

Copyright	©	2015	by	McGraw-Hill	Education.	All	rights	reserved.	Except	as	permitted
under	the	United	States	Copyright	Act	of	1976,	no	part	of	this	publication	may	be
reproduced	or	distributed	in	any	form	or	by	any	means,	or	stored	in	a	database	or	retrieval
system,	without	the	prior	written	permission	of	the	publisher,	with	the	exception	that	the
program	listings	may	be	entered,	stored,	and	executed	in	a	computer	system,	but	they	may
not	be	reproduced	for	publication.

ISBN:	978-0-07-183521-3
MHID:							0-07-183521-0

The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN:	978-0-
07-183520-6,	MHID:	0-07-183520-2.

eBook	conversion	by	codeMantra
Version	1.0

All	trademarks	are	trademarks	of	their	respective	owners.	Rather	than	put	a	trademark
symbol	after	every	occurrence	of	a	trademarked	name,	we	use	names	in	an	editorial
fashion	only,	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement
of	the	trademark.	Where	such	designations	appear	in	this	book,	they	have	been	printed
with	initial	caps.

McGraw-Hill	Education	eBooks	are	available	at	special	quantity	discounts	to	use	as
premiums	and	sales	promotions	or	for	use	in	corporate	training	programs.	To	contact	a
representative,	please	visit	the	Contact	Us	page	at	www.mhprofessional.com.

Information	has	been	obtained	by	McGraw-Hill	Education	from	sources	believed	to	be
reliable.	However,	because	of	the	possibility	of	human	or	mechanical	error	by	our	sources,
McGraw-Hill	Education,	or	others,	McGraw-Hill	Education	does	not	guarantee	the
accuracy,	adequacy,	or	completeness	of	any	information	and	is	not	responsible	for	any
errors	or	omissions	or	the	results	obtained	from	the	use	of	such	information.

TERMS	OF	USE

This	is	a	copyrighted	work	and	McGraw-Hill	Education	and	its	licensors	reserve	all
rights	in	and	to	the	work.	Use	of	this	work	is	subject	to	these	terms.	Except	as	permitted
under	the	Copyright	Act	of	1976	and	the	right	to	store	and	retrieve	one	copy	of	the	work,
you	may	not	decompile,	disassemble,	reverse	engineer,	reproduce,	modify,	create
derivative	works	based	upon,	transmit,	distribute,	disseminate,	sell,	publish	or	sublicense
the	work	or	any	part	of	it	without	McGraw-Hill	Education’s	prior	consent.	You	may	use
the	work	for	your	own	noncommercial	and	personal	use;	any	other	use	of	the	work	is
strictly	prohibited.	Your	right	to	use	the	work	may	be	terminated	if	you	fail	to	comply	with
these	terms.

THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	EDUCATION	AND	ITS
LICENSORS	MAKE	NO	GUARANTEES	OR	WARRANTIES	AS	TO	THE
ACCURACY,	ADEQUACY	OR	COMPLETENESS	OF	OR	RESULTS	TO	BE
OBTAINED	FROM	USING	THE	WORK,	INCLUDING	ANY	INFORMATION	THAT
CAN	BE	ACCESSED	THROUGH	THE	WORK	VIA	HYPERLINK	OR	OTHERWISE,
AND	EXPRESSLY	DISCLAIM	ANY	WARRANTY,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	IMPLIED	WARRANTIES	OF

http://www.mhprofessional.com

MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR	PURPOSE.	McGraw-Hill
Education	and	its	licensors	do	not	warrant	or	guarantee	that	the	functions	contained	in	the
work	will	meet	your	requirements	or	that	its	operation	will	be	uninterrupted	or	error	free.
Neither	McGraw-Hill	Education	nor	its	licensors	shall	be	liable	to	you	or	anyone	else	for
any	inaccuracy,	error	or	omission,	regardless	of	cause,	in	the	work	or	for	any	damages
resulting	therefrom.	McGraw-Hill	Education	has	no	responsibility	for	the	content	of	any
information	accessed	through	the	work.	Under	no	circumstances	shall	McGraw-Hill
Education	and/or	its	licensors	be	liable	for	any	indirect,	incidental,	special,	punitive,
consequential	or	similar	damages	that	result	from	the	use	of	or	inability	to	use	the	work,
even	if	any	of	them	has	been	advised	of	the	possibility	of	such	damages.	This	limitation	of
liability	shall	apply	to	any	claim	or	cause	whatsoever	whether	such	claim	or	cause	arises
in	contract,	tort	or	otherwise.

This	book	is	dedicated	to	my	wonderful	parents,	Harry	and	Esther	Norris,
who	provided	the	love	and	support	to	enable	me	to	become	the	person	that	I	am	today.
I	would	also	like	to	dedicate	the	book	to	my	inspiring	high	school	physics	teacher,	Mr.
Bluhm,	who	instilled	in	me	a	love	for	science,	especially	physics,	that	still	burns	within

me.

About	the	Author
Donald	Norris	has	a	degree	in	electrical	engineering	and	an	MBA	with	a	specialization

in	production	management.	He	is	currently	teaching	both	undergraduate	and	graduate	IT
courses	at	Southern	New	Hampshire	University.	He	has	also	created	and	taught	several
robotics	courses	there.	He	has	over	30	years	of	teaching	experience	as	an	adjunct	professor
at	a	variety	of	colleges	and	universities.

Mr.	Norris	retired	from	civilian	government	service	with	the	U.S.	Navy,	where	he
specialized	in	acoustics	related	to	nuclear	submarines	and	associated	advanced	digital
signal	processing.	Since	then,	he	has	spent	more	than	20	years	as	a	professional	software
developer	using	C,	C#,	C++,	Python,	and	Java,	as	well	as	5	years	as	a	certified	IT	security
consultant.

Mr.	Norris	started	a	consultancy,	Norris	Embedded	Software	Solutions	(dba	NESS
LLC,	www.nessllc.net),	that	specializes	in	developing	application	solutions	using
microprocessors	and	microcontrollers.	He	likes	to	think	of	himself	as	a	perpetual	hobbyist
and	geek	and	is	always	trying	out	new	approaches	and	out-of-the-box	experiments.	He	is	a
licensed	private	pilot,	active	member	of	the	Civil	Air	Patrol,	photography	buff,	amateur
radio	operator,	and	avid	runner.

He	is	also	the	author	of	two	other	McGraw-Hill	Tab	books	Raspberry	Pi	Projects	for
the	Evil	Genius	and	Build	Your	Own	Quadcopter.

http://www.nessllc.net

Contents	at	a	Glance

1				Introduction	to	the	Internet	of	Things

2				Home	Temperature	Monitoring	System

3				Introduction	to	Object	Orientation	Programming	(OOP)	with	Java

4				Home	Weather	Station

5				Webcam	and	Raspberry	Pi	Camera	Projects

6				Internet-Enabled,	Arduino	Powered	Garage	Door	Opener

7				Arduino	Irrigation	Control	System

8				Arduino	Lighting	Controller

9				BeagleBone	Black	Message	Controller

10				BeagleBone	Black	with	Cloud	Service

11				Machine-to-Machine	(M2M)	Communications

Index

Contents

Acknowledgments
Introduction

1				Introduction	to	the	Internet	of	Things
Raspberry	Pi	Platform
Raspberry	Pi	GPIO
Establishing	a	Raspberry	Pi	Development	Station

Standalone	Setup
Headless	Setup

Setting	Up	the	Raspberry	Pi	Software
Setting	Up	the	Raspberry	Pi	OS	Using	an	Image	File
Updating	and	Upgrading	the	Raspbian	Image
Headless	Configuration
Headless	Operation	with	Graphics

The	LAMP	Project
Apache	Web	Server	and	the	PHP	Scripting	Language

MySQL	Database	Installation
Adding	a	New	User	to	a	MySQL	Database

Summary

2				Home	Temperature	Monitoring	System
Temperature	Sensor	Network

TMP36	Temperature	Sensor
Analog	to	Digital	Conversion

Serial	Peripheral	Interface
Connecting	and	Testing	the	MCP3008	with	the	Raspberry	Pi

Initial	Test
Multiple	Sensor	System
Multiple	Sensor	Software

Temperature	Database
Python	Database	Connection
Inserting	Data	into	a	MySQL	Database	Using	a	Program
Database	Access	Using	a	Web	Browser
Narrowing	the	Database	Reports

Flask
Summary

3				Introduction	to	Object	Orientation	Programming	(OOP)	with	Java
Java	Software	Development	Kit	(SDK)

The	Sensor	Abstract	Class
Child	Classes
Real-World	Controls
Threads
Java	Database	Connector
Using	the	Java	Connector	in	a	Program
Summary

4				Home	Weather	Station
Java	and	GPIO

GPIO	Pin	Labeling
GPIO	Pin	Expansion
Interrupts
Pi4J	Library
LED	Blink	Program
Weather	Station	Sensors

Sensor	Wiring	Connections
Weather	Station	Software
Java	Software

Sensor	Classes
Thermostatic	Application
Setting	the	Thermostat	Remotely

Database	Classes
Remote	Access	to	the	HWS	Database
Summary

5				Webcam	and	Raspberry	Pi	Camera	Projects
Conventional	Webcam
Motion	Software	Package
Motion	Features
Motion	Setup
Webcam	Viewing
Raspberry	Pi	Camera
Raspberry	Pi	Camera	Software
Using	Python	with	the	Raspberry	Pi	Camera
Remote	Raspberry	Pi	Camera	Viewing
Raspberry	Pi	Camera	with	Motion	Software
Summary

6				Internet-Enabled,	Arduino	Powered	Garage	Door	Opener
Arduino	Hardware

Arduino	Uno	Development	Board
Ethernet	Shield	Board

Arduino	Uno	Software

Testing	the	Ethernet	Connection
Simplified	Garage	Door	Opener

Actual	Garage	Door	Opener
Modified	LED	Program	to	Open	Garage	Door

Visual	Studio	2012	IDE
VS2012	LED	Blink	Program
Enhanced	Garage	Door	Project
Testing	the	Enhanced	Garage	Door	Opener
Summary

7				Arduino	Irrigation	Control	System
Irrigation	System	Design
Irrigation	Control	Program
Irrigation	System	Physical	Installation
Operating	the	New	Irrigation	System
Moisture	Sensing	Subsystem

XBee	Technology
Soil	Moisture	Sensor

Actual	System	Operation
Enhancements
Summary

8				Arduino	Lighting	Controller
System	Design
Controller	Node
Ethernet	Shield
Controller	Node	Case	and	Mounting	Arrangement
XBee	Receiver	Node
PowerSwitch	Tail	II
System	Software

Controller	Node	Program
XBee	Receiver	Node	1	Program
XBee	Receiver	Node	2	Program

Operational	Test
Enhancements
Summary

9				BeagleBone	Black	Message	Controller
Beagle	Boards
BeagleBone	Black

Connect	to	and	Operate	the	BBB
Downloading,	Installing,	and	Booting	a	New	Linux	Distribution
GPIO	Pins
Setting	Up	the	LCD	Display

LCD	Operational	Test
Message	Controller	Software
Download	and	Install	the	Flask	Package
Main	Application

HTML	Code
Test	Results
Summary

10				BeagleBone	Black	with	Cloud	Service
Temperature	Sensor
Adafruit_BBIO	Library
Initial	Test	Program
Xively	Cloud	Service

Xively	Developer’s	Account
BBB	to	Xively	Python	Program
Xively	Website	with	an	Active	Datastream
Adding	Additional	Data	Channels

Additional	TMP36	Sensors
Expanded	xively-temp	Program

Configuring	Angstrom	to	Auto	Start	the	Application
System	Case
Summary

11				Machine-to-Machine	(M2M)	Communications
Paho	and	Eclipse.org

MQTT
Quality	of	Service	(QoS)
Wills
Reconnecting
BBB	MQTT	Publisher	Client
Adding	MQTT	Features	to	the	Application
MQTT	Brokers
MQTT	Dashboard

Raspberry	Pi	Subscriber	Client
MQTT	Two-Phase	Thermostat
Summary

Index

Acknowledgments
Project	books	such	as	this	one	are	never	created	in	a	vacuum.	They	are	a	product	of	the

author’s	insight,	creativeness,	and	most	important,	an	integration	of	the	vast	resources
available	in	the	open-source	community.	I	have	tried	to	be	true	to	the	spirit	of	open	source
and	acknowledge	all	the	fine	contributions	to	the	technology	that	I	have	incorporated	into
this	book.	I	humbly	apologize	if	I’ve	missed	someone’s	contribution.

I	also	wish	to	acknowledge	the	fine	support	and	encouragement	that	I	have	received
and	continue	to	receive	from	my	colleagues	at	Southern	New	Hampshire	University.	This
book’s	content	is	also	presented	in	a	new	undergraduate	IT	course,	which	reflects	SNHU’s
innovative	spirit.

Introduction
I	suppose	the	genesis	of	this	book	was	from	long-term	interest	in	connecting	computers

to	the	Internet.	Back	in	the	early	1990s,	I	experimented	with	a	variety	of	single-board
computers	that	would	connect,	in	a	fashion,	to	the	Internet	and	serve	up	relatively	simple
web	pages.	They	didn’t	have	the	sophistication	or	capabilities	of	today’s	single-board
systems	exemplified	by	the	Raspberry	Pi	or	the	BeagleBone	Black	boards.	But	they
worked	and	provided	useful	platforms	to	experiment	using	simple	computing	devices	in
lieu	of	full-scale	PC-based	servers	or	desktop	clients.	Roll	forward	almost	twenty	years
and	there	are	now	quite	a	few	highly	capable	and	functional	systems,	which	can	easily
fulfill	the	promise	of	the	“Internet	of	Things,”	or	IoT	for	short.	I	describe	the	IoT	in	the
first	chapter	in	yet	another	attempt	at	defining	a	somewhat	nebulous	phrase,	which	truly
means	different	things	to	different	people.	I	also	took	a	somewhat	different	approach	with
this	IoT	book	in	that	I	used	three	separate	platforms	to	implement	the	various
demonstration	projects.	My	initial	thought	was	to	demonstrate	how	one	platform	could
have	strengths	in	one	area	while	another	would	be	better	suited	to	another	area.	However,
what	I	found	was	that	the	platforms	had	much	more	in	common	than	they	were	different.
In	fact,	the	Raspberry	Pi	and	the	BeagleBone	Black	boards	are	just	about	identical	from	a
software	prospective.	Let	me	now	present	a	glimpse	into	what	awaits	you	in	this	book.

In	Chapter	1,	I	present	a	high-level	view	of	what	constitutes	the	IoT.	I	also	introduce
the	Raspberry	Pi	(Pi)	board,	which	is	the	first	one	of	the	three	development	platforms	used
in	the	book’s	projects.	The	LAMP	framework	is	also	introduced,	which	allows	you	to
create	a	comprehensive	data	acquisition	system	that	can	not	only	take	sensor
measurements,	but	allows	them	to	be	stored	in	a	relational	database	and	later	makes	that
data	available	via	a	web	interface.

I	show	you	how	to	build	and	remotely	access	a	home	temperature	measurement
system	in	Chapter	2.	This	system	uses	the	LAMP	framework,	which	was	introduced	in
Chapter	1,	as	its	basis.	Analog-to-digital	conversion	appropriate	for	the	Pi	is	also
discussed	and	demonstrated.	A	program	written	with	Python	controls	the	system	to	help
simplify	this	project.	Again,	all	the	temperature	system	data	is	available	via	a	web	page.

As	a	computer	science/information	technology	instructor,	I	have	found	that	many	of
my	beginning	students	really	do	not	have	a	good	understanding	of	the	nature	of	OO	and
why	they	should	even	have	to	learn	it.	Chapter	3	contains	an	introduction	to	object-
oriented	(OO)	programming	using	the	Java	language,	which	should	help	you	understand
the	program	presented	in	Chapter	4.	This	chapter’s	content	will	also	help	you	gain	more
insight	into	what	makes	up	OO	and	how	to	properly	use	it.

Chapter	4	explores	the	principles	and	concepts	discussed	in	the	previous	chapter,	and
applies	them	in	the	construction	and	operation	of	a	home	weather	station,	which	uses	the
Pi	as	a	controller.	The	Pi	also	is	programmed	using	the	Java	language,	which	was	just
recently	“ported”	over	to	the	Pi	by	the	software	developers	at	Oracle.	The	latest	software
Linux	Wheezy	distributions,	which	run	on	the	Pi,	all	contain	a	fully	functional	Java
runtime.	I	also	discuss	how	to	program	the	general-purpose	input/output	(GPIO)	pins	to
implement	the	weather	station	interface.	Programming	this	interface	is	only	made	possible

by	the	use	of	a	very	clever	Java	library	named	Pi4J.

Chapter	5	covers	three	projects	involving	a	webcam	and	the	Pi	camera.	The	purpose
of	these	projects	is	to	demonstrate	how	to	implement	remote	video	viewing	using	the	Pi	as
a	controller.	The	first	project	uses	a	generic	USB	webcam	along	with	a	comprehensive
Linux	software	suite	named	Motion.	The	Motion	software	package	provides	for	literally	a
plug-and-play	situation	where	the	webcam	video	can	be	viewed	in	real	time	via	a	standard
web	browser	in	a	matter	of	a	few	minutes;	no	soldering	or	construction	required.	The
second	chapter	project	uses	the	Raspberry	Pi	camera	accessory	with	its	standard	driver
software	to	again	implement	a	remote	video	viewer.	The	last	project	in	this	series	again
uses	the	Pi	camera,	but	this	time	I	use	the	Motion	software	in	lieu	of	the	standard	driver
software.	This	demonstrates	Motion’s	flexibility	and	capability	to	interface	to	a	variety	of
video	devices.

The	next	chapter	introduces	the	Arduino	board,	which	is	the	next	development
platform	used	in	this	book.	I	briefly	discuss	the	Arduino	board	features,	as	I	realize	that
most	of	my	readers	are	already	very	familiar	with	its	operation	and	probably	have	one	or
two	in	their	workshop.	This	chapter’s	demonstration	project	is	a	garage	door	opener,
which	may	be	actuated	via	a	web	browser.	I	also	show	you	how	to	use	a	smartphone	to
control	the	garage	door.	In	addition,	some	security	in	the	form	of	a	password	is	added	to
this	project	as	you	probably	don’t	want	strangers	operating	your	garage	door.

Chapter	7	covers	an	Arduino-controlled	home	irrigation	system.	This	system	builds
on	some	of	the	concepts	discussed	in	Chapter	6	for	the	garage	door	opener	and	also	shows
you	how	to	incorporate	a	wireless	sensor	into	the	overall	control	scheme.	This	system
allows	a	homeowner	to	remotely	activate	a	specific	irrigation	zone	using	only	a	web
browser.	It	also	further	expands	the	homeowner’s	options	by	reporting	the	current	soil
moisture	content	via	a	web	page	so	that	the	user	can	make	a	decision	on	whether	or	not	to
turn	on	an	irrigation	zone.

Chapter	8	focuses	on	both	remote	activation	of	lights	or	other	similar	devices	and	the
capability	of	locating	these	controlled	devices	anywhere	in	the	home	without	using	wires.
Arduino	boards	are	used	in	multiple	locations	for	this	project.	Some	boards	control
wireless	XBee	nodes,	which	allow	for	the	flexible	placement	of	lights	within	the	home.
Another	Arduino	board	implements	the	main	controller,	which	connects	to	the	Internet	to
enable	remote	light	activation	via	a	web	page.	There	is	also	a	four-channel	key	fob	RF
device	used	in	this	system	that	allows	a	homeowner	to	quickly	and	directly	activate	up	to
four	lights	without	the	need	to	use	the	Internet.

I	next	introduce	the	BeagleBone	Black	(BBB)	boards	in	Chapter	9.	This	is	the	third
and	last	development	platform	used	in	the	book	projects.	This	chapter’s	project	is	a	simple
demonstration	that	displays	only	a	line	of	text	on	an	LCD,	which	has	been	sent	from	a	web
browser.	The	chapter	focus	is	to	discuss	the	BBB	and	compare	it	to	the	Raspberry	Pi,
which	seems	to	be	its	principal	“competitor.”	The	BBB	used	in	this	project	used	the	same
Debian,	Wheezy,	Linux	distribution	as	was	used	in	earlier	Pi	projects.	This	demonstrates
that	at	least	these	two	boards	are	more	similar	than	different.	The	BBB	does	incorporate
some	features	such	as	analog-to-digital	conversion	(ADC),	which	are	not	present	in	the	Pi
and	must	be	externally	added	if	needed.	In	addition,	the	BBB’s	standard	clock	rate	is	1
GHz	while	the	Pi’s	normal	clock	is	set	at	700	MHz.	The	Pi	may	be	overclocked	to

approximately	1	GHz,	if	desired,	but	that	does	increase	power	consumption	and	heat
generation.	The	Pi	does	run	cooler	and	consumes	less	power	than	the	BBB,	which	are
important	considerations	for	portable,	battery-operated	applications.

Connecting	the	BBB	to	a	cloud	service	is	the	chief	topic	in	Chapter	10.	I	used	the
same	temperature	monitoring	system,	which	was	shown	with	the	Pi	in	Chapter	2.
However,	in	this	project,	the	data	is	streamed	real-time	to	a	cloud-based	service	named
Xively.	In	the	Pi	project,	the	data	was	stored	in	a	local	MySQL	database.	The	BBB	sensor
data	is	streamed	to	Xively	for	storage	and	later	retrieval	as	desired.	Xively	also	provides
several	web	interfaces	that	make	it	easy	for	users	to	both	examine	and	manipulate	sensor
data	as	needed.	The	Xively	developer	version	is	free	with	unlimited	data	storage,	which
should	suffice	for	most	experimenters	and	hobbyists.

The	final	chapter	deals	with	machine-to-machine	(M2M)	communications,	which
happens	when	two	or	more	fully	automated	computer	systems	interchange	data	without
any	human	involvement.	This	chapter’s	project	uses	the	same	temperature	measurement
system	used	in	previous	projects.	Transferring	data	also	requires	a	protocol	to	be	used,
which	will	ensure	that	data	is	successfully	sent	and	received.	This	project	uses	the	open-
source	MQTT	protocol,	which	is	an	excellent,	lightweight	data	protocol	currently	used	by
Facebook	and	several	national	wireless	carriers	for	sending	alert	messages.	This
demonstration	project	uses	a	single	channel	BBB	temperature	measurement	system	to
indirectly	send	data	to	a	Pi	system.	The	Pi	system	accesses	the	data	from	any	one	of	a
number	of	MQTT	broker	websites,	which	are	freely	available	to	handle	MQTT	message
traffic.

I	hope	these	ten	chapters	open	your	desire	to	experiment	and	further	explore	this
exciting	and	ever-expanding	area.

Don	Norris

1
CHAPTER

Introduction	to	the	Internet	of	Things
This	book	offers	useful	projects	that	you	can	build	and	then	experiment	with,	using	the

Internet	to	both	receive	data	from	and/or	provide	control	commands	to	devices.	The
“Internet	of	Things”	(IoT)	is	a	phrase	that	was	first	used	in	1999	by	Kevin	Ashton	while
he	was	working	at	MIT’s	Media	Center.	He	meant	it	to	represent	the	concept	of	computers
and	machines	with	sensors,	which	connect	to	the	Internet	to	report	status	and	accept
control	commands.	The	IoT,	in	reality,	has	been	around	for	a	long	time,	but	it	didn’t	have	a
name.	Machine-to-machine	(M2M)	communications	has	been	in	existence	for	many
decades,	often	using	dedicated	networks	that	eventually	converged	over	to	the	Internet.
IoT	is	also	referred	to	with	different	names,	such	as	Ubiquitous	Computing	and	the
Internet	of	Everything.	No	matter	what	the	name,	IoT	is	here	to	stay	and	is	progressively
affecting	more	people	in	their	everyday	activities	as	time	progresses.

Many	books	are	in	print	and	in	digital	media	that	discuss	the	overall	ramifications	of
IoT	upon	society	and	where	it	is	leading	all	of	us.	There	are	also	books	published	that
claim	to	guide	you	on	how	to	make	a	fortune	by	monetizing	your	clever	IOT	project.	This
is	not	one	of	those	books,	as	I	mentioned	in	the	foreword.	My	focus	is	on	creating	useful
projects	that	take	advantage	of	the	tremendous	communication	capabilities	provided	by	an
Internet	connection.	My	approach	also	differs	from	other	IoT	authors	by	using	three
separate	hardware	platforms,	which	provide	project	control.	I	should	note	that	the	Arduino
platform	uses	three	slightly	different	implementations	for	Internet	connectivity,	which	I
classified	as	one	platform.	Using	different	platforms	was	a	deliberate	and	purposeful
decision	on	my	part	to	show	you	what	is	involved	in	creating	projects	using	different
development	infrastructures	yet	still	establishing	a	working	Internet	connection.	You	will
likely	appreciate	one	approach	over	the	others.	These	three	hardware	and	software
development	platforms	are	listed	in	Table	1-1.

TABLE	1-1.	IoT	Project	Hardware	and	Software	Development	Choices

Creating	a	project	that	is	equipped	with	sensors	and	is	capable	of	both	sending	and
receiving	data	via	the	Internet	is	a	bit	challenging,	especially	to	those	readers	who	are
attempting	to	do	so	for	the	first	time.	Let’s	start	this	journey	with	a	discussion	of	hardware
as	that	seems	easiest	for	most	folks	to	handle	and	is	absolutely	required	for	these	projects.

Raspberry	Pi	Platform
The	Raspberry	Pi	has	been	in	existence	for	almost	two	years	at	the	time	of	this	writing.

Over	two	million	Pi	platforms	have	been	produced	since	it	was	introduced,	which	is	not
too	shabby	considering	that	the	creator,	Dr.	Eben	Upton,	originally	thought	about	10,000
would	be	sold.	I	won’t	go	into	extensive	detail	about	the	origins,	history,	and	structure	of
the	Pi,	as	I	have	already	covered	that	subject	in	extensive	detail	in	my	recent	book
Raspberry	Pi	Projects	for	the	Evil	Genius.	However,	I	will	reiterate	some	key	Pi	concepts
that	are	critical	to	your	success	in	building	the	Pi	projects,	and	it	is	always	convenient	to
have	the	data	immediately	available	and	in	one	place.	The	Model	B	Raspberry	Pi	is	the
platform	I	strongly	suggest	for	the	Pi	projects	in	this	book	(see	Figure	1-1).

FIGURE	1-1	Model	B,	Raspberry	Pi	board

A	cheaper	model,	A,	is	available	but	it	does	not	have	an	onboard	Ethernet	port	and
only	half	the	memory	of	the	B	model.	Interestingly,	neither	one	of	these	two	constraints
would	prevent	you	from	using	the	A	model;	however,	you	would	need	to	provide	a
wireless	USB	adapter	for	Internet	connectivity,	and	the	diminished	memory	would
certainly	slow	down	the	Pi	applications	while	they	were	running.

All	the	projects	in	this	book,	except	for	the	first	one,	involve	using	some	type	of

digital	input	and/or	output	to	interface	with	sensors	and	actuators.	All	the	different
platforms	used	in	the	projects	refer	to	these	input/outputs	as	general	purpose	input	output
(GPIO).	Each	platform’s	GPIO	has	somewhat	different	specifications	as	to	the	maximum
voltage	and	current	that	can	be	handled,	and	I	will	strive	to	keep	that	very	clear	so	as	to
avoid	any	possible	damage	to	the	project	boards.	Unfortunately,	irreversible	damage
happens	if	you	exceed	the	maximum	voltage	or	current	GPIO	rating	to	a	particular	board,
which	will	render	it	useless	or	non-operative.

Raspberry	Pi	GPIO
The	Model	B,	rev	2	Raspberry	Pi	uses	a	multi-pin	connector	designated	as	P1	for	its

GPIO.	This	connector	is	shown	in	Figure	1-2	with	the	first	two	beginning	and	ending	pin
numbers	annotated	for	orientation	and	reference.

FIGURE	1-2	GPIO	P1

This	multi-pin	connector	will	be	the	gateway	through	which	the	Pi	will	interface	with
real-world	devices.	As	you	are	probably	aware,	there	must	be	software	drivers	loaded	that
provide	the	logical	interface	between	the	control	program,	operating	system	(OS),	and	the
GPIO	pins.	The	particular	type	of	driver	depends	primarily	upon	the	programming
language	used	to	develop	the	control	program.	I	will	be	using	both	Python	and	Java	to
develop	control	programs	so	there	will	be	a	separate	set	of	drivers	loaded	to	accommodate
each	development	environment.	However,	many	GPIO	pins	in	the	P1	connector	have
multiple	functions	that	extend	beyond	simple	digital	input	and/or	output.	Figure	1-3	shows

the	functions	associated	with	each	of	the	P1	pins	for	the	Model	B,	rev	2	Pi.

FIGURE	1-3	P1	pin	functions

I	will	not	review	these	pin	functions	at	this	time	but	will	discuss	them	as	they	become
relevant	to	a	project.	Incidentally,	none	of	the	projects	connect	directly	with	the	P1	pins
but	instead	rely	on	the	use	of	a	Pi	Cobbler,	which	is	plugged	into	a	solderless	breadboard.
Figure	1-4	shows	the	Pi	Cobbler	adapter	plugged	into	a	solderless	breadboard	with	the	26-
conductor	ribbon	cable	plugged	into	the	Pi’s	P1	connector.

FIGURE	1-4	Pi	Cobbler

The	Pi	Cobbler	is	available	from	a	variety	of	suppliers	such	as	Adafruit	Industries
and	MCM	Electronics.	You	will	have	to	assemble	it	by	soldering	a	connector	to	the
printed	circuit	board	(PCB),	which	is	not	too	difficult,	and	this	task	allows	you	to	practice

your	soldering	skills.	Just	don’t	add	too	much	solder	to	the	connector	pins	as	they	are
close	together	and	it	is	easy	to	form	a	solder	bridge,	which	might	be	disastrous	to	the	Pi
when	you	connect	the	Pi	Cobbler	to	it.

Although	there	are	jumper	wires	shown	connecting	components	on	the	solderless
breadboard,	I	prefer	to	use	manufactured	jumper	wires,	as	shown	in	Figure	1-5.	These
jumpers	are	very	sturdy	and	can	easily	be	inserted	into	the	breadboard	without	the	bending
or	crinkling	that	affect	ordinary	precut	wires.	Inexpensive	jumper	wire	kits	are	also
typically	available	from	the	same	Pi	Cobbler	suppliers.

FIGURE	1-5	Manufactured	jumper	wires

Establishing	a	Raspberry	Pi	Development	Station
There	are	several	ways	to	set	up	a	Raspberry	Pi	development	station,	each	with	its	own

pros	and	cons.	I	will	cover	two	approaches	that	will	likely	fulfill	most	users’	needs.

Standalone	Setup
The	first	approach	is	what	I	call	a	standalone	setup	where	you	connect	a	keyboard,

monitor,	and	mouse	to	the	Pi.	You	will	also	need	a	powered	USB	hub	and	either	a	wireless
Wi-Fi	adapter	or	Ethernet	patch	cable	that	you	can	plug	directly	into	your	router.	Figure	1-
6	is	a	block	diagram	showing	all	the	components	needed	for	a	standalone	workstation.

FIGURE	1-6	Raspberry	Pi	standalone	workstation	block	diagram

The	Pi	has	both	composite	and	HDMI	video	outputs.	Most	readers	will	elect	to	use

the	HDMI	output	as	that	provides	a	much	superior	video	display	as	compared	to	the
analog	composite	video	output.	You	will	need	a	HDMI	to	VGA	converter	module	in	case
your	monitor	does	not	have	an	HDMI	input.	These	converters	are	relatively	inexpensive
with	a	typical	one	available	from	Adafruit	shown	in	Figure	1-7.

FIGURE	1-7	HDMI	to	VGA	converter	module

The	Pi	power	supply	is	also	worth	discussing.	I	used	a	“wall	wart”	5V	1A	supply,
which	is	more	than	adequate	for	providing	sufficient	current	to	the	Pi	as	long	as	you	do
not	attempt	to	power	any	external	USB	devices	from	either	one	of	the	two	onboard	USB
ports.	From	my	experience	in	using	the	Pi	now	for	two	years,	I	have	found	the	board	to	be
a	bit	sensitive	to	the	quality	and	level	of	the	5V	supply.	Strange	and	frustrating	events
happen	if	the	power	supply	droops	to	4.75V	or	less,	which	is	only	a	5	percent	drop.	Often,
simply	swapping	the	power	supply	clears	up	mysterious	and	intermittent	operational
issues,	which	can	lead	to	unproductive	and	“hair-tearing”	development	sessions.	In	Figure
1-7,	I	have	included	a	note	that	mentions	you	can	also	power	the	Pi	directly	from	the	hub
using	a	micro-USB/USB	cable	as	long	as	the	hub	power	supply	is	rated	for	a	minimum	of
2.5A.	I	have	used	the	Pluggable	series	of	powered	hubs	to	do	this	in	the	past,	one	of	which
is	shown	in	Figure	1-8.

FIGURE	1-8	Plugable	powered	USB	hub

Any	USB	keyboard	and	mouse	combination	will	suffice	for	user	input.	However,	I
did	find	the	wireless	Logitech	K400	keyboard/mouse	device	to	be	a	very	handy	and
flexible	combination.	There	were	no	issues	with	the	Pi	detecting	this	device	and	installing
the	proper	driver.	The	K400	is	inexpensive	and	is	shown	in	Figure	1-9.	I	highly
recommend	this	keyboard/mouse	unit.

FIGURE	1-9	Logitech	K400	wireless	keyboard/mouse	unit

I	would	like	to	mention	the	wireless	Wi-Fi	adapter	that	I	have	successfully	used	for	a
number	of	projects.	It	is	the	EDIMAX	EW-7811Un	and	is	shown	in	Figure	1-10.	It	is	very
inexpensive	and	seems	to	perform	quite	well	for	the	relatively	low-bandwidth	projects	I
have	used	it	in.

FIGURE	1-10	EDIMAX	model	EW-7811Un	USB	Wi-Fi	adapter

You	should	note	that	it	is	rated	at	a	maximum	of	150	MBps,	which	is	somewhat
lower	than	other	more	expensive	brands.	However,	none	of	the	book	projects	require	a
very	high	bandwidth	so	why	spend	the	money	for	performance	you	will	not	require?

Headless	Setup
The	second	approach	is	not	a	gruesome	Pi	decapitation	as	the	name	suggests	but	a

network-centric	configuration	to	remotely	control	a	Pi.	For	this	approach	you	will	need
only	a	networked	Pi	and	another	computer.	It	doesn’t	matter	if	the	Pi	is	connected	wired	or
wirelessly	to	your	network.	All	you	really	need	is	the	Internet	protocol	(IP)	address	that
your	router	assigns	to	the	Pi	when	it	discovers	it	upon	initial	startup.	Note	that	no
keyboard,	mouse,	monitor,	or	powered	hub	is	required	for	this	setup.	Just	a	Pi,	a	power
supply,	and	either	an	Ethernet	cable	or	a	wireless	Wi-Fi	adapter	are	needed.	Figure	1-11	is
a	block	diagram	showing	all	the	headless	components	and	their	interconnections.

FIGURE	1-11	Raspberry	Pi	headless	workstation	block	diagram

The	secret	to	the	simplicity	of	the	headless	setup	is	the	software	running	both	on	the
Pi	and	the	computer	used	to	communicate	with	the	Pi.	This	software	will	be	one	of	the
items	discussed	in	the	following	software	section.

The	last	hardware	item	to	be	discussed	is	the	SD	card	that	stores	the	software	that	the
Pi	needs	to	function.	A	standard	4GB	SD	card	is	the	minimum	required	for	Pi	operations,
but	I	feel	strongly	that	you	should	use	at	least	an	8	or	16GB	card	to	have	space	for	all	of
the	book	projects	without	having	to	delete	any	of	them.	It	is	fairly	easy	to	add	software
whose	memory	requirements	can	quickly	add	up	to	the	point	where	Pi	operations	could	be

adversely	affected.	However,	don’t	be	deterred	if	you	purchased	a	Raspberry	Pi	starter	kit
that	came	with	a	pre-built	image	4GB	SD	card.	It	will	be	sufficient	for	all	the	book
projects,	but	you	might	have	to	delete	some	early	project	files	to	ensure	there	is	space	for
the	later	projects.

SD	cards	are	also	rated	for	speed	with	a	Class	number.	Table	1-2	shows	the	various
classes	and	associated	minimum	data	transfer	speeds.

TABLE	1-2	SD	Card	Class	Designations

Using	a	higher	Class	number	of	SD	card	in	the	Pi	allows	for	much	better
performance.	Just	be	mindful	that	SD	cards	with	high	Class	numbers	are	more	expensive
than	ones	with	lower	numbers.	However,	the	cost	differential	diminishes	as	time
progresses.	I	strongly	suggest	you	purchase	at	least	a	Class	4	or	higher;	anything	less	and
you	will	be	disappointed	in	how	slow	your	Pi	responds.

Finally,	don’t	be	worried	about	how	to	create	an	operational	Pi	SD	card.	I	will	show
you	in	the	software	section	how	to	download	and	store	the	latest	software	image	onto	a
blank	SD	card.	It	really	is	quite	easy	and	you	will	feel	like	an	expert	after	a	few	downloads
and	stores.

Setting	Up	the	Raspberry	Pi	Software
I	will	begin	this	section	by	assuming	that	you	are	starting	out	using	a	standalone

workstation	with	a	blank	SD	card.	Your	first	step	is	to	set	up	the	SD	card	with	a	suitable
OS	image	from	which	to	boot	the	Pi.	Go	to	the	Raspberry	Pi	Foundation	download
website	at	www.raspberrypi.org/downloads	and	download	the	file	named
NOOBS_v1_3_4.zip,	which	is	current	at	the	time	of	this	writing.	I	am	sure	that	a	later
revision	will	be	available	when	you	visit	the	site,	which	is	fine.	The	name	NOOBS	is	short
for	New	Out	Of	Box	Software	and	is	a	recent	revision	to	the	way	the	Pi	images	have	been
traditionally	made	available	by	the	Foundation.	This	is	a	compressed	file	that	should	be
extracted	directly	to	the	SD	card,	which	must	be	inserted	into	the	computer	that	holds	the
downloaded	NOOBS	file.	You	must	ensure	that	the	SD	card	is	properly	formatted	before
you	extract	or	unzip	the	file.	The	easiest	way	to	format	the	SD	card	is	to	use	the	SD	Card
Association	formatting	tool,	SDFormatterv4.zip,	which	may	also	be	downloaded	from	the
same	Raspberry	Pi	Foundation	website	mentioned	previously.	Of	course,	the	formatting

http://www.raspberrypi.org/downloads

tool	must	also	be	extracted	before	use.

The	freshly	formatted	and	NOOBS-loaded	SD	card	has	been	designed	to	boot	the	Pi
into	a	clever	menu	that	allows	you	to	select	one	of	four	operating	systems.	To	boot	the	Pi,
first	ensure	that	the	workstation	is	set	up	per	the	diagram	shown	in	Figure	1-6,	without	the
power	supply	attached	to	the	Pi	board.	It	is	okay	to	power	up	the	USB	hub,	provided	that
the	hub	is	not	directly	powering	the	Pi.

Next,	insert	the	NOOBS	SD	card	into	the	Pi	and	then	connect	the	power	supply	to	the
Pi.	If	this	has	been	properly	done,	you	will	see	the	NOOBS	menu	selection	displayed.

The	NOOBS	revision	menu	selection	has	eight	choices,	as	detailed	in	Table	1-3.

TABLE	1-3	Initial	NOOBS	Selection	Menu

I	strongly	recommend	you	select	the	first	menu	item,	which	is	to	install	the	latest
Raspbian	distribution.	The	top	menu	Install	button	will	become	active	after	you	click	on
any	selection.	Simply	click	on	Install	to	commence	the	install	process.

A	dialog	box	asking	you	to	confirm	that	the	pending	install	will	delete	any	existing
data	from	the	SD	card	will	be	shown	next.	This	is	the	last	time	you	can	avoid	the	serious
mistake	of	overwriting	an	SD	card	that	you	didn’t	intend	to	use.	Click	OK,	assuming
everything	is	proper	and	that	you	are	indeed	using	the	desired	SD	card.

Next,	there	will	be	a	series	of	screens	displayed,	beginning	with	a	Welcome	message
that	also	contains	a	progress	bar	indicating	how	much	of	the	installation	has	been
completed.	The	install	will	take	a	while	depending	on	the	size	of	the	distribution	and	the
data	transfer	speed	of	the	SD	card	you	are	using.	The	initial	installation	portion	has	been
completed	when	the	Raspbian	banner	is	displayed.	The	screen	contains,	in	part,	this
statement:	“…	based	on	Linux	and	optimized	for	the	Raspberry	Pi.”	That	is	all	true,	but	it
really	should	have	expressed	that	it	is	based	on	the	Debian	Linux	distribution	as	there	are
significant	differences	between	Linux	distributions,	as	you	can	see	in	Table	1-3.

The	next	screen	that	appears	in	the	installation	sequence	is	very	important.	Figure	1-
12	shows	both	the	username	and	password	that	you	will	need	when	you	attempt	to	run	the
Raspbian	OS	on	the	Pi.	Every	Raspbian	distribution	that	is	downloaded	from	the
Foundation’s	website	has	the	same	username	and	password.	Obviously,	this	is	not	a	very
secure	situation	if	you	connect	the	Pi	to	the	Internet.	Never	fear,	however:	Later	on,	I	will
show	you	how	to	change	both	the	username	and	password	to	establish	much	better
security	for	your	Pi	installation.

FIGURE	1-12	Default	username	and	password	screen

You	will	next	see	the	raspi-config	introduction	screen.	The	raspi-config	main	menu	is
automatically	shown	the	first	time	you	boot	up	the	Raspbian	OS.	Its	purpose	is	to	easily
allow	you	to	configure	your	OS	to	match	your	needs	and	requirements.	I	will	discuss	the
raspi-config	application	in	detail.

The	last	display	screen	shown	indicates	that	the	Raspbian	OS	has	been	successfully
installed.	Notice	the	following	near	the	bottom	center	of	the	screen	display:

“For	recovery	mode,	hold	Shift”

What	this	means	is	that	you	can	get	back	to	the	NOOBS	opening	selection	menu	by
holding	down	the	keyboard’s	SHIFT	key	while	powering	on	the	Pi.	At	this	point,	you	can
reinstall	an	old	OS	or	select	a	new	one.	This	is	very	useful	if	and	when	you	corrupt	your
existing	OS,	which	is	likely	to	happen	with	all	the	experimenting	you	will	be	doing.	Now,
you	must	be	very	aware	that	any	data	files,	which	are	stored	on	the	NOOBS	SD	card,	will
be	deleted	when	a	reinstallation	happens.	This	is	why	it	is	very	important	to	copy	and	store
any	and	all	data	files	either	to	a	network	drive	or	to	removable	media	such	as	a	thumb
drive.	Neglecting	to	do	frequent	backups	will	cause	you	distress	when	you	realize	you
have	corrupted	the	OS	and	consequently	lost	all	your	data.	Also	realize	that	any
applications	that	you	might	have	loaded	above	and	beyond	the	core	Raspbian	installation
will	be	lost.	This	is	not	a	problem	as	you	can	reload	and	reconfigure	using	the	same
procedures	you	followed	earlier	to	initially	install	them.	The	data,	however,	is	another

story,	and	it	will	likely	remain	gone	unless	you	have	done	the	backups	as	suggested.

Clicking	OK	on	this	last	screen	will	reboot	the	Pi	and	eventually	bring	you	to	a
command	line	prompt	where	you	will	enter	the	username	(pi)	and	the	password
(raspberry).	The	raspi-config	menu	screen	should	now	appear.

Table	1-4	shows	all	the	raspi-menu	selections	arranged	by	menu	number	along	with
the	description	and	my	recommendation	as	to	what	you	should	do	with	a	particular
selection.	I	believe	you	should	initially	follow	my	recommendation.	You	can	always
change	at	a	later	time.

TABLE	1-4	raspi-config	Menu	and	Recommendations

There	are	also	seven	Advanced	Options	menu	selections,	as	described	in	Table	1-5.

TABLE	1-5	raspi-config	Advanced	Options	Menu	and	Recommendations

Click	the	Finish	button	after	you	have	entered	all	the	raspi-config	menu	selections.
You	should	be	returned	to	the	command	line.

Next	enter	the	following	command	to	check	if	you	have	successfully	installed	the
Desktop	GUI.

startx	

NOTE	I	will	use	the	 	symbol	from	now	on	to	denote	the	ENTER	key.

The	Desktop	screen	should	appear,	as	shown	in	Figure	1-13,	if	the	OS	installed
correctly.

FIGURE	1-13	Desktop	GUI

This	screen	is	the	LXDE	Desktop,	which	is	the	default	Raspbian	OS	GUI	interface.
LXDE	is	short	for	Lightweight	X11	Desktop	Environment	and	is	built	upon	the	X-
Windowing	system.	X-Windows	has	nothing	to	do	with	Microsoft	Windows	but	is	instead
based	on	a	windows	framework	created	at	MIT	during	the	mid-80s.	X-Windows	is
independent	of	any	particular	OS,	which	means	developers	must	create	appropriate

interface	software	for	it	to	function	with	a	specific	OS.

Clicking	the	LXDE	icon	button	located	at	the	lower-left	corner	of	the	screen	triggers
a	menu	with	four	choices:

•			Shutdown
•			Reboot
•			Logout
•			Cancel

Shutdown	turns	off	the	Pi	as	the	name	implies.	Reboot	causes	the	Pi	to	cycle	through
a	complete	restart	and	presents	you	with	a	command	line	login	prompt	after	it	is	done.
Logout	stops	the	GUI	and	brings	you	right	back	to	a	command	line	prompt.	There	is	no
reboot	or	resetting	involved	with	this	command.	The	Cancel	command	brings	you	back	to
the	GUI	screen.

You	will	now	have	a	complete	Raspbian	OS	up	and	running	if	you	have	successfully
followed	all	the	previous	steps.	Before	proceeding	to	any	more	advanced	instructions,	I
would	like	to	show	you	how	to	set	up	the	Pi	using	a	complete	Raspbian	OS	image	that
may	be	downloaded	from	the	Foundation	website.

Setting	Up	the	Raspberry	Pi	OS	Using	an	Image	File
This	section	shows	you	how	to	set	up	a	Pi	with	a	raw	image	file.	This	was	the	only	way

you	could	create	an	OS	prior	to	the	NOOBS	software	introduction.	It	is	important	to
understand	this	procedure	because	it	allows	you	to	load	any	OS	image	and	not	be	limited
to	the	ones	contained	in	NOOBS.

The	first	step	is	to	download	the	desired	image	file	from	the	Foundation’s	download
website.	This	is	the	same	one	mentioned	earlier	when	you	downloaded	the	NOOBS
software.	The	image	software	is	located	further	down	in	the	website	listing	from	the
NOOBS	section.	At	the	time	of	this	writing,	the	current	Raspbian	image	is	listed	as	2014-
01-07-wheezy-raspbian.zip.	It	will	need	to	be	unzipped	or	extracted	before	being	further
processed.

You	cannot	simply	unzip	the	file	onto	an	SD	card.	It	won’t	work	as	the	image	must
be	transferred	in	a	very	specific	manner	for	it	to	properly	boot	and	function	as	an	OS.
There	is	a	free	open-source	program	named	Win32DiskImager	that	you	would	use	on	a
Windows	computer	to	transfer	the	unzipped	image	to	a	formatted	SD	card.	This	program
is	available	from	the	sourceforge	site	at
http://sourceforge.net/projects/win32diskimager/files/latest/download.	The	program
download	is	in	a	zipped	format	that	must	be	extracted	to	a	convenient	location	prior	to	use.
Figure	1-14	is	a	screen	capture	of	the	Win32	Disk	Imager	program	in	action	downloading
the	latest	Raspbian	image	to	a	Class	10	SD	card.

http://www.sourceforge.net/projects/win32diskimager/files/latest/download

FIGURE	1-14	Win32	Disk	Imager	program	executing

Notice	the	over	17MB/sec	transfer	rate	shown	in	the	figure.	You	will	quickly
appreciate	using	high-speed	SD	cards	as	they	allow	read	and	write	operations	to	occur	an
average	of	two	to	three	times	faster	than	the	much	more	common	Class	4	SD	cards.

All	you	need	do	next	is	put	the	newly	imaged	SD	card	into	the	unpowered	Pi	and
apply	power	to	start	the	boot	process.	This	is	what	I	did	and	I	saw	absolutely	nothing	on
the	monitor	screen.	This	was	certainly	discouraging	as	I	was	sure	that	I	had	done
everything	as	described	in	the	Foundation	instructions.	It	turns	out	that	this	raw	Raspbian
image	caused	the	Pi	to	default	to	the	analog	video	output	instead	of	using	the	HDMI
output	to	which	my	monitor	was	attached.	This	was	not	the	case	with	the	NOOBS
installation,	which	apparently	defaults	to	the	HDMI	video	output.	In	any	case,	it	is	fairly
easy	to	remedy	this	situation.	Figure	1-15	is	a	listing	of	all	the	files	that	are	installed	on	the
SD	card	after	the	Win32	Disk	Imager	finishes	executing.	Note	that	this	screenshot	is	from
the	laptop	that	I	used	to	create	the	SD	card	and	not	from	the	Pi.

FIGURE	1-15	Raspbian	raw	image	file	listing

Shown	in	the	list	near	the	bottom	is	a	file	named	config.txt,	although	the	.txt
extension	is	not	shown	in	the	file	name	list	because	of	my	Windows	folder	configuration.
This	file	must	be	edited	in	order	for	the	video	display	to	appear	on	the	HDMI	video
output.	Figure	1-16	shows	this	file’s	content	using	the	Notepad	editor.

FIGURE	1-16	config.txt	file	content

You	will	need	to	uncomment	the	following	line:
#hdmi_force_hotplug=1

To	uncomment	the	line,	you	simply	need	to	delete	the	#	symbol	from	the	line’s
beginning,	and	then	save	the	file	and	exit	Notepad.	The	SD	card	should	now	be	all	set	to
display	the	boot	sequence	from	the	HDMI	port.

Booting	a	raw	image	will	bring	you	to	the	raspi-config	screen,	as	was	the	case	for	the
NOOBS	installation.	All	the	recommendations	made	for	that	installation	hold	true	for	this

one,	with	the	addition	of	expanding	the	filesystem.	The	NOOBS	installation	does	it
automatically	but	not	for	a	more	manual	installation	like	this	one.

Updating	and	Upgrading	the	Raspbian	Image
The	NOOBS	software	and	raw	image	OS	should	be	updated	and	upgraded	to	have	the

latest	software	revisions	and	patches	in	place.	The	update	should	be	done	first	by	entering
the	following	at	the	command	line	prompt:

sudo	apt-get	update				

This	will	normally	take	several	minutes	depending	upon	how	“out-of-date”	the	OS
image	was	at	the	time	of	installation	versus	the	number	of	updates	issued	from	the	OS
image	publication	date.	I	want	to	explain	this	command	a	bit	further	for	those	readers
without	much	Linux	command	experience.

•			sudo	This	instructs	the	OS	that	it	should	execute	the	following	commands	as
if	an	administrator	issued	them.	Linux	is	constructed	by	privilege	layers	with	the
admin	at	the	top	with	the	fewest	restrictions.
•			apt-get	At	this	point	you	should	have	a	fully	functional	and	updated
Raspberry	Pi	running	the	Raspbian	Linux	distribution	after	completing	either	the
NOOBS	or	raw	image	installation.	This	must	be	in	place	before	proceeding	with
any	of	the	following	IoT	Raspberry	Pi	projects.

Headless	Configuration
Unfortunately,	it	is	one	of	those	catch-22	situations	(apologies	to	younger	readers	who

don’t	know	what	that	means—Google	it!)	where	you	need	a	fully	configured	SD	card	in
order	to	run	a	headless	configuration.	But	you	can’t	configure	it	without	a	standalone
workstation,	as	described	earlier,	or	you	can	buy	a	pre-imaged	SD	card.	That	would	be	my
strong	recommendation	if	you	know	beforehand	that	you	want	to	run	headless.

A	headless	configuration	was	shown	in	Figure	1-11,	where	you	need	only	to	connect
to	a	Pi	in	a	network	using	either	an	Ethernet	cable	or	a	wireless	Wi-Fi	adapter.	The
network	router	will	automatically	provide	an	IP	address	to	the	Pi	using	what	is	known	as
the	DHCP	protocol,	which	is	normally	the	default	setup	in	most	home	or	business	wireless
routers.	What	you	need	to	do	is	attach	another	computer	to	your	network	that	runs	a
program	that	can	connect	to	the	Pi	and	remotely	run	it.	For	Windows	computers,	that
program	is	named	PuTTY	and	is	freely	available	for	download	at
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html.

PuTTY	uses	the	SSH	protocol	to	communicate	with	the	Pi,	which	must	be	enabled	in
order	for	the	Pi	to	allow	the	communication	link	to	function.	You	will	need	to	determine
the	Pi’s	IP	address	in	order	to	establish	this	link.	The	following	procedure	is	usually
successful	in	determining	the	Pi’s	IP	address:

1.	Open	a	browser	session	on	the	computer	that	you	wish	to	use	to	control	the
Pi.
2.	Go	to	the	admin	IP	address	for	the	router	that	is	the	DHCP	server	for	your
network.	Often	it	is	at	192.168.0.1.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

3.	Enter	the	username	and	password	to	get	to	the	control	web	page.	These	are
normally	shown	in	the	instructions	that	came	with	the	router,	but	they	are	also
readily	available	by	doing	an	Internet	search	for	your	specific	router	model.
4.	Click	on	Attached	Devices	or	some	similar	menu	selection	that	displays	the	IP
addresses	of	all	devices	attached	to	the	network	whether	through	wires	or
wireless.
5.	Look	for	the	entry	labeled	Raspberry	Pi.	That’s	the	IP	address	you	will	need
for	PuTTY.

It	is	a	simple	matter	to	connect	to	the	Pi	through	your	computer	once	you	have	the
Pi’s	IP	address.	I	will	show	you	another	way	to	determine	or	confirm	the	Pi’s	IP	address	at
the	start	of	the	LAMP	project	discussion.

Start	PuTTY	and	enter	the	IP	address	in	the	Host	Name	(or	IP	address)	text	block.
Leave	all	the	other	selections	and	text	blocks	alone.	Figure	1-17	shows	the	initial	PuTTY
screen	with	my	Pi’s	IP	address	entered	into	the	Host	Name	text	block.

FIGURE	1-17	Initial	PuTTY	screen

Your	Pi’s	IP	address	will	likely	be	different	than	the	one	I	entered	into	the	Host	Name
block.	Also	check	that	the	port	number	is	set	at	22,	which	is	the	default	for	SSH.	You
should	see	the	Pi’s	command	line	opening	screen	after	you	click	the	Open	button	located
at	the	bottom	of	the	PuTTY	opening	screen.	Figure	1-18	shows	the	Pi	login	screen	being
delivered	to	the	remote	computer	from	the	Pi	via	SSH.

FIGURE	1-18	Opening	Pi	login	screen	over	the	network

Just	enter	the	default	username	“pi”	and	the	default	password	“raspberry,”	and	you
will	see	the	normal	command	line	prompt	appear,	as	shown	in	Figure	1-19.

FIGURE	1-19	Pi	command	line	prompt

You	will	now	be	able	to	interact	with	the	Pi	in	exactly	the	same	way	as	if	you	were
sitting	in	front	of	a	standalone	workstation.	The	one	major	limitation	with	the	SSH
protocol	is	that	it	is	text	only	and	you	cannot	open	a	GUI	desktop.	This	would	be	fine	for
most	operations	but	it	would	prevent	you	from	running	any	program	with	graphics,	which
in	my	opinion	is	a	big	constraint.	However,	there	is	a	great	solution	to	this	situation,	which
I	discuss	in	the	next	section.

Headless	Operation	with	Graphics
Linux	has	a	wonderful	program	suite	named	xrdp,	which	stands	for	X11	Remote

Desktop	Protocol.	I	first	introduced	the	X11	server	in	the	LDXE	desktop	GUI	discussion.
This	is	the	same	server	engine	used	in	this	software	suite.	xrdp	also	contains	a	virtual
networking	connection	(VNC)	server	name	tightvncserver,	which	functions	in	a	similar
manner	to	SSH	except	it	handles	both	text	and	graphics.	Type	the	following	command	to
install	xrdp	into	the	Pi:

sudo	apt-get	install	xrdp	

This	program	suite	takes	only	a	few	minutes	to	install	and	takes	up	about	11MB	of
file	space.	You	start	the	VNC	server	by	entering	the	following	at	the	command	line:

vncserver	

Every	time	you	start	the	VNC	server,	you	will	see	the	following	line:
New	‘X’	desktop	is	raspberrypi:x

where	the	lowercase	x	represents	a	number.	The	first	time	you	start,	it	should	be	a	1.
You	need	to	remember	this	number	as	it	is	an	important	parameter	when	you	run	the
Windows	client	on	the	remote	computer.	Also,	at	the	first	startup,	you	will	be	prompted	to
enter	a	password	that	can	be	up	to	eight	characters	in	length.	You	will	need	to	input	this
password	when	you	authenticate	the	remote	computer	with	the	Pi.	That	is	all	that	is
required	on	the	Pi	or	server	side;	it	is	now	time	to	focus	on	the	Windows	or	client	side.

You	will	need	to	download	a	free	VNC	suite	from	http://tightvnc.com/download.php.

This	download	includes	both	server	and	client	VNC	packages,	but	only	the	client
package	is	needed	for	this	configuration.	The	website	has	two	Windows	installers	(.msi
files),	one	for	32-bit	machines	and	another	for	64-bit	machines.	Select	the	appropriate	one
for	your	computer	and	install	it.

Go	into	the	Start	menu,	choose	Program	Files,	and	find	the	TightVNC	folder.	Click	it,
and	then	double-click	the	TightVNC	Viewer	menu	item.	You	should	see	the	screen	shown
in	Figure	1-20.

http://www.tightvnc.com/download.php

FIGURE	1-20	Opening	screen	for	the	TightVNC	Viewer

Enter	your	Pi’s	IP	address	in	the	Remote	Host	text	box,	as	you	see	in	the	figure.	Also
append	a	colon	with	the	number	that	you	saw	when	you	started	the	Pi’s	VNC	server.	In
this	case,	I	added	“:2”.	Yours	will	be	different.	Then	click	the	Connect	button	next	to	the
text	box.	If	everything	goes	smoothly,	you	should	see	the	Pi’s	VNC	server	authentication
dialog	box	appear,	as	shown	in	Figure	1-21.

FIGURE	1-21	The	Raspberry	Pi	VNC	authentication	dialog	box

Enter	the	password	you	created	when	you	first	configured	the	Pi’s	VNC	server.	Click
OK,	and	you	should	see	the	classic	Raspbian	LXDE	GUI	desktop,	as	shown	in	Figure	1-
22.

FIGURE	1-22	Raspbian	LXDE	desktop	served	by	the	TightVNC	connection

There	is	absolutely	no	difference	in	using	this	desktop	GUI	compared	to	the
standalone	desktop	GUI.	I	also	launched	a	terminal	window	shown	in	Figure	1-23	to
demonstrate	that	everything	responds	as	it	should	even	though	it	is	a	remote	desktop

connection.

FIGURE	1-23	Launching	a	terminal	window	in	the	Desktop

It	really	is	very	cool	technology	when	you	consider	what	has	taken	place.	I	am
remotely	controlling	the	GUI	desktop	of	an	extremely	inexpensive	Linux	computer	using
a	completely	separate	Windows	computer,	all	with	free,	open-source	software.	I	guess	it’s
just	the	geek	in	me	surfacing	to	appreciate	this	setup.	I	hope	you	also	appreciate	it.	Now,
on	to	the	LAMP	project.

The	LAMP	Project
No,	you	will	not	be	constructing	a	living	room	lamp	but	instead	creating	a	simple,	yet

very	capable,	web	server	with	a	database	using	the	LAMP	components.	LAMP	is	short
for:

•			Linux
•			Apache
•			MySQL
•			Perl/PHP/Python

You	already	have	completed	the	first	step	by	installing	the	Raspbian	OS	on	the	Pi,
which	must	be	in	place	before	installing	the	remaining	three	elements.	The	next	step	is
installing	or	standing-up	(in	the	parlance	of	network	admins)	an	Apache	web	server.	PHP
will	also	be	installed	in	this	step	as	it	is	traditionally	closely	allied	to	the	Apache	software.
I	will	not	be	using	the	Perl	scripting	language,	however.	I	will	use	Python	but	separately
install	it	in	a	later	project.

Apache	Web	Server	and	the	PHP	Scripting	Language
The	Apache	web	server	is	by	far	the	most	popular	open-source	web	server	in	existence.

It	is	very	mature,	having	been	created	and	updated	for	almost	18	years	as	of	the	time	of
this	writing.	Its	formal	name	is	Apache	HTTP	Server	and	its	logical	name	as	far	as	the
Linux	OS	is	concerned	is	httpd.	The	“d”	in	the	logical	name	stands	for	daemon,	which	is	a
background	task	in	the	OS	lexicon.	The	latest	version	of	Apache	is	2.4.7,	which	is	why	it
will	be	referred	to	as	“apache2”	during	the	install	process.

Currently,	Apache	serves	well	over	100	million	websites	worldwide,	which	accounts
for	about	55	percent	of	all	active	Internet	websites.	This	makes	this	software	the	most
popular	web	server	ever	used.	By	some	accounts,	Apache	has	been	the	prime	reason	why
the	World	Wide	Web	has	been	so	popular.

The	PHP	web	scripting	language	will	also	be	installed	in	this	step	as	it	is	closely
integrated	with	the	Apache	web	server	software.	Just	a	bit	of	history	regarding	PHP	would
be	helpful	in	understanding	what	it	is	and	how	it	relates	to	Apache.	PHP	is	a	web
development	scripting	language	that	is	hosted	on	the	web	server	that	it	supports.	PHP
originally	stood	for	“Personal	Home	Page,”	but	that	has	been	superseded	by	a	fancier
phrase,	“PHP:Hypertext	Preprocessor,”	which	is	a	humorous	backronym.	In	any	case,	PHP
is	mainly	used	to	create	dynamic	web	pages	that	the	web	server	generates	in	real	time
based	on	client	requests.	I	will	use	PHP	in	the	“Hello	World”	project	but	will	use	Java	and
JavaScript	to	generate	dynamic	web	pages	for	the	Pi	projects.

Well,	enough	with	the	Apache	and	PHP	promotions.	It	is	time	to	install	them	on	the
Pi.

