
An Introduction with LabVIEW

Kye-Si Kwon and Steven Ready

Practical Guide
to Machine
Vision Software

Kye-Si Kwon
Steven Ready

Practical Guide to
Machine Vision Software

Related Titles

Hornberg, A. (ed.)

Handbook of Machine Vision

2006

Print ISBN: 978-3-527-40584-8; also available

in electronic formats

Cyganek, B., Siebert, J.

An Introduction to 3D
Computer Vision Techniques
and Algorithms

2008

Print ISBN: 978-0-470-01704-3; also available

in electronic formats

Steger, C., Ulrich, M., Wiedemann, C.

Machine Vision Algorithms
and Applications

2008

Print ISBN: 978-3-527-40734-7

Gevers, T., Gijsenij, A., van de Weijer, J.,
Geusebroek, J.

Color in Computer Vision
Fundamentals and Applications

2012

Print ISBN: 978-0-470-89084-4; also available

in electronic formats

Korvink, J. G., Smith, P. J., Shin, D.-Y.
(eds.)

Inkjet-based
Micromanufacturing
Series: Advanced Micro and
Nanosystems (Volume 9)

2012

ISBN: 978-3-527-31904-6; also available in

electronic formats

Cristobal, G., Perrinet, L., Keil, M. (eds.)

Biologically-inspired
Computer Vision
Fundamentals and Applications

2016

Print ISBN: 978-3-527-41264-8; also available

in electronic formats

Kye-Si Kwon and Steven Ready

Practical Guide to Machine Vision Software

An Introduction with LabVIEW

Authors

Prof. Kye-Si Kwon
Soon Chun Hyang University
Department of Mechanical Engineering
646 Eupnae-ri
Shinchang-myeon
Chungnam
336-745 Asai-si
South Korea

Steven Ready
Palo Alto Research Center
Electronic Materials and Devices Lab.
3333 Coyote Hill Road
94304 Palo Alto, CA
United States of America

All books published by Wiley-VCH are carefully
produced. Nevertheless, authors, editors, and
publisher do not warrant the information contained
in these books, including this book, to be free of
errors. Readers are advised to keep in mind that
statements, data, illustrations, procedural details or
other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the
British Library.

Bibliographic information published by the
Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this
publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the
Internet at http://dnb.d-nb.de.

 2015 Wiley-VCH Verlag GmbH & Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into
other languages). No part of this book may be repro-
duced in any form – by photoprinting, microfilm, or
any other means – nor transmitted or translated into
a machine language without written permission from
the publishers. Registered names, trademarks, etc.
used in this book, even when not specifically marked
as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33756-9
ePDF ISBN: 978-3-527-68412-0
ePub ISBN: 978-3-527-68411-3
Mobi ISBN: 978-3-527-68410-6
oBook ISBN: 978-3-527-68277-5

Cover Design Formgeber, Mannheim, Germany
Typesetting Thomson Digital, Noida, India
Printing and Binding Markono PrintMedia Pte Ltd,
Singapore

Printed on acid-free paper

Contents

About the Authors IX
Preface XI

1 Basics of Machine Vision 1
1.1 Digital Images 1
1.1.1 Grayscale Image 1
1.1.2 Binary Image 2
1.1.3 Color Image 3
1.2 Components of Imaging System 5
1.2.1 Camera 6
1.2.2 Camera Bus: The Method to Connect PC and Camera 10
1.2.3 Lens 13
1.2.4 Lighting 15

2 Image Acquisition with LabVIEW 17
2.1 Acquiring Images with MAX 17
2.2 Acquiring Images Using LabVIEW 19
2.2.1 IMAQdx Functions 19
2.2.2 Image Management Functions 21
2.2.3 Block Diagram for Image Acquisition 23
2.2.4 Image Acquisition from Example 23
2.2.5 Vision Acquisition Express 26

3 Particle Analysis 33
3.1 Particle Analysis Using Vision Assistant 34
3.1.1 Image Acquisition Using Vision Assistant 35
3.1.2 Image Processing Functions 37
3.1.3 Setting a ROI (Region of Interest) 38
3.1.4 Binary Image Conversion 40
3.1.5 Morphology 43
3.1.6 Particle Analysis 44
3.2 LabVIEW Code Creation Using Vision Assistant 47

V

3.2.1 Block Diagram of Created LabVIEW Code 50
3.2.2 Image Type Modification 54
3.3 LabVIEW Code Modification 55
3.3.1 SubVI for Particle Analysis 55
3.4 Particle Analysis Using Vision Express 67
3.4.1 Vision Acquisition Express 67
3.4.2 Vision Assistant Express 68
3.5 Conversion of Pixels to Real-World Units 71

4 Edge Detection 75
4.1 Edge Detection via Vision Assistant 75
4.2 LabVIEW Code for Edge Detection 78
4.3 VI for Real-Time-Based Edge Detection 81
4.4 The Use of Vision Assistant Express for Real-Time Edge Detection 85

5 Pattern Matching 89
5.1 Pattern Matching Using Vision Assistant 90
5.2 LabVIEW Code Creation and Modification 96
5.3 Main VI for Pattern Matching 99
5.4 Vision Assistant Express 101

6 Color Pattern Matching 105
6.1 Color Pattern Matching Using Vision Assistant Express 105
6.1.1 Vision Acquisition Express 107
6.1.2 Vision Assistant Express 108
6.1.3 Main VI 112

7 Dimension Measurement 117
7.1 Dimension Measurement Using Vision Assistant Express 117
7.1.1 Find Circular Edge Function 119
7.1.2 Clamp Function 119
7.1.3 Caliper Function 123
7.2 VI Creation for Dimension Measurement 126
7.2.1 Vision Assistant Express VI for Dimension Measurement 126
7.2.2 ROI Array 127
7.2.3 Front Panel of Main VI 129
7.2.4 Block Diagram of the Main VI 130

8 Dimension Measurement Using Coordinate System 135
8.1 Measurement Based on a Reference Coordinate System Using Vision

Assistant Express 135
8.1.1 Pattern Matching 137
8.1.2 Coordinate System 138
8.1.3 Dimension Measurement Using the Clamp Function 141
8.1.4 Measurement of Circle Edge 142
8.2 Conversion of Vision Assistant Express to a Standard VI 145

VI Contents

9 Geometric Matching 149
9.1 Geometric Matching Using Vision Assistant Express 150
9.1.1 Geometric Matching for Circles 151
9.1.2 Geometric Matching for Ellipses 155
9.2 VI Creation for Geometric Matching 158
9.3 Shape Detection 159

10 Binary Shape Matching 165
10.1 Accessing Previously Saved Images with Vision Acquisition Express 166
10.2 Binary Shape Matching Using Vision Assistant 168
10.2.1 Binary Template Images 169
10.2.2 Binary Shape Matching 170
10.3 Overlay VI Creation for Shape Matching 172
10.4 VI for Binary Shape Matching 173

11 OCR (Optical Character Recognition) 177
11.1 OCR Using Vision Assistant 177
11.1.1 Character Training Using Vision Assistant 177
11.1.2 Character Identification Using Vision Assistant 181
11.2 VI for OCR 185
11.2.1 VI Creation for OCR Using Vision Assistant 185
11.2.2 SubVI for OCR 185
11.2.3 Main VI 187

12 Binary Particle Classification 191
12.1 Vision Acquisition Express to Load Image Files 192
12.2 Vision Assistant Express for Classification 194
12.2.1 Train for Particle Classification 194
12.2.2 VI Creation 199
12.3 VI Modification 200
12.4 Overlay for Classification 204
12.5 Main VI for Classification 206

13 Contour Analysis 209
13.1 Contour Analysis 210
13.1.1 Image Acquisition Using a USB Camera 210
13.1.2 Contour Analysis Using Vision Assistant 212
13.1.3 Defect Detection Using Curvature 215
13.1.4 Defect Detection by Comparing Contours 216
13.1.5 VI Creation 219
13.2 VIs for Contour Analysis 219
13.2.1 Main VI 219
13.2.2 Overlay for Defects 222
13.2.3 Perspective Errors in Images 225

Contents VII

14 Image Calibration and Correction 227
14.1 Method for Creating an Image Correction File 227
14.1.1 Image Acquisition 228
14.1.2 New Calibration File 228
14.2 Image Correction 234
14.2.1 Image Correction Using Vision Assistant Express 234
14.2.2 VI Creation for Image Correction 237

15 Saving and Reading Images 241
15.1 Saving Image 241
15.2 Image Read from File 245
15.2.1 IMAQ Readfile 245
15.2.2 Example of Reading Image from Image Files 246

16 AVI File Write and Read 249
16.1 AVI File Creation Using Image Files 249
16.2 AVI File Creation Based on Real-Time Image Acquisition 251
16.3 Read Frame from AVI Files 252

17 Tracking 255
17.1 Tracking with the Use of Vision Assistant 255
17.2 VI Creation for Tracking Objects 259

18 LabVIEW Machine Vision Applications* 263
18.1 Semiconductor Manufacturing 263
18.2 Automobile Industry 264
18.3 Medical and Bio Applications 266
18.4 Inspection 268
18.5 Industrial Printing 269

19 Student Projects 271
Project 1: Noncontact Motion Measurement and its Analysis 271
Project 2: Intelligent Surveillance Camera 271
Project 3: Driving a LEGO NXT Car (LEGO Mindstorm) with

Finger Motion 273
Project 4: Piano Keyboard Using Machine Vision 273

Index 275

*All images containing (LabVIEW, IMAQ and LabVIEW Vision applications in chapter 18) are
provided by or originate from the hardware and software of National Instruments Corporation and its
affiliates. National Instruments reserves all rights including trademarks in such images.

VIII Contents

About the Authors

Kye –Si Kwon
Web site: http://inkjet.sch.ac.kr/
E-mail: kskwon@sch.ac.kr

Kye-Si Kwon is an Associate Professor in the Department of Mechanical Engi-
neering at Soonchunhyang University, Korea. He received his PhD in 1999 from
KAIST, Korea. He was a member of research staffs in companies such as
Samsung and LG electronics, in charge of hardware and software development
based on LabVIEW until he joined Soonchunhyang University in 2006. As a uni-
versity professor, he has been teaching many LabVIEW-related subjects and
carries out his research projects using LabVIEW. His recent works include ink-
jet-related measurement methods and system developments using LabVIEW. In
2012, he worked for 1 year at PARC (Palo Alto Research Center) in Palo Alto,
CA as a visiting researcher. He is also the founder of the start-up company
PS. Co. Ltd (www.psolution.kr) and its current CEO. He actively uses LabVIEW
Machine Vision for his new business.

IX

Steve Ready
www.parc.com/Steve.Ready

Steve Ready is a Member of the Research Staff at Palo Alto Research Center in
Palo Alto, CA. He obtained his degree in Physics from the University of California
at Santa Cruz. Since joining PARC, Steve has designed real-time inkjet droplet
visualization and analysis tools; designed and developed several high-accuracy
inkjet printers for printed organic electronics, document printing, and printing of
3D objects; studied the role of hydrogen and dopants in amorphous, poly-
crystalline, and crystalline; and contributed to the development of large-area
amorphous and polycrystalline silicon array systems for optical and X-ray imag-
ing, displays, organic semiconductor materials, and devices.
Steve has also made significant contributions to developing laser crystallization

of silicon thin films, a fragile book scanner, control software for MOCVD
reactors, and a scanning tunneling microscope.

X About the Authors

Preface

We believe the basics of engineering and research is measurement. Also, all
improvement starts from the measurement. We believe that LabVIEW is one of
the best software tools to implement most kinds of measurement. There have
been many basic books written for those wanting to learn LabVIEW measure-
ment, which enables one to learn LabVIEW with ease. However, there are not
many books on LabVIEW vision for the beginner. The purpose of this textbook
is to guide the student in using LabVIEW’s Vision Development Module rather
than developing deep understanding of the underlying vision algorithms. For this
reason, we do not discuss the details behind specific vision algorithms. We do try
to explain the concepts involved in programming with the NI Vision Develop-
ment Module.
In this book the NI Vision Development Module is used to analyze objects in

an image. The Vision Development Module includes hundreds of functions to
process acquired images. However, for most beginners it may be difficult to
understand and use the vision functions. The Vision Assistant, which is a com-
ponent installed with NI Vision Development Module, is very easy to use and
can create LabVIEW or C code in the process of guiding you through image
processing steps. Vision Assistant provides access to almost all the vision func-
tionality available in LabVIEW.
The approach of this book is to use the LabVIEW Vision Assistant to create

the initial code that can perform vision measurement and provide the beginner
a rapid understanding of LabVIEW vision programming. We feel that this is very
easy approach for most of users. However, the software created directly from
Vision Assistant does not generally provide the final programmed solution to a
software project. So, we also guide the readers in how to use and modify the
initially generated code from Vision Assistant.
This book assumes that readers have basic experience in LabVIEW program-

ming. If you are a LabVIEW beginner, we suggest you to read a basic book on
LabVIEW before starting vision programming. If your intended purpose is to
only learn Vision Assistant and apply to your application immediately, we rec-
ommend you to use Vision Express. The method of using Vision Express for
your application is addressed in each chapter.

XI

In this book, Vision Development Module version 2013 is used for explana-
tion, but the user of other versions can reference the book as there is usually
only small difference between current versions.
We have tried to cover many subjects, from edge detection to optical character

recognition (OCR), such that readers from various backgrounds can reference
the book. Each chapter has examples to practice the vision programming. For
real-time acquisition and image analysis, the use of a USB camera is mainly dis-
cussed because it is easily available for most of readers. However, LabVIEW pro-
vides many ways of acquiring images to apply to image analysis and machine
vision.

Kye-Si Kwon
Soonchunhyang University
Republic of Korea

Steven Ready
Palo Alto Research Center
Palo Alto, CA, USA

XII Preface

1
Basics of Machine Vision

1.1
Digital Images

1.1.1

Grayscale Image

The basic digital image is composed of a two-dimensional array of numbers.
Each number in the array represents a value of the smallest visual element, a
pixel. The indexed location of the pixel value in the array corresponds to the X
and Y locations of the pixel within the image, as measured from the top-left cor-
ner. The values of a pixel in an X and a Y location in the digital grayscale image,
f(x,y), represent the brightness of the pixel in a range from black to white, as
seen in Figure 1.1. Let us assume that total number of pixels are 300 (0–299)
and 250 (0–249) in the X and Y locations, respectively. Each image can be repre-
sented by the array of size 300× 250 that has a value for each pixel.
Each image pixel value is related to the brightness of the image at that specific

location. For a given camera device, the maximum value recorded for the image
pixels is generally related to a characteristic of the camera referred to as the bit
depth. For example, if bit depth is k, then there will be as much as 2k levels of
brightness that can be defined. For example, if the bit depth is 8 bits, then a pixel
can have 256 values (28) in the range between 0 and 255.
A grayscale image pixel most often only has brightness information that can

be represented in 8 bit values and as such the image is often referred to as an
8 bit image. If the pixel value is 0, then it is the most dark (black) image pixel,
whereas a value of 255 means the brightest image (white) pixel. For a better
understanding, Figure 1.1 shows a magnified portion of an image where the loca-
tion range of X pixels is 85–91 and Y range is 125–130 within a total of
300× 250 pixels in the image. In the case of pixel location of 85 along the X
direction and 125 along the Y direction, the image pixel value is f(85, 125)= 197,
which is closer to 255 than 0 and therefore is rendered closer to bright end of
the image scale (white). On the other hand, the value of image pixel where
X= 91 and Y= 125 is 14, which is close to 0 and thus relatively dark (black).

1

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

Due to its simple representation as single pixel values, grayscale images are
often used in machine vision applications as a starting point to measure the
length or size of an object and to find a similar image pattern via pattern match-
ing. The gray images can be acquired from digital monochrome or color cam-
eras. When the color image is acquired, the color image can easily be converted
to a grayscale image by using the color plane extraction function that is provided
by NI Vision Development Module.

1.1.2

Binary Image

The most commonly used image format for finding the existence of the object,
location, and size information is binary image. The binary image pixel has two
digit values, where object has the value of 1 and background has the value of 0
in most cases. Since there are only two values used, it is often called a 1 bit
image (bit depth of 1, or 21). To make a binary image, the grayscale image is
commonly used as a starting point. In general, we use a threshold value to con-
vert a grayscale image to a binary image. In the case that the object of interest in
an image is bright against a dark background (the imaged object’s pixel value is
larger than a chosen threshold value), it is classified as the object (a pixel image
value of 1) and if the image value is less than the threshold value, it can be classi-
fied as the background (the pixel image value of 0). However, it should be noted
that there will be cases where the dark parts of an image may represent the
object with the bright part comprising the background.
Once the grayscale image is converted to a binary image, various image proc-

essing functions can be used. For example, we can use the particle analysis func-
tion from which the size, area, and the center of the object can be easily
obtained. Prior to particle analysis, the morphology functions are often used to
modify aspects of the image for better or more reliable results. For example, we
may want to remove unnecessary parts from the binary image or repair parts

Figure 1.1 Grayscale image.

2 1 Basics of Machine Vision

of an object that obviously misrepresents the object in the grayscale to binary
conversion. By using the morphology functions in the LabVIEW Vision Develop-
ment module, we can increase the accuracy of image analysis based on the
binary image. Details of this process will be discussed later.

1.1.3

Color Image

Digital color images from digital cameras are usually described by three color
values: R (red), G (green), and B (blue). The three color values that represent an
image pixel describe the color and brightness of the pixel. In other words, the
brightness and color of the pixels in an image obtained from a digital color cam-
era are generally defined by the combination of the R, G, and B values. All possi-
ble colors can be represented by these three primary colors. The digital color
image is often referred to as a 24 or 32 bit image. Figure 1.2 shows the basic
concept of a 32 bit color image. Among four possible 8 bit values in a 32 bit
word, we use 8 bits for each of the R, G, and B components. The other 8 bit
component is not used. This is due to the computer’s natural representation of
an integer as a 32 bit number.
Figure 1.3 shows an example of a color image. The total size of the image is

800× 600. The X direction has 800 (0–799) pixels and Y direction has 600

Figure 1.2 32 bit color image.

Figure 1.3 Color image (f(x, y)= 0� R� 255, 0�G� 255, 0�B� 255).

1.1 Digital Images 3

(0–599) pixels. Each pixel has three component values representing R, G, and B.
For example, the image value at X= 600, Y= 203, f(600, 203), is R= 196, G= 176,
B= 187.
For a better explanation, a USB camera was used to acquire the images via

a LabVIEW VI, as shown in Figure 1.4. As seen in the lower part of Fig-
ure 1.4, the total size of the image (the number of pixels) is 640× 480. The
pixel location is defined by the X and Y locations, where upper left is (0,0)
and lower right is (639,479). Each of the RGB values in a pixel has an 8 bit
value, which corresponds to an integer range of 0–255. When we move the
mouse cursor over the acquired image, the pixel’s RGB values pointed to by
the mouse cursor are shown at the bottom of the window. In the example as
seen in Figure 1.4, the RGB values at the mouse X/Y image position (257,72)
are (255,253,35).
Each pixel color and brightness is the combination of RGB values. For exam-

ple, R (red) has the range of values between 0 and 255. If the value is close to 0,
the R image becomes dark red, which can be seen as black. On the other hand, if
the image value of R becomes 255, then the R component becomes the brightest,
which is seen as bright red. The green and blue pixel component values have
same property. If the R= 255, G= 0, and B= 0, then the pixel appears to be
bright red. If all three RGB values are 255, then the pixel appears to be white
(bright pixel), whereas if the RGB values are 0, then the pixel becomes dark
(black).
One alternative method for color image representation, HSL (hue, satura-

tion, and luminance), can be used instead of RGB (Table 1.1). The three HSL
values are also generally represented by 8 bit values for each component.
By using proper values of HSL, any color and brightness can be displayed in a
pixel.

Figure 1.4 Acquired color image.

4 1 Basics of Machine Vision

1.2
Components of Imaging System

Figure 1.5 shows the basic components of imaging systems. Imaging acquisition
hardware requires a camera, lens, and lighting source. To get an image from the
camera to the computer, we need to select the most appropriate camera com-
munication interface (bus), which connects the camera to the computer. Some
cameras require specific types of standardized communication busses integrated
into computer interface cards called frame grabbers. Examples of a few standard-
ized frame grabber communication busses are Analog, Camera Link, and Gigabit
Ethernet (GigE). Other cameras connect to the computer over more common
communication interfaces such as USB, Ethernet, or Fire Wire that are provided
as standard configurations in most computers.
Software is also needed to display and extract information from images.

In this book, image processing techniques will be described for the purpose of

Table 1.1 The meaning of HSL.

Hue Saturation Luminance

Hue defines the color
of a pixel such as red,
yellow, green, and blue or
combination of two of them.
It is related to wavelength
of a light.

Saturation refers to the
amount of white added to
the hue and represents the
relative purity of a color.
If the saturation increases,
color becomes pure. If
colors are mixed, the satura-
tion decreases. For example,
red has higher saturation
compared with pink.

Luminance is closely related
with the brightness of image.
Extracting the luminance
values of an HSL color
image results in a good con-
version of a color image to a
grayscale representation.

Figure 1.5 Basic component of imaging system.

1.2 Components of Imaging System 5

processing and analyzing the acquired images. While there are a number of soft-
ware programs that can be used to develop image measurement applications, we
will be focusing on methods using the LabVIEW Vision Development module
from National Instruments.

1.2.1

Camera

To acquire images, the camera selected must match the requirements suitable to
the specifics of imaging task. For this purpose, a brief overview of cameras will
be discussed in this section. For better camera selection, we recommend that you
should consult with your camera vendor.

Color and Monochrome Camera
If the imaging task can benefit from the additional information provided by the
color image of an object or set of objects, a color camera is required. However,
one needs to take into account the increased data set size (possibly 4x) and com-
plexity required for processing color images. Therefore, a decision needs to be
made as to whether a color camera is required based on the application. As an
example, it may be better to enhance the appearance of an object of a specific
color by using a monochrome camera in combination with a color filter that
may increase the contrast of the object in a grayscale image.

Frame Rate
Frame rate means the number of images (or “frames”) acquired per second. The
unit is frame per second (fps). The frame rate of most cameras for vision measure-
ment purpose is about 30 fps. This is an historical value based on the development
of the television in the United States where the frame rate was determined by half
the alternating power current frequency of 60Hz. On the other hand, when there
are needs for high-speed real-time monitoring, the proper selection of high frame
rate camera hardware may be required.

Area Scan Camera and Line Scan Camera
Digital cameras can be classified as area scan cameras or line scan cameras
according to the scan method. Line scan cameras use one-dimensional sensor
arrays that acquire a one-dimensional image in a single frame. Area scan cam-
eras have an image sensor that can acquire a two-dimensional image in a single
frame. In most general vision applications, area scan cameras are used. However,
in case of inspecting moving object or where the camera is moving, the line scan
camera may be best to use for fast inspection. The principle of line scan camera
is quite similar to the document scanner. If the object is moving in a perpendic-
ular direction relative to the sensor array in a line scan camera, it can acquire
one- or two-dimensional images, as seen in the line camera in Table 1.2.

6 1 Basics of Machine Vision

Frame Trigger
The trigger signals from (or to) the camera or frame grabber can be used to
synchronize image acquisition with respect to external measurement device,
lighting application, or motion of a stage.

Image Resolution
The image resolution is important because it is related to the accuracy of the
vision measurement. Resolution is related to the lens image magnification and
camera resolution (pixel size and number of pixels). The zoom lens can be used
to increase the image resolution. However, increasing the zoom factor of a lens
often results in a narrowing of the field of view (FOV), which is defined as the
physical dimensions that the image represents. It is often recommended to use a
high-resolution camera with more pixels in the image sensors. However, the
choice of a high-resolution camera often increases the costs of an imaging sys-
tem and impacts the computational requirement due to the increased image data
set size. So, the proper camera needs to be selected according to imaging task
requirements. As a general rule of thumb, two or more pixels are required to
detect any defects and more than 10 pixels are required to measure the size of
an object. However, it should be noted that the resolution requirement differs
according to the specific requirements of the application.
Historically, inexpensive area scan cameras with 30 fps have 640× 480 pixel

sensor arrays. However, there are cameras available with different numbers of pixel
sensor arrays. Table 1.3 shows the example of some commercially available cameras.
In general, the number of camera pixel sensors and the field of view of the

camera/lens system are critical factors for determining the image resolution. It
should be noted that FOV should be large enough to measure the object of
interest. If you know the FOV, you can use the following equation to determine
the image resolution:

Resolution � FOV
number of camera pixels in one direction

� �
� 2

Table 1.3 Example of camera sensors in a camera.

Area scan camera Line scan camera

640× 480 512× 1
752× 582 1024× 1
1024× 768 2048× 1
1024× 1024 4068× 1
1280× 960 6144× 1
1360× 1024 8192× 1
1620× 1220 12 228× 1
1920× 1080
2048× 2048
4872× 3248

8 1 Basics of Machine Vision

If the FOV of horizontal direction is 64 mm and the number of sensors in the X
direction is 640, the image resolution can be calculated:

Image resolution � 64
640

� �
� 2 � 0:2 mm

Camera Sensor Size
Figure 1.6 shows the relationship between camera sensor size and FOV. The
sensor size differs according to the number of pixels and the size of a pixel. As
seen in Figure 1.6, the sensor’s pixel size is important because it is directly
related to the selection of the lens.

Area of Interest
Area of interest (AOI) is used when the fast image acquisition is required by
acquiring a part of an image from the camera sensors (Figure 1.7). A similar
concept is region of Interest (ROI). ROI differs from AOI in that the former
uses the software algorithm to process the part of acquired images, whereas the
latter is more hardware-based concept for image acquisition. The concept and
application of ROI will be discussed later.

Figure 1.6 Camera lens selection.

1.2 Components of Imaging System 9

1.2.2

Camera Bus: The Method to Connect PC and Camera

To acquire an image from a camera, several vision acquisition interface methods
have been developed, including analog, camera link, USB, IEEE 1394, and GigE.
To determine the proper type of camera bus, we need to compare the camera
bus’ capabilities according to the specific application of interest. Once we decide
the right camera bus, the National Instruments (NI) Web site (http://www.ni.
com/camera) can be referred to select an appropriate camera.
You may call NI technical center to get information on the proper image

acquisition board from NI products according to your application.

Analog Camera
To acquire images from the analog signal produced by an analog camera, BNC
or RCA cables are commonly used, as seen in Figure 1.8.
There is no power source provided for the camera in the analog camera bus.

Therefore, analog cameras generally require an external power source (such as

Figure 1.7 Area of interest.

Figure 1.8 Analog camera connected to an analog frame grabber card with a BNC cable.
Video standards for color and monochrome analog camera are summarized in Table 1.4.

10 1 Basics of Machine Vision

12V DC). Analog cameras also require an analog frame grabber to convert the
composite video analog signal to digital image.

Camera Link

One standard for a high-speed video bus is known as Camera Link, which was
determined by the Automated Imaging Association (AIA). The standard defines
the cable between the camera and a frame grabber, the connectors, and the sig-
nals and their functions (Figure 1.9).

Figure 1.9 Camera link cable.

Table 1.4 Standard analog video.

Standard Number of image
sensors

Frame
rate (fps)

Comments

Color NTSC (National
Television Systems
Committee)

640× 480 29.97 North America,
Japan

PAL (Phase
Alternative Line)

768× 576 25 Europe

Monochrome RS170 (Electronic
Industries
Association)

640× 480 30 North America

CCIR (Consultative
Committee for
International Radio)

768× 576 25 Europe

1.2 Components of Imaging System 11

Cameras designed to the Camera Link standard work with all the Camera
Link-specific frame grabbers. Camera Link is a specially designed high-speed dig-
ital bus. Some base-priced Camera Link cameras can acquire 1 megapixel image
at 50 fps. Medium- and high-performance cameras acquire 510 and 680MB/s,
respectively. Some higher performance cameras can acquire 1280× 1024 images
at 500 fps.
The Camera Link camera bus is designed for middle- or high-end applications

and the price of these imaging systems reflects this capability. In addition, Cam-
era Link cameras require a frame grabber that is capable of high-speed process-
ing. The price of a Camera Link frame grabber is more than that of analog frame
grabbers. However, as the digital camera systems become of more standard and
the analog systems less standard, it would be harder to find electronics to sup-
port analog systems.
National Instruments requires Camera Link cameras to have special cam-

era description files, which have information on image acquisition and the
communication method that can be used by the NI software to acquire the
camera image. Camera description files can be found from http://www.ni
.com/cameras.

USB Camera

The initial USB 1.1 standard did not have enough speed or bandwidth to sup-
port the data requirements of most imaging applications. However, the USB 2.0
standard has increased bandwidth capable of video streaming and comparable
speeds to IEEE 1394a. USB 3.0 has even greater capability.
The advantage of USB cameras is that they are relatively inexpensive and do

not require a frame grabber. As a result, USB cameras are convenient for
research purposes and even in industry when there are cost issues and special
functions may not be required (e.g., triggering, etc.).

