powerShell
Together

Targeting Digital Investigations

Chet Hosmer

ApreSS®

PowerShell and
Python Together

Chet Hosmer

Apress’

PowerShell and Python Together: Targeting Digital Investigations

Chet Hosmer
Longs, SC, USA

ISBN-13 (pbk): 978-1-4842-4503-3 ISBN-13 (electronic): 978-1-4842-4504-0
https://doi.org/10.1007/978-1-4842-4504-0

Copyright © 2019 by Chet Hosmer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Susan McDermott

Development Editor: Laura Berendson

Coordinating Editor: Rita Fernando

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484245033.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4504-0

To the latest addition of our family - “Cousin Vinny” - one
of the sweetest, very loving, and curious Yellow Labs ever,
who constantly interrupts our daily lives in the most
wonderful ways.

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s ix
About the Technical ReVIEWErccuvcesssessssmssssnsssassssnsssssssssssssnsssassssass xi
Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii
Introduction........cccccnnsmmmmsmmmmnn s ————————— Xv
Chapter 1: An Introduction to PowerShell for Investigators.........ccceeu. 1
A Little PowerShell HiSOrY.......c.cuueevenernesenesersse s sessessssssessnnes 2
How Is PowerShell USed TOAAY?covvrrrierenensensenessesessesessessssessessessssessessesees 3
How Do You Experiment with POWErShell?..........cccvvevvvrrnienenensenseneseesessesennns 3
Navigating POWEISREll ISEccocovrirrriere v sse s s s 3
PowerShell CMALELS ... s sssas 7
What IS @ CMALET?.......ooc e 7
Introduction to Some Key CMALELSccccvvevevrerierernsensersesessssessessessesessessensens 8
Challenge Problems: Investigative CmdLets to EXPIOreccooevvvevvereveevensenennen 18
Challenge One: Executing a “Find” Based on File Extension..........c.ccccveeruene. 18
Challenge Two: Examining Network Settingscccocevvrievrvnsnieniennsensenens 19
Challenge Three: Examining Firewall Settingsccccvvvrvvvnverierievensensenaens 20
Challenge Four: Your Chance t0 EXpIOreccevevererverieveenensersesesessessensenes 20

E 1] 4= 7 20
Chapter 2: PowerShell Pipeliningcccccccmmmrmmsssssssssssnnsmsssssssssssssssssnnes 23
What Is CmdLet PIipelining?ooeoreernnenereserssesesesese s sessesessenens 23
Example 1: GEt-SErviCe ...t 23
Example 2: GEt-ProCESS........ccucvrirnininers s snes 27

TABLE OF CONTENTS

Adding a Transcript to Track Your ACHIVItIESc.ccvcrrreinsniniennsrse s 37
Challenge Problem: CmdLet Experimentation.............cocevvrenmrencrnnesesenerensenenns 41
SUMMANY....ceiieeircsere s e r e e 43
Chapter 3: PowerShell Scripting Targeting Investigation.............su... 45
Basic Facts About PowerShell SCHPLScccveevvrernsesneserese e 46
Example 1: The EventProcessor PowerShell Script.........ccvvivvvninienennsenienens 46
EVENtLOG CMALELS.....ccvcererererrere e sere e s e se e s s e snesaesas e saesaes 47
Retrieving More Specific Eventlog Informationccccvvvvvnvrinevensenienne, 49
Creating the SCHPL.......c.ccviv v e e 50
EventProcessor Get-Help ReSuUlt..........cccoevvververienennsenie s sesaenaes 62
EventProcessor Script EXECULION........cccvevvvnverienenn e 66
ReSUIING DIFECIOIYccceeuerrerircerere et s 67
HTML Output REPOIT.....ceerrevtrere e sire s se e sss e s sae e saesnes 67
REMOTE ACCESSevuierreerieerirese s e s 68
Example 2: USB Device USage DiSCOVEIY.......cvvvrerrerrererensersersersesessessessessssessessens 70
Create the SCIPL.......cccvriererrre s s e eae e 72
USBAcquire SCript EXECULION........cceververerererrereressssesessessesesessessessssessessees 83
USBAcquire Get-Help RESUH..........ccccvverierererririere s sensese s e sse e sessessesne s 84
Challenge Problem: Create File Inventory List with Hashes.........ccccccevvcernnuenene. 85
SUMIMANY.....eieeeeeeree e e e e e se e e re e sre e 86
Chapter 4: Python and Live Investigation/Acquisitioncccccusueennns 89
What IS “By EXAMPIE”?ccevrrerireserserese e s s ss e e sssnsnens 90
Directing PowerShell with Python. ... 91
Launching PowerShell CmdLets from Pythonccoevviennesnnsenenenennnne, 94
Creating a System Files Baseline with PowerShell and Python..................... 97
Overview of Python Execution with PowerShell...........cccoovevivinnicnnnsennnne. 117

TABLE OF CONTENTS

Challenge Problem: Perform Remote Script Execution.........c.ccovcvivivnnienicnnens 118
SUMMANY....eeeerircreree e e se s e re e e e 119
Chapter 5: PowerShell/Python Investigation Exampleccccuisnes 121
Enable PowerShell Remoting........ccccvveemrenernsesnesesese s 122
Gathering and Analyzing Remote EVIdence..........coucvvenrnsernsesensenesesesensenenns 126
INVOKING REMOLE ACCESS ...vvrvirrrrererierrestrsersessessssessessesssssssessessessssessessesssssssensees 130
Building a PowerShell Script for DnsCache AcquiSition..........ocvevverererrersersens 131
Python Script and PowerShell CacheAquire SCript.......cccccovrevreccrnienerienerenne 136
Overview of Client DNS Cache Acquisition and Search...........cccccvvrerninicnnens 144
Challenge Problem: Multiple Target Computer DNSCache Acquisition.............. 144
SUMMANY....ceivicerrnesrsese e e s nr e 145
Chapter 6: Launching Python from PowerShell............ccccussennriiisanns 147
Reversing Roles from PowerShell to Python.........ccccovvrvnininnnsnsenenessenseneens 147
Examine the PowerShell SCript ... sesensens 148
Examine the Corresponding Python Script........c.ccovvvvninnnninienenessensenens 149
Executing the Combined PowerShell to Python Scriptsccccvvevviniennnns 150
Extracting Possible Proper Names from Text Documents..........ccocvcvveveriennen. 150
Examine the PowerShell SCriptcocvvvivninininssensere s sesesesessessennens 151
Examine the Corresponding Python ProperNames Scriptcccvvvriennens 153
Executing the Combined PowerShell to Python ProperNames Scripts........ 162
Extracting EXIF Data from Photographs........cccceccvvrvenerirvnsnnnsevcescee e 164
POWEISNEI SCHPL.....ccvierirreierrerere s s s e s e sae e s ssesaessesessessens 164
PYGEO0.PY PYthon SCrIPL......cccveevererirrerere e sere e s s s seesesesaesnes 166
Executing the Combined PowerShell to Python exifxtract Scripts 177
SUMMANY....citiciiire e e e s e e s ae s r e e e nne s 178

vii

TABLE OF CONTENTS

Chapter 7: Loose Ends and Future Considerationscccusseessesssnnns 181
LOOSE ENQS.....cveeeeeeeriecrerce e 181
Future CoNnSIderations..........ocueeererecrerreneresernsesesese e 186
ES 10T 111 T o R 187

Appendix A: Challenge Problem Solutions........cccuussssssssssnnmsssssssssnnnns 189
Chapter 1: Investigative CmdLets 10 EXPIOrecccocevvvrverernsnsensenenessenennens 190

Challenge One: Executing a “Find” Based on File Extension...........c.ccccevue. 190
Challenge Two: Examining Network Settingscouevvrenrnsennsesenssennnne 192
Challenge Three: Examining Firewall Settingsc.coovrvsrinsernsesenesennnnes 193
Chapter 2: CmdLet Experimentationcccoovvvvninennnnienens s sesensens 194
Transcript of Commands and RESPONSES........cccvrererrrrerrerseresessessessessessssessesaes 195
Chapter 3: Create File Inventory List with HasShesccecvevvrrverierinnenseniennens 203
Sample PowerShell Script QutpULcovvvvvrre v 206
HTML SCreENSNOLS.......ccceererececereres e enns 206
Chapter 4: Perform Remote Script EXeCUtionccocvveerievrnccrneneniescrencnenns 208
Example A: Acquire Remote Processes from PLUTO.........cccccceevververcrcennen. 209
Example B: Acquire Remote Services from PLUTO..........cccoceereccrnvcnerienens 210
Example C: Acquire Remote IP Configuration from PLUTOcccecevruenns 211
Chapter 5: Multiple Target Computer DNSCache Acquisition.........cc.cceeeeeeeruene. 212
INA@X..ueeiiisnnnsssnnnsssnnsssssnssssanssssanssssanssssansssssnnssssnnssssnnssssnnssssnnnsssnnnsnns 213

viii

About the Author

Chet Hosmer is the founder of Python
Forensics, Inc., a nonprofit organization
focused on the collaborative development
of open-source investigative technologies
using Python and other popular scripting
languages. Chet has been researching

and developing technology and training

surrounding forensics, digital investigation,
and steganography for decades. He has made
numerous appearances to discuss emerging cyber threats, including
National Public Radio’s Kojo Nnamdi Show, ABC'’s Primetime Thursday,
and ABC News (Australia). He has also been a frequent contributor to
technical and news stories relating to cybersecurity and forensics with
IEEE, The New York Times, The Washington Post, Government Computer
News, Salon.com, and Wired magazine.

Chet is the author of Defending IoT Infrastructures with the Raspberry
Pi (Apress, 2018), Passive Python Network Mapping (Syngress, 2015),
Python Forensics (Syngress, 2014), and Integrating Python with Leading
Computer Forensics Platforms (Syngress, 2016). He coauthored Data
Hiding (Syngress, 2012) with Mike Raggo and Executing Windows
Command Line Investigation (Syngress, 2016) with Joshua Bartolomie and
Rosanne Pelli.

Chet serves as a visiting professor at Utica College in the Cybersecurity
graduate program, where his research and teaching focus on advanced
steganography/data hiding methods and the latest active cyber defense
methods and techniques. Chet is also an adjunct professor at Champlain

ix

ABOUT THE AUTHOR

College, where his research and teaching focus on applying Python
and other scripting languages to solve challenging problems in digital
investigation and forensics.

Chet resides in the Grand Strand area of South Carolina with his wife
Janet, son Matthew, two Labrador Retrievers (Bailey and Vinny), and feline
tenants Lucy, Rosie, and Evander.

About the Technical Reviewer

Gary C. Kessler, PhD, CCE, CISSP, is a
Professor of Cybersecurity and Chair

of the Security Studies & International

Affairs Department at Embry-Riddle
Aeronautical University in Daytona Beach,
Florida. His academic background is in
mathematics and computer science, and

his research interests include network
protocols, digital forensics, and cybersecurity
management and policy, particularly related to

maritime and aviation. Gary is also an adjunct
professor at Edith Cowan University (Perth, WA) and American Marine
University (Sarasota, FL).

Gary started the undergraduate and graduate digital forensics
programs at Champlain College (Burlington, VT) and has been affiliated
with the National Internet Crimes Against Children (ICAC) program and
Vermont, Northern Florida, and Hawaii Task Forces since 1999. He is also
a frequent speaker at national and international conferences, notably the
annual National Cyber Crime Conference.

Gary is also a member of the advisory board of the Maritime and Port
Security Information Sharing & Analysis Organization (MPS_ISAO), holds
a USCG master merchant mariner certificate, and is a Master SCUBA Diver
Trainer. More information about Gary can be found at www.garykessler.net.

https://www.garykessler.net

Acknowledgments

I'm deeply appreciative of Joe Giordano, the driving force behind
cybersecurity research and development, and ultimately education for
the past four decades. Your quiet, humble, and persistent work has and is
making a true impact on the security of our nation.

I want to thank Scott vonFischer, Tony Ombrellaro, and Dave Bang
for providing the catalyst for this book. Your forward thinking, ensuring
that your teams learn and apply the latest scripting environments to solve
challenging problems in forensics and incident response, has been a true
inspiration.

To my students at Utica and Champlain colleges, who constantly
surprise, challenge, and inspire me to find new ways to share my decades
of experience in software and scripting development to tackle the
challenges of cybercrime investigation.

To Dr. Gary Kessler for his tireless validation of my scripts and writing.
He always delivers sound advice on how to make both better.

To the whole team at Apress, especially Rita Fernando and Laura
Berendson, for your constant encouragement, dedication, and patience
throughout this project.

To my wonderful wife Janet, who always provides me with insights and
a point of view about a challenge that I never thought of. These insights
often, if not always, lead to new solutions and approaches that constantly
improve my work.

xiii

Introduction

The endeavor to integrate PowerShell and Python came about a couple
of years ago. I was providing training for a large utility and began by
teaching the members of the secure operations center, or SOC, on how to
apply Python scripts during investigations and incident response. A few
months later, they asked for similar training - this time using PowerShell
as the scripting engine for the SOC team. Based on this, I quickly realized
that PowerShell was perfect for acquisition of information across the
enterprise, and Python was good at performing analysis of data that had
been acquired by other tools.

Now, of course, PowerShell advocates will say that PowerShell
scripts can be developed to perform detailed analysis. Likewise,

Python advocates will say Python scripts can be developed to perform
very capable evidence acquisition. I agree with both advocates - but
only to a point. The real question is... if we combine the best of both
environments, does 1 +1=2ordoes1+1=11?1believe that the answer
falls somewhere in the middle.

Thus, the purpose of the book along with the research and
experimentation that went into it was to build a model, in fact two models,
to integrate and leverage the best capabilities of Python and PowerShell
and apply the result to digital investigation. It is important to note that
this is a work in progress. I believe that the continued development of
advanced PowerShell and Python capabilities that leverage the models
provided here has great potential and should be pursued.

INTRODUCTION

Therefore, I encourage you to experiment with the models that I have
presented here and use them to develop new solutions that are desperately
needed to acquire and analyze evidence collected before, during, and after
a cyber incident, a cyber breach, as well as physical or cybercrimes. I also
encourage you to share your work and innovations with others in our field
to benefit those that fight cybercrime every day.

CHAPTER 1

An Introduction
to PowerShell for
Investigators

PowerShell provides a great acquistion engine for obtaining a vast array of
information from live systems, servers, peripherals, mobile devices, and
data-driven applications like Active Directory.

Because of Microsoft’s decision to open PowerShell and provide the
ability to acquire information from other non-Microsoft platforms such as
Mac and Linux, the breadth of information that can be accessed is virtually
limitless (with the proper credentials). Combine that with a plethora of
built-in and third-party CmdLets (pronounced “command let”) that can be
filtered, sorted, and piped together, and you have the ultimate acquistion
engine.

By adding a bridge from PowerShell to Python, we can now leverage
the rich logical machine learning and deep analysis of the raw information
acquired by PowerShell. Figure 1-1 depicts the core components that we
will integrate in this book. The result will be a workbench for developing
new innovative approaches to live investigations and incident response
applications.

© Chet Hosmer 2019
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_1

CHAPTER 1

PowerShell
Acquisition Engine

v = |

AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

Python Scripts

A
"o

Servers D

e:s

Mobile D:

'

iy

Results Evidence Justice

Figure 1-1. PowerShell and Python

A Little PowerShell History

PowerShell is a Microsoft framework that includes a command shell

and a scripting language. PowerShell has traditionally been used by

system administrators, IT teams, incident response groups, and forensic

investigators to gain access to operational information regarding the

infrastructures they manage. Signifcant evolution has occurred over the

past decade as depicted in Figure 1-2.

PowerShell 1.0 PowerShell 3.0

1 1 Windows 8 and
XP, Windows 2003 Server' Server 2012 SUBPGRE,

Job Scheduling, improved

1 scripting language and session

v connectivity
PowerShell 2.0

Windows 7 and Server

2008 Support Added. Including
remote access, expanded cmdlets,
script debugging

Figure 1-2. PowerShell evolution

PowerShell 5.0 poyershell 6.0
Fully Cross Platform
Support, Windows, Linux
and MAC.

Windows 7, 8.1 10

Ubuntu 14.04, 16.04, 17.04
Debian 8.7+, and 9

CentOS 7

Red Hat Enterprise Linux 7
OpenSUSE 42.2

I
I Windows Management
] Framework .Net
1 enumerations and classes.
Along with Linux and Mac
l Support.

v
PowerShell 4.0

Windows 8.1 and Server

2012 R2 Enhanced Fedora 25, 26
debugging and scripting macOs 10.12+
improvements

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

How Is PowerShell Used Today?

PowerShell is most typically used to automate administrative tasks and
examine the details of running desktops, servers, and mobile devices.
Itis used to examine both local and remote systems using the Common-
Object-Model (COM) and the Windows Management Interface (WMI).
Today, it can be used to examine and manage remote Linux, Mac, and
Network devices using the Common Information Model (CIM).

How Do You Experiment with PowerShell?

PowerShell is typically already installed on modern Windows desktop
and server platforms. If not, you can simply open your favorite browser
and search for “Windows Management Framework 5” and then download
and install PowerShell. PowerShell and PowerShell ISE (the Integrated
Scripting Environment) are free.

I prefer using PowerShell ISE as it provides:

1. Anintegrated environment that aids in the discovery
and experimentation with CmdLets

2. The ability to write, test, and debug scripts
3. Easy access to context-sensitive help

4. Automatic completion of commands that speed
both the development and learning

Navigating PowerShell ISE

Once you have PowerShell ISE installed, you can launch it on a Windows
Platform by clicking the Start Menu (bottom left corner for Windows 8-10)
and then search for PowerShell ISE and click the App as shown in Figure 1-3.

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

0O @ Filters \/

Best match

Windows PowerShell ISE
Desktop app

=&

£ powershell ise

Figure 1-3. Launching PowerShell on Windows 10

Note You can run PowerShell and PowerShell ISE with User
priviedge; however, to gain access to many of the rich acquisition
functions needed, running PowerShell as Administrator is required.
A word of caution as well. Running as Adminstrator or User and
executing CmdLets can damage your system or delete important
files! Proceed with caution!

I typically add this to my Windows Taskbar for easy access as shown in
Figure 1-4. I have added both PowerShell and PowerShell ISE. The icon on
the right in the highlighted box is ISE, and the one on the left is PowerShell.

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

By right-clicking the PowerShell ISE icon, then right-clicking again on the
Windows PowerShell ISE selection you can choose to run PowerShell ISE
as administrator. By doing so, you will have the ability to execute the widest
range of PowerShell CmdLets and scripts.

FPIl () Type here to search

Figure 1-4. Windows taskbar launching PowerShell ISE as
administrator

Once launched, ISE has three main windows as shown in Figure 1-5.
Note that the scripting pane is not displayed by default but can be selected
for view from the toolbar. I have annotated the three main sections of the
application:

1. Scripting Panel: This panel provides the ability to
create PowerShell Scripts that incorporate multiple
commands using the included PowerShell scripting
language. Note that this is not where we typically
start when developing PowerShell Scripts. Rather,
we experiment in the Direct Command Entry Panel
first; then once we have perfected our approach, we
can then create scripts.

2. Direct Command Entry Panel: This panel is used
to execute PowerShell CmdLets. The commands
entered here are much more powerful than
the ancestor Windows Command Line or DOS
commands. In addition, the format and structure

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

of these commands is much different and follows
some strict rules. I will be explaining the verb-noun
format and structure and providing more details

and some examples in the next section.

3. Command Help Panel: This panel provides detailed
help and information regarding every CmdLet
available to us. However, I rarely use this area and
instead request direct help using the Get-Help
CmdLet to get information regarding CmdLets of
interest, to learn how they operate, get examples of
their use, and get details of all the options that are
available.

I acminiurator Windows PowerShall ISE
Fie Edt View Took Debug Add-ons el
S W & O x| 00) e 8| Bo0O| ®
MelloWoridps! X & || commanes %
1
? Write-Host "Hello world”

3
4 |

ol

1) Scripting Panel

PS C:\WINDOWS'\system32>

2) Direct Command Entry Panel

nd Col 1

|aued djaH pueuwo) (g

Figure 1-5. PowerShell ISE interface

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

PowerShell CmdLets

Before we dive directly into entering PowerShell CmdLets, a few words of

warning:
1. There are literally thousands of possible CmdLets.

2. There are hundreds of thousands of possible options
if you consider all the possible variations.

3. There are new CmdLets, variations, and updates to
existing CmdLets being created every day.

4. Each CmdLet contains detailed help and examples.

Itis important to update CmdLet Help every day to ensure you have
access to the latest information regarding CmdLets that you are using or
plan to use.

What Is a CmdLet?

A CmdLet is typically a lightweight Windows PowerShell script that
performs a specific function. The reason I state typically here is that some
CmdLets are quite extensive, and with the ability to create your own
CmdLet, their complexity and use of system resources can vary based on
the developer’s objective.

A CmdLet then is a specific order from a user to the operating system,
or to an application to perform a service, such as “display all the currently
running processes” or “show me all the services that are currently
stopped.”

All CmdLets are expressed as a verb-noun pair and have a help file
that can be accessed using the verb-noun pair Get-Help <CmdLet name>.
So yes, even help is just another CmdLet. Updating help is vital to keep
help associated with current all the currently installed CmdLets and to
install help for new CmdLets that are created and updated every day.

http://whatis.techtarget.com/definition/lightweight
http://searchwindowsserver.techtarget.com/definition/PowerShell
http://searchenterpriselinux.techtarget.com/definition/script
http://whatis.techtarget.com/definition/function
http://searchwindowsserver.techtarget.com/definition/command
http://searchcio-midmarket.techtarget.com/definition/operating-system
http://searchsoftwarequality.techtarget.com/definition/application

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

As you might guess, this is just another CmdLet and this is the first CmdLet
you should use. Specifically:

Update-Help

You can execute this CmdLet from the Direct Command Entry Panel
as shown in Figure 1-6. The help files will be updated for all installed
modules. We will discuss modules in a future chapter, but for now this will
update all the standard PowerShell modules. Additional modules such
as Active Directory, VMWare, SharePoint, and hundreds of others allow
acquisition to numerous devices and services.

I sdmanistraton Windows PowerShell ISE = H
Fle Bdt View Tooh Debug Addeoms Help
2 o a|a BeiaBoonE

Untitfed pat X & | [commantn 3 x
1
Modules:

Name:

A
Add-AppvClientCi
cmdlet updating information Add-AppvClientP:
I Ada-AppviPubilishi
Add-AppxPackage

¥ Updating Help for module Microsolt PowerShell Security 1 Pomie:
o Drovi
Locating Help Content. dd- AppProvisio

PS C:\WINDOWS\system32> update-help
L J L J

Add-CertificateEn
PowerShell Prompt cmdlet Entry Nk G

Rurring script | brction. Prevt CtrdeBenak 1o viop. Press Cirla B to break ko detuggen a2 Call 1%

Figure 1-6. Update-Help CmdLet execution

Introduction to Some Key CmdLets

One of the first questions you might ask is, “What CmdLets are available?”
Or more specifically, “What CmdLets are available targeting specific
information?” This section will introduce you to a few key CmdLets:

Get-Help, Get-Process, and Get-Member.

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

Get-Help

Let’s say we are interested in getting information about currently running
services. In order to find the CmdLets that relate to this topic I would enter:

Get-Help services

Note that I did not request information about a specific CmdLet, rather
I asked the help system to provide me with information regarding any
CmdLet that could relate to services. Figure 1-7 displays an abbreviated

output.
[T —— o
fie Gt Vew Toss Deteg Addow belp p— p—

oW o » 10] B % |8 5oo ;@

P5 C:\WINDOWS\System32> Get-Help Services
Name Category Module Synopsis
Clear-Host Function Clears the display in the host program.
new-PssessionConfigurationFile cmdlet Microsoft.PowerShell.Core Creates a file that defines a session c...
New-PSSessionOption cmdlet Microsoft. PowerShell.Core Creates an object that contains advance...
Register-pssessionConfiguration Cmdlet Microsoft.Powershell.Core Creates and registers a new session con...
where-object cmdlet Microsoft.Powershell.Core Selects objects from a collection based...
Add-Type cmdlet Microsoft.PowerShell.U... Adds a.NET Framework type (a class) to ...
ConvertFrom-csv cmdlet Microsoft.Powershell.u... Converts cbject properties in comma-sep...
ConvertTo-Htm] cmdlet Microsoft.PowerShell.U... Converts Microsoft .NET Framework objec...
Format-List cmdlet Microsoft.Powershell.u... Formats the output as a list of propert...
Format-Table cmdlet Microsoft. PowerShell.U... Formats the output as a table.
Get-Member cmdlet Microsoft.Powershell.u... Gets the properties and methods of obje...
Invoke-RestMethod cmdlet Microsoft.Powershell.u... Sends an HTTP or HTTPS request To a RES...
New-Object Cmdlet Microsoft. Powershell.U... Creates an instance of a Microsoft .NET...
Select-xml cmdlet Microsoft.Powershell.u... Finds text in an XML string or document.
Sort-Object cmdlet Microsoft.PowerShell.U... Sorts objects by property values.
write-Information Cmdlet Microsoft. Powershell.u... Specifies how Windows PowersShell handle...
GeT-HOTFix cmdlet Microsoft.Powershell.M... Gets the hotfixes that have been applie...
Get-Service cmdlet Microsoft.PowerShell.M... Gets the services on a local or remote ...
Get-wmicbject cmdlet Microsoft.Powershell.M... Gets instances of wMI classes or inform...
New-Service cmdlet Microsoft.PowerShell.M... Creates a new Windows service.
New-webServiceProxy Cmdlet Microsoft.Powershell.M,.. Creates a web service proxy object that...
ResTarT-Computer cmdlet Microsoft.Powershell.M... Restarts (“reboots") the operating syst...
Eompieted LT Cal2S (-

Figure 1-7. Search for CmdLets related to services

Note that depending on what version of PowerShell you are working
with, the current version of the help file, and what CmdLets are installed,
your list may differ.

The next step is to select one or more CmdLets and Get-Help for
those CmdLets. Looking through the abbreviated list, Get-Service sounds
promising, so I will request help on that specific CmdLet by typing:

Get-Help Get-Service

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

Figure 1-8 displays the abbreviated output. Note that there are multiple
options related to the execution of the Get-Help CmdLet. For this example,
I used the simplest form. However, optionally I could have used other
forms of the CmdLet such as:

Get-Help Get-Service -Detailed
or

Get-Help Get-Service -Examples

a
Fle Edt View Toss Detug o | Helo

< oW nﬁ- P B w8 Bocoia@@.
PS CI\WINDOWS\System32> Get-Help Get-Service

MAME
Get-Service

SYNOPSIS
Gets the services on a Tocal or remote computer.

SYNTAX
Get-Service [-ComputerName <String[l>] [-DependentServices] -DisplayName <String[l> [-Exclude <String[]l>]
[-Include <String[l>] [-RequiredServices] [<CommonParameters>]

cet-Service [-Computername <String[]>] [-DependentServices]) [-Exclude <String[)>] [-Include <String[]>]
[-Inputobject <ServiceController(]>] [-ReguiredServices] [<CommonParameterss]

Get=Service [[-Name] <String[]>] [-ComputerName <String[]=] [-DependentServices] [-Exclude <String[]=]
[-Include <String[]>] [-Reguiredservices] [<CommonParameters:>]

DESCRIPTION
The Get-Service cmdlet gets objects that represent the services on a local computer or on a remote
computer, including running and stopped services.

¥ou can direct this cmdlet to get only particular services by specifying the service name or display name
of the services, or you can pipe service objects to this cmdlet.

Compleird o] u

Figure 1-8. Get-Help Get-Service abbreviated output

Examining the output, we notice the detailed syntax presented to us for
each command. This CmdLet allows us to obtain information regarding
services on a local or remote computer. The option -ComputerName allows
us to specify more than one computer, each separated by a comma. By
using:

Get-Help Get-Service -Examples

the help system will provide numerous examples demonstrating the use of
the CmdLet (Figure 1-9).

10

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

=] ax =9 b m» @ BEo 0@,
PS5 C:\WINDOWS\System32> Get-Help Get-Service -Examples

NAME
Get-Service

SYNOPSIS
Gets the services on a Jocal or remote computer.
Exarple 1: Get 211 services on the computer
PS Cii\>Get-Service
This command gets all of the services on the computer. It behaves as though you typed "Get-Service * . The
default display shows the status, service name, and display name of each service.
Example 2: Get services that begin with a search string
PS5 C:\>Get-Service "wmi®"
This command retrieves services with service names that begin with wMI (the acronym for windows Management
Instrumentation).
Example 3: Display services that include a search string
PS5 C:\>Get-Service -Displayname "*network*"
This command displays services with a display name that includes the word network. Searching the display
name finds network-related services even when the service name does not include "Net”, such as xmlprov, the
Network Provisioning Service.
Example 4: Get services that begin with a search string and an exclusion

PS5 Ci\»Get-5ervice -Name “win*" -Exclude "WinRM"

These commands get only the services with service names that begin with win, except for the WinRM service.
Example S: Display services that are currently active

PS C:\>Get-Service | where-ocbject {$_.Status -eg “Running"}

Compieied W Cal 2 1%

Figure 1-9. Get-Help with examples

Get-Process

Another useful CmdLet is Get-Process; much like Get-Service it returns
information regarding processes running on a local or remote computer.
Taking a deeper look at Get-Process using Get-Help (see Figure 1-10), we
first notice six different fundamental variants of Get-Process. Technically
these are called parameter sets, which allow us to run the Get-Process
CmdLet six separate ways.

11

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

a
e [t Vew Tooh Debug Addom bel

=] o a b [N B o [3 .
PS5 C:\WINDOWS\System32> Get-Help Get-Process

NAME
Get-Process

SYNOPSIS
Gets the processes that are running on the local computer or a remote computer.

SYNTAX
Gat-Process [[-Name] <String[]=] [-ComputerName <String[]=] [-FileversionInfa) [-Module]
[<CommonParameters>]
Get-Process [-ComputerName =<String[]=] [-FileversionInfo] -Id <Int32[]> [-Module] [<CommonParameterss]

Get-Process [-ComputerName <String[]l>] [-FileversionInfo] -Inputobject <Process[]> [-Module]
[<«CommonParameterss>]

Get-Process -Id <Int32[]> -IncludeUserdame [<CommonParameterss]
Get=-Process [[-Name] <String[]>] =IncludeUserName [<CommonFarameterss]
Get-Process -IncludeUserName -InputObject <Process[]> [<CommonParameterss]

DESCRIPTION
The Get-Process cmdlet gets the processes on a local or remote computer.
without parameters, this cmdlet gets all of the processes on the local computer. You can also specify a
particular process by process name or process ID (PID) or pass a process object through the pipeline to
this cmdlet.
By default, this cmdlet returns a process object that has detailed information about the process and
supports methods that let you start and stop the process. You can also use the parameters of the

Get-Process cmdlet to get file version information for the program that runs in the process and to get the
modules that the process loaded.

a— w3 o1 1%

Figure 1-10. Get-Help Get-Process

Examining the first parameter set (see Figure 1-11), we find that all
the parameters are optional. This is signified by the square brackets that
surround each parameter.

v \2} \7

Get-Process |[[-Name] <String[]>] [-ComputerName <String[]>]
+—I~'i leVersionInf T| [-Module] +<(:c:|mun||i~‘,nu:uf:i er :;>+

Figure 1-11. Get-Process

This allows us to simply type the command without including any
additional parameters as shown in Figure 1-12 with abbreviated output.

12

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

a
Fin [t Vew Tooh Debug Addom help
=] ax =9 b m» @ BEo 0@,
PS5 C:\WINDOWS\System32> Get-Process
Handles NPM(K) PMLK) WS (KD CPU(s) Id SI Processhame
470 22 6560 4420 3,150.89 55708 2 adobeCollabsync
277 14 2692 748 0.23 56592 2 AdobeCollabSync
238 23 9184 2712 0.23 113824 2 ApplePhotostreams
476 28 22652 24240 17.42 79164 2 ApplicationFrameHost
157 3 1780 140 0.02 229160 O AppvshNotify
166 9 1952 88 0.06 254356 2 Appvshnotify
375 25 5304 3316 2.61 17736 2 APSDaemon
323 16 2928 1496 0.22 4240 0 armsvc
2436 27 37908 35560 947.89 4084 0 avgsvca
1137 3% 96516 47184 882.81 2304 2 avguix
870 26 2560 2096 29,59 08 0 csrss
1039 23 3236 2836 1,934.00 221540 2 csrss
556 7 173592 14056 252.80 14372 2 ctfmon
541 19 9904 8708 41.78 2756 0 dasHost
143 10 2608 896 0.03 183140 O DbxSwc
2207 38 44976 25248 89,72 8382 0 DellsupportassistRemedationservice
192 16 3096 2936 0.33 62820 O dllhest
in 16 5348 4336 1.73 117980 2 dllhest
229 19 4716 536 0.48 145176 2 dllhest
330 16 5532 14384 12.84 174392 2 d1lhost
150 9 1404 88 0.02 98492 2 Dropbox
17, 12 1940 1164 0.47 112280 2 Dropbox
8567 169 248656 152988 4,867.97 132676 2 Dropbox
214 14 2480 12 8.66 7836 0 Dropboxupdate
1259 56 145856 115792 16,312.86 219448 2 dwm
1668 83 174940 128020 44.83 252540 2 EXCEL
12736 434 317284 207280 4,862.30 4424 2 explorer
44 & 2016 324 0.48 396 0 fontdrvhost
44 11 7560 6392 41.41 221500 2 fontdrvhost
984 41 39280 18828 2,563.80 20388 2 gimcomm
744 33 19872 7716 12.81 3524 2 gZmlauncher
424 19 5016 1536 0.59 22324 2 gImstart
el A Cols %

Figure 1-12. Get-Process with no additional parameters

What if I would like to obtain information only related to the process
associated with the Google Chrome browser? In Figure 1-13, I break out
the specific -Name Parameter that we need to utilize in order to accomplish
this.