But	first	you	must	ensure	the	Pi	software	is	the	most	current	with	all	modifications,
new	versions,	and	patches	installed.	At	the	command	line	prompt,	type	the	following:

sudo	apt-get	update	

Let	me	take	a	moment	to	further	explain	these	commands	to	readers	who	may	not	be
experienced	with	Linux	commands:

•			sudo	As	previously	discussed,	this	command	instructs	the	Raspbian	OS	to
execute	the	commands	that	follow	it	as	an	administrator.	Linux	is	structured	to
provide	a	different	set	of	privileges	to	different	user	levels.	The	update	must	be
done	at	the	highest	level	or	administrator	level.
•			apt-get	As	previously	discussed,	this	portion	of	the	command	sequence
refers	to	the	advanced	packaging	tool	(apt),	which	is	a	user	interface	that	works
in	conjunction	with	core	libraries	that	are	contained	in	repositories	located	in
servers	worldwide.	The	apt-get	must	be	used	with	at	least	one	other	command
to	execute	the	desired	function.	apt-get	is	really	a	suite	of	programs	each
designed	to	either	install	or	remove	software	per	user	requirements.
•			update	This	is	the	command	modifier	to	apt-get	that	carries	out	an	update	to
the	local	OS	list	of	installed	software.	It	does	not	install	any	software	per	se	but
updates	the	local	list	to	match	the	current	version(s)	listed	in	the	server
repositories.	The	actual	software	is	installed	using	the	following	command:

sudo	apt-get	upgrade	
•			upgrade	This	command	modifier	to	apt-get	goes	out	to	the	worldwide

servers	and	downloads	and	installs	the	new	versions	along	with	any	and	all
dependent	software.	An	upgrade	may	take	a	long	time	(greater	than	an	hour)	to
complete	depending	upon	how	out	of	date	the	OS	is	along	with	any	applications
that	might	have	been	installed	since	the	initial	OS	installation.	Upgrade	depends
upon	the	update	operation	to	be	successful,	which	is	why	you	always	update
first	and	then	upgrade.

It	is	finally	time	to	install	Apache	and	PHP	assuming	all	the	updates	and	upgrades
have	been	completed.	Type	the	following	in	at	the	command	line:

sudo	apt-get	install	apache2	php5	libapache2-mod-php5	

The	software	install	takes	several	minutes	and	uses	a	little	over	21MB.	It	is	also
prudent	to	restart	the	web	server	after	the	install.	You	do	this	by	entering	the	following	at
the	command	line:

sudo	service	apache2	restart	

You	will	next	need	to	use	the	Pi	browser	to	confirm	that	Apache	installed	correctly.
To	do	this,	you	will	need	to	determine	the	IP	address	that	the	Pi	was	issued	when	it	logged
on	to	your	network.	I	used	a	wireless	adapter,	so	wlan0	is	the	device	name	that	is
associated	with	my	IP	address.	It	will	be	“eth0”	if	you	used	an	Ethernet	patch	cable	to
connect	the	Pi	to	your	router.	In	any	case,	type	the	following	in	at	the	command	line	to
determine	the	IP	address:

sudo	ifconfig	

Figure	1-24	is	a	screenshot	of	the	results	after	I	entered	the	command.

FIGURE	1-24	Screenshot	resulting	from	the	ifconfig	command

As	you	can	see,	the	local	IP	address	shown	in	the	wlan0	section	is	192.168.0.13.	Your
results	should	differ	somewhat	depending	on	the	router	you	use	and	the	number	of	devices
connected	to	your	network.

I	next	started	an	instance	of	the	Pi’s	Midori	web	browser	and	entered	the	IP	address
shown	previously.	It	is	purely	optional	to	enter	http://	before	the	actual	address	as	most
browsers	correctly	interpret	only	the	numeric	entry	as	a	proper	URL.	I	saw	Figure	1-25

appear	in	the	browser	confirming	that	the	Apache	web	server	was	working.

FIGURE	1-25	First	web	page	served	by	Apache

Not	too	impressive,	but	it	is	a	start.	You	should	replace	the	test	file	that	produced	the
Figure	1-25	display	in	order	to	test	if	PHP	is	working.	I	use	the	nano	editor	as	it	is	quick
and	effective	and	is	already	part	of	the	Raspbian	distribution.	The	file	you	edit	is	named
index.html	and	is	located	in	the	/var/www	directory.	I	usually	like	to	change	to	the	target
directory	before	I	edit	as	that	way	I	am	sure	that	any	changes	will	be	stored	in	that
directory	in	lieu	of	another	if	I	forget	to	add	the	path.	Assuming	you	start	in	your	home
directory,	which	is	/home/pi,	all	you	need	to	do	is	issue	the	following	command:

cd	/var/www	

and	you	will	be	at	the	proper	Apache	directory	that	contains	the	default	web	page	file,
index.html.	Start	the	nano	editor	with	this	command:

sudo	nano	index.html	

I	deleted	everything	in	the	file	and	added	the	following:

After	you	have	entered	the	code,	save	it	by	simultaneously	pressing	the	CTRL	and	O
keys.	Simply	press	the	ENTER	key	when	the	nano	editor	asks	if	you	wish	to	save	it	as
index.html.	Press	the	CTRL	and	X	keys	together	to	exit	the	nano	editor.	Figure	1-26	shows
the	web	page	that	results	from	visiting	this	web	page	using	the	Midori	browser	as	you	did
before.

FIGURE	1-26	PHP	Test	web	page

It	clearly	shows	that	the	PHP	software	is	working	with	no	issues	evident.	I	did	one
more	PHP	test	using	slightly	more	complex	code	as	compared	to	the	first	one.	However,
for	this	test	I	created	a	new	file	named	hello.php	and	stored	it	in	the	same	directory	as	the
index.html	file.	The	following	is	the	code	listing	for	this	new	file:

When	you	visit	this	web	page,	you	must	specifically	request	it	or	else	the	default
index.html	file	will	be	displayed.	Enter	the	following	in	the	browser	URL	line:
http://192.168.0.13/	hello.php.

Obviously,	substitute	your	own	IP	address	for	the	one	shown	in	the	preceding	line.
Figure	1-27	shows	the	results	for	this	operation.

http://www.192.168.0.13

FIGURE	1-27	hello.php	test	results

The	remaining	step	in	creating	a	complete	LAMP	project	is	to	install	and	test	the
MySQL	database,	which	I	do	in	the	next	section.

MySQL	Database	Installation
The	fourth	and	final	component	for	your	installation	is	the	MySQL	database	software.

MySQL	is	an	open-source,	full-feature	relational	database	that	is	an	essential	part	of	any
meaningful	IoT	project.	It	really	makes	no	sense	to	acquire	data	unless	you	store	it	for
some	purposeful	action.	I	realize	that	real-time	data	can	be	pushed	onto	the	Web	but
somehow	it	should	be	stored	for	later	retrieval	and/or	analysis.	Storing	it	at	the	generation
site	makes	sense	to	me	if	you	do	not	have	a	100	percent	reliable	and	continuous	web
connection.	This	is	an	interesting	and	continually	debated	topic—whether	or	not	sensor-
driven	websites	should	have	any	organic	or	built-in	data	storage.	My	take	on	it	is	that
MySQL	doesn’t	cost	anything	other	than	your	time	to	install	and	maintain	it	and	it	does

not	really	occupy	a	lot	of	memory,	so	why	not	increase	your	options	and	overall	website
reliability	by	using	it.

MySQL	has	been	around	for	a	fair	number	of	years,	having	been	created	in	1995,
about	the	same	time	Apache	and	PHP	came	into	existence.	The	installation	is	very
straightforward;	you	begin	by	typing	the	following	command:

sudo	apt-get	install	mysql-server	mysql-client	php5-mysql	

It	will	take	about	8	minutes	and	require	about	95MB	of	file	space	to	completely
install	both	the	MySQL	server	and	client	programs	along	with	some	PHP	support
programs.	Near	the	end	of	the	installation	you	will	be	prompted	to	enter	a	root	password
for	the	MySQL	server.	I	highly	recommend	you	do	so	as	it	adds	another	level	of	security
to	the	LAMP	project.

Testing	the	MySQL	installation	is	somewhat	involved	because	you	need	to	create	and
partially	populate	a	database	to	evaluate	if	the	installation	was	successful.	Before	I	show
you	these	steps,	I	wish	to	point	out	that	covering	all	the	essential	elements	and	background
for	a	relational	database	would	take	a	separate	book	all	to	itself.	I	will	show	you	the
necessary	commands	for	creating	and	populating	a	MySQL	database	without	going	in-
depth	explaining	the	theory.	I	urge	all	interested	readers	to	either	take	a	formal	course	in
database	technology	or	read	one	of	many	fine	books	that	explain	relational	databases	to
gain	a	comprehensive	education.

I	will	begin	by	creating	a	simple	MySQL	database	named	test.	You	must	first	start	the
MySQL	program	at	the	root	level	by	entering	the	following	at	a	command	line	prompt:

mysql	-u	root	–p	

You	will	immediately	be	prompted	to	enter	the	password	that	you	entered	during	the
install	process.	If	all	goes	well,	you	should	see	the	cursor	waiting	at	the	“mysql	>	“prompt.
You	are	now	in	a	MySQL	shell	program	that	receives,	interprets,	and	finally	executes	your
commands.	For	your	reference,	I	have	put	a	summary	of	some	of	the	more	important
commands	on	the	website	for	this	book.

I	do	want	to	provide	some	basic	background	on	how	a	database	is	structured	before
demonstrating	how	to	store	data	into	it.	A	relational	database	shares	some	resemblance	to
a	spreadsheet,	which	readers	are	most	likely	familiar	with.	It	is	arranged	in	columns	called
fields,	and	rows	named	records.	The	rows	are	indivisible,	unlike	the	spreadsheet,	meaning
a	row	or	record	is	treated	as	a	single	unit.	The	fields	in	each	record	are	individually
addressable	but	can	exist	outside	of	the	record.	Also,	records	are	unique;	there	cannot	be
any	duplicate	records	in	a	formally	constructed	or	normalized	database	to	use	the
appropriate	database	terminology.	I	have	created	a	simple	example	in	the	text	below	to
help	clarify	these	concepts.

Suppose	you	have	created	a	distributed,	temperature-monitoring	system	from	which
you	wish	to	log	a	series	of	temperature	sensor	readings	along	with	the	date,	time,	and
sensor	location.	A	sample	log	entry	would	consist	of	the	following:

This	would	constitute	a	sample	record	that	would	be	part	of	table	structure	that,	in
part,	makes	up	a	database.	All	databases	have	one	or	more	tables	and	each	table	has
multiple	records.	Tables	must	be	created	and	named	prior	to	use.	Also,	the	record	elements
such	as	Date	and	Time	are	table	fields	and,	as	such,	must	have	names	to	allow	data	to	be
stored	in	their	respective	fields.	For	this	example,	I	decided	to	use	the	names	as	specified
in	this	book’s	Table	1-6.

TABLE	1-6	Example	Database	Names	and	Types

NOTE	I	will	be	very	careful	in	trying	to	distinguish	between	my	book	Tables	and	database
tables	using	capital	“Tables”	for	the	book	and	lowercase	“tables”	when	referring	to
the	database	variety.

Table	1-6	is	all	that’s	needed	to	start	creating	the	database,	table,	and	fields.	I	have
created	the	database	schema	using	database	parlance.	Admittedly,	it	is	very	simple	but	it’s
all	that’s	needed	for	this	example.

The	following	command	should	be	entered	at	the	mysql	prompt	to	create	the
database:

CREATE	DATABASE	test;	

The	semicolon	is	very	important	for	MySQL	commands	as	it	indicates	the	end	of	the
command	sequence.	Neglecting	to	add	it	will	cause	an	error	or	prevent	the	desired
command	from	being	executed.	I	also	want	to	mention	that	commands	can	extend	over
several	lines.	You	will	notice	that	you	are	in	line	continuation	mode	when	the	mysql>
prompt	changes	to	an	indented	→	symbol.	Just	remember	to	always	end	the	command
sequence	with	a	semicolon	or	\g	(backslash	g).

You	should	also	have	noted	that	the	CREATE	DATABASE	command	is	capitalized.	This
format	signifies	that	it	is	an	SQL	command.	Traditionally,	all	SQL	commands,	whether
issued	in	the	command	shell	or	done	programmatically,	are	capitalized.	The	MySQL

program	doesn’t	distinguish	between	capitalized	and	lowercase	commands	but	other	SQL
programs	are	more	strict.	I	will	follow	the	standard	format	and	capitalize	any	SQL
command.

The	next	command	instructs	MySQL	to	use	the	database	that	was	just	created:

USE	test;	

There	could	be	several	databases	that	were	already	created	in	the	MySQL	“library.”	It
is	important	that	the	desired	database	be	used,	which	is	the	reason	for	this	command.

Next,	the	table	to	store	the	temperature	data	needs	to	be	created.	The	table	and	all	the
associated	fields	for	that	table	are	created	using	this	single	command:

CREATE	TABLE	tempData	(ttdate	DATE,	ttime	TIME,

tloc	TEXT,	temperature	NUMERIC);	

Use	the	following	command	if	you	wish	to	check	if	the	table	and	fields	were	properly
created:

SHOW	TABLES;	

Figure	1-28	shows	the	results	of	this	command.

FIGURE	1-28	SHOW	TABLES	command	screenshot

This	figure	shows	not	only	the	field	names	and	data	types	associated	with	the	fields
but	also	whether	or	not	Null	values	will	be	accepted	for	a	field	entry	when	a	record	is
inputted.	There	must	be	a	YES	in	the	field’s	NULL	column	to	allow	for	a	missing	data	value
or	the	record	will	not	be	entered	into	the	table.	Whether	or	not	to	accept	partial	data
records	is	an	important	decision,	which	should	be	made	on	a	case-by-case	basis	depending
on	the	nature	of	the	data	logging	that	is	desired.	The	figure	also	indicates	if	a	default	value

should	be	entered	in	case	there	is	no	actual	value	present	in	the	input	record.	Usually	this
is	not	needed	as	such	a	situation	is	more	easily	handled	programmatically.

I	next	used	INSERT	statements	to	manually	enter	three	records	into	the	tempData
table.	The	following	is	an	example	of	one	of	these	INSERT	statements:

INSERT	INTO	tempData	(tdate,	ttime,	tloc,	temperature)

VALUES	(DATE(‘2014-02-20’),	TIME(‘13:42:50’),	‘Building	10’,	21);

Observing	the	length	of	this	statement	makes	one	appreciate	the	usefulness	of	the	line
continuation	prompts	that	automatically	appear	in	the	MySQL	shell.	The	statement	really
isn’t	all	that	complex	when	you	break	it	into	the	major	parts,	as	I	have	done	here:

•			INSERT	INTO	The	SQL	command	to	insert	what	follows	into	a	record	for	the
specified	table.
•			tempData	The	specified	table.	Remember	that	I	earlier	issued	the	command
USE	test;	to	specify	the	database	that	contains	the	tempData	table.
•			(tdate,	ttime,	tloc,	temperature)	The	fields	that	you	wish	to	provide
data	for	or	“populate.”	You	may	skip	one	or	more	fields	if	Null	values	are
permitted,	as	discussed	previously.
•			VALUES	The	SQL	expression	that	indicates	that	the	data	follows.	It	is
important	to	provide	a	matching	number	of	data	values	and	types	to	those
specified	after	the	table	name.	Don’t	enter	TEXT	if	you	specified	a	NUMERIC
type.
•			DATE(‘2014-02-20’)	This	value	entry	takes	advantage	of	the	built-in	MySQL
DATE	function,	which	converts	a	string	into	a	DATE	data	type.	There	are	two
acceptable	string	formats,	YYYY-MM-DD	and	YY-MM-DD.
•			TIME(‘13:40:45’)	This	value	entry	takes	advantage	of	the	built-in	MySQL
TIME	function,	which	converts	a	string	into	a	TIME	data	type.	The	acceptable
string	format	is	HH:MM:SS.
•			‘Building	10’	A	string	indicating	the	data	sensor	location.
•			21	The	numeric	temperature	value	in	°C.

I	entered	two	additional	values	after	this	initial	one	and	I	took	advantage	of	a	real
time	saver	for	MySQL	shell	data	entry.	Just	press	the	↑	(up	arrow)	key	to	retrieve	the	last
command	entered,	which	allows	you	to	edit	it	with	the	new	data.	You	can	repeatedly	press
either	the	up	or	down	arrow	keys	and	quickly	scan	the	total	MySQL	command	history
buffer.	I	highly	recommend	this	time-saving	tip.	In	fact,	this	also	works	for	the	Linux
command	line	buffer.	I	use	these	keys	all	the	time.

Figure	1-29	shows	the	three	data	records	that	were	manually	entered	using	the
INSERT	INTO	command.

FIGURE	1-29	tempData	table	with	three	records

But	take	heart—all	the	book	projects	use	a	program	to	enter	data	and	you	will	not
have	to	manually	enter	any	data	unless	you	wish	to	edit	a	record.

I	don’t	want	to	leave	this	section	without	showing	you	how	to	delete	data.	Simply	use
the	following	command	to	delete	all	the	records	from	the	tempData	table:

DELETE	FROM	tempData;

Be	cautious	as	this	is	a	powerful	command	that	will	irretrievably	delete	all	the	data
records.	There	is	no	recourse	unless	you	have	separately	backed	up	the	data.	Also,	realize
that	the	tempData	table	schema	is	not	affected	by	this	command.	All	the	field	names	and
associated	specifications	remain	intact.	Figure	1-30	shows	the	results	of	removing	all	the
data	from	the	tempData	table.

FIGURE	1-30	tempData	table	contents	after	the	DELETE	FROM	command

If	you	wish	to	remove	only	certain	select	records,	you	can	use	what	is	known	as	a
“where_clause”.	For	the	preceding	example,	suppose	I	wanted	to	delete	only	the	records
from	Building	12.	I	would	rewrite	the	DELETE	command	as	follows:

DELETE	FROM	tempData	WHERE	tloc=‘Building	12’;

I	applied	this	command	to	the	tempData	table	after	I	restored	the	three	records	using
the	buffer	key	hint	I	gave	previously.	Figure	1-31	shows	the	result	where	the	record
containing	the	tloc	field	value	of	“Building	12”	was	deleted.	Actually,	all	records	that
contained	that	value	would	have	been	deleted	if	there	had	been	multiple	records	with	that
field	value.

FIGURE	1-31	tempData	table	after	the	DELETE	FROM	with	a	where_clause	command

The	where_clause	is	a	very	valuable	tool	that	can	be	applied	to	most	of	the	MySQL
commands.	If	you	study	Figure	1-31	carefully,	you	will	see	where	I	used	the	clause	to
simply	display	the	desired	record	with	a	SELECT	command.	Applying	selective	operations
to	table	records	is	a	key	database	manipulative	element	that	you	should	find	very	handy,
especially	with	large	datasets.

Adding	a	New	User	to	a	MySQL	Database

Up	until	now,	I	have	been	logging	into	the	MySQL	as	“root”	using	the	following
command:

mysql	-u	root	–p	

This	is	not	a	very	good	practice	especially	if	the	database	will	be	made	available	to
others.	I	will	now	show	you	how	easy	it	is	to	create	new	users	and	have	them	attached	to
specific	databases.	This	is	a	very	nice	way	to	allow	different	users	to	access	only	the
databases	they	need	to	access.	Now	you	have	the	ability	to	maintain	many	databases	and
select	which	users	should	have	access	to	each	one.

You	must	first	log	in	as	root	to	have	the	privileges	to	create	new	users.	Use	the	login
command	shown	in	the	preceding	code.	Suppose	there	is	a	new	user	named	tester1	who
needs	access	to	the	test	database.	Enter	the	following	command	to	create	the	user	in
MySQL	and	allow	access	only	to	the	test	database:

CREATE	USER	‘tester1’	IDENTIFIED	BY	‘password’;	

Of	course,	I	have	purposefully	used	the	worst	password	known—“password”—but
this	is	only	to	keep	it	simple.	You	must	next	grant	this	new	user	privileges	in	order	to
perform	operations	on	the	target	database.	You	do	this	with	the	following	command:

GRANT	ALL	PRIVILEGES	ON	test.*	TO	‘tester1’;	

Notice	the	command	element	test.*,	which	tells	MySQL	that	the	user	tester1	only
has	access	to	all	components	of	the	test	database	and	no	others.	However,	the	user	can
perform	all	MySQL	commands	without	restriction	on	that	database.

Next	you	should	issue	the	following	command:

FLUSH	PRIVILEGES;	

This	forces	the	MySQL	grant	table,	which	holds	all	user	privileges,	to	reload,	thus
saving	the	new	privileges	that	you	just	established	for	the	user	tester1.	Next,	quit	MySQL
so	you	may	log	in	as	tester1.

quit;	

Now	log	in	to	MySQL	as	tester1	with	this	command:

mysql	–u	tester1	–p	

You	will	now	be	asked	for	tester1’s	password,	which	I	just	gave	you.	You	will	be	at
the	mysql	>	prompt	from	which	you	can	enter	all	the	commands,	as	you	did	for	user
“root.”

Being	a	naturally	curious	individual,	I	decided	to	confirm	whether	or	not	the	tester1
user	was	only	confined	to	the	test	database	and	had	no	access	to	any	other	one.	I	quit	the
MySQL	application	and	logged	in	as	root.	This	time	I	created	a	null	database	named	test1.
A	null	database,	as	the	name	implies,	has	no	content.	I	then	quit	the	application,	logged	in
again	as	the	tester1	user,	and	tried	the	USE	test1;	command	to	try	to	switch	from	the	test
database	to	the	newly	instantiated	test1	database.	Figure	1-32	shows	the	resultant	error
message	confirming	that	MySQL	will	not	allow	a	non-root	user	into	any	database	other
than	one	it	is	registered	to.

FIGURE	1-32	tester	1	error	message

This	last	error	check	ends	this	section	and	chapter.	In	the	next	chapter,	I	demonstrate
how	to	remotely	connect	with	a	database	as	well	as	many	other	interesting	and	related
topics.

Summary
This	chapter	began	with	a	brief	overview	of	what	makes	up	the	Internet	of	Things,	or

IoT.	I	listed	the	platforms	and	software	that	I	use	in	the	book	projects	to	demonstrate	how
to	build	simple,	but	effective,	IoT	projects.

The	next	section	introduced	the	Raspberry	Pi	(hereafter	referred	to	as	the	Pi)	as	the
first	platform	to	host	an	IoT	project.	I	very	briefly	reviewed	what	makes	up	the	Pi	and
went	into	some	depth	about	the	general	purpose	Input/Output	(GPIO)	pins	as	that	will	be
the	way	real-world	sensors	connect	with	the	Pi.

The	next	part	of	the	chapter	dealt	with	how	to	set	up	a	standalone	Pi	workstation.	The
key	to	Pi	operations	is	a	properly	configured	SD	card	that	stores	the	operating	system	(OS)
as	well	as	all	applications	and	data.	I	first	showed	you	how	to	use	NOOBS	(New	Out	Of
Box	Software)	to	set	up	the	SD	card.	NOOBS	is	a	relatively	new	means	of	providing
several	Linux	distributions	to	the	Pi	community.	I	followed	that	with	a	discussion	on	how
to	implement	the	older	and	more	traditional	method	of	using	a	raw	image	to	create	the	SD
card.

The	next	section	dealt	with	headless	operation	where	the	Pi	is	controlled	over	a
network.	There	are	two	variants	on	headless	operations,	one	that	provides	only	text	or
command	line	operations	and	another	that	supports	a	full	graphical	user	interface	(GUI).	I
first	showed	you	how	to	use	the	PuTTY	application	on	a	client	Windows	machine.	You
learned	that	SSH	is	the	underlying	communication	protocol	that	PuTTY	uses	along	with
the	SSH	server	software	installed	on	the	Pi.	This	configuration	is	the	text-only	means	to
implement	Pi	remote	control.	SSH	is	a	non-graphical	application	that	allows	you	to
control	the	Pi	over	a	network	using	only	a	command	line	interface.	I	next	showed	you	how
to	install	the	virtual	network	communication	(VNC)	software	on	both	the	Pi	and	the	client
Windows	machine.	The	actual	software	suite	is	known	as	TightVNC,	and	it	provides	a
complete,	remote	Pi	graphical	desktop.

The	chapter	discussion	next	moved	to	the	LAMP	project.	LAMP	is	short	for	Linux,
Apache,	MySQL,	and	Perl/PHP/Python.	I	used	the	LAMP	project	as	an	introduction	to
how	an	IoT	platform	can	both	host	a	website	and	provide	data	storage	using	a	highly
capable	relational	database	named	MySQL.

The	Linux	portion	of	LAMP	was	already	covered	in	the	beginning	of	the	chapter.	I
showed	how	to	install	the	Apache	web	server	along	with	the	PHP	programming	language.
I	created	two	PHP	scripts	and	executed	them	to	demonstrate	that	both	Apache	and	PHP
worked	as	they	should.

The	MySQL	relational	database	was	installed	next.	I	provided	some	basic
background	on	what	makes	a	database	and	how	to	properly	create	one	and	populate	it	with
some	sample	data.	I	also	covered	various	commands	that	manipulate	database	tables,
along	with	the	records	that	constitute	the	tables.

I	ended	the	chapter	with	a	discussion	on	how	to	add	a	new	user	to	a	MySQL
database,	which	will	be	necessary	for	the	projects	that	follow.

2
CHAPTER

Home	Temperature	Monitoring	System
The	project	in	this	chapter	walks	you	through	the	steps	in	building	a	home	temperature

monitoring	system	that	is	controlled	by	a	Pi,	which	can	be	accessed	from	anywhere	there
is	an	active	Internet	connection.	I	will	also	show	you	two	ways	to	create	the	worldwide
access,	each	with	its	own	advantages	and	disadvantages.

There	are	many	components	to	this	project,	including	building	the	sensor	network,
programming	the	Pi,	standing	up	a	MySQL	database,	and	establishing	the	Internet
connectivity.	I	will	separately	discuss	each	component	and	provide	clear	steps	on	how	to
proceed;	I	will	also	cover	some	of	the	theory	behind	the	technology	used	in	that	step.	Let’s
begin	with	the	hardware.

Temperature	Sensor	Network
Figure	2-1	shows	a	block	diagram	of	the	system	with	three	sensors	that	are	connected

using	wires	to	an	interface	block	that	in	turn	connects	to	the	Pi.

FIGURE	2-1	Temperature	monitoring	system	block	diagram

Wires	were	used	in	the	first	system	design	to	simplify	both	the	hardware	and	software
designs.	This	was	a	deliberate	decision	on	my	part	in	order	to	focus	on	creating	a
successful	sensor	system	without	being	concerned	with	the	potential	difficulties	that	often
arise	when	using	wireless	sensors.	Don’t	be	too	concerned	that	I	am	not	using	wireless
sensors	as	I	do	show	you	how	to	use	this	type	of	sensor	connector	in	later	projects,	and
you	can	use	that	information	to	modify	this	system	if	you	so	desire.

TMP36	Temperature	Sensor
The	basic	temperature	sensor	I	will	use	in	this	project	is	an	Analog	Devices	model

TMP36,	shown	in	Figure	2-2.	It	is	housed	a	in	a	standard	TO-92	plastic	form	factor	that	is
also	common	to	most	transistors.	The	TMP36	is	far	more	complex	than	a	simple	transistor
in	that	it	contains	circuits	to	both	sense	ambient	temperature	and	convert	that	temperature
to	an	analog	voltage.	The	functional	block	diagram	is	shown	in	Figure	2-3.

FIGURE	2-2	Analog	Devices	model	TMP36	temperature	sensor

FIGURE	2-3	Model	TMP36	functional	block	diagram

The	TMP36	has	only	three	leads,	which	are	shown	in	a	bottom	view	in	Figure	2-4.

FIGURE	2-4	TMP36	bottom	view	showing	external	leads

Table	2-1	provides	details	concerning	these	three	leads,	including	important
limitations.

TABLE	2-1	TMP36	Pin	Details

The	voltage	representing	the	temperature	is	dependent	upon	the	TMP36	supply
voltage,	which	must	be	considered	when	converting	the	VOUT	voltage	to	the	equivalent
real-world	temperature.	I	do	account	for	this	in	the	software	that	converts	the	VOUT
voltage	to	an	actual	temperature.	See	Figure	2-5	for	a	graph	of	the	VOUT	voltage	versus
temperature	using	a	3V	supply	voltage.

FIGURE	2-5	Graph	of	VOUT	voltage	versus	temperature	for	a	+VS	=	3V

The	actual	temperature	measurement	range	for	the	TMP36	is	–40	to	+125°C	with	a
typical	accuracy	of	+/–2°C	and	0.5°C	linearity.	All	in	all,	not	too	shabby	specifications
considering	the	cost	of	the	TMP36	is	typically	less	than	$2	USD.	The	TMP36	range,
accuracy,	and	linearity	are	well	suited	for	a	home	temperature	monitoring	system.

Analog	to	Digital	Conversion
The	Pi	does	not	contain	any	means	by	which	analog	signals	can	be	processed,	as	most

readers	will	already	know.	This	means	that	some	type	of	analog	voltage	to	digital
converter	(ADC)	must	be	used	before	the	Pi	can	deal	with	the	temperature	signals.

I	used	a	Microchip	model	MCP3008,	which	is	described	in	the	Microchip	datasheet
as	a	10	bit,	SAR	ADC	with	SPI	data	output.	This	means	the	MCP3008	uses	a	Successive
Approximation	Register	(SAR)	technique	to	create	a	10-bit	digital	result	that	in	turn	is
output	in	a	serial	data	stream	using	the	serial	peripheral	interface	(SPI)	protocol,	which	is
discussed	after	the	sidebar.	The	very	inexpensive	MCP3008	ADC	chip	has	impressive
specifications	despite	its	very	low	cost.	Figure	2-6	shows	the	package	form	and	pin-out	for
this	chip.

FIGURE	2-6	MCP3008	package	form	and	pin-out

The	MCP3008	chip,	as	used	in	this	project,	is	in	a	dual-in-line	package	(DIP),	which
means	that	either	a	custom	printed	circuit	board	(PCB)	or	a	solderless	breadboard	must	be
used	for	it	to	interface	with	the	Pi.	I	discuss	how	to	connect	the	Pi	to	MCP3008	after	the
sidebar.	I	encourage	you	to	read	the	sidebar	if	you	are	interested	in	how	the	MCP3008

accomplishes	the	analog-to-digital	conversion	process.

Inner	Workings	of	the	Microchip	MCP3008	ADC
I	will	refer	to	the	MCP3008	functional	block	diagram	shown	in	Figure	2-7

throughout	the	following	discussion.

FIGURE	2-7	MCP3008	functional	block	diagram

The	analog	signal	is	first	selected	from	one	of	eight	channels	that	may	be
connected	to	the	Input	Channel	Multiplexer.	Using	one	channel	at	a	time	is	called
operating	in	a	single-ended	mode.	The	MCP3008	channels	can	be	paired	to	operate
in	a	differential	mode	if	desired.	A	single	configuration	bit	named	SGL/DIFF	selects
single-ended	or	differential	operating	modes.	Single-ended	is	the	mode	used	in	this
project.

The	selected	channel	is	then	routed	to	a	Sample	and	Hold	circuit,	which	is	one
input	to	a	Comparator.	The	other	input	to	the	Comparator	is	from	a	Digital	to	Analog
Converter	(DAC)	that	receives	its	input	from	a	10-bit	Successive	Approximation
Register	(SAR).

Basically,	the	SAR	starts	at	0	and	rapidly	increments	to	a	maximum	of	1023,

which	is	the	largest	number	that	can	be	represented	with	10	bits.	Now	each	increment
increases	the	voltage	appearing	at	the	DAC’s	comparator	input.	The	Comparator	will
trigger	when	the	DAC	voltage	precisely	equals	the	sampled	voltage,	and	this	will
stop	the	SAR	from	incrementing.	The	digital	number	that	exists	on	the	SAR	at	the
moment	the	Comparator	“trips”	is	the	ADC	value.	This	number	is	then	outputted,	one
bit	at	a	time	through	the	SPI	circuit	discussed	in	Serial	Peripheral	Interface.	All	this
takes	place	between	sample	intervals.	The	actual	voltage	represented	by	the	ADC
value	is	a	function	of	the	reference	voltage,	VREF,	connected	to	the	MCP3008.	In	this
case,	VREF	is	3.3V;	thus,	each	bit	represents	3.3÷1024	or	approximately	3.223
millivolts.	For	example,	an	ADC	value	of	500	would	represent	an	actual	voltage	of
1.612V,	which	was	computed	by	multiplying	.003223	by	500.

Serial	Peripheral	Interface
The	Serial	Peripheral	Interface	(SPI)	is	one	of	several	data	communication	channels	that

the	Pi	supports.	It	is	a	synchronous	serial	data	link	that	uses	one	master	device	and	one	or
more	slave	devices.	There	is	a	minimum	of	four	data	lines	used	with	SPI;	Table	2-2	shows
the	names	associated	with	the	master	(Pi)	and	the	slave	(MCP3008)	devices.

TABLE	2-2	SPI	Data	Line	Descriptions

There	are	usually	two	shift	registers	involved	in	the	data	link,	as	shown	in	Figure	2-8.

FIGURE	2-8	SPI	simplified	block	diagram

These	registers	may	be	hardware	or	software	depending	upon	the	devices	involved.
The	Pi	implements	its	shift	register	in	software	while	the	MCP3008	has	a	hardware	shift
register.	In	either	case,	the	two	shift	registers	form	what	is	known	as	an	inter-chip	circular
buffer	arrangement	that	is	the	heart	of	the	SPI.

Figure	2-8	is	a	simplified	block	diagram	showing	the	principal	components	used	in
an	SPI	data	link.

Data	communications	is	initiated	by	the	master	by	first	selecting	the	required	slave.
The	Pi	selects	the	MCP3008	by	bringing	the	SS	line	to	a	low	state	or	0	VDC.	During	each
clock	cycle,	the	master	sends	a	bit	to	the	slave,	which	reads	it	from	the	MOSI	line.
Concurrently,	the	slave	sends	a	bit	to	the	master,	which	reads	it	from	the	MISO	line.	This
operation	is	known	as	full	duplex	communication,	i.e.	simultaneous	reading	and	writing
between	master	and	slave.

The	clock	frequency	used	is	dependent	primarily	upon	the	slave’s	response	speed.
The	MCP3008	can	easily	handle	bit	rates	up	to	3.6	MHz	if	powered	at	5V.	Because	we	are
using	3.3V,	the	maximum	rate	is	slighty	less	at	approximately	2	MHz.	This	is	still	very
quick	and	will	process	the	Pi	input	without	losing	any	data.

The	first	clock	pulse	received	by	the	MCP3008,	with	its	CS	held	low	and	Din	high,
constitutes	the	start	bit.	The	SGL/DIFF	bit	follows	next	and	then	three	bits	that	represent
the	selected	channel(s).	After	these	five	bits	have	been	received,	the	MCP3008	will
sample	the	analog	voltage	during	the	next	clock	cycle.

The	MCP3008	then	outputs	what	is	known	as	a	low	null	bit,	which	is	disregarded	by
the	Pi.	The	following	10	bits,	each	sent	on	a	clock	cycle,	are	the	ADC	value	with	the	Most
Significant	Bit	(MSB)	sent	first	down	to	the	Least	Significant	Bit	(LSB)	sent	last.	The	Pi

will	then	put	the	MCP3008	CS	pin	high,	ending	the	ADC	process.

Connecting	and	Testing	the	MCP3008	with	the	Raspberry	Pi
The	MCP3008	is	connected	to	the	Pi	using	the	Pi	Cobbler	prototype	tool	along	with	a

solderless	breadboard.	The	Pi	Cobbler	is	available	from	a	variety	of	sources,	but	it	must	be
assembled,	which	will	require	some	soldering.	There	are	instructions	available	on	the
Adafruit	website	that	show	you,	step-by-step,	how	to	assemble	the	Pi	Cobbler.	Soldering
is	a	fun	activity	provided	you	have	the	right	equipment	and	skill.	I	recently	acquired	a
comparatively	inexpensive	digitally	controlled	soldering	workstation,	which	is	shown	in
Figure	2-9.	It	may	be	set	to	precise	temperatures	that	enable	very	nice	solder	joints	to	be
made	with	ease	and	repeatability.

FIGURE	2-9	Digital	soldering	station

Of	course,	the	station	is	only	as	effective	as	the	soldering	iron	that	connects	to	it.
Figure	2-10	shows	the	very	sharply	pointed	soldering	iron	that	came	with	the	soldering
station.	The	sharp	point	allows	for	some	very	closely	spaced	solder	joints	to	be	made
while	avoiding	those	troublesome	solder	bridges.	I	also	used	a	60/40-rosin	core	solder,
which	I	found	to	be	very	effective.	In	the	“Soldering	Tips”	sidebar,	I	provide	tips	on	how
to	create	good	solder	joints.

FIGURE	2-10	Sharp	pointed	soldering	iron

Soldering	Tips
The	key	to	quality	soldering	work	is	to	have	good	soldering	technique,	keep	the

soldering	iron	tip	clean,	and	use	the	highest	quality	solder	available.	Figure	2-11
shows	the	essence	of	good	soldering	technique.	It	is	vital	that	the	solder	joint	be	hot
enough	for	solder	to	flow	easily.	It	takes	practice	to	apply	just	the	right	amount	of
solder;	too	little	may	result	in	a	cold	solder	joint	and	too	much	could	lead	to	a	short
between	closely	spaced	components.

FIGURE	2-11	Good	soldering	technique

Another	issue	regarding	a	good	solder	joint	is	the	use	of	lead-free	solder.	Now,
don’t	get	down	on	me;	I	am	all	about	maintaining	a	healthful	environment	but	the
elimination	of	lead	from	solder	often	produces	poor	solder	joints	unless	some	extra
precautions	are	taken.	The	simplest	and	probably	the	best	approach	is	to	apply	a	high-
quality,	acid-free	solder	flux	to	the	joint	prior	to	heating	the	joint	with	the	iron.	This
will	allow	the	lead-free	solder	to	flow	more	freely	and	produce	a	better	soldered
connection.	Again,	it	takes	practice	to	perfect	soldering	techniques.

One	final	thought	that	relates	to	solder	joints	as	well	as	other	types	of	electrical
connections:	There	is	a	long	running	anecdotal	observation	that	90	percent	of	all
electrical/electronic	malfunctions	are	related	to	connection	malfunctions.	This	makes
a	lot	of	sense	when	you	think	about	it.	We	live	in	an	oxygen	rich	atmosphere	and
oxygen	is	a	great	reduction	agent;	it	wants	to	oxidize	every	element	it	can	possibly
chemically	combine	with.	Metal	oxides	are	reasonably	good	insulators	as	some	of
their	free	electrons	have	been	“taken”	up	by	oxygen	molecules.	This	leads	to	higher
and	higher	resistance	being	built	up	in	a	connection,	which	eventually	will	cause	a
failure.	Of	course,	current	flowing	through	a	resistance	produces	heat,	which	in	turn
can	cause	a	fire	if	the	currents	are	sufficiently	high.	So	what	is	the	solution?	One
expensive	solution	is	to	gold	plate	electrical	contact	surfaces.	Gold	doesn’t	oxidize
and	is	not	subject	to	this	type	of	failure.	It	is,	of	course,	very	expensive	and	not
practical	for	large	scale	connectors.	For	the	type	of	projects	that	I	work	on,	I	can	only
ensure	that	solder	joints	are	sound	from	both	a	mechanical	and	electrical	perspective.
I	also	inspect	electrical	connections	for	oxidation	and	foreign	matter	and	take
appropriate	action	to	repair	or	replace	the	component.

Initial	Test
Initial	testing	involves	both	creating	a	hardware	circuit	and	establishing	the	proper

Python	software	environment.	The	circuit	and	software	setups	discussed	in	this	chapter	are
based	in	large	part	on	the	excellent	tutorial	available	from	Matt	Hawkins’s	blog,
www.raspberrypi-spy.co.uk/tag/tmp36/,	in	which	he	discusses	both	the	MCP3008	and	the
TMP36	sensors	as	well	as	the	Python	software.

Hardware	Setup
I	will	first	discuss	the	hardware	circuit	as	that	is	relatively	straightforward.	Figure	2-12

http://www.raspberrypi-spy.co.uk/tag/tmp36

shows	the	test	schematic	for	the	Pi	Cobbler,	MCP3008,	and	TMP36.	I	connected	the
TMP36	Vout	lead	to	the	MCP3008	Channel	0	input,	which	is	pin	1.	The	actual	physical
setup	is	shown	in	Figure	2-13.

FIGURE	2-12	Test	schematic

FIGURE	2-13	Physical	test	setup

On	the	left	side	of	the	breadboard,	you	can	see	the	TMP36	sensor	connected	with
three	jumper	wires	to	the	breadboard.	Incidentally,	I	find	using	commercial	jumper	wires
very	useful	and	more	reliable	than	using	homemade	jumpers	constructed	from	hookup
wire.	There	is	almost	nothing	more	frustrating	than	finding	that	a	poor	wiring	connection
due	to	a	broken	jumper	wire	was	responsible	for	a	non-functioning	circuit.	Besides,	a	set
of	jumper	wires	is	quite	inexpensive	and	lends	a	professional	look	to	your	project.

The	hardware	setup	should	proceed	very	quickly	and	the	next	portion	of	the	test
concerns	the	software.

Software	Setup
The	SPI	hardware	circuits	that	are	part	of	the	Pi	must	be	enabled	before	executing	any

code	that	relies	on	those	circuits.	Initially	you	should	check	to	determine	if	the	native	SPI
device	is	available.	Enter	the	following	command	at	a	terminal	window	command	prompt
and	check	to	see	if	there	is	an	“spi_bcm2708”	in	the	list	that	is	displayed.

lsmod	

If	there	is,	skip	the	next	procedure	or	else	edit	the	raspi-blacklist.conf	as	follows:

1.	Enter	sudo	nano/etc/modprobe.d/raspi-blacklist.conf.
2.	Add	the	#	symbol	in	front	of	the	line	spi-bcm2708.
3.	Use	CTRL-O	to	save	and	CTRL-X	to	exit	the	nano	editor.
4.	Reboot	the	Pi	by	entering	sudo	reboot.

Try	the	lsmod	command	again	and	you	should	see	the	spi-bcm2708	device	listed.

You	now	need	to	load	the	Python	libraries	that	will	allow	programs	to	be	run	by	the	SPI
circuits	you	just	enabled	using	the	following	steps:

1.	Install	the	Python	development	libraries	by	entering	the	following:
sudo	apt-get	install	python-dev	

2.	After	the	install	finishes,	you	need	to	create	a	special	directory	in	which	to
create	and	run	the	SPI	Python	programs.	From	the	Home	directory,	which
should	be	at	/home/pi,	enter	the	following:

mkdir	py-spidev	
3.	Change	into	the	newly	created	directory:

cd	py-spidev	
4.	Now	download	a	Python	script,	which	will	automatically	create	the	necessary
SPI	development	environment:

sudo	wget	https://raw.github.com/doceme/py-

spidev/master/setup.py	
5.	Download	an	additional	file,	which	is	required	before	the	setup	can	begin:

sudo	wget	https://raw.github.com/doceme/py-

spidev/master/spidev_module.c	
6.	Run	the	script	and	create	the	SPI	development	environment	by	entering	the
following:

sudo	python	setup.py	install	

The	following	test	program	displays	a	continuous	stream	of	temperature	values
generated	by	the	TMP36	sensor.	The	program	is	named	SingleSensorTest.py	and	is
available	for	download	on	this	book’s	companion	website.	The	code	follows	the	MCP3008
ADC	configuration	guidelines	and	SPI	protocols	as	discussed	previously.

Run	the	preceding	program	by	entering	the	following:

sudo	python	SingleSensorTest,	py	

Figure	2-14	is	a	screenshot	of	a	portion	of	the	program	output	with	the	TMP36	sensor
measuring	ambient	room	temperature.

FIGURE	2-14	Initial	test	results

I	put	a	comment	in	the	code	listing	explaining	that	I	needed	to	adjust	a	constant	in	the
temperature	conversion	function	from	the	original	330	value	to	a	358	value.	I	did	this
because	the	MCP3008	chip	was	reporting	a	voltage	of	0.68	while	the	real	voltage	as
measured	with	a	digital	voltmeter	was	approximately	0.74V.	This	caused	the	temperature

to	be	underreported	by	approximately	5°C.	I	also	used	a	non-contact,	precision	infrared
temperature	meter	to	measure	the	real	temperature.	By	adjusting	the	constant,	I	forced	the
function	to	calculate	the	correct	temperature.	I	do	not	know	why	the	MCP3008	chip	was
not	accurately	converting	the	TMP36	Vout	but	I	did	confirm	that	the	error	was	linear	and
constant,	thus	easily	corrected	in	the	conversion	formula.	I	also	tried	another	MCP3008
chip	and	observed	the	same	behavior	so	I	concluded	the	error	must	be	related	to	the
sampling	function.	Mr.	Hawkins	discusses	it	in	his	blog,	so	I’ll	refer	you	there	for	further
investigation.

Multiple	Sensor	System
It	is	time	to	build	a	three-channel	system	now	that	the	single-channel	test	has	proven

that	the	ADC	and	sensor	and	supporting	software	function	as	expected.	I	will	still	use	a
wired	system,	as	mentioned	earlier	in	the	chapter,	because	it	simplifies	the	design	and
allows	the	focus	to	be	on	the	sensors,	ADC,	and	software.	However,	I	did	that	to	make	the
connections	quick,	easy,	and	flexible.	For	these	same	reasons,	I	chose	RJ45	cables	and
connectors	for	the	wiring	component.	I	did	find	that	an	RJ45	breakout	board	from
Sparkfun,	along	with	a	companion	connector,	makes	the	cable	and	sensor	connections
quite	easy	and	convenient.	The	connector	and	breakout	board	are	shown	in	Figure	2-15,
along	with	the	Sparkfun	model	numbers.

FIGURE	2-15	Sparkfun	RJ45	breakout	board	and	connector

You	must	first	push	the	connector	onto	the	board	and	then	carefully	solder	all	eight	of
the	PCB	pins.	Note	that	there	is	only	one	way	the	connector	can	be	attached	to	the	board,
which	is	shown	in	Figure	2-16.

FIGURE	2-16	RJ45	connector	attached	to	a	breakout	board

Next,	take	three	of	the	boards	and	attach	a	row	of	single	header	pins,	which	will
allow	the	boards	to	be	directly	plugged	into	a	solderless	breadboard.	Figure	2-17	shows
one	of	these	boards	with	the	pins	attached.	The	other	three	boards	have	a	TMP36	sensor
directly	attached	to	them,	as	shown	in	Figure	2-18.	Ensure	you	solder	the	sensor	to	the	left

side	breakout	board	pins	with	the	sensor’s	flat	side	pointing	up,	as	shown	in	the	figure.

FIGURE	2-17	RJ45	board	with	attached	header	pins

FIGURE	2-18	RJ45	board	with	an	attached	TMP36	sensor

You	will	now	need	the	interconnecting	RJ45	cables,	which	may	be	bought	or	made.	I
would	suggest	that	you	purchase	them	if	you	do	not	have	any	experience	in	making	up	this
cable	type.	It	does	require	a	special	tool	along	with	the	Cat	5	or	Cat	6	cable	and	ready-to-
assemble	snap-on	connectors.	The	cable	lengths	depend	upon	the	spacing	between	sensor
locations	and	the	Pi’s	location.	I	used	three	six-foot	cables	for	my	setup	as	it	was	a
temporary	demonstration	system	and	not	a	permanent	one.	However,	I	did	find	that	there
is	a	tremendous	difference	in	cable	quality	where	one	cable	would	reduce	the	output
voltage	by	16	mV	while	another	would	hardly	have	any	effect.	A	16	mV	drop	would	cause

the	temperature	to	be	measured	2°C	less	than	the	real	temperature.	The	drop	in	voltage	is
likely	due	to	the	very	limited	output	current	capacity	of	the	TMP36	sensor	along	with	the
variability	on	how	cables	are	manufactured—some	with	greater	capacitance	and	inductive
loading	than	others.	I	did	check	the	TMP36’s	manufacturer’s	datasheet	where	the	limited
current	capacity	was	acknowledged.	There	is	a	circuit	in	the	datasheet	shown	in	Figure	2-
19	that	will	boost	the	current	level	to	a	full-scale	maximum	of	2	mA,	which	should	be
more	than	sufficient	to	drive	any	cable	attached	to	the	sensor.

FIGURE	2-19	TMP36	current	boost	circuit

Instead	of	building	the	boost	circuit,	I	found	it	simpler	just	to	sort	through	all	my
spare	RJ45	patch	cables	until	I	found	three	that	did	not	significantly	affect	the	sensor.

However,	the	current	boost	circuit	is	likely	essential	if	you	plan	on	setting	up	a	long	cable
run	of	more	than	10	feet.	The	complete	system	schematic	is	shown	in	Figure	2-20.	It	is	the
same	as	the	Figure	2-12	schematic	with	two	additional	sensors	connected	to	the	MCP3008
channels	1	and	2.	The	physical	setup	with	the	Pi	is	shown	in	Figure	2-21.	Notice	how	I
arranged	the	RJ45	connectors	on	the	breadboard	for	easy	hookup	and	cable	attachment.
This	completes	the	system	hardware	configuration	and	it	is	time	to	focus	on	expanding	the
software	to	accommodate	two	additional	sensors.

FIGURE	2-20	Complete	system	schematic

FIGURE	2-21	Physical	system	arrangement

Multiple	Sensor	Software
The	software	controlling	the	multiple	sensor	system	is	essentially	the	same	as	the	single

sensor	version	except	for	the	two	additional	sensors.	However,	the	program	will	be	revised
to	display	the	date,	time,	and	channel	number	as	well	as	the	temperature.	I	also	do	not
display	the	temp_level	or	temp_volts	variables	in	this	version.	All	the	new	data	will
eventually	be	required	for	the	database	version	that	follows	later	in	the	chapter.	In
addition,	I	still	“hard	code”	the	temperature	channels	in	to	the	program,	i.e.,	channel	0	is
sensor	1,	channel	1	is	sensor	2,	and	channel	2	is	sensor	3.	I	recognize	that	this	limits	the

program’s	flexibility	but	in	the	interests	of	simplicity	I	don’t	believe	it	is	too	much	of	a
compromise.	I	also	doubled	the	delay	time	to	reduce	the	data	flow	a	bit.

The	new	program	is	named	MultipleSensorTest.py	and	is	available	on	the	book’s
companion	website.	A	sample	program	display	is	shown	in	Figure	2-22.

FIGURE	2-22	Sample	display	from	the	MultipleSensorTest.py	program

I	also	wanted	to	point	out	that	I	deliberately	chose	not	to	use	iteration	to	sample	and
display	all	the	sensors	as	there	were	only	three	sensors	and	the	memory	saved	was	not	as
important	to	me	as	the	program	efficiency	gained	by	“unrolling”	the	loops.	I	would
definitely	use	loops	if	five	or	more	sensors	were	utilized	as	the	program	would	otherwise

become	quite	large	and	tedious	to	enter.

I	will	now	change	focus	slightly	and	discuss	how	to	create	a	database	to	store	the
temperature	data	for	eventual	retrieval	using	a	web	browser.

Temperature	Database
I	will	be	using	the	concepts	and	procedures	I	previously	discussed	in	Chapter	1	to	set	up

a	new	database	to	store	the	temperature	data	generated	by	the	three-sensor	system.	The
test	database	structure	will	mostly	be	used	as	a	template	for	the	new	database	with	some
modifications.	I	will	also	set	up	a	new	user	for	this	database	as	it	would	be	a	serious
security	issue	to	allow	root	access	to	a	database	that	is	also	accessible	via	a	web	browser.

The	new	database	is	named	HomeTempSystem	and	will	have	two	tables	in	it	named
sensorTemp	and	channelLocation.	The	channelLocation	table	will	enable	a	convenient
method	of	describing	a	sensor’s	location	and	will	enable	you	to	change	the	sensor	as
needed.	The	schema	or	structure	for	the	sensorTemp	table	is	shown	in	Table	2-3.

TABLE	2-3	sensorTemp	Table	Structure

The	“id”	is	a	new	addition	in	the	field	listing	as	compared	to	the	original	test	database
and	it	is	described	as	a	Primary	key.	This	is	an	important	designation	as	there	cannot	be
any	duplicate	records	contained	in	any	relational	database	table.	The	id	field	is	simply	an
integer	that	is	automatically	incremented	every	time	a	new	record	is	added.	I	will	not
explicitly	use	the	id	field	in	this	project	but	it	is	a	good	security	feature	that	ensures	that
only	unique	records	are	inserted	into	the	table.	However,	I	will	use	a	combination	of	the
tdate,	ttime,	and	tchan	fields	to	retrieve	any	desired	temperature	data.	Incidentally,	auto-
incrementing	keys	are	a	very	efficient	and	fast	means	to	retrieve	large	data	sets	from	a

database	in	lieu	of	combination	field	lookups.

The	channelLocation	table’s	schema	is	detailed	in	Table	2-4.	It	is	much	simpler	than
the	previous	one	as	it	has	only	two	fields	where	the	tchan	field	serves	as	the	primary	key
and	the	tloc	field	is	used	to	store	the	text	data	describing	where	the	particular	sensor	is	set
up.

TABLE	2-4	channelLocation	Table	Structure

To	create	the	database	and	tables,	you	must	follow	the	following	steps:

1.	Start	the	MySQL	program	by	entering	the	following:
mysql	–u	root	–p	

2.	Enter	the	password	you	created	when	you	first	installed	MySQL,	as	discussed
in	the	previous	chapter.
3.	Create	an	empty	database	named	HomeTempSystem	by	entering	the
following:

CREATE	DATABASE	HomeTempSystem;	
4.	Switch	over	to	the	new	database:

USE	HomeTempSystem;	
5.	Create	the	sensorTemp	table	containing	all	of	the	fields,	as	detailed	in	Table
2-3:

CREATE	TABLE	sensorTemp	(id	MEDIUMINT	AUTO_INCREMENT,

tdate	DATE	NOT	NULL,	ttime	TIME	NOT	NULL,	tchan	NUMERIC	NOT

NULL,

ttemp	NUMERIC	NOT	NULL,	PRIMARY	KEY(id))	ENGINE=MyISAM;	
All	the	fields	have	been	designated	as	NOT	NULL,	which	means	that	a

proper	value	has	to	be	present	or	else	the	record	will	not	be	entered	into	the
table.	It	is	another	means	to	ensure	the	table	is	not	populated	with	garbage
data.

6.	Create	the	channelLocation	table	containing	the	two	fields,	as	detailed	in
Table	2-4

CREATE	TABLE	channelLocation(tchan	NUMERIC	NOT	NULL,	tloc

TEXT,	

PRIMARY	KEY(tchan));	

Note	that	the	tchan	field	must	match	the	field	description	as	specified	in	the
sensorTemp	table.	This	is	necessary	because	this	field	is	the	logical	link	between	the	two
tables.	It	is	the	primary	key	in	the	channelLocation	table	and	is	also	known	as	a	foreign
key	in	the	sensorTemp	table.	This	arrangement	is	very	useful	given	that	the	channel
numbers	are	repeated	many	times	in	the	sensorTemp	table	but	only	one	instance	of	a	text
channel	description	is	needed	as	the	tchan	field	links	the	two.	This	table	linkage	is	one	of
the	most	valuable	features	of	relational	databases.	I	provide	a	concrete	example	of	this
feature	later	in	this	chapter.

The	channelLocation	table	should	have	data	manually	inserted	into	it	as	data	will
not	be	programmatically	inserted.	This	type	of	data	is	considered	static	and	unchanging
and	is	normally	provided	for	descriptive	purposes,	in	this	case,	just	the	text	locations
where	the	sensors	are	located.	I	used	three	INSERT	statements	to	manually	populate	the
table,	one	of	which	is

INSERT	INTO	channelLocation	(tchan,	tloc)	VALUES	(‘0’,	‘kitchen’);

You	will	readily	see	the	other	two	locations	from	the	SELECT	figures	shown	when	I
discuss	the	ViewRecords	program	later	in	the	chapter.

Next,	a	new	user	must	be	created	for	the	security	reasons	mentioned	earlier.	I	named
the	new	user	“TempUser1,”	but	it	could	be	any	name	that	suits	your	purposes	or	needs.
This	new	user	will	have	complete	read	and	write	privileges	to	only	the	HomeTempSystem
database	and	to	no	others.	Enter	the	following	to	first	set	up	this	user:

CREATE	USER	‘TempUser1’	IDENTIFIED	BY	‘Px158qqr’;	

Note	that	a	new	password	must	be	added	for	this	user,	as	shown	in	the	preceding
command.	You	now	need	to	associate	this	new	user	to	the	designated	database	by	entering
the	following:

GRANT	ALL	PRIVILEGES	ON	HomeTempSystem.*	TO	‘TempUser1’;	

Finally,	you	need	to	execute	the	following	command	to	actually	set	up	the	user’s
privileges,	as	discussed	in	Chapter	1:

FLUSH	PRIVILEGES;	

The	last	command	completes	the	new	database	setup	along	with	the	new	tables	and
user.	You	should	next	close	the	MySQL	program	by	entering:

EXIT;	

You	can	now	optionally	test	the	new	database	by	following	the	procedures	detailed	in
the	previous	chapter.	However,	I	will	now	proceed	to	demonstrate	how	to	populate	the
table	programmatically	using	a	Python	connection	and	the	data	generated	by	the
MultipleSensorTest	program.

Python	Database	Connection

An	open-source	Python	package	named	python-mysqldb	contains	all	the	libraries
necessary	to	establish	connectivity	between	a	Python	program	(script)	and	a	MySQL
database.	You	will	need	to	install	the	package	by	entering	this	command:

sudo	apt-get	install	python-mysqldb	

Next,	you	should	create	a	test	program	named	mysqlTest.py	to	confirm	that	the
Python-to-MySQL	connection	works.	Enter	the	following	to	start	the	nano	editor	and	then
enter	the	code,	which	follows	the	command.	This	code	is	also	available	on	the	book’s
companion	website.

NOTE	I	used	the	test	database	created	at	the	root	level	in	Chapter	1	for	this	test.	It	was
quick	and	convenient,	and	it	already	had	some	sample	data	in	the	tempData	table.	I
also	logged	in	as	the	tester1	user,	which	I	had	previously	added	to	the	database.

Execute	the	mysqlTest.py	program	by	entering	the	following	at	the	command	line:

sudo	python	mysqlTest.py	

Figure	2-23	shows	the	resulting	display	after	the	program	is	run.	All	three	records
that	were	previously	manually	entered	are	displayed,	one	record	at	a	time.

FIGURE	2-23	mysqlTest	program	results

Running	this	program	has	demonstrated	how	relatively	easy	it	is	to	instantiate	a
MySQL	database	connection	to	a	Python	application	and	retrieve	the	data	records.	The
next	step	in	developing	the	web-based	multiple	sensor	application	is	to	show	how	to
programmatically	insert	values	into	a	MySQL	database.

Inserting	Data	into	a	MySQL	Database	Using	a	Program
I	will	demonstrate	how	to	insert	data	into	the	HomeTempData	database	by	modifying

the	MultipleSensorTest.py	program.	You	must	have	already	created	the	database	and	table
as	well	as	added	the	new	TempUser1	with	the	associated	password,	as	shown	in	the
previous	section.

The	program	modifications	consist	of:

•			Establishing	a	database	connection
•			Adding	SQL	statements	to	INSERT	temperature	data	into	the
HomeTempSystem	database
•			Removing	the	console	display	statements
•			Removing	the	channel	number	check
•			Removing	the	data-to-voltage-level	function
•			Removing	the	comments	ADC/Temp/Volts	table
•			Extending	the	delay	between	measurements	to	60	seconds

I	also	renamed	the	modified	program	SensorDatabase.py.	It	is	available	on	the	book’s
companion	website.

This	program	inserts	the	three	sensors	data	directly	into	the	HomeTempData
database.	It	also	inserts	a	date	and	time	stamp	that	indicates	when	the	measurements	were
taken.

There	is	a	hidden	problem	with	the	preceding	program	in	that	it	will	continue	to	run
without	any	programmed	way	of	stopping	it	until	there	is	no	more	room	for	database
records	to	be	added.	Such	a	situation	would	likely	crash	the	Pi’s	OS.	However,	if	each
record	is	about	100	bytes	in	length,	I	estimate	it	would	take	over	six	years	to	fill-up	1GB
of	memory.	I	therefore	have	no	problem	in	doing	a	CTRL-C	to	manually	interrupt	the
program	given	this	long	time	before	calamity	strikes.	The	worst	that	would	happen	is	to
corrupt	one	data	record,	which	is	quite	acceptable	during	the	development	phase.

To	run	the	program,	first	ensure	that	the	multiple	sensor	system	is	attached	and	all	the
sensors	are	deployed	as	you	want	them	to	be	placed.	Next,	enter	the	following	command
to	start	the	logging	of	temperatures	to	the	MySQL	database:

sudo	python	SensorDatabase.py	

You	should	now	see	a	countdown	timer	near	the	command	prompt	indicating	that	the
program	is	running.	This	is	really	just	a	trivial	add-on	that	is	non-functional	other	than	to
indicate	the	program	is	running.	I	wanted	to	avoid	the	situation	where	the	prompt	simply
disappeared	and	there	was	no	indication	of	any	activity.	Let	the	program	run	for	at	least	30
minutes	to	build	up	a	fair	number	of	records	before	stopping	it	with	the	CTRL-C
combination	key	press.

You	can	now	start	the	MySQL	program	and	look	at	the	records	generated	by	entering
the	following	SQL	command	at	the	mysql	prompt:

SELECT	*	FROM	sensorTemp;	

Figure	2-24	shows	a	portion	of	the	sensorTemp	table	results	after	I	entered	the
preceding	command.

FIGURE	2-24	Portion	of	sensorTemp	records	created	by	the	SensorDatabase	program

You	can	also	view	the	records	by	running	the	following	program,	ViewRecords.py.	It
is	also	available	on	the	companion	website	for	this	book.

Execute	the	ViewRecords.py	program	by	entering	the	following	at	the	command	line:

sudo	python	ViewRecords.py	

Figure	2-25	shows	the	resulting	display	after	the	program	is	run.	A	portion	of	the
records	that	were	generated	by	SensorDatabase.py	are	displayed.

FIGURE	2-25	SensorDatabase	records	displayed	by	the	ViewRecords	program

I	next	modified	the	ViewRecords	program	to	display	only	the	records	from	channel	0.
This	modification	required	inserting	a	conditional	phrase	in	the	SQL:

SELECT	statement:

cur.execute(‘SELECT	*	FROM	sensorTemp	WHERE	tchan	=	0’)

I	renamed	ViewRecords.py	to	Chan0ViewRecords.py.	I	did	not	provide	a	program
listing	as	it	requires	only	that	one	slight	change	to	the	SELECT	statement.	To	run	it,	simply
enter	the	following:

sudo	python	Chan0ViewRecords.py	

Figure	2-26	shows	the	output	from	the	program	where	only	the	channel	0	records	are
displayed.

FIGURE	2-26	SensorDatabase	records	displayed	by	the	Chan0ViewRecords	program

To	view	the	sensor	location	text	descriptions	along	with	the	temperature	data,	change
the	SELECT	statement	in	the	ViewRecords	program	to	the	following:

cur.execute(‘SELECT	*	FROM	sensorTemp,	channelLocation’)

Figure	2-27	shows	a	portion	of	the	output	from	the	program	where	the	location
description	is	shown	along	with	the	temperature	data.

