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Preface

This book originally appeared as part of Springer’s excellent ‘Essential’ series and
was revised to include chapters on analytical geometry, barycentric coordinates, and
worked examples. The third edition included a new chapter on geometric algebra,
which I have written about in my books Geometric Algebra for Computer Graphics
and Geometric Algebra: An Algebraic System for Computer Games and Animation.
In the fourth edition, I reviewed the entire book and included chapters on differ-
ential and integral calculus, which I have written about in Calculus for Computer
Graphics. This fifth edition includes some revisions and new content published in
my recent book Foundation Mathematics for Computer Science. I have also
redrawn all the figures in colour using Apple’s Pages and Grapher, which improve
the book’s visual appearance.

Whilst writing this book, I have borne in mind what it was like for me when
I was studying different areas of mathematics for the first time. In spite of reading
and rereading an explanation several times, it could take days before ‘the penny
dropped’ and a concept became apparent. Hopefully, the reader will find the fol-
lowing explanations useful in developing their understanding of these specific areas
of mathematics and enjoy the sound of various pennies dropping!

I would like to thank Beverley Ford, General Manager, Springer UK, and Helen
Desmond, Editor for Computer Science, for persuading me to give up holidays and
hobbies in order to complete this fifth edition!

Breinton, UK John Vince
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Chapter 1
Introduction

1.1 Mathematics for Computer Graphics

Computer graphics contains many areas of specialism, such as data visualisation, 2D
computer animation, film special effects, computer games and 3D computer anima-
tion. Fortunately, not everyone working in computer graphics requires a knowledge
of mathematics, but those that do, often look for a book that introduces them to
some basic ideas of mathematics, without turning them into mathematicians. This is
the objective of this book. Over the following 18 chapters I introduce the reader to
some useful mathematical topics that will help them understand the software they
work with, and how to solve a wide variety of geometric and algebraic problems.
These topics include numbers systems, algebra, trigonometry, 2D and 3D geometry,
vectors, equations, matrices, determinants and calculus.

1.2 Understanding Mathematics

One of the problemswithmathematics is its incredible breadth and depth. It embraces
everything from 2D geometry, calculus, topology, statistics, complex functions to
number theory and propositional calculus. All of these subjects can be studied super-
ficially or to a mind-numbing complexity. Fortunately, no one is required to under-
stand everything, which is why mathematicians tend to specialise in one or two areas
and develop a specialist knowledge. If it’s any comfort, even Einstein asked friends
and colleagues to explain branches of mathematics to help him with his theories.

© Springer-Verlag London Ltd. 2017
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2 1 Introduction

1.3 What Makes Mathematics Difficult?

‘What makes mathematics difficult?’ is a difficult question to answer, but one that
has to be asked and answered. There are many answers to this question, and I believe
that problems begin with mathematical notation and how to read it; how to analyse
a problem and express a solution using mathematical statements. Unlike learning a
foreign language – which I find very difficult – mathematics is a language that needs
to be learned by discovering facts and building upon them to discover new facts.
Consequently, a good memory is always an advantage, as well as a sense of logic.

Mathematics can be difficult for anyone, including mathematicians. For example,
when the idea of

√−1 was originally proposed, it was criticised and looked down
upon bymathematicians, mainly because its purpose was not fully understood. Even-
tually, it transformed the entiremathematical landscape, including physics. Similarly,
when the German mathematician Georg Cantor (1845–1919), published his papers
on set theory and transfinite sets, some mathematicians hounded him in a disgraceful
manner. TheGermanmathematician LeopoldKronecker (1823–1891), called Cantor
a ‘scientific charlatan’, a ‘renegade’, and a ‘corrupter of youth’, and did everything
to hinder Cantor’s academic career. Similarly, the French mathematician and physi-
cist Henri Poincaré (1854–1912), called Cantor’s ideas a ‘grave disease’, whilst the
Austrian–British philosopher and logician Ludwig Wittgenstein (1889–1951) com-
plained that mathematics is ‘ridden through and through with the pernicious idioms
of set theory.’ How wrong they all were. Today, set theory is a major branch of math-
ematics and has found its way into every math curriculum. So don’t be surprised to
discover that some mathematical ideas are initially difficult to understand – you are
in good company.

1.4 Does Mathematics Exist Outside Our Brains?

Many people have considered the question: ‘What is mathematics?’ Some math-
ematicians and philosophers argue that numbers and mathematical formulae have
some sort of external existence and are waiting to be discovered by us. Personally,
I don’t accept this idea. I believe that we enjoy searching for patterns and structure
in anything that finds its way into our brains, which is why we love poetry, music,
storytelling, art, singing, architecture, science, as well as mathematics. The piano,
for example, is an instrument for playing music using different patterns of notes.
When the piano was invented – a few hundred years ago – the music of Chopin,
Liszt and Rachmaninoff did not exist in any form – it had to be composed by them.
Similarly, by building a system for counting using numbers, we have an amazing tool
for composing mathematical systems that help us measure quantity, structure, space
and change. Such systems have been applied to topics such as fluid dynamics, opti-
misation, statistics, cryptography, game theory probability theory, and many more.
I will attempt to develop this same idea by showing how the concept of number,
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and the visual representation of number reveals all sorts of patterns, that give rise to
number systems, algebra, trigonometry, geometry, analytic geometry and calculus.
The universe does not need any of these mathematical ideas to run its machinery, but
they are useful to understand and describe its operation.

1.5 Symbols and Notation

One of the reasons why many people find mathematics inaccessible is due to its
symbols and notation. Let’s look at symbols first. The English alphabet possesses a
reasonable range of familiar character shapes:

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

which find their way into every branch of mathematics and physics, and permit us
to write equations such as

e = mc2

and
A = πr2.

It is important that when we see an equation, we are able to read it as part of the
text. In the case of e = mc2, this is read as ‘e equals m, c squared’, where e stands
for energy, m for mass, c the speed of light, which is multiplied by itself. In the
case of A = πr2, this is read as ‘A equals pi, r squared’, where A stands for area, π
the ratio of a circle’s circumference to its diameter, and r the circle’s radius. Greek
symbols, which happen to look nice and impressive, have also found their way into
many equations, and often disrupt the flow of reading, simply because we don’t
know their English names. For example, the English theoretical physicist Paul Dirac
(1902–1984) derived an equation for a moving electron using the symbols αi and β,
which are 4 × 4 matrices, where

αiβ + βαi = 0

and is read as

‘the sum of the products alpha-ibeta, and beta alpha-i, equals zero.’

Although we will not come across moving electrons in this book, we will have to be
familiar with the following Greek symbols:
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α alpha ν nu
β beta ξ xi
γ gamma o o
δ delta π pi
ε epsilon ρ rho
ζ zeta σ sigma
η eta τ tau
θ theta υ upsilon
ι iota φ phi
κ kappa χ chi
λ lambda ψ psi
μ mu ω omega

and some upper-case symbols:

Γ Gamma Σ Sigma
Δ Delta Υ Upsilon
Θ Theta Φ Phi
Λ Lambda Ψ Psi
Ξ Xi Ω Omega
Π Pi

Being able to read an equation does not mean that we understand it – but we are a
little closer than just being able to stare at a jumble of symbols! Therefore, in future,
when I introduce a new mathematical object, I will tell you how it should be read.



Chapter 2
Numbers

2.1 Introduction

This chapter revises some basic ideas about counting and number systems, and how
they are employed in the context of mathematics for computer graphics.

2.2 Background

Over the centuries, mathematicians have realised that in order to progress, they must
give precise definitions to their discoveries, ideas and concepts, so that they can
be built upon and referenced by new mathematical inventions. In the event of any
new discovery, these definitions have to be occasionally changed or extended. For
example, once upon a time, integers, rational and irrational numbers, satisfied all the
needs of mathematicians, until imaginary quantities were invented. Today, complex
numbers have helped shape the current number system hierarchy. Consequently,
there must be clear definitions for numbers, and the operators that act upon them.
Therefore, we need to identify the types of numbers that exist, what they are used
for, and any problems that arise when they are stored in a computer.

2.3 Counting

Our brain’s visual cortex possesses some incredible image processing features. For
example, children know instinctively when they are given less sweets than another
child, and adults know instinctively when they are short-changed by a Parisian taxi
driver, or driven around the Arc de Triumph several times, on the way to the airport!
Intuitively, we can assess how many donkeys are in a field without counting them,
and generally, we seem to know within a second or two, whether there are just a few,

© Springer-Verlag London Ltd. 2017
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dozens, or hundreds of something. But when accuracy is required, one can’t beat
counting. But what is counting?

Well normally, we are taught to count by our parents by memorising first, the
counting words ‘one, two, three, four, five, six, seven, eight, nine, ten, ...’ and second,
associating themwith our fingers, so that when asked to count the number of donkeys
in a picture book, each donkey is associated with a counting word. When each
donkey has been identified, the number of donkeys equals the last word mentioned.
However, this still assumes that we know the meaning of ‘one, two, three, four, ...’
etc. Memorising these counting words is only part of the problem – getting them in
the correct sequence is the real challenge. The incorrect sequence ‘one, two, five,
three, nine, four, ...’ etc., introduces an element of randomness into any calculation,
but practicemakes perfect, and it’s useful tomaster the correct sequence before going
to university!

2.4 Sets of Numbers

A set is a collection of arbitrary objects called its elements or members. For example,
each system of number belongs to a set with given a name, such as N for the natural
numbers,R for real numbers, andQ for rational numbers. When we want to indicate
that something is whole, real or rational, etc., we use the notation:

n ∈ N

which reads ‘n is a member of (∈) the set N’, i.e. n is a whole number. Similarly:

x ∈ R

stands for ‘x is a real number.’
A well-ordered set possesses a unique order, such as the natural numbers N.

Therefore, if P is the well-ordered set of prime numbers and N is the well-ordered
set of natural numbers, we can write:

P = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, . . . }
N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, . . . }.

By pairing the prime numbers in P with the numbers in N, we have:

{2, 1}, {3, 2}, {5, 3}, {7, 4}, {11, 5}, {13, 6}, {17, 7}, {19, 8}, {23, 9}, . . .

and we can reason that 2 is the 1st prime, and 3 is the 2nd prime, etc. However, we
still have to declare what we mean by 1, 2, 3, 4, 5, . . . etc., and without getting too
philosophical, I like the idea of defining them as follows. Theword ‘one’, represented
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by 1, stands for ‘oneness’ of anything: one finger, one house, one tree, one donkey,
etc. The word ‘two’, represented by 2, is ‘one more than one’. The word ‘three’,
represented by 3, is ‘one more than two’, and so on.

We are now in a position to associate some mathematical notation with our num-
bers by introducing the + and = signs. We know that + means add, but it also can
stand for ‘more’. We also know that = means equal, and it can also stand for ‘is the
same as’. Thus the statement:

2 = 1 + 1

is read as ‘two is the same as one more than one.’
We can also write

3 = 1 + 2

which is read as ‘three is the same as one more than two.’ But as we already have a
definition for 2, we can write

3 = 1 + 2

= 1 + 1 + 1.

Developing this idea, and including some extra combinations, we have:

2 = 1 + 1

3 = 1 + 2

4 = 1 + 3 = 2 + 2

5 = 1 + 4 = 2 + 3

6 = 1 + 5 = 2 + 4 = 3 + 3

7 = 1 + 6 = 2 + 5 = 3 + 4

etc.

and can be continued without limit. These numbers, 1, 2, 3, 4, 5, 6, etc., are called
natural numbers, and are the set N.

2.5 Zero

The concept of zero has awell-documented history, which shows that it has been used
by different cultures over a period of two-thousand years or more. It was the Indian
mathematician and astronomer Brahmagupta (598-c.–670) who argued that zero
was just as valid as any natural number, with the definition: the result of subtracting
any number from itself. However, even today, there is no universal agreement as to
whether zero belongs to the set N, consequently, the set N0 stands for the set of
natural numbers including zero.
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In today’s positional decimal system, which is a place value system, the digit
0 is a placeholder. For example, 203 stands for: two hundreds, no tens and three
units. Although 0 ∈ N

0, it does have special properties that distinguish it from other
members of the set, and Brahmagupta also gave rules showing this interaction.

If x ∈ N
0, then the following rules apply:

addition: x + 0 = x

subtraction: x − 0 = x

multiplication: x × 0 = 0 × x = 0

division: 0/x = 0

undefined division: x/0.

The expression 0/0 is called an indeterminate form, as it is possible to show that
under different conditions, especially limiting conditions, it can equal anything. So
for the moment, we will avoid using it until we cover calculus.

2.6 Negative Numbers

When negative numbers were first proposed, they were not accepted with open arms,
as it was difficult to visualise −5 of something. For instance, if there are 5 donkeys
in a field, and they are all stolen to make salami, the field is now empty, and there
is nothing we can do in the arithmetic of donkeys to create a field of −5 donkeys.
However, in applied mathematics, numbers have to represent all sorts of quantities
such as temperature, displacement, angular rotation, speed, acceleration, etc., and
we also need to incorporate ideas such as left and right, up and down, before and
after, forwards and backwards, etc. Fortunately, negative numbers are perfect for
representing all of the above quantities and ideas.

Consider the expression 4 − x , where x ∈ N
0. When x takes on certain values,

we have

4 − 1 = 3

4 − 2 = 2

4 − 3 = 1

4 − 4 = 0

and unless we introduce negative numbers, we are unable to express the result of
4 − 5. Consequently, negative numbers are visualised as shown in Fig. 2.1, where
the number line shows negative numbers to the left of the natural numbers, which
are positive, although the + sign is omitted for clarity.

Moving from left to right, the number line provides a numerical continuum
from large negative numbers, through zero, towards large positive numbers. In any
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Fig. 2.1 The number line showing negative and positive numbers

calculations, we could agree that angles above the horizon are positive, and angles
below the horizon, negative. Similarly, a movement forwards is positive, and amove-
ment backwards is negative. So now we are able to write:

4 − 5 = −1

4 − 6 = −2

4 − 7 = −3

etc.,

without worrying about creating impossible conditions.

2.6.1 The Arithmetic of Positive and Negative Numbers

Once again, Brahmagupta compiled all the rules supporting the addition, subtraction,
multiplication and division of positive and negative numbers, Tables2.1 and 2.2. The
real fly in the ointment, being negative numbers, which cause problems for children,
math teachers and occasional accidents for mathematicians. Perhaps, the one rule
we all remember from our school days is that two negatives make a positive.

Table 2.1 Rules for adding and subtracting positive and negative numbers

+ b −b

a a + b a − b

−a b − a −(a + b)

− b −b

a a − b a + b

−a −(a + b) b − a

Table 2.2 Rules for multiplying and dividing positive and negative numbers

× b −b

a ab −ab

−a −ab ab

/ b −b

a a/b −a/b

−a −a/b a/b
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Another problem with negative numbers arises when we employ the square-root
function. As the product of two positive or negative numbers results in a positive
result, the square-root of a positive number gives rise to a positive and a nega-
tive answer. For example,

√
4 = ±2. This means that the square-root function only

applies to positive numbers. Nevertheless, it did not stop the invention of the imag-
inary object i , where i2 = −1. However, i is not a number, but behaves like an
operator, and is described later.

2.7 Observations and Axioms

The following axioms or laws provide a formal basis for mathematics, and in the fol-
lowing descriptions a binary operation is an arithmetic operation such as +,−,×, /

which operates on two operands.

2.7.1 Commutative Law

The commutative law in algebra states that when two elements are linked through
some binary operation, the result is independent of the order of the elements. The
commutative law of addition is

a + b = b + a

e.g. 1 + 2 = 2 + 1.

The commutative law of multiplication is

a × b = b × a

e.g. 1 × 2 = 2 × 1.

Note that subtraction is not commutative:

a − b �= b − a

e.g. 1 − 2 �= 2 − 1.

2.7.2 Associative Law

The associative law in algebra states that when three or more elements are linked
together through a binary operation, the result is independent of how each pair of
elements is grouped. The associative law of addition is
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a + (b + c) = (a + b) + c

e.g. 1 + (2 + 3) = (1 + 2) + 3.

The associative law of multiplication is

a × (b × c) = (a × b) × c

e.g. 1 × (2 × 3) = (1 × 2) × 3.

However, note that subtraction is not associative:

a − (b − c) �= (a − b) − c

e.g. 1 − (2 − 3) �= (1 − 2) − 3.

which may seem surprising, but at the same time confirms the need for clear axioms.

2.7.3 Distributive Law

The distributive law in algebra describes an operation which when performed on a
combination of elements is the same as performing the operation on the individual
elements. The distributive law does not work in all cases of arithmetic. For example,
multiplication over addition holds:

a(b + c) = ab + ac

e.g. 2(3 + 4) = 6 + 8,

whereas addition over multiplication does not:

a + (b × c) �= (a + b) × (a + c)

e.g. 3 + (4 × 5) �= (3 + 4) × (3 + 5).

Although these laws are natural for numbers, they do not necessarily apply to all
mathematical objects. For instance, the vector product, which multiplies two vectors
together, is not commutative. The same applies for matrix multiplication.

2.8 The Base of a Number System

2.8.1 Background

Over recent millennia, mankind has invented and discarded many systems for rep-
resenting number. People have counted on their fingers and toes, used pictures
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(hieroglyphics), cut marks on clay tablets (cuneiform symbols), employed Greek
symbols (Ionic system) and struggled with, and abandoned Roman numerals (I, V,
X, L, C, D, M, etc.), until we reach today’s decimal place system, which has Hindu-
Arabic andChinese origins. And since the invention of computers, we havewitnessed
the emergence of binary, octal and hexadecimal number systems, where 2, 8 and 16
respectively, replace the 10 in our decimal system.

The decimal number 23 means ‘two tens and three units’, and in English
is written ‘twenty-three’, in French ‘vingt-trois’ (twenty-three), and in German
‘dreiundzwanzig’ (three and twenty). Let’s investigate the algebra behind the decimal
system and see how it can be used to represent numbers to any base. The expression:

a × 1000 + b × 100 + c × 10 + d × 1

where a, b, c, d take on any value between 0 and 9, describes any whole number
between 0 and 9999. By including

e × 0.1 + f × 0.01 + g × 0.001 + h × 0.0001

where e, f, g, h take on any value between 0 and 9, any decimal number between 0
and 9999.9999 can be represented.

Indices bring the notation alive and reveal the true underlying pattern:

. . . a103 + b102 + c101 + d100 + e10−1 + f 10−2 + g10−3 + h10−4 . . . .

Remember that any number raised to the power 0 equals 1. By adding extra terms,
both left and right, any number can be accommodated.

In this example, 10 is the base, whichmeans that the values of a to h range between
0 and 9, 1 less than the base. Therefore, by substituting B for the base we have

. . . aB3 + bB2 + cB1 + d B0 + eB−1 + f B−2 + gB−3 + h B−4 . . .

where the values of a to h range between 0 and B − 1.

2.8.2 Octal Numbers

The octal number system has B = 8, and a to h range between 0 and 7:

. . . a83 + b82 + c81 + d80 + e8−1 + f 8−2 + g8−3 + h8−4 . . .

and the first 17 octal numbers are:

18, 28, 38, 48, 58, 68, 78, 108, 118, 128, 138, 148, 158, 168, 178, 208, 218.
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The subscript 8, reminds us that although we may continue to use the words ‘twenty-
one’, it is an octal number, and not a decimal. But what is 148 in decimal? Well, it
stands for:

1 × 81 + 4 × 80 = 12.

Thus 356.48 in decimal, equals:

(3 × 82) + (5×81) + (6 × 80) + (4 × 8−1)

(3 × 64) + (5×8) + (6 × 1) + (4 × 0.125)

(192+ 40 + 6) + (0.5)

238.5.

Counting in octal appears difficult, simply because we have never been exposed to
it, like the decimal system. If we had evolved with 8 fingers, instead of 10, we would
be counting in octal!

2.8.3 Binary Numbers

The binary number system has B = 2, and a to h are 0 or 1:

. . . a23 + b22 + c21 + d20 + e2−1 + f 2−2 + g2−3 + h2−4 . . .

and the first 13 binary numbers are:

12, 102, 112, 1002, 1012, 1102, 1112, 10002, 10012, 10102, 10112, 11002, 11012.

Thus 11011.112 in decimal, equals:

(1 × 24) + (1 × 23) + (0 × 22)+(1 × 21) + (1 × 20) + (1 × 2−1) + (1 × 2−2)

(1 × 16) + (1 × 8) + (0×4) + (1 × 2) + (1 × 0.5) + (1 × 0.25)

(16 + 8 + 2) + (0.5 + 0.25)

26.75.

The reason why computers work with binary numbers – rather than decimal – is due
to the difficulty of designing electrical circuits that can store decimal numbers in
a stable fashion. A switch, where the open state represents 0, and the closed state
represents 1, is the simplest electrical component to emulate. No matter how often
it is used, or how old it becomes, it will always behave like a switch. The main
advantage of electrical circuits is that they can be switched on and off trillions of
times a second, and the only disadvantage is that the encoded binary numbers and
characters contain a large number of bits, and humans are not familiar with binary.
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2.8.4 Hexadecimal Numbers

Thehexadecimal number systemhas B = 16, anda toh canbe0 to 15,whichpresents
a slight problem, as we don’t have 15 different numerical characters. Consequently,
we use 0 to 9, and the letters A, B, C, D, E, F to represent 10, 11, 12, 13, 14, 15
respectively:

. . . a163 + b162 + c161 + d160 + e16−1 + f 16−2 + g16−3 + h16−4 . . .

and the first 17 hexadecimal numbers are:

116, 216, 316, 416, 516, 616, 716, 816, 916, A16, B16, C16, D16, E16, F16, 1016, 1116.

Thus 1E .816 in decimal, equals

(1 × 16) + (E × 1) + (8 × 16−1)

(16+14) + (8/16)

30.5.

Although it is not obvious, binary, octal and hexadecimal numbers are closely related,
which is why they are part of a programmer’s toolkit. Even though computers work
with binary, it’s the last thing a programmer wants to use. So to simplify the man-
machine interface, binary is converted into octal or hexadecimal. To illustrate this,
let’s convert the 16-bit binary code 1101011000110001 into octal.

Using the following general binary integer

a28 + b27 + c26 + d25 + e24 + f 23 + g22 + h21 + i20

we group the terms into threes, starting from the right, because 23 = 8:

(a28 + b27 + c26) + (d25 + e24 + f 23) + (g22 + h21 + i20).

Simplifying:

26(a22 + b21 + c20) + 23(d22 + e21 + f 20) + 20(g22 + h21 + i20)

82(a22 + b21 + c21) + 81(d22 + e21 + f 20) + 80(g22 + h21 + i20)

82R + 81S + 80T

where

R = a22 + b21 + c

S = d22 + e21 + f

T = g22 + h21 + i
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and the values of R, S, T vary between 0 and7. Therefore, given 1101011000110001,
we divide the binary code into groups of three, starting at the right, and adding two
zeros on the left:

(001)(101)(011)(000)(110)(001).

For each group, multiply the zeros and ones by 4, 2, 1, right to left:

(0 + 0 + 1)(4 + 0 + 1)(0 + 2 + 1)(0 + 0 + 0)(4 + 2 + 0)(0 + 0 + 1)

(1)(5)(3)(0)(6)(1)

1530618.

Therefore, 11010110001100012 ≡ 1530618, (≡ stands for ‘equivalent to’) which is
much more compact. The secret of this technique is to memorise the patterns:

0002 ≡ 08
0012 ≡ 18
0102 ≡ 28
0112 ≡ 38
1002 ≡ 48
1012 ≡ 58
1102 ≡ 68
1112 ≡ 78.

Here are a few more examples, with the binary digits grouped in threes:

1112 ≡ 78
101 1012 ≡ 558
100 0002 ≡ 408

111 000 111 000 1112 ≡ 707078.

It’s just as easy to reverse the process, and convert octal into binary. Here are some
examples:

5678 ≡ 101 110 1112
238 ≡ 010 0112

17418 ≡ 001 111 100 0012.

A similar technique is used to convert binary to hexadecimal, but this time we
divide the binary code into groups of four, because 24 = 16, starting at the right, and
adding leading zeros, if necessary. To illustrate this, let’s convert the 16-bit binary
code 1101 0110 0011 0001 into hexadecimal.
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Using the following general binary integer number

a211 + b210 + c29 + d28 + e27 + f 26 + g25 + h24 + i23 + j22 + k21 + l20

from the right, we divide the binary code into groups of four:

(a211 + b210 + c29 + d28) + (e27 + f 26 + g25 + h24) + (i23 + j22 + k21 + l20).

Simplifying:

28(a23 + b22 + c21 + d20) + 24(e23 + f 22 + g21 + h20) + 20(i23 + j22 + k21 + l20)

162(a23 + b22 + c21 + d) + 161(e23 + f 22 + g21 + h) + 160(i23 + j22 + k21 + l)

162R + 161S + 160T

where

R = a23 + b22 + c21 + d

S = e23 + f 22 + g21 + h

T = i23 + j22 + k21 + l

and the values of R, S, T vary between 0 and 15. Therefore, given 1101011000
1100012, we divide the binary code into groups of fours, starting at the right:

(1101)(0110)(0011)(0001)

For each group, multiply the zeros and ones by 8, 4, 2, 1 respectively, right to left:

(8 + 4 + 0 + 1)(0 + 4+2 + 0)(0 + 0 + 2 + 1)(0 + 0 + 0 + 1)

(13)(6)(3)(1)

D63116.

Therefore, 1101 0110 0011 00012 ≡ D63116, which is even more compact than its
octal value 1530618.

I have deliberately used whole numbers in the above examples, but they can all be
extended to include a fractional part. For example, when converting a binary number
such as 11.11012 to octal, the groups are formed about the binary point:

(011).(110)(100) ≡ 3.648.

Similarly,when converting a binary number such as 101010.1001102 to hexadecimal,
the groups are also formed about the binary point:

(0010)(1010).(1001)(1000) ≡ 2A.9816.



2.8 The Base of a Number System 17

Table 2.3 The first twenty decimal, binary, octal, and hexadecimal numbers

Decimal Binary Octal Hex Decimal Binary Octal Hex

1 1 1 1 11 1011 13 B

2 10 2 2 12 1100 14 C

3 11 3 3 13 1101 15 D

4 100 4 4 14 1110 16 E

5 101 5 5 15 1111 17 F

6 110 6 6 16 10000 20 10

7 111 7 7 17 10001 21 11

8 1000 10 8 18 10010 22 12

9 1001 11 9 19 10011 23 13

10 1010 12 A 20 10100 24 14

Table2.3 shows the first twenty decimal, binary, octal and hexadecimal numbers.

2.8.5 Adding Binary Numbers

When we are first taught the addition of integers containing several digits, we are
advised to solve the problem digit by digit, working from right to left. For example,
to add 254 to 561 we write:

561
254
815

where 4 + 1 = 5, 5 + 6 = 1 with a carry = 1, 2 + 5 + carry = 8.
Table2.4 shows all the arrangements for adding two digits with the carry shown

as carryn. However, when adding binary numbers, the possible arrangements collapse
to the four shown in Table2.5, which greatly simplifies the process.

For example, to add 124 to 188 as two 16-bit binary integers, we write, showing
the status of the carry bit:

0000000011111000 carry
0000000010111100 = 188
0000000001111100 = 124
0000000100111000 = 312
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Table 2.4 Addition of two decimal integers showing the carr y

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9

1 1 2 3 4 5 6 7 8 9 10

2 2 3 4 5 6 7 8 9 10 11

3 3 4 5 6 7 8 9 10 11 12

4 4 5 6 7 8 9 10 11 12 13

5 5 6 7 8 9 10 11 12 13 14

6 6 7 8 9 10 11 12 13 14 15

7 7 8 9 10 11 12 13 14 15 16

8 8 9 10 11 12 13 14 15 16 17

9 9 10 11 12 13 14 15 16 17 18

Table 2.5 Addition of two binary integers showing the carr y

+ 0 1

0 0 1

1 1 10

Such addition is easily undertaken by digital electronic circuits, and instead of
having separate circuitry for subtraction, it is possible to perform subtraction using
the technique of two’s complement.

2.8.6 Subtracting Binary Numbers

Two’s complement is a technique for converting a binary number into a form such
that when it is added to another binary number, it results in a subtraction. There are
two stages to the conversion: inversion, followed by the addition of 1. For example,
24 in binary is 0000000000110000, and is inverted by switching every 1 to 0, and
vice versa: 1111111111100111. Next, we add 1: 1111111111101000, which now
represents −24. If this is added to binary 36: 0000000000100100, we have

0000000000100100 = +36
1111111111101000 = −24
0000000000001100 = +12

Note that the last high-order addition creates a carry of 1, which is ignored. Here
is another example, 100 − 30:
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0000000000011110 = +30
inversion 1111111111100001

add 1 0000000000000001
1111111111100010 = −30

add 100 0000000001100100 = +100
0000000001000110 = +70

2.9 Types of Numbers

As mathematics evolved, mathematicians introduced different types of numbers to
help classify equations and simplify the language employed to describe their work.
These are the various types and their set names.

2.9.1 Natural Numbers

The natural numbers {1, 2, 3, 4, . . .} are used for counting, ordering and labelling
and represented by the set N. When zero is included, N0 or N0 is used:

N
0 = N0 = {0, 1, 2, . . .}.

Note that negative numbers are not included. Natural numbers are used to subscript
a quantity to distinguish one element from another, e.g. x1, x2, x3, x4, . . . .

2.9.2 Integers

Integer numbers include the natural numbers, both positive and negative, and zero,
and are represented by the set Z:

Z = {. . . , −2, −1, 0, 1, 2, 3, . . .}.

The reason for using Z is because the German for whole number is ganzen Zahlen.
Leopold Kronecker apparently criticised Georg Cantor for his work on set the-
ory with the jibe: ‘Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist
Menschenwerk’, which translates: ‘God made the integers, and all the rest is man’s
work’, implying that the rest are artificial. However, Cantor’s work on set theory and
transfinite numbers proved to be far from artificial.



20 2 Numbers

2.9.3 Rational Numbers

Any number that equals the quotient of one integer divided by another non-zero
integer, is a rational number, and represented by the set Q. For example, 2,

√
16,

0.25 are rational numbers because

2 = 4/2√
16 = 4 = 8/2

0.25 = 1/4.

Some rational numbers can be stored accurately inside a computer, but many others
can only be stored approximately. For example, 4/3 produces an infinite sequence of
threes 1.333333 . . . and is truncated when stored as a binary number.

2.9.4 Irrational Numbers

An irrational number cannot be expressed as the quotient of two integers. Irrational
numbers never terminate, nor contain repeated sequences of digits, consequently,
they are always subject to a small error when stored within a computer. Examples
are:

√
2 = 1.41421356 . . .

φ = 1.61803398 . . . (golden section)

e = 2.71828182 . . .

π = 3.14159265 . . .

2.9.5 Real Numbers

Rational and irrational numbers comprise the set of real numbers R. Examples are
1.5, 0.004, 12.999 and 23.0.

2.9.6 Algebraic and Transcendental Numbers

Polynomial equations with rational coefficients have the form:

f (x) = axn + bxn−1 + cxn−2 · · · + C
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such as
y = 3x2 + 2x − 1

and their roots belong to the set of algebraic numbers A. A consequence of this
definition implies that all rational numbers are algebraic, since if

x = p

q

then
qx − p = 0

which is a polynomial. Numbers that are not roots to polynomial equations are
transcendental numbers and include most irrational numbers, but not

√
2, since if

x = √
2

then

x2 − 2 = 0

which is a polynomial.

2.9.7 Imaginary Numbers

Imaginary numbers were invented to resolve problems where an equation such as
x2 + 16 = 0, has no real solution (roots). The simple idea of declaring the existence
of an object i , such that i2 = −1, permits the solution to be expressed as

x = ±4i.

For example, if x = 4i we have

x2 + 16 = 16i2 + 16

= −16 + 16

= 0

and if x = −4i we have

x2 + 16 = 16i2 + 16

= −16 + 16

= 0.
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Table 2.6 Increasing powers of i

i0 i1 i2 i3 i4 i5 i6

1 i −1 −i 1 i −1

But what is i? In 1637, the French mathematician René Descartes (1596–1650),
published La Géométrie, in which he stated that numbers incorporating

√−1 were
‘imaginary’, and for centuries this label has stuck. Unfortunately, it was a derogatory
remark, as there is nothing ‘imaginary’ about i – it simply is an object that when
introduced into various algebraic expressions, reveals some amazing underlying pat-
terns. i is not a number in the accepted sense, it is a mathematical object or construct
that squares to −1. In some respects it is like time, which probably does not really
exist, but is useful in describing the universe. However, i does lose its mystery when
interpreted as a rotational operator, which we investigate below.

The set of imaginary numbers is represented by I, which permits us to define an
imaginary number bi as

bi ∈ I, b ∈ R, i2 = −1.

As i2 = −1 then it must be possible to raise i to other powers. For example,

i4 = i2i2 = 1

and
i5 = i i4 = i.

Table2.6 shows the sequence up to i6.
This cyclic pattern is quite striking, and reminds one of a similar pattern:

(x, y,−x,−y, x, ...)

that arises when rotating around the Cartesian axes in a anticlockwise direction.
Such a similarity cannot be ignored, for when the real number line is combined with
a vertical imaginary axis, it creates the complex plane, as shown in Fig. 2.2.

The above sequence is summarised as

i4n = 1

i4n+1 = i

i4n+2 = −1

i4n+3 = −i

where n ∈ N
0.
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Fig. 2.2 The complex plane

Real1 2 3 4 5
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Imaginary
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-3i

-2i

-4i

-5i

But what about negative powers? Well they, too, are also possible. Consider i−1,
which is evaluated as follows:

i−1 = 1

i
= 1(−i)

i(−i)
= −i

1
= −i.

Similarly,

i−2 = 1

i2
= 1

−1
= −1

and
i−3 = i−1i−2 = −i(−1) = i.

Table2.7 shows the sequence down to i−6.

This time the cyclic pattern is reversed and is similar to the pattern

(x,−y,−x, y, x, ...)

that arises when rotating around the Cartesian axes in a clockwise direction.
Perhaps the strangest power of all is i i , which happens to equal e−π/2 =

0.207879576....

Table 2.7 Decreasing powers of i

i0 i−1 i−2 i−3 i−4 i−5 i−6

1 −i −1 i 1 −i −1
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Fig. 2.3 The cycle of points
created by repeatedly
multiplying 3 by i
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Now let’s investigate how a real number behaves when it is repeatedly multiplied
by i . Starting with the number 3, we have:

i × 3 = 3i

i × 3i = −3

i × (−3) = −3i

i × (−3)i = 3.

So the cycle is (3, 3i,−3,−3i, 3, 3i,−3,−3i, 3, . . .), which has four steps, as shown
in Fig. 2.3.

Imaginary objects occur for all sorts of reasons. For example, consider the state-
ments

AB = −B A

B A = −AB

where A and B are two undefined objects that obey the associative law, but not the
commutative law, and A2 = B2 = 1. The operation (AB)2 reveals

(AB)(AB) = A(B A)B

= −A(AB)B

= −(A2)(B2)

= −1
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which means that the product AB is imaginary. Such objects, which can be matrices,
are useful in describing the behaviour of sub-atomic particles.

2.9.8 Complex Numbers

A complex number has a real and imaginary part: z = a + ib, and represented by
the set C:

z = a + bi z ∈ C, a, b ∈ R, i2 = −1.

Some examples are

z = 1 + i

z = 3 − 2i

z = −23 + √
23i.

Complex numbers obey all the normal laws of algebra. For example, ifwemultiply
(a + bi) by (c + di) we have

(a + bi)(c + di) = ac + adi + bci + bdi2.

Collecting up like terms and substituting −1 for i2 we get

(a + bi)(c + di) = ac + (ad + bc)i − bd

which simplifies to

(a + bi)(c + di) = ac − bd + (ad + bc)i

which is another complex number.
Something interesting happens when we multiply a complex number by its com-

plex conjugate, which is the same complex number but with the sign of the imaginary
part reversed:

(a + bi)(a − bi) = a2 − abi + bai − b2i2.

Collecting up like terms and simplifying we obtain

(a + bi)(a − bi) = a2 + b2

which is a real number, as the imaginary part has been cancelled out by the action of
the complex conjugate.
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Fig. 2.4 The complex plane
showing four complex
numbers
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Figure2.4 shows how complex numbers are represented graphically using the
complex plane. For example, the complex number P = 4 + 3i in Fig. 2.4 is rotated
90◦ to Q by multiplying it by i . Let’s do this, and remember that i2 = −1:

i(4 + 3i) = 4i + 3i2

= 4i − 3

= −3 + 4i.

The point Q = −3 + 4i is rotated 90◦ to R by multiplying it by i :

i(−3 + 4i) = −3i + 4i2

= −3i − 4

= −4 − 3i.

The point R = −4 − 3i is rotated 90◦ to S by multiplying it by i :

i(−4 − 3i) = −4i − 3i2

= −4i + 3

= 3 − 4i.

Finally, the point S = 3 − 4i is rotated 90◦ back to P by multiplying it by i :
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i(3 − 4i) = 3i − 4i2

= 3i + 4

= 4 + 3i.

As you can see, complex numbers are intimately related to Cartesian coordinates,
in that the ordered pair (x, y) ≡ (x + yi).

2.9.9 Transcendental and Algebraic Numbers

Given a polynomial built from integers, for example

y = 3x3 − 4x2 + x + 23,

if the result is an integer, it is called an algebraic number, otherwise it is a transcen-
dental number. Familiar examples of the latter being π = 3.141 592 653 . . . , and
e = 2.718 281 828 . . . , which can be represented as various continued fractions:

π = 4

1 + 12

2 + 32

2 + 52

2 + 72

2 + . . .

e = 2 + 1

1 + 1

2 + 1

1 + 1

1 + 1

4 + . . .

2.9.10 Infinity

The term infinity is used to describe the size of unbounded systems. For example,
there is no end to prime numbers: i.e. they are infinite; so too, are the sets of other
numbers. Consequently, no matter how we try, it is impossible to visualise the size of
infinity. Nevertheless, this did not stop Georg Cantor from showing that one infinite
set could be infinitely larger than another.
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Fig. 2.5 Rational number
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Cantor distinguished between those infinite number sets that could be ‘counted’,
and those that could not. For Cantor, counting meant the one-to-one correspondence
of a natural number with the members of another infinite set. If there was a clear
correspondence, without leaving any gaps, then the two sets shared a common infinite
size, called its cardinality using the first letter of the Hebrew alphabet aleph: ℵ. The
cardinality of the natural numbers N is ℵ0, called aleph-zero.

Cantor discovered a way of representing the rational numbers as a grid, which
is traversed diagonally, back and forth, as shown in Fig. 2.5. Some ratios appear
several times, such as 2

2 ,
3
3 etc., which are not counted. Nevertheless, the one-to-

one correspondence with the natural numbers means that the cardinality of rational
numbers is also ℵ0.

A real surprise was that there are infinitely more transcendental numbers than
natural numbers. Furthermore, there are an infinite number of cardinalities rising to
ℵℵ. Cantor had been alone working in this esoteric area, and as he published his
results, he shook the very foundations of mathematics, which is why he was treated
so badly by his fellow mathematicians.

2.10 Summary

Apart from the natural numbers, integers, rational, irrational, prime, real and complex
numbers, there are also Fermat, Mersenne, amicable, chromic, cubic, Fibonacci,
pentagonal, perfect, random, square and tetrahedral numbers,which although equally
interesting, don’t concern us in this text.

Now that we know something about some important number sets, let’s revise
some ideas behind algebra.
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2.11 Worked Examples

2.11.1 Algebraic Expansion

Expand (a + b)(c + d), (a − b)(c + d), and (a − b)(c − d).

(a + b)(c + d) = a(c + d) + b(c + d)

= ac + ad + bc + bd.

(a − b)(c + d) = a(c + d) − b(c + d)

= ac + ad − bc − bd.

(a − b)(c − d) = a(c − d) − b(c − d)

= ac − ad − bc + bd.

2.11.2 Binary Subtraction

Using two’s complement, subtract 12 from 50.

0000000000001100 = +12
inversion 1111111111110011

add 1 0000000000000001
1111111111110100 = −12

add 50 0000000000110010 = +50
0000000000100110 = +38

2.11.3 Complex Numbers

Compute (3 + 2i) + (2 + 2i) + (5 − 3i) and (3 + 2i)(2 + 2i)(5 − 3i).

(3 + 2i) + (2 + 2i) + (5 − 3i) = 10 + i.

(3 + 2i)(2 + 2i)(5 − 3i) = (3 + 2i)(10 − 6i + 10i + 6)

= (3 + 2i)(16 + 4i)

= 48 + 12i + 32i − 8

= 40 + 44i.
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2.11.4 Complex Rotation

Rotate the complex point (3 + 2i) by ±90◦ and ±180◦.
To rotate +90◦ (anticlockwise) multiply by i .

i(3 + 2i) = (3i − 2) = (−2 + 3i).

To rotate −90◦ (clockwise) multiply by −i .

−i(3 + 2i) = (−3i + 2) = (2 − 3i).

To rotate +180◦ (anticlockwise) multiply by −1.

−1(3 + 2i) = (−3 − 2i).

To rotate −180◦ (clockwise) multiply by −1.

−1(3 + 2i) = (−3 − 2i).



Chapter 3
Algebra

3.1 Introduction

Some people, including me, find learning a foreign language a real challenge; one
of the reasons being the inconsistent rules associated with its syntax. For example,
why is a table feminine in French, ‘la table’, and a bed masculine, ‘le lit’? They both
have four legs! The rules governing natural language are continuously being changed
by each generation, whereas mathematics appears to be logical and consistent. The
reason for this consistency is due to the rules associated with numbers and the way
they are combined together and manipulated at an abstract level. Such rules, or
axioms, generally make our life easy, however, as we saw with the invention of
negative numbers, extra rules have to be introduced, such as ‘two negatives make
a positive’, which is easily remembered. However, as we explore mathematics, we
discover all sorts of inconsistencies, such as there is no real value associated with
the square-root of a negative number. It’s forbidden to divide a number by zero. Zero
divided by zero gives inconsistent results. Nevertheless, such conditions are easy
to recognise and avoided. At least in mathematics, we don’t have to worry about
masculine and feminine numbers!

As a student, I discovered Principia Mathematica, a three-volume work written
by the British philosopher, logician, mathematician and historian Bertrand Russell
(1872–1970), and the British mathematician and philosopher Alfred North White-
head (1861–1947), in which the authors attempt to deduce all of mathematics using
the axiomatic systemdeveloped by the ItalianmathematicianGiuseppe Peano (1858–
1932). The first volume established type theory, the second was devoted to numbers,
and the third to higher mathematics. The authors did intend a fourth volume on
geometry, but it was too much effort to complete. It made extremely intense reading.
In fact, I never managed to get pass the first page! It took the authors almost 100
pages of deep logical analysis in the second volume to prove that 1 + 1 = 2!

Russell wrote in his Principles of Mathematics (1903):

‘The fact that all Mathematics is Symbolic Logic
is one of the greatest discoveries of our age;

© Springer-Verlag London Ltd. 2017
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and when this fact has been established,
the remainder of the principles of mathematics

consists in the analysis of Symbolic Logic itself.’

Unfortunately, this dream cannot be realised, for in 1931, the Austrian-born, and
later American logician and mathematician Kurt Gödel (1906–1978), showed that
even though mathematics is based upon a formal set of axioms, there will always be
statements involving natural numbers that cannot be proved or disproved. Further-
more, a consistent axiomatic system cannot demonstrate its own consistency. These
theorems are known as Gödel’s incompleteness theorems.

Even thoughwe start offwith some simple axioms, it does notmean that everything
discovered in mathematics is provable, which does not mean that we cannot continue
our every-day studies using algebra to solve problems. So let’s examine the basic
rules of algebra and prepare ourselves for the following chapters.

3.2 Background

Modern algebraic notation has evolved over thousands of years where different civil-
isations developed ways of annotating mathematical and logical problems. The word
‘algebra’ comes from the Arabic ‘al-jabr w’al-muqabal’ meaning ‘restoration and
reduction’. In retrospect, it does seem strange that centuries passed before the ‘equals’
sign (=) was invented, and concepts such as ‘zero’ (CE 876) were introduced, espe-
cially as they now seem so important. But we are not at the end of this evolution,
because new forms of annotation and manipulation will continue to emerge as new
mathematical objects are invented.

One fundamental concept of algebra is the idea of giving a name to an unknown
quantity. For example,m is often used to represent the slope of a 2D line, and c is the
line’s y-coordinate where it intersects the y-axis. René Descartes formalised the idea
of using letters from the beginning of the alphabet (a, b, c, . . . ) to represent arbitrary
quantities, and letters at the end of the alphabet (p, q, r, s, t, . . . , x, y, z) to
represent quantities such as pressure (p), time (t) and coordinates (x, y, z).

With the aid of the basic arithmetic operators: +,−,×, / we can develop expres-
sions that describe the behaviour of a physical process or a logical computation. For
example, the expression ax + by − d equals zero for a straight line. The variables x
and y are the coordinates of any point on the line and the values of a, b and d deter-
mine the position and orientation of the line. The = sign permits the line equation to
be expressed as a self-evident statement:

0 = ax + by − d.

Such a statement implies that the expressions on the left- and right-hand sides of
the = sign are ‘equal’ or ‘balanced’, and in order to maintain equality or balance,
whatever is done to one side, must also be done to the other. For example, adding d
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to both sides, the straight-line equation becomes

d = ax + by.

Similarly, we could double or treble both expressions, divide them by 4, or add 6,
without disturbing the underlying relationship. When we are first taught algebra, we
are often given the task of rearranging a statement to make different variables the
subject. For example, (3.1) can be rearranged such that x is the subject:

y = x + 4

2 − 1
z

(3.1)

y
(
2 − 1

z

)
= x + 4

x = y
(
2 − 1

z

)
− 4.

Making z the subject requires more effort:

y = x + 4

2 − 1
z

y
(
2 − 1

z

)
= x + 4

2y − y

z
= x + 4

2y − x − 4 = y

z

z = y

2y − x − 4
.

Parentheses are used to isolate part of an expression in order to select a sub-
expression that is manipulated in a particular way. For example, the parentheses
in c(a + b) + d ensure that the variables a and b are added together before being
multiplied by c, and finally added to d.

3.2.1 Solving the Roots of a Quadratic Equation

Problem solving is greatly simplified if one has solved it before, and having a good
memory is always an advantage. In mathematics, we keep coming across problems
that have been encountered before, apart from different numbers. For example, (a +
b)(a − b) always equals a2 − b2, therefore factorising the following is a trivial
exercise:
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a2 − 16 = (a + 4)(a − 4)

x2 − 49 = (x + 7)(x − 7)

x2 − 2 = (x + √
2)(x − √

2).

A perfect square has the form:

a2 + 2ab + b2 = (a + b)2.

Consequently, factorising the following is also a trivial exercise:

a2 + 4ab + 4b2 = (a + 2b)2

x2 + 14x + 49 = (x + 7)2

x2 − 20x + 100 = (x − 10)2.

Now let’s solve the roots of the quadratic equation ax2 + bx + c = 0, i.e. those
values of x that make the equation equal zero. As the equation involves an x2 term,
we will exploit any opportunity to factorise it. We begin with the quadratic where
a �= 0:

ax2 + bx + c = 0.

Step 1: Subtract c from both sides to begin the process of creating a perfect square:

ax2 + bx = −c.

Step 2: Divide both sides by a to create an x2 term:

x2 + b

a
x = − c

a
.

Step 3: Add b2/4a2 to both sides to create a perfect square on the left side:

x2 + b

a
x + b2

4a2
= b2

4a2
− c

a
.

Step 4: Factorise the left side:

(
x + b

2a

)2

= b2

4a2
− c

a
.

Step 5: Make 4a2 the common denominator for the right side:

(
x + b

2a

)2

= b2 − 4ac

4a2
.
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Step 6: Take the square root of both sides:

x + b

2a
= ±√

b2 − 4ac

2a
.

Step 7: Subtract b/2a from both sides:

x = ±√
b2 − 4ac

2a
− b

2a
.

Step 8: Rearrange the right side:

x = −b ± √
b2 − 4ac

2a

which provides the roots for any quadratic equation.
The discriminant

√
b2 − 4ac may be positive, negative or zero. A positive value

reveals two real roots:

x1 = −b + √
b2 − 4ac

2a
, x2 = −b − √

b2 − 4ac

2a
. (3.2)

A negative value reveals two complex roots:

x1 = −b + i
√|b2 − 4ac|
2a

, x2 = −b − i
√|b2 − 4ac|
2a

.

And a zero value reveals a single root:

x = −b

2a
.

For example, Fig. 3.1 shows the graph of y = x2 + x − 2, where we can see that
y = 0 at two points: x = −2 and x = 1. In this equation

Fig. 3.1 Graph of
y = x2 + x − 2

-3 -2 -1 0 1 2 3

-2

-1

1

2
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Fig. 3.2 Graph of
y = x2 + x + 1

-3 -2 -1 0 1 2 3

-2

-1

1

2

a = 1

b = 1

c = −2

which when plugged into (3.2) confirms the graph:

x1 = −1 + √
1 + 8

2
= 1

x2 = −1 − √
1 + 8

2
= −2.

Figure3.2 shows the graph of y = x2 + x + 1, where at no point does y = 0. In
this equation

a = 1

b = 1

c = 1

which when plugged into (3.2) confirms the graph by giving complex roots:

x1 = −1 + √
1 − 4

2
= −1

2
+ i

√
3

2

x2 = −1 − √
1 − 4

2
= −1

2
− i

√
3

2
.

Let’s show that x1 satisfies the original equation:

y = x21 + x1 + 1

=
(

− 1

2
+ i

√
3

2

)2 − 1

2
+ i

√
3

2
+ 1
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= 1

4
− i

√
3

2
− 3

4
− 1

2
+ i

√
3

2
+ 1

= 0.

x2 also satisfies the same equation.
Algebraic expressions also contain a wide variety of functions, such as

√
x = square root of x

n
√
x = n-th root of x

xn = x to the power n

sin x = sine of x

cos x = cosine of x

tan x = tangent of x

log x = logarithm of x

ln x = natural logarithm of x .

Trigonometric functions are factorised as follows:

sin2 x − cos2 x = (sin x + cos x)(sin x − cos x)

sin2 x − tan2 x = (sin x + tan x)(sin x − tan x)

sin2 x + 4 sin x cos x + 4 cos2 x = (sin x + 2 cos x)2

sin2 x − 6 sin x cos x + 9 cos2 x = (sin x − 3 cos x)2.

3.3 Indices

Indices are used to imply repeated multiplication and create a variety of situations
where laws are required to explain how the result is to be computed.

3.3.1 Laws of Indices

The laws of indices are expressed as follows:

am × an = am+n

am

an
= am−n

(am)n = amn
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and are verified using some simple examples:

23 × 22 = 25 = 32

24

22
= 22 = 4

(22)3 = 26 = 64.

From the above laws, it is evident that

a0 = 1

a−p = 1

a p

a
1
q = q

√
a

a
p
q = q

√
a p.

3.4 Logarithms

Two people are associated with the invention of logarithms: the Scottish theolo-
gian and mathematician John Napier (1550–1617) and the Swiss clockmaker and
mathematician Joost Bürgi (1552–1632). Both men were frustrated by the time they
spent multiplying numbers together, and both realised that multiplication could be
replaced by addition using logarithms. Logarithms exploit the addition and subtrac-
tion of indices shown above, and are always associated with a base. For example,
if ax = n, then loga n = x , where a is the base. Where no base is indicated, it is
assumed to be 10. Two examples bring the idea to life:

102 = 100 then log 100 = 2

103 = 1000 then log 1000 = 3

which is interpreted as ‘10 has to be raised to the power (index) 2 to equal 100.’ The
log operation finds the power of the base for a given number. Thus a multiplication
is translated into an addition using logs. Figure3.3 shows the graph of log x , up to
x = 100, where we see that log 20 ≈ 1.3 and log 50 ≈ 1.7. Therefore, given suitable
software, logarithm tables, or a calculator with a log function, we can compute the
product 20 × 50 as follows:

20 × 50 = log 20 + log 50 ≈ 1.3 + 1.7 = 3

103 = 1000.
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Fig. 3.3 Graph of log x
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Fig. 3.4 Graph of ln x
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In general, the two bases used in calculators and software are 10 and e = 2.718 281
846 . . . . To distinguish one type of logarithm from the other, a logarithm to the base
10 is written as log, and a natural logarithm to the base e is written ln.

Figure3.4 shows the graph of ln x , up to x = 100, where we see that ln 20 ≈ 3
and ln 50 ≈ 3.9. Therefore, given suitable software, a set of natural logarithm tables
or a calculator with a ln function, we can compute the product 20 × 50 as follows:

20 × 50 = ln 20 + ln 50 ≈ 3 + 3.9 = 6.9

e6.9 ≈ 1000.

From the above notation, it is evident that

log(ab) = log a + log b

log

(
a

b

)
= log a − log b

log(an) = n log a.
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3.5 Further Notation

All sorts of symbols are used to stand in for natural language expressions; here are
some examples:

< less than

> greater than

≤ less than or equal to

≥ greater than or equal to

≈ approximately equal to

≡ equivalent to

�= not equal to

|x | absolute value of x .

For example, 0 ≤ t ≤ 1 is interpreted as: t is greater than or equal to 0, and is less
than or equal to 1. Basically, this means t varies between 0 and 1.

3.6 Functions

The theory of functions is a large subject, and at this point in the book, I will only
touch upon some introductory ideas that will help you understand the following
chapters.

The German mathematician Gottfried von Leibniz (1646–1716) is credited with
an early definition of a function, based upon the slope of a graph. However, it was
the Swiss mathematician Leonhard Euler (1707–1783) who provided a definition
along the lines: ‘A function is a variable quantity, whose value depends upon one or
more independent variables.’ Other mathematicians have introduced more rigorous
definitions, which are examined later on in the chapter on calculus.

3.6.1 Explicit and Implicit Equations

The equation
y = 3x2 + 2x + 4

associates the value of y with different values of x . The directness of the equation:
‘y =’, is why it is called an explicit equation, and their explicit nature is extremely
useful. However, simply by rearranging the terms, creates an implicit equation:
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4 = y − 3x2 − 2x

which implies that certain values of x and y combine to produce the result 4. Another
implicit form is

0 = y − 3x2 − 2x − 4

which means the same thing, but expresses the relationship in a slightly different
way.

An implicit equation can be turned into an explicit equation using algebra. For
example, the implicit equation

4x + 2y = 12

has the explicit form:
y = 6 − 2x

where it is clear what y equals.

3.6.2 Function Notation

The explicit equation
y = 3x2 + 2x + 4

tells us that the value of y depends on the value of x , and not the other way around.
For example, when x = 1, y = 9; and when x = 2, y = 20. As y depends upon
the value of x , it is called the dependent variable; and as x is independent of y, it is
called the independent variable.

We can also say that y is a function of x , which can be written as

y = f (x)

where the letter ‘ f ’ is the name of the function, and the independent variable is
enclosed in brackets. We could have also written y = g(x), y = h(x), etc.

Eventually, we have to identify the nature of the function, which in this case is

f (x) = 3x2 + 2x + 4.

Nothing prevents us from writing

y = f (x) = 3x2 + 2x + 4

which means: y equals the value of the function f (x), which is determined by the
independent variable x using the expression 3x2 + 2x + 4.
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An equation may involve more than one independent variable, such as the volume
of a cylinder:

V = πr2h

where r is the radius, and h, the height, and is written

V (r, h) = πr2h.

3.6.3 Intervals

An interval is a continuous range of numerical values associated with a variable,
which can include or exclude the upper and lower values. For example, a variable
such as x is often subject to inequalities like x ≥ a and x ≤ b, which can also be
written as

a ≤ x ≤ b

and implies that x is located in the closed interval [a, b], where the square brackets
indicate that the interval includes a and b. For example,

1 ≤ x ≤ 10

means that x is located in the closed interval [1, 10], which includes 1 and 10.
When the boundaries of the interval are not included, then we would state x > a

and x < b, which is written
a < x < b

and means that x is located in the open interval ]a, b[, where the reverse square
brackets indicate that the interval excludes a and b. For example,

1 < x < 10

means that x is located in the open interval ]1, 10[, which excludes 1 and 10.
Closed and open intervals may be combined as follows. If x ≥ a and x < b then

a ≤ x < b

and means that x is located in the half-open interval [a, b[. For example,

1 ≤ x < 10

means that x is located in the half-open interval [1, 10[, which includes 1, but not 10.
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Fig. 3.5 Closed, open and
half-open intervals

a b

closed interval

open interval

half-open interval

half-open interval

[a,b]

]a,b[

]a,b]

[a,b[

Similarly, if

1 < x ≤ b

means that x is located in the half-open interval ]1, 10], which includes 10, but not 1.
An alternative notation employs parentheses instead of reversed brackets:

]a, b[ = (a, b)

[a, b[ = [a, b)

]a, b] = (a, b].

Figure3.5 shows open, closed and half-open intervals diagrammatically.

3.6.4 Function Domains and Ranges

The following descriptions of domains and ranges only apply to functions with one
independent variable: f (x).

Returning to the above function:

y = f (x) = 3x2 + 2x + 4

the independent variable x , can take on any value from −∞ to +∞, which is called
the domain of the function. In this case, the domain of f (x) is the set of real numbers
R. The notation used for intervals, is also used for domains, which in this case is

] − ∞,+∞[

and is open, as there are no precise values for −∞ and +∞.
As the independent variable takes on different values from its domain, so the

dependent variable, y or f (x), takes on different values from its range. Therefore,
the range of y = f (x) = 3x2 + 2x + 4 is also the set of real numbers R.
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The domain of log x is
]0,+∞[

which is open, because x �= 0. Whereas, the range of log x is

] − ∞,+∞[.

The domain of
√
x is

[0,+∞[

which is half-open, because
√
0 = 0, and +∞ has no precise value. Similarly, the

range of
√
x is

[0,+∞[.

Sometimes, a function is sensitive to one specificnumber. For example, in the function

y = f (x) = 1

x − 1
,

when x = 1, there is a divide by zero, which is meaningless. Consequently, the
domain of f (x) is the set of real numbers R, apart from 1.

3.6.5 Odd and Even Functions

An odd function satisfies the condition:

f (−x) = − f (x)

where x is located in a valid domain. Consequently, the graph of an odd function is
symmetrical relative to the x-axis, relative to the origin. For example, sin(α) is odd
because

sin(−α) = − sin(α)

as illustrated in Fig. 3.6. Other odd functions include:

f (x) = ax

f (x) = ax3.

An even function satisfies the condition:

f (−x) = f (x)
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Fig. 3.6 The sine function is
an odd function

Fig. 3.7 The cosine function
is an even function

where x is located in a valid domain. Consequently, the graph of an even function is
symmetrical relative to the f (x) axis. For example, cos(α) is even because

cos(−α) = cos(α)

as illustrated in Fig. 3.7. Other even functions include:

f (x) = ax2

f (x) = ax4.

3.6.6 Power Functions

Functions of the form f (x) = xn are called power functions of degree n and are
either odd or even. If n is an odd natural number, then the power function is odd, else
if n is an even natural number, then the power function is even.
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3.7 Summary

The above description of algebra should be sufficient for the reader to understand the
following chapters. However, one should remember that this is only the beginning
of a very complex subject.

3.8 Worked Examples

3.8.1 Algebraic Manipulation

Rearrange the following equations to make y the subject.

7 = x + 4

3 − y
, 23 = x + 68

3 + 1
ey

, 23 = x + 68

3 − sin y
.

7 = x + 4

3 − y

3 − y = x + 4

7

y = 3 − x + 4

7
= 17 − x

7
.

23 = x + 68

3 + 1
ey

3 + 1

ey
= x + 68

23
1

ey
= x + 68

23
− 3

= x − 1

23

ey = 23

x − 1

y = ln
( 23

x − 1

)
.



3.8 Worked Examples 47

23 = x + 68

3 − sin y

3 − sin y = x + 68

23

sin y = 3 − x + 68

23

= 1 − x

23

y = arcsin
(1 − x

23

)
.

3.8.2 Solving a Quadratic Equation

Solve the following quadratic equations, and test the answers.

0 = x2 + 4x + 1, 0 = 2x2 + 4x + 2, 0 = 2x2 + 4x + 4.

0 = x2 + 4x + 1

x = −b ± √
b2 − 4ac

2a

= −4 ± √
16 − 4

2

= −4 ± √
12

2
= −2 ± √

3.

Test with x = −2 + √
3.

x2 + 4x + 1 = (−2 + √
3)2 + 4(−2 + √

3) + 1

= 4 − 4
√
3 + 3 − 8 + 4

√
3 + 1

= 0.

Test with x = −2 − √
3.

x2 + 4x + 1 = (−2 − √
3)2 + 4(−2 − √

3) + 1

= 4 + 4
√
3 + 3 − 8 − 4

√
3 + 1

= 0.

0 = 2x2 + 4x + 2
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x = −b ± √
b2 − 4ac

2a

= −4 ± √
16 − 16

4

= −4

4
= −1.

Test with x = −1.

2x2 + 4x + 2 = 2 − 4 + 2

= 0.

0 = 2x2 + 4x + 4

x = −b ± √
b2 − 4ac

2a

= −4 ± √
16 − 32

4

= −4 ± √−16

4
= −1 ± √−1

= −1 ± i.

Test with x = −1 + i .

2x2 + 4x + 4 = 2(−1 + i)2 + 4(−1 + i) + 4

= 2(1 − 2i − 1) − 4 + 4i + 4

= −4i + 4i

= 0.

Test with x = −1 − i .

2x2 + 4x + 4 = 2(−1 − i)2 + 4(−1 − i) + 4

= 2(1 + 2i − 1) − 4 − 4i + 4

= 4i − 4i

= 0.
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3.8.3 Factorising

Factorise the following equations:

4 sin2 x − 4 cos2 x

9 sin2 x + 6 sin x cos x + cos2 x

25 sin2 x + 10 sin x cos x + cos2 x .

4 sin2 x − 4 cos2 x = (2 sin x + 2 cos x)(2 sin x − 2 cos x)

9 sin2 x + 6 sin x cos x + cos2 x = (3 sin x + cos x)2

25 sin2 x + 10 sin x cos x + cos2 x = (5 sin x + cos x)2.



Chapter 4
Trigonometry

4.1 Introduction

This chapter covers some basic features of trigonometry such as angular measure,
trigonometric ratios, inverse ratios, trigonometric identities and various rules, with
which the reader should be familiar.

4.2 Background

The word ‘trigonometry’ divides into three parts: ‘tri’, ‘gon’, ‘metry’, which means
the measurement of three-sided polygons, i.e. triangles. It is an ancient subject and
is used across all branches of mathematics.

4.3 Units of Angular Measurement

The measurement of angles is at the heart of trigonometry, and today two units of
angular measurement have survived into modern usage: degrees and radians. The
degree (or sexagesimal) unit of measure derives from defining one complete rotation
as 360◦. Each degree divides into 60min, and each minute divides into 60s. The
number 60 has survived from Mesopotamian days and is rather incongruous when
used alongside today’s decimal system –which is why the radian has secured a strong
foothold in modern mathematics.

The radian of angular measure does not depend upon any arbitrary constant – it
is the angle created by a circular arc whose length is equal to the circle’s radius.
And because the perimeter of a circle is 2πr , 2π radians correspond to one com-
plete rotation. As 360◦ correspond to 2π radians, 1 radian equals 180◦/π , which is
approximately 57.3◦. The following relationships between radians and degrees are

© Springer-Verlag London Ltd. 2017
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worth remembering:

π

2
[rad] ≡ 90◦, π [rad] ≡ 180◦

3π

2
[rad] ≡ 270◦, 2π [rad] ≡ 360◦.

To convert x◦ to radians:
πx◦

180
[rad].

To convert x [rad] to degrees:

180x

π
[degrees].

4.4 The Trigonometric Ratios

Ancient civilisations knew that triangles – whatever their size – possessed some
inherent properties, especially the ratios of sides and their associated angles. This
means that if these ratios are known in advance, problems involving triangles with
unknown lengths and angles, can be discovered using these ratios.

Figure4.1 shows a point P with coordinates (base, height), on a unit-radius
circle rotated through an angle θ . As P is rotated, it moves into the 2nd quadrant,
3rd quadrant, 4th quadrant and returns back to the first quadrant. During the rotation,
the sign of height and base change as follows:

1st quadrant: height (+),base (+)

2nd quadrant: height (+),base (−)

3rd quadrant: height (−),base (−)

Fig. 4.1 The four quadrants
for the trigonometric ratios

height

radius

base
+

+

_

_

1st quadrant2nd quadrant

4th quadrant

P

3rd quadrant
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4th quadrant: height (−),base (+).

Figures4.2 and 4.3 plot the changing values of height and base over the four
quadrants, respectively. When radius = 1, the curves vary between 1 and −1.
In the context of triangles, the sides are labelled as follows:

hypotenuse = radius

opposi te = height

ad jacent = base.

Thus, using the right-angle triangle shown in Fig. 4.4, the trigonometric ratios: sine,
cosine and tangent are defined as

sin θ = opposi te

hypotenuse
, cos θ = ad jacent

hypotenuse
, tan θ = opposi te

ad jacent
.

Fig. 4.2 The graph of
height over the four
quadrants

height

1

1st
quadrant 

2nd
quadrant 

3rd
quadrant 

4th
quadrant 

 = 2

-1

Fig. 4.3 The graph of base
over the four quadrants

base

1

1st
quadrant 

2nd
quadrant 

3rd
quadrant 

4th
quadrant 

 = 2

-1
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Fig. 4.4 Sides of a
right-angle triangle

hypotenuse
opposite

adjacent

Fig. 4.5 A right-angle
triangle with two unknown
sides
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The reciprocals of these functions, cosecant, secant and cotangent are also useful:

csc θ = 1

sin θ
, sec θ = 1

cos θ
, cot θ = 1

tan θ
.

As an example, Fig. 4.5 shows a triangle where the hypotenuse and an angle are
known. The other sides are calculated as follows:

opposi te

10
= sin 40◦

opposi te = 10 sin 40◦ ≈ 10 × 0.64278 = 6.4278

ad jacent

10
= cos 40◦

ad jacent = 10 cos 40◦ ≈ 10 × 0.7660 = 7.660.

The theorem of Pythagoras confirms that these lengths are correct:

6.42782 + 7.6602 ≈ 102.

Figure4.6 shows the graph of the tangent function, which, like the sine and cosine
functions, is periodic, but with only a period of π radians.
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Fig. 4.6 Graph of the
tangent function
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4.4.1 Domains and Ranges

The periodic nature of sin θ , cos θ and tan θ , means that their domains are infinitely
large. Consequently, it is customary to confine the domain of sin θ to

[
− π

2
,
π

2

]

and cos θ to
[0, π ].

The range for both sin θ and cos θ is

[−1, 1].

The domain for tan θ is the open interval

]
− π

2
,
π

2

[

and its range is the open interval:

]
− ∞,∞

[
.

4.5 Inverse Trigonometric Ratios

The functions sin θ , cos θ , tan θ , csc θ , sec θ and cot θ provide different ratios for the
angle θ , and the inverse trigonometric functions convert a ratio back into an angle.
These are arcsin, arccos, arctan, arccsc, arcsec and arccot, and are sometimes written
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Fig. 4.7 Graph of the arcsin
function
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Fig. 4.8 Graph of the arccos
function

1-1 0
x

arccos x

as sin−1, cos−1, tan−1, csc−1, sec−1 and cot−1. For example, sin 30◦ = 0.5, therefore,
arcsin(0.5) = 30◦. Consequently, the domain for arcsin is the range for sin:

[−1, 1]

and the range for arcsin is the domain for sin:

[
− π

2
,
π

2

]

as shown in Fig. 4.7. Similarly, the domain for arccos is the range for cos:

[−1, 1]

and the range for arccos is the domain for cos:

[0, π ]

as shown in Fig. 4.8.
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Fig. 4.9 Graph of the arctan
function /2

- /2

x

arctan x

The domain for arctan is the range for tan:

] − ∞,∞[

and the range for arctan is the domain for tan:

]
− π

2
,
π

2

[

as shown in Fig. 4.9.
Various programming languages include the atan2 function, which is an arctan

function with two arguments: atan2(y, x). The signs of x and y provide sufficient
information to locate the quadrant containing the angle, and gives the atan2 function
a range of [0, 2π ].

4.6 Trigonometric Identities

The sin and cos curves are identical, apart from being displaced by 90◦, and are
related by

cos θ = sin(θ + π/2).

Also, simple algebra and the theorem of Pythagoras can be used to derive other
formulae such as

sin θ

cos θ
= tan θ

sin2 θ + cos2 θ = 1

1 + tan2 θ = sec2 θ

1 + cot2 θ = csc2 θ.
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Fig. 4.10 An arbitrary
triangle

a

A

b

B

c

C

4.7 The Sine Rule

Figure4.10 shows a triangle labeled such that side a is opposite angle A, side b is
opposite angle B, etc. The sine rule states:

a

sin A
= b

sin B
= c

sinC

which can be used to compute the length of an unknown length or angle. For example,
if A = 60◦, B = 40◦, C = 80◦, and b = 10, then

a

sin 60◦ = 10

sin 40◦

rearranging, we have

a = 10 sin 60◦

sin 40◦ ≈ 13.47.

Similarly:
c

sin 80◦ = 10

sin 40◦

therefore

c = 10 sin 80◦

sin 40◦ ≈ 15.32.

4.8 The Cosine Rule

The cosine rule expresses the sin2 θ + cos2 θ = 1 identity for the arbitrary triangle
shown in Fig. 4.10. In fact, there are three versions:
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a2 = b2 + c2 − 2bc cos A

b2 = c2 + a2 − 2ca cos B

c2 = a2 + b2 − 2ab cosC.

Three further relationships also hold:

a = b cosC + c cos B

b = c cos A + a cosC

c = a cos B + b cos A.

4.9 Compound-Angle Identities

Trigonometric identities are useful for solving various mathematical problems, but
apart from this, their proof often contains a strategy that can be used else where. In
the first example, watch out for the technique of multiplying by 1 in the form of a
ratio, and swapping denominators. The technique is rather elegant and suggests that
the result was known in advance, which probably was the case. Let’s begin by finding
a way of representing sin(α + β) in terms of sin α, cosα, sin β, cosβ.

With reference to Fig. 4.11:

sin(α + β) = FD

AD
= BC + ED

AD

= BC

AD

AC

AC
+ ED

AD

CD

CD

= BC

AC

AC

AD
+ ED

CD

CD

AD
sin(α + β) = sin α cosβ + cosα sin β. (4.1)

Fig. 4.11 The geometry to
expand sin(α + β)

A B

C

D

E

F
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To find sin(α − β), reverse the sign of β in (4.1):

sin(α − β) = sin α cosβ − cosα sin β. (4.2)

Now let’s expand cos(α + β) with reference to Fig. 4.11:

cos(α + β) = AE

AD
= AB − EC

AD

= AB

AD

AC

AC
− EC

AD

CD

CD

= AB

AC

AC

AD
− EC

CD

CD

AD
cos(α + β) = cosα cosβ − sin α sin β. (4.3)

To find cos(α − β), reverse the sign of β in (4.3):

cos(α − β) = cosα cosβ + sin α sin β.