Get-Process [[-Name] <Stringl[]>]

Figure 1-13. Get-Process -Name parameter

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

You notice that the -Name Parameter is optional; however, if it is
specified, you must specify a String indicating the specific type of data you
must provide (the content of which would be the name of the process). You
also notice that following the word String there are two square brackets.
This indicates that you can optionally include a list of names. Each name
needs to be separated by a comma. Figure 1-14 shows an example.

=
File Edit View Took Debug Add-ons Help
B & O x 9 &) Bl %8 |Bmo|mm.
PS C:\WINDOWS\system32> Get-Process -Name Chrome
Handles NPM(K) PM(K) WS (KD CPU(s) Id SI ProcessName
274 24 32368 49436 0.38 238964 2 chrome
142 11 2012 8820 0.03 263824 2 chrome
501 29 107552 125820 0.70 271300 2 chrome
326 32 92944 143652 1.16 271888 2 chrome
270 21 21256 34120 0.14 272612 2 chrome
222 11 2056 8108 0.03 273844 2 chrome
276 22 25908 41976 0.20 273956 2 chrome
271 22 28156 42524 0.22 274060 2 chrome
1561 68 76956 130940 2.81 274368 2 chrome
239 16 6596 14080 0.09 274492 2 chrome
266 19 14544 22868 0.06 274516 2 chrome
504 23 10732 23524 0.13 274532 2 chrome
121 9 2692 7996 0.03 275048 2 chrome
PS C:\WINDOWS\system32>
Completed Ln 21 Col 25 125%

Figure 1-14. Get-Process example using -Name parameter

Get-Member

As you have seen, PowerShell CmdLets provide useful results when using
them to obtain information (or evidence) from a target system. In addition
to the simple output, each CmdLet also returns an object that provides
access to additional properties and methods. The Get-Member CmdLet
will display the available properties and methods for a CmdLet.

14

CHAPTER 1

Note that as with any CmdLet, you can utilize the Get-Help CmdLet
to obtain details and examples regarding Get-Member. For example, the
command would be:

AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

Get-Help Get-Member

To illustrate the value of obtaining additional properties of a CmdLet,

look at the standard output of the Get-Service CmdLet as shown in

Figure 1-15.
>
File Edit View Tools Debug Add-ons Help
(= ax 9 Ble 8| Foo md.
PS C:\WINDOWS\system32> Get-Service
Status Name DisplayName
Running AdobeARMservice Adobe Acrobat Update Service
Stopped AJRouter Al1Joyn Router Service
Stopped ALG Application Layer Gateway Service
Stopped AppIDSvc Application Identity
Running Appinfo Application Information
Running AppMgmt Application Management
Stopped AppReadiness App Readiness
Stopped AppvClient Microsoft App-v Client
Running AppXSvc AppX Deployment Service (AppXSVC)
Stopped AssignedAccessM... AssignedAccessManager Service
Running AudioEndpointBu... Windows Audio Endpoint Builder
Running Audiosrv wWindows Audio
Running awvgsvc AVG Service
Stopped AxInstsv ActiveX Installer (AxInstsv)
Stopped BcastDVRUserSer... GameDVR and Broadcast User Service_...
Stopped BDESVC BitLocker Drive Encryption Service
Running BFE Base Filtering Engine
Runninq B}TS , Beckgroupd Intelligent Transfer Ser...
Campleted Ln 312 Col 25 125%

Figure 1-15. Standard output of the Get-Service CmdLet

What if additional information evidence is required? For example,
what if it was important to know how the service was started? In order
to answer this question, we need to interrogate and obtain additional
properties from the object.

15

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

To extract the method and property details of an object, we need to

utilize a pipe to direct the output object to the Get-Member CmdLet. Pipes

operate similarly in most command line and shell environments. However,

in PowerShell they are object and context specific.

The CmdLet that we wish to interrogate in this example, Get-Service,

is not executed, but rather the object information is passed to the
Get-Member CmdLet as shown in Figure 1-16. Note the name of the
property we are looking for is StartType.

a
File Edt View Tools Debug Add-ons Help

S~ o »|=9 b w8 oo s
PS C:\WINDOWS\system32> Get-Service | Get-Member

TypeName: System.ServiceProcess.ServiceController
Name MemberType pefinition
Name AliasProperty Name = ServiceName
Requiredservices AliasProperty Requiredservices = ServicesDependedon
Disposed Event System.EventHandler Disposed(System.Objec...
Close Method void Close()
continue Method void continue()
Createobjref Method Ssystem.Runtime.Remoting.Objref CreateoObjRr...
Dispose Method void Dispose(), void IDisposable.Dispose()
Equals method bool Equals(System.Object obj)
ExecuteCommand Method void ExecuteCommand(int command)
GetHashCode Method int GetHashCode()
GetLifetimeservice Method system.Object GetLifetimeService()
GetType Method type GetType()
InitializeLifetimeService Method system.Object InitializeLifetimeservice()
Pause Method void Pause()
Refresh Method void Refresh()
Start Method void start(), void Start(string[] args)
stop Method void stop()
WaitForsStatus Method void waitForStatus(System.ServiceProcess....
CanPauseAndContinue Property bool CanPauseandContinue {get;}
Canshutdown Property bool Canshutdown {get;}
canstop Property bool canStop {get;
Container Property System.ComponentModel.IContainer Containe...
DependentServices Property system.ServiceProcess.ServiceController[]..
DisplayName Property string DisplayName {get;set;}
MachineName Property string MachineName {get;set;}
serviceHandle Property System.Runtime.InteropServices.SafeHandle...
SserviceName Property string ServiceName {get;set;}
servicesDependedon Property system.ServiceProcess.serviceController[]..
ServiceType Property System.ServiceProcess.ServiceType Service...
Site Property System.ComponentModel.ISite Site {get;set;}
startType Property System.ServiceProcess.ServiceStartMode St..
status Property system.ServiceProcess.ServiceControllerst..
TosString scriptMethod System.Object ToString();
Completed In&d Col25

Figure 1-16. Get-Member example

16

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

Now that we know the name, we can specify that property StartType
displays a customized output as shown in Figure 1-17. This is the simplest
form of piping we can perform. The Get-Service CmdLet is executed, and
the results are piped to the Select-Object CmdLet.

B adminiirator. Windows Powerhell ISE - o =
File Edit View Tools Debug Asd-ons Help
D H o » [2 | = &8 FE o | @& [-
Get-Service Select-Object Property Specific Properties
CmiLet CmiiLet Argulment Selected ffr Display
L L] | R 1 I L1} 1
PS C:\WINDOWS\System32> Get-Service | Select-Object -Property Name, Status, StartType
Name status StartType
AdobeARMservice PipE Running Automatic
AJRouter Stopped Manual
Stopped Manual
AppIDSvc Stopped Manual
Appinfo Running Manual
AppMgmt Running Manual
Appreadiness Stopped Manual
appvclient Stopped Disabled
AppXSve stopped Manual
AssignedAccessManagersvc Stopped Manual
AudioEndpointBuilder RUnNnNing Automatic
Audiosrv RUNNing Automatic
avgsvc RUNNing Automatic
AXINStSY Stopped Manual
BcastDVRUsersService_2a637185 Stopped Manual
BDESVC Stopped Manual
BFE RuUNNing Automatic
BITS Running Automatic
BluetoothUserservice_2a637185 Stopped Manual
Bonjour Service Stopped Disabled
BrokerInfrastructure RUNNing Automatic
BTAGService Running Manual
BthAvctpSvc Running Manual
bthserv Running Manual
camsvc Running Manual
Captureservice_2a637185 Stopped manual
CDPSvVC Running Automatic
CDPUsersvc_2a637185 RunNning Autematic
CertPropsvc Stopped Manual
ClickToRunsvc Running Automatic
Clipsvc Stopped Manual
Completed Ln 317 Col 29 %

Figure 1-17. Get-Service with name, status, and StartType

The Select-Object CmdLet then displays the specific properties
specified. The -Property argument of the Select-Object CmdLet accepts
string names that are to be displayed. Again, each is separated by a
comma.

17

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

Challenge Problems: Investigative CmdLets
to Explore

To become comfortable with PowerShell, the ISE, and the CmdLets that
you are likely to utilize during investigations, you need to experiment

with them directly. To help this process along, I have put together a set

of challenge problems at the end of each chapter. Remember to use
Get-Help with each of the CmdLets, and make sure you use -Detailed and
-Examples options when examining the CmdLets. I have also provided
solutions to each of the challenge problems in the Appendix, so try these
on your own and then check your results.

Challenge One: Executing a “Find” Based on File
Extension

Many of you may be familiar with Windows Command Line dir command,
which will list the contents of a specific directory. All traditional Windows
and DOS commands have equivalent PowerShell commands. An effortless
way to find the equivalent is to use a PowerShell CmdLet to find the
associated PowerShell CmdLet as shown in Figure 1-18. To learn more
about Get-Alias and Get-ChildItem, use the PowerShell Help system.

PS5 C:\WINDOWS\system32> Get-Alias dir

CommandType Name version Source

Alias dir -> Get-ChildItem

Figure 1-18. Using Get-Alias

18

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

Now that you know about the Get-Childltem CmdLet, use this to find
all files on your system with the .jpg extension.

Feel free to experiment with other parameters provided with Get-
ChildItem. Also, make sure you access Get-Help using the -Examples
switch and study those examples.

Challenge Two: Examining Network Settings

At this point you might be thinking, “If PowerShell simply replaces
Windows Command Line, then why not just use the Windows Command
Line?” As was learned earlier in this chapter, the help system can provide a
list of available commands surrounding a specific word or phrase.

Try typing:
Get-Help ip

This will provide all PowerShell CmdLets that involve IP. You will see
a number of possible CmdLets that allow you to examine your network
configuration. Notice that this is much more powerful than using Windows
Command Line. For this challenge, take a deep look at just three of these
CmdLets:

Get-NetIPAddress
Get-NetIPConfiguration
Get-NetIPInterface

Start by using the PowerShell help system to understand the
capabilities of each CmdLet and examine the examples provided. Then
experiment with each of the commands and take a close look at your own
network settings. Were you aware of all the settings?

19

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

Challenge Three: Examining Firewall Settings

For this challenge problem, find possible firewall related CmdLets.
Specifically get information regarding the firewall settings on your system.
Once you have examined the basic information find and execute a CmdLet
that will examine any “Service Filters” that are enabled. Did you discover

any surprises?

Challenge Four: Your Chance to Explore

For this challenge, use the help system and keywords that you would be
interested in probing your system for.

Summary

This chapter introduced the goals of this book, specifically how the
integration of PowerShell and Python would provide value to investigators.

In addition, a brief evolution of PowerShell was covered to better
understand how PowerShell today is relevant to investigations. The basic
setup and execution of PowerShell and where to obtain the latest trusted
version were provided. An overview of PowerShell ISE and the PowerShell
help system was provided along with the importance of updating the help
system. Next, PowerShell CmdLets and the verb-noun vernacular were
introduced followed by a brief discussion and examples of how to identify
specific CmdLets of interest. Several CmdLets were demonstrated to
provide details regarding the depth of information that can be acquired
with PowerShell. Finally, a set of challenge problems were presented to
encourage you to dive in and experiment with PowerShell.

20

CHAPTER 1 AN INTRODUCTION TO POWERSHELL FOR INVESTIGATORS

Looking forward to Chapter 2, we’ll find that one of the key elements
of PowerShell CmdLets is the ability to create PowerShell variables and
string together multiple commands in a method called Pipelining. We will
establish several investigative challenges and solve them with PowerShell
variables and Pipelining. In addition, we will introduce several new
CmdLets that will allow us to sort, filter, and format the output. Chapter 2
is key as it provides a prelude to how we will be integrating PowerShell
with Python.

21

CHAPTER 2

PowerShell Pipelining

Pipelining is the key feature within PowerShell that will help us facilitate
the integration of Python and PowerShell. The examples and illustrations
in this chapter were chosen to explain pipelining and provide insight into
CmdLet and methods that are useful during investigations.

What Is CmdLet Pipelining?

CmdLet Pipelining creates an assembly line of commands to be executed
in a specific sequence while moving the data or results from each CmdLet
as well. The best way to describe this is with a couple of investigation-
related examples.

Example 1: Get-Service

Assume that we want to see what services are currently running on a
system we are investigating. The filtering down of the output from one
CmdLet to another is one of the most common uses of the pipeline. In
addition, we would like to display the output in a table format. Figure 2-1 is
a sample pipeline that will solve this challenge.

© Chet Hosmer 2019
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_2

CHAPTER 2 POWERSHELL PIPELINING

Where-Object

v — | Get-Service Filtered : -
v=| oObject Results | v —
v— v =

Operator
Equal to
Member
Property Compare Pipe

—

Get-Service | where-Object {$_.Status -eq "Running"} | Format-Table -AutoSize

\ |]] | ' J
Get-Service Where-Object Format-Table
CmdLet CmdLet CmdLet displays
retrieves examines the only the services that
Information member meet the criteria of
regarding property Status == Running
all Services “Status” of

each Service

Figure 2-1. Pipeline illustration for display of running services

As you can see, the pipeline starts with the Get-Service CmdLet
without any command line parameters.

Note You could of course add command line parameters before
the pipe symbol | such as -ComputerName which would allow the
Get-Service CmdLet to execute a remotely on the specified computer.

The Get-Service CmdLet produces an object that is passed across the
Pipeline to the next Cmdlet in the chain.

The Where-Object CmdLet performs a filtering action that evaluates
the Get-Service CmdLet Object Property Status equal to “Running.” The
resulting output of the Where-Object CmdLet filters the results to only
include those services that are currently running. The result is then passed
to the next Pipeline CmdLet.

24

CHAPTER 2 POWERSHELL PIPELINING

@
o » L] v ¥
Ps C:\Users\cdhs]> Get-Service | where-Object {$_.Status -eq "Running”} | Format-Table -Autosize
Status Name DisplayName
Running AdobeARMservice Adobe Acrobat update Service
Running Appinfo Application Information
rRunning AudioEndpointBuilder windows Audic Endpoint Builder
Running Audiosrv windows Audio
Running avgsvc AVG Service
Running BFE Base Filtering Engine
rRunning Bonjour Service Bonjour service
Running BrokerInfrastructure Background Tasks Infrastructure Service
Running BTAGService sluetooth Audio Gateway Service
Running BthAvctpSve AVCTP service
nunnini bthserv aluetooth Suﬂﬁrt Sservice

Figure 2-2. Challenge solution

Finally, Format-Table CmdLet produces a table result display with
the filter services using the default output associated with Get-Service.
Figure 2-2 depicts the actual command in action - the results were
truncated for brevity.

Note By using the Get-Service | Get-Member operation, you can
reveal all the methods and properties available within the Get-Service
CmdLet object allowing for additional filtering options.

Reporting which services are stopped can be equally important during
an investigation. For example, sophisticated malicious software will
disable virus protection, firewalls, and other defensive services designed
for protection. Figure 2-3 changes the command to display only the
services that are currently stopped. Again, the results were truncated for
brevity.

25

CHAPTER 2

POWERSHELL PIPELINING

[*] oA - s @ 3

PS C:\users\cdhsl> Get-Service | where-Object {S_.Status -eq "Stopped”}

Format-Table -AutoSize

Status Name Displayname

Stopped AJRouter Al1Joyn Router Service

stopped ALG Application Layer Gateway Service
Stopped ApplDSvc Application Identity

Stopped Appugmt application Management

Stopped AppReadiness App Readiness

Stopped AppvClient

wicrosoft App-v Client

Stopped AppXSvC Appx Deployment Service (Appxsvc)
Stopped ASS\Q"QGIEC?%S"!'\!;Q'S»C Ais'gMdACCessl\lM?el‘ Service
stopped AxInstsv Activex Installer (AxInstsv)

Figure 2-3. Displaying stopped services

One final note: If you want more information regarding Format-Table,
remember to use Get-Help as shown in Figure 2-4.

r@':&»m-.u:—.u\msnmam
Fie st Vew Toos Debug Addons Hep
H 4 o » ! e 8 B8oc00 &

Untithed p31 X -

PS5 C:\WINDOWS\system32> Get-Help Format-Table

d

NAME
Format-Table

SYNOPSIS
Formats the output as a table.

SYNTAX
Format-Table [[-Property] <Object[]>] [-AuteSize] [-DisplayError] [-Expand {CoreCnly | Enumonly |
Both}] [-Force] [-GroupBy <Object>] [-HideTableHeaders] [-InputObject <PsSObjects>] [-ShowError]
[-view <string>] [-wrap] [<CommonParameters>]

DESCRIPTION
The Format-Table cmdlet formats the output of a command as a table with the selected properties of
the object in each column. The object type determines the default layout and properties that are
displayed in each column, but you can use the Property parameter to select the properties that you
want to see.

You can also use a hash table to add calculated properties to an object before displaying it and to
specify the column headings in the table. To add a calculated property, use the Property or GroupBy
parameter.

RELATED LINKS
online vVersion: http://go.microsoft.com/fwlink/7LinkId=821775
Format-Custom
Format-Hex
Format-List
Format-wide

REMARKS
To see the examples, type: "get-he'lg Format-Table -examples”.
For more information, type: "get-help Format-Table -detailed’.
For technical information, type: "get-help Format-Table -full”.
For online help, type: "get-help Format-Table -online”

PS C:\WINDOWS\system32> |

Figure 2-4. Format-Table CmdLet overview

26

CHAPTER 2 POWERSHELL PIPELINING

Example 2: Get-Process

Details related to running processes are also important and can provide
additional information regarding what processes are connected to.

For example, it might be important in a live investigation to determine
what active Internet connections are in use by Google Chrome. For this
example, let’s first break this down into the individual components and
introduce the concept of variables in PowerShell.

PowerShell Variables

What are PowerShell variables: A variable in PowerShell is simply a named
place in memory assigned to hold data values. All variable names in
PowerShell begin with a $ making them easy to identify. One additional
note: Variable names in PowerShell are NOT case sensitive; thus,
$ipAddress and $IPaddress represent the same variable. You can assign
values to variables such as:

$InvestigatorName = "Chet Hosmer"
or

$CaseNumber = "BC-0234"

PowerShell Automatic Variables

In addition, there are several built-in or automatic variables that are
available but cannot be changed by the user. Several examples are shown
in Figure 2-5.

27

CHAPTER 2 POWERSHELL PIPELINING

=)
File Edit View Tools Debug Add-ons Help

02 B & a »x»|9 B = 8 5ol &OE.

Untitled1.ps1 X o

Ps c:\Users\cdhs1l> $PSHOME
C:\Windows\system32\windowsPowershell\v1.0

Ps C:\Users\cdhsl> $env:COMPUTERNAME
PYTHON-3

Ps c:\Users\cdhsT> $env:NUMBER_OF_PROCESSORS
4

Figure 2-5. Example of automatic variables

Breaking Down the CmdLet Usage for Example 2

Now that we have a general idea about variables, we will put them to use in
gather information from Get-Process. In order to reduce the output from
Get-Process, let’s focus on just one running process. On my test system I
have Google Chrome installed and running. On your system you may be
using other browsers such as Internet Explorer or Firefox. Substitute the
name of your browser to target the processes that are created by them.
Also, the process named svchost is always running, therefore you can
substitute that as well. The command within PowerShell to do this is as
follows, and the results are shown in Figure 2-6.

Get-Process -Name chrome

28

CHAPTER 2 POWERSHELL PIPELINING

B Adeinistrator: Windowes Powershell 5E - o=
Fle Edt View Tools Debug Add-ons Help

S H 0 » i Ble 8 Foo =@,
PS C:\WINDOWS\system32> Get-Process -Name Chrome

Handles NPM(K) PM(K) ws(K) CPU(s) Id SI ProcessName
266 19 13988 22120 0.08 302800 2 chrome
365 31 76460 102512 2.56 304528 2 chrome
268 23 32184 47512 0.39 304676 2 chrome
1402 62 79592 131316 14.16 306740 2 chrome
194 11 2088 8096 0.03 306760 2 chrome
142 11 2020 8652 0.05 306800 2 chrome
499 28 64772 77996 3.67 306916 2 chrome
267 21 21168 33224 0.14 307044 2 chrome
273 22 25668 40804 0.14 307064 2 chrome

PS C:\WINDOWS\system32> |

Figure 2-6. Get-Process -Name Chrome

A key piece of information that is needed from the Get-Process CmdLet
is the Process ID associated in my example with Google Chrome. We
can use this Process ID to correlate the process with associated Internet
activity. As you probably guessed we will be using yet another CmdLet
in PowerShell to examine the connections between Google Chrome and
the Internet. In order to accomplish this, a command will be constructed
to store the results of the CmdLet into a variable, named $id, instead of
simply displaying the results:

$id = Get-Process -Name Chrome °
| select -ExpandProperty Id

Notice that I used the tick (*) character and then Shift+Enter to
continue the command on the next line for easy display. The results of
the Get-Process -Name Chrome command are then piped to select the
-ExpandProperty command to specify only the Id field. You can of course
enter this command on a single line, but it is a nice way to make this more
readable.

29

CHAPTER 2 POWERSHELL PIPELINING

Figure 2-7 stores the results of the Get-Process ID value into the
variable $id. Then by specifying the $id variable name on the next line
(followed by the Enter key of course), the content of the $id variable is
displayed.

a
File Edit View Tools Debug Add-ons Help

[Ox|9 ™ b m =8 Boo| o,

PS C:\WINDOWS\system32> $id = Get-Process -Name Chrome ~
| select -ExpandpProperty Id

PS C:\WINDOWS\system32> $id
280316
296292
296680
298932
299368
304020
304216
304392
304496
304608
304772
305972
306388

PS C:\WINDOWS\system32>

Figure 2-7. Store the Get-Process CmdLet results in the variable $id

Adding the NetTCPConnections CmdLet

The $id variable can now be utilized as a parameter to other CmdLets.
For example, the CmdLet Get-NetTCPConnections has a parameter
-OwningProcess, which allows us to restrict the output of the CmdLet to
target specific Process IDs. Examining Get-NetTCPConnections using
Get-Help, the following information is obtained (see Figure 2-8).

30

CHAPTER 2 POWERSHELL PIPELINING

Get-NetTCPConnection

SYNOPSIS
Gets TCP connections.

SYNTAX
Get-NetTCPConnection [[-Localaddress] <string[l=] [[-LocalPort] <uIntl6[]>]
[-Appliedsetting <Appliedsetting[]>] [-CimSession <Cimsession[]>] [-CreationTime
<pateTime[]>] [-offloadstate <offloadstate[]>] [-OwningProcess <UInt32[]]
[-remoteaddress <string[]>] [-Remoteport <uIntl6[]>] [-state <state[]>] [-Throttlerimit
<Int32>] [<CommonParameterss)

DESCRIPTION
The Get-NetTCPConnection cmdlet gets current TCP connections. Use this cmdlet to view
TCP connection properties such as local or remote IP address, local or remote port, and
connection state.

Figure 2-8. Get-NetTCPConnections help

How to Discover CmdLets?

One of the questions you might be asking is with thousands of CmdLets
how would I know which one to use to obtain and associated TCP
connections with the Owning Process? The answer is using Get-Help. The
design of the help system built into PowerShell is key to getting the most
out of PowerShell and the associated CmdLets. Since the Help system is
updated everyday it is designed to keep pace with new CmdLets that are
created along with any updates to existing CmdLets. However, you can also
find CmdLets that are related to specific keywords. For example, see how
to use Get-Help using a keyword instead of a CmdLet in Figure 2-9.

¥ o » - - @ e

PS C:\users\cdhs]> Get-welp TCP

Kame Category Module Synopsis

Get-NetTCPConnection Function NerTCPIP Gets TCP connections.

Get-NetTCPSetting Function NetTCPIP Gets information about TCP settings and ¢
Set-NetTCPSetting Function NeTTCPIP modifies a TCP setting.

Figure 2-9. Get-Help using a keyword instead of a CmdLet

31

CHAPTER 2

POWERSHELL PIPELINING

When you provide Get-Help with a keyword as in this case TCP it will

report known CmdLets that have any association with TCP. As you can see,
Get-NetTCPConnection is the first hit. Once you know the name of the
CmdLet, you can then use Get-Help with the CmdLet name to determine

how to use it as I did in Figure 2-8.

Using PowerShell Variables with CmdLets

Executing the Get-NetTCPConnection CmdLet using the -OwningProcess

parameter and specifying $id will generate only the TCP Connections

associated with the Google Chrome id values discovered earlier using Get-

Process. The command to accomplish this is as follows, with an example

output shown in Figure 2-10.

Get-NetTCPConnection -State Established -OwningProcess $id |
Format-Table -Autosize

Urtitled 1,047 X
PS CiY\WINDOWS'system32> Get-NetTCPConnection -State Established -OwningProcess $4d

Localaddress LocalPort RemoteAddress

a Bool e,

RemotePort State

192.168.86.
.36 53340
.36 53333
.36 53332
.36 53331
.36 53329
.36 53326
.36 53325
.36 53324
.36 53323
.36 53321
.36 53319
.36 53318
.36 53317
.36 53315
.36 53312
.36 53311
.36 53310
. .86.36 53303
192.168.86.

36 53345

36 26189

P5 C:Y\WINDOWS'\system32>

99.84.213.
54.81.199.
72.21.207.
52.94.232.
54.81.199.

209.234,235.251

202
3
216
32
3

99.84.216.80

104.84.96.

230

23.55.62.205

209.234.224.22
54.239.29.0

52.94.232.
72.21.206.
72.21.206.
13.32.247.
99.84.213.
13.32.247.
13.32.187.
34.232.99.
64.233.176

39
141
141

o

1
.188

443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
443 Established Internet
5228 Established Internet

Appliedsetting OwningProcess

108404
108404
108404
108404
108404
108404
108404
108404
108404

Format-Table -AutoSize

Figure 2-10. Executing Get-NetTCPConnection with a variable for
Process ID

32

CHAPTER 2 POWERSHELL PIPELINING

As you can see, the command line parameters -State and
-OwningProcess are utilized:

o For -State, Established is specified as the argument.
This will list only the TCP connections that are
currently connected, as I'm only interested in current
connections right now.

o For -OwningProcess, instead, the variable $id is
specified, which contains a list of Process IDs associated
with Google Chrome. The reason this works is that
the definition provided by Get-Help for the parameter
-OwningProcess is stated as follows:

[-OwningProcess <UInt32[]>]

The definition states that -OwningProcess requires an Unsigned
Integer with a length of 32 bits. The two brackets [] following UInt32
indicate that it can accept a list of values.

Asyou can see, only one of the Chrome Process IDs (specifically,
108404) is associated with established Internet connections. Therefore, the
other Google Chrome processes that were identified do not make direct
Internet connections, only 108404 does.

This is a great example of how to use an intermediate variable to store
the contents of a command. However, we can perform this operation
using a single command. Armed with the knowledge of the workings of
Get-Process, PowerShell variables, and Get-NetTCPConnections, a single
command can be created that eliminates the need for the $id variable. In
order to take this next step, the ForEach-Object CmdLet is needed.

33

CHAPTER 2 POWERSHELL PIPELINING

ForEach-0Object

ForEach-Obiject allows the processing of each subsequent result from the
previous command on the pipeline. In this example, that would be each
result generated by the Get-Process -Name Chrome command.

Figure 2-11 uses Get-Help to provide an explanation of the For-Each-
Object.

r

=2 oA LR |

st gt X

Ps C:\usersh\cdhs]> Get-Help ForEach-object

NAME
Forgach-object

SYNOPSIS
performs an operation against each item in a collection of input objects.

SYNTAX I
FurEach-obEeu [-uembername] <string> [-argumentiList <object[]>] [-confirm] [-Inputobject <psobjects]
[-what1f] [<CommonParameters>]

Foreach-object [-process] <scriptglock[]l> [-segin <scriptgélocks] [-confirm] [-End <scriptelocks]
[-Inputobject <PS0bject=] [-RemainingScripts <ScriptBlock[]>] [-whatIf] [<CommonParameters>]

DESCRIPTION
The Forgach-object ecmdler performs an operation en each item in a collection of inpur objecrs. The input
objects can be piped to the cmdlet or specified by using the Inputobject parameter.

starting in Windows Powershell 3.0, there are two different ways to construct a ForEach-object cosmand.
script_block . vou can use a script block to specify the operation. within the script block, use the 5_

variable to represent :_}]e current obEe«_:;. The script block is the value of the Process parameter. The script
Figure 2-11. Get-Help overview of ForEach-Object

Creating a Single Pipeline Solution to Example 2

Get-Process -Name Chrome | ForEach-Object {Get-NetTCPConnection
-State Established -OwningProcess $.Id -ErrorAction
SilentlyContinue}| Format-Table -Autosize

In this example (see the results of the operation in Figure 2-12), the
components are broken down as follows:

Get-Process -Name Chrome
e Obtains process details for all processes named Chrome.

ForEach-Object { }

34

CHAPTER 2 POWERSHELL PIPELINING

Processes each iteration (in simpler terms each output
supplied by Get-Process via the pipe.

{Get-NetTCPConnection -State Established
-OwningProcess $.Id -ErrorAction SilentlyContinue}

Executes the Get-NetTCPConnection CmdLet for each
result.

-State Established filters the output to only include
currently established connections.

-OwningProcess $_.Id specifies the Process ID that
connection information will be extracted. The $_.Id
syntax is used to obtain the Process ID of the Owning
Process from each iterative result of the Get-Process
CmdLet. The specific property is addressed using the
following syntax:

¢« $.Id
This syntax breaks down as follows:

e $_represents the current object passed over the
pipe.

o .Id specifies which specific property value is
associated with the operation.

-ErrorAction -SilentlyContinue is used to ignore

any errors that may occur during the Get-
NetTCPConnection CmdLet. For example, if the
Process ID is not linked to a specified TCPConnection
the CmdLet will throw and exception. This parameter
allows those exceptions to be ignored.

Format-Table -Autosize is used to format the output in

amore compact format.

35

CHAPTER 2 POWERSHELL PIPELINING

[]
Fle E8t Vew Bl Debeg Addom Hep

= ox 9 » B w8 Bao m [.
Localaddress LocalPort RemoteAddress RemotePort State Appliedsetting owningProcess
192.168.86.36 38391 192.168.86.39 8009 eEstablished Internet 304392
192.168.86.36 38388 192 .168.86.46 8009 established Internet 304392
192.168.86.36 38371 192.168.86.39 8009 Established Internet 304392
192.168.86.36 38367 192.168.86.46 8009 Established Internet 304392
192.168.86.36 38350 54.89.15.213 443 established Internet 304392
192.168.86.36 38345 192.168.86.39 8009 Established Internet 304392
192.168.86.36 38344 192.168.86.46 8009 Established Internet 304392
192.168.86.36 38341 173.194.219.94 443 Established Internet 304392
192.168.86.36 38340 173.194.219.94 443 eEstablished Internet 304392
192.168.86.36 38336 72.21.207.216 443 Established Internet 304392
192.168.86.36 38335 72.21.206.140 443 Established Internet 304392
192.168.86.36 38334 54.239.29.0 443 established Internet 304392
192.168.86.36 38333 54.89.15.213 443 Established Internet 304392
192.168.86.36 38331 72.21.206.141 443 Established Internet 304392
192.168.86.36 38330 72.21.206.141 443 eEstablished Internet 304392
192.168.86.36 38329 72.21.206.141 443 established Internet 304392
192.168.86.36 38328 13.32.246,248 443 Established Internet 304392
192.168.86.36 38324 13.32.246.248 443 Established Internet 304392
192.168.86.36 38323 13.249.112.244 443 established Internet 304392
192.168.86.36 38320 157.55.135.128 443 Established Internet 304392
192.168.86.36 38319 173.194.219.95 443 Established Internet 304392
192.168.86.36 38316 13.32.188.181 443 Established Internet 304392
192.168.86.36 38315 35.169.20.248 443 established Internet 304392
192.168.86.36 38310 52.173.84.157 443 Established Internet 304392
192.168.86.36 38309 204.79.197.200 443 Established Internet 304392
192.168.86.36 38307 108.177.122.188 5228 Established Internet 304392
192.168.86.36 38306 216.58.193.163 443 established Internet 304392

Figure 2-12. Final solution to map Google Chrome IP connections

Resolving Remote IP Addresses

These results bring up the next investigative question, what do the IP
addresses referenced by the Chrome browser refer to? There is of course

a CmdLet that can discover this information directly. The IP address
72.21.207.216 was arbitrarily selected from the list in Figure 2-12. The
Resolve-DnsName CmdLet was then used to obtain information regarding
this remote IP address.

Resolve-DnsName 72.21.207.216

The Resolve-DnsName CmdLet successfully resolved the IP address
with developer.amazonservices.com (see Figure 2-13).

36

CHAPTER 2 POWERSHELL PIPELINING

a

.: 6).‘ P B I | R
PS C:\WINDOWS\system32> Resolve-DnsName 72.21.207.216
Name Type TTL Section NameHost

216.207.21.72.in-addr.arpa PTR 317 Answer developer.amazonservices.com

PS C:\WINDOWS\system32>

Figure 2-13. Resolve DnsName

To find out more information regarding Resolve-DnsName, try your
hand at using Get-Help.

Adding a Transcript to Track Your Activities

Documentation of your investigative actions is important (to say the least).
One of the simple methods of capturing your actions and the result data is
to use yet another CmdLet in PowerShell:

Start-Transaction
Stop-Transaction

As with all CmdLets in PowerShell obtaining information regarding the
use and options associated with CmdLets is by using Get-Help. This may
sound a bit redundant; however, many people still turn to Google or other
search engines to obtain this knowledge. This is certainly useful in certain
circumstances, but the Help system in PowerShell is not only powerful and
well thought out, but is also updated daily. Therefore, in order to get the
latest, most up-to-date, and accurate information about CmdLets, use
Get-Help. Figure 2-14 provides the results relating to Start-Transcript.

