
risk management, resulting in an addition of $2.27 to the 95 percent CTE
for a $100 single premium. On the other hand, using dynamic hedging, the
95 percent CTE is increased by only $0.31. In fact, in all of the separate-
fund cases that were examined in preparation for this book the actuarial
approach was substantially more vulnerable to parameter error than the
dynamic-hedging approach.
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TABLE 11.2 The effect of parameter uncertainty; risk measures for
20-year GMAB contract, per $100 single premium.

Without Parameter With Parameter
Risk Uncertainty Uncertainty
Management Qos9 CTEos0, Qos9 CTEos0,
Actuarial $5.06 $8.85 $6.37 $11.12
Dynamic hedging $1.58 $2.36 $1.84 $2.67

Stress Testing for Parameter Uncertainty

To use the stress-testing technique for parameter uncertainty, simulations
are repeated using different parameter sets to see the effect of different
assumptions on the output. The parameters for the stress test may be chosen
arbitrarily, or may be imposed by regulators. These “what if ...?” scenarios
will give some qualitative information about the sensitivity of results to
parameter error, but will generally not be helpful quantitatively, particularly
if the stress test parameter sets are not equally likely. Stress testing provides
additional information on sensitivity to parameter uncertainty, but is very
subjective and tends to be difficult to interpret.

However, stress testing can provide some useful insight into the vul-
nerability of the results to parameter error, or even structural changes
in parameters. Structural changes arise when parameters or the model it-
self appears to undergo a permanent and significant alteration. Under the
regime-switching model framework, one-off structural changes in param-
eters that have occurred in the past may be indicated in the estimation
process if there is sufficient evidence. If the change is recent, or has yet
to occur, then our results are highly speculative, though they may still
be useful.
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To explore parameter error, we may return to the data to consider how
vulnerable the parameter estimates are to the period chosen for the data,
and how that parameter vulnerability affects the results of the simulation
exercises. For example, we have estimated the parameters for the stock
return distributions by looking at stock index data back to 1956. It seems
reasonable to look back 45 years when we are projecting forward 20 years
or more. However, it is also useful to use only the more recent data, in
case structural changes are indicated, making the older data less relevant.
In Table 11.3 we give parameter estimates for the TSE 300 index split for
the periods 1956 to 1978 and 1979 to 2001.

Table 11.3 shows that the more recent data indicates a lower chance of
moving to the high-volatility regime than is generated using the full range of
data, and a slightly longer average period in the high-volatility regime once
it does change. Also, the volatility in the high-volatility regime is higher
for the 1979 to 2001 data. Note that the parameter estimates for the later
period are all within two standard errors of the estimates for the full period.
This is not true for the first 22 years, where the estimates of o, 02, and p1;
are quite different to those for the full 46-year period.

We might be concerned to see the effect on the estimates of using only
more recent data to estimate the parameters. This comparison is given in
Table 11.4, where we show right-tail CTE values for the 20-year GMAB
contract (as in the sections on risk measures for GMAB liability in Chapter 9,
capital requirements in Chapter 10, and Bayesian methods in this chapter).
The table is interesting, in demonstrating that the different risk management
strategies show quite different sensitivities to the different parameter sets. The
actuarial approach shows a difference of $3.00 to $4.00 for the tail measures,
per $100 single premium; the difference for the dynamic-hedging strategy
is no more than $1.1 per $100. The worst parameter set for the actuarial
approach comes from the figures for the years 1990 to 2001. The worst
parameter set for the dynamic-hedging strategy is the set from 1978 to 2001.

TABLE 11.3 Maximum likelihood estimates for RSLN parameters,

using TSE data.

Data Period i 2 o4 ) b1z P2
1956-1999 0.012 —-0.016 0.035 0.078 0.037 0.210
(These are the parameters used in examples)

1956-2001 0.013 —0.016 0.035 0.075 0.040 0.190
St. Errors (approx)  (0.002)  (0.010)  (0.001) (0.007) (0.013) (0.064)
1956-1978 0.016 —0.006 0.027 0.051 0.176 0.221
1979-2001 0.014 —0.016 0.037 0.085 0.034 0.152

1990-2001 0.012  —-0.034 0.037 0.077 0.028 0.207
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TABLE 11.4  Stress testing; risk measures for 20-year GMAB contract,
per $100 single premium.

Risk Management Data Period CTEoq, CTEoyso, CTEggq,

Actuarial 1956-1999 5.93 8.85 14.11
1979-2001 7.85 11.03 16.52
1990-2001 9.79 12.72 17.06

Dynamic hedging 1956-1999 1.75 2.36 3.28
1979-2001 2.87 3.45 4.33
1990-2001 2.36 2.76 3.54

The reason for the difference in sensitivity to parameters is that the
hedging costs are most vulnerable to large movements in the stock price,
and are not very sensitive to the u values. The worst parameter set is
the 1979 to 2001 set, because this has the highest overall volatility. The
actuarial approach is sensitive to the w values, in particular the very low
value for u, under the parameter set for the years 1990 to 2001.

Other methods of selecting parameters for stress are possible. Often
an actuary will test the effect of changing one factor only. However, it is
important to remember that the parameters are all connected; a higher value
for p12 generates a higher likelihood if the mean and standard deviation of
regime 2 are closer to those of regime 1, for example.

MODEL UNCERTAINTY

In Chapter 2 several models for stock returns are described, and in Chapter 3
we used likelihood measures to compare the fit of these models. Based on the
data and measures used there, the RSLN model seemed to provide the best
fit. However, it is important to understand that there is no one “correct”
model. Different data sets might require different models, and, subject to
the sort of left-tail calibration described in Chapter 4, many models may
provide adequate forecasts of distributions.

Cairns (2000) proposes an integrated approach to model and parameter
uncertainty, broadly using likelihoods to weight the results from different
models, similar to the approach to parameter uncertainty in the section on
Bayesian methods for parameter uncertainty. A simpler approach, similar
to the parameter stress testing of the previous section, is to reproduce the
results of the simulations using different models to assess the vulnerability
to model error. For example, in Table 11.5 we show the right-tail measures
for the 20-year GMAB contract used in the previous sections. This table is
similar to Table 11.4, but instead of looking at robustness of tail measures
with respect to parameter uncertainty, here we look at robustness with
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TABLE 11.5 Model uncertainty; risk measures for 20-year GMAB contract,
per $100 single premium.

Actuarial Risk Management CTEoo, CTEoso, CTEogyo,
Lognormal (Uncalibrated) 3.08 5.77 10.60
GARCH (Uncalibrated) 1.35 4.07 8.89
Lognormal (Calibrated) 5.85 8.75 13.49
GARCH (Calibrated) 6.85 9.88 14.19
RSLN 5.93 8.85 14.11

Dynamic-Hedging
Risk Management

Lognormal (Uncalibrated) 0.77 1.14 1.81
GARCH (Uncalibrated) 1.11 1.65 2.88
Lognormal (Calibrated) 2.25 2.58 3.16
GARCH (Calibrated) 3.44 4.04 5.56
RSLN 1.75 2.36 3.28

respect to model uncertainty. We consider three models: the lognormal
model, the GARCH model, and the RSLN model. We also consider two sets
of parameters. The first are the maximum likelihood parameters; the second
are the calibrated parameters, using the Canadian Institute of Actuaries
(CIA) calibration criteria described in Chapter 4. The objective of the left-
tail calibration was to try to reduce discrepancies in results caused by model
selection; we can see if that has worked for this contract. Note that because
the RSLN with maximum likelihood parameter meets the calibration criteria
without adjustment, only one set of results is given for that model.

Without calibration, the figures are fairly varied between the three
models, with the 95 percent CTE ranging from $4.07 to $8.85 per $100
single premium for actuarial risk management, and $1.14 to $2.36 per
$100 single premium for dynamic-hedging risk management. As with pa-
rameter uncertainty, the dynamic-hedging approach appears more robust.
However, once we allow for right-tail calibration, the figures for the actuar-
ial approach are much closer, with the 95 percent CTE ranging from $8.75
to $9.88 per $100 single premium. The calibration appears to have done
the job of bringing the results closer together, reducing model error effect.
However, calibration is not so useful in the dynamic-hedging approach,
where the calibrated lognormal figures and RSLN figures are reasonably
consistent, but the GARCH figures are substantially higher.

Further, case studies demonstrating the effects of both model and
parameter uncertainty for segregated fund contracts are given in Hancock

(2001).
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Guaranteed Annuity Options

INTRODUCTION

n this chapter, we apply the techniques of Chapters 6 and 8 to the liability

from annuitization options within an equity-linked contract. A guaranteed
annuity option (GAO) or guaranteed minimum income benefit (GMIB) is
a maturity guarantee in the form of a guaranteed minimum income on
annuitization of the maturity payout. GAO is the term used for the options
offered in the United Kingdom, and GMIB for the options offered in the
United States. In this chapter we will explore simple models and methods for
these benefits, with emphasis on the U.K. GAO associated with a unit-linked
contract. A more detailed exploration is available in, for example, Yang
(2001). Other relevant papers for the U.K. contract are Pelsser (2002) and
Annuity Guarantee Working Party (AGWP)(1997).

Although this is a more complex guarantee than the fixed-sum guar-
antee payable at contract expiry, the basic modeling process is similar. We
start by assessing appropriate models. In this chapter it is very important
to incorporate the risk from stochastic movements in interest rates; in
previous chapters we have not allowed for the interest rate risk because
it has a relatively small effect on the liability. With annuitization guaran-
tees, the interest rate has a crucial role, and relatively small movements
can substantially change the liability. In the section on interest rate and
annuity modeling, we look at models for the interest rate and annuity
processes. In the section on actuarial modeling, we use the models for
interest rates and stock returns to generate a distribution for the liabil-
ities, using the actuarial approach; in the section on dynamic hedging,
we consider a dynamic-hedging model and assess how well it succeeds in
reducing risks.

In the United Kingdom, the GAO associated with both fixed- and
variable-sum insured contracts guarantees a minimum conversion rate of
lump sum to annuity. Typically, guarantees of £111 annual annuity per
£1000 maturity lump sum have been offered for male policyholders, and
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around £91 annuity per £1000 maturity lump sum for females. The conver-
sion rate is known as the guaranteed annuity rate or GAR.

Under this framework, let g be the guaranteed annuity rate (e.g.,
g = 1/9 for a rate of 111 annuity per 1000 lump sum), and let a,(t) be the
market price at ¢ of a whole-life annuity of £1 per year payable immediately
to a life aged x. As before, the value of the separate fund at ¢ is F;. Then
the payoff under the GAO at the maturity of the separate fund account, say
t = n (which is the annuity vesting date), for a life age 65 at vesting, is

max(g Fy ags(n) — Fy, 0) (12.1)

This option is, then, in-the-money when ags(t) is greater than 1/g and
out-of-the-money otherwise.

In North America there is a plethora of guarantee designs associated
with annuitization. Policyholders may have an option of fixed or variable
annuitization: Fixed means that the annuity amount is fixed, as in the
United Kingdom; variable means that the amount depends on investment
performance after annuitization. Also, the policyholder may choose between
an annuity certain or a life annuity. In this chapter we discuss only fixed,
whole life annuitization. That is, it is assumed that the annuity amount is
level and payable for life. Within this category, guarantees offered may be
in the same form as the GAO used in the United Kingdom, though usually
with much lower guarantees. An alternative is to guarantee a fixed minimum
income per year at the start of the contract, so that the liability at maturity
of the variable-annuity account is, for guaranteed income X per year:

max(X ags (1) — Ey, 0) (12.2)

The value of X may be determined at the start of the contract with
reference to the annuity rates in force at that time. For example, an
insurer may guarantee an income of at least (1.05)"/ags(0) times the single
premium paid at time ¢# = Oj; that is, the guarantee is the annuity available
assuming the fund grows at 5 percent per year and that the annuity rates
in force at maturity are the same as those in force at inception. Whatever
the calculation, the actual annual rate of payment guaranteed is fixed at
inception, unlike the United Kingdom contract, which depends on the fund
growth.

Adding guaranteed income benefits to variable benefit contracts has
proved to be somewhat perilous. The problems caused in the United
Kingdom have been described in Chapter 1. In the United States, too,
there has been some concern. In California, GMIBs were banned (along
with other guaranteed living benefits) for a few months amid concern about
a lack of consensus on a methodology for determining capital requirements.
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In previous chapters we have treated the rate of interest as a fixed and
known quantity. In practice, of course, the interest rate varies randomly,
though with very much lower volatility than the stock indices we have
considered. The valuation of annuity options requires us to consider this
interest rate risk, because the cost of annuitizing the benefit from an equity-
linked insurance contract is sensitive to quite small changes in the interest
rate. Using Canadian annuitants’ mortality, for example, the liability for
a UK-style GAO on a separate fund contract is around 24 percent of
the fund at maturity if the long-term interest rate is then 5 percent per
year, 15 percent of the fund at 6 percent per year interest, 7 percent
of the fund at 7 percent per year interest, and O percent of the fund at
8 percent per year interest, for a continuous whole-life annuity issued to a
male aged 65.

Interest rate modeling is rather more complex than stock price mod-
eling. The main reason is that the term structure of interest rates requires
modeling a curve rather than a single variable, and the no-arbitrage prin-
ciple constrains the possible outcomes. It is outside the scope of this work
to consider interest rate models in detail, so we will adopt some sim-
plifications here for illustrative purposes that would not necessarily be
appropriate in practice. For a more detailed consideration of interest rate
econometrics and interest rate options, a very useful book is Webber and
James (2000).

The nature of the interest rate term structure is that short-term rates are
more volatile than long-term rates. Market annuity prices are much more
influenced by long-term interest rates than by short-term, because an annuity
issued to a life aged, say, 65, has an expected term of around 17 years.
Because the term structure of interest rates usually levels off between five
and 10 years, the long-term rates are most critical in annuity pricing. This
is demonstrated more fully in Yang (2001). In this chapter, we keep things
simple by generally assuming a flat yield curve for valuing the life annuity
and bonds. The long-term yields are modeled using the same econometric
analysis we used for stocks in Chapters 2 and 3.