To expand tan(α + β), divide (4.1) by (4.3):

sin(α + β)

cos(α + β)
= sin α cosβ + cosα sin β

cosα cosβ − sin α sin β

=
sin α cosβ

cosα cosβ
+ cosα sin β

cosα cosβ

cosα cosβ

cosα cosβ
− sin α sin β

cosα cosβ

tan(α + β) = tan α + tan β

1 − tan α tan β
. (4.4)

To find tan(α − β), reverse the sign of β in (4.4):

tan(α − β) = tan α − tan β

1 + tan α tan β
.

4.9.1 Double-Angle Identities

By making β = α, the three compound-angle identities

sin(α ± β) = sin α cosβ ± cosα sin β

cos(α ± β) = cosα cosβ ∓ sin α sin β

tan(α ± β) = tan α ± tan β

1 ∓ tan α tan β
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provide the starting point for deriving three corresponding double-angle identities:

sin(α ± α) = sin α cosα ± cosα sin α

sin 2α = 2 sin α cosα.

Similarly,

cos(α ± α) = cosα cosα ∓ sin α sin α

cos 2α = cos2 α − sin2 α

which can be further simplified using sin2 α + cos2 α = 1:

cos 2α = cos2 α − sin2 α

cos 2α = 2 cos2 α − 1

cos 2α = 1 − 2 sin2 α.

And for tan 2α, we have:

tan(α ± α) = tan α ± tan α

1 ∓ tan α tan α

tan 2α = 2 tan α

1 − tan2 α
.

4.9.2 Multiple-Angle Identities

In Chap.15, a technique employing power series is given, which shows how the
following multiple-angle identities are computed:

sin 3α = 3 sin α − 4 sin3 α

cos 3α = 4 cos3 α − 3 cosα

tan 3α = 3 tan α − tan3 α

1 − 3 tan2 α

sin 4α = 4 sin α cosα − 8 sin3 α cosα

cos 4α = 8 cos4 α − 8 cos2 α + 1

tan 4α = 4 tan α − 4 tan3 α

1 − 6 tan2 α + tan4 α

sin 5α = 16 sin5 α − 20 sin3 α + 5 sin α

http://dx.doi.org/10.1007/978-1-4471-7336-6_15
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cos 5α = 16 cos5 α − 20 cos3 α + 5 cosα

tan 5α = 5 tan α − 10 tan3 α + tan5 α

1 − 10 tan2 α + 5 tan4 α
.

4.9.3 Half-Angle Identities

Every now and then, it is necessary to compute the sine, cosine or tangent of a half-
angle from the corresponding whole-angle functions. To do this, we rearrange the
double-angle identities as follows.

cos 2α = 1 − 2 sin2 α

sin2 α = 1 − cos 2α

2

sin2
α

2
= 1 − cosα

2

sin
α

2
= ±

√
1 − cosα

2
. (4.5)

Similarly,

cos2 α = 1 + cos 2α

2

cos2
α

2
= 1 + cosα

2

cos
α

2
= ±

√
1 + cosα

2
. (4.6)

Dividing (4.5) by (4.6) we have

tan
α

2
=

√
1 − cosα

1 + cosα
.

4.10 Perimeter Relationships

Finally, with reference to Fig. 4.10, we come to the relationships that integrate angles
with the perimeter of a triangle:
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s = 1

2
(a + b + c)

sin
A

2
=

√
(s − b)(s − c)

bc

sin
B

2
=

√
(s − c)(s − a)

ca

sin
C

2
=

√
(s − a)(s − b)

ab

cos
A

2
=

√
s(s − a)

bc

cos
B

2
=

√
s(s − b)

ca

cos
C

2
=

√
s(s − c)

ab

sin A = 2

bc

√
s(s − a)(s − b)(s − c)

sin B = 2

ca

√
s(s − a)(s − b)(s − c)

sinC = 2

ab

√
s(s − a)(s − b)(s − c).

4.11 Summary

No derivations have been given for the formulae in this chapter, and the reader who
is really interested, will find plenty of books that show their origins. Hopefully, the
formulae will be a useful reference when studying the rest of the book, and perhaps
will be of some use when solving problems in the future.

I should draw the reader’s attention to twomaths books that I have found a source of
information and inspiration: Handbook of Mathematics and Computational Science
by JohnHarris andHorst Stocker (1998), andMathematics from the Birth of Numbers
by Jan Gullberg (1997).



Chapter 5
Coordinate Systems

5.1 Introduction

In this chapter we revise Cartesian coordinates, axial systems, the distance between
two points in space, and the area of simple 2D shapes. It also covers polar, spherical
polar and cylindrical coordinate systems.

5.2 Background

René Descartes is often credited with the invention of the xy-plane, but the French
lawyer and mathematician Pierre de Fermat (1601–1665) was probably the first
inventor. In 1636 Fermat was working on a treatise titled Ad locus planos et solidos
isagoge, which outlinedwhatwenowcall ‘analytic geometry’.Unfortunately, Fermat
never published his treatise, although he shared his ideas with other mathematicians
such as Blaise Pascal (1623–1662). At the same time, Descartes devised his own
system of analytic geometry and in 1637 published his results in the prestigious
journal Géométrie. In the eyes of the scientific world, the publication date of a
technical paper determines when a new idea or invention is released into the public
domain. Consequently, ever since this publicationDescartes has been associatedwith
the xy-plane, which is why it is called the Cartesian plane.

The Cartesian plane is such a simple idea that it is strange that it took so long
to be discovered. However, although it is true that René Descartes showed how
an orthogonal coordinate system could be used for graphs and coordinate geometry,
coordinates had been used by ancient Egyptians, almost 2000 years earlier! If Fermat
had been more efficient in publishing his research results, the xy-plane could have
been called the Fermatian plane! (AHistory of Mathematics by Boyer andMerzbach,
1989)

© Springer-Verlag London Ltd. 2017
J. Vince,Mathematics for Computer Graphics, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-7336-6_5
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Fig. 5.1 The Cartesian plane
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5.3 The Cartesian Plane

The Cartesian plane provides a mechanism for locating points with a unique, ordered
pair of numbers (x, y) as shown in Fig. 5.1, where P has coordinates (3, 2) and Q has
coordinates (−4,−2). The point (0, 0) is called the origin. As previously mentioned,
Descartes suggested that the letters x and y should be used to represent variables,
and letters at the other end of the alphabet should stand for numbers. Which is why
equations such as y = ax2 + bx + c, are written this way.

The axes are said to be oriented as the x-axis rotates anticlockwise towards the
y-axis. They could have been oriented in the opposite sense, with the y-axis rotating
anticlockwise towards the x-axis.

5.4 Function Graphs

When functions such as

linear: y = mx + c,
quadratic: y = ax2 + bx + c,

cubic: y = ax3 + bx2 + cx + d,
trigonometric: y = a sin x ,

are drawn as graphs, they create familiar shapes that permit the function to be easily
identified. Linear functions are straight lines; quadratics are parabolas; cubics have
an ‘S’ shape; and trigonometric functions often possess a wave-like trace. Figure5.2
shows examples of each type of function.
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Fig. 5.2 Graphs of four
function types
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Fig. 5.3 A simple polygon
created by a chain of vertices
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5.5 Shape Representation

The Cartesian plane also provides a way to represent 2D shapes numerically, which
permits them to be manipulated mathematically. Let’s begin with 2D polygons and
show how their internal area can be calculated.

5.5.1 2D Polygons

A polygon is formed from a chain of vertices (points) as shown in Fig. 5.3. A straight
line is assumed to connect each pair of neighbouring vertices; intermediate points
on the line are not explicitly stored. There is no convention for starting a chain
of vertices, but software will often dictate whether polygons have a clockwise or
anticlockwise vertex sequence.

We can now subject this list of coordinates to a variety of arithmetic and mathe-
matical operations. For example, if we double the values of x and y and redraw the
vertices, we discover that the shape’s geometric integrity is preserved, but its size
is doubled relative to the origin. Similarly, if we divide the values of x and y by 2,
the shape is still preserved, but its size is halved relative to the origin. On the other
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Table 5.1 A polygon’s
coordinates

x y

x0 y0
x1 y1
x2 y2
x3 y3

hand, if we add 1 to every x-coordinate, and 2 to every y-coordinate, and redraw the
vertices, the shape’s size remains the same but is displaced 1 unit horizontally and 2
units vertically.

5.5.2 Area of a Shape

The area of a polygonal shape is readily calculated from its list of coordinates. For
example, using the list of coordinates shown in Table5.1: the area is computed by

area = 1

2
[(x0y1 − x1y0) + (x1y2 − x2y1) + (x2y3 − x3y2) + (x3y0 − x0y3)].

You will observe that the calculation sums the results of multiplying an x by the
next y, minus the next x by the previous y. When the last vertex is selected, it is
paired with the first vertex to complete the process. The result is then halved to reveal
the area. As a simple test, let’s apply this formula to the shape described in Fig. 5.3:

area = 1

2
[(1 × 1 − 3 × 1) + (3 × 2 − 3 × 1) + (3 × 3 − 1 × 2) + (1 × 1 − 1 × 3)]

area = 1

2
[−2 + 3 + 7 − 2] = 3.

which, by inspection, is the true area. The beauty of this technique is that it works
with any number of vertices and any arbitrary shape.

Another feature of the technique is that if the set of coordinates is clockwise,
the area is negative, which means that the calculation computes vertex orientation as
well as area. To illustrate this feature, the original vertices are reversed to a clockwise
sequence as follows:

area = 1

2
[(1 × 3 − 1 × 1) + (1 × 2 − 3 × 3) + (3 × 1 − 3 × 2) + (3 × 1 − 1 × 1)]

area = 1

2
[2 − 7 − 3 + 2] = −3.

The minus sign confirms that the vertices are in a clockwise sequence.
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Fig. 5.4 Calculating the
distance between two points
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5.6 Theorem of Pythagoras in 2D

The theorem of Pythagoras is used to calculate the distance between two points.
Figure5.4 shows two arbitrary points P1(x1, y1) and P2(x2, y2). The distanceΔx =
x2 − x1 and Δy = y2 − y1. Therefore, the distance d between P1 and P2 is given by

d =
√

(Δx)2 + (Δy)2.

For example, given P1(1, 1), P2(4, 5), then d = √
32 + 42 = 5.

5.7 3D Cartesian Coordinates

Two coordinates are required to locate a point on the 2D Cartesian plane, and three
coordinates are required for 3D space. The corresponding axial system requires three
mutually perpendicular axes; however, there are two ways to add the extra z-axis.
Figure5.5 shows the two orientations, which are described as left- and right-handed
axial systems. The left-handed system permits us to align our left hand with the axes
such that the thumb aligns with the x-axis, the first finger aligns with the y-axis,
and the middle finger aligns with the z-axis. The right-handed system permits the
same system of alignment, but using our right hand. The choice between these axial
systems is arbitrary, but one should be aware of the system employed by commercial
computer graphics packages. The main problem arises when projecting 3D points
onto a 2D plane, which has an oriented axial system. A right-handed system is
employed throughout this book, as shown in Fig. 5.6, which also shows a point P
with its coordinates. It also worth noting that handedness has no meaning in spaces
with 4 dimensions or more.
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Fig. 5.5 a A left-handed
system. b A right-handed
system
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Fig. 5.6 A right-handed
axial system showing the
coordinates of a point P P
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5.7.1 Theorem of Pythagoras in 3D

The theorem of Pythagoras in 3D is a natural extension of the 2D rule. In fact, it
even works in higher dimensions. Given two arbitrary points P1(x1, y1, z1) and
P2(x2, y2, z2), we compute Δx = x2 − x1, Δy = y2 − y1 and Δz = z2 − z1, from
which the distance d between P1 and P2 is given by

d =
√

(Δx)2 + (Δy)2 + (Δz)2

and the distance from the origin to a point P(x, y, z) is simply

d =
√
x2 + y2 + z2.

Therefore, the point (3, 4, 5) is
√
32 + 42 + 52 ≈ 7.07 from the origin.

5.8 Polar Coordinates

Polar coordinates are used for handling data containing angles, rather than linear
offsets. Figure5.7 shows the convention used for 2D polar coordinates, where the
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Fig. 5.7 2D polar
coordinates
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point P(x, y) has equivalent polar coordinates P(ρ, θ), where:

x = ρ cos θ

y = ρ sin θ

ρ =
√
x2 + y2

θ = arctan(y/x).

For example, the point Q(4, 0.8π) in Fig. 5.7 has Cartesian coordinates:

x = 4 cos(0.8π) ≈ −3.24

y = 4 sin(0.8π) ≈ 2.35

and the point (3, 4) has polar coordinates:

ρ =
√
32 + 42 = 5

θ = arctan(4/3) ≈ 53.13◦.

These conversion formulae work only for the first quadrant. The atan2 function
should be used in a software environment, as it works with all four quadrants.

5.9 Spherical Polar Coordinates

Figure5.8 shows one convention used for spherical polar coordinates, where the
point P(x, y, z) has equivalent polar coordinates P(ρ, φ, θ), where:

x = ρ sin φ cos θ

y = ρ sin φ sin θ

z = ρ cosφ
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Fig. 5.8 Spherical polar
coordinates
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ρ

ρ =
√
x2 + y2 + z2

φ = arccos(z/ρ)

θ = arctan(y/x).

For example, the point (3, 4, 0) has spherical polar coordinates (5, 90◦, 53.13◦):

ρ =
√
32 + 42 + 02 = 5

φ = arccos(0/5) = 90◦

θ = arctan(4/3) ≈ 53.13◦.

Take great care when using spherical coordinates, as authors often swap φ with θ , as
well as the alignment of the Cartesian axes; not to mention using a left-handed axial
system in preference to a right-handed system!

5.10 Cylindrical Coordinates

Figure5.9 shows one convention used for cylindrical coordinates, where the point
P(x, y, z) has equivalent cylindrical coordinates P(ρ, θ, z), where

x = ρ cos θ

y = ρ sin θ

z = z

ρ =
√
x2 + y2

θ = arctan
( y

x

)
.
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Fig. 5.9 Cylindrical
coordinates
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For example, the point (3, 4, 6) has cylindrical coordinates (5, 53.13◦, 6):

ρ =
√
32 + 42 = 5

θ = arctan
(4
3

)
≈ 53.13◦

z = 6.

Again, be careful when using cylindrical coordinates to ensure compatibility.

5.11 Summary

All of the above coordinate systems are used in computer graphics. Unfortunately,
there are no rigid standards, so be prepared to adjust the formulae used in other books
and technical papers.

5.12 Worked Examples

5.12.1 Area of a Shape

Compute the area and orientation of the shape defined by the coordinates in Table5.2.

Table 5.2 Coordinates of the shape

x 0 2 2 1 1 0

y 0 0 2 2 1 1
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area = 1

2
[(2 × 2 − 0 × 2) + (2 × 2 − 2 × 1) + (1 × 1 − 2 × 1) + (1 × 1 − 1 × 0)]

= 1

2
(4 + 2 − 1 + 1)

= 3.

The shape is oriented anticlockwise, as the area is positive.

5.12.2 Distance Between Two Points

Find the distance d12 between P1(1, 1) and P2(6, 7), and d34 between P3(1, 1, 1) and
P4(7, 8, 9).

d12 =
√

(6 − 1)2 + (7 − 1)2 = √
61 ≈ 7.81

d34 =
√

(7 − 1)2 + (8 − 1)2 + (9 − 1)2 = √
149 ≈ 12.21.

5.12.3 Polar Coordinates

Convert the 2D polar coordinates (3, π/2) to Cartesian form, and the point (4, 5) to
polar form.

ρ = 3

θ = π/2

x = ρ cos θ = 3 cos(π/2) = 0

y = ρ sin θ = 3 sin(π/2) = 3

therefore, (3, π/2) ≡ (0, 3).

x = 4

y = 5

ρ =
√
x2 + y2 =

√
42 + 52 ≈ 6.4

θ = arctan(y/x) = arctan(5/4) ≈ 51.34◦

therefore, (4, 5) ≈ (6.4, 51.34◦).
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5.12.4 Spherical Polar Coordinates

Convert the spherical polar coordinates (10, π/2, 45◦) to Cartesian form, and the
point (3, 4, 5) to spherical form.

ρ = 10

φ = π/2

θ = 45◦

x = ρ sin φ cos θ = 10 sin(π/2) cos 45◦ = 10
√
2/2 ≈ 7.07

y = ρ sin φ sin θ = 10 sin(π/2) sin 45◦ = 10
√
2/2 ≈ 7.07

z = ρ cosφ = 10 cos(π/2) = 0

therefore, (10, π/2, 45◦) ≈ (7.07, 7.07, 0).

x = 3

y = 4

z = 5

ρ =
√
x2 + y2 + z2 =

√
32 + 42 + 52 ≈ 7.07

φ = arccos(z/ρ) ≈ arccos(5/7.07) = 45◦

θ = arctan(y/x) = arctan(4/3) ≈ 53.13◦

therefore, (3, 4, 5) ≈ (7.07, 45◦, 53.13◦).

5.12.5 Cylindrical Coordinates

Convert the 3D cylindrical coordinates (10, π/2, 5) to Cartesian form, and the point
(3, 4, 5) to cylindrical form.

ρ = 10

θ = π/2

z = 5

x = ρ cos θ = 10 cos(π/2) = 0

y = ρ sin θ = 10 sin(π/2) = 10

z = 5

therefore, (10, π/2, 5) ≡ (0, 10, 5).
Given (3, 4, 5), then
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ρ =
√
32 + 42 = 5

θ = arctan (4/3) ≈ 53.13◦

therefore, (3, 4, 5) ≈ (5, 53.13◦, 5).



Chapter 6
Determinants

6.1 Introduction

When patterns of numbers or symbols occur over and over again, mathematicians
often devise a way to simplify their description and assign a name to them. For
example,

4∏

i=1

pαi
i

is shorthand for
pα1
1 pα2

2 pα3
3 pα4

4

and
4∑

i=1

pαi
i

is shorthand for
pα1
1 + pα2

2 + pα3
3 + pα4

4 .

A determinant is another example of this process, and is a value derived from a
square matrix of terms, often associated with sets of equations. Such problems were
studied by the Babylonians around 300 BC and by the Chinese, between 200 BC
and 100 BC. Since then many mathematicians have been associated with the evolu-
tion of determinants and matrices, including Girolamo Cardano (1501–1576), Jan de
Witt (1625–1672), Takakazu Seki (1642–1708), Gottfried von Leibniz, Guillaume
de L’Hôpital (1661–1704), Augustin-Louis Cauchy (1789–1857), Pierre Laplace
(1749–1827) and Arthur Cayley (1821–1895). To understand the rules used to com-
pute a determinant’s value, we need to understand their origin, which is in the solution
of sets of linear equations.

© Springer-Verlag London Ltd. 2017
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6.2 Linear Equations with Two Variables

Consider the following linear equations where we want to find values of x and y that
satisfy both equations:

7 = 3x + 2y (6.1)

10 = 2x + 4y. (6.2)

A standard way to resolve this problem is to multiply (6.1) by 2 and subtract (6.2)
from (6.1), which removes the y-terms:

14 = 6x + 2y

10 = 2x + 4y

4 = 4x

x = 1.

Substituting x = 1 in (6.1) reveals the value of y:

7 = 3+ 2y

4 = 2y

y = 2.

Therefore, x = 1 and y = 2, solves (6.1) and (6.2).
The equationsmust be linearly independent, otherwisewe only have one equation.

For example, starting with

7 = 3x + 2y

14 = 6x + 4y

is a futile exercise, as the second equation is double the first, and does not provide
any extra information.

To find a general solution to this problem, we start with

d1 = a1x + b1y (6.3)

d2 = a2x + b2y. (6.4)

Multiply (6.3) by b2 and (6.4) by b1:

d1b2 = a1b2x + b1b2y (6.5)

b1d2 = b1a2x + b1b2y. (6.6)

Subtract (6.6) from (6.5):
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d1b2 − b1d2 = a1b2x − b1a2x

= (a1b2 − b1a2)x

x = d1b2 − b1d2
a1b2 − b1a2

. (6.7)

To find y, multiply (6.3) by a2 and (6.4) by a1:

d1a2 = a2a1x + b1a2y (6.8)

a1d2 = a2a1x + a1b2y. (6.9)

Subtract (6.8) from (6.9):

a1d2 − d1a2 = a1b2y − b1a2y

= (a1b2 − b1a2)y

y = a1d2 − d1a2
a1b2 − b1a2

. (6.10)

Observe that both (6.7) and (6.10) share the common denominator: a1b2 − b1a2.
Furthermore, note the positions of a1, b1, a2 and b2 in the original equations:

a1 b1
a2 b2

and the denominator is formed by cross-multiplying the diagonal terms a1b2 and
subtracting the other cross-multiplied terms b1a2. Placing the four terms between
two vertical lines creates a second-order determinant whose value equals:

∣∣∣∣
a1 b1
a2 b2

∣∣∣∣ = a1b2 − b1a2.

Although the name was originally given by Johann Gauss, it was the French mathe-
matician Augustin-Louis Cauchy who clarified its current modern identity.

If the original equations were linearly related by a factor λ, the determinant equals
zero: ∣∣∣∣

a1 b1
λa1 λb1

∣∣∣∣ = a1λb1 − b1λa1 = 0.

Observe that the numerators of (6.7) and (6.10) are also second-order determinants:

∣∣∣∣
d1 b1
d2 b2

∣∣∣∣ = d1b2 − b1d2

and
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∣∣∣∣
a1 d1
a2 d2

∣∣∣∣ = a1d2 − d1a2

which means that Eqs. (6.7) and (6.10) can be written using determinants:

x =

∣∣∣∣
d1 b1
d2 b2

∣∣∣∣
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣
, y =

∣∣∣∣
a1 d1
a2 d2

∣∣∣∣
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣
.

And one final piece of algebra permits the solution to be written as

x∣∣∣∣
d1 b1
d2 b2

∣∣∣∣
= y∣∣∣∣

a1 d1
a2 d2

∣∣∣∣
= 1∣∣∣∣

a1 b1
a2 b2

∣∣∣∣
. (6.11)

Observe another pattern in (6.11) where the determinant is

∣∣∣∣
a1 b1
a2 b2

∣∣∣∣

but the d-terms replace the x-coefficients:

∣∣∣∣
d1 b1
d2 b2

∣∣∣∣

and then the y-coefficients ∣∣∣∣
a1 d1
a2 d2

∣∣∣∣ .

Returning to the original equations:

7 = 3x + 2y

10 = 2x + 4y

and substituting the constants in (6.11), we have

x∣∣∣∣
7 2
10 4

∣∣∣∣
= y∣∣∣∣

3 7
2 10

∣∣∣∣
= 1∣∣∣∣

3 2
2 4

∣∣∣∣

which, when expanded reveals

x

28− 20
= y

30− 14
= 1

12− 4
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x

8
= y

16
= 1

8

making x = 1 and y = 2.
Let’s try another example:

11 = 4x + y

5 = x + y

and substituting the constants in (6.11), we have

x∣∣∣∣
11 1
5 1

∣∣∣∣
= y∣∣∣∣

4 11
1 5

∣∣∣∣
= 1∣∣∣∣

4 1
1 1

∣∣∣∣

which, when expanded reveals

x

11− 5
= y

20− 11
= 1

4− 1

x

6
= y

9
= 1

3

making x = 2 and y = 3.
Now let’s see how a third-order determinant arises from the coefficients of three

equations in three unknowns.

6.3 Linear Equations with Three Variables

Consider the following set of three linear equations:

13 = 3x + 2y + 2z (6.12)

20 = 2x + 3y + 4z (6.13)

7 = 2x + y + z. (6.14)

A standard way to resolve this problem is to multiply (6.12) by 2 and subtract (6.13),
which removes the z-terms:

26 = 6x + 4y + 4z

20 = 2x + 3y + 4z

6 = 4x + y (6.15)

leaving (6.15) with two unknowns.
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Next, we take (6.13) and (6.14) and remove the z-term by multiplying (6.14) by
4 and subtract (6.13):

28 = 8x + 4y + 4z

20 = 2x + 3y + 4z

8 = 6x + y (6.16)

leaving (6.16) with two unknowns. We are now left with (6.15) and (6.16):

6 = 4x + y

8 = 6x + y

which can be solved using (6.11):

x∣∣∣∣
6 1
8 1

∣∣∣∣
= y∣∣∣∣

4 6
6 8

∣∣∣∣
= 1∣∣∣∣

4 1
6 1

∣∣∣∣

therefore,

x = 6− 8

4− 6
= 1

y = 32− 36

4− 6
= 2.

Substituting x = 1 and y = 2 in (6.12) reveals that z = 3.
We can generalise (6.11) for three equations using third-order determinants:

x∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣

= y∣∣∣∣∣∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣

= z∣∣∣∣∣∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣

= 1∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣

. (6.17)

Once again, there is an important pattern in (6.17) where the underlying determinant
is ∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣

but the d-terms replace the x-coefficients:

∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣
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the d-terms replace the y-coefficients:

∣∣∣∣∣∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣

and the d-terms replace the z-coefficients:

∣∣∣∣∣∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣
.

We must now find a way of computing the value of a third-order determinant, which
requires the following algebraic analysis of three equations in three unknowns. We
start with three linear equations:

d1 = a1x + b1y + c1z (6.18)

d2 = a2x + b2y + c2z (6.19)

d3 = a3x + b3y + c3z (6.20)

and derive one equation in two unknowns from (6.18) and (6.19), and another from
(6.19) and (6.20).

We multiply (6.18) by c2, (6.19) by c1 and subtract them:

c2d1 = a1c2x + b1c2y + c1c2z

c1d2 = c1a2x + b2c1y + c1c2z

c2d1 − c1d2 = (a1c2 − c1a2)x + (b1c2 − b2c1)y. (6.21)

Next, we multiply (6.19) by c3, (6.20) by c2 and subtract them:

c3d2 = a2c3x + b2c3y + c2c3z

c2d3 = a3c2x + b3c2y + c2c3z

c3d2 − c2d3 = (a2c3 − a3c2)x + (b2c3 − b3c2)y. (6.22)

Simplify (6.21) by letting

e1 = c2d1 − c1d2
f1 = a1c2 − c1a2
g1 = b1c2 − b2c1

therefore,
e1 = f1x + g1y. (6.23)
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Simplify (6.22) by letting

e2 = c3d2 − c2d3
f2 = a2c3 − a3c2
g2 = b2c3 − b3c2

therefore,
e2 = f2x + g2y. (6.24)

Now we have two equations in two unknowns:

e1 = f1x + g1y

e2 = f2x + g2y

which are solved using
x

A
= y

B
= 1

C
(6.25)

where

A =
∣∣∣∣
e1 g1
e2 g2

∣∣∣∣=
∣∣∣∣
c2d1 − c1d2 b1c2 − b2c1
c3d2 − c2d3 b2c3 − b3c2

∣∣∣∣ (6.26)

B =
∣∣∣∣
f1 e1
f2 e2

∣∣∣∣=
∣∣∣∣
a1c2 − c1a2 c2d1 − c1d2
a2c3 − a3c2 c3d2 − c2d3

∣∣∣∣ (6.27)

C =
∣∣∣∣
f1 g1
f2 g2

∣∣∣∣=
∣∣∣∣
a1c2 − c1a2 b1c2 − b2c1
a2c3 − a3c2 b2c3 − b3c2

∣∣∣∣ (6.28)

Wefirst compute A, fromwhichwe can derive B, because the only difference between
(6.26) and (6.27) is that d1, d2, d3 become a1, a2, a3 respectively, and b1, b2, b3
become d1, d2, d3 respectively.

We can derive C from A, as the only difference between (6.26) and (6.28) is that
d1, d2, d3 become a1, a2, a3 respectively. Starting with A:

A = (c2d1 − c1d2)(b2c3 − b3c2) − (b1c2 − b2c1)(c3d2 − c2d3)

= b2c2c3d1 − b3c
2
2d1 − b2c1c3d2 + b3c1c2d2

− b1c2c3d2 + b1c
2
2d3 + b2c1c3d2 − b2c1c2d3

= b2c2c3d1 − b3c
2
2d1 + b3c1c2d2 − b1c2c3d2 + b1c

2
2d3 − b2c1c2d3

= c2(b2c3d1 − b3c2d1 + b3c1d2 − b1c3d2 + b1c2d3 − b2c1d3)

A = c2
(
d1(b2c3 − c2b3) − b1(d2c3 − c2d3) + c1(d2b3 − b2d3)

)
. (6.29)

Using the substitutions described above we can derive B and C from (6.29):
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B = c2
(
a1(d2c3 − c2d3) − b1(a2c3 − c2a3) + c1(a2d3 − d2a3)

)
(6.30)

C = c2
(
a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3)

)
. (6.31)

We can now rewrite (6.29)–(6.31) using determinant notation. At the same time, we
can drop the c2 terms as they cancel out when computing x , y and z:

A = d1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣ − b1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣ + c1

∣∣∣∣
d2 b2
d3 b3

∣∣∣∣ (6.32)

B = a1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣ − d1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣
a2 d2
a3 d3

∣∣∣∣ (6.33)

C = a1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣ − b1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣
a2 b2
a3 b3

∣∣∣∣ . (6.34)

As (6.17) and (6.25) refer to the same x and y, then

∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣
= d1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣ − b1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣ + c1

∣∣∣∣
d2 b2
d3 b3

∣∣∣∣ (6.35)

∣∣∣∣∣∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣
= a1

∣∣∣∣
d2 c2
d3 c3

∣∣∣∣ − d1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣
a2 d2
a3 d3

∣∣∣∣ (6.36)

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
= a1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣ − b1

∣∣∣∣
a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣
a2 b2
a3 b3

∣∣∣∣ . (6.37)

As a consistent algebraic analysis has been pursued to derive (6.35)–(6.37), a con-
sistent pattern has surfaced in Fig. 6.1 which shows how the three determinants are
evaluated. This pattern comprises taking each entry in the top row, called a cofactor,
and multiplying it by the determinant of entries in rows 2 and 3, whilst ignoring the
column containing the original term, called a first minor. Observe that the second
term of the top row is switched negative, called an inversion correction factor.

Let’s repeat (6.31) again without the c2 term, as it has nothing to do with the
calculation of the determinant.

C = a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3). (6.38)

It is possible to arrange the terms of (6.38) as a square matrix such that each row and
column sums to C :
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d1 b1 c1 d1 b1 c1 d1 b1 c1 d1 b1 c1

d2 b2 c2 = d2 b2 c2 - d2 b2 c2 + d2 b2 c2

d3 b3 c3 d3 b3 c3 d3 b3 c3 d3 b3 c3

a1 d1 c1 a1 d1 c1 a1 d1 c1 a1 d1 c1

a2 d2 c2 = a2 d2 c2 - a2 d2 c2 + a2 d2 c2

a3 d3 c3 a3 d3 c3 a3 d3 c3 a3 d3 c3

a1 b1 c1 a1 b1 c1 a1 b1 c1 a1 b1 c1

a2 b2 c2 = a2 b2 c2 - a2 b2 c2 + a2 b2 c2

a3 b3 c3 a3 b3 c3 a3 b3 c3 a3 b3 c3

Fig. 6.1 Evaluating the determinants shown in (6.35)–(6.37)

a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3)

−a2(b1c3 − c1b3) + b2(a1c3 − c1a3) − c2(a1b3 − b1a3)

a3(b1c2 − c1b2) − b3(a1c2 − c1a2) + c3(a1b2 − b1a2)

whichmeans that there are sixways to evaluate the determinantC : summing the rows,
or summing the columns. Figure6.2 shows this arrangement with the cofactors in
blue, and the first minor determinants in green. Observe how the signs alternate
between the terms.

Having discovered the origins of these patterns, let’s evaluate the original equa-
tions declared at the start of this section using (6.11)

13 = 3x + 2y + 2z

20 = 2x + 3y + 4z

7 = 2x + y + z.

x∣∣∣∣∣∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣

= y∣∣∣∣∣∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣

= z∣∣∣∣∣∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣

= 1∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣

therefore,
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a1 b1 c1 C C C

C = a2 b2 c2 = = =

a3 b3 c3 -

a1 b1 c1 a1 b1 c1 a1 b1 c1

C = a2 b2 c2 - a2 b2 c2 + a2 b2 c2

a3 b3 c3 a3 b3 c3 a3 b3 c3

- + -

a1 b1 c1 a1 b1 c1 a1 b1 c1

C = - a2 b2 c2 + a2 b2 c2 - a2 b2 c2

a3 b3 c3 a3 b3 c3 a3 b3 c3

+ - +

a1 b1 c1 a1 b1 c1 a1 b1 c1

C = a2 b2 c2 - a2 b2 c2 + a2 b2 c2

a3 b3 c3 a3 b3 c3 a3 b3 c3

Fig. 6.2 The patterns of multipliers with their respective second-order determinants

x∣∣∣∣∣∣

13 2 2
20 3 4
7 1 1

∣∣∣∣∣∣

= y∣∣∣∣∣∣

3 13 2
2 20 4
2 7 1

∣∣∣∣∣∣

= z∣∣∣∣∣∣

3 2 13
2 3 20
2 1 7

∣∣∣∣∣∣

= 1∣∣∣∣∣∣

3 2 2
2 3 4
2 1 1

∣∣∣∣∣∣

computing the determinants using the top row entries as cofactors:

x

−13+ 16− 2
= y

−24+ 78− 52
= z

3+ 52− 52
= 1

−3+ 12− 8

x

1
= y

2
= z

3
= 1

1

therefore, x = 1, y = 2 and z = 3.

6.3.1 Sarrus’s Rule

The French mathematician Pierre Sarrus (1798–1861) discovered another way to
compute the value of a third-order determinant, that arises from (6.38):
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Fig. 6.3 The pattern behind
Sarrus’s rule a1 b1 c1 a1 b1 c1 a1 b1 b1 c1 a1 b1 c1

a2 b2 c2 = a2 b2 c2 a2 b2 - b2 c2 a2 b2 c2
a3 b3 c3 a3 b3 c3 a3 b3 b3 c3 a3 b3 c3

C = a1(b2c3 − c2b3) − b1(a2c3 − c2a3) + c1(a2b3 − b2a3)

= a1b2c3 − a1c2b3 − b1a2c3 + b1c2a3 + c1a2b3 − c1b2a3
= a1b2c3 + b1c2a3 + c1a2b3 − a1c2b3 − b1a2c3 − c1b2a3. (6.39)

The pattern in (6.39) becomes clear in Fig. 6.3, where the first two columns of the
matrix are repeated, and comprises two diagonal sets of terms: on the left in blue,
we have the products a1b2c3, b1c2a3, c1a2b3, and on the right in red and orange,
the products a1c2b3, b1a2c3, c1b2a3. These diagonal patterns provide a useful aide-
mémoire when computing the determinant. Unfortunately, this rule only applies to
third-order determinants.

6.4 Mathematical Notation

Having discovered the background of determinants, now let’s explore a formal
description of their structure and characteristics.

6.4.1 Matrix

In the following definitions, amatrix is a square array of entries, with an equal number
of rows and columns. The entriesmay be numbers, vectors, complex numbers or even
partial differentials, in the case of a Jacobian. In general, each entry is identified by
two subscripts row col:

arow col .

A matrix with n rows and m columns has the following entries:

a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
. . .

...

an1 an2 . . . anm

The entries lying on the two diagonals are identified as follows: a11 and anm lie on
the main diagonal, and a1m and an1 lie on the secondary diagonal.
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6.4.2 Order of a Determinant

The order of a square determinant equals the number of rows or columns. For exam-
ple, a first-order determinant contains a single entry; a second-order determinant has
two rows and two columns; and a third-order determinant has three rows and three
columns.

6.4.3 Value of a Determinant

A determinant posses a unique, single value derived from its entries. The algorithms
used to compute this value must respect the algebra associated with solving sets of
linear equations, as discussed above.

The French mathematician, astronomer, and physicist Pierre-Simon Laplace
(1749–1827) developed a way to expand the determinant of any order. The Laplace
expansion is the idea described above and shown in Fig. 6.1, where cofactors and
first minors or principal minors are used. For example, starting with a fourth-order
determinant, when any row and column are removed, the remaining entries create a
third-order determinant, called the first minor of the original determinant.

The following equation is used to control the sign of each cofactor:

(−1)row+col

which, for a fourth-order determinant creates:

∣∣∣∣∣∣∣∣

+ − + −
− + − +
+ − + −
− + − +

∣∣∣∣∣∣∣∣
.

The Laplace expansion begins by choosing a convenient row or column as the source
of cofactors. Any zeros are particularly useful, as they cancel out any contribution by
the first minor determinant. It then sums the products of every cofactor in the chosen
row or column, with its associated first minor, including an appropriate inversion
correction factor to adjust the sign changes. The final result is the determinant’s
value.

A first-order determinant: ∣∣a11
∣∣ = a11.

A second-order determinant:
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.
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A third-order determinant using the Laplace expansion with cofactors from the
first row:

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11

∣∣∣∣
a22 a23
a32 a33

∣∣∣∣ − a12

∣∣∣∣
a21 a23
a31 a33

∣∣∣∣ + a13

∣∣∣∣
a21 a22
a31 a32

∣∣∣∣ .

A fourth-order determinant using the Laplace expansion with cofactors from the
first row:

a11

∣∣∣∣∣∣

a22 a23 a24
a32 a33 a34
a42 a43 a44

∣∣∣∣∣∣
− a12

∣∣∣∣∣∣

a21 a23 a24
a31 a33 a34
a41 a43 a44

∣∣∣∣∣∣
+

a13

∣∣∣∣∣∣

a21 a22 a24
a31 a32 a34
a41 a42 a44

∣∣∣∣∣∣
− a14

∣∣∣∣∣∣

a21 a22 a23
a31 a32 a33
a41 a42 a43

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣∣∣∣∣∣∣∣

Sarrus’s rule is useful to compute a third-order determinant:

∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
=a11a22a33 + a12a23a31 + a13a21a32−

a11a23a32 − a12a21a33 + a13a22a31

The Laplace expansion works with higher-order determinants, as any first minor
can itself be expanded using the same expansion.

6.4.4 Properties of Determinants

If a determinant contains a row or column of zeros, the Laplace expansion implies
that the value of the determinant is zero.

∣∣∣∣∣∣

3 0 2
2 0 4
2 0 1

∣∣∣∣∣∣
= 0.

If a determinant’s rows and columns are interchanged, the Laplace expansion also
implies that the value of the determinant is unchanged.

∣∣∣∣∣∣

3 12 2
2 10 4
2 8 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

3 2 2
12 10 8
2 4 1

∣∣∣∣∣∣
= −2.
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If any two rows, or columns, are interchanged, without changing the order of their
entries, the determinant’s numerical value is unchanged, but its sign is reversed.

∣∣∣∣∣∣

3 12 2
2 10 4
2 8 1

∣∣∣∣∣∣
= −2

∣∣∣∣∣∣

12 3 2
10 2 4
8 2 1

∣∣∣∣∣∣
= 2.

If the entries of a row or column share a common factor, the entries may be adjusted,
and the factor placed outside.

∣∣∣∣∣∣

3 12 2
2 10 4
2 8 1

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣

3 6 2
2 5 4
2 4 1

∣∣∣∣∣∣
= −2.

6.5 Summary

This chapter has explored the background of determinants and why they exist. In
later chapters we discover their role in matrix algebra.

6.6 Worked Examples

6.6.1 Determinant Expansion

Evaluate this determinant using the Laplace expansion and Sarrus’s rule.

∣∣∣∣∣∣

1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣
.

Using the Laplace expansion:

∣∣∣∣∣∣

1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣
= 1

∣∣∣∣
5 8
6 9

∣∣∣∣ − 2

∣∣∣∣
4 7
6 9

∣∣∣∣ + 3

∣∣∣∣
4 7
5 8

∣∣∣∣

= 1(45− 48) − 2(36− 42) + 3(32− 35)

= −3+ 12− 9

= 0.
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Using Sarrus’s rule:

∣∣∣∣∣∣

1 4 7
2 5 8
3 6 9

∣∣∣∣∣∣
= 1× 5× 9+ 4× 8× 3+ 7× 2× 6− 7× 5× 3− 1× 8× 6− 4× 2× 9

= 45+ 96+ 84− 105− 48− 72

= 0.

6.6.2 Complex Determinant

Evaluate the complex determinant

∣∣∣∣
4+ i2 1+ i
2− i3 3+ i3

∣∣∣∣ .

Using the Laplace expansion:

∣∣∣∣
4+ i2 1+ i
2− i3 3+ i3

∣∣∣∣ = (4+ i2)(3+ i3) − (1+ i)(2− i3)

= (12+ i18− 6) − (2− i + 3)

= 6+ i18− 5+ i

= 1+ i19.

6.6.3 Simple Expansion

Write down the simplest expansion of this determinant with its value:

∣∣∣∣∣∣

1 2 3
4 5 0
6 7 0

∣∣∣∣∣∣
.

Using the Laplace expansion with cofactors from the third column:

∣∣∣∣∣∣

1 2 3
4 5 0
6 7 0

∣∣∣∣∣∣
= 3

∣∣∣∣
4 5
6 7

∣∣∣∣ = −6.
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6.6.4 Simultaneous Equations

Solve the following equations using determinants:

3 = 2x + y − z

12 = x + 2y + z

8 = 3x − 2y + 2z.

Using (6.17):

x∣∣∣∣∣∣

3 1 −1
12 2 1
8 −2 2

∣∣∣∣∣∣

= y∣∣∣∣∣∣

2 3 −1
1 12 1
3 8 2

∣∣∣∣∣∣

= z∣∣∣∣∣∣

2 1 3
1 2 12
3 −2 8

∣∣∣∣∣∣

= 1∣∣∣∣∣∣

2 1 −1
1 2 1
3 −2 2

∣∣∣∣∣∣

.

Therefore,

x =

∣∣∣∣∣∣

3 1 −1
12 2 1
8 −2 2

∣∣∣∣∣∣
∣∣∣∣∣∣

2 1 −1
1 2 1
3 −2 2

∣∣∣∣∣∣

= 18− 16+ 40

12+ 1+ 8
= 42

21
= 2,

y =

∣∣∣∣∣∣

2 3 −1
1 12 1
3 8 2

∣∣∣∣∣∣
∣∣∣∣∣∣

2 1 −1
1 2 1
3 −2 2

∣∣∣∣∣∣

= 32+ 3+ 28

12+ 1+ 8
= 63

21
= 3,

z =

∣∣∣∣∣∣

2 1 3
1 2 12
3 −2 8

∣∣∣∣∣∣
∣∣∣∣∣∣

2 1 −1
1 2 1
3 −2 2

∣∣∣∣∣∣

= 80+ 28− 24

24+ 1+ 8
= 84

21
= 4.



Chapter 7
Vectors

7.1 Introduction

This chapter provides a comprehensive introduction to vectors. It covers 2D and
3D vectors, unit vectors, position vectors, Cartesian vectors, vector magnitude, vec-
tor products, and area calculations. It also shows how vectors are used in lighting
calculations and back-face detection.

7.2 Background

Vectors are a relative new invention in the world of mathematics, dating only from
the 19th century. They enable us to solve complex geometric problems, the dynamics
of moving objects, and problems involving forces and fields.

We often only require a single number to represent quantities used in our daily
lives such as height, age, shoe size, waist and chest measurement. The magnitude of
these numbers depends on our age and whether we use metric or imperial units. Such
quantities are called scalars. On the other hand, there are some things that require
more than one number to represent them: wind, force, weight, velocity and sound
are just a few examples. For example, any sailor knows that wind has a magnitude
and a direction. The force we use to lift an object also has a value and a direction.
Similarly, the velocity of a moving object is measured in terms of its speed (e.g.
miles per hour), and a direction such as north-west. Sound, too, has intensity and a
direction. Such quantities are represented by vectors.

Complex numbers seemed to be a likely candidate for representing forces, and
were being investigated by the Norwegian-Danish mathematician Caspar Wessel
(1745–1818), the French amateur mathematician Jean-Robert Argand (1768–1822)
and the English mathematician John Warren (1796–1852). At the time, complex
numbers were two-dimensional, and their 3D form was being investigated by the
Irish mathematician Sir William Rowan Hamilton (1805–1865) who invented them

© Springer-Verlag London Ltd. 2017
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in 1843, calling them quaternions. In 1853, Hamilton published his book Lectures on
Quaternions in which he described terms such as ‘vector’, ‘transvector’ and ‘provec-
tor’. Hamilton’s work was not widely accepted until in 1881, when the American
mathematician Josiah Gibbs (1839–1903) published his treatise Vector Analysis,
describing modern vector analysis.

Gibbswas not a fan of the imaginary quantities associatedwithHamilton’s quater-
nions, but saw the potential of creating a vectorial system from the imaginary i, j and
k into the unit basis vectors i, j and k, which is what we use today.

Some mathematicians were not happy with the direction mathematics had taken.
The German mathematician Hermann Gunther Grassmann (1809–1877), believed
that his own geometric calculus was far superior to Hamilton’s quaternions, but
he died without managing to convince any of his fellow mathematicians. Fortu-
nately, the Englishmathematician and philosopherWilliamKingdonClifford (1845–
1879) recognised the brilliance of Grassmann’s ideas, and formalised what today has
become known as geometric algebra.

With the success of Gibbs’ vector analysis, quaternions faded into obscurity, only
to be rediscovered in the 1970s when they were employed by the flight simulation
community to control the dynamic behaviour of a simulator’s motion platform. A
decade later they found their way into computer graphics where they are used for
rotations about an arbitrary axis.

Now this does not mean that vector analysis is dead – far from it. Vast quantities
of scientific software depends upon the vector mathematics developed over a century
ago, and will continue to employ it for many years to come. Nevertheless, geometric
algebra is destined to emerge as a powerful mathematical framework that could
eventually replace vector analysis one day.

7.3 2D Vectors

7.3.1 Vector Notation

A scalar such as x represents a single numeric quantity. However, as a vector contains
two or more numbers, its symbolic name is printed using a bold font to distinguish
it from a scalar variable. Examples being n, i and q.

When a scalar variable is assigned a value, we use the standard algebraic notation:

x = 3.

However, a vector has one or more numbers enclosed in brackets, written as a column
or as a row – in this text column vectors are used:

n =
[
3
4

]
.
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The numbers 3 and 4 are the components of n, and their sequence within the brackets
is important. A row vector places the components horizontally:

n = [3 4].

The difference between the two, is only appreciated in the context of matrices. Some-
times it is convenient – for presentation purposes – to write a column vector as a row
vector, in which case, it is written

n = [3 4]T ,

where the superscript T reminds us that n is really a transposed column vector.

7.3.2 Graphical Representation of Vectors

An arrow is used to represent a vector as it possesses length and direction, as shown
in Fig. 7.1. By assigning coordinates to the arrow it is possible to translate the arrow’s
length and direction into two numbers. For example, in Fig. 7.2 the vector r has its
tail defined by (x1, y1) = (1, 2), and its head by (x2, y2) = (3, 4). Vector s has
its tail defined by (x3, y3) = (5, 3), and its head by (x4, y4) = (3, 1). The x- and
y-components for r are computed as follows

xr = x2 − x1 = 3 − 1 = 2

yr = y2 − y1 = 4 − 2 = 2

and the components for s are computed as follows

xs = x4 − x3 = 3 − 5 = −2

ys = y4 − y3 = 1 − 3 = −2.

Fig. 7.1 An arrow with
magnitude and direction

1 2 3 4 5

1

2

3

x

y
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Fig. 7.2 Two vectors r and s
have the same magnitude but
opposite directions

1 2 3 4 5 6

1

2

3

4

x

y

r

s

(x4, y4)

(x1, y1)

(x3, y3)

(x2, y2)

It is the negative value of xs and ys that encode the vector’s direction. In general,
if the coordinates of a vector’s head and tail are (xh, yh) and (xt , yt ) respectively,
its components Δx and Δy are given by

Δx = xh − xt
Δy = yh − yt .

One can readily see from this notation that a vector does not have an absolute position.
It does not matter where we place a vector, so long as we preserve its length and
orientation, its components are unaltered.

7.3.3 Magnitude of a Vector

The magnitude or length of a vector r is written |r| and computed using the theorem
of Pythagoras:

|r| =
√

(Δx)2 + (Δy)2

and used as follows. Consider a vector defined by

(xh, yh) = (4, 5)

(xt , yt ) = (1, 1)

where the x- and y-components are 3 and 4 respectively. Therefore its magnitude
equals

√
32 + 42 = 5.

Figure7.3 shows eight vectors, and their geometric properties are listed in
Table7.1.
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Fig. 7.3 Eight vectors
whose coordinates are shown
in Table7.1

-3 -2 -1 1 2 3

-2

-1

1

2

x

y

Table 7.1 Values associated with the eight vectors in Fig. 7.3

xh yh xt yt Δx Δy |vector|
2 0 0 0 2 0 2

0 2 0 0 0 2 2

–2 0 0 0 –2 0 2

0 –2 0 0 0 –2 2

1 1 0 0 1 1
√
2

–1 1 0 0 –1 1
√
2

–1 –1 0 0 –1 –1
√
2

1 –1 0 0 1 –1
√
2

7.4 3D Vectors

The above vector examples are in 2D, but it is easy to extend this notation to embrace
an extra dimension. Figure7.4 shows a 3D vector r with its head, tail, components
and magnitude annotated. The vector, its components and magnitude are given by

r = [Δx Δy Δz]T
Δx = xh − xt
Δy = yh − yt
Δz = zh − zt

|r| =
√

(Δx)2 + (Δy)2 + (Δz)2.

All future examples are three-dimensional.
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Fig. 7.4 The vector r has
components Δx , Δy, Δz

x
x

y

y

z

Ph

Pt

r

z

7.4.1 Vector Manipulation

As vectors are different to scalars, there are rules to control how the twomathematical
entities interact with one another. For instance, we need to consider vector addition,
subtraction and products, and how a vector is scaled.

7.4.2 Scaling a Vector

Given a vector n, 2n means that the vectors components are scaled by a factor of 2.
For example, given

n =
⎡
⎣3
4
5

⎤
⎦ , then 2n =

⎡
⎣ 6
8
10

⎤
⎦

which seems logical. Similarly, if we divide n by 2, its components are halved. Note
that the vector’s direction remains unchanged – only its magnitude changes.

In general, given

n =
⎡
⎣n1
n2
n3

⎤
⎦ , then λn =

⎡
⎣λn1

λn2
λn3

⎤
⎦ ,where λ ∈ R.

There is no obvious way we can resolve the expression 2 + n, for it is not clear
which component of n is to be increased by 2. However, if we can add a scalar to an
imaginary (e.g. 2+ 3i), why can’t we add a scalar to a vector (e.g. 2+ n)? Well, the
answer to this question is two-fold: First, if we change the meaning of ‘add’ to mean
‘associated with’, then there is nothing to stop us from ‘associating’ a scalar with
a vector, like complex numbers. Second, the axioms controlling our algebra must
be clear on this matter. Unfortunately, the axioms of traditional vector analysis do
not support the ‘association’ of scalars with vectors in this way. However, geometric
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algebra does! Furthermore, geometric algebra even permits division by a vector,
which does sound strange. Consequently, whilst reading the rest of this chapter keep
an open mind about what is permitted, and what is not permitted. At the end of the
day, virtually anything is possible, so long as we have a well-behaved axiomatic
system.

7.4.3 Vector Addition and Subtraction

Given vectors r and s, r ± s is defined as

r =
⎡
⎣xr
yr
zr

⎤
⎦ , s =

⎡
⎣xs
ys
zs

⎤
⎦ , then r ± s =

⎡
⎣xr ± xs
yr ± ys
zr ± zs

⎤
⎦ .

Vector addition is commutative:

a + b = b + a

e.g.

⎡
⎣1
2
3

⎤
⎦ +

⎡
⎣4
5
6

⎤
⎦ =

⎡
⎣4
5
6

⎤
⎦ +

⎡
⎣1
2
3

⎤
⎦ .

However, like scalar subtraction, vector subtraction is not commutative:

a − b �= b − a

e.g.

⎡
⎣4
5
6

⎤
⎦ −

⎡
⎣1
2
3

⎤
⎦ �=

⎡
⎣1
2
3

⎤
⎦ −

⎡
⎣4
5
6

⎤
⎦ .

Let’s illustrate vector addition and subtraction with two examples. Figure7.5 shows
the graphical interpretation of adding two vectors r and s. Note that the tail of vector
s is attached to the head of vector r. The resultant vector t = r + s is defined

Fig. 7.5 Vector addition
r + s

x

y

r

r+s
s

z
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Fig. 7.6 Vector subtraction
r − s

x

y

r

r+s
s

-s
r - s

z

by adding the corresponding components of r and s together. Figure7.6 shows a
graphical interpretation for r− s. This time, the components of vector s are reversed
to produce an equal andopposite vector. Then it is attached to r and added as described
above.

7.4.4 Position Vectors

Given any point P(x, y, z), a position vector p is created by assuming that P is
the vector’s head and the origin is its tail. As the tail coordinates are (0, 0, 0) the
vector’s components are x, y, z. Consequently, the vector’s magnitude |p| equals√
x2 + y2 + z2.

7.4.5 Unit Vectors

By definition, a unit vector has a magnitude of 1.A simple example is i, where

i = [1 0 0]T , where |i| = 1.

Unit vectors are extremely useful in the product of two vectors, where their magni-
tudes are required; and if these are unit vectors, the computation is greatly simplified.

Converting a vector into a unit form is called normalising, and is achieved by
dividing its components by the vector’s magnitude. To formalise this process, con-
sider a vector r = [x y z]T , with magnitude |r| = √

x2 + y2 + z2. The unit form
of r is given by

r̂ = 1

|r| [x y z]T
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This is confirmed by showing that the magnitude of r̂ is 1:

|r̂| =
√(

x

|r̂|
)2

+
(

y

|r̂|
)2

+
(

z

|r̂|
)2

= 1

|r̂|
√
x2 + y2 + z2

|r̂| = 1.

7.4.6 Cartesian Vectors

A Cartesian vector is constructed from three unit vectors: i, j and k, aligned with
the x-, y- and z-axis, respectively:

i = [1 0 0]T , j = [0 1 0]T , k = [0 0 1]T .

Therefore, any vector aligned with the x-, y- or z-axis is a scalar multiple of the
associated unit vector. For example, 10i is aligned with the x-axis, with a magnitude
of 10. 20k is aligned with the z-axis, with a magnitude of 20. By employing the rules
of vector addition and subtraction, we can compose a vector r by summing three
scaled Cartesian unit vectors as follows

r = ai + bj + ck

which is equivalent to
r = [a b c]T

where the magnitude of r is

|r| =
√
a2 + b2 + c2.

Any pair of Cartesian vectors, such as r and s, can be combined as follows

r = ai + bj + ck

s = di + ej + f k

r ± s = (a ± d)i + (b ± e)j + (c ± f )k.

7.4.7 Products

The product of two scalars is very familiar: for example, 6×7 or 7×6 = 42.We often
visualise this operation as a rectangular area, where 6 and 7 are the dimensions of a
rectangle’s sides, and 42 is the area. However, a vector’s qualities are its length and
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orientation, which means that any product must include them in any calculation. The
length is easily calculated, but we must know the angle between the two vectors as
this reflects their relative orientation. Although the angle can be incorporated within
the product in various ways, two particular ways lead to useful results. For example,
the product of r and s, separated by an angle θ could be |r||s| cos θ or |r||s| sin θ .
It just so happens that cos θ forces the product to result in a scalar quantity, and
sin θ creates a vector. Consequently, there are two products to consider: the scalar
product, and the vector product, which are written as r · s and r × s respectively.

7.4.8 Scalar Product

Figure7.7 shows two vectors r and s that have been drawn, for convenience,with their
tails touching. Taking s as the reference vector – which is an arbitrary choice – we
compute the projection of r on s, which takes into account their relative orientation.
The length of r on s is |r| cos θ . We can now multiply the magnitude of s by the
projected length of r: |s||r| cos θ This scalar product is written

r · s = |r||s| cos θ. (7.1)

Because of the dot symbol ‘·’, the scalar product is also called the dot product.
Fortunately, everything is in place to perform this task. To begin with, we define

two Cartesian vectors r and s, and proceed to multiply them together using (7.1):

r = ai + bj + ck

s = di + ej + f k

r · s = (ai + bj + ck) · (di + ej + f k)

= ai · (di + ej + f k)

+ bj · (di + ej + f k)

+ ck · (di + ej + f k)

= adi · i + aei · j + a f i · k

Fig. 7.7 The projection of r
on s

x

y

r

s

z
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+ bdj · i + bej · j + b f j · k
+ cdk · i + cek · j + c f k · k.

Before we proceed any further, we can see that we have created various dot product
terms such as i · i, i · j, i · k, etc. These terms can be divided into two groups: those
that reference the same unit vector, and those that reference different unit vectors.

Using the definition of the dot product (7.1), terms such as i · i, j · j and k · k = 1,
because the angle between i and i, j and j, or k and k, is 0◦; and cos 0◦ = 1. But as
the other vector combinations are separated by 90◦, and cos 90◦ = 0, all remaining
terms collapse to zero, and we are left with

r · s = adi · i + aei · j + a f i · k.

But as the the magnitude of a unit vector is 1, we can write

r · s = |r||s| cos θ = ad + be + c f

which confirms that the dot product is indeed a scalar quantity.
It is worth pointing out that the angle returned by the dot product ranges between

0◦ and 180◦. This is because, as the angle between two vectors increases beyond
180◦ the returned angle θ is always the smallest angle associated with the geometry.

7.4.9 The Dot Product in Lighting Calculations

Lambert’s law states that the intensity of illumination on a diffuse surface is pro-
portional to the cosine of the angle between the surface normal vector and the light
source direction. Figure7.8 shows a scenario where a light source is located at (20,
20, 40), and the illuminated point is (0, 10, 0). In this situation we are interested
in calculating cosβ, which, when multiplied by the light source intensity, gives the
incident light intensity on the surface. To begin with, we are given the normal vector
n̂ to the surface. In this case n̂ is a unit vector: i.e. |n̂| = 1:

n̂ = [0 1 0]T

The direction of the light source from the surface is defined by the vector s:

s =
⎡
⎣ 20 − 0
20 − 10
40 − 0

⎤
⎦ =

⎡
⎣20
10
40

⎤
⎦

|s| =
√
202 + 102 + 402 ≈ 45.826

|n̂||s| cosβ = 0 × 20 + 1 × 10 + 0 × 40 = 10
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Fig. 7.8 The geometry
associated with Lambert’s
law

Light Source
s

n̂

β

Fig. 7.9 The angle between
the surface normal and the
camera’s line of sight
determines the polygon’s
visibility

invisible

visible

virtual camera

< 90◦

≥ 90◦

1 × 45.826 × cosβ = 10

cosβ = 10

45.826
≈ 0.218.

Therefore the light intensity at the point (0, 10, 0) is 0.218 of the original light
intensity at (20, 20, 40), but does not take into account the attenuation due to the
inverse-square law of light propagation.

7.4.10 The Scalar Product in Back-Face Detection

A simple way to identify back-facing polygons relative to the virtual camera, is to
compute the angle between the polygon’s surface normal and the line of sight between
the camera and the polygon. If this angle is less than 90◦, the polygon is visible; if it
equals or exceeds 90◦, the polygon is invisible. This geometry is shown in Fig. 7.9.
Although it is obvious from Fig. 7.9 that the right-hand polygon is invisible to the
camera, let’s prove algebraically that this is so.

For example, if the virtual camera is located at (0, 0, 0) and the polygon’s vertex
is (10, 10, 40). The normal vector is n = [5 5 − 2]T .

n = [5 5 − 2]T
|n| =

√
52 + 52 + (−2)2 ≈ 7.348.
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Fig. 7.10 The area of the
parallelogram formed by r
and s

r

s

|s|sin

s

r

The camera vector c is

c =
⎡
⎣0 − 10
0 − 10
0 − 40

⎤
⎦ =

⎡
⎣−10

−10
−40

⎤
⎦

|c| =
√

(−10)2 + (−10)2 + (−40)2 ≈ 42.426

therefore,

|n||c| cosβ = 5 × (−10) + 5 × (−10) + (−2) × (−40)

7.348 × 42.426 × cosβ = −20

cosβ = −20

7.348 × 42.426
≈ −0.0634

β = cos−1(−0.0634) ≈ 93.635◦

which shows that the polygon is invisible for the camera.

7.4.11 The Vector Product

Asmentioned above, the vector product r×s creates a third vector whose magnitude
equals |r||s| sin θ , where θ is the angle between the original vectors. Figure7.11
reminds us that the area of a parallelogram formed by r and s equals |r||s| sin θ .
Because of the cross symbol ‘×’, the vector product is also called the cross product.

r × s = t (7.2)

|t| = |r||s| sin θ.

We will discover that the vector t is normal (90◦) to the plane containing the
vectors r and s, as shown in Fig. 7.11, which makes it an ideal way of computing
the vector normal to a surface. Once again, let’s define two vectors and this time
multiply them together using (7.2):
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Fig. 7.11 The vector
product

x

y

r

s

|r||s|sin

s
r

t

z

r = ai + bj + ck

s = di + ej + f k

r × s = (ai + bj + ck) × (di + ej + f k)

= ai × (di + ej + f k)

+ bj × (di + ej + f k)

+ ck × (di + ej + f k)

= adi × i + aei × j + a f i × k

+ bdj × i + bej × j + b f j × k

+ cdk × i + cek × j + c f k × k.

As we found with the dot product, there are two groups of vector terms: those that
reference the same unit vector, and those that reference different unit vectors.

Using the definition for the cross product (7.2), operations such as i× i, j× j and
k× k result in a vector whose magnitude is 0. This is because the angle between the
vectors is 0◦, and sin 0◦ = 0. Consequently these terms disappear and we are left
with

r × s = aei × j + a f i × k + bdj × i + b f j × k + cdk × i + cek × j. (7.3)

SirWilliamRowanHamilton struggled for many years whenworking on quaternions
to resolve the meaning of a similar result. At the time, he was not using vectors, as
they had yet to be defined, but the imaginary terms i , j and k. Hamilton’s problem
was to resolve the products i j , jk, ki and their opposites j i , k j and ik. What did the
products mean? He reasoned that i j = k, jk = i and ki = j , but could not resolve
their opposites. One day in 1843, when he was out walking, thinking about this
problem, he thought the impossible: i j = k, but j i = −k, jk = i , but k j = −i , and
ki = j, but ik = − j . To his surprise, this worked, but it contradicted the commutative
multiplication lawof scalarswhere 6×7 = 7×6.Wenowaccept that the commutative
multiplication law is there to be broken!

Although Hamilton had invented 3D complex numbers, to which he gave the
name quaternions, they were not popular with everyone. And as mentioned earlier,
Josiah Gibbs saw that converting the imaginary i , j and k terms into the unit vectors
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i, j and k created a stable algebra for manipulating vectors, and for over a century
we have been using Gibbs’ vector notation.

The question we must ask is ‘Was Gibbs right?’ to which the answer is probably
‘no!’ The reason for this is that although the scalar product works in space of any
number of dimensions, the vector (cross) product does not. It obviously does not
work in 2D as there is no direction for the resultant vector. It obviously works in 3D,
but in 4D and above there is no automatic spatial direction for the resultant vector. So,
the vector product is possibly a special condition of some other structure. Hermann
Grassmann knew this but did not have the mathematical reputation to convince his
fellow mathematicians.

Let’s continue with Hamilton’s rules and reduce the cross product terms of (7.3)
to

r × s = aek − a f j − bdk + b f i + cdj − cei. (7.4)

Equation (7.4) can be tidied up to bring like terms together:

r × s = (b f − ce)i + (cd − a f )j + (ae − bd)k. (7.5)

Now let’s repeat the original vector equations to see how Eq. (7.5) is computed:

r = ai + bj + ck

s = di + ej + f k

r × s = (b f − ce)i + (cd − a f )j + (ae − bd)k. (7.6)

To compute the i scalar term we consider the scalars associated with the other
two unit vectors, i.e. b, c, e, and f , and cross-multiply and subtract them to form
(b f − ce).

To compute the j scalar term we consider the scalars associated with the other
two unit vectors, i.e. a, c, d, and f , and cross-multiply and subtract them to form
(cd − a f ).

To compute the k scalar term we consider the scalars associated with the other
two unit vectors, i.e. a, b, d, and e, and cross-multiply and subtract them to form
(ae − bd).

The middle operation seems out of step with the other two, but in fact it pre-
serves a cyclic symmetry often found in mathematics. Nevertheless, some authors
reverse the sign of the j scalar term and cross-multiply and subtract the terms to
produce −(a f − cd) which maintains a visual pattern for remembering the cross-
multiplication. Equation (7.6) now becomes

r × s = (b f − ce)i − (a f − cd)j + (ae − bd)k. (7.7)

However, we now have to remember to introduce a negative sign for the j scalar term!
We can write (7.7) using determinants as follows:
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r × s =
∣∣∣∣b c
e f

∣∣∣∣ i −
∣∣∣∣ a c
d f

∣∣∣∣ j +
∣∣∣∣ a b
d e

∣∣∣∣k.

or

r × s =
∣∣∣∣b c
e f

∣∣∣∣ i +
∣∣∣∣ c a
f d

∣∣∣∣ j +
∣∣∣∣ a b
d e

∣∣∣∣k.

Therefore, to derive the cross product of two vectors we first write the vectors in the
correct sequence. Remembering that r× s does not equal s× r. Second, we compute
the three scalar terms and form the resultant vector, which is perpendicular to the
plane containing the original vectors.

So far, we have assumed that

r × s = t

|t| = |r||s| sin θ

where θ is the angle between r and s, and t is perpendicular to the plane containing
r and s. Now let’s prove that this is the case:

r · s = |r||s| cos θ = xr xs + yr ys + zr zs

cos2 θ = (xr xs + yr ys + zr zs)2

|r|2|s|2
|t| = |r||s| sin θ

|t|2 = |r|2|s|2 sin2 θ

= |r|2|s|2(1 − cos2 θ)

= |r|2|s|2
(
1 − (xr xs + yr ys + zr zs)2

|r|2|s|2
)

= |r|2|s|2 − (xr xs + yr ys + zr zs)
2

= (x2r + y2r + z2r )(x
2
s + y2s + z2s ) − (xr xs + yr ys + zr zs)

2

= x2r (y
2
s + z2s ) + y2r (x

2
s + z2s ) + z2r (x

2
s + y2s )

− 2xr xs yr ys − 2xr xs zr zs − 2yr ys zr zs

= x2r y
2
s + x2r z

2
s + y2r x

2
s + y2r z

2
s + z2r x

2
s + z2r y

2
s

− 2xr xs yr ys − 2xr xs zr zs − 2yr ys zr zs

= (yr zs − zr ys)
2 + (zr xs − xr zs)

2 + (xr ys − yr xs)
2

which in determinant form is

|t|2 =
∣∣∣∣ yr zrys zs

∣∣∣∣
2

+
∣∣∣∣ zr xr
zs xs

∣∣∣∣
2

+
∣∣∣∣ xr yr
xs ys

∣∣∣∣
2
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Fig. 7.12 Vector t is normal
to the vectors r and s

x

y

r

sP1

t

P2

P3

z

Table 7.2 Coordinates of the vertices used in Fig. 7.12

Vertex x y z

P1 0 0 1

P2 1 0 0

P3 0 1 0

and confirms that t could be the vector

t =
∣∣∣∣ yr zrys zs

∣∣∣∣ i +
∣∣∣∣ zr xr
zs xs

∣∣∣∣ j +
∣∣∣∣ xr yr
xs ys

∣∣∣∣k.

All that remains is to prove that t is orthogonal (perpendicular) to r and s, which is
achieved by showing that r · t = s · t = 0:

r = xr i + yr j + zrk

s = xs i + ysj + zsk

t = (yr zs − zr ys)i + (zr xs − xr zs)j + (xr ys − yr xs)k

r · t = xr (yr zs − zr ys) + yr (zr xs − xr zs) + zr (xr ys − yr xs)

= xr yr zs − xr ys zr + xs yr zr − xr yr zs + xr ys zr − xs yr zr = 0

s · t = xs(yr zs − zr ys) + ys(zr xs − xr zs) + zs(xr ys − yr xs)

= xs yr zs − xs ys zr + xs ys zr − xr ys zs + xr ys zs − xs yr zs = 0

and we have proved that r × s = t, where |t| = |r||s| sin θ and t is orthogonal to the
plane containing r and s.

Let’s now consider two vectors r and s and compute the normal vector t. The
vectors are chosen so that we can anticipate approximately the answer. For the sake
of clarity, the vector equations include the scalar multipliers 0 and 1. Normally,
these are omitted. Figure7.12 shows the vectors r and s and the normal vector t,
and Table7.2 contains the coordinates of the vertices forming the two vectors which
confirms what we expected from Fig. 7.12.
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r = [(x3 − x2) (y3 − y2) (z3 − z2)]T
s = [(x1 − x2) (y1 − y2) (z1 − z2)]T

P1 = (0, 0, 1)

P2 = (1, 0, 0)

P3 = (0, 1, 0)

r = −1i + 1j + 0k

s = −1i + 0j + 1k

r × s = [1 × 1 − 0 × 0]i
− [−1 × 1 − (−1) × 0]j
+ [−1 × 0 − (−1) × 1]k

t = i + j + k

Now let’s reverse the vectors to illustrate the importance of vector sequence.

s = −1i + 0j + 1k

r = −1i + 1j + 0k

s × r = [0 × 0 − 1 × 1]i
− [−1 × 0 − (−1) × 1]j
+ [−1 × 1 − (−1) × 0]k

t = −i − j − k

which is in the opposite direction to r × s and confirms that the vector product is
non-commutative.

7.4.12 The Right-Hand Rule

The right-hand rule is an aide mémoire for working out the orientation of the cross
product vector. Given the operation r × s, if the right-hand thumb is aligned with r,
the first finger with s, and the middle finger points in the direction of t. However, we
must remember that this only holds in 3D. In 4D and above, it makes no sense.

7.5 Deriving a Unit Normal Vector for a Triangle

Figure7.13 shows a triangle with vertices defined in an anticlockwise sequence from
its visible side. This is the side from which we want the surface normal to point.
Using the following information we will compute the surface normal using the cross
product and then convert it to a unit normal vector.
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Fig. 7.13 The normal vector
t is derived from the cross
product r × s

x

y

r

s

P1

t
P2

P3z

Create vector r between P3 and P1, and vector s between P3 and P2:

r = −1i + 1j + 0k

s = −1i + 0j + 2k

r × s = (1 × 2 − 0 × 0)i

− (−1 × 2 − 0 × −1)j

+ (−1 × 0 − 1 × −1)k

t = 2i + 2j + k

|t| =
√
22 + 22 + 12 = 3

t̂u = 2

3
i + 2

3
j + 1

3
k.