FIGURE	2-27	SensorDatabase	records	displayed	by	the	ViewRecords	program	with	the
channelLocation	table	included

If	you	just	want	to	check	that	the	location	information	is	being	properly	displayed,
use	the	following	SELECT	statement	and	you	will	see	only	one	set	of	records.

cur.execute(‘SELECT	*	FROM	sensorTemp,	channelLocation	GROUP	BY	tchan’)

Figure	2-28	shows	the	output	from	the	program	where	the	location	description	is
shown	along	with	the	temperature	data	but	grouped	by	location.

FIGURE	2-28	SensorDatabase	records	displayed	by	the	ViewRecords	program	with	the
channelLocation	table	included	and	grouped	by	location

The	previous	demonstration	finishes	the	discussion	of	creating	database	records	from
a	sensor-based	acquisition	program.	The	next	phase	involves	showing	how	to	access	and
display	selected	records	using	a	web	browser.

Database	Access	Using	a	Web	Browser
This	is	probably	one	of	the	easier	portions	of	the	project	as	it	concerns	the	well-

documented	process	of	creating	a	dynamic	website	(HTML)	that	uses	a	web	server
language	(PHP)	to	supply	data	from	a	relational	database	(MySQL)	to	a	client	(remote
browser)	upon	demand.	I	am	not	including	record	locking	discussion	for	now,	which	is	a
solution	to	the	problem	of	two	applications	trying	to	access	the	same	database	record	at
the	same	time.	I	will	just	make	the	reasonable	assumption	that	the	database	records	are	all
accessible	whenever	the	web	server	application	needs	them.

I	will	initially	present	a	direct	approach	to	creating	a	website,	but	many	books	and
online	tutorials	are	available	on	different	approaches	to	creating	a	dynamic	website.	This
website	will	not	be	fancy	or	flashy	but	simply	serve	up	the	desired	temperature	records	in
a	tabular	format.	At	the	end	of	the	chapter,	I	do	provide	a	brief	introduction	to	a	Python-
based	microdevelopment	framework	named	Flask,	which	will	allow	you	to	create	fancier
and	more	dynamic	websites	than	are	possible	when	using	the	simple	PHP	file	that	I
discuss	next.

The	following	is	some	straightforward	PHP5	code	that	will	display	all	the	records	in
the	sensorTemp	table,	which	is	part	of	the	HomeTempSystem	database.	Notice	that	I
logged	in	as	TempUser1,	which	was	added	after	creating	the	database	for	security	reasons.
To	run	it	as	shown,	you	will	need	to	store	this	script	as	TempSensorTest.php	in	the
/var/www	directory.	This	code	script	is	available	on	the	book’s	companion	website.

To	run	the	script	on	the	Pi,	you	will	need	to	open	a	web	browser	on	the	Pi.	Simply
type	in	the	following	in	the	browser’s	URL	textbox:
http://localhost/TempSensorTest.php.

If	everything	works	as	expected,	you	should	see	the	database	records	that	you	earlier
created	displayed,	as	shown	in	Figure	2-29.

FIGURE	2-29	Portion	of	the	sensorTemp	records	displayed	on	the	Pi	web	browser

You	should	next	try	to	access	the	records	using	a	separate	computer	attached	to	your
home	network.	I	used	my	Macbook	Pro	and	put	in	the	URL
http://192:168.0.13/SensorTempTest.php.	Figure	2-30	shows	the	result	of	this	action.

http://www.192:168.0.13/SensorTempTest.php

FIGURE	2-30	Portion	of	the	sensorTemp	records	displayed	on	a	separate	networked
computer

Note	that	your	local	IP	address	for	the	Pi	will	likely	be	different	than	my	address.	Just
substitute	whatever	your	address	is.	Remember	that	you	can	always	find	it	by	entering	the
following:

sudo	ifconfig	

Just	look	for	the	IP	address	next	to	the	wlan0	entry	for	wireless	or	eth0	for	a	wired
connection.

Narrowing	the	Database	Reports
It	is	not	hard	to	imagine	that	the	database	size	will	grow	rapidly	as	you	accumulate

more	measurements	over	time.	It	would	be	a	waste	of	time	and	bandwidth	to	have	to	sift
through	all	the	database	records	to	find	the	specific	data	that	you	need	to	examine.	I	will
show	how	to	apply	constraints	to	the	database	search	by	using	the	WHERE	phrase	that	I	had
introduced	earlier.	The	major	complication	is	that	you	will	be	using	a	web	browser	to
access	the	database	and	therefore	will	not	have	direct	means	to	insert	the	WHERE	phrase	in
the	SQL	query	as	was	done	in	the	earlier	demonstration.	Fortunately,	this	situation	is	well
covered	in	the	HTML	and	PHP	area	where	a	form	will	be	created	asking	you	for	specific
information	to	be	sent	to	the	web	server	for	action.	In	this	example,	I	am	asking	only	for
records	of	a	specific	channel	number	to	be	displayed,	but	the	concepts	can	be	readily
extended	to	all	the	other	database	fields.	There	are	two	primary	means	by	which	data	gets
sent	by	a	user	to	a	web	server.	These	are	the	GET	and	POST	methods.	Each	has	its
advantages	and	disadvantages,	but	I	have	found	that	most	developers	prefer	using	the	POST
method	so	that	is	what	I	will	implement.	The	code	for	a	simple	HTML	form	requesting	a
channel	number	is	shown	here:

I	named	this	code	ChannelSelector.html	and	saved	it	on	my	laptop	in	the	Documents
folder.	This	program	is	really	more	of	a	script	that	the	laptop	client	browser	will	use	to
send	and	receive	data	from	the	Pi	web	server.	You	should	also	notice	that	I	hardcoded	the
Pi’s	IP	address	into	the	form	along	with	a	reference	to	a	slightly	modified	version	of	the
three-channel	TempSensorTest	program,	which	I	discuss	next.	The	key	point	regarding
this	HTML	script	is	that	it	has	a	variable	named	chan_no	that	stores	the	channel	number,
and	this	variable	is	made	available	on	the	server	side	by	the	POST	method.	Figure	2-31
shows	the	form	on	a	client-side	browser.

FIGURE	2-31	ChannelSelector	form

Nothing	will	happen	regarding	database	access	until	the	Submit	button	is	clicked.	I
will	show	the	results	of	clicking	on	the	button	after	I	finish	with	the	server	program.

The	server-side	program	is	named	TempSensorTestChan.py	where	the	suffix	“Chan”
was	added	to	indicate	that	the	program	constrains	its	output	to	the	user-selected	channel.
The	code	shown	here	is	identical	to	the	TempSensorTest	program	with	some	modifications
to	accommodate	the	user-selected	channel:

Figure	2-32	shows	the	browser	display	after	channel	0	was	selected	via	the	input
form.

FIGURE	2-32	Portion	of	the	channel	0	sensorTemp	records	displayed	on	a	separate
networked	computer

As	I	mentioned	earlier,	the	constraints	to	be	placed	in	the	WHERE	phrase	can	easily	be
extended	to	any	or	all	of	the	other	database	fields	using	the	same	techniques	I	used	for	the
channel	selection.	It	is	also	possible	to	construct	a	complete	query	statement	on	the	client
side	and	pass	that	over	to	the	server	but	that’s	best	left	to	a	more	advanced	study	of	web-
based	database	retrieval.	I	found	this	technique	quite	suitable	for	these	types	of	embedded
applications.

Flask
Flask	has	been	identified	as	one	of	a	series	of	microdevelopment	frameworks.	I	have

used	Flask	and	find	it	very	useful	as	well	as	interesting.	Strangely,	it	started	out	as	an	April
Fool’s	joke	that	was	placed	before	the	embedded	development	community	as	a	serious
tool.	And,	in	fact,	it	turned	out	to	be	quite	a	serious	tool	that	quickly	captured	developers’
imaginations	and	subsequently	grew	to	have	a	large	and	energetic	following.	Flask	can	be
thought	of	as	a	“lightweight”	web	server	with	limited	but	reasonable	functionality	as
compared	to	the	much	larger	and	capable	Apache	web	server.	I	think	the	best	way	to
explain	Flask	is	to	present	two	simple	examples	that	are	based	on	material	from	Matt
Richardson’s	excellent	book	Getting	Started	with	Raspberry	Pi.	But	first	the	Flask
software	must	be	loaded	into	the	Pi.	It	is	based	on	Python	and	has	a	good	fit	with	the	Pi
Raspian	OS.

Flask	is	available	using	the	pip	package	manager.	It	is	another	package	manager
similar	to	apt,	which	I	have	used	up	to	this	point	in	the	book.	Pip	functions	with	the
Python	Package	Index	(PyPI)	repository,	where	the	Flask	package	is	stored	and	available
for	download.	Of	course,	you	must	download	pip	first	into	the	Pi,	which	is	oddly	enough
done	using	the	apt	tool	with	the	following	command:

sudo	apt-get	install	python-pip	

After	pip	is	installed,	you	can	use	it	to	install	Flask	with	all	its	dependencies.	Enter
the	following	at	the	command	line:

sudo	pip	install	flask	

Naturally,	the	first	program	that	you	should	run	is	a	Hello	World	type.	Enter	the
following	code	using	the	nano	editor:

Note	that	there	are	two	underscores	before	and	after	the	words	“name”	and	“main.”

Flask	is	set	up	in	a	client/server	architecture	with	the	server	portion	started	on	the	Pi
as	a	Python	program:

sudo	python	hello-flask.py	

Next,	start	a	browser	on	another	computer	on	your	home	network	and	enter	the	Pi’s
address	followed	by	the	port	number,	which	in	my	case	is

192.168.0.13:81

If	everything	is	all	set,	you	should	see	the	Hello	World!	greeting,	as	shown	in	Figure
2-33.

FIGURE	2-33	Flask’s	Hello	World	browser	greeting

Some	readers	may	have	noticed	that	I	used	port	81	in	lieu	of	port	80,	which	is	the
default	port	number	for	HTTP.	This	was	needed	because	port	80	was	already	in	use	by	the
Apache	web	server	and	not	available	for	the	Flask	web	server.

There	are	also	runtime	messages	being	displayed	on	the	Pi	console	screen	as	the
Flask	web	server	is	running.	Figure	2-34	shows	these	messages	for	the	Hello	World
browser	request	being	sent	from	the	separate	networked	computer.	Notice	this	networked
computer	is	at	address	192.168.0.2,	as	you	can	see	in	the	message	lines.

FIGURE	2-34	Console	messages	from	the	Flask	web	server

Flask	also	supports	templates,	which	is	a	highly	useful	feature	that	allows	you	to
quickly	create	web	pages	based	on	a	number	of	different	designs.	The	example	shown
here	is	named	hello-template.py	and	simply	displays	the	server’s	current	date	and	time
when	queried	from	the	remote	browser:

You	likely	noticed	that	there	is	a	file	named	“main.html”	appearing	in	the	hello()
method	return	statement.	This	is	the	actual	HTML	template	file	and	it	must	be	placed	in	a
subdirectory	named	“templates”	from	where	the	existing-template.py	file	is	located,
otherwise	Flask	cannot	find	it.	Assuming	you	are	in	the	Pi’s	home	directory,	enter	the
following	to	create	the	new	subdirectory:

sudo	mkdir	templates	

Then	change	directories	by	entering	cd	templates.

Now	that	you	are	in	the	proper	place,	create	the	main.html	file:

Go	back	to	the	home	directory	after	creating	the	file	and	run	the	hello-template
program	by	entering

sudo	python	hello-template.py

The	Pi	will	now	be	listening	on	port	81	for	any	browser	client	requests.	As	you	did
before,	open	a	browser	on	another	networked	computer	and	enter	the	Pi’s	IP	address	with
port	81	as	a	suffix.	You	should	see	the	web	browser	display	that	is	shown	in	Figure	2-35.

FIGURE	2-35	Flask’s	browser	template	response	screen

The	previous	two	examples	provide	a	brief	introduction	to	Flask	but	should	be
sufficient	to	whet	your	appetite	if	you	choose	to	use	this	clever	developmental	tool	suite.
There	are	many	more	available	templates	created	by	the	open-source	community,	which
will	allow	you	to	create	very	versatile	and	capable	web	pages.

Summary
The	chapter	began	with	a	discussion	of	a	three-sensor	home	temperature	monitoring

system.	I	showed	how	the	basic	sensor,	a	TMP36	from	Analog	Devices,	functioned	to
provide	an	analog	voltage	proportional	to	the	ambient	temperature	surrounding	the	small
sensor.	A	discussion	of	analog-to-digital	conversion	(ADC)	followed	next,	which	also
included	an	introduction	to	the	serial	peripheral	interface	(SPI).	The	SPI	enables	the
MCP3008ADC	chip	to	send	data	to	the	Pi.

I	next	discussed	how	to	set	up	a	test	system	using	a	single	sensor	with	the	necessary
software	to	interface	it	with	the	Pi.	This	simplified	system	displayed	a	series	of
temperature	readings	on	a	terminal	screen.	I	then	demonstrated	a	three-sensor	system	that
also	displayed	all	the	readings	on	a	screen.	I	also	showed	you	how	to	use	RJ45	cables	and
breakout	boards	to	mount	and	interconnect	the	sensors	with	the	ADC	chip.

The	next	portion	of	the	chapter	concerned	how	to	set	up	a	MySQL	database	to	store
all	the	temperature	measurement	data.	This	database	is	an	essential	element	that	must	be	in
place	before	creating	a	web-based	application.	One	of	the	key	concepts	in	this	discussion
was	how	to	logically	connect	the	temperature	measuring	software	with	the	database
software.	I	showed	you	how	to	instantiate	a	Python	database	connector	to	meet	this
requirement.

I	next	showed	you	how	to	programmatically	insert	data	into	the	database	at
predetermined	intervals.	I	also	included	a	program	so	that	you	could	view	these	newly
created	records.

I	then	demonstrated	how	to	access	the	database	using	a	web	browser.	I	used	a	PHP
script	to	display	data	on	a	browser	both	on	the	Pi	and	also	from	a	remote	computer
attached	to	the	same	home	network	as	the	Pi.

I	next	showed	you	how	to	“narrow”	the	data	results	using	search	criteria	supplied	via
a	client-based	HTML	form.	This	feature	would	be	invaluable	when	searching	a	large
database.

I	concluded	the	chapter	with	a	brief	introduction	to	Flask,	which	is	a	“lightweight”
web	server	based	on	Python.	Flask	was	offered	as	an	alternative	to	the	much	more
comprehensive	Apache	web	server,	which	also	requires	much	more	memory	resources
than	Flask.

3
CHAPTER

Introduction	to	Object	Orientation	Programming
(OOP)	with	Java

To	begin	your	exploration	into	object	orientation,	pretend	you	have	been	transported
to	a	virtual	environment	where	objects	are	the	primary	life	form.	Let’s	call	this
environment	Object	Land.

Figure	3-1	shows	a	very	abstract	view	of	Object	Land	with	two	processes	shown
(small	and	big),	each	containing	multiple	objects	that	are	in	constant	communication	with
one	another	to	accomplish	the	overall	process	goals.	The	processes	themselves	are
communicating	with	one	another	as	needed	to	accomplish	whatever	needs	to	be	done.

FIGURE	3-1	Object	Land

The	key	question	arises:	What	is	an	object?

The	textbook	answer	typically	given	is	that	an	object	is	an	instance	of	a	class.	Of
course,	this	only	further	confuses	the	newcomer	to	Object	Land	where	he	or	she	doesn’t
know	the	definition	of	a	class.	Okay,	what	is	the	definition	of	a	class,	and	more
importantly,	why	should	you	care?

First,	a	quick	quiz.	What	does	Figure	3-2	represent?

•			Bus
•			Train

•			Racecar
•			Plane

FIGURE	3-2	Unknown	object

The	answer	really	lies	with	your	life	experience.	Most	people	will	know	it	is	a
racecar	by	its	shape	and	the	fact	the	driver	is	wearing	a	helmet.	Others	may	recognize	it	by
the	process	of	elimination	by	recognizing	that	it	is	not	a	bus,	train,	or	plane.	We	engage	in
this	process	continuously—that	is,	using	models	or	abstractions	to	represent	real-world
things	or	objects.

Similar	activities	are	present	in	software	design	where	you	use	abstractions	to
represent	real-world	things.	This	approach	is	much	more	relevant	in	developing	software
as	compared	to	a	much	stricter	procedural	approach.	Consider	a	situation	in	which	you	are
at	the	train	station	exit	having	just	arrived	in	New	York	City.	You	want	to	go	to	Radio	City
Music	Hall	and	take	in	a	show	so	you	hail	a	cab.	Once	in	the	taxi,	do	you	tell	the	driver,
“Go	to	the	end	of	the	street,	take	a	right,	go	through	two	sets	of	lights,	take	a	left…”	or	do
you	simply	say	“Please	take	me	to	Radio	City	Music	Hall”?	The	first	approach	is
procedural	while	the	latter	is	object	oriented.	In	taking	the	OO	approach,	you	are	relying
on	that	person	object	(the	taxi	driver)	to	be	responsible	to	accept	a	message	(“Please	take
me	to	Radio	City	Music	Hall”)	and	know	how	to	accomplish	the	task.	One	very	nice
feature	of	this	approach	is	that	the	object	may	have	to	change	his	implementation
depending	on	traffic,	street	closure,	and	so	on,	but	you	as	the	message	sender	will	not	be
aware	of	this	change.	You	have	to	be	aware	of	all	the	traffic	conditions	in	New	York	City
if	you	choose	the	procedural	approach.	Not	a	very	appealing	option!

Having	established	the	fact	that	objects	will,	in	fact,	be	useful	to	accomplish	your

goals	in	controlling	sensors,	it	is	time	to	examine	some	fundamental	principles	underlying
all	object-oriented	programming	paradigms.	Table	3-1	lists	the	four	bedrock	principles	that
apply	to	all	OO	programming	languages.

TABLE	3-1	Four	Bedrock	Object-Oriented	Principles

A	handy	acronym	to	remember	these	principles	is	A	PIE,	taken	from	the	beginning
letter	for	each	principle.

I	decided	to	use	a	generic	sensor	as	a	model	to	demonstrate	how	to	apply	the	OO
approach.	Determining	basic	sensor	characteristics	and	behaviors	is	normally	the	first	step
in	creating	a	class.	The	class	is	a	data	structure	used	to	record	these	characteristics	and
behaviors.	In	formal	OO	terms,	characteristics	are	known	as	attributes	and	behaviors	are
methods.	Objects	are	created	from	classes.	As	mentioned	earlier,	an	object	is	simply	an
instance	of	a	class.	How	this	is	done	depends	upon	the	specific	language	being	used.	Many
OO	languages	such	as	Java,	C#,	and	C++	use	the	new	operator	to	create	a	class	instance.
This	process	is	known	as	instantiation.

It	is	often	useful	to	refer	back	to	basic	definitions	in	developing	class	attributes	and
methods.	A	sensor	has	a	fairly	simple	definition	per	the	Merriam-Webster	online
dictionary:	A	device	that	responds	to	a	physical	stimulus	(as	heat,	light,	sound,	pressure,
magnetism,	or	a	particular	motion)	and	transmits	a	resulting	impulse	(as	for	measurement
or	operating	a	control).

The	key	is	to	try	to	encapsulate	all	the	essential	attributes	and	behaviors	that	are
useful	in	describing	a	real-world	object	in	a	logical	data	structure	such	as	a	class.	I	also
want	to	emphasize	that	there	is	really	no	single	correct	answer	to	creating	a	class.	It	turns
out	that	some	descriptions	are	better	than	others,	and	you	will	find	that	as	you	proceed
with	your	design	you	will	often	turn	back	and	revise	your	initial	class	definition.
Experience	in	repeated	OO	design	efforts	will	improve	your	initial	efforts,	and
incorporating	design	patterns	(DP),	which	I	discuss	shortly,	will	also	help	with	the	design.
I	have	repeatedly	told	my	beginning	OO	students	that	creating	classes	is	probably	the
single	hardest	task	to	tackle	in	the	whole	OO	approach.

An	abstract	class	is	often	used	to	hold	common	attributes	and	behaviors	that	will	be
broadly	applicable	to	a	group	of	classes	yet	not	hold	enough	specificity	to	allow	a	practical

object	instantiation.	Abstract	classes	are	useful	only	when	used	with	the	inheritance	core
principle.

Figure	3-3	shows	a	simple	inheritance	class	diagram	with	an	abstract	parent	class	and
four	child	classes.	The	parent	class	contains	the	general	attributes	and	methods	common	to
all	the	child	sensor	classes.	Unified	Modeling	Language	(UML)	version	2	standards	were
followed	in	constructing	Figure	3-3.	UML	is	the	software	development	industry’s	standard
way	of	displaying	graphical	models.	Knowing	how	to	create	useful	UML	diagrams
promotes	efficiency	and	effectiveness	in	communicating	your	design	ideas	to	others	in	the
development	process.

FIGURE	3-3	Sensor	UML	class	diagram

The	four	child	classes,	namely	Dallas_18B20,SEN_12064,	SEN_11084,	and	DEV_12081,
get	their	names	either	from	the	manufacturer’s	model	number	or	the	Sparkfun	Breakout
board	number.	These	four	sensor	classes	can	be	instantiated	as	they	have	specific
implementations	for	the	methods	declared	but	not	implemented	in	the	parent	abstract
class.	Inheritance	is	very	useful	in	promoting	software	reuse	but	it	does	have	its
drawbacks.	It	must	be	used	in	a	very	considered	approach	to	avoid	situations	where	too
many	unique	objects	could	be	created	by	combining	different	parent	case	attributes	and/or
methods.	Interfaces	will	be	discussed	as	a	more	elegant	way	of	creating	objects	without
using	inheritance.

The	concept	of	scope	is	also	important	in	OOP.	Scope	is	the	way	OOP	enforces
encapsulation.	Objects	“know”	things	about	themselves,	i.e.,	their	attributes,	and	they	also
know	how	to	do	things,	their	methods	or	behaviors.	You	don’t	want	outside	entities
changing	these	properties	without	granting	the	entities	permission.	Scope	enforces	this
constraint	by	setting	attributes	and	methods	as	private,	public,	or	protected.	Private	scope
means	exactly	what	its	name	states;	attributes	and	methods	are	only	available	within	the
encompassing	class	and	consequently	all	objects	instantiated	from	that	class.	Outside
entities	cannot	change,	modify,	or	delete	private	attributes	or	methods.	A	–	sign	in	front	of
a	UML	entry	indicates	private	scope.

Attributes	and	methods	marked	as	public	are	available	to	outside	entities.	However,
attributes	themselves	are	rarely	made	public	as	that	typically	destroys	class	encapsulation.
Public	methods,	on	the	other	hand,	are	the	way	classes	allow	messages	to	both	be	received
and	sent	by	class	objects.	This	approach	is	termed	the	public	interface	and	for	the	vast
majority	of	situations,	is	the	way	classes	are	created.	In	some	advanced	OOP	areas,	there
are	inner	classes	that	do	not	require	a	public	interface	to	achieve	the	desired	functionality.
Inner	classes	will	not	be	required	for	sensor	programming.	A	plus	(+)	sign	in	front	of	a
UML	entry	indicates	public	scope.

The	final	type	of	scope	is	protected.	This	is	almost	identical	to	private	except	child
objects	are	permitted	access	to	parent	attributes	and	methods	declared	protected	but	no
other	outside	entity	is	granted	permission.	Protected	scope	helps	with	inheritance	class
structure	implementations,	and	child	objects	are	always	treated	as	the	same	type	as	the
parent.	From	Figure	3-3,	the	statement	can	be	made	that	“a	Dallas_18B20	or	SEN_12064
object	is	a	Sensor	object.”	Inheritance	is	always	the	“is	a”	relationship.

Another	key	concept	to	consider	is	composition,	which	is	a	situation	where	a	class
contains	attributes	that	are	objects	instantiated	from	other	classes.	Composition	allows	you
to	build	complex	objects	just	as	real-world	things	are	made	up	of	different	components.
Consider	a	car	that	naturally	contains	an	engine.	You	can	easily	imagine	a	Car	class,
However,	it	would	be	a	big	mistake	to	create	a	child	class	named	Engine.	It	would	fail	the
commonsense	inheritance	test	of	stating	“an	Engine	is	a	Car,”	which	is	required	for	true
inheritance	to	exist.	However,	you	can	state	with	confidence,	“a	Car	has	an	Engine.”
Composition	is	the	“has	a”	relationship.	Composition	and	the	closely	related	Aggregation
relationship	concept	are	extremely	helpful	in	creating	useful	and	descriptive	classes	and
are	needed	to	successfully	implement	the	interface	concept	mentioned	earlier.	I	have
included	a	composition	class	named	SensorPackage	in	the	child	class	definitions	just	to
show	how	this	works.

An	interface	is	a	specialized	class	that	contains	only	methods	but	no	attributes.
Classes	using	interfaces	can	supplement	the	methods	that	are	declared	within	the	class	or	a
parent	class	if	inheritance	is	used.	Interfaces	also	support	inheritance	to	allow	for
specialized	method	implementations	that	fit	specific	subclass	requirements.	An	example	is
really	needed	to	clarify	how	interfaces	are	best	used.	But	first,	an	explanation	of	how	to
set	up	an	Integrated	Development	Environment	(IDE)	is	in	order	as	that	will	be	the
primary	way	Java	code	will	be	created	for	the	Pi	project.

Java	Software	Development	Kit	(SDK)
The	Java	SDK	is	the	means	by	which	you	install	Java	on	your	laptop	or	desktop	system.

It	is	available	from	www.oracle.com/technetwork/java/javase/downloads/index.html	and
you	should	download	and	install	the	most	current	version.	Having	Java	installed	is	a
prerequisite	to	installing	the	Eclipse	IDE.	This	IDE	is	available	at	www.eclipse.org.	Go	to
the	website	and	download	it,	just	make	sure	that	Java	has	already	been	installed	on	the
computer.

Once	you	have	the	Eclipse	installed	and	running,	you	will	be	able	to	create	and	run
Java	programs	very	easily.	Eclipse	also	has	many	tools	to	help	you	debug	your	programs.
All	the	following	screenshots	were	taken	from	the	Eclipse	Kepler	version	3.9	running	on
my	MacBook	Pro.

As	is	traditional,	the	first	program	will	be	a	Hello	World	example.	The	Hello	program
code	is	shown	here	for	your	reference.	It	is	very	simple	and	short.	Figure	3-4	shows	this
program	after	being	run	in	the	Eclipse	IDE.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org

FIGURE	3-4	Eclipse	screen	for	the	Hello	World	program

There	are	several	things	to	discuss	concerning	this	program:

•			The	program	was	created	in	a	Java	Project	named	Hello.	All	programs
created	in	the	Eclipse	IDE	require	a	project	to	be	created	to	contain	the	program
class.
•			The	class	itself	is	named	Hello.	No	spaces	are	allowed	in	a	class	name,	and
class	names	typically	start	with	a	capital	letter.	This	class	is	also	contained	in	a
package	named	hello.	Packages	are	useful	for	containing	multiple	classes.	The
hello	package	statement	is	“package	hello;”	and	is	always	at	the	start	of	the
coding.
•			public	static	void	main(String()	args)	is	a	method	signature	that	every
Java	application	requires.	It	is	the	starting	point	of	any	Java	application.
•			All	the	method	code,	referred	to	as	the	body,	is	contained	between	a	pair	of
braces	
{	…	}.
•			The	only	operational	code	(that	does	something)	is	System.out.println
(“Hello	World”);.	This	statement	uses	the	out	object	part	of	the	System	class
that	is	part	of	Java’s	built-in	libraries.	The	println()	method	displays	the	text
within	println	parentheses	to	the	Console	window	that	is	below	the	code	editor
window.

The	Sensor	Abstract	Class
The	following	code	is	my	first	attempt	at	modeling	a	generic	sensor	using	the	guidelines

I	discussed	earlier.	There	are	only	two	key	behaviors	defined	that	will	cause	the	Pi	to	send
a	command	to	the	sensor	and	receive	data	in	response.	Both	of	these	behaviors,	or
methods	as	I	will	call	them	now,	are	declared	as	abstract,	meaning	that	any	child	classes
must	provide	an	implementation	or	the	project	will	not	compile	and	run.	Abstract	class
and	method	names	should	be	italicized	in	UML	diagrams,	as	you	saw	in	Figure	3-3.

NOTE	All	the	code	is	contained	in	the	sensor	package	and	is	available	on	the	book’s
companion	website.

There	is	a	problem	inherent	in	this	somewhat	naive	code,	which	I	will	point	out	later
in	the	discussion.	Meanwhile,	let’s	assume	everything	will	function	as	planned	and	next
work	on	creating	two	of	the	four	child	classes	for	demonstration	purposes.

Child	Classes
I	will	next	demonstrate	how	to	create	Dallas_18B20	and	SEN_12064	child	classes	and	a

class	to	instantiate	and	test	these	classes.	I’ll	use	println	statements	as	that	is	the	simplest
and	most	effective	way	of	showing	object	behavior	without	using	actual	hardware.

I	will	also	use	four	of	the	methods	detailed	in	the	Sensor	class	diagram	as	this	will	be
sufficient	to	illustrate	object	interaction	and	behavior.	These	methods	are

•			getData()
•			sendCommand()
•			setName()
•			setDescription()

The	Java	keyword	to	establish	inheritance	is	“extends,”	as	you	can	see	in	the	top	line
of	the	following	class	definition	for	the	Dallas_18B20	sensor	object.

The	method	Dallas_18B20()	is	known	as	a	constructor	and	is	called	any	time	a	new
object	is	created	from	the	Dallas_18B20	class.	This	constructor	as	defined	takes	no
arguments.	The	parent	class	is	referred	to	as	super	in	the	constructor.

Two	concrete	implementations	are	provided	for	all	the	abstract	methods	defined	in
the	abstract	Sensor	parent	class.	Java	would	flag	an	error	(called	an	exception)	if	you	did
not	provide	them.

All	methods	are	public,	which	allows	an	external	entity	to	send	and	receive	messages
from	a	Dallas_18B20	class	object.	In	this	case,	the	external	entity	will	be	an	object	of	the
test	class.

The	SEN_12064	class	is	set	up	in	a	very	similar	fashion	to	the	Dallas_18B20	class	and
is	shown	here:

The	test	class	shown	is	named	TestSensors	and	is	the	only	class	in	the	package	that
contains	the	main()	method,	which	is	the	Java	application’s	starting	point.

The	Console	output	for	this	test	class	is	shown	in	Figure	3-5.	It	should	be	easy	to	see
how	messages	are	sent	and	received	between	the	instantiated	objects,	Dallas_18B20	and
SEN_12064	in	this	case.

FIGURE	3-5	Console	output	for	the	TestSensors	class

The	following	is	an	example	of	sending	a	message:
gts.sendCommand();

Here,	the	TestSensors	class	is	requesting	gts,	an	object	of	the	Dallas_18B20	class,	to
accept	the	sendCommand().	A	preset	message	will	be	displayed	and	no	real	sensor	data	will
be	taken.	As	mentioned	earlier,	objects	know	how	to	do	things	and,	in	this	case,	initiate	a
temperature	measurement.

You	may	have	noticed	that	sending	the	same	message	to	Dallas_18B20	and
SEN_12064	sensor	objects	produces	different	displays.	This	is	an	example	of	polymorphic
behavior	that	is	another	of	the	fundamental	OO	principles.	The	behavior	changes	are	hard
coded	into	the	sendCommand()	and	getData()	methods	for	each	child	class.	This	way	of
structuring	your	code	leads	to	substantial	difficulties	if	you	decide	to	add	additional	sensor
types	with	different	ways	of	triggering	measurement	cycles	(sendCommand())	and
reporting	the	actual	data	(getData())	behaviors.	Code	designed	this	way	is	considered
fragile	and	is	easily	broken	in	the	sense	that	it	is	hard	to	make	changes	and	is	difficult	to
maintain.	The	following	approach	is	offered	as	another	way	to	add	different	class
behaviors	that	is	both	easy	to	maintain	and	very	adaptable	to	change.

Break	out	the	trigger	measurement	and	data	reporting	behaviors	and	put	them	into
two	abstract	interface	classes.	Then	create	a	series	of	implementation	classes	that	extend
the	behavior	interfaces	with	each	implementation	class	supporting	the	type	of	behavior
desired	for	a	Sensor	subclass.	Figure	3-6	illustrates	this	interface	design.	It	is	the	same
basic	class	diagram	as	shown	in	Figure	3-3	with	the	interfaces	added.	Note	the	dashed	line
associations	between	the	Sensor	child	classes	and	the	interface	child	classes.	This	is	how
the	Dallas_18B20	and	SEN_12064	will	get	their	implementations	regarding	the	start()
command,	which	is	simply	the	sendCommand()	relabeled	as	it	makes	more	sense.
Similarly,	I	renamed	the	getData()	method	to	transfer(),	which	more	precisely
describes	its	behavior.

FIGURE	3-6	Sensor	class	diagram	with	interfaces

Don’t	be	deterred	by	the	apparent	complexity	shown	in	Figure	3-6.	This	design	is
very	robust	and	may	easily	accommodate	adding	different	sensor	classes	with	varying
CommandBehavior	and	DataBehavior	interfaces.	For	instance,	you	can	easily	add	an
anemometer	that	measures	wind	speed,	which	certainly	functions	much	differently	than	a
Dallas_18B20	or	SEN_12064	sensor.	All	you	need	to	do	is	add	additional	implementation
classes	to	the	CommandBehavior	and	DataBehavior	interfaces	and	a	new	subclass	to	the
abstract	Sensor	parent	class.

The	next	sequence	of	listings	shows	some	of	the	code	created	to	show	how	the
interfaces	are	created	and	connected	to	the	classes	that	require	specific	behaviors.	The
following	code	is	the	revised	Sensor	class	with	two	new	interface	references,
commandBehavior	and	dataBehavior,	declared	near	the	beginning	of	the	class.	The
Sensor	subclasses	will	use	these	references	to	associate	to	the	correct	command	or	data
behaviors	appropriate	to	their	sensor	type.

Incorporating	these	two	references	is	an	example	of	composition,	which	means	that
Sensor	objects	have	both	command	and	data	behaviors	whose	actual	implementations	will
be	provided	by	other	classes.

There	are	also	two	new	methods	in	this	class:	performCommand()	and	performData()
will	be	used	in	the	test	class	to	actually	invoke	the	appropriate	behavior	via	the	Sensor
superclass.

The	following	code	is	the	revised	Dallas_18B20	class	that	is	used	to	instantiate
Dallas_18B20	objects.	Notice	that	the	sendCommand	and	getData	methods	have	been
commented	out	as	these	behaviors	are	now	delegated	to	interfaces.	Also,	in	the	constructor

I	have	set	the	interface	references	commandBehavior	and	dataBehavior	to	TempStart	and
XferTemp	child	classes,	respectively.	This	sets	up	the	correct	responses	to	command	and
data	messages.

One	of	the	new	high-level	interfaces	is	shown	in	the	following	listing.	It	is	very
simple,	consisting	of	only	one	method	that	will	be	implemented	in	a	lower	class:

One	of	the	new	lower	level	interface	implementation	classes	is	shown	in	the

following	listing.	It	is	associated	with	the	commandBehavior	interface,	which	can	readily
be	seen	by	the	implements	keyword	in	the	class	definition	header:

The	test	class	is	similar	to	the	previous	test	class	used	without	the	interfaces.	The
next	listing	shows	the	complete	class,	which	is	used	to	demonstrate	how	the	Sensor
subclasses	and	the	interfaces	work	together	to	produce	the	desired	results.

The	Console	output	generated	by	executing	the	preceding
TestSensorsWithInterfaces	program	in	the	Eclipse	IDE	is	shown	in	Figure	3-7.

FIGURE	3-7	Console	output	for	the	TestSensorsWithInterfaces	class

The	previous	discussion	was	lengthy	but	necessary	to	illustrate	a	good	approach	to
creating	code	that	is	understandable	and	fairly	easy	to	change	to	accommodate	changing
requirements.	Another	important	principle	underpinning	this	methodology	is	to:

Favor	composition	over	inheritance.

Using	the	interfaces	with	the	child	implementation	classes	is	a	concrete	example	of
applying	this	principle.	The	code	was	made	robust	by	recognizing	that	command	and	data
behaviors	will	be	different	for	different	sensor	types.	So	instead	of	trying	to	hard-code
specific	types	of	behavior	in	each	of	the	concrete	Sensor	subclasses,	I	choose	to	pull	that
all	out	and	place	it	in	the	interfaces.	This	apparent	recognition	of	object	differences	leads
to	one	more	principle:

Identify	what	varies	and	encapsulate	it.

Command	and	data	vary	for	each	type	of	sensor	so	those	behaviors	were	pulled	out	of
the	Sensor	class	and	delegated	to	interfaces.	Then	appropriate	interface	implementation
subclasses	were	created	to	invoke	the	specific	behavior	for	that	Sensor	object	with	that
type	of	behavior.	Very	simple	and	somewhat	elegant!

I	have	saved	the	best	for	last	in	this	discussion.	The	approach	I	have	taken	with
creating	this	code	is	an	example	of	the	Strategy	design	pattern.	Design	patterns	(DP)	are
often	introduced	into	advanced	computer	science	courses,	but	I	believe	that	if	you	learn

the	patterns	early	on,	you	will	develop	good	code	design	practices	that	will	help	you	in	all
your	future	development	efforts.	DPs	in	software	development	have	been	around	since
1995	when	the	Design	Patterns1	book	was	published.	DPs	are	not	specific	solutions	to
specific	problems	but	are	a	methodical	approach	for	creating	good	solutions	given	a
general	type	of	problem	domain.	They	are	based	on	years	of	great	software	development
by	masters	in	this	field.	As	the	old	saying	goes,	“standing	on	the	shoulders	of	giants.”

In	the	Sensor	class	definition,	two	additional	methods	were	added	that	have	not	yet
been	discussed:	setCommandBehavior(CommandBehavior	cb)	and	setDataBehavior
(DataBehavior	db).	These	methods	allow	Sensor	objects	to	reference	both	command	and
data	behaviors	as	needed	during	program	execution.	This	modus	operandi	is	called
dynamic	or	late	binding	as	compared	to	establishing	fixed	references	that	occur	during	the
compilation	stage,	which	is	called	static	or	early	binding.	Dynamic	binding	is	interesting
from	the	perspective	that	sensors	can	change	their	command	and	data	behaviors	to	suit
real-time	conditions.	I	have	created	two	more	interface	implementation	classes	to	illustrate
dynamic	binding.	Don’t	get	too	excited	as	all	they	do	is	output	a	slightly	different	Console
message	compared	to	the	original	class.	The	two	new	classes	created
are	StartExtendedTempDataOnTheFly	and	StartExtendedHumidDataOnTheFly.	The
demonstration	is	part	of	the	TestSensorsWithInterfacesDynamic	test	class	where	the
following	statements	do	the	dynamic	binding:

gts.setCommandBehavior(new	StartExtendedTempDataOnTheFly);

ghs.setCommandBehavior(new	StartExtendedHumidDataOnTheFly);

The	revised	test	class	is	shown	here,	and	the	corresponding	Console	output	is	shown
in	Figure	3-8.

FIGURE	3-8	Console	output	for	the	TestSensorsWithInterfacesDynamic	class

Some	additional	text,	“This	action	initiated	dynamically,”	is	displayed	immediately
after	the	line	“Starting	the	temperature	sensor	to	acquire	extended	temperature	data.”
Those	statements	came	from	the	StartExtendedTempDataOnTheFly	class.	A	similar
display	is	shown	for	the	StartExtendedHumidDataOnTheFly	case.	Dynamic	binding	is
also	considered	polymorphic	behavior	in	that	sending	exactly	the	same	message	invokes	a
different	response	from	the	target	objects.	In	this	case,	the	message	(or	method	call)	is
senseItem.performCommand()	called	on	the	gts	(Dallas_18B20)	and	the	ghs
(SEN_12064)	Sensor	objects.	Notice	that	I	used	a	parent	class	reference	named	senseItem
that	I	declared	is	the	beginning	of	the	class	and	set	it	first	to	gts	and	then	to	ghs	prior	to
calling	the	performCommand	method.	You	may	use	a	parent	reference	to	refer	to	any	of	its
child	classes	but	the	opposite	is	not	valid	and	will	generate	a	compile	error.

On-the-fly	reconfiguration	of	sensor	behavior	provides	a	huge	amount	of	flexibility
in	coping	with	real-time	situations.	Consider	the	case	where	a	reconnaissance	sensor	has
been	deployed	into	a	battlefield	situation.	Sometimes	field	conditions	change,	such	as	the
addition	of	smoke	or	fog,	making	the	normal	sensors	ineffective.	Reconfiguring	the
sensors	to	accommodate	the	new	environment	would	allow	the	recon	sensor	to	continue	its
mission.	Installing	new	behavior	to	match	the	mission	is	easily	accomplished	with
dynamic	binding.

Dynamic	binding	is	simply	not	possible	using	a	strict	inheritance	structure.	The
added	flexibility	that	interfaces	provide	is	yet	another	reason	that	most	developers	favor
using	interfaces	over	inheritance.

Real-World	Controls
All	the	actions	in	the	previous	code	examples	have	been	in	the	form	of	print	line

statements,	which	are	fine	for	explaining	the	concepts	and	principles	but	not	so	great	in

actually	interfacing	with	real	sensors.	In	the	next	chapter,	I	will	be	using	code	that	will
directly	function	with	sensors	to	both	initialize	and	receive	data	from	them.	I	will	be	using
a	great	library	named	Pi4J,	which	contains	all	the	needed	code	to	make	it	work	as	desired.
I	cover	this	library	in	greater	depth	in	the	following	chapter.

Threads
I	have	included	this	discussion	of	Java	threads	because	I	use	them	in	the	following

projects	and	because	the	feature	is	an	important	one	as	using	threads	promotes	efficiency
in	program	operations.	Programs	typically	start	with	some	initialization	code,	proceed
through	a	sequence	of	instructions,	and	terminate	with	a	stop	sequence.	This	is	called	a
program’s	execution	path	and	is	also	known	as	a	process	or	task.	Having	a	program	run	as
a	single	task	or	thread	may	be	effective	but	not	too	efficient.	Fortunately,	Java	supports
multiple	threads	that	enable	very	efficient	program	execution.	Achieving	efficiency	would
happen	by	decomposing	a	program	into	multiple	tasks	where	each	task	can	be	assigned	to
a	dedicated	thread.

Threads	can	be	created	by	either	inheritance	or	implementing	an	interface.	Extending
the	Java	Thread	class	would	be	one	way	to	create	a	threaded	class	but	is	not	the
recommended	approach.	Strict	thread	inheritance	limits	application	flexibility	for	the	same
reasons	mentioned	earlier	in	the	chapter.	Using	interfaces	is	the	preferred	way	of	creating
threads.	Java	provides	the	Runnable	interface,	which	has	the	thread	behavior	desired.

The	following	is	a	code	snippet	that	shows	how	a	class	named	ThreadDemo	could
extend	Thread.	ThreadDemo	is	also	known	as	a	target	class	in	this	development.	The
complete	set	of	source	code	is	available	on	the	book’s	companion	website.

The	run()	method	overrides	the	Thread	class	run()	method	with	specific	behavior
associated	with	the	ThreadDemo	class.	Implementing	specific	behavior	in	this	manner
creates	the	same	situation	that	existed	with	the	abstract	Sensor,	Dallas_18B20,	and
SEN_12064	classes	with	the	sendCommand()	and	getData()	methods.	The	target	class,
having	extended	the	thread	class,	cannot	extend	any	other	class,	thus	limiting	the	choices
in	developing	the	sensor	application.	The	key	to	improving	this	situation	is	to	use	an
interface	that	will	encapsulate	the	run()	behavior.	The	following	code	snippet	shows	how
this	may	be	accomplished:

There	is	now	much	greater	flexibility	using	the	Runnable	interface	as	the	target	class
may	now	extend	another	class	and	you	can	create	a	variety	of	Runnable	implementation
classes.	The	Runnable	interface	is	very	simple,	as	you	can	see	from	the	Java	language
definition:

Another	interesting	fact	is	that	the	Thread	class	itself	also	implements	the	Runnable
interface.	This	proves	that	you	gain	nothing	by	extending	the	Thread	class,	yet	you	lose
the	flexibility	of	extending	the	target	class.	The	following	is	one	of	two	target	classes
created	for	a	thread	demo:

Here’s	the	second:

Here	is	the	ThreadDemo	test	class:

What	follows	now	are	transcribed	snippets	from	the	Console	displays.	I	did	this	to
minimize	the	number	of	screenshots	in	this	section.

Start	of	thread	demo

Back	in	main

Now	printing	from	A

Now	printing	from	B

Here’s	another:
Start	of	thread	demo

Back	in	main

Now	printing	from	B

Now	printing	from	A

Here’s	another:
Start	of	thread	demo

Now	printing	from	A

Back	in	main

Now	printing	from	B

Not	quite	what	you	expected!	The	output	can	vary	depending	on	how	the	JVM

controls	the	threads.	A	thread	scheduler	within	the	JVM	controls	when	threads	are	run	and
when	they	are	not.	Threads	have	three	states:

•			new
•			runnable
•			running

A	thread	is	in	a	new	state	after	being	instantiated	but	not	yet	“started.”	A	thread	is	in
the	runnable	state	when	the	start()	method	has	been	called	on	it,	but	the	JVM	is	not
running	it.	Of	course,	a	thread	is	in	the	running	state	when	the	JVM	is	running	it.

You	cannot	force	the	thread	scheduler	to	run	a	specific	thread	at	a	given	time.	This
can	lead	to	unpredictable	program	behavior,	which	can	have	problematic	outcomes	given
a	high-speed	real-time	operating	system.	But	there	is	a	solution	to	this	dilemma	that	can
bring	a	degree	of	uniformity	to	controlling	threads.	Although	you	cannot	directly	control
the	thread	scheduler,	you	can	put	a	thread	to	sleep	such	that	the	controller	cannot	put	it
into	a	running	state	until	the	sleep	period	has	expired.	Sleep	times	are	integer	numbers
representing	milliseconds	that	the	thread	is	sleeping	or	suspended.	Putting	one	thread	to
sleep	in	the	ThreadDemo	program	ensures	a	consistent	output.

Here	are	the	modified	target	classes:

Notice	that	the	JobA	thread	sleeps	for	50	ms	and	the	JobB	thread	sleeps	for	100	ms.
This	yields	the	following	consistent	Console	output:

Start	of	thread	demo

Back	in	main

Now	printing	from	A

Now	printing	from	B

The	output	from	main	is	always	first	because	it	doesn’t	sleep	while	JobA	is	sleeping
for	50	ms	and	JobB	sleeps	for	100	ms.	Now	swapping	the	sleep	times	between	the	two
target	classes	yields	the	following	consistent	Console	output:

Start	of	thread	demo

Back	in	main

Now	printing	from	B

Now	printing	from	A

Again,	this	makes	sense	if	JobA	is	sleeping	for	100	ms	while	JobB	is	sleeping	for	50

ms.

Java	provides	yet	another	way	of	controlling	thread	behavior	to	some	degree:	method
synchronization.	A	synchronized	method	cannot	be	interrupted,	once	started;	it	must	run	to
completion.	This	constraint	of	running	without	interruption	is	what	makes	the	method
“atomic.”	This	is	not	atomic	in	the	classic	nuclear	sense,	but	in	the	idea	that	its	operation
is	indivisible.	Using	synchronized	methods	in	our	example	doesn’t	make	much	sense	as
the	target	classes	contain	only	one	method	that	does	anything:	println.	Let’s	keep	the
synchronized	modifier	in	mind	as	the	sensor	control	methods	or	behaviors	become	more
complex	and	you	need	to	use	threads	for	program	efficiency.

Java	Database	Connector
In	this	section,	you	will	create	a	Java	database	connection	and	execute	queries	on	it,	as

demonstrated	in	the	last	chapter,	which	was	done	using	a	Python	database	connector.	I	will
be	using	the	laptop’s	OS	version	of	the	database	connector	to	show	you	how	this	all
works,	but	in	the	next	chapter	I	will	revert	to	the	Raspberry	Pi	version	to	implement	a
database	connection	for	the	chapter	project.

The	Java	database	connector	is	aptly	named	Connector/J	and	is	available	for
download	at	https://dev.mysql.com/downloads/connector/j/.

Ensure	that	you	download	the	appropriate	version	for	your	OS,	which	in	my	case	was
mysql-connectorjava-5.1.29-bin.jar	for	the	MacBook	Pro.	There	are	specific	installation
instructions	at	the	download	website	on	how	to	properly	install	the	connector	to	ensure	it
works	with	the	JDK.	I	did	a	bit	of	research	and	found	that	I	only	had	to	copy	the
Connector/J	jar	file	into	the	following	Mac	directory	to	have	it	function	perfectly	with	the
JDK:

/Macintosh	HD/Library/Java/Extensions

I	performed	the	following	procedure	to	test	the	new	MySQL	installation,	which	I
highly	recommend	so	you	will	be	comfortable	dealing	with	the	database	connectivity
concepts.	You	need	to	first	start	the	MySQL	server,	which	you	can	do	in	a	variety	of	ways
depending	upon	the	OS	it	is	running	on.	Using	the	Terminal	window	in	the	MacBook	Pro,
I	started	the	server	by	entering	the	following:

sudo	/usr/local/mysql/support-files/mysql.server	start	

Once	the	server	is	started,	you	need	to	log	in	to	it.	I	logged	in	as	root	with	no
password	as	this	was	a	“closed”	development	process	and	I	had	no	intention	of	remotely
accessing	the	database.	Figure	3-9	shows	the	Terminal	screen	for	starting	the	MySQL
server	and	logging	in	as	the	“root”	user.

http://www.dev.mysql.com/downloads/connector/j

FIGURE	3-9	Terminal	window	for	starting	and	logging	into	the	MySQL	server

I	next	selected	a	database	that	I	previously	created	named	test	with	the	following
command:

USE	test	

I	also	created	a	table	named	tempData	with	several	fields	that	match	the	same	ones	I
used	in	the	previous	chapter.	I	then	manually	inserted	20	“dummy”	records	into	the	table
using	exactly	the	same	procedures	that	I	demonstrated	in	Chapter	2.	Finally,	I	displayed	all
of	the	table	records	using	the	SELECT	*,	which	is	a	type	of	SQL	command.	Figure	3-10
shows	the	Terminal	screenshot	for	the	preceding	steps.	It	shows	the	results	of	all	the
actions	discussed	in	this	section	including	table	creation,	manual	record	insertion,	and
record	recall	and	display.

FIGURE	3-10	Terminal	window	showing	the	database	procedural	steps

Incidentally,	you	can	log	off	MySQL	by	either	entering	EXIT,	as	I	did	in	the	figure,	or
by	entering	quit,	as	EXIT	is	just	the	MySQL	alias	for	the	quit	command.	If	you	wish	to
stop	or	restart	the	MySQL	server,	enter	one	of	the	following	as	appropriate:

sudo	/usr/local/mysql/support-files/mysql.server	stop	

sudo	/usr/local/mysql/support-files/mysql.server	restart	

You	will	find	that	the	interactive	session	as	demonstrated	is	almost	identical	to	the
Pi’s	interactive	session	that	I	showed	you	in	Chapter	2.	There	is	really	no	need	to	further
discuss	this	type	of	session	as	you	should	be	fairly	comfortable	in	using	it.	It	is	time	to
move	on	to	the	more	interesting	topic	of	creating	and	using	a	Java	program	database
connection.

Using	the	Java	Connector	in	a	Program
This	section	demonstrates	how	to	create	a	Java	program	using	Eclipse	that	connects

with	the	test	database	and	executes	SQL	statements	to	access	and	display	all	of	the
tempData	records.	The	following	program	is	named	JDBCExample.java	and	is	available
on	the	book’s	companion	website.	I	have	included	comments	after	the	program	output
figure	to	help	explain	some	of	the	key	program	statements.

Figure	3-11	shows	the	console	output	that	results	from	executing	the	program.	Notice
that	the	record	listing	is	almost	exactly	the	same	as	the	Figure	3-10	listing,	which	I
manually	initiated	in	an	interactive	session.

FIGURE	3-11	Console	output	that	results	from	executing	the	program.

These	two	declarative	statements	set	up	references	for	Connection	and	Statement
objects,	which	are	required	to	establish	a	database	connection:

Connection	conn	=	null;

Statement	stmt	=	null;

The	JDBC	driver	must	be	registered	before	either	one	of	these	objects	can	be
activated.	The	driver	registration	process	consists	of	loading	the	Oracle	driver’s	class	file
into	memory	so	it	can	be	utilized	as	a	JDBC	interface	implementation.

Registration	is	only	required	once	in	the	program.	The	common	approach	to	register
the	driver	is	to	use	Java’s	Class.forName()	method	to	dynamically	load	the	driver’s	class
file	into	memory.	This	action	automatically	registers	it.	This	method	is	preferable	because
it	allows	the	driver	registration	to	be	both	configurable	and	portable.

Class.forName(“com.mysql.jdbc.Driver”);

The	Connection	and	Statement	objects	can	now	be	assigned	after	the	driver	class
file	is	successfully	registered.	Assignment	is	done	by	the	following	statements:

conn	=	DriverManager.getConnection(DB_URL,	USER,	PASS);

stmt	=	conn.createStatement();

SQL	queries	can	now	be	executed	against	the	“connected”	database	once	these
objects	are	assigned.	The	following	statement	performs	the	actual	query:

stmt.executeUpdate(sql);

where	sql	represents	a	SQL	string	command	such	as	“USE	test”	or	“SHOW	TABLES”.

The	records	actually	extracted	from	a	database	table	are	in	the	form	of	a	resultset,
which	is	an	array	of	records	that	match	the	conditions	in	the	SQL	query	string.	For	this
example	program,	the	following	statements	extract	all	the	records	from	the	tempData
table:

sql	=	“SELECT	id,	tdate,	ttime,	tchan,	ttemp	FROM	tempData”;

ResultSet	rs	=	stmt.executeQuery(sql);

I	could	also	have	restated	the	sql	string	as:
sql	=	“SELECT	*	FROM	tempData”;

This	would	have	returned	the	same	resultset	but	I	wanted	to	emphasize	all	the	fields	that
were	involved	in	the	original	query	statement.

Using	the	record	data	is	quite	straightforward	as	you	can	see	from	a	portion	of	the
loop	that	extracts	individual	field	data	from	a	record:

The	rs.next()	method	returns	a	record	from	the	resultset	as	long	records	are	still
available	that	have	not	been	read.	When	all	the	records	have	been	accessed,	the	next()
method	returns	a	null	and	the	while	loop	will	stop.	Meanwhile,	the	field	variables	such	as

id,	tdate,	and	ttime	now	hold	the	current	values	from	the	selected	record.	They	have	to
be	converted	to	normal	java	variables,	which	you	do	with	the	loop	assignment	expressions
shown	in	the	preceding	code	snippet.	These	new	variables	can	now	be	handled	as	ordinary
Java	variables	without	regard	to	their	database	origin.	The	print	and	println	statements
use	these	new	variables	to	display	all	the	selected	records.

I	would	also	like	to	point	out	the	try	and	catch	blocks	that	surround	most	of	the	code
in	the	example	program.	One	of	Java’s	great	features	is	the	ability	to	deal	with	problems,
more	technically	known	as	exceptions,	during	a	program’s	execution.	The	try	block	covers
the	code	that	could	encounter	an	exception,	such	as	not	finding	the	desired	database.	I
intentionally	changed	the	database	name	from	test	to	test1	to	test	the	program’s	exception
handling.	Figure	3-12	shows	the	result	when	the	program	cannot	find	the	deliberately
misnamed	database.

FIGURE	3-12	Exception	handling	output

The	collection	of	error	messages	is	known	as	stack	traceback,	which	is	very	handy
for	Java	developers	to	identify	the	source	of	the	original	exception	that	caused	the
program	to	abnormally	stop	or	cease	running.	In	this	case	it	is	easy	to	see	the	problem’s
source,	which	is	shown	on	the	top	line	of	the	traceback	with	the	statement	“Unknown
database	‘test1’	“.

This	concludes	my	introduction	to	a	Java	database	connector,	which	is	all	that	you
really	need	before	putting	it	to	use	in	an	interesting	project,	which	I	describe	in	the	next
chapter.

Summary
At	the	beginning	of	the	chapter,	I	answered	the	question,	“What	is	an	object?”	I	also

introduced	the	four	core	object-oriented	(OO)	principles	that	form	the	basis	of	all	OO
languages.

I	next	used	a	unified	modeling	language	(UML)	diagram	to	illustrate	the	higher-level
structure	of	my	first	attempt	to	develop	a	Java	application	that	would	initialize	and	then
read	data	from	sensors.

The	chapter	then	covered	class	definitions	along	with	various	levels	of	scope
descriptions.	Important	inheritance	and	composition	principles	were	discussed,	and	I
pointed	out	that	I	would	attempt	to	always	use	composition	over	inheritance.	Doing	so
promotes	program	flexibility	and	maintainability.

I	next	discussed	the	Eclipse	integrated	development	environment	(IDE),	which	was
used	on	a	laptop	to	create	and	run	the	Java	programs	demonstrated	in	the	chapter.	I	took
you	through	all	the	steps	of	creating	and	executing	a	traditional	“Hello	World”	program	to
illustrate	how	easy	it	is	to	use	Eclipse.

I	then	showed	you	how	to	create	a	class	named	Sensor	with	appropriate	child	classes
that	were	based	solely	on	an	inheritance	class	structure.	I	later	showed	you	how	such	a
structure	is	considered	“fragile”	and	easily	broken	if	changes	are	made	to	the	software.

Next,	I	demonstrated	a	much	more	robust	approach,	which	was	based	on	using
interfaces.	Although	it	appeared	a	bit	complex	at	the	outset,	I	showed	that	it	was	relatively
straightforward	and	much	more	robust	compared	to	the	original	version	that	was	based	on
strict	inheritance.

I	let	you	in	on	a	little	secret	that	the	approach	I	used	was	based	on	the	Strategy	design
pattern	(DP),	which	is	one	of	many	powerful	approaches	that	are	available	to	software
developers.	DPs	have	been	formally	documented	since	the	mid	’90s	but	likely	have	been
in	existence	for	much	longer.	Using	a	DP	approach	to	software	development	is	a
professional	approach	that	I	urge	all	readers	to	embrace	if	at	all	possible.	This	section
concluded	with	a	demonstration	of	how	to	add	additional	behaviors	dynamically,	or	“on-
the-fly,”	without	breaking	or	modifying	any	existing	code.

The	next	section	dealt	with	threads,	which	I	wanted	to	alert	you	to	because	they	are
very	useful	to	“speed	up”	a	program	and	they	go	a	long	way	toward	promoting	program
efficiencies.	Improving	program	efficiency	is	an	important	topic	for	Raspberry	Pi
operations	as	its	CPU	normally	operates	at	a	700	MHz	clock	rate,	which	is	well	below	the
speed	of	typical	laptop/desktop	systems.

The	final	chapter	section	concerned	the	Java	database	connector,	which	is	required	to
logically	connect	with	a	MySQL	database	as	was	done	in	the	previous	chapter	using	a
Python	connector.	I	demonstrated	essentially	the	same	database	application	as	I	showed	in
the	previous	chapter	except	I	used	the	Connector/J	database	connector	in	lieu	of	the
Python	variety.

You	are	now	well	prepared	to	tackle	the	next	chapter’s	Java-based	project.

1	Gamma,	Helm,	Johnson	and	Vlissides,	Design	Patterns,	Addison-Wesley	Pub.,
1995

4
CHAPTER

Home	Weather	Station
This	chapter’s	project	will	show	you	how	to	build	a	home	weather	station	that	will

report	the	basic	meteorological	conditions	in	your	area,	including	temperature	and
pressure.	It	will	also	have	provisions	for	an	activation	contact	where	you	can	remotely
activate	systems	such	as	a	garage	door	opener	or	an	air	conditioning	system	from	a	web
browser.	This	project	builds	on	many	of	the	Java	concepts	and	techniques	introduced	in
the	last	chapter.	I	have	a	very	simple	reason	for	using	Java	in	this	project—to	acquaint	you
with	a	small	portion	of	the	many	thousands	of	classes	that	are	already	written	and
available	to	be	used	in	your	own	applications.	Another	important	rationale	to	use	Java	is
the	“write	once,	run	every”	(WORE)	philosophy	that	is	a	bedrock	Java	principle.	This
means	that	you	only	have	to	create	the	Java	source	code	one	time	and	it	is	available	to	run
on	a	multitude	of	different	platforms.	I	will	use	the	Eclipse	IDE	introduced	in	the	last
chapter	to	develop	most	of	the	non-GPIO	source	code	on	the	laptop.	An	IDE	such	as
Eclipse	could	be	loaded	directly	onto	the	Pi	but	I	do	not	recommend	it.	It	would	run	very
slowly	and	likely	not	support	some	of	the	Eclipse	functionality	found	on	a	full-scale
laptop	version.	Besides,	why	not	take	advantage	of	the	key	Java	WORE	concept	I
mentioned	earlier.

Of	necessity,	there	will	be	some	source	code	that	must	be	developed	directly	on	the
Pi,	which	will	normally	involve	the	Pi4J	classes	I	introduce	later	in	the	chapter.	This
approach	is	required	because	of	the	low-level	nature	of	the	Pi4J	classes,	which	means	that
they’re	primarily	hardware	driver–type	classes.	This	approach	is	the	command	line
method,	which	is	how	I	have	presented	commands	so	far	in	this	book.

This	project	will	also	incorporate	a	MySQL	database	as	I	saw	no	reason	to	introduce
further	complexity	by	using	a	different	database	application.	Most	of	the	relational	open
source	databases	function	in	a	similar	manner	and	use	almost	identical	SQL	statements.	As
the	old	saying	goes,	You	know	one,	you	know	them	all.	I	am	being	a	bit	facetious	here	but
it	is	largely	true	for	most	object-oriented	languages.	Python	and	Java	are	quite	a	bit
different	in	implementation	but	both	hold	true	to	the	core	object-oriented	principles.

Java	and	GPIO
Part	of	the	weather	station	project	will	use	some	of	the	Pi’s	general-purpose

input/output	(GPIO)	pins,	which	are	available	via	the	26-pin	header,	named	P1	and	shown
in	Figure	4-1.

FIGURE	4-1	Raspberry	Pi	26	pin	GPIO	header	connector

A	GPIO	pin	is	a	single-bit	digital	port,	which	normally	may	act	either	as	an	input	or

an	output,	depending	upon	how	it	has	been	configured.	The	voltage	levels	that	can	be
applied	as	an	input	or	sourced	as	an	output	are	either	0	or	3.3VDC.	Exceeding	3.3V	with
an	input	level	will	likely	permanently	damage	the	specific	pin	and	may	even	permanently
damage	the	whole	Pi	unit.	There	are	level	converter	chips	available	that	safely	convert
between	5V	sensors	and	the	3.3V	that	the	Pi	GPIO	pins	accept.