IEEE 1394
Historically, the initial image acquisition speed of FireWire, or IEEE 1394a
(Figure 1.10), was much faster than USB 1.1. So, due to the high bandwidth
requirements of cameras, it has been a standard in many vision acquisition sys-
tems. Since the 1394 camera does not require the frame grabber and power can
be provided from the cable, the vision system can be simplified.
The drawback to 1394 imaging systems is the relatively higher price compared

with USB camera systems. In addition, due to the development of USB 2.0 and

12 1 Basics of Machine Vision

USB 3.0, the communication speed of USB cameras is now becoming compara-
ble with that of the 1394 cameras.
Nonetheless, there are several merits in 1394 camera compared with USB. The

IEEE1394 camera can work independently and can communicate with other
devices without a computer. In comparison, USB cameras need a master con-
troller and are required to operate under the master control, which is usually
supplied in the form of a computer. Also, it is known that the 1394 camera sys-
tems are generally considered more reliable in an industrial environment com-
pared with USB camera.

Gigabit Ethernet
GigE cameras (Figure 1.11) use gigabit Ethernet (LAN cable) for real-time data
and image transfer to computer. There is no need for an additional frame grab-
ber with the GigE camera. As a result, high-speed and low-cost image acquisi-
tion is possible by using GigE camera. The GigE camera can use very long
camera cables up to 100 m. However, external power is still required.

1.2.3

Lens

The selection of an appropriate lens is crucially important for any application
being considered. The choice of lens has significant effects on the FOV, working

Figure 1.10 IEEE 1394.

Figure 1.11 GigE camera.

1.2 Components of Imaging System 13

distance, and optical image resolution at the camera’s sensor. To select a proper
lens, the focal length of the lens is often used. Focal length is defined by distance
between lens and the image plane at the sensor in the camera. Figure 1.6 shows
the relationship among focal length, FOV, sensor size, and working distance.
Here, the working distance means the distance between lens and object to mea-
sure. If you know the FOV, sensor size, and working distance, you can calculate
focal length of lens by the following equation:

Focal length � sensor size � working distance
FOV

1.2.4

Lighting

The main purpose of lighting is to differentiate the background from the object
to be measured by providing contrast. The contrast means the light intensity
difference between the background and the object to measure. To extract image
information for vision analysis, the imaged object should have enough light
intensity difference to distinguish it from its imaged surroundings. To optimize
the contrast in the acquired images, proper lighting is essential prior to image
acquisition. Figure 1.12 shows an example of the importance of corrected light-
ing. If the lighting is inadequate, we cannot get the required information from
the acquired image.
As a power source for lighting, DC or high-frequency lighting is commonly

used. In specific applications, a strobe light synchronized with motion of objects
of interest can be used very effectively. There are many lighting tricks that can
be applied in specific applications. Table 1.5 shows the few examples.

Figure 1.12 The importance of lighting.

1.2 Components of Imaging System 15

2
Image Acquisition with LabVIEW

This chapter describes how to acquire and display images using a USB camera. A
USB camera is used in this book because these cameras can be inexpensive, easy
to use, and easily acquired.
The methods for image acquisition using a USB camera are different accord-

ing to which LabVIEW version is used, although the 2013 version of LabVIEW
as well as versions later than LabVIEW 2009 is compatible with the methods
described in this book. Readers having earlier software versions may still be able
to refer to this book since most image processing functions are the same or very
similar irrespective of software version.
When using a USB camera, ensure that the camera is compatible with Micro-

soft’s multimedia API (DirectShow or Media Foundation). Also, the software driver
for the USB camera, National Instruments LabVIEW software, and LabVIEW
Vision Acquisition Module will need to be installed. The installation instructions
for the camera drivers may be found at the http://www.ni.com/drivers/. LabVIEW
NI Vision Acquisition software module allows you to acquire, process, display, and
save images. LabVIEW and the Vision Development module can be purchased
through the National Instruments Web site at www.ni.com. A trial version of the
software can also be acquired from http://www.ni.com/downloads/evaluation.htm.

2.1
Acquiring Images with MAX

With the image acquisition software installed, run the Measurement & Auto-
mation Explorer (MAX) application (which is installed with the LabVIEW soft-
ware) to configure and test your imaging system. Throughout your vision
programming tasks, MAX is always a good utility to test and ensure your imag-
ing system is working satisfactorily prior to programming.

17

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

In order to configure your imaging system, it will be useful to complete the
following steps:

1) Launch Measurement & Automation Explorer by double-clicking the
MAX icon on the desktop (or navigating to Start»All Programs»NI
Max).

2) Within MAX, find your USB camera from Devices and Interfaces»NI-
IMAQdx device. As an example, cam0: HD 720P Webcam is displayed in
Figure 2.1.

3) You may need to modify the image acquisition parameters located in tabs
at the bottom of the user interface if images are not acquired properly.
Different parameters are available for the various types of cameras accord-
ing to their capability. To test and acquire images from the camera, click
on the Grab or Snap buttons in the tool bar menu as seen in Figure 2.1.
By selecting the Grab button you can acquire images continuously. The
Snap button will acquire and display a single image.

Figure 2.1 Imaging system configuration via MAX.

18 2 Image Acquisition with LabVIEW

2.2
Acquiring Images Using LabVIEW

Vision function palettes within the LabVIEW programming environment are
organized in subpalettes such as Vision Utilities, Image Processing, Machine
Vision, NI-IMAQ, and NI-IMAQdx, as seen in Figure 2.2.

� Vision Utilities include image file handling, image management, and pixel
editing functions to manipulate and display images.� Image Processing includes low-level VIs used to analyze, filter, and process
images.� Machine Vision consists of high-level functions that simplify common
machine vision tasks.� NI-IMAQ and NI-IMAQdx provide functions involved with image
acquisitions.

2.2.1

IMAQdx Functions

In LabVIEW 2009 or later version, NI-IMAQdx functions are used to acquire
images from digital cameras, as in the case of USB cameras. Image acquisition
functions such as Configure Grab and Grab functions can be found in the
IMAQdx function palette, as seen in Figure 2.3. If NI-IMAQdx functions are
not found within the Vision function palette, check to see if Vision Acquisition
Software is properly installed.
In this section, several functions needed for image acquisition using a USB

camera are explained in detail. Image acquisition functions for cameras con-
nected through different interfaces will be similar.

IMAQdx Open Camera
The IMAQdx Open Camera function allows you to open, or acquire, a camera
reference (connection or Session) to a designated camera (Figure 2.4).

Figure 2.2 Vision function palettes.

2.2 Acquiring Images Using LabVIEW 19

IMAQdx Configure Grab
When the Configure Grab function is called, the grab method of image acquisi-
tion is configured and initiated. Acquired images are continuously captured and
stored to internal buffers. This function is often used for high-speed, continuous
image acquisition and video capture. If IMAQdx Open Camera is not used
prior to IMAQdx Configure Grab, the default camera designator, cam0, is auto-
matically selected for image acquisition (Figure 2.5).

IMAQdx Grab
The function (IMAQdx Grab) can be used only after IMAQdx Configure Grab
has been executed (Figure 2.6). The latest acquired image frame in the camera
driver memory buffer is copied to a LabVIEW image memory buffer via the
Image Out connected wire.

Figures 2.3 IMAQdx functions (Vision and Motion»IMAQdx).

Figure 2.4 IMAQdx Open Camera.

Figure 2.5 IMAQdx Configure Grab.

20 2 Image Acquisition with LabVIEW

IMAQdx Close Camera
IMAQdx Close Camera stops image acquisition and closes the camera session
that has previously been opened to acquire images (Figure 2.7).

2.2.2

Image Management Functions

Image management VIs are used to create (allocate image memory), dispose, and
copy images. They can also get and set image information and characteristics.
For example, as seen in Figure 2.8, IMAQ create and dispose functions can be
found in function palette: Vision and Motion»Vision Utilities»Image
Management.

Figure 2.6 IMAQdx Grab.

Figure 2.7 IMAQdx Close Camera.

Figure 2.8 Image management functions.

2.2 Acquiring Images Using LabVIEW 21

IMAQ Create
To show the captured images on image display, the memory for images needs to
be allocated. For this purpose, the IMAQ Create function is used to create
memory space in LabVIEW for image acquisition, manipulation, and display
(Figure 2.9).
When you create a memory location for an image, one of the following image

types can be selected as an Image Type: Grayscale (U8), Grayscale (I16), Gray-
scale (SGL), Complex (CSG), RGB (U32), HSL (U32), RGB (U64), and Grayscale
(U16). These image types are described in Table 2.1.

IMAQ Dispose
The memory allocated for an image can be disposed of and thus be freed for
other uses with the use of IMAQ Dispose (Figure 2.10). The function is usually
used when the image acquisition program is terminated and/or the image is no
longer needed in your application.

Figure 2.9 IMAQ Create.

Figure 2.10 IMAQ Dispose.

Table 2.1 Image type.

Image type Bits per pixel Comment

Grayscale (U8) 8 bits per pixel Unsigned, standard monochrome
Grayscale (I16) 16 bits per pixel Signed
Grayscale (SGL) 32 bits per pixel Floating point
Complex (CSG) 2× 32 bits per pixel Floating point
RGB (U32) 32 bits per pixel Red, green, blue, alpha
HSL (U32) 32 bits per pixel Hue saturation, luminance, alpha
RGB (U64) 64 bits per pixel Red, green, blue, alpha
Grayscale (U16) 16 bits per pixel Unsigned, standard monochrome

22 2 Image Acquisition with LabVIEW

2.2.3

Block Diagram for Image Acquisition

A typical image acquisition routine is comprised of several Vis, including IMAQ
Create, IMAQdx Configure Grab, and IMAQdx Grab function, as seen in
Figure 2.11.
Note that IMAQdx Open Camera was not used in this example. In such case,

IMAQdx Configure Grab function will start a camera session automatically
using the default “cam0” camera.
In order to show acquired images, an image display (Image), front panel indi-

cator (Control Palette»Vision»Image Display), is placed on the front panel.
With the associated control panel icon Image on the block diagram connected
with the image wire from the IMAQdx Grab function, the acquired images can
be displayed in the front panel.

2.2.4

Image Acquisition from Example

It is often useful to study examples provided in LabVIEW that are referenced for
image acquisition and processing. If the image acquisition software is installed,
example VIs for image acquisition using a USB camera can be found from the
following folder (or similar path according to the version of LabVIEW installed):

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision Acquisi-
tion\NI-IMAQdx\High Level\Grab.vi

Figure 2.11 Typical block diagram for image acquisition using LabVIEW.

2.2 Acquiring Images Using LabVIEW 23

The block diagram for this example of image acquisition is shown in
Figure 2.12 and the front panel is shown in Figure 2.13.
Note that the camera name as set in MAX needs to be selected from the front

panel. In this example, the camera name cam1 was selected before running the
program, as seen in Figure 2.13. The VI displays a frame rate via the Frame Rate
indicator, which shows how many image frames per second (fps) are being
acquired.
The visible image on the image display can be enlarged or reduced by using

the zoom tool (magnifying glass icon) located in the ROI tools of the image dis-
play. If the ROI tools are not present next to the image display, the ROI tools
can be made visible with the following procedure.

1) Move the mouse pointer over the image display and click the right mouse
button to display the pop-up menu.

Figure 2.12 Example VI of image acquisition using Grab function (block diagram).

Figure 2.13 Image acquisition using LabVIEW (front panel).

24 2 Image Acquisition with LabVIEW

Figure 2.14 Image zoom in/zoom out.

2) From this menu, the following item should be selected: Visible Items»ROI
Tools»Visible. Now that the ROI tools on the left-side of the image display
are available, select the Zoom Tool icon ().

3) Then by left-clicking the mouse on the image at a part of the image you
want to magnify, the image portion will be enlarged (zoom in). To reduce
the image (zoom out), hold down the shift key and left-click on the image.
You may need to click several times to zoom out to see the overall image
on the image display (Figure 2.14).

A quicker way to view the whole image is to right-click the mouse on image to
show the pop-up menu and select the Zoom to Fit menu item. The image dis-
play is automatically changed so that the entire image fits in to the image display
window.
It should be noted that image zoom does not change resolution of the

acquired image in memory. It only changes how the image is displayed.
In the next chapter, image processing methods will be discussed in detail in

order to extract information on objects from acquired images. Before proceeding
with learning more about vision programming, we recommend that readers
review vision techniques by running the example VIs provided with LabVIEW.
The examples of many vision functions and applications can be found in the
following folder.

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision

2.2 Acquiring Images Using LabVIEW 25

2.2.5

Vision Acquisition Express

As an alternative, Vision Acquisition Express provides a simple and easy method
to set up vision acquisition. If readers feel that it is difficult or time consuming to
build a routine from scratch using the individual LabVIEW image acquisition
functions, Vision Acquisition Express is provided as a quick way to start.
The Vision Acquisition Express function may be used by itself or you can use

it as a way to automate the creation of a LabVIEW VI (LabVIEW code). The
automatic code generation feature of Vision Acquisition Express provides an
easy approach that has advantages. However, the resulting code may not be opti-
mized for the intended purpose and may require further modification.
There are actually two different Vision Express functions in the Vision Express

palette: Vision Acquisition Express and Vision Assistant Express. Vision Acquisi-
tion Express can either acquire images from a camera using the NI-IMAQ or
NI-IMAQdx functions or read in an image file or video (AVI) file. The Vision
Assistant Express function can automate the creation of image processing tasks
within the LabVIEW environment. In this section, the Vision Acquisition
Express VI will be used to acquire image from a USB camera. Complete the fol-
lowing steps to configure an acquisition on a remote target.

1) Launch LabVIEW and create a new blank VI (File»New VI from the menu
bar).

2) Right-click the block diagram of the new VI to display the Functions Pal-
ette. Select Vision and Motion»Vision Express»Vision Acquisition
Express VI and drag it onto the block diagram, as seen in Figure 2.15.

The NI Vision Acquisition Express wizard is launched when the icon is placed
on the block diagram. As seen in Figure 2.16, the wizard window displays five
icons across the top of the window, which represent the steps that guide us
through the process of setting up image acquisition. The five steps are Select

Figure 2.15 Selection of Vision Acquisition Express from the function palette.

26 2 Image Acquisition with LabVIEW

Acquisition Source, Select Acquisition Type, Configure Acquisition Setting,
Configure Image Logging Settings, and Select Controls/Indicators. With
each step, option selections are displayed in the areas below.

STEP 1: Select Acquisition Source
All the available devices recognized by NI MAX will appear in the list of camera
devices in the Acquisition Sources control in the Vision Acquisition Express
wizard window.
The first step is to select an Image Acquisition Source. You are given the

option to select image files, video files (AVI), or an imaging device. In this exam-
ple, a camera imaging device is selected from the available NI-IMAQdx devices
as the source for image acquisition. To proceed to the next step (Select Acquisi-
tion Type), click Next.

STEP 2: Select Acquisition Type
In this step, we select the acquisition type by which the image acquisition takes
place from the camera device (Figure 2.17). You are presented with four acquisi-
tion types to choose from:

� Single Acquisition with Processing: Acquires a single image.� Continuous Acquisition with Inline Processing: Continuously acquires
and performs image processing on each image in sequence until an event
stops the acquisition.� Finite Acquisition with Inline Processing: Acquires a specified number of
images and returns each image as it is acquired. Image processing occurs
while images are acquired.

Figure 2.16 Select acquisition source.

2.2 Acquiring Images Using LabVIEW 27

� Finite Acquisition with Postprocessing: This mode is the same as Finite
Acquisition with Inline Processing, except the images are acquired and
image processing is performed only after the specified number of images are
already acquired.

Continuous Acquisition with inline processing is selected in this example.

STEP 3: Configure Acquisition Settings
By clicking on the Test button in the right-hand subwindow, images are contin-
uously acquired from the camera and displayed (Figure 2.18). The Video Mode
and Camera Attributes in the left-hand subwindow can be modified to adjust
the acquisition parameters to improve the quality of the images as they are
acquired and displayed.

STEP 4: Configure Image Logging Settings
The capture image logging setting is used only in the case where the program-
mer desires to save a stream of images to a designated folder (Figure 2.19). For
the purposes of this example, the image logging option is not used. Therefore,
the Enable Image Logging box is not selected and we proceed to Next�.

STEP 5: Select Controls/Indicators
Select Control/Indicators offers you the option to select controls and indicators
that will be available to a calling program. As seen in Figure 2.20, Stop (F) that

Figure 2.17 Select acquisition type.

28 2 Image Acquisition with LabVIEW

will cease acquisition is selected automatically as required controls. Stopped and
Image Out on the right-hand side are selected as required indicators. In addi-
tion, the Camera Attributes set of controls that establish camera settings are
optional controls and Image Number and Frame Rate are optional indicators.

Figure 2.18 Configure acquisition settings.

Figure 2.19 Configure image logging setting.

2.2 Acquiring Images Using LabVIEW 29

Upon selecting Finish, you will see the block diagram for capturing images
with the USB camera as a result of using the Express VI, as seen in Figure 2.21.
If you run the VI, images are acquired continuously and displayed on the front
panel in the Image Out display indicator.
Upon using the mouse to right-click on the Vision Acquisition Express icon

on the block diagram, a pop-up menu will appear. You can select Open Front
Panel, as seen in Figure 2.22. By doing this you will be converting this express
VI to standard SubVI where you can examine the automatically generated pro-
gram structure and make it available for editing if needed.
You can then save the resulting SubVI under a chosen file name. The resulting

block diagram of the newly saved SubVI is shown in Figure 2.23.
Using the Vision Express VI described above provides a simple and easy

method for most of readers to generate an image acquisition routine. However,

Figure 2.20 Select controls and indicators.

Figure 2.21 VI for image acquisition.

30 2 Image Acquisition with LabVIEW

if we open the converted VI, the image acquisition functions and block diagram
look complicated and it may be difficult to change it for your specific purpose.
Since both approaches have benefits and weaknesses, both Vision Acquisition
Express and the standard VI creation methods are discussed in this book.

Figure 2.23 Converted SubVI.

Figure 2.22 Conversion of Express VI to standard SubVI.

2.2 Acquiring Images Using LabVIEW 31

3
Particle Analysis

Particle analysis is one of the most commonly used machine vision techniques.
A particle refers to connected regions (or groupings) of pixels to be measured.
Particle analysis is effectively used when you want to find out the size, location,
orientation, and/or number of objects in an image.
Particle analysis refers to a set of image analysis functions that operate on

binary images, that is, those images that have only two values of a pixel: 1 and 0.
The reason for using the binary image is that it is an easy and fast way to analyze
objects by differentiating the objects (or particles) from the image background.
Before particle analysis can be performed, a proper binary image needs to be
created from the acquired grayscale or color image. The transformation to a
binary image needs to be done in a manner such that the objects of interest
in the image have pixels values of 1 and background is comprised of pixels of
values 0.
Most acquired images from cameras are either color or grayscale images.

Therefore, an image conversion process is needed. When a color camera is used,
the acquired color image must first be converted to a grayscale image. The gray-
scale image is then converted to a binary image. Conversion methods will be
discussed in detail later. Once the color or grayscale image is converted to
binary, you may then need to apply various morphology functions prior to parti-
cle analysis. Morphology functions have the ability to effectively remove
unwanted objects as well as modify the objects of interest for more accurate
measurement.
An example of particle analysis provided in LabVIEW can be referred to from

the following folder:

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision\Particle
Filter.vi

Figure 3.1 shows the results of particle analysis from the example VI. By run-
ning the VI and clicking on the tabs, the basic process of particle analysis includ-
ing binary image conversion and morphology functions can be explored and
understood.

33

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

3.1
Particle Analysis Using Vision Assistant

In this section, the use of Vision Assistant is discussed in detail. Vision Assistant
is a tool for prototyping, testing, and perhaps providing an accelerated start to
creating image processing applications. However, it often does not result in pro-
viding a complete solution to the application required. Initial code can be gener-
ated, but in most cases the code will require modification to meet the needs of
the final application. Readers will be guided through practical examples to com-
plete their image processing applications and will then be presented with exam-
ple problems.

Example: Particle Analysis

To learn how to use Vision Assistant, a simple example of particle analysis is
presented. As seen in Figure 3.2, the three circles to be analyzed are printed
on a paper: circle 1 and circle 3 are filled, while circle 2 is not filled. In addi-
tion, there are two small dots that should not be part of the measurement.
Binary-based particle analysis will be completed using Vision Assistant. In this
example, the center and size of each circle in the image is to be measured.
We then build a LabVIEW VI that can analyze circles from video images
acquired in real time.

Figure 3.1 Example VI for particle analysis provided by LabVIEW.

34 3 Particle Analysis

3.1.1

Image Acquisition Using Vision Assistant

To start Vision Assistant, select Start»All Programs»National Instru-
ment»Vision»Vision Assistant 2013. When you start Vision Assistant, you will
see a pop-up welcome screen, as seen in Figure 3.3. You can either select Open

Figure 3.2 Example for particle analysis.

Figure 3.3 Vision Assistant-Welcome Screen.

3.1 Particle Analysis Using Vision Assistant 35

Image to load an image from a file or Acquire Image to acquire an image from
a camera. In this example, Acquire Image is selected from the welcome screen.
You will then be presented with the NI Vision Assistant window, as seen in
Figure 3.4.
Complete the following steps to use Vision Assistant for image acquisition.

1) From the upper right corner of Vision Assistant, select Acquire Images, as
seen in Figure 3.4 ➀. If you select Acquire Image from the welcome
screen, Acquire Images is already selected in the Vision Assistant window.
Acquisition options are displayed in the lower left-hand portion of the
application window.

2) Select Acquire Image (1394, GigE, or USB) to acquire images using USB
camera, as seen in Figure 3.4 ➁. The Acquisition subwindow will then be
replaced with the Acquire Image (1394, GigE, or USB) Setup options
subwindow (Figure 3.5).

3) Select the Acquire Continuous Image () indicated in Figure 3.5
➀ to start image acquisition. Vision Assistant offers three types of
image acquisition: snap(), grab(), and sequence(). Here,
grab acquisition is used to acquire continuous images. However, you
may wish to select Snap Acquisition (single image) or Sequence
Acquisition instead.

Figure 3.4 Vision Assistant.

36 3 Particle Analysis

4) Selecting Store Acquired Image in Browser () indicated in Figure 3.5
➁ stores the acquired image as a reference image and displays it in the
image browser window in the left-hand portion of the window.

5) Clicking the Close button in Figure 3.5 ➂ closes the image acquisition
operation and proceeds on to the next step.

6) Select Process Images in Figure 3.5 ○4 to begin to define image process-
ing tasks. You will see the Processing Functions: Image, reference win-
dow and processing subwindow, as seen in Figure 3.6. Note that browser
reference window is provided to display the original image, whereas the
larger processing window will show results as the image is processed.

3.1.2
Image Processing Functions

The image processing functions in Vision Assistant are classified according to
the type of images and processing functions, as seen in Table 3.1. Each of the
processing function will be discussed later in the appropriate chapters.

Figure 3.5 Image acquisition.

3.1 Particle Analysis Using Vision Assistant 37

3.1.3

Setting a ROI (Region of Interest)

In viewing the window in Figure 3.6, there may be objects included in the image
that are of no interest. These unwanted objects need to be excluded from any
image processing or image analysis. The existence of unwanted objects makes
the image analysis complicated. One of the ways to simplify the image process-
ing is to use ROI. By using ROI, a portion of image can be specifically isolated
for image processing. To define a ROI in the acquired image, we can use the
Image Mask function in Figure 3.7, which can be found in Vision Assistant»
Processing Function: Image (Figure 3.6).
By selecting Image Mask and then using the option menu of Image Mask

Setup located in the lower left portion of Figure 3.8, complete the following
steps to finish ROI setups:

1) Select Create from ROI.
2) From the Mask Pixels select Outside of the ROI to exclude image features

outside of ROI for image processing.

Figure 3.6 Image processing using Vision Assistant.

38 3 Particle Analysis

3) Select the rectangle tool at the top of the processing window and draw out
a rectangle ROI by right click dragging the mouse in processing window of
Vision Assistant, as seen in Figure 3.8.

4) Select Extract Masked Region from the lower left side of the menu.
Note: As a result of selecting Extract Masked Region, the size of resulting

image will be reduced to the ROI region. Otherwise, the image size will

Table 3.1 Image processing functions in Vision Assistant.

Icon Processing
function

Features

Image Image functions are used to manipulate images of all types.
It includes image histogram, coordinate system, ROI
setting (Image Mask), and overlay functions.

Color Color functions are used for dealing with RGB and HSL
representations of color images. For example, the color
functions include color plane extraction, color (pattern)
matching, and color location functions.

Grayscale To use these functions, the image should already be a
grayscale image. In case of color image, the image should
be converted to a grayscale image prior to use of these
functions. The grayscale functions include filters,
threshold, operators, and so on.

Binary From the binary image, the object size and location can be
effectively calculated by using particle analysis. For better
results, various morphology functions are used prior to
particle analysis. To use the functions, the image should be
converted into a binary image, which easily differentiates
objects from background. Binary functions include
morphology, particle analysis, shape matching, and so on.

Machine
vision

Machine vision functions include pattern matching,
shape detection, shape matching, and caliper, which are
high-level operations used in machine vision applications.

Identification Identification functions include bar code reading and OCR.

Figure 3.7 Image Mask.

3.1 Particle Analysis Using Vision Assistant 39

remain the same as original image, but the image value outside of ROI
becomes black (or zero).

5) As a final step, click the OK button to complete the ROI setup.

Figure 3.9 shows the reduced image area of 405× 358 due to the selection of
Extract Mask Region. Note that the size of original image was 640× 480. At this
point you can see Image Mask 1 has been added to the Script located at the
bottom of Figure 3.9. A series of image algorithm steps in Vision Assistant is
called a script.

3.1.4

Binary Image Conversion

To perform particle analysis, the acquired image needs to be converted to a binary
image. In the case where a color camera is used, two steps are required to convert
the color image to a binary image. The process steps are shown in Figure 3.10.
First, the color image needs to be converted to a grayscale image. Second, the gray-
scale image is converted to a binary image by means of a threshold operation. Note
that if you need to threshold a color image instead of gray image, you must specify
thresholds for each of the color planes; either the red, green, blue planes or the
hue, saturation, luminance planes depending on the color image format.

Figure 3.8 Image Mask setup (ROI setup).

40 3 Particle Analysis

Step 1: From Color to Grayscale Image

1) Select Color Plane Extraction function tab from Processing Functions:
Image » Color.

2) Select HSL-luminance plane from color plane extraction setup.
3) Click OK button to finish image conversion from color to gray image.

Figure 3.9 Image size reduction due to ROI.

Color
Image

Grayscale
Image

Binary
Image

Processing
Function : Color

Color plane
extraction

Processing
Function : Grayscale

Threshold

Figure 3.10 Image conversion process.

3.1 Particle Analysis Using Vision Assistant 41

Step 2: From Grayscale to Binary Image

1) Select Threshold function from Processing Functions:Image » Grayscale.
2) Select a proper threshold value from threshold setup, as seen in Figure 3.11.
3) Select OK.

Proper selection of a threshold value is important to obtain an accurate repre-
sentation of the object’s boundaries for image analysis. If the threshold value is
not chosen correctly, the converted binary image will not accurately represent
the object characteristics. The selection of the threshold value is a critical step
prior to particle analysis. The threshold values for 8 bit gray images range from
0 to 255.
As seen in Figure 3.11, the threshold range slider bar (➀) can be used to easily

adjust the threshold value. By moving the slider bar, you can observe changes to
the converted binary image as the threshold value changes. The binary image
pixels with a value of 1 are indicated as red color in the processing window.
Note that in this example, the image objects were dark relative to the back-
ground. As seen in Figure 3.11 ➁, the option for Dark Objects is selected when
the objects of interest are darker than background.
From Figure 3.11, we can confirm that the image pixel values for the object

become 1 and the background pixels are 0 by using the threshold value of 128.

Figure 3.11 Threshold setup for image conversion.

42 3 Particle Analysis

Note that a correctly chosen threshold value can differ according to various con-
ditions such as lighting, object and background color, and so on. So, the thresh-
old value may need to be adjusted according to the specific image conditions.

3.1.5

Morphology

Once the acquired image is converted to binary, morphology functions can be
used to modify objects in the image. The primary reasons to use morphology
functions are to remove unwanted particles, isolate connected particles, or
improve the binary representation of the particles. In the previous section, the
method using a ROI was discussed to exclude the unwanted part from image
processing by reducing the image processing area. However, in some cases,
unwanted objects might not be completely excluded by using the ROI only.
Morphology functions can be useful to eliminate such unwanted objects. In this
example, two small unwanted objects appear in the acquired image, as seen in
Figure 3.11. The morphology functions will be used to remove these two small
particles. Morphology functions can also be used to modify objects. In this
example, the unfilled circle in the image is filled by using morphology functions.
For this purpose, complete the following steps:

1) Select Processing Functions: Image»Binary tab.

2) Select Adv. Morphology () and then Fill Hole (to fill the circle) from

the available list. Then, Select OK.
3) Select Adv. Morphology again and then Remove Small Object. (to

remove the small dots) If the small objects are not removed after clicking
the OK button, increase the number of iterations and try again.

4) Select OK button.

As seen in Figure 3.12, by using morphology functions, the unfilled circle is
filled and small objects were removed.

Morphology: Another Method to Remove Small Objects

Unwanted small objects can be removed by using Erode and Dilate functions.
The Erode function reduces all the objects size by eroding the contour of the
object. The Dilate function increases the size of the objects by expanding the
particle contours. In this way, the Erode and Dilate functions can be used to
eliminate tiny objects or fill small holes in particles.
Erode function can effectively eliminate small objects. If the iteration number

of erode function is increased, the size of all objects can be further reduced. It is
a good method to remove small objects, but it affects the size of other objects.
So, the Dilate function is usually used after using the Erode function. Note that
the number of iteration used in Dilate function needs to be the same as that of

3.1 Particle Analysis Using Vision Assistant 43

Erode function. Otherwise, the measured size of the objects of interest might not
reliably represent the original objects. The following steps are needed for remov-
ing small objects:

1) Select Processing Functions: Binary.