The unit vector t̂u can nowbe used for illumination calculations in computer graphics,
and as it has unit length, dot product calculations are simplified.

7.6 Surface Areas

Figure7.14 shows two vectors r and s, where the height h = |s| sin θ . Therefore the
area of the associated parallelogram is

area = |r|h = |r||s| sin θ.

But this is the magnitude of the cross product vector t. Thus when we calculate
r × s, the length of the normal vector t equals the area of the parallelogram formed
by r and s ; which means that the triangle formed by halving the parallelogram is
half the area.

area of parallelogram = |t|
area of triangle = 1

2
|t|.
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Fig. 7.14 The area of the
parallelogram formed by two
vectors r and s
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Fig. 7.15 The area of the
triangle formed by the
vectors r and s

x

y

r

s

P1

P2

P0

This makes it relatively easy to calculate the surface area of an object constructed
from triangles or parallelograms. In the case of a triangulated surface, we simply
sum the magnitudes of the normals and halve the result.

7.6.1 Calculating 2D Areas

Figure7.15 shows a triangle with vertices P0(x0, y0), P1(x1, y1) and P2(x2, y2)
formed in an anti-clockwise sequence. The vectors r and s are computed as follows:

r = (x1 − x0)i + (y1 − y0)j

s = (x2 − x0)i + (y2 − y0)j

|r × s| = (x1 − x0)(y2 − y0) − (x2 − x0)(y1 − y0)

= x1(y2 − y0) − x0(y2 − y0) − x2(y1 − y0) + x0(y1 − y0)

= x1y2 − x1y0 − x0y2 + x0y0 − x2y1 + x2y0 + x0y1 − x0y0
= x1y2 − x1y0 − x0y2 − x2y1 + x2y0 + x0y1
= (x0y1 − x1y0) + (x1y2 − x2y1) + (x2y0 − x0y2).
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But the area of the triangle formed by the three vertices is 1
2 |r × s|. Therefore

area = 1

2
[(x0y1 − x1y0) + (x1y2 − x2y1) + (x2y0 − x0y2)]

which is the formula disclosed in Chap.5!

7.7 Summary

Vectors are extremely useful and relatively easy to use. They are vital to rendering
algorithms and shaders, and most of the time we only need to use the scalar and cross
products.

I have tried to prepare you for an alternative algebra for vectors: geometric alge-
bra. As we shall see later on, geometric algebra shows that mathematics may have
taken the wrong direction when it embraced Gibbs’ vector analysis. Hermann Grass-
mann could have been right all along. If the mathematicians of the day had adopted
Grassmann’s ideas, today we would be familiar with vectors, bivectors, trivectors,
quaternions, etc. But we are where we are, and we must prepare ourselves for some
new ideas.

Even if you already knew something about vectors, I hope that this chapter has
introduced some new ideas and illustrated the role vectors play in computer graphics.

7.8 Worked Examples

7.8.1 Position Vector

Calculate the magnitude of the position vector p, for the point P(4, 5, 6):

p = [4 5 6]T , therefore, |p| =
√
42 + 52 + 62 ≈ 20.88.

7.8.2 Unit Vector

Convert r to a unit vector.

r = [1 2 3]T
|r| =

√
12 + 22 + 32 = √

14

r̂ = 1√
14

[1 2 3]T ≈ [0.267 0.535 0.802]T .

http://dx.doi.org/10.1007/978-1-4471-7336-6_5
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7.8.3 Vector Magnitude

Compute the magnitude of r + s.

r = 2i + 3j + 4k

s = 5i + 6j + 7k

r + s = 7i + 9j + 11k

|r + s| =
√
72 + 92 + 112 ≈ 15.84.

7.8.4 Angle Between Two Vectors

Find the angle between r and s.

r = [2 0 4]T
s = [5 6 10]T

|r| =
√
22 + 02 + 42 ≈ 4.472

|s| =
√
52 + 62 + 102 ≈ 12.689.

Therefore,

|r||s| cos θ = 2 × 5 + 0 × 6 + 4 × 10 = 50

12.689 × 4.472 × cos θ = 50

cos θ = 50

12.689 × 4.472
≈ 0.8811

θ = arccos 0.8811 ≈ 28.22◦.

The angle between the two vectors is approximately 28.22◦.

7.8.5 Vector Product

To show that the vector product works with the unit vectors i, j and k. We start with

r = 1i + 0j + 0k

s = 0i + 1j + 0k

and then compute (7.7):
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r × s = (0 × 0 − 0 × 1)i − (1 × 0 − 0 × 0)j + (1 × 1 − 0 × 0)k.

The i scalar and j scalar terms are both zero, but the k scalar term is 1, which makes
i × j = k.

Let’s see what happens when we reverse the vectors. This time we start with

r = 0i + 1j + 0k

s = 1i + 0j + 0k

and then compute (7.7)

r × s = (1 × 0 − 0 × 0)i − (0 × 0 − 0 × 1)j + (0 × 0 − 1 × 1)k.

The i scalar and j scalar terms are both zero, but the k scalar term is−1, which makes
j × i = −k. So we see that the vector product is antisymmetric, i.e. there is a sign
reversal when the vectors are reversed. Similarly, it can be shown that

j × k = i

k × i = j

k × j = −i

i × k = −j.



Chapter 8
Matrix Algebra

8.1 Introduction

This chapter introduces matrix algebra, which is a notation widely used in computer
graphics. Matrices are used to scale, translate, reflect, shear and rotate 2D shapes
and 3D objects, and like determinants, have their background in algebra and offer
anotherway to represent andmanipulate equations.Matrices can be added, subtracted
and multiplied together, and even inverted, however, they must give the same result
obtained through traditional algebraic techniques. Once you have understood the
idea behind matrix notation, feel free to go to the next chapter and study their role
in geometric transforms, and come back to the more advanced ideas in this chapter.

8.2 Background

Matrix notation was researched by the British mathematician Arthur Cayley around
1858. Cayley formalised matrix algebra, along with the American mathemati-
cians Charles Peirce (1839–1914) and his father, Benjamin Peirce (1809–1880).
Previously, Carl Gauss had shown that transforms were not commutative, i.e.,
T1T2 �= T2T1, (where T1 and T2 are transforms) and matrix notation clarified such
observations.

Consider the transform T1, where x and y are transformed into x ′ and y′ respec-
tively:

T1 =
{
x ′ = ax + by
y′ = cx + dy

(8.1)

and a second transform T2, where x ′ and y′ are transformed into x ′′ and y′′ respec-
tively:

© Springer-Verlag London Ltd. 2017
J. Vince,Mathematics for Computer Graphics, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-7336-6_8
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T2 =
{
x ′′ = Ax ′ + By′
y′′ = Cx ′ + Dy′ . (8.2)

Substituting (8.1) in (8.2) we get

T3 =
{
x ′′ = A(ax + by) + B(cx + dy)
y′′ = C(ax + by) + D(cx + dy)

which simplifies to

T3 =
{
x ′′ = (Aa + Bc)x + (Ab + Bd)y
y′′ = (Ca + Dc)x + (Cb + Dd)y

. (8.3)

Having derived the algebra for T3, let’s examine matrix notation, where constants
are separated from the variables. For example, the transform (8.4)

x ′ = ax + by
y′ = cx + dy

(8.4)

can be written in matrix form as:
[
x ′
y′

]
=

[
a b
c d

] [
x
y

]
(8.5)

where (8.5) contains two different structures: two single-column matrices or column
vectors [

x ′
y′

]
and

[
x
y

]
,

and a 2 × 2 matrix: [
a b
c d

]
.

Algebraically, (8.4) and (8.5) are identical, which dictates the way (8.5) is converted
to (8.4). Therefore, using (8.5) we have x ′ followed by the ‘=’ sign, and the sum of
the products of the top row of constants a and b with the x and y in the last column
vector:

x ′ = ax + by.

Next, we have y′ followed by the ‘=’ sign, and the sum of the products of the bottom
row of constants c and d with the x and y in the last column vector:

y′ = cx + dy
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As an example,

[
x ′
y′

]
=

[
3 4
5 6

] [
x
y

]

is equivalent to

x ′ = 3x + 4y

y′ = 5x + 6y.

We can now write T1 and T2 using matrix notation:

T1 =
[
x ′
y′

]
=

[
a b
c d

] [
x
y

]
(8.6)

T2 =
[
x ′′
y′′

]
=

[
A B
C D

] [
x ′
y′

]
(8.7)

and substituting (8.6) in (8.7) we have

T3 =
[
x ′′
y′′

]
=

[
A B
C D

] [
a b
c d

] [
x
y

]
. (8.8)

But we have already computed T3 (8.3), which in matrix form is:

T3 =
[
x ′′
y′′

]
=

[
Aa + Bc Ab + Bd
Ca + Dc Cb + Dd

] [
x
y

]
(8.9)

which implies that

[
A B
C D

] [
a b
c d

]
=

[
Aa + Bc Ab + Bd
Ca + Dc Cb + Dd

]

and demonstrates how matrices must be multiplied. Here are the rules for matrix
multiplication: [

A B
· · · · · ·

] [
a · · ·
c · · ·

]
=

[
Aa + Bc · · ·

· · · · · ·
]

.

1: The top left-hand corner element Aa+ Bc is the product of the top row of the first
matrix by the left column of the second matrix.

[
A B
· · · · · ·

] [ · · · b
· · · d

]
=

[ · · · Ab + Bd
· · · · · ·

]
.

2: The top right-hand element Ab + Bd is the product of the top row of the first
matrix by the right column of the second matrix.
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[ · · · · · ·
C D

] [
a · · ·
c · · ·

]
=

[ · · · · · ·
Ca + Dc · · ·

]
.

3: The bottom left-hand element Ca + Dc is the product of the bottom row of the
first matrix by the left column of the second matrix.

[ · · · · · ·
C D

] [ · · · b
· · · d

]
=

[ · · · · · ·
· · · Cb + Dd

]
.

4: The bottom right-hand element Cb + Dd is the product of the bottom row of the
first matrix by the right column of the second matrix.

Let’s multiply the following matrices together:

[
2 4
6 8

] [
3 5
7 9

]
=

[
(2 × 3 + 4 × 7) (2 × 5 + 4 × 9)
(6 × 3 + 8 × 7) (6 × 5 + 8 × 9)

]
=

[
34 46
74 102

]
.

8.3 Matrix Notation

Having examined the background to matrices, we can now formalise their notation.
A matrix is an array of numbers (real, imaginary, complex, etc.) organised in m

rows and n columns, where each entry ai j belongs to the i-th row and j-th column:

A =

⎡
⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

am1 am2 am3 · · · amn

⎤
⎥⎥⎥⎥⎥⎦

.

It is also convenient to express the above definition as

A = [ai j ]m n.

8.3.1 Matrix Dimension or Order

The dimension or order of a matrix is the expression m × n where m is the number
of rows, and n is the number of columns.
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8.3.2 Square Matrix

A square matrix has the same number of rows as columns:

A = [ai j ]n n =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ , e.g.,

⎡
⎣ 1 −2 4
6 5 7
4 3 1

⎤
⎦ .

8.3.3 Column Vector

A column vector is a matrix with a single column:

⎡
⎢⎢⎢⎣
a11
a21
...

am1

⎤
⎥⎥⎥⎦ , e.g.,

⎡
⎣ 2

3
23

⎤
⎦ .

8.3.4 Row Vector

A row vector is a matrix with a single row:

[
a11 a12 · · · a1n

]
, e.g.,

[
2 3 5

]
.

8.3.5 Null Matrix

A null matrix has all its elements equal to zero:

θn = [ai j ]n n =

⎡
⎢⎢⎢⎣
0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎦ , e.g., θ3 =

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦ .

The null matrix behaves like zero when used with numbers, where we have, 0+ n =
n + 0 = n and 0 × n = n × 0 = 0, and similarly, θ + A = A + θ = A and
θA = Aθ = θ . For example,
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⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦ =

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦ =

⎡
⎣0 0 0
0 0 0
0 0 0

⎤
⎦ .

8.3.6 Unit Matrix

A unit matrix In , is a square matrix with the elements on its diagonal a11 to ann equal
to 1:

In = [ai j ]n n =

⎡
⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎦ , e.g., I3 =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ .

The unit matrix behaves like the number 1 in a conventional product, where we have,
1 × n = n × 1 = n, and similarly, IA = AI = A. For example,

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦ =

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ =

⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦ .

8.3.7 Trace

The trace of a square matrix is the sum of the elements on its diagonal a11 to ann:

Tr(A) =
n∑

i=1

aii .

For example, given

A =
⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦ , then Tr(A) = 1 + 5 + 9 = 15.

The trace of a rotation matrix can be used to compute the angle of rotation. For
example, the matrix to rotate a point about the origin is

A =
[
cos θ − sin θ

sin θ cos θ

]
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where
Tr(A) = 2 cos θ

which means that

θ = arccos
(Tr(A)

2

)
.

The three matrices for rotating points about the x-, y- and z-axis are respectively:

Rα,x =
⎡
⎣ 1 0 0
0 cosα − sin α

0 sin α cosα

⎤
⎦

Rα,y =
⎡
⎣ cosα 0 sin α

0 1 0
− sin α 0 cosα

⎤
⎦

Rα,z =
⎡
⎣ cosα − sin α 0
sin α cosα 0
0 0 1

⎤
⎦

and it is clear that

Tr(Rα,x ) = Tr(Rα,y) = Tr(Rα,z) = 1 + 2 cosα

therefore,

α = arccos
(Tr(Rα,x ) − 1

2

)
.

8.3.8 Determinant of a Matrix

The determinant of a matrix is a scalar value computed from the elements of the
matrix.Thedifferentmethods for computing thedeterminant are described inChap.6.
For example, using Sarrus’s rule:

A =
⎡
⎣ 1 2 3
4 5 6
7 8 9

⎤
⎦ then, det A = 45 + 84 + 96 − 105 − 48 − 72 = 0.

8.3.9 Transpose

The transpose of a matrix exchanges all row elements for column elements. The
transposition is indicated by the letter ‘T’ outside the right-hand bracket.

http://dx.doi.org/10.1007/978-1-4471-7336-6_6
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⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦

T

=
⎡
⎣a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤
⎦ .

For example, ⎡
⎣ 1 2 4
6 5 7
4 3 1

⎤
⎦

T

=
⎡
⎣ 1 6 4
2 5 3
4 7 1

⎤
⎦ ,

and ⎡
⎣2
3
5

⎤
⎦

T

= [
2 3 5

]
.

To prove that (AB)T = BTAT, we could develop a general proof using n×nmatrices,
but for simplicity, let’s employ 3 × 3 matrices and assume the result generalises to
higher dimensions. Given

A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ , AT =

⎡
⎣ a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤
⎦

and

B =
⎡
⎣b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤
⎦ , BT =

⎡
⎣ b11 b21 b31
b12 b22 b32
b13 b23 b33

⎤
⎦

then,

AB =
⎡
⎣ a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33
a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33

⎤
⎦

(AB)T =
⎡
⎣ a11b11 + a12b21 + a13b31 a21b11 + a22b21 + a23b31 a31b11 + a32b21 + a33b31
a11b12 + a12b22 + a13b32 a21b12 + a22b22 + a23b32 a31b12 + a32b22 + a33b32
a11b13 + a12b23 + a13b33 a21b13 + a22b23 + a23b33 a31b13 + a32b23 + a33b33

⎤
⎦

and

BTAT =
⎡
⎣ b11a11 + b21a12 + b31a13 b11a21 + b21a22 + b31a23 b11a31 + b21a32 + b31a33
b12a11 + b22a12 + b32a13 b12a21 + b22a22 + b32a23 b12a31 + b22a32 + b32a33
b13a11 + b23a12 + b33a13 b13a21 + b23a22 + b33a23 b13a31 + b23a32 + b33a33

⎤
⎦

which confirms that (AB)T = BTAT.
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8.3.10 Symmetric Matrix

A symmetric matrix is a square matrix that equals its transpose: i.e., A = AT. For
example, A is a symmetric matrix:

A =
⎡
⎣ 1 2 4
2 5 3
4 3 6

⎤
⎦ =

⎡
⎣ 1 2 4
2 5 3
4 3 6

⎤
⎦

T

.

In general, a square matrix A = S + Q, where S is a symmetric matrix, and Q is an
antisymmetric matrix. The symmetric matrix is computed as follows. Given a matrix
A and its transpose AT

A =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ , AT =

⎡
⎢⎢⎢⎣
a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤
⎥⎥⎥⎦

their sum is

A + AT =

⎡
⎢⎢⎢⎣

2a11 a12 + a21 . . . a1n + an1
a12 + a21 2a22 . . . a2n + an2

...
...

. . .
...

a1n + an1 a2n + an2 . . . 2ann

⎤
⎥⎥⎥⎦ .

By inspection, A + AT is symmetric, and if we divide throughout by 2 we have

S = 1

2

(
A + AT

)

which is defined as the symmetric part of A. For example, given

A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ , AT =

⎡
⎣ a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤
⎦

then

S = 1

2

(
A + AT)

=
⎡
⎣ a11 (a12 + a21)/2 (a13 + a31)/2

(a12 + a21)/2 a22 a23 + a32
(a13 + a31)/2 (a23 + a32)/2 a33

⎤
⎦
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=
⎡
⎣ a11 s3/2 s2/2
s3/2 a22 s1/2
s2/2 s1/2 a33

⎤
⎦

where

s1 = a23 + a32
s2 = a13 + a31
s3 = a12 + a21.

Using a real example:

A =
⎡
⎣0 1 4
3 1 4
4 2 6

⎤
⎦ , AT =

⎡
⎣0 3 4
1 1 2
4 4 6

⎤
⎦

S =
⎡
⎣0 2 4
2 1 3
4 3 6

⎤
⎦

which equals its own transpose.

8.3.11 Antisymmetric Matrix

An antisymmetric matrix is a matrix whose transpose is its own negative:

AT = −A

and is also known as a skew-symmetric matrix.
As the elements of A and AT are related by

arow,col = −acol,row.

When k = row = col:
ak,k = −ak,k

which implies that the diagonal elements must be zero. For example, this is an
antisymmetric matrix

A =
⎡
⎣ 0 −2 4

2 0 −3
−4 3 0

⎤
⎦ = −

⎡
⎣ 0 −2 4

2 0 −3
−4 3 0

⎤
⎦

T

.
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The antisymmetric part is computed as follows.Given amatrixA and its transposeAT

A =

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann

⎤
⎥⎥⎥⎦ , AT =

⎡
⎢⎢⎢⎣
a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...

a1n a2n . . . ann

⎤
⎥⎥⎥⎦

their difference is

A − AT =

⎡
⎢⎢⎢⎣

0 a12 − a21 . . . a1n − an1
−(

a12 − a21
)

0 . . . a2n − an2
...

...
. . .

...

−(
a1n − an1

) −(
a2n − an2

)
. . . 0

⎤
⎥⎥⎥⎦ .

It is clear that A − AT is antisymmetric, and if we divide throughout by 2 we have

Q = 1

2

(
A − AT

)
.

For example:

A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ , AT =

⎡
⎣ a11 a21 a31
a12 a22 a32
a13 a23 a33

⎤
⎦

Q =
⎡
⎣ 0

(
a12 − a21

)
/2

(
a13 − a31

)
/2(

a21 − a12
)
/2 0

(
a23 − a32

)
/2(

a31 − a13
)
/2

(
a32 − a23

)
/2 0

⎤
⎦

and if we maintain some symmetry with the subscripts, we have

Q =
⎡
⎣ 0

(
a12 − a21

)
/2 −(

a31 − a13
)
/2

−(
a12 − a21

)
/2 0

(
a23 − a32

)
/2(

a31 − a13
)
/2 −(

a23 − a32
)
/2 0

⎤
⎦

=
⎡
⎣ 0 q3/2 −q2/2

−q3/2 0 q1/2
q2/2 −q1/2 0

⎤
⎦

where

q1 = a23 − a32
q2 = a31 − a13
q3 = a12 − a21.
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Using a real example:

A =
⎡
⎣0 1 4
3 1 4
4 2 6

⎤
⎦ , AT =

⎡
⎣0 3 4
1 1 2
4 4 6

⎤
⎦

Q =
⎡
⎣0 −1 0
1 0 1
0 −1 0

⎤
⎦ .

Furthermore, we have already computed

S =
⎡
⎣0 2 4
2 1 3
4 3 6

⎤
⎦

and

S + Q =
⎡
⎣0 1 4
3 1 4
4 2 6

⎤
⎦ = A.

8.4 Matrix Addition and Subtraction

As equations can be added and subtracted together, it follows that matrices can also
be added and subtracted, as long as they have the same dimension. For example,
given

A =
⎡
⎣ 11 22
14 −15
27 28

⎤
⎦ and B =

⎡
⎣ 2 1

−4 5
1 8

⎤
⎦

then

A + B =
⎡
⎣ 13 23
10 −10
28 36

⎤
⎦ , A − B =

⎡
⎣ 9 21
18 −20
26 20

⎤
⎦ .

8.4.1 Scalar Multiplication

As equations can be scaled and factorised, it follows that matrixes can also be scaled
and factorised.
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λA = λ

⎡
⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

λa11 λa12 . . . λa13
λa21 λa22 . . . λa23

...
...

. . .
...

λam1 λam2 . . . λamn

⎤
⎥⎥⎥⎦ .

For example,

2

[
1 2 3
4 5 6

]
=

[
2 4 6
8 10 12

]
.

8.5 Matrix Products

We have already seen that matrices can be multiplied together employing rules that
maintain the algebraic integrity of the equations they represent. And as matrices
may be vectors, rectangular or square, we need to examine the products that are
permitted. To keep the notation simple, the definitions and examples are restricted
to a dimension of 3 or 3 × 3.

We begin with row and column vectors.

8.5.1 Row and Column Vectors

Given

A = [
a b c

]
and B =

⎡
⎣ α

β

γ

⎤
⎦

then

AB = [
a b c

] ⎡
⎣ α

β

γ

⎤
⎦ = aα + bβ + cγ

which is a scalar and equivalent to the dot or scalar product of two vectors.
For example, given

A = [
2 3 4

]
and B =

⎡
⎣10
30
20

⎤
⎦

then

AB = [
2 3 4

] ⎡
⎣10
30
20

⎤
⎦ = 20 + 90 + 80 = 190.
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whereas,

BA =
⎡
⎣b11
b21
b31

⎤
⎦ [

a11 a12 a13
] =

⎡
⎣b11a11 b11a12 b11a13
b21a11 b21a12 b21a13
b31a11 b31a12 b31a13

⎤
⎦ .

For example,

BA =
⎡
⎣10
30
20

⎤
⎦[

2 3 4
] =

⎡
⎣20 30 40
60 90 120
40 60 80

⎤
⎦ .

The products AA and BB are not permitted.

8.5.2 Row Vector and a Matrix

Given

A = [
a11 a12 a13

]
and B =

⎡
⎣ b11 b12 b13
b21 b22 b23
bm1 bm2 b33

⎤
⎦

then

AB = [
a11 a12 a13

] ⎡
⎣ b11 b12 b13

b21 b22 b23
bm1 bm2 b33

⎤
⎦

=
[
(a11b11 + a12b21 + a13b31) (a11b12 + a12b22 + a13b32) (a11b13 + a12b23 + a13b33)

]
.

The product BA is not permitted.
For example, given

A = [
2 3 4

]
and B =

⎡
⎣ 1 2 3
3 4 5
4 5 6

⎤
⎦

then

AB = [
2 3 4

]⎡
⎣ 1 2 3
3 4 5
4 5 6

⎤
⎦

= [
(2 + 9 + 16) (4 + 12 + 20) (6 + 15 + 24)

]
= [

27 36 45
]
.
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8.5.3 Matrix and a Column Vector

Given

A =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ and B =

⎡
⎣b11
b21
b31

⎤
⎦

then

AB =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦

⎡
⎣b11
b21
b31

⎤
⎦ =

⎡
⎣a11b11 + a12b21 + a13b31
a21b11 + a22b21 + a23b31
a31b11 + a32b21 + a33b31

⎤
⎦ .

The product BA is not permitted.
For example, given

A =
⎡
⎣ 1 2 3
3 4 5
4 5 6

⎤
⎦ , and B =

⎡
⎣ 2
3
4

⎤
⎦

then

AB =
⎡
⎣ 1 2 3
3 4 5
4 5 6

⎤
⎦

⎡
⎣2
3
4

⎤
⎦ =

⎡
⎣ 2 + 6 + 12
6 + 12 + 20
8 + 15 + 24

⎤
⎦ =

⎡
⎣20
38
47

⎤
⎦ .

8.5.4 Square Matrices

To clarify the products, lower-case Greek symbols are used with lower-case letters.
Here are their names:

α = alpha, β = beta, γ = gamma,

λ = lambda, μ = mu, ν = nu,

ρ = rho, σ = sigma, τ = tau.

Given

A =
⎡
⎣ a b c
p q r
u v w

⎤
⎦ and B =

⎡
⎣α β γ

λ μ ν

ρ σ τ

⎤
⎦

then

AB =
⎡
⎣ a b c

p q r
u v w

⎤
⎦

⎡
⎣ α β γ

λ μ ν

ρ σ τ

⎤
⎦ =

⎡
⎣ aα + bλ + cρ aβ + bμ + cσ aγ + bν + cτ

pα + qλ + rρ pβ + qμ + rσ pγ + qν + rτ
uα + vλ + wρ uβ + vμ + wσ uγ + vν + wτ

⎤
⎦
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and

BA =
⎡
⎣α β γ

λ μ ν

ρ σ τ

⎤
⎦

⎡
⎣ a b c

p q r
u v w

⎤
⎦ =

⎡
⎣αa + β p + γ u αb + βq + γ v αc + βr + γw

λa + μp + νu λb + μq + νv λc + μr + νw
ρa + σ p + τu ρb + σq + τv ρc + σr + τw

⎤
⎦ .

For example, given

A =
⎡
⎣1 2 3
3 4 5
5 6 7

⎤
⎦ and B =

⎡
⎣2 3 4
4 5 6
6 7 8

⎤
⎦

then

AB =
⎡
⎣1 2 3
3 4 5
5 6 7

⎤
⎦

⎡
⎣2 3 4
4 5 6
6 7 8

⎤
⎦ =

⎡
⎣ 28 34 40
52 64 76
76 92 112

⎤
⎦

and

BA =
⎡
⎣2 3 4
4 5 6
6 7 8

⎤
⎦

⎡
⎣1 2 3
3 4 5
5 6 7

⎤
⎦ =

⎡
⎣31 40 49
49 64 89
67 88 109

⎤
⎦ .

8.5.5 Rectangular Matrices

Given two rectangular matricesA andB, whereA has a dimensionm×n, the product
AB is permitted, if and only if, B has a dimension n × p. The resulting matrix has a
dimension m × p. For example, given

A =
⎡
⎣a11 a12
a21 a22
a31 a32

⎤
⎦ and B =

[
b11 b12 b13 b14
b21 b22 b23 b24

]

then

AB =
⎡
⎣ a11 a12
a21 a22
a31 a32

⎤
⎦ [

b11 b12 b13 b14
b21 b22 b23 b24

]

=
⎡
⎣ (a11b11 + a12b21) (a11b12 + a12b22) (a11b13 + a12b23) (a11b14 + a12b24)

(a21b11 + a22b21) (a21b12 + a22b22) (a21b13 + a22b23) (a21b14 + a22b24)
(a31b11 + a32b21) (a31b12 + a32b22) (a31b13 + a32b23) (a31b14 + a32b24)

⎤
⎦ .
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8.6 Inverse Matrix

A square matrix Ann that is invertible satisfies the condition:

AnnA−1
nn = A−1

nn Ann = In,

where A−1
nn is unique, and is the inverse matrix of Ann . For example, given

A =
[
4 3
5 4

]

then

A−1 =
[

4 −3
−5 4

]

because

AA−1 =
[
4 3
5 4

] [
4 −3

−5 4

]
=

[
1 0
0 1

]
.

A square matrix whose determinant is 0, cannot have an inverse, and is known as a
singular matrix.

We now require a way to compute A−1, which is rather easy.
Consider two linear equations:

[
x ′
y′

]
=

[
a b
c d

] [
x
y

]
. (8.10)

Let the inverse of [
a b
c d

]

be [
e f
g h

]

therefore, [
e f
g h

] [
a b
c d

]
=

[
1 0
0 1

]
. (8.11)

From (8.11) we have

ae + c f = 1 (8.12)

be + d f = 0 (8.13)

ag + ch = 0 (8.14)

bg + dh = 1. (8.15)
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Multiply (8.12) by d and (8.13) by c, and subtract:

ade + cd f = d

bce + cd f = 0

ade − bce = d

therefore,

e = d

ad − bc
.

Multiply (8.12) by b and (8.13) by a, and subtract:

abe + bc f = b

abe + ad f = 0

ad f − bc f = −b

therefore,

f = −b

ad − bc
.

Multiply (8.14) by d and (8.15) by c, and subtract:

adg + cdh = 0

bcg + cdh = c

adg − bcg = −c

therefore,

g = −c

ad − bc
.

Multiply (8.14) by b and (8.15) by a, and subtract:

abg + bch = 0

abg + adh = a

adh − bch = a

therefore,

h = a

ad − bc
.

We now have values for e, f , g and h, which are the elements of the inverse matrix.
Consequently, given
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A =
[
a b
c d

]
and A−1 =

[
e f
g h

]
,

then

A−1 = 1

det A

[
d −b

−c a

]
.

The inverse matrix permits us to solve a pair or linear equations as follows. Starting
with [

x ′
y′

]
=

[
a b
c d

] [
x
y

]
= A

[
x
y

]

multiply both sides by the inverse matrix:

A−1

[
x ′
y′

]
= A−1A

[
x
y

]

A−1

[
x ′
y′

]
=

[
1 0
0 1

] [
x
y

]
=

[
x
y

]
[
x
y

]
= A−1

[
x ′
y′

]
[
x
y

]
= 1

det A

[
d −b

−c a

] [
x ′
y′

]
.

Although the elements ofA−1 come fromA, the relationship is not obvious.However,
if A is transposed, a pattern is revealed. Given

A =
[
a b
c d

]
then AT =

[
a c
b d

]

and placing A−1 alongside AT, we have

A−1 =
[
e f
g h

]
and AT =

[
a c
b d

]
.

The elements of A−1 share a common denominator (det A), which is placed outside
the matrix, therefore, the matrix elements are taken from AT as follows. For any
entry ai j in A−1, mask out the i-th row and j-th column in AT, and the remaining
entry is copied to the i j-th entry in A−1. In the case of e, it is d. For f , it is b, with a
sign reversal. For g, it is c, with a sign reversal, and for h, it is a. The sign change is
computed by the same formula used with determinants:

(−1)i+ j .
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which generates this pattern: [+ −
− +

]
.

Youmay be wondering what happens when a 3×3 matrix is inverted. Well, the same
technique is used, but when the i-th row and j-th column in AT is masked out, it
leaves behind a 2 × 2 determinant, whose value is copied to the i j-th entry in A−1,
with the appropriate sign change. We investigate this later on.

Let’s illustrate this with an example. Given

42 = 6x + 2y

28 = 2x + 3y

let

A =
[
6 2
2 3

]

then det A = 14, therefore,

[
x
y

]
= 1

14

[
3 −2

−2 6

] [
42
28

]

= 1

14

[
70
84

]

=
[
5
6

]
.

which is the solution.
Now let’s investigate how to invert a 3 × 3 matrix. Given three simultaneous

equations in three unknowns:

x ′ = ax + by + cz

y′ = dx + ey + f z

z′ = gx + hy + j z

they can be written using matrices as follows:

⎡
⎣ x ′
y′
z′

⎤
⎦ =

⎡
⎣ a b c
d e f
g h j

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ = A

⎡
⎣ x
y
z

⎤
⎦ .

Let

A−1 =
⎡
⎣ l m n
p q r
s t u

⎤
⎦
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therefore, ⎡
⎣ l m n
p q r
s t u

⎤
⎦

⎡
⎣ a b c
d e f
g h j

⎤
⎦ =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ . (8.16)

From (8.16) we can write:

la + md + ng = 1 (8.17)

lb + me + nh = 0 (8.18)

lc + m f + nj = 0. (8.19)

Multiply (8.17) by e and (8.18) by d, and subtract:

ael + dem + egn = e

bdl + dem + dhn = 0

ael − bdl + egn − dhn = e

l(ae − bd) + n(eg − dh) = e. (8.20)

Multiply (8.18) by f and (8.19) by e, and subtract:

b f l + e f m + f hn = 0

cel + e f m + ejn = 0

b f l − cel + f hn − ejn = 0

l(b f − ce) + n( f h − ej) = 0. (8.21)

Multiply (8.20) by ( f h − ej) and (8.21) by (eg − dh), and subtract:

l(ae − bd)( f h − ej) + n(eg − dh)( f h − ej) = e( f h − ej)

l(b f − ce)(eg − dh) + n(eg − dh)( f h − ej) = 0

l(ae − bd)( f h − ej) − l(b f − ce)(eg − dh) = e f h − e2 j

l(ae f h − ae2 j − bd f h + bdej − be f g + bd f h + ce2g − cdeh) = e f h − e2 j

l(ae f h − ae2 j + bdej − be f g + ce2g − cdeh) = e f h − e2 j

l(a f h + bd j + ceg − aej − cdh − b f g) = f h − ej

l(aej + b f g + cdh − a f h − bd j − ceg) = ej − f h

but (aej+b f g+cdh−a f h−bd j−ceg) is the Sarrus expansion for det A, therefore

l = ej − f h

det A
.

An exhaustive algebraic analysis reveals:
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l =ej − f h

det A
, m = −bj − ch

det A
, n = b f − ce

det A
,

p = −d j − g f

det A
, q =aj − gc

det A
, r = −a f − dc

det A
,

s =dh − ge

det A
, t = −ah − gb

det A
, u = ae − bd

det A
,

where

A−1 =
⎡
⎣ l m n
p q r
s t u

⎤
⎦ A =

⎡
⎣ a b c
d e f
g h j

⎤
⎦ .

However, there does not appear to be an obvious way of deriving A−1 from A. But,
as we discovered with the 2 × 2 matrix, the transpose AT resolves the problem:

A−1 =
⎡
⎣ l m n
p q r
s t u

⎤
⎦ , AT =

⎡
⎣a d g
b e h
c f j

⎤
⎦ .

The elements forA−1 share a common denominator (det A), which is placed outside
thematrix, therefore, the matrix elements are taken fromAT as follows. For any entry
ai j inA−1, mask out the i-th row and j-th column inAT, and the remaining elements,
in the form of a 2× 2 determinant, is copied to the i j-th entry in A−1. In the case of
l, it is (ej −h f ). Form, it is (bj −hc), with a sign reversal, and for n, it is (b f − ec).
The sign change is computed by the same formula used with determinants:

(−1)i+ j ,

which generates the pattern: ⎡
⎣+ − +

− + −
+ − +

⎤
⎦ .

With the above aide-mémoire, it is easy to write down the inverse matrix:

A−1 = 1

det A

⎡
⎣ (ej − f h) −(bj − ch) (b f − ce)

−(d j − g f ) (aj − gc) −(a f − dc)
(dh − ge) −(ah − gb) (ae − bd)

⎤
⎦ .

This technique is known as the Laplacian expansion or the cofactor expansion, after
Pierre-SimonLaplace. Thematrix ofminor determinants is called the cofactormatrix
of A, which permits the inverse matrix to be written as:

A−1 = (cofactor matrix of A)T

det A
.
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Let’s illustrate this solution with an example. Given

18 = 2x + 2y + 2z

20 = x + 2y + 3z

7 = y + z

therefore, ⎡
⎣ 18
20
7

⎤
⎦ =

⎡
⎣ 2 2 2
1 2 3
0 1 1

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ = A

⎡
⎣ x
y
z

⎤
⎦ .

and

det A = 4 + 2 − 2 − 6 = −2

AT =
⎡
⎣2 1 0
2 2 1
2 3 1

⎤
⎦

therefore,

A−1 = −1

2

⎡
⎣−1 0 2

−1 2 −4
1 −2 2

⎤
⎦

and ⎡
⎣ x
y
z

⎤
⎦ = −1

2

⎡
⎣−1 0 2

−1 2 −4
1 −2 2

⎤
⎦

⎡
⎣ 18
20
7

⎤
⎦ =

⎡
⎣ 2
3
4

⎤
⎦

which is the solution.

8.6.1 Inverting a Pair of Matrices

Having seen how to invert a single matrix, let’s investigate how to invert of a pair of
matrices.

Given two matrices T and R, the product TR and its inverse (TR)−1 must equal
the identity matrix I:

(TR)(TR)−1 = I

and multiplying throughout by T−1 we have

T−1TR(TR)−1 = T−1

R(TR)−1 = T−1.
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Multiplying throughout by R−1 we have

R−1R(TR)−1 = R−1T−1

(TR)−1 = R−1T−1.

Therefore, if T and R are invertible, then

(TR)−1 = R−1T−1.

Generalising this result to a triple product such as STR we can reason that

(STR)−1 = R−1T−1S−1.

8.7 Orthogonal Matrix

A matrix is orthogonal if its transpose is also its inverse, i.e., matrix A is orthogonal
if

AT = A−1.

For example,

A =
[

1√
2

− 1√
2

1√
2

1√
2

]

and

AT =
[

1√
2

1√
2

− 1√
2

1√
2

]

and

AAT =
[

1√
2

− 1√
2

1√
2

1√
2

] [
1√
2

1√
2

− 1√
2

1√
2

]
=

[
1 0
0 1

]

which implies that AT = A−1.
The following matrix is also orthogonal

A =
[
cosβ − sin β

sin β cosβ

]

because

AT =
[

cosβ sin β

− sin β cosβ

]
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and

AAT =
[
cosβ − sin β

sin β cosβ

] [
cosβ sin β

− sin β cosβ

]
=

[
1 0
0 1

]
.

Orthogonal matrices play an important role in rotations because they leave the origin
fixed and preserve all angles and distances. Consequently, an object’s geometric
integrity is maintained after a rotation, which is why an orthogonal transform is
known as a rigid motion transform.

8.8 Diagonal Matrix

A diagonalmatrix is a squarematrixwhose elements are zero, apart from its diagonal:

A =

⎡
⎢⎢⎢⎣
a11 0 . . . 0
0 a22 . . . 0
...

...
. . .

...

0 0 . . . ann

⎤
⎥⎥⎥⎦ .

The determinant of a diagonal matrix must be

det A = a11 × a22 × · · · ann .

Here is a diagonal matrix with its determinant

A =
⎡
⎣ 2 0 0
0 3 0
0 0 4

⎤
⎦

det A = 2 × 3 × 4 = 24.

The identity matrix I is a diagonal matrix with a determinant of 1.

8.9 Summary

This chapter has covered matrix algebra to some depth and should permit the reader
to use matrices with confidence. The following chapter illustrates how matrices are
used to perform a wide variety of geometric transformations.
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8.10 Worked Examples

8.10.1 Matrix Inversion

Invert A and show that AA−1 = I2.

A =
[
3 5
2 4

]
.

Using

A−1 = 1

det A

[
d −b

−c a

]

then det A = 2, and

A−1 = 1

2

[
4 −5

−2 3

]
.

Calculating AA−1:

AA−1 = 1

2

[
3 5
2 4

] [
4 −5

−2 3

]
= 1

2

[
2 0
0 2

]
=

[
1 0
0 1

]
.

8.10.2 Identity Matrix

Invert A and show that AA−1 = I3.

A =
⎡
⎣2 3 4
1 2 1
5 6 7

⎤
⎦ .

Using Sarrus’s rule for det A:

det A = 28 + 15 + 24 − 40 − 12 − 21 = −6.

Therefore,

AT =
⎡
⎣2 1 5
3 2 6
4 1 7

⎤
⎦

A−1 = −1

6

⎡
⎣ (14 − 6) −(21 − 24) (3 − 8)

−(7 − 5) (14 − 20) −(2 − 4)
(6 − 10) −(12 − 15) (4 − 3)

⎤
⎦
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= −1

6

⎡
⎣ 8 3 −5

−2 −6 2
−4 3 1

⎤
⎦

and

AA−1 = −1

6

⎡
⎣2 3 4
1 2 1
5 6 7

⎤
⎦

⎡
⎣ 8 3 −5

−2 −6 2
−4 3 1

⎤
⎦

= −1

6

⎡
⎣−6 0 0

0 −6 0
0 0 −6

⎤
⎦ =

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ .

8.10.3 Solving Two Equations Using Matrices

Solve the following equations using matrices.

20 = 2x + 3y

36 = 7x + 2y.

Let

A =
[
2 3
7 2

]

therefore, det A = −17, and

A−1 = − 1

17

[
2 −3

−7 2

]

therefore,

[
x
y

]
= − 1

17

[
2 −3

−7 2

] [
20
36

]

= − 1

17

[
40 − 108

−140 + 72

]

= − 1

17

[−68
−68

]

=
[
4
4

]

therefore, x = y = 4.
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8.10.4 Solving Three Equations Using Matrices

Solve the following equations using matrices.

10 = 2x + y − z

13 = −x − y + z

28 = −x + 2y + z.

Let

A =
⎡
⎣ 2 1 −1

−1 −1 1
−1 2 1

⎤
⎦ .

Using Sarrus’s rule for det A:

det A = −2 − 1 + 2 + 1 − 4 + 1 = −3.

Therefore,

AT =
⎡
⎣ 2 −1 −1

1 −1 2
−1 1 1

⎤
⎦

A−1 = −1

3

⎡
⎣ (−1 − 2) −(1 + 2) (1 − 1)

−(−1 + 1) (2 − 1) −(2 − 1)
(−2 − 1) −(4 + 1) (−2 + 1)

⎤
⎦

= −1

3

⎡
⎣−3 −3 0

0 1 −1
−3 −5 −1

⎤
⎦

therefore,

⎡
⎣ x
y
z

⎤
⎦ = −1

3

⎡
⎣−3 −3 0

0 1 −1
−3 −5 −1

⎤
⎦

⎡
⎣10
13
28

⎤
⎦

= −1

3

⎡
⎣ −30 − 39

13 − 28
−30 − 65 − 28

⎤
⎦

= −1

3

⎡
⎣ −69

−15
−123

⎤
⎦
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=
⎡
⎣23

5
41

⎤
⎦

therefore, x = 23, y = 5, z = 41.

8.10.5 Solving Two Complex Equations

Solve the following complex equations using matrices.

7 + i8 = 2x + y

−4 − i = x − 2y.

Let

A =
[
2 1
1 −2

]

therefore, det A = −5, and

AT =
[
2 1
1 −2

]

A−1 = −1

5

[−2 −1
−1 2

]

therefore,

[
x
y

]
= −1

5

[−2 −1
−1 2

] [
7 + i8
−4 − i

]

= −1

5

[−14 − i16 + 4 + i
−7 − i8 − 8 − i2

]

= −1

5

[−10 − i15
−15 − i10

]

=
[
2 + i3
3 + i2

]

therefore, x = 2 + i3, y = 3 + i2.

8.10.6 Solving Three Complex Equations

Solve the following complex equations using matrices.
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0 = x + y − z

3 + i3 = 2x − y + z

−5 − i5 = −x + y − 2z.

Let

A =
⎡
⎣ 1 1 −1

2 −1 1
−1 1 −2

⎤
⎦

therefore, det A = 2 − 1 − 2 + 1 − 1 + 4 = 3, and

AT =
⎡
⎣ 1 2 −1

1 −1 1
−1 1 −2

⎤
⎦

A−1 = 1

3

⎡
⎣ (2 − 1) −(−2 + 1) 0

−(−4 + 1) (−2 − 1) −(1 + 2)
(2 − 1) −(1 + 1) (−1 − 2)

⎤
⎦

therefore,

⎡
⎣ x
y
z

⎤
⎦ = 1

3

⎡
⎣1 1 0
3 −3 −3
1 −2 −3

⎤
⎦

⎡
⎣ 0

3 + i3
−5 − i5

⎤
⎦

= 1

3

⎡
⎣ 3 + i3

−9 − i9 + 15 + i15
−6 − i6 + 15 + i15

⎤
⎦

=
⎡
⎣ 1 + i
2 + i2
3 + i3

⎤
⎦

therefore, x = 1 + i, y = 2 + i2, z = 3 + i3.

8.10.7 Solving Two Complex Equations

Solve the following complex equations using matrices.

3 + i5 = i x + 2y

5 + i = 3x − iy.

Let

A =
[
i 2
3 −i

]
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therefore, set A = 1 − 6 = −5, and

AT =
[
i 3
2 −i

]

A−1 = −1

5

[ −i −2
−3 i

]

therefore,

[
x
y

]
= −1

5

[ −i −2
−3 i

] [
3 + i5
5 + i

]

= −1

5

[−i3 + 5 − 10 − i2
−9 − i15 + i5 − 1

]

= −1

5

[ −5 − i5
−10 − i10

]

=
[
1 + i
2 + i2

]

therefore, x = 1 + i, y = 2 + i2.

8.10.8 Solving Three Complex Equations

Solve the following complex equations using matrices.

6 + i2 = i x + 2y − i z

−2 + i6 = 2x − iy + i2z

2 + i10 = i2x + iy + 2z.

Let

A =
⎡
⎣ i 2 −i

2 −i i2
i2 i 2

⎤
⎦

therefore, det A = 2 − 8 + 2 + i2 + i2 − 8 = −12 + i4, and

AT =
⎡
⎣ i 2 i2

2 −i i
−i i2 2

⎤
⎦
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A−1 = 1

−12 + i4

⎡
⎣ (−i2 + 2) −(4 − 1) (i4 + 1)

−(4 + 4) (i2 − 2) −(−2 + i2)
(i2 − 2) −(−1 − i4) (1 − 4)

⎤
⎦

= 1

−12 + i4

⎡
⎣ 2 − i2 −3 1 + i4

−8 −2 + i2 2 − i2
−2 + i2 1 + i4 −3

⎤
⎦

therefore,

⎡
⎣ x
y
z

⎤
⎦ = 1

−12 + i4

⎡
⎣ 2 − i2 −3 1 + i4

−8 −2 + i2 2 − i2
−2 + i2 1 + i4 −3

⎤
⎦

⎡
⎣ 6 + i2

−2 + i6
2 + i10

⎤
⎦

= 1

−12 + i4

⎡
⎣ (2 − i2)(6 + i2) − 3(−2 + i6) + (1 + i4)(2 + i10)

−8(6 + i2) + (−2 + i2)(−2 + i6) + (2 − i2)(2 + i10)
(−2 + i2)(6 + i2) + (1 + i4)(−2 + i6) − 3(2 + i10)

⎤
⎦

= 1

−12 + i4

⎡
⎣ 12 + i4 − i12 + 4 + 6 − i18 + 2 + i10 + i8 − 40

−48 − i16 + 4 − i12 − i4 − 12 + 4 + i20 − i4 + 20
−12 − i4 + i12 − 4 − 2 + i6 − i8 − 24 − 6 − i30

⎤
⎦

= 1

−12 + i4

⎡
⎣ −16 − i8

−32 − i16
−48 − i24

⎤
⎦

multiply by the conjugate of −12 + i4:

⎡
⎣ x
y
z

⎤
⎦ = −12 − i4

160

⎡
⎣ −16 − i8

−32 − i16
−48 − i24

⎤
⎦

therefore,

x = 1

160
(−12 − i4)(−16 − i8)

= 1

160
(192 + i64 + i96 − 32)

= 1

160
(160 + i160) = 1 + i

y = 1

160
(−12 − i4)(−32 − i16)

= 1

160
(384 + i128 + i192 − 64)

= 1

160
(320 + i320) = 2 + i2
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z = 1

160
(−12 − i4)(−48 − i24)

= 1

160
(576 + i192 + i288 − 96)

= 1

160
(480 + i480) = 3 + i3

therefore, x = 1 + i, y = 2 + i2, z = 3 + i3.



Chapter 9
Geometric Transforms

9.1 Introduction

This chapter shows how matrices are used to scale, translate, reflect, shear and rotate
2D shapes and 3D objects. The reader should try to understand the construction of
the various matrices and recognise the role of each matrix element. After a little
practice, it will be possible to define a wide variety of matrices without thinking
about the underlying algebra.

9.2 Background

A point P(x, y) is transformed into P′(x′, y′) by manipulating the original coordi-
nates x and y using

x′ = ax + by + e

y′ = cx + dy + f ,

where a, b, c, d, e and f have assigned values. Similarly, a 3D point P(x, y, z) is
transformed into P′(x′, y′, z′) using

x′ = ax + by + cz + k

y′ = dx + ey + fz + l

z′ = gx + hy + jz + m.

The values for a, b, c, . . . etc. determine whether the transform translates, shears,
scales, reflects or rotates a point.

© Springer-Verlag London Ltd. 2017
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Although transforms have an algebraic origin, it is convenient to express them as
matrices, which provide certain advantages for viewing the transform and for inter-
facing to various types of computer graphics hardware. We begin with an algebraic
approach and then introduce matrix notation.

9.3 2D Transforms

9.3.1 Translation

Cartesian coordinates provide a one-to-one relationship between number and shape,
such that when we change a shape’s coordinates, we change its geometry. For exam-
ple, if P(x, y) is a shape’s vertex, when we apply the operation x′ = x + 3 we create
a new point P′(x′, y) three units to the right. Similarly, the operation y′ = y + 1
creates a new point P′(x, y′) displaced one unit vertically. By applying both of these
transforms to every vertex on the original shape, the shape is displaced as shown in
Fig. 9.1.

9.3.2 Scaling

Shape scaling is effected by multiplying coordinates as follows:

x′ = 2.5x

y′ = 1.5y.

Fig. 9.1 The translated
shape results by adding 3 to
every x-coordinate, and 1 to
every y-coordinate to the
original shape

x

y
3

1

2

1 2 3 4 5

translated

original
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Fig. 9.2 The scaled shape
results by multiplying the
x-coordinates by 2.5 and the
y-coordinates by 1.5

x

y
3

1

2

1 2 3 4 5

scaled

original

This transform results in a horizontal scaling of 2.5 and a vertical scaling of 1.5 as
illustrated in Fig. 9.2. Note that a point located at the origin does not change its place,
so scaling is relative to the origin.

9.3.3 Reflection

To make a reflection of a shape relative to the y-axis, we simply reverse the sign of
the x-coordinates, leaving the y-coordinates unchanged:

x′ = −x

y′ = y

and to reflect a shape relative to the x-axis we reverse the y-coordinates:

x′ = x

y′ = −y.

Figure9.3 shows three reflections derived from the original shape by reversing the
signs for the x- and y-coordinates. Note that a shape’s vertex order is reversed for
each reflection.

Before proceeding, we pause to introduce matrix notation so that we can develop
further transforms using algebra and matrix algebra side by side.



156 9 Geometric Transforms

Fig. 9.3 The original shape
gives rise to three reflections
simply by reversing the signs
of its coordinates

x

y

1

1 2-1

-1

reflected about
the y-axis original

-2
reflected about
the x-axis

reflected about
the x- & y-axes

9.4 Transforms as Matrices

9.4.1 Systems of Notation

Over time two systems of matrix notation have evolved: one where the matrix multi-
plies a column vector, as described above, and another where a row vectormultiplies
the matrix:

[
x′ y′ ] = [

x y
] [

a c
b d

]
= [

ax + by cx + dy
]
.

Note how the elements of the matrix are transposed to accommodate the algebraic
correctness of the transform. There is no preferred system of notation, and you will
find technical books and papers supporting both. Personally, I prefer a matrix pre-
multiplying a column vector, as it is very similar to the original algebraic equations.
However, the important thing to remember is that the rows and columns of the matrix
are transposed when moving between the two systems.

9.5 Homogeneous Coordinates

The previous chapter showed how a pair of equations such as

x′ = ax + by

y′ = cx + dy

can be written in matrix notation as:
[
x′
y′

]
=

[
a b
c d

] [
x
y

]
.



9.5 Homogeneous Coordinates 157

One immediate problem with this notation is that there is no apparent mechanism to
add or subtract a constant such as e or f :

x′ = ax + by + e

y′ = cx + dy + f .

Mathematicians resolved this by using homogeneous coordinates, which appeared
in the early 19th century where they were independently proposed by Möbius (who
also invented a one-sided curled band, the Möbius strip), Feuerbach, Bobillier, and
Plücker.Möbius named them barycentric coordinates, and they have also been called
areal coordinates because of their area-calculating properties.

Basically, homogeneous coordinates define a point in a plane using three coordi-
nates instead of two. Initially, Plücker located a homogeneous point relative to the
sides of a triangle, but later revised his notation to the one employed in contemporary
mathematics and computer graphics. This states that for a point (x, y) there exists a
homogeneous point (xt, yt, t)where t is an arbitrary number. For example, the point
(3, 4) has homogeneous coordinates (6, 8, 2), because 3 = 6/2 and 4 = 8/2. But
the homogeneous point (6, 8, 2) is not unique to (3, 4); (12, 16, 4), (15, 20, 5)
and (300, 400, 100) are all possible homogeneous coordinates for (3, 4).

The reason why this coordinate system is called ‘homogeneous’ is because it is
possible to transform functions such as f (x, y) into the form f (x/t, y/t) without
disturbing the degree of the curve. To the non-mathematician this may not seem
anything to get excited about, but in the field of projective geometry it is a very
powerful concept.

Figure9.4 shows a 3D homogeneous space with axes x, y and h, where a point
(x, y, 1) is associated with a projected point (xt, yt, t). The figure shows a triangle
on the h = 1 plane, and a similar triangle on the plane h = t. Thus instead of working
in two dimensions, we can work on an arbitrary xy-plane in three dimensions. The
h-coordinate of the plane is immaterial because the x- and y-coordinates are even-
tually divided by t. However, to keep things simple it seems a good idea to choose
t = 1. This means that the point (x, y) has homogeneous coordinates (x, y, 1)mak-
ing scaling superfluous.

Fig. 9.4 2D homogeneous
coordinates can be visualised
as a plane in 3D space
generally where h = 1, for
convenience

1

t
x

y

h
(x, y, 1)

(xt, yt, t)
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If we substitute 3D homogeneous coordinates for traditional 2D Cartesian coor-
dinates we must attach 1 to every (x, y) pair. When a point (x, y, 1) is transformed,
it emerges as (x′, y′, 1), and we discard the 1. This may seem a futile exercise, but
it resolves the problem of creating a translation transform.

Consider the following transform on the homogeneous point (x, y, 1):

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
a b e
c d f
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

This expands to

x′ = ax + by + e

y′ = cx + dy + f

1 = 1

and solves the above problem of adding a constant. Now let’s move on to see how
homogeneous coordinates are used in practice.

9.5.1 2D Translation

The algebraic and matrix notation for 2D translation is

x′ = x + tx
y′ = y + ty

or using matrices: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 tx
0 1 ty
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

9.5.2 2D Scaling

The algebraic and matrix notation for 2D scaling is

x′ = sxx

y′ = syy
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or using matrices: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
sx 0 0
0 sy 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

The scaling action is relative to the origin, i.e. the point (0, 0) remains unchanged.
All other points move away from the origin when sx > 1, or move towards the origin
when sx < 1. To scale relative to another point (px, py) we first subtract (px, py)
from (x, y) respectively. This effectively makes the reference point (px, py) the new
origin. Second, we perform the scaling operation relative to the new origin, and
third, add (px, py) back to the new (x, y) respectively to compensate for the original
subtraction. Algebraically this is

x′ = sx(x − px) + px
y′ = sy(y − py) + py

which simplifies to

x′ = sxx + px(1 − sx)

y′ = syy + py(1 − sy)

or as a homogeneous matrix:

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
sx 0 px(1 − sx)
0 sy py(1 − sy)
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ . (9.1)

For example, to scale a shape by 2 relative to the point (1, 1) the matrix is

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
2 0 −1
0 2 −1
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

9.5.3 2D Reflections

The matrix notation for reflecting about the y-axis is

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦



160 9 Geometric Transforms

or about the x-axis: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

However, to make a reflection about an arbitrary vertical or horizontal axis we need
to introduce some more algebraic deception.

To make a reflection about the vertical axis x = 1, we first subtract 1 from the
x-coordinate. This effectively makes the x = 1 axis coincident with the major y-axis.
Next, we perform the reflection by reversing the sign of the modified x-coordinate.
And finally, we add 1 to the reflected coordinate to compensate for the original
subtraction. Algebraically, the three steps are

x1 = x − 1

x2 = −(x − 1)

x′ = −(x − 1) + 1

which simplifies to

x′ = −x + 2

y′ = y

or in matrix form: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 2
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

Figure9.5 illustrates this process.

Fig. 9.5 The shape on the
right is reflected about the
x = 1 axis

x

3

1

2

1 2 3 4-1

originalreflected

y
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To reflect a point about an arbitrary y-axis, y = ax, the following transform is
required:

x′ = −(x − ax) + ax = −x + 2ax
y′ = y

or in matrix form: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 2ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ . (9.2)

Similarly, to reflect a point about an arbitrary x-axis y = ay, the following trans-
form is required:

x′ = x

y′ = −(y − ay) + ay = −y + 2ay

or in matrix form: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 0
0 −1 2ay
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

9.5.4 2D Shearing

A shape is sheared by leaning it over at an angle β. Figure9.6 illustrates the geometry,
and we see that the y-coordinates remain unchanged but the x-coordinates are a
function of y and tan β.

Fig. 9.6 The original green,
square shape is sheared to
the right by an angle β, and
the horizontal shear is
proportional to y tan β
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x′ = x + y tan β

y′ = y

or in matrix form: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 tan β 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

9.5.5 2D Rotation

Figure9.7 shows a point P(x, y), distance R from the origin, which is to be rotated
by an angle β about the origin to P′(x′, y′). It can be seen that

x′ = R cos(θ + β)

y′ = R sin(θ + β)

and substituting the identities for cos(θ + β) and sin(θ + β) we have

x′ = R(cos θ cosβ − sin θ sin β)

y′ = R(sin θ cosβ + cos θ sin β)

x′ = R
( x

R
cosβ − y

R
sin β

)

y′ = R
( y

R
cosβ + x

R
sin β

)

x′ = x cosβ − y sin β

y′ = x sin β + y cosβ

Fig. 9.7 The point P(x, y)
is rotated through an angle β

to P′(x′, y′)
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or in matrix form: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β 0
sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

For example, to rotate a point through 90◦ the matrix is

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

Thus the point (1, 0) becomes (0, 1). If we rotate through 360◦ the matrix becomes

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

Such a matrix has a null effect and is called an identity matrix.
To rotate a point (x, y) about an arbitrary point (px, py)we first, subtract (px, py)

from the coordinates (x, y) respectively. This enables us to perform the rotation about
the origin. Second, we perform the rotation, and third, we add (px, py) to compensate
for the original subtraction. Here are the steps:
1. Subtract (px, py):

x1 = (x − px)

y1 = (y − py).

2. Rotate β about the origin:

x2 = (x − px) cosβ − (y − py) sin β

y2 = (x − px) sin β + (y − py) cosβ.

3. Add (px, py):

x′ = (x − px) cosβ − (y − py) sin β + px
y′ = (x − px) sin β + (y − py) cosβ + py.

Simplifying,

x′ = x cosβ − y sin β + px(1 − cosβ) + py sin β

y′ = x sin β + y cosβ + py(1 − cosβ) − px sin β

and in matrix form:
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⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β px(1 − cosβ) + py sin β

sin β cosβ py(1 − cosβ) − px sin β

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ . (9.3)

For example, to rotate a point 90◦ about the point (1, 1) thematrix operation becomes

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
0 −1 2
1 0 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

Asimple test is to substitute the point (2, 1) for (x, y);which is transformed correctly
to (1, 2).

The algebraic approach in deriving the above transforms is relatively easy. How-
ever, it is also possible to use matrices to derive compound transforms, such as a
reflection relative to an arbitrary line and scaling and rotation relative to an arbitrary
point. These transforms are called affine, as parallel lines remain parallel after being
transformed. Furthermore, the word ‘affine’ is used to imply that there is a strong
geometric affinity between the original and transformed shape. One can not always
guarantee that angles and lengths are preserved, as the scaling transform can alter
these when different x and y scaling factors are used. For completeness, we will
repeat these transforms from a matrix perspective.

9.5.6 2D Scaling

The strategy used to scale a point (x, y) relative to some arbitrary point (px, py) is to
first, translate (−px, −py); second, perform the scaling; and third translate (px, py).
These three transforms are represented in matrix form as follows:

⎡

⎣
x′
y′
1

⎤

⎦ = [
translate(px, py)

] [
scale(sx, sy)

] [
translate(−px, −py)

]
⎡

⎣
x
y
1

⎤

⎦

which expands to

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 px
0 1 py
0 0 1

⎤

⎦

⎡

⎣
sx 0 0
0 sy 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −px
0 1 −py
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

Note the sequence of the transforms, as this often causes confusion. The first trans-
form acting on the point (x, y, 1) is translate (−px, −py), followed by scale (sx, sy),
followed by translate (px, py). If they are placed in any other sequence, you will dis-
cover, like Gauss, that transforms are not commutative!
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We can now combine these matrices into a single matrix by multiplying them
together. This can be done in any sequence, so long as we preserve the original order.
Let’s start with scale (sx, sy) and translate (−px, −py) matrices. This produces

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 px
0 1 py
0 0 1

⎤

⎦

⎡

⎣
sx 0 −sxpx
0 sy −sypy
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

and finally: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
sx 0 px(1 − sx)
0 sy py(1 − sy)
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which is the same as the previous transform (9.1).

9.5.7 2D Reflection

A reflection about the y-axis is given by

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

Therefore, usingmatrices, we can reason that a reflection transform about an arbitrary
axis x = ax, parallel with the y-axis, is given by

⎡

⎣
x′
y′
1

⎤

⎦ = [
translate(ax, 0)

] [
reflection

] [
translate(−ax, 0)

]
⎡

⎣
x
y
1

⎤

⎦

which expands to

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

Wecannowcombine thesematrices into a singlematrix bymultiplying them together.
Let’s begin bymultiplying the reflection and the translate (−ax, 0)matrices together.
This produces ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
−1 0 ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦
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and finally: ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
−1 0 2ax
0 1 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which is the same as the previous transform (9.2).

9.5.8 2D Rotation About an Arbitrary Point

A rotation about the origin is given by

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β 0
sin β cosβ 0

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

Therefore, usingmatrices, we can develop a rotation about an arbitrary point (px, py)
as follows:

⎡

⎣
x′
y′
1

⎤

⎦ = [
translate(px, py)

] [
rotateβ

] [
translate(−px, −py)

]
⎡

⎣
x
y
1

⎤

⎦

which expands to

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 px
0 1 py
0 0 1

⎤

⎦

⎡

⎣
cosβ − sin β 0
sin β cosβ 0

0 0 1

⎤

⎦

⎡

⎣
1 0 −px
0 1 −py
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

We can now combine these matrices into a single matrix by multiplying them
together. Let’s begin by multiplying the rotate β and the translate (−px, −py)matri-
ces together. This produces

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 px
0 1 py
0 0 1

⎤

⎦

⎡

⎣
cosβ − sin β −px cosβ + py sin β

sin β cosβ −px sin β − py cosβ

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β px(1 − cosβ) + py sin β

sin β cosβ py(1 − cosβ) − px sin β

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which is the same as the previous transform (9.3).
I hope it is now clear to the reader that one can derive all sorts of transforms either

algebraically, or by using matrices – it is just a question of convenience.
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9.6 3D Transforms

Nowwe come to transforms in three dimensions, where we apply the same reasoning
as in two dimensions. Scaling and translation are basically the same, but where in
2D we rotated a shape about a point, in 3D we rotate an object about an axis.

9.6.1 3D Translation

The algebra is so simple for 3D translation that we can simplywrite the homogeneous
matrix directly: ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

9.6.2 3D Scaling

The algebra for 3D scaling is

x′ = sxx

y′ = syy

z′ = szz

which in matrix form is
⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

The scaling is relative to the origin, but we can arrange for it to be relative to an
arbitrary point (px, py, pz) using the following algebra:

x′ = sx(x − px) + px
y′ = sy(y − py) + py
z′ = sz(z − pz) + pz

which in matrix form is
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⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

sx 0 0 px(1 − sx)
0 sy 0 py(1 − sy)
0 0 sz pz(1 − sz)
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

9.6.3 3D Rotation

In two dimensions a shape is rotated about a point, whether it be the origin or some
other position. In three dimensions an object is rotated about an axis, whether it be
the x-, y- or z-axis, or some arbitrary axis. To begin with, let’s look at rotating a vertex
about one of the three orthogonal axes; such rotations are called Euler rotations after
Leonhard Euler.

Recall that a general 2D rotation transform is given by

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β 0
sin β cosβ 0

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which in 3D can be visualised as rotating a point P(x, y, z) on a plane parallel with
the xy-plane as shown in Fig. 9.8. In algebraic terms this is written as

x′ = x cosβ − y sin β

y′ = x sin β + y cosβ

z′ = z.

Therefore, the 3D rotation transform is

Fig. 9.8 Rotating the point
P, through an angle β, about
the z-axis
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⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cosβ − sin β 0 0
sin β cosβ 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

which basically rotates a point about the z-axis.
When rotating about the x-axis, the x-coordinates remain constant whilst the y-

and z-coordinates are changed. Algebraically, this is

x′ = x

y′ = y cosβ − z sin β

z′ = y sin β + z cosβ

or in matrix form: ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 cosβ − sin β 0
0 sin β cosβ 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

When rotating about the y-axis, the y-coordinate remains constant whilst the x- and
z-coordinates are changed. Algebraically, this is

x′ = z sin β + x cosβ

y′ = y

z′ = z cosβ − x sin β

or in matrix form: ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cosβ 0 sin β 0
0 1 0 0

− sin β 0 cosβ 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

Note that the matrix terms do not appear to share the symmetry seen in the previous
two matrices. Nothing really has gone wrong, it is just the way the axes are paired
together to rotate the coordinates.

The above rotations are also known as yaw, pitch and roll, and great care should
be taken with these angles when referring to other books and technical papers. Some-
times a left-handed system of axes is used rather than a right-handed set, and the
vertical axis may be the y-axis or the z-axis. Consequently, the matrices represent-
ing the rotations can vary greatly. In this text all Cartesian coordinate systems are
right-handed, and the vertical axis is always the y-axis.

I will define the roll, pitch and yaw angles as follows:

• roll is the angle of rotation about the z-axis,
• pitch is the angle of rotation about the x-axis,
• yaw is the angle of rotation about the y-axis.
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Fig. 9.9 The convention for
roll, pitch and yaw angles

yaw X

Y

Z

pitch roll

Figure9.9 illustrates these rotations and the sign convention. The homogeneous
matrices representing these rotations are as follows:

· rotate roll about the z-axis:
⎡

⎢
⎢
⎣

cos roll − sin roll 0 0
sin roll cos roll 0 0

0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ .

· rotate pitch about the x-axis:

⎡

⎢⎢
⎣

1 0 0 0
0 cos pitch − sin pitch 0
0 sin pitch cos pitch 0
0 0 0 1

⎤

⎥⎥
⎦ .

· rotate yaw about the y-axis:

⎡

⎢⎢
⎣

cos yaw 0 sin yaw 0
0 1 0 0

− sin yaw 0 cos yaw 0
0 0 0 1

⎤

⎥⎥
⎦ .

A common sequence for applying these rotations is roll, pitch, yaw, as seen in the
following transform:

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ = [

yaw
] [

pitch
] [

roll
]

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

and if a translation is involved,
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Fig. 9.10 The X ′Y ′Z ′ axial
system after a pitch of 90◦

X

Y

Z

pitch = 90

Fig. 9.11 The X ′Y ′Z ′ axial
system after a yaw of 90◦

yaw = 90 X

Y

Z

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ = [

translate
] [

yaw
] [

pitch
] [

roll
]

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

When these rotation transforms are applied, the vertex is first rotated about the z-axis
(roll), followed by a rotation about the x-axis (pitch), followed by a rotation about
the y-axis (yaw). Euler rotations are relative to the fixed frame of reference. This is
not always easy to visualise as one’s attention is normally with the rotating frame of
reference. Let’s consider a simple example where an axial system is subjected to a
pitch rotation followed by a yaw rotation relative to fixed frame of reference.

We begin with two frames of reference XYZ and X ′Y ′Z ′ mutually aligned.
Figure9.10 shows the orientation of X ′Y ′Z ′ after it is subjected to a pitch of 90◦
about the X-axis. And Fig. 9.11 shows the final orientation after X ′Y ′Z ′ is subjected
to a yaw of 90◦ about the Y -axis.
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9.6.4 Gimbal Lock

Let’s take another example starting from the point where the two axial systems are
mutually aligned. Figure9.12 shows the orientation of X ′Y ′Z ′ after it is subjected
to a roll of 45◦ about the Z-axis, and Fig. 9.13 shows the orientation of X ′Y ′Z ′ after
it is subjected to a pitch of 90◦ about the X-axis. Now the interesting thing about
this orientation is that if we now performed a yaw of 45◦ about the Z-axis, it would
rotate the X ′-axis towards the X-axis, counteracting the effect of the original roll.
Yaw has become a negative roll rotation, caused by the 90◦ pitch. This situation is
known as gimbal lock, because one degree of rotational freedom has been lost. Quite
innocently, we have stumbled across one of the major weaknesses of Euler angles:
under certain conditions it is only possible to rotate an object about two axes. One
way of preventing this is to create a secondary set of axes constructed from three
orthogonal vectors that are also rotated alongside an object or virtual camera. But
instead of making the rotations relative to the fixed frame of reference, the roll, pitch
and yaw rotations are relative to the rotating frame of reference. Another method is
to use quaternions, which will be investigated later in this chapter.

Fig. 9.12 The X ′Y ′Z ′ axial
system after a roll of 45◦

X

Y

Z

roll = 45

Fig. 9.13 The X ′Y ′Z ′ axial
system after a pitch of 90◦

X

Y

Z

pitch = 90
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Fig. 9.14 Rotating a point
about an axis parallel with
the x-axis

9.6.5 Rotating About an Axis

The above rotations were relative to the x-, y-, z-axis. Now let’s consider rotations
about an axis parallel to one of these axes. To begin with, we will rotate about an
axis parallel with the z-axis, as shown in Fig. 9.14. The scenario is very reminiscent
of the 2D case for rotating a point about an arbitrary point, and the general transform
is given by

⎡

⎢
⎢
⎣

x′
y′
z′
1

⎤

⎥
⎥
⎦ = [

translate(px, py, 0)
] [

rotateβ
] [

translate(−px, −py, 0)
]

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

and the matrix is
⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cosβ − sin β 0 px(1 − cosβ) + py sin β

sin β cosβ 0 py(1 − cosβ) − px sin β

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

I hope you can see the similarity between rotating in 3D and 2D: the x- and y-
coordinates are updated while the z-coordinate is held constant. We can now state
the other two matrices for rotating about an axis parallel with the x-axis and parallel
with the y-axis:

• rotating about an axis parallel with the x-axis:

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 cosβ − sin β py(1 − cosβ) + pz sin β

0 sin β cosβ pz(1 − cosβ) − py sin β

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .
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• rotating about an axis parallel with the y-axis:
⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cosβ 0 sin β px(1 − cosβ) − pz sin β

0 1 0 0
− sin β 0 cosβ pz(1 − cosβ) + px sin β

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

9.6.6 3D Reflections

Reflections in 3D occur with respect to a plane, rather than an axis. Thematrix giving
the reflection relative to the yz-plane is

⎡

⎢
⎢
⎣

x′
y′
z′
1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦

and the reflection relative to a plane parallel to, and ax units from the yz-plane is

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 2ax
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

It is left to the reader to develop similar matrices for the other major axial planes.