GPIO	Pin	Labeling
There	has	been	a	bit	of	confusion	surrounding	how	the	GPIO	pins	(and	others)	are

identified	since	the	Pi	was	introduced.	The	confusion	arises	from	the	way	the
manufacturer,	Broadcom,	labeled	the	pins	and	how	the	Raspberry	Foundation	also	labeled
the	same	pins.	The	Broadcom	labeling	is	also	referred	to	as	the	chipset	or	native	pin
labeling	and	is	directly	related	to	the	actual	pin	labels	on	the	system	on	a	chip	(SOC).
These	labels	are	generally	referred	to	as	the	BCM2835	set	or,	more	simply,	the	BCM
numbers,	while	the	Raspberry	Pi	Foundation	labels	are	referred	to	as	the	RasPi	GPIO	pin
label	designations.

The	whole	pin	labeling	issue	became	a	bit	more	muddled	when	the	rev	2	boards	were
introduced	and	several	P1	pins	were	relabeled.	The	wiringPi	project	introduced	the
abstract	pin	label	layer	concept,	which	is	what	you	will	use	in	this	Java	project.

Also	note	that	the	physical	pin	numbers	only	relate	to	the	P1	connector	and	are	not
related	to	any	logical	pin	designation.	They	are	simply	consecutive	numbers	from	1	to	26
and	representing	the	physical	pin	position	on	the	P1	connector.	The	first	two	and	last	two
numbers	are	shown	on	Figure	4-1	and	are	quite	important	in	the	sense	that	you	must	align
the	matching	ribbon	connector	or	you	will	misconnect	the	pins	to	the	external	circuit.	The
P1	connector	does	not	have	an	alignment	slot	so	you	should	use	the	stripe	on	the	ribbon	to
identify	pin	1.	Figure	4-2	shows	the	proper	alignment	of	a	26-wire	ribbon	cable	attached
to	P1.

FIGURE	4-2	Ribbon	cable	attached	to	the	Raspberry	Pi’s	P1	connector

I	have	provided	Table	4-1	for	your	reference,	which	shows	the	correspondence
between	the	BCM2835	and	RasPi	pin	labeling.

TABLE	4-1	GPIO	Pin	Descriptions

Neither	the	BCM2835	or	the	RasPi	pin	labels	are	used	in	this	chapter’s	project	as	the
Java	program	code	uses	only	the	wiringPi	designations,	which	also	have	been	accepted
and	extended	by	the	Java	Pi4J	code	library	discussed	later	in	this	chapter.	BCM	pin
labeling	is	often	used	in	Python	program	development,	as	you	saw	in	Chapter	2.	Table	4-2
shows	the	P1	connector	with	wiringPi	pin	designations	alongside	BCM	and	header	pin
designations.

TABLE	4-2	P1	GPIO	Connector

Please	note	the	differences	between	board	revisions	1	and	2,	shown	as	R1	and	R2	in
Table	4-2.

The	following	changes	where	effective	for	the	Raspberry	Pi	PCB	Revision	2:

•			GPIO_GEN2	[BCM2835/GPIO27]	was	routed	to	P1	pin	13.
•			Changed	what	was	SCL0/SDA0	to	SCL1/SDA1.
•			SCL1	[BCM2835/GPIO3]	was	routed	to	P1	pin	5.
•			SDA1	[BCM2835/GPIO2]	was	routed	to	P1	pin	3.
•			The	power	and	ground	connections	previously	marked	“Do	Not	Connect”	on
P1	remain	as	connected,	specifically:

•			P1-04:	+5V0
•			P1-09:	GND
•			P1-14:	GND
•			P1-17:	+3V3
•			P1-20:	GND
•			P1-25:	GND

Figure	4-3	is	an	excellent	reference	diagram	that	was	taken	from	the	Pi4J	website,
which	clearly	shows	all	the	P1	pins	along	with	the	wiringPi	designations	that	are	used	in
the	Java	interface	software.

FIGURE	4-3	P1	GPIO	pin	connector

You	should	crosscheck	your	connections	with	Table	4-2	and	Figure	4-3	any	time	that
you	are	directly	interfacing	to	the	P1	connector.

GPIO	Pin	Expansion
The	Pi	rev	2	boards	also	contain	four	additional	GPIO	pins	that	are	available	from

unpopulated	pin	headers.	There	are	eight	plated	PCB	holes	identified	in	the	documentation
as	P5	and	shown	in	Figure	4-4	located	adjacent	to	the	P1	GPIO	connector.

FIGURE	4-4	Additional	GPIO	pins	available	for	expansion

Table	4-3	describes	all	these	additional	pins	with	their	wiringPi	and	the	BCM
designations.	Each	side	has	three	columns.	The	outermost	column,	wiringPi	Pin,	refers	to
the	pin	number	in	the	wiringPi	code.	The	middle	one,	BCM	GPIO,	refers	to	the	pin
number	of	the	BCM2835	chip,	which	is	the	chipset	address.	The	innermost	column,
Name,	is	the	name	of	the	function	of	the	pin	and	is	the	same	as	the	RasPi	description.

TABLE	4-3	P5	Auxiliary	GPIO	Connector	(Rev.	2	Boards	Only)

Pin	1	is	the	square	plated	hole	located	in	the	upper-left	corner	of	P5.	You	will	need	to
install	a	12-pin	connector	to	access	the	pins.	The	connector	is	supposed	to	be	installed	on
the	board’s	underside	per	Note	3	on	the	rev	2.0	board	schematic	available	at
www.raspberrypi.org/wp-content/uploads/2012/10/Raspberry-Pi-R2.0-Schematics-
Issue2.2_027.pdf.	A	suggested	connector	is	shown	in	Figure	4-5.	None	of	the	projects	in
this	book	require	these	extra	pins	but	it	is	nice	to	know	that	they	are	available	if	needed.

http://www.raspberrypi.org/wp-content/uploads/2012/10/Raspberry-Pi-R2.0-Schematics-Issue2.2_027.pdf

FIGURE	4-5	P5	GPIO	pin	expansion	connector

Figure	4-6	is	an	excellent	reference	diagram	that	was	taken	from	the	Pi4J	website,
which	clearly	shows	all	the	P5	pins.	I	do	not	use	these	pins	but	they	are	readily	available
for	any	project	that	requires	these	additional	GPIO	interfaces.

FIGURE	4-6	P5	connector	pins	with	labels

Interrupts
Java	programs	created	to	interface	with	sensors	and/or	actuators	are	considered	real-

time	programs	as	they	must	respond	to	ongoing	conditions	and	events.	This	type	of
activity	requires	that	the	GPIO	pins	must	be	able	to	detect	events	that	happen	such	as
button	or	keystroke	presses	as	well	as	preset	changes	in	sensor	values.	There	are	two	ways
that	the	Pi	can	detect	these	changes:

•			Polling
•			Interrupts

Polling	is	a	programmed	function	where	the	Pi	is	set	in	a	loop	and	regularly	tests	a
GPIO	pin(s)	to	ascertain	if	the	state	(pin	voltage)	has	changed.	Naturally,	this	type	of	event
programming	is	very	CPU	cycle	intensive	and	probably	occupies	most	of	the	Pi
programmed	activity.	The	program	is	designed	such	that	once	an	event	is	detected,	the
program	will	branch	to	a	designated	logical	location	to	handle	the	code	that	is	associated
with	that	particular	event.	Polling,	while	easy	to	implement,	is	quite	wasteful	in	terms	of
program	efficiency	and	somewhat	limits	the	Pi	in	what	else	it	can	do	besides	performing	a
poll	loop.	Fortunately,	there	is	an	alternative	to	polling	and	that	is	the	use	of	an	interrupt.

Every	GPIO	pin	can	also	accommodate	an	interrupt.	An	interrupt	is	an	event	that	stops	or
“interrupts”	the	normal	programming	flow	and	directs	the	microprocessor	to	execute	some
special	handler	program	or	code,	depending	upon	the	interrupt	source.	Pi	interrupts	may
be	triggered	in	several	ways,	as	listed	here:

•			HIGH	level	detected
•			LOW	level	detected
•			HIGH	to	LOW	transition	detected
•			LOW	to	HIGH	transition	detected

Using	them	will	considerably	improve	performance	but	at	the	expense	of	adding	a
certain	level	of	complexity	to	the	software.	In	addition,	there	are	some	general	guidelines
to	be	considered	when	using	interrupts:

•			Use	an	interrupt	service	routine	table.	This	is	a	list	of	logical	locations	that
direct	the	program	to	branch	to	once	a	specific	interrupt	is	detected.	The	Java
Virtual	Machine	(JVM)	must	be	configured	to	support	this	feature,	but	most	are
not.	This	feature	will	not	be	used	in	the	example	program.
•			Keep	the	handler	code	short	and	to	the	point.	The	handler	code	should
contain	only	the	absolute	minimum	code	necessary	to	service	the	event	and
nothing	more.
•			Double	check	any	initialization	code.	Interrupt	handlers	are	often	created	as
threads	with	associated	priorities.	Ensure	they	are	correct	and	check	items	such
as	proper	GPIO	pin	assignments	and	data	direction	registers	and	initial	state
levels.
•			Minimize	disabling	interrupts.	Interrupts	can	be	disabled,	but	this	should	not
ordinarily	be	done	except	in	the	case	of	an	actual	interrupt.	Interrupting	another
interrupt	is	typically	not	a	good	idea.
•			Use	the	key	word	“volatile”	for	a	shared	variable.	The	volatile	modifier	tags
a	shared	variable	that	might	unexpectedly	change	value	during	a	threaded
operation	or	an	interrupt	sequence.	It	forces	the	JVM	to	reread	the	value	before
any	access	or	assignment	involving	the	shared	variable.
•			Be	aware	of	the	number	of	clock	cycles	used	in	an	interrupt	sequence.
Programs	may	be	created	with	certain	expected	delays	that	will	not	hold	true	if
an	interrupt	occurs.	Developers	have	to	know	the	effect	on	preprogrammed
timing	that	an	interrupt	could	possibly	cause.
•			Favor	the	use	of	interrupts	in	lieu	of	polling.	Using	interrupts	can	allow	a
processor	to	enter	a	“sleep”	mode	to	conserve	energy	and	related	battery	life.
Polling	keeps	the	processor	constantly	“alive,”	defeating	the	sleep	mode.

I	will	demonstrate	a	simple	example	program	using	a	manually	initiated	interrupt
after	I	discuss	the	key	Pi4J	library	in	the	next	section.

Pi4J	Library
The	Raspberry	Pi	development	community	is	quite	fortunate	to	have	a	talented

developer	named	Robert	Savage,	who	freely	made	available	a	fairly	complete	Java	class
library	that	implements	GPIO	functionality.	This	library	includes	both	high-level
application	type	classes	as	well	as	many	low-level	driver	classes.	The	library	is	named
Pi4J	and	is	available	for	download	at	www.pi4j.com.	The	download	and	installation	of	this
library	on	your	Pi	is	crucial	for	this	project	to	succeed.	Please	follow	this	procedure	to	set
up	your	Pi	to	control	the	GPIO	pins	using	Java:

1.	Ensure	that	Oracle’s	Java	JDK	is	already	installed	on	the	Pi.	It	should	be	if
you	are	using	a	Wheezy	distribution	from	September	2013	or	later.	Enter	the
following	at	a	command	line	prompt:

java	–version	
Figure	4-7	is	the	result	of	this	command	line	query	as	to	the	Java	version

installed	on	the	Pi.	Your	version	may	very	well	be	different	as	upgraded
Java	versions	are	likely	to	be	included	in	the	Wheezy	distribution	in	the
future.

2.	The	next	step	is	to	download	the	Pi4J	library.	I	found	the	simplest	way	to	do
this	is	to	first	download	the	SNAPSHOT	release	named	pi4j-1.0-
SNAPSHOT.deb	onto	my	laptop	from
https://code.google.com/p/pi4j/downloads/list.	I	then	copied	it	into	the	Pi’s	home
directory	using	a	thumb	drive	and	the	Pi’s	File	Manager	application.
3.	Once	in	the	home	directory,	enter	the	following	command	to	install	this
SNAPSHOT	into	the	appropriate	locations	in	the	Pi:

sudo	dpkg	–i	pi4j-1.0-SNAPSHOT.deb	

FIGURE	4-7	Java	version	query

NOTE	dpkg	is	a	package	manager	application	designed	to	unpack	and	install	Debian
formatted	packages,	i.e.,	those	software	packages	with	a	.deb	file	extension.

4.	After	the	installation	is	completed,	a	new	directory	(pi4j)	will	be	created	with

http://www.pi4j.com
https://www.code.google.com/p/pi4j/downloads/list

two	new	subdirectories	(lib	and	examples)	created	within	it	as	follows:
/opt/pi4j/lib

/opt/pi4j/examples

The	preceding	step	completed	the	Pi4J	installation,	but	you	should
proceed	with	the	next	few	steps	to	create	all	the	needed	class	files	and	be
ready	to	run	the	example	program,	which	will	in	turn	confirm	that	the
library	functions	as	expected	and	is	usable	for	program	development.

5.	Change	into	the	examples	subdirectory	by	entering	the	following:
cd	/opt/pi4j/examples	

6.	Once	in	the	directory,	enter	the	following,	which	automatically	builds	all	the
class	files	from	the	existing	downloaded	source	files:

./build	

There	were	28	example	source	files	in	the	download	that	I	made.	That	number	is
subject	to	change	as	the	developers	who	control	the	website	add	and	subtract	depending
upon	comments	received	from	the	active	Pi4J	community.

The	./build	command	just	shown	causes	a	script	to	run	that	iterates	through	all	the
example	source	code	files	to	produce	corresponding	class	files.	The	actual	compile
command	is	shown	next,	which	you	must	use	to	compile	your	own	source	file:

sudo	javac	–classpath	.:classes:/opt/pi4j/lib/’*’	–d	.	<sourcefilename>	

It	is	very	important	that	you	pay	attention	to	all	the	symbols	and	whitespace	in	the
preceding	command	as	leaving	anything	out	or	misaligning	their	placement	will	cause	the
compile	to	fail	as	I	found	out	much	to	my	frustration.

Enter	the	following	to	execute	or	run	a	class	file:
sudo	java	–classpath	.:/classes:/opt/pi4j/lib/’*’	<classfilename>	

Note	that	you	should	not	enter	the	.class	extension	in	the	class	filename.

LED	Blink	Program
A	blink	program	is	the	introductory	embedded	hardware	equivalent	of	the	“Hello

World”	type	used	in	pure	software	development.	The	particular	blink	example	I	used	is
named	BlinkGpioExample.java	and	written	by	Robert	Savage.	The	program	is	part	of	the
set	of	programs	downloaded	in	the	examples	directory.	This	program	is	far	from	the
simplistic	code	that	ordinarily	blinks	an	LED.	It	blinks	two	LEDs	but	also	contains	code	to
respond	to	a	key	press.	The	key	press	triggers	an	interrupt	that	is	handled	by	a	method	that
changes	the	blink	rate	of	the	LEDs.	The	code	listing	for	this	program	is	shown	here,	with
further	explanatory	comments	following	it:

The	statement
final	GpioController	gpio	=	GpioFactory.getInstance();

is	an	excellent	representation	of	a	design	pattern	(DP),	which	was	introduced,	in	the
previous	chapter.	It	represents	the	Abstract	Factory	DP,	where	an	instance	of	a	desired
object	is	created	on	demand.	For	this	case,	the	object	instantiated	is	a	GpioController,
which	is	used	to	manage	the	GPIO	pins.	Incidentally,	the	“final”	modifier	used	in	this
statement	directs	the	JVM	to	prevent	any	modification	of	this	object	within	the	program.

The	statement
final	GpioPinDigitalOutput	led1	=	gpio.provisionDigitalOutputPin(RaspiPin

.GPIO_01);

instantiates	the	led1	object,	which	is	also	GPIO01	set	in	an	output	mode.	You	need	to
refer	to	Figure	4-3	to	actually	determine	which	physical	pin	it	is	on	the	P1	header.	Similar
statements	set	up	led2	as	an	output	and	the	push	button	named	myButton	as	an	input.

The	statement

is	a	very	complex	one	but	can	be	easily	understood	if	examined	piece-by-piece.	It	is
essentially	an	interrupt	handler	in	the	sense	that	it	is	the	code	that	will	process	the	event	of
pushing	the	external	button.	It	is	handy	to	think	of	user	interactions	with	a	program	as
events	whether	they	be	external	button	presses,	mouse	clicks,	keyboard	button	presses,	or
something	else.	The	addListener	method	is	the	overall	handler	but	the	external	button
press	must	be	registered	to	it	in	order	for	the	JVM	to	know	where	to	go	once	this
particular	event	happens	or	in	developer’s	lingo,	“fires	off.”	An	object	that	technically	is
described	as	an	anonymous	inner	class	because	it	is	not	assigned	a	name	is	instantiated	by
the	new	operator	from	the	GpioPinListenerDigital	class.	This	class	contains	only	one
method	named	handleGpioPinDigitalStateChangeEvent.	It	also	comes	right	after	the	
@Overide	annotation,	which	is	Java’s	way	of	saying	that	you	best	put	something	here	on
how	you	want	to	process	the	event.	In	the	handle…method	argument	is	an	object	named
event,	which	refers	to	the	GpioPinDigitalStateChangeEvent	class.	This	object
immediately	becomes	non-null	after	the	button	is	pressed.	The	state	of	the	event	object
may	be	tested	to	determine	if	it	is	a	high	or	low	level.	If	high,	the	LED	blinking	rate	is	set
to	200	ms	and	if	low	remains	at	1000	ms.	I	also	put	a	println	statement	in	the	input	pin
level	test	statement	code	to	display	the	text	“Button	pressed,”	just	to	confirm	that	it	was

working	as	planned.

The	main	operating	code	in	this	class	is	a	forever	loop	as	shown	here:

This	approach	to	embedded	control	programming	is	very	common	where	the
processor	simply	waits	for	user	interaction	with	no	other	design	responsibilities	to
undertake.	It	is	perfectly	suited	for	this	test	program	but	likely	should	be	avoided	for
programs	that	have	more	complex	requirements	such	as	this	chapter’s	weather	station.

You	will	need	to	connect	a	few	components	to	the	Pi	in	order	to	test	this	program.
Figure	4-8	is	a	schematic	of	how	the	components	interconnect.	I	used	a	solderless
breadboard	with	a	Pi	Cobbler	to	quickly	hook	up	all	the	parts.

FIGURE	4-8	Blink	program	test	schematic

The	schematic	shows	both	the	header	pin	numbers	and	the	wiringPi	logical	names.	I
recommend	that	you	refer	back	to	Figure	4-3	as	you	wire	this	project	just	to	avoid	any
mistakes	in	the	connections.	The	actual	physical	setup	is	shown	in	Figure	4-9	with	the	Pi
Cobbler	ribbon	cable	removed	for	better	breadboard	visibility.

FIGURE	4-9	Physical	setup	for	the	Blink	program

I	ran	the	blink	program	for	a	short	time	and	observed	that	the	LEDs	did	blink	as
programmed	and	the	println	statement	“Button	pressed”	appeared	on	a	terminal	window
each	time	the	button	was	pressed.	Figure	4-10	is	a	terminal	window	screenshot	showing	a
running	blink	program.

FIGURE	4-10	Terminal	window	screenshot	for	a	running	blink	program

You	should	now	have	a	properly	operating	Java	development	system	running	on	the

Pi	if	you	have	been	successful	in	completing	all	the	previous	steps.	The	following	sections
demonstrate	how	to	program	the	weather	station	sensors	using	Java	and	the	Pi4J	library.

Weather	Station	Sensors
There	is	one	sensor	breakout	board	(BoB)	included	in	this	design:	SEN-11824	–

pressure	&	temperature.

This	BoB	is	very	reasonable	in	cost	and	is	available	from	Sparkfun.com.	The	SEN-
11824	BoB	extends	the	Bosch	BMP180	sensor	chip	for	highly	accurate	pressure	and
temperature	measurements.	The	BMP180	sensor	generates	a	serial	digital	output
proportional	to	the	weather	parameters	it	is	designed	to	measure.	This	serial	digital	output
data	stream	uses	the	I2C	protocol,	which	is	directly	supported	by	the	Pi4J	library.	For
readers	who	want	more	information	on	the	I2C	protocol,	see	the	“I2C	Protocol”	sidebar.

I2C	Protocol
The	Inter-Integrated	Circuit	interface	or	I2C	(pronounced	“eye-two-cee”	or	“eye-

squared-cee)	is	also	known	as	a	synchronous	serial	data	link.	Figure	4-11	is	a	block
diagram	of	the	I2C	interface	showing	one	master	and	one	slave.	This	configuration	is
also	known	as	a	multi-drop	or	bus	network.

FIGURE	4-11	I2C	block	diagram

I2C	supports	more	than	one	master	as	well	as	multiple	slaves.	This	protocol	was
created	by	the	Philips	Company	in	1982	and	is	a	very	mature	technology,	meaning	it
is	extremely	reliable.	Only	two	lines	are	used:	SCL	for	a	serial	clock	and	SDA	for
serial	data.	Table	4-4	shows	the	current	rev	2	Pi	names	for	both	the	clock	and	data
lines.

http://www.Sparkfun.com

TABLE	4-4	I2C	Signal	Lines

The	I2C	bandwidth	is	fairly	low,	with	400	Kbps	maximum	and	100	Kbps
nominal	specifications.	However,	the	nominal	is	more	than	adequate	for	most
systems	as	the	typical	sensor	sample	interval	ranges	from	1	to	10	seconds.

A	quick	bandwidth	calculation	for	the	weather	station	sensors	follows.
Assumptions	include

•			1-second	sample	interval	for	each	sensor.
•			Each	sensor	generates	an	8	data	byte	packet.
•			4	additional	bytes	for	I2C	overhead.

The	calculation	is	as	follows:
Total	number	of	bits/sec	(bps)	=	Total	byte	packets	*	8	bits/byte	*

Number	sensors	*	Samples/sec
=	12	*	8	*	3	*	1
=	216	bps	or	0.216kps,	which	is	far	below	the	nominal	100	Kbps	rate

Sensor	Wiring	Connections
The	sensor	BoB	requires	connections	to	both	a	power	supply	and	I2C	bus.	Figure	4-12

shows	the	connection	points	on	the	SEN_11824.	I	also	soldered	header	pins	to	the	BoB	to
make	it	compatible	for	use	in	a	solderless	breadboard	setup.	Figure	4-13	shows	the
SEN_11824	with	the	header	pins	attached.

FIGURE	4-12	SEN_11824	connections

FIGURE	4-13	SEN_11824	with	header	pins	attached

Figure	4-14	is	a	block	diagram	showing	how	the	Pi	is	connected	with	the	SEN_11824
BoB.	The	data	and	clock	signal	lines	are	connected	in	parallel.	The	board	is	also
connected	to	the	3.3V	and	ground	lines.	The	physical	setup	using	a	Pi	Cobbler	and	a
solderless	breadboard	is	shown	in	Figure	4-15.

FIGURE	4-14	Weather	system	block	diagram

FIGURE	4-15	Physical	test	system	setup

Everything	from	this	point	on	depends	upon	the	software,	which	is	discussed	in	the
following	sections.

Weather	Station	Software
The	first	step	in	creating	the	weather	station	software	is	to	enable	the	I2C	protocol

within	the	Wheezy	distribution.	It	is	a	fairly	simple	process:

1.	Append	two	lines	to	the	module	file	located	in	the	etc	directory.
sudo	nano	/etc/module	
i2c-bcm2708
i2c-dev

2.	Comment	out	the	flowing	line	in	the	configuration	file	raspi-blacklist.conf.
No	action	is	required	if	this	file	does	not	already	exist.

sudo	nano	/etc/modprobe.d/raspi-blaclklist-conf	
#blacklist	i2c-bcm2708

3.	Install	the	i2c-tools	package.
sudo	apt-get	install	i2c-tools	

4.	Test	to	see	that	i2c	is	enabled.
sudo	i2cdetect	–y	1	 	(replace	the	1	with	a	0	for	rev	1	boards)

5.	If	the	test	is	successful	you	should	see	a	terminal	display	similar	to	what	is
shown	in	Figure	4-16.	This	figure	shows	the	I2C	addresses	for	the	SEN_11824
sensor	at	0x77.

FIGURE	4-16	Screenshot	for	the	i2cdetect	command

It	is	now	time	to	create	a	Java	program,	which	will	read	data	from	the	sensors	using
the	I2C	protocol,	assuming	that	the	I2C	address	was	detected,	as	shown	previously.

Java	Software
The	Pi4J	library	makes	reading	data	from	the	sensors	fairly	simple	by	hiding	most	of

the	low-level	details	and	allowing	the	developer	to	focus	on	retrieving	and	processing	the

measurement	data.	The	BMP180	pressure/temperature	sensor	that	is	mounted	on	the
SEN_11824	BoB	uses	a	series	of	registers	to	provide	access	to	the	sensor	data.	These
register	locations	are	specified	in	the	sensor’s	technical	datasheet,	which	must	be	used	in
order	to	access	the	correct	data.	Table	4-5	shows	the	registers	I	used	to	program	the
BMP180.

TABLE	4-5	BMP180	Relevant	Registers

Sensor	Classes
All	the	Java	classes	are	included	in	a	package	named	sensor	and	have	been	modeled

after	the	class	diagram	shown	in	Figure	3-15.	I	have	drastically	modified	the	attributes	and
methods	to	match	this	project’s	minimal	requirements,	but	I	have	still	used	an	interface	to
encapsulate	the	data	behavior.	The	temperature	and	pressure	sensors	require	a	different
method	implementation	to	start	data	acquisition	and	transfer	data	for	which	this
architecture	is	well	suited.	I	have	included	most	of	the	code	listings	in	the	text	that	follows
to	facilitate	a	brief	discussion	on	the	key	points	of	the	project.	As	always,	the	complete
code	sources	are	available	from	the	book’s	companion	website.

This	is	the	abstract	sensor	class	from	which	the	concrete	child	sensor	classes	will
inherit	the	common	data	behavior:

The	following	is	the	SEN_11824	class	source	code.	Notice	that	the	constructor	has	an
integer	argument	that	instantiates	the	appropriate	object	type,	either	temperature	or
pressure	because	each	one	has	a	different	dataBehavior.

The	DataBehavior	interface	is	shown	here;	it	contains	only	one	method,	read,	which
returns	a	double	if	the	call	is	successful.

The	XferTemp	class	is	one	of	the	two	child	classes	of	the	DataBehavior	interface	that
implement	its	read	method.	It	is	designed	to	read	two	temperature	data	bytes	from	the
SEN_11824	BoB.	This	class	imports	all	the	relevant	Pi4J	library	classes	to	communicate
via	I2C	with	the	board.	I	provide	some	further	discussion	about	the	class	methods	after	the
code	listing.

This	class	is	quite	lengthy	and	I	considered	separating	the	calibration	portion	into	a
separate	class	but	decided	against	that	as	it	would	overly	complicate	class	design,	and	the
calibration	was	a	reasonably	small	snippet	of	code.	This	is	one	area	where	interested	and
motivated	readers	might	attempt	to	refactor	the	code	to	“abstract	out”	the	calibration
routine	and	replace	it	with	a	separate	interface	in	similar	fashion	to	how	the	DataBehavior
interface	was	structured.	Making	decisions	as	to	what	should	or	should	not	belong	in	a
class	definition	is	an	issue	that	should	always	be	considered	as	the	software	is	developed.
Just	be	mindful	that	a	class	should	only	have	one	or	two	responsibilities.	Assigning	many
functions	to	a	single	class	will	enviably	lead	to	overly	complex	code	that	is	hard	to	debug
and	maintain.

The	functions	of	the	following	three	methods	within	this	class	are	discussed	next:

•			getCal()
•			read()
•			getUT()

Method	getCal()	reads	in	22	data	bytes	that	are	stored	in	the	BMP180	chip
EEPROM.	A	series	of	calibration	constants	are	then	calculated	based	on	the	11	integer
values	derived	from	the	22	bytes.	The	rationale	and	procedure	for	the	calibration	factors
are	detailed	in	a	PDF	document,	available	from
http://wmrx00.sourceforge.net/Arduino/BMP085-Calcs.pdf,	that	covers	both	the	BMP180
temperature	and	pressure	measurements.

Method	read()	is	the	override	implementation	of	the	DataBehavior	interface	method
of	the	same	name.	It	reads	in	2	data	bytes	representing	the	BMP180	temperature,	applies
the	calibration	factors,	and	returns	a	double	representing	the	compensated	temperature.

Method	getUT()	returns	the	integer	representing	the	raw,	uncompensated	temperature
value.	This	value	is	required	for	the	pressure	calculation	done	in	the	XferPres	class.

http://www.wmrx00.sourceforge.net/Arduino/BMP085-Calcs.pdf

The	other	DataBehavior	child	class	is	named	XferPres.	The	XferPres	is	similar	to
the	XferTemp	class	as	it	also	interfaces	with	same	SEN_11824	BoB	as	does	the	XferTemp
class.	However,	it	transfers	3	data	bytes	to	represent	the	21-bit	ADC	pressure
measurement	as	compared	to	the	2	bytes,	or	16	bits,	for	the	temperature	measurement.	The
pressure	calibration	algorithm	is	considerably	different	than	the	temperature	version,
which	lends	some	more	support	to	the	interface	consideration	mentioned	previously.	I
have	provided	the	complex	code	listing	to	show	that	it	is	involves	many	intricate
calculations	to	provide	the	true	BMP180	pressure	measurement.

The	methods	getCal()	and	read()	perform	similar	functions	for	the	XferPress	class
as	the	identical	methods	did	in	the	XferTemp	class.	This	pressure	calibration	method	is
considerably	more	complex	compared	to	the	temperature	calibration,	and	the	class	also
uses	an	uncompensated	temperature	value,	as	discussed	previously.

The	following	is	a	simplified	test	class	named	TestTemp1,	which	returns	both
temperature	and	pressure	readings	at	10-second	intervals.	This	test	class	checks	if	the	I2C
protocol	was	functioning	as	expected	and	sensor	data	was	being	generated.	Enter	the
following	at	the	command	prompt	in	order	to	run	this	program:

sudo	java	–classpath	.:/classes:/opt/pi4j/lib/’*’	sensor/TestTemp1	

This	command	presumes	you	have	put	the	statement	package	sensor	as	the	first	line
in	each	of	the	class	source	files.	You	will	get	the	‘Java	runtime	class	not	found’	error	if
you	have	missed	including	the	package	statement	in	any	of	the	source	files.

Figure	4-17	is	a	screenshot	of	the	TestTemp1	program	output	after	running	for
several	minutes.	And	yes,	it	was	a	bit	chilly	in	my	development	lab	when	I	ran	this
program.	To	stop	the	program,	you	must	press	the	CTRL-C	key	combination.	I	checked	the
pressure	reading	at	a	nearby	airport’s	automated	weather	reporting	system,	which	was
30.11	in	Hg—exactly	matching	my	system’s	measurement.

FIGURE	4-17	TestTemp1	program	output

Thermostatic	Application
In	this	section,	I	describe	how	to	set	up	a	simple	thermostatic	application.	The

temperature	set	point	will	be	entered	from	the	keyboard	and	the	local	temperature	will	be

monitored	by	the	BMP180	sensor.	A	GPIO	pin	will	be	set	high	if	the	measured
temperature	is	below	the	set	point.	This	is	precisely	how	a	normal	thermostat	functions.

The	key	to	this	simple	application	is	to	create	a	new	client	application	that	requests
the	user	to	enter	a	temperature	value,	which	is	then	compared	to	the	actual	temperature.	If
the	actual	temperature	is	less	than	the	requested	temperature,	the	heating	system	should	be
turned	on.	Lacking	a	real	heating	system,	I	will	simply	turn	on	an	LED	and	use	a	println
statement	to	display	the	control	action.	The	LED	should	be	connected	in	exactly	the	same
manner	as	LED	1	was,	as	shown	in	the	Figure	4-8	schematic.

This	new	application	uses	the	XferTemp	class	and	is	still	part	of	the	sensor	package,
which	makes	compiling	and	executing	the	code	very	easy.	The	PiThermostat	class	is
shown	here:

Figure	4-18	shows	the	screenshot	from	the	PiThermostat	program	with	two	set	points
separately	entered,	one	below	and	one	above	the	current	room	temperature.

FIGURE	4-18	PiThermostat	program	output

I	also	observed	the	LED	turn	on	when	the	set	point	was	set	above	the	current	room
temperature,	thus	further	confirming	proper	thermostat	operation.

Setting	the	Thermostat	Remotely
I	will	show	you	how	to	remotely	enter	the	thermostat’s	set	point	as	that	is	this	book’s

central	theme.	I	will	use	a	simple	PHP	web	page	hosted	on	the	Pi’s	Apache	web	server	to
accomplish	this	task.	The	generic	file	location	and	structure	were	thoroughly	discussed	in
Chapter	1	so	I	will	only	show	you	the	code	and	discuss	how	it	functions.

Two	server	files	are	required:

•			SPInput.php
•			displaySP.php

The	following	is	the	file	listing	for	SPInput.php:

Note	that	this	code	calls	the	second	PHP	file,	displaySP.php,	when	the	user	clicks	the
submit	button.	Figure	4-19	is	a	screenshot	from	a	Mac	Pro	after	I	have	put	in	my	Pi’s	URL
with	the	initial	PHP	program,	which	you	can	see	in	the	URL	box	in	the	figure.	I	entered	19
as	a	set	point	temperature	and	clicked	on	the	Submit	button.	Figure	4-20	shows	the
immediate	result.

FIGURE	4-19	Browser	screenshot	for	the	initial	SPInput	PHP	program

FIGURE	4-20	After	clicking	the	Submit	button

The	following	is	the	code	for	the	displaySP.php	program,	which	is	executed	when	the
Submit	button	is	clicked:

This	program	not	only	echoes	back	the	set	point	value	the	user	entered	but	also	saves
that	value	in	a	small	data	file	named	SPData.txt.	This	is	necessary	in	order	to	allow	the
thermostat	application	to	access	the	desired	set	point	at	any	time	if	it	had	been	set	days
before	the	thermostat	application	was	run.	Note	that	a	cookie	could	also	have	been	set,	but
I	felt	this	approach	was	simpler	and	less	complex.	You	will	have	to	create	the	file	and
modify	file	permissions	before	using	the	web	server	programs.	The	procedure	is	simple:

•			Create	the	file	by	entering	sudo	nano	SPdata.txt	 	(I	created	it	in	the
/var/www	directory).
•			Modify	the	permissions	by	entering	sudo	chmod	777	SPdata.txt	 .

Failure	to	modify	the	permissions	will	cause	the	“die”	message	to	appear	as	the
displaySP.php	program	is	not	executing	with	root-level	privileges.

The	remaining	task	left	in	this	process	was	to	modify	the	PiThermostat	program	to
use	the	stored	set	point	in	lieu	of	asking	the	user	to	enter	one.	The	modified	program	was
renamed	RemotePiThermostat.java	and	is	shown	here:

Figure	4-21	shows	the	Pi’s	screen	when	the	RemotePiThermostat	program	was	run.
Note	that	the	system	was	“on”	because	the	set	point	at	19°C	was	higher	than	the	current
measured	temperature	at	12°C.

FIGURE	4-21	RemotePiThermostat	program	output	display

Database	Classes
It	is	now	time	to	discuss	the	database	classes	that	will	store	the	measurements	created

by	the	sensors.	I	will	use	the	MySQL	classes	shown	in	Chapter	3	as	templates,	including

the	Java	database	connector.	The	obvious	first	step	is	to	define	the	MySQL	schema	or
structure.	I	set	up	a	similar	database	as	was	defined	in	Chapter	3	but	added	an	additional
field	to	store	the	pressure	measurements.	Table	4-6	shows	the	schema	for	the	database,
which	I	named	HomeWeatherStation.

TABLE	4-6	HomeWeatherStation	Schema

I	created	the	database	and	table	using	the	same	procedures	shown	in	the	previous
chapters.	However,	I	changed	my	approach	to	developing	the	actual	classes	by	using	the
Eclipse	IDE	environment	on	a	laptop	in	lieu	of	developing	directly	on	the	Pi.	I	had	several
reasons	for	my	decision	but	the	primary	reason	was	that	it	is	much	faster	and	easier	to
develop	and	debug	using	a	full-scale	IDE	than	it	is	using	the	command	line	entries	on	the
Pi.	Using	the	IDE	meant	I	had	to	create	pseudo	or	simulation	classes	that	would	fill	in	for
the	real	classes	that	depended	on	the	native	Pi4J	library,	specifically:

•			XferTemp
•			XferPres

These	simulation	(sim)	classes	were	relatively	easy	to	create	as	they	only	returned	a
double	when	called.	I	also	included	a	random	number	generator	in	the	sim	classes	to
enhance	the	data	realism	somewhat	and	make	it	reflect	what	the	real	classes	would
provide.	The	XferTemp	code	listing	that	follows	shows	one	of	the	sim	classes:

I	next	ran	a	simple	adaptation	of	the	Pi	TestTemp1	program,	which	I	named
TestTemp	to	check	if	all	the	sim	classes	were	functioning	as	I	expected.	This	program	is
similar	to	the	original	TestTemp1,	which	ran	on	the	Pi,	but	runs	in	the	Eclipse	environment
with	the	simulated	objects.

A	sample	of	this	program’s	output	is	shown	in	Figure	4-22.

FIGURE	4-22	Eclipse	TestTemp	program	output

I	next	created	a	client	class	named	FillDB2	that	contains	the	main	method,	which
starts	the	application	as	well	as	establishing	the	MySQL	database	connectivity	and
inserting	the	data	created	by	the	sim	objects	into	the	database	records.	This	was	a	bit	of	a
shortcut,	but	I	was	eager	to	test	the	application.

Figure	4-23	shows	a	portion	of	the	sensorMeasurement	table	contents	after	the
program	had	run	for	a	while.	I	used	the	command	SELECT	*	FROM	sensorMeasurements;
at	the	interactive	MySQL	command	line	to	create	this	display.

FIGURE	4-23	Portion	of	the	sensorMeasurement	table	records

At	this	point,	I	have	demonstrated	that	the	program	architecture	works	as	intended
and	all	the	classes	operate	per	the	design	requirements.	All	that’s	left	is	to	“port”	the
Eclipse	design	over	to	the	Pi	and	refactor	the	classes	a	bit	to	extract	the	database	functions
from	the	client	to	their	own	class.	The	client	class	should	normally	be	very	small	and
really	only	designed	to	launch	the	application	and	call	the	appropriate	functions	such	as
creating	the	database	connection,	instantiating	the	desired	sensor	objects,	and	starting	the
measurement	cycle.	The	porting	and	refactoring	are	made	quite	simple	by	my	use	of
interfaces.	I	only	have	to	substitute	the	three	“real”	classes	for	the	sims	and	extract	the
database	features	into	their	own	class	and	just	instantiate	it	in	the	client	when	it	starts.

The	following	listing	shows	the	new	Pi	database	class	I	named	HWSDB,	which
naturally	is	short	for	Home	Weather	Station	DataBase.

The	client	class,	which	is	shown	next,	will	instantiate	all	the	required	objects,	collect
the	measurements,	and	pass	them	on	to	the	database	object	for	storage.	It	also	sets	the
interval	between	measurement	sets,	which	is	fixed	at	10	seconds	for	this	example
program.	I	named	this	program	OperateHWS	from	which	I	know	you	can	guess	the
meaning:

You	must	create	the	MySQL	HomeWeatherStation	database	before	attempting	to	run
this	program	or	an	exception	will	be	thrown.	All	the	source	code	within	the	package	must
also	be	compiled	before	running	this	program.	Once	everything	is	compiled,	you	need
only	to	enter	this	command	to	start	logging	weather	station	data:

sudo	java	–classpath	.:/classes:/opt/pi4j/lib/’*’	sensor/OperateHWS	

As	with	all	the	run	forever	programs,	you	will	need	to	press	the	CTRL-C	key
combination	to	stop	the	program.

Figure	4-24	is	a	combined	selection	of	the	first	20	and	last	20	records	from	the
sensorMeasurement	table	that	I	retrieved	using	the	interactive	MySQL	command	line
procedure	that	I	discussed	earlier.	The	time	span	for	record	storage	was	approximately	20
hours,	and	you	can	observe	that	the	temperature	dropped	considerably	while	the	pressure

increased	during	this	period.

FIGURE	4-24	First	20	and	last	20	records	from	the	sensorMeasurement	table

Remote	Access	to	the	HWS	Database
The	HWS	database	can	be	remotely	accessed	using	the	procedures	detailed	at	the	end	of

Chapter	2.	It	is	entirely	irrelevant	how	the	record	data	was	collected	and	stored,	which	was
by	using	Python	in	Chapter	2	and	Java	in	this	chapter.	It	is	essential	that	you	create	a	new
user	and	password	to	remotely	access	the	database	as	this	chapter’s	example	was	based
only	on	a	root-level	user.	Allowing	root-level	access	to	your	system	over	the	Internet	is
only	inviting	disaster	into	your	computing	environment.	Believe	me—there	are
unscrupulous	types	on	the	Web	who	will	wreak	havoc	just	for	the	fun	of	it.	Chapter	2
details	procedures	on	how	to	add	a	user	and	create	a	password.

Summary
This	is	a	very	brief	summary	of	a	very	long	chapter.	This	chapter’s	project	was	the

building	and	programming	of	a	home	weather	station	that	sensed	both	temperature	and
pressure.	A	MySQL	database	was	also	created	to	store	the	measurements	for	later	retrieval
either	locally	or	through	the	Web.	I	discussed	how	Java	may	be	used	to	control	GPIO	pins
using	the	very	clever	Pi4J	library.	A	simple	LED	blinky	project	was	demonstrated	to
further	clarify	the	library	functions.

In	addition,	this	chapter	included	a	simple	thermostat	application	that	proved	the
project	could	turn	on	a	heating	system	if	the	measured	temperature	dropped	below	a	set
point.	I	showed	you	how	to	establish	this	control	temperature	set	point	both	locally	using	a
keyboard	and	also	remotely	using	a	web	page	served	by	the	Pi’s	Apache	web	server.

5
CHAPTER

Webcam	and	Raspberry	Pi	Camera	Projects
Remotely	accessing	webcams	is	a	fairly	common	activity	that	many	people	perform

routinely.	It	is	my	intention	in	this	chapter	to	show	you	how	to	put	together	three	projects,
each	with	unique	capabilities.	The	first	project	uses	a	standard	USB	webcam	with	a
comprehensive	open	source	software	package	named	Motion.	The	second	project	deals
with	the	specially	designed	Pi	Camera,	which	only	works	with	the	Pi.	The	final	project
also	uses	the	Pi	Camera	but	uses	the	Motion	software	instead	of	the	specialty	applications
that	typically	come	bundled	with	the	Pi	Camera.

Conventional	Webcam
The	first	project	in	this	chapter	uses	a	high-quality	webcam	that	connects	to	the	Pi	using

one	of	the	PI’s	two	USB	ports.	I	used	a	Logitech	C920,	shown	in	Figure	5-1.

FIGURE	5-1	Logitech	C920	webcam

This	a	high-definition	camera	capable	of	producing	excellent	videos,	but	the	open
source	software	used	within	this	project	will	constrain	its	performance.	You	may	still	use
any	one	of	the	many	different	webcams	that	are	available	as	the	video	requirements	are
modest	and	the	current	Raspian	distribution	will	automatically	detect	and	support	many
types,	including	older	ones.	If	you	already	own	a	webcam,	my	suggestion	is	to	plug	it	into

one	of	the	Pi’s	USB	ports	and	then	type	the	following	into	a	command	line:
lsusb

Figure	5-2	is	a	screenshot	of	the	command’s	output.	Device	012	is	the	webcam	while
the	other	Logitech	device	listed	as	006	is	a	keyboard.	If	in	doubt,	with	multiple	devices
from	the	same	manufacturer,	simply	unplug	the	device	and	rerun	the	command	to	see
which	one	disappears.

FIGURE	5-2	lsusb	output	screenshot

Note	that	I	have	found	this	particular	webcam	to	be	somewhat	sensitive	in	terms	of
the	USB	port	it	is	plugged	into.	It	may	not	be	detected	when	plugged	into	one	of	the	two
Pi	USB	ports,	in	which	case,	try	plugging	it	into	a	powered	USB	hub	that	provides	at	least
the	minimum	specification	current	of	500mA	for	each	USB	port.

Motion	Software	Package
I	selected	an	open	source	software	package	named	Motion	to	enable	remote	viewing	of

the	webcam.	This	is	a	very	comprehensive	package	containing	a	substantial	number	of
features,	far	more	than	could	be	covered	in	this	chapter.	Creating	similar	software	for	a
more	traditional	board,	such	as	one	from	the	Arduino	series,	would	be	a	substantial
undertaking.

The	key	feature	that	is	used	from	the	Motion	package	is	the	built-in	web	server.	This
server	receives	the	video	stream	from	the	webcam	and	sends	it	off	in	TCP/IP	format	over	a
predefined	port.	All	you	need	to	remotely	view	the	webcam	video	is	a	browser	pointed	to
the	Pi’s	IP	address	and	port	number,	nothing	more.	This	feature	makes	the	viewing
exercise	extremely	simple.	But	there	is	more:	Motion	enables	you	to	use	more	than	one
webcam.	You	can	set	up	multiple	webcams,	each	with	its	own	port	number.	Thus,	you	can
monitor	multiple	locations	throughout	the	observed	area.	Each	webcam	video	feed	is
handled	by	what	is	known	as	a	thread	within	the	Motion	software.	I	recognized	provision
for	four	threads	in	the	Motion	configuration	file	from	which	I	presume	four	webcams
could	be	handled.	However,	I	seriously	wonder	if	the	Pi	has	the	processing	power	to
manage	four	simultaneous	video	feeds.	In	any	case,	this	project	is	concerned	with	only
one	feed,	which	I	know	works	very	well.

Motion	Features
Motion	has	a	substantial	number	of	features	that	enable	it	to	accomplish	an	amazing

amount	of	functions.	The	user	manual	is	online	at
www.lavrsen.dk/foswiki/bin/view/Motion/WebHome,	and	it	is	over	100	pages	in	length.
While	it	would	take	a	complete	book	to	document	all	the	features,	the	configuration	file
itself	contains	many	self-documenting	comments	that	should	help	you	explore	some	of	the
additional	features	of	this	software	package.

Motion	is	described	on	its	home	page	as	follows:	“Motion	is	a	program	that	monitors
the	video	signal	from	cameras.	It	is	able	to	detect	if	a	significant	part	of	the	picture	has
changed;	in	other	words,	it	can	detect	motion.”	I	will	not	be	using	this	key	feature	as	the
project’s	main	purpose	is	to	simply	demonstrate	a	straightforward	approach	to	remotely
display	real-time	video	using	a	Pi	as	a	webcam	controller.	However,	you	should	keep
Motion’s	powerful	capabilities	in	mind	if	you	want	to	expand	the	project	beyond	simple
remote	viewing.

Motion	Setup
You	will	need	to	install	the	Motion	package	before	using	it.	I	strongly	suggest	that	you

update	and	upgrade	your	distribution	prior	to	installing	Motion.	Simply	type	the	following
at	a	command-line	prompt	to	update	and	upgrade	the	Raspian	distribution	in	use:

sudo	apt-get	update	

sudo	apt-get	upgrade	

Be	patient	as	the	updates	and	upgrades	can	take	a	bit	of	time	if	there	are	many	to
install.	Next,	install	Motion	by	typing	the	following:

sudo	apt-get	install	motion	

http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome

Again,	be	a	bit	patient	as	this	package	is	over	20MB	in	size	and	has	many	component
parts.

Motion	will	be	run	in	the	“background”	as	a	daemon,	which	means	that	it	will	be
constantly	available	for	service.	To	enable	the	daemon,	you	must	edit	the
/etc/default/motion	file.	Type	the	following:

sudonano	/etc/default/motion

You	will	see	in	the	nano	editor	the	line:
start_motion_daemon=no

Change	the	no	to	yes,	and	then	save	the	nano	buffer	(CONTROL-O)	and	exit	the	editor
(CONTROL-X).

Next	comes	Motion’s	configuration	file.	Motion	has	no	graphics	user	interface	(GUI)
so	it	must	be	configured	by	making	changes	to	its	configuration	file,
/etc/motion/motion.conf.	This	is	a	very	big	text	file—well	over	600	lines,	although	much
of	the	file	content	consists	of	comments	inserted	to	help	the	user.	Fortunately,	only	a	few
changes	are	necessary	for	this	project.	I	have	provided	the	changes	in	Table	5-1	to	be
made	by	configuration	file	section,	but	I	do	not	show	you	step-by-step	instructions	as	you
should	be	fairly	comfortable	with	how	to	use	the	nano	editor.

TABLE	5-1	Motion	Configuration	File	Changes

Start	the	nano	editor	session	as	follows:
sudonano	/etc/motion/motion.conf

Make	the	changes	as	shown	in	Table	5-1	if	the	contents	of	the	table	have	not	already
been	configured.

Save	the	changes	and	exit	the	nano	editor.	Now,	you	must	start	the	Motion	server,
which	is	done	by	entering	the	following:

sudo	service	motion	start	

One	nice	feature	of	having	the	Motion	web	server	running	as	a	daemon	is	that	it	is
automatically	started	each	time	you	boot	the	Pi.	You	may	also	stop	or	restart	the	service	by
typing	the	following:

sudo	service	motion	stop	

sudo	service	motion	restart	

That’s	it	for	the	changes	to	be	made	in	the	configuration	file.	I	do	want	to	briefly
discuss	why	these	changes	were	made.	The	change	from	daemon	off	to	daemon	on	is
obvious	as	it	was	needed	to	run	Motion	as	a	daemon.

The	next	change—making	the	port	number	8081—is	a	bit	historical	as	the	Motion
web	service	has	traditionally	been	assigned	to	this	port.	It	is	not	a	required	port	number
and	you	can	easily	change	it	to	any	number	that	you	desire	as	long	as	it	is	greater	than
1024	and	less	than	65535.	This	range	avoids	the	“well	known	ports”	and	goes	to	the
maximum	possible	port	number.	My	recommendation	is	to	leave	it	at	8081.

The	next	change	concerns	localhost	operation.	Localhost	refers	to	the	same	machine
that	is	hosting	the	Motion	web	server.	No	other	system	can	access	the	webcam	if	you
restrict	the	service	to	localhost	so	it	must	be	turned	off.

The	next	two	changes	are	similar	to	what	was	discussed	previously	but	are	concerned
with	the	remote	control	functions	of	the	webcam.	You	do	not	enable	any	remote	control
functions	such	as	webcam	panning	or	tilting	in	this	first	project,	but	it	is	certainly	doable.	I
suggest	keeping	the	port	number	as	assigned	and	disabling	the	localhost	operation.

Webcam	Viewing
It	is	now	time	to	test	the	remote	webcam	viewing	functionality.	You	will	need	a	separate

computer	on	the	same	network	that	connected	to	the	Pi.	You	will	also	need	the	Pi	IP
address.	It	does	not	matter	if	the	Pi	is	connected	via	Ethernet	cable	or	by	a	Wi-Fi	wireless
adapter.	My	suggestion	is	to	log	in	to	your	network	router	and	click	Attached	Devices.	The
local	IP	address	for	the	Pi	should	appear	in	the	appropriate	list.	My	Netgear	router	has
separate	lists	for	wired	and	wireless	devices	connecting	to	the	network.	Yours	might	be
slightly	different	but	should	show	something	similar	to	Figure	5-3.

FIGURE	5-3	Router	Attached	Devices	list

The	entry	RASPBERRYPI	has	the	IP	192.168.1.43	on	the	wired	portion	of	my	home
network.	This	is	all	you	need	to	remotely	view	the	webcam.	You	just	have	to	type
192.168.1.21:8081	into	a	browser	on	another	networked	computer	to	view	the	real-time
webcam	video	stream.	Figure	5-4	is	a	screen	capture	of	the	video	feed	from	the	attached	Pi
webcam.	The	object	in	the	screen	capture	is	an	Elev-8	quadcopter,	which	I	built	as	a
project	for	my	book	Build	Your	Own	Quadcopter.

FIGURE	5-4	Video	screen	capture	from	the	Pi	webcam

This	completes	the	first	webcam	project,	which	employed	a	high-quality	webcam	to
provide	remote	video	monitoring	using	a	Pi	running	the	open	source	Motion	software.	It
was	relatively	easy	to	complete	this	project	as	it	required	only	that	you	install	a	software
package,	make	some	minor	file	configuration	changes,	and	plug	in	a	USB	webcam.	The
next	webcam	project	uses	the	same	software	but	has	an	entirely	different	webcam.

Raspberry	Pi	Camera
In	this	project,	I	will	be	using	the	relatively	inexpensive	Raspberry	Pi	camera	module

introduced	in	2013	and	shown	in	Figure	5-5.

FIGURE	5-5	Raspberry	Pi	camera

This	camera	was	specifically	designed	to	operate	solely	with	the	Pi	using	the	camera
serial	interface	(CSI)	connector,	as	shown	in	Figure	5-6.	There	are	two	identical	15-wire
flex	ribbon	connectors	mounted	on	the	Pi.	The	CSI	connector	is	the	one	located	directly
behind	the	RJ45	network	connector,	as	shown	in	the	figure.	The	other	15-wire	flex

connector	is	for	the	display	serial	interface	(DSI),	which	is	designed	to	work	with	a
display	device	slated	to	be	introduced	by	the	Raspberry	Pi	Foundation	in	2014.

FIGURE	5-6	CSI	connector

NOTE	The	15-wire	flex	cable	is	plugged	into	the	CSI	connector	with	the	printed	side	facing
the	RJ45	connector,	as	shown	in	Figure	5-6.	Please	be	careful	when	inserting	the
ribbon	cable	into	the	connector	as	it	is	quite	easy	to	misalign	the	contacts,	which	will
cause	problems.

I	would	like	to	now	discuss	the	Pi	camera	hardware	and	its	properties	before
discussing	the	camera	software.	The	camera	incorporates	a	5-megapixel	CMOS	sensor
along	with	an	automatic	control	system	to	generate	both	real-time	video	streams	and	stills.
The	video	stream	is	also	compliant	with	the	H264	codec	standard.	Table	5-2	details	the
various	video	and	still	modes	possible	with	this	camera.

TABLE	5-2	Pi	Camera	Video	and	Still	Modes

Raspberry	Pi	Camera	Software
It	turns	out	that	there	are	a	variety	of	different	software	packages	available	that	will

control	the	Pi	Camera.	I	will	demonstrate	three	packages,	beginning	with	the	command
line	version	that	essentially	takes	still	photographs	or	videos.	This	package	is	installed
when	you	click	OK	on	the	RasPi	camera	option	during	the	RasPi-Config	menu	selection.
If	you	did	not	select	it	at	that	time,	simply	type

sudo	raspi-config

and	go	to	the	menu	selection	number	5	to	enable	the	camera.

Ensure	the	camera	is	plugged	into	the	CSI	connector,	as	shown	in	Figure	5-6,	and
type	the	following	at	the	command	line:

raspistill	-v	-o	test.jpg	

The	console	screen	will	show	a	5-second	preview	from	the	camera	and	then	take	a
still	photograph	and	store	it	as	a	JPEG	file	named	test.jpg	in	the	current	directory	from
which	you	entered	the	command.	Recheck	the	ribbon	cable	connection	if	this	command
does	not	work	as	that	is	the	most	likely	source	of	the	problem.	You	can	obviously	change
the	filename	to	avoid	overwriting	the	existing	photograph.	Figure	5-7	shows	a	sample

photograph	taken	of	a	Beaglebone	Black	development	board	using	the	preceding
command.

FIGURE	5-7	Test	photograph

The	photograph	is	a	bit	fuzzy,	which	I	suspect	occurred	because	the	camera	was	a	bit
too	close	to	the	subject	being	photographed.	That	is	always	a	problem	with	a	fixed-focus,
wide-angle	camera	lens	like	the	one	you	find	in	the	Pi	Camera.	I	had	also	attached	the	Pi
Camera	on	a	simple	stand,	as	shown	in	Figure	5-8,	which	greatly	helps	in	steadying	the
camera	while	taking	photographs.	The	Pi	Camera	itself	is	held	in	place	by	a	two-piece
holder	that	I	purchased	from	an	online	supplier.

FIGURE	5-8	Pi	Camera	stand	with	a	camera	holder	support

There	is	also	a	substantial	amount	of	metadata	shown	on	the	Pi	console	screen,	(see
Figure	5-9).	Several	process	descriptions	are	also	shown	in	the	figure,	which	clearly
illustrates	the	steps	needed	to	take	the	photograph.

FIGURE	5-9	Test	photograph	metadata

The	raspistill	application	has	many	more	options,	which	I	have	not	delved	into	but
are	further	explained	at	the	Raspberry	Pi	Foundation’s	camera	website,
http://www.raspberrypi.org/help/camera-module-setup/.

Video	capture	is	also	relatively	easy	to	accomplish	by	entering	the	following
command:

raspivid	-t	5000	-o	video.h264	

Executing	this	command	will	result	in	a	1080p	5-second	video	clip	displayed	on	the
console	display.	The	5000	in	the	command	refers	to	the	number	of	milliseconds	that	the
video	runs	and	the	video.h264	refers	to	the	codec	mode	to	be	used.	Please	go	to	the
Foundation’s	website	just	mentioned	to	learn	about	the	many	other	options	that	are
available	for	use	with	the	raspivid	application.

Recording	a	video	is	also	very	easy	and	can	be	done	with	this	command:
raspivid	-t	15000	-o	>	test_vid.h264	

Running	this	command	will	result	in	the	creation	of	a	15-second	1080p	video	in	the
current	directory	with	the	name	test_vid.h264.	Linux-savvy	readers	will	recognize	that	the
greater	than	operator,	>,	used	in	the	command	redirects	the	video	stream	to	the	file.	The
console	display	is	also	shown	while	the	video	data	is	streamed	to	the	file.	Incidentally,
Linux	automatically	creates	the	file	if	it	doesn’t	already	exist	in	the	directory.
Additionally,	if	you	rerun	the	command	without	changing	the	filename,	it	will	overwrite
the	existing	video	record.	Another	word	of	caution	is	that	video	files	can	be	quite	large,	so
be	prudent	in	how	long	your	videos	are.	The	15-second	video	I	created	using	the
preceding	command	resulted	in	a	25MB	file,	which	means	that	about	100MB	will	be	used
for	every	minute	of	recording.	You	can	easily	“crash”	your	Pi	if	you	attempt	to	create	a
30-minute	video	with	a	4GB	SD	card	installed.	I	highly	recommend	that	you	install	an
external	USB	hard	drive	with	at	least	a	1TB	capacity	if	you	wish	to	experiment	with	long-
duration	videos.	Also,	plug	the	hard	drive	into	a	high-quality,	externally	powered	USB
hub	because	the	Pi	will	not	support	one	plugged	directly	into	it.

One	of	the	limitations	of	using	the	raspistill	and	raspivid	applications	is	that	you	are
not	able	to	easily	use	them	in	a	programmed	manner.	This	limitation	is	overcome	using	the
approach	that	I	discuss	in	the	next	section.

Using	Python	with	the	Raspberry	Pi	Camera
I	will	use	a	clever	Python	library	named	python-picamera,	created	by	Dave	Jones

(Github),	which	will	permit	the	Pi	Camera	to	both	be	operated	in	an	interactive	mode	as
well	as	programmed	for	specific	operations.	You	must	have	Python	2.7	installed	for	this
library	to	function.	I	believe	the	latest	Raspian	download	version	contains	it,	but	if	not,
enter	this	command	to	install	Python:

sudo	apt-get	install	python	python-dev

Once	Python	is	ready,	enter	the	following	command	to	load	the	picamera	Python
library:

sudo	apt-get	install	python-picamera

http://www.raspberrypi.org/help/camera-module-setup

Start	Python	and	enter	the	following	commands	to	test	the	library	and	see	how	well	it
functions	with	the	Pi	camera	(the	arrow	prompts	indicate	this	is	an	interactive	Python
session):

After	entering	the	third	command,	you	should	see	a	full	screen	console	display
showing	whatever	the	Pi	Camera	is	facing.	Enter	CTRL-D	(^d)	to	terminate	the	preview
display.	This	will	kick	you	out	of	the	interactive	Python	session	and	back	to	the	normal
command	line	prompt.

Creating	a	script	that	does	a	series	of	camera	functions	is	also	quite	easy.	The
following	Python	script	takes	a	series	of	pictures	at	10-second	intervals	and	stores	them	in
consecutive	numbered	image	files	located	in	the	current	directory.	The	script	is	named
TestCamera.py	and	is	available	on	this	book’s	companion	website.

The	script	causes	a	series	of	pictures	to	be	taken	with	approximately	10	seconds
between	pictures	and	lasting	two	minutes	overall.	The	captured	images	are	stored	in	a
series	of	incrementally	labeled	files	starting	with	image01.jpg	to	image011.jpg.	I	have
created	a	composite	image	of	the	first	six	images	taken	of	a	smartphone	stopwatch
application.	This	composite	is	shown	in	Figure	5-10.

FIGURE	5-10	Composite	image	of	six	sequential	images

You	will	quickly	realize	that	the	10-second	interval	between	image	captures	is	only
approximate	as	it	takes	about	.5	to	.6	seconds	for	the	Pi	Camera	to	take	a	photograph	and
have	the	application	store	it	on	the	SD	card.	In	most	cases,	this	additional	time	will	be	of
little	consequence	but	you	should	keep	it	in	mind	for	very	tightly	timed	photographic
situations.	You	can	also	easily	change	the	image	names	by	modifying	the	string	str1	in
the	Python	script.

There	are	15	camera	properties	that	can	be	adjusted	within	the	Python	library	to	suit
your	particular	setup.	I	have	listed	these	properties	in	Table	5-3	along	with	their	default
values.	In	most	cases,	the	default	values	will	be	suitable,	but	it	is	nice	to	have	direct
control	over	some	of	the	camera	attributes	to	help	in	difficult	or	unusual	photographic
setups.

TABLE	5-3	Pi	Camera	Properties	with	Default	Values

I	recognize	that	many	readers	will	not	know	what	many	of	these	properties	mean	and
how	to	set	them	appropriately.	I	thus	highly	recommend	that	you	go	to	the	website
http://picamera.readthedocs.org/en/release-1.3/,	which	contains	a	wealth	of	information

http://www.picamera.readthedocs.org/en/release-1.3

regarding	the	Pi	Camera,	its	properties,	operational	modes,	and	a	lot	more.	Best	of	all,	just
about	everything	can	be	controlled	using	Python,	which	means	the	python-picamera
library	opens	up	a	tremendous	opportunity	to	apply	the	Pi	Camera	in	many	innovative
ways.	It	truly	is	a	great	open	source	resource	that	all	developers	should	appreciate.

By	the	way,	changing	a	property	in	a	Python	script	is	as	simple	as	entering	the
following	in	the	script,	assuming	the	Pi	Camera	has	been	instantiated	as	an	object	named
camera:

camera.brightness	=	70

Recording	a	video	with	the	library	is	again	very	easy	to	do	using	the	following
command:

camera.start_recording(‘video.h264’)

This	command	starts	a	1080p	high-definition	(HD)	video	stream	to	a	file	named
video.h264.	You	stop	the	recording	with	this	command:

camera.stop_recording()

My	previously	stated	caution	about	storage	capacity	still	holds	true	for	recordings
made	using	the	Python	library.	It	is	just	too	easy	to	create	a	huge	video	file,	which	will
crash	your	Pi	once	it	runs	out	of	SD	card	memory	unless	you	are	using	an	external	hard
drive.	The	documentation	web	page	does	discuss	more	limited	video	resolution	modes	that
can	be	used,	which	will	drastically	cut	back	on	storage	requirements	at	the	expense	of
video	resolution.	Of	course,	lower	video	resolution	means	diminished	viewing	quality,	but
that	is	a	tradeoff	that	you	must	constantly	consider.