In practice, the term structure effect may have a significant influence
on the risk measures, and more sophisticated modeling is recommended
than what is described here if the annuity option offered affects a ma-
terial proportion of the portfolio of contracts. For a more sophisticated
approach, it is necessary to use a term structure model that is appropri-
ate for real-world modeling (P-measure) rather than (or in addition to)
risk-neutral modeling (QO-measure). Most term structure models used in
financial engineering are market models—that is, designed for risk-neutral
application. One of the most popular models suitable for both P- and O-
measure is the Cox-Ingersoll-Ross model, described in Cox, Ingersoll, and
Ross (1985).
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INTEREST RATE AND ANNUITY MODELING

Annuity Prices

We will estimate approximate prices for an immediate annuity of £1
per year for a male annuitant aged 65, payable continuously through
life, using current Canadian annuitants’ mortality! from Appendix A, and
using historic U.K. interest rates. Because guaranteed annuity options have
proved most troublesome in the United Kingdom, in this chapter we will
use parameters for simulation appropriate for U.K. data. In Figure 12.1
the estimated values of a whole-life annuity are plotted based on historic
interest rates. For simplicity, the term structure has been assumed to follow
a straight line between the three-month rate and the 2.5 percent consols
rate, which is assumed to apply for all terms of greater than five years. The
2.5 percent consols used for the long-term rate are effectively irredeemable
U.K. government bonds. The horizontal line on the plot gives the threshold
for a nonzero liability for a guaranteed annuity option with a guaranteed
annuity conversion rate of £1 for £9 lump sum.

The GAOs were a feature of contracts sold in the late 1970s and
early 1980s, when annuity rates for male 65-year-old annuitants were
substantially less than £9. In fact, they would have appeared even cheaper,
because the mortality rates used for valuation purposes did not sufficiently
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FIGURE 12.1 Estimated annuity costs, based on modern
mortality rates and historic U.K. Government bond yields.

IThe use of Canadian mortality rather than U.K. mortality will make very little
difference here.
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FIGURE 12.2 UK. government bond yields.

allow for improvement before or after vesting. Many offices used mortality
appropriate to annuitants in 1955 (the a(55) table). With this mortality, the
threshold for the liability occurred when interest rates fell below around
6.5 percent. With more contemporary mortality, that threshold has increased
to over 7 percent. However, even considering the lower threshold, in 1980
one did not have to look too far into history for dangerously low interest
rates. The assumption of many actuaries that interest rates would never
again fall below the approximate 6.5 percent per year threshold seems very
odd given that rates only around 10 to 15 years earlier were lower.

The correlation with the stock price yield (in this case the FTSE? All
Share Total Return Index) is quite small.

Long-Term Yields and Stock Returns
The annuity cost graph is close to a mirror image of the long-term bond
yields shown in Figure 12.2, so most of the comments made in the previous
section also apply here. In this figure, we also show the short (three-month)
interest rates, demonstrating the low volatility of the long rates compared
with the short rates.

The long-term yields are very highly autocorrelated, with first-order
autocorrelation of around 99.5 percent. The best models of those listed in
Chapter 2 are the autoregressive, or AR(1), model and the regime-switching-

2Financial Times Stock Exchange.
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AR(1) model with two regimes, fitted to the logarithm of (1 + long-term
annual yield rate). The latter model is called the RSAR(1,2) model in this
chapter. For this model, let i, be the annual yield in the month ¢ to # + 1,
then i; depends on the Markov regime-switching process p; = 1,2 as:

log (1 +i,)|p = ,udzly + q,’)zty (log(1 + 4;—1) — p,zty) + crpyt, g

&, independent and identically distributed (iid) ~ N(0,1)  (12.3)

Parameters have been estimated using yields on 2.5 percent consols
from 1956 to 2001. This gives maximum likelihood parameters for the
RSAR(1, 2) model of:

0.066 o
0.109 o}

0.0014 ¢} = 0.9895  p), = 0.0279
0.0038 ¢ = 0.9895  p3, = 0.0440

it
s

The correlation of log-long-term bond yields with log-FTSE All Share total
return yields is approximately 6 percent. However, this understates the
connection. The correlation of the monthly log-returns of an investment in
consols with the monthly log-returns on the FTSE All Share Index is around
30 percent.

The FTSE data best fit is provided by the RSLN model with two regimes.
The maximum likelihood parameter estimates found using data from the
U.K. FTSE All Share Total Return Index from 1956 to 2001 are:

w1 = 0.012 o1 = 0.043  pyp = 0.012
—0.014 o =0.133  pay = 0.165

2

These parameters are for the monthly log-returns on stocks. The parameters
show higher volatility in both regimes than the North American data, but a
much smaller probability of transition from the low-volatility to the high-
volatility regime. The overall effect is a thinner-tailed distribution than the
Canadian (TSE 300) experience, and a fatter-tailed distribution than the
U.S. (S&P 500) experience.

Annual equivalent figures for the regime-switching lognormal (RSLN)
model are around 15 percent and 46 percent for the standard deviation
parameters in regimes 1 and 2, respectively. These compare with uncondi-
tional standard deviations of around 1 percent and 2.7 percent for the bond
yield model. The relatively low variance of the bond yields is the reason
why, in many cases, it is sufficient to treat them as constant, but not for the
GAO liability where we have seen that a 2 percent change in bond yields
can have a dramatic effect on the liabilities.
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FIGURE 12.4 FTSE All-Share Index data regime probabilities
for RSLN model.

We can compare the timing of regime switches for the interest rates and
stock yields. For interest rates, using the two-regime model, we find both
regimes are quite persistent. The probabilities associated with the regimes for
the historic data are given in Figures 12.3 (bond yield data) and 12.4 (stock
yield data). Looking at the historic data for bond yields, the first regime
appears to describe the series through the 1950s and 1960s, and the second
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for most of the period to 1990; since then, the two regimes have switched at
intervals of between 12 and 36 months. Even in the period where switches
of regime are more frequent, both regimes display approximately the same
persistence. This is quite different from the stock return model, which
has one persistent and one nonpersistent regime. Although there is some
connection between the timing of regime switches in the interest rate and
stock return regime-switching models, it is not straightforward to model,
and we will ignore it in this chapter.

ACTUARIAL MODELING

In this section we consider using the actuarial approach to assess capital
requirements for the GAO-type option. Using the actuarial approach we
project the liability under the contract, net of any management charge
income, and then discount the net liability to the start of the projection
period.

The Contract and Simulation Details

We consider a single-premium contract with premium £100 issued to a
policyholder aged 50. The death benefit is a return of the fund at the time
of death, with no guarantee. The fund is assumed to be invested in a U.K.
broad-based equity fund. We have modeled the fund using the RSLN-2
model, with parameters from the section on long-term yields and stock
returns. A management charge of 2 percent per year is deducted monthly.
There is no margin offset income to fund the guarantee.

At maturity, at age 65, the funds are annuitized to a level whole-life
annuity. The minimum amount of annual income is guaranteed at g = 1/9
of the fund value at that time. The annuity price in force at maturity, a¢5(15),
is determined using annuitants’ mortality and an interest rate corresponding
to the long-term bond yield generated using the RSAR(1,2) model (for
log(1+yield)), with parameters from the section on long-term yields and
stock returns.

The contract is similar to a standard guaranteed minimum maturity
benefit (GMMB), with g F,, a¢s(n) replacing the guarantee, G. This guaran-
tee, however, is substantially more complex than the fixed GMMB because
the guarantee itself depends on the separate fund value, and because of the
introduction of the stochastic annuity cost process.

We have assumed that the long-term yields are independent of the stock
returns.

In principle, the yield model can generate negative yields, which, of
course, are impossible in practice. In this event, we have set a minimum



Actuarial Modeling 229

yield of 0.5 percent. This minimum was rarely required in the 10,000 sets
of projection used below. It was not needed at all when the starting value
for the yield was 8 percent per year and was needed for just one projection
where the starting value for the yield was 5 percent per year.

We have assumed that mortality before the annuity vesting date follows
Canadian annuitants’ mortality, given in Appendix A, and we show results
with and without that table’s lapse assumption; after vesting there are no
lapses, of course. The mortality after vesting is from the same table as used
for prevesting.

Results

In considering the fixed GMMB in previous chapters we have assumed
that solvency capital is invested in risk-free instruments. For the standard
separate fund account (unit-linked, variable-annuity, or segregated fund)
with maturity guarantee, the liability is highest when the fund accumulation
is smallest, so it makes sense to keep the solvency capital in bonds. However,
for the GAO the liability is proportional to the fund (for a given annuity
interest rate)—good fund performance means a higher liability. It makes
more sense with the GAO liability to invest the solvency capital in the same
assets as the separate fund. In this case, there is no need to simulate the fund
itself, because we discount by applying a factor Fy/F,, where 7 is the time
to vesting, so that the liability per £F) premium is

F
(Eu(gags(n) = 1)* )5 = Folgas(n) = 1)*

In Table 12.1 we show some risk measures for the GAO liability, using
both the bond and stocks assumption for solvency capital accumulation. The
risk measures are expressed per £100 single premium. We show the figures
assuming 8 percent per year lapses before vesting, which is identical to

TABLE 12.1 Solvency capital using actuarial risk management, percentage of
single premium, for 15-year GAO, with guaranteed annuity rate 1/9.

Solvency Capital Yield per Year CTEogq, CTEoyso, CTEogge,
Invested in: at Start % % %
Bonds, with lapses 8% 12.88 19.29 39.16
Stocks, with lapses 8% 4.41 5.89 9.45
Stocks, no lapses 8% 14.73 19.67 31.56

Stocks, no lapses 5% 18.67 23.90 36.38
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the assumption used for separate fund GMMBs and guaranteed minimum
death benefits (GMDBs) in previous chapters. We also give the figures
for capital invested in stocks, assuming no lapses. Another variable is the
starting value for the yield. With such a large autocorrelation coefficient,
this will have significant influence. We show the figures for starting long-
term yields of 8 percent and 5 percent, with the starting regime randomly
selected.

Clearly, looking at the top two rows of the table, it makes sense to
invest the solvency capital in the same assets as the fund, as the tail risk is
significantly reduced.

Even with the stock assumption for the invested solvency capital, and
even allowing for substantial lapses, around 5 percent to 7 percent of the
premium is required as solvency capital. With no lapses this has increased
to nearly 20 percent for the 95 percent conditional tail expectation (CTE),
even if interest rates are relatively high in the beginning. Where the GAO
is in-the-money at the outset, with a long-term rate of interest of 5 percent
at the valuation date, the 95 percent CTE is nearly 24 percent of the single
premium. We would not expect a high rate of lapse, because the funds are
associated with pensions contracts, and there are strong tax disincentives
to cashing the contract in, even where this is permitted. Transfers to other
pensions arrangements may be possible.

It is interesting to note that this kind of analysis does not require modern
techniques. Yang (2001) has shown that, given the models and data available
at the time these contracts were written in the 1980s, a similar, substantial
liability would have been revealed. This is not surprising given the plots
in Figures 12.1 and 12.2. And yet, according to the survey conducted
in 1997 by the AGWP of the Faculty of Actuaries and the Institute of
Actuaries (AGWP 1997), roughly one-half of the companies offering GAO
benefits held no reserve; the other half used a deterministic method based on
fixed, current long-term yields. From the 10,000 simulations used here, the
estimated probability of a nonzero liability is around 44 percent, too big to
ignore, but undetectable by deterministic methods when the contracts were
issued.

DYNAMIC HEDGING

The Hedge

As with the standard GMMB contracts, we may explore the possibility of
using financial economics to develop a replicating hedging strategy for this
option. Interest rate options require an entire book of their own to describe
and derive valuation methods. In the equity-linked GAO case we also have
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the stock process involved, and the theory required to value the option is
beyond the scope of this book. Instead, we will describe the basic principles
and adopt some highly simplifying assumptions to see how far they will
take us.’

Because the option critically depends on interest rates, it is no longer
sufficient to treat the risk-free rate as a fixed parameter. Instead, we use the
stochastic discount factor B(tq, t;), which is the value at #; of a unit sum
payable at #,, where there is no default risk. For #, > #1, this can be thought
of as the price at #; of a unit zero coupon bond maturing at #,. We assume
that at the start of the projection #; = 0, and all values of B(0, ¢) are known.
Then, analogously with the Black-Scholes-Merton framework, we have the
value at # = 0 of a GAO maturing at 7:

Ho = B(0,n)Eq[Fu(gass(n) —1)"] (12.4)

If we assume F,, is independent of the annuity value ag5(n), this becomes
more tractable because we can separate the expectation for F, from the
option part (gags(n) — 1)*. Just as F,e ™ = Fy in the constant interest
rate model of the preceding chapters (ignoring management charges), with
stochastic discount we have F; B(0, ) = F.

We also define the (random) discounted annuity:

als(ti, t2) = B(ty, tr)ass(t2)

Then

d +
Hy = FoEo (gi"BiSO(,O’;)” ) _ 1) (12.5)

Now if, further, we assume that af(0, 7) has a lognormal distribution,
with annual variance Uy2, then this looks like a call option. The hedge at
time ¢t = 0 is

Hy = Fo{gaes(0)®(d1(0)) — D(d2(0))} (12.6)

More generally, the hedge at # < n is

H; = Fi{gags(t) ®(di(1)) — P(d2(1))} (12.7)

3This section draws heavily on Yang (2001).
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where
log(g aes(t)) + o (n —1)/2
di(t) =
oy Jn — t
and

dr(t) = di(t) —oyyn—t

This assumption of lognormality for the discounted annuity is rather
courageous, perhaps even foolhardy. It is quite plain that the discounted
annuity process does not nearly follow the geometric Brownian motion
underlying the Black-Scholes analysis. It is, in fact, very strongly auto-
correlated. Nevertheless, we will follow this hedge through to see how
it performs; if the hedge does not prove adequate under the projection
with a more realistic autoregressive model for interest rates, that will
emerge in large hedging errors when the hedge is projected under stochastic
simulation.