2) Select Basic Morphology ().

3) Select Erode and increase Iteration number to eliminate unwanted small
objects.

4) Select OK and then select Basic Morphology again.
5) Select Dilate and ensure that iteration number is the same as that of the

Erode function. Even though the dilate function increases the size, the
removed small objects do not appear.

3.1.6

Particle Analysis

If you have a converted binary image and the binary image has been modified by
using morphology functions, the objects identified with pixel values of 1, as rep-
resented in red, can be analyzed by the Particle Analysis function. For this pur-
pose, complete the following steps.

Figure 3.12 Morphology.

44 3 Particle Analysis

1) Select the Particle Analysis function from Processing Function: Binary
tab in Vision Assistant (Figure 3.13).

2) Click Select Measurements from Particle Analysis Setup shown in
Figure 3.14.

3) Select the measurement items from Select Measurements, as seen in
Figure 3.15. In this example, Center of Mass X, Center of Mass Y, and
the bounding rectangle information are selected as measurement items.
With items selected, we will obtain information on the size and location of
three circles, as seen in Figure 3.16. Note that the size of each circle can be
easily calculated from the bounding rectangle information.

Final results can be seen in the lower part of Figure 3.16:

Circle 1: center location is (345.89, 121.09).
Circle 2: center location is (61.49, 432.03).
Circle 3: center location is (489.73, 510.51).

Figure 3.13 Particle Analysis function.

Figure 3.14 Particle analysis setup.

3.1 Particle Analysis Using Vision Assistant 45

Here, the center location and bounding rectangle information are in units of
pixels. The units of pixels may need to be converted to real-world units of
measure (i.e., millimeters). The method for unit conversion will be discussed
later.

Figure 3.15 Measurement selection.

Figure 3.16 Particle analysis results.

46 3 Particle Analysis

3.2
LabVIEW Code Creation Using Vision Assistant

LabVIEW code can be generated from Vision Assistant by selecting Create Lab-
VIEW VI from the Tools (drop down menu at the top of the window), as seen
in Figure 3.17.
The LabVIEW VI Creation Wizard will appear and guide you through four

steps (Figure 3.18).
As a first step, you may need to select the version of NI Vision to use if you

have more than one version on your system. In the second step, a file name and
path for the new view VI is selected. By clicking on Next to proceed to step 3,
the image source is selected, as seen in Figure 3.19. If you want to use a USB
camera for real-time image processing from the camera, IMAQdx Image
Acquisition should be selected, as seen in Figure 3.19.

Figure 3.17 LabVIEW code generation.

Figure 3.18 VI Creation Wizard (step 1 of 4).

3.2 LabVIEW Code Creation Using Vision Assistant 47

Click on Next to proceed to the final step where controls and indicators are
selected. As an example, the ROI Descriptor and Out/In from Image Mask 1
is selected for controls in order to have them available to VIs that may call this
one. As indicators, Number of Particle and Particle Measurements were
selected, as seen in Figure 3.20.

Figure 3.19 VI Creation Wizard (step 3 of 4).

Figure 3.20 Selection of Controls and Indicators (step 4 of 4).

48 3 Particle Analysis

Then, select Finish from the step 4 to create the LabVIEW VI. Sometimes, it
can take about a minute to create the VI code.
Figure 3.21 shows the created LabVIEW VI’s front panel. However, the created

code may not be complete and you may want to modify the code with the follow
suggestions:

1) In the created code, we chose to select IMAQdx Image Acquisition to
acquire images from camera. However, it is based on single image acquisi-
tion. You may want continuous image acquisition. Alternatively, you may
want to change the VI to use a saved image files for image processing. In
such cases, you will need to modify the created VI for your own purpose.

2) The image displayed in Figure 3.21 is not the original image. The size as
well as the image type has been changed because the ROI selection and
threshold were used for binary particle analysis. However, you may want
to show and keep the original image even after the image processing and
analysis. In addition, you may wish to indicate the found objects with iden-
tifiers overlaid on the original image as a verification of the image analysis
results.

3) In the created code, the location of the ROI was defined as constant value
since the ROI position information that was entered in Vision Assistant
becomes a constant during the code creation. However, the ROI could be
defined interactively since the object’s location may change when images
are acquired continuously. In this case, you may want to modify the ROI
location and size either interactively by mouse selection on image display
or automatically by program software.

Figure 3.21 Created LabVIEW software.

3.2 LabVIEW Code Creation Using Vision Assistant 49

3.2.1
Block Diagram of Created LabVIEW Code

In this section, the created VI will be analyzed. The created VI code has the
same functionality as the script created in Vision Assistant. Therefore, it is easy
to understand the resulting block diagram (Figure 3.22). If you can understand
the VI code, you can easily modify it for your own application. We will present
certain aspects of the Vision Assistant created code that may be considered for
modification to make the final program more useful.

Modification of Image Read or Image Acquisition Code
If you select Image Source from File from the Vision Assistant wizard setup,
you will see a function to read in an image file, as seen in Figure 3.23. For your
application, you may want to modify this part so that the camera can continu-
ously acquire images for real-time image analysis.
If you select IMAQdx Image Acquisition from the Vision Assistant wizard

setup, the image is acquired once with the snap function, as seen in Figure 3.22
➀. However, for your application, the continuous image acquisition for real-time
analysis might be required.

Figure 3.22 Block diagram of created VI from Vision Assistant.

Figure 3.23 Image file read (need modification).

50 3 Particle Analysis

Region of Interest (Figure 3.22 ➁)
Figure 3.24 shows the ROI setup part that was created from Vision Assistant.
Here, the VI icon that has the IVA label indicates that a SubVI was generated
from Vision Assistant. The ROI region is passed to the IVA Mask from the ROI
Descriptor. As seen in Figure 3.24, an ROI Descriptor control was generated,
but it contains set values that were initially entered using the Vision Assistant.
However, the objects in the image may move to different regions in future
images or you may need to inspect different regions. In this case, you would
want to be able to change the area specified by the ROI interactively with the
mouse on the image display.

Image Conversion from Color to Grayscale Image (Figure 3.22 ➂)
IMAQ Extract Single Color Plane function is used to extract luminance plane
from color planes (Figure 3.25). In this way, a 32 bit color image is easily con-
verted to 8-bit grayscale image.

Figure 3.24 ROI setup.

Figure 3.25 Extracting the luminance plane of a color image for conversion to a grayscale
image.

3.2 LabVIEW Code Creation Using Vision Assistant 51

Binary Image Conversion (Figure 3.22 ○4)
A thresholding operation on the image, as seen in Figure 3.26, is required to
change the grayscale image to a binary image. Here, the pixels identifying dark
objects are converted to image values of 1, whereas the brighter background pix-
els are converted to image values of 0. In this example, threshold value for image
conversion was set to 128, which is about half in the image value range of an
8 bit gray image (0–255). Consider that the threshold value might need to be
altered due to a change in lighting conditions.

Fill Hole (Morphology) (Figure 3.22 ○5)
The Fill Hole function in Figure 3.27 is one of the morphology functions for
binary images that can modify objects. By using the Fill Hole function, an
unfilled object with a closed boundary can be filled and thus be made more read-
ily available for identification and measurement functions.

Morphology: Removing Small Objects (Figure 3.22 ○6)
Figure 3.28 shows the IMAQ RemoveParticle function to remove the small
objects in a binary image. The input setting values come from those originally
set from Vision Assistant. As seen in Figure 3.28, the iteration numbers are set
to 4. Note that the iteration number may need to be increased if the particle size
of unwanted object is larger.

Particle Analysis (Figure 3.22 ○7)
Figure 3.29 shows the VIs for particle measurements. You may consider modify-
ing this to display the result of measurements overlaid on image display for veri-
fication of the results.

Figure 3.26 Threshold setting.

Figure 3.27 Fill hole function.

52 3 Particle Analysis

Palette Type Modification
The palette type used for the image display on the front panel needs to match
with the type of images to be shown. The image display’s palette type may need
to be modified by means of setting the image display property node as seen in
Figure 3.30. Here, Vision Assistant has changed the palette type automatically
during the code creation since the image is converted to binary image with
Threshold function.

Figure 3.28 Remove small particles.

Figure 3.29 Particle analysis measurements.

Figure 3.30 Image-type modification.

3.2 LabVIEW Code Creation Using Vision Assistant 53

3.2.2

Image Type Modification

In the case where the palette type of image display does not match the image
type, the image will not appear properly on the image display. In this section,
image type modification method is briefly discussed.
The palette type of the image display can be changed by using either of the

following steps.

Palette Type Change from Image Display
Mouse is moved onto the image display in front panel, as seen in Figure 3.31,
and the right mouse button is held down. A menu will appear, as seen in Fig-
ure 3.32. From the menu, the palette type for the image display can be changed
by selection of a proper image type.

Palette Type Modification Using Property Node
As seen in Figure 3.33, the palette type can be changed via property node of the
image display indicator within the block diagram. Move the mouse to the indica-
tor icon for the image display in the block diagram. Then, click and hold the
right button of mouse. The property node for palette type can be created by
using the several steps shown in Figure 3.33.
With the mouse on the property node as seen in Figure 3.33 ○6 , the palette

value can be generated by clicking right button of the mouse and selecting
Create>Constant from the pop-up menu. From this palette-type value con-
stant, the correct palette type can be chosen from the selections within the con-
stant. Now you can connect the constant to the palette-type property node of
the image display, as seen in Figure 3.34.

Figure 3.31 Image display.

54 3 Particle Analysis

3.3
LabVIEW Code Modification

In this section, VI modification techniques will be used with the Vision Assist-
ant-created VI to enhance the real-time image acquisition and analysis. For this
purpose, the basic structure of the vision program shown in Figure 3.35 will be
used where the framework is based on the grab method of image acquisition and
subsequent image processing.
For easy integration of the image processing code in the framework, creating a

SubVI for the image analysis is recommended to simplify the main VI structure
and thereby make it easier to read and understand.

3.3.1

SubVI for Particle Analysis

To simplify the code, the program routine created from Vision Assistant is con-
verted to SubVI. Here, the input and output of SubVI for particle analysis is
defined, as seen in Figure 3.36.
Table 3.2 summarizes the input and output of the SubVI in Figure 3.36.

Figure 3.32 Palette-type selection from image display.

3.3 LabVIEW Code Modification 55

Figure 3.33 Palette-type selection method using property node.

Figure 3.34 Image palette-type modification.

Figure 3.35 Basic code structure for real-time image processing.

56 3 Particle Analysis

To build the SubVI shown in Figure 3.36, the created VI from Vision Assistant
(Figure 3.22) was saved as SUB_binary.vi. It will now be modified to be used as a
SubVI for image analysis. The method for making SubVI will be discussed in
detail.

Inputs of the SubVI
The acquired image in the main program shown in Figure 3.35 is now to be used
as input for the image analysis SubVI (Figure 3.37). A part of the code shown in
Figure 3.22 ➀ that performs the single image acquisition needs to be replaced by
an image control input to the SubVI. The image control can be created by using
mouse to drag the image control onto the front panel, as seen in Figure 3.38.

Figure 3.36 SubVI for particle analysis.

Table 3.2 Inputs and outputs of SubVI.

Inputs Outputs

Image in (acquired original image)
Threshold (threshold value for Binary
image)
ROI Descriptor (ROI information)
Error in

Image_out (converted Binary image)
Particle Measurements (Pixels) (Particle analysis
results)
Number of particles (the number of Particles)
Error out

Figure 3.37 Inputs of particle analysis.

3.3 LabVIEW Code Modification 57

The resulting image control in Figure 3.37 ➀ is used as an input of SubVI to
receive the acquired image from the main VI.
To show the image from the main VI, an image display indicator is placed on

the front panel of the SubVI. The image display indicator name is changed to
Image_display (Figure 3.37 ➁). It is then connected (wired) to the image con-
trol, Image_In (Figure 3.37 ➀) in block diagram. In this way, you will be able to
see the acquired image in the SubVI when its front panel is displayed.

Image Copy
From our previous discussion above, as a consequence of particle analysis, the
image size is reduced as a result of the ROI operation and the image is converted
to a binary image. Therefore, the image will be changed from the original
acquired image. To preserve the original image for later comparison, a copy of
the original image needs to be kept so that the changes to the image for image
processing are applied only to the copied image. To copy the image, the memory
for copied image needs to be created by using IMAQ Create (Figure 3.39) as
seen in Figure 3.37 ➂.
To copy the original image, the IMAQ Copy function (Figure 3.40) was used

in Figure 3.37 ○4 .
The functions for image copy and create can be found from function palette in

Vision and Motion»Vision Utilities»Image Management.

ROI Description (Figure 3.37 ○5)
By using the ROI information, we can obtain a new image for processing that is
reduced in size as defined by the ROI. The ROI Descriptor (control) generated
from Vision Assistant has the ROI information defined by the mouse selection in

Figure 3.38 Image control (Figure 3.37 ➀).

58 3 Particle Analysis

the Vision Assistant processing window, as shown in Figure 3.8. In some cases,
you may want to create a control (or indicator) for a ROI Descriptor directly
from control palette so that it can be used as an input (control) of the SubVI.
For this purpose, the ROI Descriptor (control) can be found from the control
palette: Vision»IMAQ Vision Controls, as seen in Figure 3.41, and can be
placed on the front panel.
You will be able to use the ROI Descriptor to receive the ROI information

from the main VI.

Figure 3.39 IMAQ Create.

Figure 3.40 IMAQ Copy.

Figure 3.41 ROI Descriptor creation.

3.3 LabVIEW Code Modification 59

Threshold Value Change
To obtain a binary image from the grayscale image, an appropriate threshold
value is needed. The optimal threshold value differs according to the contrast of
the objects in the image, which in turn is affected by the camera position relative
to the scene under investigation and the lighting conditions. The threshold value
may need to be adjusted according to changes in these conditions. Note that
the Auto-Threshold function available in LabVIEW may be useful if changing
the threshold value automatically works well in your imaging setup.
In this example, the program is modified such that a threshold value is used as

input of the SubVI, as seen in Figure 3.42. In this way, the threshold value input
to the threshold function in the SubVI can be made available to the main pro-
gram. The program user can then adjust the threshold value according to
changes of the image brightness.

Particle Analysis
After image conversion to binary by means of the threshold function, the parti-
cle analysis function can be used to analyze the objects in the image. The last
part of the created VI (Figure 3.22 ○7) is modified as seen in Figure 3.43 so that
main VI can receive the particle analysis results from the SubVI.
Figure 3.43 ➀ shows the measurement items required for the particle analysis.

The measurement choices can be edited, as shown in Figure 3.44, by moving the
mouse to ➀ and right clicking the mouse to select Edit Items.
In this example, the center locations of the circles and bounding rectangle

information of the particles were selected from the Vision Assistant as the mea-
surements, as seen in Figure 3.44. We can also add or delete items from this list.
The number of objects (in Figure 3.43 ➁) and measurement results from the
particle analysis (Figure 3.43 ➂) are used as outputs of the SubVI so that they
can be made available to the main VI. The measurement results are in the form
of 2D array, as seen in Figure 3.45. The columns represent the measurements
selected. In this case they are the particles X and Y center locations and bound-
ing rectangle coordinates. The number of columns is the same as that of mea-
surement items selected, whereas the number of rows corresponds to the
number of particles found in the image. Note that the results have subpixel

Figure 3.42 IMAQ Threshold.

60 3 Particle Analysis

Figure 3.43 Defining outputs of particle analysis.

Figure 3.44 Edit Items for particle analysis.

3.3 LabVIEW Code Modification 61

precision since software algorithm uses an interpolation function over all the
pixel locations to get the measurement information.
Figure 3.43 ○4 changes type of the image display. Image control of Figure 3.43

○5 is used as output of the SubVI to pass the processed image (binary image with
reduced size) to the main program. One way to do this is to place an image con-
trol on the front panel from Vision»IMAQ Image.ctl and use the mouse right
button on the control to select and change it to an indicator. The image display of
○6 is used to show the resulting binary image that has been processed in the SubVI
for the purpose of debugging the SubVI. As a final step, the terminals are con-
nected to define inputs and outputs of SubVI, as seen in Figure 3.46 ➀ and ➁.
The SubVI defined so far (Figure 3.46) is used for image analysis of continu-

ously measured images, as seen in Figure 3.47 ➁. Image in Figure 3.47 ➂ is to
display the original image, whereas Image 2 in Figure 3.47 ○4 will display the
binary image with reduced size due to the ROI (Figure 3.47 ➀). When running
the VI, you can compare both images, as seen in Figure 3.48. The front panel in
Figure 3.48 shows the original image and the processed image modified by
binary image conversion and ROI, respectively. Programmatically, the ROI
region is to be defined interactively by having the user specify the ROI area using

Figure 3.45 Particle analysis results (Particle Measurements in Figure 3.43 ➂).

Figure 3.46 Inputs and outputs of the SubVI.

62 3 Particle Analysis

mouse on image display in front panel during program operation. For this pur-
pose, the ROI tool is selected from the vertical tool bar (Figure 3.48 ➀). Since the
ROI information is an imbedded property of the Image, a property node is cre-
ated from the Image to retrieve this information. To create this property node,
the mouse cursor is moved over the image indicator on the block diagram
(Figure 3.47 ➂: Image) and the mouse right button is held down to display a
pop-up menu. From the menu, select Create»Property Node»ROI to create
property node that supplies the ROI information from the image (Figure 3.47 ➀)
and wire this to the ROI input of the SubVI.
Upon running the VI in Figure 3.47, you will see the binary image

(Figure 3.47 ○4 : Image 2) with the reduced size defined by the ROI, as seen in
Figure 3.48b. For example, the size of the original image was 1280× 720, but the

Figure 3.47 Block diagram for image analysis.

1
2

ROI

(0,0) ROI starting location
(0,0)

Figure 3.48 Identifying the positions of objects using a ROI.

3.3 LabVIEW Code Modification 63

reduced size of the processed image was 646× 657 due to the ROI. From the
binary image analysis, the results can be obtained in terms of particle number
and particle measurements indicators (Figure 3.47 ○5 and ○6).

Particle Analysis Result Overlay
One good way to display and verify the image processing results is to show them
on the main program’s image display via overlay. This nondestructive overlay
enables you to overlay text, line, and geometric shapes without affecting the
image itself. The creation of another SubVI for overlaying results is discussed in
this section.
The particle location information from the particle analysis results is used for

the overlay. However, since the location of the particles was obtained from the
reduced size binary image, we need to use the ROI location information to
readjust the location information so that it relates to the original image. There-
fore, the location of the ROI in the original image needs to be added to the parti-
cle analysis location results to overlay the results on original image in the correct
location.
The inputs and outputs of the SubVI for overlaying results can be defined, as

seen in Figure 3.49. The ROI information and particle measurement results are
required to calculate the overlay location on original image. Be aware that the
image input (Image) in Figure 3.49 will be the original image.
Figure 3.50 shows an example of the block diagram of a SubVI to overlay the

particle analysis results on the original image.
Figure 3.50 ➀ uses the ROI Descriptor information to get the offset location of

the ROI. An ROI descriptor that needs to be placed on the front panel can be
found in the control palette: Vision and Motion»IMAQ Vision Controls» ROI
Descriptor. This ROI descriptor is used as the input of the SubVI so that the
ROI information from the main program can be passed to the SubVI.
To retrieve the ROI offset location, the first and second coordinate array val-

ues can be obtained from the first array element of the Contours cluster
unbundled from the ROI Descriptor. Then, the unbundled Coordinates are
extracted, as in Figure 3.50 ➀. The array values (Xs, Ys) correspond to the X and
Y origin locations of the ROI relative to the original image. This information will

Figure 3.49 SubVI for overlay.

64 3 Particle Analysis

be added to the particle analysis results to locate the objects in the original
image. Since there may be more than one found object in the image to identify
with overlay, the Particle Measurements (array) is used in a FOR loop. We can
use the auto-indexing feature of the FOR loop to convert the 2D measurement
results array to a 1D array of particle location results corresponding to each par-
ticle (each row of information from the 2D array results, shown in Figure 3.45,
will be used to draw an overlay in each loop).
We will use the IMAQ Overlay Oval function (Vision and Motion»Vision

Utilities»Overlay), as shown in Figure 3.51 and as seen in Figure 3.50 ➂, to
overlay circles (or ovals) on the boundary of the objects in the image.
To use this overlay function, the bounding rectangle of an oval, defined by

left-upper (x1, y1) and right-lower (x2, y2) coordinates, is used to define an input
cluster to the overlay function. The bounding rectangle information for each
object from the particle analysis (XLeft, YTop, XRight, YBottom) is used to build the
cluster information, as seen in Figure 3.50 ➁. By using the ROI offset location
and particle analysis results, we can calculate the bounding rectangle location
information for the overlay function as

x1 � XLeft � Xs; y1 � YTop � Y s;
x2 � XRight � Xs; y2 � Y Bottom � Y s:

Figure 3.50 Block diagram of SubVI for overlaying.

Figure 3.51 IMAQ Overlay Oval function.

3.3 LabVIEW Code Modification 65

Real-Time Image Processing Program
Figure 3.52 shows the resulting front panel of the main VI, which analyzes the
acquired image to find the location of particles and overlays the results graphi-
cally. The binary image is also shown on the front panel (Image 2) and gives
useful information feedback to the user on whether the threshold value is correct
and the morphology functions are working properly.
Figure 3.53 shows the block diagram of the main program. In this case, two

SubVIs are used: a SubVI for particle analysis (➀) and a SubVI for overlaying
(➁). The methods for building the two SubVIs have already been discussed. The
Image property node that contains the information on the current ROI is used
as input for the two SubVIs.

Figure 3.52 Main program for particle analysis.

Figure 3.53 Block diagram for particle analysis.

66 3 Particle Analysis

Image display (Image 2 in Figure 3.52) shows the binary image, which is con-
verted in the SubVI (➀). Here, the image palette type should be set to be binary.
For this purpose, image display on the front panel was clicked by the right
mouse button and Palette»Binary was selected from the menu. If the image
display palette type does not match with image type, the image cannot be shown
properly on image display as discussed earlier.
Note that the IMAQ Dispose function can be used to free memory for images

after image analysis. This function can be found from Vision and Motion»
Vision Utilities»Image Management»IMAQ Dispose.

3.4
Particle Analysis Using Vision Express

Vision Acquisition Express was discussed in Chapter 2. In this section, the use
of Vision Express VIs will be discussed to help readers quickly develop common
processing applications. In this section, an example shown in Figure 3.2 will be
used to explain the particle analysis using Vision Express VI.

3.4.1
Vision Acquisition Express

To acquire image, Vision Acquisition Express can be used by dragging the
Vision Acquisition Express function on the block diagram (Figure 3.54).
Then, selecting the camera and continuous acquisition with inline processing

will result in a block diagram that acquires continuous images, as seen in
Figure 3.55. The details describing image acquisition using Vision Express can
be found in Chapter 2.

Figure 3.54 Vision Acquisition Express.

3.4 Particle Analysis Using Vision Express 67

3.4.2

Vision Assistant Express

As a first step for setting up Vision Assistant Express, an image file may be
required. For this purpose, when we run the VI from Figure 3.55, the acquired
image in the front panel (Figure 3.56) can be used. The image can be saved to a
file by right clicking on the front panel image display and selecting the Save
Image, as seen in Figure 3.56. This method will be referred to in the following
chapters for obtaining images as needed.
As a next step, a Vision Assistant Express VI is placed on the block diagram.

This operation will result in the NI Vision Assistant window appearing as seen in
Figure 3.57. There is slight difference in the menu compared with Vision Assist-
ant in Figure 3.4. As seen in Figure 3.57 ➀, this row of buttons are used in the
final steps of Vision Assistant to define inputs and outputs and return to the
block diagram.

Figure 3.55 Continuous image acquisition.

Figure 3.56 Saving image file from image display.

68 3 Particle Analysis

Figure 3.57 Vision Assistant Express.

To start image analysis, the saved image to be analyzed can be opened by

selecting Open Image () from the menu bar in Figure 3.57 ➁.

Once you have loaded the image into Vision Assistant as seen in Figure 3.58,
the same process can be followed as discussed earlier (Figures 3.8–3.16). When
image analysis from Vision Assistant is complete, click on Select Controls� in
the bottom menu, as seen in Figure 3.58 ➀. You will then see the controls and
indicators (Figure 3.59) available for the resulting Vision Express VI, which will
be used in your applications. This is very useful because the selected controls
and indicators can be automatically added to the resulting code.
In this example, Image Mask 1»ROI Descriptor and Threshold 1»Range are

selected for controls. For indicators, the Particle Analysis 1» Number of Parti-
cles and Particle Measurements (Pixels) are selected. To return to LabVIEW,
click Finish, as seen in Figure 3.57 ➀. Then, the Vision Assistant Express VI can
be used in the same way as a SubVI in the block diagram. This can significantly
reduce the effort to make an image analysis SubVI manually as described in pre-
vious sections.
To acquire continuous image and inline processing, the block diagram can be

completed by wiring the inputs and outputs of the Vision Assistant Express VI, as
seen in Figure 3.60. The acquired image is wired to image src (image source) of
the Vision Assistant Express VI. To keep the original image after binary image
analysis, additional image memory needs to be created, as seen in Figure 3.60 ➀,
and connected to image dst (image destination) input of the Vision Assistant
Express VI. To access the ROI information defined by the user on image display
(Image Out), the ROI property node of Image Out (Figure 3.60 ➂) is created and
connected to input of the ROI Descriptor in the Vision Assistant Express VI.

3.4 Particle Analysis Using Vision Express 69

If you define a ROI area from image display, the binary image bounded by this
ROI area (Figure 3.61 ➁) and the particle analysis results can be obtained
(Figure 3.61 ○4). You can dynamically adjust the threshold value (Figure 3.61 ➀)
from front panel to obtain proper binary image (Figure 3.61 ➂) for particle

Figure 3.58 Image analysis using Vision Assistant.

Figure 3.59 Selection of Indicators and Controls for Vision Express VI.

70 3 Particle Analysis

analysis while the program is executing. As discussed earlier, the image display
palette of image2 should be set to binary image type to show the image properly.

3.5
Conversion of Pixels to Real-World Units

The identified length and size of an object from vision analysis are in units of
pixels. In many applications one would want the results of the measurements to
be converted into real-world units. To do this, the dimensions of an image pixel,

Figure 3.60 VI for particle analysis using Vision Express VI.

Figure 3.61 Front panel of particle analysis.

3.5 Conversion of Pixels to Real-World Units 71

in the form of a ratio, needs to be calculated in advance to determine real-world
dimension measurements from image processing. As an example of obtaining
the conversion ratio, a simple manual method using line ROI will be used. Note
that you may use other methods to obtain the conversion ratio, such as the
image calibration method provided in LabVIEW Vision. That image calibration
method will be discussed in Chapter 14.
Figure 3.62 shows an example of a stand-alone program to calculate the dis-

tance-to-pixel ratio. As seen in Figure 3.62, the ROI Line tool () is selected
from image display tools in ➀. We can then draw a line ROI by clicking and drag-
ging the mouse as seen in ➁, which will appear as a line on the image display.
From the ROI line, the line length can be obtained in units of pixels retrieving

the start and end of the line coordinates. For this purpose, the IMAQ Convert
ROI to Line function in Figure 3.63 is used.

Figure 3.62 Image pixel to distance conversion using line ROI.

Figure 3.63 IMAQ Convert ROI to Line function.

72 3 Particle Analysis

By using the Convert ROI to Line function, the start and end locations of the
ROI line can be obtained. As in this example, you can draw a ROI line along the
100mm length of a ruler. By this you will know the real distance of the ROI. You
can calculate the distance in pixels along the line by using the convert ROI to
Line function. Knowing the real distance and the distance in number of pixels,
you can calculate conversion ratio, that is distance to pixel ratio.
Figure 3.64 shows a block diagram to calculate distance in mm/pixel. The real

distance in mm (➁) and ROI length in pixels (➀) are used to calculate
mm/pixel (○4).
As seen in front panel (Figure 3.62), the real length of the ROI line (100mm)

is entered as the distance (○4). Then, the real distance per 1 pixel can be calcu-
lated. Here the value is 0.20mm/pixel (○5). This conversion ratio may change
according to lens selection and the working distance between the camera and
the object. It is therefore recommended that the distance to pixel ratio be cali-
brated prior to image processing to get the distance in the real-world units.
Based on the results of this example, image processing results in real-world

units can be obtained by multiplying the conversion ratio (mm/pixel) by the
image locations, which are in units of pixels as a result of the image analysis.

Distance �or position� in mm � �image analysis results in pixels�
� �0:2 mm=pixel�

Figure 3.64 Pixel to distance ratio calculation. ➀ and ➂: calculation of length of ROI line in
pixels. ➁: Control of VI to get the user-entered real distance, for example, 100mm. ○4 : Indicator
of VI to show the calculated distance-to-pixel ratio.

distance

R1 R2

R3

Figure 3.65 Size and the distance between two circles.

3.5 Conversion of Pixels to Real-World Units 73

Exercise 3.1

Find the image (Holes.tif) from folder C:\Program Files\National Instruments
\Vision\Example\Image. By using particle analysis, calculate the size of each
circle and the distance between the two large circles (Figure 3.65).