Remote	Raspberry	Pi	Camera	Viewing
I	will	show	you	how	to	install	an	application	named	MJPG	Streamer,	which	will	allow

the	video	generated	by	the	Pi	Camera	to	be	viewed	on	a	browser.	This	software
installation	is	based	on	instructions	I	found	on	Miguel	Grinberg’s	blog,	which	can	be	read
at	http://blog.miguelgrinberg.com/post/how-to-build-and-run-mjpg-streamer-on-the-
raspberry-pi.	Please	follow	these	steps	very	closely	as	some	commands	are	complex	and
quite	lengthy:

1.	Install	the	necessary	libraries	by	entering	the	following:
sudo	apt-get	install	libjpeg8-dev	imagemagick	libv4l-dev	

NOTE	The	last	entry	is	libv4l-dev,	not	libv41-dev.	This	caused	me	some	problems	until
I	realized	it	was	not	the	number	41	after	libv	but	a	lowercase	L.

2.	Add	a	new	link	for	a	required	header	file	by	entering	the	following:
sudo	ln	-s	/usr/include/linux/videodev2.h

/usr/include/linux/videodev.h

3.	Download	the	compressed	MJPG-Streamer	file	from	sourceforge.net:
sudowgethttp://sourceforge.net/code-snapshots/svn/m/mj/mjpg-

streamer/code/mjpg-streamer-code-182.zip

4.	Unzip	the	download.	I	used	my	Home	directory,	but	you	can	use	a	temp
directory	if	you	so	choose:

http://www.blog.miguelgrinberg.com/post/how-to-build-and-run-mjpg-streamer-on-the-raspberry-pi

sudo	unzip	mjpg-streamer-code-182.zip	
5.	You	now	need	to	compile	some	of	the	many	downloaded	and	extracted	files.
Just	a	few	of	the	files,	which	are	plugins,	are	needed	for	this	streamer
application.	Enter	the	following	commands	in	the	sequence	shown:

cd	mjpg-streamer-code-182/mjpg-streamer	
sudo	make	mjpg_streamer	input_file.so	output_http.so	

6.	It	is	time	to	install	the	key	MJPG-Streamer	files	into	the	appropriate
directories	by	entering	these	commands	in	sequence:

sudocpmjpg_streamer	/usr/local/bin	
sudocp	output_http.so	input_file.so	/usr/local/lib	
sudocp	-R	www	/usr/local/www	

7.	The	Pi	Camera’s	still	photo	application	is	now	started	with	certain	preset
options.

NOTE	You	may	alter	the	options	as	you	desire	using	the	raspistill	options	discussed	earlier
in	the	chapter.	Enter	the	following	to	start	the	camera	in	a	VGA	mode:

sudomkdir	/tmp/stream

raspistill	—nopreview	-w	640	-h	480	-q	5	-o	/tmp/stream/pic.jpg

-tl	100	-t	9999999	-th	0:0:0	&

Entering	the	preceding	command	will	start	the	camera	taking	stills	at
about	a	10-second	interval	but	does	not	start	the	streamer.	The	next	step
does	that.

8.	Start	the	streamer	by	entering	the	following:
sudo	LD_LIBRARY_PATH=/usr/local/lib	mjpg_streamer	-i

“input_file

.so	-f	/tmp/stream	-n	pic.jpg”	-o	“output_http.so	-w

/usr/local/www”	
9.	The	still	picture	stream	should	now	be	available	on	your	local	network.	The
easiest	way	to	view	the	stream	is	to	open	a	browser	on	a	local,	networked
computer	and	go	to	the	Pi’s	IP	address	with	port	8080	appended.	In	my	case	it
was:

192.168.1.26:8080.

Figure	5-11	illustrates	this	site.

FIGURE	5-11	Initial	MJPG-Stream	screen	capture

The	last	paragraph	in	Figure	5-11	states:
“The	 image	 displayed	 here	 was	 grabbed	 by	 the	 input	 plugin.	 The	 HTTP

request	contains	the	GET	parameters	action=snapshot.	This	requests	one	single
picture	 from	 the	 image-input.	 To	 display	 another	 example,	 just	 click	 on	 the
picture.”

I	clicked	on	the	image	and	received	another	image,	which	is	shown	in	Figure	5-12.

FIGURE	5-12	Result	of	clicking	on	the	initial	snapshot

So	far,	so	good.	What	I	really	wanted	was	to	see	a	continuing	stream	of	still	pictures.
This	was	easily	accomplished	by	clicking	on	the	here	link,	as	shown	in	Figure	5-12.	The
result	was	the	picture	shown	in	Figure	5-13,	which	was	updated	about	every	10	seconds,
as	indicated	by	the	elapsed	time	shown	on	the	stopwatch	smartphone	app.

FIGURE	5-13	One	of	the	continuing	streamed	pictures	from	MJPG-Streamer

The	streamed	pictures	may	also	be	viewed	locally	on	the	Pi	browser	by	entering
http://localhost:8080	in	the	browser’s	URL	box.

This	completes	the	second	of	the	three	camera	projects	that	I	will	discuss	in	this
chapter.	The	final	one	follows	and	is	based	again	on	the	Pi	Camera	but	uses	the	Motion
software	introduced	at	the	beginning	of	the	chapter.

Raspberry	Pi	Camera	with	Motion	Software
The	procedures	for	setting	up	a	Pi	Camera	to	work	with	the	Motion	software	are	based

on	the	steps	on	this	Instructables	website:	www.instructables.com/id/Raspberry-Pi-as-low-
cost-HD-surveillance-camera/?ALLSTEPS.

This	Instructable	project	was	created	by	the	user	scavix,	who	apparently	lives	in
Germany.	I	do	wish	to	acknowledge	scavix’s	fine	project.	The	following	is	a	series	of
steps	I	created	based	largely	on	scavix’s	Instructable	article.

1.	Install	Motion	per	the	instructions	detailed	at	the	beginning	of	this	chapter.
2.	Enter	this	very	long	apt-get	install	command.	Take	your	time	to	ensure	that	it
is	entered	exactly	as	shown	here:

sudo	apt-get	install	-y	libjpeg62	libjpeg62-dev	libavformat53

libavformat-dev	libavcodec53	libavcodec-dev	libavutil51-dev

libc6-dev	zlib1g-dev	libmysqlclient13	libmysqlclient-dev	libpq5

libpq-dev

3.	Get	a	specially	modified	Motion	build	that	was	created	to	work	with	the	Pi
Camera.	Enter	the	following:

sudo	wget	https://www.dropbox.com/s/xdfcxm5hu71s97d/motion-

mmal.tar.gz	

NOTE	The	compressed	file	is	about	148KB	in	size.

4.	Copy	the	compressed	file	to	the	/tmp	directory	by	entering	the	following:
sudocp	motion-mmal.tar.gz	/tmp/motion-mmal.tar.gz

5	.Change	to	the	/tmp	directory	and	extract	the	compressed	file	by	entering	these
commands:

cd	/tmp

sudo	tar	zxvf	motion-mmal.tar.gz

6.	Move	the	extracted	files	as	follows:
sudo	mv	motion	/usr/bin/motion

sudo	mv	motion-mmalcam.conf	/etc/motion.conf

7.	Edit	the	standard	Motion	daemon	file	to	allow	daemon	operation	by	editing	it
as	follows:

sudo	nano	/etc/default/motion

Change	start_motion_daemon=no	to	start_motion_daemon=yes

Save	the	file	and	exit	the	nano	editor.

http://www.localhost:8080
http://www.instructables.com/id/Raspberry-Pi-as-low-cost-HD-surveillance-camera/?ALLSTEPS

8.	Replace	the	motion.conf	file	found	in	the	/etc	directory	to	this	one,	which	you
can	download	from
www.scavix.com/files/raspberry_surveillance_cam_scavix.zip.	This	file	is
compressed	and	must	be	uncompressed	to	retrieve	the	desired	file.	Enter	the
following	to	unzip	this	file:

sudo	unzip	-lv	raspberry_surveillance_cam_scavix.zip	
Next,	move	the	extracted	motion.conf	file	to	the	/etc	directory:
sudo	mv	motion.conf	/etc/motion.conf	
The	series	of	steps	that	I	detailed	from	the	Instructables	website	enables

you	to	manually	edit	the	motion.conf	instead	of	downloading,	extracting,
and	overwriting	the	existing	motion.conf	file.	I	just	found	it	much	easier	to
download	the	altered	configuration	file.

9.	Reboot	the	Pi	so	that	all	the	configuration	changes	can	take	place,	and	start
the	Motion	daemon.	Enter	this	to	reboot:

sudo	reboot	
If	all	went	well,	you	should	see	the	red	LED	on	the	Pi	Camera	light	after

the	boot	sequence	completes.
10.	You	can	view	the	Pi	camera	remotely	in	exactly	the	same	manner	as
described	in	the	first	project,	which	used	a	webcam	with	the	Motion	software.
Simply	open	a	browser	on	a	networked	computer	that	the	Pi	is	connected	with
and	navigate	to	the	Pi’s	IP	address	with	the	8080	port	appended,	which	in	my
case	was

http://192.168.1.26:8080

Figure	5-14	is	a	screen	capture	from	my	laptop	of	the	now	infamous	smartphone
stopwatch	app.

http://www.scavix.com/files/raspberry_surveillance_cam_scavix.zip

FIGURE	5-14	MacBook	screen	capture	of	the	Safari	browser	connected	with	the	Motion
web	server

This	last	project	concludes	this	chapter’s	discussion	on	how	to	use	both	a	webcam
and	the	Pi	Camera	with	the	Pi	to	achieve	both	local	and	remote	viewing.

Summary
This	chapter	included	three	projects,	each	designed	to	illustrate	how	to	effectively	use

both	a	webcam	and	the	Pi	Camera	to	enable	video	and	still	pictures	to	be	taken	and	viewed
both	locally	and	remotely	over	a	network.

The	first	chapter	project	focused	on	setting	up	a	traditional	USB	webcam	to	function
with	an	open	source	software	package	named	Motion.	I	explained	some	of	Motion’s	key
features	and	pointed	out	that	I	would	be	using	very	few	of	these	features	for	the
demonstration	project.	I	went	through	all	the	steps	to	install	and	set	up	Motion	for	use	with
the	Pi.	This	project	concluded	with	a	discussion	of	how	to	view	both	still	pictures	and
videos	taken	with	the	webcam	both	locally	and	from	a	remote	networked	computer.

The	next	project	in	the	chapter	introduced	the	Pi	Camera,	which	was	designed	and
made	available	by	the	Raspberry	Pi	Foundation	specifically	for	the	Pi.	I	covered	the
various	still	picture	and	video	modes,	as	well	as	the	two	bundled	binary	applications,
raspistill	and	raspivid,	which	enable	the	camera	to	take	stills	and	videos,	respectively.

I	also	showed	you	how	to	use	a	Python	library	named	python-picamera	to	create
programmed	scripts	that	can	automate	the	Pi	Camera’s	functions.	I	demonstrated	a	simple

program	that	automatically	takes	a	series	of	time-lapsed	still	pictures	and	stores	them	on
the	SD	card.

The	next	section	showed	you	how	to	install	and	set	up	the	MJPG	Streamer
application,	which	enables	the	Pi	Camera	and	Pi	to	stream	both	still	pictures	and	video
over	the	network.	I	demonstrated	how	to	access	these	streams	using	a	browser	operating
wirelessly	from	a	remote	computer	connected	to	the	same	network	to	which	Pi	was
connected.

The	final	project	in	this	chapter	demonstrated	how	to	install	and	set	up	the	Motion
software	to	function	with	the	Pi	Camera.	Using	Motion	with	the	Pi	Camera	opens	up	many
capabilities	that	would	be	unavailable	with	either	one	of	the	two	binary	applications,	or
would	be	too	hard	to	develop	with	the	Python	library.	Remote	viewing	the	Motion-created
pictures	was	shown	to	be	identical	to	the	way	it	was	done	with	the	first	webcam	project.

6
CHAPTER

Internet-Enabled,	Arduino	Powered	Garage	Door
Opener

This	chapter’s	project	will	use	the	classic	Arduino	Uno	development	board	with	an
Internet	connection	to	provide	a	means	to	open	an	electrically	powered	garage	door	using
a	web	browser,	smartphone,	or	tablet.	This	project	complements	the	use	of	a	conventional
radio	control	transmitter	that	is	ordinarily	used	by	most	homeowners	to	remotely	operate
their	garage	doors.	The	Arduino	door	opener	project	will	also	make	use	of	passwords	to
provide	a	strong	security	to	the	project.

Arduino	Hardware
There	are	two	hardware	boards	used	in	this	project	that	I	will	separately	discuss.	The

first	is	the	Arduino	Uno	development	board,	which	contains	the	microcontroller,	and	the
second	is	the	Ethernet	Shield	board,	which	connects	the	Uno	board	to	an	Ethernet
network.

Arduino	Uno	Development	Board
I	will	start	with	a	brief	overview	of	the	Arduino	Uno	development	board	as	I	suspect

most	readers	will	already	be	familiar	with	it.	If	not,	I	would	highly	recommend	reading
Simon	Monk’s	excellent	book	on	programming	the	Arduino	boards,	Programming
Arduino:	Getting	Started	with	Sketches	(McGraw-Hill	Education,	2011).	The	word
“Sketches”	in	the	book	title	refers	to	the	name	the	Arduino	Project	gives	to	programs
written	for	Arduino	development	boards.	I	will	discuss	Sketches	and	many	other	related
programming	elements	in	the	software	section,	but	first	I	want	to	provide	a	brief	tour	of
the	Arduino	hardware	I	will	be	using	in	this	project.

The	Arduino	Uno	board	I	used	is	shown	in	Figure	6-1.	It	is	a	rev	3	board,	which	is
important	to	note	as	the	pin	sockets	changed	slightly	between	the	board	revisions.

FIGURE	6-1	Arduino	Uno	rev	3	board

You	can	quickly	identify	rev	3	boards	as	the	reset	button	was	relocated	from	the
center	right-hand	side	on	earlier	versions	to	the	upper	left-hand	side	on	rev	3	boards.	The
key	specifications	of	the	Uno	board	are	specified	in	Table	6-1.

TABLE	6-1	Arduino	Uno	Key	Specifications

Don’t	be	concerned	if	you	do	not	understand	some	of	the	specification	abbreviations
in	the	preceding	table	as	I	will	explain	them	if	they	are	needed	for	the	project.	I
recommend	looking	at	Atmel’s	ATMEGA328P	datasheet	if	you	want	to	learn	more	about
the	detailed	microprocessor	specifications.

The	single	most	important	item	to	be	mindful	of	regarding	the	Uno	is	that	it	is	a
microcontroller	board	and	not	a	fully	operational	computer	such	as	a	Raspberry	Pi.	The
significant	difference	is	the	Uno	has	no	capability	of	hosting	an	operating	system	and
cannot	support	any	programming	development	using	only	the	board.	It	must	be	connected
to	an	external	computer	in	order	to	be	programmed.	This	does	not	make	the	Uno	inferior
to	the	Pi;	it	just	is	designed	for	a	different	approach	for	controlling	embedded	projects	as
compared	to	the	Pi	or	the	Beaglebone	Black,	which	I	discuss	in	upcoming	chapters.

The	open-source	Arduino	Project	may	be	accessed	at	http://arduino.cc,	the	home
page	that	contains	many	links	to	other	pages	that	I	know	you	will	find	very	informative.	In
fact,	I	highly	recommend	that	you	stop	reading	this	book	for	a	while	and	go	to	this	site	and
become	acquainted	with	the	Arduino	concept	as	it	will	help	you	comprehend	the	software

http://arduino.cc

underlying	the	Arduino	boards.

Ethernet	Shield	Board
Figure	6-2	shows	the	Ethernet	Shield	board	that	I	used	to	establish	a	wired	network

connection	between	the	Uno	board	and	my	local	area	network	(LAN).

FIGURE	6-2	Ethernet	Shield	board

The	word	“shield”	in	the	board	title	simply	refers	to	any	one	of	a	number	of	boards
that	are	designed	to	plug	directly	on	top	of	an	Arduino	microcontroller	board	such	as	the
Uno.	This	one	contains	all	the	hardware	required	to	establish	a	wired	connection	between
the	Uno	and	the	LAN.	This	board	is	an	older	version	of	the	Arduino	Ethernet	Shield	and	is
based	on	the	Wiznet	W5100	chip.	Figure	6-3	is	the	W5100	block	diagram	where	you	can
see	all	the	component	parts	that	make	up	the	built-in	networking	functions.

FIGURE	6-3	W5100	block	diagram

It	is	important	to	point	out	that	while	the	W5100	chip	does	contain	16KB	for	memory
buffers,	it	does	not	have	any	provision	to	store	a	program	and	is	totally	dependent	upon
the	Uno	for	its	programmed	instructions	in	order	to	function.	This	means	a	separate
Ethernet	library	must	be	loaded	into	the	Uno’s	flash	memory	in	order	for	this	shield	to
work	properly.	This	approach	generally	holds	true	for	most	of	the	shield	boards	that	are
designed	for	use	with	the	Arduino	series	of	microcontrollers.

Arduino	Uno	Software
Truth	be	told,	the	section	title	is	a	bit	misleading	as	the	software	I	will	be	discussing

covers	a	broad	spectrum	of	the	Arduino	processors,	not	just	the	Uno.	The	key	software
that	you	need	to	program	the	Uno	is	an	integrated	development	environment	(IDE).	This
term	should	be	familiar	to	you	if	you	have	read	the	early	book	chapters,	as	I	used	the
Eclipse	IDE	to	test	Java	programs	that	eventually	ran	on	the	Pi.	The	Uno	IDE	is	not
Eclipse,	but	it	is	a	fully	capable	suite	designed	specifically	to	support	the	Arduino	series	of
microcontroller	boards.	The	IDE	is	available	as	a	free	download	from	the	Arduino	website
that	was	provided	earlier.	The	current	IDE	I	will	be	using	is	1.05,	which	will	likely	change
in	the	future	as	improvements	and	upgrades	are	constantly	being	added	by	the	very	smart
folks	that	run	and	maintain	the	Arduino	Project.	One	nice	feature	is	that	the	existing
Arduino	hardware	will	always	run	on	the	latest	version	of	the	IDE.	No	planned	or
unplanned	obsolescence	in	this	arena.

I	would	recommend	that	you	power	on	your	Uno	and	connect	it	to	the	computer
running	the	IDE	using	a	standard	USB	cable.	Almost	any	“wall	wart”	power	supply	that
uses	a	2.1	mm	outer	barrel	with	a	positive	center	connector	will	work.	Remember	that
supply	must	be	between	7	and	12VDC.	I	used	a	surplus	power	supply	that	provides	7.5V
at	1.5A,	which	is	more	than	ample	for	this	project.	Your	computer	should	show	a	dialog
that	a	driver	is	being	installed	after	the	Uno	is	plugged	into	the	computer.	Wait	until	the
driver	has	been	installed	before	starting	the	IDE.

Figure	6-4	is	a	screenshot	of	the	Arduino	v1.05	Start	screen	on	a	Windows	laptop.

FIGURE	6-4	Arduino	IDE	startup	screen

The	IDE	automatically	created	a	default	sketch	entitled	sketch_may04a,	which
obviously	contains	the	date	that	I	ran	the	IDE	program.	You	would	normally	use	this	blank
sketch	to	create	a	program	and	then	rename	it	to	whatever	suits	your	application.	I	will	not
be	creating	a	sketch	for	this	demonstration	but	will	instead	load	a	pre-stored	example	to
demonstrate	the	classic	LED	blink	program.	There	are	many	example	programs
automatically	loaded	into	the	computer	during	the	IDE	download.	The	program	I	opened
was	aptly	named	“blink”	and	was	loaded	by	following	this	sequence:	Select	progressively
File	|	Open	|	Examples	|	01.Basics	|	Blink	|	Blink.

Figure	6-5	shows	the	loaded	Blink	program,	which	appears	in	its	own	window.	Note
that	the	original	window	for	the	sketch_may04a	is	still	open	in	the	background.	This
makes	working	on	multiple	programs	very	easy	and	convenient	as	all	you	need	to	do	is
select	the	desired	window	to	resume	development	in	that	program.

FIGURE	6-5	Blink	code

I’m	including	the	following	Blink	code	in	order	to	point	out	some	key	program	parts
for	this	introductory	example.	I	will	not	normally	list	example	program	code,	as	it	is	easy
to	load	and	examine	by	yourself.

This	sketch	has	two	methods:	setup	and	loop.	The	setup	method	is	always	run	first,
followed	by	the	loop	method.	The	setup	method	provides	the	logical	name	“led”	to	the
LED	attached	to	the	Uno’s	pin	13.	It	also	makes	GPIO	pin	13	an	output.

The	loop	method	is	a	forever	loop	that	alternately	turns	on	the	LED	for	one	second
and	then	turns	it	off	for	one	second.	The	digitalWrite	method	is	the	means	by	which	the
Uno	controls	pin	13	and,	ultimately,	the	LED.

You	should	note	that	I	didn’t	mention	any	physical	wiring	was	required	for	this
demonstration	as	the	Uno	board	already	has	a	yellow	LED	permanently	connected	to	pin
13.	You	can	easily	see	this	LED	in	Figure	6-1	as	it	is	labeled	with	an	“L”	and	is	located
just	to	the	left	and	above	the	ARDUINO	silkscreen	name.

Selecting	the	right-facing	arrow	in	the	toolbar	shown	in	Figure	6-5	will	cause	the
program	to	be	compiled	and	uploaded	to	the	Uno.	The	Blink	program	will	start
immediately	and	continue	indefinitely.	You	also	might	be	a	bit	confused	as	the	LED
probably	was	already	blinking	before	you	uploaded	the	Blink	program.	That	blinking	was
due	to	the	default	“heartbeat”	that	runs	when	no	program	was	previously	loaded.	You	can
prove	to	yourself	that	the	Blink	program	functions	as	expected	by	changing	the	delay	time
and	observing	the	new	blink	rate	matches	whatever	you	entered.	Simply	enter	new	values
for	the	delay	time,	say	2000ms,	which	will	make	the	LED	blink	at	a	two-second	rate.

Compile	and	upload	the	changed	program	by	pressing	the	right-facing	arrow	and	watch
the	LED	slowly	blink	every	two	seconds.

Testing	the	Ethernet	Connection
In	this	section,	I	will	demonstrate	how	to	use	the	Ethernet	Shield	board	with	the	Uno.

The	first	step	is	to	unplug	the	Uno’s	power	and	USB	cables.	You	never	should	attempt	to
attach	or	remove	a	shield	board	while	the	Uno	is	powered	on	as	you	might	damage	it.
There	is	only	one	way	that	the	shield	pins	will	align	with	the	Uno	sockets.	Carefully	align
the	boards	and	firmly	press	them	together.	Figure	6-6	shows	the	Ethernet	Shield	attached
to	the	Uno.	Notice	that	the	shield’s	Ethernet	connector	is	on	the	same	side	as	the	Uno’s
power	and	USB	sockets.	The	shield	board	is	identical	in	size	to	the	Uno	board	and	should
precisely	cover	it.

FIGURE	6-6	Ethernet	Shield	attached	to	the	Uno

Next,	connect	the	Uno’s	power	and	USB	cables	and	also	connect	an	Ethernet	patch
cable	from	the	shield	to	your	network’s	router,	hub,	or	switch,	depending	upon	how	you

have	configured	your	LAN.	In	my	case,	I	connected	to	a	10/100	switch	that	is	on	my
development	workbench.	You	should	immediately	see	four	or	five	green	LEDs	light	up	on
the	shield	indicating	both	power	is	being	applied	to	the	board	and	network	activity	is	being
detected	via	the	patch	cable.	Figure	6-7	shows	these	active	LEDs.

FIGURE	6-7	Ethernet	Shield	active	LEDs

If	you	do	not	see	these	LEDs	light,	immediately	remove	the	power	from	the	Uno	and
recheck	how	the	shield	and	Uno	are	connected	together.	The	most	likely	cause	is	that	you
have	shifted	the	pins	over	one	or	even	two	spaces.	Reposition	the	shield	and	reattach	it	to
the	Uno	and	you	should	be	fine.

The	Ethernet	library,	which	you	will	need	to	access,	is	available	from	the	IDE’s	menu

selections:	Open	|	Examples	|	Ethernet	menu.

All	the	current	Ethernet	library	menu	selections	are	detailed	in	Table	6-2.

TABLE	6-2	The	Ethernet	Library

Open	the	DhcpAddressPrinter	program	and	upload	it	into	the	Uno.	After	it	uploads,
select	the	spyglass	icon	near	the	upper-right	corner	of	the	IDE	to	open	a	serial	terminal.
You	should	see	the	Uno’s	IP	address	displayed,	as	shown	in	Figure	6-8.

FIGURE	6-8	IP	address	displayed

My	network	router	assigned	a	192.18.1.29	IP	address	to	the	Uno/Ethernet	Shield.
Your	address	would	most	certainly	be	different,	however;	please	make	note	of	it,	as	you
will	need	it	for	the	next	program.

Next,	load	the	program	named	WebServer,	located	in	the	Ethernet	library,	into	the
Uno.	This	program	creates	an	active	server	that	responds	to	HTTP	requests	at	the	IP
address	you	determined	with	the	previous	program,	and	it	returns	the	raw	data	from	the
Uno’s	six	analog	input	channels.	WebServer	uses	the	default	HTTP	port	80	so	all	you	will
have	to	do	is	enter	the	IP	address	on	a	remote,	networked	computer	to	see	the	results.
However,	you	must	make	the	following	change	in	WebServer	in	order	for	it	to	work	with
the	Uno’s	preassigned	IP	address.	Just	type	in	your	IP	address	where	it	is	shown	in	the
following	code	snippet	from	the	WebServer	sketch:

Note	that	the	IP	numbers	are	separated	(delimited)	by	commas	and	not	periods	as
they	normally	would	be.	Incidentally,	for	those	readers	who	have	some	background	in
network	protocols,	I	would	point	out	that	a	dummy	mac	address	is	being	used	for	this	and
all	the	other	Arduino	Ethernet	programs	for	this	project.	There	are	two	reasons;	first	it
doesn’t	make	any	real-world	difference	what	the	actual	mac	address	is	as	long	as	it	is
unique	within	the	network.	The	second	reason	is	that	this	older	Ethernet	Shield	did	not

come	with	any	sticker	showing	the	actual	firmware	mac	address	assigned	to	the	chip.	I
think	this	situation	holds	true	for	most	of	the	old	revision	Ethernet	Shields.	I	also
understand	newer	versions	do	have	a	sticker	on	the	board	showing	the	actual	address.	If
that’s	the	case,	all	you	need	to	do	is	change	the	preset	mac	address	to	match	the	sticker
address.	Strangely,	it	should	also	work	if	you	do	not	make	the	change	but	I	believe	it	is
good	practice	to	always	match	the	mac	addresses	if	possible.

You	should	now	open	a	browser	on	a	networked	computer	and	enter	the	Uno’s	IP
address,	which	in	my	case	was	192.168.1.29.	It	is	purely	optional	to	enter	the	“http://”
prefix	as	all	modern	browsers	assume	that	is	the	default	protocol	to	use.	Figure	6-9	shows
the	output	on	MacBook	Pro	when	I	entered	that	address.

FIGURE	6-9	The	WebServer	program	on	a	remote	browser

In	the	figure,	you	can	see	numbers	ranging	from	a	low	of	282	to	a	high	of	321.	These
represent	the	voltage	“floating”	on	the	six	unconnected	Uno	analog	input	channels.	Each
channel	is	10	bits	in	resolution	and	has	a	full-scale	voltage	input	of	5.0V,	which	is	the
same	as	the	Uno’s	operating	voltage.	This	means	that	a	count	of	1023	would	represent	a
5.0V	input	to	a	particular	analog	channel.	Consequently,	numbers	averaging	around	a	300
count	represent	an	approximate	1.47V	level,	which	is	determined	by	a	simple	proportional
calculation:

Floating	input	voltage	=	5.0	*	(300	/	1023)	=	1.47V

I	soldered	a	jumper	wire	between	ground	and	the	analog	input	A0,	as	you	can	see	in
Figure	6-10.

FIGURE	6-10	Jumper	wire	soldered	between	ground	and	analog	input	A0

My	purpose	in	this	effort	was	to	further	confirm	the	analog	inputs	were	properly

operating	as	I	expected	to	see	a	0V	level	when	I	next	opened	a	browser	to	the	WebServer
page.	My	expectations	were	met	as	evidenced	by	Figure	6-11,	which	is	the	WebServer
operating	with	the	A0	input	grounded.

FIGURE	6-11	WebServer	page	with	A0	grounded

Interestingly,	you	can	see	that	not	only	does	the	A0	input	have	a	0	value	but	all	the
others	are	much	lower	than	they	were	before	when	nothing	was	connected	to	the	inputs.	I
can	only	infer	that	the	inputs	must	have	been	at	very	high	impedances,	which	are	easily
influenced	by	stray	and	nearby	electrical	fields.	This	also	explains	why,	when	I	attempted
to	measure	the	open	voltages	on	the	analog	inputs	with	a	standard	multimeter,	I	recorded
much	lower	voltages	than	I	had	earlier	calculated.	My	moderate	impedance	multimeter
simply	loaded	down	the	high	impedance	inputs	and	showed	voltages	that	were	a	result	of
the	multimeter	shunting	the	high	impedance	input.	This	is	a	good	example	of	recognizing
when	your	test	equipment	can	have	an	unexplained	effect	upon	the	device	under	test
(DUT).	By	the	way,	DUT	is	a	standard	electronics	industry	description	for	any
electrical/electronic	equipment	being	tested.	This	possible	effect	should	always	be	kept	in
mind	when	testing	any	device.

At	this	point,	I	believe	I	have	fairly	well	demonstrated	how	to	connect	an	Uno	to	a
network	and	have	it	perform	useful	tasks.	It	is	now	time	to	demonstrate	a	program	that
will	accept	a	user	input	from	a	browser	and	cause	the	Uno	to	perform	a	desired	operation.
This	program	will	show	you	the	fundamental	concepts	involved	in	controlling	a
microprocessor	over	a	networked	connection.	This	program	will	also	be	the	basis	for	the
simplified	garage	door	opener	project.	For	this	initial	demonstration,	I	will	only	be
lighting	a	LED	when	a	checkbox	is	selected.

A	simple	hardware	setup	should	be	done	before	discussing	the	code.	This	simply
entails	connecting	a	LED’s	anode	to	the	Uno’s	pin	2	and	220Ω	resistor	in	series	from	the

LED’s	cathode	to	ground.	Figure	6-12	shows	the	physical	setup.	Note	that	I	soldered	wires
directly	to	the	Ethernet	Shields	pins	that	directly	connect	with	pin	2	and	one	of	the	ground
pins.	I	also	connected	to	the	5V	supply,	which	I	use	in	a	later	example.

FIGURE	6-12	Physical	LED	test	setup

The	code	starts	with	two	include	statements	that	refer	to	all	the	dependencies
necessary	for	this	program	to	function.	These	are	the	SPI	and	basic	Ethernet	libraries.

A	“dummy”	mac	address	assignment	follows,	which	you	can	use	as	is	or	else	enter
your	own	if	known.	The	allocated	Uno	IP	address	is	next.	This	must	be	entered	to	match
the	real	IP	address	or	the	Ethernet	connection	cannot	be	established,	as	I	discussed	in	an
earlier	example.

Next	are	the	two	standard	Arduino	methods	named	setup	and	loop	that	I	have
already	mentioned.	This	particular	setup	method	performs	these	initializations:

•			Instantiates	an	Ethernet	connection	object
•			Starts	listening	for	client	requests
•			Starts	the	serial	terminal	at	9600	baud
•			Sets	the	Uno	GPIO	pin	2	as	an	output

The	loop	method	follows	the	setup	and	is	much	more	extensive	than	the	previous
example’s	loop	method.	The	main	reason	for	this	is	that	the	Uno	does	not	use	an	operating
system	and	consequently	cannot	set	up	and	maintain	a	file	system.	This	means	that	code
that	interacts	with	the	remote	browser	(client)	must	be	dynamically	created	each	time	the
web	server	program	is	run.	That’s	the	purpose	of	all	the	client.println	statements
contained	within	the	loop	method.	This	necessity	should	be	compared	with	the	way	the
Raspberry	Pi	web	service	functions.	The	Pi	has	a	full	Linux	file	system,	which	means	the
client	code	can	be	stored	in	a	predefined	directory	from	which	clients	can	access	it.
Normally,	it	is	in	/etc/www	directory	and	the	client	file	is	typically	named	index.htm	or
index.html	for	the	HTTP	protocol	using	port	80.

The	first	statement	in	the	loop	method	is
EthernetClient	client	=	server.available();

which	will	assign	a	non-null	value	to	the	client	reference	if	an	HTTP	request	is	detected.
Next,	all	the	println	statements	will	be	executed,	resulting	in	a	web	page	being	displayed
on	the	client.	The	page	displayed	in	Figure	6-13	appears	when	the	client,	again	being	a
browser	on	a	remote	network	computer,	connects	with	the	Uno’s	web	server	program.

FIGURE	6-13	The	client	after	it	has	connected	to	the	Uno’s	web	server	program

The	loop	method	will	now	loop,	essentially	waiting	until	the	checkbox	is	selected,
thus	indicating	that	the	user	wants	to	turn	on	the	connected	LED.	Checking	the	status	of
the	checkbox	is	the	function	of	the	third	method	contained	in	the	ProcessCheckbox
method.	This	method	takes	a	client	argument	and	will	either	cause	the	LED	to	turn	on	if	it
was	previously	off	or	it	will	turn	it	off	if	it	was	previously	on.	The	LED	status,	whether	on
or	off,	is	stored	in	a	program	variable	aptly	named	LED_status.	If	you	carefully	examined
the	ProcessCheckbox	code,	you	should	notice	that	the	HTML	call	to	the	browser	is
exactly	the	same	whether	turning	the	LED	on	or	off.	This	call	simply	toggles	the
checkmark	in	the	checkbox	and	has	nothing	to	do	with	actually	turning	the	LED	on	or	off.
That’s	all	handled	by	the	Uno	in	the	web	server	program.

I	ran	the	program	and	observed	the	LED	turning	on	and	off	as	expected	when	the
checkbox	was	selected.	I	urge	you	to	duplicate	this	demonstration	as	it	should	reaffirm
what	you	know	about	how	the	Uno	interacts	with	a	web	page	to	control	a	GPIO	pin.	The
next	step	is	to	modify	the	LED	program	to	control	a	relay	that	in	turn	controls	a	garage
door.

Simplified	Garage	Door	Opener
This	portion	of	the	project	uses	a	modification	of	the	previous	LED	demonstration

where	a	relay	is	being	controlled	in	lieu	of	a	LED.	The	relay	in	turn	switches	the	control
power	to	a	garage	door	opener.	I	will	need	to	discuss	my	specific	garage	door	opener

system	before	proceeding	with	the	actual	project.

Actual	Garage	Door	Opener
In	this	section	I	will	show	you	how	to	build	a	basic,	no-frills,	remotely	activated	garage

door	controller.	It	is	designed	to	operate	with	an	existing	residential	style	opener,	which	is
shown	in	Figure	6-14.

FIGURE	6-14	Garage	door	opener

I	believe	this	opener	is	fairly	typical	of	the	garage	door	openers	that	are	used	for
residential	service.	Either	the	press	of	a	wall-mounted	push	button	or	the	press	of	a	button
on	a	radio	control	transmitter	that	I	have	attached	to	the	driver	side	visor	activates	it.	The
plan	is	simply	to	connect	two	wires	in	parallel	to	those	wires,	which	are	currently
connected	to	the	wall-mounted	push	button.	These	two	new	wires	will	be	connected	to	a
set	of	normally	open	relay	contacts	such	that	when	the	relay	is	energized	by	the	Uno,
which	will	then	close	the	contacts	and	act	the	same	as	if	the	wall-mounted	push	button
was	pressed.	The	relay	is	needed	because	there	is	a	16VDC	potential	on	the	wires	going	to
the	push	button,	which	far	exceeds	the	Uno	GPIO	voltage	specifications.

Figure	6-15	is	a	closeup	of	the	connection	terminals	where	I	made	the	push	button
wires	parallel.	They	are	the	two	left-most	wires	shown	in	the	figure.	You	may	have	to
check	your	own	opener’s	connection	diagram	to	determine	which	set	of	wires	goes	to	the
wall-mounted	push	button.

FIGURE	6-15	Garage	door	opener	connection	terminals

If	you	refer	to	Figure	6-14,	you	can	see	these	two	new	wires	protruding	from	the	left
side	of	the	opener.	I	used	#20	gauge,	solid-core,	twisted	bell	wire	for	the	new	wires	as	that
was	exactly	the	same	type	that	was	installed	going	to	the	wall-mounted	push	button.	I	also
briefly	touched	the	newly	installed	wires	together	at	the	remote	end	where	I	was	installing
the	Uno	to	confirm	the	door	did	operate	as	expected.

Modified	LED	Program	to	Open	Garage	Door
I	modified	the	existing	LED	control	program	so	that	it	will	operate	a	transistor	that	will,

in	turn,	control	a	relay,	which	has	the	garage	door	contact	wires	connected	to	a	set	of

normally	open	contacts.	Figure	6-16	is	a	schematic	for	this	straightforward	control	circuit.
Almost	any	common	NPN	switching	transistor	can	be	used	to	switch	the	relay.	I	used	a
2N3904	in	the	circuit	shown	in	the	schematic.

FIGURE	6-16	Relay	switching	circuit	schematic

The	relay	switching	circuit	was	wired	on	a	solderless	breadboard	for	convenience	and

easy	modification	if	necessary.	Both	the	breadboard	and	the	Uno	board	were	mounted	in	a
plastic	case	near	the	garage	door	that	was	being	controlled.	Figure	6-17	shows	the	Uno
and	relay	circuit	mounted	in	the	case.

FIGURE	6-17	Uno	and	relay	switcher	mounted	in	plastic	case

I	ran	both	power	and	an	Ethernet	cable	to	the	case	along	with	the	control	wire	pair
connected	to	the	garage	door	opener	mechanism.	You	can	easily	see	all	the	connections
within	the	case,	which	was	mounted	on	the	garage	wall.

The	following	is	the	modified	LED	control	program.	I	didn’t	change	much	except	to
operate	the	relay	for	one	second	every	time	the	checkbox	is	selected.	It	doesn’t	matter	if
there	is	a	checkmark	in	the	box;	all	you	need	do	is	select	it	to	operate	the	door.	This
modified	code	is	named	Garage_Door_Open.ino	and	is	available	on	this	book’s
companion	website.

Figure	6-18	shows	the	browser	connected	to	the	Uno	web	server	for	this	door	opener
program.

FIGURE	6-18	The	browser	display	for	the	garage	door	opener

Selecting	the	checkbox	either	opened	or	closed	the	garage	door	depending	upon	its
previous	position.

NOTE	This	program	in	no	way	compromises	the	inherent	safety	features	of	the	garage	door
opener.	It	will	still	stop	and	reverse	its	path	if	it	encounters	an	obstacle	when	closing.
In	addition,	the	safety	infrared	beams	at	the	door	bottom	still	operate	normally.

I	also	wanted	to	confirm	that	I	could	control	the	garage	door	using	a	smartphone.	To
do	this,	I	simply	entered	the	Uno’s	IP	address	into	the	phone’s	browser	and	subsequently
connected	to	the	web	server.	Figure	6-19	shows	my	smartphone’s	browser	display.

FIGURE	6-19	Smartphone	browser	display	connected	to	the	garage	door	web	server

The	door	operated	precisely	in	the	same	manner	as	when	I	used	the	laptop’s	browser.
Of	course,	there	is	no	extra	security	when	operating	in	this	manner	other	than	the	WPA
passkey	used	in	my	network’s	secure	Wi-Fi	connection.	I	would	not	be	overly	concerned
as	WPA	should	be	sufficient	to	prevent	unauthorized	garage	door	operation.	Definitely	do

not	use	this	garage	door	software	with	an	open	Wi-Fi	connection.	You	might	as	well	hang
your	house	keys	next	to	your	door	if	you	choose	to	operate	in	this	manner.

It	is	now	time	to	take	a	slight	deviation	and	introduce	another	IDE	that	will	be	used
along	with	the	Arduino	IDE	to	create	an	enhanced	garage	door	opener	project.

Visual	Studio	2012	IDE
It	is	both	possible	and	useful	to	the	Microsoft	Visual	Studio	IDE	to	develop	software	for

use	with	the	Arduino	board	series.	Using	this	IDE	creates	an	opportunity	to	have	access	to
a	wide	array	of	programming	tools	and	libraries	not	found	in	the	more	limited	Arduino
libraries.	You	will	need	three	software	packages	to	develop	with	this	software:

•			Visual	Studio	2012
•			Arduino	version	1.05
•			MegunoLink	Pro

The	Microsoft	Visual	Studio	2012	Express	edition	will	be	used	to	develop	the	garage
door	software.	This	IDE,	which	will	be	referred	to	as	simply	VS2012,	is	available	free	of
charge	for	non-commercial	purposes	at	Microsoft’s	download	website:
www.microsoft.com/en-us/download/details.aspx?id=34673.

This	is	a	Windows	program	and	it’s	fairly	large	so	it	will	take	a	while	to	download.
Once	it	is	installed,	you	will	have	to	register	online	in	order	to	obtain	a	free	product	key.
Otherwise,	the	software	“expires”	after	30	days.	Again,	it	is	free	as	long	as	you	certify	that
you	are	using	it	for	personal,	non-commercial	use.	The	latest	commercial	version	is
expensive	if	bought	directly	from	Microsoft.	Figure	6-20	shows	the	VS2012	application
without	any	projects	loaded.

http://www.microsoft.com/en-us/download/details.aspx?id=34673

FIGURE	6-20	Visual	Studio	2012	IDE

The	second	software	item	is	the	Arduino	IDE,	which	you	have	likely	already
downloaded.	Just	confirm	that	it	is	version	1.05	or	later	as	earlier	versions	may	have
compatibility	issues	with	the	VS2012.

The	last	piece	of	software	is	named	MegunoLink	Pro	and	serves	as	a	bridge	between
VS2012	and	Arduino	boards.	It	is	impossible	to	upload	any	compiled	VS2012	into	an
Arduino	board	without	the	use	of	the	MegunoLink	Pro	software.	There	is	a	free	seven-day
trial	period;	you	must	purchase	a	license	if	you	want	to	use	it	once	the	trial	period	has
ended.	The	license	fee	for	personal	use	is	very	reasonable	and	in	my	opinion	well	worth	it
for	the	significant	functionality	it	provides	in	allowing	the	use	of	VS2012	with	the
Arduino	boards	as	well	as	providing	some	very	professional	appearing	graphical	user
interfaces	(GUIs).	MegunoLink	Pro	is	available	at	www.megunolink.com.

http://www.megunolink.com

Follow	the	website	installation	instructions	to	initially	set	up	the	MegunoLink	Pro
software.	You	should	see	the	build-tool	installation	screen,	as	shown	in	Figure	6-21,	when
you	select	the	gear	icon	on	the	MegunoLink	Pro	toolbar.	Select	Setup	Arduino	Build	Tool
for	Visual	Studio	2012	to	install	the	software	module	within	VS2012,	which	permits
compiled	programs	to	be	uploaded	into	Arduino	boards.

FIGURE	6-21	MegunoLink	Pro	build-tool	installation

You	will	need	to	enter	the	directory	location	for	the	arduino.exe	binary	executable.
This	may	vary	somewhat	depending	on	the	options	you	selected	during	the	Arduino
software	installation.	In	my	case,	the	location	was	simply	C:\Program	Files\Arduino,	as
you	can	see	in	the	figure.

The	current	serial	port	connecting	the	Uno	to	the	laptop	must	also	be	selected	in	the
MegunoLink	Pro	Connection	Manager	Visualizer	module.	The	Uno	must	be	powered	on
and	connected	to	the	laptop	via	a	USB	cable	in	order	to	have	the	serial	port	recognized	by
the	Connection	Manager.	Figure	6-22	shows	my	Connection	Manager	establishing	a
connection	via	COM46	at	9600	baud.

FIGURE	6-22	Connection	Manager	Visualizer

Completing	all	of	the	preceding	steps	should	now	allow	programs	created	in	VS2012
to	be	compiled	and	uploaded	to	the	Uno.	I	will	next	demonstrate	how	to	create,	compile,
and	upload	an	LED	blink	program	to	an	Uno	using	VS2012	and	MegunoLink	Pro.

VS2012	LED	Blink	Program
Any	program	created	with	VS2012	must	be	part	of	a	project.	Create	a	project	by

following	these	three	steps:

1.	Select	File	|	New	|	Project	|	Templates	|	Visual	C++	|	Arduino	Program.
2.	Provide	a	name	for	the	new	project.	For	this	example,	I	chose
“HelloArduino.”	Use	the	default	Location	to	create	the	project	directory.	The
solution	name	will	automatically	be	the	same	as	the	project	name	except	for	the

file	extension.
3.	Select	OK.

Figure	6-23	shows	the	HelloArduino	project	screen	with	the	source	code	for	Program
.cpp	shown	in	the	main	editor	window.	Program.cpp	is	the	default	name	automatically
provided	by	VS2012	as	part	of	the	VC++/Arduino	template.	It	also	contains	the	working
code	for	a	LED	blink	application	that	uses	a	LED	connected	to	pin	13,	as	was	the	case	for
the	first	blinking	program	shown	earlier	in	this	chapter.	I	found	that	having	sample	code
immediately	in	the	editor	does	make	initial	program	development	easier	as	it	is	always
better	to	start	with	modifications	to	a	working	program.

FIGURE	6-23	Program	Device	Visualizer	screen

Select	Build	|	Build	Solution	to	compile	the	source	code.	You	can	also	simply	press

the	F7	function	key	to	do	an	immediate	build.	The	compiled	code	that	is	first	created	uses
the	project	name	with	a	.elf	file	extension.	This	file	type	is	a	CodeWarrior	ELF	Debug
Executable	type	and	for	my	setup	was	automatically	stored	at	C:\Users\Don\My
Documents\Visual	Studio	2012\Projects\HelloArduino\HelloArduino\bin\debug.

The	MegunoLink	Pro	software	automatically	creates	a	companion	hex	file,	which	is
the	only	type	that	can	be	uploaded	into	the	Uno.	The	new	hex	file	is	also	stored	in	the
same	directory	as	the	original	ELF	file.

The	actual	hex	file	program	upload	is	accomplished	using	the	MegunoLink	Pro
Program	Device	Visualizer.	You	need	to	select	the	Program	Device	Visualizer	from	the
Visualizer	list	and	add	in	the	location	of	the	hex	file	and	the	serial	port	that	was	previously
set	up.	Also	ensure	that	the	Arduino	Uno	is	selected	from	the	device	drop-down	menu.
Then	simply	select	the	Program	button.	It	should	only	take	a	few	seconds	to	upload	the
newly	created	hex	file	into	the	Uno.	A	graphical	progress	bar	shows	what	is	currently
happening	in	the	process.	Figure	6-23	shows	this	Program	Device	Visualizer	screen.

Please	note	that	after	every	program	modification,	you	must	recompile	with	VS2012
and	upload	using	the	MegunoLink	Pro	software.	I	can	assure	you	that	the	process	becomes
almost	second	nature	as	you	repeatedly	use	the	software.

I	did	observe	a	blinking	LED	after	I	compiled	and	uploaded	the	binary	to	the	Uno.
Now,	let’s	move	on	to	the	enhanced	garage	door	project.

Enhanced	Garage	Door	Project
This	section	is	called	“Enhanced	Garage	Door	Project”	simply	because	I	will	be

demonstrating	some	features	beyond	the	basic	functionality	that	was	shown	in	the	first
version	of	this	project.	Password	set	and	retrieve	features	will	be	shown	that	will	allow	the
garage	door	to	be	operated	from	an	open	Wi-Fi	connection	without	the	risk	of	allowing
unauthorized	door	activations.	This	revised	project	will	make	use	of	the	VS2012	IDE	as
well	as	the	MegunoLink	Pro	software.	This	project	is	the	creation	of	Paul	Martinsen	and
may	be	downloaded	in	zip	form	from	GitHub	at
https://github.com/Megunolink/GarageDoorOpener.

Go	to	that	website	and	select	the	Download	zip	button	located	in	the	lower-right
corner	of	the	opening	page.	The	archive	file	is	medium	sized	at	about	5.6MB	and	must	be
extracted	and	stored	somewhere	on	the	laptop’s	hard	drive.	I	put	all	the	extracted	files	into
a	sub-directory	named	GarageDoor	located	in	the	Downloads	directory.	There	is	a	VS2012
solutions	file	in	the	archive,	which	you	will	use	to	re-create	the	original	project	on	your
laptop.	This	file	is	named	Garage	Door	Opener.sln	and	is	located	in	the
GarageDoorOpener-master	directory	that	was	automatically	created	during	the	archive
extraction.	Incidentally,	there	is	another	file	in	that	same	directory	named	Garage	door
opener	config	interface.mix	that	you	will	also	need	later	when	setting	up	the	password(s).

The	Garage	Door	Opener	project	is	easily	created	in	VS2012	by	following	these
steps:

1.	Select	File	|	Open	Project.
2.	Browse	to	the	solution	file	wherever	you	extracted	it	using	the	Open	Project

https://github.com/Megunolink/GarageDoorOpener

dialog	box.
3.	Select	the	solution	file	(Garage	Door	Opener.sln).
4.	Select	OK.

Figure	6-24	shows	this	newly	created	project	with	the	main	application	file
program.cpp	displayed	in	the	source	code	editor	window.

FIGURE	6-24	VS2012	Garage	Door	Opener	project

You	should	notice	that	Program.cpp	contains	only	the	same	two	methods,	setup	and
loop,	that	you	have	seen	in	all	of	the	other	Arduino	sketches.	There	are,	however,	a
substantial	number	of	additional	files	that	provide	additional	functionality	required	to
support	web	access	as	well	as	password	protection.	A	list	of	these	additional	files	is	shown
in	the	Solution	Explorer	in	the	VS2012	right-hand	pane.	I	will	not	offer	a	detailed

explanation	of	all	these	files	as	that	would	be	well	beyond	the	scope	of	this	chapter	and
book.	However,	I	do	need	to	discuss	one	particular	file,	as	some	configuration	changes
must	be	made	within	this	file	in	order	to	have	a	functional	project.	This	file	is
Configuration.h	and	is	classified	as	an	include	file.	Files	of	this	type	contain	supplemental
information	that	is	crucial	to	support	application	files,	i.e.,	the	ones	ending	with	the	.cpp
filename	extension.	Simply	double-click	on	the	filename,	which	is	shown	in	the	include
file	list	shown	in	Figure	6-25.

FIGURE	6-25	Include	file	list

The	source	code	will	be	displayed	in	the	VS2012	main	editor	window.	The	altered
Configuration.h	source	code	is	shown	here	for	your	information:

I	only	changed	the	constant	LOCAL_IP_ADDRESS	to	match	the	Uno’s	assigned	IP
address	as	I	have	previously	discussed.	There	is	also	an	opportunity	to	assign	the	unique
mac	address	if	you	know	it;	otherwise	use	the	default	address.	You	can	also	reset	the
maximum	number	of	passwords	possible,	which	is	set	at	10,	and	the	maximum	password
length,	which	is	set	at	10	characters.	I	do	not	recommend	changing	either	one	of	these
parameters.	The	passwords	are	set	using	a	special	configuration	application	that	I	discuss
shortly.	They	are	permanently	stored	in	the	Uno’s	eeprom	memory	to	allow	instantaneous
access	when	the	main	garage	door	application	is	run.	Save	the	altered	Configuration.h	file
before	proceeding	with	the	compilation.

Next,	select	Build	|	Build	Solution	to	create	the	hex	file	that	will	be	uploaded	into	the
Uno.	The	MegunoLink	Pro	Program	Device	Visualizer	must	next	be	used	to	upload	the
hex	file	into	the	Uno	using	the	procedures	that	I	discussed	earlier.

The	next	step	is	to	set	at	least	one	password	in	order	to	test	this	project.	The
passwords	are	set	using	the	MegunoLink	Pro	configuration	file	I	mentioned	previously.
All	you	need	to	do	is	double-click	on	the	file	Garage	door	opener	config	interface.mix,
which	is	located	in	the	same	directory	as	the	project	solution	file.	Figure	6-26	shows	the
MegunoLink	Pro	screen	that	results	when	this	file	is	run.

FIGURE	6-26	MegunoLink	Pro	password	configuration

You	need	first	to	select	the	initialize	button,	which	prepares	the	Uno’s	eeprom	to
accept	new	passwords.	Next,	select	one	of	ten	slots	in	which	you	will	store	the	password
being	set.	The	first	slot	should	be	preselected.	In	addition,	there	is	a	default	password
“test”	appearing	in	the	Enter	new	password	textbox.	I	used	that	as	it	was	sufficient	to
proceed	with	the	initial	test.	Select	the	Add/Update	button	to	store	the	password	into	the
selected	slot.	You	can	repeat	this	process	until	you	have	reached	the	ten-password	limit.
Note	that	you	can	always	overwrite	any	password	by	simply	assigning	a	new	password	to
a	given	slot	and	selecting	the	Add/Update	button.	Do	not	select	the	Initialize	button	as	it
will	likely	erase	any	stored	passwords	that	are	in	the	eeprom.

Testing	the	Enhanced	Garage	Door	Opener
The	newly	programmed	Uno	with	the	relay	switching	circuit	was	reinstalled	in	the	same

box	that	held	the	original	project	circuits.	A	browser	on	my	MacBook	Pro	was	set	to	the
Uno’s	IP	address	and	I	was	greeted	with	the	web	page	shown	in	Figure	6-27.	Enter	any	of
the	stored	passwords	and	you	should	see	Figure	6-28,	which	is	the	next	web	page	to
activate	the	garage	door.

FIGURE	6-27	Initial	web	page	for	the	enhanced	garage	door	opener	project

FIGURE	6-28	Garage	door	activation	web	page

Selecting	the	Activate	Door	button	either	opened	or	closed	the	garage	door	as
expected.	I	also	accessed	the	door	opener	using	my	iPad,	as	you	can	see	in	Figure	6-29.	It
worked	perfectly	without	any	issues.

FIGURE	6-29	iPad	access	to	garage	door	opener

This	concludes	the	garage	door	opener	project,	which	hopefully	showed	you	how	you
can	effectively	use	the	Arduino	as	a	web-based	appliance,	in	this	case,	a	remotely
activated	garage	door	opener/closer.

Summary
I	started	this	chapter	with	an	overview	of	the	Arduino	Uno	development	board	and

explained	key	features	that	you	should	know	when	using	it.	I	also	discussed	the	Ethernet
Shield	board	as	that	is	the	means	by	which	the	Uno	connects	to	a	network	using	the
Ethernet.

The	Arduino	integrated	development	environment	(IDE)	was	discussed	next	as	that	is
required	to	create	the	software	that	controls	the	Uno	functions.	I	used	the	customary	and
traditional	LED	“blinking”	program	to	show	you	how	to	create	and	upload	a	program	into

the	Uno.	Incidentally,	no	additional	parts	were	required	for	this	demonstration	as	the
program	makes	use	of	the	Uno’s	built-in	LED	connected	to	GPIO	pin	13.

Next,	I	demonstrated	a	network-enabled	program	that	allows	a	browser	running	on	a
remote,	networked	computer	to	control	and	receive	data	from	the	Uno.	This	program
displayed	the	data	from	the	Uno’s	six	analog-to-digital	(ADC)	converter	channels	in	real
time	to	the	browser	client.

I	included	a	discussion	on	how	the	Uno,	lacking	an	operating	system,	can	run	a	web
server	application.	I	went	into	some	detail	about	how	this	was	accomplished	and
compared	it	to	how	similar	boards,	such	as	the	Raspberry	Pi,	approach	implementing	web
server	applications.

I	then	demonstrated	a	simplified	garage	door	opener	project	that	used	a	modified
version	of	an	LED	web	control	program	that	I	showed	earlier	in	the	chapter.	This	project
lacks	security,	save	the	inherent	security	present	using	a	WPA	Wi-Fi	network	with	the
opener	hardware.	I	used	both	a	remote	client	web	browser	and	a	smartphone	to
successfully	control	a	garage	door.

I	next	discussed	how	the	Arduino	software	may	be	developed	using	Microsoft’s
Visual	Studio	2012	(VS2012)	IDE	in	conjunction	with	the	MegunoLink	Pro	software
package.	This	combination	is	very	powerful	as	it	allows	you	to	have	full	access	to	a
comprehensive	C/C++	development	environment	if	you	so	choose.	I	used	a	completed
project	solution	to	demonstrate	an	enhanced	garage	door	opener	that	employed	passwords
for	better	security.

I	first	showed	you	how	to	create	and	run	a	LED	blink	program	using	the	VS2012	and
MegunoLink	Pro	software.	The	enhanced	garage	door	project	was	next,	and	it	was	very
quickly	implemented	as	it	was	already	a	successful	project	solution	that	needed	only	to	be
loaded	into	VS2012.	I	demonstrated	how	to	set	a	password	and	then	control	a	garage	door
using	the	password	for	access.	This	was	shown	using	remote	web	browsers	running	a
laptop	as	well	as	a	tablet.

You	should	feel	comfortable	after	completing	this	chapter	in	using	the	Arduino	Uno
for	web-enabled	projects.	The	next	chapter	builds	on	this	chapter’s	content	to	create	a
slightly	more	complex	project:	a	web-enabled	home	irrigation	system.

7
CHAPTER

Arduino	Irrigation	Control	System
This	chapter’s	project	will	use	the	Uno	development	board	with	an	Internet	connection

to	remotely	operate	a	home	irrigation	system.	This	project	will	be	split	into	two	phases.
The	first	phase	will	be	a	simple	implementation	where	a	homeowner	can	remotely	start
watering	using	any	one	of	up	to	eight	irrigation	zones.	An	irrigation	zone	typically
consists	of	two	or	more	pop-up	sprinkler	heads.

The	second	phase	will	report	back	soil	moisture	content	using	an	Uno	web	page	so
the	homeowner	can	determine	if	immediate	irrigation	is	needed.	The	soil	moisture	sensor
subsystem	will	communicate	with	the	main	Uno	controller	using	an	XBee	digital
transceiver.

I	will	also	be	using	the	same	Ethernet	Shield	that	was	introduced	in	the	last	chapter	to
connect	the	Uno	with	the	home	network.	I	recommend	that	you	read	Chapter	6	if	you
happened	to	skip	straight	to	this	chapter.	I	covered	the	fundamentals	of	how	the	Uno	web
server	functions,	which	is	quite	different	than	a	typical	server	installation.

Irrigation	System	Design
This	irrigation	project	uses	my	own	home’s	installed	irrigation	system	as	the	initial

platform.	It	has	six	zones	that	are	controlled	by	a	controller	installed	in	the	basement.
Figure	7-1	is	a	system	block	diagram,	which	shows	the	basic	system	components.

FIGURE	7-1	Home	irrigation	block	diagram

This	system	is	relatively	uncomplicated	wherein	the	controller	operates	water
solenoids	connected	to	individual	zones.	Only	one	zone	in	this	system	can	be	activated	as
my	home	water	supply	volume	will	not	support	operating	more	than	one	zone.	The
controller	can	be	programmed	to	operate	any	zone	for	a	predetermined	time,	time	of	day,
and	number	of	days	per	week.	It	can	also	manually	operate	a	single	zone	or	all	the	zones.

Figure	7-2	shows	the	irrigation	controller.

FIGURE	7-2	Home	irrigation	system	controller

In	the	figure	you	can	also	see	a	wireless	rain	sensor	module	located	above	the
controller,	which	sends	a	digital	signal	to	the	controller	when	the	rain	level	collected	in	the
sensor	reaches	a	predetermined	point.	Unfortunately,	I	found	that	this	sensor	was	neither
accurate	nor	reliable,	which	is	why	it	is	turned	off.	I	decided	to	incorporate	the	new
moisture	sensor	into	this	project	because	I	had	no	reliable	way	to	test	the	lawn	moisture.

I	had	to	disable	the	original	controller	as	I	didn’t	want	to	accidentally	enable	two
zones	at	the	same	time,	which	would	disrupt	my	home	water	supply	and	likely	cause	a
domestic	disruption	with	my	spouse.

Consequentially,	I	had	to	provide	an	alternate	24VAC	supply,	which	is	needed	to
operate	the	water	solenoids	because	the	main	controller	was	offline.	The	new	solenoid
voltage	was	applied	using	new	relay	control	circuits	that	I	implemented	with	two	4-
channel	relay	modules.	Figure	7-3	shows	the	Arduino	development	board,	consisting	of
two	relay	modules	along	with	the	Uno,	Ethernet	Shield,	and	a	solderless	breadboard	that	I
used	to	interconnect	eight	of	the	Uno’s	GPIO	pins	to	the	relay	board	inputs.	I	did	connect
all	eight,	but	I	only	needed	six	of	the	eight	pins.

FIGURE	7-3	Arduino	development	board

I	purchased	two	inexpensive,	4-channel	relay-switching	modules	from	SainSmart
through	Amazon.com.	I	was	impressed	by	the	build	quality	as	well	as	the	ease	of
interfacing	it	to	the	Uno.	Figure	7-4	is	a	close-up	photograph	of	one	of	the	modules	where
you	can	easily	see	the	digital	input	pins	located	at	the	board’s	bottom-right	side.

FIGURE	7-4	SainSmart	4-channel	relay	module

The	inputs	are	all	FET	driven,	which	lessens	the	current	drive	requirements	from	the
Uno’s	GPIO	pins.	There	are	also	LED	indicators	on	each	of	the	digital	inputs,	which
makes	it	very	easy	to	determine	the	status	of	every	channel	relay.	Just	be	aware	that	the
LEDs	light	on	the	GPIO	LOW	level,	not	HIGH	level	and	will	be	on	for	all	inactivated
channels.	Finally,	connections	to	individual	relay	contacts	are	done	using	the	screw
terminal	strips	located	at	the	bottom	edge	of	the	relay	module.	Each	contact	type	is	also
silk-screened	onto	the	board,	which	helps	with	making	the	connections	to	the	irrigation
solenoid	terminal	strip.

Figure	7-5	is	a	block	diagram	of	the	new	controller	with	relay	modules	interfaced	to
the	existing	irrigation	system.

FIGURE	7-5	Arduino-controlled	irrigation	system	block	diagram

I	need	to	discuss	the	new	Uno	control	program,	which	you	should	upload	before
installing	the	development	board	into	the	existing	irrigation	system.