It is not obvious from equation 12.7 how the hedge portfolio is con-
stituted. Yang (2001) shows how to derive the constituent parts, using
the three random processes, ags(t), B(t,7), and F;. The hedge comprises
investments in each of these, that is H, = H? + H? + H! where the first
part is invested in a forward annuity with term n — ¢, the second part
in bonds, and the third part in the fund. A forward annuity contract at
¢, maturing at 7, is an annuity where the price is determined at ¢ but
is not paid until the annuity vests at . With a flat yield curve, the for-
ward annuity and immediate annuity prices are identical, both ags(¢) at #,
but of course the contracts are different. The hedge components at time
t are

H} = F, gags(t) ®(d:(2)) (12.8)
HP = —F, gags(t) ®(dy(2)) (12.9)
HE = Fi{gaes(t) @(d;(t) — O(da(2))} (12.10)

It should be said that this is not the only way to approach the hedge for
this contract, but it is consistent with delta-hedging principles. One technical
drawback is that the forward annuity is not in itself a traded instrument,
though it can easily be replicated with bonds, allowing for deterministic
mortality, provided the mortality risk is sufficiently diversified.

Because we will want to assess hedging error using this hedge strategy,
we will note here how these constituent parts of the hedge develop to time
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t + 17 assuming no rebalancing between ¢ and ¢ + 17:

2 = Fogags(t + 1)®(dy (1)) (12.11)
B 1,

HE, = —thags(m(dl(r»% (12.12)

Hf\ - = Frii{gaes(t) (di(t) — D(da(t)} (12.13)

and the hedging error at # + 1 is then H,;1 — H;4+1-. The second part of
hedging expenses is transactions costs, and we assume here transactions
costs of 0.2 percent of equities transactions, with no costs for transactions
involving bonds and annuities.

Initial Hedge Value

Assuming a¢5(0) = 9.0 and o, = 0.015 gives an initial hedge of £2.32
per £100 single premium, for each life in force at maturity. Allowing
for mortality before vesting reduces this figure to £2.05. However, the
constituent parts of the hedge at the start of the projection under these
assumptions are

¢ =51.16; HE = —51.16; Hf = 2.32

and there is clearly room for substantial hedging errors with these relatively
large holdings in bonds and forward annuities.

The initial hedge cost is very sensitive to the current annuity price. Some
examples are given in Table 12.2.

If we look further at the costs under this form of dynamic hedging, using
the techniques described in Chapter 8 to determine the costs arising from

TABLE 12.2 Hedge and annuity part of hedge, GAO with 1/9 guarantee rate,
15-year deferred period, vesting at age 65; with mortality allowance prevesting,
no lapses.

. o, = 0.015 o, = 0.025
Long-Term Yield
att =0 ass5(0) H, Hg H, H§
5% 10.61 15.88 104.23 16.04 100.27
6% 9.77 7.81 89.13 8.60 78.53
7% 9.04 2.27 48.41 3.64 47.95
8% 8.40 0.29 10.19 1.16 20.93
9% 7.83 0.01 0.70 0.27 6.38

10% 7.33 0.00 0.02 0.05 1.38
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TABLE 12.3 Solvency capital using dynamic hedging, percentage of single
premium, for 15-year GAO; with guaranteed annuity rate 1/9, no lapses.

Nonhedge Yield

Solvency Capital per Year CTEoqo, CTEos0, CTEogge, Hedge Cost
Invested in: att =0 % % % %
Bonds 8% 32.20 41.04 66.73 1.16
Stocks 8% 13.51 15.39 19.43 1.16
Stocks 5% 25.34 28.30 32.62 16.04

discrete hedging error and transactions costs, then dynamic hedging appears
even more expensive. The hedge is very sensitive to movements in interest
rates, so there tend to be occasional, substantial additional costs when the
interest rate model moves regimes. Also, the hedge assumes a lognormal
process with independent increments for interest rates and annuity prices.
In fact, the P-measure model uses a very high autocorrelation factor.

As with the actuarial approach, it makes sense to hold the hedging error
and transactions costs reserves in the separate fund rather than in bonds.
The comparison is given in Table 12.3, which gives CTE figures for the
dynamic-hedging approach. The figures include the initial hedge cost, which
is also given in the table. The balance of the CTE over the hedge cost is the
reserve for hedging error and transactions costs. To generate these numbers,
we have used the hedge described above, with volatility o, = 2.5 percent.
This is higher than the model volatility and means that we are overbedging
somewhat, so that the average hedging error is negative.

A comparison of Table 12.3 with the actuarial approach in Table 12.1
shows that where the risk management is arranged while the option is out-
of-the-money, with initial yield of 8 percent, the dynamic-hedging approach
requires less capital than the actuarial approach for any of the CTE values
specified. In fact, in common with the comparison of actuarial and dynamic-
hedging risk measures for separate fund death and maturity guarantees in
Chapter 9, the mean cost is less using the actuarial approach, but there is
a heavy tail that pulls up the CTE risk measures. The CTE measures are
plotted in Figure 12.5 for the two approaches, assuming starting long-term
yields of 5 percent and 8 percent and assuming all solvency capital is held
in the same assets as the separate fund.

The CTE risk measure is greater for the actuarial approach than for the
dynamic-hedging approach for values of a greater than 83 percent for the
out-of-the-money option in the right side graph in Figure 12.5. However,
the “moneyness” of the option has a much greater effect on the dynamic-
hedging costs than on the actuarial approach, and the CTE tail measure
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FIGURE 12.5 CTE risk measure for GAO with actuarial and
dynamic-hedging risk management; starting yield in-the-money and
out-of-the-money.

for the in-the-money projection (i.e., starting with a long-term yield of 5
percent per year) is greater for the dynamic-hedge approach for values of «
up to around 97 percent.

The methods of Chapter 10 could usefully be applied to assess which
risk management strategy is preferred here. As of June 2002, these options
are quite deeply in-the-money. It is at least noteworthy that, even so, the
hedging approach limits the right-tail liability risk.

STATIC REPLICATION

Rather than use a dynamic-hedge approach for the option, we may be able
to replicate the annuity payments with readily available traded options.
This effectively means reinsuring the risk with the option providers. This
is called static replication because once the options are purchased there is
no requirement (in principle) to make any other arrangement for the GAO
liability.

Pelsser (2002) describes how to use traded swaption contracts to match
the liabilities under a GAO with a fixed sum insured. A swaption is an option
to swap—in this case, to swap the variable rate annuity for a fixed rate
annuity based on the guaranteed annuity rate. Swaptions are very actively
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traded option contracts, readily available for a variety of terms. The usual
swaption contract would offer an option to swap a bond paying variable
interest (e.g., LIBOR) for a bond paying a fixed rate. This is similar to the
liability under the GAO benefit, with the following exceptions:

B The payments required are level payments rather than coupon- and
redemption-type payments typical for the standard swap.

B The payments are life contingent.

B The payments depend on the separate account value at maturity (or on
the bonuses declared for with profit contracts).

The first two of these complications do not cause grievous problems; it is
simple to combine bond-type payments to make up a level annuity, and the
life contingency problems can be managed by assuming payments at age x +¢
reduced by a factor ,p,, exactly analogously to the deterministic treatment
of mortality in the guaranteed minimum death benefit. This is justifiable if
the portfolio is sufficiently large to ensure that mortality variation is not
significant.

Pelsser shows that in the case of a fixed sum insured the purchase of
swaptions requires less capital than the actuarial approach (using Yang
(2001) for the comparable cost under the actuarial approach). He does not
discuss how to deal with variable maturity values for the option.

It should be noted that an added complication that needs to be taken
into consideration is the risk that the option provider will default. This is
called the counterparty risk. For such long terms, this risk is substantial,
and insurers purchasing options for any guarantee liability should consider
using credit insurance as a second tier. At the very least, the credit rating of
potential option providers is a critical factor in deciding whether to use this
approach.
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Equity-Indexed Annuities

INTRODUCTION

A n equity-indexed annuity (EIA) contract provides the policyholder with
a guaranteed accumulation rate on their premium, and also, at maturity,
benefits from an additional return based on the increase in an equity index
over the term of the contract. This latter part is the equity-linking benefit,
often called the indexation benefit. How this indexation is calculated varies
among contracts, and some different policy designs are described later in
this chapter. Although this sounds very similar to the variable-annuity
(VA) contract with guaranteed minimum maturity benefit (GMMB), it is
really quite a different contract. There is no separate fund invested in the
underlying equities; the premium net of an expense allowance is essentially
invested in risk-free bonds, and the contract up to maturity most closely
resembles the fixed-interest contracts also available in the U.S. market, such
as a fixed-interest deferred annuity or a certificate of deposit. At maturity,
the contract benefits partially from the increase in a stock index—usually
the S&P 500 price index—even though the assets of the contract are not
directly invested in the index or underlying equities.

EIAs are popular contracts in the United States, though somewhat less
so than the VA contracts of the previous chapters. Whereas U.S. sales of VA
contracts exceeded $100 billion in 2001, sales of EIAs were less than $10
billion. In the section on contract design, we describe the most common
forms of EIA contracts: the point-to-point, the annual ratchet (which comes
in compound and simple versions), and the high water mark. In the section
on valuing the embedded options, we show how the indexation benefit may
be viewed as a call option on the equity index, and we describe how to value
that option, using Black-Scholes-Merton principles from Chapter 7. In the
section on dynamic hedging for the PTP option, we show further how to
project the replicating portfolio under the real-world measure to derive the
additional expenses of dynamic hedging. This section relies on material from

237
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Chapter 8. The actuarial approach that we used in previous chapters, under
which liabilities are projected under the real-world probability distribution
without using the replicating-hedge approach to manage the risk, is not
used for this contract. Finally, in the last section of this chapter, we give
some suggestions for further reading.

In previous chapters the focus has been on separate fund contracts
such as variable annuities and segregated fund policies. One reason for
the emphasis on these contracts is that in North America these probably
provide the greatest risk management challenge currently. EIAs are very
different contracts, with somewhat simpler risk management issues than for
the separate account products.

The major differences between the VA and the EIA are the following:

B EIA contracts are relatively short-term, compared with VA and segre-
gated fund contracts. Terms between five and ten years are common,
with seven years being typical.

B The EIA guarantee is in the form of a call option on the underlying
equity index, rather than the put option of the VA contract.

B The EIA guarantee is usually in-the-money at maturity. The VA guar-
antee is rarely in-the-money at maturity.

B Because the EIA is written in the expectation that the guarantee would
mature in-the-money, the contracts were designed with a view to passing
the equity risk on to a third party, by buying appropriate call options.
This is in contrast with the separate fund guarantees, which are rarely
in-the-money, resulting (in the past) in a more lax approach to policy
design, pricing, and risk management. The range of EIA contract designs
resembles the range of call option designs available on the market.
The option sellers are providing full reinsurance for the equity-linking
risk.

B The equity indices used to link these contracts are not total return
indices, as used for separate account products, but are price indices,
which do not allow for dividend reinvestment and, therefore, accumu-
late rather more slowly than the total return versions of the indices.

Although a seven-year contract is a lot shorter than the 20 to 30 years
typical for a separate account product, it is still a long term for an option. An
option vendor would allow for the additional uncertainty involved with such
a long contract by using a higher margin in the volatility assumption used
to determine the price. The insurer must ensure that the option vendor has
minimal default risk, and may wish to purchase additional credit insurance
to cover the possibility of the default of the option vendor, which would
leave the insurer very dangerously exposed.
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CONTRACT DESIGN

There are many different contract designs and modifications. An introduc-
tion to the indexation methods and other policy features is given in Streiff
and DiBiase (1999). We describe here the major contract types in force. The
contract may be designed as a single premium or flexible premium contract.
We will consider the single premium case only.

Given a single premium P, a proportion (95 percent is common) is
invested in fixed-interest securities, earning a guaranteed rate of interest for
the investor. This is commonly set at around 3 percent but may vary with
more or less generous equity linking. So, the guaranteed amount at maturity
is matched by the fixed-interest investments, and is typically equal to

G = (0.95)P(1.03)"

where 7 is the term of the contract. We will use this guarantee throughout
this chapter.

The equity linking provides an extra payoff on top of the guaranteed
fund value, and it is in the method of determining this extra payoff that the
contracts mostly vary.

Point-to-Point (PTP)

The simplest method of indexation for the equity-linked benefit is point-to-
point, or PTP, indexing. Let S; represent the value at # of the equity index
used. Given a participation rate «, greater than zero and invariably (but not

essentially) less than one, the additional maturity benefit at t = n is':

S +
Pll+al2—-1|]-G (13.1)

ez 1))
So, for example, take a seven-year contract, indexed by reference to the
S&P 500 index, sold on January 1, 1995, maturing on December 31,
2001. The increase in the S&P 500 index over the seven-year term was
S7/So = 2.501. Assume a single premium of $100, and that the guaranteed
payout is found by accumulating 95 percent of the premium at 3 percent

per year interest, so that G = 116.84. If we assume a participation rate of
a = 0.6, then the payoff under the equity indexation is

100(1 + (0.6)(2.501 — 1)) = 190.060

TRecall that (X)© = max(X, 0).
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Because this amount is greater than the minimum, the benefit is set at
$190.06. Had the policyholder invested in the equities that make up the
index directly, the maturity value would have been $250.10; in addition,
the policyholder would have received the dividends paid on the stocks.
However, the EIA eliminates the risk that the index does not rise by more
than around 3 percent per year.

Annual Ratchet

Under the annual ratchet method, the index participation is evaluated year
by year. Each year the payout figure is increased by the greater of the floor
rate—usually 0 percent—and the increase in the underlying index, multi-
plied by the participation rate. The increases may compound, or may not.

For example, take a three-year contract with a $100 premium. If the
index grows in subsequent years by 5 percent, 15 percent, and -5 percent,
then the payout under the compound annual ratchet (CAR), assuming a
0 percent floor rate and a participation rate of «, is

100(1 + 0.05 ) (1 + 0.15 @)

with no contribution from the final year as the -5 percent is replaced by the
floor value of 0 percent.

The version without compounding, which we refer to as the simple
annual ratchet, or SAR, would give a payout of

100(1 + .05 a + .15 «)

These payouts are subject to a fixed minimum of, say, 95 percent of the
premium accumulated at 3 percent for three years.

More realistically, we return to the seven-year contract used to illustrate
the PTP design, sold on January 1, 1995, maturing on December 31, 2001.
Assume now that the indexing method used is the annual ratchet method,
with floor rate 0 percent, all else being as before.