9.7 Change of Axes

Points in one coordinate system often have to be referenced in another one. For
example, to view a 3D scene from an arbitrary position, a virtual camera is positioned
in the world space using a series of transforms. An object’s coordinates, which are
relative to the world frame of reference, are computed relative to the camera’s axial
system, and then used to develop a perspective projection. Before explaining how
this is achieved in 3D, let’s examine the simple case of changing axial systems in
two dimensions.

9.7.1 2D Change of Axes

Figure9.15 shows a point P(x, y) relative to the XY -axes, but we require to know
the coordinates relative to the X ′Y ′-axes. To do this, we need to know the relation-
ship between the two coordinate systems, and ideally we want to apply a technique
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Fig. 9.15 The X ′Y ′ axial
system is translated (tx, ty)

X

Y
P(x, y) ( )

x

y

tx

ty

Fig. 9.16 The X ′Y ′ axial
system is rotated β

that works in 2D and 3D. If the second coordinate system is a simple translation
(tx, ty) relative to the reference system, as shown in Fig. 9.15, the point P(x, y) has
coordinates relative to the translated system (x − tx, y − ty) :

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

If the X ′Y ′-axes are rotated β relative to the XY -axes, as shown in Fig. 9.16, a
point P(x, y) relative to the XY -axes becomes P′(x′, y′) relative to the rotated axes
is given by ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cos(−β) − sin(−β) 0
sin(−β) cos(−β) 0

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which simplifies to ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ sin β 0

− sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .
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Fig. 9.17 If the X ′- and
Y ′-axes are assumed to be
unit vectors, their direction
cosines form the elements of
the rotation matrix

When a coordinate system is rotated and translated relative to the reference system,
a point P(x, y) becomes P′(x′, y′) relative to the new axes given by

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ sin β 0

− sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
1 0 −tx
0 1 −ty
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

which simplifies to

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ sin β −tx cosβ − ty sin β

− sin β cosβ tx sin β − ty cosβ

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

9.7.2 Direction Cosines

Direction cosines are the cosines of the angles between a vector and the Cartesian
axes, and for unit vectors they are the vector’s components. Figure9.17 shows two
unit vectors X ′ and Y ′, and by inspection the direction cosines for X ′ are cosβ and
cos(90◦ − β), which can be rewritten as cosβ and sin β, and the direction cosines
for Y ′ are cos(90◦ + β) and cosβ, which can be rewritten as − sin β and cosβ. But
these direction cosines cosβ, sin β, − sin β and cosβ are the four elements of the
rotation matrix used above [

cosβ sin β

− sin β cosβ

]
.

The top row contains the direction cosines for theX ′-axis and the bottom row contains
the direction cosines for the Y ′-axis. This relationship also holds in 3D.

As an example, let’s evaluate a simple 2D case where a set of axes is rotated 45◦
as shown in Fig. 9.18. The appropriate transform is
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Fig. 9.18 The vertices of a
unit square relative to the
two axial systems

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cos 45◦ sin 45◦ 0

− sin 45◦ cos 45◦ 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

≈
⎡

⎣
0.707 0.707 0

−0.707 0.707 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

The four vertices on a unit square become

(0, 0) → (0, 0)

(1, 0) → (0.707, −0.707)

(1, 1) → (1.1414, 0)

(0, 1) → (0.707, 0.707)

which by inspection of Fig. 9.18 are correct.

9.7.3 3D Change of Axes

The ability to reference a collection of coordinates is fundamental in computer graph-
ics, especially in 3D. And rather than investigate them within this section, let’s delay
their analysis for the next section, where we see how the technique is used for relating
an object’s coordinates relative to an arbitrary virtual camera.

9.8 Positioning the Virtual Camera

Four coordinate systems are used in the computer graphics pipeline: object space,
world space, camera space and image space.



178 9 Geometric Transforms

• The object space is a domain where objects are modelled and assembled.

• The world space is where objects are positioned and animated through appropriate
transforms. The world space also hosts a virtual camera or observer.

• The camera space is a transform of the world space relative to the camera.

• Finally, the image space is a projection – normally perspective – of the camera
space onto an image plane.

The transforms considered so far are used to manipulate and position objects
within theworld space.Whatwewill consider next is howavirtual camera or observer
is positioned in world space, and the process of converting world coordinates to
camera coordinates. The procedure used generally depends on the method employed
to define the camera’s frame of reference within the world space, which may involve
the use of direction cosines, Euler angles or quaternions. We will examine how each
of these techniques could be implemented.

9.8.1 Direction Cosines

A 3D unit vector has three components [x y z]T , which are equal to the cosines of
the angles formed between the vector and the three orthogonal axes. These angles
are known as direction cosines and can be computed taking the dot product of the
vector and the Cartesian unit vectors. Figure9.19 shows the direction cosines and the
angles. These direction cosines enable any pointP(x, y, z) in one frame of reference
to be transformed into P′(x′, y′, z′) in another frame of reference as follows:

Fig. 9.19 The components
of a unit vector are equal to
the cosines of the angles
between the vector and the
axes

X

Y

Z
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⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

where:

• r11, r12, r13 are the direction cosines of the secondary x-axis,
• r21, r22, r23 are the direction cosines of the secondary y-axis,
• r31, r32, r33 are the direction cosines of the secondary z-axis.

To illustrate this operation, consider the scenario shown in Fig. 9.20with two axial
systems mutually aligned. Evaluating the direction cosines results in the following
matrix transformation: ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

which is the identity matrix and implies that (x′, y′, z′) = (x, y, z) .
Figure9.21 shows another scenario where the axes are rolled 90◦, and the associ-

ated transform is

Fig. 9.20 Two axial systems
mutually aligned

X

Y

Z

Fig. 9.21 The X ′Y ′Z ′ axial
system after a roll of 90◦

X

Y

Z
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⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

Substituting (1, 1, 0) for (x, y, z) produces (1, −1, 0) for (x′, y′, z′) in the new
frame of reference, which by inspection, is correct.

If the virtual camera is offset by (tx, ty, tz) the transform relating points in world
space to camera space is expressed as a compound operation consisting of a trans-
lation back to the origin, followed by a change of axial systems. This is expressed
as ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 −tx
0 1 0 −ty
0 0 1 −tz
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

To illustrate this, consider the scenario shown in Fig. 9.22. The values of (tx, ty, tz)
are (10, 1, 1), and the direction cosines are as shown in the following matrix oper-
ation: ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 −10
0 1 0 −1
0 0 1 −1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

which simplifies to ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 10
0 1 0 −1
0 0 −1 1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

Substituting (0, 0, 0) for (x, y, z) in the above transform produces (10, −1, 1) for
(x′, y′, z′), which can be confirmed from Fig. 9.22. Similarly, substituting (0, 1, 1)
for (x, y, z) produces (10, 0, 0) for (x′, y′, z′), which is also correct.

Fig. 9.22 The secondary
axial system is subject to a
yaw of 180◦ and an offset of
(10, 1, 1)

X

Y

Z

(10, 1, 1)

(0, 1, 1)  (10, 0, 0)

(0, 0, 0)  (10, -1, 1)
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9.8.2 Euler Angles

Another approach for locating the virtual camera involves Euler angles, but we must
remember that they suffer from gimbal lock. However, if the virtual camera is located
inworld space using Euler angles, the transform relatingworld coordinates to camera
coordinates can be derived from the inverse operations. The yaw, pitch, roll matrices
described above are called orthogonal matrices, as the inverse matrix is the transpose
of the original rows and columns. Consequently, to rotate through angles −roll,
−pitch and −yaw, we use

• rotate −roll about the z-axis:

⎡

⎢⎢
⎣

cos roll sin roll 0 0
− sin roll cos roll 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

• rotate −pitch about the x-axis:

⎡

⎢⎢
⎣

1 0 0 0
0 cos pitch sin pitch 0
0 − sin pitch cos pitch 0
0 0 0 1

⎤

⎥⎥
⎦ .

• rotate −yaw about the y-axis:

⎡

⎢⎢
⎣

cos yaw 0 − sin yaw 0
0 1 0 0

sin yaw 0 cos yaw 0
0 0 0 1

⎤

⎥⎥
⎦ .

The same result is obtained by substituting −roll, −pitch, −yaw in the original
matrices. As described above, the virtual camera will normally be translated from
the origin by (tx, ty, tz), which implies that the transform from the world space to
the camera space must be evaluated as follows:

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ = [−roll

] [−pitch
] [−yaw

] [
translate(−tx, −ty, −tz)

]

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦
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which is represented by a single homogeneous matrix:

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

where

T11 = cos(yaw) cos(roll) + sin(yaw) sin(pitch) sin(roll)

T12 = cos(pitch) sin(roll)

T13 = − sin(yaw) cos(roll) + cos(yaw) sin(pitch) sin(roll)

T14 = −(txT11 + tyT12 + tzT13)

T21 = − cos(yaw) sin(roll) + sin(yaw) sin(pitch) cos(roll)

T22 = cos(pitch) cos(roll)

T23 = − sin(yaw) sin(roll) + cos(yaw) sin(pitch) cos(roll)

T24 = −(txT21 + tyT22 + tzT23)

T31 = sin(yaw) cos(pitch)

T32 = − sin(pitch)

T33 = cos(yaw) cos(pitch)

T34 = −(txT31 + tyT32 + tzT33)

T41 = T42 = T43 = 0

T44 = 1.

For example, consider the scenario shown in Fig. 9.22 where the following con-
ditions prevail:

roll = 0◦

pitch = 0◦

yaw = 180◦

tx = 10

ty = 1

tz = 1.

The transform is ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 10
0 1 0 −1
0 0 −1 1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

which is identical to the equation used for direction cosines.
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Fig. 9.23 The secondary
axial system is subject to a
roll of 90◦, a pitch of 180◦
and a translation of
(0.5, 0.5, 11)

X

Y

Z

(1, 1, 1)

(0.5, 0.5, 11)

Another scenario is shown in Fig. 9.23 where the following conditions prevail:

roll = 90◦

pitch = 180◦

yaw = 0◦

tx = 0.5

ty = 0.5

tz = 11.

The transform is ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 −1 0 0.5
−1 0 0 0.5
0 0 −1 11
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

Substituting (1, 1, 1) for (x, y, z) produces (−0.5, −0.5, 10) for (x′, y′, z′).
Similarly, substituting (0, 0, 1) for (x, y, z) produces (0.5, 0.5, 10) for
(x′, y′, z′), which can be visually verified from Fig. 9.23.

9.9 Rotating a Point About an Arbitrary Axis

9.9.1 Matrices

Let’s consider two ways of developing a matrix for rotating a point about an arbitrary
axis. The first approach employs vector analysis and is quite succinct. The second
technique is less analytical and relies on matrices and trigonometric evaluation and
is rather laborious. Fortunately, they both arrive at the same result!
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Fig. 9.24 A view of the
geometry associated with
rotating a point about an
arbitrary axis
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Fig. 9.25 A cross-section
and plan view of the
geometry associated with
rotating a point about an
arbitrary axis
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N
P

r

|r|

Figure9.24 shows a view of the geometry associated with the task at hand. For
clarification, Fig. 9.25 shows a cross-section and a plan view of the geometry.

The axis of rotation is given by the unit vector:

n̂ = ai + bj + ck.

P(xp, yp zp) is the point to be rotated by angle α to P′(x′
p, y′

p, z′p).

O is the origin, whilst p and p′ are position vectors for P and P′ respectively.
From Figs. 9.24 and 9.25:

p′ = −→
ON + −→

NQ + −→
QP′.

To find
−→
ON :

|n| = |p| cos θ = n̂ · p

therefore, −→
ON = n = n̂(n̂ · p).

To find
−→
NQ:

−→
NQ = NQ

NP
r = NQ

NP′ r = cosα r
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but
p = n + r = n̂(n̂ · p) + r

therefore,
r = p − n̂(n̂ · p)

and −→
NQ = [p − n̂(n̂ · p)] cosα.

To find
−→
QP′:

Let
n̂ × p = w

where
|w| = |n̂||p| sin θ = |p| sin θ

but
|r| = |p| sin θ

therefore,
|w| = |r|.

Now
QP′

NP′ = QP′

|r| = QP′

|w| = sin α

therefore, −→
QP′ = w sin α = (n̂ × p) sin α

then
p′ = n̂(n̂ · p) + [p − n̂(n̂ · p] cosα + (n̂ × p) sin α

and
p′ = p cosα + n̂(n̂ · p)(1 − cosα) + (n̂ × p) sin α.

Let
K = 1 − cosα

then
p′ = p cosα + n̂(n̂ · p)K + (n̂ × p) sin α
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Fig. 9.26 The geometry
associated with rotating a
point about an arbitrary axis

X

Y

Z

P
v

a

b

c φ

α

θ

and

p′ = (xpi + ypj + zpk) cosα + (ai + bj + ck)(axp + byp + czp)K

+ [(bzp − cyp)i + (cxp − azp)j + (ayp − bxp)k] sin α

p′ = [xp cosα + a(axp + byp + czp)K + (bzp − cyp) sin α]i
+ [yp cosα + b(axp + byp + czp)K + (cxp − azp) sin α]j
+ [zp cosα + c(axp + byp + czp)K + (ayp − bxp) sin α]k

p′ = [xp(a2K + cosα) + yp(abK − c sin α) + zp(acK + b sin α)]i
+ [xp(abK + c sin α) + yp(b

2K + cosα) + zp(bcK − a sin α)]j
+ [xp(acK − b sin α) + yp(bcK + a sin α) + zp(c

2K + cosα)]k

and the transform is:

⎡

⎢⎢⎢
⎣

x′
p

y′
p

z′p
1

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

a2K + cosα abK − c sin α acK + b sin α 0
abK + c sin α b2K + cosα bcK − a sin α 0
acK − b sin α bcK + a sin α c2K + cosα 0

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

xp
yp
zp
1

⎤

⎥⎥
⎦

where
K = 1 − cosα.

Now let’s approach the problem using transforms and trigonometric identities.
The following is extremely tedious, but it is a good exercise for improving one’s
algebraic skills!

Figure9.26 shows a point P(x, y, z) to be rotated through an angle α to
P′(x′, y′, z′) about an axis defined by

v = ai + bj + ck

where |v| = 1.
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The transforms to achieve this operation is expressed as follows:

⎡

⎣
x′
y′
z′

⎤

⎦ = [T5] [T4] [T3] [T2] [T1]

⎡

⎣
x
y
z

⎤

⎦

which aligns the axis of rotationwith the x-axis, performs the rotation ofP through an
angle α about the x-axis, and returns the axis of rotation back to its original position.
Therefore,

T1 rotates +φ about the y-axis
T2 rotates −θ about the z-axis
T3 rotates +α about the x-axis
T4 rotates +θ about the z-axis
T5 rotates −φ about the y-axis

where

T1 =
⎡

⎣
cosφ 0 sin φ

0 1 0
− sin φ 0 cosφ

⎤

⎦ T2 =
⎡

⎣
cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤

⎦

T3 =
⎡

⎣
1 0 0
0 cosα − sin α

0 sin α cosα

⎤

⎦ T4 =
⎡

⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤

⎦

T5 =
⎡

⎣
cosφ 0 − sin φ

0 1 0
sin φ 0 cosφ

⎤

⎦ .

Let

[T5] [T4] [T3] [T2] [T1] =

⎡

⎢⎢
⎣

E11 E12 E13 0
E21 E22 E23 0
E31 E32 E33 0
0 0 0 1

⎤

⎥⎥
⎦

where by multiplying the matrices together we find that:

E11 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα

E12 = cosφ cos θ sin θ − cosφ sin θ cos θ cosα − sin φ cos θ sin α

E13 = cosφ sin φ cos2 θ + cosφ sin φ sin2 θ cosα + sin2 φ sin θ sin α

+ cos2 φ sin θ sin α − cosφ sin φ cosα

E21 = sin θ cos θ cosφ − cos θ sin θ cosφ cosα + cos θ sin φ sin α

E22 = sin2 θ + cos2 θ cosα

E23 = sin θ cos θ sin φ − cos θ sin θ sin φ cosα − cos θ cosφ sin α

E31 = cosφ sin φ cos2 θ + cosφ sin φ sin2 θ cosα − cos2 φ sin θ sin α
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= − cosφ sin φ cosα

E32 = sin φ cos θ sin θ − sin φ sin θ cos θ cosα + cosφ cos θ sin α

E33 = sin2 φ cos2 θ + sin2 φ sin2 θ cosα − cosφ sin φ sin θ sin α

+ cosφ sin φ sin θ sin α + cos2 φ cosα.

From Fig. 9.26 we compute the sin and cos of θ and φ in terms of a, b and c, and
then compute their equivalent sin2 and cos2 values:

cos θ =
√
1 − b2 ⇒ cos2 θ = 1 − b2

sin θ = b ⇒ sin2 θ = b2

cosφ = a√
1 − b2

⇒ cos2 φ = a2

1 − b2

sin φ = c√
1 − b2

⇒ sin2 φ = c2

1 − b2
.

To find E11:

E11 = cos2 φ cos2 θ + cos2 φ sin2 θ cosα + sin2 φ cosα

= a2

1 − b2
(1 − b2) + a2

1 − b2
b2 cosα + c2

1 − b2
cosα

= a2 + a2b2

1 − b2
cosα + c2

1 − b2
cosα

= a2 +
(
c2 + a2b2

1 − b2

)
cosα

but
a2 + b2 + c2 = 1 ⇒ c2 = 1 − a2 − b2

substituting c2 in E11

E11 = a2 +
(
1 − a2 − b2 + a2b2

1 − b2

)
cosα

= a2 +
(

(1 − a2)(1 − b2)

1 − b2

)
cosα

= a2 + (1 − a2) cosα

= a2(1 − cosα) + cosα.

Let
K = 1 − cosα
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then
E11 = a2K + cosα.

To find E12:

E12 = cosφ cos θ sin θ − cosφ sin θ cos θ cosα − sin φ cos θ sin α

= a√
1 − b2

√
1 − b2b − a√

1 − b2
b
√
1 − b2 cosα − c√

1 − b2

√
1 − b2 sin α

= ab − ab cosα − c sin α

= ab(1 − cosα) − c sin α

E12 = abK − c sin α.

To find E13:

E13 = cosφ sin φ cos2 θ + cosφ sin φ sin2 θ cosα + sin2 φ sin θ sin α

+ cos2 φ sin θ sin α − cosφ sin φ cosα

= cosφ sin φ cos2 θ + cosφ sin φ sin2 θ cosα + sin θ sin α − cosφ sin φ cosα

= a√
1 − b2

c√
1 − b2

(1 − b2) + a√
1 − b2

c√
1 − b2

b2 cosα + b sin α

− a√
1 − b2

c√
1 − b2

cosα

= ac + ac
b2

(1 − b2)
cosα + b sin α − ac

(1 − b2)
cosα

= ac + ac
(b2 − 1)

(1 − b2)
cosα + b sin α

= ac(1 − cosα) + b sin α

E13 = acK + b sin α.

Using similar algebraic methods, we discover that:

E21 = abK + c sin α

E22 = b2K + cosα

E23 = bcK − a sin α

E31 = acK − b sin α

E32 = bcK + a sin α

E33 = c2K + cosα

and our original matrix transform becomes:
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⎡

⎢⎢⎢
⎣

x′
p

y′
p

z′p
1

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

a2K + cosα abK − c sin α acK + b sin α 0
abK + c sin α b2K + cosα bcK − a sin α 0
acK − b sin α bcK + a sin α c2K + cosα 0

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

xp
yp
zp
1

⎤

⎥⎥
⎦

where
K = 1 − cosα.

which is identical to the transformation derived from the first approach. Now let’s
test the matrix with a simple example that can be easily verified. We do this by
rotating a point P(10, 5, 0), about an arbitrary axis v = i + j + k, through 360◦,
which should return it to itself producing P(10, 5, 0).

Therefore,
α = 360◦, cosα = 1, sin α = 0, K = 0

a = 1, b = 1, c = 1

and ⎡

⎢⎢
⎣

10
5
0
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

10
5
0
1

⎤

⎥⎥
⎦ .

As the matrix is an identity matrix P′ = P.

9.9.2 Quaternions

As mentioned earlier, quaternions were invented by Sir William Rowan Hamilton in
the mid-nineteenth century. Sir William was looking for a way to represent complex
numbers in higher dimensions, and it took 15 years of toil before he stumbled upon
the idea of using a 4D notation – hence the name ‘quaternion’.

Knowing that a complex number is the combination of a real and imaginary
quantity: a + ib, it is tempting to assume that its 3D equivalent is a + ib + jc where
i2 = j2 = −1.Unfortunately,whenHamilton formed the product of two such objects,
he could not resolve the dyads ij and ji, and went on to explore an extension a +
ib + jc + kd where i2 = j2 = k2 = −1. This too, presented problems with the dyads
ij, jk, ki and their mirrors ji, kj and ik. But after many years of thought Hamilton
stumbled across the rules:

i2 = j2 = k2 = ijk = −1,

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j.
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Although quaternions had some enthusiastic supporters, thereweremanymathemati-
cians and scientists who were suspicious of the need to involve so many imaginary
terms.

Towards the end of the nineteenth century Josiah Gibbs resolved the problem
by declaring that the three imaginary quantities could be viewed as a 3D vector
and changed the ib + jc + kd into bi + cj + dk, where i, j and k are unit Cartesian
vectors. Today, there are two ways of defining a quaternion:

q = [s, v]
q = [s + v].

The difference is rather subtle: the first separates the scalar and the vector with a
comma, whereas the second preserves the ‘+’ sign as used in complex numbers.
Although the idea of adding a scalar to a vector seems strange, this notation is used
for the rest of this section as it will help us understand the ideas behind geometric
algebra, which are introduced later on.

Since Hamilton’s invention, mathematicians have shown that quaternions can be
used to rotate points about an arbitrary axis, and hence the orientation of objects and
the virtual camera. In order to develop the equation that performs this transformation
we will have to understand the action of quaternions in the context of rotations.

A quaternion q is the combination of a scalar and a vector:

q = [s + v]

where s is a scalar and v is a 3D vector. If we express the vector v in terms of its
components, we have in an algebraic form

q = [s + xi + yj + zk], where s, x, y, z ∈ R.

9.9.3 Adding and Subtracting Quaternions

Given two quaternions q1 and q2:

q1 = [s1 + v1] = [s1 + x1i + y1j + z1k]
q2 = [s2 + v2] = [s2 + x2i + y2j + z2k]

they are equal if, and only if, their corresponding terms are equal. Furthermore, like
vectors, they can be added and subtracted as follows:

q1 ± q2 = [(s1 ± s2) + (x1 ± x2)i + (y1 ± y2)j + (z1 ± z2)k].
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9.9.4 Multiplying Quaternions

When multiplying quaternions we must employ the following rules:

i2 = j2 = k2 = ijk = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.

Note that whilst quaternion addition is commutative, the rules make quaternion prod-
ucts non-commutative, just like matrices.

Given two quaternions q1 and q2:

q1 = [s1 + v1] = [s1 + x1i + y1j + z1k]
q2 = [s2 + v2] = [s2 + x2i + y2j + z2k]

their product q1q2 is given by:

q1q2 = [(s1s2 − x1x2 − y1y2 − z1z2) + (s1x2 + s2x1 + y1z2 − y2z1)i

+ (s1y2 + s2y1 + z1x2 − z2x1)j + (s1z2 + s2z1 + x1y2 − x2y1)k

which can be rewritten using the dot and cross product notation as

q1q2 = [(s1s2 − v1 · v2) + s1v2 + s2v1 + v1 × v2]

where
s1s2 − v1 · v2 is a scalar

and
s1v2 + s2v1 + v1 × v2 is a vector.

9.9.5 Pure Quaternion

A pure quaternion has a zero scalar term:

q = [v]

which is a vector. Therefore, given two pure quaternions:

q1 = [v1] = [x1i + y1j + z1k]
q2 = [v2] = [x2i + y2j + z2k]
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their product is another pure quaternion:

q1q2 = [v1 × v2].

9.9.6 The Inverse Quaternion

Given the quaternion
q = [s + xi + yj + zk]

its inverse q−1 is given by

q−1 = [s − xi − yj − zk]
|q|2

where |q| is the magnitude, or modulus of q, and equals:

|q| =
√
s2 + x2 + y2 + z2.

It can also be shown that
qq−1 = q−1q = 1.

9.9.7 Unit Quaternion

A unit quaternion has a magnitude equal to 1:

|q| =
√
s2 + x2 + y2 + z2 = 1.

9.9.8 Rotating Points About an Axis

Quaternions are used with vectors rather than individual points. Therefore, in order
to manipulate a single point, it is turned into a position vector, which has its tail at
the origin. A point is then represented in quaternion form by its equivalent position
vector with a zero scalar term. For example, the point P(x, y, z) is represented in
quaternion form by

P = [0 + xi + yj + zk]

which is transformed into another position vector using the process described below.
The coordinates of the rotated point are the components of the rotated position vector.
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This may appear complicated, but in reality it turns out to be rather simple. Let’s
consider how this is achieved.

It can be shown that a position vector P is rotated through an angle θ about an
axis using the following operation:

P′ = qPq−1

where the axis and angle of rotation are encoded within the unit quaternion q, whose
modulus is 1, and P′ is the rotated vector. For example, to rotate a point P(x, y, z)
through an angle θ about an axis u, we use the following steps:

1. Convert the point P(x, y, z) to a pure quaternion P:

P = [0 + xi + yj + zk].

2. Define the axis of rotation as a unit vector û:

û = xui + yuj + zuk

and
|û| = 1.

3. Define the transforming quaternion q:

q =
[
cos

θ

2
+ sin

θ

2
û
]
.

4. Define the inverse of the transforming quaternion q−1:

q−1 =
[
cos

θ

2
− sin

θ

2
û
]
.

5. Compute P′:
P′ = qPq−1.

6. Unpack (x′, y′, z′):

P′(x′, y′, z′) ⇐ P′ = [0 + x′i + y′j + z′k].

We can verify the action of the above transform with a simple example.
Consider the point P(0, 1, 1) in Fig. 9.27 which is to be rotated 90◦ about the

y-axis. We can see that the rotated point P′ has the coordinates (1, 1, 0) which we
will confirm algebraically. The point P is represented by the quaternion P:

P = [0 + 0i + 1j + 1k]
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Fig. 9.27 The point
P(0, 1, 1) is rotated to
P′(1, 1, 0) using a
quaternion coincident with
the y-axis

X

Y

Z

(1,1,0)P(0,1,1)

j

and is rotated by evaluating the quaternion P′:

P′ = qPq−1

which stores the rotated coordinates. The axis of rotation is j , therefore the unit
quaternion q is given by

q =
[
cos

90◦

2
+ sin

90◦

2
(0i + j + 0k)

]

= [cos 45◦ + 0i + sin 45◦j + 0k].

The inverse quaternion q−1 is given by

q−1 =
[
cos 90◦

2 − sin 90◦
2 (0i + j − 0k)

]

|q|2

but as q is a unit quaternion, the denominator |q|2 equals unity and can be ignored.
Therefore

q−1 = [cos 45◦ − 0i − sin 45◦j − 0k].

Let’s evaluate qPq−1 in two stages: (qP)q−1, and for clarity, zero components will
continue to be included.
1.

qP = [cos 45◦ + 0i + sin 45◦j + 0k] [0 + 0i + j + 0k]
= [− sin 45◦ + sin 45◦i + cos 45◦j + cos 45◦k].
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2.

(qP)q−1 = [− sin 45◦ + sin 45◦i + cos 45◦j + cos 45◦k]
· [cos 45◦ − 0i − sin 45◦j − 0k]

= [0 + 2 cos 45◦ sin 45◦i + (cos2 45◦ + sin2 45◦)j + (cos2 45◦ − sin2 45◦)k]
P′ = [0 + i + j + 0k]

and the vector component of P′ confirms that P is indeed rotated to (1, 1, 0).
Let’s evaluate one more example before continuing. Consider a rotation about the

z-axis as illustrated in Fig. 9.28. The original point has coordinates (0, 1, 1) and is
rotated −90◦ to (1, 0, 1). This time the quaternion q is defined by

q =
[
cos

−90◦

2
+ sin

−90◦

2
(0i + 0j + k)

]

= [cos 45◦ + 0i + 0j − sin 45◦k]

with its inverse
q−1 = [cos 45◦ + 0i + 0j + sin 45◦k]

and the point to be rotated in quaternion form is

P = [0 + 0i + j + k].

Evaluating this in two stages we have
1.

qP = [cos 45◦ + 0i + 0j − sin 45◦k] · [0 + 0i + j + k]
= [sin 45◦ + sin 45◦i + cos 45◦j + cos 45◦k].

Fig. 9.28 The point
P(0, 1, 1) is rotated −90◦
to P′(1, 0, 1) using a
quaternion coincident with
the z-axis

X

Y

Z
(1,0,1)

P(0,1,1)

k
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2.

(qP)q−1 = [sin 45◦ + sin 45◦i + cos 45◦j + cos 45◦k]
· [cos 45◦ + 0i + 0j + sin 45◦k]

= [0 + sin 90◦i + cos 90◦j + k]
= [0 + i + 0j + k].

The vector component of P′ confirms that P is rotated to (1, 0, 1).

9.9.9 Roll, Pitch and Yaw Quaternions

Having already looked at roll, pitch and yaw rotations, we can now define them as
quaternions:

qroll =
[
cos

roll

2
+ 0i + 0j + sin

roll

2
k
]

qpitch =
[
cos

pitch

2
+ sin

pitch

2
i + 0j + 0k

]

qyaw =
[
cos

yaw

2
+ 0i + sin

yaw

2
j + 0k

]

where roll, pitch and yaw are the angles of rotation.
These quaternions can be multiplied together to create a single quaternion repre-

senting a compound rotation q:

q = qyawqpitchqroll = [s + xi + yj + zk].

The result after a lot of algebraic expansion is

s = cos
yaw

2
cos

pitch

2
cos

roll

2
+ sin

yaw

2
sin

pitch

2
sin

roll

2

x = cos
yaw

2
sin

pitch

2
cos

roll

2
+ sin

yaw

2
cos

pitch

2
sin

roll

2

y = sin
yaw

2
cos

pitch

2
cos

roll

2
− cos

yaw

2
sin

pitch

2
sin

roll

2

z = cos
yaw

2
cos

pitch

2
sin

roll

2
− sin

yaw

2
sin

pitch

2
cos

roll

2
.
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Note the patterns of cos and sin functions for s, x, y and z:

s : cos cos cos+ sin sin sin

x : cos sin cos+ sin cos sin

y : sin cos cos− cos sin sin

z : cos cos sin− sin sin cos

Let’s try this compound quaternion with an example. Given the following conditions
let’s derive a single quaternion q to represent the compound rotation:

roll = 90◦

pitch = 180◦

yaw = 0◦.

The values of s, x, y, z are

s = 0

x = cos 45◦

y = − sin 45◦

z = 0

and the quaternion q is

q = [0 + cos 45◦i − sin 45◦j + 0k].

If the point P(1, 1, 1) is subjected to this compound rotation, the rotated point
is computed using the standard quaternion transform:

P′ = qPq−1.

Let’s evaluate qPq−1 in two stages:
1.

qP = [0 − sin 45◦i − cos 45◦j + (sin 45◦ + cos 45◦)k].

2.

(qP)q−1 = [0 − sin 45◦i − cos 45◦j + (sin 45◦ + cos 45◦)k]
· [0 − cos 45◦i + sin 45◦j + 0k]

P′ = [0 − i − j − k].



9.9 Rotating a Point About an Arbitrary Axis 199

Fig. 9.29 The point
P(1, 1, 1) is subject to a
compound roll of 90◦ to
(−1, 1, 1) and a pitch of
180◦ and ends up at
P′(−1, −1, −1)

X

Y

Z

(-1,-1,-1)

P(1,1,1)

(-1,1,1)

roll = 90◦

pitch = 180◦

Therefore, the coordinates of the rotated point are (−1, −1, −1) which can be
confirmed from Fig. 9.29.

9.9.10 Quaternions in Matrix Form

There is a direct relationship between quaternions and matrices. For example, given
the quaternion

[s + xi + yj + zk]

the equivalent matrix is ⎡

⎣
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤

⎦

where

M11 = 1 − 2(y2 + z2)

M12 = 2(xy − sz)

M13 = 2(xz + sy)

M21 = 2(xy + sz)

M22 = 1 − 2(x2 + z2)

M23 = 2(yz − sx)

M31 = 2(xz − sy)

M32 = 2(yz + sx)

M33 = 1 − 2(x2 + y2).
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Substituting the following values of s, x, y, z:

s = 0

x = cos 45◦

y = − sin 45◦

z = 0

the matrix transformation is
⎡

⎣
x′
y′
z′

⎤

⎦ =
⎡

⎣
0 −1 0

−1 0 0
0 0 −1

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ .

Substituting (1, 1, 1) for (x, y, z) the rotated point (x′, y′, z′) becomes
(−1, −1, −1) as shown in Fig. 9.29.

9.9.11 Frames of Reference

A quaternion, or its equivalent matrix, can be used to rotate a vertex or position
a virtual camera. If unit quaternions are used, the associated matrix is orthogonal,
which means that its transpose is equivalent to rotating the frame of reference in
the opposite direction. For example, if the virtual camera is oriented with a yaw
rotation of 180◦, i.e. looking along the negative z-axis, the orientation quaternion is
[0 + 0i + j + 0k] . Therefore s = 0, x = 0, y = 1, z = 0. The equivalent matrix is

⎡

⎣
−1 0 0
0 1 0
0 0 −1

⎤

⎦

which is equal to its transpose. Therefore, a vertex (x, y, z) in world space has
coordinates (x′, y′, z′) in camera space and the transform is defined by

⎡

⎣
x′
y′
z′

⎤

⎦ =
⎡

⎣
−1 0 0
0 1 0
0 0 −1

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ .

If the vertex (x, y, z) = (1, 1, 0), then (x′, y′, z′) = (−1, 1, 0), which is correct.
However, it is unlikely that the virtual camera will only be subjected to a simple
rotation, as it will normally be translated from the origin. Consequently, a translation
matrix will have to be introduced as described above.
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9.10 Transforming Vectors

The transforms described in this chapter have been used to transform single points.
However, a geometric database will not only contain pure vertices, but vectors, which
must also be subject to any prevailing transform. A generic transformQ of a 3D point
is represented by ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ = [

Q
]

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

and as a vector is defined by two points we can write

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ = [

Q
]

⎡

⎢⎢
⎣

x2 − x1
y2 − y1
z2 − z1
1 − 1

⎤

⎥⎥
⎦

where we see the homogeneous scaling term collapse to zero; which implies that any
vector [x y z]T can be transformed using

⎡

⎢⎢
⎣

x′
y′
z′
0

⎤

⎥⎥
⎦ = [

Q
]

⎡

⎢⎢
⎣

x
y
z
0

⎤

⎥⎥
⎦

Let’s put this to the test by using a transform from an earlier example. The prob-
lem concerned a change of axial system where a virtual camera was subject to the
following:

roll = 180◦

pitch = 90◦

yaw = 90◦

tx = 2

ty = 2

tz = 0

and the transform is ⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 −1 0 2
0 0 1 0

−1 0 0 2
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .
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Fig. 9.30 Vector [1 1 0]T
is transformed to
[−1 0 − 1]T

X

Y

Z

(2,2,0)

[1 1 0]
[-1 0 -1]

(1,1,0)

The point (1, 1, 0) is transformed to (1, 0, 1), as shown in Fig. 9.30. And the vector
[1 1 0]T is transformed to [−1 0 − 1]T , using the following transform

⎡

⎢⎢
⎣

−1
0

−1
0

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 −1 0 2
0 0 1 0

−1 0 0 2
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1
1
0
0

⎤

⎥⎥
⎦

which is correct with reference to Fig. 9.30.

9.11 Determinants

Before concluding this chapter, I would like to expand upon the role of the determi-
nant in transforms (Fig. 9.31).

In Chap.6 we saw that determinants arise in the solution of linear equations. Now
let’s investigate their graphical significance. Consider the transform:

Fig. 9.31 The inner
parallelogram is the
transformed unit square

http://dx.doi.org/10.1007/978-1-4471-7336-6_6
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[
x′
y′

]
=

[
a b
c d

] [
x
y

]
.

The determinant of the transform is ad − cb. If we subject the vertices of a unit-
square to this transform, we create the situation shown in Fig. 9.31. The vertices of
the unit-square are transformed as follows:

(0, 0) ⇒ (0, 0)

(1, 0) ⇒ (a, c)

(1, 1) ⇒ (a + b, c + d)

(0, 1) ⇒ (b, d).

From Fig. 9.31 it can be seen that the area of the transformed unit-square A′ is given
by

area = (a + b)(c + d) − 2B − 2C − 2D

= (ac + ad + cb + bd) − bd − 2cb − ac

= ad − cb

which is the determinant of the transform. But as the area of the original unit-square
is 1, the determinant of the transform controls the scaling factor applied to the trans-
formed shape.

Let’s examine the determinants of two transforms: The first 2D transform encodes
a scaling of 2, and results in an overall area scaling of 4:

[
2 0
0 2

]

and the determinant is ∣∣∣∣
2 0
0 2

∣∣∣∣ = 4.

The second 2D transform encodes a scaling of 3 and a translation of (3, 3), and
results in an overall area scaling of 9:

⎡

⎣
3 0 3
0 3 3
0 0 1

⎤

⎦

and the determinant is

3

∣∣∣∣
3 3
0 1

∣∣∣∣ − 0

∣∣∣∣
0 3
0 1

∣∣∣∣ + 0

∣∣∣∣
0 3
3 3

∣∣∣∣ = 9.

These two examples demonstrate the extra role played by the elements of a matrix.
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9.12 Perspective Projection

Of all the projections employed in computer graphics, the perspective projection is
one most widely used. There are two stages to its computation: the first involves
converting world coordinates to the camera’s frame of reference, and the second
transforms camera coordinates to the projection plane coordinates. We have already
looked at the transforms for locating a camera in world space, and the inverse trans-
form for converting world coordinates to the camera’s frame of reference. Let’s
now investigate how these camera coordinates are transformed into a perspective
projection.

We begin by assuming that the camera is directed along the z-axis as shown in
Fig. 9.32. Positioned d units along the z-axis is a projection screen, which is used
to capture a perspective projection of an object. Figure9.32 shows that any point
(xc, yc, zc) is transformed to (xp, yp, d). It also shows that the screen’s x-axis is
pointing in the opposite direction to the camera’s x-axis, which can be compensated
for by reversing the sign of xp when it is computed.

Figure9.33 shows a plan view of the scenario depicted in Figs. 9.32, and 9.34 a
side view. Next, we reverse the sign of xp and state:

Fig. 9.32 The axial system
used to produce a perspective
view

Xc

(xc,yc,zc)
Yc

Zc

Xp

Ypxp

yp

d

Fig. 9.33 The plan view of
the camera’s axial system

Xc (xc,yc,zc)

Zc

xp

d

screen

zc

xc
(xp,yp,d)



9.12 Perspective Projection 205

Fig. 9.34 The side view of
the camera’s axial system

Yc (xc,yc,zc)

Zc

yp

d

screen

zc

yc
(xp,yp,d)

xc
zc

= −xp
d

xp = −xc
zc/d

and

yc
zc

= yp
d

yp = yc
zc/d

.

This is expressed in matrix form as

⎡

⎢⎢
⎣

xp
yp
zp
w

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

xc
yc
zc
1

⎤

⎥⎥
⎦ .

At first the transform seems strange, but if we multiply this out we get

[xp yp zp w]T = [−xc yc zc zc/d]T

and if we remember the idea behind homogeneous coordinates, we must divide the
terms xp, yp, zp by w to get the scaled terms, which produces



206 9 Geometric Transforms

xp = −xc
zc/d

yp = yc
zc/d

zp = zc
zc/d

= d

which, after all, is rather elegant. Notice that this transform takes into account the sign
change that occurs with the x-coordinate. Some algorithms delay this sign reversal
until the mapping is made to screen coordinates.

9.13 Summary

The purpose of this chapter was to introduce the reader to transforms and matrices
– I hope this has been achieved. This is not the end of the subject, as one can do
so much with matrices and quaternions. For example, it would be interesting to see
how a matrix behaves when some of its elements are changed dynamically, and what
happens when we interpolate between a pair of quaternions. Such topics will be
addressed in later chapters.

9.14 Worked Examples

9.14.1 2D Scaling Transform

State the 2D homogeneous matrix to scale by a factor of 2 in the x-direction and 3 in
the y-direction. ⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
2 0 0
0 3 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦ .

9.14.2 2D Scale and Translate

Given matrix T1 which scales a 2D point by a factor of 2, and T2 which translates a
2D point by x = 2 and y = 2, combine them in two possible ways and show that the
point (1, 1) is transformed to two different places.
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T1 =
⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
2 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

T2 =
⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 2
0 1 2
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

T1T2 =
⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
2 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣
1 0 2
0 1 2
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

=
⎡

⎣
2 0 4
0 2 4
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

and the point (1, 1) is transformed to (6, 6).

T2T1 =
⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
1 0 2
0 1 2
0 0 1

⎤

⎦

⎡

⎣
2 0 0
0 2 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

=
⎡

⎣
2 0 2
0 2 2
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

and the point (1, 1) is transformed to (4, 4).

9.14.3 3D Scaling Transform

Derive the 3D homogeneous matrix to scale by a factor of 2 in the x-direction, 3 in
the y-direction and 4 in the z-direction, relative to the point (1, 1, 1), and compute
the transformed position of (2, 2, 2).

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

sx 0 0 px(1 − sx)
0 sy 0 py(1 − sy)
0 0 sz pz(1 − sz)
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .

Substituting the given values:

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

2 0 0 −1
0 3 0 −2
0 0 4 −3
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦ .
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Table 9.1 Original and
rotated coordinates of the unit
square

x y x′ y′

0 0 0 0

1 0 0 1

1 1 –1 1

0 1 –1 0

The point (2, 2, 2) is transformed to (3, 4, 5):

⎡

⎢⎢
⎣

3
4
5
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

2 0 0 −1
0 3 0 −2
0 0 4 −3
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

2
2
2
1

⎤

⎥⎥
⎦ .

9.14.4 2D Rotation

Compute the coordinates of the unit square in Table9.1 after a rotation of 90◦.
The points are rotated as follows:

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β 0
sin β cosβ 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

=
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

⎡

⎣
0
0
1

⎤

⎦ =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
0
0
1

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦ =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
1
0
1

⎤

⎦

⎡

⎣
−1
1
1

⎤

⎦ =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦

⎡

⎣
−1
0
1

⎤

⎦ =
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦

⎡

⎣
0
1
1

⎤

⎦ .
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9.14.5 2D Rotation About a Point

Derive the 2D homogeneous matrix to rotate 180◦ about (−1, 0), and compute the
transformed position of (0, 0).

⎡

⎣
x′
y′
1

⎤

⎦ =
⎡

⎣
cosβ − sin β px(1 − cosβ) + py sin β

sin β cosβ py(1 − cosβ) − px sin β

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

=
⎡

⎣
cos 180◦ − sin 180◦ −1(1 − cos 180◦) + 0 sin 180◦
sin 180◦ cos 180◦ 0(1 − cos 180◦) + 1 sin 180◦

0 0 1

⎤

⎦

⎡

⎣
x
y
1

⎤

⎦

⎡

⎣
−2
0
1

⎤

⎦ =
⎡

⎣
−1 0 −2
0 −1 0
0 0 1

⎤

⎦

⎡

⎣
0
0
1

⎤

⎦ .

The point (0, 0) is rotated to (−2, 0).

9.14.6 Determinant of the Rotate Transform

Using determinants, show that the rotate transform preserves area.
The determinant of a 2D matrix transform reflects the area change produced by

the transform. Therefore, if area is preserved, the determinant must equal 1. Using
Sarrus’s rule: ∣

∣∣∣∣∣

⎡

⎣
cosβ − sin β 0
sin β cosβ 0
0 0 1

⎤

⎦

∣
∣∣∣∣∣
= cos2 β + sin2 β = 1

which confirms the role of the determinant.

9.14.7 Determinant of the Shear Transform

Using determinants, show that the shear transform preserves area.
The determinant of a 2D matrix transform reflects the area change produced by

the transform. Therefore, if area is preserved, the determinant must equal 1. Using
Sarrus’s rule: ∣∣

∣∣∣∣

⎡

⎣
1 tan β 0
0 1 0
0 0 1

⎤

⎦

∣∣
∣∣∣∣
= 1

which confirms the role of the determinant.
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9.14.8 Yaw, Pitch and Roll Transforms

Using the yaw and pitch transforms in the sequence yaw × pitch, compute how the
point (1, 1, 1) is transformed with yaw = pitch = 90◦.

⎡

⎣
x′
y′
1

⎤

⎦ =

⎡

⎢⎢
⎣

cos yaw 0 sin yaw 0
0 1 0 0

− sin yaw 0 cos yaw 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 0
0 cos pitch − sin pitch 0
0 sin pitch cos pitch 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

0 0 1 0
0 1 0 0

−1 0 0 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1
−1
−1
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 1 0 0
0 0 −1 0

−1 0 0 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1
1
1
1

⎤

⎥⎥
⎦

therefore, (1, 1, 1) is transformed to (1,−1,−1).

9.14.9 3D Rotation About an Axis

Derive a homogeneous matrix to rotate (−1, 1, 0), 270◦ about an axis parallel to the
y-axis, and intersecting (1, 0, 0).

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cosβ 0 sin β px(1 − cosβ) − pz sin β

0 1 0 0
− sin β 0 cosβ pz(1 − cosβ) + px sin β

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

cos 270◦ 0 sin 270◦ 1(1 − cos 270◦) − 0 sin 270◦
0 1 0 0

− sin 270◦ 0 cos 270◦ 0(1 − cos 270◦) + 1 sin 270◦
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

=

⎡

⎢⎢
⎣

0 0 −1 1(1 − 0)
0 1 0 0
1 0 0 0(1 − 0) − 1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

=

⎡

⎢
⎢
⎣

0 0 −1 1
0 1 0 0
1 0 0 −1
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
y
z
1

⎤

⎥
⎥
⎦
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⎡

⎢⎢
⎣

1
1

−2
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

0 0 −1 1
0 1 0 0
1 0 0 −1
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

−1
1
0
1

⎤

⎥⎥
⎦ .

The point (−1, 1, 0) is rotated to (1, 1,−2).

9.14.10 3D Rotation Transform Matrix

Show that the matrix for rotating a point about an arbitrary axis corresponds to the
three matrices for rotating about the x-, y- and z-axis.

⎡

⎢
⎢
⎣

a2K + cosα abK − c sin α acK + b sin α 0
abK + c sin α b2K + cosα bcK − a sin α 0
acK − b sin α bcK + a sin α c2K + cosα 0

0 0 0 1

⎤

⎥
⎥
⎦

Pitch about the x-axis: n̂ = i, where a = 1 and b = c = 0; K = 1 − cosα.

pitch =

⎡

⎢⎢
⎣

1 0 0 0
0 cosα − sin α 0
0 sin α cosα 0
0 0 0 1

⎤

⎥⎥
⎦

Yaw about the y-axis: n̂ = j, where b = 1 and a = c = 0; K = 1 − cosα.

yaw =

⎡

⎢⎢
⎣

cosα 0 sin α 0
0 1 0 0

− sin α 0 cosα 0
0 0 0 1

⎤

⎥⎥
⎦

Roll about the z-axis: n̂ = k, where c = 1 and a = b = 0; K = 1 − cosα.

roll =

⎡

⎢⎢
⎣

cosα − sin α 0 0
sin α cosα 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦ .

9.14.11 2D Change of Axes

Derive a 2D homogeneous matrix to compute (1, 1) in an axial systemwith direction
cosines cosβ = √

2/2 and sin β = −√
2/2.
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⎡

⎣
x′
y′
1

⎤

⎦ =
[

cosβ sin β

− sin β cosβ

]⎡

⎣
x
y
1

⎤

⎦

=
[√

2/2 −√
2/2√

2/2
√
2/2

] ⎡

⎣
1
1
1

⎤

⎦

⎡

⎣
0√
2
1

⎤

⎦ =
[√

2/2 −√
2/2√

2/2
√
2/2

] ⎡

⎣
1
1
1

⎤

⎦ .

The point (1, 1) has coordinates (0,
√
2) in the rotated axial system.

9.14.12 3D Change of Axes

Derive a 3D homogeneous matrix to compute the positions of (0, 0, 0) and (0, 1, 0)
in an axial system with 180◦ yaw, 0◦ pitch, 180◦ roll, and translated by (10, 0, 0).

⎡

⎢⎢
⎣

x′
y′
z′
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

x
y
z
1

⎤

⎥⎥
⎦

where

T11 = cos(yaw) cos(roll) + sin(yaw) sin(pitch) sin(roll)

T12 = cos(pitch) sin(roll)

T13 = − sin(yaw) cos(roll) + cos(yaw) sin(pitch) sin(roll)

T14 = −(txT11 + tyT12 + tzT13)

T21 = − cos(yaw) sin(roll) + sin(yaw) sin(pitch) cos(roll)

T22 = cos(pitch) cos(roll)

T23 = − sin(yaw) sin(roll) + cos(yaw) sin(pitch) cos(roll)

T24 = −(txT21 + tyT22 + tzT23)

T31 = sin(yaw) cos(pitch)

T32 = − sin(pitch)

T33 = cos(yaw) cos(pitch)

T34 = −(txT31 + tyT32 + tzT33)

T41 = T42 = T43 = 0

T44 = 1.
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Substituting the above values:

T11 = cos 180◦ cos 180◦ + sin 180◦ sin 0◦ sin 180◦ = 1

T12 = cos 0◦ sin 180◦ = 0

T13 = − sin 180◦ cos 180◦ + cos 180◦ sin 0◦ sin 180◦ = 0

T14 = −(−10T11 + 0T12 + 0T13) = 10

T21 = − cos 180◦ sin 180◦ + sin 180◦ sin 0◦ cos 180◦ = 0

T22 = cos 0◦ cos 180◦ = −1

T23 = − sin 180◦ sin 180◦ + cos 180◦ sin 0◦ cos 180◦ = 0

T24 = −(−10T21 + 0T22 + 0T23) = 0

T31 = sin 180◦ cos 0◦ = 0

T32 = − sin 0◦ = 0

T33 = cos 180◦ cos 0◦ = −1

T34 = −(−10T31 + 0T32 + 0T33) = 0

T41 = T42 = T43 = 0

T44 = 1.

Therefore: ⎡

⎢⎢
⎣

10
0
0
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

1 0 0 10
0 −1 0 0
0 0 −1 0
0 0 0 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

0
0
0
1

⎤

⎥⎥
⎦

and ⎡

⎢
⎢
⎣

10
−1
0
1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

1 0 0 10
0 −1 0 0
0 0 −1 0
0 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
1
0
1

⎤

⎥
⎥
⎦ .

The positions of (0, 0, 0) and (0, 1, 0) in the transformed axial system are (10, 0, 0)
and (10,−1, 0) respectively.

9.14.13 Rotate a Point About an Axis

Derive a 3Dhomogeneousmatrix to rotate (1, 0, 0), 180◦ about an axiswhose parallel
vector is n̂ = 1/

√
2j + 1/

√
2k.
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Given

⎡

⎢⎢⎢
⎣

x′
p

y′
p

z′p
1

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

a2K + cosα abK − c sin α acK + b sin α 0
abK + c sin α b2K + cosα bcK − a sin α 0
acK − b sin α bcK + a sin α c2K + cosα 0

0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

xp
yp
zp
1

⎤

⎥⎥
⎦

where
K = 1 − cosα.

Therefore,

⎡

⎢⎢
⎣

−1
0
0
1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

1
0
0
1

⎤

⎥⎥
⎦ .

The rotated point is (−1, 0, 0).

9.14.14 Perspective Projection

Compute the perspective coordinates of a 3D cube stored in Table9.2 with the pro-
jection screen distance d = 20. Sketch the result.

Table 9.2 Coordinates of a
3D cube

vertex xc yc zc xp yp

1 0 0 10 0 0

2 10 0 10 20 0

3 10 10 10 20 20

4 0 10 10 0 20

5 0 0 20 0 0

6 10 0 20 10 0

7 10 10 20 10 10

8 0 10 20 0 10
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Fig. 9.35 A perspective
sketch of a 3D cube

Yp

Xp
1, 5 2
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10

Using the perspective transform:

⎡

⎢⎢
⎣

xp
yp
zp
w

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

xc
yc
zc
1

⎤

⎥⎥
⎦ .

the perspective coordinates are stored in Table9.2, and Fig. 9.35 shows a sketch of
the result.



Chapter 10
Interpolation

10.1 Introduction

This chapter covers linear and non-linear interpolation of scalars, and includes
trigonometric and cubic polynomials. It also includes the interpolation of vectors
and quaternions.

10.2 Background

Interpolation is not a branch of mathematics but rather a collection of techniques
the reader will find useful when solving computer graphic problems. Basically, an
interpolant is a strategy for selecting a number between two limits. For example, if
the limits are 2 and 4, a parameter t can be used to select the sequence 2.0, 2.2, 2.4,
2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, and 4. These numbers could then be used to translate,
scale, rotate an object, move a virtual camera, or change the position, colour or
brightness of a virtual light source.

To implement the above interpolant for different limits we require a general
algorithm, which is one of the first exercises of this chapter. We also need to explore
ways of controlling the spacing between the interpolated values. In animation, for
example, we often need to move an object very slowly and gradually increase its
speed. Conversely, we may want to bring an object to a halt, making its speed less
and less. The interpolant function includes a parameter within its algorithm, which
permits any interpolated value to be created at will. The parameter can depend upon
time, or operate over a distance in space.

© Springer-Verlag London Ltd. 2017
J. Vince,Mathematics for Computer Graphics, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-7336-6_10
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10.3 Linear Interpolation

A linear interpolant generates equal spacing between the interpolated values for
equal changes in the interpolating parameter. In the above example the increment 0.2
is calculated by subtracting the first number from the second and dividing the result
by 10, i.e. (4 − 2)/10 = 0.2. Although this works, it is not in a very flexible form,
so let’s express the problem differently.

Given two numbers n1 and n2, which represent the start and final values of the
interpolant, we require an interpolated value controlled by a parameter t that varies
between 0 and 1. When t = 0, the result is n1, and when t = 1, the result is n2. A
solution to this problem is given by

n = n1 + t (n2 − n1)

for when n1 = 2, n2 = 4 and t = 0.5:

n = 2 + 1

2
(4 − 2) = 3

which is a halfway point. Furthermore, when t = 0, n = n1, andwhen t = 1, n = n2,
which confirms that we have a sound interpolant. However, it can be expressed
differently:

n = n1(1 − t) + n2t (10.1)

which shows what is really going on, and forms the basis for further development.
Figure10.1 shows the graphs of n = 1− t and n = t over the range 0 ≤ t ≤ 1. With
reference to (10.1), we see that as t changes from 0 to 1, the (1− t) term varies from
1 to 0. This attenuates the value of n1 to zero over the range of t , while the t term
scales n2 from zero to its actual value. Figure10.2 illustrates these two actions with
n1 = 1 and n2 = 5.

Fig. 10.1 The graphs of
n = 1 − t and n = t over the
range 0 ≤ t ≤ 1

0 0.25 0.5 0.75 1
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0.5
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n = tn =1-t

t

n
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Fig. 10.2 The orange line
shows the result of linearly
interpolating between
1 and 5
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Fig. 10.3 Interpolating
between the points (1, 1)
and (4, 5)
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Observe that the terms (1 − t) and t sum to unity – this is not a coincidence.
This type of interpolant ensures that if it takes a quarter of n1, it balances it with
three-quarters of n2, and vice versa. Obviously we could design an interpolant that
takes arbitrary portions of n1 and n2, but would lead to arbitrary results.

Although this interpolant is extremely simple, it is widely used in computer graph-
ics software. Just to put it into context, consider the task of moving an object between
two locations (x1, y1, z1) and (x2, y2, z2). The interpolated position is given by

x = x1(1 − t) + x2t
y = y1(1 − t) + y2t
z = x1(1 − t) + z2t

⎫
⎬

⎭
0 ≤ t ≤ 1.

The parameter t could be generated from two frame values within an animation.
What is assured by this interpolant, is that equal steps in t result in equal steps in
x , y, and z. Figure10.3 illustrates this linear spacing with a 2D example where we
interpolate between the points (1, 1) and (4, 5). Note the equal spacing between
the intermediate interpolated points.

We can write (10.1) in matrix form as follows:
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n = [(1 − t) t]
[
n1
n2

]

or as

n = [t 1]
[−1 1

1 0

] [
n1
n2

]

.

The reader can confirm that this generates identical results to the algebraic form.

10.4 Non-linear Interpolation

A linear interpolant ensures that equal steps in the parameter t give rise to equal
steps in the interpolated values; but it is often required that equal steps in t give
rise to unequal steps in the interpolated values. We can achieve this using a variety
of mathematical techniques. For example, we could use trigonometric functions or
polynomials. To begin with, let’s look at a trigonometric solution.

10.4.1 Trigonometric Interpolation

In Chap.4 we noted that sin2 t + cos2 t = 1, which satisfies one of the requirements
of an interpolant: the termsmust sum to 1. If t varies between 0 and π/2, cos2 t varies
between 1 and 0, and sin2 t varies between 0 and 1, which can be used to modify the
two interpolated values n1 and n2 as follows:

n = n1 cos
2 t + n2 sin

2 t, 0 ≤ t ≤ π/2. (10.2)

The interpolation curves are shown in Fig. 10.4.

Fig. 10.4 The curves for
n = cos2 t and n = sin2 t
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http://dx.doi.org/10.1007/978-1-4471-7336-6_4


10.4 Non-linear Interpolation 221

Fig. 10.5 Interpolating
between 1 and 3 using a
trigonometric interpolant
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Fig. 10.6 Interpolating
between two points (1, 1)
and (4, 5)
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If n1 = 1 and n2 = 3 in (10.2), we obtain the curves shown in Fig. 10.5. If we
apply this interpolant to two 2D points in space: (1, 1) and (4, 5), we obtain a
straight-line interpolation, but the distribution of points is non-linear, as shown in
Fig. 10.6. In other words, equal steps in t give rise to unequal distances in space.

The main problem with this approach is that it is impossible to change the nature
of the curve – it is a sinusoid, and its slope is determined by the interpolated values.
One way of gaining control over the interpolated curve is to use a polynomial, which
is the subject of the next section.

10.4.2 Cubic Interpolation

To begin with, let’s develop a cubic blending function that will be similar to the
previous sinusoidal one. This can then be extended to provide extra flexibility. A
cubic polynomial will form the basis of the interpolant:

v1 = at3 + bt2 + ct + d



222 10 Interpolation

and the final interpolant will be of the form

n = [v1 v2]
[
n1
n2

]

.

The task is to find the values of the constants associated with the polynomials v1 and
v2. The requirements are:

1. The cubic function v2 must grow from 0 to 1 for 0 ≤ t ≤ 1.
2. The slope at a point t must equal the slope at the point (1− t). This ensures slope

continuity over the range of the function.
3. The value v2 at any point t must also produce (1 − v2) at (1 − t). This ensures

curve continuity.

• To satisfy the first requirement:

v2 = at3 + bt2 + ct + d

and when t = 0, v2 = 0 and d = 0. Similarly, when t = 1, v2 = a + b + c.
• We now need some calculus, which is described in a later chapter. To satisfy the
second requirement, differentiate v2 to obtain the slope:

dv2
dt

= 3at2 + 2bt + c = 3a(1 − t)2 + 2b(1 − t) + c

and equating constants we discover c = 0 and 0 = 3a + 2b.
• To satisfy the third requirement:

at3 + bt2 = 1 − [a(1 − t)3 + b(1 − t)2]

where we discover 1 = a + b. But 0 = 3a + 2b, therefore a = 2 and b = 3.
Therefore,

v2 = −2t3 + 3t2. (10.3)

To find the curve’s mirror curve, which starts at 1 and collapses to 0 as t moves from
0 to 1, we subtract (10.3) from 1:

v1 = 2t3 − 3t2 + 1.

Therefore, the two polynomials are

v1 = 2t3 − 3t2 + 1 (10.4)

v2 = −2t3 + 3t2 (10.5)

and are shown in Fig. 10.7. They are used as interpolants as follows:
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Fig. 10.7 Two cubic
polynomials
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Fig. 10.8 Interpolating
between 1 and 3 using a
cubic interpolant
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n = -4t3+6t2+1

n = v1n1 + v2n2

or in matrix form:

n = [(2t3 − 3t2 + 1) (−2t3 + 3t2)]
[
n1
n2

]

n = [t3 t2 t 1]

⎡

⎢
⎢
⎣

2 −2
−3 3
0 0
1 0

⎤

⎥
⎥
⎦

[
n1
n2

]

. (10.6)

If we let n1 = 1 and n2 = 3 we obtain the curves shown in Fig. 10.8. And if we
apply the interpolant to the points (1, 1) and (8, 3) we obtain the line shown in
Fig. 10.9. This interpolant can be used to blend any pair of numbers together.

Now let’s examine the scenario where we interpolate between two points P1 and
P2, and have to arrange that the interpolated curve is tangential with a vector at
each point. Such tangent vectors forces the curve into a desired shape, as shown
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Fig. 10.9 A cubic
interpolant between points
(1, 1) and (8, 3)
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in Fig. 10.11. Unfortunately, calculus is required to compute the slope of the cubic
polynomial, which is covered in a later chapter.

As this interpolant can be applied to 2D and 3D points, P1 and P2 are repre-
sented by their position vectors P1 and P2, which are unpacked for each Cartesian
component.

We now have two position vectors P1 and P2 and their respective tangent vectors
s1 and s2. The requirement is to modulate the interpolating curve in Fig. 10.8 with
two further cubic curves. One that blends out the tangent vector s1 associated with
P1, and the other that blends in the tangent vector s2 associated with P2. Let’s begin
with a cubic polynomial to blend s1 to zero:

vout = at3 + bt2 + ct + d.

vout must equal zero when t = 0 and t = 1, otherwise it will disturb the start and
end values. Therefore d = 0, and

a + b + c = 0.

The rate of change of vout relative to t (i.e. dvout/dt) must equal 1 when t = 0, so
it can be used to multiply s1. When t = 1, dvout/dt must equal 0 to attenuate any
trace of s1:

dvout
dt

= 3at2 + 2bt + c

but dvout/dt = 1 when t = 0, and dvout/dt = 0 when t = 1. Therefore, c = 1, and

3a + 2b + 1 = 0.

Using (10.6) implies that b = −2 and a = 1. Therefore, the polynomial vout has the
form

vout = t3 − 2t2 + t. (10.7)
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Fig. 10.10 The four
Hermite interpolating curves
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Using a similar argument, one can prove that the function to blend in s2 equals

vin = t3 − t2. (10.8)

Graphs of (10.4), (10.5), (10.7) and (10.8) are shown in Fig. 10.10. The complete
interpolating function looks like

n = [(2t3 − 3t2 + 1) (−2t3 + 3t2) (t3 − 2t2 + t) (t3 − t2)]

⎡

⎢
⎢
⎣

P1

P2

s1
s2

⎤

⎥
⎥
⎦

and unpacking the constants and polynomial terms we obtain

n = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

P1

P2

s1
s2

⎤

⎥
⎥
⎦ .

This type of interpolation is called Hermite interpolation, after the French mathe-
matician Charles Hermite (1822–1901). Hermite also proved in 1873 that e is tran-
scendental.

Now let’s illustrate Hermite interpolation with a 2D example. It is also very easy
to implement the same technique in 3D. Figure10.11 shows how two points (0, 0)
and (1, 1) are to be connected by a cubic curve that responds to the initial and final
tangent vectors. At the start point (0, 0) the tangent vector is [−5 0]T , and at the
final point (1, 1) the tangent vector is [0 − 5]T . The x and y interpolants are
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Fig. 10.11 A Hermite curve
between the points (0, 0)
and (1, 1) with tangent
vectors [−5 0]T and
[0 − 5]T not drawn to scale
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x = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
1

−5
0

⎤

⎥
⎥
⎦

y = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
1
0

−5

⎤

⎥
⎥
⎦

which become

x = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

−7
13
−5
0

⎤

⎥
⎥
⎦ = −7t3 + 13t2 − 5t

y = [t3 t2 t1 1]

⎡

⎢
⎢
⎣

−7
8
0
0

⎤

⎥
⎥
⎦ = −7t3 + 8t2.

When these polynomials are plotted over the range 0 ≤ t ≤ 1 we obtain the curve
shown in Fig. 10.11.

We have now reached a point where we are starting to discover how paramet-
ric polynomials can be used to generate space curves, which is the subject of the
next chapter. So, to conclude this chapter on interpolants, we will take a look at
interpolating vectors.
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10.5 Interpolating Vectors

So far we have been interpolating between a pair of numbers. Now the question
arises: can we use the same interpolants for vectors? We can if we interpolate both
the magnitude and direction of a vector. However, if we linearly interpolate only the
x- and y-components of two vectors, the in-between vectors would neither respect
their orientation nor their magnitude. But if we defined two 2-D vectors as l1, θ1 and
l2, θ2, where l is the magnitude and θ the rotated angle, then a linearly interpolated
vector is given by

l = l1(1 − t) + l2t

θ = θ1(1 − t) + θ2t

and the x- and y-components of the interpolated vector are:

lx = l cos θ

ly = l sin θ.

Figure10.12 shows the trace of interpolating between vector 2, 45◦ and vector
3, 135◦. The half-way point, when t = 0.5, generates the vector 2.5, 45◦. The same
technique can be used with 3-D vectors using the equivalent polar notation.

We can interpolate between x- y- and z-coordinates if we respect the magnitude
and orientation of the encoded vectors using the following technique. Figure10.13
shows two unit vectors v1 and v2 separated by an angle θ . The interpolated vector v
is defined as a proportion of v1 and a proportion of v2:

v = av1 + bv2.

Let’s define the values of a and b such that they are a function of the separating
angle θ . Vector v is tθ from v1 and (1− t)θ from v2, and it is evident from Fig. 10.13
that using the sine rule

Fig. 10.12 The trace of
interpolating between
vectors 2, 45◦ and 3, 135◦
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Fig. 10.13 Vector v is
derived from part a of of v1
and part b of v2
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tθ

(1−
t)θ
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b

a

sin(1 − t)θ
= b

sin tθ
(10.9)

and furthermore:

m = a cos tθ

n = b cos(1 − t)θ

where
m + n = 1. (10.10)

From (10.9)

b = a sin tθ

sin(1 − t)θ

and from (10.10) we get

a cos tθ + a sin tθ cos(1 − t)θ

sin(1 − t)θ
= 1.

Solving for a we find

a = sin(1 − t)θ

sin θ

b = sin tθ

sin θ
.

Therefore, the final interpolant is

v = sin(1 − t)θ

sin θ
v1 + sin tθ

sin θ
v2. (10.11)
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Fig. 10.14 Curves of vx and
vy using (10.11)
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To see how (10.11) operates, let’s consider a simple exercise of interpolating
between two unit vectors [1 0]T and [−1/

√
2 1/

√
2]T . The angle between the

vectors θ is 135◦. Equation (10.11) is used to interpolate the x- and the y-components
individually:

vx = sin(1 − t)135◦

sin 135◦ × (1) + sin t135◦

sin 135◦ ×
(

− 1√
2

)

vy = sin(1 − t)135◦

sin 135◦ × (0) + sin t135◦

sin 135◦ ×
(

1√
2

)

.

Figure10.14 shows the interpolating curves and Fig. 10.15 shows a trace of the inter-
polated vectors.

Two observations to note with (10.11):
• The angle θ is the angle between the two vectors, which, if not known, can be
computed using the dot product.
• Secondly, the range of θ is given by 0 ≤ θ ≤ 180◦, but when θ = 180◦ the
denominator collapses to zero.

So far, we have only considered unit vectors. Now let’s see how the interpolant
reacts to vectors of different magnitudes. As a test, we can input the following vectors
to (10.11):

v1 = [2 0]T , and v2 = [0 1]T .



230 10 Interpolation

Fig. 10.16 Interpolating
between the vectors [2 0]T
and [0 1]T
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The separating angle θ = 90◦, and the result is shown in Fig. 10.16. Note how the
initial length of v1 reduces from 2 to 1 over 90◦. It is left to the reader to examine
other combinations of vectors. There is one more application for this interpolant, and
that is with quaternions.

10.6 Interpolating Quaternions

It just so happens that the interpolant used for vectors also works with quaternions.
Which means that, given two quaternions q1 and q2, the interpolated quaternion q is
given by

q = sin(1 − t)θ

sin θ
q1 + sin tθ

sin θ
q2. (10.12)

The interpolant is applied individually to the four terms of the quaternion.
When interpolating vectors, θ is the angle between the two vectors. If this is not

known, it can be derived using the dot product formula:

cos θ = v1 · v2
|v1||v2|

= x1x2 + y1y2 + z1z2
|v1||v2| .

Similarly,when interpolating quaternions, θ is computed by taking the 4Ddot product
of the two quaternions:

cos θ = q1 · q2

|q1||q2|
= s1s2 + x1x2 + y1y2 + z1z2

|q1||q2| .



10.6 Interpolating Quaternions 231

If we are using unit quaternions

cos θ = s1s2 + x1x2 + y1y2 + z1z2. (10.13)

We are now in a position to demonstrate how to interpolate between a pair of quater-
nions. For example, say we have two quaternions q1 and q2 that rotate 0◦ and 90◦
about the z-axis respectively:

q1 =
[

cos
0◦

2
+ sin

0◦

2
[0i + 0j + 1k]

]

q1 =
[

cos
90◦

2
+ sin

90◦

2
[0i + 0j + 1k]

]

which become

q1 = [1 + 0i + 0j + 0k]
q2 ≈ [0.7071 + 0i + 0j + 0.7071k].

Any interpolated quaternion is found by the application of (10.12). But first, we
need to find the value of θ using (10.13):

cos θ ≈ 0.7071

θ = 45◦.