Exercise 3.2

Find the image (Particle 2.png) from the folder (C:\Program Files\National
Instruments\Vision\Example\Image). By using the particle analysis, find the
number of particles and show the result by overlaying the rectangle around each
of particle (Figure 3.66).

Exercise 3.3

Add overlay function in VI shown in Figure 3.60 to show the results on original
image of Exercise 3.2.

Figure 3.66 Particle analyses and overlay exercise.

74 3 Particle Analysis

4
Edge Detection

Edge detection is used to find locations in the digital image where the image
brightness changes abruptly along a line of pixels. These abrupt changes usually
define the edge of an object in an image. By using the edge detection, boundaries
of an object can be identified. Once the boundary of an object is located, the size
as well as other features of the object can be determined.
Note that the type of ROI used for edge detection is defined as a line in the

image display, whereas in Chapter 3 a two-dimensional area is used as a ROI for
particle analysis. To use the edge detection algorithm, color image should be
converted to either a grayscale or a binary image in advance.
The basic example for Edge detection can be found from the following folder:

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision\Caliper\
Edge Detection.vi

The concept of edge detection can be understood from the example provided
with LabVIEW. As shown in Figure 4.1, by defining a ROI line across the object,
the pixel values along the line’s path provide a profile of the object that is repre-
sented in the Line Profile graph seen at the top right of Figure 4.1. The profile
values display an abrupt change at the edge of the object. As seen in Figure 4.1,
the small dots at the object’s edges indicate that the program has found the edge
locations along the ROI line. The dots appear on the image by means of an over-
lay function.

4.1
Edge Detection via Vision Assistant

In this section, a method using Vision Assistant for edge detection will be
discussed.

1) As a first step, an image needs to be acquired either from a camera or read
in from a file for the image analysis.

75

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

2) Once the image is acquired, select Process Images

() as described in Chapter 3 to

start image processing.
3) In the case of color images, select HSL-Luminance plane from color plane

extraction (Processing Functions: Color»Color Plane Extraction) to
obtain gray image. This process was discussed in detail in Chapter 3.

4) Now, by selecting Processing Functions: Machine Vision»Edge Detec-
tor, you will see the menu for Edge Detector Setup, as shown in
Figure 4.2.

As seen in Figure 4.2, a line (➀) is drawn using the mouse to define a ROI. In
this example, the Simple Edge Tool function is selected as the Edge Detector.
With the line defined, the image values along the line ROI are used to find the
object’s edge locations. The image values along the ROI line are shown in Line
Profile subwindow (○4). From this profile you can see how the image values of
the object and background are differentiated. The inside part of the circle object
is dark since it has image values close to 0 and the background is brighter with
higher image values of around 150, as seen in Figure 4.3. Note that the relative
image value of the background with respect to the object is important since
these absolute values might be subject to change due to image brightness from
imaging conditions.
In this example, the simple edge tool is used for edge detection. To obtain the

best results from edge detection, determining an appropriate value for the
threshold is important. For this purpose, the Threshold Level can be adjusted
as represented in Figure 4.2 ➂.

Figure 4.1 Example VI for edge detection provided by LabVIEW.

76 4 Edge Detection

Figure 4.2 Edge detector setup.

Figure 4.3 Simple edge detection algorithm.

4.1 Edge Detection via Vision Assistant 77

After defining a threshold value, the edge measurement results including the X
and Y edge location values are displayed, as seen in Figure 4.2 ○5 . Using the
detected edge locations, we can calculate the distance between the edges to gain
knowledge about the size of the object.
LabVIEW code can be created upon completion of the Vision Assistant setup.

The created code can then be modified to calculate the location as well as the
size of the object. The methods for modifying code as a result of using Vision
Assistant have been extensively discussed in Chapter 3. To explore another
approach in this chapter, an example VI, as shown in Figure 4.1, will be modi-
fied. This example VI is included with the LabVIEW Vision software installation.

4.2
LabVIEW Code for Edge Detection

In this section, we will briefly examine the example VI in Figure 4.1 to learn
more about edge detection. Figure 4.4 shows the block diagram of the exam-
ple VI shown in Figure 4.1.
Figure 4.4 ➀ shows the code to read in an image from a file. The ROI property

node () of the image display provides information about the ROI. This

information includes the location and size of the ROI as drawn with mouse on
the image. The image values along the ROI line are obtained by using ROI Pro-
file function in Figure 4.4 ➁. The ROI Profile function (Figure 4.5) can be found
from function palette in Vision» Image Processing»Analysis.
The Edge Tool function in Figure 4.4 ➂ and Figure 4.6 is used to find the edge

along the ROI line. The Edge Tool function can be found in Vision»Machine
Vision»Caliper. The Edge Tool function returns location and statistical results
in Edge Information shown in Figure 4.6b.

Figure 4.4 Block diagram of example VI in Figure 4.1 (provided by LabVIEW).

78 4 Edge Detection

In Figure 4.4, the Overlay VI (○4) uses the image processing edge coordinate
results and displays these locations as small ovals overlaid on the image. The
block diagram of the Overlay Points with User Specified Size VI is shown in
Figure 4.7b. This VI requires the edge locations (Points) obtained by edge detec-
tion algorithm as the inputs. The Location (Pixel) values in the Edge Informa-
tion cluster in Figure 4.4 ○6 provide the information required. However, the
IMAQ Overlay Oval function used to overlay in this example requires the loca-
tion information to be in the form of an array of clusters containing bounding
rectangle corner locations. The bounding rectangles are used to define filled cir-
cles at the edge locations of the object. The Location (Pixel) values will be used
to create the bounding rectangle for the circle overlays.
To define the bounding rectangle information, the value from the Point

Diameter control is used so that the calling routine can adjust the size of the
circles as needed (Figure 4.7 ➀). To create the bounding rectangle, the edge
Location (Pixel) (Xp, Yp) and the Point Diameter (D) are used as

X1 � Xp � D=2; Y1 � Yp � D=2; X2 � Xp � D=2; Y2 � Yp � D=2 (4.1)

The resulting boundary rectangle information (X1, Y1, X2, Y2) is assembled into
a cluster using bundle function, as seen in Figure 4.7b ➂.

Figure 4.5 ROI Profile.

Figure 4.6 IMAQ Edge Tool. (a) Edge Tool function. (b) Edge Information (output of Edge
Tool).

4.2 LabVIEW Code for Edge Detection 79

The cluster containing the bounding rectangle information shown in
Equation 4.1 was wired to the Bounding Rectangle input of the IMAQ Overlay
Oval function and used to overlay the edge results (Figure 4.8). The IMAQ
Overlay Oval function can be found from the function palette: Vision and
Motion»Vision Utilities» Overlay.

Figure 4.7 Overlay VI in example VI provided by LabVIEW. (a) SubVI for overlay points.
(b) Block diagram for overlay VI.

Figure 4.8 Overlay Oval function.

80 4 Edge Detection

As seen in Figure 4.7, the number of iterations needed in the FOR loop to
overlay all the edges is the same as the number of edges. Thus, the autoindexing
feature of LabVIEW FOR loops is used to cycle through the number of elements
in the array of points. Note that any previous overlaid objects can be deleted by
using Clear Overlay function (Figure 4.9) prior to overlaying the currently
detected edges as seen in Figure 4.4 ○5 .
The example VI for edge detection was briefly reviewed. Now, you may want

to modify the VI according to your needs.

4.3
VI for Real-Time-Based Edge Detection

Example: Edge Detection

Create a VI that finds edges along a ROI line defined by mouse selection on
image display. For example, you may want real-time edge detection, as seen in
Figure 4.10. By using the edge detection, boundaries of objects are located as
video images are acquired and ROIs are dynamically redefined. The detected
edges can be presented and verified by means of overlay.

Figure 4.11 shows the block diagram for edge detection, which has been modi-
fied from the example VI shown in Figure 4.4.
As seen in Figure 4.11 ➀, the color image is first converted to a grayscale

image. This is accomplished by selecting the luminance color plane from the
IMAQ ExtractSingleColorPlane function (Figure 4.12) that can be found in
Vision and Motion»Vision Utility»Color Utility. If a grayscale image is
acquired from the camera, this step can be skipped.
After the luminance plane is obtained, the palette type of the image display

needs to be changed from color to grayscale. The Image indicator property
node is used to change the palette type. Create the property node by positioning
the mouse over the Image display indicator () icon in the block diagram and
use the right mouse button to select Create»Property Node»Palette»Palette
Type from the pop-up menu. Then with the mouse on the newly created

Figure 4.9 Clear Overlay.

4.3 VI for Real-Time-Based Edge Detection 81

property node, select Change to Write from the menu that appears using the
right mouse button. When the property node is changed to write, the property
shape appearance is changed as seen in Figure 4.13.
From the wire input position of the property node, use the mouse right button

to show a pop-up menu and select Create»Constant to create constant value for

Figure 4.10 Front panel for edge detection.

Figure 4.11 Block diagram for Edge detection.

82 4 Edge Detection

palette type. Set the constant to Grayscale in order to allow the Image display to
render the image as a grayscale image on the front panel.
Before using the edge detection functions, a line profile graph can be used to

represent the image values along the ROI line, as seen in Figure 4.11 ➁. The
IMAQ ROI Profile function can be found from Vision and Motion»Image
Processing»Analysis.
The IMAQ Simple Edge function in Figure 4.14 is used here for the edge

detection. The simple edge function requires Pixel Coordinates from the ROI
line information and Threshold Parameters as inputs.
The IMAQ Simple Edge function returns the Edges Coordinates, as seen in

Figure 4.15. The Edges Coordinates are in the form of an array of clusters that
contain X/Y coordinate values. The array contains the same number of cluster
elements as detected edges. In this example, four edges are detected resulting in
an array of four clusters. The array front panel indicator in Figure 4.15 shows the
first two clusters of the array that hold location information of the first and sec-
ond edges. To see the information on other edges, change the array index ().

Figure 4.12 IMAQ ExtractSingleColorPlane function.

Figure 4.13 Property node for palette type (changing from read to write).

Figure 4.14 IMAQ Simple Edge (Vision»Machine Vision»Caliper).

4.3 VI for Real-Time-Based Edge Detection 83

Edge Coordinates from the IMAQ Simple Edge function consists of X and Y
coordinates only. To indicate the edge detection results on image display, a
modified form of the overlay SubVI from Figure 4.7 is used. This modified form
is defined in Figures 4.16 and 4.17.
Here, the main differences between the SubVIs in Figures 4.17 and 4.7 are (1)

the form in which the Edge Coordinates information is supplied and (2) that all
previous overlays are cleared.
It should be noted that the detected location and size of the overlaid ovals are

in units of pixels. To have the results reported in real-world measurement

Figure 4.15 Edge coordinates.

Figure 4.16 Modified Overlay function.

Figure 4.17 Block diagram for modified overlay SubVI.

84 4 Edge Detection

values, we need to multiply the pixel units with a conversion ratio that has the
unit of mm/pixels to convert the measurements to a measured real-world
dimensional units (mm).
In this section, an example provided by NI was used as a starting point to

create a modified VI for edge detection without using Vision Assistant. It is up
to readers whether to use Vision Assistant to create a VI for image analysis or to
build it explicitly from scratch. In the next section, perhaps an even easier
approach that uses Vision Assistant Express for edge detection will be examined.

4.4
The Use of Vision Assistant Express for Real-Time Edge Detection

In this section, Vision Assistant Express will be used for real-time edge detec-
tion. The real-time aspect will involve continuous image acquisition using the
image grab method, as seen in Figure 4.18.
Since the Vision Assistant Express initially requires the use of a reference

image to build the image processing algorithm, a previously saved image file
needs to be supplied.
The Vision Assistant Express can be easily started by dragging Vision Assist-

ant Express VI to the block diagram. Once the Vision Assistant Wizard is run-
ning, the previously saved image file will need to be opened. If the image is color,
you need to convert the color image to a gray image by Color Plane Extraction

Figure 4.18 Vision Assistant Express.

4.4 The Use of Vision Assistant Express for Real-Time Edge Detection 85

function (Figure 4.19 ➀). Then, select the Edge Detector (Figure 4.19 ➁) from
Processing Functions: Machine Vision, as discussed in Figure 4.2.
Then, click Select Controls>> (Figure 4.19 ➂) to select controls and indica-

tors. In this example, the ROI Descriptor is selected (Figure 4.20 ➀) for controls
and Number of Edges as well as Edge Coordinates are selected for indicators
as seen in Figure 4.20 ➁. Here, the Edge Coordinates indicator is an array of
clusters containing the X and Y coordinates of the detected edges.
After selecting Finish and returning to LabVIEW, the inputs and outputs of

created VI can be wired, as seen in Figure 4.21. To provide a user-defined ROI
from the image display as input to the created VI, an Image ROI property node
(Figure 4.21 ➀) is generated by right mouse clicking on Image indicator icon in
Figure 4.21 ➁ and selecting Create»Property Node»ROI.
Note that the image display in Figure 4.22 is a grayscale image because the

original color image was converted in Vision Assistant Express. To keep the
color image, another allocation of image memory using the Image Create func-
tion could be added and connected to Image dst (image destination) of Vision
Assistant Express.
As an additional step, an image overlay routine could be created to indicate

the locations of the detected object’s edges.

Figure 4.19 Vision Assistant Express for edge detection.

86 4 Edge Detection

Figure 4.20 Controls and Indicators for edge detection.

Figure 4.21 VI for edge detection.

4.4 The Use of Vision Assistant Express for Real-Time Edge Detection 87

Exercise 4.1

Using the NI supplied image, Clamp.png from C:\Program Files\National
Instruments\Vision\Examples\Images, create a VI to perform edge detection
in order to calculate Distance 1 and Distance 2 from the edge coordinate infor-
mation (Figure 4.23). Use the Vision Acquisition Express VI to read in the image
file. Methods for reading and writing image files using LabVIEW standard VIs
will be discussed in Chapter 15.

Exercise 4.2

Add an overlay to the image in Figure 4.22 so that edge detection results can be
examined easily on the image display.

Figure 4.22 Front panel of edge detection.

Figure 4.23 Dimension measurement using edge detection.

88 4 Edge Detection

5
Pattern Matching

Pattern matching is a method for finding regions in a grayscale image that match
a reference image pattern. If the initial image source is a color image, the image
needs to be converted to grayscale first in order to use pattern matching. The
pattern matching VI uses a reference or template image to find like images
within a new image regardless of location, rotation, or scaling of the template.
Pattern matching is often used to locate the positions of a fiducial mark, or

unique characteristic features, of an object in an image. You can use the posi-
tions to compute length, angles, and other measurements. As a result, pattern
matching has been widely used in various applications such as alignment, gaug-
ing, and inspection. Pattern matching has an advantage over particle analysis or
edge detection because the pattern search does not rely on distinct brightness of
the imaged object compared with the image background.
Figure 5.1 shows an example VI provided in LabVIEW, which can be found in

the following folder:

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision\Pattern
Matching

As seen in Figure 5.1, pattern matching requires several steps.
Run the example VI above to gain an understanding of LabVIEW pattern

matching concept:

1) Click on Image File Path to select and read in an image file (Figure 5.1 ➀).
2) Select Create Template (Figure 5.1 ➁) and a pop-up ROI Constructor

window will appear. Using the Rectangle ROI tool, select the part of the
image to be used as the reference or template (right mouse button on
the image to drag out a rectangle). Then, select OK to return to main VI.
The selected image portion will appear as the Template, as seen in
Figure 5.1 ➂ and will be used for pattern matching in a target image.

3) Select Match (Figure 5.1 ○4) to search for the matched pattern in the
image. The matching results include locations, number of matches, and

89

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

boundary rectangle information, as seen in Figure 5.1 ○5 . The found pat-
terns will then be shown on Image display via overlay, as seen in
Figure 5.1 ○6 .

Example: Pattern Matching

In order to practice pattern matching, several types of patterns can be printed
on paper, as seen in Figure 5.2. A USB camera can then be used to continuously
acquire images of printed patterns. The task for this chapter is to build a VI that
can find patterns that match with the reference image shown in Figure 5.2.

5.1
Pattern Matching Using Vision Assistant

To find patterns that match with a reference pattern, Vision Assistant will be
used for this section. Perform the following steps:

1) Acquire or read in an image for image processing by using Vision Assistant.
2) Color images will need to be converted to grayscale via the Color Plane

Extraction function (Processing Function: Color» Color Plane Extrac-
tion). This process has been discussed in Chapter 3.

Figure 5.1 Pattern matching example VI.

90 5 Pattern Matching

3) From Vision Assistant, select the pattern matching function from Proc-
essing Functions: Machine Vision»Pattern Matching.

4) Select New Template from Pattern Matching Setup, as seen in
Figure 5.3 ➀.

Figure 5.2 Image for pattern matching example.

Figure 5.3 Create New Template for pattern matching.

5.1 Pattern Matching Using Vision Assistant 91

5) You will be presented with a pop-up window to select a region of the
image as the reference pattern for the pattern matching operation using
the mouse, as seen in Figure 5.4. After the image template is selected,
click on Next� to proceed.

6) From the NI Vision Template Editor as shown in Figure 5.5, you can
select the regions in the template image to ignore by using the drawing
tool () to draw a region around the object. Here, the ignored area is
indicated in Figure 5.5. This area will not be used for pattern matching
and more accurate matching results can be obtained by excluding
unnecessary parts.

7) Select Next� to adjust the desired X and Y coordinates within the
matched object, as seen in Figure 5.6. This Match Offset point will iden-
tify the object’s point of location when it is found in the searched image.
Now, select Finish to save the Template image for pattern matching.

8) The resulting template image and template image path can now be seen
in the Template tab of the Pattern Matching Setup, as seen in
Figure 5.7.

9) By selecting the Settings tab from Pattern Matching Setup in Figure 5.7,
you can set parameters values, as seen in Figure 5.8 ➀ and ➁. Table 5.1
summarizes the parameter settings for pattern matching.

Figure 5.4 Selection of template region from the image.

92 5 Pattern Matching

Figure 5.5 Regions to Ignore (Define Pattern Matching Mask).

Figure 5.6 Matching offset adjustment.

5.1 Pattern Matching Using Vision Assistant 93

Figure 5.7 Pattern matching setup.

Table 5.1 Parameters for pattern matching.

Number of matches
to find (Figure 5.8 ➀)

Minimum score
(Figure 5.8 ➀)

Search for rotated
pattern (Figure 5.8 ➁)

In this example, the value of
3 is used to find three ovals
that match with template
pattern.

Only objects with higher
matching score than the min-
imum score are considered
valid in the search. The score
value ranges from 0 to 1000.
If matching score of an object
is close to 1000, the matched
object is likely to be perfectly
matched with the reference
template. However, if the
value of minimum score is set
too high, some of matched
patterns with low matching
score may not be found.

Rotated pattern can be found
by using Search for Rotated
Patterns. Note that allowable
angle of 180° ranging from
�90 to 90 is selected since the
oval is symmetrical in shape.

94 5 Pattern Matching

10) Select a ROI rectangle in the image to define the area (Figure 5.8 ➂) to
perform pattern matching.

11) Observe and confirm the pattern matching results, as seen in Figure 5.8
○4 . The results include X and Y coordinate locations, angle of rotation,
and score. Three patterns are found in this example. Note that
matched pattern 1 has the score value of 1000 since this pattern was
used as the reference template image. The scores of other matched
patterns are 983.9 and 727.5. From the score values, the level of simi-
larity of matched patterns can be evaluated. If you set the minimum
score to 900, the pattern with score value of 727.5 will not be included
in the set of found objects. Note that the score can be affected by dif-
ferences in lighting conditions as well as object similarity. The rotation
angle of matched patterns with respect to reference pattern can be
obtained, as seen in Figure 5.8 ○4 . If you had set allowable angle range
to 30°, the pattern with a 329.9° rotation (result 3) would not have
been reported in the search results.

12) If the parameters are acceptable, select OK from the Pattern Matching
Setup to finish pattern matching using Vision Assistant. You are now
ready to create a VI to build your own program for pattern matching.

Figure 5.8 Pattern matching setup and the results.

5.1 Pattern Matching Using Vision Assistant 95

5.2
LabVIEW Code Creation and Modification

Now we can use Vision Assistant to create a LabVIEW VI (Tools»Create Lab-
VIEW VI). The created VI needs to be modified according to your needs. Lab-
VIEW programming skills are required for this purpose. You may want to skip
Sections 5.2 and 5.3 if you prefer an easier approach with the use of Vision
Express, which will be presented in Section 5.4.
Within the LabVIEW VI Creation Wizard, you may select Image File as the

image source (step 3 of 4). Note that the VI code that specifies the image source
may not be appropriate for the intended application and may need to be modi-
fied. To build the SubVI for your applications efficiently, select the indicators
and controls for the created VI (step 4 of 4), as seen in Figure 5.9.
The created VI from Vision Assistant will need to be modified in order to be

used for real-time analysis. In this section, modification techniques are discussed
for real-time pattern matching. However, before any modifications are per-
formed, save the created LabVIEW code under the name pattern_maching_
SUB.vi. The resulting LabVIEW SubVI has inputs and outputs, as seen in
Figure 5.10.

Figure 5.9 Selection of controls and indicators for pattern matching VI.

96 5 Pattern Matching

Figure 5.11 shows the SubVI that has been slightly modified from the created
VI to add controls and indicators, as shown in Figure 5.10. Note that most of the
indicators and controls were created automatically by the VI Creation Wizard
(step 4 of 4). The parts of the VI to be discussed are indicated as circled numbers
in Figure 5.11.

➀ shows an Image control that is placed on the front panel (Vision»IMAQ
Image ctl) so that the image can be used as an input of the SubVI. In this
way, the SubVI can receive an acquired image from the main or calling VI.

➁ shows error controls to handle possible errors for debugging purpose and
used as an input of the SubVI.

➂ shows the control for a ROI Descriptor, which was automatically generated
during the VI creation. The ROI is often used to define image processing
area. Initially, the ROI Descriptor control was given default values, which
were defined in Vision Assistant prior to the SubVI code creation. How-
ever, the ROI information needs to be changeable either interactively or
programmatically according to the location of object. The ROI information
will be defined and updated from the main VI.

○4 shows the control for the Template File Path, which is the file path for the
reference template image. The File Path control was created in the control
selection from VI Creation Wizard. Note that the reference image was
defined and saved using the Vision Assistant, as seen in Figure 5.7.

○5 shows the control for the pattern matching parameters. From the front
panel, the number of matches requested, minimum match score, and angle
range can be modified. Note that the default values for this control were
generated from Vision Assistant. By using this control as an input for the
SubVI, the parameters can be modified and passed from the main VI.

○6 shows the pattern matching part, which searches for the matched pattern.
○7 shows the indicator, Matches, which contains the results from pattern

matching. The results include position, angle, scale, and bounding box.
Matches is an array of clusters and will have the same size as the number
of found patterns. The position and bounding box information will be used
to overlay the searched patterns on image.

○8 Number of Matches receives the number of matched (or searched) objects.
○9 shows a Vision Image.ctl indicator that is placed on the front panel so that

the image can be used as an output of the SubVI.

Figure 5.10 SubVI for pattern matching.

5.2 LabVIEW Code Creation and Modification 97

5.3
Main VI for Pattern Matching

Figure 5.12 shows the main VI’s block diagram for pattern matching. In this
main program, there are two SubVIs: one is to find matched patterns as seen in
➀ and the other is to overlay the matched pattern on image display as seen in ➁.
The method to make the SubVI for pattern matching (pattern_matching_

SUB.vi) was discussed in previous section. In the main program, all the inputs
of the SubVI in ➀ are provided to perform the pattern matching. The inputs of
the SubVI include acquired images from a camera, ROI information (property
node of Image ROI) defined by mouse selection, and the template file path. The
property node of the Image ROI (Figure 5.12 ○4) can be generated by using the
right mouse click on the Image indicator (Figure 5.12 ➂).
To indicate the matched results on the Image display, an overlay function is

used (Figure 5.13). For this purpose, you may reference the example provided in
LabVIEW from C:\Program Files\National Instruments\LabVIEW 2013\
Examples\Vision\Pattern Matching. The example VI, Overlay Pattern
Matching Results.vi effectively overlays the results of pattern matching on the
image display. Here, we slightly modify this code as seen in Figure 5.14.
Matches, which is one of the inputs to the SubVI is a cluster array, has the

same number of elements as matched objects. To overlay the matched results,
autoindexing of the Matches array in the FOR loop is used to overlay each of
the resulting matched objects. There are two sets of location information for
each matched object: position and boundary box. Both locations are used for
overlaying the matched results.

Figure 5.12 Main VI for pattern matching.

Figure 5.13 Overlay SubVI from NI provided example program.

5.3 Main VI for Pattern Matching 99

In Figure 5.14 ➀, the Overlay Oval function (Vision and Motion»Vision
Utilities»Overlay»Overlay Oval) is used to draw a circle around the position
indicator of the matched objects. Additionally, two overlay line functions
(Figure 5.14 ➁ and ➂) are used to draw crosses at the indicator positions. The
bounding box information, which defines the boundary of each object, can be
used to draw a boundary line by using the Overlay Multiple Lines function
(Figure 5.14 ○4).
Figure 5.15 shows the final result of pattern matching when the main VI is

run. As seen in Figure 5.15, template image file path as saved in Vision Assistant
is selected in ➀ (refer to Figure 5.5). In the process of running the VI, define the
ROI area (Figure 5.15 ➂) on image display after selecting the rectangle tool
(Figure 5.15 ➁) from ROI tool menu. You can adjust the pattern matching

Figure 5.14 Overlay for Matches.

Figure 5.15 Pattern matching results.

100 5 Pattern Matching

Figure 5.16 Modified VI to keep original image.

parameters (Figure 5.15 ○4) in order to provide tuned real-time pattern matching
results, as seen in Figure 5.15 ○5 . As a result of pattern matching, the position,
angle, size, and score of the objects are determined. Note the angle indicates the
amount of rotated angle of matched pattern with respect to reference template
image. Matched results (Matches) are in the form of an array, of which the size
is the same as the number of located matched patterns.
Note that the acquired color image was converted to a grayscale image

because the pattern matching function requires a grayscale image. If you want to
show original color image, Image Copy can be used to keep original image. The
IMAQ Image Create function in Figure 5.16 ➀ is used to allocate memory for
the original image acquired by camera. The Overlay SubVI in Figure 5.16 ○5 can
then be configured to overlay on the original image. To keep the original image,
the copied image should be used for image processing. The image processing
includes image conversion of the color image to a grayscale image. For this pur-
pose, additional image memory is allocated, as seen in Figure 5.16 ➁, and is con-
nected to the destination (Dst) of IMAQ Copy (Vision and Motion»Image
Management»IMAQ Copy) in Figure 5.16 ➂ in order to make a copy of the
acquired image. The copied image is connected to the pattern matching SubVI
(pattern_matching_SUB.vi) in Figure 5.16 ○4 . In this way the original color
image can be used to display the result, while the copy is used for conversion to
grayscale and image processing.

5.4
Vision Assistant Express

Creating a pattern matching VI by using Vision Express is discussed. Prior to cre-
ating pattern matching using Vision Express, a VI for the continuous image

5.4 Vision Assistant Express 101

acquisition using the Grab function (Vision and Motion»NI-IMAQdx»Grab)
can be used, as shown in Figure 5.17, to capture and save an image for analysis
using Vision Assistant Express. The image can be saved by right mouse clicking
on the front panel image display and selecting Save image from the pop-up
menu.
Then, the Vision Assistant Express function is dragged down onto block dia-

gram, as seen in Figure 5.17.
As a result of the drag the function onto the block diagram, the Vision Express

wizard will appear. As a first step, open the saved image to use for pattern
matching using Vision Assistant. Then, the same process (described in from Fig-
ures 5.3–5.8) can be used for pattern matching. Since it is the same Vision
Assistant process for pattern matching, a detailed discussion will be skipped. As
a final step, you can select controls and indicators, as seen in Figure 5.18, by
clicking on Select Controls�. In this way, the inputs and outputs can be easily
accessed by the LabVIEW main VI.
As a final step of Vision Assistant Express, select Finish to return to Lab-

VIEW. The created Vision Assistant Express VI for pattern matching will have
controls and indicators, as seen in Figure 5.19 ➂. The image source and destina-
tion controls are automatically selected and generated so that the acquired
image (related to create memory in Figure 5.20 ➀) is connected to Image Src
(source) and the additional created memory (Figure 5.19 ➁) is connected to
Image Dst (destination) for copying and processing the image. In this way, the
original acquired image is left unchanged, while the Image Dst Out can be con-
verted to a grayscale image for pattern matching. Finally, the overlay SubVI

Figure 5.17 Vision Assistant Express.

102 5 Pattern Matching

described in Figure 5.13 is used for overlaying the matched results on the origi-
nal image, as seen in Figure 5.19 ○4 .
By using the Vision Assistant Express, image processing subroutines can be eas-

ily created and directly inserted into LabVIEW VIs. In Chapter 6, Vision Assistant
Express will be mainly discussed as a means to create VIs for your application.

Exercise 5.1

Nano-imprinted patterns are inspected to find any defects. The image has 100
imprinted patterns. Use the pattern matching to obtain the correct number of

Figure 5.18 Selection of controls and indicators from Vision Assistant Express.

Figure 5.19 Final code for pattern matching using Vision Assistant Express.

5.4 Vision Assistant Express 103

valid patterns. As matched results, display the number of acceptable patterns
and overlay the pattern with boundary rectangle around acceptable patterns.