The annual increases in the S&P 500 index since January 1, 19935, have
been:

1995 1996 1997 1998 1999 2000 2001
352% 18.7% 31.0% 26.2% 19.4% —-11.8% —-11.9%

So the payout under the compounded annual ratchet method is the greater
of the minimum of $116.838 and the compounded ratcheted amount:

100 (1 + (0.6)(0.352))(1 + (0.6)(0.187)) --- (1 + (0.6)(0.194)) = 206.401
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And under the simple (that is, non-compound) annual ratchet the payout is
the greater of $116.838 and

1000 {1 + (0.6)(0.352) + (0.6)(0.187) + --- + (0.6)(0.194)} = 178.300

Note that the difference is very significant. Under the compound version
of the annual ratchet, the payout cannot be less than the PTP payout. Under
the simple version, it certainly can, and the comforting impression given
of year-to-year ratcheting belies the true, substantially detrimental (to the
policyholder) effect of replacing the compounded index returns with simple
returns. In much of the information available on annual ratchet contracts?
it is not stated whether the ratcheting is simple or compound, and it seems
very likely, therefore, that it is not well understood by policyholders. This
may explain the rise in popularity of the annual ratchet design.

It is useful to express the guarantee symbolically; let S; represent the
stock index value at #; P is the premium and « is the participation rate.
Then the CAR indexation pays the greater of the ratcheted premium

w5 )

and the guarantee G = 0.95 P(1.03)” where 3 percent interest on 95 percent
of the premium is guaranteed, and the term is 7 years. For the SAR, the
guarantee is the greater of the ratcheted premium

n St
P:1+ ma —-1/,0
and the accumulated premium 0.95 P(1.03)".
An extra complication of some annual ratchet contracts is a cap rate.
This is the maximum rate applying in any year. Assume a floor rate of

0 percent, and a cap rate of 100c percent; then the guarantee in the
compound case is

Ptlj{l + min {max(cz (sftl - 1), o), c]}

and similarly for the simple ratchet. In years when the equity index is
increasing, the cap may have a significant effect. A 10 percent cap on the

2For example, see www.annuityratewatch.com.



242 EQUITY-INDEXED ANNUITIES

1995 to 2001 contract, above, would affect each of the first five years,
reducing the payout in the compound case to:

100(1 + min(0.2112,0.1))(1 + min(0.1122,0.1)) --- (1 + min(0, 0.1))
= 161.05

which is still greater than the guaranteed minimum payout of $116.84. Note
that over the full seven years of the contract, we use five years at the cap
rate (10 percent) and two years at the floor rate (0 percent) in determining
the ratcheted premium, and the benefit would be the same for a wide range
of participation rates—in fact, for all « > 53 percent. Thus, the use of a cap
rate reduces the influence of the participation rate, a fact that will be born
out in the results later in this chapter.

Under the simple annual ratchet with 10 percent cap, the payout under
the equity indexing is

100(1 + 5(0.1)) = 150.

Together, the PTP and annual ratchet are by far the most common EIA
designs.

High Water Mark

This indexing is very similar to the PTP design except that the payout under
the indexation uses the maximum equity index value over the term, taking
policy anniversary values only, in place of the index at maturity. That is,
the payout is the greater of the guarantee G and

el )

where $¥% = max(Sy, S1, 52,53, ..., S,).

Consider the example contract written in 1995, and assume now that
it is indexed using the high water mark method, all else unchanged. With
a starting S&P 500 value of 459.11, the highest anniversary value is at the
start of 2000, when the index reached 1455.22. So the payout for a $100
premium with a 60 percent participation rate is the greater of the guarantee
of $116.84 and the indexed amount:

1455.22

100{1 + (0.6) (W

- 1)} = 230.180

Clearly, the high water mark method of indexation will give a higher base
for equity linking than the PTP. This would generally be reflected in a lower
participation rate.
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VALUING THE EMBEDDED OPTIONS

In the following sections, we derive valuation formulae for the bene-
fits under different indexation schemes. The most common approach to
risk management for EIA contracts is to purchase options from an ex-
ternal vendor matching the payout in excess of the minimum guarantee,
and these valuation formulae will give the price for the option bene-
fit. The minimum guarantee of (usually) 3 percent per year accumula-
tion is easily matched by the insurer with fixed-interest instruments; if
the risk-free rate is 6 percent, then guaranteeing 3 percent can be com-
pletely managed by investing in the risk-free instruments. So the insurer
will only purchase the option cost in excess of this guarantee from the
third party.

For a premium of $P, the guarantee only requires 95 percent invested,
leaving 5 percent of the premium available to fund the necessary options. In
addition, there are funds available from the interest spread on the invested
premium. The interest spread loosely refers to the difference between the
interest used to fund the policyholder’s guarantee and the interest actually
earned on the premium. If the long-term rate of interest available for such
investments is around 6 percent per year, and the guaranteed interest rate on
the contract is 3 percent, then the difference of 3 percent per year provides
funds for the insurer to use for expenses, to purchase the necessary options,
or for profit and contingencies.

Some, but not all, of this interest spread of around 3 percent per year
is available to fund the option; the interest spread must also be sufficient
to fund other expenses and contingencies. The guaranteed rates of interest
on contracts such as certificates of deposit (CDs) run at approximately
2 percent higher than the guarantees available on EIA contracts. Since the
CD contract is similar to the EIA with a guaranteed interest rate to maturity,
and with no equity participation, we might infer that the 2 percent spread
between the guaranteed rates is used to pay for the equity participation, and
the remaining 1 percent spread between the CD rate and the risk-free rate is
used for general expenses.

If this is a reasonable assumption, then for a premium of $P we have
the cost of guarantee plus non-option expenses associated with a 3 percent
guarantee of approximately 4 percent per year. In this case, there is 2 percent
per year interest spread available from the invested premium to fund the
equity indexation benefit.

It is convenient to work with the force of interest. Say the risk-free force
of interest is 6 percent; the cost of the guaranteed premium plus additional
expenses accounts for 4 percent per year on the premium less the 5 percent
front-end expense deduction (remember, the guarantee only applies to
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95 percent of the premium). So the cost of guarantee plus expenses is
estimated at:

0.95 P 9417 = 0.8259 P (13.2)

leaving 17.41 percent of the premium available to pay for the indexation
benefit.

In the sections that follow we give results assuming that the interest
spread available for funding indexation benefits is 1 percent, 2 percent (as
in equation 13.2), and 3 percent, which give funds available for the equity
indexation benefit of $11.42 percent, $17.41 percent, and $22.99 percent
of the single premium, respectively.

PTP OPTION VALUATION

Having said that we can manage the risk by purchasing options, in this
section we delve a little deeper into how to use standard option formulae to
value the option benefits for a simple PTP contract.

Now, recall from Chapter 7 that the payoff under a standard call option
on §; with strike price K and term 7 is max(S, — K, 0) = (S, — K)*. If we
rearrange the payoff under the PTP indexation method given in equation
13.1 we have payoff H, say, where

S,, u
[pfi+a(Z 1)) 139
_aPfo 86 o T
_g{sn a<P (1 ))} (13.4)

which is just the payoff under a plain vanilla call option, multiplied by
aP/ Sy, and where the strike price is

T

H

So, to precisely match the equity indexation with options purchased from
an external provider, the insurer should buy Pa/S, options on the stock S;,
with term corresponding to the term of the option and strike price K/**.
An important difference between the equity linking of EIA contracts
and the equity linking of the separate fund contracts, such as variable
annuities, arises from the fact that equity linking for the EIA contract is
invariably by reference to a price index, which does not allow for reinvested
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dividends. This makes call options cheaper, because the replicating portfolio
can use the incoming dividends to increase the stock part of the replicating
portfolio. This is described in Chapter 7, with the formula given in equation
7.36 for an option on the stock with price S; at ¢, where dividends are paid
continuously on the stock at a rate of d per year.

Using the standard Black-Scholes call option formula, with allowance
for dividend income, the cost of the option at the inception of the contract,
using PTP indexation, assuming index linking to a regular index without
reinvested dividends, and where dividends are received continuously at a
rate of d per year, is

Hy = g_P {So e " d(dy) — KPP (D(dl)} (13.5)
0
_ P<ednaq)(d1) — <% — (1 - a)) em(I)(dz)) (13.6)
_ aPe_d"CI)(d1)_(G_P(l_a))e_mq)(dz) (13.7)
where
g — 1o8(So/KP) + (r = d + 02/ 2)n (13.8)
o /n
_ log(a P/(G = P(1 —a))) + (r—d+o*/2)n (13.9)
o /n
and

dy = di — o/n

We can use the formula to value the option cost of equity indexation
for a standard PTP EIA contract. The details are as follows:

B Seven-year contract with PTP indexation.

m Sixty percent participation rate.

® A single premium of $100.

B Three percent per year minimum return guarantee, applied to 95 percent
of the premium.

In addition, we need parameters for the Black-Scholes call option value;
say, a risk-free force of interest of = 6 percent per year, a dividend rate
of d = 2 percent, and a volatility of ¢ = 20 percent. The cost of the call
option for the contract is $11.567. Using a 2 percent interest spread, the
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TABLE 13.1 Break-even participation rates for seven-year PTP EIA.

Volatility, o

Interest Spread Available* 0.20 0.25 0.30
1% 59.5% 51.1% 44.6%
2% 81.3% 70.5% 62.1%
3% 101.3% 88.4% 78.2%

“Net of non-option expenses.

funds available to fund the option are $17.41, which is substantially on the
profitable side of the break-even point.

Most authors treat the participation rate as the variable controlling the
cost of the embedded option. The guaranteed minimum benefit is generally
not used to adjust costs. If the insurer approaches an external option vendor
to provide a static hedge for the contract, the option price quoted may
be based on a high volatility value, because option vendors use volatility
margin for profit and contingencies. In Table 13.1 we show the break-even
participation rates for the seven-year PTP contract described in this section,
assuming a $100 premium, of which the interest spread available to fund
the option is between 1 percent and 3 percent, where an available interest
spread of & implies funds available of P — (0.95)Pe%".

There is no allowance in these figures for lapses or deaths; incorpo-
rating these assumptions would reduce the cost of the option and increase
the break-even participation rates. As a relatively new contract, there is
little lapse experience available. Because the market offers a range of terms,
and the standard contract is relatively short compared with most variable
annuity contracts, it is expected that lower lapse rates will apply. The
participation rates in the middle row of Table 13.1 do correspond approxi-
mately to those offered in the market; particularly for values of o of around
2§ percent.

Tiong (2001)

Tiong (2001) is a well-known paper in U.S. actuarial circles giving valuation
formulae for some options, including PTP and CAR. The break-even par-
ticipation rates in Tiong’s work for the PTP option are somewhat different
from those in Table 13.1, as is her valuation formula, and it is worth
exploring briefly why.

Tiong values embedded options in EIAs by a more circuitous route
than we have used, using Esscher transforms. This is a device to find the
market price. For the PTP and CAR contracts there does not appear to
be any advantage over the usual method of expectation under Q-measure
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for these contracts, although there may be for others. Within the regular
Black-Scholes-Merton framework, where stock prices follow a geometric
Brownian motion process, the Esscher transform method must give the same
results as the standard methodology of taking the O-measure expectation
of the discounted payoff. So this is not a source of difference in the results.

The first difference between the results in this chapter and Tiong’s
results is that Tiong assumes that the guaranteed minimum interest rate
applies to 90 percent of the premium, where we have assumed 95 percent,
so that the guarantee appears more expensive here. Second, Tiong assumes
that the entire difference between the risk-free rate and the guaranteed
rate is available to fund the option, so that her figures correspond to the
bottom row of the table. The third difference—and this is the reason for
the difference in the final valuation formulae—is that Tiong is valuing a
different option in her section on PTP contracts. The participation rate is
applied to the log, of the stock index appreciation; that is, she values the

payoff:
s,v Y
<)

The first term can be expanded using the binomial theorem, showing
that the standard payoff under the equity indexation, given in equation
13.1, corresponds to the first two terms in the power series. The contract
valued by Tiong is generally smaller than the true EIA payoff for a < 1,
because the third term in the binomial expansion of (S,,/So)* is

ala —1) &_12
21 \S,

which is negative for a < 1.

All of these differences work the same way, so that the break-even
participation rates in Tiong’s work are rather higher than those found in
this section.

GOMPOUND ANNUAL RATCHET VALUATION

Viewed as a derivative security, the annual ratchet benefit is an option on
an option. That is, the payout is the greater of the ratcheted premium, in
the compound case:

Pﬁ{1 + max<a (StS_fl - 1), o)} =RP  (say)

t=1
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and the fixed interest guarantee G = 0.95 P(1.03)". So we can write the
option benefit, which is the payout required in addition to the fixed interest
guarantee, as

H = max(RP — G, 0)

which is clearly a call option on the benefit RP, which is a function of the
stock index S;. However, the payout RP itself involves an option, referred
to as a ratchet or ladder option in the exotic derivatives literature.

In the compound case, we can calculate the value of the ratcheted
premium as an option, even with the cap applied. The simple ratcheted
premium option cannot be valued analytically. The difference is that mul-
tiplying lognormal random variables in the compound case gives another
lognormal random variable, but adding them in the simple case requires the
distribution of the sum of dependent lognormal random variables, which
has no manageable analytic form. However, even in the compound form,
the additional guarantee of G, called the life-of-contract guarantee by Boyle
and Tan (2002), means that no analytic form for the replicating portfolio is
available.

In this section, we will derive the formula for the compound ratchet
and explore whether this may be used as an approximation for the CAR

with life-of-contract guarantee, which is the most common form of annual
ratchet EIA.

CAR without Life-of-Contract Guarantee

Without the life-of-contract guarantee, the benefit under the CAR contract
is the ratcheted premium RP, which can be written:

RP = Pﬁ{l +max(a (SSt - ),0>} (13.10)

t=1 =1

To find the value of the ratcheted premium using Black-Scholes principles
we take expectation under the risk-neutral distribution of the discounted
payout. The only result we need is the standard Black-Scholes call option
formula.