Now when t = 0.5, the interpolated quaternion is given by

q ≈ sin(45◦/2)
sin 45◦ [1 + 0i + 0j + 0k] + sin(45◦/2)

sin 45◦ [0.7071 + 0i + 0j + 0.7071k]
≈ 0.541196[1 + 0i + 0j + 0k] + 0.541196[0.7071 + 0i + 0j + 0.7071k]
≈ [0.541196 + 0i + 0j + 0k] + [0.382683 + 0i + 0j + 0.382683k]
≈ [0.923879 + 0i + 0j + 0.382683k].

Although it is not obvious, this interpolated quaternion is also a unit quaternion,
as the square root of the sum of the squares is 1. It should rotate a point about the
z-axis, halfway between 0◦ and 90◦, i.e. 45◦.We can test that this works with a simple
example.

Take the point (1, 0, 0) and subject it to the standard quaternion operation:

P′ = qPq−1.

To keep the arithmetic work to a minimum, we substitute a = 0.923879 and b =
0.382683. Therefore,



232 10 Interpolation

q = [a + 0i + 0j + bk]
q−1 = [a − 0i − 0j − bk]
P′ = [a + 0i + 0j + bk] · [0 + 1i + 0j + 0k] · [a − 0i − 0j − bk]

= [0 + ai + bj + 0k] · [a − 0i − 0j − bk]
= [0 + (a2 − b2)i + 2abj + 0k]

P′ ≈ [0 + 0.7071i + 0.7071j + 0k].

Therefore, (1, 0, 0) is rotated to (0.7071, 0.7071, 0), which is correct!

10.7 Summary

This chapter has covered some very interesting, yet simple ideas about changing one
number into another. In the following chapter we will develop these ideas and see
how we design algebraic solutions to curves and surfaces.



Chapter 11
Curves and Patches

11.1 Introduction

In this chapter we investigate the foundations of curves and surface patches. This is a
very large and complex subject and itwill be impossible to delve too deeply.However,
we can explore many of the ideas that are essential to understanding the mathematics
behind 2D and 3D curves and how they are developed to produce surface patches.
Once you have understood these ideas you will be able to read more advanced texts
and develop a wider knowledge of the subject.

11.2 Background

Two people, working for competing French car manufacturers, are associated with
what are now called Bézier curves: Paul de Casteljau, who worked for Citröen, and
Pierre Bézier, who worked for Rénault. De Casteljau’s work was slightly ahead of
Bézier’s, but because ofCitröen’s policy of secrecy itwas never published, soBézier’s
name has since been associated with the theory of polynomial curves and surfaces.
Casteljau started his research work in 1959, but his reports were only discovered in
1975, by which time Bézier had become known for his special curves and surfaces.

In the previous chapter we saw how polynomials are used as interpolants and
blending functions. We will now see how these form the basis of parametric curves
and patches. To begin with, let’s start with the humble circle.

© Springer-Verlag London Ltd. 2017
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Fig. 11.1 The circle is
drawn by tracing out a series
of points on the
circumference r

y

x
t

x
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11.3 The Circle

The circle has a very simple equation:

x2 + y2 = r2

where r is the radius and (x, y) is a point on the circumference. Although this
equation has its uses, it is not very convenient for drawing the curve. What we really
want are two functions that generate the coordinates of any point on the circumference
in terms of some parameter t . Figure11.1 shows a scenario where the x- and y-
coordinates are given by

x = r cos t
y = r sin t

}
0 ≤ t ≤ 2π.

By varying the parameter t over the range 0 to 2π , we trace out the curve of the
circumference. In fact, by selecting a suitable range of t we can isolate any portion
of the circle’s circumference.

11.4 The Ellipse

The equation for an ellipse is
x2

r2maj

+ y2

r2min

= 1

and its parametric form is

x = rmaj cos t
y = rmin sin t

}
0 ≤ t ≤ 2π
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Fig. 11.2 An ellipse
showing the major and minor
radii

rmax x

y

rmin

where rmaj and rmin are the major and minor radii respectively, and (x, y) is a
point on the circumference, as shown in Fig. 11.2. We now examine a very useful
parametric curve called a Bézier curve, named after its inventor Pierre Bézier.

11.5 Bézier Curves

11.5.1 Bernstein Polynomials

Bézier curves employ Bernstein polynomials which were described by the Russian
mathematician Sergei Bernstein (1880–1968) in 1912. They are expressed as follows:

Bn
i (t) =

(
n

i

)
t i (1 − t)n−1 (11.1)

where

(
n

i

)
is shorthand for the number of selections of i different items from n

distinguishable items when the order of selection is ignored, and equals

(
n

i

)
= n!

(n − i)!i ! (11.2)

where, for example, 3! (factorial 3) is shorthand for 3 × 2 × 1. When (11.2) is
evaluated for different values of i and n, we discover the pattern of numbers shown
in Table11.1. This pattern of numbers is known as Pascal’s triangle. In western
countries they are named after a 17th century French mathematician, even though
they had been described in China as early as 1303 in Precious Mirror of the Four
Elements by the Chinese mathematician Chu Shih-chieh. The pattern represents the
coefficients found in binomial expansions. For example, the expansion of (x + a)n

for different values of n is
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(x + a)0 = 1

(x + a)1 = 1x + 1a

(x + a)2 = 1x2 + 2ax + 1a2

(x + a)3 = 1x3 + 3ax2 + 3a2x + 1a3

(x + a)4 = 1x4 + 4ax3 + 6a2x2 + 4a3x + 1a4

which reveal Pascal’s triangle as coefficients of the polynomial terms. Thus the

(
n

i

)

term in (11.1) is nothing more than a generator for Pascal’s triangle. The powers of
t and (1 − t) in (11.1) appear as shown in Table11.2 for different values of n and i .
When the two sets of results are combined we get the complete Bernstein polynomial
terms shown in Table11.3. One very important property of these terms is that they
sum to unity, which is an important feature of any interpolant.

The sum of (1 − t) and t is 1, therefore,

[(1 − t) + t]n = 1 (11.3)

which is why we can use the binomial expansion of (1− t) and t as interpolants. For
example, when n = 2 we obtain the quadratic form:

(1 − t)2 + 2t (1 − t) + t2 = 1. (11.4)

Table 11.1 Pascal’s triangle

i

n 0 1 2 3 4 5 6

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

Table 11.2 Expansion of the terms t and (1 − t)

i

n 0 1 2 3 4

1 t (1 − t)

2 t2 t (1 − t) (1 − t)2

3 t3 t2(1 − t) t (1 − t)2 (1 − t)3

4 t4 t3(1 − t) t2(1 − t)2 t (1 − t)3 (1 − t)4
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Table 11.3 The Bernstein polynomial terms

i

n 0 1 2 3 4

1 1t 1(1 − t)

2 1t2 2t (1 − t) 1(1 − t)2

3 1t3 3t2(1 − t) 3t (1 − t)2 1(1 − t)3

4 1t4 4t3(1 − t) 6t2(1 − t)2 4t (1 − t)3 1(1 − t)4

Fig. 11.3 Graphs of the
quadratic Bernstein
polynomials
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Figure11.3 shows the graphs of the three polynomial terms of (11.4). The (1 − t)2

graph starts at 1 and decays to zero, whereas the t2 graph starts at zero and rises to 1.
The 2t (1 − t) graph starts at zero reaches a maximum of 0.5 and returns to zero.
Thus the central polynomial term has no influence at the end conditions, where t = 0
and t = 1. We can use these three terms to interpolate between a pair of values as
follows:

v = v1(1 − t)2 + 2t (1 − t) + v2t2.

If v1 = 1 and v2 = 3 we obtain the curve shown in Fig. 11.4. However, there is
nothing preventing us from multiplying the middle term 2t (1 − t) by any arbitrary
number vc:

v = v1(1 − t)2 + vc2t (1 − t) + v2t2. (11.5)

For example, if vc = 3, we obtain the graph shown in Fig. 11.5, which is totally
different to the curve in Fig. 11.4. As Bézier observed, the value of vc provides
an excellent mechanism for determining the rate of change between two values.
Figure11.6 shows a variety of graphs for different values of vc. A very interesting
effect occurs when the value of vc is set midway between v1 and v2. For example,
when v1 = 1, v2 = 3 and vc = 2, we obtain linear interpolation between v1 and v2,
as shown in Fig. 11.5.
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Fig. 11.4 Bernstein
interpolation between the
values 1 and 3
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Fig. 11.5 Bernstein
interpolation between the
values 1 and 3 with vc = 3
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Fig. 11.6 Bernstein
interpolation between the
values 1 for different values
of vc
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11.5.2 Quadratic Bézier Curves

Quadratic Bézier curves are formed by using Bernstein polynomials to interpolate
between the x-, y- and z-coordinates associatedwith the start- and end-points forming
the curve. For example, we can draw a 2D quadratic Bézier curve between (1, 1)
and (4, 3) using the following equations:
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Fig. 11.7 Quadratic Bézier
curve between (1, 1) and
(4, 3), with (3, 4) as the
control vertex
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x = 1(1 − t)2 + xc2t (1 − t) + 4t2 (11.6)

y = 1(1 − t)2 + yc2t (1 − t) + 3t2. (11.7)

But what should be the values of (xc, yc)?Well, this is entirely up to us; the position
of this control vertex determines how the curve moves between (1, 1) and (4, 3).

A Bézier curve possesses interpolating and approximating qualities: the interpo-
lating feature ensures that the curve passes through the end points, while the approx-
imating feature shows how the curve passes close to the control point. To illustrate
this, if we make xc = 3 and yc = 4 we obtain the curve shown in Fig. 11.7, which
shows how the curve intersects the end-points, but misses the control point. It also
highlights two important features of Bézier curves: the convex hull property, and the
end slopes of the curve.

The convex hull property implies that the curve is always contained within the
polygon connecting the start, end and control points. In this case the curve is inside
the triangle formed by the vertices (1, 1), (3, 4) and (4, 3). The slope of the curve
at (1, 1) is equal to the slope of the line connecting the start point to the control point
(3, 4), and the slope of the curve at (4, 3) is equal to the slope of the line connecting
the control point (3, 4) to the end point (4, 3). Naturally, these two qualities of
Bézier curves can be proved mathematically.

11.5.3 Cubic Bernstein Polynomials

Before moving on, there are two further points to note:

• No restrictions are placed upon the position of (xc, yc) – it can be anywhere.
• Simply including z-coordinates for the start, end and control vertices creates 3D
curves.

One of the drawbacks with quadratic curves is that they are perhaps, too simple.
If we want to construct a complex curve with several peaks and valleys, we would
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have to join together a large number of such curves. A cubic curve, on the other
hand, naturally supports one peak and one valley, which simplifies the construction
of more complex curves.

When n = 3 in (11.3) we obtain the following terms:

[(1 − t) + t]3 = (1 − t)3 + 3t (1 − t)2 + 3t2(1 − t) + t3

which can be used as a cubic interpolant, as

v = v1(1 − t)3 + vc13t (1 − t)2 + vc23t2(1 − t) + v2t3.

Once more, the terms sum to unity, and the convex hull and slope properties also
hold. Figure11.8 shows the graphs of the four polynomial terms.

This time we have two control values vc1 and vc2. These are set to any value,
independent of the values chosen for v1 and v2. To illustrate this, let’s consider an
example of blending between values 1 and 3, with vc1 and vc2 set to 2.5 and −2.5
respectively. The blending curve is shown in Fig. 11.9.

Fig. 11.8 The cubic
Bernstein polynomial curves
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Fig. 11.9 The cubic
Bernstein polynomial
through the values 1, 2.5,
–2.5, 3
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The next step is to associate the blending polynomials with x- and y-coordinates:

x = x1(1 − t)3 + xc13t (1 − t)2 + xc23t2(1 − t) + x2t3 (11.8)

y = y1(1 − t)3 + yc13t (1 − t)2 + yc23t2(1 − t) + y2t3. (11.9)

Evaluating (11.8) and (11.9) with the following points:

(x1, y1) = (1, 1), (x2, y2) = (4, 3)

(xc1, yc1) = (2, 3), (xc2, yc2) = (3, −2)

weobtain the cubicBézier curve shown in Fig. 11.10,which also shows the guidelines
between the end and control points.

Just to show how consistent Bernstein polynomials are, let’s set the values to

(x1, y1) = (1, 1), (x2, y2) = (4, 3)

(xc1, yc1) = (2, 1.666), (xc2, yc2) = (3, 2.333)

where (xc1, yc1) and (xc2, yc2) are points one-third and two-thirds respectively,
between the start and final values. As we found in the quadratic case, where the
single control point was halfway between the start and end values, we obtain linear
interpolation as shown in Fig. 11.11.

As mathematicians are interested in expressing a formula succinctly, there is
an elegant way of abbreviating Bernstein polynomials. Equations (11.6) and (11.7)
describe the three polynomial terms for generating a quadratic Bézier curve and
(11.8) and (11.9) describe the four polynomial terms for generating a cubic Bézier
curve. To begin with, quadratic equations are called second-degree equations, and
cubics are called third-degree equations. In the original Bernstein formulation:

Bn
i (t) =

(
n

i

)
t i (1 − t)n−1

Fig. 11.10 A cubic Bézier
curve
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Fig. 11.11 A cubic Bézier
line
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n represents the degree of the polynomial, and i , which has values between 0 and n,
creates the individual polynomial terms. These terms are then used to multiply the
coordinates of the end and control points. If these points are stored as a vector P, the
position vector p(t) for a point on the curve is written:

p(t) =
(

n

i

)
t i (1 − t)n−iPi , 0 ≤ i ≤ n

or

p(t) =
n∑

i=0

(
n

i

)
t i (1 − t)n−iPi , 0 ≤ i ≤ n (11.10)

or

p(t) =
n∑

i=0

Bn
i (t)Pi , 0 ≤ i ≤ n. (11.11)

For example, a point p(t) on a quadratic curve is represented by

p(t) = 1t0(1 − t)2P0 + 2t1(1 − t)1P1 + 1t2(1 − t)0P2.

Youwill discover (11.10) and (11.11) used in more advanced texts to describe Bézier
curves. Although they initially appear intimidating, you should now find them rela-
tively easy to understand.

11.6 A Recursive Bézier Formula

Note that (11.10) explicitly describes the polynomial terms needed to construct the
blending terms.With the use of recursive functions (a recursive function is a function
that calls itself), it is possible to arrive at another formulation that leads towards an
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understanding of B-splines. To begin, we need to express

(
n

i

)
in terms of lower

terms, and because the coefficients of any row in Pascal’s triangle are the sum of the
two coefficients immediately above, we can write

(
n

i

)
=

(
n − 1

i

)
+

(
n − 1

i − 1

)
.

Therefore, we can write:

Bn
i (t) =

(
n − 1

i

)
t i (1 − t)n−i +

(
n − 1

i − 1

)
t i (1 − t)n−i

Bn
i (t) = (1 − t)Bn−1

i (t) + t Bn−1
i−1 (t).

As with all recursive functions, some condition must terminate the process; in this
case, it is when the degree is zero. Consequently, B0

0 (t) = 1 and Bn
j (t) = 0 for

j < 0.

11.7 Bézier Curves Using Matrices

As we have already seen, matrices provide a very compact notation for algebraic
formulae. So let’s see how Bernstein polynomials lend themselves to this form of
notation. Recall (11.4) which defines the three terms associated with a quadratic
Bernstein polynomial. These are expanded to

(1 − 2t + t2), (2t − 2t2), (t2)

and written as the product:

[t2 t 1]
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦ .

This means that (11.5) can be written:

v = [t2 t 1]
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣ v1

vc

v2

⎤
⎦

or

p(t) = [t2 t 1]
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣P1

Pc

P2

⎤
⎦



244 11 Curves and Patches

where p(t) points to any point on the curve, and P1, Pc and P2 point to the start,
control and end points respectively.

A similar development is used for a cubic Bézier curve, which has the following
matrix formulation:

p(t) = [t3 t2 t 1]

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
P1

Pc1

Pc2

P2

⎤
⎥⎥⎦ .

There is no doubt that Bézier curves are very useful, and they find their way into
all sorts of applications. But, perhaps their one weakness is that whenever an end or
control vertex is repositioned, the entire curve is modified. So let’s examine another
type of curve that prevents this from happening – B-splines. But before we consider
this form, let’s revisit linear interpolation between multiple values.

11.7.1 Linear Interpolation

To interpolate linearly between two numbers v0 and v1, we use the following inter-
polant:

v(t) = v0(1 − t) + v1t, 0 ≤ t ≤ 1.

But saywe have to interpolate continuously between three values on a linear basis, i.e.
v0, v1, v2, with the possibility of extending the technique to any number of values.
One solution is to use a sequence of parameter values t1, t2, t3 that are associated
with the given values of v, as shown in Fig. 11.12. For the sake of symmetry:

v0 is associated with the parameter range t0 to t2,
v1 is associated with the parameter range t1 to t3,
v2 is associated with the parameter range t2 to t4.

This sequence of parameters is called a knot vector. The only assumption we make
about the knot vector is that t0 ≤ t1 ≤ t2 ≤, etc.

Now let’s invent a linear blending function B1
i (t) whose subscript i is used to

reference values in the knot vector. We want to use the blending function to compute
the influence of the three values on any interpolated value v(t) as follows:

Fig. 11.12 Linearly
interpolating between several
values

t0 t1 t2 t3 t4

v0 v1 v2



11.7 Bézier Curves Using Matrices 245

v(t) = B1
0 (t)v0 + B1

1 (t)v1 + B1
2 (t)v2. (11.12)

It’s obvious from this arrangement that v0 will influence v(t) only when t is between
t0 and t2. Similarly, v1 and v2 will influence v(t) only when t is between t1 and t3,
and t2 and t4 respectively.

To understand the action of the blending function let’s concentrate upon one
particular value B1

1 (t). When t is less than t1 or greater than t3, the function B1
1 (t)

must be zero. When t1 ≤ t ≤ t3, the function must return a value reflecting the
proportion of v1 that influences v(t). During the span t1 ≤ t ≤ t2, v1 has to be
blended in, and during the span t1 ≤ t ≤ t3, v1 has to be blended out. The blending
in is effected by the ratio (

t − t1
t2 − t1

)

and the blending out is effected by the ratio

(
t3 − t

t3 − t2

)
.

Thus B1
1 (t) has to incorporate both ratios, but it must ensure that they only become

active during the appropriate range of t . Let’s remind ourselves of this requirement
by subscripting the ratios accordingly:

B1
1 (t) =

(
t − t1
t2 − t1

)
1,2

+
(

t3 − t

t3 − t2

)
2,3

.

We can now write the other two blending terms B1
0 (t) and B1

2 (t) as

B1
0 (t) =

(
t − t0
t1 − t0

)
0,1

+
(

t2 − t

t2 − t1

)
1,2

B1
2 (t) =

(
t − t2
t3 − t2

)
2,3

+
(

t4 − t

t4 − t3

)
3,4

.

You should be able to see a pattern linking the variables with their subscripts, and
the possibility of writing a general linear blending term B1

i (t) as

B1
i (t) =

(
t − ti

ti+1 − ti

)
i,i+1

+
(

ti+2 − t

ti+2 − ti+1

)
i+1,i+2

.

This enables us to write (11.12) in a general form as

v(t) =
2∑

i=0

B1
i (t)vi .
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But there is still a problem concerning the values associated with the knot vector.
Fortunately, there is an easy solution. One simple approach is to keep the differences
between t1, t2 and t3 whole numbers, e.g. 0, 1 and 2. Butwhat about the end conditions
t0 and t4? To understand the resolution of this problem let’s examine the action of
the three terms over the range of the parameter t . The three terms are

[(
t − t0
t1 − t0

)
0,1

+
(

t2 − t

t2 − t1

)
1,2

]
v0 (11.13)

[(
t − t1
t2 − t1

)
1,2

+
(

t3 − t

t3 − t2

)
2,3

]
v1 (11.14)

[(
t − t2
t3 − t2

)
2,3

+
(

t4 − t

t4 − t3

)
3,4

]
v2 (11.15)

and I propose to initialise the knot vector as follows:

t0 t1 t2 t3 t4
0 0 1 2 2

• Remember that the subscripts of the ratios are the subscripts of t , not the values
of t .

• Over the range t0 ≤ t ≤ t1, i.e. 0 to 0. Only the first ratio in (11.13) is active and
returns 0

0 . The algorithm must detect this condition and take no action.
• Over the range t1 ≤ t ≤ t2. i.e. 0 to 1. The first ratio of (11.13) is active again,

and over the range of t blends out v0. The first ratio of (11.14) is also active,
and over the range of t blends in v1.

• Over the range t2 ≤ t ≤ t3. i.e. 1 to 2. The second ratio of (11.14) is active,
and over the range of t blends out v1. The first ratio of (11.15) is also active,
and over the range of t blends in v2.

• Finally, over the range t3≤t≤t4. i.e. 2 to 2. The second ratio of (11.15) is active
and returns 0

0 . The algorithm must detect this condition and take no action.

This process results in a linear interpolation between v0, v1 and v2. If (11.13)–
(11.15) are applied to coordinate values, the result is two straight lines. This seems
like a lot of work just to draw two lines, but the beauty of the technique is that it
will work with any number of points, and can be developed for quadratic and higher
order interpolants.
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A. Aitken developed the following recursive interpolant:

pr
i (t) =

(
ti+r − t

ti+r − ti

)
pr−1

i (t) +
(

t − ti
ti+r − ti

)
pr−1

i+1 (t)

{
r = 1, .. n
i = 0, .. n − r

which interpolates between a series of points using repeated linear interpolation.

11.8 B-Splines

B-splines, like Bézier curves, use polynomials to generate a curve segment. But,
unlike Bézier curves, B-splines employ a series of control points that determine the
curve’s local geometry. This feature ensures that only a small portion of the curve is
changed when a control point is moved.

There are two types of B-splines: rational and non-rational splines, which divide
into two further categories: uniform and non-uniform. Rational B-splines are formed
from the ratio of two polynomials such as

x(t) = X (t)

W (t)
, y(t) = Y (t)

W (t)
, z(t) = Z(t)

W (t)
.

Although this appears to introduce an unnecessary complication, the division by a
second polynomial brings certain advantages:

• They describe perfect circles, ellipses, parabolas and hyperbolas, whereas non-
rational curves can only approximate these curves.

• They are invariant of their control points when subjected to rotation, scaling,
translation and perspective transformations, whereas non-rational curves lose this
geometric integrity.

• They allow weights to be used at the control points to push and pull the curve.

An explanation of uniform and non-uniform types is best left until you understand
the idea of splines. So, without knowing the meaning of uniform, let’s begin with
uniform B-splines.

11.8.1 Uniform B-Splines

A B-spline is constructed from a string of curve segments whose geometry is deter-
mined by a group of local control points. These curves are known as piecewise poly-
nomials. A curve segment does not have to pass through a control point, although
this may be desirable at the two end points.

Cubic B-splines are very common, as they provide a geometry that is one step away
from simple quadratics, and possess continuity characteristics that make the joins
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Pi

Pi+1

Pi+2

Pi+3

Pi+4

Pi+5

Si
Si+1

Si+2 Si+3

Fig. 11.13 The construction of a uniform non-rational B-spline curve

between the segments invisible. In order to understand their construction consider
the scenario in Fig. 11.13. Here we see a group of (m + 1) control points P0, P1,
P2,…Pm which determine the shape of a cubic curve constructed from a series of
curve segments S0, S1, S2,…Sm−3.

As the curve is cubic, curve segment Si is influenced by Pi , Pi+1, Pi+2, Pi+3, and
curve segment Si+1 is influenced by Pi+1, Pi+2, Pi+3, Pi+4. And as there are (m +1)
control points, there are (m − 2) curve segments.

A single segment Si (t) of a B-spline curve is defined by

Si (t) =
3∑

r=0

Pi+r Br (t), for 0 ≤ t ≤ 1

where

B0(t) = −t3 + 3t2 − 3t + 1

6
= (1 − t)3

6
(11.16)

B1(t) = 3t3 − 6t2 + 4

6
(11.17)

B2(t) = −3t3 + 3t2 + 3t + 1

6
(11.18)

B3(t) = t3

6
. (11.19)

These are the B-spline basis functions and are shown in Fig. 11.14.
Although it is not apparent, these four curve segments are part of one curve. The

basis function B3(t) starts at zero and rises to 0.1666 at t = 1. It is taken over by
B2(t) at t = 0, which rises to 0.666 at t = 1. The next segment is B1(t) and takes
over at t = 0 and falls to 0.1666 at t = 1. Finally, B0(t) takes over at 0.1666 and
falls to zero at t = 1. Equations (11.16)–(11.19) are represented in matrix form by
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Fig. 11.14 The B-spline
basis functions

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

t

v

v = (1-t)3/6

v = (-3t3+3t2+3t+1)/6

v = t3/6

v = (3t3-6t2+4)/6

Q1(t) = [t3 t2 t 1] 1

6

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
Pi

Pi+1

Pi+2

Pi+3

⎤
⎥⎥⎦ . (11.20)

Let’s now illustrate how (11.20) works. We first identify the control points Pi ,
Pi+1, Pi+2, etc. Let these be (0, 1), (1, 3), (2, 0), (4, 1), (4, 3), (2, 2) and
(2, 3). They can be seen in Fig. 11.15 connected together by straight lines. If we
take the first four control points: (0, 1), (1, 3), (2, 0), (4, 1), and subject the
x- and y-coordinates to the matrix in (11.20) over the range 0 ≤ t ≤ 1 we obtain the
first B-spline curve segment shown in Fig. 11.15. If we move along one control point
and take the next group of control points (1, 3), (2, 0), (4, 1), (4, 3), we obtain
the second B-spline curve segment. This is repeated a further two times.

Figure11.15 shows the four curve segments, and it is obvious that even though
there are four discrete segments, they join together perfectly. This is no accident.
The slopes at the end points of the basis curves are designed to match the slopes of
their neighbours and ultimately keep the geometric curve continuous.

Fig. 11.15 Four curve
segments forming a B-spline
curve

0 1 2 3 4
0

1

2

3

y

x
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11.8.2 Continuity

In order to explain continuity, it is necessary to employ differentiation. Therefore,
you may wish to read the chapter on calculus before continuing.

Constructing curves from several segments can only succeed if the slope of the
abutting curves match. As we are dealing with curves whose slopes are changing
everywhere, it will be necessary to ensure that even the rate of change of slopes is
matched at the join. This aspect of curve design is called geometric continuity and
is determined by the continuity properties of the basis function. Let’s explore such
features.

The first level of curve continuity C0, ensures that the physical end of one basis
curve corresponds with the following, e.g. Si (1) = Si+1(0).We know that this occurs
from the basis graphs shown in Fig. 11.14. The second level of curve continuity C1,
ensures that the slope at the end of one basis curve matches that of the following
curve. This is confirmed by differentiating the basis functions (11.16)–(11.19):

B ′
0(t) = −3t2 + 6t − 3

6
(11.21)

B ′
1(t) = 9t2 − 12t

6
(11.22)

B ′
2(t) = −9t2 + 6t + 3

6
(11.23)

B ′
3(t) = 3t2

6
. (11.24)

Evaluating (11.21)–(11.24) for t=0 and t=1, we discover the slopes 0.5, 0,−0.5, 0
for the joins between B3, B2, B1, B0. The third level of curve continuity C2, ensures
that the rate of change of slope at the end of one basis curve matches that of the
following curve. This is confirmed by differentiating (11.21)–(11.24) (Table11.4):

B ′′
0 (t) = −t + 1 (11.25)

B ′′
1 (t) = 3t − 2 (11.26)

B ′′
2 (t) = −3t + 1 (11.27)

B ′′
3 (t) = t. (11.28)

Table 11.4 Continuity properties of cubic B-splines

t t t

C0 0 1 C1 0 1 C2 0 1

B3(t) 0 1/6 B ′
3(t) 0 0.5 B ′′

3 (t) 0 1

B2(t) 1/6 2/3 B ′
2(t) 0.5 0 B ′′

2 (t) 1 −2

B1(t) 2/3 1/6 B ′
1(t) 0 −0.5 B ′′

1 (t) −2 1

B0(t) 1/6 0 B ′
0(t) −0.5 0 B ′′

0 (t) 1 0
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Evaluating (11.25)–(11.28) for t = 0 and t = 1, we discover the values 1, 2, 1, 0
for the joins between B3, B2, B1, B0. These combined continuity results are tabulated
in Table9.4.

11.8.3 Non-uniform B-Splines

UniformB-splines are constructed from curve segmentswhere the parameter spacing
is at equal intervals.Non-uniform B-splines, with the support of a knot vector, provide
extra shape control and the possibility of drawing periodic shapes. Unfortunately an
explanation of the underlying mathematics would take us beyond the introductory
nature of this text, and readers are advised to seek out other books dealing in such
matters.

11.8.4 Non-uniform Rational B-Splines

Non-uniform rational B-splines (NURBS) combine the advantages of non-uniform
B-splines and rational polynomials: they support periodic shapes such as circles,
and they accurately describe curves associated with the conic sections. They also
play a very important role in describing geometry used in the modeling of computer
animation characters.

NURBS surfaces also have a patch formulation and play a very important role in
surface modelling in computer animation and CAD. However, tempting though it is
to give a description of NURBS surfaces here, they have been omitted because their
inclusion would unbalance the introductory nature of this text.

11.9 Surface Patches

11.9.1 Planar Surface Patch

The simplest form of surface geometry consists of a patchwork of polygons or tri-
angles, where three or more vertices provide the basis for describing the associated
planar surface. For example, given four vertices P00, P10, P01, P11 as shown in
Fig. 11.16, a point Puv can be defined as follows. To begin with, a point along the
edge P00 – P10 is defined as is defined as

Pu1 = (1 − u)P00 + u P10

and a point along the edge P01 – P11 is defined as

http://dx.doi.org/10.1007/978-1-4471-7336-6_9
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Fig. 11.16 A flat patch
defined by u and v
parameters

P00 P10

P01 P11

Puv

u

v

Pu2 = (1 − u)P01 + u P11.

Therefore, any point Puv is defined as

Puv = (1 − v)Pu1 + vPu2

= (1 − v)[(1 − u)P00 + u P10] + v[(1 − u)P01 + u P11]
= (1 − u)(1 − v)P00 + u(1 − v)P10 + v(1 − u)P01 + uvP11

and is written in matrix form as

Puv = [(1 − u) u]
[

P00 P01

P10 P11

] [
(1 − v)

v

]

which expands to

Puv = [u 1]
[−1 1

1 0

] [
P00 P01

P10 P11

] [−1 1
1 0

] [
v
1

]
.

Let’s illustrate this with an example. Given the following four points: P00 =
(0, 0, 0), P10 = (0, 0, 4), P01 = (2, 2, 1), P11 = (2, 2, 3), we can write
the coordinates of any point on the patch as

xuv = [u 1]
[−1 1

1 0

] [
0 2
0 2

] [−1 1
1 0

] [
v
1

]

yuv = [u 1]
[−1 1

1 0

] [
0 2
0 2

] [−1 1
1 0

] [
v
1

]

zuv = [u 1]
[−1 1

1 0

] [
0 1
4 3

] [−1 1
1 0

] [
v
1

]
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xuv = 2v (11.29)

yuv = 2v (11.30)

zuv = u(4 − 2v) + v. (11.31)

By substituting values of u and v in (11.29)–(11.31) between the range
0 ≤ (u, v) ≤ 1, we obtain the coordinates of any point on the surface of the
patch.

If we now introduce the ideas of Bézier control points into a surface patch defin-
ition, we provide a very powerful way of creating smooth 3D surface patches.

11.9.2 Quadratic Bézier Surface Patch

Bézier proposed a matrix of nine control points to determine the geometry of a
quadratic patch, as shown in Fig. 11.17. Any point on the patch is defined by

Puv = [u2 u 1]
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣ P00 P01 P02

P10 P11 P12

P20 P21 P22

⎤
⎦

⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣ v2

v
1

⎤
⎦ .

The individual x-, y- and z-coordinates are obtained by substituting the x-, y- and
z-values for the central P matrix.

Let’s illustrate the process with an example. Given the following points:

P00 = (0, 0, 0), P01 = (1, 1, 0), P02 = (2, 0, 0)

P10 = (0, 1, 1), P11 = (1, 2, 1), P12 = (2, 1, 1)

P20 = (0, 0, 2), P21 = (1, 1, 2), P22 = (2, 0, 2)

Fig. 11.17 A quadratic
Bézier surface patch

P00
P20

P10

P21

P22

P11

P01

P02

P12
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we can write

xuv = [u2 u 1]
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣0 1 2
0 1 2
0 1 2

⎤
⎦

⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣ v2

v
1

⎤
⎦

xuv = [u2 u 1]
⎡
⎣0 0 0
0 0 0
0 2 0

⎤
⎦

⎡
⎣ v2

v
1

⎤
⎦

xuv = 2v

yuv = [u2 u 1]
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣0 1 0
1 2 1
0 1 0

⎤
⎦

⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣ v2

v
1

⎤
⎦

yuv = [u2 u 1]
⎡
⎣ 0 0 −2

0 0 2
−2 2 0

⎤
⎦

⎡
⎣ v2

v
1

⎤
⎦

yuv = 2(u + v − u2 − v2)

zuv = [u2 u 1]
⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣0 0 0
1 1 1
2 2 2

⎤
⎦

⎡
⎣ 1 −2 1

−2 2 0
1 0 0

⎤
⎦

⎡
⎣ v2

v
1

⎤
⎦

zuv = [u2 u 1]
⎡
⎣0 0 0
0 0 2
0 0 0

⎤
⎦

⎡
⎣ v2

v
1

⎤
⎦

zuv = 2u.

Therefore, any point on the surface patch has coordinates

xuv = 2v, yuv = 2(u + v − u2 − v2), zuv = 2u.

Table11.5 shows the coordinate values for different values of u and v. In this exam-
ple, the y-coordinates provide the surface curvature, which could be enhanced by
modifying the y-coordinates of the control points.

Table 11.5 The x-, y-, z-coordinates for different values of u and v

v

0 0.5 1

u 0 (0, 0, 0) (1, 0.5, 0) (2, 0, 0)

0.5 (0, 0.5, 1 (1, 0.5, 1) (2, 0.5, 1)

1 (0, 0, 2) (1, 0.5, 2) (2, 0, 2)
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11.9.3 Cubic Bézier Surface Patch

As we saw earlier in this chapter, cubic Bézier curves require two end-points, and
two central control points. In the surface patch formulation a 4×4 matrix is required
as follows:

Puv = [u3 u2 u 1]

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

P00 P01 P02 P03

P10 P11 P12 P13

P20 P21 P22 P23

P30 P31 P32 P33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

which is illustrated with an example.
Given the points:

P00 = (0, 0, 0), P01 = (1, 1, 0), P02 = (2, 1, 0), P03 = (3, 0, 0)

P10 = (0, 1, 1), P11 = (1, 2, 1), P12 = (2, 2, 1), P13 = (3, 1, 1)

P20 = (0, 1, 2), P21 = (1, 2, 2), P22 = (2, 2, 2), P23 = (3, 1, 2)

P30 = (0, 0, 3), P31 = (1, 1, 3), P32 = (2, 1, 3), P33 = (3, 0, 3)

we can write the following matrix equations:

xuv = [u3 u2 u 1]

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

xuv = [u3 u2 u 1]

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 3 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

xuv = 3v

yuv = [u3 u2 u 1]

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 1 1 0
1 2 2 1
1 2 2 1
0 1 1 0

⎤
⎥⎥⎦
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⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

yuv = [u3 u2 u 1]

⎡
⎢⎢⎣
0 0 0 0
0 0 0 −3
0 0 0 3
0 −3 3 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

yuv = 3(u + v − u2 − v2)

zuv = [u3 u2 u 1]

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−1 3 −3 1
3 −6 3 0

−3 3 0 0
1 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

zuv = [u3 u2 u 1]

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v3

v2

v
1

⎤
⎥⎥⎦

zuv = 3u.

Therefore, any point on the surface patch has coordinates

xuv = 3v, yuv = 3(u + v − u2 − v2), zuv = 3u.

Table11.6 shows the coordinate values for different values of u and v. In this exam-
ple, the y-coordinates provide the surface curvature, which could be enhanced by
modifying the y-coordinates of the control points.

Complex 3D surfaces are readily modeled using Bézier patches. One simply
creates amesh of patches such that their control points are shared at the joins. Surface
continuity is controlled using the same mechanism for curves. But where the slopes
of trailing and starting control edges apply for curves, the corresponding slopes of
control tiles apply for patches.
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Table 11.6 The x-, y-, z-coordinates for different values of u and v

v

0 0.5 1

u 0 (0, 0, 0) (1.5, 0.75, 0) (3, 0, 0)

0.5 (0, 0.75, 1.5 (1.5, 1.5, 1.5) (3, 0.75, 1.5)

1 (0, 0, 3) (1.5, 0.75, 3) (3, 0, 3)

11.10 Summary

This subject has been the most challenging one to describe. On the one hand, the
subject is vital to every aspect of computer graphics, and on the other, the reader
is required to wrestle with cubic polynomials and a little calculus. However, I do
hope that I have managed to communicate some essential concepts behind curves
and surfaces, and that you will be tempted to implement some of the mathematics.



Chapter 12
Analytic Geometry

12.1 Introduction

This chapter explores some basic elements of geometry and analytic geometry that
are frequently encountered in computer graphics. For completeness, I have included a
short review of important elements of Euclidean geometry with which you should be
familiar. Perhaps the most important topics that you should try to understand concern
the definitions of straight lines in space, 3D planes, and how points of intersection
are computed. Another useful topic is the role of parameters in describing lines and
line segments, and their intersection.

12.2 Background

In the third centuryBCE,Euclid laid the foundations of geometry that have been taught
in schools for centuries. In the 19th century, mathematicians such as
BernhardRiemann (1809–1900) andNicolai Lobachevsky (1793–1856) transformed
this Euclidean geometry with ideas such as curved space, and spaces with higher
dimensions. Although none of these developments affect computer graphics, they
do place Euclid’s theorems in a specific context: a set of axioms that apply to flat
surfaces. We have probably all been taught that parallel lines never meet, and that the
internal angles of a triangle sum to 180◦, but these are only true in specific situations.
As soon as the surface or space becomes curved, such rules break down. So let’s
review some rules and observations that apply to shapes drawn on a flat surface.

© Springer-Verlag London Ltd. 2017
J. Vince,Mathematics for Computer Graphics, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-7336-6_12
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12.2.1 Angles

By definition, 360◦ or 2π [radians] measure one revolution. You should be familiar
with both units ofmeasurement, and how to convert from one to the other. Figure12.1
shows examples of adjacent/supplementary angles (sum to 180◦), opposite angles
(equal), and complementary angles (sum to 90◦).

12.2.2 Intercept Theorems

The Intercept Theorems are attributed to the Greek philosopher and mathemati-
cian Thales of Miletus (c.624–c.546 BC) and involve intersecting and parallel lines.
Figures 12.2 and 12.3 show two scenarios that give rise to the following observations:

• First intercept theorem:

a + b

a
= c + d

c
,

b

a
= d

c
.

• Second intercept theorem:

a

b
= c

d
.

Fig. 12.1 Examples of
adjacent, supplementary,
opposite and complementary
angles

α + β = 180◦ δ + φ = 90◦

α
αβ

β

φ

Fig. 12.2 The first intercept
theorem

a c

b

d

c
a

d
b
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Fig. 12.3 The second
intercept theorem

a

c

b

d

c

a

d

b

12.2.3 Golden Section

The golden section is widely used in art and architecture to represent an ‘ideal’ ratio
for the height and width of an object. Its origins stem from the interaction between
a circle and triangle and give rise to the following relationship:

b = a

2

(√
5 − 1

)
≈ 0.618a.

The rectangle in Fig. 12.4 has proportions:

height = 0.618 × width.

12.2.4 Triangles

The rules associated with interior and exterior angles of a triangle are very useful in
solving all sorts of geometric problems. Figure12.5 shows two diagrams identifying

Fig. 12.4 A rectangle with a
height to width ratio equal to
the golden section

10.0

6.18
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Fig. 12.5 Relationship
between interior and exterior
angles

α

θ

β

α

α β

β
θ

α β

β
α

θ

interior and exterior angles. We can see that the sum of the interior angles is 180◦,
and that the exterior angles of a triangle are equal to the sum of the opposite angles:

α + β + θ = 180◦

α′ = θ + β

β ′ = α + θ

θ ′ = α + β.

12.2.5 Centre of Gravity of a Triangle

A median is a straight line joining a vertex of a triangle to the mid-point of the
opposite side. When all three medians are drawn, they intersect at a common point,
which is also the triangle’s centre of gravity. The centre of gravity divides all the
medians in the ratio 2 : 1. Figure12.6 illustrates this arrangement.

12.2.6 Isosceles Triangle

Figure12.7 shows an isosceles triangle, which has two equal sides of length l and
equal base angles α. The triangle’s altitude and area are

Fig. 12.6 The three medians
of a triangle intersect at its
centre of gravity

b a

c

a

c

b
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Fig. 12.7 An isosceles
triangle

α α

l

c/2 c/2

l
h

h =
√
l2 −

( c
2

)2
, A = ch

2
.

12.2.7 Equilateral Triangle

An equilateral triangle has three equal sides of length l and equal angles of 60◦. The
triangle’s altitude and area are

h =
√
3

2
l, A =

√
3

4
l2.

12.2.8 Right Triangle

Figure12.8 shows a right triangle with its obligatory right angle. The triangle’s alti-
tude and area are

h = ab

c
, A = ab

2
.

12.2.9 Theorem of Thales

Figure12.9 illustrates the theorem of Thales, which states that the right angle of a
right triangle lies on the circumcircle over the hypotenuse.

Fig. 12.8 A right triangle

h ab

c
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Fig. 12.9 The theorem of
Thales

12.2.10 Theorem of Pythagoras

Although this theorem is named after Pythagoras there is substantial evidence to show
that it was known by the Babylonians a millennium earlier. However, Pythagoras is
credited with its proof. Figure12.10 illustrates the well-known relationship:

a2 = b2 + c2

from which one can show that

sin2 θ + cos2 θ = 1.

Fig. 12.10 The theorem of
Pythagoras states that
a2 = b2 + c2 a

b

c

b

c
a
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12.2.11 Quadrilateral

Quadrilaterals have four sides and include the square, rectangle, trapezoid, parallel-
ogram and rhombus, whose interior angles sum to 360◦. As the square and rectangle
are familiar shapes, we will only consider the other three.

12.2.12 Trapezoid

Figure12.11 shows a trapezoid which has one pair of parallel sides h apart. The
mid-line m and area are given by

m = a + b

2
A = mh.

12.2.13 Parallelogram

Figure12.12 shows a parallelogram, which is formed from two pairs of intersecting
parallel lines, so it has equal opposite sides and equal opposite angles. The altitude,
diagonal lengths and area are given by

h = b sin α

d1,2 =
√
a2 + b2 ± 2a

√
b2 − h2

A = ah.

Fig. 12.11 A trapezoid with
one pair of parallel sides

a

b

m

h
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Fig. 12.12 A parallelogram
formed by two pairs of
parallel lines

a

b

a

b

α

h
d1d2

12.2.14 Rhombus

Figure12.13 shows a rhombus, which is a parallelogram with four sides of equal
length a. The area is given by

A = a2 sin α = d1d2
2

.

12.2.15 Regular Polygon

Figure12.14 shows part of a regular n-gon with outer radius Ro, inner radius Ri and
edge length an . Table12.1 shows the relationship between the area, an , Ri and Ro

for different polygons.

Fig. 12.13 A rhombus is a
parallelogram with four
equal sides a a

aa

d1

d2
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Fig. 12.14 Part of a regular
gon showing the inner and
outer radii and the edge
length

RoRi

an

Table 12.1 The area An , edge length an , inner radius Ri , and outer radius Ro for different polygons

n an = 2Ri tan(180◦/n) Ri = Ro cos(180◦/n) R2
o = R2

i + 1
4a

2
n

n An = n
4 a

2
n cot(180

◦/n) An = n
2 R

2
o sin(360

◦/n) An = nR2
i tan(180

◦/n)

5 a5 = 2Ri

√
5 − 2

√
5 Ri = Ro

4 (
√
5 + 1) Ro = Ri (

√
5 − 1)

5 A5 = a25
4

√
25 + 10

√
5 A5 = 5

8 R
2
o

√
10 + 2

√
5 A5 = 5R2

i

√
5 − 2

√
5

6 a6 = 2
3 Ri

√
3 Ri = Ro

2

√
3 Ro = 2

3 Ri
√
3

6 A6 = 3
2a

2
6

√
3 A6 = 3

2 R
2
o

√
3 A6 = 2R2

i

√
3

8 a8 = 2Ri (
√
2 − 1) Ri = Ro

2

√
2 + √

2 Ro = Ri

√
4 − 2

√
2

8 A8 = 2a28(
√
2 + 1) A8 = 2R2

o

√
2 A8 = 8R2

i (
√
2 − 1)

10 a10 = 2
5 Ri

√
25 − 10

√
5 Ri = Ro

4

√
10 + 2

√
5 Ro = Ri

5 (
√
50 − 10

√
5

10 A10 = 5
2a

2
10

√
5 + 2

√
5 A10 = 5

4 R
2
o

√
10 − 2

√
5 A10 = 2R2

i

√
25 − 10

√
5

12.2.16 Circle

The circumference C and area A of a circle are given by

C = πd = 2πr

A = πr2 = π
d2

4

where the diameter d = 2r .
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Fig. 12.15 An annulus
formed from two concentric
circles

D

d

R

r

Fig. 12.16 A sector of a
circle defined by the angle α

r

An annulus is the area between two concentric circles as shown in Fig. 12.15, and
its area A is given by

A = π(R2 − r2) = π

4
(D2 − d2)

where D = 2R and d = 2r .
Figure12.16 shows a sector of a circle, whose area is given by

A = α◦

360◦ πr2.

Figure12.17 shows a segment of a circle, whose area is given by

A = r2

2
(α − sin α)

where α is in radians.
The area of an ellipse with major and minor radii a and b is

A = πab.



12.3 2D Analytic Geometry 269

Fig. 12.17 A segment of a
circle defined by the angle α

r

α

12.3 2D Analytic Geometry

In this section we briefly examine familiar descriptions of geometric elements and
ways of computing intersections.

12.3.1 Equation of a Straight Line

The well-known equation of a line is

y = mx + c

where m is the slope and c the intersection with the y-axis, as shown in Fig. 12.18.
This is called the normal form.

Given two points (x1, y1) and (x2, y2)we can state that for any other point (x, y)

y − y1
x − x1

= y2 − y1
x2 − x1

Fig. 12.18 The normal form
of the straight line is
y = mx + c

x1 x2 x X

y1

y2

y

Y

m
c
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which yields

y = (x − x1)
y2 − y1
x2 − x1

+ y1.

Although these equations have their uses, the more general form is much more
convenient:

ax + by + c = 0.

As we shall see, this equation possesses some interesting qualities.

12.3.2 The Hessian Normal Form

Figure12.19 shows a line whose orientation is controlled by a normal unit vector
n = [a b]T . If P(x, y) is any point on the line, then p is a position vector where
p = [x y]T and d is the perpendicular distance from the origin to the line. Therefore,

d

|p| = cosα

and

d = |p| cosα.

But the dot product n · p is given by

n · p = |n||p| cosα = ax + by

which implies that

ax + by = d|n|

Fig. 12.19 The orientation
of a line can be controlled by
a normal vector n and a
distance d

Y

n

p

d

α

P (x, y)

X
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and because |n| = 1 we can write

ax + by − d = 0

where (x, y) is a point on the line, a and b are the components of a unit vector
normal to the line, and d is the perpendicular distance from the origin to the line. The
distance d is positive when the normal vector points away from the origin, otherwise
it is negative. For example, let’s find the equation of a line whose normal vector is
[3 4]T and the perpendicular distance from the origin to the line is 1.

We begin by normalising the normal vector to its unit form. Therefore, if n =
[3 4]T , |n| = √

32 + 42 = 5. The equation of the line is

3

5
x + 4

5
y − 1 = 0.

Similarly, let’s find the Hessian normal form of y = 2x + 1.
Rearranging the equation we get

2x − y = −1

which gives a negative distance. If we want the normal vector to point away from
the origin we multiply by −1:

−2x + y − 1 = 0.

Normalise the normal vector to a unit form

i.e.
√

(−2)2 + 12 = √
5

− 2√
5
x + 1√

5
y − 1√

5
= 0.

Therefore, the perpendicular distance from the origin to the line, and the unit normal
vector are respectively

1√
5

and

[−2√
5

1√
5

]T

.

As the Hessian normal form involves a unit normal vector, we can incorporate the
vector’s direction cosines within the equation:

x cosα + y sin α − d = 0

where α is the angle between the normal vector and the x-axis.
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Fig. 12.20 The Hessian
normal form of the line
equation partitions space into
two zones

X

Y

n

d

ax + by − d < 0

ax+
by −

d = 0

ax + by − d > 0

12.3.3 Space Partitioning

The Hessian normal form provides a very useful way of partitioning space into two
zones: the partition that includes the normal vector, and the opposite partition. This
is illustrated in Fig. 12.20.

Given the equation

ax + by − d = 0

a point (x, y) on the line satisfies the equation. But if the point (x, y) is in the
partition in the direction of the normal vector, it creates the inequality

ax + by − d > 0.

Conversely, if (x, y) is in the partition opposite to the direction of the normal vector
creates the inequality

ax + by − d < 0.

This space-partitioning feature of the Hessian normal form is useful in clipping lines
against polygonal windows.

12.3.4 The Hessian Normal Form from Two Points

Given two points (x1, y1) and (x2, y2) we compute the values of a, b and d for the
Hessian normal form as follows.

The vector joining the two points is v = [Δx Δy]T where

Δx = x2 − x1
Δy = y2 − y1
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|v| =
√

Δ2
x + Δ2

y

The unit vector normal to v is n = [−Δ′
y Δ′

x ]T , where

Δ′
x = Δx

|v|
Δ′

y = Δy

|v|

Therefore, let p = [x y]T be any point on the line, and using the Hessian Normal
Form, we can write:

n · p = −Δ′
yx + Δ′

x y = −Δ′
y x1 + Δ′

x y1

and

− Δ′
yx + Δ′

x y + (Δ′
yx1 − Δ′

x y1) = 0 (12.1)

For example, given the following points: (x1, y1) = (0, 1) and (x2, y2) =
(1, 0); then Δ′

x = 1/
√
2 and Δ′

y = −1/
√
2. Therefore, using (12.1)

x√
2

+ y√
2

+
(
0 × −1√

2
− 1 × 1√

2

)
= 0

x√
2

+ y√
2

− 1√
2

= 0.

12.4 Intersection Points

12.4.1 Intersecting Straight Lines

Given two line equations of the form

a1x + b1y + d1 = 0

a2x + b2y + d2 = 0

the intersection point (xi , yi ) is given by

xi = b1d2 − b2d1
a1b2 − a2b1

yi = d1a2 − d2a1
a1b2 − a2b1
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or using determinants:

xi =

∣∣∣∣
b1 d1
b2 d2

∣∣∣∣
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣

yi =

∣∣∣∣
d1 a1
d2 a2

∣∣∣∣
∣∣∣∣
a1 b1
a2 b2

∣∣∣∣
.

If the denominator is zero, the equations are linearly dependent, indicating that there
is no intersection.

12.4.2 Intersecting Line Segments

We are often concerned with line segments in computer graphics as they represent
the edges of shapes and objects. So let’s investigate how to compute the intersection
of two 2D-line segments. Figure12.21 shows two line segments defined by their end
points P1, P2, P3, P4 and respective position vectors p1, p2, p3 and p4. We can write
the following vector equations to identify the point of intersection:

pi = p1 + t (p2 − p1) (12.2)

pi = p3 + s(p4 − p3) (12.3)

where parameters s and t vary between 0 and 1. For the point of intersection, we can
write

p1 + t (p2 − p1) = p3 + s(p4 − p3).

Fig. 12.21 Two line
segments with their
associated position vectors

X

Y

p1

p2

p3

p4

P1
P3

P2

P4

Pi

pi
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Therefore, the parameters s and t are given by

s = (p1 − p3) + t (p2 − p1)
p4 − p3

(12.4)

t = (p3 − p1) + s(p4 − p3)
p2 − p1

. (12.5)

From (12.5) we can write

t = (x3 − x1) + s(x4 − x3)

x2 − x1

t = (y3 − y1) + s(y4 − y3)

y2 − y1

which yields

s = x1(y3 − y2) + x2(y3 − y1) + x3(y2 − y1)

(x2 − x1)(y4 − y3) − (x4 − x3)(y2 − y1)
(12.6)

similarly,

t = x1(y4 − y3) + x3(y1 − y4) + x4(y3 − y1)

(x4 − x3)(y2 − y1) − (x2 − x1)(y4 − y3)
. (12.7)

Let’s test (12.6) and (12.7) with two examples to illustrate how the equations are
used in practice. The first example demonstrates an intersection condition, and the
second demonstrates a touching condition.

Figure12.22a shows two line segments intersecting, with an obvious intersection
point of (1.5, 0). The coordinates of the line segments are

(x1, y1) = (1, 0), (x2, y2) = (2, 0)

(x3, y3) = (1.5, −1), (x4, y4) = (1.5, 1)

Fig. 12.22 a Shows two line
segments intersecting.
b Shows two line segments
touching

X

Y Y

X

(a) (b)

(1.5, 1)

(1.5,−1)

(1, 0) (2, 0) (1, 0) (2, 0)

(1.5, 1)

(1.5, 0)
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therefore,

t = 1(1 − (−1)) + 1.5(0 − 1) + 1.5(−1 − 0)

(0 − 0)(1.5 − 1.5) − (2 − 1)(1 − (−1))
= 0.5

and

s = 1(−1 − 0) + 2(0 − (−1)) + 1.5(0 − 0)

(1 − (−1))(2 − 1) − (1.5 − 1.5)(0 − 0)
= 0.5.

Substituting s and t in (12.2) and (12.3) we get (xi , yi ) = (1.5, 0) as predicted.
Figure12.22b shows two line segments touching at (1.5, 0). The coordinates of

the line segments are

(x1, y1) = (1, 0), (x2, y2) = (2, 0)

(x3, y3) = (1.5, 0), (x4, y4) = (1.5, 1)

therefore,

t = 1(1 − 0) + 1.5(0 − 1) + 1.5(0 − 0)

(0 − 0)(1.5 − 1.5) − (2 − 1)(1 − 0)
= 0.5

and

s = 1(0 − 0) + 2(0 − 0) + 1.5(0 − 0)

(1 − 0)(2 − 1) − (1.5 − 1.5)(0 − 0)
= 0.

The zero value of s confirms that the lines touch, rather than intersect, and t = 0.5
confirms that the touching takes place halfway along the line segment.

12.5 Point Inside a Triangle

We often require to test whether a point is inside, outside or touching a triangle. Let’s
examine two ways of performing this operation. The first is related to finding the
area of a triangle.

12.5.1 Area of a Triangle

Let’s declare a triangle formed by the anti-clockwise points P1(x1, y1), P2(x2, y2)
and P3(x3, y3) as shown in Fig. 12.23. The area of the triangle is given by:

A = (x2 − x1)(y3 − y1) − (x2 − x1)(y2 − y1)

2
− (x2 − x3)(y3 − y2)

2
− (x3 − x1)(y3 − y1)

2
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Fig. 12.23 The area of the
triangle is computed by
subtracting the smaller
triangles from the
rectangular area

X

Y

P1

P3

P2

which simplifies to

A = 1

2
[x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)]

and this can be further simplified to

A = 1

2

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
.

Figure12.24 shows two triangles with opposing vertex sequences. If we calculate
the area of the top triangle with anticlockwise vertices, we obtain

A = 1

2
[1(2 − 4) + 3(4 − 2) + 2(2 − 2)] = 2

Fig. 12.24 The top triangle
has anti-clockwise vertices,
and the bottom triangle
clockwise vertices

X

Y

P1

P3

P2

P3
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Fig. 12.25 If the point Pt is
inside the triangle, it is
always to the left as the
boundary is traversed in an
anti-clockwise direction

X

Y

P1

P3

P2

Pt

whereas the area of the bottom triangle with clockwise vertices is

A = 1

2
[1(2 − 0) + 3(0 − 2) + 2(2 − 2)] = −2

which shows that the technique is sensitive to vertex direction. We can exploit this
sensitivity to test if a point is inside or outside a triangle.

Consider the scenario shown in Fig. 12.25, where the point Pt is inside the triangle
(P1, P2, P3).

• If the area of triangle (P1, P2, Pt ) is positive, Pt must be to the left of the
line (P1, P2).

• If the area of triangle (P2, P3, Pt ) is positive, Pt must be to the left of the
line (P2, P3).

• If the area of triangle (P3, P1, Pt ) is positive, Pt must be to the left of the
line (P3, P1).

If all the above tests are positive, Pt is inside the triangle. Furthermore, if one area
is zero and the other areas are positive, the point is on the boundary, and if two areas
are zero and the other positive, the point is on a vertex.

Let’s now investigate how the Hessian normal form provides a similar function.

12.5.2 Hessian Normal Form

We can determine whether a point is inside, touching or outside a triangle by repre-
senting the triangle’s edges in the Hessian normal form, and testing in which partition
the point is located. If we arrange that the normal vectors are pointing towards the
inside of the triangle, any point inside the triangle will create a positive result when
tested against the edge equation. In the following calculations there is no need to
ensure that the normal vector is a unit vector, therefore (12.1) can be written:

−Δyx + Δx y + (Δyx1 − Δx y1) = 0
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Fig. 12.26 The triangle is
represented by three line
equations expressed in the
Hessian normal form. Any
point inside the triangle is
found by evaluating their
equations

X

Y (2, 3)

(3, 1)(1, 1)

To illustrate this, consider the scenario shown in Fig. 12.26 where a triangle is
formed by the points (1, 1), (3, 1) and (2, 3). With reference to (12.1) we compute
the three line equations:

The line between (1, 1) and (3, 1):

Δx = 2

Δy = 0

−0 × x + 2 × y − 2 × 1 = 0

2y − 2 = 0.

The line between (3, 1) and (2, 3):

Δx = −1

Δy = 2

−2 × x − 1 × y + (2 × 3) + 1 × 1 = 0

−2x − y + 7 = 0.

The line between (2, 3) and (1, 1):

Δx = −1

Δy = −2

2 × x − 1 × y + (−2 × 2) − 1 × 3 = 0

2x − y − 1 = 0.
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Thus the three line equations for the triangle are

2y − 2 = 0

−2x − y + 7 = 0

2x − y − 1 = 0.

We are only interested in the signs of the equations:

2y − 2 (12.8)

− 2x − y + 7 (12.9)

2x − y − 1 (12.10)

which can be tested for any arbitrary point (x, y). If they are all positive, the point is
inside the triangle. If one expression is negative, the point is outside. If one expression
is zero, the point is on an edge, and if two expressions are zero, the point is on a
vertex.

Just as a quick test, consider the point (2, 2). The three expressions (12.8)–(12.10)
are positive, which confirms that the point is inside the triangle. The point (3, 3) is
obviously outside the triangle, which is confirmed by two positive results and one
negative. Finally, the point (2, 3), which is a vertex, creates one positive result and
two zero results.

12.6 Intersection of a Circle with a Straight Line

The equation of a circle has already been given in the previous chapter, so we will
now consider how to compute its intersection with a straight line.We begin by testing
the equation of a circle with the normal form of the line equation:

x2 + y2 = r2 and y = mx + c.

By substituting the line equation in the circle’s equation we discover the two inter-
section points:

x1,2 = −mc ± √
r2(1 + m2) − c2

1 + m2
(12.11)

y1,2 = c ± m
√
r2(1 + m2) − c2

1 + m2
. (12.12)

Let’s test this result with the scenario shown in Fig. 12.27. Using the normal form of
the line equation we have
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Fig. 12.27 The intersection
of a circle with a line

X

Y

(−1, 0)

(0, 1) y = x + 1

x2 + y2 = 1

y = x + 1, m = 1, and c = 1.

Substituting these values in (12.11) and (12.12) yields

x1,2 = −1, 0, y1,2 = 0, 1.

The actual points of intersection are (−1, 0) and (0, 1).
Testing the equation of the circle with the general equation of the line ax + by +

c = 0 yields intersections given by

x1,2 = −ac ± b
√
r2(a2 + b2) − c2

a2 + b2
(12.13)

y1,2 = −bc ± a
√
r2(a2 + b2) − c2

a2 + b2
. (12.14)

The general form of the line equation y = x + 1 is

x − y + 1 = 0 where a = 1, b = −1 and c = 1.

Substituting these values in (12.13) and (12.14) yields

x1,2 = −1, 0, and y1,2 = 0, 1

which gives the same intersection points found above.
Finally, using the Hessian normal form of the line ax + by − d = 0 yields inter-

sections given by

x1,2 = ad ± b
√
r2 − d2 (12.15)

y1,2 = bd ± a
√
r2 − d2. (12.16)



282 12 Analytic Geometry

The Hessian normal form of the line equation x − y + 1 = 0 is

−0.707x + 0.707y − 0.707 ≈ 0

where a ≈ −0.707, b ≈ 0.707 and d ≈ 0.707. Substituting these values in (12.15)
and (12.16) yields

x1,2 = −1, 0; and y1,2 = 0, 1

which gives the same intersection points found above.One can readily see the compu-
tational benefits of using the Hessian normal form over the other forms of equations.

12.7 3D Geometry

3D straight lines are best described using vector notation, and readers are urged
to develop strong skills in these techniques if they wish to solve problems in 3D
geometry. Let’s begin this short survey of 3D analytic geometry by describing the
equation of a straight line.

12.7.1 Equation of a Straight Line

We start by using a vector b to define the orientation of the line, and a point a in space
through which the line passes. This scenario is shown in Fig. 12.28. Given another
point P on the line we can define a vector tb between a and P , where t is a scalar.
The position vector p for P is given by

Fig. 12.28 The line
equation is based upon the
point a and the vector b b

tb
P

p

a X

Y

Z

a
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p = a + tb

from which we can obtain the coordinates of the point P:

xp = xa + t xb
yp = ya + t yb
z p = za + t zb.

For example, if b = [1 2 3]T and a = (2, 3, 4), then by setting t = 1 we can
identify a second point on the line:

xp = 2 + 1 = 3

yp = 3 + 2 = 5

z p = 4 + 3 = 7.

In fact, by using different values of t we can slide up and down the line with ease.
If we have two points P1 and P2, such as the vertices of an edge, we can represent

the line equation using the above vector technique:

p = p1 + t (p2 − p1)

where p1 and p2 are position vectors to their respective points. Once more, we can
write the coordinates of any point P as follows:

xp = x1 + t (x2 − x1)

yp = y1 + t (y2 − y1)

z p = z1 + t (z2 − z1).

12.7.2 Intersecting Two Straight Lines

Given two straight lines we can test for a point of intersection, but must be prepared
for three results:

• a real intersection point
• no intersection point
• an infinite number of intersections (identical lines).

If the line equations are of the form

p = a1 + rb1
p = a2 + rb2
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for an intersection we can write

a1 + rb1 = a2 + sb2

which yields

xa1 + r xb1 = xa2 + sxb2 (12.17)

ya1 + r yb1 = ya2 + syb2 (12.18)

za1 + r zb1 = za2 + szb2. (12.19)

We now have three equations in two unknowns, and any value of r and smust hold for
all three equations.We begin by selecting two equations that are linearly independent
(i.e. one equation is not a scalar multiple of the other) and solve for r and s, which
must then satisfy the third equation. If this final substitution fails, then there is no
intersection. If all three equations are linearly dependent, they describe two parallel
lines, which can never intersect.

To check for linear dependency we rearrange (12.17)–(12.19) as follows:

r xb1 − sxb2 = xa2 − xa1 (12.20)

r yb1 − syb2 = ya2 − ya1 (12.21)

r zb1 − szb2 = za2 − za1. (12.22)

If the determinant Δ of any pair of these equations is zero, then they are dependent.
For example, (12.20) and (12.21) form the determinant

Δ =
∣∣∣∣
xb1 −xb2
yb1 −yb2

∣∣∣∣

which, if zero, implies that the two equations can not yield a solution. As it is impos-
sible to predict which pair of equations from (12.20) to (12.22) will be independent,
let’s express two independent equations as follows:

ra11 − sa12 = b1
ra21 − sa22 = b2

which yields

r = a22b1 − a12b2
Δ

s = a21b1 − a11b2
Δ



12.7 3D Geometry 285

where

Δ =
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣ .

Solving for r and s we obtain

r = yb2(xa2 − xa1) − xb2(ya2 − ya1)

xb1yb2 − yb1xb2
(12.23)

s = yb1(xa2 − xa1) − xb1(ya2 − ya1)

xb1yb2 − yb1xb2
. (12.24)

As a quick test, consider the intersection of the lines encoded by the following
vectors:

a1 =
⎡
⎣
0
1
0

⎤
⎦ , b1 =

⎡
⎣
3
3
3

⎤
⎦ , a2 =

⎡
⎣

0
0.5
0

⎤
⎦ , b2 =

⎡
⎣
2
3
2

⎤
⎦ .

Substituting the x- and y-components in (12.23) and (12.24) we discover

r = 1

3
and s = 1

2

but for these to be consistent, they must satisfy the z-component of the original
equation:

r zb1 = szb2 = za2 − za1

1

3
× 3 − 1

2
× 2 = 0

which is correct. Therefore, the point of intersection is given by either

pi = a1 + rb1, or

pi = a2 + sb2.

Let’s try both, just to prove the point:

xi = 0 + 1

3
3 = 1, xi = 0 + 1

2
2 = 1,

yi = 1 + 1

3
3 = 2, yi = 1

2
+ 1

2
3 = 2,

zi = 0 + 1

3
3 = 1, zi = 0 + 1

2
2 = 1.
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Therefore, the point of intersection point is (1, 2, 1).
Now let’s take two lines that don’t intersect, and also exhibit some linear depen-

dency:

a1 =
⎡
⎣
0
1
0

⎤
⎦ , b1 =

⎡
⎣
2
2
0

⎤
⎦ , a2 =

⎡
⎣
0
2
0

⎤
⎦ , b2 =

⎡
⎣
2
2
1

⎤
⎦ .

Taking the x- and y-componentswe discover that the determinantΔ is zero, which
has identified the linear dependency. Taking the y- and z-components the determinant
is non-zero, which permits us to compute r and s using

r = zb2(ya2 − ya1) − yb2(za2 − za1)

yb1zb2 − zb1yb2

s = zb1(ya2 − ya1) − yb1(za2 − za1)

yb1zb2 − zb1yb2

r = 1(2 − 1) − 2(0 − 0)

2 × 1 − 0 × 2
= 1

2

s = 0(2 − 1) − 2(0 − 0)

2 × 1 − 0 × 2
= 0.

But these values of r and s must also apply to the x-components:

r xb1 − sxb2 = xa2 − xa1

1

2
× 2 − 0 × 2 �= 0

which they clearly do not, therefore the lines do not intersect.
Now let’s proceed with the equation of a plane, and then look at how to compute

the intersection of a line with a plane using a similar technique.

12.8 Equation of a Plane

We now consider four ways of representing a plane equation: the Cartesian form,
general form, parametric form and a plane from three points.

12.8.1 Cartesian Form of the Plane Equation

One popular method of representing a plane equation is the Cartesian form, which
employs a vector normal to the plane’s surface and a point on the plane. The equation
is derived as follows.
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Fig. 12.29 The vector n is
normal to the plane, which
also contains a point
P0(x0, y0, z0). P(x, y, z)
is any other point on the
plane

P

p

X

Y

Z

n

P0

p0
α

qh

Let n be a nonzero vector normal to the plane and P0(x0, y0, z0) a point on
the plane. P(x, y, z) is any other point on the plane. Figure12.29 illustrates the
scenario. The normal vector is defined as

n = ai + bj + ck

and the position vectors for P0 and P are

p0 = x0i + y0j + z0k

p = x i + yj + zk

respectively. From Fig. 12.29 we observe that

q = p − p0

and as n is orthogonal to q

n · q = 0

therefore,

n · (p − p0) = 0

which expands into

n · p = n · p0. (12.25)

Writing (12.25) in its Cartesian form we obtain

ax + by + cz = ax0 + by0 + cz0
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but ax0 + by0 + cz0 is a scalar quantity associated with the plane and can be replaced
by d. Therefore,

ax + by + cz = d (12.26)

which is the Cartesian form of the plane equation.
The value of d has the following geometric interpretation.
In Fig. 12.29 the perpendicular distance from the origin to the plane is

h = |p0| cosα

therefore,

n · p0 = |n||p0| cosα = h|n|

therefore, the plane equation is also expressed as

ax + by + cz = h|n|. (12.27)

Dividing (12.27) by |n| we obtain
a

|n| x + b

|n| y + c

|n| z = h

where

|n| =
√
a2 + b2 + c2.

This means that when a unit normal vector is used, h is the perpendicular distance
from the origin to the plane. Let’s investigate this equation with an example.

Figure12.30 shows a plane represented by the normal vector n = j + k and a
point on the plane P0(0, 1, 0). Using (12.26) we have

Fig. 12.30 A plane
represented by the normal
vector n and a point
P0(0, 1, 0)

X

Y

Z

n

(0, 0, 1)

P0(0, 1, 0)
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0x + 1y + 1z = 0 × 0 + 1 × 1 + 1 × 0 = 1

therefore, the plane equation is

y + z = 1.

If we normalise the equation to create a unit normal vector, we have

y√
2

+ z√
2

= 1√
2

where the perpendicular distance from the origin to the plane is 1/
√
2.

12.8.2 General Form of the Plane Equation

The general form of the equation of a plane is expressed as

Ax + By + Cz + D = 0

which means that the Cartesian form is translated into the general form by making

A = a, B = b, C = c, D = −d.

12.8.3 Parametric Form of the Plane Equation

Another method of representing a plane is to employ two vectors and a point that
lie on the plane. Figure12.31 illustrates a scenario where vectors a and b, and the
point T (xt , yt , zt ) lie on a plane. We now identify any other point on the plane

Fig. 12.31 A plane is
defined by the vectors a and
b and the point T (xt , yt , zt )

X

Y

Z t

b

b

λap

P

a

c

T
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P(xp, yp, z p) with its associated position vector p. The point T also has its associ-
ated position vector t.

Using vector addition we can write

c = λa + εb

where λ and ε are two scalars such that c locates the point P . We can now write

p = t + c (12.28)

therefore,

xp = xt + λxa + εxb
yp = yt + λya + εyb
z p = zt + λza + εzb

which means that the coordinates of any point on the plane are formed from the
coordinates of the known point on the plane, and a linear mixture of the components
of the two vectors. Let’s illustrate this vector approach with an example.

Figure12.32 shows a plane containing the vectors a = i and b = k, and the point
T (1, 1, 1)with its position vector t = i + j + k. By inspection, the plane is parallel
with the xz-plane and intersects the y-axis at y = 1.

From (12.28) we can write

p = t + λa + εb

where λ and ε are arbitrary scalars.