Exercise 5.2

Find the image C:\Program Files\National Instruments\Vision\Example\
Images\Particle 01.png (Figure 5.21). From the image, find the screws by using
pattern matching and overlay the boundary box at position of matched screws.
Incomplete screw images should be ignored.

Figure 5.20 Acceptable pattern search based on pattern matching.

Figure 5.21 Finding screws using pattern matching.

104 5 Pattern Matching

6
Color Pattern Matching

Pattern matching based on grayscale images is a well-established tool for align-
ment, gauging, and inspection applications. However, grayscale images may have
contrast problems due to non-optimum lighting conditions. If the object and
background have similar grayscale intensities, grayscale pattern matching may
not give accurate results. On the other hand, color pattern matching searches
for color patterns and can improve the matching results significantly when the
color of an object provides greater object differentiation from the background.
An example for color pattern matching can be found from the following

folder:

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision\Color\
Color Pattern Matching.vi

Figure 6.1 shows a screen-captured image of the example VI. As seen in the
figure, color pattern matching is effectively used in finding matched patterns
with distinctive colors and shapes in comparison with the background. In the
same manner as in Chapter 5, color pattern matching consists of two main steps:
(1) learning template information and (2) searching for patterns based on the
template.
Upon running the example VI, select a Template (Figure 6.1 ➀) part for color

pattern matching by drawing ROI on the image display. Then, you will see the
selected reference image on image display of template (Figure 6.1 ➁). Based on
the template images and color pattern matching parameters (Figure 6.1 ➂), pat-
terns can be searched for and located in terms of location and score, as seen in
Figure 6.1 ○4 .

6.1
Color Pattern Matching Using Vision Assistant Express

In this section, you will learn how to build color pattern matching VI by using
Vision Assistant Express.

105

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

Example: Color Pattern Matching

Several kinds of colored patterns are printed on a paper, as seen in Figure 6.2.
Four out of seven patterns are oval shapes. Here, the color of five of the objects
is blue. In this example, you will find blue oval patterns by using color pattern
matching. There are only two blue oval objects on the printed paper. Note that
the paper may move or be rotated during image acquisition. So, the locations
and angular aspects of the matched patterns need to be determined from real-
time acquired images. Here we use Vision Assistant Express to make a VI for
color pattern matching. The results will be shown as indicators and are graphi-
cally overlaid on the image display.

Figure 6.1 Example VI for color pattern matching.

Figure 6.2 Example patterns for color pattern matching.

106 6 Color Pattern Matching

6.1.1

Vision Acquisition Express

As a first step, acquire continuous images by dragging down Vision Acquisition
Express from the function palette onto the block diagram. From pop-up window
of Vision Acquisition Express wizard, complete the operations to implement
continuous acquisition with inline processing, as seen in Figure 6.3. The details
of Vision Acquisition Express have been discussed in Chapter 2.
By running the VI in Figure 6.3, continuous images are acquired from the

camera, as seen in Figure 6.4. On the front panel, right mouse click on the

Figure 6.3 Image acquisition using Vision Acquisition Express.

Figure 6.4 Saving image to a file.

6.1 Color Pattern Matching Using Vision Assistant Express 107

image. From the pop-up window, select Save Image to save the image to a file
for future use with Vision Assistant Express.

6.1.2

Vision Assistant Express

By dragging the Vision Assistant Express icon from the function palette onto the
block diagram, you will be presented with the Vision Assistant wizard pop-up
window (Figure 6.5). Initially, you will need to load the image from the previ-
ously saved image file (Figure 6.6 ➀) to begin building the image processing
process.
Perform the following steps to complete color pattern matching:

1) Select Color Pattern Matching from Processing Functions: Color as
seen in Figure 6.6 ➂.

2) From Color Pattern Matching Setup, select the Template tab, as seen in
Figure 6.7.

3) By selecting Create Template from Figure 6.7, you will then see the pop-
up window to select the reference (template) image, as seen in Figure 6.8.
Here, a blue oval pattern is selected as the template. Note that accurate
choice and selection of a reference template is important because the
matched patterns are searched based on the template. Also, the rotation
angle of matched pattern is calculated with respect to the template. Select

Figure 6.5 Vision Assistant Express for image processing.

108 6 Color Pattern Matching

Figure 6.6 Vision Assistant for color pattern matching.

Figure 6.7 Color pattern matching setup for template image.

6.1 Color Pattern Matching Using Vision Assistant Express 109

OK in Figure 6.8 when a template is selected. You then need to save the
template image before returning to the Vision Assistant wizard.

4) If you create a template successfully, you will find the template image dis-
played in the Template tab in the Color Pattern Matching Setup, as seen
in Figure 6.9 ➀. Note that the Match Offset position in ➁, the location

Figure 6.8 Selecting template image.

Figure 6.9 Color pattern matching setup.

110 6 Color Pattern Matching

coordinate results, will be reported based on the selected offset in the
template.

5) Select the Settings tab from Color Pattern Matching Setup, as seen in
Figure 6.9 ○4 . From the Settings Tab, determine setting values, as shown
in Figure 6.10 ➀. The guideline for setting values is summarized in
Table 6.1.

Figure 6.10 ➁ shows setup parameters for rotated patterns. In this example, we
select allowable rotation angle ranging from �90 to 90° because ovals are sym-
metric (mirror angle) and any angle of rotation within 180° is enough to find all

Table 6.1 Setup values for color pattern matching.

Number of matches to find Minimum score Color score weight

In this example, the number
of matches is set to 2 because
there are two matched pat-
terns to find.

The value for minimum
score ranges from 0 to 1000.
The higher value means that
the more perfectly matched
results will be searched.

The value for color score
weight ranges from 0 to 1000.
The higher value means the
more perfectly matched
object in terms of color. The
software uses the color score
weight for the final match
ranking. If the value is 500, it
indicates that the match score
uses an equal combination of
the color and shape scores.

Figure 6.10 Settings for color pattern matching setup and the results.

6.1 Color Pattern Matching Using Vision Assistant Express 111

orientations. Figure 6.10 ➂ displays the numerical results of the pattern match-
ing. These include the X and Y locations, score, and rotation angle of the
matched objects. Here, the score indicates similarity in both shape and color.
The value ranges from 0 to 1000 according to the determined amount of
similarity.
When the color pattern matching setup using Vision Assistant is complete,

select Select Controls� to create controls and indicators that you can access
from LabVIEW. In this example, we select ROI descriptor, File Path, Number
of Matches Requested, Minimum Score, and Color Score Weight for con-
trols. For indicators, Matches and Number of Matches are selected. Matches
contains the resulting information of matched objects, including score, location,
angle, and so on.

6.1.3

Main VI

After selecting controls and indicators as seen in Figure 6.11, click Finish to
return to LabVIEW. You will then see the resulting Vision Assistant Express
function on the block diagram having inputs and outputs, as seen in Figure 6.12
➁. The inputs and outputs of the Vision Assistant Express are connected, as seen
in Figure 6.12. If you want to make changes to the image processing algorithm,
double click on Vision Assistant Express icon in Figure 6.12 ➁ and you will be

Figure 6.11 Selection of controls and indicators for color pattern matching.

112 6 Color Pattern Matching

brought back into the Vision Assistant Express wizard application. You can then
modify and rebuild the image processing from within Vision Assistant Express.
To show the matched results, the Overlay SubVI (Figure 5.13) discussed in
Chapter 5 can be used, as seen in Figure 6.12 ➂.
Figure 6.13 shows the front panel of main VI when the matched patterns are

searched. As seen here, the parameter controls for color pattern matching have
default values as set from Vision Assistant Express. However, you can modify
these from main VI to tune the results. Other parameters that were not selected
as controls will be shown as constant values in the block diagram and can only
be modified in the block diagram.
The result of Matches can be easily accessed by LabVIEW because it was

selected as an indicator in Vision Assistant Express. Shown here in the form of
an indicator on the front panel, the results are available to use in other applica-
tion tasks such as alignment, gauge, and so on. Also, the information can be used
to overlay location information to confirm the matched results. As seen in front
panel, we understand from the overlay that the target objects (blue ovals) are
found successfully. The score of each matched pattern can be used to judge the
similarity of matched object with template image.
We have the option to convert Vision Assistant Express function to a standard

SubVI. The advantage of using converted standard SubVI is that you may open it
and modify image processing functions and parameters according to your needs.
To convert the Vision Assistant Express to a standard VI, move the mouse to

Figure 6.12 Block diagram for pattern matching.

6.1 Color Pattern Matching Using Vision Assistant Express 113

Vision Assistant Express and click the right button. Then, from the resulting
pop-up menu, select Open Front Panel, as seen in Figure 6.14.
You can then select Convert from the pop-up dialog box. As seen in the mes-

sage, you need to be confident of the imaging processes you have established as

Figure 6.14 Block diagram for color pattern matching.

Figure 6.13 Front panel for color pattern matching.

114 6 Color Pattern Matching

you will not be able to return to use the Vision Assistant Express wizard for any
modifications if you select Convert, as shown in Figure 6.15.
Once converted, you will need to double click on the converted SubVI and

save it as a named VI (e.g., color_pattern_sub.vi) (Figure 6.16 Figure 6.16.
Vision Assistant Express provides a very easy method to generate a SubVI com-
pared with the direct use of Vision Assistant. However, the converted VI may
seem to be complicated and not optimized. We recommend the direct use of
Vision Assistant to convert to a LabVIEW VI rather than using a VI created
from Vision Assistant Express as a starting VI to modify according to your
needs.

Figure 6.15 Converting Express VI to a standard VI.

Figure 6.16 Block diagram for color pattern matching using converted standard SubVI.

6.1 Color Pattern Matching Using Vision Assistant Express 115

Exercise 6.1

Find the image Blister 13.jpg in the folder C:\Program Files\National Instru-
ments\Vision\Examples\Images\Blister. Using the color pattern matching
method, find the number of green pills and construct an overlay SubVI to over-
lay the results on the source image (Figure 6.17).

Figure 6.17 Example of finding green pills (Blister 13.jpg).

116 6 Color Pattern Matching

7
Dimension Measurement

Particle analysis analyzes complete objects rather than a part of an object. So, it
is difficult to measure the size of a specific part in an object. On the other hand,
the method using edge detection can measure the dimension of parts of objects.
In this section, the edge detection method is extended to two dimensions (2D) to
measure an object’s dimensions. One way to do this is to cover a two-
dimensional area with many search lines over which edge detection is per-
formed. The measurement of an object’s dimension in this manner can give
accurate dimensional information since the outline of an object can be obtained
by using a set of line ROIs to define 2D area. The Clamp function based on 2D
edge detection is often used to detect locations that define the maximum or
minimum length of a part of an object. Then, Caliper function can be used to
determine the distances between edges. An example VI of measuring dimension
by using a Clamp function can be found from the following folder:

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision\Caliper\
Clamp.vi

Figure 7.1 shows the front panel of this dimension measurement example. In
this example the maximum horizontal size of a hole in an object can be meas-
ured. Note that if you change the location and size of the ROI, you can measure
the dimension of different parts of the object.

7.1
Dimension Measurement Using Vision Assistant Express

In this section, you will learn how to use Vision Assistant Express to measure
dimensions of objects in an image.

117

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

Example: Dimension Measurement

By using the Clamp function and the Find Circular Edge function, find the cen-
ter location of two circles (circle 1 and circle 2), as shown in Figure 7.2. Then, use
the Caliper function to obtain the distance between two circles.

Figure 7.1 Example VI for Clamp function (Clamp.vi).

Figure 7.2 Example image for dimension measurement.

118 7 Dimension Measurement

7.1.1

Find Circular Edge Function

Complete the following steps in Vision Assistant Express to measure the dimen-
sion of circle 1 using Find Circular Edge.

1) Build a VI for continuous image acquisition, as seen in Figure 7.3 ➀. Note
that this part will be modified later to be used in an Event structure.

2) Save one of the acquired images from the Image display on the front
panel.

3) From the function palette, drag Vision Assistant Express onto the block
diagram, as seen in Figure 7.3 ➁. You will then see the Vision Assistant
Express wizard window.

4) Select the Find Circular Edge function from Processing Functions:
Machine Vision»Find Circular Edge.

5) Move the mouse near the center of circle 1 and define an annular (circular)
ROI around circle 1 with the left mouse button, as seen in Figure 7.4. There
are two circles in an annular ROI: the inner circle should be placed inside
of the circle 1 and outer circle should be placed outside of the circle 1.

6) As seen in Figure 7.5, it is possible to measure the center location and
radius of circle 1 by using the Find Circular Edge function.

7.1.2
Clamp Function

The Clamp function can be used to measure the radius as well as the location of
circle 2. The reason for using Clamp function here is to help readers understand

Figure 7.3 Vision Assistant Express for image processing of continuously acquired images.

7.1 Dimension Measurement Using Vision Assistant Express 119

different dimension measurement approaches. Note that the Find Circular
Edge function could be more effectively used to measure circle 2 instead of the
Clamp function. In the case of using the Clamp function, the image should be
converted to 8 bit grayscale image (or binary image) since the clamp function is
based on edge detection techniques. So, you need to convert color image to
grayscale image via color plane extraction function (Processing Functions:

Figure 7.4 ROI for Circular Edge.

Figure 7.5 Find Circular Edge Results.

120 7 Dimension Measurement

Color» Color Plane Extraction» HSL-Luminance Plane) prior to using Clamp
function.
Complete the following steps to measure circle 2 based on Clamp function.

1) Select the Clamp function from Processing Functions:Machine Vision»
Clamp. Then, select the Clamp (Rake) Setup parameters, as seen in
Figure 7.6.

2) Select Horizontal Max Caliper from Process selection and in this case set
the value for gap to 5, as seen in Figure 7.6 ➀ and ➁. You may want to
select different parameters according to your needs. Tips for selecting
these parameters are discussed in the following.

Search Lines: Process
You can select various clamp processes, as seen in Figure 7.7, depending on what
dimension you are measuring. Table 7.1 summarizes the process for dimension
measurement.

Search Lines: Gap
The Gap among ROI lines for edge detection can be modified. As seen in
Table 7.2, smaller gap can reduce the distance among ROI lines for edge detec-
tion. Small gaps give better results in terms of accuracy. However, it may not be
efficient in terms of computation time because there will be more edge data to

Figure 7.6 Clamp Setup.

7.1 Dimension Measurement Using Vision Assistant Express 121

Table 7.1 Clamp process.

Horizontal max
caliper

Horizontal min
caliper

Vertical max
caliper

Vertical min
caliper

The maximum
length in the hori-
zontal direction is
measured

The minimum length
in the horizontal direc-
tion is measured based
on detected edge

The maximum
length in the verti-
cal direction is
measured

The minimum length
in vertical direction is
measured based on
detected edge

Figure 7.7 Clamp function process.

Table 7.2 Clamp gap setup.

Gap: 2 Gap: 4 Gap: 6

122 7 Dimension Measurement

be processed. So, the proper value for gaps needs to be selected considering
accuracy and efficiency.

3. Select OK and you can confirm the overlaid results using Find Circular
Edge and Clamp to measure circle 1 and circle 2, respectively, as seen in
Figure 7.8.

7.1.3

Caliper Function

To measure the distance between circle 1 and circle 2, select the Caliper func-
tion from Processing Functions: Machine Vision. Figure 7.9 shows the Caliper
setup. You will need to select a measurement item from Figure 7.9 ➀. Select a
geometric feature of caliper from the available features, as summarized in
Table 7.3.
To measure the distance between the two circles using Caliper function, com-

plete the following two steps:

� Step 1: Finding Center of Circle 2
1) Select Mid Point from the Geometric Feature list, as seen in Figure 7.10

➀. By selecting the Mid-Point ➀ between the two points, you can obtain
the center location of circle 2.

2) Select the Point 1 and Point 2 of circle 2, as seen in Figure 7.10 ➁,
which corresponds to horizontal maximum and minimum points.

Figure 7.8 Dimension measurement results.

7.1 Dimension Measurement Using Vision Assistant Express 123

3) Select Measure as seen in Figure 7.10 ➂ to obtain the midpoint of Point
1 and Point 2. The midpoint corresponds to the center location of circle
2, as seen in Figure 7.11. As a result, you can get X and Y center position
of circle 2, as seen in Figure 7.11.

4) Select OK to proceed to next step.

Table 7.3 Measurement items for caliper.

Distance Midpoint Perpendicular
projection

Lines
intersection

Angle from
horizontal

Angle from
vertical

Angle defined
by three points

Angle defined
by four points

Bisecting
line

Mid line

Center of
mass

Area Line fit Circle fit Ellipse fit

Figure 7.9 Caliper setup.

124 7 Dimension Measurement

Figure 7.10 Finding center location from Clamp function results.

Figure 7.11 Center location of Circle 2.

7.1 Dimension Measurement Using Vision Assistant Express 125

� Step 2: Finding Distance between Circle 1 and Circle 2
5. Select Caliper from Processing Functions: Machine Vision»Caliper to

measure the distance between two circles.
6. Select Distance as seen in Figure 7.12 ➀ from the Geometric Feature.
7. Select Center (item No. 1) and Mid Point (item No. 4) to measure the

distance between the circles. Here, Mid Point corresponds to the center
of circle 2.

8. Select Measure ➂.

As a result of the measurement, you can see the distance between two circle
centers, as seen in Figure 7.13.

7.2
VI Creation for Dimension Measurement

7.2.1

Vision Assistant Express VI for Dimension Measurement

After confirming the results from Vision Assistant, create controls and indica-
tors by clicking Select Controls>>. Here, two ROI Descriptors (Figure 7.14 ➀

Figure 7.12 Distance measurement of two circles.

126 7 Dimension Measurement

and ➁) and one caliper results (Figure 7.14 ➂) are selected as controls and indi-
cator, respectively, as seen in Figure 7.14. If you then select Finish, the Vision
Assistant Express VI will have inputs and outputs that can be accessed from the
block diagram, as seen in Figure 7.15.
As seen in Figure 7.15, there are two ROI Descriptors for the annulus and

rectangle ROIs as input terminals of the Vision Assistant created VI. The ROIs
will be defined interactively from the Image display on the front panel during
execution. The methods for creating the two different ROIs will be discussed in
Section 7.2.2.

7.2.2
ROI Array

To effectively deal with more than two different ROIs, we recommend the use of
a ROI array. Note that there are two ROIs, which are different in type, location,
and size to measure the center of two circles using different functions.
You can create a ROI array by using the following processes shown in

Figure 7.16.

1) Place an Array control in the front panel (step 1 in Figure 7.16).

Figure 7.13 Distance between two circles.

7.2 VI Creation for Dimension Measurement 127

2) From Control palette, go to IMAQ Vision Controls from the Vision

palette and select ROI Descriptor () (step 2 in Figure 7.16).

3) Drag the ROI Descriptor and drop it into the Array control (step 3 in
Figure 7.16).

The ROI array is used to handle more than one ROI descriptors from the
main program. The first element in the ROI array is the Annulus-type ROI for
Find Circular Edge function, whereas the second element of the ROI array is a

Figure 7.14 Selection of controls and indicators.

Figure 7.15 Vision Assistant VI for measuring distance between two circles.

128 7 Dimension Measurement

Rectangle type for the Clamp function. If wrong types of ROI are connected to
controls of Vision Assistant Express in Figure 7.15, there will be errors during
the measurement process.

7.2.3

Front Panel of Main VI

Figure 7.17 shows the front panel of main program to measure the distance
between two circles. Note that the approach used in this example may not be
the preferred method for your application. So, you may want to modify this pro-
posed method according to your applications.

Figure 7.16 ROI Array.

Figure 7.17 Front panel of main program.

7.2 VI Creation for Dimension Measurement 129

The main feature of the program is that two different types of ROI are used to
measure the locations of two circles. For this purpose, a ROI array is used, as
seen in Figure 7.17 ○4 . In the main VI, one type of ROI can be added by user
selection on image display. To show more than one ROI on the image display,
all the ROI elements in the ROI array are grouped, as seen in Figure 7.17 ○5 .
The details of dealing with multiple ROIs will be discussed later.
Figure 7.17 ➂ shows the Boolean controls to add or delete a ROI from ROI

array. By clicking the Boolean control (ADD), a user-selected ROI on the image
display can be added to the ROI array. To select different types of ROI, the ROI
tools can be used. In this example, annular and rectangular types of ROI can be
selected from ROI tool, as seen in Figure 7.17 ➀ and ➁. Finally, the Caliper
function is used to calculate the distance (Figure 7.17 ○7) between two circles if
the Boolean switch (Image Processing) in Figure 7.17 ○6 is true.
To calculate the distance between the two circles, the following steps needs to

be taken.

1) Select Annulus ROI by using ➀.
2) Draw out the ROI on the circle of ○8 on the image display.
3) Click ROI ADD in ➂ in order to add annulus-type ROI to ROI array.
4) Select rectangle ROI ➁.
5) Draw out the rectangle ROI on the circle of ○9 on the image display.
6) Click ROI ADD to add the rectangle ROI to ROI array.
7) Activate Image Processing (Boolean control) in ○6 .
8) The result of the distance measurement is then displayed in ○7 .

7.2.4

Block Diagram of the Main VI

Figure 7.18 shows the block diagram for the circle distance measurement. The
Vision Assistant Express VI, described in Section 7.2.3, is used for image analy-
sis. Here, an Event structure is used to coordinate the acquisition and analysis of
the images, as seen in Figure 7.18.
Figure 7.18 shows the Timeout event. If no value is connected at ➁, the

default value will be �1 and the timeout case will never be processed. In this
example, the value is set to 300. As a result, the timeout event will be executed
once every 300ms if there are no other events. In this way, one frame per 300ms
is shown on Image front panel display. In addition, if the Boolean control of
Image Processing is true, then the image analysis within Vision Assistant
Express VI (➂) will be executed to measure the distance between the circles.
Note that image conversion from color to grayscale is included in the Vision
Assistant Express function. So, if the Vision Assistant Express is executed, the
color image is automatically changed to grayscale. If you want to keep original
image, you will need to allocate additional image memory with the IMAQ Cre-
ate function and connect it to the image destination (Image Dst) input of Vision
Assistant Express VI in Figure 7.18 ➂.

130 7 Dimension Measurement

If Boolean control of Image Processing is false, then only the acquired image
will be shown on front panel (Image display) without any image analysis, as seen
in Figure 7.19.
Figure 7.20 shows the stop event. This event occurs when the value of stop

(Boolean) changes, the program will be terminated.
The method to create ROI arrays will now be discussed. Figure 7.21 shows the

event structure to create and add an ROI to the ROI array. The ROI ADD event
shown in Figure 7.21 will be executed when the ROI ADD Boolean control on
the front panel changes its value when the user clicks on it. In Figure 7.21 ➀

and ➂ show the local variable for the ROI Array. Figure 7.21 ➁ shows the prop-
erty node of the Image to retrieve the current ROI information.

Figure 7.18 Timeout event in main program (Image Processing: True).

Figure 7.19 Timeout event (Image Processing: False).

7.2 VI Creation for Dimension Measurement 131

As seen in Figure 7.21, the current ROI information of the image can be added
to the ROI array by using the Build Array function in Figure 7.22. Note that
when Building Array function is used, the Concatenation input option should
be selected (right click on the Building Array icon to select the Concatenation
option).

Figure 7.20 Stop event.

Figure 7.21 ROI ADD event.

Figure 7.22 Build array.

132 7 Dimension Measurement

The ROI Array needs to be reformed in a way that is compatible with the ROI
data contained in the Image display. For this purpose, IMAQ Group ROIs func-
tion (Figure 7.21 ○4) is used. This will result in the multiple ROIs being displayed
in the Image display on the front panel. The IMAQ Group ROIs function can
be found in function palette: Vision and Motion»Vision Utilities»Region of
Interest (Figure 7.23).
The grouped ROIs can be supplied as an input into the Image display by using

Image ROI property node (with write option), as seen in Figure 7.21 ○5 . In this
way, you can see more than one ROI on the image display.
In some cases, the size of the ROI array may need to be reduced. For this

purpose, to reduce the size of the ROI array, an ROI Delete event can be cre-
ated, as seen in Figure 7.24. In the ROI delete event, the ROI element with high-
est index will be deleted from the ROI array.
Figure 7.24 ➀ and ➂ show the local variable of ROI Array. By using a Delete

from Array function ➁, an element of ROI array with maximum index is deleted
and thereby the size of the array can be reduced by 1. The reduced ROI array
can be grouped using IMAQ ROI Group function. The grouped ROI can be
displayed on the front panel Image display with the use of Image ROI property
node in ○4 .

Figure 7.23 Group ROIs.

Figure 7.24 ROI Delete event.

7.2 VI Creation for Dimension Measurement 133

In this example, the number of elements in ROI array was two since two ROIs
are required to measure the distance between circles. However, you can define as
many as ROIs according to your applications by using the ROI arrays.

Exercise 7.1

Use the Caliper function to calculate the distances (d1, d2, d3) among three
holes as seen in Figure 7.25. The image can be found from C:\Program Files\
National Instruments\Vision\Examples\Images\Holes.tif.

Figure 7.25 Distance among holes.

134 7 Dimension Measurement

8
Dimension Measurement Using Coordinate System

To measure the dimensions of an imaged object, a ROI is used to define the
measurement location as discussed in previous chapters. In most cases, the
object under inspection may shift and/or rotate in the viewing field of the video
image. If a static ROI does not incorporate the entire object under investigation,
the dimension may not be measured. For this case, the ROI location will need to
be shifted and rotated according to the objects location. To enable this dynamic
ROI location, a reference coordinate system can be used to define the measure-
ment area around the object relative to the reference location of the object. The
reference coordinate system is based on a characteristic feature of the object. To
locate a reference coordinate system relative to the object, pattern matching or
edge detection can be used. The ROI defined with respect to the reference coor-
dinate system is then used to measure the dimension of a part of the object.
The example using a reference coordinate system can be found from the

following folder:

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision\Vision
Assistant Express VI\Battery Clamp Inspection (Express).vi

As seen in Figure 8.1, a reference coordinate can be located irrespective of any
shift and/or rotation of the object in an image via pattern matching. From the
reference coordinate, the ROI used for measurement can be automatically
located on a part of the object that is of interest.

8.1
Measurement Based on a Reference Coordinate System Using Vision Assistant Express

Example: Dimension Measurement Using a Reference Coordinate System

In this example, a measurement of a circle fit and clamp distance shown in
Figure 8.1 is discussed in detail to create a VI for dimension measurement based
on a reference coordinate system (Figure 8.2). A modification to the NI-provided

135

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

example is incorporated to use continuous image acquisition from a camera.
The user-defined ROI in Figure 8.1 is used to define image processing area for
pattern matching. The object image, which can be found in C:\Program Files
\National Instruments\Vision\Examples\Images\Battery\Image00.jpg, is printed
on paper and imaged by the video camera. It is assumed that the location of the
object is unknown and can be placed anywhere in the acquired image by mov-
ing and rotating of printed paper. Complete the LabVIEW code to measure
clamp distance, the circle center, and diameter by using Vision Assistant Express.

Figure 8.1 Example VI for coordinate system.

Figure 8.2 Example image for dimension measurement.

136 8 Dimension Measurement Using Coordinate System

8.1.1

Pattern Matching

If the location of object in the image is not initially known, a distinct feature of
the object needs to be located to define a reference coordinate system. In this
example, pattern matching is used to find the location of object and determine
the coordinate system.
As a first step, create a VI for continuous image acquisition, as discussed in

Chapter 2 (Figure 2.12). Then, one of the acquired images is saved as a file for
image processing using Vision Assistant Express. The Vision Assistant Express
VI can be dragged down onto the block diagram for image analysis.
The color image should be converted to a grayscale image prior to pattern

matching by using Color plane Extraction function from Processing Functions:
Color. Here, the Luminance Plane from HSL is selected as discussed previously.
To define a reference coordinate system, a subfeature of the object is used with

pattern matching to locate the object. Note that the selected subfeature should
have parts that are not symmetric so that the angle of the subfeature can be
uniquely determined in the pattern matching process. In this example, the end
part of the object is selected as a template image for use in searching for object’s
location. To define reference coordinate system, complete the following steps.

1) Select Processing Functions: Machine Vision»Pattern matching.
2) Select New Template from the pattern matching setup.

Note that object may be rotated. To effectively select rotated object, the
Rotated Rectangle ROI tool in Figure 8.3 ➀ is used. In this way, the end
part of the rotated object can be selected as the template image for pattern
matching, as seen in Figure 8.3 ➁.

Figure 8.3 Selection of template image.

8.1 Measurement Based on a Reference Coordinate System Using Vision Assistant Express 137

3) Select Next and then Finish (Figure 8.4 ➁) if the template image is accept-
able and save the template file.

4) Select the Settings tab seen in Figure 8.5.
5) Select a ROI (Figure 8.6 ➀) to define the search area for the matched pat-

tern. Later, two more local ROIs will be defined to measure the dimensions
of the object based on the reference coordinate.

6) Check that the results of the search are correct as in Figure 8.6 ➂. If the
results are not correct, adjust pattern matching settings in ➁. For details,
refer to Chapter 5. Click on OK to proceed to the next step.

8.1.2

Coordinate System

The next step is to define the reference coordinate system based on the matched
patterns. This will be accomplished in the following steps:

1) Select Set Coordinate System from Processing Functions: Image section,
as seen in Figure 8.7.