37

CHAPTER 2 POWERSHELL PIPELINING

atrator: Windows PowerShell IS - o
View Tocls Debug Add-ons Help

(= o » b Ble 0 Boo|do,
Iz:\WINDows\system32> Get-Help start-Transcript

start-Transcript

foprsis
gfﬁates a record of all or part of a windows Powershell session to a text
ile.

TAX
start-Transcript [[-Literalpath] <String>] [-Append] [-confirm] [-Force]
[-IncludeInvocationHeader] [-NoClobber] [-whatIf] [<CommonParameters>]

start-Transcriqt [[-outpugnirectorﬁ] <string>] [-Append] [-confirm]
[-Force] [-IncludeInvocationHeader] [-noClobber] [-whatIf]
[«CommonParameters>]

start-Transcript [[-Path] <strin?>] [-append] [-confirm] [-Force]
[-IncludeInvocationHeader] [-NoClobber] [-whatIf] [<CommonParameters:>]

ICRIPTION

The start-Transcript cmdlet creates a record of all or part of a windows
pPowershell session to a text file. The transcript includes all command
that the user types and all output that appears on the console.

starting in windows Powershell 5.0, start-Transcript includes the host
name in the generated file name of all transcripts. This is especially
useful when Kour enterprise’s logging is centralized. Files that are
created by the start-Transcript cmdlet include random characters in names
to prevent potential overwrites or duplication when two or more
transcripts are started simultaneously. This also prevents unauthorized
discovery of transcripts that are stored in a centralized file share.
Additionally in windows powershell 5.0, the start-Transcript cmdlet works
in windows Powershell ISE.

Figure 2-14. Get-Help Start-Transcript

For this example, the -Path parameter is specified in order to direct
the output of the transcript to a specific file as shown in Figure 2-15.
To demonstrate the -Append parameter of Start-Transcript, the Stop-
Transcript CmdLet was used, and then Transcript was restarted. To
accomplish this, just start the second Start-Transcript CmdLet using the
same -Path parameter, and then add the -Append option as shown in
Figure 2-15. This allows you to concatenate PowerShell sessions in the
same output file.

38

CHAPTER 2 POWERSHELL PIPELINING

B sdmnistiaton Windows PowerShed 15 - A
Fde ot Vew Tools Oebug Add-ons Melp

= 0o » ¥ w8 Boo|i®do,

PS C:\WINDOWS\system32> start-Transcript -Path c:\PS-TRANSCRIPTS\DEMO.TXt
Transcript started, output file is ¢:\PS-TRANSCRIPTS\DEMO.TXT

PS C:\WINDOWS\system32> Get-Process -Name Chrome | out-File C:\PS\IP-Results.txt

PS C:\WINDOWS\System32> Stop-Transcript
Transcript stopped, output file is C:\PS-TRANSCRIPTS\DEMO.tXt

PS C:\WINDOWS\system32> Start-Transcript -Append -Path c:\PS-TRANSCRIPTS\DEMO.Uxt
Transcript started, output file is ¢:\PS-TRANSCRIPTS\DEMO.TXT

PS C:\WINDOWS\system32> Get-Service | Format-Table -Autosize | out-File C:\PS\SVC.txt

PS C:\WINDOWS\system32> Stop-Transcript
Transcript stopped, output file is C:\PS-TRANSCRIPTS\DEMO.TXT

PS C:\WINDOWS\system32> |

Figure 2-15. PowerShell Start- and Stop-Transcript

Listing 2-1 depicts the resulting transcript file. Note that yet another

new CmdLet was added here, Out-File - this directs the output of the Get-
Process CmdLet to the IP-Result.txt file on the desktop. Thus, the transcript

does not include the Get-Process or Get-Service output, but rather that
result is stored in the designated output files. This would likely be your

case folder. The Start and End Time strings of each appended transaction

are highlighted. Note that PowerShell uses local time; in this example, the

transcript started on November 27, 2018, at 16:09:03, or 4:09 PM.

Listing 2-1. PowerShell Transcript
kokok ok ok ok okook skok ok sk ok skokookok ok sk ok ko

Windows PowerShell transcript start

Start time: 20181127160903

Username: PYTHON-3\cdhsl

RunAs User: PYTHON-3\cdhsl

Configuration Name:

Machine: PYTHON-3 (Microsoft Windows NT 10.0.17134.0)

Host Application: C:\WINDOWS\system32\WindowsPowerShell\vi.o\
PowerShell ISE.exe

39

CHAPTER 2 POWERSHELL PIPELINING

Process ID: 148432

PSVersion: 5.1.17134.407

PSEdition: Desktop

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.17134.407
BuildVersion: 10.0.17134.407

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

K3k ok ok ok ok ok >k ok ok ok sk ok ok ok kook ok sk sk k ok

Transcript started, output file is C:\Users\cdhsl\PS-
TRANSCRIPTS\DEMO. txt

PS C:\WINDOWS\system32> Get-Process -Name chrome | Out-File
C:\Users\cdhsl\Desktop\IP-Result.txt

PS C:\WINDOWS\system32> Stop-Transcript

kKoK ok ok sk sk >k ok ok ok sk ok sk ok keok sk sk sk k ok

Windows PowerShell transcript end

End time: 20181127160930
ok sk skofok sk ok ok sk skokok sk sk okok sk kok ok

K3k ok ok ok ok ok >k ok ok ok ok ok >k ok kook ok sk sk k ok

Windows PowerShell transcript start

Start time: 20181127161013

Username: PYTHON-3\cdhsl

RunAs User: PYTHON-3\cdhsl

Configuration Name:

Machine: PYTHON-3 (Microsoft Windows NT 10.0.17134.0)
Host Application: C:\WINDOWS\system32\WindowsPowerShell\vi.0\
PowerShell ISE.exe

Process ID: 148432

PSVersion: 5.1.17134.407

PSEdition: Desktop

40

CHAPTER 2 POWERSHELL PIPELINING

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.17134.407
BuildVersion: 10.0.17134.407

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

K3k ok ok ok ok ok >k ok ok ok ok ok ok ok kook ok sk sk k ok

Transcript started, output file is C:\Users\cdhsl\PS-
TRANSCRIPTS\DEMO. txt

PS C:\WINDOWS\system32> Get-Service | Format-Table -AutoSize |
Out-File C:\Users\cdhsl\Desktop\Services.txt

PS C:\WINDOWS\system32> Stop-Transcript

kKoK ok ok sk ok >k ok ok ok sk ok ok ok keok sk sk sk ko

Windows PowerShell transcript end

End time: 20181127161306
Sk ok ok sk ok sk ok sk sk ok sk ok sk sk ok sk ok sk sk sk kok

Challenge Problem: CmdLet
Experimentation

Working with PowerShell cannot be learned by simply reading this text

or any other for that matter. Instead, you must experience PowerShell by
interacting with it. Table 2-1 provides a short list of some popular CmdLets
that are useful during an investigation. I have only chosen CmdLets that
retrieve or acquire information for you to experiment with.

41

CHAPTER 2 POWERSHELL PIPELINING

Table 2-1. Challenge Problem CmdLets

Get-Process Get-Service
Get-NetlPAddress Get-NetlPConfiguration
Get-NetlPv4Protocol Get-NetlPv6Protocol
Get-NetTCPConnection Test-NetConnection
Get-NetRoute Get-MpComputerStatus
Get-MpThreat Get-NetFirewallSetting
Get-NetFirewallPortFilter Get-Volume
Get-Childltem Get-ItemProperty
Get-EventlLog Get-LocalUser
Get-LocalGroup Get-Content
Get-Location Set-Location
Start-Transcript Stop-Transcript

Format-Table

Warning If you decide to experiment with other CmdLets that
modify the system, do so at your own risk. PowerShell CmdLets can
modify, damage, delete, and even destroy your system.

For each of the CmdLets specified in Table 2-1, do the following:

1. Review the help for each CmdLet including Details
and Examples, that is,

a. Get-Help -Detailed

b. Get-Help -Examples

42

CHAPTER 2 POWERSHELL PIPELINING

2. After review, describe what the CmdLet does
and consider how it could be valuable during an
investigation.

3. Execute each CmdLet with a minimum of one
parameter, experiment with others as well.

4. Use Pipelining to assemble CmdLets, start with
something simple like piping the CmdLet output to
the Format-Table CmdLet, then try other options as

well.

5. Make sure that your Start, and Stop the transcript
during your experimentation, this will serve as a
record of your actions and result. These can be
referenced later when you are trying to duplicate a

complex command.

Solutions to this Challenge Problem can be found in the Appendix and
in the book’s source code, available at waw.apress.com/9781484245033.

Summary

This chapter focused on several key areas of PowerShell and introduced
several new CmdLets and their application. In addition, the creation and
use of PowerShell variables was introduced. Two example pipelines were
created to demonstrate how to approach pipelining within PowerShell.
In Chapter 3, new CmdLets will be introduced, and the development of
multiple complete PowerShell scripts will be developed.

43

http://www.apress.com/9781484245033

CHAPTER 3

PowerShell
Scripting Targeting
Investigation

This chapter will move beyond single line commands and pipelining,
in order to create actual PowerShell scripts. PowerShell scripts deliver
the ability to automate repetitive tasks that require specific CmdLets,
Pipelines, Variables, Structures, etc. Another simple way to describe
PowerShell scripts is that they allow you to create new and more
powerful and targeted CmdLets to solve a specific challenge. Once you
have developed a command that does exactly what you need, it is quite
beneficial to create a script that encapsulates or abstracts the complexity of
the command.

In this chapter, we will go through two examples. One will be to create
a specific and ultimately useful investigation script that will acquire and
process system event logs. The second example will be a scenario where
we examine USB device usage.

© Chet Hosmer 2019
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_3

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Basic Facts About PowerShell Scripts

Before we begin, here are some basic facts about PowerShell scripts:

1. Scripts are a simple text file that contains a series of
PowerShell commands.

2. To prevent the execution of malicious scripts,
PowerShell enforces an execution policy, which by
default is set to “restricted” such that PowerShell
scripts will NOT execute by default. Thus, you must
set the execution policy to allow script execution.

3. To execute a PowerShell script, you either must
execute them within the PowerShell ISE and provide
the full path to the script or the directory containing
the script must be in your Windows path.

Example 1: The EventProcessor PowerShell
Script

The acquisition of data from event logs is a common practice during
forensic investigations and incident response activities. This is also a
useful activity for system administrators to perform daily.

The collection of meaningful data from log files that are likely
distributed across the investigation environment can be time consuming,
and if not done consistently and completely, it will lead to problems.
Therefore, developing a targeted PowerShell script to perform this
operation would yield significant value to investigators.

46

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

EventLog CmdLets

Of course, PowerShell already contains general-purpose CmdLets that

address basic collection of data from event logs; thus, identifying and

selecting one of the available CmdLets is the first step. To do this we once

again turn to the built-in PowerShell Help system. Requesting Help using

the keyword EventLog returns the CmdLet list as shown in Figure 3-1.

W W — e
Ps C:\PS> Get-Help EventLog | Format-Table -Autosize

Name category Module

Clear-eventLog cCmdlet Microsoft.Powershell.Management
Get-EventLog cmdlet Microsoft.Powershell.Management
Limit-EventLog cmdlet Microsoft.Powershell.Management
New-EventLog cmdlet ™microsoft.Powershell.Management
Remove-EventLog cmdlet Microsoft.Powershell.Management
show-EventLog cmdlet Microsoft.Powershell.Management
write-eventLog cmdlet Microsoft.Powershell.Management
about_gventlogs HelpFile

PS CI\PS»

synopsis

Clears all entries from specified event logs ...
Gets the events in an event log, or_a list of.|..
hat Timit the ...

Creates a new event log and a new event sourc...
peletes an event log or unregisters_an event ...
?ogs of the local or a rem...

sets the event log properties T

pisplays the event
writes an event to an event log.

wWindows Powershell creates a windows event lo...

Figure 3-1. CmdlLets referring to the

keyword EventLog

After reviewing the Synopsis, Get-EventLog seems to be a likely target

CmdLet for acquiring events from event logs.

Figure 3-2 displays the basic help information and usage associated

with the Get-EventLog CmdLet.

47

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

a
e e oo Dabwg Addoms belp

u (= Y m» 8 Boo &m®,
PSs C:\PS> Get-Help Get-EventLog

NAME
Get-EventLog

SYNOPSIS .
Gets the events in an event log, or a list of the event logs, on the local or remote
computers.

SYNTAX
Get-EventLog [-LogName] <string> [[-Instanceld] <Int64[]>] [-After <DateTime>]
[-AsBaseobject] [-Before <pateTimes>] [-Computername <string[]>] [-EntryType {Error
Information | FailureAudit | SuccessAudit | warning}] [-Index <Int32[]1>] [-Message
<string>] [-Newest <Int32>] [-Source <String[]>] [-username <string[]>]
[<«commonParameters:]

Get-EventLog [-AsString] [-ComputerName <String[]>] [-List] [<CommonParameters>]
DESCRIPTION

The Get-EventLog cmdlet gets events and event logs on the local and remote computers.

You can use the parameters of this cmdlet to search for events by using their

property values. This cmdlet gets only the events that match all of the specified

property values.

The cmdlets that contain the EventLog noun work on1ﬁ on classic event logs. To get

events from logs that use the windows Event Log technology in windows vista and
later versions of windows, use Get-winEvent.

f— n %0 Cai 11 129

Figure 3-2. Get-Help Get-EventLog results

Figure 3-3 depicts several usage examples. Each identifies a different
log file and requests the newest 20 events. Note that if the security event
log is requested, you must have administrative privileges in order to
access this.

PS C:\PS> get-eventlog system -Newest 20
PS C:\PS> get-eventlog application -newest 20
PS C:\PS> get-eventlog security -Newest 20

Note access to this log requires
admin privilege on most platforms

Figure 3-3. Sample Get-EventLog requests

48

Retrieving More Specific Eventlog Information

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Figure 3-4 shows the results after the execution of Get-EventLog.

Get-EventlLog -logName system -Newest 20

a

o

Feb

>

B D Ve Tevh Deing haiew Hew

" = @

EntryType
Infermation
Error

Errer
Information
Infermation
Information
Information
Information
Information
Information
Information
Error
Information
Information
Information
Error
Information

Information
Infermation
Infermation

Lijls

PS5 C:Y\P5> Get-EventLog -LogName system -Newest 20

source

wicrosoft-windows. ..

DCoM

microsoft-windows. ..
microsoft-windows. ..
microsoft-windows. ..
microsoft-windows. ..
microsoft-windows. ..
Microsoft-Windows. ..
microsoft-windows. ..
Microsoft-windows. ..

microsoft-windows. ..
Microsoft-wWindows. ..
Microsoft-Windows. ..
wicrosoft-windows. ..
Microsoft-Windows. ..
microsoft-wWindows. ..
wicrosoft-windows. ..
Microsoft-windows. ..

InstancelD
16

10016
10016

16

35
37
158
19
43

-

44
10016
19
43
16
20
43
44
44
19

Message

The description
The description
The description for Event
The description for Event
possible detection of CvE: 0
The time service is now synchronizi
The time provider ntpclient is curr

for Event
for Event

The time provider 'vMICTimeProvider...
Installation Successful: windows su...
Installavion started: windows has s...
windows update started downloading ...
The description for Event ID '10016...
Installavion successful: windows su...
Installavion started: windows has s...
The description for Event ID "16' i...
Installavion Failure: windows faile...
Installation started: windows has s...
Windows Update started downloading ...
windows update started downloading ...
Installation Successful: windows su...

Figure 3-4.

Get-EventLog sample results

Based on what we learned in Chapter 2 regarding PowerShell

pipelining, we can perform more specific or targeted acquisitions of event

log data. For example, what if we only want to see events that are of type

error or warning and filter out the general informational messages?

Taking into consideration the excerpt of the Get-Help Get-EventLog

result shown in Figure 3-5, the possible EntryTypes listed are:

e Error

¢ Information

e FailureAudit

e SuccessAudit

e Warning

49

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

SYNTAX
Get-EventLog [-Loghame] <string> [[-Instanceld]

n
-Before <pateTime>] [-cComputerMame <Strin [%)-] Error In ormat'lon Fa'l ureAult
SuccessAudit | warningr]] [-Index <int32[]>] [-message < :r1ng> —Source <stringll»]
~UserName <stringlJ=] [<CommonParameterss>]

Get-EventLog [-Asstring] [-ComputerName <string[l=] [-List] [<CommonParameters:]

Figure 3-5. Get-Help excerpt for Get-EventLog

Based on this, a more refined command could be created that will
extract only the target events Warning or Error and specify specific
properties associated with the event log to be displayed.

Get-Eventlog -LogName system -Newest 20 | Select-Object
-Property TimeGenerated, Source, EntryType, Message | where
{$_.EntryType -eq "warning" -or $.EntryType -eq "error"}

This command yields the result shown in Figure 3-6.

]
.

b o » ' B @ Fxo o
PS C:\P5> Ger-Eventlog -Loghame system -Newest 20 | Select-object -Property Timecenerated, Source, EntryType, Message | where
TimeGenerated source ENTryType Message

2/10/2019 9:17:54 AM DCOM

Error The description for Event ID 10016’ in Source 'D2O0...
2/10/2019 9:17:48 AM DCOM Error The description for Event ID "10016' in Source 'DCO...
2/10/2019 4:43:41 AM DCOM Error The description for Event ID "10016° in Source 'DCO...
2/9/2019 11:15:04 PM Microsoft-windows-windowsupdateclient Error Installation Failure: wWindows failed to install the...

Figure 3-6. Get-EventLog with specific fields and EntryTypes
warning or error

Creating the Script

Based on this fundamental understanding of Get-EventLog, let’s define a
challenge problem.

50

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Step One: Define the Challenge

Before you write the script, consider what are the basic challenges that

investigators face when retrieving event logs, and how could a PowerShell

script be developed that will address these challenges. Ask yourself:

1.

What event log or logs need to be collected? Based
on the investigation, will specific event log(s) need
to be acquired?

From what computer or computers should the log
files be collected?

How many of the most recent records should be
collected?

Is an optional filter based on EventType useful?

What specific fields should be generated from the
event log?

o Byusing Get-Member we can see the common
properties of interest include: Category, EntryType,
EventID, MachineName, Message, Source,
TimeGenerated, TimeWritten and UserName.

Where is the output to be generated, that is, the
standard output for a file?

How will others use the script?
a. Do we need to provide help?

b. How will they enter the parameters?

Once you have identified the challenges and are able to answer them,

you will now have a working definition for your script and can proceed to

step two.

51

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Step Two: Create the Script in Stages

Based on the definition created in Step One, specific parameters need to
be defined for our script:

o TargetLog
o TargetComputer
o TargetCount
o TargetEntryType
e ReportTitle
Listing 3-1 shows the complete EventProcessor script. I'll also show the

Get-Help results, the sample execution, and the resulting report later on.

Listing 3-1. EventProcessor Script

<#
.synopsis
EventProcessor EventlLog Capture Automation Version 1.0

- User Specified Target Eventlog

- User Specifies the number of newest Log Entries to Report

- User Specifies the Entry Type to target, for example warning,
error, information etc.

- User Specifies the target computer or computers to extract
the logs

- User Specifies the HTML Report Title

The script will produce an HTML output file containing details
of the Eventlog acquisition.

.Description
This script automates the extraction of information from the
specified log file

52

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

.parameter targetLogName

Specifies the name of the log file to process

.parameter eventCount

Specifies the maximum number of newest events to consider in
the search

.parameter eventType

Specifies the eventType of interest

.parameter targetComputer

Specifies the computer or computers to obtain the logs from
.parameter reportTitle

Specifies the HTML Report Title

.example

EventProcessor

Execution of EventProcessor without parameters uses the default
settings of

eventlLog system

eventType warning

eventCount 20

targetComputer the computer running the script

.example

EventProcessor -targetlLogName security

This example specifies the target eventlog security
and uses the default parameters

eventType warning

eventCount 20

targetComputer the computer running the script

.example

EventProcessor -reporTitle "ACME Computer Daily Event Log
Report"

This example provides a custom Report Title

53

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

.example

EventProcessor -targetlLogName security -eventCount 20
-entryType warning -targetComputer Python-3

This example specifies all the parameters, targetLogName,
eventCount, entryType and targetComputer

#

Parameter Definition Section

param(
[string]$targetLogName = "system",
[int]$eventCount = 20,
[string]$eventType="Error",
[string]$reportTitle="Event Log Daily Report",
[string[]]$targetComputer=$env: COMPUTERNAME

)

Get the current date and tme
$rptDate=Cet-Date
$epoch=([DateTimeOffset]$rptDate).ToUnixTimeSeconds ()

Create HTML Header Section

$Header = @"

<style>

TABLE {border-width: 1px; border-style: solid; border-color:
black; border-collapse: collapse;}

TD {border-width: 1px; padding: 3px; border-style: solid;
border-color: black;}

</style>

<p>

 $reportTitle $rptDate

<p>

Event Log Selection: $targetLogName

<p>

54

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Target Computer(s) Selection: $targetComputer
<p>

Event Type Filter: $eventType

<p>

'@

Report Filename Creation
$ReportFile = ".\Report-"+$epoch+" .HTML"

CmdLet Pipeline execution
Get-Eventlog -ComputerName $targetComputer -LogName
$targetLogName -Newest $eventCount -EntryType $eventType |
ConvertTo-HTML -Head $Header -Property TimeGenerated,
EntryType, Message |

Out-File $ReportFile

The EventProcessor script is broken down into four major sections.
The development of PowerShell scripts should include each of these

sections for completeness.
1. Script Header (including Help and Examples)
2. Parameter Definition
3. Local Variable Definition

4. CmdLet Execution Using Parameters and Local
Variables

Let’s take a deeper look at the script construction.

Note You can use this sample as a baseline since it provides a good
boilerplate for a PowerShell script.

55

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Script Header

The script header contains key information used to define the script and
conforms to a strict format in order to deliver help details when processed
by the Get-Help CmdLet.

.Synopsis Section

The .synopsis section provides a quick overview of the purpose of the
script and what is expected from the user (Listing 3-2).

Listing 3-2. .Synopsis Section

<H
.synopsis
EventProcessor EventlLog Capture Automation Version 1.0

- User Specified Target Eventlog

- User Specifies the number of newest Log Entries to Report

- User Specifies the Entry Type to target, for example warning,
error, information etc.

- User Specifies the target computer or computers to extract
the logs

- User Specifies the HTML Report Title

The script will produce an HTML output file containing details
of the Eventlog acquisition.

.Description Section

The .description section provides a succinct definition of the script
(Listing 3-3).

56

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION
Listing 3-3. .Description Section

.Description
This script automates the extraction of information from the
specified log file

.Parameters Section

This section defines of each command line parameter utilized by the script
in detail (Listing 3-4).

Listing 3-4. .Parameters Section

.parameter targetLogName

Specifies the name of the log file to process

.parameter eventCount

Specifies the maximum number of newest events to consider in
the search

.parameter eventType

Specifies the eventType of interest

.parameter targetComputer

Specifies the computer or computers to obtain the logs from
.parameter reportTitle

Specifies the HTML Report Title

Note that in this script, all the parameters are optional since during the
definition, as you will see later, the default values for each parameter are
provided. This allows the user to execute the script by typing:

.\EventProcessor

.Examples Section

In this section several sample script command line executions are provided
along with a definition of what each variant provides (Listing 3-5).

57

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Listing 3-5. .Examples Section

.example

EventProcessor

Execution of EventProcessor without parameters uses the default
settings of

eventLog system

eventType warning

eventCount 20

targetComputer the computer running the script

.example

EventProcessor -targetLogName security

This example specifies the target eventlog security
and uses the default parameters

eventType warning

eventCount 20

targetComputer the computer running the script

.example

EventProcessor -reporTitle "ACME Computer Daily Event Log
Report"

This example provides a custom Report Title

.example

EventProcessor -targetlLogName security -eventCount 20
-entryType warning -targetComputer Python-3

This example specifies all the parameters, targetlLogName,
eventCount, entryType and targetComputer

#>

58

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Parameter Definition

The parameter definition section of the script defines the details of each

available parameter for the script (Listing 3-6).

Listing 3-6. Parameter Definition Section

Parameter Definition Section

param(

[string]$targetLogName = "system",
[int]$eventCount = 20,
[string]$eventType="Error",
[string]$reportTitle="Event Log Daily Report",
[string[]]$targetComputer=$env: COMPUTERNAME

Each parameter defines a type, name, and the default value assigned.

For example:

The $reportTitle parameter is of type string and has a
default value of “Event Log Daily Report”.

The $targetComputer parameter is also of type string,
but a set of values is possible. In other words, the user
could enter multiple computer names, each separated
by a comma. This also contains a default value. This is a
PowerShell automatic variable that defines the name of
the computer the script is executing on.

The $targetLogName parameter defines the event log
to be targeted. Note that this could have been defined
as with $targetComputer to accept a list of log names.
However, the standard CmdLet Get-EventLog only
supports a single target log. To support a list, the
Get-EventLog CmdLet would need to be executed

59

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

multiple times once for each identified log. This would
certainly make the script more complicated, but also
potentially even more useful.

o The $EventType parameter allows for the specification
of what event type the report should contain. In other
words, filter in just the desired event type.

o Finally, the $eventCount parameter is defined as an
integer value. It specifies the maximum number of log
entries to display that meet the criteria specified.

Local Variable Definition

The local variable section is used to create a few local variables needed for
this script (Listing 3-7).

Listing 3-7. Local Variable Definition Section

Get the current date and tme
$rptDate=Cet-Date
$epoch=([DateTimeOffset]$rptDate).ToUnixTimeSeconds ()

Create HTML Header Section

$Header = @"

<style>

TABLE {border-width: 1px; border-style: solid; border-color:
black; border-collapse: collapse;}

TD {border-width: 1px; padding: 3px; border-style: solid;
border-color: black;}

</style>

<p>

 $reportTitle $rptDate

<p>

60

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Event Log Selection: $targetlLogName

<p>

Target Computer(s) Selection: $targetComputer
<p>

Event Type Filter: $eventType

<p>

'@

Report Filename Creation
$ReportFile = ".\Report-"+$epoch+" .HTML"

The local variables are as follows:

e $ReportDate: Obtains the current system date to be
used in the report.

e $epoch: Obtains the number of seconds that have
elapsed since the current epoch. Note that this is
different for each operating system. This variable will
be used to create a unique HTML filename.

o $Header: Defines a standard HTML header section to
be used when generating the resulting HTML file. Note
that this variable uses the parameter ReportTitle in
order to customize the report heading.

e $ReportFile: This variable combines the string
“Report-" with the epoch value and the extension
.html.

CmdLet Pipeline Execution

The core of the script is the execution of the Get-EventLog CmdLet using a
pipeline to include the parameters specified (Listing 3-8).

61

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Listing 3-8. CmdLet Pipeline Execution

CmdLet Pipeline execution
Get-Eventlog -ComputerName $targetComputer -LogName
$targetLogName -Newest $eventCount -EntryType $eventType |
ConvertTo-html -Head $Header -Property TimeGenerated,
EntryType, Message |
Out-File $ReportFile

The pipeline has several key components and transitions:

1. The Get-EventLog CmdLet specifies the
-ComputerName, -LogName, -Newest and
EntryType using the parameters $targetComputer,
$targetLogName, $eventCount, and $eventType.

2. The output of the Get-EventLog CmdLet is piped
to the ConvertTo-html CmdLet which utilizes the
local variable $Header, and the properties passed
from the Get-EventLog CmdLet TimeGenerated,
EntryType, and Message to form the columns of the
HTML report.

3. Finally, the output from ConvertTo-html is piped to
the Out-File CmdLet which utilizes the local variable
$ReportFile as the filename to write the results.

EventProcessor Get-Help Result

Since the script contains a detailed header section it is possible to use the
Get-Help CmdLet to provide help to those who will be using the newly
created script. The following example provides the output from the
Get-Help CmdLet using the -Full option which provides all the details
and examples (Listing 3-9).

62

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Listing 3-9. EventProcessor Get-Help
PS C:\PS> Get-Help .\EventProcessor.psi -Full

NAME
C:\PS\EventProcessor.ps1

SYNOPSIS

EventLog Automation Version 1.0

Step One

- User Specified Target Eventlog

- User Specifies the number of newest Log Entries to Report

- User Specifies the Entry Type to target, for example
warning, error, information etc.

- User Specifies the target computer or computers to
extract the logs

- User Specifies the HTML Report Title

SYNTAX
C:\PS\EventProcessor.ps1 [[-targetLogName] <String>]
[[-eventCount] <Int32>] [[-eventType] <String>]
[[-reportTitle]
<String>] [[-targetComputer] <String[]>]

[<CommonParameters>]

DESCRIPTION
This script automates the extraction of information from
the specified log file

PARAMETERS
-targetLogName <String>
Specifies the name of the log file to process

Required? false
Position? 1

63

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Default value system
Accept pipeline input? false
Accept wildcard characters? false

-eventCount <Int32>
Specifies the maximum number of newest events to
consider in the search

Required? false
Position? 2
Default value 20
Accept pipeline input? false

Accept wildcard characters? false

-eventType <String>
Specifies the eventType of interest

Required? false
Position? 3

Default value Error
Accept pipeline input? false

Accept wildcard characters? false

-reportTitle <String>
Specifies the HTML Report Title

Required? false

Position? 4

Default value Event Log Daily Report
Accept pipeline input? false

Accept wildcard characters? false

64

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

-targetComputer <String[]>
Specifies the computer or computers to obtain the

logs from

Required? false

Position? 5

Default value $env: COMPUTERNAME
Accept pipeline input? false

Accept wildcard characters? false

<CommonParameters>
This cmdlet supports the common parameters: Verbose,
Debug, ErrorAction, ErrorVariable, WarningAction,
WarningVariable, OutBuffer, PipelineVariable, and
OutVariable. For more information, see about Common
Parameters (https:/go.microsoft.com/fwlink/?LinkID=113216).

INPUTS

OUTPUTS

PS C:\>EventProcessor

Execution of EventProcessor without parameters uses the
default settings of

eventLog system

eventType warning

eventCount 20

targetComputer the computer running the script

65

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

PS C:\>EventProcessor -targetLogName security

This example specifies the target eventlog security
and uses the default parameters

eventType warning

eventCount 20

targetComputer the computer running the script

------------------------ EXAMPLE 3 ---=--mmmmmmmmmmmeoeee

PS C:\>EventProcessor -reporTitle "ACME Computer Daily
Event Log Report”

This example provides a custom Report Title
------------------------ EXAMPLE 4 === -ommommmomemo

PS C:\>EventProcessor -targetLogName security -eventCount
20 -entryType warning -targetComputer Python-3

This example specifies all the parameters, targetlLogName,
eventCount, entryType and targetComputer

EventProcessor Script Execution

To illustrate the script execution, a sample command and results are
provided here:

PS C:\PS> .\EventProcessor.psi -reportTitle "Python Forensics
Daily Log Report" -eventCount 100 -eventType error

66

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Resulting Directory

As designed, the script produces an HTML Report File with the appended
Epoch value denoting when the script was executed (see Figure 3-7). Since

the .html extension was added, the file system properly identifies the

resulting file as a Google Chrome HTML Document.

Pin to Quick F ’ Delete F New Properties
access [#] Fast teut t t - folder -
Clipboard Organize New Open
« . A » ThisPC » OS(C) » PS v
™ [Name Date modified Type Size
s |y EventProcessor
@ Report-1544359607

fy (37 Invert selection

FH setect an

Select nane

p

Figure 3-7. Resulting report HTML file

HTML Output Report

Examining the report file Report-1544369607 using a browser provides
sample results from the PowerShell script execution. The output includes

the defined report title, the event log that was selected, the target
computer, and the event type that was selected along with the resulting last
100 events with an event type of error. Note that the results were truncated

here for brevity.

67

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Figure 3-8. Resulting HTML report

Remote Access

Note Setting up access to remote systems using the
-ComputerName option (that is available for many CmdLets) can
be difficult to setup within a workgroup. It is much easier when a
Domain Controller is present, or your environment utilizes active
directory. So please consult your system administrator when
attempting to use the -ComputerName CmdLet parameter.

There is an easier method that can provide even greater flexibility and is
more secure. The method is to create a remote PowerShell session with
the target machine. Once the session is established, the commands that
you enter from within PowerShell or PowerShell ISE are executed on the
remotely connected machine. The advantage is not only simplicity, but
it also allows you to execute any CmdLet, even those that don’t support
-ComputerName as a parameter.

68

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Here is a simple example that creates a PowerShell session with a
machine on my local network with the computer name Levovo-Upstairs.
In order to create the session, you must provide the credentials for a user
on the remote machine with Admin rights. The command will pop up a
dialog box requesting the password for the specified account, as shown in
Figure 3-9.

PS5 C:\PS» Enter-PSSession -ComputerNase Lenovo-Upstairs -Credential Lenovo-Upstairs/Remote-Admin

Wordeas Dpmtrinel roderns repan

Figure 3-9. Enter-PSSession credential request

Once the connection is made, you can see that the PowerShell prompt
has changed to:

[Lenovo-Upstairs]: PS C:\Users\Remote-Admin\Documents>

At this point, PowerShell commands that are typed are being executed
on the remote computer Lenovo-Upstairs not on the local machine. In the
example shown in Figure 3-10, the newest 20 warning messages contained
in the system event log on the Lenovo-Upstairs machine are acquired.