Fig. 12.32 The plane is
defined by the vectors a and
b and the point T (1, 1, 1)

X

Y

Z

t

b λa

p

P

T
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For example, if λ = 2 and ε = 1:

xp = 1 + 2 × 1 + 1 × 0 = 3

yp = 1 + 2 × 0 + 1 × 0 = 1

z p = 1 + 2 × 0 + 1 × 1 = 2.

Therefore, the point (3, 1, 2) is on the plane.

12.8.4 Converting from the Parametric to the General Form

It is possible to convert from the parametric form to the general form of the plane
equation using the following formulae:

λ = (a · b)(b · t) − (a · t)|b|2
|a|2|b|2 − (a · b)2

ε = (a · b)(a · t) − (b · t)|a|2
|a|2|b|2 − (a · b)2

.

The resulting point P(xp, yp, z p) is perpendicular to the origin.
If vectors a and b are unit vectors, λ and ε become

λ = (a · b)(b · t) − a · t
1 − (a · b)2

(12.29)

ε = (a · b)(a · t) − b · t
1 − (a · b)2

. (12.30)

P’s position vector p is also the plane’s normal vector. Therefore,

xp = xt + λxa + εxb
yp = yt + λya + εyb
z p = zt + λza + εzb.

The normal vector is
p = xpi + ypj + z pk

and because |p| is the perpendicular distance from the plane to the origin we can
state

xp
|p| x + yp

|p| y + z p
|p| z = |p|
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Fig. 12.33 The vectors a
and b are parallel to the
plane and the point
T (0, 0, 1) is on the plane

X

Y

Z

t

b

λa

p
P

(0, 1, 0)

T (0, 0, 1)

or in the general form of the plane equation:

Ax + By + Cz + D = 0

where

A = xp
|p| , B = yp

|p| , C = z p
|p| , D = −|p|.

As an example, Fig. 12.33 shows a plane inclined 45◦ to the y- and z-axis and
parallel with the x-axis. The vectors for the parametric equation are

a = j − k

b = i

t = k.

Substituting these components in (12.29) and (12.30) we have

λ = (0)(0) − (−1) × 1

2 × 1 − (0)
= 0.5

ε = (0)(−1) − (0) × 2

2 × 1 − (0)
= 0.

Therefore,

xp = 0 + 0.5 × 0 + 0 × 1 = 0

yp = 0 + 0.5 × 1 + 0 × 0 = 0.5

z p = 1 + 0.5 × (−1) + 0 × 0 = 0.5.
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The point (0, 0.5, 0.5) has position vector p, where

|p| =
√
02 + 0.52 + 0.52 =

√
2

2

the plane equation is

0x + 0.5√
2/2

y + 0.5√
2/2

z − √
2/2 = 0

which simplifies to
y + z − 1 = 0.

12.8.5 Plane Equation from Three Points

Very often in computer graphics problems we need to find the plane equation from
three known points. To begin with, the three points must be distinct and not lie on a
line. Figure12.34 shows three points R, S and T , from which we create two vectors
u = −→

RS and v = −→
RT . The vector product u × v then provides a vector normal to

the plane containing the original points. We now take another point P(x, y, z) and
form a vector w = −→

RP . The scalar product w · (u × v) = 0 if P is in the plane
containing the original points. This condition can be expressed as a determinant and
converted into the general equation of a plane. The three points are assumed to be in
an anticlockwise sequence viewed from the direction of the surface normal.

Fig. 12.34 The vectors used
to determine a plane equation
from three points R, S and T

P

u

v

u× v

w

R

T

S
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We begin with

u × v =
∣∣∣∣∣∣
i j k
xu yu zu
xv yv zv

∣∣∣∣∣∣
.

As w is perpendicular to u × v

w · (u × v) =
∣∣∣∣∣∣
xw yw zw

xu yu zu
xv yv zv

∣∣∣∣∣∣
= 0.

Expanding the determinant we obtain

xw

∣∣∣∣
yu zu
yv zv

∣∣∣∣ + yw

∣∣∣∣
zu xu
zv xv

∣∣∣∣ + zw

∣∣∣∣
xu yu
xv yv

∣∣∣∣ = 0

which becomes

(x − xR)

∣∣∣∣
yS − yR zS − zR
yT − yR zT − zR

∣∣∣∣ + (y − yR)

∣∣∣∣
zS − zR xS − xR
zT − zR xT − xR

∣∣∣∣

+ (z − zR)

∣∣∣∣
xS − xR yS − yR
xT − xR yT − yR

∣∣∣∣ = 0.

This can be arranged in the form ax + by + cz + d = 0 where

a =
∣∣∣∣
yS − yR zS − zR
yT − yR zT − zR

∣∣∣∣ , b =
∣∣∣∣
zS − zR xS − xR
xT − zR xT − xR

∣∣∣∣ ,

c =
∣∣∣∣
xS − xR yS − yR
xT − xR yT − yR

∣∣∣∣ , d = −(axR + byR + czR),

or

a =
∣∣∣∣∣∣
1 yR zR
1 yS zS
1 yT zT

∣∣∣∣∣∣
, b =

∣∣∣∣∣∣
xR 1 zR
xS 1 zS
xT 1 zT

∣∣∣∣∣∣
, c =

∣∣∣∣∣∣
xR yR 1
xS yS 1
xT yT 1

∣∣∣∣∣∣
,

d = −(axR + byR + czR).

As an example, consider the three points R(0, 0, 1), S(1, 0, 0), T (0, 1, 0).
Therefore,
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a =
∣∣∣∣∣∣
1 0 1
1 0 0
1 1 0

∣∣∣∣∣∣
= 1, b =

∣∣∣∣∣∣
0 1 1
1 1 0
0 1 0

∣∣∣∣∣∣
= 1, c =

∣∣∣∣∣∣
0 0 1
1 0 1
0 1 1

∣∣∣∣∣∣
= 1,

d = −(1 × 0 + 1 × 0 + 1 × 1) = −1

and the plane equation is
x + y + z − 1 = 0.

12.9 Intersecting Planes

When two non-parallel planes intersect, they form a straight line at the intersection,
which is parallel to both planes. This line can be represented as a vector, whose
direction is revealed by the vector product of the planes’ surface normals. However,
we require a point on this line to establish a unique vector equation; a useful point is
chosen as P0, whose position vector p0 is perpendicular to the line.

Figure12.35 shows two planes with normal vectors n1 and n2 intersecting to
create a line represented by n3, whilst P0(x0, y0, z0) is a particular point on n3 and
P(x, y, z) is any point on the line.

We start the analysis by defining the surface normals:

n1 = a1i + b1j + c1k

n2 = a2i + b2j + c2k

next we define p and p0:

p = x i + yj + zk

p0 = x0i + y0j + z0k.

Fig. 12.35 Two intersecting
planes create a line of
intersection

X

Y

Z

p

PP0

p0 n1

n2

n3
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Now we state the plane equations in vector form:

n1 · p + d1 = 0

n2 · p + d2 = 0.

The geometric significance of the scalars d1 and d2 has already been described above.
Let’s now define the line of intersection as

p = p0 + λn3

where λ is a scalar.
As the line of intersection must be orthogonal to n1 and n2:

n3 = a3i + b3j + c3k = n1 × n2.

Now we introduce P0 as this must satisfy both plane equations, therefore,

n1 · p0 = −d1 (12.31)

n2 · p0 = −d2 (12.32)

and as P0 is such that p0 is orthogonal to n3

n3 · p0 = 0. (12.33)

Equations (12.31)–(12.33) form three simultaneous equations, which reveal the point
P0. These are represented in matrix form as

⎡
⎣

−d1
−d2
0

⎤
⎦ =

⎡
⎣
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤
⎦

⎡
⎣
x0
y0
z0

⎤
⎦

or
⎡
⎣
d1
d2
0

⎤
⎦ = −

⎡
⎣
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤
⎦

⎡
⎣
x0
y0
z0

⎤
⎦

therefore,

x0∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
0 b3 c3

∣∣∣∣∣∣

= y0∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 0 c3

∣∣∣∣∣∣

= z0∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 0

∣∣∣∣∣∣

= −1

DET
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which enables us to state

x0 =
d2

∣∣∣∣
b1 c1
b3 c3

∣∣∣∣ − d1

∣∣∣∣
b2 c2
b3 c3

∣∣∣∣
DET

y0 =
d2

∣∣∣∣
a3 c3
a1 c1

∣∣∣∣ − d1

∣∣∣∣
a3 c3
a2 c2

∣∣∣∣
DET

z0 =
d2

∣∣∣∣
a1 b1
a3 b3

∣∣∣∣ − d1

∣∣∣∣
a2 b2
a3 b3

∣∣∣∣
DET

where

DET =
∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
.

The line of intersection is then given by

p = p0 + λn3.

If DET = 0 the line and plane are parallel.
To illustrate this, let the two intersecting planes be the xy-plane and the xz-plane,

which means that the line of intersection will be the y-axis, as shown in Fig. 12.36.
The plane equations are z = 0 and x = 0, therefore,

n1 = k

n2 = i

and d1 = d2 = 0.

Fig. 12.36 Two intersecting
planes creating a line of
intersection coincident with
the y-axis

X

Y

Z

P0

n1n2

P

n3
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We now compute n3, DET , x0, y0, z0:

n3 =
∣∣∣∣∣∣
i j k
0 0 1
1 0 0

∣∣∣∣∣∣
= j

DET =
∣∣∣∣∣∣
0 0 1
1 0 0
0 1 0

∣∣∣∣∣∣
= 1

x0 =
0

∣∣∣∣
0 1
1 0

∣∣∣∣ − 0

∣∣∣∣
0 0
1 0

∣∣∣∣
1

= 0

y0 =
0

∣∣∣∣
0 0
0 1

∣∣∣∣ − 0

∣∣∣∣
0 0
1 0

∣∣∣∣
1

= 0

z0 =
0

∣∣∣∣
0 0
0 1

∣∣∣∣ − 0

∣∣∣∣
1 0
0 1

∣∣∣∣
1

= 0.

Therefore, the line equation is p = λn3, where n3 = j, which is the y-axis.

12.9.1 Intersection of Three Planes

Threemutually intersecting planeswill intersect at a point as shown in Fig. 12.37, and
we can find this point by using a similar strategy to the one used in two intersecting
planes by creating three simultaneous plane equations using determinants.

Figure12.37 shows the commonpoint P(x, y, z). The three planes canbedefined
by the following equations:

Fig. 12.37 Three mutually
intersecting planes

X

Y

Z

P
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a1x + b1y + c1z + d1 = 0

a2x + b1y + c2z + d2 = 0

a3x + b1y + c3z + d3 = 0

which means that they can be rewritten as

⎡
⎣

−d1
−d2
−d3

⎤
⎦ =

⎡
⎣
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤
⎦

⎡
⎣
x
y
z

⎤
⎦

or
⎡
⎣
d1
d2
d3

⎤
⎦ = −

⎡
⎣
a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤
⎦

⎡
⎣
x
y
z

⎤
⎦

or in determinant form

x∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣

= y∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣

= z∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣

= −1

DET

where

DET =
∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
.

Therefore, we can state that

x = −

∣∣∣∣∣∣
d1 b1 c1
d2 b2 c2
d3 b3 c3

∣∣∣∣∣∣
DET

y = −

∣∣∣∣∣∣
a1 d1 c1
a2 d2 c2
a3 d3 c3

∣∣∣∣∣∣
DET

z = −

∣∣∣∣∣∣
a1 b1 d1
a2 b2 d2
a3 b3 d3

∣∣∣∣∣∣
DET

.
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Fig. 12.38 Three planes
intersecting at a point P

X

Y

Z

P

22

2
k

j

i+ j+ k

If DET = 0, two of the planes at least, are parallel. Let’s test these equations
with a simple example.

The planes shown in Fig. 12.38 have the following equations:

x + y + z − 2 = 0

z = 0

y − 1 = 0

therefore,

DET =
∣∣∣∣∣∣
1 1 1
0 0 1
0 1 0

∣∣∣∣∣∣
= −1

x = −

∣∣∣∣∣∣
−2 1 1
0 0 1

−1 1 0

∣∣∣∣∣∣
−1

= 1

y = −

∣∣∣∣∣∣
1 −2 1
0 0 1
0 −1 0

∣∣∣∣∣∣
−1

= 1

z = −

∣∣∣∣∣∣
1 1 −2
0 0 0
0 1 −1

∣∣∣∣∣∣
−1

= 0

which means that the intersection point is (1, 1, 0), which is correct.
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Fig. 12.39 The angle
between two planes is the
angle between their surface
normals

X

Y

Z

n1

n2
α

12.9.2 Angle Between Two Planes

Calculating the angle between two planes is relatively easy and can be found by
taking the dot product of the planes’ normals. Figure12.39 shows two planes with α

representing the angle between the two surface normals n1 and n2.
Let the plane equations be

ax1 + by1 + cz1 + d1 = 0

ax2 + by2 + cz2 + d2 = 0

therefore, their surface normals are

n1 = a1i + b1j + c1k

n2 = a2i + b2j + c2k.

Taking the dot product of n1 and n2:

n1 · n2 = |n1| |n2| cosα

and

α = cos−1

(
n1 · n2

|n1| |n2|
)

.

For example, Fig. 12.40 shows two planes with normal vectors n1 and n2.
The plane equations are

x + y + z − 1 = 0

z = 0
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Fig. 12.40 α is the angle
between two planes

X

Y

Z

1

11

n2

n1

α

therefore,

n1 = i + j + k

n2 = k

therefore,

|n1| = √
3

|n2| = 1

and

α = cos−1

(
1√
3

)
≈ 54.74◦.

12.9.3 Angle Between a Line and a Plane

The angle between a line and a plane is calculated using a similar technique used for
calculating the angle between two planes. If the line equation employs a direction
vector, the angle is determined by taking the dot product of this vector and between
the plane’s normal. Figure12.41 shows such a scenario where n is the plane’s surface
normal and v is the line’s direction vector.

Let the plane equation be

ax + by + cz + d = 0

then its surface normal is

n = ai + bj + ck.
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Fig. 12.41 α is the angle
between the plane’s surface
normal and the line’s
direction vector

X

Y

Z

α
n
v

p
t

PT

Let the line’s direction vector be v and T (xt yt , zt ) is a point on the line, then any
point on the line is given by the position vector p :

p = t + λv

therefore, we can write

n · v = |n| |v| cosα

α = cos−1

(
n · v

|n| |v|
)

.

When the line is parallel to the plane n · v = 0.
Consider the scenario illustrated in Fig. 12.42 where the plane equation is

x + y + z − 1 = 0

therefore, the surface normal is given by n:

n = i + j + k

Fig. 12.42 The required
angle is between a and b

X

Y

Z

1

11

n

a
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and the line’s direction vector is a:

a = i + j

therefore,

|n| = √
3

|a| = √
2

and

α = cos−1

(
2√
6

)
≈ 35.26◦.

12.9.4 Intersection of a Line with a Plane

Given a line and a plane, they will either intersect, or not, if they are parallel. Either
way, both conditions can be found using some simple vector analysis, as shown in
Fig. 12.43. The objective is to identify a point P that is on the line and the plane.

Let the plane equation be

ax + by + cz + d = 0

where

n = ai + bj + ck.

P is a point on the plane with position vector

p = x i + yj + zk

Fig. 12.43 The vectors
required to determine
whether a line and plane
intersect

X

Y

Z

n

v
pt

P
T



12.9 Intersecting Planes 305

therefore,

n · p + d = 0.

Let the line equation be

p = t + λv

where

t = xt i + yt j + ztk

and
v = xvi + yvj + zvk

therefore, the line and plane will intersect for some λ such that

n · (t + λv) + d = n · t + λn · v + d = 0.

Therefore,

λ = −(n · t + d)

n · v
for the intersection point. The position vector for P is p = t + λv.

If n · v = 0 the line and plane are parallel.
Let’s test this result with the scenario shown in Fig. 12.44.
Given the plane

x + y + z − 1 = 0

n = i + j + k

Fig. 12.44 P identifies the
intersection point of the line
and the plane

X

Y

Z

1

11

n

v

P (x,y,z)

T
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and the line

p = t + λv

where

t = 0

v = i + j

then

λ = −(1 × 0 + 1 × 0 + 1 × 0 − 1)

1 × 1 + 1 × 1 + 1 × 0
= 0.5

and the point of intersection is P(0.5, 0.5, 0).

12.10 Summary

Mixing vectors with geometry is a powerful analytical tool, and helps us solve many
problems associated with computer graphics, encountered in rendering, modelling,
collision detection and physically-based animation. Unfortunately, there has not been
space to investigate every topic, but hopefully, what has been covered, will enable
the reader solve other problems with greater confidence.



Chapter 13
Barycentric Coordinates

13.1 Introduction

Cartesian coordinates are a fundamental concept in mathematics and are central to
computer graphics. Such rectangular coordinates are just offsets relative to some
origin. Other coordinate systems also exist such as polar, spherical and cylindrical
coordinates, and they too, require an origin. Barycentric coordinates, on the other
hand, locate points relative to existing points, rather than to an origin and are known
as local coordinates.

13.2 Background

The German mathematician August Möbius (1790–1868) is credited with their dis-
covery. ‘barus’ is the Greek entomological root for ‘heavy’, and barycentric coordi-
nates were originally used for identifying the centre of mass of shapes and objects. It
is interesting to note that the prefixes ‘bari’, ‘bary’ and ‘baro’ have also influenced
other words such as baritone, baryon (heavy atomic particle) and barometer.

Although barycentric coordinates are used in geometry, computer graphics, rel-
ativity and global time systems, they do not appear to be a major topic in a typical
math syllabus. Nevertheless, they are important and I would like to describe what
they are and how they can be used in computer graphics.

The idea behind barycentric coordinates can be approached from different direc-
tions, and I have chosen mass points and linear interpolation. But before we begin
this analysis, it will be useful to investigate a rather elegant theorem known as Ceva’s
Theorem, which we will invoke later in this chapter.

© Springer-Verlag London Ltd. 2017
J. Vince,Mathematics for Computer Graphics, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-7336-6_13
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13.3 Ceva’s Theorem

The Italian mathematician Giovanni Ceva (1647–1734) is credited with a theorem
associated with the concurrency of lines in a triangle. It states that: In a triangle
ΔABC , the lines AA′, BB′ and CC′, where A′, B ′ and C ′ are points on the opposite
sides facing vertices A, B and C respectively, are concurrent (intersect at a common
point) if, and only if

AC ′

C ′B
· BA′

A′C
· CB ′

B ′A
= 1.

Figure13.1 shows such a scenario.
There are various ways of proving this theorem, (see Advanced Euclidean Geom-

etry by Alfred Posamentier) and perhaps the simplest proof is as follows.
Figure13.2 shows triangle ΔABC with line AA′ extended to R and BB′ extended

to S, where line SR is parallel to line AB. The resulting geometry creates a number
of similar triangles:

Fig. 13.1 The geometry
associated with Ceva’s
theorem

A B

C

A
B

C

P

Fig. 13.2 The geometry for
proving Ceva’s theorem

A B

C

AB

C

P

RS
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ΔABA′ : ΔRCA′ ⇒ A′C
BA′ = CR

AB
(13.1)

ΔABB ′ : ΔCSB ′ ⇒ B ′A
CB ′ = AB

SC
(13.2)

ΔBPC ′ : ΔCSP ⇒ C ′B
SC

= C ′P
PC

(13.3)

ΔAC ′P : ΔRCP ⇒ AC ′

CR
= C ′P

PC
. (13.4)

From (13.3) and (13.4) we get

C ′B
SC

= AC ′

CR

which can be rewritten as

C ′B
AC ′ = SC

CR
. (13.5)

The product of (13.1), (13.2) and (13.5) is

A′C
BA′ · B

′A
CB ′ · C

′B
AC ′ = CR

AB
· AB

SC
· SC

CR
= 1. (13.6)

Rearranging the terms of (13.6) we get

AC ′

C ′B
· BA′

A′C
· CB ′

B ′A
= 1

which is rather an elegant relationship.

13.4 Ratios and Proportion

Central to barycentric coordinates are ratios and proportion, so let’s begin by revising
some fundamental formulae used in calculating ratios.

Imagine the problem of dividing £100 between two people in the ratio 2 : 3. The
solution lies in the fact that the money is divided into 5 parts (2 + 3), where 2 parts
go to one person and 3 parts to the other person. In this case, one person receives
£40 and the other £60. At a formal level, we can describe this as follows.

A scalar A can be divided into the ratio r : s using the following expressions:

r

r + s
A and

s

r + s
A.
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Note that

r

r + s
+ s

r + s
= 1

and

1 − r

r + s
= s

r + s
.

Furthermore, the above formulae can be extended to incorporate any number of ratio
divisions. For example, A can be divided into the ratio r : s : t by the following:

r

r + s + t
A,

s

r + s + t
A and

t

r + s + t
A

similarly,

r

r + s + t
+ s

r + s + t
+ t

r + s + t
= 1.

These expressions are very important as they show the emergence of barycentric coor-
dinates. For themoment though, just remember their structure andwewill investigate
some ideas associated with balancing weights.

13.5 Mass Points

We begin by calculating the centre of mass – the centroid – of two masses. Consider
the scenario shown in Fig. 13.3 where two masses mA and mB are placed at the ends
of a massless rod.

If mA = mB a state of equilibrium is achieved by placing the fulcrum mid-way
between themasses. If the fulcrum ismoved towardsmA, massmB will have a turning
advantage and the rod rotates clockwise.

To calculate a state of equilibrium for a general system of masses, consider the
geometry illustrated in Fig. 13.4, where two masses mA and mB are positioned xA
and xB at A and B respectively. When the system is in balance we can replace the
two masses by a single mass mA + mB at the centroid denoted by x̄ (pronounced ‘x
bar’).

A balance condition arises when the LHS turningmoment equals the RHS turning
moment. The turning moment being the product of a mass by its offset from the

Fig. 13.3 Two masses fixed
at the ends of a massless rod mA mB
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Fig. 13.4 The geometry
used for equating turning
moments

A B

mm
mA + mB

x̄ − xA xB − x̄

x̄xA xB

BA

fulcrum. Equating turning moments, equilibrium is reached when

mB(xB − x̄) = mA(x̄ − xA)

mBxB − mB x̄ = mAx̄ − mAxA
(mA + mB)x̄ = mAxA + mBxB

x̄ = mAxA + mBxB
mA + mB

= mA

mA + mB
xA + mB

mA + mB
xB . (13.7)

For example, ifmA = 6 andmB = 12, and positioned at xA = 0 and xB = 12 respec-
tively, the centroid is located at

x̄ = 6

18
× 0 + 12

18
× 12 = 8.

Thus we can replace the two masses by a single mass of 18 located at x̄ = 8.
Note that the terms in (13.7) mA/(mA + mB) and mB/(mA + mB) sum to 1 and

are identical to those used above for calculating ratios. They are also called the
barycentric coordinates of x̄ relative to the points A and B.

Using the general form of (13.7) any number of masses can be analysed using

x̄ =

n∑

i=1
mi xi

n∑

i=1
mi

where mi is a mass located at xi . Furthermore, we can compute the y-component of
the centroid ȳ using

ȳ =

n∑

i=1
mi yi

n∑

i=1
mi
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and in 3D the z-component of the centroid z̄ is

z̄ =

n∑

i=1
mi zi

n∑

i=1
mi

.

To recap, (13.7) states that

x̄ = mA

mA + mB
xA + mB

mA + mB
xB

therefore, we can write

ȳ = mA

mA + mB
yA + mB

mA + mB
yB

which allows us to state

P̄ = mA

mA + mB
A + mB

mA + mB
B

where A and B are the position vectors for the mass locations A and B respectively,
and P̄ is the position vector for the centroid P̄ .

If we extend the number of masses to three:mA,mB andmC , which are organised
as a triangle, then we can write

P̄ = mA

mA + mB + mC
A + mB

mA + mB + mC
B + mC

mA + mB + mC
C. (13.8)

The threemultipliers ofA,B andC are the barycentric coordinates of P̄ relative to
the points A, B andC . Note that the number of coordinates is not associated with the
number of spatial dimensions, but the number of reference points. Now consider the
scenario shown in Fig. 13.5. If mA = mB = mC then we can determine the location
of A′, B ′ and C ′ as follows:

1. We begin by placing a fulcrum under A mid-way along BC as shown in Fig. 13.6.
The triangle will balance because mB = mC and A′ is 1

2a from C and 1
2a from B.

2. Now we place the fulcrum under B mid-way along CA as shown in Fig. 13.7.
Once more the triangle will balance, because mC = mA and B ′ is 1

2b from C and
1
2b from A.

3. Finally, we do the same for C and AB. Figure13.8 shows the final scenario.
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Fig. 13.5 The geometry
used for equating turning
moments

A B

C

A

B

C

P̄

mA mB

mC

a
b

c

Fig. 13.6 Balancing the
triangle along AA′ A

B C

mA

mB mC

bc

A
1
2
a

1
2
a

Fig. 13.7 Balancing the
triangle along BB′

A

B

C

mB

mC

cA

1
2
a

1
2
a

1
2
b

1
2
b

B mA

Fig. 13.8 P̄ is the centroid
of the triangle

A B

CmC

A

1
2
a

1
2
a

1
2
b

1
2
b

B

mBmA
C

1
2
c

1
2
cmA + mB

P̄
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Ceva’s Theorem confirms that the medians AA′, BB′ and CC′ are concurrent at P̄
because

AC ′

C ′B
· BA′

A′C
· CB ′

B ′A
=

1
2c
1
2c

·
1
2a
1
2a

·
1
2b
1
2b

= 1.

Arbitrarily, we select the median C ′C . At C ′ we have an effective mass of mA + mB

and mC at C . For a balance condition

(mA + mB) × C ′ P̄ = mC × P̄C

and as the masses are equal, C ′ P̄ must be 1
3 along the median C ′C .

If we use (13.8) we obtain

P̄ = 1

3
A + 1

3
B + 1

3
C

which locates the coordinates of the centroid correctly.
Now let’s consider another example where mA = 1, mB = 2 and mC = 3, as

shown in Fig. 13.9. For a balance condition A′ must be 3
5a from B and 2

5a from C .
Equally, B ′ must be 1

4b from C and 3
4b from A. Similarly, C ′ must be 2

3c from A and
1
3c from B.

Ceva’s Theorem confirms that the lines AA′, BB′ and CC′ are concurrent at P̄
because

AC ′

C ′B
· BA′

A′C
· CB ′

B ′A
=

2
3c
1
3c

·
3
5a
2
5a

·
1
4b
3
4b

= 1.

Arbitrarily select C ′C . At C ′ we have an effective mass of 3 (1 + 2) and 3 at C ,
which means that for a balance condition P̄ is mid-way along C ′C . Similarly, P̄ is
1
6 along A′A and 1

3 along B ′B.

Fig. 13.9 How the masses
determine the positions of
A′, B ′ and C ′

A B

C

A

B

C

P̄

3

21 2
3
c

1
3
c

2
5
a

3
5
a

3
4
b

1
4
b
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Fig. 13.10 How the masses
determine the positions of
A′, B ′ and C ′

A B

CmC

AB

mBmA
C

P̄

mB

mB + mC

mC

mB + mC

mC

mA + mC

mA

mA + mC

mB

mA + mB

mA

mA + mB

Once more, using (13.8) in this scenario we obtain

P̄ = 1

6
A + 1

3
B + 1

2
C.

Note that the multipliers of A, B and C are identical to the proportions of P̄ along
A′A, B ′B and C ′C . Let’s prove why this is so.

Figure13.10 shows threemasseswith the triangle’s sides divided into their various
proportions to derive P̄ .

On the line A′AwehavemA at A and effectivelymB + mC at A′, whichmeans that
P̄ divides A′A in the ratio mA/(mA + mB + mC) : (mB + mC)/(mA + mB + mC).

On the line B ′B wehavemB at B and effectivelymA + mC at B ′, whichmeans that
P̄ divides B ′B in the ratio mB/(mA + mB + mC) : (mA + mC)/(mA + mB + mC).

Similarly, on the lineC ′C we havemC atC and effectivelymA + mB atC ′, which
means that P̄ divides C ′C in the ratio mC/(mA + mB + mC) : (mA + mB)/(mA +
mB + mC).

To summarise, given three masses mA, mB and mC located at A, B and C respec-
tively, the centroid P̄ is given by

P̄ = mA

mA + mB + mC
A + mB

mA + mB + mC
B + mC

mA + mB + mC
C. (13.9)

Ifwe accept thatmA,mB andmC can have any value, including zero, then the barycen-
tric coordinates of P̄ will be affected by these values. For example, ifmB = mC = 0
and mA = 1, then P̄ will be located at A with barycentric coordinates (1, 0, 0).
Similarly, if mA = mC = 0 and mB = 1, then P̄ will be located at B with barycen-
tric coordinates (0, 1, 0). And ifmA = mB = 0 andmC = 1, then P̄ will be located
at C with barycentric coordinates (0, 0, 1).

Now let’s examine a 3D example as illustrated in Fig. 13.11. The figure shows
three masses 4, 8 and 12 and their equivalent mass 24 located at (x̄, ȳ, z̄).

The magnitude and coordinates of three masses are shown in Table13.1, together
with the barycentric coordinate ti . The column headed ti expresses the masses as
fractions of the total mass: i.e.
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Fig. 13.11 Three masses
can be represented by a
single mass located at the
centroid

x̄

ȳ

z̄ X

Y

Z

4

8

24

12

Table 13.1 The magnitude
and coordinates of three
masses

mi ti xi yi zi ti xi ti yi ti zi

12 1
2 8 6 2 4 3 1

8 1
3 2 3 3 2

3 1 1

4 1
6 2 6 6 1

3 1 1

x̄ = 5 ȳ = 5 z̄ = 3

ti = mi

m1 + m2 + m3

and we see that the centroid is located at (5, 5, 3).
Having discovered barycentric coordinates in weight balancing, let’s see how they

emerge in linear interpolation.

13.6 Linear Interpolation

Suppose that we wish to find a value mid-way between two scalars A and B. We
could proceed as follows:

V = A + 1

2
(B − A)

= 1

2
A + 1

2
B

which seems rather obvious. Similarly, to find a value one-third between A and B,
we can write

V = A + 1

3
(B − A)

= 2

3
A + 1

3
B.
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Generalising, to find some fraction t between A and B we can write

V = (1 − t)A + t B. (13.10)

For example, to find a value 3
4 between 10 and 18 we have

V =
(
1 − 3

4

)
× 10 + 3

4
× 18 = 16.

Although this is a trivial formula, it is very useful when interpolating between two
numerical values. Let us explore (13.10) in greater detail.

To begin with, it is worth noting that the multipliers of A and B sum to 1:

(1 − t) + t = 1.

Rather than using (1 − t) as a multiplier, it is convenient to make a substitution such
as s = 1 − t , and we have

V = s A + t B

where

s = 1 − t

and

s + t = 1.

Equation (13.10) is called a linear interpolant as it linearly interpolates between
A and B using the parameter t . It is also known as a lerp. The terms s and t are the
barycentric coordinates of V as they determine the value of V relative to A and B.

Now let’s see what happens when we substitute coordinates for scalars. We start
with 2D coordinates A(xA, yA) and B(xB, yB), and position vectors A, B and C
and the following linear interpolant

V = sA + tB

where

s = 1 − t

and

s + t = 1
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then

xV = sxA + t xB
yV = syA + t yB .

Figure13.12 illustrates what happens when t varies between 0 and 1.
The point V slides along the line connecting A and B.When t = 0, V is coincident

with A, and when t = 1, V is coincident with B. The reader should not be surprised
that the same technique works in 3D.

Now let’s extend the number of vertices to three in the form of a triangle as shown
in Fig. 13.13. This time we will use r , s and t to control the interpolation. We would
start as follows:

V = rA + sB + tC

where A, B and C are the position vectors for A, B and C respectively, and V is the
position vector for the point V .

Fig. 13.12 The position of V
slides between A and B as t
varies between 0 and 1

X

Y

A

V

B

xA xV xB

yB

yV

yA t=0

t=1

Fig. 13.13 The position of V
moves between A, B and C
depending on the value r, s
and t

X

Y

A

V

B

xA xV xB

yB

yV

yA

t =1
C

s =1

xC

yC

r =1
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Let

r = 1 − s − t

and

r + s + t = 1.

Once more, we begin with 2D coordinates A(xA, yA), B(xB, yB) and C(xC , yC)

where

xV = r xA + sxB + t xC
yV = r yA + syB + t yC .

When

r = 1, V is coincident with A

s = 1, V is coincident with B

t = 1, V is coincident with C.

Similarly, when

r = 0, V is located on the edge BC

s = 0, V is located on the edge CA

t = 0, V is located on the edge AB.

For all other values of r , s and t , where r + s + t = 1 and 0 ≤ r, s, t ≤ 1, V is inside
triangle ΔABC , otherwise it is outside the triangle.

The triple (r, s, t) are barycentric coordinates and locate points relative to A, B
and C , rather than an origin. For example, the barycentric coordinates of A, B and
C are (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.

All of the above formulae work equally well in three dimensions, so let’s inves-
tigate how barycentric coordinates can locate points inside a 3D triangle. However,
before we start, let’s clarify what we mean by inside a triangle. Fortunately, barycen-
tric coordinates can distinguish points within the triangle’s three sides; points coin-
cident with the sides; and points outside the triangle’s boundary. The range and
value of the barycentric coordinates provide the mechanism for detecting these three
conditions.

As an example, Fig. 13.14 illustrates a scenario with the points P1(x1, y1, z1),
P2(x2, y2, z2) and P3(x3, y3, z3). Using barycentric coordinates we can state that
any point P0(x0, y0, z0) inside or on the edge of triangle ΔP1P2P3 is defined by
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Fig. 13.14 A 3D triangle

X

Y

Z

P1

P2

P3

P0

x0 = r x1 + sx2 + t x3
y0 = r y1 + sy2 + t y3
z0 = r z1 + sx2 + t z3

where r + s + t = 1 and 0 ≤ r, s, t ≤ 1.
If the triangle’s vertices are P1(0, 2, 0), P2(0, 0, 4) and P3(3, 1, 2) then we

can choose different values of r , s and t to locate P0 inside the triangle. However, I
would also like to confirm that P0 lies on the plane containing the three points. To
do this we require the plane equation for the three points, which can be derived as
follows.

Given P1(x1, y1, z1), P2(x2, y2, z2) and P(x3, y3, z3), and the target plane
equation ax + by + cz + d = 0, then

a =
∣
∣
∣
∣
∣
∣

1 y1 z1
1 y2 z2
1 y3 z3

∣
∣
∣
∣
∣
∣

b =
∣
∣
∣
∣
∣
∣

x1 1 z1
x2 1 z2
x3 1 z3

∣
∣
∣
∣
∣
∣

c =
∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 z2 1

∣
∣
∣
∣
∣
∣

d = −(ax1 + by1 + cz1)

thus

a =
∣
∣
∣
∣
∣
∣

1 2 0
1 0 4
1 1 2

∣
∣
∣
∣
∣
∣
= 0
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b =
∣
∣
∣
∣
∣
∣

0 1 0
0 1 4
3 1 2

∣
∣
∣
∣
∣
∣
= 12

c =
∣
∣
∣
∣
∣
∣

0 2 1
0 0 1
3 1 1

∣
∣
∣
∣
∣
∣
= 6

d = −24

therefore, the plane equation is

12y + 6z = 24. (13.11)

If we substitute a point (x0, y0, z0) in the LHS of (13.11) and obtain a value of 24,
then the point is on the plane.

Table13.2 shows various values of r , s and t , and the corresponding position of
P0. The table also confirms that P0 is always on the plane containing the three points.

Now we are in a position to test whether a point is inside, on the boundary or
outside a 3D triangle.

We begin by writing the three simultaneous equations defining P0 in matrix form

⎡

⎣
x0
y0
z0

⎤

⎦ =
⎡

⎣
x1 x2 x3
y1 y2 y3
z1 z2 z3

⎤

⎦

⎡

⎣
r
s
t

⎤

⎦

therefore,

r
∣
∣
∣
∣
∣
∣

x0 x2 x3
y0 y2 y3
z0 z2 z3

∣
∣
∣
∣
∣
∣

= s
∣
∣
∣
∣
∣
∣

x1 x0 x3
y1 y0 y3
z1 z0 z3

∣
∣
∣
∣
∣
∣

= t
∣
∣
∣
∣
∣
∣

x1 x2 x0
y1 y2 y0
z1 z2 z0

∣
∣
∣
∣
∣
∣

= 1
∣
∣
∣
∣
∣
∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣
∣
∣
∣
∣
∣

Table 13.2 The barycentric
coordinates of P0

r s t x0 y0 z0 12y0 + 6z0

1 0 0 0 2 0 24

0 1 0 0 0 4 24

0 0 1 3 1 2 24

1
4

1
4

1
2 1 1

2 1 2 24

0 1
2

1
2 1 1

2
1
2 3 24

1
2

1
2 0 0 1 2 24

1
3

1
3

1
3 1 1 2 24
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and

r =

∣
∣
∣
∣
∣
∣

x0 x2 x3
y0 y2 y3
z0 z2 z3

∣
∣
∣
∣
∣
∣

DET

s =

∣
∣
∣
∣
∣
∣

x1 x0 x3
y1 y0 y3
z1 z0 z3

∣
∣
∣
∣
∣
∣

DET

t =

∣
∣
∣
∣
∣
∣

x1 x2 x0
y1 y2 y0
z1 z2 z0

∣
∣
∣
∣
∣
∣

DET

DET =
∣
∣
∣
∣
∣
∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣
∣
∣
∣
∣
∣
.

Using the three points P1(0, 2, 0), P2(0, 0, 4), P3(3, 1, 2) and arbitrary posi-
tions of P0, the values of r , s and t identify whether P0 is inside or outside triangle
ΔABC . For example, the point P0(0, 2, 0) is a vertex and is classified as being on
the boundary. To confirm this we calculate r , s and t , and show that r + s + t = 1:

DET =
∣
∣
∣
∣
∣
∣

0 0 3
2 0 1
0 4 2

∣
∣
∣
∣
∣
∣
= 24

r =

∣
∣
∣
∣
∣
∣

0 0 3
2 0 1
0 4 2

∣
∣
∣
∣
∣
∣

24
= 1

s =

∣
∣
∣
∣
∣
∣

0 0 3
2 2 1
0 0 2

∣
∣
∣
∣
∣
∣

24
= 0

t =

∣
∣
∣
∣
∣
∣

0 0 0
2 0 2
0 4 0

∣
∣
∣
∣
∣
∣

24
= 0

therefore r + s + t = 1, but both s and t are zero which confirms that the point
(0, 2, 0) is on the boundary. In fact, as both coordinates are zero it confirms that
the point is located on a vertex.
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Now let’s deliberately choose a point outside the triangle. For example,
P0(4, 0, 3) is outside the triangle, which is confirmed by the corresponding val-
ues of r , s and t :

r =

∣
∣
∣
∣
∣
∣

4 0 3
0 0 1
3 4 2

∣
∣
∣
∣
∣
∣

24
= −2

3

s =

∣
∣
∣
∣
∣
∣

0 4 3
2 0 1
0 3 2

∣
∣
∣
∣
∣
∣

24
= 3

4

t =

∣
∣
∣
∣
∣
∣

0 0 4
2 0 0
0 4 3

∣
∣
∣
∣
∣
∣

24
= 4

3

therefore,

r + s + t = −2

3
+ 3

4
+ 4

3
= 1

5

12

which confirms that the point (4, 0, 3) is outside the triangle. Note that r < 0 and
t > 1, which individually confirm that the point is outside the triangle’s boundary.

13.7 Convex Hull Property

We have already shown that it is possible to determine whether a point is inside or
outside a triangle. But remember that triangles are always convex. So can we test
whether a point is inside or outside any polygon? Well the answer is no, unless the
polygon is convex. The reason for this can be understood by considering the concave
polygon shown in Fig. 13.15.

Fig. 13.15 A concave
polygon

A

B

C

D
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Let the barycentric coordinates for a point P0 be

P0 = rA + sB + tC + uD

where r + s + t + u = 1.When t = 0, P0 can exist anywhere inside triangleΔABD.
Thus, if any vertex creates a concavity, it will be ignored by barycentric coordinates.

13.8 Areas

Barycentric coordinates are also known as areal coordinates due to their area dividing
properties. For example, in Fig. 13.16 the areas of the three internal triangles are in
proportion to the barycentric coordinates of the point P .

To prove this, let P have barycentric coordinates

P = rA + sB + tC

where

r + s + t = 1 and 0 ≤ (r, s, t) ≤ 1.

If we use the notation areaΔABC to represent the area of the triangle formed
from the vertices A, B and C then areaΔABC is the sum of the areas of the smaller
triangles:

areaΔABC = areaΔABP + areaΔBCP + areaΔCAP.

But the area of any triangle ΔP1P2P3 is

Fig. 13.16 The areas of the
internal triangles are directly
proportional to the
barycentric coordinates of P

A B

C

P
sΔABC rΔABC

tΔABC
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areaΔP1P2P3 = 1

2

∣
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
∣

therefore,

areaΔABP = 1

2

∣
∣
∣
∣
∣
∣

xA yA 1
xB yB 1
xP yP 1

∣
∣
∣
∣
∣
∣

but

xP = r xA + sxB + t xC

and

yP = r yA + syB + t yC

therefore,

areaΔABP = 1

2

∣
∣
∣
∣
∣
∣

xA yA 1
xB yB 1

r xA + sxB + t xC ryA + syB + t yC 1

∣
∣
∣
∣
∣
∣

which expands to

areaΔABP = 1

2

[
xAyB + r xB yA + sxB yB + t xB yC + r xAyA + sxB yA + t xC yA

−r xAyA − sxAyB − t xA yC − xB yA − r xAyB − sxB yB − t xC yB

]

= 1

2

[
xAyB − xB yA + r(xB yA − xAyB) + s(xB yA − xAyB)

+t (xB yC − xC yB) + t (xC yA − xAyC )

]

= 1

2

[
xAyB − xB yA + (1 − t)(xB yA − xAyB) + t (xB yC − xC yB)

+t (xC yA − xAyC )

]

= 1

2
[−t xB yA + t xA yB + t xB yC − t xC yB + t xC yA − t xA yC ]

and simplifies to

areaΔABP = 1

2
t

∣
∣
∣
∣
∣
∣

xA yA 1
xB yB 1
xC yC 1

∣
∣
∣
∣
∣
∣
= t × areaΔABC

therefore,

t = areaΔABP

areaΔABC
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similarly,

areaΔBCP = 1

2
r

∣
∣
∣
∣
∣
∣

xA yA 1
xB yB 1
xC yC 1

∣
∣
∣
∣
∣
∣
= r × areaΔABC

r = areaΔBCP

areaΔABC

and

areaΔCAP = 1

2
s

∣
∣
∣
∣
∣
∣

xA yA 1
xB yB 1
xC yC 1

∣
∣
∣
∣
∣
∣
= s × areaΔABC

s = areaΔCAP

areaΔABC
.

Thus, we see that the areas of the internal triangles are directly proportional to the
barycentric coordinates of P .

This is quite a useful relationship and can be used to resolve various geometric
problems. For example, let’s use it to find the radius and centre of the inscribed circle
for a triangle. We could approach this problem using classical Euclidean geome-
try, but barycentric coordinates provide a powerful analytical tool for resolving the
problem very quickly. Consider triangle ΔABC with sides a, b and c as shown in
Fig. 13.17. The point P is the centre of the inscribed circle with radius R. From our
knowledge of barycentric coordinates we know that

P = rA + sB + tC

where

r + s + t = 1. (13.12)

Fig. 13.17 The inscribed
circle in triangle ΔABC

A B

C

P

a
b

c

R
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We also know that the area properties of barycentric coordinates permit us to state

areaΔBCP = r × areaΔABC = 1

2
aR

areaΔCAP = s × areaΔABC = 1

2
bR

areaΔABP = t × areaΔABC = 1

2
cR

therefore,

r = aR

2 × areaΔABC
, s = bR

2 × areaΔABC
, t = cR

2 × areaΔABC
,

substituting r , s and t in (13.12) we get

R

2 × areaΔABC
(a + b + c) = 1

and

R = 2 × areaΔABC

(a + b + c)
.

Substituting R in the definitions of r , s and t we obtain

r = a

a + b + c
s = b

a + b + c
t = c

a + b + c

and

xP = r xA + sxB + t xC
yP = r yA + syB + t yC .

To test this solution, consider the right-angled triangle in Fig. 13.18, where a =√
200, b = 10, c = 10 and areaΔABC = 50. Therefore

R = 2 × 50

10 + 10 + √
200

≈ 2.929

and

r =
√
200

34.1421
≈ 0.4142 s = 10

34.1421
≈ 0.2929 t = 10

34.1421
≈ 0.2929
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Fig. 13.18 The inscribed
circle for a triangle

RP (xP , yP )

X

Y

10

10

√
200

Fig. 13.19 Triangle ΔABC
with sides divided in the
ratio 1 : 2

A B

C

A

B

C

1
3
AC

2
3
AC

2
3
BC

1
3
BC

1
3
AB

2
3
AB

therefore,

xP = 0.4142 × 0 + 0.2929 × 10 + 0.2929 × 0 ≈ 2.929

yP = 0.4142 × 0 + 0.2929 × 0 + 0.2929 × 0 ≈ 2.929.

Therefore, the inscribed circle has a radius of 2.929 and a centre with coordinates
(2.929, 2.929).

Let’s explore another example where we determine the barycentric coordinates
of a point using virtual mass points.

Figure13.19 shows triangle ΔABC where A′, B ′ and C ′ divide BC , CA and AB
respectively, in the ratio 1 : 2. The objective is to find the barycentric coordinates of
D, E and F , and the area of triangle ΔDEF as a proportion of triangle ΔABC .

We can approach the problem using mass points. For example, if we assume D is
the centroid, all we have to do is determine the mass points that create this situation.
Then the barycentric coordinates of D are given by (13.8). We proceed as follows.

The point D is on the intersection of lines CC′ and AA′. Therefore, we begin by
placing a mass of 1 at C . Then, for line BC to balance at A′ a mass of 2 must be
placed at B. Similarly, for line AB to balance at C ′ a mass of 4 must be placed at A.
This configuration is shown in Fig. 13.20.
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Fig. 13.20 The masses
assigned to A, B and C
to determine D

A B

C

A

C

2
3
BC

1
3
BC

1
3
AB

2
3
AB

4 2

1

D

Fig. 13.21 The masses
assigned to A, B and C
to determine E

A B

C

A

B

1
3
AC

2
3
AC

2
3
BC

1
3
BC

E

1 4

2

The total mass is 7 = (1 + 2 + 4), therefore,

D = 4

7
A + 2

7
B + 1

7
C.

The point E is on the intersection of lines BB′ and AA′. Therefore, we begin by
placing a mass of 1 at A. Then, for line CA to balance at B ′ a mass of 2 must be
placed at C . Similarly, for line BC to balance at A′ a mass of 4 must be placed at B.
This configuration is shown in Fig. 13.21. The total mass is still 7, therefore,

E = 1

7
A + 4

7
B + 2

7
C.

From the symmetry of the triangle we can state that

F = 2

7
A + 1

7
B + 4

7
C.
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Thus we can locate the points and using the vector equations

D = 4

7
A + 2

7
B + 1

7
C

E = 1

7
A + 4

7
B + 2

7
C

F = 2

7
A + 1

7
B + 4

7
C.

The important feature of these equations is that the barycentric coordinates of D, E
and F are independent of A, B and C they arise from the ratio used to divide the
triangle’s sides.

Although it was not the original intention, we can quickly explore what the
barycentric coordinates of D, E and F would be if the triangle’s sides had been
1 : 3 instead of 1 : 2. Without repeating all of the above steps, we would proceed as
follows.

The point D is on the intersection of lines CC′ and AA′. Therefore, we begin
by placing a mass of 1 at C . Then, for line BC to balance at A′ a mass of 3 must
be placed at B. Similarly, for line AB to balance at C ′ a mass of 9 must be placed
at A. This configuration is shown in Fig. 13.22. The total mass is 13 = (1 + 3 + 9),
therefore,

D = 9

13
A + 3

13
B + 1

13
C

E = 1

13
A + 9

13
B + 3

13
C

F = 3

13
A + 1

13
B + 9

13
C.

We could even develop the general equations for a ratio 1 : n. It is left to the reader
to show that

Fig. 13.22 The masses
assigned to A, B and C
to determine D

A B

C

A

C

1

D

1
4
AB

3
4
AB

1
4
BC

3
4
BC

9 3
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D = n2

n2 + n + 1
A + n

n2 + n + 1
B + 1

n2 + n + 1
C

E = 1

n2 + n + 1
A + n2

n2 + n + 1
B + n

n2 + n + 1
C

F = n

n2 + n + 1
A + 1

n2 + n + 1
B + n2

n2 + n + 1
C.

As a quick test for the above equations, let n = 1, which make D, E and F
concurrent at the triangle’s centroid:

D = 1

3
A + 1

3
B + 1

3
C

E = 1

3
A + 1

3
B + 1

3
C

F = 1

3
A + 1

3
B + 1

3
C

which is rather reassuring!
Now let’s return to the final part of the problem and determine the area of triangle

ΔDEF in terms ofΔABC . The strategy is to split triangleΔABC into four triangles:
ΔBCF , ΔCAD, ΔABE and ΔDEF as shown in Fig. 13.23.

Therefore,

areaΔABC = areaΔBCF + areaΔCAD + areaΔABE + areaΔDEF

and

1 = areaΔBCF

areaΔABC
+ areaΔCAD

areaΔABC
+ areaΔABE

areaΔABC
+ areaΔDEF

areaΔABC
(13.13)

But we have just discovered that the barycentric coordinates are intimately con-
nected with the ratios of triangles. For example, if F has barycentric coordinates

Fig. 13.23 Triangle ΔABC
divides into four triangles
ΔABE , ΔBCF , ΔCAD
and ΔDEF

A B

C

A

B

C

1
3
AC

2
3
AC

2
3
BC

1
3
BC

1
3
AB 2

3
AB

D

E

F
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(rF , sF , tF ) relative to the points A, B and C respectively, then

rF = areaΔBCF

areaΔABC
.

And if D has barycentric coordinates (rD, sD, tD) relative to the points A, B and C
respectively, then

sD = areaΔCAD

areaΔABC
.

Similarly, if E has barycentric coordinates (rE , sE , tE ) relative to the points A, B
and C respectively, then

tE = areaΔABE

areaΔABC
.

Substituting rF , sE and tD in (13.13) we obtain

1 = rF + sD + tE + areaΔDEF

areaΔABC
.

From (13.12) we see that

rF = 2

7
sD = 2

7
tE = 2

7

therefore,

1 = 6

7
+ areaΔDEF

areaΔABC

and

areaΔDEF = 1

7
areaΔABC

which is rather neat!
But just before we leave this example, let’s state a general expression for the

areaΔDEF for a triangle whose sides are divided in the ratio 1 : n. Once again, I’ll
leave it to the reader to prove that

areaΔDEF = n2 − 2n + 1

n2 + n + 1
× areaΔABC.

Note that when n = 1, areaΔDEF = 0, which is correct.
[Hint: The corresponding values of rF , sD and tE are n/(n2 + n + 1).]
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13.9 Volumes

We have now seen that barycentric coordinates can be used to locate a scalar within
a 1D domain, a point within a 2D area, so it seems logical that the description should
extend to 3D volumes, which is the case.

To demonstrate this, consider the tetrahedron shown in Fig. 13.24. The volume of
a tetrahedron is give by

V = 1

6

∣
∣
∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣
∣
∣

where [x1 y1 z1]T , [x2 y2 z2]T and [x3 y3 z3]T are the three vectors extending
from the fourth vertex to the other three vertices. However, if we locate the fourth ver-
tex at the origin, (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) become the coordinates
of the three vertices.

Let’s locate a point P(xP , yP , zP) inside the tetrahedron with the following
barycentric definition

P = rP1 + sP2 + tP3 + uP4 (13.14)

where P, P1, P2 and P4 are the position vectors for P , P1, P2, P3 and P4 respectively.
The fourth barycentric term uP4 can be omitted as P4 has coordinates (0, 0, 0).

Therefore, we can state that the volume of the tetrahedron formed by the three
vectors P, P2 and P3 is given by

V = 1

6

∣
∣
∣
∣
∣
∣

xP yP zP
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣
∣
∣
. (13.15)

Fig. 13.24 A tetrahedron

X
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Z

P1
P2

P3

v1
v2

v3

p

P
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Substituting (13.14) in (13.15) we obtain

V = 1

6

∣
∣
∣
∣
∣
∣

r x1 + sx2 + t x3 r y1 + sy2 + t y3 r z1 + sz2 + t z3
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣
∣
∣

(13.16)

which expands to

V = 1

6

[
y2z3(r x1 + sx2 + t x3) + x2y3(r z1 + sz2 + t z3) + x3z2(ry1 + sy2 + t y3)

−y3z2(r x1 + sx2 + t x3) − x3y2(r z1 + sz2 + t z3) − x2z3(ry1 + sy2 + t y3)

]

= 1

6

⎡

⎣
r(x1y2z3 + x2y3z1 + x3y1z2 − x1y3z2 − x3y2z1 − x2y1z3)

+s(x2y2z3 + x2y3z2 + x3y1z2 − x2y3z2 − x3y1z2 − x2y2z3)
+t (x3y2z3 + x2y3z3 + x3y3z2 − x3y3z2 − x3y2z3 − x2y3z3)

⎤

⎦

and simplifies to

V = 1

6
r

∣
∣
∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣
∣
∣
.

This states that the volume of the smaller tetrahedron is r times the volume of the
larger tetrahedron VT , where r is the barycentric coordinate modifying the vertex not
included in the volume. By a similar process we can develop volumes for the other
tetrahedra:

V (P, P2P4, P3) = rVT

V (P, P1P3, P4) = sVT

V (P, P1P2, P4) = tVT

V (P, P1P2, P3) = uVT

where r + s + t + u = 1. Similarly, the barycentric coordinates of a point inside the
volume sum to unity.

Let’s test the above statements with an example. Given P1(0, 0, 1), P2(1, 0, 0),
P3(0, 1, 0) and P( 13 ,

1
3 ,

1
3 ) which is located inside the tetrahedron, the volume of the

tetrahedron VT is

VT = 1

6

∣
∣
∣
∣
∣
∣

0 0 1
1 0 0
0 1 0

∣
∣
∣
∣
∣
∣
= 1

6
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r = V (P, P2, P4, P3)

VT
= 6

6

∣
∣
∣
∣
∣
∣
∣

2
3 − 1

3 − 1
3

− 1
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

∣
∣
∣
∣
∣
∣
∣
= 1

3

s = V (P, P1, P3, P4)

VT
= 6

6

∣
∣
∣
∣
∣
∣
∣

− 1
3 − 1

3
2
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3 − 1
3

∣
∣
∣
∣
∣
∣
∣
= 1

3

t = V (P, P1, P2, P4)

VT
= 6

6

∣
∣
∣
∣
∣
∣
∣

− 1
3 − 1

3
2
3

2
3 − 1

3 − 1
3

− 1
3 − 1

3 − 1
3

∣
∣
∣
∣
∣
∣
∣
= 1

3

u = V (P, P1, P2, P3)

VT
= 6

6

∣
∣
∣
∣
∣
∣
∣

− 1
3 − 1

3
2
3

2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

∣
∣
∣
∣
∣
∣
∣
= 0.

The barycentric coordinates (r, s, t, u) confirm that the point is located at the centre
of triangleΔP1P2P3. Note that the above determinants will create a negative volume
if the vector sequences are reversed.

13.10 Bézier Curves and Patches

In Chap.9 we examined Bézier curves and surface patches which are based on
Bernstein polynomials:

Bn
i (t) =

(
n

i

)

t i (1 − t)n−i .

We discovered that these polynomials create the quadratic terms

(1 − t)2, 2t (1 − t), t2

and the cubic terms

(1 − t)3, 3t (1 − t)2, 3t2(1 − t), t3

which are used as scalars to multiply sequences of control points to create a para-
metric curve. Furthermore, these terms sum to unity, therefore they are also another
form of barycentric coordinates. The only difference between these terms and the
others described above is that they are controlled by a common parameter t . Another
property of Bézier curves and patches is that they are constrained within the convex
hull formed by the control points, which is also a property of barycentric coordinates.

http://dx.doi.org/10.1007/978-1-4471-7336-6_9
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13.11 Summary

Barycentric coordinates provide another way to locate points in space, which permit
them to be used for ratios and proportion, areas, volumes, and centres of gravity.



Chapter 14
Geometric Algebra

14.1 Introduction

This can only be a brief introduction to geometric algebra as the subject really
demands an entire book. Those readers who wish to pursue the subject further should
consult the author’s books:Geometric Algebra for Computer Graphics orGeometric
Algebra: An Algebraic System for Computer Games and Animation.

14.2 Background

Although geometric algebra introduces some new ideas, the subject should not be
regarded as difficult. If you have read and understood the previous chapters, you
should be familiar with vectors, vector products, transforms, and the idea that the
product of two transforms is sensitive to the transform sequence. For example, in
general, scaling an object after it has been translated, is not the same as translating
an object after it has been scaled. Similarly, given two vectors r and s their vector
product r × s creates a third vector t, using the right-hand rule, perpendicular to the
plane containing r and s. However, just by reversing the vectors to s × r, creates a
similar vector but in the opposite direction −t.

We regard vectors as directed lines or oriented lines, but if they exist, why
shouldn’t oriented planes and oriented volumes exist? Well the answer to this ques-
tion is that they do, which is what geometric algebra is about. Unfortunately, when
vectors were invented, geometric algebra was overlooked, and it has taken a further
century for it to emerge through the work of William Kingdon Clifford (1845–1879)
and David Hestenes. So let’s continue and discover an exciting new algebra that will,
in time, be embraced by the computer graphics community.

© Springer-Verlag London Ltd. 2017
J. Vince,Mathematics for Computer Graphics, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-7336-6_14
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14.3 Symmetric and Antisymmetric Functions

It is possible to classify functions into two categories: symmetric (even) and anti-
symmetric (odd) functions. For example, given two symmetric functions f (x) and
f (x, y):

f (−x) = f (x)

and

f (y, x) = f (x, y)

an example being cos x where cos(−x) = cos x . Figure14.1 illustrates how the
cosine function is reflected about the origin. However, if the functions are antisym-
metric:

f (−x) = − f (x)

and

f (y, x) = − f (x, y)

an example being sin x where sin(−x) = − sin x . Figure14.2 illustrates how the
sine function is reflected about the origin.

The reason why we have covered symmetric and antisymmetric functions is that
they play an important role in geometric algebra. Now let’s continue with this intro-
duction and explore some important trigonometric foundations.

Fig. 14.1 The graph of the
symmetric cosine function
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Fig. 14.2 The graph of the
antisymmetric sine function
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14.4 Trigonometric Foundations

Figure14.3 shows two line segments a and b with coordinates (a1, a2), (b1, b2)
respectively. The lines are separated by an angle θ , and we will compute the expres-
sions ab cos θ and ab sin θ , as these play an important role in geometric algebra.

Using the trigonometric identities

sin(θ + φ) = sin θ cosφ + cos θ sin φ (14.1)

cos(θ + φ) = cos θ cosφ − sin θ sin φ (14.2)

and the following observations

cosφ = a1
a

, sin φ = a2
a

, cos(θ + φ) = b1
b

, sin(θ + φ) = b2
b

we can rewrite (14.1) and (14.2) as

b2
b

= a1
a

sin θ + a2
a

cos θ (14.3)

Fig. 14.3 Two line segments
a and b separated by +θ

X

Y
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a1b1

b2

φ
θ
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b1
b

= a1
a

cos θ − a2
a

sin θ. (14.4)

To isolate cos θ we multiply (14.3) by a2 and (14.4) by a1:

a2b2
b

= a1a2
a

sin θ + a22
a

cos θ (14.5)

a1b1
b

= a21
a

cos θ − a1a2
a

sin θ. (14.6)

Adding (14.5) and (14.6) we obtain

a1b1 + a2b2
b

= a21 + a22
a

cos θ = a cos θ

therefore,

ab cos θ = a1b1 + a2b2.

To isolate sin θ we multiply (14.3) by a1 and (14.4) by a2

a1b2
b

= a21
a

sin θ + a1a2
a

cos θ (14.7)

a2b1
b

= a1a2
a

cos θ − a22
a

sin θ (14.8)

Subtracting (14.8) from (14.7) we obtain

a1b2 − a2b1
b

= a21 + a22
a

sin θ = a sin θ

therefore,

ab sin θ = a1b2 − a2b1.

If we form the product of b’s projection on awith a, we get ab cos θ whichwe have
shown equals a1b1 +a2b2. Similarly, if we form the product ab sin θ we compute the
area of the parallelogram formed by sweeping a along b, which equals a1b2 − a2b1.
What is noteworthy, is that the product ab cos θ is independent of the sign of the
angle θ , whereas the product ab sin θ is sensitive to the sign of θ . Consequently, if
we construct the lines a and b such that b is rotated −θ relative to a as shown in
Fig. 14.4, ab cos θ = a1b1+a2b2, but ab sin θ = −(a1b2−a2b1). The antisymmetric
nature of the sine function reverses the sign of the area.

Having shown that area is a signed quantity just by using trigonometric identities,
let’s explore how vector algebra responds to this idea.
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Fig. 14.4 Two line segments
a and b separated by −θ
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b−θ

14.5 Vectorial Foundations

When we form the algebraic product of two 2D vectors a and b:

a = a1i + a2j

b = b1i + b2j

we obtain

ab = a1b1i2 + a2b2j2 + a1b2ij + a2b1ji (14.9)

and it is clear that a1b1i2 + a2b2j2 has something to do with ab cos θ , and a1b2ij +
a2b1ji has something to do with ab sin θ . The product ab creates the terms i2, j2, ij
and ji, which are resolved as follows.

14.6 Inner and Outer Products

I like to believe that mathematics is a game – a game where we make the rules. Some
rules might take us nowhere; others might take us so far in a particular direction and
then restrict any further development; whilst other rules might open up a fantastic
landscape that would have remained hidden had we not stumbled upon them. There
are no ‘wrong’ or ‘right’ rules – there are just rules where some work better than
others. Fortunately, the rules behind geometric algebra have been tested for over a
hundred years, so we know they work. But these rules were not hiding somewhere
waiting to be discovered, they arose due to the collective intellectual endeavour of
many mathematicians over several decades.

Let’s begin with the products ij and ji in (14.9) and assume that they anticommute:
ji = −ij. Therefore,

ab = a1b1i2 + a2b2j2 + (a1b2 − a2b1)ij (14.10)
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and if we reverse the product to ba we obtain

ba = a1b1i2 + a2b2j2 − (a1b2 − a2b1)ij. (14.11)

From (14.10) and (14.11) we see that the product of two vectors contains a symmetric
component

a1b1i2 + a2b2j2

and an antisymmetric component

(a1b2 − a2b1)ij.

It is interesting to observe that the symmetric component has 0◦ between its vector
pairs (i2 or j2), whereas the antisymmetric component has 90◦ between its vector pairs
(i and j). Therefore, the sine and cosine functions play a natural role in our rules.
What we are looking for are two functions that, when given our vectors a and b, one
function returns the symmetric component and the other returns the antisymmetric
component. We call these the inner and outer functions respectively.

It should be clear that if the inner function includes the cosine of the angle between
the two vectors it will reject the antisymmetric component and return the symmetric
element. Similarly, if the outer function includes the sine of the angle between the
vectors, the symmetric component is rejected, and returns the antisymmetric element.

If we declare the inner function as the inner product

a · b = |a||b| cos θ (14.12)

then

a · b = (a1i + a2j) · (b1i + b2j)

= a1b1i · i + a1b2i · j + a2b1j · i + a2b2j · j
= a1b1 + a2b2

which is perfect!
Next, we declare the outer function as the outer product using the wedge ‘∧’

symbol; which is why it is also called the wedge product:

a ∧ b = |a||b| sin θ i ∧ j. (14.13)

Note that product includes a strange i ∧ j term. This is included as we just can’t
ignore the ij term in the antisymmetric component:
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a ∧ b = (a1i + a2j) ∧ (b1i + b2j)

= a1b1i ∧ i + a1b2i ∧ j + a2b1j ∧ i + a2b2j ∧ j

= (a1b2 − a2b1)i ∧ j

which enables us to write

ab = a · b + a ∧ b (14.14)

ab = |a||b| cos θ + |a||b| sin θ i ∧ j. (14.15)

14.7 The Geometric Product in 2D

Clifford named the sum of the two products the geometric product, which means
that (14.14) reads: The geometric product ab is the sum of the inner product ‘a dot
b’ and the outer product ‘a wedge b’. Remember that all this assumes that ji = −ij
which seems a reasonable assumption.

Given the definition of the geometric product, let’s evaluate i2

ii = i · i + i ∧ i.

Using the definition for the inner product (14.12) we have

i · i = 1 × 1 × cos 0◦ = 1

whereas, using the definition of the outer product (14.13) we have

i ∧ i = 1 × 1 × sin 0◦ i ∧ i = 0.

Thus i2 = 1 and j2 = 1, and aa = |a|2:

aa = a · a + a ∧ a

= |a||a| cos 0◦ + |a||a| sin 0◦i ∧ j

aa = |a|2.

Now let’s evaluate ij:

ij = i · j + i ∧ j.

Using the definition for the inner product (14.12) we have

i · j = 1 × 1 × cos 90◦ = 0
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whereas using the definition of the outer product (14.13) we have

i ∧ j = 1 × 1 × sin 90◦ i ∧ j = i ∧ j.

Thus ij = i ∧ j. But what is i ∧ j? Well, it is a new object and is called a ‘bivector’
and defines the orientation of the plane containing i and j.

As the order of the vectors is from i to j, the angle is +90◦ and sin(+90)◦ = 1.
Whereas, if the order is from j to i the angle is −90◦ and sin(−90◦) = −1. Conse-
quently,

ji = j · i + j ∧ i

= 0 + 1 × 1 × sin(−90◦)i ∧ j

ji = −i ∧ j.

Thus the bivector i∧ j defines the orientation of a surface as anticlockwise, whilst
the bivector j ∧ i defines the orientation as clockwise. These ideas are shown in
Fig. 14.5.

So far, so good. Our rules seem to be leading somewhere. The inner product
(14.12) is our old friend the dot product, and does not need explaining. However, the
outer product (14.13) does require some further explanation.

The equation

ab = 9 + 12i ∧ j

simply means that the geometric product of two vectors a and b creates a scalar,
inner product of 9, and an outer product of 12 on the ij-plane.

For example, given

a = 3i

b = 3i + 4j

then

ab = 3i · (3i + 4j) + 3i ∧ (3i + 4j)

= 9 + 9i ∧ i + 12i ∧ j

ab = 9 + 12i ∧ j.

Fig. 14.5 An anticlockwise
and clockwise bivector

ii

i ∧ j j ∧ i

j j
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The 9 represents |a||b| cos θ , whereas the 12 represents an area |a||b| sin θ on the
ij-plane. The angle between the two vectors θ is given by

θ = cos−1(3/5).

However, reversing the product, we obtain

ba = (3i + 4j) · 3i + (3i + 4j) ∧ 3i

= 9 + 9i ∧ i + 12j ∧ i

ab = 9 − 12i ∧ j.

The sign of the outer (wedge) product has flipped to reflect the new orientation of
the vectors relative to the accepted orientation of the basis bivectors.

So the geometric product combines the scalar and wedge products into a single
product, where the scalar product is the symmetric component and thewedge product
is the antisymmetric component. Now let’s see how these products behave in 3D.

14.8 The Geometric Product in 3D

Before we consider the geometric product in 3D we need to introduce some new
notation, which will simplify future algebraic expressions. Rather than use i, j and k
to represent the unit basis vectors let’s employ e1, e2 and e3 respectively. This means
that (14.15) can be written

ab = |a||b| cos θ + |a||b| sin θ e1 ∧ e2.

We begin with two 3D vectors:

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3

therefore, their inner product is

a · b = (a1e1 + a2e2 + a3e3) · (b1e1 + b2e2 + b3e3)

= a1b1 + a2b2 + a3b3

and their outer product is

a ∧ b = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= a1b2e1 ∧ e2 + a1b3e1 ∧ e3 + a2b1e2 ∧ e1 + a2b3e2 ∧ e3
+ a3b1e3 ∧ e1 + a3b2e3 ∧ e2
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a∧b = (a1b2−a2b1)e1∧e2+(a2b3−a3b2)e2∧e3+(a3b1−a1b3)e3∧e1. (14.16)

This time we have three unit-basis bivectors: e1 ∧ e2, e2 ∧ e3, e3 ∧ e1, and three
associated scalarmultipliers: (a1b2−a2b1), (a2b3−a3b2), (a3b1−a1b3) respectively.

Continuing with the idea described in the previous section, the three bivectors
represent the three planes containing the respective vectors as shown in Fig. 14.6,
and the scalar multipliers are projections of the area of the vector parallelogram onto
the three bivectors as shown in Fig. 14.7. The orientation of the vectors a and b
determine whether the projected areas are positive or negative.

Youmay think that (14.16) looks familiar. In fact, it looks very similar to the cross
product a × b:

a × b = (a1b2 − a2b1)e3 + (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2. (14.17)

This similarity is no accident. For when Hamilton invented quaternions, he did not
recognise the possibility of bivectors, and invented some rules, which eventually
became the cross product! Later in this chapter we discover that quaternions are
really bivectors in disguise.

Fig. 14.6 The 3D bivectors
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e3 ∧ e1
e1
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Fig. 14.7 The projections
on the three bivectors
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We can see that a simple relationship exists between (14.16) and (14.17):

e1∧e2 and e3
e2∧e3 and e1
e3∧e1 and e2

the wedge product bivectors are perpendicular to the vector components of the cross
product. So the wedge product is just another way of representing the cross product.
However, the wedge product introduces a very important bonus: it works in space of
any dimension, whereas, the cross product is only comfortable in 3D. Not only that,
the wedge (outer product) is a product that creates volumes, hypervolumes, and can
also be applied to vectors, bivectors, trivectors, etc.

14.9 The Outer Product of Three 3D Vectors

Having seen that the outer product of two 3D vectors is represented by areal pro-
jections onto the three basis bivectors, let’s explore the outer product of three 3D
vectors.

Given

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3
c = c1e1 + c2e2 + c3e3

then

a ∧ b ∧ c = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3) ∧ (c1e1 + c2e2 + c3e3)

= [(a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1]
∧ (c1e1 + c2e2 + c3e3).

At this stagewe introduce another axiom: the outer product is associative. Thismeans
that a ∧ (b ∧ c) = (a ∧ b) ∧ c. Therefore, knowing that a ∧ a = 0:

a ∧ b ∧ c = c3(a1b2 − a2b1)e1 ∧ e2 ∧ e3 + c1(a2b3 − a3b2)e2 ∧ e3 ∧ e1
+ c2(a3b1 − a1b3)e3 ∧ e1 ∧ e2.