Under the normal Black-Scholes assumptions, S;/S;—; are independent
and identically distributed for # = 1,2, ... under the unique Q-measure.
This means that we can replace each term in the product in equation 13.10
with its expectation, using independence, and that all the expectations
are the same, because the annual accumulations S,/S,—; are identically
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distributed. So the value of the RP option is

H = Eg|e ™ (RP)| (13.11)

= PEg [ﬁe_’{l + max(a (sz - 1), o)” (13.12)
t=1 =1
= Pﬁ{e_’ +Eg {e_rmax<a (SS’f - 1), 0)]} (13.13)
t=1

t—1

o sl

is the value of a one-year call option on the stock S;, with initial stock value
and strike price both equal to 1.0. This comes from the fact that St/Stfl has
the same distribution as S;/Sy, and if we assume (without losing generality
because it is an index) that So = 1, the expectation becomes

Eo e max(S; — 1,0)] (13.14)

which is clearly the one-year call option value, with unit strike and unit
current stock price. Using the Black-Scholes call-option formula, allowing
for dividends of d per year, we have

aEgle™” max(S; — 1,0)] = a{e_d¢>(d1) - e_’q)(dz)} (13.15)
where
_ 2
d1=# and dy = dy — o

So the value of the ratcheted premium option is
H=P {e_' + a (e D(dy) ~ e—’cb(dz))} (13.16)

In Table 13.2, we show the results for an initial premium of P = 100,
using the following parameters: » = 0.06; d = 0.02; the term # is 7 years;
the volatility is ¢ = 0.2,0.25, and 0.3; and we show a range of participation
rates. The value given is the market value of the entire ratcheted premium
payout. What these figures show is how much it would cost to provide the
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TABLE 13.2 Ratchet premium option values, $100 initial premium.

RP Value
Participation Rate o = 0.20 o =025 o = 0.30
0.4 87.24 92.01 97.02
0.5 93.48 99.84 106.60
0.6 100.10 108.24 116.97
0.7 107.11 117.24 128.20

ratcheted premium payout, under the standard Black-Scholes assumptions.
So, if an insurer is purchasing option coverage for the benefit from an
external vendor that uses a 25 percent volatility assumption in pricing the
contract, it would cost them $99.84 for 50 percent participation; that is,
leaving $0.16 of the premium for the insurer. The insurer has no remaining
liability unless the option vendor defaults. Clearly, the insurer cannot afford
a participation rate higher than around 60 percent, because this would cost
more than the premium received for ¢ = 20 percent.

It is really quite straightforward to adapt the RP formula to allow for
slightly more complicated products. For example, under the scheme above,
the ratcheted premium is guaranteed to increase each year by the lesser of
1.0and 1+ a(S;/S;—1 —1). Suppose that instead of a minimum accumulation
factor of 1.0 we applied a minimum accumulation factor of, say, ef for some

g. Then in place of
- S
Eg e 1+ozmaxS - 1,0
-1

we have
Eo e’{l + max(a (StStl - 1>,eg - 1)” (13.17)
= Egle {1+ max(a(S; —1),ef — 1)}] (13.18)
= Eo {e’{l +(ef 1) +a maX<S1 - (W) o)H (13.19)
= ¢87" + aBSC (K = Wn = 1) (13.20)

where BSC(K, ) is the Black-Scholes call-option price with strike K, starting
stock price 1.0, and term 7 years. Substituting the appropriate Black-Scholes
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option formula gives equation 13.22, below:

o

H = P[eg’ +a (ed<b(d1) - e’<w)®(d2))}n (13.21)
= P{ ae”4D(dy) + S TD(—dy) + e (1 — a)(I)(dz)}n (13.22)

where

K = W (13.23)

and

_ log(1/Ky) +r—d +d?/2
(o

dq and d, =di — o (13.24)

Substituting some numbers gives a table of results comparable with
Table 13.2, but with a 3 percent annual ratchet guarantee, thatis e® = 1.03.
The results are given in Table 13.3. We can see that if the option is priced
at a volatility rate of 25 percent, then the participation rate must be less
than 40 percent for the contract to break even. A participation rate of
36.8 percent will exactly break even.

Now if we add an annual cap rate—that is, a maximum amount by
which the premium is ratcheted up each year of e¢ — 1—the valuation
formula becomes:

P{a e (D(d1) — D(d3)) + (1 — a)e " (D(dy) — D(dy))

+e8TD(—dy) + e TD(dy)}” (13.25)

TABLE 13.3 Ratchet premium option values with 3 percent annual minimum
ratchet, $100 initial premium.

RP Value
Participation Rate o = 0.20 o =025 o = 0.30
0.3 91.03 94.05 98.83
0.4 97.05 103.60 108.86
0.5 103.60 110.86 118.53

0.6 110.62 119.86 129.73
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where dy and d are defined in equation 1 and

K, = e-(1-a) (13.26)

o

_ log(1/Ky) +r—d+d?/2
ag

d3 and d4 = d3 - T (13.27)

With a cap of ¢ where ¢ = 1.1, all the values in Table 13.3 are reduced
to between $90 and $96. The vulnerability to both the stock price volatility
and the participation rate are very much reduced because the process is
constrained at both ends, with a 3 percent floor and a 10 percent ceiling.
This was demonstrated earlier in this chapter, where we showed that a
seven-year CAR contract purchased on January 1, 1995, would have an
RP benefit that is the same for any participation rate above 53 percent,
because the returns in each year are either negative (so that the floor
applies) or greater than 18.7 percent (so that the ceiling applies provided
the participation rate is greater than 0.1/0.187 = 53 percent).

The break-even participation rate for the CAR using 25 percent volatility
is 180 percent, a dramatic increase on the rate of less than 40 percent without
a cap. Increasing the cap quickly reduces the break-even participation rate;
using 14 percent in place of 10 percent reduces the break-even participation
rate from 180 percent to 52 percent. Even this relatively high cap is a
very effective way of reducing the guarantee costs, compared with offering
unlimited upside annual ratchet.

Some readers will notice that the participation rates quoted here are
lower than some of those quoted in the market. For example, a selection
of annual ratchet contracts from a few different companies featured on
www.annuityratewatch.com currently (as at June 2002) shows:

Contract  Participation Rate  Annual Cap

A 75% 12%
B 70% 11%
C 55% none
D 100% none

All of these companies offer an annual floor rate of g = 0 percent
as well as a life-of-contract minimum guarantee of 3 percent per year.
Without the life-of-contract guarantee, and assuming 25 percent volatility
and a compound ratchet benefit, the break-even participation rates for these
contracts are greater than 100 percent for contracts A and B, and 50.1
percent for contracts C and D. So it appears that contracts A and B are
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comfortably profitable, at least before the life-of-contract guarantee cost
is added, whereas contracts C and D are not. Clearly contract D stands
out here—how can the insurer offer such generous terms? One answer
is in the use of simple rather than compound annual ratcheting. We saw
earlier in this chapter that the simple annual ratchet is cheaper than the
compound version. Also, contract D uses averaging in determining the
indexation. This means that the index value for determining the annual
reset is averaged, either on a monthly or a daily basis, over the year prior
to maturity. This decreases the volatility of returns greatly and makes
the option cheaper, although it does not necessarily reduce payouts to
policyholders, providing lower returns in rising markets and higher returns
in falling markets.

CAR with Life-of-Contract Guarantee

The simple annual ratchet contract and the addition of a life-of-contract
guarantee are not amenable to the analytic approach. A simple method of
valuing the option in these cases is by stochastic simulation, also called
the Monte Carlo method. Recall that the Black-Scholes valuation of any
derivative contract is the expected value of the discounted payoff under
the risk-neutral distribution. In the standard Black-Scholes context that we
are using in this chapter, the risk-neutral distribution is lognormal, with
independent and identically distributed increments, and with parameters
for the annual log-return distribution of  — d — ¢*/2 and &%, where the d
is the continuously compounded dividend yield rate.

We will simulate the payoff under the option for, say, 100,000 pro-
jections of the stock price process, and discount using the risk-free rate of
interest. The mean value is the estimated Black-Scholes price of the option.

We will use the Monte Carlo method in this section for the compound
ratchet option with life-of-contract guarantee, as well as in the next section
for the simple annual ratchet with life-of-contract guarantee. Following the
earlier results of this chapter, we ignore mortality and lapses.

We have used a control variate to improve the accuracy of the Monte
Carlo simulation. This calibrates the simulation by using the same random
variables for the option and for some related value, which can also be
calculated exactly by analytic methods. This value is the control variate.
The simulated value of the option is adjusted by the difference between the
actual and estimated values of the control variate. The method is described
in detail with examples and in Chapter 11. It is an obvious method to
use here because the value of the compound annual ratchet benefit option
with life-of-contract guarantee will be very close to the value of the annual
ratchet benefit without life-of-contract guarantee, since in the great majority
of cases the option will mature in-the-money.
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For an example, we look at the simulated value of a compound annual
ratchet option with life-of-contract guarantee as follows:

B One-hundred dollar single-premium contract.

B Seven-year term.

B Sixty percent participation rate.

B Zero percent annual floor.

B Ten percent annual cap.

B Life-of-contract guarantee of 3 percent per year on 95 percent of the
premium.

We use the following assumptions:

B Risk-free rate of return of 6 percent per year continuously compounded.
B Volatility o = 0.25.

B Dividend yield of 2 percent per year continuously compounded.

B Lapses and mortality ignored.

Then, using 100,000 simulations, the estimated value of the option before
allowing for the control variate is $86.630; the estimated value of the
ratcheted premium using the same simulations is $85.912. The true value of
the ratcheted premium is $85.937, using equation 13.25. So the stochastic
simulation appears to be valuing the option a little low, and we adjust by
adding the difference (85.937 — 85.912) back to the original estimated
option value, to give a value of $86.655 for the option including the
life-of-contract part.

The value of the complete benefit is estimated at, say, $86.66. The value
of the ratchet-only part, without the life-of-contract benefit, is $85.94, so
the additional cost of the life-of-contract benefit is around $0.72, relatively
small as we would expect. It is worth noting that the ratchet-only part with
a 3 percent annual floor costs $95.48 for a $100 premium, considerably
more than the 0 percent annual floor and 3 percent per year life-of-contract
minimum benefit; therefore it is not possible to use the ratchet floor in place
of the life-of-contract guarantee.

The reason for this conclusion is quite clear from an example; suppose
that returns in three successive years are 25 percent, —35 percent, and 15 per-
cent. Consider a three-year contract with $100 premium, 10 percent cap, 0
percent floor, 60 percent participation rate, and a 3 percent life-of-contract
benefit with no initial expense deduction (just to make things simpler). The
ratchet hits the ceiling in the first year, hits the floor in the second, and falls
in between in the third, giving the ratcheted premium value of

100(1.1)(1.0)(1 + 0.6(0.15)) = 1.199
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This value is greater than the 3 percent per year minimum accumulation,
and the 3 percent minimum interest rate does not enter the calculation. On
the other hand, an annual floor of 3 percent in place of the life-of-contract
benefit offers

100(1.1)(1.03)(1 + 0.6(0.15)) = 1.235

and the 3 percent minimum enters the calculation every year that the return
falls below that rate. Some authors have used the annual floor as a proxy
for the life-of-contract guarantee, but it will give poor results.

The benefit cost of $86.66 for the annual ratchet with life-of-contract
guarantee includes the minimum payment of 0.95P(1.03)7, which will be
met by the office; so the cost of the option net of the guaranteed minimum is
the cost of the benefit as a whole less the discounted value of the guaranteed
payment, that is, for a $100 premium,

86.66 — 95(1.03)" ¢ 7" = 9.89

Now this is the option to be funded by the excess of the premium
over the cost of the guarantee and other expenses. In an earlier section we
assumed that the amount available for funding the option could be taken as
P(1 —.95¢~9)"), This was referred to as an available spread of & for funding
the option. Recall that with an available spread of 1 percent the amount
is $11.42 percent of the premium, with 2 percent (which seems close to
industry values) it is $17.41 percent, and with 3 percent it is $22.99 percent.
So, a 1 percent interest spread would be sufficient to fund the option valued
above. On the other hand, if we increase the cap to 15 percent, the price
becomes $93.53 gross of the guaranteed minimum and $16.76 net, which
requires the 2 percent interest spread.

The participation rates implied by the three interest rate spreads are
given in Table 13.4 for cap rates of 10 percent and 15 percent, and for no cap
rate. We assume volatility of 25 percent per year and all other assumptions

TABLE 13.4 Break-even participation rates for capped compound
annual ratchet contract with life-of-contract guarantee.

Interest Spread

Available 10% Cap 15% Cap No Cap
1% 81% 40% 33%
2% * 63% 41%

3% * 104% 49%
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as before. The entries for 10 percent cap in the lower two rows are missing
because there is no break-even rate. This is because the contracts are always
profitable.

A Trinomial Lattice Approximation for CAR with
Life-of-Contract Guarantee

It may be convenient to have an approximate formula for the annual ratchet
with life-of-contract guarantee that avoids the need for repeated Monte
Carlo simulation for a large portfolio of contracts. Boyle and Tan (2002)
show the results of applying an annual trinomial lattice approach for the
compound ratchet option with life-of-contract guarantee, where an annual
cap applies.

With both a floor and a cap applying, the interest applied to the premium
each year to make up the equity indexation benefit has a probability mass
at the floor and at the cap, and a continuous density between these points.
The trinomial approximation uses a three-point discrete distribution to
approximate the mixed Q-measure distribution. Where the cap is ¢ and
the floor is g (generally g = 0), then the probability that the premium is
increased by ¢° is

Pr{a(SSt —1)> ec—l} = Pr[sst > w

t—1 t—1 (¢4

Now, under the Q-measure, and allowing for dividend income, S,/S,—
is lognormally distributed with parameters » — d — 02/2 and &, so, from
equation 13.27, this probability is

. (D[ log(Ky) — (r — d — 02/2)

(o

] =1 —®(—dy) = D(ds)  (13.28)

Similarly, the probability that the equity-linking benefit is increased by g in
a year is simply the probability that a (S,/S;—1 — 1) is less than e$ — 1, which
is ®(—d,), where d; is given in equation 1.

The remaining probability is 1 — ®(ds4) — ®(—d,) = D(dy) — P(ds),
and this is spread over the values between the floor and the cap. We
approximate the annual accumulation factor by assigning this probability
to the accumulation factor e“*8)/2, This is actually a little smaller in general
than the expected value of the return, given that the return falls between
the floor and ceiling, but allows the use of a recombining trinomial lattice.
The symmetry allows us to combine, for example, a floor value followed by
a ceiling value with two middle values, to arrive after two time units at an
accumulation of ¢*$ in either case.