PS5 Ci\PS» Enter-PSsession -Computername Lenovo-Upstairs -Credential Lenovo-upstairs/Remote-admin
[Lenovo-upstairs]: PS C:l\Users\Remote-Adein\DOCuments> GET-EVENTLOg -LogName system -ERTryType warning -Newest 20
Index Time EntryType Source InstancelD Message
3632508 Dec 10 12:27

warning WinRM 468001 The description for Event ID "468901° in Scurce "WinRM' ca...
Warning WinRM 468001 The description for Event ID "4B6B901° in Seurce 'WirRM' ca...

632500 Dec 10 Warning BROWSER 2147491669 The browser service was unable to retrieve a list of serve...
3632492 Dec 10 wWarning Microsoft-wWindows. . . 219 The driver \Oriver\wudfRd failed to load for the device SW. ..
3632400 pec 10 11:57 wamming WinRM 468901 The description for Event ID 468901 in Source "wWinRM' ca...
3632375 Dec 10 03:29 wWarming Microsoft-windows. . . 134 NtpClient was unable to set a manual peer to use as a time. ..
3632350 Dec 09 14:14 warming Microsoft-wWindows. . . 16 unable to Connect: Windows is unable to comnect to the aut, ..
3632328 pec 09 02:06 warning Microsoft-Windows. . 134 NtpClient was unable to set a manual peer to use as a time, ..

[Lenovo-upstairs]: PS C:\Users\Remote-Admin\Documents> Exit-PSSession

PS5 C:\PS>

Figure 3-10. Remote access of the system event log

69

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

To exit the remote session the CmdLet Exit-PSSession is issued and
PowerShell is now back operating on the local machine again. This is
shown in Figure 3-10.

Example 2: USB Device Usage Discovery

Obtaining the recent USB devices used can certainly be important when
performing forensic investigations or incident response actions. This can
either help determine if information was exfiltrated from the system, or if
USB insertion could be the cause of malware infection.

The first part of that process is to determine what USB devices have
been detected. On Microsoft Windows systems, the registry provides a
history of devices attached by examining details kept under HKEY_ Local_
Machine. Figure 3-11 shows the specific USBSTOR keys found on my local
machine.

Note On different versions of Windows the registry key of interest
may be different. If so, you will need to change the registry key
definitions used in this example.

70

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

-Fﬂe Edit View Favorites Help

Comments | Computer\ HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USBSTOR
~ B Computer A
| 5> || HKEY_CLASSES_ROOT
te 5> | HKEY_CURRENT_USER
v | HKEY_LOCAL_MACHINE
BCDOO000000
> HARDWARE
> SAM
SECURITY
5 | | SOFTWARE
v | SYSTEM
> || ActivationBroker
b ControlSet001
v | CurrentControlSet
> | Centrel
v Enum
(50624634-2850-40¢3- a3fa-241d2080baf 3)
(8eTbd593-Bebic-4¢52-8606-TT175454dd8e)
ACPI
ACPI_HAL
8TH
DISPLAY
HDAUDIO
HID
HTREE
PCI
ROOT
$CS1
STORAGE

VW W LW LW LW LY LW LW LW LW LW LY LW LW LY LY

e USEPRINT

CdRom&Ven_Kanguru&Prod_Defender&Rev_PMAP
Disk&Ven_Apricom8Prod_Secure_Key_3z&Rev_0401
Disk&Ven_BUFFALO&Prod_HD-PZU3&Rev_ 0001
Disk&Ven_DYMO&Prod_PnP&Rev_1.00
Disk8Ven_Generic&Prod_Flash_Disk&Rev_8.00
Disk&Ven_Genenic&Prod_Flash_Disk&Rev_8.07

. Disk&Ven_Kanguru&Prod_DefenderfiRev PMAP
Disk&Ven_Kingston&Prod_DT_101_G2&Rev_PMAP
Disk&Ven_SanDisk&Prod_Cruzer&iRev_8.02
Disk&Ven_SanDisk&Prod_U3_Cruzer_ MicrofiRev_8.02
Disk8Ven_Staples&Prod_&Rev_1.22
Disk&Ven_Visioner&Prod_RoadWarmior_3&Rev_t.02
Disk&Ven_WD8&Prod_My_Passport_25E28(Rev_4005
Other8iVen_WD&Prod_SES_DeviceBiRev_4005

L L L L L L s e LT LT A ¥

Figure 3-11. Registry history of USB access

71

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Create the Script

Now that we understand the scenario, let’s go through the two steps again
to create the script we need.

Step One: Recent Accessing USB Activity

The question is how can evidence of USB activity be collected using
PowerShell? Also, could a script be developed that would aggregate USB
usage across our network?

Let’s start by accessing the registry and USBSTOR on a local machine.

PowerShell provides a general-purpose CmdLet that can be applied to
many items including the registry: The CmdLet is Get-ItemProperty.

The Get-Help for Get-ItemProperty is shown in Listing 3-10.

Listing 3-10. Get-Help Get-ItemProperty

PS C:\PS> Get-Help Get-ItemProperty

NAME
Get-ItemProperty

SYNOPSIS
Gets the properties of a specified item.

SYNTAX
Get-ItemProperty [[-Name] <String[]>] [-Credential
<PSCredential>] [-Exclude <String[]>] [-Filter <String>]

[-Include
<String[]>] -LiteralPath <String[]> [-UseTransaction]
[<CommonParameters> |

Get-ItemProperty [-Path] <String[]> [[-Name] <String[]>]
[-Credential <PSCredential>] [-Exclude <String[]>] [-Filter

72

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

<String>] [-Include <String[]>] [-UseTransaction]
[<CommonParameters>]

DESCRIPTION
The Get-ItemProperty cmdlet gets the properties of the
specified items. For example, you can use this cmdlet to
get the value
of the LastAccessTime property of a file object. You can
also use this cmdlet to view registry entries and their
values.

RELATED LINKS
Online Version: http://go.microsoft.com/fwlink/?LinkId=821588
Clear-ItemProperty
Copy-ItemProperty
Move-ItemProperty
New-ItemProperty
Remove-ItemProperty
Rename-ItemProperty
Set-ItemProperty

REMARKS

To see the examples, type: "get-help Get-ItemProperty
-examples".

For more information, type: "get-help Get-ItemProperty
-detailed".

For technical information, type: "get-help Get-ItemProperty
-full".

For online help, type: "get-help Get-ItemProperty -online"

73

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Using this CmdLet to acquire recent USB activity can be accomplished
like this. In order to make this easier to understand, for this example the
“Friendly Name” Property of the USB device will be acquired. Please see
Figure 3-12.

PS C:\PS> Get-ItemProperty -Path HKLM:\SYSTEM\
CurrentControlSet\Enum\USBSTOR** | Select FriendlyName

B administrator. Windows PowerShell ISE - o x
File Edit View Tools Debug Add-ons Help

S ™ ax» 9 Bl 8 Boo @&om.
PS C:\PS> Get-ItemProperty -Path HKLM:\SYSTEM\Cur

FriendlyName

Kanguru pefender USB Device

USB Device

Apricorn Secure Key 3z USB Device
BUFFALO HD-PZU3 USB Device
Corsair Voyager USB Device

DYMO PnP USB Device

DYMO PnP USB Device

Generic
Generic
Generic
Generic
Generic
Kanguru

ATA/ATAPI Device USB Device
Flash Disk USB Device

Flash Disk USB Device

Flash Disk USB Device

Flash Disk USB Device
Defender USB Device

Kingston DT 101 G2 USB Device
Kingston DT 101 G2 USB Device
SanDisk Cruzer USB Device

sanDisk Cruzer USB Device

sanDisk Cruzer Blade USB Device
sanDisk U3 Cruzer Micro USB Device
ST500DMO0 02-1BD142 USB Device
Staples USB Device

USB2.0 Flash Disk USB Device
Vvisioner Roadwarrior 3 USB Device
WD My Passport 25E2 USB Device

Completed Ln33 Col 11 125%

Figure 3-12. Using Get-ItemProperty CmdlLet to acquire USB activity

74

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Using the Remote Access method, we now acquire the USB activity
on the remote computer Lenovo-Upstairs. For this, the Enter and Exit
PSSession method is used and the command is executed on the remote
computer. As you can see, the SanDisk Cruzer USB device was identified
on both the local and remote computers.

.=|.Cl)~ r 2B = 8 Boo a@.

PS C:\PS» Enter-PSSession -ComputerName Lenovo-Upstairs -Credential Lenovo-Upstairs)Resote-admin

-upstairs]: # Wsers\Remote-Adein\Docusents» Get-ItenFroperty -Path HKLM:\SYSTEM\CurrentControlSet\Enum\USESTOR** | Select Friendlyname

Figure 3-13. Access USB activity on a remote computer

Invoke-Command PowerShell CmdLet

In cases where only a single remote command needs to be executed, this
can be accomplished by using the Invoke-Command PowerShell CmdLet
instead of setting up a remote PowerShell session. This can be useful when
developing scripts that will acquire evidence from multiple computers. As
always using Get-Help will provide the details on how to utilize the Invoke-
Command CmdLet (Listing 3-11).

Listing 3-11. Invoke-Command
PS C:\PS> Get-Help Invoke-Command

NAME
Invoke-Command

SYNOPSIS
Runs commands on local and remote computers.

SYNTAX

75

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

76

Invoke-Command [[-ConnectionUri] <Uri[]>] [-ScriptBlock]
<ScriptBlock> [-AllowRedirection] [-Argumentlist
<Object[]>] [-AsJob]

[-Authentication {Default | Basic | Negotiate |
NegotiateWithImplicitCredential | Credssp | Digest |
Kerberos}] [-CertificateThumbprint

<String>] [-ConfigurationName <String>] [-Credential
<PSCredential>] [-EnableNetworkAccess] [-HideComputerName]
[-InDisconnectedSession]

[-InputObject <PSObject>] [-JobName <String>]
[-SessionOption <PSSessionOption>] [-ThrottleLimit <Int32>]
[<CommonParameters>]

Invoke-Command [[-ConnectionUri] <Uri[]>] [-FilePath]
<String> [-AllowRedirection] [-ArgumentlList <Object[]>]
[-AsJob] [-Authentication

{Default | Basic | Negotiate |
NegotiateWithImplicitCredential | Credssp | Digest |
Kerberos}] [-ConfigurationName <String>] [-Credential
<PSCredential>] [-EnableNetworkAccess] [-HideComputerName]
[-InDisconnectedSession] [-InputObject <PSObject>]
[-JobName <String>]

[-SessionOption <PSSessionOption>] [-ThrottleLimit <Int32>]
[<CommonParameters>]

-ScriptBlock]

Invoke-Command [[-ComputerName] <String[]>] [
[-Argumentlist

<ScriptBlock> [-ApplicationName <String>]
<Object[]>] [-AsJob]

[-Authentication {Default | Basic | Negotiate |
NegotiateWithImplicitCredential | Credssp | Digest |
Kerberos}] [-CertificateThumbprint

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

<String>] [-ConfigurationName <String>] [-Credential
<PSCredential>] [-EnableNetworkAccess] [-HideComputerName]
[-InDisconnectedSession]

[-InputObject <PSObject>] [-JobName <String>] [-Port
<Int32>] [-SessionName <String[]>] [-SessionOption
<PSSessionOption>] [-ThrottlelLimit

<Int32>] [-UseSSL] [<CommonParameters>]

Invoke-Command [[-ComputerName] <String[]>] [-FilePath]
<String> [-ApplicationName <String>] [-Argumentlist
<Object[]>] [-AsJob]

[-Authentication {Default | Basic | Negotiate |
NegotiateWithImplicitCredential | Credssp | Digest |
Kerberos}] [-ConfigurationName

<String>] [-Credential <PSCredential>]
[-EnableNetworkAccess] [-HideComputerName]
[-InDisconnectedSession] [-InputObject <PSObject>]
[-JobName <String>] [-Port <Int32>] [-SessionName
<String[]>] [-SessionOption <PSSessionOption>]
[-ThrottleLimit <Int32>] [-UseSSL]
[<CommonParameters>]

Invoke-Command [[-Session] <PSSession[]>] [-ScriptBlock]
<ScriptBlock> [-ArgumentlList <Object[]>] [-AsJob]
[-HideComputerName]

[-InputObject <PSObject>] [-JobName <String>]
[-ThrottleLimit <Int32>] [<CommonParameters>]

Invoke-Command [[-Session] <PSSession[]>] [-FilePath]
<String> [-Argumentlist <Object[]>] [-AsJob]
[-HideComputerName] [-InputObject

<PSObject>] [-JobName <String>] [-ThrottleLimit <Int32>]
[<CommonParameters>]

77

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

78

Invoke-Command [-VMId] <Guid[]> [-ScriptBlock]
<ScriptBlock> [-ArgumentList <Object[]>] [-AsJob]
[-ConfigurationName <String>] -Credential

<PSCredential> [-HideComputerName] [-InputObject
<PSObject>] [-ThrottleLimit <Int32>] [<CommonParameters>]

Invoke-Command [-ScriptBlock] <ScriptBlock> [-Argumentlist
<Object[]>] [-AsJob] [-ConfigurationName <String>]
-Credential <PSCredential>

[-HideComputerName] [-InputObject <PSObject>]
[-ThrottleLimit <Int32>] -VMName <String[]>
[<CommonParameters> |

Invoke-Command [-VMId] <Guid[]> [-FilePath] <String>
[-ArgumentList <Object[]>] [-AsJob] [-ConfigurationName
<String>] -Credential

<PSCredential> [-HideComputerName] [-InputObject
<PSObject>] [-ThrottleLimit <Int32>] [<CommonParameters>]

Invoke-Command [-FilePath] <String> [-ArgumentlList
<Object[]>] [-AsJob] [-ConfigurationName <String>]
-Credential <PSCredential>

[-HideComputerName] [-InputObject <PSObject>]
[-ThrottleLimit <Int32>] -VMName <String[]>

[<CommonParameters>]

Invoke-Command [-ScriptBlock] <ScriptBlock> [-Argumentlist
<Object[]>] [-AsJob] [-ConfigurationName <String>]
-ContainerId <String[]>

[-HideComputerName] [-InputObject <PSObject>] [-JobName
<String>] [-RunAsAdministrator] [-ThrottlelLimit <Int32>]
[<CommonParameters> |

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Invoke-Command [-FilePath] <String> [-ArgumentList
<Object[]>] [-AsJob] [-ConfigurationName <String>]
-ContainerId <String[]>

[-HideComputerName] [-InputObject <PSObject>] [-JobName
<String>] [-RunAsAdministrator] [-ThrottleLimit <Int32>]
[<CommonParameters>]

Invoke-Command [-ScriptBlock] <ScriptBlock> [-Argumentlist
<Object[]>] [-InputObject <PSObject>] [-NoNewScope]
[<CommonParameters>]

DESCRIPTION
The Invoke-Command cmdlet runs commands on a local or
remote computer and returns all output from the commands,
including errors. By using a single Invoke-Command command,
you can run commands on multiple computers.

To run a single command on a remote computer, use the
ComputerName parameter. To run a series of related commands
that share data, use the New-PSSession cmdlet to create a
PSSession (a persistent connection) on the remote computer,
and then use the Session parameter of Invoke-Command to run
the command in the PSSession. To run a command in a
disconnected session, use the InDisconnectedSession
parameter. To run a command in a background job, use the
AsJob parameter.

You can also use Invoke-Command on a local computer to
evaluate or run a string in a script block as a command.
Windows PowerShell converts the script block to a command
and runs the command immediately in the current scope,
instead of just echoing the string at the command line.

79

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

To start an interactive session with a remote computer,
use the Enter-PSSession cmdlet. To establish a persistent
connection to a remote computer, use the New-PSSession
cmdlet.

Before using Invoke-Command to run commands on a remote
computer, read about Remote (http://go.microsoft.com/
fwlink/?LinkID=135182).

RELATED LINKS

Online Version: http://go.microsoft.com/fwlink/?LinkId=821493
Enter-PSSession

Exit-PSSession

Get-PSSession

New-PSSession

Remove-PSSession

Using the USB activity acquisition method as a starting point, the

Invoke-Command method can be used to perform this command

remotely. In this example, target and user are first created as variables. The
command is embedded in the -ScriptBlock. As before, the user must enter

the Admin credentials for the remote computer (Figure 3-14).

80

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Figure 3-14. Invoke-Command method USBAcquire

The results to the Invoke command are shown in Figure 3-15.

Figure 3-15. Invoke-Command method USBAcquire results

Step Two: Create the USBAcquire PowerShell Script

Now that we have perfected the method, a simple PowerShell script can
be created to perform this operation for us, with the user supplying the
target computer name and the Admin user. The full script is listed here
as Listing 3-12. I'll show the Get-Help result and a sample execution later
as well.

81

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Listing 3-12. USBAcquire Script

<H
.synopsis
Collect USB Activity from target computer

- User Specifies the target computer

The script will produce details of USB Activity
on the specified target computer

.Description
This script collects USB Activity and target computers

.parameter targetComputer
Specifies the computer to collect the USB Activity

.parameter UserName
Specifies the Administrator UserName on the Target Computer

.example

USBAcquire ComputerName
Collects the USB Activity on the target Computer
#>

Parameter Definition Section
param(
[string]$User,
[string]$targetComputer

)

Invoke-Command -ComputerName $targetComputer -Credential
$User -ScriptBlock {Get-ItemProperty -Path HKLM:\SYSTEM\
CurrentControlSet\Enum\USBSTOR** | Select FriendlyName}

82

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

As you can see, the USBAcquire has the same four major sections as
the EventProcessor script from Example One: Script Header parameter
definition, Local variable definitions, and cmdlet execution using
parameters and local variables. Refer back to that section if you need a
refresher.

USBAcquire Script Execution

The execution and results of the script are demonstrated in Figures 3-16
and 3-17.

PS C:\PS> .\USBAcquire.ps1 -targetComputer PYTHON-3 -user
PYTHON-3\USER-NAME -HIDDEN

a
gt View Tock Cebug Addonc Melp

(%] O » B» |8 oo me

I:.L ..9)\ -

Enter rour pedernsis

Ps C:\Ps> .\USBAcquire.psl -targetcomputer PYTHON-3 -user pyYTHON-3\|NININININGEgNEE

Figure 3-16. USBAcquire script execution requesting credentials

83

CHAPTER 3

POWERSHELL SCRIPTING TARGETING INVESTIGATION

a
Fie gt Veew Took Dwbug Aot Help

[o » ? [I |
PS C:\PS>

Friendlyname

Kanguru Defender USB Device

USE Device .
Apricorn secure Key 3z USE Device
BUFFALO HD-PZU3 USB Device
Corsair Voyager USE Device

DYMO PnP USE Device

DYMO PnP USE Device .

Flash Disk USB Device
Flash Disk use pevice
Flash Disk use pevice
Generic Flash Disk USB Device
Kanguru Defender USB Device
Kingston DT 101 G2 USB Device
Kingston DT 101 G2 USB Device
sanDisk Cruzer USB Device
sanDisk Cruzer USE Device
sanDisk cruzer Blade usSB Device
sanDisk U3 Cruzer Micro USB Device
STS00DM0 02-1BD142 USB Device
staples USB Device

usB2.0 Flash Disk USE Device
Visioner Roadwarrior 3 USB Device
WD My Passport 25E2 USB Device

Generic
Generic
Generic

Complted

Generic ATA/ATAPI Device USB Device

-

T,
.\USBAcquire.psl -targetComputer PYTHON-3 -user PYTHON- 3\

PSComputerName RunspaceId

98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9
98dc9fbb-5877-47ed-bd42-27dd20782ed9

Ln33 Cal 1

Figure 3-17. Results USBAcquire PowerShell script

USBAcquire Get-Help Result

The script contains a proper heading section; thus, user help can be

obtained using the Get-Help CmdLet, shown in Listing 3-13.

Listing 3-13. USBAcquire Get-Help

PS C:\PS> Get-Help .\USBAcquire.psi

NAME
C:\PS\USBAcquire.ps1

SYNOPSIS

Collect USB Activity from target computer

User Specifies the target computer

84

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

The script will produce details of USB Activity
on the specified target computer

SYNTAX
C:\PS\USBAcquire.ps1 [[-User] <String>] [[-targetComputer]
<String>] [<CommonParameters>]

DESCRIPTION
This script collects USB Activity and target computers

RELATED LINKS

REMARKS
To see the examples, type: "get-help C:\PS\USBAcquire.ps1
-examples".
For more information, type: "get-help C:\PS\USBAcquire.ps1
-detailed".

For technical information, type: "get-help C:\PS\
USBAcquire.ps1 -full".

Challenge Problem: Create File Inventory
List with Hashes

Based on what you have learned about PowerShell scripts and Remote
Access methods, your challenge is to leverage this knowledge to solve the
following problem.

Develop a PowerShell script that will create an inventory of a computer
detailing all directories and files found. The script will allow the user to

specify:
o Target Computer

o Starting Directory

e Output File

85

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

Your script should produce an HTML file that contains the following
information:

o Directory

o FileName

o FileSize

o LastWriteTime

e Owner

o FileAttributes (i.e., ReadOnly, Hidden, System, Archive)

The script will recurse all the folders beginning with the Starting
Directory.

Hint You will be focusing on the CmdLet Get-Childitem.

Finally, your script will contain full Help information.
A sample script solution can be found in Appendix A and at
Www.apress.com/9781484245033.

Summary

This chapter focused on the construction of PowerShell scripts that can be
used by investigators to obtain information from event logs and recent USB
activity. The Get-EventLog CmdLet and Get-ItemProperty were the focus
of our acquisitions.

86

http://www.apress.com/9781484245033

CHAPTER 3 POWERSHELL SCRIPTING TARGETING INVESTIGATION

In addition, the creation of PowerShell sessions was covered as an
additional method to obtain evidence from remote computers when
proper credentials are available using the Enter-PSSession CmdLet. Also,
the Invoke-Command PowerShell CmdLet was covered that allows for
the execution of a single command or script without creating a persistent
session.

Chapter 4 will introduce, compare, and contrast PowerShell and
Python and begin the process of combining these two powerful scripting

languages.

87

CHAPTER 4

Python and Live
Investigation/
Acquisition

Searching is the mainstay of digital investigation. What has changed over
the past decade is the vast amount of data to search, the various types of
content to search, and the type of information that is needed to connect
the dots of specific criminal activity.

Today, digital data is connected to all criminal activity. Using this data
to understand (and potentially prove) the motive, opportunity, and/or
means to commit the crime is paramount. In many cases, we can utilize
this data to develop a profile of a suspect(s) and predict future activities. In
addition, we can discover the location, behaviors, and content of specific
digital devices whether they be phones, tablets, computers, drones,
watches, or a wide range of IoT devices.

Currently, many still think about digital evidence as static data that
is examined after we image digital media. This is changing of course,
especially in Digital Forensic Incident Response, or DFIR, activities.
Collecting, examining, and reasoning about “live” evidence is not new - I
began writing about this and developing solutions as far back as 2006.

'https://gcn.com/Articles/2006/07/27/Special-Report%2D%2DLive-
forensics-is-the-future-for-law-enforcement.aspx

© Chet Hosmer 2019
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_4

https://gcn.com/Articles/2006/07/27/Special-Report%2D%2DLive-forensics-is-the-future-for-law-enforcement.aspx
https://gcn.com/Articles/2006/07/27/Special-Report%2D%2DLive-forensics-is-the-future-for-law-enforcement.aspx

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

As the need for immediate response, early indications and warning,
detection of aberrant behavior, and anticipation of bad actions before
they occur becomes vital in society, “live” forensics will eventually work
hand in hand with traditional postmortem practices. Thus, by leveraging
PowerShell to acquire specific targeted evidence, we can take the next step
in processing and reasoning about actions as they happen.

All of this provides significant opportunities to develop new methods
of detection, reasoning, analysis, and of course evidence of criminal
activity. However, before we can fly, run, walk, or even crawl, we need
to tackle some basic challenges and develop software that integrates
PowerShell-driven acquisition with the power of Python. There are two
fundamental ways to approach this:

e Method 1: Launch PowerShell CmdLets or scripts and
then collect and post-process the results in Python.

e Method 2: Execute PowerShell CmdLets or scripts and
pipe the results to waiting Python scripts.

Method 1 will be examined in this chapter and Method 2 will be
addressed in Chapter 5. In both cases, the methods will be explored by
example.

What Is “By Example”?

There are literally hundreds of books on Python in existence, and most
are focused on how to program and typically take the approach of
teaching you the intricacies of the language. These texts are designed for
those pursuing a career in computer science, software engineering, web
development, or Big Data processing.

Our goal here is to apply Python to specific digital investigation
challenges and combine Python and PowerShell to create solutions.
Interestingly enough, along the way you will learn new scripting techniques.

90

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

The best analogy I can think of is learning about a new culture. You
can read about the Mayan culture, watch movies about their history, and
examine maps of the countries where they resided. Or you can travel there
and walk through their world, speak with the Maya people, explore their
sacred sites, and experience the culture firsthand.

Directing PowerShell with Python

Since the end date of Python 2.7 is approaching, Python 3.7 will be used
for all the Python-based examples for this book. Python 2 and 3 contain

a formidable amount of built-in standard libraries along with thousands
of third-party libraries. Whenever possible, Python standard libraries will
be used in order to ensure the broadest cross-platform compatibility. You
can obtain Python 3.7 directly from www. python.org. As of this writing, the
latest version available is Python 3.7.2, as shown in Figure 4-1.

91

http://www.python.org

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

Python

e python . I

About Downloads Documentation Community Success Stories News Events

! Functions Defined

Python is a prog g language that lets you work quickly
and integrate s)

) Get Started & Download {7) Docs & Jobs

Cur retaunched
community-run job board s the

place to go

Figure 4-1. Download Python 3.7.2 (www.python.org)

In addition to the latest version of Python, I highly recommend the use
of a Python Integrated Development Environment. My favorite is WingIDE.

The personal edition is free and works fine for most Python
development and scripting challenges. The web site provides great
tutorials on how to configure and use WingIDE can be found at:

WWwW . wingware.com

92

http://www.wingware.com
http://www.python.org

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

WING!

The INTELLIGENT DEVELOPMENT ENVIRONMENT

Wing is a Python IDE with powerful debugger and
intelligent editor that make interactive Python

development fast, accurate, and fun.

Current version: 6.1.4 | Early access: 7.0.0.6 (beta)
Free editions: Wing Personal | Wing 101 | Compare

PYTHON

D

for PYTHON PROGRAMMERS

LN et iy (e | Wonp
hwha dAhxrnsSy DroY T TS EE-DEA S
Project: ide-7.05.mwpr [S323 fles [437 dirs] Options * e Run Tests = Siop Debug Filter. remote
* mainloop oy L ; » * CRemoteServer TestiForPython3s
“ memprofile S >t CRemoteServer TestsForPython 36
optutih ¢ = ¢ CRemoteServerTestaForPython 37
optutily py g ¥ < test_remotecps.py (src/wingutils ftest) [run Dec 07]
posinminemodulbe T ¥+ CheparateProcessEchoServerTest
* profile_utils py 5 + testicho
* pygtk_to_pl.py T
" pyvabariter.c « testErhoMugeValue
* recent.py g / testRaeValueLrror
reflect. py - :
- | Tesung Search Python Shell _ Oebup Probe 051 -/
@ et to,text.py Tt A remoteops.py * CProwy < _getatiribute__ -+ wiap - A mwX
run_unittests_xmlp -+ wrap() remoteops - Options * are called when the operation / method completes with a return .
Variabie Valot - g vilue or an exception, respectively. ==
¥ locals <lotals Gel. len=6>] = &
> argy idatetime datetime2019 T b1
* context <wingutils.remoteop. O b - . ; ool _-‘;:(E I-_:;ﬂl'lattnwte_[uu, nane)
> (ealiback” <bound meth i‘. . <
name Echo 1
objiid L ¥ context = self._fContext
 self r-mun(mm.cl obj_id = self._foojID
> on_destroy<cyf .
- AP VAAE o AL The mass s e e k- e det .,~‘“"" T
o1 of cb_lint iguiutiy gt_utils. QraidgetAdapterMiningul ~ ©))
utils_py, line 2204: _ cb Nyt = self, IConnections.gen & & callback = b, popl’callback’)
AT T —— if "excestion: fn ki
qt_utilspy, line 22113: for | i wrange(kenich_list) .I"CIH‘OI lon = kw.pop(exception®)
o LH - [- H
g mptigesd el o of 0 exception = self._foefaultExcept ionCallback
" wiils. l'|. movelé - AF exception is None:
- + fn 2234 ch_lsure d exception = gon _foefsultExcept lonCallback
L Af exception is t

5
g

radse TypeError,
callback_if_destroyed = kw.pop(’callback

context . SendMethodlalliocb)_id, nase, arg
=

form

"Exception callback must be nom Nom

Lse)

et il

Figure 4-2. Wingware/WingIDE home page (www.wingware.com)

93

http://www.wingware.com

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

Launching PowerShell CmdLets from Python

Now that you have the basic tools available (PowerShell installed and
running, Python installed and running, and WingIDE to experiment), you
are set to perform the first integration of Python and PowerShell.

In Chapters 1 and 2, the discovery, use, and forensic applications
of CmdLets were covered. I'm sure that you have already experimented
with an assortment of additional CmdLets. Therefore, what if we could
execute a PowerShell CmdLet from Python and capture the results? Since
PowerShell is an executable process, so we will use Python’s standard
library providing the ability to launch processes. This is done using the
subprocess standard library. In Python in order to utilize any standard or
third-party libraries, you must import them. This is done with a simple
import statement. In this case, the statement simply is:

import subprocess

This provides access to the methods and properties contained in the
subprocess library. Many options are available - the most popular is using
the check.output method which executes the specified process and returns
the result. Here is an example:

runningProcesses = subprocess.check output("powershell
-Executionpolicy ByPass -Command Get-Process")

One of the nice features of the WingIDE Python Integrated
Development is the ability to experiment with commands within the
interactive shell as shown in Figure 4-3. The three greater-than signs
(>>>) are the interactive shell prompt. This is the same prompt you would
receive if you launched Python from the command line or terminal

window.

94

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

4 pyPiCmaepy (CAUiercone o4 Beranits Beer Ageess P omarirel Chrapters Chagptes 8.5cngt) Dokt Prosect Wing - o

Fle B8t Souce Preect Db

EwEG

eWiindetoy® oviloetov

il B+ Ee = 2 1w 1% 7 4 .-

el DebglO Sewch Dxcestors Sewrchin Pl
rrcy Dhecute et GG LN o ket R Py R —
33> import subprocess g
33> runningProcesses = subprocess.check output(“powershell -Executionpolicy ByPass -Command Get-Process”™) &
) H

Figure 4-3. Executing a PowerShell CmdLet from the Python shell

The breakdown of each of the elements of the subprocess code is as
follows and in Figure 4-4.

e A.Theresult of the command will be stored in the
variable named runningProcesses. You can, of course,
use any allowable variable name. I use camel case when
defining variables in Python starting with a lowercase
letter and then capitalizing each subsequent word. This
makes it easy to identify variables in your code.

o B.The assignment operator or = equal sign assigns
the results of the subprocess command to the variable
runningProcesses.

o C.subprocess.check_output is the selected method
from the subprocess library. It takes a single parameter
enclosed in quotes and defines the command line you
wish to execute.

e D. The quoted string inside the parenthesis specifies
the command to execute. E-H defines each element of
the powershell command to execute.

o E.powershell is the command, or in this case the
process to execute.

95

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

o F. -Executionpolicy ByPass, by default, PowerShell
will not execute scripts or CmdLets without explicit
permission. The parameter -Executionpolicy specifies
the policy for the PowerShell command. The parameter
ByPass tells PowerShell to block nothing and issue no
warnings or prompts.

e G. -Command specifies that what follows is a PowerShell
Command. In this case it is a simple CmdLet, but could
be a more complex pipeline-based command. If you
desire to execute a PowerShell script, this would be
changed to -File and would be followed by a valid .ps1
filename.

e H.Get-Process is the specific CmdLet that is to be
executed. In this example the Get-Process CmdLet is
executed with no parameters.

D
B 1

[|

runningProcesses = subprocess.check_output("powershell -Executionpolicy ByPass -Command Get-Process")

) |) J J J
L T |] J L Y |]' | l

A C E F G H

Figure 4-4. Python subprocess command breakdown

In Python 3.x, the subprocess.check_output() method returns a byte
string, where in Python 2.7 it returned a simple string. Therefore, to display
the output from the Command, the runningProcesses variable needs to be
decoded as shown here:

print(runningProcesses.decode())

96

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

Executing this command within the WingIDE Python interactive shell
delivers the results shown in Figure 4-5. Note the results are truncated for
brevity.

PrthonShel Debugl/0 Search Ewceptons Search nFles
Commands execute without debug. Use arow beys for hstery.
»>>> import subprocess

>>> runningProcesses = subprocess.check_output(“powershell -Executionpolicy ByPass -Command Get-Process™)
»»> print(runningProcesses.decode())

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

238 23 14572 3276 2.28 1e472 1 ApplePhotoStreams
31e 19 7264 8468 2.11 14548 1 ApplicationFrameHost
374 25 4764 2168 8.72 11684 1 APSDaemon

149 9 1348 352 4248 8 armsvc
1680 26 12604 20916 4084 @ avgsvca
1117 39 23016 15224 36.75 1896 1 avguix

315 17 3532 5528 2.48 5832 1 CastSrv

324 38 76996 112504 3.38 8388 1 chrome

320 32 85788 120848 11.83 9776 1 chrome

268 21 28596 34688 9.14 11484 1 chrome

Figure 4-5. Printing out the contents of the runningProcesses variable

At this point you might be saying why would I go through the trouble
to execute a PowerShell Command or CmdLet from Python? In order to
answer that question let’s take this example to the next level.

Creating a System Files Baseline
with PowerShell and Python

Let’s say you wish to establish a baseline of what drivers are currently
installed under Windows, specifically c:\windows\system32\drivers\. You
could target any directory, subdirectories, or the whole system for that
matter, but system drivers run with privilege, and detecting new drivers,
modifications of existing drivers, or removal of a driver could be useful
during an investigation.