But we are left with the products e1 ∧ e2 ∧ e3, e2 ∧ e3 ∧ e1 and e3 ∧ e1 ∧ e2. Not to
worry, because we know that a ∧ b = −b ∧ a. Therefore,

e2 ∧ e3 ∧ e1 = −e2 ∧ e1 ∧ e3 = e1 ∧ e2 ∧ e3
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and

e3 ∧ e1 ∧ e2 = −e1 ∧ e3 ∧ e2 = e1 ∧ e2 ∧ e3.

Therefore, we can write a ∧ b ∧ c as

a ∧ b ∧ c = c3(a1b2 − a2b1)e1 ∧ e2 ∧ e3 + c1(a2b3 − a3b2)e1 ∧ e2 ∧ e3
+ c2(a3b1 − a1b3)e1 ∧ e2 ∧ e3

or

a ∧ b ∧ c = [c3(a1b2 − a2b1) + c1(a2b3 − a3b2) + c2(a3b1 − a1b3)] e1 ∧ e2 ∧ e3

or using a determinant:

a ∧ b ∧ c =
∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

e1 ∧ e2 ∧ e3

which is the well-known expression for the volume of a parallelepiped formed by
three vectors.

The term e1 ∧ e2 ∧ e3 is a trivector and reminds us that the volume is oriented.
If the sign of the determinant is positive, the original three vectors possess the same
orientation of the three basis vectors. If the sign of the determinant is negative, the
three vectors possess an orientation opposing that of the three basis vectors.

14.10 Axioms

One of the features of geometric algebra is that it behaves very similar to the every-
day algebra of scalars:

Axiom 1: The associative rule:

a(bc) = (ab)c.

Axiom 2: The left and right distributive rules:

a(b + c) = ab + ac

(b + c)a = ba + ca.
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The next four axioms describe how vectors interact with a scalar λ:

Axiom 3:
(λa)b = λ(ab) = λab.

Axiom 4:
λ(φa) = (λφ)a.

Axiom 5:
λ(a + b) = λa + λb.

Axiom 6:
(λ + φ)a = λa + φa.

The next axiom that is adopted is

Axiom 7:
a2 = |a|2

which has already emerged as a consequence of the algebra. However, for non-
Euclidean geometries, this can be set to a2 = −|a|2, which does not concern us
here.

14.11 Notation

Having abandoned i, j, k for e1, e2, e3, it is convenient to convert geometric products
e1e2...en to e12...n . For example, e1e2e3 ≡ e123. Furthermore, we must get used to the
following substitutions:

eieie j = e j

e21 = −e12
e312 = e123
e112 = e2
e121 = −e2.

14.12 Grades, Pseudoscalars and Multivectors

As geometric algebra embraces such awide range of objects, it is convenient to grade
them as follows: scalars are grade 0, vectors are grade 1, bivectors are grade 2, and
trivectors are grade 3, and so on for higher dimensions. In such a graded algebra



350 14 Geometric Algebra

it is traditional to call the highest grade element a pseudoscalar. Thus in 2D the
pseudoscalar is e12 and in 3D the pseudoscalar is e123.

One very powerful feature of geometric algebra is the idea of amultivector, which
is a linear combination of a scalar, vector, bivector, trivector or any other higher
dimensional object. For example the following are multivectors:

A = 3 + (2e1 + 3e2 + 4e3) + (5e12 + 6e23 + 7e31) + 8e123
B = 2 + (2e1 + 2e2 + 3e3) + (4e12 + 5e23 + 6e31) + 7e123

and we can form their sum:

A + B = 5 + (4e1 + 5e2 + 7e3) + (9e12 + 11e23 + 13e31) + 15e123

or their difference:

A − B = 1 + (e2 + e3) + (e12 + e23 + e31) + e123.

We can even form their product AB, but at the moment we have not explored the
products between all these elements.

We can isolate any grade of a multivector using the following notation:

〈multivector〉g
where g identifies a particular grade. For example, say we have the following mul-
tivector:

2 + 3e1 + 2e2 − 5e12 + 6e123

we extract the scalar term using:

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉0 = 2

the vector term using

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉1 = 3e1 + 2e2

the bivector term using:

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉2 = −5e12

and the trivector term using:

〈2 + 3e1 + 2e2 − 5e12 + 6e123〉3 = 6e123.
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It is also worth pointing out that the inner vector product converts two grade 1
elements, i.e. vectors, into a grade 0 element, i.e. a scalar, whereas the outer vector
product converts two grade 1 elements into a grade 2 element, i.e. a bivector. Thus
the inner product is a grade lowering operation, while the outer product is a grade
raising operation. These qualities of the inner and outer products are associated with
higher grade elements in the algebra. This is why the scalar product is renamed as the
inner product, because the scalar product is synonymous with transforming vectors
into scalars. Whereas, the inner product transforms two elements of grade n into a
grade n − 1 element.

14.13 Redefining the Inner and Outer Products

As the geometric product is defined in terms of the inner and outer products, it
seems only natural to expect that similar functions exist relating the inner and outer
products in terms of the geometric product. Such functions do exist and emerge when
we combine the following two equations:

ab = a · b + a ∧ b (14.18)

ba = a · b − a ∧ b. (14.19)

Adding and subtracting (14.18) and (14.19) we have

a · b = 1

2
(ab + ba) (14.20)

a ∧ b = 1

2
(ab − ba). (14.21)

Equations (14.20) and (14.21) and used frequently to define the products between
different grade elements.

14.14 The Inverse of a Vector

In traditional vector analysis we accept that it is impossible to divide by a vector, but
that is not so in geometric algebra. In fact, we don’t actually divide a multivector by
another vector but find a way of representing the inverse of a vector. For example,
we know that a unit vector â is defined as

â = a
|a|
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and using the geometric product

â2 = a2

|a|2 = 1

therefore,

b = a2b
|a|2

and exploiting the associative nature of the geometric product we have

b = a(ab)

|a|2 . (14.22)

Equation (14.22) is effectively stating that, given the geometric product ab we can
recover the vector b by pre-multiplying by a−1:

a
|a|2 .

Similarly, we can recover the vector a by post-multiplying by b−1:

a = (ab)b
|b|2 .

For example, given two vectors

a = e1 + 2e2
b = 3e1 + 2e2

their geometric product is

ab = 7 − 4e12.

Therefore, given ab and a, we can recover b as follows:

b = e1 + 2e2
5

(7 − 4e12)

= 1

5
(7e1 − 4e112 + 14e2 − 8e212)

= 1

5
(7e1 − 4e2 + 14e2 + 8e1)

b = 3e1 + 2e2.
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Similarly, give ab and b, a is recovered as follows:

a = (7 − 4e12)
3e1 + 2e2

13

= 1

13
(21e1 + 14e2 − 12e121 − 8e122

= 1

13
(21e1 + 14e2 + 12e2 − 8e1)

a = e1 + 2e2.

Note that the inverse of a unit vector is the original vector:

â−1 = â
|â|2 = â.

14.15 The Imaginary Properties of the Outer Product

So far we know that the outer product of two vectors is represented by one or more
unit basis vectors, such as

a ∧ b = λ1e12 + λ2e23 + λ3e31

where, in this case, the λi terms represent areas projected onto their respective unit
basis bivectors. But what has not emerged is that the outer product is an imaginary
quantity, which is revealed by expanding e212:

e212 = e1212

but as

e21 = −e12

then

e1(21)2 = −e1(12)2

= −e21e
2
2

e212 = −1.

Consequently, the geometric product effectively creates a complex number! Thus in
a 2D scenario, given two vectors

a = a1e1 + a2e2
b = b1e1 + b2e2
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their geometric product is

ab = (a1b1 + a2b2) + (a1b2 − a2b1)e12

and knowing that e12 = i, then we can write ab as

ab = (a1b1 + a2b2) + (a1b2 − a2b1)i. (14.23)

However, this notation is not generally adopted by the geometric community. The
reason being that i is normally only associated with a scalar, with which it commutes.
Whereas in 2D, e12 is associatedwith scalars and vectors, and although scalars present
no problem, under some conditions, it anticommutes with vectors. Consequently, an
upper-case I is used so that there is no confusion between the two elements. Thus
(14.23) is written as

ab = (a1b1 + a2b2) + (a1b2 − a2b1)I

where

I 2 = −1.

It goes without saying that the 3D unit basis bivectors are also imaginary quantities,
so is e123.

Multiplying a complex number by i rotates it 90◦ on the complex plane. Therefore,
it should be no surprise that multiplying a 2D vector by e12 rotates it by 90◦. However,
because vectors are sensitive to their product partners, we must remember that pre-
multiplying a vector by e12 rotates a vector clockwise and post-multiplying rotates
a vector anti-clockwise.

Whilst on the subject of rotations, let’s consider what happens in 3D. We begin
with a 3D vector

a = a1e1 + a2e2 + a3e3

and the unit basis bivector e12 as shown inFig. 14.8.Nextwe construct their geometric
product by pre-multiplying a by e12:

e12a = a1e12e1 + a2e12e2 + a3e12e3

which becomes

e12a = a1e121 + a2e122 + a3e123
= −a1e2 + a2e1 + a3e123
= a2e1 − a1e2 + a3e123

and contains two parts: a vector (a2e1 − a1e2) and a volume a3e123.
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Fig. 14.8 The effect of
pre-multiplying a vector
by a bivector

e1

e2

e3

a
e12

a1

a2

a3

Figure14.8 shows how the projection of vector a is rotated clockwise on the
bivector e12. A volume is also created perpendicular to the bivector. This enables us
to predict that if the vector is coplanar with the bivector, the entire vector is rotated
−90◦ and the volume component will be zero.

By post-multiplying a by e12 creates

ae12 = −a2e1 + a1e2 + a3e123

which shows that while the volumetric element has remained the same, the projected
vector is rotated anticlockwise.

You may wish to show that the same happens with the other two bivectors.

14.16 Duality

The ability to exchange pairs of geometric elements such as lines and planes involves
a dual operation, which in geometric algebra is relatively easy to define. For example,
given a multivector A its dual A∗ is defined as

A∗ = IA

where I is the local pseudoscalar. For 2D this is e12 and for 3D it is e123. Therefore,
given a 2D vector

a = a1e1 + a2e2

its dual is

a∗ = e12(a1e1 + a2e2)

= a1e121 + a2e122
= a2e1 − a1e2

which is another vector rotated 90◦ anticlockwise.
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It is easy to show that (a∗)∗ = −a, and two further dual operations return the
vector back to a.

In 3D the dual of a vector e1 is

e123e1 = e1231 = e23

which is the perpendicular bivector. Similarly, the dual of e2 is e31 and the dual of e3
is e12.

For a general vector a1e1 + a2e2 + a3e3 its dual is

e123(a1e1 + a2e2 + a3e3) = a1e1231 + a2e1232 + a3e1233
= a3e12 + a1e23 + a2e31.

The duals of the 3D basis bivectors are:

e123e12 = e12312 = −e3
e123e23 = e12323 = −e1
e123e31 = e12331 = −e2.

14.17 The Relationship Between the Vector Product
and the Outer Product

We have already discovered that there is a very close relationship between the vector
product and the outer product, and just to recap: Given two vectors

a = a1e1 + a2e2 + a3e3
b = b1e1 + b2e2 + b3e3

then

a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (14.24)

and

a ∧ b = (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1 + (a1b2 − a2b1)e1 ∧ e2

or

a ∧ b = (a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12. (14.25)
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If we multiply (14.25) by I123 we obtain

I123(a ∧ b) = (a2b3 − a3b2)e123e23 + (a3b1 − a1b3)e123e31 + (a1b2 − a2b1)e123e12
= −(a2b3 − a3b2)e1 − (a3b1 − a1b3)e2 − (a1b2 − a2b1)e3

which is identical to the cross product (14.24) apart from its sign. Therefore, we can
state:

a × b = −I123(a ∧ b).

14.18 The Relationship Between Quaternions and Bivectors

Hamilton’s rules for the imaginaries i , j and k are shown in Table14.1, whilst
Table14.2 shows the rules for 3D bivector products.

Although there is some agreement between the table entries, there is a sign reversal
in some of them. However, if we switch to a left-handed axial system the bivectors
become e32, e13, e21 and their products are as shown in Table14.3.

If we now create a one-to-one correspondence (isomorphism) between the two
systems:

i ↔ e32 j ↔ e13 k ↔ e21

there is a true correspondence between quaternions and a left-handed set of bivectors.

Table 14.1 Hamilton’s
quaternion product rules

i j k

i −1 k − j

j −k −1 i

k j −i −1

Table 14.2 3D bivector
product rules

e23 e31 e12
e23 −1 −e12 e31
e31 e12 −1 −e23
e12 −e31 e23 −1

Table 14.3 Left-handed 3D
bivector product rules

e32 e13 e21
e32 −1 e21 −e13
e13 −e21 −1 e32
e21 e13 −e32 −1
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14.19 Reflections and Rotations

Oneof geometric algebra’s strengths is the elegance it brings to calculating reflections
and rotations. Unfortunately, there is insufficient space to examine the derivations
of the formulae, but if you are interested, these can be found in the author’s books.
Let’s start with 2D reflections.

14.19.1 2D Reflections

Given a line, whose perpendicular unit vector is m̂ and a vector a its reflection a′ is
given by

a′ = m̂am̂

which is rather elegant! For example, Fig. 14.9 shows a scenario where

m̂ = 1√
2
(e1 + e2)

a = e1

therefore,

a′ = 1√
2
(e1 + e2)(e1)

1√
2
(e1 + e2)

= 1

2
(1 − e12)(e1 + e2)

= 1

2
(e1 + e2 + e2 − e1)

a′ = e2.

Fig. 14.9 The reflection of a
2D vector

e1

e2

a

a
m̂
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Note that in this scenario a reflectionmeans amirror image about the perpendicular
vector.

14.19.2 3D Reflections

Let’s explore the 3D scenario shown in Fig. 14.10 where

a = e1 + e2 − e3
m̂ = e2

therefore,

a′ = e2(e1 + e2 − e3)e2
= e212 + e222 − e232
= −e1 + e2 + e3.

As one might expect, it is also possible to reflect bivectors, trivectors and higher-
dimensional objects, and for reasons of brevity, they are summarised as follows:

Reflecting about a line:

scalars invariant

vectors v′ = m̂vm̂

bivectors B′ = m̂Bm̂

tr ivectors T′ = m̂Tm̂.

Fig. 14.10 The reflection of
a 3D vector

e1

e2

e3

m̂ aa
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Reflecting about a mirror:

scalars invariant

vectors v′ = −m̂vm̂

bivectors B′ = m̂Bm̂

tr ivectors T′ = −m̂Tm̂.

14.19.3 2D Rotations

Figure14.11 shows a plan view of two mirrors M and N separated by an angle θ .
The point P is in front of mirror M and subtends an angle α, and its reflection PR

exists in the virtual space behind M and also subtends an angle α with the mirror.
The angle between PR and N must be θ −α, and its reflection P ′ must also lie θ −α

behind N . By inspection, the angle between P and the double reflection P ′ is 2θ .
If we apply this double reflection transform to a collection of points, they are

effectively all rotated 2θ about the origin where the mirrors intersect. The only slight
drawback with this technique is that the angle of rotation is twice the angle between
the mirrors.

Instead of using points, let’s employ position vectors and substitute normal unit
vectors for the mirrors’ orientation. For example, Fig. 14.12 shows the same mirrors
with unit normal vectors m̂ and n̂. After two successive reflections, P becomes P ′,
and using the relationship:

v′ = −m̂vm̂

Fig. 14.11 Rotating a point
by a double reflection

M

N

P

PR

P

O
α

α

θ

θ

− α
θ − α

Fig. 14.12 Rotating a point
by a double reflection

M

N

P

PR

P

O p

pR

p

m̂

n̂
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we compute the reflections as follows:

pR = −m̂pm̂

p′ = −n̂pR n̂

p′ = n̂m̂pm̂n̂

which is also rather elegant and compact. However, we must remember that P is
rotated twice the angle separating the mirrors, and the rotation is relative to the
origin. Let’s demonstrate this technique with an example.

Figure14.13 shows two mirrors M and N with unit normal vectors m̂, n̂ and
position vector p:

m̂ = e2
n̂ = −e1
P = (1,−1)

p = e1 − e2.

As the mirrors are separated by 90◦ the point P is rotated 180◦:

p′ = n̂m̂pm̂n̂

= −e1e2(e1 − e2)e2(−e1)

= e12121 − e12221
= −e1 + e2

P ′ = (−1, 1).

Fig. 14.13 Rotating a point
by 180◦

e1

e2

m̂

n̂

p

p

P

P

M

N
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14.20 Rotors

Quaternions are the natural choice for rotating vectors about an arbitrary axis, and
although it may not be immediately obvious, we have already started to discover
geometric algebra’s equivalent.

We begin with

p′ = n̂m̂pm̂n̂

and substitute R for n̂m̂ and R̃ for m̂n̂, therefore,

p′ = RpR̃

where R and R̃ are called rotors which perform the same function as a quaternion.
Because geometric algebra is non-commutative, the sequence of elements, be they

vectors, bivectors, trivectors, etc., is very important. Consequently, it is very useful
to include a command that reverses a sequence of elements. The notation generally
employed is the tilde (˜) symbol:

R = n̂m̂

R̃ = m̂n̂.

Let’s unpack a rotor in terms of its angle and bivector as follows:
The bivector defining the plane is m̂ ∧ n̂ and θ is the angle between the vectors.

Let

R = n̂m̂

R̃ = m̂n̂

where

n̂m̂ = n̂ · m̂ − m̂ ∧ n̂

m̂n̂ = n̂ · m̂ + m̂ ∧ n̂

n̂ · m̂ = cos θ

m̂ ∧ n̂ = B̂ sin θ.

Therefore,

R = cos θ − B̂ sin θ

R̃ = cos θ + B̂ sin θ.



14.20 Rotors 363

We now have an equation that rotates a vector p through an angle 2θ about an axis
defined by B̂:

p′ = RpR̂

or

p′ = (cos θ − B̂ sin θ)p(cos θ + B̂ sin θ)

We can also express this such that it identifies the real angle of rotation α:

p′ = (cos(α/2) − B̂ sin(α/2))p(cos(α/2) + B̂ sin(α/2)). (14.26)

Equation (14.26) references a bivector, whichmaymake you feel uncomfortable! But
remember, it simply identifies the axis perpendicular to its plane. Let’s demonstrate
how (14.26) works with two examples.

Figure14.14 shows a scenario where vector p is rotated 90◦ about e2 which is
perpendicular to B̂, where

α = 90◦

a = e2
p = e1 + e2

B̂ = e31.

Therefore,

p′ = (cos 45◦ − e31 sin 45◦)(e1 + e2)(cos 45◦ + e31 sin 45◦)

=
(√

2

2
−

√
2

2
e31

)

(e1 + e2)

(√
2

2
+

√
2

2
e31

)

=
(√

2

2
e1 +

√
2

2
e2 −

√
2

2
e3 −

√
2

2
e312

) (√
2

2
+

√
2

2
e31

)

Fig. 14.14 Rotating a vector
by 90◦

e1

e2

e3

a

B̂

p
p 90◦
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= 1

2
(e1 − e3 + e2 + e231 − e3 − e1 − e312 − e31231)

p′ = e2 − e3.

Observe what happens when the bivector’s sign is reversed to −e31:

p′ = (cos 45◦ + e31 sin 45◦)(e1 + e2)(cos 45◦ − e31 sin 45◦)

=
(√

2

2
+

√
2

2
e31

)

(e1 + e2)

(√
2

2
−

√
2

2
e31

)

=
(√

2

2
e1 +

√
2

2
e2 +

√
2

2
e3 +

√
2

2
e312

) (√
2

2
−

√
2

2
e31

)

= 1

2
(e1 + e3 + e2 + e231 + e3 − e1 + e312 − e31231)

p′ = e2 + e3.

the rotation is clockwise about e2.
Figure14.15 shows another scenario where vector p is rotated 120◦ about the

bivector B, where

m = e1 − e3
n = e2 − e3
α = 120◦

p = e2 + e3
B = m ∧ n

= (e1 − e3) ∧ (e2 − e3)

B = e12 + e31 + e23.

Next, we normalise B to B̂:

B̂ = 1√
3
(e12 + e23 + e31

Fig. 14.15 Rotating a vector
by 120◦

e1

e2

e3

p

p

m ∧ n

11

1

m

n

120◦
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therefore,

p′ = (cos 60◦ − B̂ sin 60◦)p(cos 60◦ + B̂ sin 60◦)

=
(

1

2
− 1√

3
(e12 + e23 + e31)

√
3

2

)

(e2 + e3)

(

1

2
+ 1√

3
(e12 + e23 + e31)

√
3

2

)

=
(
1

2
− e12

2
− e23

2
− e31

2

)

(e2 + e3)
(
1

2
+ e12

2
+ e23

2
+ e31

2

)

= 1

4
(e2 + e3 − e1 − e123 + e3 − e2 − e312 + e1) (1 + e12 + e23 + e31)

= 1

2
(e3 − e123)(1 + e12 + e23 + e31)

= 1

2
(e3 + e312 − e2 + e1 − e123 − e12312 − e12323 − e12331)

= 1

2
(e3 − e2 + e1 + e3 + e1 + e2)

p′ = e1 + e3.

These examples show that rotors behave just like quaternions. Rotors not only rotate
vectors, but they can be used to rotate bivectors, and even trivectors, although, as one
might expect, a rotated trivector remains unaltered in 3D.

This has been a very brief introduction to geometric algebra, and it has been
impossible to cover all the algebra’s features. However, if you have understood the
above topics, you will have understood some of the fundamental ideas behind the
algebra. Let’s now consider some practical applications for geometric algebra.

14.21 Worked Examples

14.21.1 The Sine Rule

The sine rule states that for any triangle�ABC with anglesα,β and θ , and respective
opposite sides a, b and c, then

a

sin α
= b

sin β
= c

sin θ
.

This rule can be proved using the outer product of two vectors, which we know
incorporates the sine of the angle between two vectors:

|a ∧ b| = |a||b| sin α.
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Fig. 14.16 The sine rule

A B

C

ab

c

α β

θ

With reference to Fig. 14.16, we can state the triangle’s area as

area of �ABC = 1

2
| − c ∧ a| = 1

2
|c||a| sin β

area of �BCA = 1

2
| − a ∧ b| = 1

2
|a||b| sin θ

area of �CAB = 1

2
| − b ∧ c| = 1

2
|b||c| sin α

which means that

|c||a| sin β = |a||b| sin θ = |b||c| sin α

|a|
sin α

= |b|
sin β

= |c|
sin θ

.

14.21.2 The Cosine Rule

The cosine rule states that for any triangle �ABC with sides a, b and c, then

a2 = b2 + c2 − 2bc cosα

where α is the angle between b and c.
Although this is an easy rule to prove using simple trigonometry, the geometric

algebra solution is even easier.
Figure14.17 shows a triangle �ABC constructed from vectors a, b and c. From

Fig. 14.17

a = b − c. (14.27)
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Fig. 14.17 The cosine rule

A B

C

ab

c

α

Squaring (14.27) we obtain

a2 = b2 + c2 − (bc + cb).

But

bc + cb = 2b · c = 2|b||c| cosα

therefore,

|a|2 = |b|2 + |c|2 − 2|b||c| cosα.

14.21.3 A Point Perpendicular to a Line

Figure14.18 shows a scenario where a line with direction vector v̂ passes through a
point T . The objective is to locate another point P perpendicular to v̂ and a distance

Fig. 14.18 A point P
perpendicular to a point T
on a line

e1

e2

T

P

t

p
δ

v̂
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δ from T . The solution is found by post-multiplying v̂ by the pseudoscalar e12, which
rotates v̂ through an angle of 90◦.

As v̂ is a unit vector

−→
T P = δv̂e12

therefore,

p = t + −→
T P

and

p = t + δv̂e12. (14.28)

For example, Fig. 14.19 shows a 2D scenario where

v̂ = 1√
2
(e1 + e2)

T = (4, 1)

t = 4e1 + e2

δ = √
32.

Using (14.28)

p = t + δv̂e12

= 4e1 + e2 + √
32

1√
2
(e1 + e2)e12

= 4e1 + e2 + 4e2 − 4e1
p = 5e2

Fig. 14.19 A point P
perpendicular to a point T
on a line

e1

e2

T

P

t

p
δ

v̂



14.21 Worked Examples 369

and

P = (0, 5).

If p is required on the other side of the line, we pre-multiply v̂ by e12:

p = t + δe12v̂

which is the same as reversing the sign of δ.

14.21.4 Reflecting a Vector About a Vector

Reflecting a vector about another vector happens to be a rather easy problem for
geometric algebra. Figure14.20 shows the scenario where we see a vector a reflected
about the normal to a line with direction vector v̂.

We begin by calculating m̂:

m̂ = v̂e12 (14.29)

then reflecting a about m̂:

a′ = m̂am̂

substituting m̂ we have

a′ = v̂e12av̂e12. (14.30)

Fig. 14.20 Reflecting a
vector about a vector

e1

e2

v̂
m̂ a

a



370 14 Geometric Algebra

Fig. 14.21 Reflecting a
vector about a vector

e1

e2

v̂m̂
a

a

As an illustration, consider the scenario shown in Fig. 14.21 where

v̂ = 1√
2
(e1 + e2)

a = −e1.

Therefore, using (14.29)

m̂ = 1√
2
(e1 + e2)e12

m̂ = 1√
2
(e2 − e1)

and using (14.30)

a′ = 1√
2
(e2 − e1)(−e1)

1√
2
(e2 − e1)

= 1

2
(e12 + 1)(e2 − e1)

= 1

2
(e1 + e2 + e2 − e1)

a′ = e2.

14.21.5 A Point Above or Below a Plane

In computer graphics we often need to test whether a point is above, below or on
a planar surface. If we already have the plane equation for the surface it is just a
question of substituting the test point in the equation and investigating its signed
value. But here is another way using geometric algebra. For example, if a bivector
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Fig. 14.22 Point relative to
a bivector

a

b
p

P

a ∧ b

Fig. 14.23 Three points
relative to a bivector
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e3

p

a ∧ b
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q

a

b r

is used to represent the orientation of a plane, the outer product of the test point’s
position vector with the bivector computes an oriented volume. Figure14.22 shows
a bivector a ∧ b and a test point P with position vector p relative to the bivector.

Let

a ∧ b ∧ p is +ve, then P is ‘above’ the bivector
a ∧ b ∧ p is −ve, then P is ‘below’ the bivector
a ∧ b ∧ p is zero, then P is coplanar with the bivector.

The terms ‘above’ and ‘below’ mean in the bivector’s positive and negative half-
space respectively.

As an example, consider the scenario shown in Fig. 14.23 where the plane’s ori-
entation is represented by the bivector a ∧ b, and three test points P , Q and R.

If P = (0, 1, 0), Q = (0, −1, 0), R = (1, 0, 0),

a = e1 + e3
b = e1

then

p = e2
q = −e2
r = e1
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and

a ∧ b ∧ p = (e1 + e3) ∧ e1 ∧ e2
= e123

a ∧ b ∧ q = (e1 + e3) ∧ e1 ∧ (−e2)

= −e123
a ∧ b ∧ r = (e1 + e3) ∧ e1 ∧ e1

= 0.

We can see that the signs of the first two volumes show that P is in the positive
half-space, Q is in the negative half-space, and R is on the plane.

14.22 Summary

Geometric algebra is a new and exciting subject and is destined to impact upon the
waywe solve problems in computer games and animation.Hopefully, you have found
this chapter interesting, and if you are tempted to take the subject further, then look
at the author’s books.



Chapter 15
Calculus: Derivatives

15.1 Introduction

Calculus is a very large subject, and calculus books have a reputation for being
heavy. Therefore, to minimise this book’s weight, and provide a gentle introduction
to the subject, I have selected specific topics from my book Calculus for Computer
Graphics, and condensed them into two chapters.

One branch of calculus is concerned with a function’s derivative, which describes
how fast a function changes relative to its independent variable. In this chapter, I
show how limits are used in this process. We begin with some historical background,
and then look at small numerical quantities, and how they can be ignored if they
occur in certain products, but remain important in quotients.

15.2 Background

Over a period of 350 years ormore, calculus has evolved conceptually and in notation.
Up until recently, calculus was described using infinitesimals, which are numbers so
small, they can be ignored in certain products. However, it was the French mathe-
maticianAugustin–Louis Cauchy (1789–1857), and theGermanmathematicianKarl
Weierstrass (1815–1897), who showed how limits can replace infinitesimals.

15.3 Small Numerical Quantities

The adjective small is a relative term, and requires clarification in the context of
numbers. For example, if numbers are in the hundreds, and also contain some decimal
component, then it seems reasonable to ignore digits after the 3rd decimal place for
any quick calculation. For instance,

© Springer-Verlag London Ltd. 2017
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100.000003 × 200.000006 ≈ 20,000

and ignoring the decimal part has no significant impact on the general accuracy of
the answer, which is measured in tens of thousands.

To develop an algebraic basis for this argument let’s divide a number into two
parts: a primary part x , and some very small secondary part δx (pronounced delta x).
In one of the above numbers, x = 100 and δx = 0.000003. Given two such numbers,
x1 and y1, their product is given by

x1 = x + δx

y1 = y + δy

x1y1 = (x + δx)(y + δy)

= xy + x · δy + y · δx + δx · δy.

Using x1 = 100.000003 and y1 = 200.000006 we have

x1y1 = 100 × 200 + 100 × 0.000006 + 200 × 0.000003 + 0.000003 × 0.000006

= 20, 000 + 0.0006 + 0.0006 + 0.00000000018

= 20, 000 + 0.0012 + 0.00000000018

= 20, 000.00120000018

where it is clear that the products x · δy, y · δx and δx · δy contribute very little to
the result. Furthermore, the smaller we make δx and δy, their contribution becomes
even more insignificant. Just imagine if we reduce δx and δy to the level of quantum
phenomenon, e.g. 10−34, then their products play no part in every-day numbers. But
there is no need to stop there, we can make δx and δy as small as we like, e.g.
10−100,000,000,000. Later on we employ the device of reducing a number towards zero,
such that any products involving them can be dropped from any calculation.

Even though the product of two numbers less than zero is an even smaller number,
care must be taken with their quotients. For example, in the above scenario, where
δy = 0.000006 and δx = 0.000003,

δy

δx
= 0.000006

0.000003
= 2

so we must watch out for such quotients.
From now on I will employ the term derivative to describe a function’s rate of

change relative to its independent variable. Iwill nowdescribe twoways of computing
a derivative, and provide a graphical interpretation of the process. The first way uses
simple algebraic equations, and the second way uses a functional representation.
Needless to say, they both give the same result.
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15.4 Equations and Limits

15.4.1 Quadratic Function

Here is a simple algebraic approach using limits to compute the derivative of a
quadratic function. Starting with the function y = x2, let x change by δx , and let δy
be the corresponding change in y. We then have

y = x2

y + δy = (x + δx)2

= x2 + 2x · δx + (δx)2

δy = 2x · δx + (δx)2.

Dividing throughout by δx we have

δy

δx
= 2x + δx .

The ratio δy/δx provides a measure of how fast y changes relative to x , in increments
of δx . For example, when x = 10

δy

δx
= 20 + δx,

and if δx = 1, then δy/δx = 21. Equally, if δx = 0.001, then δy/δx = 20.001. By
making δx smaller and smaller, δy becomes equally smaller, and their ratio converges
towards a limiting value of 20.

In this case, as δx approaches zero, δy/δx approaches 2x , which is written

lim
δx→0

δy

δx
= 2x .

Thus in the limit, when δx = 0, we create a condition where δy is divided by zero
– which is a meaningless operation. However, if we hold onto the idea of a limit,
as δx → 0, it is obvious that the quotient δy/δx is converging towards 2x . The
subterfuge employed to avoid dividing by zero is to substitute another quotient dy/dx
to stand for the limiting condition:

dy

dx
= lim

δx→0

δy

δx
= 2x .

dy/dx (pronounced dee y dee x) is the derivative of y = x2, i.e. 2x . For instance,
when x = 0, dy/dx = 0, and when x = 3, dy/dx = 6. The derivative dy/dx , is the
instantaneous rate at which y changes relative to x .
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If we had represented this equation as a function:

f (x) = x2

f ′(x) = 2x

where f ′(x) is another way of expressing dy/dx .
Now let’s introduce two constants into the original quadratic equation to see what

effect, if any, they have on the derivative. We begin with

y = ax2 + b

and increment x and y:

y + δy = a(x + δx)2 + b

= a
(
x2 + 2x · δx + (δx)2

) + b

δy = a
(
2x · δx + (δx)2

)
.

Dividing throughout by δx :
δy

δx
= a(2x + δx)

and the derivative is

dy

dx
= lim

δx→0

δy

δx
= 2ax .

Thus we see the added constant b disappears (i.e. because it does not change), whilst
the multiplied constant a is transmitted through to the derivative.

15.4.2 Cubic Equation

Now let’s repeat the above analysis for y = x3:

y = x3

y + δy = (x + δx)3

= x3 + 3x2 · δx + 3x(δx)2 + (δx)3

δy = 3x2 · δx + 3x(δx)2 + (δx)3.
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Dividing throughout by δx :

δy

δx
= 3x2 + 3x · δx + (δx)2.

Employing the idea of infinitesimals, one would argue that any term involving δx
can be ignored, because its numerical value is too small to make any contribution
to the result. Similarly, using the idea of limits, one would argue that as δx is made
increasingly smaller, towards zero, any term involving δx rapidly disappears.

Using limits, we have

lim
δx→0

δy

δx
= 3x2

or

dy

dx
= lim

δx→0

δy

δx
= 3x2.

We could also show that if y = ax3 + b then

dy

dx
= 3ax2.

This incremental technique can be used to compute the derivative of all sorts of
functions.

Ifwe continue computing the derivatives of higher-order polynomials,we discover
the following pattern:

y = x2,
dy

dx
= 2x

y = x3,
dy

dx
= 3x2

y = x4,
dy

dx
= 4x3

y = x5,
dy

dx
= 5x4.

Clearly, the rule is

y = xn,
dy

dx
= nxn−1

but we need to prove why this is so. The solution is found in the binomial expansion
for (x + δx)n , which can be divided into three components:
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1. Decreasing terms of x .
2. Increasing terms of δx .
3. The terms of Pascal’s triangle.

For example, the individual terms of (x + δx)4 are:

Decreasing terms of x : x4 x3 x2 x1 x0

Increasing terms of δx : (δx)0 (δx)1 (δx)2 (δx)3 (δx)4

The terms of Pascal’s triangle: 1 4 6 4 1

which when combined produce

x4 + 4x3(δx) + 6x2(δx)2 + 4x(δx)3 + (δx)4.

Thus when we begin an incremental analysis:

y = x4

y + δy = (x + δx)4

= x4 + 4x3(δx) + 6x2(δx)2 + 4x(δx)3 + (δx)4

δy = 4x3(δx) + 6x2(δx)2 + 4x(δx)3 + (δx)4.

Dividing throughout by δx :

δy

δx
= 4x3 + 6x2(δx)1 + 4x(δx)2 + (δx)3.

In the limit, as δx slides to zero, only the second term of the original binomial
expansion remains:

4x3.

The second term of the binomial expansion (1 + δx)n is always of the form

nxn−1

which is the proof we require.

15.4.3 Functions and Limits

In order to generalise the above findings, let’s approach the above analysis using
a function of the form y = f (x). We begin by noting some arbitrary value of its
independent variable and note the function’s value. In general terms, this is x and
f (x) respectively. We then increase x by a small amount δx , to give x + δx , and
measure the function’s value again: f (x + δx). The function’s change in value is
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f (x + δx) − f (x), whilst the change in the independent variable is δx . The quotient
of these two quantities approximates to the function’s rate of change at x :

f (x + δx) − f (x)

δx
. (15.1)

By making δx smaller and smaller towards zero, (15.1) converges towards a limiting
value expressed as

dy

dx
= lim

δx→0

f (x + δx) − f (x)

δx
(15.2)

which can be used with all sorts of functions. For example, to compute the derivative
of sin x we proceed as follows:

y = sin x

y + δy = sin(x + δx).

Using the identity sin(A + B) = sin A cos B + cos A sin B, we have

y + δy = sin x cos(δx) + cos x sin(δx)

δy = sin x cos(δx) + cos x sin(δx) − sin x

= sin x(cos(δx) − 1) + cos x sin(δx).

Dividing throughout by δx we have

δy

δx
= sin x

δx
(cos(δx) − 1) + sin(δx)

δx
cos x .

In the limit as δx → 0, (cos(δx) − 1) → 0 and sin(δx)/δx = 1, and

dy

dx
= d(sin x)

dx
= cos x .

Before moving on, let’s compute the derivative of cos x .

y = cos x

y + δy = cos(x + δx).

Using the identity cos(A + B) = cos A cos B − sin A sin B, we have

y + δy = cos x cos(δx) − sin x sin(δx)

δy = cos x cos(δx) − sin x sin(δx) − cos x

= cos x(cos(δx) − 1) − sin x sin(δx).
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Dividing throughout by δx we have

δy

δx
= cos x

δx
(cos(δx) − 1) − sin(δx)

δx
sin x .

In the limit as δx → 0, (cos(δx) − 1) → 0 and sin(δx)/δx = 1 (See Appendix A),
and

dy

dx
= d(cos x)

dx
− sin x .

Wewill continue to employ this strategy to compute the derivatives of other functions
later on.

15.4.4 Graphical Interpretation of the Derivative

To illustrate this limiting process graphically, consider the scenario in Fig. 15.1where
the sample point is P . In this case the function is f (x) = x2 and P’s coordinates
are (x, x2). We identify another point R, displaced δx to the right of P , with coor-
dinates (x + δx, x2). The point Q on the curve, vertically above R, has coordinates(
x + δx, (x + δx)2

)
. When δx is relatively small, the slope of the line PQ approx-

imates to the function’s rate of change at P , which is the graph’s slope. This is given
by

slope = QR

PR
= (x + δx)2 − x2

δx

= x2 + 2x(δx) + (δx)2 − x2

δx

Fig. 15.1 Sketch of
f (x) = x2
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= 2x(δx) + (δx)2

δx
= 2x + δx .

We can now reason that as δx is made smaller and smaller, Q approaches P , and
slope becomes the graph’s slope at P . This is the limiting condition:

dy

dx
= lim

δx→0
(2x + δx) = 2x .

Thus, for any point with coordinates (x, x2), the slope is given by 2x . For example,
when x = 0, the slope is 0, and when x = 4, the slope is 8, etc.

15.4.5 Derivatives and Differentials

Given a function f (x), the ratio d f/dx represents the instantaneous change of f
for some x , and is called the first derivative of f (x). For linear functions, this is
constant, for other functions, the derivative’s value changes with x and is represented
by a function.

The elements d f , dy and dx are called differentials, and historically, the derivative
used to be called the differential coefficient, but has now been dropped in favour of
derivative. One can see how the idea of a differential coefficient arose if we write,
for example:

dy

dx
= 3x

as

dy = 3x dx .

In this case, 3x acts like a coefficient of dx , nevertheless, we will use the word
derivative. It is worth noting that if y = x , then dy/dx = 1, or dy = dx . The two
differentials are individual algebraic quantities, which permits us to write statements
such as

dy

dx
= 3x, dy = 3x dx, dx = dy

3x
.

Now let’s find dy/dx , for

y = 6x3 − 4x2 + 8x + 6.
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Differentiating y:

dy

dx
= 18x2 − 8x + 8

which is the instantaneous change of y relative to x . When x = 1, dy/dx = 18 −
8 + 8 = 18, which means that y is changing 18 times faster than x . Consequently,
dx/dy = 1/18.

15.4.6 Integration and Antiderivatives

If it is possible to differentiate a function, it seems reasonable to assume the exis-
tence of an inverse process to convert a derivative back to its associated function.
Fortunately, this is the case, but there are some limitations. This inverse process is
called integration and reveals the antiderivative of a function. Many functions can
be paired together in the form of a derivative and an antiderivative, such as 2x with
x2, and cos x with sin x . However, there are many functions where it is impossible
to derive its antiderivative in a precise form. For example, there is no simple, finite
functional antiderivative for sin x2 or (sin x)/x . To understand integration, let’s begin
with a simple derivative.

If we are given

dy

dx
= 18x2 − 8x + 8

it is not too difficult to reason that the original function could have been

y = 6x3 − 4x2 + 8x .

However, it could have also been

y = 6x3 − 4x2 + 8x + 2

or

y = 6x3 − 4x2 + 8x + 20

or with any other constant. Consequently, when integrating the original function, the
integration process has to include a constant:

y = 6x3 − 4x2 + 8x + C.

The value of C is not always required, but it can be determined if we are given some
extra information, such as y = 10 when x = 0, then C = 10.
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The notation for integration employs a curly ‘S’ symbol
∫
, which may seem

strange, but is short for sum and will be explained later. So, starting with

dy

dx
= 18x2 − 8x + 8

we rewrite this as

dy = (18x2 − 8x + 8)dx

and integrate both sides, where dy becomes y and the right-hand-side becomes

∫
(18x2 − 8x + 8) dx

although brackets are not always used:

y =
∫

18x2 − 8x + 8 dx .

This equation reads: ‘y is the integral of 18x2 − 8x + 8 dee x.’ The dx reminds us
that x is the independent variable. In this case we can write the answer:

dy = 18x2 − 8x + 8 dx

y =
∫

18x2 − 8x + 8 dx

= 6x3 − 4x2 + 8x + C

where C is some constant.
For example, let’s find y, given

dy = 6x2 + 10x dx .

Integrating:

y =
∫

6x2 + 10x dx

= 2x3 + 5x2 + C.

Now let’s find y, given

dy = dx .
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Integrating:

y =
∫

1 dx

= x + C.

The antiderivatives for the sine and cosine functions are written:
∫

sin x dx = − cos x + C
∫

cos x dx = sin x + C

which you may think obvious, as we have just computed their derivatives. How-
ever, the reason for introducing integration alongside differentiation, is to make you
familiar with the notation, and memorise the two distinct processes, as well as lay
the foundations for the next chapter.

15.5 Function Types

Mathematical functions come in all sorts of shapes and sizes. Sometimes they are
described explicitly where y equals some function of its independent variable(s),
such as

y = x sin x

or implicitly where y, and its independent variable(s) are part of an equation, such
as

x2 + y2 = 10.

A function may reference other functions, such as

y = sin(cos2 x)

or

y = x sin x .

There is no limit to the way functions can be combined, which makes it impossible
to cover every eventuality. Nevertheless, we will explore some useful combinations
that prepare us for any future surprises.
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First, we examine how to differentiate different types of functions, that include
sums, products and quotients, which are employed later on to differentiate spe-
cific functions such as trigonometric, logarithmic and hyperbolic. Where relevant, I
include the appropriate antiderivative to complement its derivative.

15.6 Differentiating Groups of Functions

So far we have only considered simple individual functions, which, unfortunately, do
not represent the equations found in mathematics, science, physics or even computer
graphics. In general, the functions we have to differentiate include sums of functions,
functions of functions, function products and function quotients. Let’s explore these
four scenarios.

15.6.1 Sums of Functions

A function normally computes a numerical value from its independent variable(s),
and if it can be differentiated, its derivative generates another function with the same
independent variable. Consequently, if a function contains two functions of x , such
as u and v, where

y = u(x) + v(x)

which can be abbreviated to

y = u + v

then

dy

dx
= du

dx
+ dv

dx

where we just sum their individual derivatives.
As an example, find dy/dx , given

u = 2x6

v = 3x5

y = u + v

y = 2x6 + 3x5.
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Differentiating y:

dy

dx
= 12x5 + 15x4.

Similarly, find dy/dx , given

u = 2x6

v = sin x

w = cos x

y = u + v + w

y = 2x6 + sin x + cos x .

Differentiating y:

dy

dx
= 12x5 + cos x − sin x .

Figure15.2 shows a graph of y = 2x6 + sin x + cos x and its derivative
y = 12x5 + cos x − sin x . Differentiating such functions is relatively easy, so too,
is integrating. Given

dy

dx
= du

dx
+ dv

dx

then

y =
∫

u dx +
∫

v dx

=
∫

(u + v) dx .

Fig. 15.2 Graph of
y = 2x6 + sin x + cos x and
its derivative,
dy
dx = 12x5 + cos x − sin x
(dashed)
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For example, let’s find y, given

dy

dx
= 12x5 + cos x − sin x .

Integrating:

dy = (12x5 + cos x − sin x)dx

y =
∫

12x5 dx +
∫

cos x dx −
∫

sin x dx

= 2x6 + sin x + cos x + C.

15.6.2 Function of a Function

One of the advantages of modern mathematical notation is that it lends itself to
unlimited elaboration without introducing any new symbols. For example, the poly-
nomial 3x2 + 2x is easily raised to some power by adding brackets and an appropriate
index: (3x2 + 2x)2. Such an object is a function of a function, because the function
3x2 + 2x is subjected to a further squaring function. The question now is: how are
such functions differentiated? Well, the answer is relatively easy, but does introduce
some new ideas.

Imagine that Heidi swims twice as fast as John, who in turn, swims three times as
fast as his dog, Monty. It should be obvious that Heidi swims six (2 × 3) times faster
thanMonty. This product rule, also applies to derivatives, because if y changes twice
as fast as u, i.e. dy/du = 2, and u changes three times as fast as x , i.e. du/dx = 3,
then y changes six times as fast as x :

dy

dx
= dy

du
· du
dx

.

To differentiate

y = (3x2 + 2x)2

we substitute

u = 3x2 + 2x

then

y = u2
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and

dy

du
= 2u

= 2(3x2 + 2x)

= 6x2 + 4x .

Next, we require du/dx :

u = 3x2 + 2x

du

dx
= 6x + 2

therefore, we can write

dy

dx
= dy

du
· du
dx

= (6x2 + 4x)(6x + 2)

= 36x3 + 36x2 + 8x .

This result is easily verified by expanding the original polynomial and differentiating:

y = (3x2 + 2x)2

= (3x2 + 2x)(3x2 + 2x)

= 9x4 + 12x3 + 4x2

dy

dx
= 36x3 + 36x2 + 8x .

Figure15.3 shows a graph of y = (3x2+2x)2 and its derivative y = 36x3+36x2 +
8x .

Fig. 15.3 Graph of
y = (3x2 + 2x)2 and its
derivative,
dy
dx = 36x3 + 36x2 + 8x
(dashed)

-1 0 1

-2

2



15.6 Differentiating Groups of Functions 389

Now let’s differentiate y = sin ax , which is a function of a function.
Substitute u for ax :

y = sin u

dy

du
= cos u

= cos ax .

Next, we require du/dx :

u = ax

du

dx
= a

therefore, we can write

dy

dx
= dy

du
· du
dx

= cos ax · a
= a cos ax .

Consequently, given

dy

dx
= cos ax

then

dy = cos ax dx

y =
∫

cos ax dx

= 1

a
sin ax + C.

Similarly, given

dy

dx
= sin ax

then

dy = sin ax dx

y =
∫

sin ax dx
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= −1

a
cos ax + C.

To differentiate y = sin x2, which is also a function of a function, we substitute
u for x2:

y = sin u

dy

du
= cos u

= cos x2.

Next, we require du/dx :

u = x2

du

dx
= 2x

therefore, we can write

dy

dx
= dy

du
· du
dx

= cos x2 · 2x
= 2x cos x2.

Figure15.4 shows a graph of y = sin x2 and its derivative y = 2x cos x2. In gen-
eral, there can be any depth of functions within a function, which permits us to write
the chain rule for derivatives:

dy

dx
= dy

du
· du
dv

· dv

dw
· dw
dx

.

Fig. 15.4 Graph of
y = sin x2 and its derivative,
dy
dx = 2x cos x2 (dashed)

-4 -3 -2 -1 0 1 2 3 4

-8

-4

4

8



15.6 Differentiating Groups of Functions 391

15.6.3 Function Products

Function products occur frequently in every-day mathematics, and involve the prod-
uct of two, or more functions. Here are three simple examples:

y = (3x2 + 2x)(2x2 + 3x)

y = sin x cos x

y = x2 sin x .

When it comes to differentiating function products of the form

y = uv

it seems natural to assume that

dy

dx
= du

dx
· dv
dx

(15.3)

which unfortunately, is incorrect. For example, in the case of

y = (3x2 + 2x)(2x2 + 3x)

differentiating using the above rule (15.3) produces

dy

dx
= (6x + 2)(4x + 3)

= 24x2 + 26x + 6.

However, if we expand the original product and then differentiate, we obtain

y = (3x2 + 2x)(2x2 + 3x)

= 6x4 + 13x3 + 6x2

dy

dx
= 24x3 + 39x2 + 12x

which is correct, but differs from the first result. Obviously, (15.3) must be wrong.
So let’s return to first principles and discover the correct rule.

So far we have incremented the independent variable – normally x – by δx to
discover the change in y – normally δy. Next, we see how the same notation can be
used to increment functions.

Given the following functions of x , u and v, where

y = uv
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if x increases by δx , then there will be corresponding changes of δu, δv and δy, in
u, v and y respectively. Therefore,

y + δy = (u + δu)(v + δv)

= uv + uδv + vδu + δuδv

δy = uδv + vδu + δuδv.

Dividing throughout by δx we have

δy

δx
= u

δv

δx
+ v

δu

δx
+ δu

δv

δx
.

In the limiting condition:

dy

dx
= lim

δx→0

(
u

δv

δx

)
+ lim

δx→0

(
v
δu

δx

)
+ lim

δx→0

(
δu

δv

δx

)
.

As δx → 0, then δu → 0 and
(
δu δv

δx

) → 0. Therefore,

dy

dx
= u

dv

dx
+ v

du

dx
. (15.4)

Applying (15.4) to the original function product:

u = 3x2 + 2x

v = 2x2 + 3x

y = uv

du

dx
= 6x + 2

dv

dx
= 4x + 3

dy

dx
= u

dv

dx
+ v

du

dx
= (3x2 + 2x)(4x + 3) + (2x2 + 3x)(6x + 2)

= (12x3 + 17x2 + 6x) + (12x3 + 22x2 + 6x)

= 24x3 + 39x2 + 12x

which agrees with our previous prediction. Figure15.5 shows a graph of y = (3x2 +
2x)(2x2 + 3x) and its derivative y = 24x3 + 39x2 + 12x .
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Fig. 15.5 Graph of
y = (3x2 + 2x)(2x2 + 3x)
and its derivative,
dy
dx = 24x3 + 39x2 + 12x
(dashed)
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Now let’s differentiate y = sin x cos x using (15.4).

y = sin x cos x

u = sin x

du

dx
= cos x

v = cos x

dv

dx
= − sin x

dy

dx
= u

dv

dx
+ v

du

dx
= sin x(− sin x) + cos x cos x

= cos2 x − sin2 x

= cos 2x .

Using the identity sin 2x = 2 sin x cos x , we can rewrite the original function as

y = sin x cos x

dy

dx
= 1

2
sin 2x

= cos 2x

which confirms the above derivative. Now let’s consider the antiderivative of cos 2x .
Given

dy

dx
= cos 2x
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then

dy = cos 2x dx

y =
∫

cos 2x dx

= 1

2
sin 2x + C

= sin x cos x + C.

Figure15.6 shows a graph of y = sin x cos and its derivative y = cos 2x .

Let’s differentiate y = x2 sin x , using (15.4):

y = x2 sin x

u = x2

du

dx
= 2x

v = sin x

dv

dx
= cos x

dy

dx
= u

dv

dx
+ v

du

dx
= x2 cos x + 2x sin x .

Figure15.7 shows a graph of y = x2 sin x and its derivative x2 cos x + 2x sin x .

Fig. 15.6 Graph of
y = sin x cos x and its
derivative, dy

dx = cos 2x
(dashed)
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-1

1
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Fig. 15.7 Graph of
y = x2 sin x and its
derivative
y = x2 cos x + 2x sin x
(dashed line)
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15.6.4 Function Quotients

Next, we investigate how to differentiate the quotient of two functions. We begin
with two functions of x , u and v, where

y = u

v

which makes y also a function of x .
We now increment x by δx and measure the change in u as δu, and the change in

v as δv. Consequently, the change in y is δy:

y + δy = u + δu

v + δv

δy = u + δu

v + δv
− u

v

= v(u + δu) − u(v + δv)

v(v + δv)

= vδu − uδv

v(v + δv)
.

Dividing throughout by δx we have

δy

δx
=

v
δu

δx
− u

δv

δx
v(v + δv)

.
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As δx → 0, δu, δv and δy also tend towards zero, and the limiting conditions are

dy

dx
= lim

δx→0

δy

δx

v
du

dx
= lim

δx→0
v
δu

δx

u
dv

dx
= lim

δx→0
u

δv

δx
v2 = lim

δx→0
v(v + δv)

therefore,

dy

dx
=

v
du

dx
− u

dv

dx
v2

.

To illustrate this, let’s differentiate y, given

y = x3 + 2x2 + 3x + 6

x2 + 3
.

Substitute u = x3 + 2x2 + 3x + 6 and v = x2 + 3, then

du

dx
= 3x2 + 4x + 3

dv

dx
= 2x

dy

dx
= (x2 + 3)(3x2 + 4x + 3) − (x3 + 2x2 + 3x + 6)(2x)

(x2 + 3)2

= (3x4 + 4x3 + 3x2 + 9x2 + 12x + 9) − (2x4 + 4x3 + 6x2 + 12x)

x4 + 6x2 + 9

= x4 + 6x2 + 9

x4 + 6x2 + 9
= 1

which is not a surprising result when one sees that the original function has the factors

y = (x2 + 3)(x + 2)

x2 + 3
= x + 2

whose derivative is 1. Figure15.8 shows a graph of y = (x2 + 3)(x + 2)/(x2 + 3)
and its derivative y = 1.
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Fig. 15.8 Graph of y =
(x2 + 3)(x + 2)/(x2 + 3)
and its derivative, dy

dx = 1
(dashed)
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15.7 Differentiating Implicit Functions

Functions conveniently fall into two types: explicit and implicit. An explicit function,
describes a function in terms of its independent variable(s), such as

y = a sin x + b cos x

where the value of y is determined by the values of a, b and x . On the other hand,
an implicit function, such as

x2 + y2 = 25

combines the function’s name with its definition. In this case, it is easy to untangle
the explicit form:

y =
√
25 − x2.

So far, we have only considered differentiating explicit functions, so now let’s exam-
ine how to differentiate implicit functions. Let’s begin with a simple explicit function
and differentiate it as it is converted into its implicit form.

Let

y = 2x2 + 3x + 4

then

dy

dx
= 4x + 3.

Now let’s start the conversion into the implicit form by bringing the constant 4 over
to the left-hand side:

y − 4 = 2x2 + 3x
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differentiating both sides:

dy

dx
= 4x + 3.

Bringing 4 and 3x across to the left-hand side:

y − 3x − 4 = 2x2

differentiating both sides:

dy

dx
− 3 = 4x

dy

dx
= 4x + 3.

Finally, we have

y − 2x2 − 3x − 4 = 0

differentiating both sides:

dy

dx
− 4x − 3 = 0

dy

dx
= 4x + 3

which seems straight forward. The reason for working through this example is to
remind us that when y is differentiated we get dy/dx .

Let’s find dy/dx , given

y + sin x + 4x = 0.

Differentiating the individual terms:

y + sin x + 4x = 0

dy

dx
+ cos x + 4 = 0

dy

dx
= − cos x − 4.

y + x2 − cos x = 0

dy

dx
+ 2x + sin x = 0

dy

dx
= −2x − sin x .
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But how do we differentiate y2 + x2 = r2? Well, the important difference between
this implicit function and previous functions, is that it involves a function of a func-
tion. y is not only a function of x , but is squared, which means that we must employ
the chain rule described earlier:

dy

dx
= dy

du
· du
dx

.

Therefore, given

y2 + x2 = r2

2y
dy

dx
+ 2x = 0

dy

dx
= −2x

2y

= −x√
r2 − x2

.

This is readily confirmed by expressing the original function in its explicit form and
differentiating:

y = (r2 − x2)
1
2

which is a function of a function.
Let u = r2 − x2, then

du

dx
= −2x .

As y = u
1
2 , then

dy

du
= 1

2
u− 1

2

= 1

2u
1
2

= 1

2
√
r2 − x2

.

However,

dy

dx
= dy

du
· du
dx

= −2x

2
√
r2 − x2
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= −x√
r2 − x2

which agrees with the implicit differentiated form.
As another example, let’s find dy/dx , given

x2 − y2 + 4x = 6y.

Differentiating the individual terms:

2x − 2y
dy

dx
+ 4 = 6

dy

dx
.

Rearranging the terms, we have

2x + 4 = 6
dy

dx
+ 2y

dy

dx

= dy

dx
(6 + 2y)

dy

dx
= 2x + 4

6 + 2y
.

If, for example, we have to find the slope of x2 − y2 + 4x = 6y at the point (4, 3),
then we simply substitute x = 4 and y = 3 in dy/dx to obtain the answer 1.

Finally, let’s find dy/dx , given

xn + yn = an

nxn−1 + nyn−1 dy

dx
= 0

dy

dx
= −nxn−1

nyn−1

dy

dx
= − xn−1

yn−1
.

15.8 Differentiating Exponential and Logarithmic
Functions

15.8.1 Exponential Functions

Exponential functions have the form y = ax , where the independent variable is the
exponent. Such functions are used to describe various forms of growth or decay, from
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the compound interest law, to the rate at which a cup of tea cools down. One special
value of a is 2.718282 . . ., called e, where

e = lim
n→∞

(
1 + 1

n

)n

.

Raising e to the power x :

ex = lim
n→∞

(
1 + 1

n

)nx

which, using the Binomial Theorem, is

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · · .

If we let

y = ex

dy

dx
= 1 + x + x2

2! + x3

3! + x4

4! + · · ·
= ex .

which is itself. Figure15.9 shows graphs of y = ex and y = e−x .
Now let’s differentiate y = ax . We know from the rules of logarithms that

log xn = n log x

therefore, given

y = ax

Fig. 15.9 Graphs of y = ex

and y = e−x
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y = exy = e-x
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then

ln y = ln ax = x ln a

therefore

y = ex ln a

which means that

ax = ex ln a .

Consequently,

d

dx
(ax ) = d

dx
(ex ln a)

= ln a ex ln a

= ln a ax .

Similarly, it can be shown that

y = e−x ,
dy

dx
= −e−x

y = eax ,
dy

dx
= aeax

y = e−ax ,
dy

dx
= −ae−ax

y = ax ,
dy

dx
= ln a ax

y = a−x ,
dy

dx
= − ln a a−x .

The exponential antiderivatives are written:

∫
ex dx = ex + C

∫
e−x dx = −e−x + C

∫
eax dx = 1

a
eax + C

∫
e−ax dx = −1

a
eax + C
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∫
ax dx = 1

ln a
ax + C

∫
a−x dx = − 1

ln a
a−x + C.

15.8.2 Logarithmic Functions

Given a function of the form

y = ln x

then

x = ey .

Therefore,

dx

dy
= ey

= x

dy

dx
= 1

x
.

Thus

d

dx
(ln x) = 1

x
.

Figure15.10 shows the graph of y = ln x and its derivative y = 1/x . Conversely,

∫
1

x
dx = ln |x | + C.

When differentiating logarithms to a base a, we employ the conversion formula:

y = loga x

= (ln x)(loga e)

whose derivative is

dy

dx
= 1

x
loga e.
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Fig. 15.10 Graph of
y = ln x and its derivative,
dy
dx = 1

x (dashed)
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Fig. 15.11 Graph of
y = log10 x and its
derivative, dy

dx = 0.4343
x

(dashed)
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When a = 10, then log10 e = 0.4343 . . . and

d

dx
(log10 x) = 0.4343

x

Figure15.11 shows the graph of y = log10 x and its derivative y = 0.4343/x .

15.9 Differentiating Trigonometric Functions

We have only differentiated two trigonometric functions: sin x and cos x , so let’s add
tan x , csc x , sec x and cot x to the list, as well as their inverse forms.

15.9.1 Differentiating tan

Rather than return to first principles and start incrementing x by δx , we can employ
the rules for differentiating different function combinations andvarious trigonometric
identities. In the case of tan ax , this can be written as
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tan ax = sin ax

cos ax

and employ the quotient rule:

dy

dx
=

v
du

dx
− u

dv

dx
v2

.

Therefore, let u = sin ax and v = cos ax , and

dy

dx
= a cos ax cos ax + a sin ax sin ax

cos2 ax

= a(cos2 ax + sin2 ax)

cos2 ax

= a

cos2 ax
= a sec2 ax

= a(1 + tan2 ax).

Figure15.12 shows the graph of y = tan x and its derivative y = 1 + tan2 x .
It follows that

∫
sec2 ax dx = 1

a
tan ax + C.

- 0
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-1

1

2

3

Fig. 15.12 Graph of y = tan x and its derivative, dy
dx = 1 + tan2 x (dashed)
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15.9.2 Differentiating csc

Using the quotient rule:

y = csc ax

= 1

sin ax
dy

dx
= 0 − a cos ax

sin2 ax

= −a cos ax

sin2 ax

= − a

sin ax
· cos ax
sin ax

= −a csc ax · cot ax .

Figure15.13 shows the graph of y = csc x and its derivative y = − csc x cot x .
It follows that

∫
csc ax · cot ax dx = −1

a
csc ax + C.

15.9.3 Differentiating sec

Using the quotient rule:

y = sec ax

= 1

cos ax

Fig. 15.13 Graph of
y = csc x and its derivative,
dy
dx = − csc x cot x (dashed)
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Fig. 15.14 Graph of
y = sec x and its derivative,
dy
dx = sec x tan x (dashed)
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dy

dx
= −(−a sin ax)

cos2 ax

= a sin ax

cos2 ax

= a

cos ax
· sin ax
cos ax

= a sec ax · tan ax .

Figure15.14 shows the graph of y = csc x and its derivative y = − csc x cot x .
It follows that

∫
sec ax · tan ax dx = 1

a
sec ax + C.

15.9.4 Differentiating cot

Using the quotient rule:

y = cot ax

= 1

tan ax
dy

dx
= −a sec2 ax

tan2 ax

= − a

cos2 ax
· cos

2 ax

sin2 ax
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Fig. 15.15 Graph of y = cot x and its derivative, dy
dx = −(1 + cot2 x) (dashed)

= − a

sin2 ax
= −a csc2 ax

= −a(1 + cot2 ax).

Figure15.15 shows the graph of y = cot x and its derivative y = −(1 + cot2 x).
It follows that

∫
csc2 ax dx = −1

a
cot at + C.

15.9.5 Differentiating arcsin, arccos and arctan

These inverse functions are solved using a clever strategy.
Let

x = sin y

then

y = arcsin x .
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Differentiating the first expression, we have

dx

dy
= cos y

dy

dx
= 1

cos y

and as sin2 y + cos2 y = 1, then

cos y =
√
1 − sin2 y =

√
1 − x2

and

d

dx
(arcsin x) = 1√

1 − x2
.

Using a similar technique, it can be shown that

d

dx
(arccos x) = − 1√

1 − x2

d

dx
(arctan x) = 1

1 + x2
.

It follows that
∫

dx√
1 − x2

= arcsin x + C
∫

dx

1 + x2
= arctan x + C.

15.9.6 Differentiating arccsc, arcsec and arccot

Let

y = arccscx

then

x = csc y

= 1

sin y
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dx

dy
= − cos y

sin2 y

dy

dx
= − sin2 y

cos y

= − 1

x2
x√

x2 − 1
d

dx
(arccscx) = − 1

x
√
x2 − 1

.

Similarly,

d

dx
(arcsecx) = 1

x
√
x2 − 1

d

dx
(arccotx) = − 1

x2 + 1
.

It follows:
∫

dx

x
√
x2 − 1

= arcsec|x | + C
∫

dx

x2 + 1
= −arccotx + C.

15.10 Differentiating Hyperbolic Functions

Trigonometric functions are useful for parametric, circular motion, whereas hyper-
bolic functions arise in equations for the absorption of light,mechanics and in integral
calculus. Figure15.16 shows graphs of the unit circle and a hyperbola whose respec-
tive equations are

Fig. 15.16 Graphs of the
unit circle x2 + y2 = 1 and
the hyperbola x2 − y2 = 1
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x2 + y2 = 1

x2 − y2 = 1

where the only difference between them is a sign. The parametric form for the
trigonometric, or circular functions and the hyperbolic functions are respectively:

sin2 θ + cos2 θ = 1

cosh2 x − sinh2 x = 1.

The three hyperbolic functions have the following definitions:

sinh x = ex − e−x

2

cosh x = ex + e−x

2

tanh x = sinh x

cosh x
= e2x − 1

e2x + 1

and their reciprocals are:

cosech x = 1

sinh x
= 2

ex − e−x

sech x = 1

cosh x
= 2

ex + e−x

coth x = 1

tanh x
= e2x + 1

e2x − 1
.

Other useful identities include:

sech 2x = 1 − tanh2 x

cosech 2 = coth2 x − 1.

The coordinates of P and Q in Fig. 15.16 are given by P(cos θ, sin θ) and Q(cosh x,
sinh x).

Table15.1 shows the names of the three hyperbolic functions, their reciprocals
and inverse forms. As these functions are based upon ex and e−x , they are relatively
easy to differentiate.
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Table 15.1 Hyperbolic
function names

Function Reciprocal Inverse
function

Inverse
reciprocal

sinh cosech arsinh arcsch

cosh sech arcosh arsech

tanh coth artanh arcoth

15.10.1 Differentiating sinh, cosh and tanh

Here are the rules for differentiating hyperbolic functions:

y dy/dx
sinh x cosh x
cosh x sinh x
tanh x sech2 x
cosech x − cosech x coth x
sech x − sech x tanh x
coth x − cosech2 x

and the inverse, hyperbolic functions:

y dy/dx

arsinh x
1√

1 + x2

arcosh x
1√

x2 − 1

artanh x
1

1 − x2

arcsch x − 1

x
√
1 + x2

arsech x − 1

x
√
1 − x2

arcoth x − 1

x2 − 1

Here are the rules for integrating hyperbolic functions:

f (x)
∫

f (x) dx
sinh x cosh x + C
cosh x sinh x + C
sech2 x tanh x + C
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and the inverse, hyperbolic functions:

f (x)
∫

f (x) dx

1√
1 + x2

arsinh x + C

1√
x2 − 1

arcosh x + C

1

1 − x2
artanh x + C.

15.11 Higher Derivatives

There are three parts to this section:Thefirst part showswhat happenswhen a function
is repeatedly differentiated; the second shows how these higher derivatives resolve
local minimum and maximum conditions; and the third section provides a physical
interpretation for these derivatives. Let’s begin by finding the higher derivatives of
simple polynomials.

15.12 Higher Derivatives of a Polynomial

We have previously seen that polynomials of the form

y = axr + bxs + cxt . . .

are differentiated as follows:

dy

dx
= raxr−1 + sbxs−1 + tcxt−1 . . . .

For example, given

y = 3x3 + 2x2 − 5x

then

dy

dx
= 9x2 + 4x − 5

which describes how the slope of the original function changes with x .
Figure15.17 shows the graphof y = 3x3 + 2x2 − 5x and its derivative y = 9x2 +

4x − 5, and we can see that when x = −1 there is a local maximum, where the
function reaches a value of 4, then begins a downward journey to 0, where the slope
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Fig. 15.17 Graph of
y = 3x3 + 2x2 − 5x and its
derivative
dy
dx = 9x2 + 4x − 5
(dashed)

-2 -1 0 1 2

-4

-2

2

4

is −5. Similarly, when x � 0.55, there is a point where the function reaches a local
minimum with a value of approximately −1.65. The slope is zero at both points,
which is reflected in the graph of the derivative.

Having differentiated the function once, there is nothing to prevent us differen-
tiating a second time, but first we require a way to annotate the process, which is
performed as follows. At a general level, let y be some function of x , then the first
derivative is

d

dx
(y).

The second derivative is found by differentiating the first derivative:

d

dx

(
dy

dx

)

and is written:

d2y

dx2
.

Similarly, the third derivative is

d3y

dx3

and the nth derivative:

dn y

dxn
.

When a function is expressed as f (x), its derivative is written f ′(x). The second
derivative is written f ′′(x), and so on for higher derivatives.
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Returning to the original function, the first and second derivatives are

dy

dx
= 9x2 + 4x − 5

d2y

dx2
= 18x + 4

and the third and fourth derivatives are

d3y

dx3
= 18

d4y

dx4
= 0.

Figure15.18 shows the original function and the first two derivatives. The graph of
the first derivative shows the slope of the original function, whereas the graph of
the second derivative shows the slope of the first derivative. These graphs help us
identify a local maximum and minimum. By inspection of Fig. 15.18, when the first
derivative equals zero, there is a local maximum or a local minimum. Algebraically,
this is when

dy

dx
= 0

9x2 + 4x − 5 = 0.

Solving this quadratic in x we have

x = −b ± √
b2 − 4ac

2a

Fig. 15.18 Graph of
y = 3x3 + 2x2 − 5x , its first
derivative
dy
dx = 9x2 + 4x − 5 (short
dashes) and its second

derivative d2 y
dx2

= 18x + 4
(long dashes)
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where a = 9, b = 4, c = −5:

x = −4 ± √
16 + 180

18
x1 = −1, x2 = 0.555

which confirms our earlier analysis. However, what we don’t know, without referring
to the graphs, whether it is a minimum, or a maximum.

15.13 Identifying a Local Maximum or Minimum

Figure15.19 shows a function containing a local maximum of 5 when x = −1. Note
that as the independent variable x , increases from −2 towards 0, the slope of the
graph changes from positive to negative, passing through zero at x = −1. This is
shown in the function’s first derivative, which is the straight line passing through the
points (−2, 6), (−1, 0) and (0, −6). A natural consequence of these conditions
implies that the slope of the first derivative must be negative:

d2y

dx2
= −ve.

Figure15.20 shows another function containing a local minimum of 5 when x =
−1. Note that as the independent variable x , increases from −2 towards 0, the slope
of the graph changes from negative to positive, passing through zero at x = −1.
This is shown in the function’s first derivative, which is the straight line passing
through the points (−2, −6), (−1, 0) and (0, 6). A natural consequence of these
conditions implies that the slope of the first derivative must be positive:

Fig. 15.19 A function
containing a local maximum,
and its first derivative
(dashed)
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Fig. 15.20 A function
containing a local minimum,
and its first derivative
(dashed)
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d2y

dx2
= +ve.

We can now apply this observation to the original function for the two values of x ,
x1 = −1, x2 = 0.555:

dy

dx
= 9x2 + 4x − 5

d2y

dx2
= 18x + 4

= 18 × (−1) = −18

= 18 × (0.555) = +10.

Which confirms that when x = −1 there is a local maximum, and when x = 0.555,
there is a local minimum, as shown in Fig. 15.17.

Now let’s find the local minimum and maximum for y, given

y = −3x3 + 9x .