The recombining trinomial tree with seven stages representing
the seven years of the contract ends with 15 nodes. The first node represents
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seven years of floor accumulation factors, giving a final ratchet factor of
e’¢; the second node represents six years of floor values and one year of the
middle value, giving final ratchet factor e®3¢*-5¢; the third node represents
both six floor plus one ceiling and five floor plus two middle values, giving
final ratchet factor e®™¢ in both cases, and so on. It is straightforward
to calculate the probabilities for each terminal node from the multinomial
distribution. Hence, we can estimate the probabilities associated with each
outcome for the ratchet factors.

We can then apply the life-of-contract minimum payment by replacing
the ratchet premium payout with the guaranteed minimum for all nodes with
ratchet payouts less than the guarantee. For example, if ¢¢ = 0.1, g = 0.0,
and the guarantee is 1.1684 times the premium (using 95 percent of the
premium accumulated at 3 percent per year, as before), then the first four
nodes out of 15 would be replaced by the minimum payment, because the
first five ratchet factors are: e’ = 1.0, e®3¢73¢ = 1.0488, e%¢*¢ = 1.105,
e>38t15¢ = 11618, and e%812¢ = 1.2214.

Boyle and Tan (2002) achieve accuracy of around 0.06 percent using
this method, with a 10 percent cap. It should be noted, though, that the
estimates are biased low, because the middle value used for the recombining
lattice is less than the expected value of the ratchet factor, given that it falls
between the two values. Using the notation of equations 1 and 13.27, this
expected value is

Dldy) —~ Blds)
e (e B(dy) — D(ds) 1)

In the case where g = 0.0,e° = 0.1,7 = .06, 0 = 0.25,and a = 0.60,
the assumption of middle ratchet factor for the trinomial method is /2 =
1.0488. The true expected ratchet factor, given that it falls between the ﬂoor
and the ceiling, is 1.0627. A non-recombining trinomial tree with the mid-
dle value equal to this expectation would be computationally slightly more
complex, with 36 separate outcomes representing all the possible numeri-
cal combinations of high, middle, and low outcomes, over seven time steps.
However, the resultsshould be more accurate, particularly for higher cap rates.

THE SIMPLE ANNUAL RATCHET OPTION VALUATION

The SAR contract with life-of-contract guarantee, with no cap, pays at
maturity the greater of the ratcheted premium:

[1+Z (Stl )+] (13.29)
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TABLE 13.5 Break-even participation rates for capped
SAR contract with life-of-contract guarantee.

Interest Spread

Available 10% Cap 15% Cap No Cap
1% > 200% 52% 38%
2% * 107% 49%
3% * >200% 59%
and the accumulated premium minimum guarantee, usually G = (0.95) X

P(1.03)". If the contract includes a cap ¢, then the contribution to the ratchet
function from the zth year is min(c, (S,/S,—1 — 1)7).

As we have mentioned, even without the life-of-contract guarantee, the
simple ratchet is not amenable to analytic calculation. We shall therefore
use the Monte Carlo method again.

The compound ratchet used in the previous section also provides a
useful control variate for the SAR contract and has been used for the results
of this section. We expect the simple ratchet to provide a cheaper benefit
than the compound. With a volatility of 25 percent, and all other factors as
in the example of the previous section, a 10 percent cap with a 60 percent
participation rate cost an estimated $86.66 under the CAR, and is estimated
at $84.44 under the simple ratchet.

The two rates are not very different, but under the risk-neutral distri-
bution the expected value of min(c, a(S,/S,—1 — 1)*) is relatively small for
the values of ¢ and « considered here—at approximately 2 percent—so the
effect of compounding is not as pronounced as it would be under the true
probabilities.

In Table 13.5 participation rates are given using the same assumptions
as in Table 13.4, showing that the change from the compound to the
simple version of the annual ratchet allows a substantial increase in the
participation rates funded by the available part of the interest rate spread.

THE HIGH WATER MARK OPTION VALUATION

The high water mark, or HWM, contract pays the greater of the guarantee,
typically, as used previously, 95 percent of the premium with 3 percent per
year interest, and the equity participation:

el )

where §M* = max(Sy, S1, 5,3, ..., S,).
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TABLE 13.6 Break-even participation rates for HWM indexed EIA;
percentage of premium.

Volatility
Interest Spread
Available o = 0.20 o =0.25 o =030
1% 33% 25% 20%
2% 43% 33% 23%
3% 51% 40% 33%

This is an unusual form of lookback option. Lookback options, in
general, are well documented in the derivatives literature. In the standard
Black-Scholes framework, the lookback can be managed analytically if the
maximum is taken over the continuous time process {S;}o<;=,. Where the
process is monitored over discrete periods only, the analytic approach is no
longer tractable. The analytic results for the continuous time process do not
even give a particularly useful approximation for the discrete time liability,
because the volatility of the stock price process means that the maximum
of the continuously monitored process may be very much greater than the
maximum of the discretely monitored process.

So, for an idea of the price of the option we use simulation once again.
Results for the same contract as in the previous tables, but with HWM
indexation, are given in Table 13.6.

In Table 13.7 we compare the break-even participation rates for all
four indexing systems; we assume 20 percent and 25 percent volatility and
2 percent interest spread available to fund the equity participation. This
table shows that the HWM indexation is the most expensive, with the PTP
the least expensive. In fact, using a 10 percent cap with the compound

TABLE 13.7 Comparison of break-even participation rates
for different indexation methods; 2 percent interest spread
available to fund guarantee liability.

Indexation Method o =0.20 o =0.25
PTP 81.3% 70.8%
CAR

No Cap 50.0% 41.8%
15% Cap 68.9% 63.2%
SAR, no cap 58.7% 49.0%

HWM 42.6% 33.3%
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annual ratchet method is even cheaper than the PTP method, with a break-
even participation rate of more than 100 percent. The sensitivity to the
volatility is similar for all methods except the CAR with cap, where it is
smaller. This is because the added volatility is absorbed in the cap and
floor rates.

DYNAMIC HEDGING FOR THE PTP OPTION

The valuations in the previous section are sufficient for calculating prices
to pay a third party to take on the equity indexation liability of an EIA
contract. An insurer who wishes to manage the risk internally should ex-
tend the analysis to allow for the additional costs of hedging, beyond
the initial expense of establishing the replicating portfolio. Although,
in theory, the hedge is self-financing, as we discussed for the separate
fund contracts, there will be additional costs from discrete hedging error,
from model error (because we use a regime-switching model), and from
transactions costs.

The assessment of the unhedged liability has been described in detail
in previous chapters, particularly in Chapter 8. In this section, we show
how capital requirements beyond the hedge costs may be assessed using
stochastic simulation for the EIA contract. The idea, as before, is that we
project the hedge forward, using a realistic real-world distribution (that
is, the P-measure, not the Q-measure, which is a pricing device), and
rebalance the hedge each month. The hedging error and model error are
captured in the difference between the hedge required at each month end
and the hedge brought forward at each month end. The transactions costs
are based on the absolute change in value of the equity part of the hedge; it
is assumed that transactions in bonds are virtually free.

We will illustrate this with a PTP benefit. We showed in the section
on PTP option valuation in this chapter that the hedge at inception of a
contract for a PTP option is

H = %P {Soednq)(dl) - Kptpemq)(dz)}
0

and if we assume a premium of $100, and assume that Sy = 100, then
we can generalize this hedge from the amount required at inception to the
amount required at any duration ¢ of the contract, where 0 = ¢t < n:

H, = a{Ste_d(”_”(I)(dl(t)) - Kptpe_””_t)d)(dz(t))} (13.30)
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where

log(S;/ KP?*) + (r — d + o2 /2)(n — t)

n—=t

di(t) =

and

dy(t) = di(t) —o Jyn—t

To simulate the hedging error distribution, we use the P-measure to
simulate a projection of S; monthly from inception to maturity. At time
¢t + 1 (in months), the hedge brought forward from the previous month has
accumulated to

Hyp- = a{Sme A00(d (1) — KPP e D (1 ))} (13.31)

and the hedge required is

Hysi = a{stﬂe-d("-f-“@(duw 1)) = KPPe™ 0 Dap(dy 1+ 1))}
(13.32)

The difference is the hedging error. Transactions costs at rate
100¢c percent of the cost of equity transactions amount at time ¢ + 1 to

tcaSpr e U [ D(dy (2 + 1)) — D(di (1)) (13.33)

We show results for the PTP contract described in the section on PTP
option valuation. We have assumed a regime-switching lognormal (RSLN)
model for the real-world distribution for stock returns, with parameters
fitted using the S&P 500 total return index. Hedging is assumed to be
rebalanced monthly, using a volatility of & = 0.20. The transactions cost
rate used is 0.2 percent of the equity transactions each month. All costs are
discounted at the risk-free rate of interest of 6 percent per year compounded
continuously.

The hedge cost for this contract is $11.567. The average total present
value of hedging error is estimated at —$0.01 for the $100 premium, based
on 10,000 simulations. The distribution of additional hedging costs—that
is, the capital requirements indicated by the simulation over and above the
initial hedge costs—are shown in Figure 13.1. When compared with the
contracts of previous chapters, the variability of costs is much smaller. This
is reasonable because the contract is shorter and being in-the-money most of
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Simulated Probability Density Function
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FIGURE 13.1 Simulated density function for hedging costs
for seven-year PTP EIA contract with $100 premium.

the time reduces the variability of results, since we are working closer to the
middle of the distribution of outcomes. From 10,000 simulated values of
the additional expenses of hedging, the maximum cost for a $100 premium
was $0.50.

In Chapter 9, we introduced some risk measures, including the quantile
(or value at risk) measure and the conditional tail expectation (CTE)
measure, which is the average loss given that the loss falls in the tail of the
distribution. We also showed why the CTE is a superior measure to the
quantile. Applying the CTE risk measure, we find that for the seven-year
contract the total costs, including the initial hedge portfolio, have the capital
requirements given in Table 13.8. The additional costs are really relatively
small, even at the 99 percent CTE level. If the insurer chooses to pass the
liability to a third party that uses a volatility of 25 percent for the risk, the
cost would be $14.154 for a participation rate of 60 percent, very much

TABLE 13.8 Hedge cost and total capital requirements for seven-year PTP EIA
with $100 premium.

Participation
Rate Initial Hedge CTEogo, CTEoso, CTEgyo,
60% 11.567 11.709 11.755 11.864
70% 14.290 14.444 14.505 14.629

80% 17.047 17.220 17.288 17.427
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greater than the hedge plus additional capital required for the in-house
approach, making the in-house option appear attractive (particularly for the
PTP, which is a tractable benefit from the option hedging viewpoint).

CONCLUSIONS AND FURTHER READING

In this chapter, we have shown that many EIA contracts can be valued
by using basic results from the Black-Scholes-Merton theory of Chapter 7.
Using this approach to option valuation is only appropriate if the insurer is
calculating the price to purchase the option cover from a third party, or is
planning to use a dynamic hedging approach themselves. In the latter case,
all the issues surrounding dynamic hedging discussed in Chapter 8 and in
subsequent chapters should be considered. In particular, additional capital
should be held to allow for hedging error arising from discrete hedging, and
from possible variations from the lognormal model of stock prices assumed
in the Black-Scholes-Merton framework. For the PTP contract, we have
shown that the additional hedging costs are not very onerous.

This chapter has only skimmed the surface of the valuation and man-
agement of EIA contracts. The options used are often complex derivatives
requiring valuation and management techniques that fall outside the scope
of this book. Issues such as averaging require more advanced techniques
in financial engineering. The exotic derivatives, such as those embedded in
EIA contracts, form the subject matter of a number of books; one that is
recommended is Zhang (1998). Tiong (2001) and Lee (2002) value some
exotic options that are not precisely those used in EIA contracts, but are
similar. However, there is no difference between valuing the option within
an EIA contract or outwith the EIA contract, particularly when mortality
and lapse issues are not considered. Thus, the key to fully understanding
the issues of in-house risk management for EIA contracts is to study the
financial engineering of the appropriate exotic derivatives.

Lin and Tan (2002) explore additional issues from annuitization of
EIAs, as well as looking at the effect of using stochastic interest rates.
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Monrtality and Survival Probabilities

In this appendix we give the mortality and survival rates used in the
examples in the book. At ¢ = 0, the life is assumed to be age 50; time # is
in months. Independent withdrawal rates assumed 0.667 percent per month
at all ages. Independent mortality rates are from the Canadian Institute of
Actuaries male annuitants’ mortality rates.