97

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

Obtaining information regarding files is accomplished using the Get-
ChildItem CmdLet within PowerShell. This CmdLet has many features,
properties, and methods associated with it. What we are interested in to
create the baseline is:

1. The hash of each file for creating a known good
hashset used by forensic software

2. The name of each file

It is quite straightforward to obtain this information from PowerShell
using the Pipeline command shown as follows. The truncated results are
depicted in Figure 4-6 and the command breakdown is described in detail
in Figure 4-7.

Get-ChildItem c:\windows\system32\drivers\ |
Get-FileHash | Select-object -Property Hash, Path | Format-
Table -HideTableHeaders

T]

PR % @ Emoise,
Ps C:\Ps> Get-Childitem c:‘\windows\system32\drivers' | cer-FileHash | select-object -Property Hash, Path | Format-Tab

EDAQGBCCILE5DTIBBCA FOY3A0EDDEDSEBCAFO303F4458CBCOFTICLE695193F391 C: \windows \system32\drivers\1028_pel1_INs_24-745...
DF4EBAALZEDBIAE4 541 1AABDIEDED 16E 2CCHI6IFRAGGABB1ACIBZISIRSE042DC C\windows\system32 \drivers)\1394ohci . sys
4AD54DA24142BCE49FBE4CFF2CE2ET64FAAG3E2TETDBO2925090B6BFECTIBLIFE C: \windows \system32idrivers)\Inare. sys
09FT3D8FBI3EAS24D3ICIAIC264FE623405600CT0425895074318626A04198FILF C:\windows'\system32\drivers\acpi.sys
22A13064E0B47 2A0A225BD61ABBIB7 IEE IF53TDATTO6CCE 39DFS7 JAFABFALSET C:\windews\system32\drivers\AcpiDev.sys
3AT03A204FDE4GCET0LTC274CALFSOFSS10909EELB2AB2697E8944204A5569CE C: \windows \system32\drivershacpiex.sys
B1E5DT2949E43F04312C95BFOFFSC2 SCFESCADCDF43415E01AB2B1550D06CT 37 C:\windms\systen}Z\dr'i\.'ers\acpipagr.sys
A3ABTOS4ETOCEE47FO1902633E6376FIAACCEFIET4DBIB3SEE2E15D036DBI6E2 C: \windows \system32idrivers\acpipmi .sys
33FBL09ABD1EFEF4DAS04TBAAIFAFGIESED5BAL8264420802F91300AD11D15F2 o windows \system32\driversi\acpitime.sys
9D62ATEZDDALSEZE7 5490CCRICEELDA41030F 49649363 1E0ED5FL003DF3I68290 C:\windows \systeni2\drivers\adpBOxx . sys
40BB183049DE3ADCCTASBIB269620C85342018BTA056157434C857DE249559EE C: \windows\system32idrivers\afd.sys
CFO0798CA6892FF522515502CTBCCI69AIAG31E22919CBEDAZFIFEEFAFOSE3OL C: \windows \system32idrivers\afunix. sys
4GB4EBO5828C2153FEF4468E7ATAT SDECH1FI0ETO0B437C5990BCI451ADIBACT C: \windows \systend2drive rs\agi Tevpn.sys
FD211157885654 100CO4B367 7657 2FADCT425F 1BOB49EACCIL0DIELT 5208ATEC C:\windows \system32\drivers\ahcache .sys

Figure 4-6. Obtain file hash and path using PowerShell (note output
is truncated)

The breakdown of the Pipeline command is shown as follows and in
Figure 4-7.

e A. Get-Childltem CmdLet specifying the target folder
windows\system32\drivers.

98

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

e B. The output of the Get-Childltem CmdLet is piped
to the Get-FileHash CmdLet which will, by default,
generate the SHA-256 hash of each file.

e C. The result of the Get-FileHash CmdLet will be piped
to the Select-Object CmdLet which will extract just
the SHA-256 hash value and the File Path of the two
outputs that are needed.

e D. The results of the Select-Object CmdLet are then
passed to the Format-Table CmdLet which removes the
Table Header from the output.

A B ?
[\ [1 1
Get-Childitem c:\windows\system32\drivers\ | Get-FileHash | Select-Object -Property Hash, Path |
Format-Table -HideTableHeaders
L ' J
D

Figure 4-7. PowerShell Pipeline breakdown Get-Childltem,
Get-FileHash, Select-Object, and Format-Table

Creating a PowerShell script with input parameters will make this
command a bit more useful and re-useable. The complete script is shown
in Listing 4-1.

Listing 4-1. HashAquire.psl1 Script

<H#
.synopsis
Collect Hash and Filenames from specified folder

- User Specifies the target computer
- User Specifies the target folder

99

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

The script will produce a simple ascii output file containing
SHA-256Hash and FilePath

.Description
This script collects Hash and Filenames from specified computer
and folder

.parameter targetComputer
Specifies the computer to collect the specified file hash
information

.parameter UserName
Specifies the Administrator UserName on the Target Computer

.parameter outFile
Specifies the full path of the output file

.example

HashAcquire
Collects the file hashes on the target Computer
#>

Parameter Definition Section

param(
[string]$TargetFolder="c:/windows/system32/drivers/",
[string]$ResultFile="c:/PS/baseline.txt"

)

Get-ChildItem $TargetFolder | Get-FileHash | Select-Object
-Property Hash, Path | Format-Table -HideTableHeaders | Out-
File $ResultFile -Encoding ascii

The script has the standard sections in order to provide the proper
Get-Help support, as shown in Listing 4-2.

100

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

Listing 4-2. Get-Help Results for the HashAquire.ps1 PowerShell
Script

PS C:\PS> Get-Help .\HashAcquire.ps1

NAME
C:\PS\HashAcquire.ps1

SYNOPSIS
Collect Hash and Filenames from specified folder

- User Specifies the target computer
- User Specifies the target folder

The script will produce a simple ascii output file
containing
SHA-256Hash and FilePath

SYNTAX
C:\PS\HashAcquire.ps1 [[-TargetFolder] <String>]
[[-ResultFile] <String>] [<CommonParameters>]

DESCRIPTION
This script collects Hash and Filenames from specified
computer and folder

RELATED LINKS

REMARKS
To see the examples, type: "get-help C:\PS\HashAcquire.ps1
-examples".
For more information, type: "get-help C:\PS\HashAcquire.psi
-detailed".

For technical information, type: "get-help C:\PS\
HashAcquire.ps1 -full".

101

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION
The script contains two input parameters TargetFolder and ResultFile.

Parameter Definition Section

param(
[string]$TargetFolder="c:/windows/system32/drivers/",
[string]$ResultFile="c:/PS/baseline.txt"

Using the default parameters, the script creates the baseline.txt file.
The abbreviated results are shown in Figure 4-8. By supplying a parameter
for specifying the target folder, this script can now be applied to any
legitimate folder.

Note Access to certain folders will require administrator privilege.
Make sure that you are running PowerShell as Admin.

PS C:\PS> .\HashAcquire.ps1

Figure 4-8. baseline.txt abbreviated results

Creating the Baseline with Python

Now that we have a reliable method of extracting the hash and filename
using the HashAcquire.ps1 PowerShell script, we can use Python to create
a baseline from these results. However, for this we will create a Python
script/program instead of using the interactive shell.

102

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

The plan is to launch the PowerShell script from Python and extract
the results from the created text file. You can specify the name and location
of the resulting file by using the ResultFile parameter provided by the

script.

Note The current PowerShell script only processes the specified
directory. However, the Get-Childltem CmdLet has an optional
parameter that could be used to specify sub-folder acquisition as
well. That parameter is -recurse, by using:

Get-Help Get-ChildItem

You will find that Get-Childltem has many options and example
usage.

The next step is to store the extracted results in a Python dictionary to
produce a baseline. Once the dictionary baseline is created, the resulting
dictionary can be stored and used for comparison. This way you can detect
any new, modified, or deleted files from a target folder.

Note Python dictionaries, much like traditional Webster-style
dictionaries, have a Key and a Value, which are typically referred to
as a Key/Value pair. In Python, both the Key and the Value can be
complex, the only rule being that the Key must be a hashable type
such as an integer, long, string, or tuple. The Value part of the Key/
Value pair can be a list or other nonhashable data type. In addition,
the dictionary’s keys must be unique (much like real dictionaries).

103

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

The complete CreateBaseline.py script is shown in Listing 4-3.

Note For the PowerShell and Python scripts throughout the rest
of the book, the directory c¢:\PS was created to hold the scripts and
results.

Also, do not try to copy and paste the Python scripts from the
book text. Python uses a method of strict indentation that can
be corrupted through the copy and paste process. The publisher
has provided access to the source code files at: www.apress.
com/9781484245033.

Listing 4-3. CreateBaseLine Python Script

Step One Create a baseline hash list of target folder
December 2018, Python Forensics

""" LIBRARY IMPORT SECTION "''

import subprocess # subprocess library

import argparse # argument parsing library
import os # Operating System Path
import pickle # Python object serialization

"' "ARGUMENT PARSING SECTION "''

def ValidatePath(thePath):
"'"' Validate the Folder thePath
it must exist and we must have rights
to read from the folder.

104

http://www.apress.com/9781484245033
http://www.apress.com/9781484245033

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

raise the appropriate error if either
is not true
Validate the path exists
if not os.path.exists(thePath):
raise argparse.ArgumentTypeError('Path does
not exist')

Validate the path is readable

if os.access(thePath, os.R _OK):
return thePath

else:

raise argparse.ArgumentTypeError('Path is not readable")

#End ValidatePath

and return results

Specify and Parse the command line, validate the arguments

parser = argparse.ArgumentParser('File System Baseline Creator

with PowerShell- Version 1.0 December 2018')

parser.add argument('-b', '--baseline’,
required=True,
help="Specify the resulting dictionary baseline file")

parser.add argument('-p', '--Path’,
required=True, type= ValidatePath,
help="Specify the target folder to baseline")

parser.add argument('-t', '--tmp',
required=True,

help="Specify a temporary result file for the PowerShell Script")

105

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

args = parser.parse args()

baselineFile = args.baseline

targetPath = args.Path

tmpFile = args.tmp

""" MAIN SCRIPT SECTION "'’

if _name__ == "'_main_':
try:

""" POWERSHELL EXECUTION SECTION '''

command = "powershell -ExecutionPolicy ByPass
-File C:/PS/HashAcquire.ps1"+"
-TargetFolder "+ targetPath+" -ResultFile "+ tmpFile

print(command)

powerShellResult = subprocess.run(command,
stdout=subprocess.PIPE)

if powerShellResult.stderr == None:

"''" DICTIONARY CREATION SECTION "'’
baseDict = {}

with open(tmpFile, 'r') as inFile:
for eachLine in inFile:

linelist = eachLine.split()

if len(linelist) == 2:
hashValue = linelist[0]
fileName = linelist[1]
baseDict[hashValue] = fileName

else:
continue

106

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

with open(baselineFile, 'wb') as outFile:
pickle.dump(baseDict, outFile)

print("Baseline: ", baselineFile,
" Created with:", "{:,}".format(len(baseDict)), "Records")
print("Script Terminated Successfully")
else:
print("PowerShell Error:", p.stderr)

except Exception as err:
print ("Cannot Create Output File: "+str(err))

quit()

Those new to Python might find this script a bit complicated.
Therefore, the script has been broken down into the following sections
here:

1. LIBRARY IMPORT

2. ARGUMENT PARSING

3. MAIN

4. POWERSHELL EXECUTION
5. DICTIONARY CREATION

LIBRARY IMPORT: As the name implies, this is where the needed
Python libraries are loaded. They include:

e subprocess: Used to launch the PowerShell script
e 0s: Used for file and folder validation

o argparse: Used for parsing the command line
arguments

o pickle: Used to store the resulting dictionary to a file for
later use

107

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

ARGUMENT PARSING: This section sets up and then processes user
command line arguments. For this script, the required arguments include
the following:

e -bspecifies the resulting dictionary baseline filename.

e -pspecifies the target path to be used by the PowerShell
script to store the extracted hash and filenames.

o -tspecifies the tmp file that will be used by the
PowerShell script to store the hash data.

The argparse library in Python automatically processes the command
line and validates that the user has entered all the required arguments and
will provide help if requested. Figure 4-9 depicts the test folder and the
result of executing the script with only the -h option.

I B Administraton Command Prompt - o b

C:\PS>dir
Velume in drive C is 0S
Volume Serial Number is ECD2-7A54

Directory of C:\PS
12/31/2018 10:53 AM <DIR>

12/31/2018 1@:53 AM <DIR> .
12/31/2018 1@:44 AM 2,712 CreateBaseline.py

12/1e/2018 10:29 AM 2,820 EventProcessorfinal.psl
12/29/2018 11:38 AM 979 Hashacquire.psl
12/11/2818 18:43 AM 817 USBAcquire.psl

4 File(s) 7,328 bytes

2 Dir(s) 171,765,731,328 bytes free

C:\PS>python CreateBaseline.py -h
usage: File System Baseline Creator with PowerShell- Version 1.8 December 2018
[-h] -b BASELINE -p PATH -t TMP

optional arguments:
-h, --help show this help message and exit
-b BASELINE, --baseline BASELINE
Specify the resulting baseline file
-p PATH, --Path PATH Specify the target folder to baseline
-t TMP, --tmp TMP Specify a temporary result file for the PowerShell
Seript

C:\PS>

Figure 4-9. Execution of the CreateBaseline.py script requesting help

108

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

The argument processing section results in the creation of three
variables:

1. [-b] baselineFile: Which specifies the resulting
baseline dictionary file. This file will be created by
the Python script.

2. [-p] targetPath: Which is passed to the PowerShell
script to specify which folder to baseline. This is
used by the PowerShell script.

3. [-t] tmpFile: Which is passed to the PowerShell
script to specify the resulting temporary text file
that will hold the intermediate results. The Python
script uses this temporary file once generated by the
PowerShell script.

MAIN: The main section performs the core elements of the script once
the preliminary setup is complete.

POWERSHELL EXECUTION: This section launches the PowerShell
script. It first creates a variable named command that will be used by the
subprocess.run() method to launch the PowerShell script. Note that the
execution in this case specifies a file, -File vs. a command, -Command
that was used in the previous examples. It specifies the PowerShell script
HashAcquire.ps1. Upon completion of the subprocess command, the
standard error or stderr result is checked for successful completion.

The result should be None. If not, the Python script will report the error
returned.

DICTIONARY CREATION: If the PowerShell command was completed
successfully, the temporary result file is then processed by the Python
script in order to create the dictionary. Since the format of the resulting
file is defined in the PowerShell script, processing each line of the file to
extract the hash value and file path can be accomplished using a Python
iteration loop. A dictionary entry is created for each line using the Hash

109

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

Value as the Key and the File Path as the Value of the KEY/VALUE pair.
Once all the lines have been processed, the Python pickle library is used
to store the created dictionary in the file specified on the command line
which is now contained in the variable baselineFile. The Python script will
then report details of the script. If any errors or exceptions occur during
the Python script, the script will report the exception.

Figure 4-10 shows a successful execution of the CreateBaseline.py
Python combined with the HashAcquire.ps1 PowerShell script. As you can
see, the script produced 447 dictionary entries for the files contained in the
c:/windows/system32/drivers/ folder. In addition, the two specified files
baseline.txt and baseline.pickle were created in the c:/PS/ folder.

powarshall -ExecutionPolicy ByPass -File C:/PS/Hashicquire.psl -TargetFolder c:/windows/system3Z/drivers -ResultFile ./baseline.txt

seline: baseline.pickle Created with: 447 Records
cript Terminated Successfully

C:\PSrdir
volume in drive C is OS
Volume Serial Number iz ECD2-7AS54

Directory of C:\FS

12/31/2018 12:32 PM <DIR>
12/31/2018 12:32 PM <DIR> ..
12/31/2018 12:32 PM 54,385 baseline.pickle
12/31/2018 12:32 PM 54,806 baseline.txt
. FRALEBAZEIinE Py

18:29 AM 2,820 EventProcessorFinal.psl

12/10/ 2018

12/31/2018 11:15 AM 955 HashAcquire.psl

12/11/2018 18:43 AM 817 USBAcquire.psl
6 Fila(s) 116,034 bytes

2 Dir(s) 171,755,188,224 bytes free

Figure 4-10. Python/PowerShell script combined script execution

Verifying the Baseline with Python

The next step is to create a Python Script that will verify that the current
version of the selected folder has not changed. Basically, we are creating
a simple tripwire of sorts. What are the specific validations that should be
accomplished by the verification script?

110

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

1. Have any files been added?
2. Have any files been deleted?
3. Have any files been changed?

We are going to reuse the HashAcquire.ps1 PowerShell script and
make some modifications to the processing of each entry returned by
HashAcquire.psl. For the most part, the VerifyBaseline.py script looks
almost identical to the CreateBaseline.py script. The only modifications
include:

1. Addition of the BASELINE DICTIONARY LOAD
SECTION

2. Addition of the DICTIONARY TEST SECTION and
associated dictionary validation functions

Listing 4-4 contains the full verification Python script. Note the
HashAcquire.ps1 PowerShell script is unchanged.

Listing 4-4. Verify Baseline Python Script

Step Two Verify a baseline hash list against a target folder
December 2018, Python Forensics

""" LIBRARY IMPORT SECTION "''

import subprocess # subprocess library

import argparse # argument parsing library
import os # Operating System Path
import pickle # Python object serialization

""ARGUMENT PARSING SECTION "'

111

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

def ValidatePath(thePath):

"'"' Validate the Folder thePath
it must exist and we must have rights
to read from the folder.
raise the appropriate error if either
is not true

Validate the path exists

if not os.path.exists(thePath):
raise argparse.ArgumentTypeError('Path does not exist')

Validate the path is readable
if os.access(thePath, os.R _OK):
return thePath
else:
raise argparse.ArgumentTypeError('Path is not readable')

#End Validatepath === ===============

Specify and Parse the command line, validate the arguments
and return results'''

parser = argparse.ArgumentParser('File System Baseline
Validation with PowerShell- Version 1.0 December 2018")

parser.add argument('-b', '--baseline',required=True,
help="Specify the source baseline file to verify")

parser.add argument('-p', '--Path’,
type= ValidatePath, required=True,
help="Specify the target folder to verify")

parser.add argument('-t', '--tmp', required=True,
help="Specify a temporary result file for the PowerShell Script")

112

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

args = parser.parse args()

baselineFile = args.baseline
targetPath = args.Path
tmpFile = args.tmp

def TestDictEquality(di,d2):
""" return True if all keys and values are the same
otherwise return False """
if all(k in d2 and di[k] == d2[k
if all(k in d1 and di[k] ==
return True
else:

return False

] for k in d1):
d2[k] for k in d2):

else:
return False

return all(k in d2 and di[k] == d2[k]
for k in d1) \
and all(k in d1 and di[k] == d2[k]
for k in d2)

def TestDictDiff(d1, d2):
""" return the subset of di1 where the keys don't exist in
d2 or the values in d2 are different, as adict """
diff = {}

for k,v in di.items():
if k in d2 and v in d2[k]:
continue

113

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

else:
diff[k+v] = "Baseline Missmatch"

return diff

""" MAIN SCRIPT SECTION '''

if name_ ==" main_"':

try:
""" POWERSHELL EXECUTION SECTION '''
print()
command = "powershell -ExecutionPolicy ByPass -File
C:/PS/HashAcquire.ps1"+" -TargetFolder "+ targetPath+"
-ResultFile "+ tmpFile
print(command)
print()

powerShellResult = subprocess.run(command,
stdout=subprocess.PIPE)
if powerShellResult.stderr == None:

""" BASELINE DICTIONARY LOAD SECTION '''
Load in the baseline dictionary

with open(baselineFile, 'rb') as baseln:
baseDict = pickle.load(baselIn)

""" DICTIONARY CREATION SECTION "''

Create a new dictionary for the target folder
newdict = {}

with open(tmpFile, 'r') as inFile:
for eachLine in inFile:
lineList = eachLine.split()

114

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

if len(linelist) == 2:
hashValue = linelList[0]
fileName = linelist[1]
newDict[hashValue] = fileName
else:
continue

"'' DICTIONARY TEST SECTION "''

if TestDictEquality(baseDict, newDict):
print("No Changes Detected")

else:
diff = TestDictDiff(newDict, baseDict)
print(diff)

else:
print("PowerShell Error:", p.stderr)

except Exception as err:
print ("Cannot Create Output File: "+str(err))

quit()
Overview of the New Code Sections in
VerifyBaseline.py

DICTIONARY LOAD: This section loads the specified dictionary from the

saved pickle file that was created in the CreateBaseline.py script. The pickle.

load() method is used to restore the dictionary from the specified file.
DICTIONARY TEST: This section utilizes two newly created functions:

o TestDictEquality()

e TestDictDiff()

115

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

The TestDictEquality function compares the newly created dictionary
of the target folder with the saved dictionary that was loaded using the
pickle.load() method. The two dictionaries

e baseDict
¢ newDict

contain the dictionaries to compare. The dictionaries contain the
SHA-256 Hash (key) and Filename (Value) for each dictionary. Python
provides many useful built-in mechanisms to compare and iterate
through dictionaries. The TestDictEquality function verifies that the two
dictionaries are an exact match. And if they are, True is returned by the
function. If they are not equivalent, then the function returns False. To
determine what discrepancies exist, the TestDictDiff() function is called
only when inequality exists.

The TestDictDiff function compares the contents of the baseDict with
the newDict and creates a new dictionary to hold any mismatching values.
The dictionary containing any differences is returned by the TestDictDiff
function. Once returned, the contents of the diffDictionary are displayed.

Figure 4-11 displays the execution of the VerifyBaseline.py script
including the new help results and no changes detected.

[e L =

C:'PSxpython VerifyBaseline.py -h
usage: File System Baseline Validation with PowerShell- Version 1.9 December 2018
[-h] -b BASELINE -p PATH -t THP

optional arguments:
-h, --halp show this help message and exit
-b BASELINE, --baseline BASELINE
Specify the source baseline file to verify
-p PATH, --Path PATH Specify the target folder to verify
-t TMP, --tmp TMP Specify a temporary result file for the PowerShell
Seript

C:\PS»python VerifyBaseline.py -b baseline.pickle -p ¢:/fwindows/systes32/drivers/ -t ¢:/PS/tmp.txt
powershell -ExecutionPolicy ByPass -File C:/PS/Hashdcquire psl -TargetFolder ¢! /windows/system32/drivers/ -ResultFile c:/PS/tmp.txt
Mo Changes Detected

c: P>,

Figure 4-11. Verify baseline execution and help with no changes

116

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

Figure 4-12 shows the execution of the VerifyBaseline.py script which

identifies two innocuous files added to the c:/windows/system32/drivers

[~ —r—

bowershell -ExecuticnPolicy ByPass -File C:/PS/Mashicquire.psl -Targetfolder c:/windows/systes32/drivers/ -Resultfile c:/PS/tmp.txt *
{ *©57553248647602831F 2D85F 1219782C SFDCEBSRE4BEBF ASASEDS2 3DSBESBEDEC : | \windows \ \systend2\\drivers\\Biking. jpg’: ‘Baseline Missmatch’,
*BECD6AI1F40C9164DE 887768631 8CATA2ASDCEC 185 IBEB2FBBE2EFCSI4097278C 1 \ \windows \ \systead2\ \drivers\\Castle. JPG" : "Baseline Missmatch'}

JC:\PS>

Figure 4-12. Verify baseline execution with detected changes

Overview of Python Execution with PowerShell

This example provides a nice model for the execution and post-processing

of PowerShell results from Python. More importantly, this model can be

extended for several other uses. For example:

1.

By modifying the PowerShell script and parameters,
the target ComputerName could be added. The
PowerShell Script could next add the Invoke-
Command CmdLet and then perform remote
acquisitions, something that would be much more
difficult to do from Python only. Thus, we're using
PowerShell as the acquisition engine and Python as the
backed processor. Here is an example of the modified
PowerShell Command that would be necessary:

Invoke-Command -ComputerName $targetComputer
-Credential $User

-ScriptBlock {Get-ChildItem $TargetFolder |
Get-FileHash | Select-Object -Property Hash,
Path | Format-Table -HideTableHeaders | Out-File
$ResultFile -Encoding ascii}

117

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

2. 'The acquisition CmdLet Get-ChildItem could
be replaced with a plethora of other acquisition-
oriented CmdLets such as:

o Get-Process

e Get-Service

¢ Get-NetTCPConnections
e Get-NetFirewallSetting

o Or any other local or network values of investigative
interest

Then, without modification the Python CreateBaseline
and VerifyBaseline scripts can be applied to create
baselines and then detect any changes across your
environment.

3. The interface model using subprocess.run() can be
applied to other acquisitions of PowerShell scripts.
Using the model of creating simple ASCII result files
that can ingested line by line from Python, establish
a solid interface between Python and PowerShell.
You could of course return the data via standard out.
However, this method is less stable when generating
significant output from PowerShell.

Challenge Problem: Perform Remote Script
Execution

Utilizing what you have learned about the execution of PowerShell scripts
from Python and the model that has been provided:

118

CHAPTER 4 PYTHON AND LIVE INVESTIGATION/ACQUISITION

1. Expand upon the solution provided by exploring
other PowerShell CmdLets that provide investigative
or incident response value. Adjust the PowerShell
and Python scripts as required.

a. Get-Process

b. Get-Service

c. Get-NETTCPConnections
d. Get-FirewallSettings

2. Modify the PowerShell and Python scripts to include
access to other computers. This will require changes
to both scripts in order to provide the name(s) of the
additional computer. In addition, the PowerShell
script will need to add the appropriate Invoke-
Command CmdLet.

Summary

This chapter focused on the execution of PowerShell CmdLets and scripts
directed via Python. The chapter covered the key method for interfacing
with PowerShell using the Python subprocess library.

In addition, methods for delivering PowerShell results to Python for
post-processing were discussed. A reusable model for this integration
delivers a baseline for the integration of PowerShell and Python.

Finally, the Python language, libraries, and data types were discussed
by example. These included argument parsing, subprocess usage,
dictionaries, functions, and the general Python program structure.

Chapter 5 will expand on PowerShell and Python integration with
additional examples and methods.

119

CHAPTER 5

PowerShell/Python
Investigation Example

The ability to gather remote activities during incident response situations
is one of the key strengths of PowerShell. The infrastructure provided with
the latest version of PowerShell significantly reduces the network setup
required and offers significant security.

Integrating PowerShell and Python provides a viable platform for
local and remote investigations. The “old” way of connecting to machines
remotely is by using DCOM (Distributed Component Object Model) and/
or RPCs (Remote Procedure Calls). These methods of integration involve
significant complexities, and in some cases vulnerabilities, based upon the
number of ports that need configuration.

The new method is called PowerShell Remoting. Remember, we saw
the basics of this in Chapter 3, using the Invoke-Command CmdLet. In
this chapter, we will take a much deeper look at PowerShell Remoting.
However, before using the new PowerShell Remoting capability, it may
need to be enabled in your environment. One of the nice features of
PowerShell Remoting is that it runs over HTTPS, and it is done over a
single port - port 5985.

© Chet Hosmer 2019 121
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_5

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

Enable PowerShell Remoting

The first step is to enable PowerShell Remoting on your investigative
machine (the one you are performing the investigation from). You
probably already guessed that we are going to do this with a PowerShell
CmdLet. Interestingly enough, this one is titled Enable-PSRemoting. As
always, you start with Get-Help in order to understand the parameters and
options (Listing 5-1).

Listing 5-1. Get-Help Enable-PSRemoting
PS C:\PS> Get-Help Enable-PSRemoting

NAME
Enable-PSRemoting

SYNOPSIS
Configures the computer to receive remote commands.

SYNTAX
Enable-PSRemoting [-Confirm] [-Force]
[-SkipNetworkProfileCheck] [-WhatIf] [<CommonParameters>]

DESCRIPTION
The Enable-PSRemoting cmdlet configures the computer to
receive Windows PowerShell remote commands that are sent by
using the WS-Management technology.

By default, on Windows Server® 2012, Windows PowerShell
remoting is enabled. You can use Enable-PSRemoting to
enable Windows PowerShell remoting on other supported
versions of Windows and to re-enable remoting on Windows
Server 2012 if it becomes disabled.

122

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

You have to run this command only one time on each
computer that will receive commands. You do not have to
run it on computers that only send commands. Because the
configuration starts listeners, it is prudent to run it
only where it is needed.

Beginning in Windows PowerShell 3.0, the Enable-PSRemoting
cmdlet can enable Windows PowerShell remoting on client
versions of Windows when the computer is on a public
network.

For more information, see the description of the
SkipNetworkProfileCheck parameter.

The Enable-PSRemoting cmdlet performs the following
operations:

- Runs the Set-WSManQuickConfighttp://go.microsoft.
com/fwlink/?LinkID=141463 cmdlet, which performs the
following tasks:

----- Starts the WinRM service.

----- Sets the startup type on the WinRM service to
Automatic.

----- Creates a listener to accept requests on any IP
address, if one does not already exist.

----- Enables a firewall exception for WS-Management
communications.

----- Registers the Microsoft.PowerShell and Microsoft.
PowerShell.Workflow session configurations, if it
they are not already registered.

123

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

————— Registers the Microsoft.PowerShell32 session
configuration on 64-bit computers, if it is not
already registered.

----- Enables all session configurations.

----- Changes the security descriptor of all session
configurations to allow remote access.

————— Restarts the WinRM service to make the preceding
changes effective.

To run this cmdlet, start Windows PowerShell by using the
Run as administrator option.

CAUTION: On systems that have both Windows PowerShell 3.0
and Windows PowerShell 2.0, do not use Windows PowerShell
2.0 to run the Enable-PSRemoting and Disable-PSRemoting
cmdlets. The commands might appear to succeed, but the
remoting is not configured correctly. Remote commands and
later attempts to enable and disable remoting, are likely
to fail.

RELATED LINKS

124

Online Version: http://go.microsoft.com/fwlink/?LinkId=821475
Disable-PSSessionConfiguration
Enable-PSSessionConfiguration

Get-PSSessionConfiguration

Register-PSSessionConfiguration

Set-PSSessionConfiguration

Disable-PSRemoting

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

REMARKS
To see the examples, type: "get-help Enable-PSRemoting
-examples"”.
For more information, type: "get-help Enable-PSRemoting
-detailed".

For technical information, type: "get-help Enable-
PSRemoting -full".
For online help, type: "get-help Enable-PSRemoting -online'

When executing PSRemoting, use the -Force option to eliminate the
need for user confirmation throughout the process. Figure 5-1 depicts the
CmdLet execution.

Note Since this is already enabled on the local machine, it provides
the following feedback. Windows Remote Management (WinRM)

is likely to be required when Enabling PSRemoting. Each system,
network, and OS configuration is different, so consult your system
administrator for assistance. Microsoft and third parties provide
information on proper setup. Please consult these guides for more
information. Also, this setup needs to be done on the computers that
you wish to investigate as well.

https://docs.microsoft.com/en-us/powershell/module/
microsoft.powershell.core/enable-psremoting?view=pow
ershell-6

https://docs.microsoft.com/en-us/windows/desktop/
winrm/winrm-powershell-commandlets

www . howtogeek.com/117192/how-to-run-powershell-
commands-on-remote-computers/

125

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enable-psremoting?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enable-psremoting?view=powershell-6
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/enable-psremoting?view=powershell-6
https://docs.microsoft.com/en-us/windows/desktop/winrm/winrm-powershell-commandlets
https://docs.microsoft.com/en-us/windows/desktop/winrm/winrm-powershell-commandlets
https://www.howtogeek.com/117192/how-to-run-powershell-commands-on-remote-computers/
https://www.howtogeek.com/117192/how-to-run-powershell-commands-on-remote-computers/

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

PS C:\PS> Enable-PSRemoting -Force
WinRM is already set up to receive requests on this computer.
WinRM is already set up for remote management on this computer.

PS C:\PS>

Figure 5-1. Enable PowerShell Remoting

Note One final note regarding the enabling of PowerShell Remoting.
The network configuration for all of your adapters must be set to
Private not Public for security reasons. Please again contact your
system administrator to make these changes, as parameters depend
upon the operating system and version you are using.

Gathering and Analyzing Remote Evidence

Utilizing a combination of PowerShell and Python to gather evidence from
systems other than the one we are running on is critical in order to expand
the scope of our investigations. Let’s first look at a very useful PowerShell
CmdLet for both local and remote investigations: Get-DNSClientCache.

DNS Client cache, or DNS resolver cache, is a local database
maintained by the operating system. It contains evidence of recent visits to
web sites and other Internet locations. Simply put, DNS Client cache is just
arecord of recent DNS lookups that speeds access to already resolved web
site IP addresses. Note that clearing the history of your web browser to hide
your activity does not include the Operating Systems DNS resolver cache.
Many cleaning programs will clear this cache, but it can be overlooked by
users and it may provide important evidence of recent activity.

The DNS, or Doman Name System, provides a translation from friendly
names like microsoft.com, google.com, and python-forensic.org to the IP
addresses they reside at. Each time you enter an address in your browser

126

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

like www . amazon.com, a DNS lookup is performed to translate the human
readable address into an IP address that can be accessed.

Starting the Get DNSClientCache process after clearing the cache
produces the following results.

PS C:\WINDOWS\system32> Get-DnsClientCache | Select-Object
-Property Entry

Of course, nothing is returned from the CmdLet because the cache is
empty.

In order to add data to the DnsClientCache open a web browser and
load the Google home page as shown in Figure 5-2.

-
e e s @ . ¥ E o= L a - o ® ¢ =mas e

Aboul Stora Gmal Images "' m

-

Google Search I'm Feeling Lucky

Celebrating Martin Luther King Jr.

Figure 5-2. Launch browser and navigate to the Google home page

Executing the CmdLet now delivers some expected and not-expected
results (Listing 5-2).