Irrigation	Control	Program

The	new	program	uses	the	same	Ethernet	connectivity	logic	that	was	used	in	the	garage
door	opener	project	but	with	new	logic	developed	to	function	with	an	irrigation	system.	As
was	the	case	for	the	garage	door	opener	project,	you	must	determine	the	Uno’s	IP	address
and	change	the	IP	address	in	the	program	code	to	match	the	actual	address.	You	will	not	be
able	to	connect	with	the	web	server	if	you	fail	to	make	this	change.

The	user	interface	is	quite	simple,	consisting	of	a	series	of	“radio”	buttons	that	select
any	one	or	none	of	the	irrigation	zones.	Figure	7-6	shows	a	screen	capture	of	the	web
browser	connected	to	the	Uno	server	program.	In	my	case,	the	Uno	IP	address	was
192.168.1.26,	which	is	visible	in	the	URL	text	box.

FIGURE	7-6	Web	browser	screenshot

Clicking	first	on	a	button	and	then	clicking	on	the	Submit	button	will	turn	on	the
water	supply	to	the	zone	represented	by	the	selected	radio	button.	Only	one	button	may	be
activated	at	a	time,	which	is	the	desired	feature	of	the	radio	button	interface.	This	ensures
only	that	one	watering	zone	is	actuated,	which	matches	the	single	operating	zone
requirement	that	I	discussed	earlier	in	the	chapter.

The	complete	code	listing,	named	Irrigation_Control,	is	shown	here	and,	as	in
previous	chapters,	this	code	is	available	on	the	book’s	companion	website.

The	logic	to	find	which	zone	is	selected	is	to	match	the	beginning	portion	of	the
HTTP	request	string	with	the	zone	and	value.	For	instance,	a	user	selecting	zone	3	will
cause	the	HTTP	request	to	have	“zones=3”	in	the	text.	The	statement

else	if(HTTP_req.indexOf(“zones=3”)	>	-1)

in	the	chain	of	if/else	statements	will	consequently	be	evaluated	as	True	and	all	the
following	statements	in	that	specific	block	will	be	executed.

Irrigation	System	Physical	Installation
The	new	Arduino	development	boards	along	the	24VAC	transformer	were	mounted	on

the	same	plywood	board	that	supports	the	existing	irrigation	system.	Figure	7-7	shows	the
new	installation	along	with	the	ribbon	cable	that	interconnects	the	relay	modules	with	the
existing	solenoid	terminal	strip.

FIGURE	7-7	Physical	installation

The	relay	modules	were	connected	to	the	zone	water	solenoids	by	simply	inserting
the	respective	ribbon	cable	wire	in	parallel	with	the	existing	terminal	connection.	Figure
7-8	is	a	close-up	photograph	of	this	wiring	installation.

FIGURE	7-8	Zone	water	solenoid	interconnections

CAUTION	The	wire	currently	in	the	existing	solenoid	cable	connected	to	the	common
solenoid	terminal	strip	must	be	disconnected	from	the	strip.	This	wire	must	then	be
directly	connected	to	the	common	terminal	of	the	new	24VAC	transformer.	Failure	to
do	so	will	cause	the	secondaries	of	both	the	existing	and	new	transformers	to	be
connected	in	parallel,	which	will	likely	damage	both	units.	It	is	okay	to	leave	the
existing,	individual	solenoid	wires	connected	to	the	terminal	strip	as	long	as	the
common	or	the	ground	has	been	disconnected.

Figure	7-9	is	a	close-up	of	the	ribbon	cable	connections	made	to	the	relay	modules.
The	hot	side	of	the	24VAC	transformer	is	connected	to	each	relay’s	common	terminal
while	each	individual	zone	solenoid	connections	are	made	to	the	normally	open	(NO)	pole
for	each	zone	relay.

FIGURE	7-9	Ribbon	cable	to	relay	module	connections

The	connections	made	to	the	24VAC	transformer	are	easily	seen	in	Figure	7-10.	I
used	a	surplus	GE	control	transformer	that	I	had	in	my	collection	of	junk	parts.	However,
the	particular	transformer	style	is	not	critical	and	you	can	use	whatever	is	available	from
an	electrical	supply	store	or	home	improvement	center.

FIGURE	7-10	24VAC	transformer	connections

You	can	even	connect	two	12VAC	bell	transformers	in	series	to	achieve	the	24VAC,

which	is	needed	to	operate	the	solenoids.

The	Uno	must	also	be	connected	to	a	7-12V	DC	supply	along	with	an	Ethernet	cable;
both	of	which	can	be	seen	in	Figure	7-7.	Once	everything	is	in-place,	you	will	be	all	set	to
test	this	new	system.

Operating	the	New	Irrigation	System
To	operate	the	system,	you	simply	need	to	browse	to	the	Uno’s	IP	address;	you	should

see	the	zone	selection	screen	I	presented	in	Figure	7-6.	Click	on	a	zone	and	then	click	on
the	Submit	button	and	voilà,	you	should	observe	water	being	sprayed	from	the	selected
zone.	Note	that	there	is	no	time	limitation	imposed	on	this	activation	and	it	is	your
responsibility	to	reselect	the	None	zone	to	turn	off	the	zone.	Failure	to	do	so	will	simply
increase	your	water	bill	and	likely	result	in	a	soggy	lawn.

The	next	phase	in	this	project,	as	I	mentioned	at	the	beginning	of	the	chapter,	is	to
sense	the	moisture	content	and	report	that	sensor	reading	to	the	user	so	that	a	reasoned
decision	can	be	made	regarding	activating	the	irrigation	zone(s).

Moisture	Sensing	Subsystem
I	have	labeled	this	part	of	the	project	as	a	moisture	sensing	subsystem	as	it	is	an

optional	add-on	to	the	basic	Arduino	irrigation	system.	It	is	not	required	but	should	prove
a	handy	addition	for	making	an	informed	choice	if	you	should	remotely	activate	the
irrigation	system.	This	subsystem	block	diagram	is	shown	in	Figure	7-11.

FIGURE	7-11	Moisture	sensing	subsystem	block	diagram

You	should	immediately	notice	from	the	block	diagram	that	the	moisture	sensor
portion	is	completely	separate	and	remotely	located	from	the	main	Arduino	development
board,	which	in	my	case	is	mounted	adjacent	to	my	existing	irrigation	controller.	The
moisture	sensor	communicates	using	a	radio	frequency	(RF)	link,	which	is	implemented
with	XBee	modules.	I	have	included	the	following	section	for	those	readers	interested	in
what	makes	up	the	XBee	communications	link	and	how	it	seamlessly	integrates	with	the
two	Uno	boards.

XBee	Technology
Let	me	begin	with	a	shameless	promotion	of	my	recent	book,	Build	Your	Own

Quadcopter.	I	adapted	much	of	the	material	in	this	section	from	a	chapter	in	that	book,	but
I’ve	covered	the	Arduino	Uno	board	in	lieu	of	the	Parallax	Propeller	chip,	which	is
discussed	in	the	quadcopter	book.	XBee	transceivers	were	selected	to	implement	the	RF
link	because	they	are	small,	lightweight,	inexpensive,	and	totally	compatible	with	the	Uno
boards.	XBee	is	the	brand	name	for	a	series	of	digital	RF	transceivers	manufactured	by
Digi	International.	Figure	7-12	shows	one	of	the	XBee	Pro	transceivers	that	I	used.

FIGURE	7-12	XBee	Pro	transceiver

There	are	two	rows	of	10	pins	on	each	side	of	the	module.	These	pins	are	spaced	at	2
mm	between	each	one,	which	is	incompatible	with	the	standard	0.1-inch	spacing	used	on
solderless	breadboards.	This	means	that	a	special	connector	socket	must	be	used	with	the
XBee	module	to	interconnect	it	with	the	Uno.	This	special	socket	is	part	of	an	XBee
Arduino	Shield	that	is	shown	in	Figure	7-13.

FIGURE	7-13	XBee	Arduino	Shield

This	shield	contains	all	the	functionality	needed	to	effectively	interface	an	Arduino
style	board	such	as	the	Uno	with	an	XBee	module.	The	shield	and	accompanying	software
makes	it	very	easy	to	create	a	useful	RF	communications	link	with	very	little	effort.

I	will	next	examine	the	XBee	hardware	to	show	how	this	clever	design	makes
wireless	transmission	so	easy.	All	the	electronics	in	the	XBee	hardware,	except	for	the
antenna,	are	contained	in	a	slim	metal	case	located	on	the	bottom	side	of	the	module,	as

you	can	see	in	Figure	7-14.

FIGURE	7-14	Close-up	of	the	XBee	electronics	case

If	you	look	closely	at	the	figure,	you	should	see	the	bottom	of	the	antenna	wire,
which	is	located	near	the	top-left	corner	of	the	case.	While	Digi	International	is	not
forthcoming	regarding	what	makes	up	the	electronic	contents	of	the	case,	I	did	determine
that	the	earlier	versions	of	the	XBee	Pro	transceivers	used	the	Freescale	model	MC13192
RF	transceiver.	This	chip	is	a	hybrid	type,	meaning	that	it	is	made	up	of	both	analog	and
digital	components.	The	analog	components	make	up	the	RF	transmit-and-receive	circuits
while	the	digital	components	implement	all	the	other	chip	functions.	It	is	a	complex	chip,
which	is	the	reason	why	the	XBee	module	is	so	versatile	and	able	to	automatically
perform	a	remarkable	number	of	networking	functions.	Table	7-1	shows	a	select	number
of	features	and	specifications	for	the	MC13192.

TABLE	7-1	Freescale	MC13192	Features	and	Specifications

The	XBee	module	implements	a	full	network	protocol	suite,	but	from	a	hardware

perspective,	it	means	that	there	must	also	be	a	microprocessor	present	in	the	electronics
case.	From	my	research,	I	cannot	determine	which	type	of	microprocessor	it	is,	but	I	am
willing	to	make	an	educated	guess	that	it	would	be	a	Freescale	chip,	based	on	the
reasonable	assumption	that	the	MC13192	would	be	designed	to	be	highly	compatible	with
the	company’s	own	line	of	microprocessors.	One	other	factor	supporting	my	guess	is	that
Digi	International	has	recently	introduced	a	line	of	programmable	XBee	modules	named
XBee	Pro	SB	that	use	the	8-bit	Freescale	S08	microprocessor.

The	XBee	pins	are	detailed	in	a	logical	arrangement	in	Figure	7-15	for	your
information.	Just	be	aware	that	only	four	of	the	pins	are	needed	for	this	project,	and	they
are	shown	with	an	asterisk	next	to	the	pin	number.

FIGURE	7-15	Logical	XBee	pinout	diagram

All	the	pin	and	function	descriptions	are	shown	in	Table	7-2.

TABLE	7-2	XBee	Pin	Descriptions	and	Functions

A	considerable	number	of	functions	are	available	to	you	if	needed;	however,	this
project	requires	only	the	most	minimal	functions	for	simple	and	reliable	data	transfers.
Thankfully,	the	two	XBee	modules	automatically	connect	and	establish	reliable
communications	when	power	is	applied	to	them.	A	red,	blinking	LED	on	the	XBee	shield
is	your	indication	that	a	communications	link	has	been	established.

I	will	finish	this	section	by	mentioning	that	the	XBee	uses	a	highly	capable
networking	protocol	name	ZigBee,	which	is	also	called	a	Personal	Area	Network	(PAN).
Please	refer	to	my	quadcopter	book	for	more	detailed	information	about	ZigBee	and	the
network	protocol	used	with	the	XBees.

Soil	Moisture	Sensor
This	subsystem	would	be	useless	unless	there	were	some	way	of	sensing	the	amount	of

moisture	or	water	present	in	the	soil	that	is	being	irrigated.	I	took	advantage	of	the
fundamental	property	of	Earth	Conductivity	(EC)	where	a	measurement	of	how	well	soil
conducts	an	electrical	current	is	indicative	of	how	much	water	or	moisture	is	present.	Soil
that	contains	absolutely	no	water	will	not	conduct	an	electrical	current	and	will	act	as	a
perfect	insulator,	which	is	equivalent	to	zero	conductivity.	This	situation	does	not
normally	exist	as	all	soil	on	the	Earth’s	surface	normally	does	contain	some	water.	Perhaps
in	extremely	arid,	desert	regions	you	might	find	nearly	zero	water	content.	I	would	guess
that	the	moon	and	Mars	would	also	be	“nearby”	places	where	no	surface	water	is	in-place
and	“soil”	conductivity	would	definitely	be	zero.	Thus,	EC	was	my	rationale	to	design	a
very	simple,	yet	highly	effective,	moisture	sensor.	Figure	7-16	is	a	photograph	of	this
sensor.

FIGURE	7-16	Moisture	sensor

It	is	a	simple	design	consisting	of	two,	one-foot-long,	one-quarter-inch,	soft	copper
tubes	attached	to	a	pressure	treated	(PT)	wooden	block.	Notice	that	I	flatten	the	ends	of	the
copper	tubes	in	a	vise	to	make	it	easier	to	screw	them	onto	the	wooden	block	ends.	I	also
soldered	a	wire	to	each	tube,	which	has	a	sharpened	end	that	is	designed	to	smoothly
pierce	into	the	soil.	The	soil	will	act	as	a	“resistor”	to	any	electrical	current	that	flows
between	the	two	tubes.	I	used	a	standard	multimeter	to	measure	the	resistance	between	the
two	tubes,	which	is	the	inverse	of	the	actual	soil	conductivity.	Figure	7-17	is	a	photograph
of	my	somewhat	crude	calibration	setup	where	the	sensor	was	measuring	the	conductivity
of	a	sand	and	clay	mixture	held	in	a	five-gallon	pail.

FIGURE	7-17	Soil	moisture	calibration	setup

I	added	water	to	the	pail	to	change	the	soil	composition	from	dry	to	a	saturated

condition	and	recorded	the	resistance	for	each	stage.	Figure	7-18	is	the	result	of	this
calibration	experiment,	which	serves	the	purpose	of	establishing	a	“trigger”	point	at	which
the	irrigation	system	should	be	started.

FIGURE	7-18	Soil	resistance	versus	soil	condition	chart

I	estimated	that	irrigation	should	be	started	once	the	sensor	resistance	level	is
measured	at	40KΩ	or	higher.	I	also	used	the	40KΩ	resistance	level	when	I	designed	the
rest	of	the	moisture	sensor	electronics.

Moisture	Sensor	Design
The	sensor	design	was	based	on	the	realization	that	current	flow	was	the	key	parameter

to	be	measured.	This	is	really	quite	evident	when	you	consider	that	absolutely	dry	soil	will
not	conduct	any	current,	while	saturated	soil	will	have	the	maximum	conductivity.	The
only	issue	with	this	line	of	thinking	is	that	the	Uno	has	only	analog-to-voltage	(ADC)
inputs	and	no	direct	means	to	measure	current.	This	leads	to	my	decision	to	use	a	fixed
resistance	in	series	with	the	moisture	sensor	and	to	measure	the	voltage	drop	across	this
fixed	resistance.	Now	the	problem	is	how	to	determine	the	value	of	this	series	resistor.
That	is	actually	fairly	easy	to	do	when	you	realize	that	the	maximum	voltage	that	can	be
handled	by	an	Uno’s	ADC	channel	is	5VDC,	which	is	represented	by	a	1023	count.	The
maximum	voltage	would	be	generated	when	the	maximum	current	is	passed	through	the
fixed	resistor	under	a	fully	saturated	soil	condition.	I	measured	the	soil	resistance	to	be	2.4
KΩ	for	that	condition.	Figure	7-19	is	the	equivalent	circuit,	which	I	used	as	a	basis	for	the
following	calculations,	assuming	a	12VDC	battery	supply	for	the	sensor:

Max	current	through	the	sensor	=	(12	–	5)	/	2.4	=	2.92ma

Fixed	resistor	value	(Rx)	=	5	/	2.92	=	1.71	KΩ

FIGURE	7-19	Sensor	equivalent	circuit

It	turns	out	that	1.6	KΩ	is	the	closest	standard	resistor	value,	which	will	be	just	fine
for	this	circuit.	The	complete	moisture	sensor	schematic	is	shown	in	Figure	7-20.

FIGURE	7-20	Soil	moisture	sensor	schematic

Note	that	I	included	a	12VDC	solar	panel	in	the	design	to	trickle	charge	the	sealed,
lead-acid	battery,	which	should	make	the	whole	moisture	sensor	subsystem	almost
maintenance	free.	I	mounted	the	sensor	system	in	an	8×8×4-inch	heavy-duty	plastic
enclosure	that	should	easily	withstand	the	outdoor	environment.	Obviously,	the	solar	panel
was	mounted	on	top	of	the	enclosure,	tilted	at	a	45-degree	angle	and	facing	to	the	south
for	maximum	solar	gain.	Figure	7-21	is	a	picture	of	the	moisture	sensor	system	mounted
on	a	PT	stake	with	the	moisture	probe	set	into	the	ground	at	the	foot	of	the	stake.

FIGURE	7-21	Moisture	sensor	system

Figure	7-22	shows	the	interior	of	the	enclosure	where	you	can	see	the	Ethernet	Shield
along	with	the	solderless	breadboard,	which	I	used	to	interconnect	the	resistive	divider.
Note	that	the	battery	simply	sits	on	the	bottom	of	the	enclosure,	which	should	be	fine
barring	any	earthquakes	or	tractor	accidents.

FIGURE	7-22	Interior	of	the	moisture	system	enclosure

NOTE	I	did	not	install	the	system	outdoors	until	I	successfully	completed	all	the	calibration
testing	discussed	in	the	following	section.	I	would	strongly	suggest	you	do	the	same	and

test	all	the	outdoor	components	on	a	bench	top	before	proceeding	to	install	them
outdoors.

Moisture	Sensor	Software
The	software,	which	controls	the	moisture	sensor	subsystem	is	straightforward	as	I

relied	on	the	ADC	library	functions	as	well	as	some	XBee	library	functions.	The	XBee
wireless	link	uses	a	9600	baud	rate,	which	is	more	than	adequate	to	handle	the	sensor
voltage	readings.	There	are	two	programs	involved,	one	for	the	transmitter	and	the	other
for	the	receiver.	The	transmitter	code	listing	XbeeXmit	is	shown	here	and	is	available	on
the	book’s	companion	website,	as	is	the	receiver	code:

NOTE	There	are	two	jumpers	on	the	XBee	module,	which	can	be	in	either	the	USB	or	XBee
positions.	They	must	be	in	the	USB	position	in	order	to	use	the	serial	monitor	feature.
They	also	must	be	in	the	XBee	position	to	enable	the	XBee	communications	link.	Figure
7-23	shows	these	jumpers	in	the	USB	position.

FIGURE	7-23	XBee	jumpers	in	the	USB	position

This	program	reads	the	ADC	value	and	then	selects	a	number	from	1	to	5	depending
upon	the	soil’s	moisture	content.	I	set	up	five	zones	to	encompass	all	of	the	ADC	values.
These	are	shown	in	Table	7-3.

TABLE	7-3	Soil	Moisture	Zones

I	do	recognize	that	these	categories	may	not	be	very	precise,	but	they	should	be
ample	to	provide	useful	feedback	to	the	user	regarding	the	actual	soil	conditions.	The	zone
number	is	the	only	data	actually	transmitted	to	the	XBee	receiver.	The	XBeeRecrTest
program,	which	I	discuss	later	on,	deciphers	the	zone	number’s	meaning	and	displays	the
actual	soil	condition	on	the	browser	screen.

I	set	up	a	calibration	test	to	check	on	how	well	the	XbeeXmit	functions	when	sending
the	zone	data.	Figure	7-24	shows	a	potentiometer	to	which	I	connected	the	A0	ADC	input
to	the	tap	and	5VDC	and	GND	to	the	other	two	leads.

FIGURE	7-24	Transmitter	calibration	setup

This	allowed	me	to	vary	the	ADC	input	voltage,	simulating	the	total	range	for	the
moisture	probe.	Of	course,	I	also	needed	the	XBee	receiver	portion	running	to	fully	carry
out	the	calibration	test.	I	named	the	following	code	XBeeRecvrTest	to	indicate	that	it	was
designed	to	be	part	of	a	test	phase.	This	program	receives	the	XBee	transmitter’s	zone
number	and	lights	an	LED	corresponding	to	that	zone.	The	code	to	accomplish	this
follows:

Figure	7-25	is	a	schematic	for	this	receiver’s	calibration	test	circuit,	which	must	be
used	with	the	preceding	program.

FIGURE	7-25	Receiver	calibration	test	schematic

Before	running	the	calibration	test,	ensure	that	both	XBee	mode	jumpers	are	in	the
XBee	position	as	I	mentioned	earlier,	or	the	test	will	not	work.

Testing	both	the	transmitter	and	receiver	modules	simply	becomes	a	matter	of	turning
the	potentiometer	and	observing	that	the	LEDs	light	sequentially	as	it	goes	through	its	full

rotation.	Recheck	your	receiver	wiring	if	you	do	not	see	the	LEDs	blink	on	and	then	off	as
the	potentiometer	is	turned	from	minimum	to	maximum	voltage.

You	are	now	ready	to	connect	the	XBee	receiver	to	the	Arduino	development	board,
as	long	as	the	calibration	test	went	smoothly.	The	hookup	is	straightforward	in	that	the
five	wires	going	to	the	LEDs	are	disconnected	and	reconnected	to	the	five	Arduino	boards’
digital	inputs	14	to	18,	as	shown	in	the	Figure	7-26	schematic.

FIGURE	7-26	XBee	receiver	and	Arduino	development	board	schematic

The	physical	interconnections	between	the	Xbee	receiver	module	and	the	Arduino
development	board	are	easily	seen	in	Figure	7-27.

FIGURE	7-27	XBee	receiver	module	connected	to	Arduino	development	board

A	revised	control	program	named	Irrigation_Control_r1	must	be	uploaded	into	the
Arduino	mounted	on	the	development	board.	This	revised	code	is	shown	next,	and
encodes	the	zone	numbers	into	specific	soil	condition	strings,	which	are	in	turn	displayed
on	the	browser.

I	next	used	the	calibration	circuit	to	send	various	simulated	soil	conditions	and
checked	the	corresponding	browser	display.	Figure	7-28	shows	the	result	for	zone	1	or
“Very	dry”	conditions.

FIGURE	7-28	Browser	screenshot—Very	dry	condition

I	then	increased	the	voltage	to	the	mid-point	and	observed	the	“Damp”	condition
displayed	on	the	browser,	as	shown	in	Figure	7-29,	which	is	a	partial	browser	screenshot.

FIGURE	7-29	Browser	screenshot—Damp	condition

I	also	checked	all	the	other	zones	and	determined	that	accurate	conditions	were
displayed	on	the	browser	corresponding	to	the	calibration	voltage.

Actual	System	Operation
I	next	proceeded	to	install	the	moisture	sensor	subsystem	outdoors,	as	I	described	in	my

previous	section,	after	the	calibration	testing	was	successfully	completed.	The	outdoor
system	is	pretty	much	a	hands-off	box,	which	means	you	don’t	have	to	fiddle	with	it	after

you	install	it.	I	did	find	that	my	local	bird	population	seemed	to	like	“bombing”	the	solar
panel,	but	I	guess	that’s	part	of	the	price	of	rural	living.

Figure	7-30	shows	a	browser	screenshot	of	the	irrigation	system	receiving	a	signal
from	the	outdoor	sensor.	I	knew	the	soil	was	very	wet	as	it	had	been	raining	for	a	day	prior
to	the	test.

FIGURE	7-30	Browser	screenshot	of	a	system	with	an	operating	outdoor	moisture	sensor

I	also	cycled	all	the	zones	to	confirm	that	the	sprinklers	did	activate	when	their	zone
was	clicked.	This	last	action	completed	the	basic	Arduino	irrigation	control	project.

Enhancements
The	most	obvious	project	improvement	is	to	incorporate	a	timing	control	element

within	the	Arduino	development	system.	This	would	allow	the	user	to	preset	the	zone
watering	start	and	duration	times	as	well	as	the	days	of	the	week.	This	additional
functionality	would	completely	replace	the	existing	irrigation	controller.	I	purposely	did
not	include	timing	within	this	project	as	the	project	focus	was	on	implementing	a	remote

control	function	via	the	Web.

The	moisture	sensor	capabilities	can	also	be	easily	extended	to	include	additional
remote	stations	such	that	multiple	areas	could	be	monitored	and	an	overall	moisture
assessment	be	developed	especially	for	an	extended	area.	The	main	irrigation	program
would	have	to	be	modified	to	accommodate	the	additional	sensor	inputs.	It	also	turns	out
that	the	XBee	protocol	easily	handles	multiple	nodes	such	that	each	sensor	can	have	its
own	ID,	which	enables	the	main	program	to	identify	which	sensor	is	sending	the	data.	It
would	be	entirely	feasible	to	customize	the	watering	based	on	the	sensor	inputs	to	only
turn	on	specific	zones	for	specific	durations.	This	would	truly	turn	the	irrigation	system
into	a	fully	automated	watering	“robot.”

My	last	suggestion	relies	on	an	interesting	and	very	inexpensive	soil	moisture	sensor
that	I	found	for	sale	on	eBay	(see	Figure	7-31).	The	probe	tips	are	only	1.75	inches	in
length,	which	is	quite	suitable	for	potted	plants.

FIGURE	7-31	Mini	soil	moisture	probe

The	electronics	portion	seen	on	the	left-hand	side	of	the	figure	outputs	a	digital	high
level	when	the	moisture	probes’	voltage	drops	below	a	level	set	by	the	board’s
potentiometer.	The	analog	voltage	is	also	available	as	an	output,	which	may	be	connected
to	an	ADC,	if	desired.	This	mini	probe	uses	a	voltage	divider	sensor	circuit,	which	is
almost	identical	to	my	original	design.	At	the	simplest	level,	I	can	imagine	an	Arduino
connected	to	this	sensor,	which	would	light	an	LED	when	the	potted	plant	becomes	too
dry.	You	could	also	make	the	plant’s	soil	moisture	status	available	on	the	Web	using	a
modified	version	of	the	Irrigation	Control	program	that	only	reports	the	soil	moisture
level.	I	do	think	it	would	be	a	bit	too	much	to	install	a	solenoid	operated	watering	system
for	a	single,	potted	plant,	but	I	will	leave	that	challenge	to	any	ambitious	reader.	Please
send	me	an	e-mail	c/o	of	my	publisher	if	you	do	accomplish	this	project.	The	email-id	is
listed	in	the	front	matter	of	the	book.

Summary
This	chapter’s	project	was	the	design	and	implementation	of	a	Web-controlled,	home

irrigation	system.	It	also	included	a	soil	moisture	sensor,	which	reported	to	the	user	the
actual	soil	conditions	and	if	irrigation	was	needed.

I	discussed	the	basic	design,	which	included	two	relay	modules	controlled	by	an
Arduino	Uno’s	GPIO	pins.	These	modules	were	necessary	because	the	existing	water
solenoids	required	24VAC	to	be	operated,	which	far	exceeds	the	Uno’s	digital	output
capabilities.

A	basic	Arduino	sketch	was	created	that	allowed	the	user	to	operate	any	one	of	six
zones	using	a	web	interface.	I	also	showed	you	how	to	interconnect	the	Arduino
development	board,	which	held	the	Uno,	Ethernet	Shield,	relay	modules,	and	solderless
breadboard,	to	the	existing	irrigation	terminal	strip.

A	brief	operational	word	test	was	next	conducted	that	confirmed	that	the	new	system
would	control	the	irrigation	zones,	as	desired,	using	a	web	interface.

I	next	discussed	a	moisture	sensing	subsystem	that	employed	XBee	wireless
technology	so	that	no	wires	were	needed	to	interconnect	between	the	main	board	and	the
remote	moisture	sensor.	A	detailed	section	was	also	provided	for	those	readers	who	want
to	learn	more	about	the	XBee	technology.

A	discussion	followed	on	how	the	moisture	sensor	was	designed	based	upon
measuring	Earth	Conductivity	(EC)	as	a	moisture	content	indicator.	I	also	showed	the
complete	design	of	the	outdoor	moisture	sensor	system,	which	included	a	solar	panel	to
trickle	charge	a	lead	acid	battery	for	maintenance-free	operation.

The	XBee	transmitter	and	receiver	programs	were	discussed	next	as	well	as	my
concept	of	using	moisture	zones	to	report	soil	conditions.

I	next	demonstrated	a	calibration	test,	which	proved	the	system	accurately	reported
soil	conditions	based	upon	simulated	voltage	levels.	The	outdoor	moisture	sensor	was
installed	after	the	calibration	tests	were	completed	and	it	reported	the	correct	soil
conditions.

The	chapter	ended	with	some	suggested	enhancements,	including	a	possible	potted
plant	monitoring	system.

8
CHAPTER

Arduino	Lighting	Controller
This	chapter’s	project	will	use	the	Uno	board	with	an	Ethernet	Shield	connection	to

remotely	operate	lights	both	inside	and	outside	a	residence.	The	XBee	wireless	technology
will	also	be	used	to	eliminate	the	need	for	hard	wiring	from	the	controller	to	the	lights	that
are	placed	at	a	distance.	Only	lights	with	external	power	cords	will	be	used	in	this	project
to	make	it	reasonable	and	easy	to	implement.	I	will	also	demonstrate	a	radio	frequency
(RF)	key	fob	that	will	power-on	selected	lights	when	the	user	is	within	range.

System	Design
This	system	was	designed	to	use	both	wired	and	wireless	segments	to	control	power

controllers,	which	I	discuss	in	detail	in	a	later	section.	Using	wireless	controls	will	provide
a	high	degree	of	flexibility	in	configuring	the	system	to	fit	a	particular	residence.	Figure	8-
1	is	a	system	block	diagram,	which	shows	all	the	principal	components.

FIGURE	8-1	System	block	diagram

The	controller	node	is	the	key	system	component	that	supports	multiple	functions
including:

•			Web	server	providing	an	Internet	gateway
•			XBee	broadcast	module
•			Digital	I/O	for	wired	power	controllers

Each	of	these	controller	functions	will	be	further	discussed	in	later	sections,	which
will	also	include	appropriate	build	and	configuration	instructions.

There	are	two	XBee	nodes	also	shown	in	the	block	diagram,	which	provide	the
wireless	control	for	both	remote	power	controllers.	The	software	design	does	provide	for	a
maximum	of	18	wireless	controllers	if	such	a	large	amount	was	required	for	particular
installation.	There	are	a	total	of	three	XBee	nodes	in	this	design,	which	at	first	glance
might	seem	a	bit	confusing	as	I	used	a	point-to	point	in	the	previous	chapter.	This	works
because	the	XBee	module	installed	in	the	controller	node	will	be	functioning	in	a	point-to-
multipoint	mode.	This	means	it	will	be	broadcasting	to	all	nearby	XBee	nodes.	However,
it	does	not	respond	or	acknowledge	these	nodes,	thus	decreasing	the	overall	system
reliability.	I	do	not	believe	that	this	lack	of	positive	acknowledgment	would	be	detrimental
to	overall	system	operation.	That	belief	was	subsequently	confirmed	in	later	system	tests.	I
have	included	the	following	aside	for	those	readers	interested	in	learning	more	about	the
XBee	mesh	mode,	which	does	provide	for	full	duplex	communication	between	three	or
more	XBee	modules.

XBee	Mesh
A	lot	of	the	discussion	that	follows	is	based	on	information	presented	in	the

excellent	book	Building	Wireless	Sensor	Networks:	with	ZigBee,	XBee,	Arduino,	and
Processing	by	Robert	Faludi.	Faludi	presents	a	very	clear	explanation	of	the	basics
involved	in	setting	up	and	running	a	wireless	sensor	network	using	XBee	transceivers
with	Arduino	boards.

It	should	be	clear	that	the	name	XBee	refers	only	to	a	line	of	small,	digital,	radio
transceivers	manufactured	by	Digi	International	(Digi).	The	XBee	radios	follow	the
ZigBee	communications/network	protocol	just	as	a	multitude	of	Wi-Fi	devices	follow
the	Wi-Fi	standard,	which	formally	is	designated	as	IEEE	802.11	a/b/g/n.	ZigBee	also
has	the	formal	standards	designation	of	IEEE	802.15.4.

All	XBee	radios	have	been	manufactured	and	programmed	with	either	Series	1
(S1)	or	Series	2	(S2)	firmware.	S1	firmware	will	only	support	either	point-to-point	or
point-to-multipoint	communications.	The	point-to-point	communications	link	is	also
known	as	a	peer-to-peer	link.	S2	firmware	supports	both	point-to-point	as	well	as
mesh	communications.

XBee	radios	have	two	operational	modes:	Transparent,	also	known	as	the	AT
Modem	mode,	and	application	program	interface	(API).	The	default	mode	is
Transparent,	which	allows	an	XBee	user	to	quickly	and	automatically	set	up	a	peer-
to-peer	link	capable	of	handling	two-way	or	full-duplex	communications	using	a

9600	baud	rate.	The	Transparent	operational	mode	allows	either	XBee	S1	or	S2
radios	to	seamlessly	establish	a	serial	communications	link	without	any	user
configuration	effort.	On	the	other	hand,	using	the	API	mode	does	require	some	user
configuration	efforts.	Digi	provides	a	free	software	configuration	tool	named	X-CTU,
which	is	available	from	its	website	at	www.digi.com/support/productdetail?
pid=3524&type=utilities.	This	configuration	utility	is	freely	available	for	Windows,
Mac,	and	Linux	platforms.	The	following	configuration	discussion	will	be	based	on	a
sample	network	configuration,	as	shown	in	Figure	8-2.

FIGURE	8-2	Sample	network	diagram

This	network	configuration	is	called	a	star	topology	because	there	is	a	central
node	with	several	nodes	surrounding	it.	You	should	note	that	the	nodes	are	labeled
with	these	specific	ZigBee	functions:

•			Coordinator	node	This	is	the	master	or	overall	network	control	node.
There	is	only	one	coordinator	in	a	ZigBee	network.	It	can	transmit	and
receive	data	to/from	any	remote	XBee	node.
•			Router	node	This	node	type	acts	as	a	digital	data	repeater,	receiving	and
transmitting	data	between	the	coordinator	and	end	node	or	another	router.
•			End	node	This	node	is	the	Arduino	Uno’s	gateway	into	the	ZigBee
network.	Its	purpose	is	to	receive	data	designated	for	the	Uno’s	use	as	well
as	transmit	data	that	is	generated	by	the	Uno.

http://www.digi.com/support/productdetail?pid=3524&type=utilities

ZigBee	networks	will	normally	have	only	one	coordinator	node	and	two	or	more
end	nodes.	There	could	be	one	or	more	router	nodes	in	the	network	depending	on	the
physical	distances	between	the	coordinator	and	end	nodes.	Using	routers	is	also
dependent	upon	the	transmitter	power	for	the	XBee	nodes.	The	XBee	Pro	series	has	a
maximum	60mW	output,	which	is	30	times	greater	than	the	2mw	nodes	that	I	use	in
this	project.	The	more	powerful	nodes	will	mean	a	greater	transmitting	range	without
the	need	to	use	a	router	as	a	digital	repeater.

Every	node	in	an	XBee	network	must	be	associated	with	a	personal	area
network	(PAN),	which	is	a	common	identifier	shared	by	all	the	network	nodes.	The
default	PAN	ID	preprogrammed	into	all	the	factory	firmware	is	3332.	There	is	also	a
specific	node	ID	associated	with	each	node.	This	is	known	as	the	MY	address	and	is
a	four-digit	number	that	is	user	assigned.	The	PAN	ID	and	MY	address	are	both
programmed	into	a	node	using	the	X-CTU	utility.

There	is	another	important	device	that	is	required	before	any	XBee	modules	can
be	programmed.	This	device	is	an	adapter	board	that	has	an	onboard	USB	serial
interface,	which	allows	the	computer	running	X-CTU	to	connect	to	the	XBee
transceiver	module.	The	Sparkfun	Explorer	USB	module	is	the	one	I	would
recommend	and	is	shown	in	Figure	8-3.

FIGURE	8-3	Sparkfun	XBee	Explorer	USB	module

NOTE	It	is	possible	to	use	the	XBee	Shield	and	Uno	to	program	the	XBee	module	if
your	Uno	uses	a	socketed	microcontroller.	To	do	so,	you	must	remove	the
ATMega328P	microcontroller	from	its	socket	on	the	Uno	board.	You	must	also	ensure

that	the	XBee	jumpers	located	on	the	XBee	Shield	are	set	in	the	USB	position.	I
discussed	these	jumpers	in	the	previous	chapter.	However,	I	do	not	recommend	that
you	follow	this	procedure	as	it	is	easy	to	damage	the	controller	chip	because	it	takes
considerable	force	to	remove	the	28	DIP	chip	from	its	socket.	There	is	also	the
possibility	that	damage	will	occur	when	the	chip	is	reinserted.	Of	course,	doing	the
chip	removal	and	reinsertion	multiple	times	will	likely	result	in	a	problem.	I	have
presented	this	note	to	inform	you	that	there	is	an	alternative	to	purchasing	the
relatively	inexpensive	Explorer	USB	module.

You	will	also	need	to	download	and	install	the	appropriate	Virtual	Com	driver
from	www.ftdichip.com/Drivers/VCP.htm.	This	software	utility	creates	a	virtual
serial	port	that	works	with	the	FTDI	chip	onboard	the	XBee	Explorer	module.

You	are	ready	to	program	all	the	XBee	modules	once	you	have	acquired	the
XBee	adapter	and	downloaded	and	installed	both	the	X-CTU	utility	and	the	FTDI
driver	utility.	The	next	section	discusses	how	to	use	the	X-CTU	utility	to	program	the
XBee	modules	to	meet	the	network	configuration	requirements.	I	will	now	refer	you
back	to	Faludi’s	book	to	learn	how	to	actually	program	the	XBee	modules.

Finally,	there	is	an	analog	radio	frequency	(RF)	control	segment	shown	in	Figure	8-1,
which	allows	the	user	to	activate	lights	when	the	RF	key	fob	is	actuated	within	10	to	25
meters	of	the	controller	node.

Controller	Node
The	controller	node	is	composed	of	an	Uno	stacked	with	Ethernet	and	XBee	shields.

Figure	8-4	shows	this	stack	with	the	Uno	on	the	bottom,	the	Ethernet	Shield	in	the	middle,
and	the	XBee	Shield	on	top.

http://www.ftdichip.com/Drivers/VCP.htm

FIGURE	8-4	Controller	node

However,	there	is	a	serious	issue	that	requires	a	minor	modification	of	the	Ethernet
Shield	before	this	stack	can	be	successfully	interconnected.	The	XBee	Shield	is	designed
to	obtain	its	power	using	the	ICSP	socket.	This	six-pin	socket	can	easily	be	seen	at	the
bottom	of	Figure	8-5,	which	is	a	photograph	of	the	XBee	Shield’s	back.

FIGURE	8-5	XBee	socket

It	turns	out	that	the	Ethernet	Shield,	which	is	placed	in	the	middle	of	the	stack,	does
not	have	any	pins	in	place	to	extend	the	ICSP.	This	means	that	an	additional	set	of	pins

must	be	soldered	onto	the	Ethernet	Shield’s	ICSP	solder	points	such	that	the	XBee	Shield
can	be	powered.	I	used	three	sets	of	two	position	extension	pins,	one	of	which	is	shown	in
Figure	8-6.

FIGURE	8-6	ICSP	extension	pins

Note	that	the	short	end	of	the	extension	pins	must	be	trimmed	from	about	3
millimeters	to	about	1	millimeter	in	order	for	the	pins	to	fit	properly	in	the	final	stack.	I
also	show	an	unaltered	pin	set	in	the	figure	so	that	you	can	get	an	idea	of	the	proper	length
to	trim	the	pins.

I	found	out	that	the	easiest	and	most	effective	way	to	solder	the	pins	to	the	Ethernet
Shield	is	to	first	insert	them	into	the	XBee	Shield’s	ICSP	socket	and	then	mount	the	XBee
Shield	to	the	Ethernet	Shield.	You	then	can	use	a	very	fine	point	soldering	iron	to	solder
the	outermost	row	to	the	Ethernet	Shield’s	ICSP	solder	points.	I	next	carefully	removed
the	XBee	Shield	and	proceeded	to	solder	the	innermost	set	of	solder	points.	Figure	8-7	is	a
close-up	of	the	ICSP	extension	pins	after	they	all	have	been	attached.

FIGURE	8-7	Soldered	ICSP	extension	pins

After	soldering	these	pins,	you	are	all	set	to	finish	building	the	controller	node.

Ethernet	Shield
Figure	8-8	is	a	picture	of	the	top	of	the	newly	modified	Ethernet	Shield.	Notice	the

soldered	ICSP	extension	pins	at	the	left-hand	side	of	the	board.

FIGURE	8-8	Ethernet	Shield	board

You	probably	already	noticed	that	this	Ethernet	Shield	board	is	different	than	a
similar	board	I	used	in	earlier	chapters.	I	switched	the	boards	for	two	reasons.	First,	this
new	board	has	a	full	set	of	Arduino	shield	pin	sockets	and	extensions,	except	for	the	ICSP
pin	extensions.	Second,	the	new	board	has	provision	to	accept	a	micro	SD	memory	card,
which	is	used	to	hold	the	web	server	HTML	code.	This	new	Ethernet	Shield	is	simply
named	the	“Ethernet	Shield	with	Micro	SD	Slot	for	Arduino	Uno”	and	is	available	from	a
number	of	online	sources.	Just	be	forewarned	that	I	found	a	wide	disparity	in	prices	online

for	what	appears	to	be	the	same	board.	I	don’t	think	you	should	pay	more	than	$20USD
for	this	board.	You	will	need	the	micro	SD	card	slot	installed	in	order	to	complete	this
project.

Controller	Node	Case	and	Mounting	Arrangement
I	decided	to	use	a	very	nice	looking	case	to	enclose	the	controller	node	as	it	would	be

visible	in	the	home	and	you	would	not	want	a	visible	“rat’s	nest”	of	wires.	I	purchased	a
plastic	case,	part	number	905	from	Adafruit	Industries,	which	is	shown	in	Figure	8-9.

FIGURE	8-9	Controller	node	case

Its	overall	dimensions	are	125mm	×	175mm	×	75mm,	which	is	more	than	ample	to
contain	all	the	controller	node	components.	It	also	features	a	transparent,	screw-down	case
top	that	makes	it	more	resistant	to	inadvertent	liquid	spills,	a	feature	that	may	prove	handy,

especially	for	homes	with	small	children	present.

I	next	mounted	the	controller	stack	on	a	piece	of	clear	Lexan,	which	in	turn	is
mounted	in	the	case	by	four	3/8	×	20	flathead	Phillips	screws.	The	Lexan	sheets	and	the
mounting	hole	dimensions	are	shown	in	Figure	8-10.

FIGURE	8-10	Controller	node	mounting	arrangement

The	Uno	board	and	a	small,	solderless	breadboard	are	also	shown	in	the	figure.	The
breadboard	is	used	to	hold	and	wire	an	RF	receiver/decoder	that	I	discuss	in	the	next
section.	I	have	shown	the	Uno	board	to	help	illustrate	a	quirk	that	slightly	complicates
how	it	is	mounted	to	the	supporting	Lexan	board.	You	may	observe	that	the	lower,	right-
hand	mounting	hole	has	been	drilled	very	close	to	a	10-position	socket.	It	is	so	close	that	it
prevents	the	head	of	a	4-40	mounting	screw	from	sitting	flush	to	the	PCB	surface.	This
will	cause	the	screw	to	be	tilted	in	the	hole	and	generally	disturb	how	the	board	is
mounted	to	the	Lexan	sheet.	To	avoid	this	issue,	I	ground	down	the	head	of	a	4-40
machine	screw	using	a	Dremel	tool	to	provide	sufficient	clearance.	Figure	8-11	is	a	close-
up	image	of	this	modified	screw.	Simply	slide	the	modified	screw	in	place	and	you	will	be
all	set	for	a	quality	board	mount.

FIGURE	8-11	Modified	4-40	machine	screw

Figure	8-12	shows	the	interior	of	the	controller	node	with	all	the	components
mounted	and	wired.	The	external	power	supply,	Ethernet,	and	power	controller	cables	are
also	shown	in	the	figure.

FIGURE	8-12	Controller	node	interior

NOTE	I	found	it	convenient	to	place	the	Uno	board	on	the	Lexan	sheet	and	use	a	black,
fine	tip	Sharpie	marker	to	locate	the	board’s	mounting	holes	as	a	drill	guide.	This
technique	avoids	any	problems	with	transferring	measurements	to	the	Lexan	sheet	and
it	is	a	much	quicker	approach	to	mounting	the	board.

I	will	defer	discussing	the	program	that	runs	this	node	until	I	complete	my	coverage
of	the	remaining	system	components.

An	RF	transmitter	and	receiver	was	also	incorporated	into	the	design	to	provide	the
user,	who	is	approaching	the	home,	with	a	quick	and	easy	way	to	activate	any	desired
lighting.	This	activation	method	does	not	require	any	Internet	access,	but	any	lights	so
activated	by	the	RF	scheme	will	also	be	indicated	on	the	web	page.	The	RF	transmitter	is
in	the	form	of	a	four-channel	key	fob,	which	is	shown	in	Figure	8-13.

FIGURE	8-13	Four-channel	key	fob

The	channels	are	labeled	A	through	D	on	the	fob.	The	fob	RF	transmitter	operates
with	about	1mW	of	power	in	the	315MHz	ISM	band.	It	has	a	direct	line-of-sight	range	of
approximately	25	meters	and	about	10	to	15	meters	indoors	with	walls	and	other
obstructions.	The	key	fob	is	part	number	1095	and	maybe	purchased	from	Adafruit
Industries.

The	complementary	receiver	is	shown	in	Figure	8-14.

FIGURE	8-14	RF	four-channel	latching	receiver

The	receiver	may	be	purchased	from	Adafruit	Industries	as	part	number	1098.	The
receiver	board	uses	a	Princeton	Technology	Corp	decoder	chip,	model	number	PT2272,	to
decode	which	channel	has	been	received	from	the	key	fob.	The	chip	will	then	latch	the
corresponding	digital	channel	output.	Pressing	the	same	fob	channel	key	again	will
unlatch	the	receiver’s	digital	output,	which	is	exactly	the	functionality	needed	for	this
design.

I	used	only	three	of	the	four	channels	as	that	was	the	maximum	number	supported	by
the	available	Uno	digital	inputs.	However,	I	do	discuss	in	the	software	section	how	to	alter
the	number	of	digital	inputs	allocated	to	the	RF	system,	if	you	later	discover	that	you
really	need	the	additional	channel.

The	receiver	board	is	simply	plugged	into	the	small	breadboard	that	is	shown	in
Figures	8-9	and	8-10.	Figure	8-15	is	the	interconnection	schematic	for	the	receiver	and	the
Uno	board.

FIGURE	8-15	RF	receiver	and	Uno	interconnection	schematic

I	found	it	very	useful	to	use	jumper	wires	to	make	all	the	interconnections	between
the	breadboard	and	the	Uno	as	that	allowed	me	to	quickly	change	the	configuration	as	I
tested	the	system.	You	should	also	note	that	the	receiver	is	powered	from	the	Uno’s	5V
supply.	I	also	measured	the	receiver’s	digital	high-level	output	and	determined	it	to	be
3.84V,	which	is	perfectly	acceptable	for	the	Uno’s	digital	input	pins.

The	RF	transmitter	key	fob	and	receiver/decoder	board	do	not	require	any
programming	or	configuration	efforts.	They	simply	work	out-of-the-box.

XBee	Receiver	Node
The	XBee	receiver	node	is	a	remotely	located	module	that	communicates	with	the

controller	node	using	the	XBee	network	and	passes	commands	over	to	the	installed	Uno
board,	which	is	directly	interfaced	to	a	power	control	device	that	I	discuss	in	the	next
section.	The	complete	node,	consisting	of	an	Uno	board,	an	XBee	shield,	and	an	XBee	Pro
transceiver	is	shown	in	Figure	8-16.

FIGURE	8-16	Uno	XBee	receiver	node

It	is	identical	to	the	moisture	sensor	transmitter	node	that	I	discussed	in	the	previous
chapter.	However,	the	program	controlling	this	node	will	either	be	XBee_Receiver1	or
XBee_Receiver2	depending	upon	the	node.	The	receiver	programs	are	discussed	later	in
this	chapter.

I	also	used	a	smaller	plastic	case,	Adafruit	part	number	903,	to	enclose	the	XBee
receiver	node.	This	case	has	overall	dimensions	of	80mm	×	110mm	×	45mm	and	is	shown
in	Figure	8-17.

FIGURE	8-17	XBee	receiver	node	case

I	mounted	the	XBee	receiver	node	stacks	on	Lexan	sheets	just	as	I	did	for	the
controller	node.	However,	this	time	the	Lexan	sheets	are	attached	to	the	case	bottom	using
two	1/4-inch	thick	nylon	spacers	along	with	a	20mm	M4	machine	screw	and	a	3/4-inch
sheet	metal	screw,	all	of	which	you	can	see	in	Figure	8-18.

FIGURE	8-18	XBee	receiver	node	mounting	arrangement

I	didn’t	add	any	measurements	to	this	figure	as	I	would	recommend	that	you	make	a
paper	template	to	help	cut	and	fit	the	Lexan	sheet	to	the	case.	The	template	will	also	help
you	to	locate	the	four	Uno	mounting	holes	and	the	two	Lexan	case	mounting	holes.

Figure	8-19	shows	the	interior	of	one	of	the	XBee	receiver	nodes	with	all	the
components	mounted	inside	it.	I	will	discuss	the	programs	that	control	the	XBee	receiver
nodes	after	the	following	section.

FIGURE	8-19	XBee	receiver	node	interior

PowerSwitch	Tail	II
The	PowerSwitch	Tail	II	is	a	power	control	device	and	a	key	component	in	this	system

design.	Figure	8-20	shows	this	device.

FIGURE	8-20	PowerSwitch	Tail	II

It	is	essentially	a	power	cord	that	is	controlled	by	a	low-level	digital	signal	that	will

be	directly	connected	to	an	Uno’s	GPIO	pin.	The	PowerSwitch	Tail	II,	which	I	will	now
refer	to	as	the	PST2,	uses	an	optically	isolated	digital	input	to	control	a	power	relay
capable	of	handling	up	to	15A	at	120VAC.	The	optical	isolation	eliminates	any	safety
concerns	about	dealing	with	mains	type	power	with	the	Uno	board.	The	PST2	is	also
ruggedly	constructed	and	very	well	insulated,	making	it	extremely	safe	to	use	in	a	home
environment.	This	power	control	device	can	also	handle	loads	up	to	1.5kW,	which	is	well
beyond	anything	I	will	use	in	this	project.

The	PST2	schematic	is	shown	in	Figure	8-21,	which	helps	point	out	the	robust	and
safe	design	that	makes	up	the	PST2.

FIGURE	8-21	PST2	schematic

I	highly	recommend	that	you	purchase	the	appropriate	number	of	PST2s	to	control	all
the	power	loads	for	both	safety	and	convenience.	Building	your	own	power	controllers	is
really	not	a	good	idea.	The	PST2	has	already	passed	all	UL	and	other	safety	certifications
and	is	ready	to	use.

Figure	8-22	is	a	simple	schematic	showing	how	the	Uno	Xbee	receiver	node	connects
to	a	PST2.

FIGURE	8-22	Uno	XBee	receiver	node	to	PST2	schematic

Not	much	is	required	for	the	connection	other	than	a	pair	of	wires	carrying	the	GPIO
signal	and	ground.	I	selected	the	Uno’s	pin	D2	for	the	control	output.

CAUTION	Do	not	connect	the	PST2	ground	to	the	XBee	receiver	node	ground.	Simply	leave
it	unconnected.	It	is	neither	required	nor	needed	and	it	could	possibly	be	an	entry	point
for	mains	power	if	there	were	some	odd	and	strange	failure	on	the	PST2	load	side.

This	completes	the	hardware	portion	of	the	project.	It	is	now	time	to	discuss	the
software	that	brings	this	system	to	“life.”

System	Software
Three	programs	are	required	for	this	project.	Two	of	them	are	almost	identical	except

for	a	minor	configuration	difference.	The	first	I	will	discuss	is	the	main	one	that	is	stored
in	the	controller	node.

Controller	Node	Program
I	decided	to	use	an	existing	program	named	eth_websrv_SD_Ajax_in_out_r1	that

fortuitously	contained	all	the	desired	functionality	required	for	this	project	after	I	added
some	modifications.	It	was	originally	created	to	control	a	group	of	LEDs	via	a	web
interface,	but	it	really	makes	no	difference	if	the	program	sends	Uno	outputs	to
optoisolators	instead	of	LEDs.	I	didn’t	even	bother	to	change	the	web	page	descriptions
from	LEDs	to	lights	as	it	seemed	far	more	important	to	test	the	program’s	functionality.
This	program	also	uses	an	HTML	file	that	is	prestored	on	a	micro	SD	memory	card	that	is

part	of	the	Ethernet	Shield.	I	will	discuss	this	HTML	file	after	I	discuss	the	main	program.

I	know	this	is	a	long	code	listing,	but	much	of	it	is	involved	with	LED	states	and
status,	which	is	important	to	track	while	the	program	is	running.	There	is	also	a	section	of
code	dealing	with	real-time	reporting	of	analog	value	input	into	pins	A2	to	A6.	I	chose	to

leave	this	bit	of	code	in	place	as	it	didn’t	slow	the	program	and	I	have	included	some
project	enhancements	at	the	end	of	the	chapter	that	use	this	analog	value	reporting	feature.

You	will	need	to	perform	two	tasks	before	you	can	successfully	configure	the
controller	node:

1.	Load	this	program	into	the	controller	node’s	Uno	EEPROM	using	the
Arduino	IDE	as	you	have	done	in	past	projects.	Remember	to	change	the
jumpers	to	the	USB	position	on	the	XBee	Shield	in	order	to	program	the	Uno,	as
I	explained	in	the	previous	chapter.	Also,	restore	the	jumpers	to	the	XBee
position,	which	enables	the	XBee	communications	link	once	you	have
completed	the	initial	programming.
2.	Format	a	micro	SD	card	as	FAT16	(also	referred	to	as	simply	FAT).	Then
copy	the	index.htm	file	onto	this	SD	card	and	insert	it	into	the	holder	located	on
the	Ethernet	Shield.

You	should	be	ready	now	to	program	the	two	XBee	receiver	nodes.	The	program
stored	in	each	node	is	almost	identical	except	for	two	configuration	values	that	specify	if
the	node	should	respond	to	a	broadcast	message	from	the	controller	node.

XBee	Receiver	Node	1	Program
This	is	one	of	the	XBee	receiver	node	programs	and	is	aptly	named	Receiver_Test1.

It	is	a	much	shorter	code	listing	compared	to	the	controller	node	program	because	it
only	has	to	listen	for	either	a	1	or	2	being	sent	from	the	controller	node	and	then	either
turn	on	or	turn	off	pin	2,	which	is	the	one	connected	to	the	PST2.	Just	follow	Step	1	shown
previously	regarding	how	to	program	this	node.	I	would	also	put	a	piece	of	tape	on	the
case	with	the	marking	“LED	1,”	which	conforms	to	the	web	page	control	that	actuates	this
particular	node.	Clicking	the	web	page	control	labeled	LED	1	should	activate	this	node.

XBee	Receiver	Node	2	Program
The	other	receiver	node	program	is	named	Receiver_Test2	and	is	identical	to	the

preceding	code	except	that	the	values	used	are	3	and	4	instead	of	1	and	2.	I	suggest
identifying	this	node	with	a	piece	of	tape	as	“LED	2”	after	it	is	programmed.	Clicking	the
web	page	control	labeled	LED	2	should	activate	this	node.

This	last	step	completes	all	of	the	required	programming,	which	means	the
operational	test	is	next.

Operational	Test
I	used	three	table-top	lamps	to	conduct	this	operational	test.	Two	of	the	lamps	were

plugged	into	the	PST2s	that	were	connected	to	the	XBee	receiver	nodes.	The	third	lamp
was	connected	to	a	PST2	whose	control	leads	were	loose,	allowing	it	to	be	connected	to
any	one	of	the	available	controller	node	digital	inputs.

The	PST2s	must	be	plugged	in	in	order	for	their	control	circuits	to	be	come	active.
There	is	also	a	red	LED	located	next	to	the	PST2	terminals	that	will	light	up	when	a	high
level	is	applied	between	the	+	and	–	terminals.

Figure	8-23	shows	my	browser	window	after	I	logged	into	the	web	server	at	my
network’s	URL	of	192.168.1.130.	Yours	will	be	the	same	provided	you	entered	those
values	in	the	controller	node	program	code.

FIGURE	8-23	Browser	screenshot

The	test	sequence,	which	I	have	detailed	here,	is	fairly	easy	to	follow:

1.	Ensure	that	all	the	nodes	are	powered	on	and	all	XBee	jumpers	are	in	the
XBee	position.
2.	Plug	the	lamps	into	the	respective	powered	PST2s.
3.	The	RF	receiver	should	be	powered	on	and	its	channel	one,	two,	and	three
connected	to	the	controller	node’s	Uno	D2,	D3,	and	D5	inputs,	respectively.
4.	Connect	the	third	PST2’s	ground	lead	to	the	Uno	ground.	You	should	leave
the	ground	connected	throughout	the	remaining	steps.	Connect	the	loose	PST2
control	lead	to	the	D2	input.
5.	Select	the	LED1	checkbox.	The	lamp	connected	to	the	LED1	node	should
turn	on.
6.	Clear	the	LED1	checkbox,	and	the	lamp	should	go	off.
7.	Repeat	Steps	5	and	6	for	the	LED2	checkbox.
8.	Press	the	A	button	on	the	key	fob.	The	lamp	connected	to	the	third	PST2
should	light	up.
9.	Press	the	A	button	again	and	the	lamp	should	go	off.
10.	Shift	the	loose	PST2	control	lead	to	D3	and	repeat	Steps	8	and	9.
11.	Shift	the	loose	PST2	control	lead	to	D5	and	repeat	Steps	8	and	9.
12.	Shift	the	loose	PST2	control	lead	to	D8	and	click	the	web	page	button
named	LED3.	The	lamp	should	go	on	and	the	button	indication	change	from
OFF	to	ON.
13.	Press	the	LED3	web	page	button	again	and	the	lamp	should	go	off	and	the
indication	change	from	ON	to	OFF.
14.	Shift	the	loose	PST2	control	lead	to	D9	and	repeat	Steps	12	and	13.
15.	Shift	the	loose	PST2	control	lead	to	D3	and	repeat	Steps	8	and	9	using	the	B
key.
16.	Shift	the	loose	PST2	control	lead	to	D5	and	repeat	Steps	8	and	9	using	the	C
key.

After	completing	this	test	sequence,	it	should	be	readily	apparent	to	you	that	there	is
an	incredible	amount	of	flexibility	designed	into	this	lighting	control	system.	You	can	also
easily	change	the	web	page	control	labels	by	editing	the	index.htm	file	that	is	stored	in	the
micro	SD	card.	Just	change	the	LED	×	labels	to	whatever	label	suits	your	home
installation.	Always	ensure	you	make	a	backup	copy	of	the	original	index.htm	file,	just	in
case	you	mess	it	up	and	it	no	longer	functions	as	expected.

Enhancements
It	is	easy	to	add	additional	wireless	XBee	nodes	to	the	system.	Just	add	a	Serial.print(x)

statement	to	the	appropriate	LED	code	sequence,	where	×	refers	to	the	actuation	values,
which	are	always	1	higher	than	the	last	set	of	programmed	values—i.e.,	a	third	XBee
receiver	node	would	use	the	values	5	and	6,	where	5	turns	the	PST2	on	and	6	turns	it	off.

Attaching	a	light	intensity	sensor	to	the	A2	analog	input	could	also	enable	a	feature
by	which	a	user	can	assess	whether	or	not	to	turn	on	a	light.	The	program	could	also	be
altered	to	take	an	automatic	action	based	upon	the	sensor	value	exceeding	a	preset
threshold	level.

Summary
This	chapter’s	project	showed	you	how	to	build	an	Arduino-controlled	home	lighting

system.	Portions	of	this	system	used	the	digital,	wireless	Xbee	technology,	while	other
portions	were	wired	or	used	an	analog	RF	technology.	I	also	introduced	a	new	Ethernet
Shield	that	incorporates	a	micro	SD	card,	which	holds	the	web	server	program	code.

I	reused	the	XBee	point-to-point	network	concept	that	I	discussed	in	the	last	chapter
even	though	I	used	three	XBee	nodes	in	this	project.	I	explained	how	this	was	possible
although	it	somewhat	degraded	the	system	reliability.	An	extensive	aside	discussing	the
XBee	mesh	network	technology	was	included	for	interested	readers	who	might	want	to
attempt	to	build	a	more	complex	and	robust	XBee	network.

Next,	I	showed	you	how	to	carefully	modify	the	Ethernet	Shield	such	that	it	could	be
stacked	to	create	the	central	controller	node.

I	discussed	the	remote	XBee	receiver	nodes	next	along	with	the	PowerSwitch	Tail	II,
which	is	the	device	that	actually	controls	the	home	lamps.

I	also	discussed	a	short-range,	four	channel,	analog	RF	system,	which	allows	the	user
to	remotely	operate	selected	lamps	using	a	handy	key	fob	when	approaching	the	home.
This	feature	just	adds	more	flexibility	regarding	how	the	system	can	be	configured	to	meet
many	different	home	layouts.

The	last	part	of	the	chapter	concerned	the	software	and	showed	you	how	to	conduct	a
comprehensive	operational	test.	I	showed	you	a	screenshot	of	the	control	web	page	and
made	some	suggestions	about	how	it	might	be	altered	to	suit	your	personal	preferences.	I
also	included	some	suggestions	regarding	system	enhancements	and	feature	changes.

9
CHAPTER

BeagleBone	Black	Message	Controller
This	chapter’s	project	will	use	the	BeagleBone	Black	(BBB),	which	is	a	single	board

computer	that	implements	a	simple	text	display	system.	The	text	will	originate	from	a
remote	web	browser	wherein	a	user	can	enter	a	message	and	have	it	appear	on	a	16	×	2
LCD	display.	I	recognize	that	the	system	cannot	and	will	not	replace	any	cell	phone	text
capability,	but	that	is	not	my	intent	in	presenting	this	project.	I	want	to	introduce	you	to
another	highly	useful	microcontroller	board,	which	can	readily	be	used	for	IoT	projects	as
well	as	many	other	applications.	The	next	section	provides	an	in-depth	discussion	of	the
BBB.	I	will	focus	on	some	unique	capabilities	not	supported	by	either	the	Raspberry	Pi	or
the	Arduino	Uno	boards,	which	have	been	used	in	the	previous	chapter	projects.

Beagle	Boards
The	BBB	is	the	latest	in	a	series	of	single	board	computers	that	where	designed	to	host	a

Linux	operating	system	as	well	as	provide	all	the	usual	features	expected	in	a
microcontroller,	suitable	for	both	home	and	industrial	automation	projects.	Figure	9-1
shows	a	BBB	top	view.