265



266 APPENDIX A

4 . D t|15]f¢, 4 . D t|15]f¢,
0 0.99307 1.00000 0.00029
1 0.99307 0.99307  0.00029 45 099293  0.72911  0.00031
2 0.99306 0.98618  0.00029 46 0.99292  0.72396  0.00031
3 0.99306 0.97934 0.00029 47 0.99292 0.71883 0.00031
4 0.99306 0.97255  0.00029 48  0.99292 0.71374  0.00031
5 0.99306 0.96580 0.00029 49 099291  0.70869  0.00032
6 0.99305 0.95909 0.00029 50 0.99291 0.70366 0.00032
7 0.99305 0.95243  0.00029 51 0.99290 0.69867  0.00032
8 0.99305 0.94581  0.00029 52 0.99290 0.69372  0.00032
9 0.99304 0.93923  0.00029 53 0.99290 0.68879  0.00032
10 0.99304 0.93270  0.00029 54 0.99289 0.68390  0.00032
11 0.99304 0.92621  0.00029 55  0.99289 0.67903  0.00032
12 0.99304 091976  0.00029 56 0.99288 0.67420  0.00032
13 0.99303 0.91336  0.00029 57 0.99288 0.66941  0.00032
14 0.99303 0.90700  0.00030 58 0.99287 0.66464  0.00032
15 0.99303 0.90067  0.00030 59  0.99287 0.65990  0.00032
16 0.99302 0.89439  0.00030 60 0.99287 0.65520  0.00032
17 0.99302 0.88816  0.00030 61 0.99286 0.65052  0.00032
18 0.99302 0.88196  0.00030 62 0.99286 0.64588  0.00032
19  0.99302 0.87580  0.00030 63 0.99285 0.64127  0.00032
20 0.99301 0.86968  0.00030 64 0.99285 0.63668  0.00032
21 099301 0.86361  0.00030 65 0.99284 0.63213  0.00032
22 099301 0.85757  0.00030 66 0.99284 0.62761  0.00033
23 099300 0.85157  0.00030 67 0.99283 0.62311  0.00033
24 0.99300 0.84561  0.00030 68 0.99283 0.61865  0.00033
25 099300 0.83970  0.00030 69 0.99282 0.61421  0.00033
26 099299 0.83382  0.00030 70  0.99282  0.60980  0.00033
27 0.99299  0.82797  0.00030 71 0.99282  0.60542  0.00033
28  0.99299 0.82217  0.00030 72 0.99281 0.60107  0.00033
29 099298 0.81640  0.00030 73 0.99281 0.59675  0.00033
30 0.99298 0.81067  0.00031 74 0.99280 0.59246  0.00033
31 0.99298 0.80498  0.00031 75 0.99280 0.58820  0.00033
32 0.99297 0.79933 0.00031 76 0.99279 0.58396 0.00033
33 0.99297 0.79371  0.00031 77 0.99279  0.57975  0.00033
34 0.99297 0.78813  0.00031 78 0.99278  0.57557  0.00033
35 0.99296 0.78259 0.00031 79 0.99278 0.57141 0.00033
36  0.99296 0.77708  0.00031 80 0.99277 0.56728  0.00033
37  0.99296 0.77161  0.00031 81 0.99277 0.56318  0.00033
38  0.99295 0.76618  0.00031 82 0.99276 0.55911  0.00033
39  0.99295 0.76078  0.00031 83 0.99276 0.55506  0.00033
40  0.99295 0.75541  0.00031 84 0.99275 0.55104  0.00033
41 0.99294 0.75008  0.00031 85 0.99274  0.54704  0.00034
42 0.99294 0.74479  0.00031 86 0.99274  0.54307  0.00034
43 099293  0.73953  0.00031 87 0.99273 0.53913  0.00034

N
N

0.99293  0.73430  0.00031 88  0.99273  0.53521  0.00034
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t Prs Dy t|1qi 12 Prs Dy tllqi
89 0.99272 0.53132 0.00034 134 0.99242 0.38009 0.00036
90 0.99272 0.52745 0.00034 135 0.99241 0.37721 0.00036
91 0.99271 0.52361 0.00034 136 0.99240 0.37435 0.00036
92  0.99271 0.51980 0.00034 137 0.99240 0.37151 0.00036
93 0.99270 0.51600 0.00034 138  0.99239 0.36868 0.00036
94  0.99269 0.51224 0.00034 139  0.99238 0.36588 0.00036
95 0.99269 0.50850 0.00034 140 0.99237 0.36309 0.00036
96 0.99268 0.50478 0.00034 141 0.99236 0.36032 0.00036
97 0.99268 0.50108 0.00034 142 0.99235 0.35757 0.00036
98 0.99267 0.49742 0.00034 143 0.99235 0.35483  0.00036
99 0.99266 0.49377 0.00034 144  0.99234 0.35212 0.00036
100 0.99266 0.49015 0.00034 145 0.99233 0.34942 0.00036
101 0.99265 0.48655 0.00034 146 0.99232 0.34674 0.00036
102 0.99265 0.48297 0.00034 147 0.99231 0.34407 0.00036
103 0.99264 0.47942 0.00034 148 0.99230 0.34143 0.00036
104 0.99263 0.47589 0.00034 149 0.99229 0.33880 0.00036
105 0.99263 0.47239 0.00035 150 0.99228 0.33619 0.00036
106 0.99262 0.46891 0.00035 151 0.99227 0.33360 0.00036
107 0.99262 0.46545 0.00035 152 0.99227 0.33102 0.00036
108 0.99261 0.46201 0.00035 153  0.99226 0.32846 0.00036
109  0.99260 0.45859 0.00035 154 0.99225 0.32591 0.00036
110  0.99260 0.45520 0.00035 155  0.99224 0.32339 0.00036
111 0.99259 0.45183  0.00035 156 0.99223 0.32088 0.00036
112 0.99258 0.44848 0.00035 157 0.99222 0.31838 0.00036
113 0.99258 0.44515 0.00035 158 0.99221 0.31591 0.00036
114 0.99257 0.44185 0.00035 159  0.99220 0.31345 0.00036
115 0.99256 0.43857 0.00035 160 0.99219 0.31100 0.00036
116 0.99255 0.43530 0.00035 161 0.99218 0.30857 0.00036
117  0.99255 0.43206 0.00035 162 0.99217 0.30616 0.00036
118 0.99254 0.42884 0.00035 163 0.99216 0.30376 0.00036
119  0.99253 0.42564 0.00035 164 0.99215 0.30138 0.00036
120  0.99253 0.42247  0.00035 165 0.99214 0.29901 0.00037
121 0.99252  0.41931 0.00035 166  0.99213 0.29666 0.00037
122 0.99251 0.41617 0.00035 167 0.99212 0.29433  0.00037
123 0.99251 0.41306 0.00035 168 0.99211 0.29201 0.00037
124 0.99250 0.40996 0.00035 169 0.99210 0.28970 0.00037
125  0.99249 0.40689  0.00035 170  0.99209 0.28741 0.00037
126 0.99248 0.40383  0.00035 171  0.99208 0.28514 0.00037
127  0.99248 0.40079  0.00035 172 0.99206 0.28288 0.00037
128 0.99247 0.39778 0.00035 173 0.99205 0.28063  0.00037
129  0.99246 0.39478  0.00035 174  0.99204 0.27840 0.00037
130 0.99245 0.39181  0.00035 175 0.99203 0.27619 0.00037
131  0.99244 0.38885 0.00036 176 0.99202 0.27399 0.00037
132 0.99244 0.38591 0.00036 177 0.99201 0.27180 0.00037
133 0.99243 0.38299 0.00036 178 0.99200 0.26963 0.00037
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t . Dy t|15]f¢, 12 Prs Dy t|15]f¢,
179  0.99199 0.26747 0.00037 224 0.99137 0.18385 0.00037
180 0.99198 0.26533  0.00037 225 0.99135 0.18226 0.00037
181 0.99196 0.26320 0.00037 226 0.99134 0.18069 0.00037
182  0.99195 0.26109 0.00037 227  0.99132 0.17912 0.00037
183  0.99194 0.25898 0.00037 228 0.99131 0.17757 0.00037
184 0.99193 0.25690 0.00037 229  0.99129 0.17602 0.00036
185 0.99192 0.25482 0.00037 230 0.99127 0.17449 0.00036
186 0.99190 0.25276 0.00037 231 0.99125 0.17297 0.00036
187 0.99189 0.25072  0.00037 232 0.99124 0.17146 0.00036
188 0.99188 0.24868 0.00037 233 0.99122 0.16995 0.00036
189 0.99187 0.24666 0.00037 234 0.99120 0.16846 0.00036
190 0.99186 0.24466 0.00037 235 0.99118 0.16698 0.00036
191 099184 0.24267 0.00037 236 0.99117 0.16551 0.00036
192 0.99183 0.24069 0.00037 237  0.99115 0.16404 0.00036
193  0.99182 0.23872  0.00037 238  0.99113 0.16259 0.00036
194 099181 0.23677 0.00037 239  0.99111 0.16115 0.00036
195 099179 0.23483  0.00037 240 0.99110 0.15972  0.00036
196 0.99178 0.23290 0.00037 241 0.99108 0.15830 0.00036
197 0.99177 0.23099 0.00037 242 0.99106 0.15688 0.00036
198 0.99175 0.22908 0.00037 243 0.99104 0.15548 0.00036
199 0.99174 0.22719 0.00037 244 0.99102 0.15409 0.00036
200 0.99173 0.22532  0.00037 245 0.99100 0.15270 0.00036
201 0.99171  0.22345 0.00037 246  0.99098 0.15133 0.00036
202  0.99170 0.22160 0.00037 247 0.99096 0.14996 0.00036
203  0.99169 0.21976 0.00037 248  0.99094 0.14861 0.00036
204 0.99167 0.21793 0.00037 249  0.99092 0.14726 0.00036
205 0.99166 0.21612 0.00037 250 0.99090 0.14593 0.00036
206 0.99164 0.21432 0.00037 251  0.99089 0.14460 0.00036
207 0.99163 0.21253 0.00037 252 0.99087 0.14328 0.00036
208 0.99161 0.21075 0.00037 253 0.99085 0.14197 0.00036
209 0.99160 0.20898 0.00037 254  0.99082 0.14067 0.00036
210 0.99159 0.20722 0.00037 255 0.99080 0.13938 0.00036
211 0.99157 0.20548 0.00037 256  0.99078 0.13810 0.00036
212 0.99156 0.20375 0.00037 257  0.99076 0.13683 0.00036
213 0.99154 0.20203 0.00037 258 0.99074 0.13556 0.00036
214 0.99153 0.20032 0.00037 259  0.99072 0.13431 0.00036
215 0.99151 0.19862 0.00037 260 0.99070 0.13306 0.00035
216  0.99150 0.19694 0.00037 261 0.99068 0.13182 0.00035
217  0.99148 0.19526 0.00037 262 0.99066 0.13060 0.00035
218 0.99147 0.19360 0.00037 263  0.99064 0.12938 0.00035
219  0.99145 0.19195 0.00037 264 0.99061 0.12816 0.00035
220 0.99143 0.19030 0.00037 265  0.99059 0.12696 0.00035
221  0.99142 0.18867 0.00037 266 0.99057 0.12577 0.00035
222 0.99140 0.18706 0.00037 267 0.99055 0.12458 0.00035
223 0.99139 0.18545 0.00037 268  0.99052 0.12340 0.00035
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t Prs Dy t|1qi 12 Prs Dy tllqi
269 0.99050 0.12223 0.00035 315  0.98925 0.07672  0.00032
270  0.99048 0.12107 0.00035 316 0.98922 0.07589 0.00032
271 0.99045 0.11992 0.00035 317  0.98919 0.07508 0.00031
272 0.99043 0.11877 0.00035 318 0.98915 0.07426 0.00031
273 0.99041 0.11764 0.00035 319 0.98912 0.07346 0.00031
274 0.99039 0.11651 0.00035 320 0.98909 0.07266 0.00031
275 099036 0.11539 0.00035 321  0.98905 0.07187 0.00031
276  0.99034 0.11428 0.00035 322 0.98902 0.07108 0.00031
277 0.99031 0.11317 0.00035 323 0.98899 0.07030 0.00031
278 0.99029 0.11208 0.00034 324 0.98896 0.06953 0.00031
279 0.99026 0.11099 0.00034 325 0.98892 0.06876 0.00031
280 0.99024 0.10991 0.00034 326 0.98889 0.06800 0.00030
281 0.99021 0.10884 0.00034 327 0.98885 0.06724  0.00030
282  0.99019 0.10777 0.00034 328 0.98881 0.06649 0.00030
283  0.99016 0.10671 0.00034 329 0.98878 0.06575 0.00030
284  0.99014 0.10566 0.00034 330 0.98874 0.06501 0.00030
285 0.99011 0.10462 0.00034 331  0.98871 0.06428 0.00030
286  0.99009 0.10359 0.00034 332 0.98867 0.06355 0.00030
287 0.99006 0.10256 0.00034 333  0.98864 0.06283 0.00030
288 0.99004 0.10154 0.00034 334 0.98860 0.06212 0.00030
289 0.99001 0.10053 0.00034 335 0.98856 0.06141 0.00030
290 0.98998 0.09953 0.00034 336 0.98853 0.06071 0.00029
291  0.98996 0.09853 0.00034 337  0.98849 0.06001 0.00029
292 0.98993 0.09754 0.00034 338 0.98845 0.05932 0.00029
293  0.98990 0.09656 0.00033 339 0.98841 0.05863 0.00029
294  0.98987 0.09558 0.00033 340 0.98837 0.05796 0.00029
295 0.98985 0.09461 0.00033 341 0.98833 0.05728 0.00029
296 0.98982 0.09365 0.00033 342 0.98829 0.05661 0.00029
297 0.98979 0.09270 0.00033 343 0.98826 0.05595 0.00029
298 0.98976 0.09175 0.00033 344 0.98822 0.05529 0.00029
299 0.98974 0.09081 0.00033 345  0.98818 0.05464 0.00028
300 0.98971 0.08988 0.00033 346  0.98814 0.05400 0.00028
301 0.98968 0.08896 0.00033 347 0.98810 0.05336 0.00028
302 0.98965 0.08804 0.00033 348 0.98806 0.05272 0.00028
303  0.98962 0.08713 0.00033 349 0.98802 0.05209 0.00028
304 0.98959 0.08622 0.00033 350 0.98798 0.05147 0.00028
305 0.98956 0.08533 0.00032 351 0.98793 0.05085 0.00028
306 0.98953 0.08443 0.00032 352 0.98789 0.05023 0.00028
307 0.98950 0.08355 0.00032 353  0.98785 0.04963 0.00027
308 0.98947 0.08267 0.00032 354 0.98781 0.04902 0.00027
309 0.98944 0.08180 0.00032 355 0.98776 0.04843  0.00027
310 0.98941 0.08094 0.00032 356 0.98772 0.04783 0.00027
311 0.98938 0.08008 0.00032 357 0.98768 0.04725 0.00027
312 0.98935 0.07923  0.00032 358 0.98764 0.04666 0.00027
313  0.98932 0.07839 0.00032 359  0.98759 0.04609 0.00027
314 0.98928 0.07755 0.00032 360 0.98755 0.04551 0.00027






The GMAB Option Price

I- et H,;, denote the random payout at ¢, under the guaranteed minimum
accumulation benefit (GMAB) option; #, are the renewal dates. We
assume two renewals at #; and #, and maturity at ¢3, though clearly this can
be adapted to more renewals. The start date is zp = 0.