127

http://www.amazon.com

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

Listing 5-2. Results from the Get-DnsClientCache CmdLet

PS C:\WINDOWS\system32> Get-DnsClientCache | Select-Object
-Property Entry

beacons.gcp.gvt2.com
beacons.gcp.gvt2.com
beacons.gcp.gvt2.com
google.com
google.com
google.com
google.com
google.com
google.com
bolt.dropbox.com

The stored DNS locations for google.com would of course be expected
since the google.com page was opened. However, what is the beacons.gcp.
gvt.com lookup? It is owned by google according to online research and is
used by google to track activity and to provide automated assist when you
type in the Google search window. The bolt.dropbox.com is unrelated to
the www.google. comaccess, rather it was accessed due to a routine sync as
Dropbox is running on the system.

As with other CmdLets, Get-ClientDnsCache has additional properties
and member functions associated with it. They can be examined by piping
the output of Get-ClientDnsCache to Get-Member as shown in Figure 5-3.

128

http://www.google.com

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

"]
Fie St View Tooh Debug Add-orn bele

<o o x e 8 Booam.
pPs C:\Ps> Get-Dnsclientcache | Get-member

TypeName: Microsoft.Management.Infrastructure.CimInstance#ROOT/StandardCimv2/MSFT_DNSClientcache

Name MemberType pefinition
TTL aliasProperty TTL = TimeToLive
Clone method system.object ICloneable.cClone()
Dispose method void Dispose(), void IDisposable.pispose()
Equals Method bool Equals(System.object obj)
GetcimsessionComputername Method string GetcimsessioncomputerName()
GetCimsessionInstanceld Method guid GetcimsessionInstanceId()
GetHashcCode Method int GetHashcode()
GetobjectData Method void Getobjectbata(System.Runtime.Serialization.Serialization
GetType Method type GetType()
Tostring Method string Tostring()
caption Property string caption {get;set;}
pata Property string pata {gert;
pataLength Property uintlé pataLength {get;}
Description Property string Description {get;set;}
ElementName Property string ElementName {get;set;}
Entry Property string Entry {get;}
InstancelD Property string InstanceID {get;set;}
Name Property string Name {get;}
PSComputerhame Property string PsComputerName {get;}
section Property byte Section {get;}
Status Property uint32 status {get;}
TimeToLive Property uint32 TimeToLive {get;}
Type Property uintlé Type {get;}
PS C:\P5>
Conylrind ini4 coint [

Figure 5-3. Member methods and properties for Get-DnsClientCache

One good example is the TimeToLive property, which provides
information regarding how long the DNS Client cache entry will persist in
seconds. The knowledge that these entries only exist for a specific period
certainly requires some urgency in collecting this information during an
investigation. See Listing 5-3.

Listing 5-3. Obtaining the Time to Live for Each DnsClientCache
Entry

PS C:\WINDOWS\system32> Get-DnsClientCache | Select-Object
-Property Entry, TimetolLive

Entry Timetolive
www.gstatic.com 17
ssl.gstatic.com 292

129

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

www . google . com 244
apis.google.com 131
apis.google.com 131
apis.google.com 131
apis.google.com 131
apis.google.com 131
apis.google.com 131
apis.google.com 131
google.com 292
google.com 292
google.com 292
google.com 292
google.com 292
google.com 292
fonts.gstatic.com 292
fonts.gstatic.com 292
encrypted-tbno.gstatic.com 292

Invoking Remote Access

A more significant application of Get-DnsClientCache is of course to
execute this CmdLet remotely targeting systems under investigation.
Using the Invoke-Command, targeting of the Lenovo-Upstairs computer in
order to capture the recent DnsClientCaches is shown in Listing 5-4.

The output was abbreviated in order to highlight more interesting
locations, specifically the access to dfinews.com, forensicsmag.com, and
steganography.com.

130

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

Listing 5-4. Remote Invocation of Get-DnsClientCache

PS C:\WINDOWS\system32> Invoke-Command -ComputexrName Lenovo-
Upstairs -Credential Lenovo-Upstairs\Remote-Admin -ScriptBlock
{Get-DnsClientCache | Select-Object -Property Entry |Out-String}

www . dfinews.com

www . dfinews.com

www. forensicmag.com
www. forensicmag.com
www . forensicmag.com
www. forensicmag.com
www. forensicmag.com

. reduced results for brevity

steganography.com
steganography.com
www.wired.com
www.wired.com
www.wired.com
www.wired.com

Building a PowerShell Script for DnsCache
Acquisition

Unfortunately, there were hundreds of cached entries to sort through
when this CmdLet was launched. Filtering or searching these results would
be a tedious process for investigators. Therefore, why not create a Python

131

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

script that leverages a PowerShell script to search the results based on a

list of suspicious web sites or keywords of interest? Using the PowerShell
script model that was created in Chapter 4, only a few simple tweaks are
necessary to have application here:

1. Change the synopsis

2. Change the description

3. Modify the input parameters

4. Utilize the Get-ClientDnsCache CmdLet

Listing 5-5 shows the PowerShell script.

Listing 5-5. CacheAcquire.ps1 PowerShell Script

<#
.synopsis
Collect ClientDnsCache

- User Specifies the target computer

The script will produce a simple ascii output file containing
the recent DnsCache from the target computer

.Description
This script collects DnsCache from the Target Computer

.parameter targetComputer
Specifies the computer to collect the USB Activity

.parameter user
Specifies the Administrator UserName on the Target Computer

.parameter resultFile
Specifies the full path of the output file

132

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

.example

./CacheAcquire.ps1l -user Lenovo-Upstairs\Remote-Admin
-targetComputer Lenovo-Upstairs -resultFile cache.txt

Collects the recent DnsCache from the target computer
#>

Parameter Definition Section

param(
[string]$user,
[string]$targetComputer,
[string]$resultFile

)

Obtain the ClientDnsCache from target computer and store the
result in a local variable

$r = Invoke-Command -ComputerName $targetComputer -Credential
$user -ScriptBlock {Get-DnsClientCache | Select-Object
-Property Entry | Out-String}

Write the resulting list in simple ascii to a specified
local file
$r | Out-File $resultFile -Encoding ascii

One important note: When using the Invoke-Command, any output
file creation takes place on the remote system. Therefore, capture the result
of the script in a variable ($r in this example) and then pipe the variable to
the requested local file.

Sample execution of the script from within PowerShell ISE is shown in
Figures 5-4 to 5-6.

133

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

PS C:\PS»> \CacheAcquire.psl -user Lenovo-Upstairs'\Resote-Admin -targetComputer Lenovo-Upstairs -resultfile cache. txt

Windows PowerShel credential requess ? b

Erter your cedentals.

e raema: £ opntarsifenote-Aden ~
Brsword: wrrvnnenl
Lol ow

Figure 5-4. CacheAcquire.psl execution and credential entry

PS C:\P5> .‘CacheAcquire.psl -user Lenovo-Upstairs\Remote-Admin -targetComputer Lenovo-Upstairs -resultFile cache. txt

www. dfinews . com

win. ipv6.microsoft. com
steganography . com
tiles.r53-2.services.mozilla.com
cs9.wac.phicdn.net

PS C:'\PS> |

Figure 5-5. Resulting cache list

www.dfinews.com
win8.ipvé.microsoft.com
steganography.com
tiles.rS53-2.services.mozilla.com
cs9.wac.phicdn.net

Figure 5-6. Resulting cache.txt file

134

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

As with previous PowerShell scripts, using Get-Help will provide the
details necessary to allow other users to also leverage the script (Listing 5-6).

Listing 5-6. Display Help for the CacheAcquire PowerShell Script
PS C:\PS> Get-Help .\CacheAcquire.psi

NAME
C:\PS\CacheAcquire.ps1

SYNOPSIS
Collect ClientDnsCache

- User Specifies the target computer

The script will produce a simple ascii output file
containing the recent DnsCache from the target computer

SYNTAX
C:\PS\CacheAcquire.ps1 [[-user] <String>]
[[-targetComputer] <String>] [[-resultFile] <String>]
[<CommonParameters>]

DESCRIPTION
This script collects DNS cache from the Target Computer

RELATED LINKS

REMARKS
To see the examples, type: "get-help C:\PS\CacheAcquire.ps1
-examples".
For more information, type: "get-help C:\PS\CacheAcquire.
psl -detailed".
For technical information, type: "get-help C:\PS\
CacheAcquire.ps1 -full".

135

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

Python Script and PowerShell CacheAquire
Script

Now that we have a reliable PowerShell script to acquire DNS cache from
remote computers, the next step is to build a Python script that will launch
the PowerShell script, then search the subsequent results. The general
concept is to search the acquired DNS cache using a set of keywords that
are provided to the Python script from a file. See Listing 5-7.

Listing 5-7. AcquireDNS.py
Acquire DNS Scripts from a Remote Computer
Version 1.0 January 2018

Author: Chet Hosmer
PYTHON Version 3.x is Required

""" LIBRARY IMPORT SECTION "'’

import subprocess # subprocess library
import argparse # argument parsing library
import os # Operating System Path

""" ARGUMENT PARSING SECTION '''

def ValidateFile(theFile):
""" Validate the File exists
it must exist and we must have rights
to read from the folder.
raise the appropriate error if either
is not true

136

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

Validate the file exists
if not os.path.exists(theFile):
raise argparse.ArgumentTypeError('File does not exist')

Validate the file is readable

if os.access(theFile, os.R OK):
return theFile

else:

raise argparse.ArgumentTypeError('File is not
readable')

#End ValidateFile S-S ============

Specify and Parse the command line, validate the arguments
and return results'''

parser = argparse.ArgumentParser('Remote Client DNS Cache with
PowerShell - Version 1.0 January 2018')

parser.add argument('-c', '--computer', required=True,
help="Specify a target Computer for
Aquistion™)

parser.add argument('-u', '--user’, required=True,

help="Specify the remote user account")

parser.add argument('-t', '--tmp’', required=True,
help="Specify a temporary result file for
the PowerShell Script")

parser.add argument('-s', '--srch’, required=True,
type=ValidateFile, help="Specify the
keyword search file")

137

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE
args = parser.parse args()

computer = args.computer

user = args.user
tmp = args.tmp
srch = args.srch

print("DNS Cache Acquisition\n")

print("Target:
print("User:

, computer)
, user)
, srch)

print("Keyword File:
""'KEYWORD LOADING SECTION ""'

print("Processing Keyword Input")
try:
with open(srch, 'r') as keywordFile:
words = keywordFile.read()
word = words.lower()
words = words.strip()
wordList = words.split()
wordSet = set(wordList)
keyWordList = list(wordSet)
print("\nKeywords to search")
for eachKeyword in keyWordlList:
print(eachKeyword)

print()

except Exception as err:

print("Error Processing Keyword File:
quit()

138

, str(err))

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

""" MAIN SCRIPT SECTION '''

if name_ =="_ main_"':
try:
"' POWERSHELL EXECUTION SECTION "'
print()
command = "powershell -ExecutionPolicy ByPass -File

C:/PS/CacheAcquire.ps1”+" -targetComputer "+
computer+ "

-user "+user+
-resultFile "+tmp

print("Executing: ", command)
print()

powerShellResult = subprocess.run(command,
stdout=subprocess.PIPE)

if powerShellResult.stderr == None:
""'DNS CACHE SEARCHING SECTION ""'

hitlist = []
try:
with open(tmp, 'r') as results:
for eachlLine in results:
eachLine = eachLine.strip()
eachLine

eachLine.lower()
for eachKeyword in keyWordList:
if eachKeyword in eachline:
hitList.append(eachLine)
except Exception as err:

print("Error Processing Result File: ", str(err))

139

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE
""'RESULT OUTPUT SECTION '"'

print("Suspicous DNS Cache Entries Found")
for eachEntry in hitlist:
print(eachEntry)

print("\nScript Complete")
else:
print("PowerShell Error:", p.stderr)

except Exception as err:
print ("Cannot Create Output File: "+str(err))

quit()

The script has been broken down into the following sections. Each will
be explained:

o LIBRARY IMPORT

o ARGUMENT PARSING

o KEYWORD LOADING

o POWERSHELL EXECUTION
o DNS CACHE SEARCHING

o RESULT OUTPUT

LIBRARY IMPORT: As the name implies, this is where the needed
Python libraries are loaded. They include:

e subprocess: Used to launch the PowerShell script
e 0s: Used for file and folder validation

o argparse: Used for parsing the command line
arguments

140

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

ARGUMENT PARSING: This section sets up and then processes user
command line arguments. For this script the required arguments include

the following:

-c specifies the target computer name.
-u specifies the remote computer user name.

-t specifies the tmp file that will be used by the
PowerShell script to store the acquired DNS cache data.

-s specifies the local file that contains keywords to
search.

The argparse library in Python automatically processes the command

line and validates that the user has entered all the required arguments.

The library will also provide help if requested. To obtain the help, simply

execute the script with only the -h option as shown in Listing 5-8.

Listing 5-8. Python Script Help Output Using the -h Switch

usage: Remote Client DNS Cache with PowerShell- Version 1.0
January 2018

[-h] -c COMPUTER -u USER -t TMP -s SRCH

optional arguments:

-h, --help show this help message and exit
-c COMPUTER, --computer COMPUTER

Specify a target Computer for Aquistion

-u USER, --user USER Specify the remote user account

-t TMP, --tmp TMP Specify a temporary result file for the

PowerShell Script

-5 SRCH, --srch SRCH Specify the keyword search file

141

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

KEYWORD LOADING: This section opens the designated keyword
file and creates a list of unique keywords found in the file (Figure 5-7). The
section strips any extraneous characters from each entry, and ensures that

all entries are in lowercase to enable the best search matching.

| keywords - Notepad - 0O X
File Edit Format View Help

bteganography
chome

firefox
forensic
dfinews

Figure 5-7. Sample keyword:s file

POWERSHELL EXECUTION: This section launches the PowerShell
script. It first creates a variable named command that will be used by the
subprocess.run() method to launch the PowerShell script. It specifies the
PowerShell script CacheAcquire.ps1. Upon completion of the subprocess
command, the standard error or stderr result is checked for successful
completion. The result should be None. If not, the Python script will report
the error generated by PowerShell.

142

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

DNS CACHE SEARCHING: This section processes each line from
the cache results generated by PowerShell. Each line is then checked
to determine if any of the unique keywordsv are found. If a keyword is
detected, that entire line is stored in the Python hitList variable.

RESULT OUTPUT: This section iterates through each entry of the
Python hitList variable and prints each result to the screen.

Figure 5-8 depicts the successful execution of the AcquireDNS.py
Python script that leverages the CacheAcquire.ps1 PowerShell script. The
script was executed from the Windows command line with administrator

privilege.

C:\PS>python AcquireDNS.py -c PYTHON-3
-u PYTHON-3\USER-HIDDEN -t c:\ps\tmp.txt -s c:\ps\keywords.txt

[C:\PS>python AcquireDNS.py -c PYTHON-3 -u PYTHON- SN -© c:\ps\tmp.txt -5 c:\ps\Keywords.tx
DNS Cache Acquisition

Target: PYTHON-3

User: PYTHON-3\cdhs1
Keyword File: c:\ps\keywords.txt
IFr‘ocessmg Keyword Input

'I(eywor‘ds to search
ifirefox

Iforensic

dfinews
steganography
chome

Executing: powershell -ExecuticonPolicy ByPass -File C:/PS/CacheAcquire.psl -targetComputer PYTHON-3
-user PYTHON-3\IIIl -resultFile c:\ps\tmp.txt

uspicous DNS Cache Entries Found
.steganography .com
.dfinews.com
orensicmagazine.disqus.com
rensicmagazine.disqus.com

ript Complete
:\PS>»

Figure 5-8. Acquire DNS remote in action

143

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

The script output first shows:
1. Details of the extracted command line arguments:
a. Target Computer
b. Remote User Name
c. Local Keyword File

2. The decoded list of keywords that were extracted
from the local keyword file

3. The details of the PowerShell command line
generated from the inputs

4. The matching DNS cache entries that contain
keywords from the keyword list

Overview of Client DNS Cache Acquisition
and Search

This example expands on the model that leverages the PowerShell
acquisition strengths with a Python script that can search the results. More
importantly, this model was used to acquire Client DNS cache data from a
specified remote computer using the Invoke-Command CmdLet.

The Python script could be expanded to include a list of computers
and relevant user accounts in order to automate the acquisition and the
automated search of Client DNS cache on demand.

Challenge Problem: Multiple Target
Computer DNSCache Acquisition

Utilizing what you have learned about the execution of PowerShell scripts
from Python and the model that has been provided:

144

CHAPTER5 POWERSHELL/PYTHON INVESTIGATION EXAMPLE

e Expand upon the solution provided by loading a list of
target computes along with the required user accounts.

o In addition to searching each of the resulting Client
DNS cache results, determine which DNS entries were
common across all the computers that were accessed.

Summary

This chapter focused on the execution of PowerShell CmdLets and
scripts directed via Python to acquire Client DNS cache from both the
local computer and a specified remote device. The chapter delivered yet
another PowerShell script that can be used either standalone or driven by
the accompanying Python script to access, process, and search the results.
Finally, the Python language, libraries, and data types were discussed
by example. These included argument parsing, subprocess usage,
dictionaries, functions, and the general Python program structure.
Chapter 6 will discuss some future considerations that can expand
upon the combination of PowerShell and Python for investigative use. In
addition, the included appendix provides both PowerShell and Python/
PowerShell combined examples that deliver a solid baseline for future

investigations and expansion.

145

CHAPTER 6

Launching Python
from PowerShell

So far, the approach to integrating Python with PowerShell has been to
launch PowerShell scripts from Python as a subprocess. In this chapter, the
roles will be reversed, and PowerShell will feed data to Python scripts. One
of the key elements of PowerShell is pipelining the process of transferring
the results of one CmdLet to the next. With that in mind, why not treat
Python as just another pipeline element and execute Python scripts driven
by data acquired by PowerShell?

Reversing Roles from PowerShell to Python

A PowerShell script and a Python script are both necessary to illustrate this
method. We will start with a simple PowerShell script to pass a string of
data across the pipe and display that data from the Python script.

© Chet Hosmer 2019 147
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_6

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

Examine the PowerShell Script

Let’s examine the details of the PowerShell script shown in Figure 6-1. The
script is broken down into four simple steps:

1. Define alocal variable $Python with the full path
to the Python executable of your choice. For this
example, Python 3.x will be again used.

2. Define alocal variable $Script that defines the full
path to the Python script that will be executed.

3. Define alocal variable $Message that will be passed
via the pipeline to the Python script.

4. This line passes the contents of the variable message
to the Python script. The key element here is the
ampersand (&) that directs PowerShell to launch the
external program.

=z
File Edit View Tools Debug Add-ons Help
ol & Ox e e w8 BFooldoms,
BasicOnedwpsl X
1
2| # python Executable Definition 1
3| $python = "python.exe"
4
5
6 |# Python Scrip that I wish to execute 2
7 | $script = "c:\Ps\Basiconev3.py"
8
9
10 |write-Host "Pass a String to Python"
11 | SMessage = "Hello Python - Hello universe" 3
12
13
14 | write-Host
15 | $Message | & $Python $script 4
16

Figure 6-1. BasicOne.psl PowerShell script

148

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

Examine the Corresponding Python Script

Examining the corresponding Python script shown in Figure 6-2, we see
that it is broken down into four sections as well:

1. A comment block that defines what the script will
perform.

2. Import of the Python Standard Library sys. This is
needed to process the data passed across the pipeline.

3. Print messages delivered from Python to
demonstrate that the Python script is executing.

4. Processes each line delivered to the script via the
pipeline and print the contents of each line. Note
that in this example there is only one line passed.

EBwe XAQ 4 LI |0 3 Ze Zo
BasicOnev3.py *
4
1 [
2 BasicOnev3.py
3 Script to display string 1
4 passed to script from PowerShell
5 LI
6
7 # import standard module sys
8 import sys 2
9
1e print("Welcome to Python\n")
11 print("Data Received from PowerShell\n") 3
12
13 =|for eachLine in sys.stdin:
14 print(eachLine) 4

Figure 6-2. BasicOne.py Python script

149

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

Executing the Combined PowerShell to Python
Scripts

Figure 6-3 depicts the resulting output generated by the PowerShell script
driving the Python script. You'll notice that that the output from both the
PowerShell script (write-host CmdLet) and the Python (print) statements
appear in the PowerShell output.

E¥ Administrator: Windows PowerShell ISE

File Edit View Tools Debug Add-ons Help
= B x99 &) B =8| Boo ®mo.
BasicOneps1 X

PS5 C:\P5> C:\PS\BasicOne.psl
Pass a String to Python

welcome to Python
Data Received from PowersShell

Hello Python - Hello Universe

PS C:\PS>

Figure 6-3. Execution of BasicOne.psl driving BasicOne.py

Using this method, now let’s examine a more interesting use of the
BasicOne method shown here.

Extracting Possible Proper Names from Text
Documents

In this example, the PowerShell script will utilize the Get-Childltem
CmdLet and Get-Content CmdLet to obtain the contents of text files and
pass the entire contents to a Python script. The Python script will process
the content passed, again using the BasicOne method and attempt to
extract possible proper names.

150

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

When examining simple text data during a forensic investigation, it
is often useful to extract and rank proper names by the highest number
of occurrences. The Python language has built-in capabilities that will
perform this extraction swiftly and easily.

BUT FIRST, WHAT IS A PROPER NAME?

Linguistics defines proper names as those words that represent a person,
place, group, organization, or thing that typically begins with a capital letter.
For example, proper names in a single word (such as David, Smith, Carol,
Washington, Canada, Pentagon, Congress, or Apple) can provide context

and value to the investigation. In normal texts, these proper names are most
likely capitalized and quite easy to strip, identify, count, and sort. It should be
noted that not everyone would routinely capitalize proper names; however,
smartphones, text messaging apps, e-mail programs, word processors, and
even the Skype chat window automatically capitalize these for us. Thus,
extracting and ranking them can provide a quick look and provide perspective
to an investigation.

Examine the PowerShell Script

Figure 6-4 shows the PowerShell script that will deliver the content of these
files to the more complex Python script that will perform the extraction
and ranking of the possible proper names. Note, for this example, a new
element has been added to allow the processing of multiple files.

151

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

]
File Edit View Tools Debug Add-ons Help
| & Ox| o~ » 3@l 8 Boo @m.
ProperMamelistps1® X
1
2| # python Executable pDefinition
3| $python = "python.exe" 1
4
5 .
6| # Python Script to execute
7| $script = "c:\PS\ProperNames.py" 2
8
9
10 | $targetPath = "cC:\PsS\Text*.txt" 3
11
12
13| $files = Get-childItem $targetpPath 4
14
15
16 | write-Host "Multiple File Processor v 1.0"
17 | write-Host "Files to Process" 5
18| $files
19
20)
21 Eoreach ($file in $files)
22 ¢
23 |write-Host "Processing File: " $file 6
24 | et-content $file -Raw | & $Python $script
25
26
27

Figure 6-4. PowerShell ProperNames script

The script has been broken down into six steps. Each step is defined here:

1. Define alocal variable $Python with the full path to
the Python executable of your choice.

2. Define alocal variable $Script that identifies the full
path to the Python script that will be executed.

3. Define alocal variable $targetPath that identifies the
target path and file types to process.

4. Utilize the Get-ChildItem CmdLet to obtain the
names of the files that match the extension provided.

152

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

Write information to the host that includes the list
of files that were discovered by the Get-ChildIltem
CmdLet.

Using a ForEach loop, process each file listed in the
local variable $files. Within the loop the script prints
out the name of each file, then extracts the raw
content of the file and pipes the resulting content to
the Python script.

Examine the Corresponding Python
ProperNames Script

The Python script shown in Listing 6-1 is broken down into six major

sections described here:

1.

2.

5.

6.

LIBRARY IMPORT

STOP WORDS LIST DEFINITION

DEFINING PSEUDO CONSTANTS

EXTRACT PROPER NAMES

MAIN PROGRAM ENTRY

PRINT RESULTING POSSIBLE PROPER NAMES

LIBRARY IMPORT: As the name implies, this is where the needed
Python libraries are loaded. They include:

sys: As demonstrated in BasicOne, this library allows us
to process command line input delivered by PowerShell.

re: The Python regular expression library is used in this
script to strip out extraneous character from the text in
order to simplify the search for proper names.

153

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

o datetime: As the name implies, this library provides
methods for display and calculating time and date
details.

STOP WORDS LIST DEFINITION: This section creates a list of stop
words that are used to within the script eliminate words that do not
provide probative value when assessing proper names. They are in fact
words that commonly start sentences that would be capitalized. Thus,
eliminating these words from the results produces improved results.

DEFINING PSEUDO CONSTANTS: Traditional constants do not exist in
the Python language, however, by capitalizing these variable alerts the reader
that these variables should not be altered. In this case the variables MIN_SIZE
and MAX_SIZE define the limits on possible proper names. By changing
these values, you can widen or narrow the range of possible proper names.

EXTRACT PROPER NAMES FUNCTION: This is the core function of
the script that processes the content piped from the PowerShell script. The
function will be called for each line processed from standard input. The
function extract possible proper names from the string input and add them
to the dictionary. If the name already exists in the dictionary the function
updates the dictionary value which contains the occurrences for that
specific possible proper name.

MAIN PROGRAM ENTRY: The main program first prints several
heading messages. Then creates an empty properNamesDictionary. Then
as in the BasicOne.py example the script processes each line from the
system standard input provided by the PowerShell script. Each line is
then converted using the regular expression to eliminate any non-alpha
characters. Each converted string is passed the ExtractProperNames
function along with the current properNamesDictionary. This process is
then repeated for each line provided to the script.

PRINT RESULTING POSSIBLE PROPER NAMES: The final section
sorts the resulting dictionary by occurrences (highest first) and then prints
out each proper name and the associated counts.

154

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

Listing 6-1. Python ProperNames.py Script

Copyright (c) 2019 Python Forensics and Chet Hosmer

Permission is hereby granted, free of charge, to any person
obtaining a copy of this softwareand associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial
portions of the Software.

ProperNames Demonstration
Version 1.3
January 2019

Requirement: Python 3.x

usage:
stdin | python properNames.py

Script will process the piped data

""" LIBRARY IMPORT SECTION "''
import standard module sys
import sys

import the regular expression library
in order to filter out unwanted characters
import re

155

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

import datetime method from Standard Library
from datetime import datetime

""" STOP WORDS LIST DEFINITION SECTION '''

COMMON STOP WORDS LIST

What are stop words: Words which are

typically filtered

out when processing natural language data (text)
feel free to add additional words to the list

STOP_WORDS = [
"able","about","above","accordance","according",
"accordingly","across","actually","added", "affected",

"affecting","affects","after","afterwards","again",

"against","almost","alone","along","already","also",

"although", "always","among","amongst","announce",

"another", "anybody", "anyhow","anymore","anyone",

"anything","anyway","anyways","anywhere","apparently",

"approximately”,"arent","

, auth","available","away","awfully", "back",

"became"”, "because","become", "becomes", "becoming",

arise","around","aside",
"asking

"been","before","beforehand","begin","beginning",

"beginnings","begins","behind", "being",

"believe", "below","beside","besides","between",
"beyond", "both","brief","briefly","came","cannot",
","causes","certain", "certainly","come",
","contain","containing","contains","could",
n n

"couldnt","date","different","does","doing","done",

"cause
"comes

"down","downwards","during","each","effect","eight",

"eighty","either","else","elsewhere","end",

"ending","enough","especially","even","ever",

"every","everybody","everyone","everything",

156

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

"everywhere","except","fifth","first","five",
"followed","following","follows","former","formerly",
"forth","found","four","from","further",

"furthermore","gave","gets","getting",

non n "giVeS"’"giving , gOES",

ngive) given)
n n n Ilhappensll,llhardly","hasll,llhave",

"gone","gotten",
"having","hence","here","hereafter", "hereby",

"herein","heres","hereupon","hers","herself",
"himself","hither","home", "howbeit", "however",

"hundred", "immediate", "immediately","importance",

"important","indeed", "index","information",

"instead","into","invention","inward","itself",

"just","keep","keeps", "kept","know","known",

"knows","largely","last","lately","later", "latter",
"latterly","least","less","lest","lets","like",
"liked","likely","line","little","look","looking",

"looks","made","mainly","make", "makes","many",

"maybe","mean", "means","meantime", "meanwhile",

"merely”,"might","million", "miss", "more", "moreover",

"most","mostly", "much","must","myself","name",

"namely","near","nearly", "necessarily","necessary",

"need","needs","neither","never","nevertheless",

"next","nine","ninety","nobody", "none","nonetheless",

"noone", "normally", "noted","nothing","nowhere",

"obtain","obtained","obviously","often","okay",

"omitted","once","ones","only

n
,'onto", "other",

"others","otherwise", "ought","ours","ourselves",
n n n n n n n n

"outside","over","overall","owing","page", "pages",

"part","particular","particularly","past","perhaps",

"placed","please","plus","poorly","possible","possibly",

"potentially"”,"predominantly"”,"present"”,"previously",

"primarily","probably","promptly","proud","provides”,

157

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

"quickly","quite","rather","readily","really","recent",

"recently","refs","regarding","regardless"”,

"regards","related","relatively","research",

"respectively","resulted","resulting","results","right",

"run","said","same

, saying","says","section",

"seeing","seem","seemed","seeming","seems","seen",

n
see",

"self","selves","sent","seven", "several","shall",

"shed","shes","should","show","showed","shown",

"showns","shows","significant","significantly",

"similar","similarly","since","slightly","some",

"somebody" , "somehow" , "someone" , "somethan",
"something somewhat",

"somewhere","soon","sorry","specifically", "specified",

, 'sometime"”,"sometimes",

"specify","specifying","still","stop","strongly",

"substantially","successfully","such","sufficiently",

"suggest"”,"sure","take","taken","taking","tell",
"tends","than","thank","thanks","thanx","that",
"thats","their","theirs","them","themselves","then",

"thence","there","thereafter","thereby","thered",

"therefore","therein","thereof","therere",

"theres","thereto","thereupon","there've", "these",
"they","think","this","those", "thou","though","thought",
"thousand", "through", "throughout","thru","thus",

"together","took","toward","towards","tried","tries",
"truly","trying","twice","under","unfortunately”,
"unless","unlike","unlikely","until","unto","upon",

"used","useful”,"usefully"”,"usefulness","uses","using",
wants",

were","what", "whatever",

"usually","value

llwasll , Ilwasnt" , n

, various","very","want",

welcome","went",

"when", "whence", "whenever", "where", "whereafter", "whereas"

"whereby", "wherein", "wheres","whereupon”,"wherever",

"whether", "which","while", "whim","whither", "whod",

158

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

"whoever", "whole", "whom", "whomever", "whos", "whose",
"widely","will","willing","wish","with","within","without",

"wont","words","world","would","wouldnt",

"your","youre","yours","yourself","yourselves"]
""" DEFINING PSEUDO CONSTANTS SECTION "''

PSEUDO CONSTANTS,

Feel Free to change the minimum and

maximum name length

MIN_SIZE = 3 # Minimum length of a proper name
MAX SIZE = 20 # Maximum length of a proper name

""" EXTRACT PROPER NAMES SECTION '''

def ExtractProperNames(theString, dictionary):
""" Input String to search,
Output Dictionary of Proper Names

Extract each continuous string of characters
wordList = theString.split()

Now, let's determine which words are possible
proper names and create a list of them.

For this example words are considered possible
proper names if they are:

1) Title case

2) Meet the minimum and maximum length criteria
3) The word is NOT in the stop word list

The Python built in string method string.istitle()
is used to identify title case

159

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

for eachWord in wordList:

if eachWord.istitle() and len(eachWord) »>=
MIN_SIZE and len(eachWord) <= MAX SIZE and
eachWord.lower() not in STOP_WORDS:

if the word meets the specified conditions
it is added to the properNamesDictionary

try:

if the word exists in the dictionary

then add 1 to the occurances
cnt = properNamesDictionary[eachWord]
properNamesDictionary[eachWord] =
cnt + 1

except:
If the word is not yet in the
dictionary
add it and set the number of
occurances to 1
properNamesDictionary[eachWord] = 1

else:
otherwise loop to the next possible word

continue

the function returns the created
properNamesDictionary

return properNamesDictionary

160

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

End Extract Proper Names Function

""" MAIN PROGRAM ENTRY SECTION '"'

Main program for Extract Proper Names

if _name__ == " main_":

Main Program Entry Point

print("\nPython Proper Name Extraction ")
print("Python Forensics, Inc. \n")
print("Script Started", str(datetime.now()))
print()

Create empty dictionary
properNamesDictionary = {}

for eachlLine in sys.stdin:

txt = re.sub("["A-Za-z']", ' ', eachLine)

Call the ExtractProperNames function

which returns a Python dictionary of possible
proper names along with the number of occurances
of that name.

This function performs all the heavy lifting

of extracting out each possible proper name

properNamesDictionary =
ExtractProperNames (txt,
properNamesDictionary)

161

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

Once all the standard input lines are read
the value is the number of occurrences of the
proper name

This approach will print out the possible
proper names with
the highest occurrence first

PRINT RESULTING POSSIBLE PROPER NAMES
SECTION '"'

print()

for eachName in sorted(properNamesDictionary,
key=properNamesDictionary.get, reverse=True):

print('%4d" %
properNamesDictionary[eachName],end="")

print('%20s' % eachName)

print("\n\nScript Ended", str(datetime.now()))
print()

End Main Function

Executing the Combined PowerShell to Python
ProperNames Scripts

The PowerShell script was then executed against a small directory of text
files. The files were stored in the C:\PS\Text folder for ease of access. You
can change the target folder variable $targetPath to modify the target
folder. See Figure 6-5.