2) Selecting Horizontal, Vertical, and Angular Motion from the Mode
selections allows the pattern matching function to search for rotated and
shifted instances of the pattern in the image, as seen in Figure 8.8. Note
that Pattern Matching 1-Match 1 is reported in the Origin and X-Axis
Angle box. Pattern Matching 1-Match 1 is the result of the previous

Figure 8.4 Template editor.

138 8 Dimension Measurement Using Coordinate System

Figure 8.5 Template tab for pattern matching setup.

Figure 8.6 Pattern matching results.

8.1 Measurement Based on a Reference Coordinate System Using Vision Assistant Express 139

Figure 8.7 Set Coordinate System.

Figure 8.8 Set Coordinate System setup.

140 8 Dimension Measurement Using Coordinate System

pattern matching and is used for defining the origin and reference coordi-
nate system. After finishing the setup, the coordinate system, which has
the name of Set Coordinate System 1, will be created.

8.1.3

Dimension Measurement Using the Clamp Function

1) The Clamp function will be used here to measure distance between the
object’s edges (Figure 8.9). Here, the Clamp functions for dimension mea-
surement can be found from Processing Function: Machine Vision. Note
that there are other measurement functions that can be used depending on
the object shapes to be measured.

2) Select the Reposition Region of Interest and Set Coordinate System 1
from the main tab of Clamp setup, as seen in Figure 8.10, in order to use
the dynamically defined reference coordinate system from above. In this
way, the dimensions of the object will be measured relative to the reference
coordinates.

Figure 8.9 Clamp function.

Figure 8.10 Reference coordinate system for Clamp function.

8.1 Measurement Based on a Reference Coordinate System Using Vision Assistant Express 141

3) Select the Clamp tab from the Clamp (Rake) setup. A Clamp Rake ROI
can be placed on the image. Using the control points on the ROI, rotate,
scale, and move this ROI into position as seen in Figure 8.11 ➁.

4) Select Horizontal Min Caliper from the Process selections (Figure 8.11
➀) to measure the gap distance. Since the coordinate system has been
redefined dynamically by the previous step (Set Coordinate System, Sec-
tion 8.1.2), the position of the clamp ROI will move with respect to the
new reference coordinate system based on the position of the object.

5) Select the OK button if all the other setting values are acceptable. Then,
you will see that clamp distance can be measured based on the dynamically
determined reference coordinate system.

6) Select the OK button if the measurement is acceptable.

8.1.4

Measurement of Circle Edge

As a next step, you need to measure the circular edge.

1) Select Find Circular Edge setup from Processing Function: Machine
Vision. Make sure that reference system is correctly selected and the repo-
sitioned region of interest is selected as seen in Figure 8.12. Then, select
OK.

2) Draw out the ROI for Find Circular Edge as seen in Figure 8.13 ➁ and
check the settings in Figure 8.13 ➀ to obtain the best circle results.

Figure 8.11 Clamp setup.

142 8 Dimension Measurement Using Coordinate System

3) Select OK. You will now see the two measurement results overlaid on the
image, as seen in Figure 8.14 ➀.

4) Click on Select Controls� (Figure 8.14 ➁) to set the controls and indica-
tors we will need in a LabVIEW VI. In this example, the ROI Descriptor

Figure 8.12 Find Circular Edge setup.

Figure 8.13 Settings for Find Circular Edge setup.

8.1 Measurement Based on a Reference Coordinate System Using Vision Assistant Express 143

for pattern matching is selected as a control and Clamp Distance and Fit-
ted Circle are selected as indicators, as seen in Figure 8.15 ➀ and ➁. After
selecting Finish ➂, a VI having the specified controls and indicators is cre-
ated (Figure 8.16).

Figure 8.14 Overlaid measurement results.

Figure 8.15 Selection of controls and indicators.

144 8 Dimension Measurement Using Coordinate System

8.2
Conversion of Vision Assistant Express to a Standard VI

We will now modify the resulting function created with Vision Assistant
Express. In order to do this, we first need to convert the Vision Assistant Express
function to a standard VI by right mouse clicking on the VI icon and selecting
Open Front Panel from the pop-up window. Then, a standard VI will be cre-
ated from Vision Assistant.
Figure 8.17 shows a part of the resulting VI that performs pattern matching

(Figure 8.17 ➀) and defines the reference coordinate (Figure 8.17 ➂) based on
the matched pattern. Now, by creating an indicator of Matches (output of
IMAQ Match Pattern VI indicated at ➁) and connecting it to the terminal of
the VI, the match results will be available for the creation of an indicator on the
main VI’s front panel. Also, the match results will be used to overlay location
information on the image.
Figure 8.18 shows the block diagram of the main VI for measuring the clamp

gap and inner circle edges. Figure 8.18 ➀ shows the converted standard VI with
file name of chapter8_sub.vi. Note that the created output terminal for the pat-
tern matching results is connected to an overlay VI shown in Figure 8.18 ➁.

Figure 8.16 Vision Assistant Express VI.

Figure 8.17 LabVIEW code (Coordinate setting via pattern matching).

8.2 Conversion of Vision Assistant Express to a Standard VI 145

Note that the Image ROI property node shown in Figure 8.18 retrieves the
ROI information from the Image display to define the search area for the pat-
tern matching process. The matched pattern is then used to define the reference
coordinate system. For this to be successful, the ROI area should be set large
enough to find the part of object that has the reference pattern. If you do not
connect this ROI descriptor, the created VI will use the default constant ROI
descriptor that was defined in pattern matching setup during the Vision Assist-
ant setup and may not be appropriate for variable imaging situations.
To overlay the pattern matching results on the image display, the previously

created Draw Pattern Matches Position.vi (Figure 5.14) was modified, as seen
in Figure 8.19. The main difference is that the Clear Overlay function is not
used because it would delete the overlay for Clamp Distance and Find Circle
Edge, which were included from Vision Assistant.

Figure 8.18 Main VI for measurement.

Figure 8.19 Modified overlay VI.

146 8 Dimension Measurement Using Coordinate System

Figure 8.20 shows the results of dimension measurement based on the refer-
ence coordinate system. To validate the VI, the object can be moved and rotated
as seen in Figure 8.20a and b. The VI can measure object dimensions irrespec-
tive of the object’s location and rotation. Therefore, the coordinate system based
on pattern matching is useful to measure dimensions of objects when you do not
have any prior information on the location of the object in the image.
You may notice that the circular fit results are slightly different according to

the location. This is due to the camera axis not being located perpendicular to
the object. The perspective errors may be corrected by using the calibrated
image, which will be discussed in Chapter 14.
Portions of the object in Figure 8.20b are located outside the ROI. Neverthe-

less, the clamp gap (Distance) and circle radius (Radius) were possible since the
searched parts of the pattern are still within the ROI.

Figure 8.20 Results of dimension measurement based on coordinate system. (a) Inclusive ROI.
(b) Noninclusive ROI.

8.2 Conversion of Vision Assistant Express to a Standard VI 147

Exercise 8.1

Use the rotated images from C:\Program Files\National Instrument\Vision\
Examples\Images\Rotate. Select one of the images from the folder and make
reference coordinate at the bump part (Figure 8.21). By using the reference coor-
dinate, calculate the size of bump part of other images with different rotated
angle.

Figure 8.21 Size measurement of the bump part in rotated images.

148 8 Dimension Measurement Using Coordinate System

9
Geometric Matching

Pattern matching algorithm described in Chapter 5 uses the pixel intensity infor-
mation as the primary feature for matching. As an alternative, geometric match-
ing uses boundary edges to characterize the shape of an object and then uses
this characterization to search for similar shapes. To use this method, the object
and background should be distinguishable by sharply contrasting regions in
order to accurately determine the boundary of the object. The boundary shape
information of the objects is compared with that of an object in a template
image to determine similarity. If the edge of the boundary is not sharp, pattern
matching as described in Chapter 5 is recommended. An advantage of geometric
matching is that it can find matching objects regardless of shifting, rotating,
scaling, and even occlusion (overlapping of objects in the image). Geometric
matching can be used in the following applications: gauging, inspection, align-
ment, and sorting.
Example VI on geometric matching can be found from the following folder:

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision\Geometric
Matching\Geometric Matching.vi

Figure 9.1 shows example VI provided with LabVIEW. As seen in the Tem-
plate image in Figure 9.1, the object has a distinct boundary to extract the
geometric features. By using the appropriate search parameters, the rotation
angle, scale, and the location of the matched patterns can be determined. Note
that the method detects boundary edges of the object in grayscale images.
Therefore, the color images should be converted to grayscale image.

149

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

9.1
Geometric Matching Using Vision Assistant Express

Example: Geometric Matching

Figure 9.2 shows an example image that will be used for geometric pattern
matching. Note that this is the same example image used in color pattern
matching described in Chapter 6. As seen in Figure 9.2, the objects have distinct
boundary edges and thus suitable for geometric matching. There are three dif-
ferent kinds of geometric shapes in Figure 9.2. Among those, find two geometric
shapes: circles and ellipses using geometric matching.

The image acquisition VI will be skipped since it has been discussed in previ-
ous chapters. The use of Vision Assistant Express for geometric matching will be
mainly discussed.
As a first step of Vision Assistant Express, the color image is converted to a

grayscale image by using Color Plane Extraction function. This image conver-
sion method has been described in Chapter 3.
Since there are two different patterns to search, the geometric pattern match-

ing needs to be repeated: once for locating circles and once for ellipses. Note
that if there are many patterns to be located, the use of a Classification function

Figure 9.1 Example VI for Geometric Matching.

150 9 Geometric Matching

is recommended instead of using the many steps required for geometric pattern
searching. Classification functions will be discussed in Chapter 12.

9.1.1
Geometric Matching for Circles

Complete the following steps to find matched geometric patterns for circles.

1) Using Vision Assistant Express, select Geometric Matching from Proc-
essing Functions: Machine Vision.

2) In the Template tab within Geometric Matching Setup, select New
Template, as shown in Figure 9.3, to define reference pattern.

3) Using the ROI tool, select one of the circles as the template pattern, as
seen in Figure 9.4.

4) Click Next� to proceed to geometric matching. If the setting values are
correct, the boundary curve of the template pattern will be indicated by
an overlay, as seen in Figure 9.5 ➀. If the boundary curve is not quite
right, the parameter values in ➁ can be adjusted until the overlaid bound-
ary line perfectly outlines the object.

5) Click on Next� and you may draw regions to ignore, as seen in Figure 9.6.
6) Select Next� to set up matching parameters for the geometric matching,

as seen in Figure 9.7.
7) By modifying the Match Offset value, as seen in Figure 9.7 ➀, the object’s

location coordinates based on the Match Offset can be adjusted within
the object template. You can also allow for rotation and scaling changes of
the searched object by using the Match Range variables in Figure 9.7 ➁.

8) Select Finish and save the template image to a designated folder.
The Template Image will be displayed within the template tab in the
Geometric Matching Setup window, as seen in Figure 9.8.

Figure 9.2 Example image for Geometric Matching.

9.1 Geometric Matching Using Vision Assistant Express 151

Figure 9.3 Geometric Matching setup.

Figure 9.4 Selection of template image.

152 9 Geometric Matching

Figure 9.5 Template image setting.

Figure 9.6 Draw regions to ignore.

9.1 Geometric Matching Using Vision Assistant Express 153

Figure 9.7 Match offset and range.

Figure 9.8 Geometric Matching setup for circle.

154 9 Geometric Matching

9) Select the Settings tab in Figure 9.8 to set up other parameters. As seen
in Figure 9.9 ➀, the number of objects to find as well as the minimum
score can be selected. The minimum score value ranges from 0 to 1000.
Note that the more perfectly matched patterns are located when higher
score value is used. In this example, the score value of 800 was used. You
can also search for the patterns that are rotated, scaled, and occluded with
proper selection of these setting values. For example, in Figure 9.10 ➁, if
you use the occluded value of 25, then about 25% of an occluded pattern
may be matched. Figure 9.10 ➂ summarizes the results on the matched
patterns using geometric matching. Among the matched results shown
are object location, angle, scale, and score.

10) Select OK to search for circles based on geometric matching if the setting
values are acceptable.

9.1.2

Geometric Matching for Ellipses

After searching for circles, the same steps using Processing Functions: Machine
Vision» Geometric Matching should be repeated to search for ellipse pattern.
Here, the detailed explanation on the similar steps will be skipped for brevity.

1) Select Geometric Matching from Vision Assistant Express and set up
an ellipse template. When you set up an ellipse reference template, you

Figure 9.9 Settings for geometric matching (circle).

9.1 Geometric Matching Using Vision Assistant Express 155

can reference the angle of major axis of the ellipse so that the object’s
angular orientation is reported relative to this axis. In this example, the
angle of the ellipse shown at the match offset is set to be �31° (Fig-
ure 9.10 ➀) for this purpose. Also, the Match Range of the angle and
scale can be set according to your application requirements, as seen in
Figure 9.10 ➁.

2) Select Finish and save the template image.
3) After saving the template image, select the Settings tab to set parame-

ters for geometric matching of the ellipses, as seen in Figure 9.11
➀ and ➁. Then, from Figure 9.11 ➂, you can evaluate the information
on the matched ellipses in terms of center locations, angle, scale,
and score.

As a result of the two steps of geometric matching, two different geometric
patterns can be searched: circles and ellipses.
Figure 9.12 shows the final results of geometric matching using Vision Assist-

ant. As seen in Figure 9.12, matched circles as well as ellipses can be located.
Note that since we used two steps of geometric matching, you may use two dif-
ferent ROI tools to define the search areas for each geometric matching. How-
ever, in this application, only one ROI tool was used for searching two different
patterns. This will be discussed later.

Figure 9.10 Setting for template (ellipse).

156 9 Geometric Matching

As a final step of Vision Assistant Express, controls and indicators need to be
selected, as seen in Figure 9.13, so that they can be accessed from LabVIEW. Since
there are two steps for geometric matching, circle and ellipse, two different ROI
descriptors and two sets of results ofMatches (Figure 9.13 ➀ and ➁) are selected.

Figure 9.11 Setting parameters (ellipse).

Figure 9.12 Two steps of geometric matching for circle (➀) and ellipse (➁).

9.1 Geometric Matching Using Vision Assistant Express 157

9.2
VI Creation for Geometric Matching

Figure 9.14 shows a main VI block diagram for continuous image acquisition with
the VI created with Vision Assistant Express VI (Figure 9.14➁) for geometric match-
ing of both circles and ellipses. The two template images (circle image and elliptic
image) saved from Vision Assistant will be used for geometric matching. The file
paths for the template images were set as constants within the Vision Assistant setup.
Note that the ROI information is supplied as an input to the SubVI from main

VI. For this case, an image ROI property node (Figure 9.14 ➀) will be used to
define the search area for both circles and ellipses.

Figure 9.13 Selection of controls and indicators for geometric matching.

Figure 9.14 Main VI for geometric matching.

158 9 Geometric Matching

The results from the geometric matching operations are to be shown on the
image display by using an overlay function. For this purpose, the overlay SubVI,
Draw Pattern Matches Position.vi (Figure 9.13 ○4), which was discussed in Chap-
ter 5, was used to overlay results of geometric matching. However, the previous
SubVI cannot be used directly since the result of Matches (Figure 9.15) is a little
different from that of pattern matching. We obtained the matched results (positions,
angle, scale, and score) as a result of geometric matching. Note that information on
the degree of occlusion is additionally provided, as seen in Figure 9.15 ➀, compared
with the previous pattern matching results. A subset of the results from Matches
needs to be extracted in order to be compatible with the input to the overlay SubVI.
The variable Matches in Figure 9.15 is an array that contains information on

the matched objects. The size of this array corresponds to the number of found
objects. Two geometric matching results for circles and ellipses can be concate-
nated into one array, as seen in Figure 9.14 ➂. In this way, both results can be
overlaid using the single overlay SubVI.
Figure 9.16 shows a result of the front panel for the main VI that uses the

Vision Assistant Express-created SubVI for geometric matching described in
this section.

9.3
Shape Detection

The geometric matching described in Section 9.2 searches matched pattern
based on template images. In this section, the method to find matched geometric

Figure 9.15 Matches (result from geometric matching).

9.3 Shape Detection 159

shapes without a template image will be discussed. For this purpose, the Shape
Detection function shown in Figure 9.17 can be selected from Processing
Functions: Machine Vision in Vision Assistant.
When you select the Shape Detection function, you can then select a specific

Shape Type from the menu in Figure 9.18. The available shape types include
circles, ellipses, rectangles, and lines. By using shape detection, we can find the
objects that match predefined shapes and obtain information on location and
size. This method has advantages because matched results can be obtained with-
out the use of any template images.
For example, if objects with an ellipse shape need to be located within an

image, Ellipses can be selected from the available Shape Types, as seen in Fig-
ure 9.18. Note that the circle is a special case of ellipse with the equal major and
minor radiuses. The ellipse size for shape detection can be set by using the spec-
ified range (min and max) to the minor and major radii of the ellipse.
As a result of shape detection, Major Radius, Minor Radius, Angle, and Cen-

ter location information can be obtained, as seen in Figure 9.18.
If you finish with the shape detection setup, the controls and indicators of

Vision Assistant can be selected, as seen in Figure 9.19.
The result indicator for the ellipse is shown in Figure 9.20. Note that the result

items are quite different from that of geometric matching. As a result, it is diffi-
cult to use the overlay SubVI that has been used for geometric or pattern
matching.

Figure 9.16 Front panel of main VI for geometric matching.

Figure 9.17 Shape matching functions.

160 9 Geometric Matching

The results include Position, Orientation (angle), and Major (or Minor)
Radius. By comparing the major and minor radius, we can determine whether the
searched ellipse is close to circular in shape. For example, the results of major
(85.4) and minor radius (22.8) in Figure 9.19 indicate that the ellipse is not a circle.

Figure 9.18 Shape detection results.

Figure 9.19 Selection of controls and indicators.

9.3 Shape Detection 161

You may want to use the overlay SubVI that is provided by LabVIEW
to show the results effectively. You can find overlay examples from C:\Pro-
gram Files\National Instrument\LabVIEW 2013\Examples\Vision\Overlay
Utilities. In this example, we will use the overlay SubVI named Overlay Points
with User-Specified Size to indicate the matched objects with circle overlays.
However, the current results from shape detection are in a data format that is
not compatible with this overlay VI and so the data format will need to be
modified. For example, you may want to use the major radius of the found
ellipse for the circle radius. On the other hand, the point diameter in
Figure 9.21a ➁ cannot use multiple size results (major/minor radius) according
to the size of objects. To overlay circles according to the size of the found
objects, the major radius data from the results array of Figure 9.21b ➁ are used
as input for the SubVI. The calculation for the size of the overlay can be slightly
modified and For Loop with the autoindexing of the radius is used
(Figure 9.21b ➂). Also, the Drawing Mode input to the Oval Overlay VI
(Figure 9.21a ➂) should be set to Frame, as seen in Figure 9.21b ○4 in order
not to fill the overlay outline.
Figure 9.22 shows the block diagram of the main VI to search and overlay of

the found ellipses. To use the Major Radius and Position information for over-
lay purpose, the information is extracted from the result cluster as seen in Fig-
ure 9.22 ➀. Then, the modified Overlay SubVI in Figure 9.22 ➁, of which block
diagram was shown in Figure 9.21b, is used to show the searched results
effectively.
As seen in Figure 9.23, the results of searched ellipse can be effectively shown

on image display by using the overlay VI. The purpose of this overlay example is
to show readers how to use and modify the overlay VI examples provided by
LabVIEW. You may choose different VIs to show the results effectively or you
may build your own VI.

Figure 9.20 Results of shape detection for ellipse.

162 9 Geometric Matching

Shape detection is a simple and effective method, but has limitations due to
the fact that you can search for only a few predetermined geometric shapes. If
other shapes need to be searched, the geometric matching with reference tem-
plate images should be considered.

Figure 9.21 Overlay for searched objects using shape matching. (a) Example VI “overlay
points with user-specified image. (b) Modified overlay SubVI used in Figure 9.22 ➁.

Figure 9.22 Main VI for shape matching.

9.3 Shape Detection 163

Exercise 9.1

Find an image file (Parts00.png) from C:\Program Files\National Instruments\
Vision\Examples\Images\Parts (Figure 9.24). Use geometric pattern matching
to find motor from the other images (Parts01.png, Parts02.png, etc.).

Figure 9.24 Example image for geometric matching.

Figure 9.23 Shape matching results for ellipse.

164 9 Geometric Matching

10
Binary Shape Matching

In this chapter, shape matching based on binary images will be discussed. The
use of binary images for shape matching has advantages because morphology
functions can be used prior to shape matching to modify the binary image
resulting for better results.
Binary shape matching is different from geometric matching and pattern

matching, which are based on edge curve extraction and pixel intensity variation
in an image, respectively. Each method has advantages and disadvantages, which
should be considered before selecting a particular algorithm. Binary shape
matching is an efficient and effective method to determine the center of mass of
matched objects from its shape. However, this method cannot find occluded
objects since two objects in a binary image whose features overlap are not
indistinguishable from a single object with different shape.
To use shape matching in a binary image, a color or grayscale image needs to be

converted to a binary image. Prior to conversion, the objects to identify in the image
should have good contrast with respect to the background so that the boundaries of
each object can be accurately represented when converted to a binary image.
By using shape matching, sorting and inspection of objects are possible. The

shape of the objects can be classified (sorted) and defects can be determined by
comparison with a reference image (inspection).
An example of finding objects using binary shape matching is discussed in this

chapter. Every object has its own shape features and so it is possible to find each
object by using the binary shape matching.

Example for Binary Shape Matching

Go to folder: C:\Program Files\National Instruments\Vision\Examples\Images\Parts.
There are five image files including Parts00.png, which is shown below. Read the
image files from the folder and use the binary shape matching to find the motors
and worm gears from among the several different parts (Figures 10.1 and 10.2).
Note: The template images, motor01.png and wormgear00.png, can be found

from the folder C:\Program Files\National Instruments\Vision\Examples\Images\
Classification.

165

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

10.1
Accessing Previously Saved Images with Vision Acquisition Express

Vision Acquisition Express can be used to read images from a folder.

1) For this purpose, the Vision Acquisition Express function in Figure 10.3
can be dragged onto a block diagram to setup image acquisition.

2) From the pop-up window, you can select Folder of Images to read images
as seen in Figure 10.4. Then, select Next�

3) There are only five images to read in the folder. So, the Finite Acquisition
with inline processing is selected as seen in Figure 10.5. Then, select
Next�.

Figure 10.1 Example image for binary shape matching (Parts00.png).

Figure 10.2 Template images for binary shape matching. (a) Motor (motor01.png). (b) Worm
gear (wormgear00.png)

Figure 10.3 Vision Express.

166 10 Binary Shape Matching

4) With the Image Path (Figure 10.6 ➀) and Cycle Through Folder of
Image selected, clicking on Test (Figure 10.6 ➁) will sequentially show the
images as seen in Figure 10.6. Then, select Next�.

5) Select the Controls and Indicators as seen in Figure 10.7. Then, select
Finish to create the VI for image acquisition.

Figure 10.8a and b shows the block diagram and front panel of the created VI.
When you run the VI, you will see the five consecutive images in the front panel
image display.

Figure 10.4 Acquisition source selection.

Figure 10.5 Finite acquisition with inline processing.

Figure 10.6 Configure Acquisition settings.

10.1 Accessing Previously Saved Images with Vision Acquisition Express 167

10.2
Binary Shape Matching Using Vision Assistant

After the acquisition of images is set up in Vision Assistant, complete the follow-
ing steps to search objects based on binary shape. In this example, an intended
target template image is provided by a separate image file. To use the template
image file for binary shape matching, you will need to convert the image into
binary and save it for use as a template file.

Figure 10.7 Selection of controls and indicators.

Figure 10.8 VI to read finite images from folder. (a) Block diagram. (b) Front panel.

168 10 Binary Shape Matching

10.2.1

Binary Template Images

1) As a first step, a binary template image is required for binary shape match-
ing. Select Open Image (Figure 10.9 ➀) to read in the template image
of a motor (Figure 10.9 ➁), which can be found from C:\Program Files\
National Instrument\Vision\Examples\Images\Classification\motor01.
png.

2) Select Threshold from Processing Functions: Grayscale to change the
image to binary for the template image. Note that the motor image is
darker than the background. Therefore, Dark Objects is selected
(Figure 10.10 ➀). By choosing a proper threshold value, you can obtain an
accurate binary representation of the motor, as seen in Figure 10.10 ➂.

Figure 10.9 Read in template image of motor.

Figure 10.10 Template for motor.

10.2 Binary Shape Matching Using Vision Assistant 169

3) Select OK. As a next step, morphology functions may be used prior to sav-
ing the template image to remove unwanted pixels. In this example how-
ever, morphology functions may not be required since the motor image
should be well distinguished from the background and easily rendered as a
binary image object.

4) Save the template image file by selecting Save Image (Figure 10.10 ○5).
There is check box to select Expand Dynamic of Binary Image. If it is
selected, the grayscale representation of the image (0 and 255 pixel values)
is saved. The gray image has only two values of 255 for the object (motor)
and 0 for the boundary. If it is not selected, the image will have two values
of 0 and 1. The option of Expand Dynamic of Binary Image should be
considered since some other imaging software expects binary images to be
represented with 0 for background and 255 for object. In this example,
save the file with the name of bolt_binary.bmp with the expanded format.

5) The same process is repeated for the wormgear00.png to create and save
the binary image as Wormgear_binary.bmp. After saving all the files, pro-
ceed to image processing using Vision Assistant.

10.2.2

Binary Shape Matching

With the task of creating and saving template images completed, the Vision Assist-
ant Express can be restarted by selecting New Script, as seen in Figure 10.11.

Figure 10.11 New Script for Restarting Vision Assistant.

170 10 Binary Shape Matching

In this way, the previously created script for binary template image creation is not
included in the new script for binary shape matching.

1) Open the image of part00.png from C:\Program Files\National Instru-
ments\Vision\Examples\Images\Parts.

2) Prior to using binary shape matching, convert the gray image to binary
using Threshold from Processing Functions: Grayscale. Here, details of
using threshold will be skipped.

3) Select Shape Matching from Processing Functions: Binary (Figure 10.12).
4) Select Load from File (Figure 10.13 ➀) to use the binary template image

for the motor, which was saved prior to binary shape matching. Choose an
appropriate minimum score and select the check box for Scale Invariance
in Figure 10.13 ➁. Then select OK after confirming the matched results, as
seen in Figure 10.13 ➂.

5) The same step can be repeated for shape matching of worm gear, as seen
in Figure 10.14.

6) Select OK. The script in Figure 10.15 is then displayed showing the two
steps of binary shape matching (for the motor and for the worm gear).

7) Proceed by clicking on Select Control� in Figure 10.15 ➂.
8) Select Number of Matches and Shape Reports for indicators (Fig-

ure 10.16) that will be used in LabVIEW.

The Shape Report will be in the form of an array of clusters as seen in Fig-
ure 10.17. The size of the array equals to the number of matches. The results
include information related to location (Global Rectangle, Centroid), size
(Object Size), and Score, as seen in Figure 10.17.

Figure 10.12 Binary shape matching.

10.2 Binary Shape Matching Using Vision Assistant 171

10.3
Overlay VI Creation for Shape Matching

We will now discuss the overlay SubVI for binary shape matching. To overlay
the matched result, the Global Rectangle (Figure 10.18 ➀) information from
the Shape Report is used as input to the IMAQ Overlay Rectangle VI

Figure 10.14 Shape Matching Setup for worm gear.

Figure 10.13 Shape Matching Setup for motor.

172 10 Binary Shape Matching

(Figure 10.18 ➁), as seen in the figure. When this overlay function is used, you
may encounter errors in cases where there are no matched results. To avoid
such errors, the size of the array needs to be checked. If there exist no matched
results, the overlay function should be skipped, as seen in Figure 10.19.

10.4
VI for Binary Shape Matching

Figure 10.20 shows the block diagram for locating the two objects: motors and
worm gears. Vision Express wizards are used for both image acquisition (Fig-
ure 10.20 ➁) and image analysis (Figure 10.20 ➂). The results from shape match-
ing are delivered to the Shape Report and Number of Matches indicators.

Figure 10.15 Results from two steps of binary Shape Matching.

Figure 10.16 Selection of controls and indicators for Shape Matching.

10.4 VI for Binary Shape Matching 173

Due to the requirement that binary shape matching operates on binary images,
all target images need to be converted to binary. In order to preserve the original
image, additional image memory needs to be allocated (Figure 10.20 ➀) and
connected to the image destination input of Vision Assistant shown in Fig-
ure 10.20 ➂.

Figure 10.17 Shape Report.

Figure 10.18 Overlay VI for global rectangle.

174 10 Binary Shape Matching

Figure 10.21 shows a screen captured of the main VI front panel after it is
executed. As seen in Figure 10.21, motors and worm gears are successfully
located based on shape matching from the binary image. The matched shape
results are displayed as an array of clusters.
To overlay results to indicate the found objects in the image display, we used a

SubVI as shown in Figure 10.20 ○4 and ○5 . The block diagram for the overlay
SubVI was shown in Figures 10.18 and 10.19.

Figure 10.19 False condition for skipping overlay if no search results.

Figure 10.20 Block diagram for shape matching.

10.4 VI for Binary Shape Matching 175

Exercise 10.1

Find Particle 01.png from C:\Program Files\National Instruments\Vision\
Examples\Images. Use the binary shape matching to find all the washers and
provide a function to indicate the locations with an overlay (Figure 10.22).