The segregated fund at ¢ is Fy; the underlying stock price process is S;. F;
and §; differ because of the management charge and because of any injections
of cash into the segregated fund required at renewal dates. The annual
charge is 100m percent compounded continuously. At the renewal and
maturity dates, if the fund has fallen below the previous renewal date value,
the fund is increased to that value. F,; represents the value of the segregated
fund immediately before renewal and F;+ immediately after renewal. That
is, let H;, denote the payout under the GMAB at time #;, then

- 3 —m(ty—tp—1)
Fi = Fy | S, . e T
Ft;r = Ft[ + Htk
P(S, K, n) denotes the price for a European put option, with stock
price S, strike K and remaining term » years. K is the initial guarantee;
Fy is the initial segregated fund. Using the notation of Chapter 8, we let
P(t) = P(e™™,1,¢)
and
Ps,(t) = P(Soe™™, Ko, 1)
The option price for the GMAB option is:

EQ[Htleirtl + the*ﬁz + Ht3eiﬁ3]

2n
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Clearly

EQ[Hl‘le—rtl] = PSo(tl)
Also

Eo[Hne ™] = Eg[Eg[Hyne ™|F;-]]

Eg[Fs e ™ Pty — 11)]
Eol(F; + Hy, Je "1 P(ty — 1)
= (Soe " + Ps,(t1)) P(t — t1)

And, similarly,

Eq[H;, e7""] = Eg[Eq[Hye ™ |Fy]]
= Eg[Fy; e "] P(t; — ta)
= Egl(F, + Hy)e ™]P(t5 — 1)
= {Eq[F,; e "7 + Eg[H, e ™ }P(t; — 1)
= {Eol(F;; + Hy)e " ]e™" =™ + Eg[Hy,e ™ 1}P(t; — 1)
= {Soe ™ + Eg[Hye ™]e """ + Eg[Hye ™1} P(t; — 1)
= {Soe™"> + 7" Pg (1)
+ (Soe™ ™ + Ps,(t1)) P(t2 — 11))} P(t5 — 12)

3

This gives a total option price of

P, (1) + (Soe™™"* + Pg,(t1))(1 + P(t3 — t2))P(t2 — 1)
+P(t3 — 1) (S()eimt2 + eimmitl)PSO(tl))



C

Actuarial Notation

W e have generally used standard actuarial notation in this book, with
the exception that we are generally measuring term and duration in
months. Standard actuarial notation uses the following conventions:

tDx 1s the probability that a life currently aged x survives to age
x +t.

+qx is the probability that a life currently aged x dies before age
x +t.

Wy is the force of mortality at age x + ¢ for a life currently age
x. The force of mortality is also known as the mortality
transition intensity or hazard rate. It is defined as

_14d
tpx dt tpx

dy s the expected present value of an annuity of 1 per time
unit, paid at the start of each time unit until the life age x
dies, or until # time units expire, whichever is sooner. For an
interest rate of 7, continuously compounded, the equation
for the annuity is

n—1

dx:m = thx e—rt

t=0

The force of interest is the continuously compounded interest
rate.
v is the annual discount factor; for a force of interest 7,
v=ce'.
T, is the random future lifetime of a life currently aged x years.

273



274

APPENDIX C

In this book we have used these symbols adapted to allow for the
two decrements, death and withdrawal. The superscript 7 indicates that
both decrements are allowed for; d indicates decrement by death and w

indicates decrements by withdrawal. The specific notation used is
it is assumed to take the value # = 1.0.

tp;,u

r
th,u
w
tqx

d
tdx

u|tqz

tdx
d
I

o
ax:mi’

is the probability that a policyholder currently aged x years
and # months survives and does not withdraw for a further
¢t months.

is 1—p1,.

is the probability that a policyholder currently aged x years
withdraws before ¢ months expire.

is the probability that a policyholder currently aged x years
dies in force before # months expire.

is the probability that a policyholder aged x years is still in
force after # months, but dies in force before the expiry of
a further ¢ months. If the ¢ is omitted, it is assumed to take
the value ¢ = 1.0.

is the probability that a policyholder aged x years dies or
lapses the policy before ¢ months expire.

is the force of mortality experienced by a life aged x years
and ¢ months.

is the value of an annuity of 1 per month paid monthly in
advance for n months, contingent on the survival, in force
(the 7 indicates the double decrement function), of a life
age x. The rate of interest is i’ per month, which means that
the discount factor for the payment due at #is (1 + ') 7.
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or parameter estimation

Call option, 7
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Cauchy distribution, 38
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Cox-Ingersoll-Ross model, 223
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Data mining, 45
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deterministic techniques, 2, 3,
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for guaranteed annuity options, 230

risk measures with dynamic hedging,
170

for separate account guarantees,
133-156

for VA death benefits, 174

Efficient market hypothesis, 17, 45
Emerging cost analysis, 177-194
Empirical model, 36
Equitable Life (U.K.), 13
Equity-indexed annuities (EIA), 1, 6,
10, 130, 237-263
Equity participation, 4
Esscher transforms, 246
European option, 7
European call option (BSC), 128,
250
European call option with dividends,
130, 245
European put option (BSP), 126
for segregated fund guarantees, 134
Exotic options, 130
Expected information, 50
Expected shortfall, 158

Family-of-funds benefit, 6
Floor rate, 240, 250

FTSE All Share index, 225
Fund-by-fund benefit, 6

Generalized-ARCH (GARCH) model.
See Autoregressive conditionally
heteroscedastic (ARCH) models

Geometric Brownian motion (GBM),
16, 24, 125

Gibbs sampler, 81

Guaranteed annuity option (GAO), 3,
13,221-236
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Guaranteed annuity rate (GAR),
222
Guaranteed minimum accumulation
benefit (GMAB), 4, 5, 6, 16,
21
Black-Scholes formula, 139, 271
control variate method, 208
dynamic hedging for GMAB, 133
emerging costs for GMAB, 189
with hedging error and transactions
costs, 151
modeling the guarantee liability,
102, 104-108, 110
model uncertainty, 220
option price, 271-272
parameter uncertainty, 217
risk measures, 169, 171
sampling error, 197
solvency capital for GMAB example,
180
with voluntary reset, 112, 171
Guaranteed minimum death benefit
(GMDB), 4, 5, 6
hedge formula, 136
with hedging error and transactions
costs, 151
modeling the guarantee liability, 99,
101-102, 151
parameter uncertainty, 215
quantile risk measure, 163
risk measures, 158, 173
Guaranteed minimum income benefit
(GMIB), 5, 6, 221. See also
Guaranteed annuity option
Guaranteed minimum maturity benefit
(GMMB), 4, 5, 6, 9, 16
Black-Scholes formula, 134
CTE risk measure, 167
hedge costs, 136
hedge error, 145
historical evidence, 23
modeling the guarantee liability,
99-102
unhedged liability, 151
Guaranteed minimum surrender

benefit (GMSB), 4

Hedging error, 144, 146-149, 152
High water mark (HWM) (equity-
indexed annuity), 242,
258
Hurdle rate, 190

Importance sampling, 211

Indexation benefit, 237

Information matrix, 50, 54, 56

Insurance risk, 2

Interest rate modeling, 39, 42, 224

Interest rate risk, 223

Interest spread, 243

In-the-money, 8

Invariant (stationary) distribution
for Markov regime-switching
process, 34, 58

Joint probability density function, 47,49

KPP (equity-indexed annuity,
point-to-point strike price), 244

Law of one price. See No-arbitrage
Left-tail calibration, 65-76, 220
Levy process, 37-38

Life annuity, 6, 222

Life-contingent risks, 1, 7
Life-of-contract guarantee, 248
Likelihood-based model selection, 60
Likelihood function, 47-49, 78, 83
Likelihood ratio test, 60

Lognormal model, 16,24, 53,61, 66,70
Log-return random variable, 27, 67
Lookback option, 131, 259

Low discrepancy sequences, 212

Management expense ratio (MER), §,
99, 134
Margin offset, 99, 100, 133, 143, 158
Markov chain Monte Carlo parameter
estimation (MCMC), 77-94
burn-in, 80
candidate distribution, 82
Gibbs sampler, 80
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Markov chain Monte Carlo parameter
estimation (continued)
Metropolis-Hastings Algorithm

(MHA), 80-85
parameter uncertainty, 213
for the RSLN model, 85-89
Maturity Guarantees Working Party
(MGWP) UK., 12,17, 39
Maximum likelihood estimation
(MLE), 47-63, 65, 66, 72, 73,
78
AR(1) model, 55
ARCH and GARCH models, 56
asymptotic minimum variance, 50
asymptotic normal distribution, 51
asymptotic unbiasedness, 50
conditions for asymptotic properties,
49, 52
delta method, 51
lognormal model, 53
RSLN model, 57
Metropolis-Hastings Algorithm
(MHA), 80-85
Minimum variance estimator, 50
Model selection, 60
Model uncertainty and model error,
150, 195, 219-220
Moment matching
for parameter estimation, 63
variance reduction technique, 203
Monte Carlo method for option
pricing, 131, 253, 258
Mortality and survival probabilities,
265
Mortality risk, 135
Move-based strategy for rebalancing
hedge, 144
Multivariate models
Wilkie, 39-45
vector autoregression, 45
Mutual fund, 2

Net present value of future loss
(NPVFL), 190

Net present value of liability (NPV),
107,108, 113

No-arbitrage, 8, 9, 116
Nondiversifiable risk, 2
Nonoverlapping data, 68
Nonstationary models, 52

October 1987 stock market crash, 16,
26
Office of the Superintendent of
Financial Institutions (OSFI) in
Canada, 15, 16, 169
Options, 7-11
American, 7, 10
Asian 7, 10
Black-Scholes-Merton pricing
theory, 115-129
in equity-linked insurance, 9
in-the-money, 8, 120
out-of-the-money, 8

Parameter estimation, 47-63, 77-94

Parameter uncertainty, 77, 195,
213-219

Participation rate, 6, 239, 246, 250,
251

Path-dependent benefit, 16

Periodicity of random number
generators, 97

Physical measure. See P-measure

P-measure, 11, 115, 120, 147, 159,
223

Point-to-point indexation (PTP),
239

Policyholder behavior, 96, 113

Posterior distribution, 78, 80, 86, 88,
90

p-quantile, 66

Predictive distribution, 79, 90, 94,
214

Premium principles, 158

Pricing and capital requirements, 14

Pricing using B-S-M valuation, 142

Prior distribution, 78, 81

Profit testing. See Emerging cost
analysis

Put-call parity, 9, 10, 128

Put option, 7
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QO-measure, 11, 115, 119, 125-126,
147,150, 159, 223

Quantile, 66-76

Quantile matching, 66

Quantile risk measure, 158, 159-163,
167-173, 198

Random number generators, 97, 104
Random walk (stock price process), 17
Random-walk Metropolis algorithm,
85
Ratcheted premium, 241
Real-world measure. See P-measure
Rebalancing the replicating (hedge)
portfolio, 115
Regime-switching lognormal (RSLN)
model, 30-36, 47, 57, 77
comparison with other models, 61
hedging and the RSLN model, 152
invariant (stationary) distribution
for regime process, 34, 58
left-tail calibration, 74
Markov chain Monte Carlo
parameter estimation, 85-89
maximum likelihood estimation, 57
parameters for examples, 104
probability function for RSLN
model, 34
simulation, 98
sojourn distribution probability
function, 33, 74
stress testing for parameter
uncertainty, 218
transition matrix, 32
Regime-switching autoregressive
(RSAR) model, 59, 225
Reinsurance, 11
Replicating portfolio, 10, 11, 115,
116
Reset option for segregated fund
policies, 112-114, 171
Risk management
actuarial approach, 3, 12, 13, 158
ad hoc approach, 13
dynamic hedging, 3, 11, 158
reinsurance, 11

Risk measures, 12, 157-176
Risk-neutral measure (Q-measure), 11,
22, 115,119,125, 150, 159

Sample paths (for MCMC), 84, 89, 91
Sampling error, 195, 196-201
Sampling variability, 75, 76, 160
S&P 500 total return index, 18-25
AR(1) model, 55
ARCH and GARCH models, 56
likelihood-based model selection, 61
lognormal model, 53
maximum likelihood parameter
estimation, 53-64
MCMC parameter estimation,
86-90
RSLN model, 35, 57
S&P/TSX-Composite index, 18. See
also TSE 300 index
Schwartz-Bayes criterion (SBC), 60
Segregated fund contracts, 1, 2, 5, 9,
11, 21, 65, 67, 133. See also
GMAB, GMDB, and GMMB
Self-financing hedge, 123, 150
Separate account insurance, 2, 65,
133
Simple annual ratchet (SAR), 257
Sojourn time (R), 32
Solvency capital, 158
Stable model, 37, 61
Standard error
CTE estimate, 165, 183
expected value, 197
quantile estimate, 160
Static hedge, 123
Static replication for guaranteed
annuity options, 235
Stationary distributions, 49
Stochastic simulation for left-tail
calibration, 75
Stochastic simulation of liabilities, 16,
108
actuarial approach, 95-114
cash-flow analysis, 110, 154
CTE risk measure, 165
distribution function, 108-109
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Stochastic simulation of liabilities
(continued)
density function, 108-110
quantile risk measure, 159
stock return process, 97
Stochastic volatility models, 38
Stock price index, 3
Stress testing (for parameter
uncertainty), 217
Strike price, 7, 121
Systematic risk, 2
Systemic risk, 2

Tail risk, 3
Tail-VaR, 158
Task Force on Segregated Funds. See
Canadian Institute of Actuaries
Task Force on Segregated Funds
(SFTF)
Term structure of interest rates, 223
Time-based strategy for rebalancing
hedge, 144
Tracking error. See hedging error
Transactions costs, 149
Transactions costs and hedging error
reserve (, VT&H) 180
Transition matrix (for RSLN model),
32
Trinomial lattice approximation, 256
TSE 300 total return index, 18-25,
72
AR(1) model, 55
ARCH and GARCH models, 56
calibration table, 67
empirical evidence for quantiles, 68
likelihood-based model selection, 61
lognormal model, 53

maximum likelihood parameter
estimation, 53-64, 218

MCMC parameter estimation,
86-90

RSLN model, 35, 57

U.K. FTSE All-Share total return
index, 59

Unbiased estimator, 50

Unhedged liability, 133, 143

Unit-linked insurance, 1, 6, 133, 221

Universal life, 1

Value-at-risk (VaR), 12, 158

Variable annuity (VA), 1, 2, 6, 10, 133,
138, 143, 158

Variable-annuity death benefits, 173—
176, 215. See also Guaranteed
minimum death benefit
(GMDB)

Variable-annuity guaranteed living
benefits (VAGLB), 6. See also
Guaranteed minimum maturity
benefit (GMMB)

Variance reduction, 131, 201-213

Vector autoregressive model, 45

Volatility, 18, 22, 28, 30, 38

general stochastic volatility models,
38

market (implied) volatility, 22

stochastic volatility, 26, 28, 30, 38,
150

volatility bunching, 26, 27, 37

White noise process, 27
Wilkie model, 17, 39-45
Withdrawals, 96, 100