162

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

B sderenstraton Windows Powtrihed 5E
Fle Bt View Tools Debug Add-ons Help

H 4 o x = » m» 8 Boo o,

Properiamelistps] X

PS C:\PS> C:\PS\ProperNameList.psl
Multiple File Processor v 1.0
Files to Process

Directory: C:\PS\Text

Mode LastwriteTime Length Name
-a---- 1/28/2019 8:22 AM 606282 BookOne.txt
-a---- 1/28/2019 8:24 AM 31685 BookTwo.txt

Processing File: c:\ps\Text\BookoOne.txt

Python Proper Name Extraction
Python Forensics, Inc.
script started 2019-02-13 14:57:02.677174
318 well
90 Huck 2
83 Project
83 Gutenberg
62 Mary
56 Aunt
48 sally
47 Sawyer
45 Jane
39 Buck
| ——
[——————————
1 Gregory
1 Newby
1 chief
1 Executive
1 Director
1 compliance
1 International g
1 profgssor
1 Public
1 Domain
script Ended 2019-02-13 14:57:03.095090

Figure 6-5. Resulting output PowerShell/Python combination
(output reduced for brevity)

163

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

The output is broken down into three sections:

Section 1: This is the output generated by the Write-
Host CmdLet within the PowerShell script.

Sections 2-3: These are the results generated by
the Python script processing of the BookOne.

txt. The output is repeated for BookTwo.txt as the
PowerShell loops through all the text files found in
the specified directory.

After examining the output of the combined PowerShell/Python
scripts even with the abbreviated output, you will likely be able to
determine the text that these possible proper names were extracted from.
This is only one possibility of processing the content of files acquired by
PowerShell and then delivering that output to Python for post-processing.

This combination provides a baseline model that can be duplicated
for additional results. Also, by inserting Invoke-Command sequences in
the PowerShell script, you can collect files and file contents throughout
the enterprise. Now let’s look at another approach that passes a list of file
names to the Python script vs. the content of the files themselves.

Extracting EXIF Data from Photographs

For this example, the PowerShell script will be kept small and the heavy
lifting will be off-loaded to the Python script where we will leverage key
libraries to extract EXIF data including the geo-location information
contained in the EXIF headers of JPEG images.

PowerShell Script

The PowerShell script in Figure 6-6 is broken down into four common
elements with a slight twist.

164

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

1. Define alocal variable $Python with the full path to
the Python executable of your choice.

2. Define a local variable $Script that defines the full
path to the Python script that will be executed.

3. Define alocal variable $files that stores the set
of files that match the search criteria *.jpg. The
$jpegList local variable extracts the full path of each
file and eliminates the headers leaving just the list of
files that we intend to process.

4. This line passes the contents of the local variable
$jpegList to the Python script. The key element
here is the ampersand (&) that directs PowerShell
to launch the external program. The Python script
will receive each full pathname acquired by the
PowerShell script, one per line passed via stdin.

P
Fle Esit Veew Took Debup Add-oms Helo
& Bb o4& Ox oo pEme = 0 Eoo mom.
enbitractps? X
1
2 | # python Executable pefinition
3 | spython = "python.exe" 1
4
5
6| # python scrip that I wish to execute
7| Sscript = "c:\Ps\pyExif.py" 2
8
9
10 | $files = Get-childItem c:\Ps\Photos*.jpg 3
11 | $jpegList = $files | select-object FullName | Format-Table -HideTableHeaders
12
13
14 [sjpeglist | & SPython $script 4|
15

Figure 6-6. PowerShell PhotoMap.ps1 script

165

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

pyGeo.py Python Script

The Python script depicted in Listing 6-2 is broken down into eight major
sections described here:

1. LIBRARY IMPORT

2. DEFINING PSEUDO CONSTANTS

3. EXTRACT GPS DICTIONARY

4. EXTRACT LATTITUDE AND LONGITUDE

5. CONVERT GPS COORDINATES TO DEGRESS
6. MAIN PROGRAM ENTRY

7. GENERATE RESULTS TABLE

8. GENERATE CSV FILE

LIBRARY IMPORT: As the name implies, this is where the needed
Python libraries are loaded. They include:

e o0s: The Python standard os library is used to access
operating system methods such as to validate the
existence of files or directories.

e sys: As demonstrated in BasicOne, this library allows
us to process command line input delivered by
PowerShell.

o datetime: As the name implies, this library provides
methods for display and calculating time and date
details.

e PIL: The third-party Python Image library provides
methods to access and extract EXIF data including
geolocation information.

166

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

o prettytable: The third-party Python library provides
the ability to tabularize data within a simple text-based
table structure.

EXTRACT GPS DICTIONARY: This function is passed a filename to
process, and verifies that the file is a valid image, and contains geolocation
information. If it does, the geolocation information is collected, with GPS
Dictionary and basic EXIF data is returned.

EXTRACT LATITUDE AND LONGITUDE: This function extracts the
GPSLatitude and GPSLongitude and the associated reference from the GPS
Dictionary provided. These values are not stored as degrees which most
mapping programs require. Therefore, they are converted to degrees using
the ConvertToDegress function. The orientation is then set accordingly.
For example, if the latitude reference is South, then the latitude in degrees
must be set to a negative value.

CONVERT TO DEGRESS: This function converts the GPS Coordinates
stored in the EXIF data to degrees.

MAIN PROGRAM ENTRY: The main program first prints several
heading messages. Then creates an empty picture list. Then as in the
BasicOne.py example, the script processes each line from the system
standard input provided by the PowerShell script. Each line contains
the full path of files identified by the associated PowerShell script. Each
filename is then appended to the picture list.

Next, an empty latLonList is created to hold the results of the GPS
extraction from each picture. Each file is verified to exist, then the Extract
GPS Dictionary is called. If the resulting GPS Dictionary contains data, the
Extract Latitude Longitude function is called. Providing that valid latitude
/ longitude data is found, the base name of the file, the latitude and
Longitude data are appended to the latLonList.

GENERATE RESULTS TABLE: The generate results table section
produces a pretty table of results from the latLonList. Once the table is
created, it is printed so the results of the extraction can be displayed in
PowerShell.

167

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

GENERATE CSV FILE: Finally, the script generates a comma separated
value (CSV) file LatLon.csv. This is formatted such that it can be imported
into a Web-based mapping tool.

Listing 6-2. pyGeo.py Python Script

EXIF Data Acquistion
January 2019
Version 1.1

Copyright (c) 2019 Chet Hosmer, Python Forensics

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/

or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial
portions of the Software.

Usage Example:

filelList | python pyExif.py
#

Requirement: Python 3.x

#

168

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

Requirement: 3rd Party Library that is

utilized is: PILLOW

to install PILLOW utilize the follow CMD
from the command line

#

pip install PILLOW

#

The Script will extract the EXIF/GEO data from jpeg

files piped into the script and generate tabular list # of
the extracted EXIF and geo location data along with # the
creation of a CSV file with LAT/LON Data

#

""" LIBRARY IMPORT SECTION "''
Python Standard: Operating System Methods
import os

Python Standard : System Methods
import sys

Python Standard datetime method from Standard Library
from datetime import datetime

import the Python Image Library

along with TAGS and GPS related TAGS

Note you must install the PILLOW Module
pip install PILLOW

from PIL import Image
from PIL.ExifTags import TAGS, GPSTAGS

Import the PrettyTable Library to produce
tabular results

from prettytable import PrettyTable

169

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

""" EXTRACT GPS DICTIONARY SECTION '''

#

Extract EXIF Data

#

Input: Full Pathname of the target image

#

Return: gps Dictionary and selected exifData list
#

def ExtractGPSDictionary(fileName):

try:
pilImage = Image.open(fileName)
exifData = pilImage. getexif()

except Exception:
If exception occurs from PIL processing
Report the
return None, None

Interate through the exifData
Searching for GPS Tags

imageTimeStamp = "NA
cameraModel = "NA"
cameraMake = "NA"
gpsData = False

gpsDictionary = {}
if exifData:
for tag, theValue in exifData.items():

obtain the tag
tagValue = TAGS.get(tag, tag)

170

CHAPTER 6 LAUNCHING PYTHON FROM POWERSHELL
Collect basic image data if available

if tagValue == 'DateTimeOriginal’:
imageTimeStamp =
exifData.get(tag).strip()

if tagValue == "Make":
cameraMake = exifData.get(tag).strip()

if tagValue == 'Model':
cameraModel = exifData.get(tag).strip()

check the tag for GPS
if tagValue == "GPSInfo":

gpsData = True;

Found it !
Use a Dictionary to hold the GPS Data

Loop through the GPS Information
for curTag in theValue:
gpsTag = GPSTAGS.get(curTag, curTag)
gpsDictionary[gpsTag] =
theValue[curTag]

basicExifData = [imageTimeStamp,
cameraMake, cameraModel]

return gpsDictionary, basicExifData

else:
return None, None

End EXtIaCtGPSDiCtiOnaIy ============================

"'"' EXTRACT LATTITUDE AND LONGITUDE SECTION '"'

171

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

Extract the Lattitude and Longitude Values
From the gpsDictionary
#

def ExtractlLatLon(gps):

to perform the calcuation we need at least
lat, lon, latRef and lonRef

try:
latitude = gps["GPSLatitude"]
latitudeRef = gps["GPSLatitudeRef"]
longitude = gps["GPSLongitude"]
longitudeRef = gps["GPSLongitudeRef"]

lat = ConvertToDegrees(latitude)
lon = ConvertToDegrees(longitude)

Check Latitude Reference
If South of the Equator then
lat value is negative

if latitudeRef == "S":
lat = 0 - lat

Check Longitude Reference
If West of the Prime Meridian in
Greenwich then the Longitude value is negative

if longitudeRef == "W":
lon = 0- lon

gpsCoor = {"Lat": lat,
"LatRef":1latitudeRef,
“Lon": lon,

"LonRef": longitudeRef}

172

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL
return gpsCoor

except:
return None

""" CONVERT GPS COORDINATES TO DEGRESS '''

#

Convert GPSCoordinates to Degrees

#

Input gpsCoordinates value from in EXIF Format
#

def ConvertToDegrees(gpsCoordinate):

do = gpsCoordinate[0][0]
d1 = gpsCoordinate[0][1]
try:
degrees = float(do) / float(d1)
except:
degrees = 0.0
mo = gpsCoordinate[1][0]
ml = gpsCoordinate[1][1]
try:

minutes = float(mo) / float(m1)
except:
minutes=0.0

s0 = gpsCoordinate[2][0]
s1 = gpsCoordinate[2][1]
try:

173

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

seconds = float(so) / float(s1)

except:
seconds = 0.0

floatCoordinate = float (degrees + (minutes / 60.0) +
(seconds / 3600.0))

return floatCoordinate

""" MAIN PROGRAM ENTRY SECTION '"'

pyExif Main Entry Point

print("\nExtract EXIF Data from JPEG Files")
print("Python Forensics, Inc. \n")

print("Script Started", str(datetime.now()))
print()

""" PROCESS PIPED DATA FROM POWERSHELL SECTION "''
picturelist = []
Process data from standard input as a file list

for eachLine in sys.stdin:
entry = eachline.strip()
if entry:
picturelList.append(entry)

print("Processing Photos ...")
print()

CDH

174

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL
Created a mapping object
""" PROCESS EACH JPEG FILE SECTION "'’
latlonList = []
for targetFile in picturelist:
if os.path.isfile(targetFile):

gpsDictionary, exiflist =
ExtractGPSDictionary(targetFile)

if exiflist:
TS = exiflList[0]
MAKE = exiflist[1]
MODEL = exiflist[2]

else:
TS = "NA'
MAKE = 'NA'
MODEL = 'NA'

if (gpsDictionary != None):

Obtain the Lat Lon values from
the gpsDictionary

Converted to degrees

The return value is a dictionary
key value pairs

dCoor = ExtractLatLon(gpsDictionary)

if dCoor:
lat = dCoor.get("Lat")
latRef = dCoor.get("LatRef")
lon = dCoor.get("Lon")

175

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

lonRef = dCoor.get("LonRef")

if (lat and lon and
latRef and lonRef):

latLonList.append(
[os.path.basename(targetFile),
"{:4.4f}"' .format(lat),
"{:4.4f}" . format(lon),
TS, MAKE, MODEL])

else:
print("WARNING",
"No GPS EXIF Data for ",
targetFile)
else:
continue
else:
continue
else:
print("WARNING", " not a valid file", targetFile)

Create Result Table Display using PrettyTable
""" GENERATE RESULTS TABLE SECTION '"'

""" Result Table Heading '''
resultTable = PrettyTable(['File-Name',
"Lat','Lon’,
"TimeStamp',
‘Make', 'Model'])

for loc in latlLonlist:

176

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

resultTable.add row([loc[0], loc[1],
loc[2], loc[3],
loc[4], loc[5]])

resultTable.align = "1"
print(resultTable.get string(sortby="File-Name"))

""" GENERATE CSV FILE SECTION "'’

Create Simple CSV File Result

with open("LatLon.csv", "w") as outFile:
Write Heading
outFile.write("Name, Lat, Long\n")

Process All entries and write
each line comma separated

for loc in latlonlist:
outFile.write(loc[O]+","+
loc[1]+","+
loc[2]+"\n")

print("LatLon.csv File Created Successfully")

print("\nScript Ended", str(datetime.now()))
print()

Executing the Combined PowerShell to Python
exifxtract Scripts

The final step is to execute the PowerShell script which will pass the
identified filenames to the Python script. The folder C:\PS\Photos contains
a set of JPEG photographs to examine. By changing the $files variable in
the PowerShell script, you can specify an alternative directory to examine.

See Figure 6-7.

177

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

PS C:\PS> C:\PS\exifxtract.psl

Extract EXIF Data from JPEG Files
python Forensics, Inc.

script started 2019-02-14 10:15:07.017267
pProcessing Photos ...
e

+ + +

| File-Name | Lat | Len | TimeStamp Make | model |
$ommmmmscssssssssfuomn == P it ettt et L fommmmmssssssssssss s e

| Biking.jpg | 33.8755 | -116.3016 | 2006:02:11 11:06:37 | canon | Canon Powershot AS0

| castle.irs | 55.0073 | 11.9109 | 2012:06:09 12:42:24 PENTAX | PENTAX K-5 |
| cat.jpg | 59.9248 | 10.6956 | 2008:08:05 20:59:32 canon | Canon EOS 400D DIGITAL

| coastLine.JPG | 33.8193 | -78.6704 | 2018:02:02 17:30:38 | apple | irhone 7 |
| peutchland.lrG | 47.9750 | 7.8297 | 2010:06:23 15:32:25 | apple | iprhone 3G

| pisney.jpg | 28.4188 | -81.5810 | 2010:08:18 11:38:37 | canon | canon E0S 1000D |
| Farm.jpg | 42.5012 | -83.2507 | 2009:03:14 13:46:34 | NIKON | COOLPIX PGOOD |
| Munich.JpPG | 48.1413 | 11.5767 | 2010:06:21 16:00:57 apple | iphone 3G

| Turtle.jpag | 25.3384 | 34.7397 | 2008:05:08 16:55:58 | canon | canon EOS 5D

A ———— Frmmmm——————— e - ——————— o +

LatLon.csv File created Successfully

script Ended 2019-02-14 10:15:07.048502

Figure 6-7. Execution of photoMap.ps1

The script processed a sample directory with nine JPEG image files.
The results included the table of filenames associated with extracted Lat/
Lon values. The LatLon.csv file was also created. The resulting Lat/Lon
results can be then imported into web resources such as Google Maps to
provide a visual mapping of the results.

Summary

This chapter focused on the development of a model to execute Python
scripts from PowerShell. The model used the standard PowerShell piping
model to acquire specific data and provide the output to the specified
Python scripts using the PowerShell piping method.

These examples focused on small PowerShell scripts that perform
discrete acquisitions, and then ultimately used Python’s rich capabilities to
perform the heavy lifting to process the results.

178

CHAPTER6 LAUNCHING PYTHON FROM POWERSHELL

This model provides a rich baseline for experimentation, acquisition,
and combination of PowerShell and Python. In some ways, this model
seems slightly more streamlined than the subprocess method used to
execute PowerShell scripts from Python. Both have their place of course,
whether to control and automate existing PowerShell scripts or to drive
output from PowerShell to Python.

179

CHAPTER 7

Loose Ends and
Future Considerations

Having developed two solid approaches for the integration of PowerShell
and Python (i.e., Python subprocessing and PowerShell pipelining),
there are a couple of loose ends and future considerations that need to be
addressed.

Loose Ends

The first involves using the PowerShell Invoke-Command CmdLet without
needing to respond to a login pop-up each time, as shown in Figure 7-1.

© Chet Hosmer 2019 181
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0_7

CHAPTER 7 LOOSE ENDS AND FUTURE CONSIDERATIONS

Windows PowerShell credential request ? X

fﬁ%

Enter your credentials.
User name: €} ‘o-Upstairs\Remote-Admin | ...
Password: | sessesees

Figure 7-1. Windows PowerShell credential request

This can be accomplished by creating a new credential object using
the PowerShell System Management Automation PSCredential system.
Figure 7-2 shows a simple PowerShell script that acquires the system event
log from the computer PLUTO, using the Remote-Admin user credentials.
This requires only four steps:

1. Create two local PowerShell variables:
$targetComputer (the computer name you wish
to access) and $userName (the username on the
remote computer).

2. Create a plaintext string, $password, with the
password associated with the remote user. Note the
password is blacked out here. When embedding
passwords in PowerShell scripts, it is vital that you
keep the script secure from unauthorized access.

182

CHAPTER 7 LOOSE ENDS AND FUTURE CONSIDERATIONS

3. This step contains two important parts:

a. First, the plaintext password is converted to
the secure string, $securePassword. The secure
string created by the ConvertTo-SecureString
CmdLet can then be utilized with other
CmdLets or functions that require a parameter
with the type SecureString.

b. Next, the secure credential object, $credential, is
created. This requires $userName and the newly
created $securePassword as parameters.

4. Finally, the newly created $credential PowerShell
variable can be passed as the -Credential parameter
within the Invoke-Command CmdLet.

F

e it View Toos Debug Addoms Hel
ERR oxi =9 r 38wl a Booiai.

UntiBedlpl | BventirocesCredpet” X | Cachedequiepsl | EvertProcemorfinal pel

2 mpute "PLUTO" 1
3| Suservase “PLUTO Remote-Adwin™

omation, PSCredential -ArgusentList Suserfame, Ssecurefassworc 3 |

12
=.;| InVoke-Comrand ~CORpUTErNARE §targeriomputer ~Credential Scredential -SCriptslock [GET-EvEntiog -LOgNAme system -Newest 100} 4 I

Figure 7-2. PowerShell script to collect a remote event log with
embedded credentials

Execution of the script acquires the system event log from the PLUTO
computer as shown in Figure 7-3. Note the output was truncated for
brevity.

183

CHAPTER 7 LOOSE ENDS AND FUTURE CONSIDERATIONS

PS CoAWINDOWS\system32» C:\PS\EventProcessCred.psl

Index Time EntryType Source Instanceld Message PSConputertane
16 The description for Event ID '16' in Scurce 'Microseft... PLUTO
16 The description for Event ID "16' in Source 'Microsoft... PLUTD
16 The description for Event ID "16' in Source 'Micresoft... PLUTO
19 Installation Successful: windows swccessfully installe... PLUTD
43 Installation Started: Windows has started installing t... PLUTD
44 wWindows Update started download ing an update. PLUTO
2147489661 'I'M: qutcm uptise is 346731 seconds.
19 1 Tavion Successful: !nr' successfully installe... PLUTD
41 [ns allation Started: wind started installing t... PLUTD
44 windows update started ﬂmn]oa ing an update. PLUTD
16 The description for Event ID "16° in Source ‘Microsoft... PLUTD
1 Possible detection of CVE: 2019-01-) ?9\'0‘ 41:55.6987694. .. PLUTD
1 Possible detection of CVE: 2019-01-20T(4:41:55.6255383. . PLUTO

1074 Jam 29 15:34 Infarr:ulon vlcrosof(- i
1073 Jan 29 15:34 Information Microsoft
1072 Jan 29 15:26 Inforsation Micreseft-
1071 Jan 2% 13:40 Inforsation Microsoft-
1070 Jan 29 13:40 Inforsation Microsoft-
1069 Jan 29 13:39 Inforsation Microsoft-i
1068 Jan 29 12:00 Inforsation Eventl

1067 Jan 29 11:53 Inforsmation Microsoft-wi
1066 Jan 29 11:52 Inforsation Microsoft
1065 Jan 29 11:52 Inforsatien micresoft-
1064 Jan 29 11:22 Information Microsoft-
1063 Jan 28 23:41 Inforsation Microsoft-
1062 Jan 28 23:41 Inforsation Microsoft-

Figure 7-3. EventProcessCred.psl sample execution

The second improvement leveraged the embedded credential
approach. The main reason for embedding credentials (beyond
convenience) is so that scripts can acquire data from multiple remote
computers from the same script without the requirement for interaction.
One method to accomplish this is to create a list of target computer names
to access. PowerShell lists are useful and can be used to loop through
multiple selections using the foreach operator. Figure 7-4 shows an example
that acquires system logs from two computers defined in a PowerShell list.

Note For this example, the username and password for each target
will be the same to keep the illustration simple. The example can

be expanded to include unique usernames and passwords for each
target as well, of course.

fle Gt View Tosh Debug Addors Help s -
2 W& Bd| 9 P B> 8 EBoo &a@.

Msttedipal | Eertrocmimstpislagrnsst® X | Cahercquenpal | BrentProcsmcdmsipsl | Protoangel | Propertismeletpst

ts - Nem-Object
=ts . Add("PLUTO™}

ect 'Systen.Collections. Generic. List[String] 4
gets Add(“Mars”™)

“Rerate_Acnin”
srver tTo-SecureSteing -AsPlainTest fpassword -Force 2 |
2 [Woreach (Stargetconputer in §1istofTargets)
[writenost P
17) Invoke-Command -ComputerName §ta r -Credential Scredentia s:r :k!l c-< {Ge n.er Iog lug\me system -Newest 100}

Figure 7-4. Acquiring system event logs from multiple target
computers with embedded credentials

184

CHAPTER 7 LOOSE ENDS AND FUTURE CONSIDERATIONS

This script is broken down into three steps:

1.

This section creates a PowerShell object
$listOfTargets which is a simple list of strings. Each
string represents the name of a target computer.
The newly created list has no elements. The
$listOfTargets is then populated using the Add
method that is associated with the PowerShell list
object that was created.

The default $remoteUser variable is created and
set to “Remote-Admin” which is the remote user
Admin account that will be used. In addition, the
$securePassword is created that will be used to
access each remote target. Note the $credential
is not created yet because it needs to be created
uniquely for each target acquisition.

Finally, a loop is created that will do the following:

a. Display the name of the Host being processed
each time through the loop.

b. Combine the current $targetComputer and the
default $remoteUser name to create the unique
$userName for this target. For example:
PLUTO\Remote-Admin.

c. Using the PowerShell System.Management.
Automation capability, the unique $credential
is then created each time through the loop,
using the $userName and $securePassword
PowerShell variables.

185

CHAPTER 7 LOOSE ENDS AND FUTURE CONSIDERATIONS

d. Then the Invoke-Command to acquire the
system event log is executed with the current
$targetComputer and the associated $credential
required for access.

The abbreviated script output is shown in Figure 7-5.

-
|
1
z
£
A

s successfully inst [
s started |
1}

2IIIIIND

Figure 7-5. Multiple target computer system event log execution

Future Considerations

Integrating PowerShell and Python and combining two very powerful
scripting environments has been a joy to work on. The research,
experimentation, and model creation have been trying at times; however,
the result is two viable and useful methods that will allow for the
expansion of investigative solutions.

Arich basis for digital investigators can be found with the literally
thousands of PowerShell CmdLets available to acquire material evidence
from target computers locally or remotely. Combining that with the
versatility and power of the Python environment brings forth the
opportunity for boundless innovations and solutions.

Given these two models for integration, I challenge you to develop
and expand new solutions that combine the best of both environments. I
still think of PowerShell as a potent acquisition engine and Python as the
backend analysis and processing component. However, that’s only my
view - you may have different ideas. So, run with those as well, the models
provided here can support a wide range of possibilities.

186

CHAPTER 7 LOOSE ENDS AND FUTURE CONSIDERATIONS

Summary

This chapter focused on a couple of loose ends that will improve the
automation aspects of PowerShell by embedding credentials with
PowerShell scripts. This embedding enables multiple simultaneous
acquisitions of evidence that can then be delivered to or driven by Python
elements. This will certainly expand the reach of investigators and speed
the acquisition and analysis of acquired evidence.

Good luck, and I'look forward to communicating and collaborating
on new investigative solutions that combine PowerShell and Python in
unique ways.

187

APPENDIX A

Challenge Problem
Solutions

The appendix contains solutions to several of the challenge problems
presented in Chapter 1 through Chapter 5. Note that not all challenge
problems are solved here as this is not meant to be a crossword puzzle
cheat section. Rather, it provides key insights that will be needed to solve
the challenges.

I firmly believe the only way to become proficient with Python,
PowerShell, or the combination of both is to practice. One of the best
ways to do this is to define a challenge you would like to solve, then
start small and try different approaches. Then, and only then, integrate
your experiments into scripts or programs. Note that this is slightly
counter to traditional computer science approaches to waterfall or even
spiral development; however, I believe this is the best way to learn. In
one of my first books Python Forensics' I coined the phrase “test then
code.” At the time this was very fitting for the development of Python
scripts, and I strongly believe that it still aligns well today for both
PowerShell and Python.

Syngress, 2014.

© Chet Hosmer 2019 189
C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0

https://doi.org/10.1007/978-1-4842-4504-0

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

The appendix is broken down by chapter for easy reference.

Note Just a reminder that many of the CmdLets and scripts require
administrator privilege.

Chapter 1: Investigative CmdLets to Explore

Challenge One: Executing a “Find” Based on File
Extension

PS C:\WINDOWS\system32> Get-Help Get-ChildItem
NAME
Get-ChildItem
SYNOPSIS
Gets the files and folders in a file system drive.
Example A: Find All Files with .jpg Extension

PS C:\WINDOWS\system32> get-childitem C:\ -include *.jpg
-recurse -force

Directory: C:\$Recycle.Bin\S-1-5-21-1545112040-36671619-
2396729391-1001\$RPSE7Z2\PHOTO

Mode LastWriteTime Length Name

-a---- 8/15/2018 11:24 AM 26903 20-fake-
images-10.jpg

-a---- 8/15/2018 11:21 AM 37651 20-fake-

images-20.7jpg

190

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

-a---- 8/21/2018 8:01 AM 85175 area-51-
caller.jpg

-a---- 7/30/2018 9:52 AM 177153 jets.JPG

-a---- 8/21/2018 7:54 AM 137948 moon_landing_
hoax. jpg

Directory: C:\IMAGES

Mode LastWriteTime Length Name

-a---- 9/3/2018 2:58 PM 624744 Biking.jpg

~a---- 9/3/2018 2:58 PM 1224201 Castle.JPG

-a---- 9/3/2018 2:58 PM 446759 Cat.jpg

-a---- 9/3/2018 2:58 PM 600630 Deutchland.JPG

—a---- 9/3/2018 2:58 PM 304930 Disney.jpg

-a---- 9/3/2018 2:58 PM 96831 dscn0011.]jpg

-a---- 9/3/2018 2:58 PM 98012 kinderscout.jpg

-a---- 9/3/2018 2:58 PM 252607 Munich.JPG

-3-=-- 9/3/2018 2:58 PM 3352190 Rome.jpg

-3---- 9/3/2018 2:58 PM 91329 Turtle.jpg

-a---- 9/3/2018 2:58 PM 5459 zzz.jpg

--- OUTPUT truncated for brevity

Example B: Display Hidden System Files in C:\
PS C:\WINDOWS\system32> Get-ChildItem c:\ -Hidden -System

Directory: C:\

Mode LastWriteTime Length Name

d--hs- 2/5/2017 1:43 PM $Recycle.Bin

d--hs- 1/21/2019 4:09 PM Config.Msi

d--hsl 2/5/2017 1:49 PM Documents and
Settings

191

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

d--hs- 1/31/2019
-arhs- 7/16/2016
-a-hs- 7/16/2016
-a-hs- 1/12/2019
-a-hs- 1/28/2019
-a-hs- 12/20/2018

8:05 AM
7:43 AM 384322
7:43 AM 1

11:32 AM 5111406592
11:20 PM 3891789824
1:56 PM 268435456

System Volume
Information
bootmgr
BOOTNXT
hiberfil.sys
pagefile.sys
swapfile.sys

Challenge Two: Examining Network Settings

Example A: Get Basic TCP Network Settings

PS C:\WINDOWS\system32> Get-Help Get-NetIPConfiguration

NAME
Get-NetIPConfigurat

SYNOPSIS

ion

Gets IP network configuration.

PS C:\WINDOWS\system32> Get-NetIPConfiguration -All

InterfaceAlias
InterfaceIndex
InterfaceDescription :
NetProfile.Name
IPv4Address
IPv6DefaultGateway
IPv4DefaultGateway
DNSServer

192

: Ethernet
. 8

Realtek PCIe GBE Family Controller

: hoz 3
: 192.168.86.36

: 192.168.86.1
: 192.168.86.1

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Example B: Get Current TCP Connections

PS C:\WINDOWS\system32> Get-NetTCPConnection | select-object
-Property LocalAddress, RemoteAddress, State, OwningProcess |
Format-Table -AutoSize

LocalAddress RemoteAddress State OwningProcess

192.168.86.36 52.114.74.45 Established 67228
192.168.86.36 162.125.9.3 CloseWait 132676
192.168.86.36 162.125.33.7 CloseWait 132676
192.168.86.36 23.32.68.10 Established 156280
192.168.86.36 162.125.18.133 Established 132676
192.168.86.36 162.125.34.129 Established 132676
192.168.86.36 162.125.9.7 CloseWait 132676
192.168.86.36 17.249.156.16 Established 17736
192.168.86.36 162.125.18.133 Established 132676
192.168.86.36 162.125.9.4 CloseWait 132676
192.168.86.36 162.125.34.129 Established 132676

Challenge Three: Examining Firewall Settings

Example A: Check the Current Local Firewall State
PS C:\WINDOWS\system32> get-Help Get-NetFirewallProfile

NAME
Get-NetFirewallProfile

SYNOPSIS
Displays settings that apply to the per-profile configurations
of the Windows Firewall with Advanced Security.

PS C:\WINDOWS\system32> Get-NetFirewallProfile | Select-Object
-Property Enabled, Profile

193

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Enabled Profile

True Domain
True Private
True Public

Chapter 2: CmdLet Experimentation

In Chapter 2, the Start and Stop Transcript CmdLets will be used to capture
the results of each CmdLet output. The resulting transcript is included at the
end of this section with a selection of CmdLets that were experimented with.

PS C:\WINDOWS\system32> Get-Help Start-Transcript

NAME
Start-Transcript

SYNOPSIS
Creates a record of all or part of a Windows PowerShell
session to a text file.

PS C:\WINDOWS\system32> Get-Help Stop-Transcript

NAME
Stop-Transcript

SYNOPSIS
Stops a transcript.

PS C:\WINDOWS\system32> Start-Transcript c:\PS\Transcript\
transcript.txt

Transcript started, output file is c:\PS\Transcript\transcript.
txt

194

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Transcript of Commands and Responses

Note: Some output was abbreviated.

skt ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Windows PowerShell transcript start

Start time: 20190131103013

Username: PYTHON-3\cdhsl

RunAs User: PYTHON-3\cdhsl

Configuration Name:

Machine: PYTHON-3 (Microsoft Windows NT 10.0.17134.0)

Host Application: C:\WINDOWS\system32\WindowsPowerShell\vi.o\
PowerShell ISE.exe

Process ID: 41620

PSVersion: 5.1.17134.407

PSEdition: Desktop

PSCompatibleVersions: 1.0, 2.0, 3.0, 4.0, 5.0, 5.1.17134.407
BuildVersion: 10.0.17134.407

CLRVersion: 4.0.30319.42000

WSManStackVersion: 3.0

PSRemotingProtocolVersion: 2.3

SerializationVersion: 1.1.0.1

kokok ok ok ok ok ok skok ok sk ok sk sk kok ok k k ko

Transcript started, output file is c:\PS\Transcript\transcript.txt

PS C:\WINDOWS\system32> Get-Process -ComputerName .

195

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Handles NPM(K)

470 22
277 14
238 23
487 28
166
157
375 25
1326 74
1210 86
941 91
307 28
339 15
345 16
608 26
0 14
449 20
220 9
126 9
120
1241 83
52 3
220 13
155 9

196

19988

2084
1804
5160
232108
380800
50384
31836

6444
7136
19760
1388
10136
1792

1532
1384
57844
504
5172
1696

22108

100
104
2020
173896
397292
10732
1536

3408
4712
1536
20876
15780
160

528
6136
54048
208
5116
424

2,793.
0.
0.

14.