Figure 10.22 Exercise image for binary shape matching (Particle 01.png).

Figure 10.21 Front panel for shape matching.

176 10 Binary Shape Matching

11
OCR (Optical Character Recognition)

OCR (Optical Character Recognition) is machine vision software that translates
images of characters into text. To identify characters in an image, the LabVIEW
software needs to be trained to identify each character. A data set of trained char-
acters is created and saved as a character set file in advance. The set of trained
characters are compared with character objects in an image for recognition.
The example of OCR provided in LabVIEW can be found from the following

folders:

C:\Program Files\National Instruments\LabVIEW 2013\examples\Vision\OCR

Figure 11.1 shows the screen-captured image of the example OCR.vi. In this
example, characters in the image are recognized and converted into a character
string.
Some industrial applications of OCR for machine vision include inspecting labels,

sorting, tracking packages, and verifying parts during manufacturing process.

11.1
OCR Using Vision Assistant

Example: OCR

Train the character sets in Figure 11.2 and identify numeric characters in
Figure 11.3 via OCR functions. Note that the size and font of the characters may
be different from those of the trained characters.

11.1.1

Character Training Using Vision Assistant

The OCR function using Vision Assistant offers an excellent procedure to train
the software to recognize the imaged characters. For this purpose, complete the
following steps:

177

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

1) Launch Vision Assistant and select Open Image to train characters in the
image. The image from Figure 11.2 will be used to train the numeric char-
acters as seen in Figure 11.4.

2) Select the OCR/OCV function icon (Figure 11.5) from Processing Func-
tions: Identification» OCR/OCV. You will then see the menu for the
OCR/OCV Setup, as shown in Figure 11.6.

3) Select New Character Set File from the menu in Figure 11.6. A pop-up
window will appear, as seen in Figure 11.7, to train characters.

Figure 11.1 Example VI for OCR.

Figure 11.2 Characters to be trained.

Figure 11.3 Characters to be identified.

178 11 OCR (Optical Character Recognition)

4) Drag out a rectangle to create a ROI area around the characters to train in
the image as seen in Figure 11.7 ➀. The OCR function automatically sepa-
rates each character from image background. As a result, there will be
small rectangles that will indicate the location of the found image for each
character. The character sets can be selected in groups or individually.
Then, Train All Characters (➁) is selected to begin the training process.

5) Key in the corresponding character string in the proper sequence so that
the software can equate the imaged characters with the correct text, as
seen in Figure 11.7 ➂.

6) Select Train, as seen in Figure 11.7 ○4 , to train the characters in the ROI. It
can be the case that the text characters to be recognized are of different
fonts. Training the software with all the character fonts to be recognized
will produce a more accurate and reliable result. In this example, two dif-
ferent fonts of numeric characters and the math symbols are trained.

7) Select the Edit Character Set File tab in Figure 11.7 ○5 . You will then see
the trained characters as shown in Figure 11.8.

8) You may rename or delete the trained character sets from the Edit Char-
acter Set File Tab.

Figure 11.4 Open image file of characters to be trained.

Figure 11.5 OCR/OCV function.

11.1 OCR Using Vision Assistant 179

Figure 11.6 OCR Setup.

Figure 11.7 OCR Training interface.

180 11 OCR (Optical Character Recognition)

9) Save the character set file by selecting the File Save icon in Figure 11.8 ➁

as the final step for training of a character set. As a suggestion, you might
save it as a file named char.abc.

11.1.2

Character Identification Using Vision Assistant

In this section, a USB camera is used for image acquisition. To identify charac-
ters from acquired images, OCR will be discussed and used to build a VI. This
process will use the previously saved character set file. To gain understanding of
real-time text identification using OCR, a set of characters is printed out on
paper and then a camera is used to take images of the printed paper. Note that
the size of the character and image quality of the acquired image can be signifi-
cantly different from the image that was used for training.

1) Launch NI Vision Assistant and select New Script from File menu.
2) Select Acquire Images in Figure 11.9 ➀.
3) Select Acquire Image (1394, GigE, or USB) if you are using USB camera.
4) Select the Acquire Continuous Images icon to continuously acquire

images (Figure 11.9 ➁).
5) Select the Store Acquired Image in Browser icon (Figure 11.9 ➂) to save

the acquired image for image processing using Vision Assistant. Then,

Figure 11.8 Edit character set file.

11.1 OCR Using Vision Assistant 181

select the Image Process icon button in Figure 11.9 ○4 to start image
processing.

6) Select OCR/OCV from Processing Functions: Identification, as seen
previously in Figure 11.4.

7) Select Train Tab from OCR/OCV Setup.
8) Select Character Set Path to load the Characters Set File (Figure 11.10

➀), which was saved during the training process (Figure 11.8).
9) Use the mouse to drag out a ROI rectangle around the characters as seen

in Figure 11.10 ➁.
10) The recognized characters are then indicated by rectangular outlines. The

images of the trained characters are also overlaid on the recognized char-
acters. The characters at the bottom of the rectangles correspond to the
recognized text. The identified results from the OCR process are shown
in Figure 11.10 ➂. Note that the condition of the acquired image using
digital camera is significantly different from that of the image used for
training character. Nonetheless, the characters from the camera are iden-
tified as seen in Figure 11.10.
You can check whether the characters with different fonts are identified

correctly by placing ROI around other examples of imaged characters, as
seen in Figure 11.11. As we can see in this figure, some characters may
not be identified due to differences in font. Here, the unrecognized char-
acter is marked with a question mark, “?.”

Figure 11.9 Acquisition of image characters.

182 11 OCR (Optical Character Recognition)

By lowering the Acceptance Level score value in the Read Options tab
as seen in Figure 11.12, previously unrecognized characters may be identi-
fied as similarly trained characters.
For example, if the Acceptance Level is reduced from 700 to 300, as seen

in Figure 11.12, every character except 74 can be identified. The two numeric
characters of 7 and 4 were overlapped in the horizontal directions and cannot

Figure 11.10 OCR/OCV setup.

Figure 11.11 OCR identification results using acceptance level of 700.

11.1 OCR Using Vision Assistant 183

be separated by using rectangle ROI. The two characters might be considered
as a single character, as seen in Figure 11.13a. Note that there is a trade-off in
selecting an Acceptance Level. If a high value is used for the acceptance
level, an identified character is likely to match a trained character perfectly.
However, there may be other missed characters. On the other hand, more
characters can be identified by lowering Acceptance Level, although some
characters may not be identified correctly due to the low tolerance. For exam-
ple, 1 (one) is identified as 7 (seven) in Figure 11.13b. To improve identifica-
tion results, more character sets with different fonts should be trained during
the OCR setup training process.

11) If the identified results are acceptable, select OK (Figure 11.10 ○4).

Figure 11.12 Acceptance Level.

Figure 11.13 OCR identification failures. (a) Improper spacing. (b) Incorrect identification due
to low acceptance level.

184 11 OCR (Optical Character Recognition)

11.2
VI for OCR

11.2.1
VI Creation for OCR Using Vision Assistant

In this section, an OCR VI, which performs real-time character identification,
will be discussed. We will use the OCR function to identify characters from an
imaged printed paper. A USB camera is used to acquire images of the printed
characters. To identify the characters from the acquired image, a VI created
using Vision Assistant will be modified as a SubVI.
You need to first select Tools»Create LabVIEW VI (located in the NI Vision

Assistant tool bar menu) upon finishing the OCR setup in Vision Assistant
(Section 11.1). From the LabVIEW Create Wizard – Step 3 of 4, select Image
Control (Figure 11.14) to use this VI as a SubVI, which will receive acquired
image from main VI.
By selecting Next in the LabVIEW VI Creation Wizard – Step 4 of 4, you

can select Controls and Indicators, as seen in Figure 11.15.
Here, Image Src (source) and Image Dst Out (destination) are automatically

selected for controls and indicators in Figure 11.15 so that an acquired image
can be received from main VI and the processed image can then be returned.

11.2.2

SubVI for OCR

To read characters within an image, the LabVIEW VI created from Vision
Assistant is modified to a SubVI having inputs and outputs as seen in
Figure 11.16.

Figure 11.14 Selection of the image source.

11.2 VI for OCR 185

Figure 11.17 shows the block diagram of a SubVI for performing the OCR,
which has been slightly modified from the VI created with Vision Assistant. As
seen in Figure 11.17, controls of ROI Descriptor and the acquired Image are
used as inputs of the SubVI to receive information from the main VI. As a result

Figure 11.15 Selection of controls and indicators.

Figure 11.16 OCR SubVI.

Figure 11.17 OCR SubVI block diagram.

186 11 OCR (Optical Character Recognition)

of OCR processing, the character string (Read String) is obtained and used as an
output of the SubVI.
To use the OCR function, a character set file having trained character infor-

mation is required. For this purpose, the character sets file (file name: char.abc)
saved previously in this chapter is used. Figure 11.17 ➁ shows the control for the
path of the character set file. The previously selected Parameters values for
OCR character identification can be found in Figure 11.17 ➀. After reading in
the character set file (Figure 11.17 ○5), the characters in the image are identified
by using the OCR Read Text function (Figure 11.17 ○6). The resulting recog-
nized text corresponding to each identified character is in the Read String indi-
cator shown in Figure 11.17 ➂. To draw an overlay on each identified character,
the overlay function in Figure 11.17 ○7 is used. Note that IMAQ Overlay ROI
shown in Figure 11.18 is used since ROI descriptor bounding the characters
from the OCR Read Text function is compatible with this overlay function.
Figure 11.19 shows the first result in the Character Reports indicator in Fig-

ure 11.17 ○4 . The Character Reports provides useful information for debugging
purpose. The Character Reports has the form of a cluster array with the size of
the array equal to the number of characters identified. Each array element of
Character Reports contains information such as character value, score, charac-
ter location, and character size.

11.2.3
Main VI

Figure 11.20 shows the block diagram of a main VI for real-time OCR analysis.
The SubVI for OCR described in Figure 11.16 has been used to perform the
OCR analysis.
Figures 11.21 and 11.22 show the character identification results when the

main VI is executed. To identify characters in the image display, a ROI is placed
around the character set to be identified. As seen in Figure 11.21, character iden-
tification is possible even though character fonts, as well as the font size, are
different from the character set file. Also, you may rotate the paper to check if

Figure 11.18 Overlay function.

11.2 VI for OCR 187

OCR function can read characters properly. In this example, character identifica-
tion was possible in cases where the paper is slightly rotated.
However, if the image is not clear and/or the characters do not have proper

spacing, character identification may fail as seen in Figure 11.22. Also, the char-
acters in the image need to have a minimum size, which is a measure of the total
number of pixels in a character. It is recommended in NI Vision Concept man-
ual that the character size be more than 25 pixels to successfully identify charac-
ters using the OCR function.
Note that identified character sets include numbers. If a numeric calculation is

needed from the numerals identified, they will need to be converted from text to
numeric values before mathematics functions are used.

Figure 11.20 Main VI for real-time OCR analysis.

Figure 11.19 Character Reports.

188 11 OCR (Optical Character Recognition)

Figure 11.21 Character identification results (success).

Figure 11.22 Character identification results (failure).

11.2 VI for OCR 189

Exercise 11.1

Create an application that can read number and symbol characters of an equa-
tion, complete the calculation, and return the results. For example, the results
of Figure 11.23 would be 98.

Exercise 11.2

Find image files from C:\Program files\National Instruments\Vision\Exam-
ples\Images\Lcd. Build an application that reads the characters from the
images, as seen in Figure 11.24.

Figure 11.23 OCR identification and the numeric calculation.

Figure 11.24 LCD image.

190 11 OCR (Optical Character Recognition)

12
Binary Particle Classification

By using classification functions, objects with various shapes can be recog-
nized, characterized, and sorted. Binary particle classification identifies an
unknown object in a binary image by comparing a set of its significant features
with a set of features that conceptually represent classes of known samples.
For this purpose, the software needs to be trained using individual object
images with significant unique features to create classes. The classes will be
compared with unknown image samples during the classification process. The
Binary Particle Classification method is different from geometric matching
and pattern matching in that it is based on particle analysis of binary images.
While Binary Particle Classification is discussed here, keep in mind that geo-
metric matching is based on extraction of information on the boundary curve
of objects and pattern matching is based on pixel intensity of image. The mer-
its and demerits for each of the image analysis methods should be considered
before selecting the best algorithm for sorting or inspecting of objects.
Binary particle classification is a fast method when the objects need to be

sorted. However, this method will not find occluded objects because the
method is based on binary images and two or more occluded objects are con-
sidered as one object of a different shape. Note that any acquired grayscale
image of the objects will need to have good contrast with respect to back-
ground and that the boundaries of the object should be accurately represented
as a result of the binary image conversion.
By using classification, sorting and inspection of objects are possible. An

object can be classified (sorted) according to the shape and defects of the
imaged object can be determined by the comparison with referenced features
(inspection).
An example demonstrating classification can be found in folder

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision\Classifica-
tion.

Figure 12.1 shows the front panel of the example VI for classification (Particle
Classification.vi). The objects are classified according to the known features.

191

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

12.1
Vision Acquisition Express to Load Image Files

In this chapter, example images are used to practice classification function. The
images can be found in

C:\Program Files\National Instruments\Vision\Examples\Images\Parts.

Complete the following steps using Vision Assistant for classifying objects.
Begin by using Vision Acquisition Express to load images from the image

folder. Drag the Vision Acquisition Express icon from the functions palette on
to the block diagram and perform the following steps:

1) Select Folder of Images as an option of Select Acquisition Source (step 1
of 5).

2) Select Finite Acquisition with inline processing (step 2 of 5) to load the
five files from the folder, as seen in Figure 12.2.

Figure 12.1 Example VI for binary classification.

192 12 Binary Particle Classification

3) Select Image Path, navigate to the folder identified above, and select Cycle
Though Folder of Images. Then, by clicking on Test, the five images will
be loaded and displayed one after the other, as seen in Figure 12.3 (step 3
of 5). Use the Image Number slider at the top to cycle through each of the
five images.

4) Skip the next step of Configure Image Logging Settings (step 4 of 5).
5) Select any desired Controls and Indicators (step 5 of 5) before selecting

Finish. When running the created VI, you will see one of the loaded
images on the image display in the front panel of the VI, as seen in
Figure 12.4.

Figure 12.3 Select Image Path.

Figure 12.2 Finite Acquisition with inline processing.

12.1 Vision Acquisition Express to Load Image Files 193

12.2
Vision Assistant Express for Classification

Drag the Vision Assistant Express icon from the functions palette onto the block
diagram. Then, follow the steps below to complete classification using Vision
Assistant:

1) Load the image file of Parts01.png from Vision Assistant Express (Fig-
ure 12.5 ➀).

2) Select Particle Classification from Processing Functions: Identification,
as seen in Figure 12.5 ➁.

12.2.1

Train for Particle Classification

1) In Particle Classification Setup under the Train tab, select New . . ., as
seen in Figure 12.6 ➀. Then, you will see the pop-up window of NI Parti-
cle Classification Training Interface, as seen in Figure 12.7.

2) Select Zoom out in Figure 12.7 ➀ in order to view the whole image in the
NI Particle Classification Training Interface.

3) Draw a region of interest (ROI) around the sample you want to add as a
class. For example, a bolt is selected, as seen in Figure 12.7 ➁.

Figure 12.4 VI for loading images from folder.

194 12 Binary Particle Classification

4) Select the threshold method used to convert the grayscale ROI image to
binary image. In this example, Clustering (Auto-Thresholding) is selected
(Figure 12.7 ➂).

5) Select Dark Objects from Look For as seen in Figure 12.7 ○4 since
objects are darker than the background.

Figure 12.5 Particle classification.

Figure 12.6 Particle Classification setup.

12.2 Vision Assistant Express for Classification 195

6) Select Reject Objects Touching ROI as seen in Figure 12.7 ○5 . In this
way, if an object intersects the ROI boundary, the object is excluded from
the training process and image analysis. In the case of the ROI shown in
Figure 12.7 ➁, only the bolt is selected. Other parts touching the ROI are
excluded from training.

7) Select Add Class, as seen in Figure 12.7 ○6 . You will then be required to
enter a name for the new class label. For example, you can type bolt in
the Class Label pop-up menu in Figure 12.8.

Figure 12.7 Particle Classification Training.

Figure 12.8 New class label.

196 12 Binary Particle Classification

8) Select Add Sample as seen at ➀ in Figure 12.9. Thus, the bolt image
object will be added to the class bolt. You can add more samples to the
class. In this way, you can have better training results for the class.

9) Repeat Add Class and Add Sample to train all the significant features.
Then, you can see # Samples for each class, as shown in Figure 12.10 ➀.
In this example, four classes are used: bolt, motor, screw, and washer.
Note that two samples are added for motor and there are objects in the
image with shapes that are not included among the trained classes.

10) Select the Classify tab in Figure 12.10 ➁ after finishing the adding of clas-
ses and samples process.

11) Now, select Train Classifier in Figure 12.11 ➁.
12) You can select any objects from the image to verify classification results.

For example, a motor is selected as seen in Figure 12.11 ➀. You then see
the classification results as in Figure 12.11 ➂. The class label is motor.
Here, the classification score is 1000, which means perfectly matched
with trained class. The Distances information (Figure 12.11 ○4) in this
context indicates how closely each class resembles currently selected
class. The Distance of 0 indicates a perfect match.

Figure 12.9 Add sample.

12.2 Vision Assistant Express for Classification 197

Figure 12.11 Classification results.

Figure 12.10 Particle classification training results.

198 12 Binary Particle Classification

13) Select Edit Classifier in Figure 12.12 ➀ to change the class label or delete
the samples. For example, if you want to edit the class of a sample, select
the sample as seen in Figure 12.12 ➁. Then, you can change the class label
of the sample (➂) or delete the sample (○4).

14) Save the classifiers (Figure 12.12 ○5). The file will be saved with the file-
name extension .clf. You now can exit Particle Classification Training
Interface by closing the window.

12.2.2

VI Creation

1) The classification results need to be confirmed from the particle classifica-
tion setup. By dragging out a rectangular ROI in the processing window in
Figure 12.13 ➀, you can get the classified results of all objects within the
ROI, as seen in Figure 12.13 ➁. If you select one of these results as in Fig-
ure 12.13 ○4 , it will indicate the corresponding object with a rectangle
around the object in the processing window, as shown in Figure 12.13 ➂.
Also, you can evaluate the accuracy of the classification from classification
score of the selection. If the score is close to 1000, the classified result is
likely to be accurate. Note that the classification score in Figure 12.13 ○4 is

Figure 12.12 Edit classifier.

12.2 Vision Assistant Express for Classification 199

50. In this case, even though it was classified as motor, the score indicates
that the classified result might not be correct. The classified object’s classi-
fication score below a set threshold value may indicate that the object
should be ignored.

2) You have the option of using Remove Small Objects in Figure 12.13 ○5 in
order to preprocess the image to eliminate small particles that may be left
over from the binary conversion process.

3) If the results are acceptable, select OK.
4) Complete the Vision Assistant Express by determining the controls via

Select Controls>> at the bottom of the window.
5) Select Finish to create a VI.
6) Connect inputs and outputs of the created VI, as seen in Figure 12.14a.

Then by executing the VI you will obtain the classification results as seen
in Figure 12.14b.

12.3
VI Modification

To fully use the results of the identified objects, such as the location and identifi-
cation scores, the Express VI will need to be converted to a standard SubVI. To
do this, right click the mouse on Vision Assistant Express icon and select Open
Front Panel from pop-up window. By doing this, you can modify the converted
VI according to your needs and save it to a project directory. Figure 12.15 shows
a portion of converted VI’s block diagram.

Figure 12.13 Particle classification results.

200 12 Binary Particle Classification

Please focus on the function icon, IVA Classification Classify All Objects.vi,
located in Figure 12.15 ➀. This VI function has inputs and outputs as seen in
Figure 12.16.
To classify each object, a binary image template is used to find the particles

(objects). During the particle identification process based on the template, each
found particle will be assigned its own ROI, which identifies the location of each
of the classified objects within the image.

Figure 12.14 Created VI for classification. (a) Block diagram. (b) Front panel.

12.3 VI Modification 201

However, the RIO descriptors are not initially provided as a result of the IVA
Classification Classify All Objects.vi. So, we will need to create the ROI
descriptors as seen in Figure 12.17 ➀.
You can access the VI by double clicking the function icon (Figure 12.15 ➀)

and then display its block diagram as shown in Figure 12.17. The VI can then be
modified according to your requirements.
The ROI Descriptors are in the form of an array of clusters, which holds

information on the locations of all the classified particles. As a final step, modify
the VI for use as a SubVI by adding the ROI Descriptors indicator for output
(➀), in addition to the already supplied Classes (➁) and Scores (➂) outputs.
Now, the results of the classification analysis, ROI Descriptors, Classes, and

Scores are supplied in the form of arrays. The size of the output arrays of the
ROI Descriptors, Classes, and Scores is the same as the number of particles
found and the indexes of these arrays are associated with a specific particle with
that index.
The classes are one-dimensional string arrays containing Class Labels, which

identify the classified objects with the particle templates. In observing the results
of the scores, you can evaluate how well the algorithm classified the objects. The
scores have two values: a Classification Score and an Identification Score. The
classification score indicates how much better the indicated class represents

Figure 12.15 Part of VI for classification converted from Vision Assistant Express.

Figure 12.16 Inputs and outputs of IVA Classification Classify All Objects (Figure 12.15 ➀).

202 12 Binary Particle Classification

the input sample than other available classes. The Identification Score indicates
how closely the object matches to a specifically matched class.
Then, the results of the modified IVA Classification Classify All Objects.vi

(Figure 12.17) can be used in a classification_sub.vi. As seen in Figure 12.18,

Figure 12.17 Modified block diagram of IVA Classification Classify All Objects (Figure 12.15 ➀).

Figure 12.18 Block diagram of modified classification_SubVI from VI shown in Figure 12.15.

12.3 VI Modification 203

you can add two more indicators (ROI Descriptors and Scores) that were
obtained from modified IVA Classification Classify All Objects.vi in
Figure 12.18.
The two indicators (ROI Descriptors and Scores) are added as output termi-

nals of the SubVI so that additional outputs of this classification_sub.vi, as
seen in Figure 12.19 ➀, can be accessed by a main VI.

12.4
Overlay for Classification

The output results of the classification SubVIs can be used to overlay the results.
In this way, the classification results may be effectively evaluated by the user of
the program. In this section, we will show you an example of overlay VI that uses
the classification results as seen in Figure 12.20.
The block diagram of the SubVI for overlaying is shown in Figure 12.21. In

this SubVI, the ROI Descriptors, Classes, and Scores are used as inputs from

Figure 12.19 Inputs and outputs of classification_sub.vi.

Figure 12.20 Overlay for Classification results.

204 12 Binary Particle Classification

the main VI. These array variables all have the same number of elements, which
is related to the number of classified objects.
As seen in Figure 12.21, auto-indexing is used with a FOR loop to overlay

all the classified objects. For this overlay function, IMAQ Overlay Text in
Figure 12.22 is used to label the class on the location of classified objects in the
output image.

Figure 12.21 Block diagram for overlay (with classification score higher than 700).

Figure 12.22 IMAQ Overlay Text.

12.4 Overlay for Classification 205

To use the IMAQ Overlay Text function, both the locations (Origin) and
texts to show (String) are required. In this example, the location information
in the ROI array is used to place the text labels. The text string labels are
obtained from the identified object’s class. The class is a character string that
identifies the class. Note that the object’s class may not be reliable if unknown
or unclassifiable objects in the image exist. In this example, a classification
score of 700 is used so that objects identified with a value below 700 will be
classified as an unknown object, as seen in Figure 12.23. For each of the clas-
sification labels, a unique color can be selected for the overlaid text within the
case structure.

12.5
Main VI for Classification

Figure 12.24 shows the main VI’s block diagram for obtaining the classification
results. Vision Assistant Express was used to both load the image (➀) and clas-
sify objects in the image (➁). Then, the results of the classification were overlaid
on the image (➂). Each process was discussed in previous sections.
As discussed earlier, the classification result may not be absolutely accurate.

By using the score values, objects with low score can be indicated as unknown
to increase the reliability of the classification results as seen in the front panel of
the VI in Figure 12.25.

Figure 12.23 Block diagram for overlay (classification score lower than 700).

206 12 Binary Particle Classification

Figure 12.25 Front panel of main VI.

Figure 12.24 Block diagram of main VI.

12.5 Main VI for Classification 207

Exercise 12.1

Using the image file, Parts01.png (Figure 12.26) from C:\Program Files\
National Instruments\Vision\Examples\Images, create a program utilizing
binary classification to classify each object and overlay the identified class names
on the objects.

Figure 12.26 Image for classification exercise.

208 12 Binary Particle Classification

13
Contour Analysis

Contour analysis is often used to detect defects in objects by analyzing the
object’s contours. Boundary curves of objects are connected to produce con-
tours. For this purpose, the objects in the image should have clear boundary
edges to accurately distinguish its location from the image background. Since
boundary curves are a set of edge points, the color image should be converted to
8 bit grayscale or binary image for the edge detection.
Figure 13.1 shows the basic process for contour analysis to find defects in

objects.
To analyze the contour of objects, curvature profile is often used. The curva-

ture profile is effective in detecting defects in places where the contour changes
abruptly. However, some objects may have abrupt contour changes even though
there are no defects. In such cases, defect detection using the curvature may be
impossible.
On the other hand, you may use a reference template image to detect defects

in an object by the comparison of contours. Alternatively, if the contour has a
standard geometric general shape, such as line, circle ellipse, polynomial, and
B-spline, the contour of the object may be numerically fitted to find abnormal
parts in an object.
The example for detecting defects of an object can be found from the follow-

ing folder:

C:\Program Files\National Instruments\LabVIEW2013\Examples\Vision\Contour
Analysis

Figure 13.2 shows the front panel for the example VI, Contour Defect
Inspection.vi.
As seen in Figure 13.2, certain types of defects can be effectively located by

using contour analysis. The method shown in Figure 13.2 uses fitted circle for
comparison. The difference (distance) in the contours compared with the fitted
circular shape is used to find defects in this object.
In some cases, curvature profiles can be used alone and do not require com-

parison with a fitted shape, reference template, or reference contour. Applying

209

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

the method of curvature profiles may be easier to use in some applications. Fig-
ure 13.3 (contour analysis.vi) shows the example of using curvature profile to
detect abnormalities in a simple pattern.

13.1
Contour Analysis

Example: Defect Detection Using Contour Analysis

Figure 13.4 shows two ellipses. Note that the one ellipse has a defect. Use con-
tour function to determine the size and location of the defect. These shapes are
printed on paper and we will use USB camera to acquire the image. Use contour
analysis to detect possible defects in the ellipse.

13.1.1

Image Acquisition Using a USB Camera

1) Drag the Vision Acquisition Express icon from the function palette to the
block diagram.

Figure 13.2 Example VI for defect detection using contour difference (reference: circle).

Figure 13.1 Defect detection process using contour analysis.

210 13 Contour Analysis

2) Complete the creation of a continuous acquisition with inline processing
as seen in Figure 13.5. The details can be referenced from previous
chapters.

No defects

defect

Figure 13.4 Defect detection using contour.

Figure 13.3 Example VI for defect detection using curvature profile (Contour Analysis.vi).

13.1 Contour Analysis 211

3) Right click the mouse on the front panel image display in Figure 13.5b and
save the acquired image for image processing using Vision Assistant.

13.1.2

Contour Analysis Using Vision Assistant

1) Drag the Vision Assistant Express icon from the functions palette to a
block diagram.

2) Select Open Image to open the previously saved image file for contour
analysis.

Figure 13.5 Continuous image acquisition. (a) Block diagram. (b) Front panel.

212 13 Contour Analysis

3) Convert the color image to grayscale or binary for detecting edges since
contour of an object (boundary edge curve) is extracted from a grayscale
or binary image. For this process, select Luminance plane from HSL from
Color Plane Extraction function.

4) Select the Contour Analysis function icon from Processing Functions:
Machine Vision in Vision Assistant, as seen in Figure 13.6.

5) Appropriate parameter values need to be selected for the contour analysis
setup. Figure 13.7 shows the example of the Extract Contours tab under

Figure 13.6 Contour analysis.

Figure 13.7 Contour analysis setup.

13.1 Contour Analysis 213

Figure 13.8 Reference image for contour analysis.

Figure 13.9 Curvature analysis of contours with no defects.

214 13 Contour Analysis

the Contour Analysis Setup to extract contours of the objects. The setup
values should be adjusted by observing the perimeter contour line overlay
on the objects in the displayed image. If the setup values are correct, the
overlaid line lies exactly along the contour of the objects within ROI, as
seen in Figure 13.8.

13.1.3

Defect Detection Using Curvature

Select the Analyze Curvature tab to verify from the Curvature Profile that
the contour extraction is successful. Since there are no defects, the graph in
Figure 13.9 shows no significant variation throughout the curvature of the
object’s boundary.
For the case of the notched ellipse, Figure 13.10b shows how the curvature

profile reveals defects, as seen in Figure 13.10a. Note that you can change Kernel
size such that the curvature profile can adequately detect possible defects. You
can see the sudden large value change in curvature profile as seen in
Figure 13.10b ➀. In this way, you can identify the location of the defect as well
as determine its severity. Note that the value of curvature profile is not related to

Figure 13.10 Curvature profile of an object with defect. (a) Defects. (b) Curvature profile with
defects.