FIGURE	9-1	BBB	top	view

The	first	board	in	the	series	leading	up	to	the	BBB	was	known	simply	as	the

BeagleBoard.	It	was	a	design	project	that	was	begun	in	2007	by	the	non-profit
BeagleBoard.org	whose	intent	was	to	make	available	a	relatively	low-cost	learning
platform	that	could	easily	be	used	by	beginners	to	learn	and	experiment	with	computer
science	technology.	This	approach	was	exactly	the	same	as	the	Raspberry	Pi	Foundation
goals,	except	that	it	started	several	years	before	the	Raspberry	Pi	came	into	being.
BeagleBoard.org	worked	with	Texas	Instruments	(TI)	to	make	the	early	BeagleBoard
development	kits	available	to	anyone	with	a	desire	to	learn	about	how	a	single	board
computer	could	run	a	full-blown	Linux	OS	and	also	be	used	for	any	one	of	a	myriad	of
automation	projects	that	extended	well	beyond	blinking	an	LED.	The	original
BeagleBoard	was	released	as	open	source	using	the	Creative	Commons	share-alike	license
scheme.	This	meant	that	all	the	design	documentation	was	made	freely	available,
including	the	Cadence	OrCAD	schematics	and	the	Cadence	Allegro	PCB	design	files.	Any
manufacturer	was	thus	free	to	start	making	the	BeagleBoards	under	this	arrangement.	I
believe	there	are	currently	several	offshore	manufacturers	that	have	made	and	are
distributing	early	BeagleBoard	models.	I	am	not	aware	of	any	manufacturer	other	than	TI
that	is	currently	making	the	BBB.

Table	9-1	lists	the	lineage	of	BeagleBoards	that	have	been	released	and	are	still
manufactured	at	the	time	of	this	writing.

TABLE	9-1	Beagle	Boards

After	reviewing	Table	9-1,	you	should	recognize	that	the	latest	BeagleBones	operate

at	very	fast	1	GHz	clock	speed	and	have	4GB	of	onboard	flash	memory	in	which	the
Linux	OS	is	stored.	In	addition,	both	the	BeagleBone	(BB)	and	the	BBB	have	two	32-bit
PRUs	(programmable	real-time	units).	The	PRUs	are	200	MHz	coprocessors	that	can
handle	intensive	computing	chores	such	as	pulse	width	modulation	(PWM),	thus	allowing
the	main	processor	to	handle	all	the	other	computing	requirements	in	an	efficient	manner.
This	project	has	no	need	for	the	PRUs	and	they	will	not	be	discussed.	There	is	a	lot	of
information	regarding	the	PRUs	and	other	BBB	areas	at	eLinux.org

You	should	also	note	that	the	cost	of	the	newest	Beagle	Boards	is	much	lower	than
the	original	boards.	The	BBB	is	about	one-third	the	cost	of	the	BeagleBoard-xM	and	it	has
more	functions.

You	should	also	note	that	some	community	members	refer	to	the	BB	as	the
BeagleBone	White	because	it	has	a	white	PCB	with	black	silkscreen	letters	as	compared
to	the	BBB,	which	has	a	black	PCB	with	white	silkscreen	lettering.

BeagleBone	Black
The	BBB	is	an	excellent	development	platform	because	it	is	fast,	has	a	lot	of	memory,

and	runs	various	Linux	distributions	that	have	been	customized	for	the	board.	Until	very
recently,	the	BBB	came	with	the	Angstrom	Linux	distribution	stored	in	its	4GB	onboard
flash	memory.	More	recent	boards	are	being	delivered	with	the	Wheezy,	Debian	Linux
distribution,	which	is	a	fortuitous	situation	as	that	is	the	one	I	needed	to	use	to	implement
the	web	server	software.	This	Wheezy	distribution	is	also	the	same	one	that	I	used	in	the
Raspberry	Pi	projects	discussed	in	the	early	chapters	of	this	book.	I	believe	the	entire
configuration	discussions,	which	I	presented	earlier,	will	also	be	applicable	for	the	BBB
running	the	Wheezy	distribution.

The	BBB	has	a	micro	SD	memory	cardholder	installed,	which	can	be	seen	in	Figure
9-2.

FIGURE	9-2	Micro	SD	memory	cardholder

A	4GB,	FAT-formatted,	micro	SD	card	may	be	inserted	into	the	holder.	A	new	Linux
distribution	can	then	be	stored	on	the	card	and	the	BBB	can	then	be	forced	to	boot	from	it.
This	feature	makes	it	easy	to	try	out	new	Linux	operating	systems	without	disturbing	the
OS	stored	in	the	flash	memory.	I	discuss	how	to	create	a	bootable	SD	card	later	in	the
chapter	for	those	readers	wishing	to	experiment	with	a	different	Linux	OS.	It	is	also

possible	to	overwrite	the	OS	stored	in	the	flash	memory	with	a	new	or	different	version	if
that	is	your	preference.	I	just	find	that	the	SD	card	option	is	much	more	convenient	and
allows	me	to	experiment	quite	well	without	the	possibility	of	bricking	the	board	by	an
improper	flash	memory	overwrite.	You	can	unbrick	the	board,	but	it	is	a	bit	tedious.	Why
even	get	yourself	into	that	situation	when	you	can	just	as	easily	use	an	SD	card	and
accomplish	the	same	function?

I	would	also	like	to	point	out	the	micro	HDMI	connector,	which	is	located	to	the
immediate	right	of	the	micro	SD	cardholder,	as	shown	in	the	figure.	The	BBB	outputs	full
1080p,	high-definition	video	through	this	connector.	I	use	a	micro-HDMI-to-HDMI	cable
to	connect	the	BBB	to	an	HDMI	capable	monitor.

You	can	also	see	a	single	USB	port	in	Figure	9-2.	I	used	a	Pluggable,	seven-port,
self-powered	USB	hub,	which	is	shown	in	Figure	9-3.

FIGURE	9-3	Pluggable	USB	2.0	7-port	hub

I	have	found	that	this	particular	hub	model	provides	sufficient	current	to	power	any
USB	device	plugged	into	it	and	have	it	reliably	function	without	any	issues.	Highly
recommended.	Just	remember	to	plug	the	mini	USB	connector	into	the	hub	and	the
normal-sized	USB	connector	into	the	BBB.

Connect	to	and	Operate	the	BBB
The	BBB	can	be	operated	in	several	ways.	These	are	listed	here	in	the	order	I	will

discuss	them:

•			Standalone
•			USB	tether
•			SSH	over	USB
•			SSH	over	Ethernet

The	standalone	mode	is	the	simplest,	but	it	does	require	the	most	peripherals	of	all	of
the	listed	approaches.	You	will	need	a	powered	USB	hub,	an	HDMI	compatible	monitor,	a
USB	keyboard,	and	a	USB	mouse.	An	Ethernet	cable	plugged	into	a	wired	network	port	is
also	strongly	recommended	to	enable	you	to	download	any	needed	software.

You	should	first	connect	the	USB	hub	to	the	BBB	and	then	plug	the	mouse	and
keyboard	into	the	hub.	Ensure	the	monitor	and	hub	are	both	powered	on.	Finally,	connect
the	5V	power	to	the	BBB.	You	should	next	see	a	lot	of	text	quickly	scroll	by	as	the	Linux
OS	boots,	and	then	after	10	to	15	seconds	be	greeted	with	the	Debian	Desktop	screen,	as
shown	in	Figure	9-4.

FIGURE	9-4	Initial	Debian	Desktop	screen

NOTE	You	should	not	have	the	Run	dialog	box	appear.	I	just	needed	that	to	take	a	screen
capture.	There	also	should	be	an	automatic	login	as	no	password	is	required.

The	USB	tether	approach	requires	a	mini-USB-to-USB	A	cable,	which	is	the	same
type	that	was	used	to	connect	the	BBB	with	the	powered	USB	hub	in	the	first	approach.
You	will	not	need	an	external	5V	power	supply	as	the	BBB	will	be	powered	through	the
USB	cable	once	it	is	plugged	into	the	laptop.	I	used	a	15-inch	MacBook	Pro	for	this
connection	and	for	all	of	the	following	connections.	First	plug	the	cable	into	the	BBB’s

mini	USB	connector	and	then	into	the	laptop.	A	new	disk	icon	should	appear	on	the
laptop’s	Desktop	screen	after	a	few	seconds	have	elapsed.	In	my	case,	the	icon	was	labeled
“boot.”	Double-click	on	the	boot	icon	and	you	should	see	a	file	listing	that	includes	the
entry	START.htm.	Double-click	on	the	START.htm	file	and	an	interactive	web	page	will
be	displayed.	You	will	now	have	to	install	the	appropriate	FDTI	drivers	for	your	OS.	Just
double-click	on	the	listed	drivers	corresponding	to	your	laptop’s	OS.	In	my	case,	a	.dmg
file	was	downloaded,	which	I	needed	to	install	by	doubling-clicking	on	the	dmg	package
icon.	I	am	sure	that	the	Windows	installation	will	proceed	in	a	similar	fashion.	Now,	open
a	browser	and	enter	the	URL	http://192.168.7.2.	You	do	not	need	to	connect	the	BBB	to
your	network	in	order	for	this	to	work.	An	interactive	web	page	entitled	BeagleBone	101
will	be	displayed	(see	Figure	9-5).

http://192.168.7.2

FIGURE	9-5	BeagleBone	101

You	should	explore	this	web	page	to	learn	about	the	BBB	and	how	to	program	it.
Also,	notice	the	shaded	block	near	the	top	of	the	page,	which	shows	the	URL	and	serial
number	of	the	connected	BBB.

The	next	connection	approach	requires	the	BBB	to	be	connected	in	exactly	the	same
way	as	the	previous	approach,	using	only	a	mini-USB-to-USB	A	cable.	However,	this	time
I	will	be	using	an	SSH	utility	to	establish	the	connection.	I	will	not	review	what	SSH	is	as
there	is	plenty	of	information	readily	available	explaining	this	network	utility.	I	need	to
open	a	Terminal	window	because	I	am	using	a	MacBook.	So	I	enter	the	following	at	the
command	line	prompt:

ssh	root@192.168.7.2

That’s	all	you	need	to	do	and	you	should	see	the	result,	as	shown	in	Figure	9-6.

FIGURE	9-6	SSH	over	USB	connection

The	prompt	shows	that	you	connect	as	the	root	user,	which	means	you	now	have	total
control	of	the	BBB	OS.

Windows	users	need	to	download	and	install	the	PuTTY	executable,	which	supports
SSH	connections	in	the	Windows	OS.	All	that’s	needed	in	this	case	is	to	enter	192.168.7.2
as	the	host	address	and	ensure	SSH	is	selected	as	the	connection	type.	Type	in	root	when
prompted	for	a	user	name.	Simply	press	ENTER	when	asked	for	the	password.	You	should
see	exactly	the	same	prompt	as	shown	in	Figure	9-6	when	connected.

The	last	approach	I	will	show	is	how	to	connect	using	SSH	but	using	your	network	in
lieu	of	a	USB	cable.	You	will	need	to	separately	power	the	BBB	using	a	5V	supply	and
also	connect	the	BBB	to	the	LAN	using	an	Ethernet	cable.	Next,	open	an	SSH	session	and
enter	the	following:

ssh	root@beaglebone.local

Figure	9-7	shows	the	result	after	the	connection	is	made.

FIGURE	9-7	SSH	over	Ethernet	connection

Windows	users	should	use	the	PuTTY	application	and	enter	beaglebone.local	for	the
host	name,	and	then	click	the	Connect	button.	Next	enter	root	and	press	the	ENTER	key	for
the	user	name	and	password.

NOTE	There	is	an	additional	approach	to	establishing	a	BBB	connection,	which	uses	a
special	serial	connector	that	attaches	to	a	six-pin	header	labeled	J1	on	the	BBB	and
has	a	USB	A	connector	on	the	other	end	that	plugs	into	the	laptop.	I	will	not	cover	this
approach	as	it	would	only	be	needed	if	all	the	other	methods	I	previously	described	fail
for	some	reason.	For	more	information	on	other	approaches,	see	the	excellent
discussion	in	Matt	Richardson’s	book	Getting	Started	with	Beaglebone:	Linux-Powered
Electronic	Projects	with	Python	and	Javascript.

Downloading,	Installing,	and	Booting	a	New	Linux	Distribution
In	this	section,	I	take	you	through	the	steps	to	download	a	new	Linux	distribution	and

install	it	onto	a	micro	SD	memory	card.	I	then	show	you	how	to	boot	the	BBB	from	the
SD	card.

The	source	for	BBB-compatible	Linux	distributions	is	http://beagleboard.org/latest-
images/.	The	latest	Debian	and	Angstrom	distribution	images	in	a	zipped	format	are
normally	available	for	download.	Each	distribution	has	two	versions,	one	suitable	for	an
SD	card	installation	and	the	other	designed	to	be	loaded	into	the	BBB	eMMC	flash
memory.	You	should	select	the	SD	card	format	version	as	that	is	what	the	next	procedure
will	use.

The	next	step	is	to	extract	or	unzip	the	downloaded	image	such	that	it	can	be	stored
into	a	micro	SD	card.	You	should	use	whatever	favorite	extraction	program	you	have
installed.	Many	people	use	WinZip,	while	others	use	7-Zip.	Either	one	will	work	just	fine.

Once	the	image	is	extracted	or,	more	precisely,	expanded	to	its	original	size,	it	needs
to	be	loaded	onto	the	micro	SD	memory	card.	I	have	used	the	Win32DiskImager
application	to	do	this	step	many	times	without	a	problem.	There	are	other	programs
available	that	function	in	a	similar	fashion.	Again,	it’s	your	choice.	What	you	cannot	do	is
to	copy	the	image	onto	the	card;	it	will	not	work	and	the	BBB	will	not	boot	from	the	card.
Once	the	card	is	prepared,	simply	plug	it	into	the	unpowered	BBB	micro	SD	cardholder.

The	next	step	is	very	important!	Press	and	hold	the	S2	button	and	then	plug	in	the	5V
power	to	the	BBB.	Release	the	button,	and	you	should	see	the	blue	LED	activity	lights
start	blinking.	Failure	to	follow	this	step	will	cause	the	BBB	to	boot	from	its	flash	memory
and	not	from	the	SD	card.	No	harm	will	be	caused,	but	it	is	not	the	outcome	you	desired.

NOTE	The	S2	button	is	located	on	the	board	directly	opposite	the	micro	SD	cardholder.	It
is	the	only	push	button	located	in	the	upper-right	corner,	as	shown	in	Figure	9-1.

The	boot	process	that	follows	is	identical	to	the	normal	boot	process	that	happens
when	the	BBB	is	booted	from	the	flash	memory.

GPIO	Pins
In	this	section,	I	discuss	some	of	the	general	purpose	input	output	(GPIO)	that	are

available	to	be	used	by	BBB	project	builders.	The	BBB	top,	as	shown	in	Figure	9-1,	has

http://beagleboard.org/latest-images/

two	46-pin	sockets	aligned	at	the	top	and	bottom	edges.	The	pins	are	in	groups	of	two	with
pin	numbers	1,	2	at	the	left	and	pins	45,	46	at	the	right.	There	is	some	very	tiny	silk	screen
numbers	near	the	socket	ends	that	show	these	numbers	for	your	reference.	Socket	P8	is	at
the	top	edge	while	socket	P9	is	at	the	bottom	edge.	I	will	be	using	only	a	dozen	of	the	P9
pins	for	this	project,	which	is	why	I	will	focus	on	that	socket.	Figure	9-8	shows	all	the
GPIO	pins	on	both	P8	and	P9.

FIGURE	9-8	P8	and	P9	pin	headers

As	you	can	readily	see,	a	significant	number	of	GPIO	pins	are	available	for	use.
There	are	66	GPIO	pins	on	the	headers,	which	is	a	far	greater	number	as	compared	to	what
is	available	on	either	the	Raspberry	Pi	or	the	Arduino	Uno.	You	should	be	aware	that	not
every	GPIO	pin	is	available	as	many	pins	are	already	preassigned	to	functions,	including
HDMI	video	output.	You	should	also	know	that	the	Linux	3.8	kernel	that	runs	on	the	BBB
has	eight	different	modes	that	are	configured	by	a	software	abstraction	known	as	a	Device
Tree	Overlay.	I	will	not	go	into	the	Device	Tree	Overlay	as	it	is	somewhat	complex	and
really	not	needed	for	this	project.	If	you’re	interested	in	learning	more	about	the	Device
Tree	Overlay,	visit	Derek	Molloy’s	excellent	blog	at	derekmolloy.ie	where	he	has	several
videos	that	thoroughly	explain	the	Device	Tree	Overlay	and	how	to	program	with	it	using
the	C++	language.	You	should	understand	that	mode	7	is	the	GPIO	mode	that	provides
access	to	the	GPIO	pins.	This	is	shown	in	Figure	9-9,	which	is	the	P9	header	table
excerpted	from	the	BBB	Technical	Reference	Manual	(TRM).

FIGURE	9-9	TRM	P9	header	table

I	have	also	used	a	Python	library	that	preconfigures	the	GPIO	pins	so	that	they	can	be
easily	used	as	inputs	or	outputs	without	your	having	to	worry	about	how	to	set	up	a	Device
Tree	Overlay	configuration.

Setting	Up	the	LCD	Display

I	used	a	generic	16	×	2	LCD	display	wired	to	the	BBB	to	show	a	brief	text	message
received	from	a	remote	browser.	The	LCD	display	can	readily	be	changed	to	a	16	×	4	or
even	larger	display	if	additional	text	display	capability	is	required.	Figure	9-10	shows	the
16	×	2	LCD	display,	which	I	used	for	this	project.

FIGURE	9-10	Generic	16	×	2	LCD	display

I	purchased	this	display	from	Adafruit	Industries	as	part	number	399.	It	came	with
two	rows	of	expansion	pins,	which	permitted	me	to	physically	configure	the	display,	as	I
needed	to	use	it	with	a	solderless	breadboard.	I	soldered	18	pins	to	the	top	row	of	holes	as
you	can	see	in	the	figure,	which	allowed	me	to	easily	connect	jumper	wires	between	the
display	and	the	BBB.

The	LCD	uses	the	Hitachi	command	set	designed	to	function	with	the	Hitachi
HD44780	controller	chip.	This	is	the	reason	why	I	earlier	referred	to	the	display	as	a
generic	type	as	it	complies	with	HD44780	command	instructions	but	is	likely	not
manufactured	by	Hitachi.

The	interconnection	schematic	is	shown	in	Figure	9-11.	You	should	note	that	all
connections	were	made	to	the	P9	socket.

FIGURE	9-11	LCD	to	BBB	interconnection	schematic

The	next	step	is	to	load	some	test	software	once	all	the	jumpers	are	connected.

LCD	Operational	Test
Some	of	the	test	software	and	procedures	used	in	this	section	came	from	Ben	Hammel’s

and	Erik	McKee’s	January	12,	2014	blog	article	“Writing	to	an	LCD	screen	with	the
Beaglebone,”	which	is	available	at	TheBrokendesk.com	website.

The	following	steps	will	test	the	LCD	for	proper	operation	with	the	BBB:

1.	Apply	power	to	the	BBB	and	connect	to	it	using	any	of	the	methods
previously	described.	Ensure	that	the	BBB	is	connected	to	your	LAN	as	it	will
need	to	connect	to	the	Internet	in	order	to	download	one	file.	I	used	an	Ethernet
SSH	connection	to	conduct	this	test.
2.	Change	into	the	project	directory	if	you	already	have	created	one	or	simply
use	the	home	directory.
3.	Enter	the	following	command,	which	will	download	a	required	file	named
lcd.py:	sudo	wget	http://thebrokendesk.s3-us-west-
1.amazonaws.com/documents/lcd.py

4.	Start	the	nano	editor	with	the	following	command:
sudo	nano	testLCD.py

5.	Enter	the	following	code	listing:

6.	Save	the	nano	file	buffer	(CTRL-O)	and	exit	(CTRL-X).
7.	Enter	the	command:

sudo	python	testLCD.py.

The	LCD	should	now	display	what	is	visible	in	Figure	9-12.

http://www.TheBrokendesk.com

FIGURE	9-12	Test	result

Please	recheck	your	jumper	wire	interconnections	if	you	do	not	see	the	expected
display.	Also	check	the	10K	ohm	potentiometer	setting	to	ensure	the	contrast	is	properly
adjusted	to	display	the	LCD	characters.	I	too	have	inadvertently	turned	the	potentiometer
such	that	the	characters	were	not	visible.

This	test	completes	all	the	preparatory	tasks	required	before	tackling	the	web	server
software	in	the	next	section.

Message	Controller	Software
The	web	server	portion	for	this	project	is	based	on	Flask,	which	I	briefly	introduced	and

discussed	in	Chapter	2.	I	chose	to	use	Flask	because	this	particular	application	does	not
require	all	the	inherent	capabilities	and	services	that	are	found	in	the	comprehensive
Apache	web	server	package.	In	addition,	Flask	development	is	quite	easy,	once	you
become	accustomed	to	its	layout	and	how	it	incorporates	HTML,	scripts,	and	templates.	I
will	also	try	to	be	as	clear	as	possible	regarding	how	to	set	up	the	Flask	environment	so
that	you	can	avoid	any	potential	problems.

Download	and	Install	the	Flask	Package
For	your	convenience	I	will	repeat	my	Chapter	2	instructions	regarding	how	to	set	up

Flask.	Flask	is	available	using	the	pip	package	manager.	It	is	another	package	manager
similar	to	apt	that	I	have	used	up	to	this	point	in	the	book.	pip	functions	with	the	Python
Package	Index	(PyPI)	repository	where	the	Flask	package	is	stored	and	available	for
download.	Of	course,	you	must	download	pip	first	into	the	Pi,	which	is	oddly	enough	done
using	the	apt	tool	with	the	following	command:

sudo	apt-get	install	python-pip

After	pip	is	installed,	you	can	use	it	to	install	Flask	with	all	its	dependencies.	Enter
this	at	the	command	line:

sudo	pip	install	flask

Flask	should	be	all	set	up	after	completing	these	steps.

Main	Application
You	will	need	to	create	a	project	directory	structure	in	which	all	the	required	files	will

be	located.	I	decided	to	create	a	subdirectory	named	Sites	in	the	Debian	directory,	which
itself	is	located	in	the	home	directory.	In	the	Sites	directory,	I	can	create	a	specific
directory	dedicated	to	the	project,	which	in	this	case	is	named	webLCD.	Finally,	Flask
requires	a	templates	subdirectory	where	it	can	automatically	locate	any	HTML	type	file	it
needs.	This	directory	structure	is	graphically	shown	in	Figure	9-13	to	help	clarify	how	it	is
set	up.

FIGURE	9-13	Directory	structure

The	primary	or	main	application	is	based	upon	the	Python	testLCD.py	code	that	I
discussed	previously.	Essentially,	all	I	needed	from	that	code	was	the	LCD	object	that	I
referred	to	as	“screen”	in	the	code	listing.	You	should	also	note	that	the	two	files	named
lcd.py	and	lcd.pyc	are	also	required	to	be	in	the	webLCD	directory.	These	two	files	are
located	in	the	same	directory	as	the	testLCD.py	program.	Simply	copy	them	into	the
webLCD	directory.

The	following	is	the	complete	code	listing	for	the	webLCD.py	program.	As	always,	it
is	available	from	the	book’s	companion	website.

Much	of	the	code	is	concerned	with	interfacing	with	the	HTML	code	that	creates	the
web	page	where	the	user	can	enter	the	text	message	to	be	displayed.	Only	one	program
line,	screen.printLine(lcdText,	1),	actually	causes	the	text	to	be	displayed	on	the
LCD.

The	program	line	app.run(‘0.0.0.0’)	causes	the	Flask	web	server	to	listen	to	all
open	ports	on	the	LAN	for	any	HTTP	request	coming	from	a	web	client.	You	should	be
able	to	run	this	application	from	any	computer,	tablet,	or	smartphone	that	can	connect	to
your	network.

HTML	Code
Two	HTML	files	are	required	for	this	application,	index.html	and	base.html.	The

index.html	file	is	implemented	as	a	Jinja2	template.	Jinja2	is	a	Python	templating
language.	While	it	is	not	critical	that	you	understand	Jinja2	for	this	project,	much
reference	information	is	available	on	the	Web	regarding	Jinja2	for	those	readers	interested
in	further	pursuing	this	topic.	The	following	is	the	index.html	code	listing:

The	index.html	code	is	dependent	on	additional	code	that	is	contained	in	the
base.html	file.	Readers	who	are	somewhat	familiar	with	object-orientation	will	recognize
this	dependency	from	the	first	statement	in	the	index.html	code:	{%	extends	“base.html”
%}.

The	base.html	code	listing	is	shown	here:

This	file	is	created	with	the	Jinja2	script;	it	also	contains	references	to	JQuery	Mobile
libraries.	The	JQuery	scripts	will	style	the	HTTP	responses,	which	accommodate	mobile
devices	and	are	demonstrated	in	the	following	section.

Test	Results
The	first	test	demonstration	is	a	result	of	using	a	web	browser	on	my	MacBook	Pro	and

going	to	the	BeagleBone’s	local	address,	which	on	my	LAN	was	192.168.1.25:5000.

NOTE	Flask	uses	port	5000	as	the	default	for	the	web	server.	This	is	fine	and	should	cause
no	problems.	In	fact,	it	alleviates	the	tedious	task	of	freeing	port	80,	which	the
BeagleBone	Black	101	website	has	already	claimed	in	the	default	configuration.

Figure	9-14	shows	the	browser	screen	after	I	had	entered	a	short	message.

FIGURE	9-14	Laptop	browser	screen

Note	that	the	message	that	was	sent	is	also	shown	at	the	bottom	of	the	screen.	Figure
9-15	shows	the	LCD	display	after	the	message	was	sent.

FIGURE	9-15	LCD	display	for	message	sent	from	laptop

You	can	see	clearly	that	some	of	the	trailing	characters	are	not	displayed	because	of
the	16-character	limit	on	each	LCD	line.	I	didn’t	really	consider	this	to	be	much	of	a
limitation	as	this	project	is	really	more	for	a	proof	of	performance	than	a	finished	project.	I
suggest	adding	additional	code	to	the	main	application,	webLCD.py,	to	accommodate	any
overflow	characters	so	that	they	can	appear	on	the	second	line.	Another	approach	might	be
to	put	the	whole	received	message	into	a	buffer	String	and	then	parse	the	String	such	that
the	first	16	characters	are	displayed	on	the	first	line	and	the	next	16	characters	are

displayed	on	the	second	line.	Obviously,	any	characters	beyond	32	cannot	be	displayed
with	a	16	×	2	LCD	unit.	You	would	need	a	16	×	4	or	even	a	20	×	4	LCD	to	handle	larger
messages.	Incidentally,	the	web	server	software	will	handle	large	messages	and	does	not
need	to	be	modified.	Any	needed	modifications	would	be	limited	to	the	BBB	and	LCD
interface	software.	I	am	sure	there	are	plenty	of	web	references	available	to	help	with
these	modifications.

The	next	demonstration	involved	connecting	to	the	BBB	using	an	Android
smartphone.	Figure	9-16	is	a	screen	capture	from	my	smartphone	showing	the	screen	after
I	sent	a	text	to	the	BBB.

FIGURE	9-16	Android	smartphone	browser	screen

This	time	I	intentionally	kept	the	message	very	short	in	order	to	display	all	the	text	on
the	LCD,	which	is	shown	in	Figure	9-17.

FIGURE	9-17	LCD	display	for	message	sent	from	smartphone

The	last	demonstration	involved	sending	a	message	from	an	iPad	connected	to	the
LAN.	Figure	9-18	shows	the	screen	capture	after	I	sent	a	short	message	to	the	BBB.

FIGURE	9-18	iPad	browser	screenshot

The	short	message,	received	and	displayed	by	the	BBB,	is	shown	in	Figure	9-19.

FIGURE	9-19	LCD	display	for	message	sent	from	an	iPad

This	last	demonstration	concludes	the	BBB	message	controller	project.

Summary
I	began	the	chapter	with	an	introduction	to	the	BeagleBone	Black	(BBB),	the	latest	in	a

line	of	single	board	computers	that	can	host	the	Linux	OS.	I	described	the	essential	BBB
features	and	also	discussed	four	ways	to	connect	to	and	operate	the	BBB.

I	next	described	how	to	load	a	new	Linux	distribution	into	a	micro	SD	memory	card
and	then	described	the	procedure	for	how	to	boot	the	BBB	from	the	card.

Next	came	a	discussion	of	the	GPIO	pins,	which	is	how	the	LCD	display	interfaces	to

the	BBB.	I	demonstrated	a	simple	Python	script	to	test	the	BBB	to	LCD	display	interface
to	show	that	it	functioned	as	expected.

I	next	showed	you	how	to	load	Flask,	a	“lightweight”	web	server	application.	Flask
provides	the	framework	to	process	messages	received	from	remote	browsers,	which	can
then	be	shown	on	the	local	LCD	display.

The	chapter	concluded	with	a	series	of	demonstrations	showing	messages	being	sent
to	the	BBB	from	a	laptop,	smartphone,	and	a	tablet.	All	of	these	devices	were	wirelessly
connected	to	the	LAN	to	which	the	BBB	was	also	connected.

10
CHAPTER

BeagleBone	Black	with	Cloud	Service
This	chapter’s	project	will	demonstrate	how	to	connect	a	BeagleBone	Black	(BBB)

running	the	Angstrom	Linux	distribution	to	an	online	web	service.	The	BBB	will	also
have	temperature	sensors	interfaced	to	it.	The	BBB	will	run	a	program	that	takes
measurements	and	subsequently	sends	them	to	the	Xively	web	service.	Users	will	be	able
to	log	into	the	Xively	website	and	observe	both	current	and	past	measurements.	This
project	is	designed	to	show	you	how	to	set	up	a	cloud-based	sensor	system,	which	stores
all	sensor	data	remotely,	eliminating	the	need	for	a	local	database.

Temperature	Sensor
I	used	a	TMP36	as	a	temperature	sensor,	which	is	the	same	type	I	used	in	Chapter	2’s

home	temperature	monitoring	system	project.	That	project	also	used	the	Raspberry	Pi	as
the	main	control	board.	I	will	not	repeat	the	TMP36	sensor	description	here,	but	simply
refer	you	back	to	Chapter	2	for	the	details.	I	also	reused	the	handy	cat	5	interconnection
system,	which	I	also	described	in	detail	in	Chapter	2.	Figure	10-1	is	the	connection
schematic	for	the	BBB	and	the	TMP36	sensor.

FIGURE	10-1	TMP36	to	BBB	connection	schematic

Only	three	connections	are	required:	5V,	output	signal,	and	ground.	There	is	also	no
need	for	an	external	analog-to-digital	converter	(ADC)	chip	in	this	project	as	the	BBB
already	contains	that	functionality.	Pin	P9_40	connects	to	one	of	the	BBB’s	ADC
channels,	but	there	is	one	limitation	that	you	should	know	about.	The	maximum	voltage
that	a	BBB	ADC	channel	can	safely	accept	is	1.8V.	Any	more	can	cause	damage	to	the
input.	The	TMP36	sensor	can	produce	a	voltage	exceeding	that	level	when	measuring
temperatures	at	or	above	266°	F.	That’s	a	very	high	temperature,	which	should	never	be

encountered	when	using	this	project	in	a	typical	residence	or	office	environment.

Figure	10-2	shows	the	physical	system	with	one	temperature	sensor	connected	to	a
BBB	using	a	solderless	breadboard.	I	also	used	the	project	BBB	in	a	standalone
configuration	with	a	monitor,	keyboard,	mouse,	and	powered	USB	hub.	The	BBB	was
also	wired	to	my	LAN	for	the	required	Internet	connectivity.

FIGURE	10-2	Physical	system

Nothing	else	was	required	from	the	hardware	prospective,	so	all	that’s	left	is	to
discuss	the	software,	which	is	where	the	“magic”	happens.

Adafruit_BBIO	Library
The	very	clever	folks	at	Adafruit	Industries	have	made	a	Python	library	freely	available,

which	allows	you	to	connect	to	the	BBB	GPIO	and	ADC	pins	among	other	things.	I	also
wish	to	acknowledge	Simon	Monk’s	extremely	helpful	article	on	how	to	connect	a	TMP35
or	TMP36	to	the	BBB.	This	article	is	available	from	Adafruit’s	Learn	website	at
https://learn.adafruit.com/measuring-temperature-with-a-beaglebone-black.

Note	that	I	am	using	the	Angstrom	Linux	distribution	at	the	root	level.	This	Linux
distribution	is	running	in	the	BBB’s	flash	eMMC	memory.	You	need	to	modify	the	steps
somewhat	if	you	are	using	a	different	distribution,	but	that	shouldn’t	be	difficult.

1.	Set	the	date	and	time	by	entering	the	following:
/usr/bin/ntpdate	-b	-s	-u	pool.ntp.org

2.	Update	the	Linux	distribution	by	entering	the	following:
opkg	update

NOTE	You	can	also	upgrade	the	distribution	by	entering	opkg	upgrade.	But	be	forewarned
that	the	upgrade	can	take	several	hours	to	complete.

3.	Install	prerequisite	programs	by	entering	the	following:
opkg	install	python-pip	python-setuptools	python-smbus

4.	Install	the	Adafruit	library	by	entering	the	following:
pip	install	Adafruit_BBIO

5.	Test	to	see	if	the	installations	were	completed	properly	by	entering	the
following:

python	-c	“import	Adafruit_BBIO	as	GPIO;	print	GPIO”

You	see	something	similar	to	the	following	displayed	on	the	terminal:
<module	‘Adafruit_BBIO.GPIO’	from	‘/usr/local/lib/python2.7/dist-

packages/Adafruit_BBIO/GPIO.so’>

You	are	now	ready	for	a	test	program	once	the	library	has	been	loaded.	Ensure	that
the	sensor	is	correctly	wired	to	the	BBB,	as	shown	in	Figure	10-1,	before	proceeding.

Initial	Test	Program
This	test	program	is	from	Dr.	Monk’s	article	that	I	previously	cited.	I	have	named	it

TMP36.py,	and	it	is	available	from	this	book’s	companion	website.

https://learn.adafruit.com/measuring-temperature-with-a-beaglebone-black

The	program	is	very	simple	in	that	it	converts	a	voltage	applied	to	the	P9_40	ADC
input	every	second	to	both	°C	and	°F.	The	raw	reading	is	first	multiplied	by	an	1800	value
to	account	for	the	full-scale	voltage,	which	is	1800	millivolts,	or	1800	mv.	Figure	10-3
shows	the	program’s	terminal	output.

FIGURE	10-3	Test	program	output

The	next	step	in	this	project	is	to	connect	a	cloud	service	once	the	test	program
proves	that	the	sensor	portion	works	properly.

Xively	Cloud	Service

Xively	is	the	latest	version	of	a	data-based	cloud	service	that	began	in	2007	as	a	UK
startup	known	as	Pachube	(pronounced	patch	bay).	Pachube	was	created	to	be	used	as	a
data	infrastructure	in	support	of	an	early	version	of	the	Internet	of	Things.	In	2011,
Pachube	was	acquired	by	LogMeIn	and	subsequently	rebranded	as	Cosm;	it	then	began	a
beta	development	project.	In	May	2013,	Cosm	went	from	a	beta	platform	into	a
production	version	and	its	name	subsequently	changed	to	the	current	Xively.	The	Xively
website	is	designed	to	support	automated	sensor	measurements	of	which	this	chapter’s
project	is	a	simple	example.	A	more	complex	example	would	be	Xively’s	support	of
volunteers	using	Geiger	counters	to	monitor	radioactive	fallout	from	the	Yokashima
nuclear	power	plant	disaster.

Xively	Developer’s	Account
You	will	need	to	establish	a	free	developer’s	account	at	www.xively.com	before	you	can

use	the	Xively	web	service.	It	is	a	fairly	quick	process:	You	register	as	a	developer	and
eventually	get	access	to	the	Xively	Developer	Workbench,	which	is	the	means	by	which
you	can	attach	the	BBB	system	to	the	Xively	website.	Simply	follow	the	instructions	on
the	site	to	register.	You	can	next	register	your	BBB	system	to	Xively	using	the	following
steps.	Please	note	that	some	of	these	steps	are	based	on	the	excellent	discussion	provided
by	Matt	Richardson	in	his	book	Getting	Started	with	BeagleBone:	Linux	Powered
Electronic	Projects	with	Python	and	Javascript.

1.	Log	into	your	new	account	and	click	on	the	Develop	button	located	near	the
top	of	the	page.
2.	Click	the	Add	Device	button.
3.	Provide	a	name	for	your	device.	I	named	mine	BBB1,	perhaps	with	the
intention	of	adding	some	more	BBBs	at	a	later	time.	You	will	also	be	asked	if
you	want	the	submitted	data	to	be	public	or	private.	I	chose	public,	but	you	can
change	this	option	at	a	later	date	if	you	want.
4.	Click	the	Add	Channel	button.	This	enables	you	to	create	a	sensor	channel	or
datastream	where	you	can	add	data	to	the	Xively	website.	You	will	also	need	to
provide	a	name	for	this	new	channel.	I	used	room_temp	for	the	channel	name.
Remember	to	write	it	down	as	you	will	need	it	later	for	the	BBB	program.	You
may	also	optionally	add	appropriate	tags,	units,	and	a	symbol	to	describe	the
data	that	will	be	stored	in	the	channel.	Again,	you	can	always	edit	this	data	at	a
later	date	if	you	need	to	do	so.
5.	In	the	lower-right	section,	you	will	find	some	additional	critical	information
that	you	will	need	for	the	BBB	program.	First,	write	down	the	10-digit	feed
number.	There	is	also	a	somewhat	complex	48-character	API	key	that	you	will
also	need.	I	strongly	recommend	that	you	copy	and	paste	this	key	for	entering	it
into	the	program.	It	is	almost	impossible	to	manually	enter	the	API	key	without
making	a	transcription	error.
6.	Return	to	the	BBB	and	install	the	Xively	Python	library	by	entering	the
following:

pip	install	xively-python

http://www.xively.com

You	are	now	ready	to	create	the	Python	program,	which	will	run	on	the	BBB	and
send	temperature	data	to	the	Xively	website.

BBB	to	Xively	Python	Program
Enter	the	following	code	into	the	BBB.	This	code	is	also	available	on	the	book’s

companion	website,	but	the	feed	and	API	key	are	not	provided	as	they	are	unique	to	each
project.	The	program	is	named	xively-temp.py	because	it	largely	mirrors	Matt
Richardson’s	code.

You	may	note	that	I	used	the	same	variable	names	in	this	program	as	were	used	in	the
test	program	just	to	keep	the	programs	somewhat	consistent.	This	program	uses	the	exact
same	ADC	pin	as	the	test	program	and	will	not	require	any	physical	reconfigurations.

There	is	a	new	variable	named	now,	which	contains	the	instantaneous	time	stamp	that
is	stored	along	with	the	°F	temperature	value.	The	time	is	in	a	UTC	format,	so	you	need	to
know	the	conversion	factor	to	determine	your	local	time.	In	my	case,	the	local	time	zone
was	EST	so	I	needed	to	subtract	fours	hours	from	the	UTC	value	in	order	to	convert	to
local	time.

If	you	are	the	root	level,	you	run	the	program	by	entering	this:
python	xively-temp.py

Non-root	users	will	need	to	add	sudo	before	the	python	command.	Figure	10-4	shows
the	terminal	output	after	the	program	has	run	for	a	while.	Remember	that	readings	are
taken	every	20	seconds	due	to	the	time.sleep(20)	statement	in	the	code	listing.	You
obviously	can	change	that	interval	to	best	suit	your	measurement	situation.	I	would
personally	not	make	the	interval	any	time	less	than	10	seconds	as	it	does	take	some	time	to
transfer	the	sensor	data	and	send	the	appropriate	TCP	acknowledgements.

FIGURE	10-4	Terminal	console	display	for	the	xively-temp.py	program

You	should	now	go	to	the	Xively	website	and	view	the	results	of	this	program	that	is
running	and	sending	data	to	it.

Xively	Website	with	an	Active	Datastream

I	used	my	MacBook	Pro	browser	to	go	to	the	Xively	website	and	observe	the	active
data	streaming.	Figure	10-5	shows	the	instantaneous	data	being	received	at	Xively	from
the	BBB.

FIGURE	10-5	Instantaneous	data	at	the	Xively	website

You	can	see	all	the	past	data	received	from	this	datastream	by	clicking	the	graphs
icon,	which	is	visible	in	the	upper-right	side	of	Figure	10-5.	Figure	10-6	shows	the	graph
of	temperature	data	that	extends	about	six	hours	into	the	past.	It	is	possible	to	click	on	the
graph	and	read	specific	data	and	time	values,	as	shown	in	Figure	10-7.

FIGURE	10-6	Temperature	vs.	time	graph

FIGURE	10-7	Specific	data	and	time	values

This	data	set	was	taken	from	a	sensor	located	in	my	office	and,	as	you	can	see,	the
temperature	slowly	dropped	during	the	evening	hours	and	started	to	rise	at	sunrise.	The
data	point	time	shows	1135	UTC,	which	means	the	local	EST	was	0735	in	the	morning	for
that	specific	data	point.

There	is	also	an	HTTP	Request	Log	window	shown	on	the	Workbench	just	to	the
right	of	the	graph	window.	This	Log	window	shows	the	current	and	past	four	HTTP
requests	that	were	processed	between	the	BBB	and	the	Xively	web	server.	A	sample	of
this	window	appears	in	Figure	10-8.

FIGURE	10-8	Sample	HTTP	Request	Log	window

The	Log	window	would	be	of	great	value	if	communications	problems	developed
between	the	BBB	and	the	Xively	web	server.	The	200	number	that	appears	before	the	PUT
requests	indicates	a	successful	TCP	transaction.	Numbers	such	as	404	or	500	would
indicate	that	some	type	of	problem	existed	in	the	communications	link	between	the	BBB
and	the	Xively	web	server.

An	obvious	question	I	have	not	addressed	so	far	is	the	issue	of	how	much	data	can	be
stored	on	the	Xively	website.	I	could	not	find	a	specific	limit	related	to	the	free
developer’s	account.	However,	LogMeIn	owns	the	Xively	website	and	it	is	definitely	a
profit-minded	business.	You	will	have	to	create	and	pay	for	a	business	account	if	you
choose	to	go	into	commercial	development	with	your	project.	At	that	point,	I	am	sure	that
data	storage	and	related	services	would	be	based	on	the	fees	charged	by	LogMeIn.

Adding	Additional	Data	Channels
It	is	a	simple	matter	to	add	both	additional	sensors	to	the	BBB	and	additional	channels

to	your	logical	Xively	device	to	accommodate	those	new	sensors.	I	will	tackle	the	physical
sensor	portion	first	and	then	discuss	how	to	expand	upon	the	existing	single	Xively
channel.

Additional	TMP36	Sensors
The	TMP36	sensor	connection	system	was	designed	from	the	beginning	to	be	easily

expanded.	All	you	need	to	do	is	connect	a	TMP36	sensor	to	a	new	ADC	channel	and
change	the	Python	program	to	recognize	the	new	sensor.	Of	course,	the	data	feed	will	also
need	to	be	changed,	but	I	discuss	that	in	the	next	section.

Figure	10-9	is	an	expanded	schematic	showing	two	new	additional	sensors	connected
to	the	BBB.	I	chose	P9-37	(A2)	and	P9-38	(A3)	for	these	new	ADC	connections.

FIGURE	10-9	Expanded	TMP36	to	BBB	connection	schematic

I	also	used	a	longer	cat5	cable	to	connect	the	outdoor	sensor	to	the	BBB.	Please	refer
to	the	discussion	in	Chapter	2	regarding	some	issues	that	might	arise	when	using	long	cat5
connecting	cables.	Figure	10-10	shows	the	physical	setup	for	the	expanded	temperature
measurement	system.

FIGURE	10-10	Expanded	physical	system

I	next	created	an	expanded	test	program	to	prove	that	all	the	sensor	channels
functioned	as	expected.	I	named	this	new	test	program	ExpandedTest.py,	which	is	based
upon	the	previous	test	program.	The	following	is	the	complete	code	listing:

Figure	10-11	shows	the	program’s	terminal	output.	The	temperature	values	shown	in
the	figure	reflect	the	actual	temperatures	present,	which	is	always	a	good	reality	check.

FIGURE	10-11	Expanded	test	program	output

It	is	time	to	work	on	an	expanded	xively-temp	program	now	that	the	expanded
system’s	hardware	has	been	checked	out.

Expanded	xively-temp	Program

I	named	the	expanded	xively-temp	program	ExpandedXively.py;	it	is	essentially	the
same	as	the	original	except	for	the	two	new	temperature	channels.	The	two	new	channels
were	named	on	the	Xively	website	as	outdoor_temp	and	storage_temp,	reflecting	their
actual	locations.	Adding	additional	channels	to	the	device	is	as	simple	as	repeating	Step	4,
as	detailed	in	the	Xively	Developer’s	Account	section	for	every	additional	channel
required.	The	tags,	units,	and	symbols	were	the	same	as	I	previously	set	for	the
room_temp	channel.	This	program’s	code	listing	follows	and	is	also	available	on	the
book’s	companion	website:

Note	that	all	three	Datastream	function	calls	are	all	contained	in	the	same	set	of
square	brackets	with	commas	as	delimiters	between	the	first	and	second	as	well	as
between	the	second	and	third	calls.	Failure	to	follow	this	format	will	likely	cause	at	least
one	datastream	to	be	ignored	by	the	Xively	web	server.	Figure	10-12	shows	the	current
values	for	all	three	channels	along	with	the	HTTP	Request	Log.

FIGURE	10-12	Current	values	for	three	channels

You	should	notice	from	the	Request	Log	that	only	one	HTTP	feed	is	required	to	push
all	three	channels	to	the	Xively	web	server.	Adding	any	additional	channels	would	simply
follow	the	same	process	I	have	just	described.	I	am	also	not	aware	of	any	particular	limit
to	the	number	of	channels	that	a	given	device	can	push	to	Xively.	I	would	guess	that	the
device	itself	would	impose	a	limit	rather	than	the	Xively	web	server.	Figure	10-13	shows	a
four-hour	data	graph	for	the	outdoor	temperature	channel.	I	also	included	a	specific	data
point	in	the	figure	just	to	show	you	that	it	functions	exactly	the	same	as	it	did	for	the	room
temperature	plot.

FIGURE	10-13	Outdoor	temperature	channel	graph

Configuring	Angstrom	to	Auto	Start	the	Application
It	would	be	quite	convenient	to	automatically	start	this	temperature	data	logging

application	whenever	the	BBB	is	powered	on.	This	is	easy	to	accomplish	using	a
preconfigured	service,	which	you	can	readily	set	up	in	the	Angstrom	OS	to	accomplish
this	task.	There	are	many	services	listed	in	the	/lib/systemd/system	directory.	Most	are
enabled	to	suit	a	variety	of	purposes.	Our	purpose	is	to	start	the	ExpandedXively.py	file
using	Python	to	execute	its	content.	You	will	create	a	service	file	named	xively-
logger.service	in	the	/lib/systemd/system	directory	by	following	these	steps:

1.	Change	into	the	proper	directory	by	entering	the	following:
cd	/lib/systemd/system

2.	Start	the	nano	editor	with	the	service	filename	given	previously	by	entering
the	following:

nano	xively-logger.service

3.	Enter	the	following	content	into	the	nano	editor	workspace:

4.	Save	and	exit	the	nano	editor.
5.	You	use	an	Angstrom	Linux	command	called	systemctl	to	enable,	disable,
start,	stop,	and	restart	service	files.	Enter	the	following	to	enable	this	new
service	file:

systemctl	enable	xively-logger

The	ExpandedXively.py	will	not	start	after	this	command	but	only	when	the	BBB	is
rebooted.	You	can	force	it	to	start	immediately	by	entering	the	following:

systemctl	start	xively-logger

Similarly	you	can	stop	the	logger	by	entering	the	following:
systemctl	stop	xively-logger

You	can	always	force	a	logger	restart	by	entering	the	following:
systemctl	restart	xively-logger

The	status	of	the	logger	application	can	be	checked	using	the	systemctl	status
command.	The	following	entry	checks	the	status:

systemctl	status	xively-logger

Figure	10-14	shows	the	result	of	entering	this	command.

FIGURE	10-14	xively-logger	status

One	interesting	artifact	that	I	discovered	while	testing	this	service	is	that	the	Linux
OS	does	not	automatically	discover	the	correct	date	and	time	upon	a	reboot.	Figure	10-15
shows	the	startling	result	when	I	used	the	systemctl	status	command	after	a	BBB	reboot.

FIGURE	10-15	Systemctl	status	displays	immediately	after	a	reboot

Now,	the	ExpandedXively.py	program	does	take	care	of	sending	the	correct	date	and
time	to	Xively,	but	I	thought	it	would	be	nice	to	see	it	correctly	set	in	the	Linux	OS	upon	a
BBB	reboot.	The	answer	to	this	issue	is	to	edit	another	service	file	that	will	automatically
set	the	date	and	time	during	the	boot	process.	The	file	to	edit	is	ntpdate.service	and	is

located	in	the	same	/lib/systemd/system	directory	as	is	the	xively-logger.service	file.

Using	the	nano	editor,	modify	the	existing	ntpdate.service	file	to	match	the	following
code	listing:

After	you	save	and	exit	the	nano	editor,	you	will	need	to	perform	these	steps:

1.	Enable	the	modified	service	by	entering	the	following:
systemctl	enable	ntpdate

2.	Reload	the	configuration	file	by	entering	the	following:
systemctl	—system	daemon-reload

3.	Restart	the	service	by	entering	the	following:

systemctl	restart	ntpdate

That	should	be	all	you	need	to	do	to	now	have	the	correct	time	and	date	set	for	every
boot.	Just	type	date	and	check	that	the	correct	date	and	time	are	displayed.	Note	that	the
time	will	be	UTC,	but	that	should	not	be	much	of	a	problem	at	this	stage.

System	Case
I	considered	it	important	to	put	the	BBB	and	temperature	RJ45	connectors	into	a	case	as

I	will	use	it	as	a	permanent	project.	I	used	the	same	model	of	a	large	plastic	case,	which	I
also	used	to	house	the	remote	moisture	sensor,	part	of	the	Chapter	7	Arduino	irrigation
controller	project.

Figure	10-16	shows	the	BBB	mounted	on	a	piece	of	clear	sheet	Lexan	along	with
three	RJ45	connectors,	which	are	in	turn	mounted	on	a	solderless	breadboard.

FIGURE	10-16	BBB	and	RJ45	connectors	mounted	on	Lexan	board

The	bottom	of	the	plastic	case	must	have	cutouts	to	allow	access	to	the	three	RJ45
temperature	sensor	connectors.	It	also	must	have	two	cutouts	on	one	end	for	the	5V	power
plug	and	the	Ethernet	cable.	Figure	10-17	shows	the	fully	modified	case	bottom.

FIGURE	10-17	Modified	case	bottom

I	have	not	included	a	dimensioned	drawing	as	I	found	it	more	convenient	to	install
the	mounting	plate	and	use	the	BBB	and	RJ45	connectors	to	mark	the	inside	of	the	case
for	the	cut-outs.	I	also	used	a	one-half-inch	drill	bit	to	create	a	relatively	large	opening,
which	I	subsequently	squared	off	with	a	file.	Figure	10-18	shows	the	complete	assembly
without	the	top	cover	attached.

FIGURE	10-18	Complete	assembly

This	section	wraps	up	this	chapter’s	project	and	it	is	time	to	move	on	to	another
interesting	project,	which	will	include	this	BBB	measurement	system	along	with	a
Raspberry	Pi	controller.

Summary
This	chapter’s	focus	was	to	demonstrate	how	to	set	up	a	BeagleBone	Black	(BBB)	with

temperature	sensors,	which	automatically	transmits	measurements	to	a	cloud-based
service	named	Xively.

I	reviewed	some	basic	facts	about	the	analog	TMP36	temperature	sensor,	which	I
first	used	in	the	Chapter	2	project,	the	Raspberry	Pi	home	temperature	monitoring	system.
The	BBB	is	also	well	suited	to	interface	with	the	TMP36	as	it	has	an	integrated,
multiplexed	analog-to-digital	converter	(ADC),	which	the	Raspberry	Pi	is	sorely	lacking.

The	Adafruit	BBIO	Python	library	was	discussed	next	because	it	allows	for	a
straightforward	approach	to	interface	the	TMP36	to	the	BBB	using	the	Python	language.	I
demonstrated	a	simple	test	program,	which	proved	that	a	single	TMP36	sensor	works	fine
with	the	BBB.

A	detailed	discussion	regarding	the	Xively	cloud	service	followed	in	which	I
provided	step-by-step	instructions	on	how	to	set	up	a	free	Xively	developer’s	account,
which	you	need	for	this	project.

A	single-channel	Python	program	was	shown,	which	both	displayed	sensor
measurements	on	a	terminal	screen	and	sent	data	to	the	Xively	website.	I	also	used	a
browser	on	another	computer	to	go	to	the	Xively	website	to	examine	the	temperature	data
being	sent	or	“pushed”	to	it.	Past	or	historical	data	is	also	readily	available	from	the
website	in	the	form	of	a	graph.

I	next	demonstrated	how	to	add	two	additional	sensors	to	the	project.	You	first	need
to	create	named	channels	at	the	Xively	website	to	handle	the	new	sensors.	Next,	you	need
to	change	the	Python	program	that	is	pushing	the	data	to	accommodate	the	new	sensors.
The	Xively	website	clearly	picked	up	the	new	channels	and	displayed	the	data	without	any
issues.

The	BBB’s	Angstrom	Linux	OS	was	next	modified	to	autostart	the	Python
application,	which	means	that	you	don’t	need	to	manually	restart	it	after	every	BBB
reboot.	I	also	showed	you	how	to	set	up	Angstrom	so	that	the	correct	date	and	time	are	set
after	a	reboot.

I	finished	the	chapter	by	showing	you	how	I	modified	a	nice	plastic	case	to	house	the
project	components.	I	wanted	to	have	them	in	a	presentable	enclosure	as	I	plan	on
indefinitely	retaining	and	using	this	particular	project.

11
CHAPTER

Machine-to-Machine	(M2M)	Communications
The	focus	of	the	chapter,	as	its	name	implies,	is	machine-to-machine	(M2M)

communications.	There	is	no	human	intervention	in	this	type	of	system	as	all	the
computers	or	machines,	as	they	are	generically	termed,	are	set	up	to	communicate	with
one	another	using	an	established	protocol.	I	will	be	using	the	BeagleBone	Black	(BBB)	as
a	data	source	or	publisher	client	and	the	Raspberry	Pi	(Pi)	as	a	data	sink	or	subscriber
client.	The	BBB	system	will	also	use	a	single	TMP36	temperature	sensor—the	same	type
that	was	used	in	the	previous	chapter.

Before	starting	the	detailed	discussion,	I	would	like	to	acknowledge	a	fine	blog
article	entitled	“Using	Eclipse	Paho’s	MQTT	on	BeagleBone	Black	and	Raspberry	Pi,”
which	was	written	by	D.	J.	Walker-Morgan,	an	extremely	talented	developer.	I	can’t	help
but	feel	an	affinity	for	Mr.	Walker-Morgan	as	my	first	two	initials	are	also	D.	J.	His	article
is	great	and	is	available	at	the	Eclipse.org’s	talkingsmall	blog	at
www.eclipse.org/paho/articles/talkingsmall/.	I	highly	recommend	you	read	it	when	you
have	an	opportunity	to	do	so.

Paho	and	Eclipse.org
Paho	is	an	open-source	project	sponsored	by	the	Eclipse.org	foundation.	This	project	is

dedicated	to	providing	scalable	client	implementations	for	both	open	and	standard
messaging	protocols.	The	Paho	project	is	designed	to	provide	an	exciting	infrastructure	in
support	of	new	M2M	and	IoT	applications.	The	home	website	is	www.eclipse.org/paho/.
At	the	heart	of	the	Paho	project	is	a	lightweight	publish/subscribe	message	protocol	named
MQTT,	which	I	describe	in	the	next	section.

MQTT
MQTT	is	the	current	name	for	this	protocol,	although	it	was	originally	named	Message

Queuing	Telemetry	Transport.	I	guess	the	project	managers	felt	that	was	a	mouthful,	or
perhaps	the	name	was	changed	because	there	are	no	actual	queues	used	in	the	protocol.	In
any	case,	it	is	now	simply	called	MQTT.

MQTT	is	over	10	years	old,	having	originally	been	created	by	the	IBM	pervasive
software	group	in	conjunction	with	Arcom,	which	is	now	called	Eurotech.	IBM	still
supports	MQTT	with	the	current	3.1	version	specifications	available	from	the	IBM
developerWorks	website	at	www.ibm.com/developerworks/webservices/library/ws-
mqtt/index.html.

MQTT	is	technically	known	as	a	middleware	application,	as	you	can	see	in	the
Figure	11-1	block	diagram	for	this	project.	It	is	important	to	realize	that	both	publishers
and	subscribers	are	treated	as	client	applications	in	this	configuration	type.

http://www.eclipse.org/paho/articles/talkingsmall/
http://www.eclipse.org/paho/
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html

FIGURE	11-1	Project	block	diagram

There	is	a	block	named	MQTT	Broker	located	between	the	BeagleBone	Black
publisher	client	and	the	Raspberry	Pi	subscriber	client	blocks.	This	broker	may	be	thought
of	as	a	message	dispatcher	ensuring	that	the	MQTT	messages	are	properly	sent	from	the
client	publishers	to	the	correct	client	subscribers.	In	that	way,	subscriber	clients	do	not
have	to	constantly	monitor	all	the	network	traffic	looking	for	messages	that	are	addressed
to	them.	The	broker	takes	over	that	function	and	also	serves	as	an	acknowledgment
intermediary.	I	discuss	this	in	the	section	named	Quality	of	Service.

Table	11-1	details	some	of	the	MQTT	salient	features	that	make	it	so	popular	as	a
messaging	protocol.

TABLE	11-1	MQTT	Features

These	features	make	MQTT	very	popular	for	M2M	applications,	including	weather
monitoring,	stock	ticker,	smart	power	grid	meters,	and	even	Facebook	messaging.	It	is
also	a	very	popular	way	for	cellular	services	to	implement	message	alerts.

Quality	of	Service	(QoS)
Quality	of	Service	(QoS)	refers	to	the	level	assurance	that	MQTT	provides	regarding

message	delivery.	There	are	three	QoS	levels:

•			Level	0	This	is	also	known	as	“fire	and	forget.”	At	this	level,	the	publisher
sends	off	messages	and	there	is	no	attempt	to	acknowledge	their	reception	by	the

broker	on	behalf	of	the	publisher.	It	is	obviously	the	quickest	message	delivery
method,	but	it	is	also	the	least	reliable.
•			Level	1	This	is	also	known	as	“at	least	one.”	Here,	messages	are	sent	and
resent	until	the	broker	receives	one	acknowledgment	from	the	subscriber.	It	does
provide	some	assurance	that	the	message	did	get	through	to	its	intended
recipient.	Level	1	is	typically	set	as	the	default	QoS	for	a	MQTT	messaging
system.
•			Level	2	This	is	also	known	as	“exactly	one.”	At	this	level,	messages	undergo
a	two-stage	process	where	there	is	a	definitive	acknowledgment	between	the
broker	and	subscriber,	ensuring	that	one	and	only	one	message	copy	was
delivered.	This	QoS	level	is	the	slowest	among	the	three	levels	because	of	the
additional	processing	overheads	required	to	establish	a	high	reliability	level.

Wills
No,	this	section	has	nothing	to	do	with	legal	probate	but	instead	focuses	on	what

happens	when	a	client	abnormally	loses	its	connection	with	the	broker.	A	“will”	is	both	a
set	of	instructions	and	a	prescribed	message	that	is	stored	by	the	broker	and	will	only	be
acted	upon	if	the	connection	between	the	broker	and	a	client	is	unexpectedly	broken.
Basically,	it	is	a	dialog	that	states,	“If	you	(the	broker)	cannot	connect	to	me,	and	I	(the
client)	haven’t	cleanly	disconnected,	then	carry	out	the	preset	instructions	and	also	send
out	the	stored	message	on	my	behalf.”	The	“will”	concept	is	implemented	in	Python	by	a
setWill	method	and	in	Java	by	an	object	of	the	MqttConnectionsOptions	class.

Using	wills	in	a	MQTT	improves	both	system	robustness	and	reliability	and	ensures
that	messages	will	either	be	delivered	or	an	error	message	will	be	created	and	distributed
describing	what	went	wrong.

Reconnecting
Connections	will	be	broken	and	MQTT	has	the	inherent	ability	to	reconnect	using	two

system	elements.	The	first	is	a	logical	flag	known	as	the	“clean	flag,”	which	is	set	at	one
value	for	every	fresh	or	new	connection.	The	clean	flag	informs	the	client	and	broker	that
they	must	start	the	messaging	process	from	the	beginning	as	it	represents	a	new
connection.	However,	if	the	clean	flag	becomes	false	or	low,	a	second	element	comes	into
play.	This	is	called	the	client	ID	and	you	will	see	that	it	plays	a	key	part	in	establishing	an
original	connection	when	the	test	code	is	discussed.	For	now,	let’s	assume	it	had	already
been	set	to	some	String	value	when	the	connection	broke.	Now,	assume	the	connection	is
restored	as	might	happen	when	a	client	briefly	loses	power.	MQTT	will	attempt	to	restore
the	connection	to	the	same	precise	state	because	it	recognizes	that	it	still	has	same	client
ID	String	stored	in	its	record	structure,	which	existed	for	this	particular	connection	when	it
first	became	disconnected.	Note	that	various	MQTT	libraries,	whether	they	be	Python	or
Java,	have	different	implementations	for	storing	the	client	IDs	and	messages	so	that	the
connections	can	be	recovered	without	any	message	loss.

It	is	now	time	to	demonstrate	a	temperature	monitoring	application	that	uses	MQTT
to	distribute	single	valued	data	points	between	one	publisher	and	one	client.

BBB	MQTT	Publisher	Client

Initially,	I	just	need	to	demonstrate	the	temperature-monitoring	program	without	any
messaging	features	added.	The	program	is	named	tmp36.py	and	it	is	the	same	one	that	was
used	in	the	previous	chapter	to	interface	to	a	single	TMP36	temperature	sensor.	The	code
listing	is	shown	here	for	your	convenience:

Remember	to	load	the	Adafruit	BBIO	library,	following	the	instructions	shown	in
Chapter	10.	I	also	want	to	point	out	that	the	BBB	I	used	for	this	project	was	not	the	same
one	I	used	in	Chapter	10.	I	used	a	copy	of	the	Debian	Wheezy	Linux	distribution	instead
of	the	Angstrom	distribution	used	in	Chapter	10.	This	means	that	you	must	substitute	the
apt-get	command	for	the	opkg	command	in	the	instructions	if	you	also	use	Debian.
Everything	else	should	function	in	exactly	the	same	way.

The	hardware	setup	is	shown	in	Figure	11-2.	You	can	see	I	reused	the	RJ45	connector
scheme	with	a	cat5	cable	to	interface	the	TMP36	sensor	with	the	BBB.	Please	refer	back
to	Figure	10-1	for	the	sensor	interface	wiring	schematic.