43

240.
.31
.66

53
17
23

77

.09
.02
.17
.73

86

.67

3.77

41
.36
.48
.08

0.05
0.00

52

223

.45
41
.39
.09

Id
55708
56592

113824

79164

183548
209908
17736
184112
41620
166420
35788

12076
23452
6204
96
17068
2540

216496
168436
161508
452
2364
14104

O N O O N N N O N N N O N

N O O O O N

ProcessName
AdobeCollabSync
AdobeCollabSync
ApplePhoto
Streams
Application
FrameHost
AppVShNotify
AppVShNotify
APSDaemo
POWERPNT
powershell ise
PRSvc
QtWebEngine
Process

RAVBg64

RAVBg64
RealSenseDCM
Registry
RemindersServer
RtkAudio
Serviceb4
rundl132
SearchFilterHost
SearchIndexer
smss

svchost

TUAuto
Reactivator64

329

1167

198
124
110
156
247
1754
343
308
237

20

34

14

10
10
91
14
17
10

6296

46024

2912
1400
2624
1528
2668
200124
15340
11144
2348

11196

32928

3408
316
156

36
2528
197816
13956

8360
764

PS C:\WINDOWS\system32> Get-Process -Name

Handles NPM(K)

271
338
273
558
343
266
142
356
223
267
273
1639

21
32
25
30
30
19
11
33
10
21
22
73

115292

110896

CHALLENGE PROBLEM SOLUTIONS

APPENDIX A
851.14 60052
12,831.14 63708
2.34 4224
0.52 15912
0.02 4380
0.02 724
3.83 215952
415.23 67228
971.41 15696
319.03 24228
0.61 132372
chrome

CPU(s) Id
0.16 26420
11.11 48132
1.44 76284
26.75 83340
3.33 88260
0.08 115852
0.05 128480
3.84 128952
0.03 148004
0.25 149520
0.30 197144
64.27 214792

2

O O O N N O O N O

wn
—

N N N N N N N N N N NN

TuneUpUtiliti
App64
TuneUpUtiliti
Service64
UploaderServi
WavesSvco4
WavesSysSvc6o4
wininit
winlogon
WINWORD
WmiPrvSE
WmiPrvSE
WUDFHost

ProcessName
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome
chrome

chrome

es

es

ce

197

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

PS C:\WINDOWS\system32> Get-MpThreat
None reported

PS C:\WINDOWS\system32> get-service | where-object {$_.Status
-eq "Stopped"}

Status Name DisplayName

Stopped AJRouter AllJoyn Router Service

Stopped ALG Application Layer Gateway Service
Stopped AppIDSvc Application Identity

Stopped AppReadiness App Readiness

Stopped AppVClient Microsoft App-V Client

Stopped AppXSvc AppX Deployment Service (AppXSVC)

Stopped AssignedAccessM... AssignedAccessManager Service
Stopped AxInstSV ActiveX Installer (AxInstSV)
Stopped BcastDVRUserSer... GameDVR and Broadcast User

Service ...
Stopped BDESVC BitLocker Drive Encryption Service
Stopped BluetoothUserSe... Bluetooth User Support

Service 2a63...

Stopped Bonjour Service Bonjour Service

Stopped CaptureService ... CaptureService 23637185

Stopped CertPropSvc Certificate Propagation

Stopped ssh-agent OpenSSH Authentication Agent

Stopped SupportAssistAgent Dell SupportAssist Agent

Stopped svsvc Spot Verifier

Stopped swprv Microsoft Software Shadow Copy
Prov...

Stopped TermService Remote Desktop Services

Stopped TieringEngineSe... Storage Tiers Management

Stopped TrustedInstaller Windows Modules Installer

Stopped tzautoupdate Auto Time Zone Updater

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Stopped UevAgentService User Experience Virtualization

Service
Stopped UmRdpService Remote Desktop Services UserMode
Po...
Stopped upnphost UPnP Device Host
Stopped VacSvc Volumetric Audio Compositor Service
Stopped vds Virtual Disk
Stopped VMAuthdService VMware Authorization Service
Stopped vmicguestinterface Hyper-V Guest Service Interface
Stopped vmicheartbeat Hyper-V Heartbeat Service

Stopped vmickvpexchange Hyper-V Data Exchange Service
Stopped vmicrdv Hyper-V Remote Desktop
Virtualizati...

Stopped vmicshutdown Hyper-V Guest Shutdown Service

Stopped vmictimesync Hyper-V Time Synchronization
Service

Stopped vmicvmsession Hyper-V PowerShell Direct Service

Stopped vmicvss Hyper-V Volume Shadow Copy
Requestor

Stopped VMnetDHCP VMware DHCP Service

Stopped VMUSBArbService VMware USB Arbitration Service
Stopped VMware NAT Service VMware NAT Service

PS C:\WINDOWS\system32> Get-Location

Path

C:\WINDOWS\system32

PS C:\WINDOWS\system32> Set-Location C:\PS

199

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

PS C:\PS> Test-NetConnection

ComputerName : internetbeacon.msedge.net
RemoteAddress : 13.107.4.52
InterfaceAlias : Ethernet

SourceAddress : 192.168.86.36
PingSucceeded : True

PingReplyDetails (RTT) : 24 ms

PS C:\PS> Get-Disk | Format-List *

DiskNumber : 0

PartitionStyle : GPT
ProvisioningType : Fixed
OperationalStatus : Online
HealthStatus : Healthy

BusType : SATA
UniqueIdFormat : FCPH Name
OfflineReason :

Uniqueld : 5000039751D8A26D
AdapterSerialNumber

AllocatedSize : 1000203837440
BootFromDisk : True
FirmwareVersion : AXOP3D
FriendlyName : TOSHIBA MQO1ABD100
Guid : {ea267102-e3e3-4a17-b349-e5e0161bc012}
IsBoot ¢ True

IsClustered : False
IsHighlyAvailable : False

IsOffline : False

IsReadOnly : False

IsScaleOut : False

IsSystem : True

200

LargestFreeExtent
Location
LogicalSectorSize
Manufacturer
Model

Number
NumberOfPartitions
Path

PhysicalSectorSize
SerialNumber
Signature

Size
PSComputerName
CimClass

CimInstanceProperties :

CimSystemProperties

DiskNumber
PartitionStyle
ProvisioningType
OperationalStatus
HealthStatus
BusType
UniqueIdFormat
OfflineReason

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

: 1048576
: Integrated
¢ 512

: Adapter 0 : Port 0

: TOSHIBA MQO1ABD100

. 0

: 6

: \\?\scsi#disk&ven toshiba&prod mqolabdi

00#481b6d0cbc808000000#{53f56307-b6bf-
11d0-94f2-00a0c91efb8b}

: 4096

X6LSTAXNT

: 1000204886016

: ROOT/Microsoft/Windows/Storage:MSFT

Disk

{ObjectId, PassThroughClass,
PassThroughIds,
PassThroughNamespace. ..}

: Microsoft.Management.Infrastructure.

CimSystemProperties

2

: MBR

: Fixed

: Online

: Healthy

: USB

: Vendor Specific

: USBSTOR\DISK&VEN DYMO&PROD PNP&REV 1.00\

784347EDADD&0&15314622032011&0: PYTHON-3

201

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

AdapterSerialNumber
AllocatedSize
BootFromDisk
FirmwareVersion
FriendlyName

Guid

IsBoot

IsClustered
IsHighlyAvailable
IsOffline
IsReadOnly
IsScaleOut
IsSystem
LargestFreeExtent
Location
LogicalSectorSize
Manufacturer

Model

Number
NumberOfPartitions
PhysicalSectorSize
SerialNumber
Signature

Size
PSComputerName
CimClass

CimInstanceProperties :

202

1 4193792
: False

¢ 1.00

: DYMO PnP

: False

: False

: False

: False

: False

: False

: False

: 0

: Integrated : Adapter 0 : Port O
: 512

: DYMO

: PnP

2

01

: 512

¢ 15314622032011
1 6975421

: 4193792

: ROOT/Microsoft/Windows/Storage:MSFT_

Disk

{ObjectId, PassThroughClass,
PassThroughIds,
PassThroughNamespace. ..}

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

CimSystemProperties : Microsoft.Management.Infrastructure.
CimSystemProperties

PS C:\PS> Stop-Transcript

K3k ok ok ok ok ok >k ok ok ok k ok >k ok kook ok sk sk k ok

Windows PowerShell transcript end

End time: 20190131103856
Sk 3k ok >k ok sk sk Sk sk ok sk ok sk sk ok sk ok skosk sk kok

Chapter 3: Create File Inventory List
with Hashes

#
Simple file Inventory Script
#

Function to convert size values to human readable
function GetMBSize($num)

{

$suffix = "MB"

$MB = 1048576

$num = $num / $MB

"{o:N2} {1}" -f $num, $suffix
}

Set Report Title

$rptTitle = "File Inventory"

Get the current date and tme
$rptDate=Get-Date

Set the target Directory and parameters
$targetDirectory = "c:\"

203

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Create HTML Header Section

$Header = @"

<style>

TABLE {border-width: 1px; border-style: solid; border-color:
black; border-collapse: collapse;}

TD {border-width: 1px; padding: 3px; border-style: solid;
border-color: black;}

</style>

<p>

 $rptTitle

<p>

 Date: $rptDate

<p>

 Target: $targetDirectory

<p>

‘e

Provide script output for user
Write-Host "Create Simple File Inventory"

$dir = Get-ChildItem $targetDirectory -File

Create an empty array to hold values
$outArray = @()

Loop through each file found

foreach ($item in $dir)

{
create and object to hold item values from separate
CmdLets
$tempObj = "" | Select "FileName", "Attribute", "Size",
"HashValue"

204

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Get the fullname including path
$fullName = $item.FullName

Get the attributes assoicated with this file
$attributes = $item.Attributes
$size = GetMBSize($item.Length)

Generate the SHA-256 Hash of the file

$hashObj = Get-FileHash $fullName -ErrorAction Silently
Continue

Get just the Hash Value

$hashValue = $hashObj.Hash

if hash value could not be generated set to Not Available
if ([string]::IsNullOrEmpty($hashValue))

{
$hashValue = "Not Available"

}

Fill in the tempObj
$tempObj.FileName = $fullName
$tempObj.Attribute = $attributes
$tempObj.Size = $size
$tempObj.HashValue = $hashValue

Add the tempObj to the outArray
$outArray += $tempObj

Clear the output array
$tempObj = $null
}

$outArray | ConvertTo-Html -Head $Header -Property FileName,
Attribute, Size, HashValue |
Out-File test.html

205

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

#$outArray | ConvertTo-Html | out-file test.html
Write-Host "Script Completed"
Write-Host "test.html created"

Sample PowerShell Script Output

PS C:\PS> C:\PS\testInventory.psi

Create Simple File Inventory

Scan the C: Drive for Hidden and System Files Only
Script Completed

test.html created

PS C:\PS>

HTML Screenshots

B et x +
C 0 @ File | CyPS/testhtm % e
Dasa B okre ew 6 M " S A &« PR —
File Inventory

Date: 02/01/2019 14:33:32

Target: e\

FileName Attribute Size HashValue
C:\aliases. txt Archive |0.01 MB|E6143C0170ECEDF441D70440CE4FBECTEF00AT4232DDIE0SA3067634137578DC
C:levents.txt Archive |0.00 MB|CESBBI3BCCEEF1C032D7147414ACE2CTEFSDAABERASDEDASTECALLT FD20

Ciwinsecevents.txt |Archive |0.11 MB [9E3FT2F053BCD388097343FSFFSBDOCECIT4E]1 SSABAFEECEBEOCFCIF542A0076
Clwinsysevents.txt | Archive |0.05 MB|6AEA4T30C4A94CT62F TBAOESA3TIES23FBBIBIFASENC3 TC390BADTCC6T32EOSB

Note By adding the -System argument to the Get-Childltem
command, you would obtain the system files in the c:\ directory.

206

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

[testh x |+
C v O File| CyPS/testhimi o Be 0 :
apes D Brsa B o Rw G [a E - § s @ B W 0

File Inventory

Date: 02012019 14:36:34

Target: ¢\

FileName Artribute _ Sire HashValue
C: bootmgr ReadOnly, Hidden, System, Aschive 037TMB AC04TI26TEIEETOSFBEI0A2IDAA2829092CDTCCBOS0F TEACCAECAOIDIEDIEFS
(CBOOTNXT |H:idden, System, Archive 0.00 MB GE340BSCFFB3TASBSCASHESBBTE0AICTES0IDIFB33 738768511 A3061TAFADLD
C'dell sdr ReadOnly, Hidden, Archive 0.02 MB 93134780098 ECEEEF T83F 3EAIE04FAGAESEYS 353 BABE IDS6DASESCCDCIFIESSA
Cohiberfil sys |Hidden, System, Archive, NotContentlndexed | 4,874,621 MB | Not Available
Copagefile.sys |Hedden, System, Archive 3,711.50 MB | Not Available
Clswapfile sys |Hedden, System, Archive .:56 MOMB [Not Available

Note By changing the script $targetFolder and adding the -Recurse
to the Get-Childitem command, you can process the entire C:\ drive.
Running the script against the ¢:\PS\ folder including the -Recurse
Parameter we get the following result (truncated for brevity).

Note By changing the $MB variable to $KB = 1024 you can then
produce results in Kilobytes, modify the script, and give that a try.

207

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

O testhm x

C O @ Fike | CyPS/testhimi T Be 0 :

o Bersa B oane ew 61 a ¥ B & [L0 - | B v " Cthes baskrmarks
File Inventory
Date: 020172019 14:31:36
Target: ¢:\PS\
FileName Attribute Size HashValue

C:\PS' AcquureDNS py Archive |0.00 MB|2E724C0218EBSBDFESSA I EBEBF 25305F443646CD1CES2 16BIFCIANE4IFBESDID
C: PS5 baseline pickle Archive |0.05 MB|FC892B68249BS0C5BISACIDO18662060AC228425DD119EEBS0ACDE90FDBFT2
C:\PS'baselne txt Archive |0.05MB|36D216DCDCE141B29BDFAE16C2CADIATDBCSE 1 BS63DCSY1910SEEIFAGSBB1 56D
C:\PS\BasicOne.psl Archive |0.00 MB|6C148046ATBOF774B385B708BF$30EC36305DAB61S0FOF 10149DB4ATI6ATSDIB
CP5 BasicOne py Archive |0.00 MB|ATB21340E1471729DC46C0508B2DYFBATESEAEE3CCH96320BSFC11 TCBIBSACSS
C:\PSicache ter Archive |0.00 MB|F48E2ACASS153F 79FA068517D51902DF84411A11D5D8491D4862DBEE4S6F 3657
C:\PS'CacheAcquire psl Archive |0.00 MB|33720C34ECCC6346638CSDEABCDEAAOMODSIDIES6ISDOAAGIADIBC] 32772167
C:\PS CreateBaseline py Archive |0.00 MB|D92582674925TE2IBF4839125B636BCSB4ED]I6CI23198295791919A056E44ED2
C:\PS DnsCache txt Archive |0.00 MB|BSDOSB119F T026DSASEBE6194FFDO71153ABES832FODOBFOAL538446A0TABY3S
C:\PS EventProcessCred psl Asrchive |0.00 MB|341C056BFSE0940DETCEF21IFE24232373A07TDSBCSFIFSIFESSD 76425 TEEBYAC
C:\PS EventProcessMultipleTargets pal |Archive |0.00 MB|ACSA43A2214C32233DBODF4ACFYBESCS9FID601BAS11268BTAA4ESSBOF2D78ED
C:\PS EventProcessorFinal psl Archive |0.00 MB|CB4A943042A5DTTC44DSEISEAESIAIIDGSBO3D3SFACDFBEOAIFSE3 1 BDAYBOAGE
C:\PS\geo.csv Archive |0.00 MB|FSASF3808TFBOGFS21680T0CE3CTFETDADSS 5941 AB4EBTIB12D4FBE23216254
C:\PS HashAcquire psl Archive |0.00 MB|T073T05F5206A43920ASFDEIBO978CDT823BSCEFOECE0471TBT90ATIFB343957
C:\PSkeywords ot Archive |0.00 MB|BSAE160660DB154B280A4BBCBOBYE4BB0IBFBOF11EATD3655938CC16D6D26DE4
C:PSLatLoncwv Archive |0.00 MB|FAEXB620CATICT39A464EBFS05FI3A23TI64FESSIDT12728DIEABE3312C649
C:\PS LaunchPython.psl Archive |0.00 MB|2F5621EFTSDB26T8SFA IF9SAFDDTBACSE2IB6A09ABDSTETRTI255832CD4 1DDSF
C:\PS PassLast py Archive |0.00 MB|SFIDIECBAED433600173A0597SE64AF TAECOCBYTDCACBSE2DDBE 348422479685
C:\PS'PBcache.txt Archive |0.00 MB|E3BOCH4298FCICI49AFBF4CE996FBI242TAES |E4649B934CA495991BT852BESS
C:\PS pfmap html Archive |0.00 MB|64DOF15BF67960F37F 34399CT757B261D4ESDEODS00DI2007 5 T4E23ER63550A26
C:\PS PhotoMap.psl Archive |0.00 MB|SE031962AADSCID13106ESACSSDIAFASIEBCDECSTBICBS30C2BS3 1DED2ASIEND
C:\PS ProperNameList ps1 Archive |0.00 MB|1F6C2610554BBE2ASCOTES419F4053BCDCD73B6DCF42DA 2938 IFFDSFCESSBSOD
C:\PS ProperNames. py Archive |0.01 MB|SAFOCED4DT6FO1BBEAJOAIVESIDI6DAG0T634CTEJEOTIFEFDBCDCTEFT2CIDEES
C:\PSipyvGeopy Archive |0.01 MB|63338838A00BE36BSSAFB3CE TESS334C91CFOFE3CYD130D0BGSE4364FBDH2575C
C:\PS'remotelnventory.psl Archive |0.00 MB|ACEB4A443280638A4TDATE663TT0546A501FDIFFTASAEESBS25589FACAGFE4
C:\PS'test html Archive |0.01 MB|E2B46B3ICCSE4039521317D23083233CEAIDI0CSCIIF362FDS10AGSAGAS3466B4
C:\PSitestInventory psl Archive |0.00 MB|3AASIBCDTD4E345DACEF1788ED29D47TC46BSECHS 22D T669A49D 1 BOOSGEADIS3
C:\PS'tmp.axt Archive |0.00 MB|TCE73131A20037D6C62F42ET736CDDETENI DATEF177930E2AFAQ371BTOEBGSB)

Also, utilizing the Invoke-Command CmdLet, you can extend this
example to collect file inventories of remote systems.

Chapter 4: Perform Remote Script Execution

Remote PowerShell Command Execution directly from Python:

208

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Example A: Acquire Remote Processes
from PLUTO

import subprocess
runningProcess = subprocess.check output("PowerShell
-Executionpolicy byPass

-Command Invoke-Command -ComputerName PLUTO
-Credential PLUTO\Remote-Admin -ScriptBlock {Get-Process}")

print runningProcess.decode()

Sample Execution

Bt Cebglf ferd bomtow | SewchiMes SOl
o e bt e st v s o S & B coow
3
»»> runningProcess = subprocess.check_output(“Powershell -Executionpolicy byPass -Command Invoke-Command -Computerdame PL
»»» print runningProcess.decode()
Handles NPM{K) PM(K] WS(K) CPU(s) 1 Id 5I Processhame PSComputeriame
483 23 12712 23348 8.88 186@ 1 ApplicationFrameHost PLUTO
EEH] 15 2924 3448 ©.27 4688 1 browser_broker PLUTO
375 14 1556 e08 4.14 a7z @ csrss PLUTO
360 15 1676 2096 1.52 448 1 csrss PLUTO
324 16 4848 8456 1.17 2952 1 ctfmon PLUTO
41 19 5724 10684 2.97 1852 8 dasHost PLUTO
B 5 88 1136 a.85 2612 8 dasHost PLUTO
128 7 1456 5776 2768 8 dllhost PLUTO
126 B8 1508 5544 a.17 3464 1 dllhost PLUTO
222 15 3288 6244 a.52 5648 1 dllhost PLUTO
754 as 37788 39728 5.16 Bag 1 dwe PLUTO
1778 &7 31788 61356 38.66 1584 1 explorer PLUTO
43 7 1836 2164 a.22 676 1 fentdrvhost PLUTO
43 & 1396 1392 a.e5 684 8 fentdrvhost PLUTO

209

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Windows PowerShell credential request

Enter your credentials.

| € PLUTO\Remote-Admin

| sesReRRRS

[oc]

Example B: Acquire Remote Services
from PLUTO

import subprocess
runningServices = subprocess.check output("PowerShell
-Executionpolicy byPass

-Command Invoke-Command -ComputerName PLUTO
-Credential PLUTO\Remote-Admin -ScriptBlock {Get-Service}")

print runningServices.decode()

210

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Pytonihel Debug/C Search Exceplons SeachinFles StackData &
Commands execute mithout debug. Use amow ks for history. & I opxes v
>>> runningServices = subprocess.check_output("PowerShell -Executionpolicy byPass -Cocmman
>>> print runningServices.decode()

Status MName [DisplayName PSComputerName

Stopped AJRouter Allloyn Router Service PLUTO

Stopped ALG Application Layer Gateway Service PLUTO

Stopped AppIDSvc Application Identity PLUTO

Running Appinfe Application Information PLUTO

Stopped AppMgmt Application Management PLUTO

Stopped AppReadiness App Readiness PLUTO

Stopped AppVClient Microsoft App-V Client PLUTO

Stopped AppXSvc AppX Deployment Service (AppXSVC) PLUTO

Stopped AssignedAccessM... AssignedAccessManager Service PLUTO

Running AudicEndpointBu... Windows Audic Endpoint Builder PLUTO

Running Audiosrv Windows Audio PLUTO

Stopped AxInstsSv ActiveX Installer (AxInstsSv) PLUTO

Stopped BcastDVRUserSer... GameDVR and Broadcast User Service_... PLUTO

Stopped BDESVC BitLocker Drive Encryption Service PLUTO

Example C: Acquire Remote IP Configuration
from PLUTO

import subprocess
ipConfig = subprocess.check output("PowerShell -Executionpolicy

byPass

-Command Invoke-Command -ComputerName PLUTO
-Credential PLUTO\Remote-Admin -ScriptBlock { Get-NetIP

Configuration -All}")

print ipConfig.decode()

211

APPENDIXA CHALLENGE PROBLEM SOLUTIONS

Prte el Dm0 fah

o et bt S L b s .

»3> ipCenfig = subprocess.check_output(“PowerShell -Executionpolicy byPass -Command Inveke-Command -Computerdame PLUTO -Credent:
»»>» print ipConfig.decode()

PSComputeriame
Runspaceld
ComputerName
InterfaceAlias
Interfacelndex
InterfaceDescription
CompartmentId
NetAdapter

NetCompartment
NetIPvEInterface
NetIPvaInterface

MetProfile
AllIPAddresses

1PveAddress
IPvETemporaryAddrass

IPvéLinkLocaladdress :

: MSFT_NetIPInterface (Name = "C55755;", CreationClassName = "", SystesCreationClassName = ™"

e

s

1 PLUTO

: fEBFdAfEc-7738-4ddE-b202-9113ad8F5%a6
= PLUTO

: Ethernet

a
Intel(R) PRO/180@ MT Desktop Adapter
i1

: MSFT_NetAdapter (CreationClassMame = “MSFT_NetAdapter”, DeviceID =

~{9684506C-3293-40AE-BC15-DB2496141841)", SystemCreationClassiame = “CIM_NetworkPort",
SystemMame = "PLUTO")

: MSFT_MetCompartment (InstanceID = ";55;7)
: MSFT_NetIPInterface (Name = "C552755;", CreationClassName = "=, SystemCreationClassName = "",

Systembame = "")

SystemMame = "")

: MSFT_NetConnectionProfile (InstanceID = "{9684586C-3203-4048-BC15-DA249B8141841}")
: {MSFT_NetIPAddress (Name = ";C?8;@BSB@B??55(55;55;", CreationClassName = ™",

SystemCreationClassName = "%, SystemName = ""), MSFT_NetIPAddress (Name =
“poB:DD¥mPoDip:BO?;C:DNP@?/C55C55;55,", CreationClassName = "%, SystemCreationClassName = “",
Systeshame = ")}

A

{}
{MSFT_NetIPAddress (Nase = “poB:DDPm?oD?p:BD?;C:Dn?@?/CS5C55;55;", CreationClassMame = ="
SystemCraationClassame = ", Systemdlame = "*)}

Chapter 5: Multiple Target Computer
DNSCache Acquisition

Examining the scripts given in Chapter 6 provides the needed methods

necessary to complete and advance this challenge. I challenge you to
complete this one entirely on your own.

212

Index

A

argparse library, 108

B

[-b] baselineFile, 109

C

Client DNS cache data, 144
CmdLet experimentation,
commands and
responses, 194-203
CmdLet pipelining
challenge problem, 41-43
Format-Table, 25-26
Get-Help, 26, 37-38
Get-Process (see Get-Process)
Get-Service, 23-26
PowerShell transcript, 39-41
Resolve-DnsName, 36-37
Start-Transcript, 37-39
Where-Obiject, 24
CmdLets investigation
find execution
hidden files, 191
.jpg extension, 190-191

© Chet Hosmer 2019

firewall settings,
local state, 193-194
network settings, TCP, 192, 193
Command-Information-Model
(CIM), 3
Common-Object-Model (COM), 3

D

Disable-PSRemoting cmdlets, 124

Distributed Component Object
Model (DCOM), 121

DNS CACHE SEARCHING, 143

DNS Client cache/DNS resolver
cache, 126

Doman Name System (DNS), 126

E

Enable-PSRemoting

cmdlet, 122-123

Get-Help, 122

Windows PowerShell

remoting, 123

WinRM service, 124, 126
Enable-PSRemoting cmdlet, 122
Enter-PSSession cmdlet, 80

213

C. Hosmer, PowerShell and Python Together, https://doi.org/10.1007/978-1-4842-4504-0

https://doi.org/10.1007/978-1-4842-4504-0

INDEX

EventProcessor
EventLog CmdLets, 47-48
Get-Help, 62-66
HTML report file, 67-68
script execution, 66

EXIF data extraction
photoMap.psl, extraction, 178
PowerShell script, 164
pyGeo.py Python Script, 166

F

File Inventory List, Hashes, 203-205
HTML, 206-208
PowerShell Script, 206

foreach operator, 184

G

Get-DNSClientCache
Cmdlet, 128
Google home page,
navigation, 127
TimeToLive property, 129-130
Get-Process
automatic variables, 27-28
-ExpandProperty command, 29
ForEach-Obiject, 34
Get-Help, 31-32
Get-NetTCPConnections, 30-32
Name Chrome command, 28-29
OwningProcess, 32-33
Process 1D, 29-30

214

remote IP addresses, 36-37
Single Pipeline Solution, 34-36
variables, 27

H

hitList variable, 143
-h option, 108

,J, K

Integrated Scripting Environment
(ISE), 3

Interactive shell, 102

Invoke-Command CmdLet, 133, 144

L,M
Loose ends
EventProcessCred.psl, 184
Invoke-Command CmdLet, 181
PowerShell credential
request, 182
system event log, 183, 186

N, O

-Name Parameter, 14

PQ

PowerShell
evolution, 2
ISE, 3

Python, 2
PowerShell CacheAquire script
AcquireDNS.py, 136-139
argument parsing, 141
dns cache searching, 143
DNS remote, 143
library import, 140
loading keywords, 142
PowerShell CmdLets, 7-8
Get-Help services, 9-11
Get-Member, 14, 16-17
Get-Process, 11-14
PowerShell execution, 142
PowerShell pipelining, see CmdLet
pipelining
PowerShell scripts
basic facts, 46
CacheAcquire, 132
cache.txt file, 134-135
challenge problem, 51, 85-86
CmdLet pipeline execution, 61-62
.description section, 56-57
DNS cache, 135
EventProcessor (see
EventProcessor)
example section, 57-58
Get-EventLog, 49-50
local variable section, 60-61
parameter, 57, 59-60, 133
remote access, 68-69
script header, 56
.synopsis section, 56
USB device (see USB device)

INDEX

Proper names, extraction

forensic investigation, 151
PowerShell/Python
combination, 162-164
PowerShell script, 151-152
Python script, 153-162

[-p] targetPath, 109
Python

argument parsing, 108-109
baseline.txt file, 102
challenge problem, 118-119
CmdLet, 94-95
CreateBaseLine Python
Script, 104-108, 110
dictionary creation, 109
HashAcquire.ps1 PowerShell
script, 102, 110
HashAquire.ps1 PowerShell
Script, 99-102
library import, 107
main section, 109
PowerShell command, 95-96
pickle.load() method, 115-116
pipeline command, 98-99
PowerShell, 91-93,117-118
Powershell execution, 109
run() method, 109
subprocess.check_output()
method, 95, 96
TestDictDiff() function, 116
TestDictEquality() function, 116
VerifyBaseline.py script, 110-117
WingIDE, 92-93, 97

215

INDEX

Python script
ExtractProperNamesFunction, 154
library import, 153
pseudo constants, 154
Python ProperNames.py

Script, 155-159, 161-162
stop words list, 154

R

Remote Access method, 75
Remote Invocation,
Get-DnsClientCache, 130-131
Remote Procedure Calls (RPCs), 121
Remote Script execution
remote IP, PLUTO, 211-212
remote processes, PLUTO, 209
remote services, PLUTO, 210
Reversing roles, PowerShell
script, 148
EXIF data, extraction (see EXIF
data extraction)
Proper names extraction (see
Proper names, extraction)
Python script, 149-150

216

S

SkipNetworkProfileCheck
parameter, 123

Start-Transcript, 37-39

-System argument, 206

=

[-t] tmpFile, 109

U Vv

USB device
Get-ItemProperty, 72-74
Invoke-Command, 75-79, 81
registry history, 70-71
remote computer, 75
USBAcquire script, 82-85

W XYZ

Windows Management Interface
(WMI), 3

WingIDE, 92-93, 97

WS-Management technology, 122

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Introduction to PowerShell for Investigators
	A Little PowerShell History
	How Is PowerShell Used Today?
	How Do You Experiment with PowerShell?
	Navigating PowerShell ISE
	PowerShell CmdLets
	What Is a CmdLet?
	Introduction to Some Key CmdLets
	Get-Help
	Get-Process
	Get-Member

	Challenge Problems: Investigative CmdLets to Explore
	Challenge One: Executing a “Find” Based on File Extension
	Challenge Two: Examining Network Settings
	Challenge Three: Examining Firewall Settings
	Challenge Four: Your Chance to Explore

	Summary

	Chapter 2: PowerShell Pipelining
	What Is CmdLet Pipelining?
	Example 1: Get-Service
	Example 2: Get-Process
	PowerShell Variables
	PowerShell Automatic Variables
	Breaking Down the CmdLet Usage for Example 2
	Adding the NetTCPConnections CmdLet
	How to Discover CmdLets?
	Using PowerShell Variables with CmdLets
	ForEach-Object
	Creating a Single Pipeline Solution to Example 2
	Resolving Remote IP Addresses

	Adding a Transcript to Track Your Activities
	Challenge Problem: CmdLet Experimentation
	Summary

	Chapter 3: PowerShell Scripting Targeting Investigation
	Basic Facts About PowerShell Scripts
	Example 1: The EventProcessor PowerShell Script
	EventLog CmdLets
	Retrieving More Specific Eventlog Information
	Creating the Script
	Step One: Define the Challenge
	Step Two: Create the Script in Stages
	Script Header
	.Synopsis Section
	.Description Section
	.Parameters Section
	.Examples Section

	Parameter Definition
	Local Variable Definition
	CmdLet Pipeline Execution

	EventProcessor Get-Help Result
	EventProcessor Script Execution
	Resulting Directory
	HTML Output Report

	Remote Access
	Example 2: USB Device Usage Discovery
	Create the Script
	Step One: Recent Accessing USB Activity
	Invoke-Command PowerShell CmdLet

	Step Two: Create the USBAcquire PowerShell Script

	USBAcquire Script Execution
	USBAcquire Get-Help Result

	Challenge Problem: Create File Inventory List with Hashes
	Summary

	Chapter 4: Python and Live Investigation/Acquisition
	What Is “By Example”?
	Directing PowerShell with Python
	Launching PowerShell CmdLets from Python
	Creating a System Files Baseline with PowerShell and Python
	Creating the Baseline with Python
	Verifying the Baseline with Python
	Overview of the New Code Sections in VerifyBaseline.py

	Overview of Python Execution with PowerShell

	Challenge Problem: Perform Remote Script Execution
	Summary

	Chapter 5: PowerShell/Python Investigation Example
	Enable PowerShell Remoting
	Gathering and Analyzing Remote Evidence
	Invoking Remote Access
	Building a PowerShell Script for DnsCache Acquisition
	Python Script and PowerShell CacheAquire Script
	Overview of Client DNS Cache Acquisition and Search
	Challenge Problem: Multiple Target Computer DNSCache Acquisition
	Summary

	Chapter 6: Launching Python from PowerShell
	Reversing Roles from PowerShell to Python
	Examine the PowerShell Script
	Examine the Corresponding Python Script
	Executing the Combined PowerShell to Python Scripts

	Extracting Possible Proper Names from Text Documents
	Examine the PowerShell Script
	Examine the Corresponding Python ProperNames Script
	Executing the Combined PowerShell to Python ProperNames Scripts

	Extracting EXIF Data from Photographs
	PowerShell Script
	pyGeo.py Python Script
	Executing the Combined PowerShell to Python exifxtract Scripts

	Summary

	Chapter 7: Loose Ends and Future Considerations
	Loose Ends
	Future Considerations
	Summary

	Appendix A:
Challenge Problem Solutions
	Chapter 1: Investigative CmdLets to Explore
	Challenge One: Executing a “Find” Based on File Extension
	Example A: Find All Files with .jpg Extension
	Example B: Display Hidden System Files in C:\

	Challenge Two: Examining Network Settings
	Example A: Get Basic TCP Network Settings
	Example B: Get Current TCP Connections

	Challenge Three: Examining Firewall Settings
	Example A: Check the Current Local Firewall State

	Chapter 2: CmdLet Experimentation
	Transcript of Commands and Responses

	Chapter 3: Create File Inventory List with Hashes
	Sample PowerShell Script Output
	HTML Screenshots

	Chapter 4: Perform Remote Script Execution
	Example A: Acquire Remote Processes from PLUTO
	Sample Execution

	Example B: Acquire Remote Services from PLUTO
	Example C: Acquire Remote IP Configuration from PLUTO

	Chapter 5: Multiple Target Computer DNSCache Acquisition

	Index