The first derivative is

dy

dx
= −9x2 + 9

and second derivative

d2y

dx2
= −18x
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Fig. 15.21 Graph of y = −3x3 + 9x , its first derivative y = −9x2 + 9 (short dashes) and its
second derivative y = −18x (long dashes)

as shown in Fig. 15.21. For a local maximum or minimum, the first derivative equals
zero:

−9x2 + 9 = 0

which implies that x = ±1.
The sign of the second derivative determines whether there is a local minimum

or maximum.

d2y

dx2
= −18x

= −18 × (−1) = +ve

= −18 × (+1) = −ve

therefore, when x = −1 there is a local minimum, and when x = +1 there is a local
maximum, as confirmed by Fig. 15.21.

15.14 Partial Derivatives

Up to this point we have used functions with one independent variable, such as
y = f (x). However, we must be able to compute derivatives of functions with more
than one independent variable, such as y = f (u, v,w). The technique employed is to
assume that only one variable changes, whilst the other variables are held constant.
This means that a function can possess several derivatives – one for each independent
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variable. Such derivatives are called partial derivatives and employ a new symbol ∂ ,
which can be read as ‘partial dee’.

Given a function f (u, v,w), the three partial derivatives are defined as

∂ f

∂u
= lim

h→0

f (u + h, v,w) − f (u, v,w)

h
∂ f

∂v
= lim

h→0

f (u, v + h,w) − f (u, v,w)

h
∂ f

∂w
= lim

h→0

f (u, v,w + h) − f (u, v,w)

h
.

For example, a function for the volume of a cylinder is

V (r, h) = πr2h

where r is the radius, and h is the height. Say we wish to compute the function’s
partial derivative with respect to r . First, the partial derivative is written

∂V

∂r
.

Second, we hold h constant, whilst allowing r to change. Thismeans that the function
becomes

V (r, h) = kr2 (15.5)

where k = πh. Thus the partial derivative of (15.5) with respect to r is

∂V

∂r
= 2kr

= 2πhr.

Next, by holding r constant, and allowing h to change, we have

∂V

∂h
= πr2.

Sometimes, for purposes of clarification, the partial derivatives identify the constant
variable(s):

(
∂V

∂r

)

h

= 2πhr

(
∂V

∂h

)

r

= πr2.
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Partial differentiation is subject to the same rules for ordinary differentiation –we just
to have to remember which independent variable changes, and those held constant.
As with ordinary derivatives, we can compute higher-order partial derivatives.

As an example, let’s find the second-order partial derivatives of f , given

f (u, v) = u4 + 2u3v2 − 4v3.

The first partial derivatives are

∂ f

∂u
= 4u3 + 6u2v2

∂ f

∂v
= 4u3v − 12v2

and the second-order partial derivatives are

∂2 f

∂u2
= 12u2 + 12uv2

∂2 f

∂v2
= 4u3 − 24v.

Now let’s find the second-order partial derivatives of f , given

f (u, v) = sin(4u) cos(5v)

the first partial derivatives are

∂ f

∂u
= 4 cos(4u) cos(5v)

∂ f

∂v
= −5 sin(4u) sin(5v)

and the second-order partial derivatives are

∂2 f

∂u2
= −16 sin(4u) cos(5v)

∂2 f

∂v2
= −25 sin(4u) cos(5v).

In general, given f (u, v) = uv, then

∂ f

∂u
= v

∂ f

∂v
= u
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and the second-order partial derivatives are

∂2 f

∂u2
= 0

∂2 f

∂v2
= 0.

Similarly, given f (u, v) = u/v, then

∂ f

∂u
= 1

v
∂ f

∂v
= − u

v2

and the second-order partial derivatives are

∂2 f

∂u2
= 0

∂2 f

∂v2
= 2u

v3
.

Finally, given f (u, v) = uv, then

∂ f

∂u
= vuv−1

whereas, ∂ f/∂v requires some explaining. First, given

f (u, v) = uv

taking natural logs of both sides, we have

ln f (u, v) = v ln u

and

f (u, v) = ev ln u .

Therefore,

∂ f

∂v
= ev ln u ln u

= uv ln u.
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The second-order partial derivatives are

∂2 f

∂u2
= v(v − 1)uv−2

∂2 f

∂v2
= uv ln2 u.

15.14.1 Visualising Partial Derivatives

Functions of the form y = f (x) are represented by a 2D graph, and the function’s
derivative f ′(x) represents the graph’s slope at any point x . Functions of the form
z = f (x, y) can be represented by a 3D surface, like the one shown in Fig. 15.22,
which is z(x, y) = 2.5x2 − 2.5y2. The two partial derivatives are

∂z

∂x
= 8x

∂z

∂y
= −4y

Fig. 15.22 Surface of
z = 2.5x2 − 2.5y2 using a
right-handed axial system
with a vertical z-axis
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Fig. 15.23 ∂z
∂x describes the

slopes of these contour lines

where ∂z/∂x is the slope of the surface in the x-direction, as shown in Fig. 15.23,
and ∂z/∂y is the slope of the surface in the y-direction, as shown in Fig. 15.24.

The second-order partial derivatives are

∂2z

∂x2
= 8 = +ve

∂2z

∂y2
= −4 = −ve.

As ∂2z/∂x2 is positive, there is a local minimum in the x-direction, and as ∂2z/∂y2

is negative, there is a local maximum in the y-direction, as confirmed by Fig. 15.23.

15.14.2 Mixed Partial Derivatives

We have seen that, given a function of the form f (u, v), the partial derivatives ∂ f/∂u
and ∂ f/∂v provide the relative instantaneous changes in f and u, and f and v,
respectively, whilst the second independent variable remains fixed. However, nothing
prevents us from differentiating ∂ f/∂u with respect to v, whilst keeping u constant:

∂

∂v

(
∂ f

∂u

)
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Fig. 15.24 ∂z
∂y describes the

slopes of these contour lines

which is also written as

∂2 f

∂v∂u

and is a mixed partial derivative.
As an example, let’s find the mixed partial derivative of f , given

f (u, v) = u3v4.

Therefore,

∂ f

∂u
= 3u2v4

and

∂2 f

∂v∂u
= 12u2v3.

It should be no surprise that reversing the differentiation gives the same result. Let

f (u, v) = u3v4
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then

∂ f

∂v
= 4u3v3

and

∂2 f

∂u∂v
= 12u2v3.

Generally, for continuous functions, we can write

∂2 f

∂u∂v
= ∂2 f

∂v∂u
.

Let’s look at two examples. The formula for the volume of a cylinder is given
by V (r, h) = πr2h, where r and h are the cylinder’s radius and height, respectively.
The mixed partial derivative is computed as follows.

V (r, h) = πr2h

∂V

∂r
= 2πhr

∂2V

∂h∂r
= 2πr

or

V (r, h) = πr2h

∂V

∂h
= πr2

∂2V

∂r∂h
= 2πr.

Given

f (u, v) = sin(4u) cos(3v)

then

∂ f

∂u
= 4 cos(4u) cos(3v)

∂2 f

∂v∂u
= −12 cos(4u) sin(3v)
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or

∂ f

∂v
= −3 sin(4u) sin(3v)

∂2 f

∂u∂v
= −12 cos(4u) sin(3v).

15.15 Chain Rule

Earlier, we came across the chain rule for computing the derivatives of functions of
functions. For example, to compute the derivative of y = sin2 x we substitute u = x2,
then

y = u

dy

du
= cos u

= cos x2.

Next, we compute du/dx :

u = x2

du

dx
= 2x

and dy/dx is the product of the two derivatives using the chain rule:

dy

dx
= dy

du
· du
dx

= (cos x2)2x

= 2x cos x2.

But say we have a function where w is a function of two variables x and y, which in
turn, are a function of u and v. Then we have

w = f (x, y)

x = r(u, v)

y = s(u, v).
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With such a scenario, we have the following partial derivatives:

∂w

∂x
,

∂w

∂y
∂w

∂u
,

∂w

∂v
∂x

∂u
,

∂x

∂v
∂y

∂u
,

∂y

∂v
.

These are chained together as follows

∂w

∂u
= ∂w

∂x
· ∂x

∂u
+ ∂w

∂y
· ∂y

∂u
(15.6)

∂w

∂v
= ∂w

∂x
· ∂x

∂v
+ ∂w

∂y
· ∂y

∂v
. (15.7)

Here is an example of the chain rule. Find ∂w/∂u and ∂w/∂v, given

w = f (2x + 3y)

x = r(u2 + v2)

y = s(u2 − v2).

Therefore

∂w

∂x
= 2,

∂w

∂y
= 3,

∂x

∂u
= 2u,

∂x

∂v
= 2v,

∂y

∂u
= 2u,

∂y

∂v
= −2v,

and plugging these into (15.6) and (15.7) we have

∂w

∂u
= ∂w

∂x

∂x

∂u
+ ∂w

∂y

∂y

∂u

= 2 × 2u + 3 × 2u

= 10u

∂w

∂v
= ∂w

∂x

∂x

∂v
+ ∂w

∂y

∂y

∂v

= 2 × 2v + 3 × (−2v)

= −2v.
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Thus, when u = 2 and v = 1

∂w

∂u
= 20, and

∂w

∂v
= −2.

15.16 Total Derivative

Given a function with three independent variables, such as w = f (x, y, t), where
x = g(t) and y = h(t), there are three primary partial derivatives:

∂w

∂x
,

∂w

∂y
,

∂w

∂t
,

which show the differential change of w with x , y and t respectively. There are also
three derivatives:

dx

dt
,

dy

dt
,

dt

dt
,

where dt/dt = 1. The partial and ordinary derivatives can be combined to create the
total derivative which is written

dw

dt
= ∂w

∂x

dx

dt
+ ∂w

∂y

dy

dt
+ ∂w

∂t
.

dw/dt measures the instantaneous change of w relative to t , when all three indepen-
dent variables change.

Let’s find dw/dt , given

w = x2 + xy + y3 + t2

x = 2t

y = t − 1.

Therefore,

dx

dt
= 2

dy

dt
= 1

∂w

∂x
= 2x + y = 4t + t − 1 = 5t − 1

∂w

∂y
= x + 3y2 = 2t + 3(t − 1)2 = 3t2 − 4t + 3
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∂w

∂t
= 2t

dw

dt
= ∂w

∂x

dx

dt
+ ∂w

∂y

dy

dt
+ ∂w

∂t

= (5t − 1)2 + (3t2 − 4t + 3) + 2t = 3t2 + 8t + 1

and the total derivative equals

dw

dt
= 3t2 + 8t + 1

and when t = 1, dw/dt = 12.

15.17 Summary

This chapter has shown how limits provide a useful tool for computing a function’s
derivative. Basically, the function’s independent variable is disturbed by a very small
quantity, typically δx , which alters the function’s value. The quotient

f (x + δx) − f (x)

δx

is a measure of the function’s rate of change relative to its independent variable. By
making δx smaller and smaller towards zero, we converge towards a limiting value
called the function’s derivative. Unfortunately, not all functions possess a derivative,
therefore we can only work with functions that can be differentiated.

We have seen how to differentiate generic functions such as sums, products, quo-
tients and a function of a function, and we have also seen how to address explicit and
implicit forms. These techniques were then used to differentiate exponential, log-
arithmic, trigonometric and hyperbolic functions, which will be employed in later
chapters to solve various problems. Where relevant, integrals of certain functions
have been included to show the intimate relationship between derivatives and anti-
derivatives.

Hopefully, it is nowclear that differentiation is like an operator – in that it describes
how fast a function changes relative to its independent variable in the form of another
function.



Chapter 16
Calculus: Integration

16.1 Introduction

In this chapter I develop the idea that integration is the inverse of differentiation, and
examine standard algebraic strategies for integrating functions, where the derivative
is unknown; these include simple algebraic manipulation, trigonometric identities,
integration by parts, integration by substitution and integration using partial fractions.

16.2 Indefinite Integral

In the previous chapter we have seen that given a simple function, such as

y = sin x + 23

dy

dx
= cos x

and the constant term 23 disappears. Inverting the process, we begin with

dy = cos x dx

and integrating:

y =
∫

cos x dx

= sin x + C.

An integral of the form ∫
f (x) dx

© Springer-Verlag London Ltd. 2017
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is known as an indefinite integral; and as we don’t know whether the original function
contains a constant term, a constant C has to be included. Its value remains undeter-
mined unless we are told something about the original function. In this example, if
we are told that when x = π/2, y = 24, then

24 = sin π/2 + C

= 1 + C

C = 23.

16.3 Integration Techniques

16.3.1 Continuous Functions

Functions come in all sorts of shapes and sizes, which is why we have to be very
careful before they are differentiated or integrated. If a function contains any form of
discontinuity, then it cannot be differentiated or integrated. For example, the square-
wave function shown in Fig. 16.1 cannot be differentiated as it contains discontinu-
ities. Consequently, to be very precise, we identify an interval [a, b], over which a
function is analysed, and stipulate that it must be continuous over this interval. For
example, a and b define the upper and lower bounds of the interval such that

a ≤ x ≤ b

then we can say that for f (x) to be continuous

lim
h→0

f (x + h) = f (x).

Even this needs further clarification as h must not take x outside of the permitted
interval. So, from now on, we assume that all functions are continuous and can be
integrated without fear of singularities.

16.3.2 Difficult Functions

There are many functions that cannot be differentiated and represented by a finite
collection of elementary functions. For example, the derivative f ′(x) = sin x/x does
not exist, which precludes the possibility of its integration. Figure 16.2 shows this
function, and even though it is continuous, its derivative and integral can only be
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Fig. 16.1 A discontinuous
square-wave function

-1 0 1 2 3 4 5

-2

-1

1

2
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approximated. Similarly, the derivative f ′(x) = √
x sin x does not exist, and also

precludes the possibility of its integration. Figure 16.3 shows this continuous func-
tion. So now let’s examine how most functions have to be rearranged to secure their
integration.
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Fig. 16.4 The graphs of
y = sin2 x (dashed) and
y = 1

2 x − 1
4 sin 2x

-4 -3 -2 -1 0 1 2 3 4 5

-2

-1

1

2

3

16.3.3 Trigonometric Identities

Sometimes it is possible to simplify the integrand by substituting a trigonometric
identity. To illustrate this, let’s evaluate

∫
sin2 x dx ,

∫
cos2 x dx ,

∫
tan2 x dx and∫

sin 3x cos x dx .
The identity sin2 x = 1

2 (1 − cos 2x)converts sin2 x into a double-angle form:

∫
sin2 x dx = 1

2

∫
1 − cos 2x dx

= 1

2

∫
dx − 1

2

∫
cos 2x dx

= 1

2
x − 1

4
sin 2x + C.

Figure 16.4 shows the graphs of y = sin2 x and y = 1
2 x − 1

4 sin 2x .
The identity cos2 x = 1

2 (cos 2x + 1)converts cos2 x into a double-angle form:

∫
cos2 x dx = 1

2

∫
cos 2x + 1 dx

= 1

2

∫
cos 2x dx + 1

2

∫
dx

= 1

4
sin 2x + 1

2
x + C.

Figure 16.5 shows the graphs of y = cos2 x and y = 1
4 sin 2x + 1

2 x .
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Fig. 16.5 The graphs of
y = cos2 x (dashed) and
y = 1

4 sin 2x + 1
2 x
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Fig. 16.6 The graphs of
y = tan2 x (dashed) and
y = tan x − x
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The identity sec2 x = 1 + tan2 x , permits us to write

∫
tan2 x dx =

∫
sec2 x − 1 dx

=
∫

sec2 x dx −
∫

dx

= tan x − x + C.

Figure 16.6 shows the graphs of y = tan2 x and y = tan x − x .
Finally, to evaluate

∫
sin 3x cos x dx we use the identity

2 sin a cos b = sin(a + b) + sin(a − b)

which converts the integrand’s product into the sum and difference of two angles:

sin 3x cos x = 1

2
(sin 4x + sin 2x)

∫
sin 3x cos x dx = 1

2

∫
sin 4x + sin 2x dx
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Fig. 16.7 The graphs of
y = sin 3x cos x (dashed)
and y = − 1

8 cos 4x − 1
4

cos 2x
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= 1

2

∫
sin 4x dx + 1

2

∫
sin 2x dx

= −1

8
cos 4x − 1

4
cos 2x + C.

Figure 16.7 shows the graphs of y = sin 3x cos x and y = − 1
8 cos 4x − 1

4 cos 2x .

16.3.4 Exponent Notation

Radicals are best replaced by their equivalent exponent notation. For example, to
evaluate ∫

2
4
√
x
dx

we proceed as follows:
The constant 2 is moved outside the integral, and the integrand is converted into

an exponent form:

2
∫

1
4
√
x
dx = 2

∫
x− 1

4

= 2

[
x

3
4

3
4

]
+C

= 2

[
4

3
x

3
4

]
+C

= 8

3
x

3
4 + C.

Figure 16.8 shows the graphs of y = 2/ 4
√
x and y = 8x

3
4 /3.



16.3 Integration Techniques 437

Fig. 16.8 The graphs of
y = 2/ 4

√
x (dashed) and

y = 8x
3
4 /3

-1 0 1 2 3 4 5 6 7 8

-1

1

2

3

4

16.3.5 Completing the Square

Where possible, see if an integrand can be simplified by completing the square. For
example, to evaluate ∫

1

x2 − 4x + 8
dx

we proceed as follows:
We have already seen that

∫
1

1 + x2
dx = arctan x + C

and it’s not too difficult to prove that

∫
1

a2 + x2
dx = 1

a
arctan

x

a
+ C.

Therefore, if we can manipulate an integrand into this form, then the integral will
reduce to an arctan result. The following needs no manipulation:

∫
1

4 + x2
dx = 1

2
arctan

x

2
+ C.

However, the original integrand has x2 − 4x + 8 as the denominator, which is
resolved by completing the square:

x2 − 4x + 8 = 4 + (x − 2)2.
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Fig. 16.9 The graphs of
y = 1/(x2 − 4x + 8)

(dashed) and
y =(

arctan x−2
2

)
/2
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Fig. 16.10 The graphs of
y = 1/(x2 + 6x + 10)

(dashed) and
y = arctan(x + 3)
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Therefore,

∫
1

x2 − 4x + 8
dx =

∫
1

22 + (x − 2)2
dx

= 1

2
arctan

(
x − 2

2

)
+C.

Figure 16.9 shows the graphs of y = 1/(x2 − 4x + 8) and y =(
arctan x−2

2

)
/2.

To evaluate ∫
1

x2 + 6x + 10
dx .

we factorize the denominator:
∫

1

x2 + 6x + 10
dx =

∫
1

12 + (x + 3)2
dx

= arctan(x + 3) + C.

Figure 16.10 shows the graphs of y = 1/(x2 + 6x + 10) and y = arctan(x + 3).
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16.3.6 The Integrand Contains a Derivative

An integral of the form ∫
f (x)

f ′(x)
dx

is relatively easy to integrate. For example, let’s evaluate

∫
arctan x

1 + x2
dx .

Knowing that
d

dx
[arctan x] = 1

1 + x2

let u = arctan x , then
du

dx
= 1

1 + x2

and
∫

arctan x

1 + x2
dx =

∫
u du

= u2

2
+ C

= 1

2
(arctan x)2 + C.

Figure 16.11 shows the graphs of y = arctan x/(1 + x2) and y = 1
2 (arctan x)2.

An integral of the form ∫
f ′(x)
f (x)

dx

Fig. 16.11 The graphs of
y = arctan x/(1 + x2)

(dashed) and
y = 1

2 (arctan x)2

- 0

-1

1
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Fig. 16.12 The graphs of
y = cos x/ sin x (dashed)
and y = ln | sin x |
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is also relatively easy to integrate. For example, let’s evaluate

∫
cos x

sin x
dx .

Knowing that
d

dx
[sin x] = cos x

let u = sin x , then
du

dx
= cos x

and
∫

cos x

sin x
dx =

∫
1

u
du

= ln |u| + C

= ln | sin x | + C.

Figure 16.12 shows the graphs of y = cos x/ sin x and y = ln | sin x |.

16.3.7 Converting the Integrand into a Series of Fractions

Integration is often made easier by converting an integrand into a series of fractions.
For example, to integrate

∫
4x3 + x2 − 8 + 12x cos x

4x
dx
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Fig. 16.13 The graphs of
y = (4x3 + x2 − 8 +
12x cos x)/4x (dashed) and
y = x3/3 + x2/8 −
2 ln |x | + 3 sin x
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we divide the numerator by 4x :

∫
4x3 + x2 − 8 + 12x cos x

4x
dx =

∫
x2 dx +

∫
x

4
dx −

∫
2

x
dx +

∫
3 cos x dx

= x3

3
+ x2

8
− 2 ln |x | + 3 sin x + C.

Figure 16.13 shows the graphs of y = (4x3 + x2 − 8 + 12x cos x)/4x and y =
x3/3 + x2/8 − 2 ln |x | + 3 sin x .

16.3.8 Integration by Parts

Integration by parts is based upon the rule for differentiating function products where

d

dx
[uv] = u

dv

dx
+ v

du

dx

therefore,

uv =
∫

uv′ dx +
∫

vu′ dx

which rearranged, gives

∫
uv′ dx = uv −

∫
vu′ dx .

Thus, if an integrand contains a product of two functions, we can attempt to integrate
it by parts. For example, let’s evaluate
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∫
x sin x dx .

In this case, we try the following:

u = x and v′ = sin x

therefore
u′ = 1 and v = C1 − cos x .

Integrating by parts:

∫
uv′ dx = uv −

∫
vu′ dx

∫
x sin x dx = x(C1 − cos x) −

∫
(C1 − cos x)(1) dx

= C1x − x cos x − C1x + sin x + C

= −x cos x + sin x + C.

Figure 16.14 shows the graphs of y = x sin x and y = −x cos x + sin x .
Note the problems that arise if we make the wrong substitution:

u = sin x and v′ = x

therefore

u′ = cos x and v = x2

2
+ C1

Integrating by parts:

∫
uv′ dx = uv −

∫
vu′ dx

∫
x sin x dx = sin x

(
x2

2
+ C1

)
−

∫ (
x2

2
+ C1

)
cos x dx

which requires to be integrated by parts, and is even more difficult, which suggests
the substitution was not useful.

Now let’s evaluate ∫
x2 cos x dx .

In this case, we try the following:

u = x2 and v′ = cos x
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Fig. 16.14 The graphs of
y = x sin x (dashed) and
y = −x cos x + sin x

- 0

-2

2

therefore
u′ = 2x and v = sin x + C1.

Integrating by parts:

∫
uv′ dx = uv −

∫
vu′ dx

∫
x2 cos x dx = x2(sin x + C1) − 2

∫
(sin x + C1)(x) dx

= x2 sin x + C1x
2 − 2C1

∫
x dx − 2

∫
x sin x dx

= x2 sin x + C1x
2 − 2C1

(
x2

2
+ C2

)
−2

∫
x sin x dx

= x2 sin x − C3 − 2
∫

x sin x dx .

At this point we come across
∫
x sin x dx , which we have already solved:

∫
x2 cos x dx = x2 sin x − C3 − 2(−x cos x + sin x + C4)

= x2 sin x − C3 + 2x cos x − 2 sin x − C5

= x2 sin x + 2x cos x − 2 sin x + C

Figure 16.15 shows the graphs of y = x2 cos x and y = x2 sin x + 2x cos x − 2 sin x .
Now let’s evaluate ∫

x ln x dx .

In this case, we try the following:



444 16 Calculus: Integration

Fig. 16.15 The graphs
of y = x2 cos x (dashed)
and y = x2 sin x + 2x
cos x − 2 sin x

- 0

-2

2

Fig. 16.16 The graphs of
y = x ln x (dashed) and
y = 1

2 x
2 ln x − x2/4

-1 0 1 2 3 4

-2

2

4

6

u = ln x and v′ = x

therefore

u′ = 1

x
and v = 1

2
x2.

Integrating by parts:

∫
uv′ dx = uv −

∫
vu′ dx

∫
x ln x dx = 1

2
x2 ln x −

∫ (
1

2
x2

)
1

x
dx

= 1

2
x2 ln x − 1

2

∫
x dx

= 1

2
x2 ln x − x2

4
+ C.

Figure 16.16 shows the graphs of y = x ln x and y = 1
2 x

2 ln x − x2/4.
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Finally, let’s evaluate ∫ √
1 + x2 dx .

Although this integrand does not look as though it can be integrated by parts, if we
rewrite it as ∫ √

1 + x2(1) dx .

then we can use the formula.
Let

u =
√

1 + x2 and v′ = 1

therefore
u′ = x√

1 + x2
and v = x .

Integrating by parts:

∫
uv′ dx = uv −

∫
vu′ dx

∫ √
1 + x2 dx = x

√
1 + x2 −

∫
x2

√
1 + x2

dx .

Now we simplify the right-hand integrand:

∫ √
1 + x2 dx = x

√
1 + x2 −

∫
(1 + x2) − 1√

1 + x2
dx

= x
√

1 + x2 −
∫

1 + x2

√
1 + x2

dx +
∫

1√
1 + x2

dx

= x
√

1 + x2 −
∫ √

1 + x2 dx + arsinhx + C1.

Now we have the original integrand on the right-hand side, therefore

2
∫ √

1 + x2 dx = x
√

1 + x2 + arsinhx + C1

∫ √
1 + x2 dx = 1

2
x
√

1 + x2 + 1

2
arsinhx + C.

Figure 16.17 shows the graphs of y = √
1 + x2 and y = 1

2 x
√

1 + x2 + 1
2 arsinhx .
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Fig. 16.17 The graphs of
y = √

1 + x2 (dashed) and
y = 1

2 x
√

1 + x2 + 1
2 arsinhx

-4 -3 -2 -1 0 1 2 3 4
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1

2

3

16.3.9 Integration by Substitution

Integration by substitution is based upon the chain rule for differentiating a function
of a function, which states that if y is a function of u, which in turn is a function of x ,
then

dy

dx
= dy

du

du

dx
.

For example, let’s evaluate ∫
x2

√
x3 dx .

This is easily solved by rewriting the integrand:

∫
x2

√
x3 dx =

∫
x

7
2 dx

= 2

9
x

9
2 + C.

However, introducing a constant term within the square-root requires integration by
substitution. For example,

evaluate
∫

x2
√
x3 + 1 dx .

First, we let u = x3 + 1, then

du

dx
= 3x2 or dx = du

3x2
.

Substituting u and dx in the integrand gives
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Fig. 16.18 The graphs of
y = x2

√
x3 + 1 (dashed)

and y = 2
9 (x3 + 1)

3
2

-1 0 1 2

-1

1

2

∫
x2

√
x3 + 1 dx =

∫
x2√u

du

3x2

= 1

3

∫ √
u du

= 1

3

∫
u

1
2 du

= 1

3
· 2

3
u

3
2 + C

= 2

9
(x3 + 1)

3
2 + C.

Figure 16.18 shows the graphs of y = x2
√
x3 + 1 and y = 2

9 (x3 + 1)
3
2 .

Now let’s evaluate ∫
2 sin x · cos x dx .

Integrating by substitution we let u = sin x , then

du

dx
= cos x or dx = du

cos x
.

Substituting u and dx in the integrand gives

∫
2 sin x · cos x dx = 2

∫
u cos x

du

cos x

= 2
∫

u du

= u2 + C1

= sin2 x + C.
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Fig. 16.19 The graphs of
y = 2 sin x · cos x (dashed)
and y = sin2 x

- 0

-2

-1

1

2

Figure 16.19 shows the graphs of y = 2 sin x · cos x and y = sin2 x .
To evaluate ∫

2ecos 2x sin x · cos x dx .

we integrate by substitution, and let u = cos 2x , then

du

dx
= −2 sin 2x or dx = − du

2 sin 2x
.

Substituting a double-angle identity, u and du:

∫
2ecos 2x sin x · cos x dx = −

∫
eu sin 2x

du

2 sin 2x

= −1

2

∫
eu du

= −1

2
eu + C

= −1

2
ecos 2x + C.

Figure 16.20 shows the graphs of y = 2ecos 2x sin x · cos x and y = − 1
2e

cos 2x .
To evaluate ∫

cos x

(1 + sin x)3
dx .

we integrate by substitution, and let u = 1 + sin x , then

du

dx
= cos x or dx = du

cos x
.
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Fig. 16.20 The graphs of
y = 2ecos 2x sin x cos x
(broken line) and
y = − 1

2 e
cos 2x

- 0

-2

-1

1

2

Fig. 16.21 The graphs of
y = cos x/(1 + sin x)3

(broken line) and
y = −1/2(1 + sin x)2

-2 - 0 2

-4

-3

-2

-1

1

2

3

4

∫
cos x

(1 + sin x)3
dx =

∫
cos x

u3

du

cos x

=
∫

u−3 du

= −1

2
u−2 + C

= −1

2
(1 + sin x)−2 + C

= − 1

2(1 + sin x)2
+ C.

Figure 16.21 shows the graphs of y = cos x/(1 + sin x)3 and y = −1/2(1 + sin x)2.
To evaluate ∫

sin 2x dx .

we integrate by substitution, and let u = 2x , then
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Fig. 16.22 The graphs of
y = sin 2x (broken line) and
y = − 1

2 cos 2x

- 0

-2

-1

1

2

du

dx
= 2 or dx = du

2
.

∫
sin 2x dx = 1

2

∫
sin u du

= −1

2
cos u + C

= −1

2
cos 2x + C

Figure 16.22 shows the graphs of y = sin 2x and y = − 1
2 cos 2x .

16.3.10 Partial Fractions

Integration by partial fractions is used when an integrand’s denominator contains
a product that can be split into two fractions. For example, it should be possible to
convert ∫

3x + 4

(x + 1)(x + 2)
dx

into ∫
A

x + 1
dx +

∫
B

x + 2
dx

which individually, are easy to integrate. Let’s compute A and B:
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Fig. 16.23 The graphs of
y = (3x + 4)/((x + 1)

(x + 2)) (dashed) and
y = ln(x + 1) + 2 ln(x + 2)

-4 -2 0 2 4

-4

-2

2

4

3x + 4

(x + 1)(x + 2)
= A

x + 1
+ B

x + 2

3x + 4 = A(x + 2) + B(x + 1)

= Ax + 2A + Bx + B.

Equating constants and terms in x :

4 = 2A + B (16.1)

3 = A + B (16.2)

Subtracting (16.2) from (16.1), gives A = 1 and B = 2. Therefore,

∫
3x + 4

(x + 1)(x + 2)
dx =

∫
1

x + 1
dx +

∫
2

x + 2
dx

= ln(x + 1) + 2 ln(x + 2) + C.

Figure 16.23 shows the graphs of y = (3x + 4)/((x + 1)(x + 2)) and y = ln
(x + 1) + 2 ln(x + 2).

Now let’s evaluate ∫
5x − 7

(x − 1)(x − 2)
dx .

Integrating by partial fractions:

5x − 7

(x − 1)(x − 2)
= A

x − 1
+ B

x − 2

5x − 7 = A(x − 2) + B(x − 1)

= Ax + Bx − 2A − B.
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Fig. 16.24 The graphs of
y = (5x − 7)/((x − 1)

(x − 2)) (dashed) and y =
2 ln(x − 1) + 3 ln(x − 2)

-3 -2 -1 0 1 2 3 4 5 6
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Equating constants and terms in x :

−7 = −2A − B (16.3)

5 = A + B (16.4)

Subtracting (16.3) from (16.4), gives A = 2 and B = 3. Therefore,

∫
3x + 4

(x − 1)(x − 2)
dx =

∫
2

x − 1
dx +

∫
3

x − 2
dx

= 2 ln(x − 1) + 3 ln(x − 2) + C.

Figure 16.24 shows the graphs of y = (5x − 7)/((x − 1)(x − 2)) and
y = 2 ln(x − 1) + 3 ln(x − 2).

Finally, let’s evaluate ∫
6x2 + 5x − 2

x3 + x2 − 2x
dx

using partial fractions:

6x2 + 5x − 2

x3 + x2 − 2x
= A

x
+ B

x + 2
+ C

x − 1
6x2 + 5x − 2 = A(x + 2)(x − 1) + Bx(x − 1) + Cx(x + 2)

= Ax2 + Ax − 2A + Bx2 − Bx + Cx2 + 2Cx .

Equating constants, terms in x and x2:

−2 = −2A (16.5)

5 = A − B + 2C (16.6)

6 = A + B + C (16.7)
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Fig. 16.25 The graphs of
y = (6x2 + 5x − 2)/(x3 +
x2 − 2x) (broken line) and
y = ln x + 2 ln(x + 2) +
3 ln(x − 1)
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Manipulating (16.5)–(16.7): A = 1, B = 2 and C = 3, therefore,

∫
6x2 + 5x − 2

x3 + x2 − 2x
dx =

∫
1

x
dx +

∫
2

x + 2
dx +

∫
3

x − 1
dx

= ln x + 2 ln(x + 2) + 3 ln(x − 1) + C.

Figure 16.25 shows the graphs of y = (6x2 + 5x − 2)/(x3 + x2 − 2x) and y =
ln x + 2 ln(x + 2) + 3 ln(x − 1).

16.4 Area Under a Graph

The ability to calculate the area under a graph is one of the most important discoveries
of integral calculus. Prior to calculus, area was computed by dividing a zone into
very small strips and summing the individual areas. The accuracy of the result is
improved simply by making the strips smaller and smaller, taking the result towards
some limiting value. In this section, I show how integral calculus provides a way to
compute the area between a function’s graph and the x- and y-axis.

16.5 Calculating Areas

Before considering the relationship between area and integration, let’s see how area
is calculated using functions and simple geometry.

Figure 16.26 shows the graph of y = 1, where the area A of the shaded zone is

A = x, x > 0.

For example, when x = 4, A = 4, and when x = 10, A = 10. An interesting obser-
vation is that the original function is the derivative of A:
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Fig. 16.26 Area of the
shaded zone is A = x

y

x

y = 11

A = x

x

Fig. 16.27 Area of the
shaded zone is A = x2

y

x

y = 2x

A = x2

x

d A

dx
= 1 = y.

Figure 16.27 shows the graph of y = 2x . The area A of the shaded triangle is

A = 1

2
base × height

= 1

2
x × 2x

= x2.

Thus, when x = 4, A = 16. Once again, the original function is the derivative of A:

d A

dx
= 2x = y

which is no coincidence.
Finally, Fig. 16.28 shows a circle where x2 + y2 = r2, and the curve of the first

quadrant is described by the function
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Fig. 16.28 Graph of
y = √

r2 − x2
y

x

y= r2 x2

A2

x

A1

f(x)

rcos

rsin

r

y =
√
r2 − x2, 0 ≥ x ≥ r.

The total area of the shaded zones is the sum of the two parts A1 and A2. To simplify
the calculations the function is defined in terms of the angle θ , such that

x = r sin θ

and
y = r cos θ.

Therefore,

A1 = r2θ

2

A2 = 1

2
(r cos θ)(r sin θ) = r2

4
sin 2θ

A = A1 + A2

= r2

2

(
θ + sin 2θ

2

)
.

To show that the total area is related to the function’s derivative, let’s differentiate A
with respect to θ :

d A

dθ
= r2

2
(1 + cos 2θ) = r2 cos2 θ.
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But we want the derivative d A
dx , which requires the chain rule

d A

dx
= d A

dθ

dθ

dx

where
dx

dθ
= r cos θ

or
dθ

dx
= 1

r cos θ

therefore,
d A

dx
= r2 cos2 θ

r cos θ
= r cos θ = y

which is the equation for the quadrant.
Hopefully, these three examples provide strong evidence that the derivative of the

function for the area under a graph, equals the graph’s function:

d A

dx
= f (x)

which implies that

A =
∫

f (x) dx .

Now let’s prove this observation using Fig. 16.29, which shows a continuous
function y = f (x). Next, we define a function A(x) to represent the area under the
graph over the interval [a, x]. δA is the area increment between x and x + δx , and

δA ≈ f (x) · δx .

Fig. 16.29 Relationship
between y = f (x) and A(x)

y

x

y = f (x)

A(a)

x

A

x + xa
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Fig. 16.30 A(b) is the area
under the graph y = f (x),
0 ≥ x ≥ b

y

x

y = f(x)

A(b)

b

We can also reason that

δA = A(x + δx) − A(x) ≈ f (x) · δx

and the derivative d A
dx is the limiting condition:

d A

dx
= lim

δx→0

A(x + δx) − A(x)

δx
= lim

δx→0

f (x) · δx

δx
= f (x)

thus,
d A

dx
= f (x),

whose antiderivative is

A(x) =
∫

f (x) dx .

The function A(x) computes the area over the interval [a, b] and is represented by

A(x) =
∫ b

a
f (x) dx

which is called the integral or definite integral.
Let’s assume that A(b) is the area under the graph of f (x) over the interval [0, b],

as shown in Fig. 16.30, and is written

A(b) =
∫ b

0
f (x) dx .

Similarly, let A(a) be the area under the graph of f (x) over the interval [0, a], as
shown in Fig. 16.31, and is written
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Fig. 16.31 A(a) is the area
under the graph y = f (x),
0 ≥ x ≥ a

y

x

y = f (x)

A(a)

a

Fig. 16.32 A(b) − A(a) is
the area under the graph
y = f (x), a ≥ x ≥ b

y

x

y = f (x)

A(b)-A(a)

a b

A(a) =
∫ a

0
f (x) dx .

Figure 16.32 shows that the area of the shaded zone over the interval [a, b] is
calculated by

A = A(b) − A(a)

which is written

A =
∫ b

0
f (x) dx −

∫ a

0
f (x) dx

and is contracted to

A =
∫ b

a
f (x) dx . (16.8)

The fundamental theorem of calculus states that the definite integral

∫ b

a
f (x) dx = F(b) − F(a)

where
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F(a) =
∫

f (x) dx, x = a

F(b) =
∫

f (x) dx, x = b.

In order to compute the area beneath a graph of f (x) over the interval [a, b], we
first integrate the graph’s function

F(x) =
∫

f (x) dx

and then calculate the area, which is the difference

A = F(b) − F(a).

To illustrate how (16.8) is used in the context of the earlier three examples, let’s
calculate the area over the interval [1, 4] for y = 1, as shown in Fig. 16.33. We
begin with

A =
∫ 4

1
1 dx .

Next, we integrate the function, and transfer the interval bounds employing the sub-

stitution symbol

∣∣∣∣
4

1

, or square brackets

[ ]4

1

. Using

∣∣∣∣
4

1

, we have

A =
∣∣∣∣
4

1

x

= 4 − 1

= 3

or using

[ ]4

1

, we have

A =
[
x

]4

1

= 4 − 1

= 3.

I will continue with square brackets.
Now let’s calculate the area over the interval [1, 4] for y = 2x , as shown in

Fig. 16.34. We begin with

A =
∫ 4

1
2x dx .
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Fig. 16.33 Area under the
graph is

∫ 4
1 1 dx

y

x

y = 11

41

A =
∫ 4

1
1 dx

Fig. 16.34 Area under the
graph is

∫ 4
1 2x dx

y

x

y = 2x

41

A =
∫ 4

1
2x dx

Next, we integrate the function and evaluate the area

A =
[
x2

]4

1

= 16 − 1

= 15.

Finally, let’s calculate the area over the interval [0, r ] for y = √
r2 − x2, which

is the equation for a circle, as shown in Fig. 16.35. We begin with

A =
∫ r

0

√
r2 − x2 dx . (16.9)

Unfortunately, (16.9) contains a function of a function, which is resolved by substi-
tuting another independent variable. In this case, the geometry of the circle suggests

x = r sin θ
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Fig. 16.35 Area under the
graph is

∫ r
0

√
r2 − x2 dx

y

x

y= r2 x2

(rsin , rcos )

r

therefore, √
r2 − x2 = r cos θ

and
dx

dθ
= r cos θ. (16.10)

However, changing the independent variable requires changing the interval for the
integral. In this case, changing 0 ≥ x ≥ r into θ1 ≥ θ ≥ θ2:

When x = 0, r sin θ1 = 0, therefore θ1 = 0.
When x = r , r sin θ2 = r , therefore θ2 = π/2.
Thus, the new interval is [0, π/2].
Finally, the dx in (16.9) has to be changed into dθ , which using (16.10) makes

dx = r cos θ dθ.

Now we are in a position to rewrite the original integral using θ as the independent
variable:

A =
∫ π

2

0
(r cos θ)(r cos θ) dθ

= r2
∫ π

2

0
cos2 θ dθ

= r2

2

∫ π
2

0
1 + cos 2θ dθ

= r2

2

[
θ + 1

2
sin 2θ

] π
2

0
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= r2

2

[
π

2

]

= πr2

4

which makes the area of a full circle πr2.

16.6 Positive and Negative Areas

Area in the real world is always regarded as a positive quantity – no matter how it is
measured. In mathematics, however, area is often a signed quantity, and is determined
by the clockwise or anticlockwise direction of vertices. As we generally use a left-
handed Cartesian axial system in calculus, areas above the x-axis are positive, whilst
areas below the x-axis are negative. This can be illustrated by computing the area of
the positive and negative parts of a sine wave.

Figure 16.36 shows a sketch of a sine wave over one cycle, where the area above
the x-axis is labelled A1, and the area below the x-axis is labelled A2. These areas
are computed as follows.

A1 =
∫ π

0
sin x dx

=
[

− cos x

]π

0

=
[

1 + 1

]

= 2.

However, A2 gives a negative result:

Fig. 16.36 The two areas
associated with a sine wave

y

x

y = sin x

2
A1 =

∫ π

0
sinxdx

A2 =
∫ 2π

π

sinxdx



16.6 Positive and Negative Areas 463

Fig. 16.37 The accumulated
area of a sine wave

0

1

2

A2 =
∫ 2π

π

sin x dx

=
[

− cos x

]2π

π

=
[

−1 − 1

]

= −2.

This means that the area is zero over the bounds 0 to 2π .

A2 =
∫ 2π

0
sin x dx

=
[

− cos x

]2π

0

=
[

−1 + 1

]

= 0.

Consequently, one must be very careful using this technique for functions that are
negative in the interval under investigation. Figure 16.37 shows a sine wave over the
interval [0, π ] and its accumulated area.

16.7 Area Between Two Functions

Figure 16.38 shows the graphs of y = x2 and y = x3, with two areas labelled A1 and
A2. A1 is the area trapped between the two graphs over the interval [−1, 0] and A2

is the area trapped between the two graphs over the interval [0, 1]. These areas are



464 16 Calculus: Integration

Fig. 16.38 Two areas
between y = x2 and y = x3

-1 0 1

-1

1

A1

A2

y = x2 y = x2

y = x3

y = x3

calculated very easily: in the case of A1 we sum the individual areas under the two
graphs, remembering to reverse the sign for the area associated with y = x3. For A2

we subtract the individual areas under the two graphs.

A1 =
∫ 0

−1
x2 dx −

∫ 0

−1
x3 dx

=
[
x3

3

]0

−1

−
[
x4

4

]0

−1

= 1

3
+ 1

4

= 7

12
.

A2 =
∫ 1

0
x2 dx −

∫ 1

0
x3 dx

=
[
x3

3

]1

0

−
[
x4

4

]1

0

= 1

3
− 1

4

= 1

12
.

Note, that in both cases the calculation is the same, which implies that when we
employ

A =
∫ b

a

[
f (x) − g(x)

]
dx

A is always the area trapped between f (x) and g(x) over the interval [a, b].
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Fig. 16.39 The area
between y = sin x and
y = 0.5

0 1 2 3

1

A

(0.5236, 0.5) (2.618, 0.5)

y = sin x

y = 0.5

Let’s take another example, by computing the area A between y = sin x and the
line y = 0.5, as shown in Fig. 16.39. The horizontal line intersects the sine curve at
x = 30◦ and x = 150◦, marked in radians as 0.5236 and 2.618 respectively.

A =
∫ 150◦

30◦
sin x dx −

∫ 5π/6

π/6
0.5 dx

=
[

− cos x

]150◦

30◦
−1

2

[
x

]5π/6

π/6

=
[ √

3

2
+

√
3

2

]
−1

2

[
5π

6
− π

6

]

= √
3 − π

3
≈ 0.685.

16.8 Areas with the y-Axis

So far we have only calculated areas between a function and the x-axis. So let’s
compute the area between a function and the y-axis. Figure 16.40 shows the function
y = x2 over the interval [0, 4], where A1 is the area between the curve and the
x-axis, and A2 is the area between the curve and y-axis. The sum A1 + A2 must
equal 4 × 16 = 64, which is a useful control. Let’s compute A1.
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Fig. 16.40 The areas
between the x-axis and the
y-axis

4

16

A1

y = x2A2

A1 =
∫ 4

0
x2 dx

=
[
x3

3

]4

0

= 64

3
≈ 21.333

which means that A2 ≈ 42.666. To compute A2 we construct an integral relative to
dy with a corresponding interval. If y = x2 then x = y

1
2 , and the interval is [0, 16]:

A2 =
∫ 16

0
y

1
2 dy

=
[

2

3
y

3
2

]16

0

= 2

3
64

≈ 42.666.

16.9 Area with Parametric Functions

When working with functions of the form y = f (x), the area under its curve and the
x-axis over the interval [a, b] is

A =
∫ b

a
f (x) dx .

However, if the curve has a parametric form where
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x = fx (t) and y = fy(t)

then we can derive an equivalent integral as follows.

First: We need to establish equivalent limits [α, β] for t , such that

a = fx (α) and b = fy(β).

Second: Any point on the curve has corresponding Cartesian and parametric coordi-
nates:

x and fx (t)

y = f (x) and fy(t).

Third:

x = fx (t)

dx = f ′
x (t)dt

A =
∫ b

a
f (x) dx

=
∫ β

α

fy(t) f
′
x (t) dt

therefore

A =
∫ β

α

fy(t) f
′
x (t) dt. (16.11)

Let’s apply (16.11) using the parametric equations for a circle

x = −r cos t

y = r sin t.

as shown in Fig. 16.41. Remember that the Cartesian interval is [a, b] left to right,
and the polar interval [α, β], must also be left to right, which is why x = −r cos t .
Therefore,

f ′
x t = r sin t

fy(t) = r sin t

A =
∫ β

α

fy(t) f
′
x (t) dt

=
∫ π

0
r sin t · r sin(t) dt

= r2
∫ π

0
sin2 t dt
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Fig. 16.41 The parametric
functions for a circle

0

t

-rcost

rsint

x

y

= r2

2

∫ π

0
1 − cos(2t) dt

= r2

2

[
t + 1

2
sin(2t)

]π

0

= πr2

2

which makes the area of a full circle πr2.

16.10 The Riemann Sum

The German mathematician Bernhard Riemann (1826–1866) (pronounced
‘Reeman’) made major contributions to various areas of mathematics, including
integral calculus, where his name is associated with a formal method for summing
areas and volumes. Through the Riemann Sum, Riemann provides an elegant and
consistent notation for describing single, double and triple integrals when calculat-
ing area and volume. Let’s see how the Riemann sum explains why the area under a
curve is the function’s integral.

Fig. 16.42 The graph of
function f (x) over the
interval [a, b]

y

x

y = f (x)

x

h0 h1 h2 h3 h4 h5 h6 h7 h8

a bx x x x x x x
x0 x1 x2 x3 x4 x5 x6 x7 x8
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Figure 16.42 shows a function f (x) divided into eight equal sub-intervals where

Δx = b − a

8

and
a = x0 < x1 < x2 < · · · < x7 < x8 = b.

In order to compute the area under the curve over the interval [a, b], the interval
is divided into some large number of sub-intervals. In this case, eight, which is not
very large, but convenient to illustrate. Each sub-interval becomes a rectangle with a
common width Δx and a different height. The area of the first rectangular sub-interval
shown shaded, can be calculated in various ways. We can take the left-most height
x0 and form the product x0Δx , or we can take the right-most height x1 and form
the product x1Δx . On the other hand, we could take the mean of the two heights
(x0 + x1)/2 and form the product (x0 + x1)Δx/2. A solution that shows no bias
towards either left, right or centre, is to let x∗

i be anywhere in a specific sub-interval
Δxi , then the area of the rectangle associated with the sub-interval is f (x∗

i )Δxi , and
the sum of the rectangular areas is given by

A =
8∑

i=1

f (x∗
i )Δxi .

Dividing the interval into eight equal sub-intervals will not generate a very accurate
result for the area under the graph. But increasing it to eight-thousand or eight-
million, will take us towards some limiting value. Rather than specify some specific
large number, it is common practice to employ n, and let n tend towards infinity,
which is written

A =
n∑

i=1

f (x∗
i )Δxi . (16.12)

The right-hand side of (16.12) is called a Riemann sum, of which there are many.
For the above description, I have assumed that the sub-intervals are equal, which is
not a necessary requirement.

If the number of sub-intervals is n, then

Δx = b − a

n

and the definite integral is defined as

∫ b

a
f (x) dx = lim

n→∞

n∑
i=1

f (x∗
i )Δxi .
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16.11 Summary

In this chapter we have discovered the double role of integration. Integrating a func-
tion reveals another function, whose derivative is the function under investigation.
Simultaneously, integrating a function computes the area between the function’s
graph and the x- or y-axis. Although the concept of area in every-day life is an
unsigned quantity, within mathematics, and in particular calculus, area is a signed
quality, and one must be careful when making such calculations.



Chapter 17
Worked Examples

17.1 Introduction

This chapter examines a variety of problems encountered in computer graphics and
develops mathematical strategies for their solution. Such strategies may not be the
most efficient, however, they will provide the reader with a starting point, which may
be improved upon.

17.2 Area of Regular Polygon

Given a regular polygon with n sides, side length s, and radius r of the circumscribed
circle, its area can be computed by dividing it into n isosceles triangles and summing
their total area.

Figure17.1 shows one of the isosceles trianglesOAB formed by an edge s and the
centre O of the polygon. From Fig. 17.1 we observe that

s

2h
= tan

(π

n

)

therefore,

h = s

2
cot

(π

n

)

areaΔOAB = sh

2
= s2

4
cot

(π

n

)

but there are n such triangles, therefore,

area = ns2

4
cot

(π

n

)
.

© Springer-Verlag London Ltd. 2017
J. Vince,Mathematics for Computer Graphics, Undergraduate Topics
in Computer Science, DOI 10.1007/978-1-4471-7336-6_17

471



472 17 Worked Examples

Fig. 17.1 One of the
isosceles triangles forming a
regular polygon

h r

π

n

s

2
s

2
sA B

O

Table 17.1 Areas of first 6
regular polygons

n area

3 0.433

4 1

5 1.72

6 2.598

7 3.634

8 4.828

Table17.1 shows the area for the first six regular polygons with s = 1.

17.3 Area of Any Polygon

Figure17.2 shows a polygon with the following vertices in anticlockwise sequence,
and by inspection, the area is 9.5.

x 0 2 5 4 2
y 2 0 1 3 3

The area of a polygon is given by

area = 1

2

n−1∑
i=0

(xi yi+1(mod n) − yi xi+1(mod n))

= 1

2
(0 × 0 + 2 × 1 + 5 × 3 + 4 × 3 + 2 × 2 − 2 × 2

− 0 × 5 − 1 × 4 − 3 × 2 − 3 × 0)

area = 1

2
(33 − 14) = 9.5.
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Fig. 17.2 A five-sided
irregular polygon

X

Y

1

1

2

2

3

3

4

4

5

area = 9.5

17.4 Dihedral Angle of a Dodecahedron

The dodecahedron is amember of the five Platonic solids, which are constructed from
regular polygons. The dihedral angle is the internal angle between two touching faces.
Figure17.3 shows a dodecahedron with one of its pentagonal sides.

Figure17.4 illustrates the geometry required to fold two pentagonal sides through
the dihedral angle γ .

The point P has coordinates

P(x, y, z) = (sin 72◦, 0,− cos 72◦)

and for simplicity, we will use a unit vector to represent an edge, therefore

|v1| = |v2| = 1.

The coordinates of the rotated point P ′ are given by the following transform:

Fig. 17.3 A dodecahedron
with one of its pentagonal
sides

72◦

108◦ 108◦
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Fig. 17.4 The dihedral
angle γ between two
pentagonal sides

P

P

X

Y

Z

γ

v1

v2

⎡
⎣
x ′
y′
z′

⎤
⎦ =

⎡
⎣
cos γ − sin γ 0
sin γ cos γ 0

0 0 1

⎤
⎦

⎡
⎣

sin 72◦
0

− cos 72◦

⎤
⎦

where

x ′ = cos γ sin 72◦

y′ = sin γ sin 72◦

z′ = − cos 72◦.

But
v1 · v2 = |v1||v2| cos θ = xx ′ + yy′ + zz′

therefore,
cos θ = cos γ sin2 72◦ + cos2 72◦

but θ = 108◦ (internal angle of a regular pentagon), therefore,

cos γ = cos 108◦ − cos2 72◦

sin2 72◦ = cos 72◦

cos 72◦ − 1
.

The dihedral angle γ ≈ 116.56505◦.
A similar technique can be used to calculate the dihedral angles of the other

Platonic objects.

17.5 Vector Normal to a Triangle

Very often in computer graphics we have to calculate a vector normal to a plane
containing three points. The most effective tool to achieve this is the vector product.
For example, given three points P1(5, 0, 0), P2(0, 0, 5) and P3(10, 0, 5), we can
create two vectors a and b as follows:
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a =
⎡
⎣
x2 − x1
y2 − y1
z2 − z1

⎤
⎦ , b =

⎡
⎣
x3 − x1
y3 − y1
z3 − z1

⎤
⎦ ,

therefore,
a = −5i + 5k, b = 5i + 5k.

The normal vector n is given by

n = a × b =
∣∣∣∣∣∣
i j k

−5 0 5
5 0 5

∣∣∣∣∣∣
= 50j.

17.6 Area of a Triangle Using Vectors

The vector product is also useful in calculating the area of a triangle using two of
its sides as vectors. For example, using the same points and vectors in the previous
example:

area = 1

2
|a × b| = 1

2

∣∣∣∣∣∣
i j k

−5 0 5
5 0 5

∣∣∣∣∣∣
= 1

2
|50j| = 25.

17.7 General Form of the Line Equation from Two Points

The general form of the line equation is given by

ax + by + c = 0

and it may be required to compute this equation from two known points. For example,
Fig. 17.5 shows two points P1(x1, y1) and P2(x2, y2), from which it is possible to
determine P(x, y).

From Fig. 17.5

y2 − y1
x2 − x1

= y − y1
x − x1

(y2 − y1)(x − x1) = (x2 − x1)(y − y1)

(y2 − y1)x − (y2 − y1)x1 = (x2 − x1)y − (x2 − x1)y1
(y2 − y1)x + (x1 − x2)y = x1y2 − x2y1

therefore,
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Fig. 17.5 A line formed
from two points P1 and P2

P

X

Y

P1

P2

xx1 x2

y2

y1

y

a = y2 − y1 b = x1 − x2 c = −(x1y2 − x2y1).

If the two points are P1(1, 0) and P2(3, 4), then

(4 − 0)x + (1 − 3)y − (1 × 4 − 3 × 0) = 0

and
4x − 2y − 4 = 0.

17.8 Angle Between Two Straight Lines

Given two line equations it is possible to compute the angle between the lines using
the scalar product. For example, if the line equations are

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

their normal vectors are n = a1i + b1j and m = a2i + b2j respectively, therefore,

n · m = |n||m| cosα

and the angle between the lines α is given by

α = cos−1

(
n · m
|n||m|

)
.

Figure17.6 shows two lines with equations

2x + 2y − 4 = 0

2x + 4y − 4 = 0
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Fig. 17.6 Two lines
intersecting at an angle α

X

Y

1

1

2

2

3 4 5

−1

−2

0

α

therefore,

α = cos−1

(
2 × 2 + 2 × 4√
22 + 22

√
22 + 42

)
≈ 18.435◦.

17.9 Test if Three Points Lie on a Straight Line

Figure17.7 shows three points P1, P2 and P3 which lie on a straight line. There are
all sorts of ways to detect such a condition. For example, we could assume that the
points are the vertices of a triangle, and if the triangle’s area is zero, then the points
lie on a line. Here is another approach.

Given P1(x1, y1), P2(x2, y2), P3(x3, y3) and r = −−→
P1P2 and s = −−→

P1P3, the three
points lie on a straight line when s = λr where λ is a scalar.

Let the points be

P1(0, −2), P2(1, −1), P3(4, 2)

then
r = i + j, and s = 4i + 4j

and
s = 4r

therefore, the points lie on a straight line as confirmed by the diagram.
Another way is to compute

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
0 −2 1
1 −1 1
4 2 1

∣∣∣∣∣∣
= 0
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Fig. 17.7 Three points on a
common line

X

Y

1

1

2

2

3 4 5

−1

−2

0

P1

P2

P3

which is twice the area of ΔP1P2P3, and as this equals zero, the points must be
co-linear.

17.10 Position and Distance of the Nearest Point on a Line
to a Point

Suppose we have a line and some arbitrary point P , and we require to find the nearest
point on the line to P . Vector analysis provides a very elegant way to solve such
problems. Figure17.8 shows a line and a point P and the nearest point Q on the line.
The nature of the geometry is such that the line connecting P to Q is perpendicular
to the reference line, which is exploited in the analysis. The objective is to determine
the position vector q.

We start with the line equation

ax + by + c = 0

and declare Q(x, y) as the nearest point on the line to P .

Fig. 17.8 Q is the nearest
point on the line to P

X

Y

n

r

p

q

P

Q
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The normal to the line must be

n = ai + bj

and the position vector for Q is

q = x i + yj.

Therefore,
n · q = −c. (17.1)

r is parallel to n, therefore,
r = λn (17.2)

where λ is some scalar.
Taking the scalar product of (17.2)

n · r = λn · n (17.3)

but as

r = q − p (17.4)

n · r = n · q − n · p. (17.5)

Substituting (17.1) and (17.3) in (17.5) we obtain

λn · n = −c − n · p

therefore,

λ = − (n · p + c)

n · n .

From (17.4) we get
q = p + r. (17.6)

Substituting (17.2) in (17.6) we obtain the position vector for Q:

q = p + λn.

The distance PQ must be the magnitude of r:

PQ = |r| = λ|n|.

Let’s test this result with an example where the answer can be predicted.
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Fig. 17.9 Q is the nearest
point on the line to P

X

Y

n
P

Q

1

1

Figure17.9 shows a line whose equation is x + y − 1 = 0, and the associated
point is P(1, 1). By inspection, the nearest point is Q( 12 ,

1
2 ) and the distance

PQ ≈ 0.7071.
From the line equation

a = 1, b = 1, c = −1,

therefore,

λ = −2 − 1

2
= −1

2

and

xQ = xP + λxn = 1 − 1

2
× 1 = 1

2

yQ = yP + λyn = 1 − 1

2
× 1 = 1

2
.

The nearest point is Q( 12 ,
1
2 ) and the distance is

PQ = |λn| = 1

2
|i + j| ≈ 0.7071.

17.11 Position of a Point Reflected in a Line

Suppose that instead of finding the nearest point on a line we require the reflection
Q of P in the line. Once more, we set out to discover the position vector for Q.
Figure17.10 shows the vectors used in the analysis. We start with the line equation
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Fig. 17.10 The vectors
required to find the reflection
of P in the line

X

Y
n

r

p

q

P

Q

T

t
r

r+ r

ax + by + c = 0

and declare T (x, y) as the nearest point on the line to O with t = x i + yj as its
position vector.

From the line equation
n = ai + bj

therefore,
n · t = −c. (17.7)

We note that r + r′ is orthogonal to n, therefore,

n · (r + r′) = 0

and
n · r + n · r′ = 0. (17.8)

We also note that p − q is parallel to n, therefore,

p − q = r − r′ = λn

where λ is some scalar, therefore,

λ = r − r′

n
. (17.9)

From the figure we note that
r = p − t. (17.10)
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Substituting (17.7) in (17.10)

n · r = n · p − n · t = n · p + c. (17.11)

Substituting (17.8) and (17.11) in (17.9)

λ = n · r − n · r′

n · n = 2n · r
n · n

λ = 2(n · p + c)

n · n
and the position vector is

q = p − λn.

Let’s again test this formula with a scenario that can be predicted in advance.
Given the line equation

x + y − 1 = 0

and the point P(1, 1), the reflection must be the origin, as shown in Fig. 17.11.
Now let’s confirm this prediction. From the line equation

a = 1, b = 1, c = −1

and

xP = 1

yP = 1

λ = 2 × (2 − 1)

2
= 1

therefore,

Fig. 17.11 Q is the
reflection of P in the line

X

Y
P

Q

1

1
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xQ = xP − λxn = 1 − 1 × 1 = 0

yQ = yP − λyn = 1 − 1 × 1 = 0

and the reflection point is Q(0, 0).

17.12 Intersection of a Line and a Sphere

In ray tracing and ray casting it is necessary to detect whether a ray (line) intersects
objects within a scene. Such objects may be polygonal, constructed from patches,
or defined by equations. In this example, we explore the intersection between a line
and a sphere.

There are three possible scenarios: the line intersects, touches ormisses the sphere.
It just so happens, that the cosine rule proves very useful in setting up a geometric
condition that identifies the above scenarios, which are readily solved using vector
analysis.

Figure17.12 shows a sphere with radius r located at C . The line is represented
parametrically,which lends itself to this analysis. The objective is to discoverwhether
there are points in space that satisfy both the line equation and the sphere equation.
If there is a point, a position vector will locate it.

The position vector for C is

c = xci + ycj + zck

and the equation of the line is
p = t + λv

where λ is a scalar, and
|v| = 1. (17.12)

Fig. 17.12 The vectors
required to locate a possible
intersection

Z X

Y

P C

T

c

p

t

s

q

v

λv

r
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For an intersection at P

|q| = r

|q|2 = r2

|q|2 − r2 = 0.

Using the cosine rule

|q|2 = |λv|2 + |s|2 − 2|λv||s| cos θ (17.13)

|q|2 = λ2|v|2 + |s|2 − 2|v||s|λ cos θ. (17.14)

Substituting (17.12) in (17.14)

|q|2 = λ2 + |s|2 − 2|s|λ cos θ. (17.15)

Now let’s identify cos θ :
s · v = |s||v| cos θ

therefore,

cos θ = s · v
|s| . (17.16)

Substituting (17.16) in (17.15)

|q|2 = λ2 − 2s · vλ + |s|2

therefore,
|q|2 − r2 = λ2 − 2s · vλ + |s|2 − r2 = 0. (17.17)

Equation (17.17) is a quadratic in λ where

λ = s · v ±
√

(s · v)2 − |s|2 + r2 (17.18)

and
s = c − t.

The discriminant of (17.18) determines whether the line intersects, touches or misses
the sphere.

The position vector for P is given by

p = t + λv

where
λ = s · v ±

√
(s · v)2 − |s|2 + r2
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and
s = c − t.

For a miss condition
(s · v)2 − |s|2 + r2 < 0.

For a touch condition
(s · v)2 − |s|2 + r2 = 0.

For an intersect condition
(s · v)2 − |s|2 + r2 > 0.

To test these formulae we will create all three scenarios and show that the equations
are well behaved.

Figure17.13 shows a sphere with three lines represented by their direction vectors
λv1, λv2 and λv3. The sphere has radius r = 1 and is located atC with position vector

c = i + j

whilst the three lines L1, L2 and L3 miss, touch and intersect the sphere respectively.
The lines are of the form

p = t + λv

therefore,

p1 = t1 + λv1
p2 = t2 + λv2
p3 = t3 + λv3

Fig. 17.13 Three lines that
miss, touch and intersect the
sphere

L2L1 L3

λv1

λv2
λv3

c

t

C

r

T
P3

P2

P3

X

Y

Z
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where,

t1 = 2i, v1 = 1√
2
i + 1√

2
j

t2 = 2i, v2 = j

t3 = 2i, v3 = − 1√
2
i + 1√

2
j

and

c = i + j.

Let’s substitute the lines in the original equations:
L1:

s = −i + j

(s · v)2 − |s|2 + r2 = 0 − 2 + 1 = −1

the negative discriminant confirms a miss condition.

L2:

s = −i + j

(s · v)2 − |s|2 + r2 = 1 − 2 + 1 = 0

the zero discriminant confirms a touch condition, therefore λ = 1 and the touch point
is P2(2, 1, 0) which is correct.

L3:

s = −i + j

(s · v)2 − |s|2 + r2 = 2 − 2 + 1 = 1

the positive discriminant confirms an intersect condition, therefore,

λ = 2√
2

± 1 = 1 + √
2 or

√
2 − 1.

The intersection points are given by the two values of λ:
when λ = 1 + √

2
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xP = 2 +
(
1 + √

2
)(

− 1√
2

)
= 1 − 1√

2

yP = 0 +
(
1 + √

2
) 1√

2
= 1 + 1√

2
zP = 0.

when λ = √
2 − 1

xP = 1 +
(√

2 − 1
) (

− 1√
2

)
= 1 + 1√

2

yP = 0 +
(√

2 − 1
) 1√

2
= 1 − 1√

2
zP = 0.

The intersection points are

P3′

(
1 − 1√

2
, 1 + 1√

2
, 0

)

P3

(
1 + 1√

2
, 1 − 1√

2
, 0

)

which are correct.

17.13 Sphere Touching a Plane

A sphere will touch a plane if the perpendicular distance from its centre to the plane
equals its radius. The geometry describing this condition is identical to finding the
position and distance of the nearest point on a plane to a point.

Figure17.14 shows a sphere located at P with position vector p. A potential touch
condition occurs at Q, and the objective of the analysis is to discover its position
vector q. Given the following plane equation

ax + by + cz + d = 0

its surface normal is
n = ai + bj + ck.

The nearest point Q on the plane to a point P is given by the position vector

q = p + λn (17.19)
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Fig. 17.14 The vectors used
to detect when a sphere
touches a plane n

p

q
Q

P

X

Y

Z

where

λ = −n · p + d

n
· n

the distance
PQ = |λn|.

If P is the centre of the sphere with radius r , and position vector p, the touch point
is also given by (17.19) when

PQ = |λn| = r.

Let’s test the above equations with a simple example, as shown in Fig. 17.15,
which shows a sphere with radius r = 1 and centred at P(1, 1, 1).

The plane equation is
y − 2 = 0

therefore,
n = j

Fig. 17.15 A sphere
touching a plane

n

Q

P

X

Y

Z

r
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and
p = i + j + k

therefore,
λ = − (1 − 2) = 1

which equals the sphere’s radius and therefore the sphere and plane touch. The touch
point is

xq = 1 + 1 × 0 = 1

yq = 1 + 1 × 1 = 2

zq = 1 + 1 × 0 = 1

Q = (1, 2, 1).

17.14 Summary

Unfortunately, problem solving is not always obvious, and it is possible to waste
hours of analysis simply because the objective of the solution has not been well
formulated. Hopefully, though, the reader has discovered some of the strategies used
in solving the above geometric problems, and will be able to implement them in
other scenarios. At the end of the day, practice makes perfect!



Chapter 18
Conclusion

In the previous 17 chapters I have attempted to introduce you to some of the important
elements of mathematics employed in computer graphics. I knew from the start that
this would be a challenge for two reasons: one was knowing where to start, and the
other was where to stop. I assumed that most readers would already be interested
in computer animation, games or virtual reality, and so on, and knew something
about mathematics. So perhaps the chapters on numbers, algebra and trigonometry
provided a common starting point.

The chapters on coordinates, vectors, transforms, interpolation, curves and
patches, and analytic geometry are the real core of the book, but whilst revealing
these subjects I was always wondering when to stop. On the one hand, I could have
frustrated readers by stopping short of describing a subject completely, and on the
other hand lost readers by pursuing a subject to a level beyond the book’s objective.
Hopefully, I have managed to keep the right balance.

I do hope that the chapter on geometric algebra will tempt you to explore this
subject further. It’s not often that something completely new comes along and chal-
lenges thewaywe solve geometric problems. I also hope that the two new chapters on
calculus have provided a gentle introduction to this colossal branch of mathematics.

For many readers, what I have covered will be sufficient to enable them to design
programs and solve a wide range of problems. For others, the book will provide a
useful stepping stone to more advanced texts on mathematics. But what I really hope
that I have managed to show is that mathematics is not that difficult, especially when
it can be applied to an exciting subject such as computer graphics.

© Springer-Verlag London Ltd. 2017
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Appendix A
Limit of (sin θ)/θ

This appendix proves that

lim
θ→0

sin θ

θ
= 1, where θ is in radians.

From high-school mathematics we know that sin θ ≈ θ , for small values of θ . For
example:

sin 0.1 = 0.099833

sin 0.05 = 0.04998

sin 0.01 = 0.0099998

and

sin 0.1

0.1
= 0.99833

sin 0.05

0.05
= 0.99958

sin 0.01

0.01
= 0.99998.

Therefore, we can reason that in the limit, as θ → 0:

lim
θ→0

sin θ

θ
= 1.

FigureA.1 shows a graph of (sin θ)/θ , which confirms this result. However, this is
an observation, rather than a proof. So, let’s pursue a geometric line of reasoning.

From Fig.A.2 we see as the circle’s radius is unity, OA = OB = 1, and
AC = tan θ . As part of the strategy, we need to calculate the area of the trian-
gle �OAB, the sector OAB and the �OAC :

© Springer-Verlag London Ltd. 2017
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Fig. A.1 Graph of (sin θ)/θ
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Fig. A.2 Unit radius circle
with trigonometric ratios
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.

Area of sector OAB = θ
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.
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2
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From the geometry of a circle, we know that

sin θ

2
<

θ

2
<

tan θ
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sin θ < θ <
sin θ
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1 <
θ

sin θ
<

1

cos θ

1 >
sin θ

θ
> cos θ

and as θ → 0, cos θ → 1 and
sin θ

θ
→ 1. This holds, even for negative values of θ ,

because

sin(−θ)

−θ
= − sin θ

−θ
= sin θ

θ
.

Therefore,

lim
θ→0

sin θ

θ
= 1.



Appendix B
Integrating cosn θ

We start with ∫
cosn x dx =

∫
cos x cosn−1 x dx .

Let u = cosn−1 x and v′ = cos x , then

u′ = −(n − 1) cosn−2 x sin x

and
v = sin x .

Integrating by parts:

∫
uv′ dx = uv −

∫
v u′ dx + C

∫
cosn−1 x cos x dx = cosn−1 x sin x +

∫
sin x (n − 1) cosn−2 x sin x dx + C

= sin x cosn−1 x + (n − 1)
∫

sin2 x cosn−2 x dx + C

= sin x cosn−1 x + (n − 1)
∫

(1 − cos2 x) cosn−2 x dx + C

= sin x cosn−1 x + (n − 1)
∫

cosn−2 dx − (n − 1)
∫

cosn x dx + C

n
∫

cosn x dx = sin x cosn−1 x + (n − 1)
∫

cosn−2 dx + C

∫
cosn x dx = sin x cosn−1 x

n
+ n − 1

n

∫
cosn−2 dx + C

where n is an integer, �= 0.
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Similarly,

∫
sinn x dx = −cos x sinn−1 x

n
+ n − 1

n

∫
sinn−2 dx + C.

For example, ∫
cos3 x dx = sin x cos2 x

3
+ 2

3
sin x + C.
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