FIGURE	11-2	Physical	hardware	setup

Figure	11-3	shows	the	terminal	display	after	I	entered	the	following:

FIGURE	11-3	Terminal	screen	showing	the	tmp36.py	program	output
sudo	python	tmp36.py

This	figure	demonstrates	that	the	hardware	portion	of	the	project	works	properly	and	it
is	time	to	incorporate	some	MQTT	features.

Adding	MQTT	Features	to	the	Application
You	first	need	to	load	the	appropriate	MQTT	client	implementation	library	before

adding	the	messaging	features	into	the	application.	Please	follow	these	steps	to	load	the
Python	library	that	will	be	used	in	this	project.	Also	note	that	I	will	be	using	the	Debian
commands	in	all	of	the	following	instructions:

1.	The	Linux	distribution	must	first	be	updated	to	ensure	that	all	dependencies
will	be	located	in	the	appropriate	repositories.	Enter	the	following:

sudo	apt-get	update

2.	Download	the	source	code	from	Github	using	this	command:
sudo	git	clone

git://git.eclipse.org/gitroot/paho/org.eclipse.paho.mqtt.python.git

NOTE	If	you	have	difficulty	in	doing	a	direct	git	clone,	you	can	also	go	to
http://git.eclipse.org/c/paho/org.eclipse.paho.mqtt.python.git/	and	download	one	of	the
following	compressed	files:
org.eclipse.paho.mqtt.python-1.0.zip

org.eclipse.paho.mqtt.python-1.0.tar.gz

org.eclipse.paho.mqtt.python-1.0.tar.bz2

Use	the	extraction	application	that	matches	the	compressed	file	extension	you
downloaded,	i.e.,	winzip	or	7zip	for	the	zip	file.	You	should	see	the	same	source
directory	created	after	extraction	as	was	created	for	the	clone	operation.

3.	Change	into	the	source	directory:
cd	org.eclipse.paho.mqtt.python/

4.	Compile	the	source	code	using	a	build	script	already	available	in	the
directory:

make

5.	Install	all	the	compiled	files:

make	install

The	Python	MQTT	client	should	now	be	ready	to	be	added	to	the	tmp36.py	program,
but	let’s	first	cover	some	basic	concepts,	which	you	should	understand	before	going	on	to
the	complete	application.

The	BBB	publisher	client	must	establish	a	logical	connection	to	the	broker	before	any
messages	can	be	passed.	This	is	done	with	the	following	statements:

•			mqttc.connect(“m2m.eclipse.org”,	1883,	60)	Goes	out	to	the	Internet
and	connects	with	an	MQTT	broker	at	the	website	“m2m.eclipse.org”	on	port
1883.	The	60	refers	to	a	60-second	ping,	which	is	a	“keep	alive,”	meaning	it	is
sent	when	no	other	activity	is	happening	on	the	connection.
•			mqttc.loop_start()	A	separate	execution	thread	is	started	that	handles

http://git.eclipse.org/c/paho/org.eclipse.paho.mqtt.python.git/

incoming	messages	from	the	broker.

The	following	two	statements	contain	references	to	what	are	known	as	topics	and
subtopics:

mqttc.publish(“bbbexample123/tmp36/mv”,”%.2f”	%	mv);

mqttc.publish(“bbbexample123/tmp36/f”,””%.2f”	%	temp_f);

In	the	preceding	statements,	bbbexample123	refers	to	a	root	topic	created	on	the
broker,	which	also	contains	the	subtopics,	tmp36,	mv,	and	f.	Real-time	millivolt	data	is
stored	in	the	mv	subtopic	while	real-time	Fahrenheit	temperature	data	is	stored	in	the	f
subtopic.	I	will	demonstrate	how	to	retrieve	this	real-time	data	from	the	broker	shortly.
But	first,	you	should	enter	the	following	modified	tmp36.py	program,	which	I	named
mqttTMP36.py	to	reflect	the	new	messaging	capabilities:

The	program	is	run	by	entering	the	following:
sudo	python	mqttTMP36.py

You	should	see	exactly	the	same	terminal	display	that	was	shown	when	the	tmp36.py
program	was	run	in	the	earlier	test	except	that	I	added	the	word	mqtt	to	the	end	of	each
display	line	to	help	me	distinguish	between	the	two	program	outputs.	Figure	11-4	shows	a
terminal	screen	for	this	program.

FIGURE	11-4	Terminal	screen	showing	the	mqttTMP36.py	program	output

The	data	in	the	mqttTMP36.py	program	is	also	being	sent	to	the	broker	located	at
m2m.eclipse.org	and	listening	on	port	1883.	I	believe	that	some	discussion	at	this	point
regarding	the	broker	website	would	be	helpful	for	your	overall	understanding	of	the	role
that	the	MQTT	broker	plays	in	this	messaging	scheme.

MQTT	Brokers

The	web	server	located	at	m2m.eclipse.org	is	a	public	sandbox	hosted	by	the	Eclipse
Foundation	as	part	of	their	open-source	IoT	project.	This	web	server’s	software	itself	is
based	upon	the	Mosquito	project	created	and	maintained	by	Roger	Light,	a	highly	talented
UK	developer.	The	sandbox	server	allows	free	and	public	access	to	an	actual	MQTT
broker	where	developers	may	test	their	software.	There	are	no	restrictions	at	this	site	and
just	like	an	African	waterhole,	all	are	welcome	to	use	it,	but	beware	of	any	predators	that
might	be	lurking	nearby.	This	metaphor	means	that	your	data,	which	is	being	sent	to	the
broker,	can	be	accessed	by	anyone	who	is	also	concurrently	on	the	site.	This	usually	is	not
a	problem,	as	most	developers	are	typically	well	behaved.

There	are	a	number	of	other	freely	available	MQTT	brokers	in	addition	to
m2m.eclipse.org.	Table	11-2	lists	all	the	brokers	that	were	reported	as	available	at	the	time
of	this	writing.	All	offer	standard	MQTT	broker	support,	while	some	provide	additional
services	such	as	SSL,	a	dashboard,	or	an	HTTP	bridge,	as	noted	in	the	Remarks	column.

TABLE	11-2	Public	MQTT	Brokers

The	HTTP	bridge	is	one	of	the	features	in	the	m2m.eclipse.org	broker	that	will	allow
us	to	check	if	the	mqttTMP36	application	data	is	actually	being	received	by	the	broker.	To
use	the	HTTP	bridge,	first	ensure	that	the	mqttTMP36	client	is	running	and	then,	using	a
browser	either	on	the	BBB	or	another	computer,	go	to
http://eclipse.mqttbridge.com/bbbexample123/tmp36/mv.

Once	on	the	website,	you	should	see	only	a	single	number	such	as	734,	which
represents	a	millivolt	reading	taken	from	the	tmp36	sensor.	Figure	11-5	shows	the	HTTP
bridge	website	while	I	was	running	the	mqttTMP36	application.

FIGURE	11-5	HTTP	bridge	screen	for	the	mv	subtopic

You	may	have	noticed	the	order	in	which	the	HTTP	bridge	URL	was	constructed
specifies	the	root	topic	and	all	the	branch	subtopics	leading	to	the	desired	one	to	be
displayed,	as	shown	in	Figure	11-6.

FIGURE	11-6	HTTP	bridge	URL	with	topics

Going	to	the	following	website	will	enable	you	to	retrieve	the	temperature	data
because	the	final	subtopic	is	f,	which	matches	the	published	subtopic	descriptor.	You
should	examine	the	published	statement	in	the	mqttTMP36.py	code	listing	to	confirm	this;
enter	the	following	URL	into	a	web	browser:

http://eclipse.mqttbridge.com/bbbexample123/tmp36/f

Figure	11-7	shows	the	HTTP	bridge	website	with	the	f	subtopic	while	the
mqttTMP36	program	was	running.	There	is	another	MQTT	broker	display,	which	I	wish

http://eclipse.mqttbridge.com/bbbexample123/tmp36/mv
http://eclipse.mqttbridge.com/bbbexample123/tmp36/f

to	show	you	in	the	next	section,	that	provides	an	interesting	insight	into	the	popularity	of
the	MQTT	messaging	protocol.

FIGURE	11-7	HTTP	bridge	website	for	the	f	subtopic

MQTT	Dashboard
Open	the	mqttTMP36.py	program	in	the	nano	editor.	Edit	the	existing	client	connect

statement	to	the	following:
mqttc.connect(“broker.mqttdashboard.com”,	1883,	60)

Next,	start	the	mqttTMP36.py	program	and	go	to	broker.mqttdashboard.com.	Figure
11-8	shows	an	MQTT	Dashboard,	which	is	currently	processing	data	from	my	BBB	as
well	as	from	some	other	concurrent	users.

http://www.mqttdashboard.com

FIGURE	11-8	MQTT	Dashboard

In	the	Recently	used	Topic	box,	you	can	see	my	mv	and	f	topics	as	well	as	a	topic
from	another	user.	A	bunch	of	PINGs	are	also	shown,	which	are	probably	sent	from	some
connected	client	that	is	not	sending	actual	data	but	only	a	“keep	alive”	ping	packet	without

a	published	topic.	The	Last	Message	box	on	the	lower-left	side	of	the	figure	shows	one	of
my	published	f	topic	strings	along	with	the	temperature	value.

You	should	also	examine	the	tabs	on	the	menu	bar,	which	include	PUBLISH	and
SUBCRIBE	functions.	These	two	tabs	allow	some	real-time	interaction	with	the
dashboard	using	a	browser	instead	of	a	client	program.	Figure	11-9	is	another	dashboard
screen	that	shows	several	other	user	topics	in	addition	to	my	topics.

FIGURE	11-9	MQTT	Dashboard	screen

I	have	included	this	figure	to	point	out	the	public	nature	of	these	MQTT	brokers,
which	allow	your	data	to	be	examined	by	anyone	who	simply	browses	to	the	public
website.	There	is	a	way	to	safeguard	your	data	and	that	is	to	use	SSL	to	encrypt	the
published	topics	so	only	the	designated	receiver	client	will	be	able	to	decrypt	the	data.
Brokers	equipped	to	handle	SSL	data	use	a	predesignated	port	other	than	1883.	The	SSL
brokers	and	their	respective	ports	are	described	in	Table	11-2.	I	will	not	be	using	SSL	as
my	project	does	not	require	any	data	protection	and	I	do	not	publish	any	data	that	I	would
not	want	the	public	to	view.

It	is	time	to	examine	the	Raspberry	Pi	client	now	that	you	have	had	an	introduction	to
the	MQTT	brokers.

Raspberry	Pi	Subscriber	Client
The	MQTT	subscriber	client	will	be	implemented	in	Java	rather	than	Python,	which

emphasizes	the	MQTT	platform	agnostic	approach.	Using	Java	with	the	Raspberry	Pi	also
continues	the	object-oriented	theme	that	was	discussed	in	earlier	chapters.

Using	a	callback	method	is	key	to	how	the	MQTT	subscriber	client	functions.	A
callback	method	is	one	that	is	triggered	by	an	event,	which	is	the	arrival	of	a	message	at
the	broker	for	this	situation.	Callback	methods	are	specified	in	the	MQTTCallback
interface,	which	is	implemented	by	this	subscriber	client	class	named
PahoMqttSubscribe.	The	next	statement	shows	the	class	declaration	along	with	the
interface	implementation.

public	class	PahoMqttSubscribe	implements	MqttCallback

The	client	class	also	requires	a	supporting	library,	which	is	in	the	form	of	a	Java
archive	file	named	mqtt-client-0.4.0.jar.	This	jar	file	will	need	to	be	downloaded	from	the
Eclipse.org	website.	Instructions	on	how	to	download	it	will	be	discussed	shortly.	This
statement	is	the	import	for	the	mqtt	client	library:

import	org.eclipse.paho.client.mqttv3.*;

An	empty	client	constructor	and	a	reference	to	the	client	are	created	by	these
statements:

public	PahoMqttSubscribe()	{	}

MqttClient	client;

The	following	main	method	contains	only	one	method	call	in	this	minimal	demo
project.	This	method	call	also	incorporates	an	instantiation	of	the	PahoMqttSubscribe
class.

The	doDemo()	method	call	made	in	the	main	method	is	where	the	application’s
forever	loop	is	located.	The	first	action	that	occurs	when	this	method	is	first	entered	is	an
instantiation	of	the	client	object,	which	is	directed	to	the	desired	broker	website.	A
connect	command	follows	the	instantiation.

client	=	new	MqttClient(“tcp://m2m.eclipse.org:1883,

MqttClient.generateClientId());client.connect();

Notice	that	one	of	the	arguments	in	the	instantiation	statement	sets	up	a	unique	client
ID.	All	clients	connecting	to	a	broker	require	a	unique	ID,	which	is	typically	constructed
from	metadata	elements	that	the	broker	can	discern	from	the	initial	TCP	connection.

The	next	step	in	the	doDemo	method	is	to	establish	the	callback	method,	which	I
previously	mentioned.	This	method	will	be	called	when	a	message	to	which	the	client	is
subscribed	is	received	by	the	broker.

client.setCallback(this);

The	client	must	next	inform	the	broker	which	topic	it	desires	to	subscribe	to:
client.subscribe(“bbbexample123/tmp36/f”);

Additional	actions	are	normally	added	after	the	subscribe	statement.	In	this	minimal
demo,	there	is	only	a	forever	loop	containing	a	1-second	sleep	statement.	The	sleep
statement	is	contained	by	try/catch	statements,	which	are	needed	for	this	execution
sequence.	Obviously,	real-time	control	application	statements	would	also	be	placed	here	as
desired.

The	remaining	item	that	is	missing	in	this	class	definition	is	the	actual	callback
method.	This	method	is	named	messageArrived	and	it	takes	two	arguments,	a	String	for
the	topic	and	an	MqttMessage	type	representing	the	subtopic	value.	The	MqttMessage	type
value	is	also	known	as	the	payload.	The	only	action	that	the	callback	method	will	perform
in	this	demo	is	to	print	the	topic	and	the	payload.

There	is	a	pro-forma	action	that	is	also	required	for	this	class	definition	to	be
complete	and	able	to	be	compiled.	Because	the	PahoMqttSubscribe	class	implements	the
MqttCallback	interface,	it	is	required	to	provide	an	implementation	for	all	of	the	methods
specified	by	the	interface.	One	method,	messageArrived,	has	already	been	implemented.
There	are	two	other	methods	that	must	be	implemented.	These	are	shown	here	as	empty	or
null	implementations:

public	void	connectionLost(Throwable	cause)	{	}

public	void	deliveryComplete(IMqttDeliveryToken	token)	{	}

The	Java	MQTT	API	does	contain	applications	that	will	provide	real
implementations	for	the	preceding	callback	methods.	They	are	not	needed	in	this	demo,
but	you	should	know	that	they	are	available.

All	of	the	code	discussed	in	the	preceding	text	is	shown	next	as	a	complete	class

definition	named	PahoMqttSubscribe.java.	You	should	use	the	nano	editor	to	enter	it	or
download	it	from	the	book’s	companion	website.

Do	not	compile	the	code	at	this	point	because	it	will	not	work	due	to	the	missing	jar
file.	Please	follow	these	steps	to	download	the	jar,	compile	the	source	file,	and	execute	the

class	file.

1.	Enter	the	following	while	in	a	Raspberry	terminal	window:
curl	-O	https://repo.eclipse.org/content/repositories/paho-

releases/org/eclipse/paho/mqtt-client/0.4.0/mqtt-client-

0.4.0.jar

2.	Ensure	that	the	jar	file	is	in	the	same	directory	as	the	class	source	file
PahoMqttSubscribe.java.	Enter	the	following	to	compile	the	source	file:

javac	-cp	mqtt-client-0.4.0.jar	PahoMqttSubscribe.java

3.	Ensure	that	the	BBB	is	running	the	mqttTMP36.py	program.	Also	check	that
you	are	using	the	m2m.eclipse.org	broker.	Enter	the	following	command	to
execute	the	class	file:

java	-cp	mqtt-client-0.4.0.jar;.	PahoMqttSubscribe

NOTE	Don’t	forget	to	enter	the	semicolon	and	period	that	follow	the	.jar	extension.	The
program	will	not	run	unless	you	have	those	in	the	command.

Figure	11-10	shows	the	Raspberry	Pi	terminal	window	with	data	streaming	from	the
MQTT	broker.

FIGURE	11-10	Raspberry	Pi	subscriber	client	terminal	screen

This	last	step	completes	the	initial	M2M	demonstration	project.	To	recap,	I	showed
you	how	to	first	set	up	a	BBB	as	a	publisher	client,	which	streamed	temperature	data	to	a
MQTT	broker.	The	BBB	was	running	a	Python	program	for	this	function.	I	next	showed
you	how	to	set	up	a	Raspberry	Pi	as	a	subscriber	client	using	a	Java	program.	The	Pi	was
connected	to	the	same	MQTT	broker	as	the	BBB	and	was	thus	able	to	receive	the	data
messages	from	the	BBB	via	the	broker.	This	was	made	possible	by	an	MQTT	callback

method	named	messageArrived.	The	next	part	of	this	M2M	demonstration	project	is	to
slightly	expand	the	subscriber	Java	class	such	that	it	can	undertake	some	automatic	actions
based	on	the	received	data	messages.

MQTT	Two-Phase	Thermostat
The	two-phase	thermostat	in	the	section	title	refers	to	a	unit	that	can	either	start	heating

or	cooling	depending	upon	the	measured	temperature	in	the	monitored	space.	In	this
section,	I	will	show	you	how	to	establish	two	set	points,	which	will	cause	cooling,	heating,
or	no	action	based	upon	the	received	MQTT	temperature	data.	The	PahoMqttSubscribe
Java	class	will	be	modified	to	incorporate	this	new	controller	application.	I	also	renamed
the	class	to	PahoMqttSubscribe1	to	distinguish	it	from	the	original,	non-controller
version.	The	major	change	to	the	original	class	was	to	import	the	pi4j	library,	which
provides	the	capability	to	control	the	Pi’s	GPIO	pins.	I	have	already	shown	you	a	project
in	Chapter	4,	which	also	used	the	pi4j	library.	In	that	chapter,	I	provided	an	overview	of
the	pi4j	library	and	some	of	the	important	features	it	provides	for	Java	project
development.	I	would	urge	you	to	go	back	and	review	that	chapter’s	content	to	refresh
your	knowledge	of	this	important	library.

You	will	need	to	download	and	install	the	pi4j	library	in	order	to	compile	the
modified	Java	class.	You	can	either	follow	my	original	instructions	given	in	Chapter	4	or
use	the	following	guidance,	which	accomplishes	the	same	goal	but	uses	a	slightly	different
approach.

1.	Enter	the	following	command	in	the	Pi	terminal	window:
sudo	wget	http://pi4j.googlecode.com/files/pi4j-0.0.5.deb

2.	Install	the	newly	downloaded	code	by	entering	the	following:
sudo	dpkg	-i	pi4j-0.0.5.deb

The	modified	Java	class	is	now	named	PahoMqttSubscribe1	and	is	listed	here:

I	have	really	only	added	some	new	functionality	to	the	messageArrived	method
where	the	payload	value	is	compared	to	two	preset	values	in	order	to	determine	which
GPIO	pins	are	set	to	a	HIGH	value.	The	logic	is	simple:	If	the	payload	value	is	80	or	higher,
turn	on	GPIO_17,	which	is	theoretically	connected	to	a	relay	module	controlling	an	air
conditioner	for	cooling	purposes.	If	the	payload	value	is	60	or	lower,	turn	on	GPIO_18,
which	likewise	is	theoretically	connected	to	a	relay	module	controlling	a	heater.	Of	course,
if	the	temperature	is	between	60	and	80,	do	nothing	as	that	is	the	desired	comfort	zone.
The	set	points	of	60	and	80	are	purely	arbitrary	but	I	did	need	some	concrete	values	to	test
the	system.

If	you	examine	the	code	listing,	you	will	see	that	I	added	some	println	statements	in
the	control	logic,	which	will	allow	me	to	display	the	GPIO	control	states	on	the	Pi’s
terminal	window.	Figure	11-11	shows	the	system	in	operation	and	the	state	changes	as	I
either	added	some	heat	to	the	tmp36	sensor	by	holding	it	or	cooled	it	by	touching	an	ice
cube	to	the	sensor.	I	also	changed	the	measurement	interval	to	5	seconds	in	order	to	give
myself	enough	time	to	change	the	sensor	temperature	without	the	intentionally	changed
temperatures	scrolling	off-screen.

FIGURE	11-11	Two-phase	thermostat	terminal	display

This	last	figure	concludes	this	M2M	demonstration	project	where	there	were	only
computers	“talking”	to	computers	without	any	human	intervention.	This	was	a	simple
example	of	two	computers	communicating	with	each	other	using	the	standardized
messaging	MQTT	protocol.	There	was	also	an	intermediate	message	broker	involved,
which	received	data	messages	from	a	publisher	client	and	then	passed	them	on	to	a
subscriber	client.	Many	clients	can	subscribe	to	a	broker,	but	only	the	messages	they	are
interested	in	are	sent	to	them.	They	show	their	interest	by	subscribing	to	a	specific	set	of
topics	and	subtopics.

This	messaging	project	is	only	one	of	many	M2M	projects	that	have	been	developed
to	date.	It	is	an	exciting	area,	which	promises	to	have	many	new	and	interesting	projects
available	for	developers	and	experimenters	now	and	in	the	not-too-distant	future.

Summary
The	overall	concept	of	machine-to-machine	(M2M)	communications	was	initially

introduced	along	with	a	standardized	message	protocol	named	MQTT.	I	explained	that	I
would	use	a	simple	temperature	sensor	connected	to	a	BBB	to	send	data	to	a	Raspberry	Pi
via	a	MQTT	broker.	The	first	part	of	the	demonstration	would	have	the	Pi	only	displaying
the	temperature	data	sent	to	it.	In	the	second	part	of	the	demonstration,	the	Pi	would
execute	some	control	action	based	upon	a	received	data	value.

I	first	demonstrated	how	the	BBB	functioned	with	the	tmp36	temperature	sensor
before	going	into	the	actual	MQTT	portion	of	the	project.	The	tmp36	would	be	the	data
source	for	the	MQTT	messages.

A	section	on	MQTT	brokers	followed	in	which	I	explained	their	purpose	and	also
provided	a	table	of	all	the	public	brokers	that	were	currently	operating.	I	also	explained
the	very	public	nature	of	the	non-SSL	MQTT	messaging	scheme	and	how	your	data	is
readily	available	to	be	accessed	by	anyone	using	the	broker	website.

The	Python	temperature	sensor	program	was	next	modified	to	incorporate	MQTT
messaging.	I	demonstrated	how	to	use	an	HTTP	bridge	website	to	view	the	published	data
without	the	need	for	an	actual	operating	client	subscriber.

A	Raspberry	Pi	was	next	used	to	implement	a	Java-based	subscriber	client.	This
client	displayed	the	temperature	being	sent	from	the	BBB	on	a	terminal	window.

The	Raspberry	Pi	client	was	then	modified	to	trigger	some	GPIO	pins,	which
simulated	a	two-phase	thermostat.	A	cooling	system	would	be	activated	when	the	received
temperature	value	exceeded	80	°F.	Likewise,	the	heating	system	would	be	activated	if	the
temperature	value	fell	below	60	°F.	I	used	println	statements	within	the	control	logic	to
show	the	control	actions	on	the	terminal	window.

Index
Please	note	that	index	links	point	to	page	beginnings	from	the	print	edition.	Locations

are	approximate	in	e-readers,	and	you	may	need	to	page	down	one	or	more	times	after
clicking	a	link	to	get	to	the	indexed	material.

	A	
Abstract	Factory	DPs,	119

abstractions	in	OOP,	78–79

acid-free	solder	flux,	44

Adafruit_BBIO	library,	291,	312

ADC	(analog	voltage	to	digital	converter)

MCP3008	chip,	42,	47
moisture	sensing	subsystem,	225–228
temperature	sensor	network,	39–41

addListener()	method,	119

Advanced	Options	menu,	11–12

Aggregation	relationship	concept,	81

analog	voltage	to	digital	converter	(ADC)

MCP3008	chip,	42,	47
moisture	sensing	subsystem,	225–228
temperature	sensor	network,	39–41

Angstrom	OS

BBB,	269,	302–305
versions,	274

Apache	web	server,	22–26

apt-get	command,	16,	23

Arch	menu	selection,	9

Arduino	projects.	See	garage	door	opener	project;	irrigation	control	system;	lighting
controller

Ashton,	Kevin,	1

AT	Modem	mode	for	XBee	radios,	240–241

ATMEGA328P	microprocessor,	174

atomic	methods,	98

attributes	in	OOP,	81

authentication	in	VNC,	20–22

auto	starting	applications,	302–305

	B	
backups,	11

bandwidth	of	IC2	interface,	122

base.html	file,	282–283

BeagleBone	Black	(BBB)	message	controller,	267

BBB	platform,	269–274
boards,	267–269
connections	and	operations,	271–274
Flask	platform,	280–281
GPIO	pins,	275–276
LCD	display,	277–278,	284–285
LCD	operational	test,	279–280
Linux	distribution	for,	274
main	application,	281–283
software,	281
test	results,	284–287

BeagleBone	Black	(BBB)	with	cloud	service,	289

Adafruit_BBIO	library,	291
auto	starting	application,	302–305
case,	305–306
data	channels,	297–302
temperature	sensor,	289–290,	297–300
test	program,	291–292
Xively	cloud	service,	292–297

binding,	92–93

blink	programs

garage	door	opener	project,	177–179,	197–198
home	weather	station,	116–121

BlinkGpioExample	class,	118–119

BMP180	sensor	chip

calibration,	131
description,	122
registers,	126–127

boards

BBB,	267–269
garage	door	opener	project,	173–176
lighting	controller,	247,	250

braces	({})	in	Java,	83

breadboards

cloud	service	project,	289,	305
garage	door	opener,	189
home	temperature	monitoring	system,	45,	50–51
home	weather	station,	120,	124
irrigation	control	system,	207,	217,	224
lighting	controller,	247,	250
message	controller,	277
Pi	Cobbler,	4,	43

brokers	in	MQTT,	310,	315–317

./build	command,	116

Build	Solution	command,	197

Build	Your	Own	Quadcopter,	158,	216

Building	Wireless	Sensor	Networks:	with	ZigBee,	XBee,	Arduino,	and	Processing,	240

bus	networks,	122

	C	
cables

camera,	157,	159–160
cloud	service	project,	298,	306
garage	door	opener,	176,	189,	195
home	temperature	monitoring	system,	50–51
home	weather	station,	109,	120
irrigation	control	system,	213–215,	214–215
lighting	controller,	247
machine-to-machine	communications,	312
message	controllers,	270–273
multiple	sensor	system,	51
Pi	Cobbler,	4
Raspberry	Pi,	5,	7,	16

callback	methods,	319

camera	in	webcam	project

Motion	software,	169–171
overview,	158–160

Python	with,	163–165
remote	viewing,	165–169
software,	160–163

camera	serial	interface	(CSI)	connector,	158–159

Cancel	option,	13

case

cloud	service	project,	305–306
lighting	controller,	246–250
XBee	receiver	node,	251–252

case	sensitivity	in	SQL,	28

cd	command,	47,	73

channelLocation	table,	56–57

ChannelSelector.html	program,	69

child	classes,	84–93

chipset	pin	labeling,	108

classes

child,	84–93
home	weather	station,	142–150
names,	83
OOP,	77–79

clean	flag	in	MQTT	protocol,	311

clock	cycles	for	interrupts,	115

clock	frequency	of	MCP3008	chip,	42

cloud	service.	See	BeagleBone	Black	(BBB)	with	cloud	service

CodeWarrior	ELF	Debug	Executable	type,	197

columns	in	databases,	27

CommandBehavior	interface,	87–90

commas	(,)	in	IP	addresses,	182

Comparators

Digital	to	Analog	Converters,	41
MCP3008	chip,	41

composite	video	outputs,	5

composition	in	OOP,	81

config.txt	file,	14

Configuration.h	file,	199–201

Connection	Manager,	195–196

Connection	object,	102–103

connections

camera,	160
cloud	service	project,	289–290,	297–298
database,	58–60,	98–104
garage	door	opener	project,	179–187
irrigation	control	system,	214–215
machine-to-machine	communications,	311,	314
MCP3008	chip	with	Pi	Cobbler,	43–56
message	controller,	271–274
sensors,	123–125

constructors,	85

controller	node

lighting	controller,	243–245
system	software,	255–262

controller	node	case	for	lighting	controller,	246–250

converters

ADC.	See	analog	voltage	to	digital	converter	(ADC)
HDMI	to	VGA,	5

Coordinator	node	for	XBee	networks,	241

CREATE	DATABASE	command,	28,	57

CREATE	TABLE	command,	29,	57

CREATE	USER	command,	33,	58

CSI	(camera	serial	interface)	connector,	158–159

	D	
DAC	(Digital	to	Analog	Converter),	41

Dallas_18B20	class,	84–85

dashboard	for	MQTT,	317–319

data	channels	in	BeagleBone	Black	with	cloud	service,	297–302

Data	Partition	menu	selection,	9

databases

home	weather	station	access,	150–151

home	weather	station	classes,	142–150
Java	connections,	98–104
MySQL	installation,	27–28
temperature.	See	temperature	database

DataBehavior	interface,	87–89,	128

DATE	function,	30

DELETE	command,	30–32

Design	Patterns,	91

design	patterns	(DPs),	91,	119

Device	Tree	Overlay,	276

device	under	test	(DUT)	standard,	183

DHCP	protocol,	16

DhcpAddressPrinter	program,	179

differential	mode	for	MCP3008	chip,	41

Digi	International	transceivers,	240–241

Digital	to	Analog	Converter	(DAC),	41

digitally	controlled	soldering	workstations,	43–44

digitalWrite()	method,	179

disabling	interrupts,	114

display	serial	interface	(DSI),	159

displaySP.php	program,	139–140

doDemo()	method,	319–321,	324

dpkg	package	manager,	116

DPs	(design	patterns),	91,	119

drivers,	3

DSI	(display	serial	interface),	159

DUT	(device	under	test)	standard,	183

dynamic	binding,	92–93

	E	
early	binding,	92

Earth	Conductivity	(EC),	221

Eclipse	IDE,	81–83

Eclipse.org	foundation,	309

EDIMAX	EW-7811Un	adapter,	6–7

Elev-8	quadcopter,	158

.elf	file	extension,	197

encapsulation	in	OOP,	79–81

End	node	for	XBee	networks,	241

/etc/motion/motion.conf	file,	156

eth_websrv_SD_Ajax_in_out_r1	program,	255–262

eth0	device,	24

Ethernet	connectivity	in	irrigation	control	system,	209

Ethernet	library,	180–181

Ethernet	Shield

garage	door	opener	project,	175–176,	179–187
irrigation	control	system,	207
lighting	controller	node,	243–246
soil	moisture	sensors,	224

exceptions,	104

executeUpdate()	method,	103

execution	paths,	94

EXIT	command	in	MySQL,	99

ExpandedTest.py	program,	298–300

ExpandedXively.py	program,	300–302

Explorer	USB	module,	242

extends	keyword,	84

	F	
Faludi,	Robert,	240

FETs	in	irrigation	control	system,	208

fields	in	databases,	27–28

FillDB2	class,	144–146

Flask	platform

home	temperature	monitoring	system,	71–74
message	controller,	280–281

FLUSH	PRIVILEGES	command,	33,	58

formatting	SD	cards,	8–10

forName()	method,	102

Freescale	MC13192,	218–219

FTDI	driver	utility,	243

full	duplex	communication	in	MCP3008	chip,	42

	G	
Garage_Door_Open.ino	program,	191

garage	door	opener	project,	173

Arduino	Uno	development	board,	173–175
Arduino	Uno	software,	176–179
connections,	179–187
enhanced,	198–202
Ethernet	Shield	board,	175–176
LED	program,	189–194
simplified	opener,	188–189
testing,	202–203
Visual	Studio	2012	LED	blink	program,	197–198
Visual	Studio	2012	package,	194–196

Garage	Door	Opener.sln	file,	198

general	purpose	input	output	(GPIO),	3–5

development	station,	5–8
home	weather	station,	107–111
irrigation	control	system,	207–208
message	controller	pins,	275–276
pin	expansion,	112–113
pin	labeling,	108–111
pins,	4

GET	method,	69

getCal()	method

XferPres,	134–135
XferTemp,	130–131

getConnection()	method,	103

getData()	method,	84–87,	89

Getting	Started	with	Beaglebone:	Linux-Powered	Electronic	Projects	with	Python	and
Javascript,	273,	293

Getting	Started	with	Raspberry	Pi,	71

getUT()	method,	129,	131

gold	plated	electrical	contact	surfaces,	45

GPIO.	See	general	purpose	input	output	(GPIO)

GpioController	object,	119

GpioPinListenerDigital	class,	119

GRANT	ALL	PRIVILEGES	command,	33,	58

graphics	in	headless	configuration,	19–22

Grinberg,	Miguel,	165

GUI,	11,	13

	H	
Hammel,	Ben,	279

handleGpioPinDigitalStateChangeEvent()	method,	119

handler	code	for	interrupts,	114

hardware	for	MCP3008

setup	for	testing,	45
shift	registers,	42

“has	a”	relationships,	81

Hawkins,	Matt,	45,	49

HD44780	controller	chip,	277–278

HDMI

BBB	platform,	270
development	station,	5

headless	configuration,	16–22

headless	setup,	7–8

hello-flask.py	script,	72

hello-template.py	script,	73–74

Hello	World	program

Flask	platform,	72–74
Java,	82–83
PHP,	25

HelloArduino	project	screen,	197–198

HIGH	level	interrupt	triggering,	114

HIGH	to	LOW	transition	interrupt	triggering,	114

Hitachi	HD44780	controller	chip,	277–278

home	temperature	monitoring	system,	37

Flask	platform,	71–74
MCP3008	connections	and	testing,	43–56
Serial	Peripheral	Interface,	42–43
temperature	database,	56–71
temperature	sensor	network,	37–41

home	weather	station,	107

database	classes,	142–150
GPIO	pin	expansion,	112–113
interrupts,	114–115
Java	and	GPIO,	107–111
LED	blink	program,	116–121
Pi4J	library,	115–116
remote	database	access,	150–151
remote	thermostat	setting,	138–150
sensors,	122–125
software,	125–136
thermostatic	application,	136–138

HomeTempData	database,	60–65

HomeTempSystem	database,	56–58

HTML	code	for	message	controller,	282–283

HTTP	bridge,	316–317

HTTP	Request	Log	window,	297

httpd	daemon,	22

HWSDB	database,	147–148

	I	
I2C	(Inter-Integrated	Circuit)	protocol,	122–123

i2cdetect	command,	126

ICSP	sockets,	244–245

ifconfig	command,	24

image	files,	13–16

implements	keyword,	90

include	file	list,	199

include	statements,	186

inheritance

OOP,	79–80
threads,	94

initialization	code	for	interrupts,	114

Input	Channel	Multiplexers,	41

INSERT	statements,	30,	58

installation

irrigation	control	system,	213–215
MySQL	database,	27–31

instantiation	of	objects,	79

Instructable	project,	169

Inter-Integrated	Circuit	(I2C)	protocol,	122–123

interfaces

OOP,	81
threads,	94

Internet	enabled	garage	door	opener	project.	See	garage	door	opener	project

interrupt	service	routine	tables,	114

interrupts,	114–115

IP	addresses

database	reports,	69
Ethernet	connections,	179,	186
Ethernet	Shield,	180
finding,	68
Flask	platform,	74
garage	door	opener,	193,	202
headless	setup,	7,	16
irrigation	control	system,	209,	216
Pi	browser,	23–24
PuTTY	program,	17
VNC	Server,	19
webcam	project,	157,	166,	170
WebServer,	181–182,	186

Irrigation_Control_r1	program,	231–234

irrigation	control	system,	205

design,	205–208
enhancements,	236–238
installation,	213–215

moisture	sensing	subsystem,	216–235
operating,	216,	235
program,	209–212

“is	a”	relationships,	81

	J	
Java	language

child	classes,	84–93
database	connections,	98–104
and	GPIO,	107–111
home	weather	station,	126–136
Java	SDK,	81–83
OOP	overview,	77–81
Raspberry	Pi	subscriber	client,	319–322
Sensor	class,	83–84
threads,	94–98

Java	Software	Development	Kit	(SDK),	81–83

JDBCExample	class,	101–102

Jones,	Dave,	163

jumper	wires

garage	door	opener,	182–183
home	temperature	monitoring	system,	45
irrigation	control	system,	226,	229
kits,	4–5
lighting	controller,	242,	250,	262–263
message	controller,	277,	279
moisture	sensors,	226,	229

	K	
K400	keyboard/mouse	device,	6–7

key	fobs	in	lighting	controller,	248–250

keyboards,	5–7

	L	
LAMP	project

Apache	web	server	and	PHP,	22–26
components,	22
IP	addresses,	17
passwords,	27

late	binding,	92

LCD	display	for	message	controller

operational	test,	279–280
setting	up,	277–278
test	results,	284–285

lead-free	solder,	44

LEDs	and	LED	programs

garage	door	opener	project,	Blink	program,	177–179,	197–198
garage	door	opener	project,	connecting,	184
garage	door	opener	project,	modified,	189–194
garage	door	opener	project,	turning	on,	187
home	weather	station,	116–121
irrigation	control	system,	208,	236
lighting	controller	node,	255,	263–264
moisture	sensors,	228–229
thermostatic	application,	137
XBee,	220

libv4l	entry,	166

Light,	Roger,	315

lighting	controller,	239

controller	node,	243–245
controller	node	case	and	mounting,	246–250
enhancements,	264
Ethernet	Shield,	245–246
operational	tests,	263–264
PowerSwitch	Tail	II,	253–255
system	design,	239–240
system	software,	255–263
XBee	receiver	node,	250–253,	262–263

Lightweight	X11	Desktop	Environment	(LXDE)

description,	20–21
display,	11,	13

line	continuation	mode	in	MySQL,	28

Linux	distribution	for	BBB,	274

localhost	operation	in	Motion	package,	157

Log	window	in	Xively	cloud	service,	297

Logitech	C920	webcam,	153–154

Logout	option,	13

loop()	method

garage	door	opener	project,	178–179,	185–187,	191–192
irrigation	control	system,	210–211,	226,	228,	231–232
lighting	controller	node,	257–259,	262

LOW	level	interrupt	triggering,	114

LOW	to	HIGH	transition	interrupt	triggering,	114

lsmod	command,	47

lsusb	command,	153–154

LXDE	(Lightweight	X11	Desktop	Environment)

description,	20–21
display,	11,	13

	M	
mac	addresses,	182,	186

machine-to-machine	(M2M)	communications,	1,	309.	See	also	MQTT	protocol

main.html	file,	74

Martinsen,	Paul,	198

MC13192	RF	transceiver,	218–219

McKee,	Erik,	279

MCP3008	chip

connections	and	testing,	43–56
overview,	39–41
Serial	Peripheral	Interface,	42–43

md	command,	47

MegunoLink	Pro	package,	195

memory	for	BBB	platform,	269–271

message	controllers.	See	BeagleBone	Black	(BBB)	message	controller

Message	Queuing	Telemetry	Transport,	309

messageArrived()	method,	320,	322–324

metadata	for	camera,	161–162

methods

OOP,	81
synchronization,	98

MJPG	Streamer	application,	165–169

mkdir	command,	47,	73

moisture	sensing	subsystem

design,	222–225
software,	225–235
soil	moisture	sensors,	221–235
XBee	technology,	216–220

Molloy,	Derek,	276

Monk,	Simon,	173,	291

Mosquito	project,	315

motion.conf	file,	170

Motion	software,	155

features,	155
setup,	155–157
webcam	project	camera,	169–171

mounting

lighting	controller,	246–250
XBee	receiver	node,	251–252

mouse,	5–7

MQTT	protocol

brokers,	310,	315–317
dashboard,	317–319
description,	309–310
features,	313–315
publisher	clients,	311–313
Quality	of	Service,	310–311
Raspberry	Pi	subscriber	client,	319–322
reconnecting,	311
two-phase	thermostat,	323–325
wills,	311

mqttc.connect	statement,	314

mqttc.loop_start()	statement,	314

MQTTCallback	interface,	319

MqttConnectionsOptions	class,	311

MqttMessage	type,	320

mqttTMP36.py	program,	317

multi-drop	networks,	122

multiple	sensor	system

building,	49–53
software,	53–56

MultipleSensorTest.py	program,	53–56

MySQL	database

home	temperature	monitoring	system,	57–71
home	weather	station,	142–150
installing,	27–31
testing,	98–100
users,	31–34

mysqlTest.py	program,	58–60

	N	
names

classes,	83
database	fields,	28

nano	editor,	25,	156

native	pin	labeling,	108

new	operator,	79

new	state	of	threads,	97

next()	method,	104

NOOBS	software,	8–11

ntpdate.service	file,	304

null	databases,	33

NULL	values	in	MySQL,	29

	O	
object	orientation	programming	(OOP).	See	Java	language

OpenELEC	menu	selection,	9

OperateHWS	class,	149

operational	tests	for	lighting	controller,	263–264

optoisolators	in	lighting	controller	node,	255

@Overide	annotation,	119

oxidation,	45

	P	
Pachube	company,	292–293

Paho	project,	309

PahoMqttSubscribe	class,	319–323

PahoMqttSubscribe1	class,	323

PANs	(personal	area	networks),	220,	242

passwords

garage	door	opener	project,	198–202
headless	configuration,	17,	19–20
HWS	database,	150–151
in	installation,	10–11
LAMP	project,	27
MySQL,	33,	57–58
VNC	Server,	19–20

performCommand()	method,	89,	93

performData()	method,	89

personal	area	networks	(PANs),	220,	242

PHP	scripting	language,	22–26

Pi	Cobbler	tool

adapter,	4
assembling,	43–44
home	temperature	monitoring	system,	45–46
home	weather	station,	120,	124

pi4j	library

home	weather	station,	110–113,	115–116,	120–121
two-phase	thermostat,	323

Pidora	menu	selection,	9

pins,	GPIO,	4

expansion,	112–113
labeling,	108–111
message	controller,	275–276

pip	package	manager

Flask	platform,	72
functions,	280–281

PiThermostat	class,	137–138

polling,	114–115

polymorphism	in	OOP,	79

POST	method,	69

power	and	power	supplies

BBB,	272
garage	door	opener,	177,	179,	195
home	weather	station,	111,	123
irrigation	control	system,	207,	213–215
lighting	controller,	247–248,	253–255
message	controller,	271–274
requirements,	5–6

powered	garage	door	opener	project.	See	garage	door	opener	project

PowerSwitch	Tail	II	device,	253–255

println()	method

garage	door	opener	project,	187
JDK,	83

private	scope	in	OOP,	80

privileges,	33

ProcessCheckbox()	method,	187

processes,	94

Program	Device	Visualizer,	197–198

Programming	Arduino:	Getting	Started	with	Sketches,	173

projects,	creating,	197

properties	in	Python,	164–165

protected	scope	in	OOP,	81

PT2272	chip,	250

public	methods	in	in	OOP,	81

PUBLISH	function,	317

publisher	clients,	311–313

PuTTY	program

headless	configuration,	16–17
message	controller,	273

Python	connections	for	temperature	database,	58–60

Python	Index	(PyPI)	repository,	72,	280–281

python-mysqldb	package,	58–60

python-picamera	library,	163

	Q	
Quality	of	Service	(QoS)	in	MQTT	protocol,	310–311

quit	command	in	MySQL,	99

	R	
Raspberry	Pi	platform,	2

GPIO,	3–5
headless	configuration,	16–22
image	files,	13–16
MQTT	subscriber	client,	319–322
software	setup,	8–13

Raspberry	Pi	Projects	for	the	Evil	Genius,	2

Raspberry	Pi	camera

Motion	software,	169–171
overview,	158–160
Python	with,	163–165
remote	viewing,	165–169
software,	160–163

Raspbian	menu	selection,	9–10

RaspBMC	menu	selection,	9

raspi-blacklist.conf	file,	46,	125

raspi-config	menu,	10,	12,	160

raspistill	command,	160–161,	163

raspivid	command,	162–163

read()	method

DataBehavior,	128
XferPres,	133–135
XferTemp,	129–131

readFile()	method,	141–142

Reboot	option,	13

receiver	node	in	XBee,	250–253

Receiver_Test1	program,	262–263

Receiver_Test2	program,	263

receivers	in	lighting	controller,	248–250

reconnecting	in	MQTT	protocol,	311

records	in	databases,	27–28

registers	in	BMP180,	126–127

relational	databases,	27

relays

garage	door	opener,	189–190
irrigation	control	system,	207–208,	213

remote	database	access	in	home	weather	station,	150–151

remote	thermostat	setting,	138–150

remote	viewing	in	webcam	project,	165–169

RemotePiThermostat.java	program,	140–142

reports	for	temperature	database,	69–71

restart	command

Motion	package,	156
MySQL,	99
web	server,	23

RF	receivers	for	lighting	controller,	248–250

RF	transmitters	for	lighting	controller,	248–249

ribbon	cable	in	irrigation	control	system,	214–215

Richardson,	Matt

Getting	Started	with	Beaglebone:	Linux-Powered	Electronic	Projects	with
Python	and	Javascript,	273,	293
Getting	Started	with	Raspberry	Pi,	71

RISC	OS	menu	selection,	9

RJ45	breakout	board,	50–51

Router	node	for	XBee	networks,	241

rows	in	databases,	27

run()	method,	94–95

Runnable	interface,	94–95

runnable	state	for	threads,	97

running	state	for	threads,	97

	S	

S1	firmware,	240–241

S2	firmware,	240–241

safety	features	for	garage	door	opener,	193

Sample	and	Hold	circuit	in	MCP3008	chip,	41

SAR	(Successive	Approximation	Register)	technique,	39,	41

Savage,	Robert,	115–116

scavix	(user),	169

scope	in	OOP,	80

screws	for	lighting	controller	mounting,	247–248

SD	cards

BBB	platform,	269–271,	274
headless	configuration,	8
Raspberry	Pi	setup,	8–11

SDK	(Java	Software	Development	Kit),	81–83

SELECT	command,	31

semicolons	(;)	in	MySQL,	28

SEN-11824	breakout	board,	122–124

SEN_11824	class,	127–128

SEN_12064	class,	85

sendCommand()	method,	84–87

Sensor	class

code,	83–84
diagram	with	interfaces,	87–89
home	weather	station,	127

SensorDatabase.py	program,	60–62

sensors

cloud	service,	289–290,	297–300
home	temperature	monitoring	system,	37–41
home	weather	station,	122–125
irrigation	control	system,	221–235

sensorTemp	table,	56–57

serial	peripheral	interface	(SPI)	protocol,	39,	42–43

setCallback()	method,	320

setCommandBehavior()	method,	91–92

setDataBehavior()	method,	91–92

setDescription()	method,	84

setLEDs()	method,	259–260

setName()	method,	84

Setup	Arduino	Build	Tool,	195–196

setup()	method

BBB,	294
garage	door	opener	project,	178–179,	185–187,	191
irrigation	control	system,	210,	225–226,	228,	231
lighting	controller	node,	256–257,	262

setWill()	method,	311

SGL/DIFF	bit,	42

shift	registers	in	MCP3008	chip,	42

SHOW	TABLES	command,	29

Shutdown	option,	13

single-ended	mode	in	MCP3008	chip,	41

SingleSensorTest.py	program,	47–49

sleep	periods	for	threads,	97

smartphones	in	garage	door	opener	project,	193–194

SNAPSHOT,	115–116

software

BeagleBone	Black	message	controller,	281
garage	door	opener	project,	176–179
home	weather	station,	125–136
lighting	controller,	255–263
MCP3008	testing,	45–49
moisture	sensors,	225–235
multiple	sensor	system,	53–56
Raspberry	Pi	camera,	160–163
Raspberry	Pi	setup,	8–13

soil	moisture	sensors,	221–235

solar	panels,	224

soldering	tips,	43–45

solenoids	in	irrigation	control	system,	207,	213–214

Sparkfun	Explorer	USB	module,	242

SPData.txt	file,	140

SPI	(serial	peripheral	interface)	protocol,	39,	42–43

SPInput.php	program,	139

SSH	over	Ethernet	mode,	273–274

SSH	over	USB	mode,	273

SSH	protocol

BBB,	272–274
PuTTY	program,	16–17,	19

stack	traceback,	104

standalone	mode	in	BBB,	271

standalone	setup,	5–7

start	command

child	classes,	87
Motion	package,	156

START.htm	file,	272

start	topology,	241

StartExtendedHumidDataOnTheFly	class,	92–93

StartExtendedTempDataOnTheFly	class,	92–93

Statement	object,	102–103

static	binding,	92

still	modes	for	Raspberry	Pi	camera,	160

stop	command

Motion	package,	156
MySQL,	99

stop_recording()	method,	165

store()	method,	148

StrClear()	method,	261

StrContains()	method,	261–262

SUBSCRIBE	function,	317

subscribe()	method,	320

subscriber	client	in	Raspberry	Pi,	319–322

Successive	Approximation	Register	(SAR)	technique,	39,	41

sudo	command,	16,	23

sudocp	command,	170

sudonano	command,	156

synchronization	methods,	98

system	software	for	lighting	controller,	255–263

systemctl	command,	303–304

	T	
tasks,	94

temperature	database

creating,	56–58
inserting	data	in,	60–65
Python	connections,	58–60
reports,	69–71
web	browser	access	to,	65–68

temperature	monitoring	system.	See	home	temperature	monitoring	system

temperature	sensor

cloud	service,	289–290,	297–300
home	temperature	monitoring	system,	37–41

templates	in	Flask,	73

TempSensorTest.php	script,	66–68

TempSensorTestChan.py	script,	70

TestCamera.py	script,	163–164

tests

cloud	service	project,	291–292
garage	door	opener	project,	202–203
lighting	controller,	263–264
MCP3008	chip,	43–56
message	controller,	284–287

TestSensors	class,	85–86

TestSensorsWithInterfaces	class,	90–91

TestSensorsWithInterfacesDynamic	class,	92–93

TestTemp	class,	144

TestTemp1	class,	135–136

thermostat

home	weather	station,	136–138

remote	setting,	138–150
two-phase,	323–325

Thread	class,	95

ThreadDemo	class,	94–96

threads

Motion	package,	155
overview,	94–98

TightVNC	viewer,	19–21

TIME	function,	30

TMP36.py	program,	291–292,	311–313

TMP36	sensor

cloud	service	project,	289–290,	297–300
home	temperature	monitoring	system,	37–39

transceivers	in	irrigation	control	system,	216–217

transfer()	method,	87

transformers	in	irrigation	control	system,	207,	214–215

transistors	in	garage	door	opener	project,	189–190

transmitters	for	lighting	controller,	248–249

Transparent	mode	for	XBee	radios,	240–241

triggering	interrupts,	114

try	blocks,	104

two-phase	thermostat,	323–325

	U	
Ubiquitous	Computing,	1

Unified	Modeling	Language	(UML)	standards,	79–80

Uno	board	in	lighting	controller,	247,	250

Uno	control	program	for	irrigation	control	system,	208

update	command,	23

updating

images,	16
Linux	software,	23

upgrading

images,	16

Linux	software,	23

Upton,	Eben,	2

USB	tether	mode	for	BBB,	272

USE	command,	57

usernames,	10,	17

users	for	MySQL	database,	31–34

“Using	Eclipse	Paho’s	MQTT	on	BeagleBone	Black	and	Raspberry	Pi”	article,	309

	V	
VALUES	expression,	30

VGA	converter	modules,	5

video	capture	for	webcam	project,	162–163

video	modes	for	Raspberry	Pi	camera,	160

video	outputs,	5

ViewRecords.py	program,	63–66

Virtual	Com	drivers,	243

virtual	networking	connection	(VNC)	suite,	19–20

Visual	Studio	2012	package,	194–198

VNC	(virtual	networking	connection)	suite,	19–20

vncserver	command,	19

volatile	modifier,	115

	W	
W5100	chip,	175–176

Walker-Morgan,	D.	J.,	309

water	solenoids	in	irrigation	control	system,	207,	213–214

weather	station.	See	home	weather	station

web	browser	access	to	temperature	database,	65–68

web	server	in	Motion	package,	155

webcam	project,	153–154

camera	and	Python,	163–165
camera	overview,	158–160
camera	software,	160–163
Motion	package,	155–157,	169–171
remote	viewing,	165–169

viewing	in,	157–158

webLCD.py	program,	281–283

WebServer	program,	180–182

Wheezy	distribution,	269

WHERE	phrase,	69–71

wills	in	MQTT	protocol,	311

Win32DiskImager	application,	14,	274

wireless	Wi-Fi	adapters,	6–7

wiring	connections	for	sensors,	123–125

Wiznet	W5100	chip,	175–176

“write	once,	run	every”	(WORE)	philosophy,	107

“Writing	to	an	LCD	screen	with	the	Beaglebone”	article,	279

	X	
X-CTU	tool,	241–243

X-Windowing	system,	11

X11	Remote	Desktop	Protocol,	19

XBee	networks	and	technology

irrigation	control	system,	216–220
lighting	controller,	nodes	overview,	239–240
lighting	controller,	receiver	nodes,	250–253,	262–263
lighting	controller,	shield,	243–245
overview,	240–242

XBee	Pro	SB	module,	218

XBeeRecrTest	program,	227–229

XbeeXmit	program,	225–227

XferPres	class

home	weather	station,	131–135
remote	thermostat	setting,	143

XferTemp	class

home	weather	station,	128–131
remote	thermostat	setting,	143

Xively	cloud	service,	292–293

BBB	program,	294–295
developer’s	account,	293

website,	295–297

Xively	Developer	Workbench,	293

xively-logger.service,	302–303

xively-temp.py	program,	294–295

XML_response()	method,	260–261

xrdp	suite,	19

	Z	
ZigBee	networks,	241

Table	of	Contents
Title	Page

Copyright	Page

Dedication

About	the	Author

Contents	at	a	Glance

Contents

Acknowledgments

Introduction

1	Introduction	to	the	Internet	of	Things

Raspberry	Pi	Platform
Raspberry	Pi	GPIO
Establishing	a	Raspberry	Pi	Development	Station
Standalone	Setup
Headless	Setup
Setting	Up	the	Raspberry	Pi	Software
Setting	Up	the	Raspberry	Pi	OS	Using	an	Image	File
Updating	and	Upgrading	the	Raspbian	Image
Headless	Configuration
Headless	Operation	with	Graphics
The	LAMP	Project
Apache	Web	Server	and	the	PHP	Scripting	Language
MySQL	Database	Installation
Adding	a	New	User	to	a	MySQL	Database
Summary

2	Home	Temperature	Monitoring	System

Temperature	Sensor	Network
TMP36	Temperature	Sensor
Analog	to	Digital	Conversion
Serial	Peripheral	Interface
Connecting	and	Testing	the	MCP3008	with	the	Raspberry	Pi
Initial	Test
Multiple	Sensor	System
Multiple	Sensor	Software
Temperature	Database
Python	Database	Connection
Inserting	Data	into	a	MySQL	Database	Using	a	Program
Database	Access	Using	a	Web	Browser
Narrowing	the	Database	Reports
Flask

Summary

3	Introduction	to	Object	Orientation	Programming	(OOP)	with	Java

Java	Software	Development	Kit	(SDK)
The	Sensor	Abstract	Class
Child	Classes
Real-World	Controls
Threads
Java	Database	Connector
Using	the	Java	Connector	in	a	Program
Summary

4	Home	Weather	Station

Java	and	GPIO
GPIO	Pin	Labeling
GPIO	Pin	Expansion
Interrupts
Pi4J	Library
LED	Blink	Program
Weather	Station	Sensors
Sensor	Wiring	Connections
Weather	Station	Software
Java	Software
Sensor	Classes
Thermostatic	Application
Setting	the	Thermostat	Remotely
Database	Classes
Remote	Access	to	the	HWS	Database
Summary

5	Webcam	and	Raspberry	Pi	Camera	Projects

Conventional	Webcam
Motion	Software	Package
Motion	Features
Motion	Setup
Webcam	Viewing
Raspberry	Pi	Camera
Raspberry	Pi	Camera	Software
Using	Python	with	the	Raspberry	Pi	Camera
Remote	Raspberry	Pi	Camera	Viewing
Raspberry	Pi	Camera	with	Motion	Software
Summary

6	Internet-Enabled,	Arduino	Powered	Garage	Door	Opener

Arduino	Hardware
Arduino	Uno	Development	Board
Ethernet	Shield	Board

Arduino	Uno	Software
Testing	the	Ethernet	Connection
Simplified	Garage	Door	Opener
Actual	Garage	Door	Opener
Modified	LED	Program	to	Open	Garage	Door
Visual	Studio	2012	IDE
VS2012	LED	Blink	Program
Enhanced	Garage	Door	Project
Testing	the	Enhanced	Garage	Door	Opener
Summary

7	Arduino	Irrigation	Control	System

Irrigation	System	Design
Irrigation	Control	Program
Irrigation	System	Physical	Installation
Operating	the	New	Irrigation	System
Moisture	Sensing	Subsystem
XBee	Technology
Soil	Moisture	Sensor
Actual	System	Operation
Enhancements
Summary

8	Arduino	Lighting	Controller

System	Design
Controller	Node
Ethernet	Shield
Controller	Node	Case	and	Mounting	Arrangement
XBee	Receiver	Node
PowerSwitch	Tail	II
System	Software
Controller	Node	Program
XBee	Receiver	Node	1	Program
XBee	Receiver	Node	2	Program
Operational	Test
Enhancements
Summary

9	BeagleBone	Black	Message	Controller

Beagle	Boards
BeagleBone	Black
Connect	to	and	Operate	the	BBB
Downloading,	Installing,	and	Booting	a	New	Linux	Distribution
GPIO	Pins
Setting	Up	the	LCD	Display
LCD	Operational	Test

Message	Controller	Software
Download	and	Install	the	Flask	Package
Main	Application
HTML	Code
Test	Results
Summary

10	BeagleBone	Black	with	Cloud	Service

Temperature	Sensor
Adafruit_BBIO	Library
Initial	Test	Program
Xively	Cloud	Service
Xively	Developer’s	Account
BBB	to	Xively	Python	Program
Xively	Website	with	an	Active	Datastream
Adding	Additional	Data	Channels
Additional	TMP36	Sensors
Expanded	xively-temp	Program
Configuring	Angstrom	to	Auto	Start	the	Application
System	Case
Summary

11	Machine-to-Machine	(M2M)	Communications

Paho	and	Eclipse.org
MQTT
Quality	of	Service	(QoS)
Wills
Reconnecting
BBB	MQTT	Publisher	Client
Adding	MQTT	Features	to	the	Application
MQTT	Brokers
MQTT	Dashboard
Raspberry	Pi	Subscriber	Client
MQTT	Two-Phase	Thermostat
Summary

Index

	Title Page
	Copyright Page
	Dedication
	About the Author
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	1 Introduction to the Internet of Things
	Raspberry Pi Platform
	Raspberry Pi GPIO
	Establishing a Raspberry Pi Development Station
	Standalone Setup
	Headless Setup
	Setting Up the Raspberry Pi Software
	Setting Up the Raspberry Pi OS Using an Image File
	Updating and Upgrading the Raspbian Image
	Headless Configuration
	Headless Operation with Graphics
	The LAMP Project
	Apache Web Server and the PHP Scripting Language
	MySQL Database Installation
	Adding a New User to a MySQL Database
	Summary

	2 Home Temperature Monitoring System
	Temperature Sensor Network
	TMP36 Temperature Sensor
	Analog to Digital Conversion
	Serial Peripheral Interface
	Connecting and Testing the MCP3008 with the Raspberry Pi
	Initial Test
	Multiple Sensor System
	Multiple Sensor Software
	Temperature Database
	Python Database Connection
	Inserting Data into a MySQL Database Using a Program
	Database Access Using a Web Browser
	Narrowing the Database Reports
	Flask
	Summary

	3 Introduction to Object Orientation Programming (OOP) with Java
	Java Software Development Kit (SDK)
	The Sensor Abstract Class
	Child Classes
	Real-World Controls
	Threads
	Java Database Connector
	Using the Java Connector in a Program
	Summary

	4 Home Weather Station
	Java and GPIO
	GPIO Pin Labeling
	GPIO Pin Expansion
	Interrupts
	Pi4J Library
	LED Blink Program
	Weather Station Sensors
	Sensor Wiring Connections
	Weather Station Software
	Java Software
	Sensor Classes
	Thermostatic Application
	Setting the Thermostat Remotely
	Database Classes
	Remote Access to the HWS Database
	Summary

	5 Webcam and Raspberry Pi Camera Projects
	Conventional Webcam
	Motion Software Package
	Motion Features
	Motion Setup
	Webcam Viewing
	Raspberry Pi Camera
	Raspberry Pi Camera Software
	Using Python with the Raspberry Pi Camera
	Remote Raspberry Pi Camera Viewing
	Raspberry Pi Camera with Motion Software
	Summary

	6 Internet-Enabled, Arduino Powered Garage Door Opener
	Arduino Hardware
	Arduino Uno Development Board
	Ethernet Shield Board
	Arduino Uno Software
	Testing the Ethernet Connection
	Simplified Garage Door Opener
	Actual Garage Door Opener
	Modified LED Program to Open Garage Door
	Visual Studio 2012 IDE
	VS2012 LED Blink Program
	Enhanced Garage Door Project
	Testing the Enhanced Garage Door Opener
	Summary

	7 Arduino Irrigation Control System
	Irrigation System Design
	Irrigation Control Program
	Irrigation System Physical Installation
	Operating the New Irrigation System
	Moisture Sensing Subsystem
	XBee Technology
	Soil Moisture Sensor
	Actual System Operation
	Enhancements
	Summary

	8 Arduino Lighting Controller
	System Design
	Controller Node
	Ethernet Shield
	Controller Node Case and Mounting Arrangement
	XBee Receiver Node
	PowerSwitch Tail II
	System Software
	Controller Node Program
	XBee Receiver Node 1 Program
	XBee Receiver Node 2 Program
	Operational Test
	Enhancements
	Summary

	9 BeagleBone Black Message Controller
	Beagle Boards
	BeagleBone Black
	Connect to and Operate the BBB
	Downloading, Installing, and Booting a New Linux Distribution
	GPIO Pins
	Setting Up the LCD Display
	LCD Operational Test
	Message Controller Software
	Download and Install the Flask Package
	Main Application
	HTML Code
	Test Results
	Summary

	10 BeagleBone Black with Cloud Service
	Temperature Sensor
	Adafruit_BBIO Library
	Initial Test Program
	Xively Cloud Service
	Xively Developer’s Account
	BBB to Xively Python Program
	Xively Website with an Active Datastream
	Adding Additional Data Channels
	Additional TMP36 Sensors
	Expanded xively-temp Program
	Configuring Angstrom to Auto Start the Application
	System Case
	Summary

	11 Machine-to-Machine (M2M) Communications
	Paho and Eclipse.org
	MQTT
	Quality of Service (QoS)
	Wills
	Reconnecting
	BBB MQTT Publisher Client
	Adding MQTT Features to the Application
	MQTT Brokers
	MQTT Dashboard
	Raspberry Pi Subscriber Client
	MQTT Two-Phase Thermostat
	Summary

	Index