13.1 Contour Analysis 215

amount of defects, but to the rate of change of the contour. For example, the
defect in Figure 13.10a ➀ is smaller in size than that of the defects along ➁

and ➂. However, the curvature graph shows a significant value in defect at ➀.
The detection of the defect based on curvature is effective in identifying defects
due to irregularity of the contour (smoothness).

13.1.4

Defect Detection by Comparing Contours

In some cases, objects may intentionally have irregularities to their shape, which
do not indicate a defect in the object. In the presence of an irregular shape,
which is normal for the object, large values of curvature profile may be observed.
Thus, defect detection using the curvature profile method may not be appropri-
ate. In these cases, the comparison of contours using a reference template image
is perhaps better choice for the detection of defects.
The two different approaches may be used to compare contours: the use of

fitted data with a reference contour as seen in Figure 13.11 ➀ and the use of
reference template image as seen in Figure 13.11 ➁. In this section, the
method using the reference template will be discussed. This method uses the
contour of an object and a reference template to detect defects by comparing
the two contours. To use the reference template method, we need to create a
template file. Complete the following steps to detect defects based on tem-
plate image.

1) Select New (Figure 13.11 ➂) to create template file. A pop-up window will
appear to create a new contour template as seen in Figure 13.12.

2) Identify the reference template image area by using a ROI, as seen in Fig-
ure 13.12 ➀.

3) Select OK and save the template contour to a file in the form of a .png
image. As a suggestion, save the contour in a file named reference.png.
After saving the reference contour, you can drag out a ROI around the
target object to detect defects by means of distance (Distance) between
the contour and the reference contour. Figure 13.13b shows the distance
graph of the defective object. From Figure 13.13a and b, the point ➀ shows
the largest difference and is easy to detect based on the compare contour
method. However, even though the curvature is very large, the defect area
at ➁ in Figure 13.13 may not be noticed using this detection method since
the contour distance is relatively small.

The defects can be detected by comparing the distance against a threshold
tolerance. If the distance is larger than the threshold at a location, the loca-
tion can be identified as a defective part. An overlay on the image can be
used to show the detection results effectively. The details of this will be dis-
cussed later.

216 13 Contour Analysis

Figure 13.11 Contour analysis setup.

Figure 13.12 Contour template.

13.1 Contour Analysis 217

Figure 13.13 Defects detection using template contour. (a) Defects. (b) Contour analysis
setup.

Figure 13.14 Vision Assistant Express for contour analysis.

218 13 Contour Analysis

13.1.5

VI Creation

When the contour analysis setup is complete, the results of the analysis are indi-
cated as an overlay on image, as seen in Figure 13.14.
As a final step, click on Select Controls� to choose the Controls and Indica-

tors, as seen in Figure 13.15.
As seen in Figure 13.15, you can access two different results of contour analy-

sis in the forms of Curvature Profile and Distance. In this way, you can choose
contour results according to your requirement of defect detection.

13.2
VIs for Contour Analysis

13.2.1

Main VI

After finishing the selection of controls and indicators, a Vision Assistant
Express VI can be created, as seen in Figure 13.16 ➀. To build up the main VI,
you may want to connect the inputs and outputs of the Vision Assistant Express
VI as seen in Figure 13.16.
In this example, two different methods (with and without reference contour)

are compared to detect defects using contour analysis. The two methods include
the use of curvature profile and distance between contours.
The template image, which was saved previously using Vision Assistant, is

used for contour comparison based on distance.
The acquired image (Image_In) is used as the input of the SubVI and the ROI

(Figure 13.16 ➁) is used to define the image area of the object for defect detec-
tion so that the object in the ROI is compared with the template image. Note
that the Contour Analysis method based on distance is related to the direct
comparison of the target object with the template object. Therefore, the template
and target objects should be matched properly since the target object may be

Figure 13.15 Selection of controls and indicators.

13.2 VIs for Contour Analysis 219

rotated as well as translated in the ROI region. Therefore, the matching process
should be included in the contour analysis to acquire the intended results.
As an alternative method, curvature profile of the object can be used to detect

defects without a reference contour.
The results of Contour Comparison between target and template contour

points are in the form of cluster array, as seen in Figure 13.17. In the cluster,
you can find the template contour (Template Point) and matched contour loca-
tions (Target Point) in their X and Y locations. Also, the distance between two
contours can be obtained.
For better understanding of extracted contours of objects, the Template

Points and Target Points can be plotted on a graph, as seen in Figure 13.18.
Based on the contour of the template and target points, curvature and distance

can be obtained as seen in Figure 13.19a and b, respectively.
As seen in Figure 13.19, a horizontal line cursor can be added to the graph and

used to graphically modify the threshold value from within the graph. In this
way, the setting and modifying of threshold value can be made easy and straight-
forward. To add the line cursor, right click the mouse on waveform. Then, in the
pop-up window, you can add cursors from Cursors tab of Graph Properties
menu, as seen in Figure 13.20.

Figure 13.16 Main VI for contour analysis.

220 13 Contour Analysis

You can now move the cursor on the graph and the value at the cursor
can be used in the block diagram. To access this value, right click the mouse
on the graph indicator in block diagram (Figure 13.16 ○9). You will then see
the pop-up window to select Create»Property Node»Cursor»Cursor Posi-
tion» Cursor Y. From the created property node, you can obtain the cursor
value from the graph, as seen in Figure 13.16 ○5 . The value can then be used
as the threshold value for identifying defects.

Figure 13.17 Contour analysis result (Distances).

Figure 13.18 Template and target points.

13.2 VIs for Contour Analysis 221

13.2.2
Overlay for Defects

An overlay of the template contours and target contours for comparison are
automatically generated from Vision Assistant Express. However, you may want
to add a highlight overlay to indicate the defect area. To detect possible defects,
a threshold value is used to identify severe defects by comparing the value with
the curvature variation or the distance. If the distance value is higher than the
threshold, the location can be classified as defective part. The defective parts can
be effectively shown on the image display by using overlay SubVI. Figure 13.21
shows the inputs and outputs of the SubVI.

Figure 13.19 Curvature profile and distance. (a) Curvature profile. (b) Distance.

222 13 Contour Analysis

Figure 13.22 shows the block diagram for the SubVI to overlay multiple lines
on defected parts. To overlay highlights on defective parts, the locations for the
distance or curvature profile greater than the threshold value will be added to an
array receiving the defect location information.
For defect detection, we will discuss the method of using the distance values.

As seen in Figure 13.22a, if the distance is larger than the threshold value, the
size of array of detects location will be increased accordingly (➁) and the array
will be plotted using overlay multiline function. On the other hand, if the dis-
tance is lower than threshold value, the locations will not be used for overlay, as
seen in Figure 13.22b.

Figure 13.20 Cursor creation from waveform graph.

Figure 13.21 Inputs and outputs of overlay SubVI for defects.

13.2 VIs for Contour Analysis 223

To overlay on defect locations, the overlay function of IMAQ Overlay Multi-
ple Line 2 in Figure 13.23 is used, which can be found from Vision and
Motion»Vision Utility»Overlay. As seen in Figure 13.22, line segments (Line
End Points) specified with X and Y location data are used as input to the IMAQ
Overlay Multiple Lines 2 function.

Figure 13.22 Block diagram for defect detection and overlay. (a) Distances above threshold
value. (b) Distances below the threshold value.

224 13 Contour Analysis

Figure 13.24 shows the overlay results that use the threshold value from the
Distance graph. As seen in Figure 13.24, the defect location can be identified
and effectively indicated on image display by using the overlay SubVI.
Note that defect detection may not always be successful because of image dis-

tortions due to perspective errors. When object under inspection is not located
on the same position where template image is taken, the results are likely to be
affected by perspective errors depending on camera alignment. The perspective
issue in image will be discussed in Section 13.2.3 and Chapter 14.

13.2.3

Perspective Errors in Images

As seen in Figure 13.25, the shape of an object and its contour is affected by the
alignment of the camera. So, if the camera is not exactly perpendicular to the

Figure 13.23 Overlay Multiple Line function.

Figure 13.24 Identified defects based on the threshold value.

13.2 VIs for Contour Analysis 225

object, perspective errors will occur. The distortions include size as well as the
shape. Due to the distortions, it may be difficult to determine the defects from
the contours analysis.
Therefore, it is advisable to position your camera perpendicular to objects

under inspection. In the case that the camera position may not be controlled,
the distortion can be corrected using software. The calibration method for cor-
recting distortions using the software will be discussed in Chapter 14.

Exercise 13.1

Find images in C:\Program Files\National Instruments\Vision\Examples
\Images\Cans.

Use Vision Assistant Express to build your own VI to detect the defective part of
the cans (Figure 13.26). You may refer to the Contour Defect Inspection.vi in
Figure 13.2.

Figure 13.25 Distorted image due to perspective error (size, shape).

Figure 13.26 Example images for defect detection.

226 13 Contour Analysis

14
Image Calibration and Correction

If the camera axis is not perpendicular to the object, perspective errors will
occur. Due to perspective errors, the acquired image might be distorted and
the distortion will vary according to the distance and angle between the
objects and camera lens. To reduce perspective errors, the alignment of the
camera’s axis with respect to objects is important. In addition, you may
observe nonlinear distortions caused by optical errors (lens distortion) in cam-
era lens. These distortions can be corrected by using NI Vision calibration
tools. During the correction process, you can also acquire conversion informa-
tion for converting from pixels to the real-world dimensions. This will allow
you to measure the size and location of objects in physical measurement units
using vision analysis.
In this chapter, image calibration and correction methods using NI Vision

Calibration tools are discussed to increase the accuracy of image processing
results. By using the calibration tools, an image is calibrated to obtain conversion
information in real-world units as well as corrections for image distortion. Then,
the image along with the calibration information is saved to a file. The file with
the imbedded calibration information is used to correct newly acquired images.
This results in a distortion corrected image and measurements are made in
physical measurement units.

14.1
Method for Creating an Image Correction File

To generate an image calibration file, a grid pattern of dots with 5mm spacing
in the X and Y directions is printed on a paper as seen in Figure 14.1a. Then, an
image of the printed grid pattern is taken by a camera, as seen in Figure 14.1b.
Since the camera’s axis is not set perpendicular to the target object, pattern dis-
tortion is observed, as seen in Figure 14.1b. The distortion is to be corrected to
increase the accuracy of image analysis results.

227

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

14.1.1
Image Acquisition

Prior to image correction, the Vision Assistant Express is used to acquire contin-
uous images as seen in Figure 14.2. Here, the camera’s axis is intentionally set
to be off perpendicular to the target objects in order to understand the effects
of image corrections.
From the acquired image shown in Figure 14.2b, right click on image display

and save the acquired image as image_cal.png so that it can be used for image
calibration and correction using Vision Assistant.

14.1.2

New Calibration File

To correct image distortion, create a calibration file by completing following steps.

Figure 14.1 Image distortion due to the camera misalignment (perspective error). (a) Original
image. (b) Image acquired using camera.

Figure 14.2 Continuous image acquisition. (a) Block diagram. (b) Front panel (image display
with perspective errors).

228 14 Image Calibration and Correction

1) Drag the Vision Assistant Express icon onto a block diagram.
2) Open the saved image (image_cal.png) from Vision Assistant Express.
3) Convert the color image to a grayscale image. The calibration procedure is

based on binary images and it is much easier if the calibration process is
started with a grayscale image. To convert the color image to grayscale,
select the Luminance plane from the HSL color image representation using
the ExtractColorPlanes function.

4) Select Image Calibration function (Figure 14.3) from Processing Func-
tions: Image in Vision Assistant.

5) From the Image Calibration Setup, select New Calibration . . ., as seen
in Figure 14.4 ➀, to set up a new calibration file. Perform the several steps
needed to set up the calibration file.

Step 1: Select Calibration Type
Select a calibration type. In this example, select Distortion Model (Grid) as seen
in Figure 14.5. The calibration types are compared in Table 14.1. Note that the
grid type (Distortion Model) can correct distortion caused by both perspective
errors and lens distortion.

Figure 14.3 Image calibration.

Figure 14.2 (Continued).

14.1 Method for Creating an Image Correction File 229

Step 2: Select Image Source
You may add or delete images to calibrate grid images. For example, you may
use acquired images from the camera to add image files for calibration. In this
example, we used the default saved image as seen in Figure 14.6. Select Next>>
to proceed to the next step.

Figure 14.4 Image calibration setup.

Table 14.1 Image Calibration type for flat objects.

Simple calibration (point
distance calibration)

Calibration using user-
defined points

Grid calibration (Distortion
Model, Camera Model)

Camera setup is in the vertical
direction and distortion is
neglected. By using preknown
x- and y-direction length, pixel
to distance ratio can be
obtained.

By using the real distance
of user-defined points,
image can be calibrated.

By using grid information,
distorted image can be
calibrated and pixel distance
can be converted to real
distance.

230 14 Image Calibration and Correction

Step 3: Extract Grid Features
Select proper threshold parameters to extract grid features as seen in Figure 14.7.
First, select a ROI area on the grid in the image, as seen in Figure 14.7 . Select
Dark Objects in the Look For drop down box since the grid of dots is darker
than the image background. Since this method is based on binary images, we
need to select a threshold method to convert the grayscale image to binary. By
observing the converted image (blue: grid, white: background), the threshold
value can be adjusted so that the binary converted image accurately overlays on
the imaged grid of dots. In this example, the Local Threshold: BG
Correction method was selected. By using the binary converted grid pattern, the
distortion to the grid pattern is easily identified. Select Next>> in Figure 14.7
to proceed to the next step.

Figure 14.5 Select Calibration type.

14.1 Method for Creating an Image Correction File 231

Figure 14.6 Select Image Source.

Figure 14.7 Extract Grid Features.

232 14 Image Calibration and Correction

Step 4: Specify Grid Parameters
The grid spacing, which is used for calibration and correction, can be specified
as seen in Figure 14.8. In this example, the grid spacing was 5mm.

Step 5: Review Calibration Results
By selecting Next>>, you can review the calibration results as seen in
Figure 14.9.

Step 6: Specify Calibration Axis
Now we are asked to set up a calibration axis as seen in Figure 14.10. The cali-
bration axis on the image display can be adjusted by using the mouse or by

Figure 14.8 Specify Grid Spacing.

Figure 14.9 Review calibration results.

14.1 Method for Creating an Image Correction File 233

changing numerical values of the angle in the X-axis. In this example, angle of
the X-axis is aligned along the grid X direction so that corrected grid X direction
will be aligned along horizontal direction of the image.

Step 7: Summary
Figure 14.11 shows the summary of the calibration information from the steps
1–6. Finally, select OK if the calibration results are sufficient. You will now be
able to save the calibration file, which contains the trained calibration informa-
tion. In this example, image file named cal.png is saved.

14.2
Image Correction

14.2.1

Image Correction Using Vision Assistant Express

After saving the calibration image, the information in this image file can be used
to correct other images acquired with the same camera setup that produces the
observed image distortion. In this section, the method to correct images based
on the calibration image is discussed.

Figure 14.10 Calibration axis setup.

234 14 Image Calibration and Correction

1) Start with the Vision Assistant again by selecting new script.
2) Select the Image Calibration function from Processing Functions:

Image.
3) Select Calibration File Path to load and use the saved file containing the

calibration information.
If you check the checkbox in Preview Corrected Image as seen in

Figure 14.12, you can preview the corrected image as seen in Table 14.2.
Note that the size of the corrected image may differ from the image before
correction. The corrected X direction is aligned with horizontal direction
of the image. There will be black regions surrounding the original image
background, which has been added to show the correction of the entire
original image in the rectangular window.

4) Select OK in the Image Calibration Setup.
5) Select Image Correction function (Figure 14.13) from Processing Func-

tions: Image.

Figure 14.11 Summary of calibration.

14.2 Image Correction 235

Figure 14.12 Image Calibration setup.

Table 14.2 Image correction comparison.

Before correction (1280 × 720) After correction (1564 × 846)

There is image distortion according to camera
alignment and position.

The image corrected for distortion.

In calibrated image, image values with zero
(black image) appear near the boundary.

X direction of grid pattern is aligned with
respect to horizontal direction due to the
calibration angle setup.

236 14 Image Calibration and Correction

You will now be able to view the corrected image as seen in Figure 14.14.
By using image correction, the grid spacing will be more uniform com-
pared with the uncorrected image. However, note that other objects might
be influenced by the correction. For example, the nearby rectangular object
as well as the shape of paper has been affected.

6) Select OK to finish image correction based on the image calibration file.
7) As a final step of Vision Assistant Express, click on Select Controls>> so

that you select controls and indicators, as seen in Figure 14.15. Then,
select Finish to create a Vision Assistant Express VI to perform image
correction.

14.2.2

VI Creation for Image Correction

The corrected images can be obtained by continuously taking images using a
USB camera. Figure 14.16 shows VIs created from Vision Assistant Express for
the real-time correction of acquired images.

Figure 14.13 Image Correction.

Figure 14.14 Image Correction setup.

14.2 Image Correction 237

Figure 14.16 shows the Image Create function, which is used to allocate
memory for the corrected image (Image Out). By connecting the created
image to the Image Dst (Image destination) in Figure 14.16 , we can keep
a version of the original image (Figure 14.16), which will be unaffected
during the image correction. If you run the LabVIEW code in Figure 14.16,
you can compare the acquired original image with the corrected image as
seen in Figure 14.17. In this way, the perspective error due to the camera
alignment can be effectively corrected in real time. Note that the best correc-
tion can be obtained in the area of the image where the grid calibration has
been performed.
As a next step, the corrected image can be used for various machine vision

purposes such as measurement of size, image location of an object, or inspection
of the possible defects.

Figure 14.16 VI for real-time image correction.

Figure 14.15 Selection of controls and indicators.

238 14 Image Calibration and Correction

Figure 14.18 Nonlinear grid image.

Figure 14.17 Real-time image correction results.

14.2 Image Correction 239

Exercise 14.1

Find Nonlinear grid.png from C:\Program Files\National Instruments
\Vision\Examples\Images. Assume that the grid is equally spaced with distance
of 1mm. Use Image Calibration and Image Correction functions to correct the
image (Figure 14.18).

240 14 Image Calibration and Correction

15
Saving and Reading Images

15.1
Saving Image

You can save images using IMAQ Write File as seen in Figure 15.1, which is
found from the function palette in Vision and Motion»Vision Utilities»Files.
As seen in Figure 15.2, various kinds of image formats such as BMP, JPEG,

PNG, and TIFF can be selected to save image file using the IMAQ Write File
function.
The available types of images are summarized in Table 15.1.
When using IMAQ Write File, you can specify the Compression Ratio

or Image Quality, as seen in Figure 15.3 (IMAQ Write file for JPEG) and
Figure 15.4 (IMAQ Write file for JPEG2000).
For example, the default value for Image Quality is 750 in case of saving a

JPG file. The value for Image Quality ranges from 1 to 1000 depending on the
image quality required. Note that even if the quality value of 1000 is used for
saving jpg file, there might be some amount of image data loss due to compres-
sion. In case of JPEG2000, Compression Ratio is used to define image quality.
If the compression ratio is 50, the size of the file can be reduced 50 times smaller.

Example: Saving Image

Build LabVIEW code that can save image from USB camera twice a second.

Figure 15.5 shows a block diagram of a VI, which can save acquired images
twice a second to a designated folder.
Figure 15.5 ➀ shows the SubVI to create a folder and specify a path to save the

acquired image. At Figure 15.5 ➂, a programmatically created file name for an
image is added to the specified folder path. The file names for the images will be
imagxx.bmp, where xx indicates numeric characters in sequential order from
the While Loop increment. Note that we have added the file extension bmp
since image file type to be saved is in Microsoft bitmap format. As specified in
the block diagram, the wait function at ➁ is used to save the acquired image
twice a second (every 500ms).

241

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

Table 15.1 Image type.

BMP (BitMaP image) JPEG (Joint Photo-
graphic Coding
Experts Group)

PNG (Portable
Network
Graphics)

TIFF (Tagged Image
File Format)

Image from camera is
bitmap image, which
has the image values
on each pixel location.
The bitmap image is
not compressed

JPEG is one of the
image compressing
methods. The color
image can be effectively
compressed by using
JPEG. Here, the quality
and the size of the
image can be adjusted

PNG has been
widely used in
the Web to
realize bitmap
image

The data information
of image was saved in
the form of Tag in
front of the image.
From this, image type
can be recognized

Figure 15.1 IMAQ Write File.

Figure 15.2 Image selection.

Figure 15.3 IMAQ Write File (JPG save).

Figure 15.4 IMAQ Write File (JPG2000 save).

242 15 Saving and Reading Images

SubVI for Creating a Folder
In this section, the SubVI (Figure 15.5 ➀) for creating folder will be discussed.
You may skip this section if you are familiar with creating folders. Figure 15.6
shows the block diagram of the SubVI used in Figure 15.5 ➀. As seen in Fig-
ure 15.6, the output of the SubVI is the path information of created path.
To save the acquired images, the folder name of Save is created as a subfolder

of the current VI’s path. For this purpose, Current VI’s Path (Figure 15.7) is
used, which can be found in Programming»File I/O»File constants function
palette.
The Strip Path function in Figure 15.8 separates the directory path from file

name. In this way, only path information for the folder, where current VI exists,
is obtained.

Figure 15.5 IMAQ image save (BMP) of acquired image.

Figure 15.6 Block diagram of SubVI to create a folder.

Figure 15.7 Current VI’s path (Figure 15.6 ➀).

15.1 Saving Image 243

The subfolder name Save is added to the path using the Build Path function
seen in Figure 15.9. The final result is a file path to a folder where image files will
be saved.
The path information for the folder is connected to Check if File or Folder

Exists.vi function in Figure 15.10 to see if the folder already exists.
The Boolean output of File or Folder Exists? is used to check the existence of

the folder. In case the folder already exists, the folder including all the files con-
tained in the folder is deleted by using Delete function (Programming»File
I.O»Advanced File Functions). Then a folder with the same name is created
using the Open/Create/Replace File.vi (Programming»FileI.O» Advanced
File Functions), as seen in Figure 15.11.

Figure 15.8 Strip path (Figure 15.6 ➂).

Figure 15.9 Subfolder generation from current folder (Figure 15.6 ➁).

Figure 15.10 Check if a file or Folder Exists.vi (Programming»File I.O»Advanced File
Functions).

Figure 15.11 Delete the existing folder and create a new folder.

244 15 Saving and Reading Images

If there is no folder by that name, a new folder is created, as seen in
Figure 15.12.
The created path for the folder is used as the output of the SubVI in Fig-

ure 15.5 ➀.

15.2
Image Read from File

15.2.1

IMAQ Readfile

In Chapter 2, the Vision Acquisition Express was used to read images from files.
In this section, methods to read image files using IMAQ Readfile are discussed.
The method using IMAQ Readfile has advantages because it is more effective
method in building your own VI to meet your requirements.
The use of IMAQ Readfile to read image file is simple. As a first step,

IMAQ Create function should be used to allocate memory space for the
image to be read in. Then, the IMAQ Readfile function is used to read
an image file. Figure 15.13 shows the typical block diagram of VI to read an
image file.
IMAQ Readfile function (Figure 15.14) can be found in Vision and Motion@

Vision Utilities@Files.

Figure 15.12 Folder creation.

Figure 15.13 Block diagram for image read.

15.2 Image Read from File 245

15.2.2

Example of Reading Image from Image Files

Example: Image Read

Build a VI to read image files that were saved using the VI in Figure 15.5. Then,
show the images on image display in sequential order.

Figure 15.15 shows an example of a block diagram to read image files in
sequential order and show the images in the Image display on the front panel.
By using the VI shown in Figure 15.15, the sequential images will be displayed
with the same time interval as the images were acquired and saved. As a result,
the images appear on the display window as if the images were being acquired in
real time.
To read image files from the image folder, the folder is scanned of its con-

tents to obtain the number of saved image files in the folder. Then, the num-
ber of files is used for the number of iterations in the FOR loop. The
Recursive File List function in Figure 15.16 ➀ is used to analyze the contents
of the folder.

Figure 15.14 Image Read function.

Figure 15.15 Block diagram for VI to read image files.

246 15 Saving and Reading Images

Recursive File List.vi can be found in Programming»File I/O»Advanced
File Functions. The file names of imagexx.bmp (xx= 1,2, . . .), which were file
names previously saved using block diagram in Figure 15.5, are created in
sequential order by using the index of FOR loop (Figure 15.5). In this VI, the
saved image files in Figure 15.5 can be read in using the Image Read function in
Figure 15.15 ➁.

Exercise 15.1: Image save

From the continuous acquired images, you can drag out a ROI and save the
image portion as defined via the ROI. As a result, the size of image to be saved
will be reduced accordingly (Figure 15.17).

Figure 15.16 Recursive File List.vi.

Figure 15.17 Saving a part of an image defined by a ROI.

15.2 Image Read from File 247

Note:
You can use IMAQ Extract Tetragon function (Vision»Vision Utilities»

Image Manipulation) to reduce the size of the image by using ROI information
(Figure 15.18).

Figure 15.18 IMAQ Extract Tetragon.

248 15 Saving and Reading Images

16
AVI File Write and Read

The AVI (Audio Video Interleaved) file format contains audio and video infor-
mation within a single file. The audio part will not be discussed here. We will
mainly be focusing on video and image aspects of AVI files. Specifically, methods
to create AVI file from image files and read image frames from AVI file will be
discussed in detail.

16.1
AVI File Creation Using Image Files

In Chapter 15, images acquired using LabVIEW were saved in sequential order.
In this section, these sequential images are used to make an AVI file. Figure 16.1
shows the block diagram for making an AVI file using the saved images.
As seen in Figure 16.1, two paths are used: one folder path from which to read

image files and another to save the image sequence as an AVI file. From
Figure 16.1 , the Recursive File List.vi retrieves the number of files found in a
folder and is used to specify the number of files read in using a FOR loop. All
these images in the folder are then read using the Image Read function in
sequential order via an indexed FOR loop. Each image from the folder of previ-
ously stored image files is used to make the AVI file. For this purpose, the fol-
lowing three functions are required to create AVI file.

IMAQ AVI Create
The basic parameters to initialize and create an AVI file are set by using the
IMAQ AVI2 Create function (Vision and Motion»Vision Utilities» Files»AVI).
As seen in Figure 16.2, the IMAQ AVI2 Create function requires the name of

the codec (Codec) used to write the frames to the AVI file. Codecs are used to
compress the image sequence into the AVI file. You may need to call IMAQ
AVI2 Get Codec Names function to get the lists of codecs that are available on
your computer for creating the AVI files (Figure 16.3).
In this example, Microsoft Video 1 (index 0) codec is used from the list of

codec names identified by the IMAQ AVI2 Get Codec Names function.

249

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

In this example, the frame rate (Frames per Second) input to the Create AVI
function was set to 2 as seen in Figure 16.1 since images were acquired and
saved two times per second from the exercise in the previous chapter. If you use
20 for the frame rate instead of 2, playback speed of AVI would appear to be
10 times faster than the speed at which the images were acquired.

IMAQ AVI Write Frame
A set of images can be sequentially saved in an AVI file by using IMAQ AVI
Write Frame function (Figure 16.4), as seen in Figure 16.1 . Note that each
image will become one of the frames in AVI file.

Figure 16.2 AVI Create (Figure 16.1).

Figure 16.1 Block diagram for making an AVI file using existing image files.

Figure 16.3 IMAQ AVI2 Get Codec Names (Figure 16.1).

Figure 16.4 IMAQ AVI2 Write Frame.

250 16 AVI File Write and Read

IMAQ AVI Close
As final step, IMAQ AVI2 Close (Figure 16.5) function closes AVI file as seen in
Figure 16.1 .

16.2
AVI File Creation Based on Real-Time Image Acquisition

In this section, a set of images acquired using the Grab function will be
saved in the form of an AVI file. Figure 16.6 shows an example VI, which
makes an AVI file by using the acquired images. Each acquired image from
the Grab function () is provided as an input of IMAQ AVI Write
Frame ().
For most applications, the AVI Frame Rate should be equal to the rate

at which the images are acquired. In the following example, 10 fps were
used for the frame rate value as seen in Figure 16.6 , which corresponds
to an image acquisition period of 100 ms (). Note that codec name
obtained from the IMAQ AVI2 Get Codec Name function (Figure 16.6
) is used.

Figure 16.5 IMAQ AVI2 Close.

Figure 16.6 Example VI for making AVI file using image acquisition.

16.2 AVI File Creation Based on Real-Time Image Acquisition 251

16.3
Read Frame from AVI Files

An Image from an AVI file can be read by specifying the frame number in AVI
Read Frame function. As an example, you may want to extract the last 10 image
frames from the saved AVI file and then save each frame to an image file with a
separate file name. For this purpose, the following procedural sequence will be
used as seen in Figure 16.7.
As a first step, the IMAQ AVI Open function is used to open an existing AVI

file. Then, the AVI file information is obtained with IMAQ AVI Get Info in
Figure 16.8. The obtained AVI information includes Image Type (RGB, gray
image, etc.), the Number of Frames (the number of frames in the AVI file), and
the Frame Data.
Figure 16.9 shows the Frame Data information that was obtained by using

IMAQ AVI Get Info. The Frame Data information consists of image size (width
and height), Frames per second, and Codec information.
To read the image of a specified frame in an AVI file, IMAQ AVI Read Frame

(Figure 16.10) is used. With a frame number specified, the image associated with
the frame number is returned (Image Out). Note that the frames are numbered
starting from 0 to the Number of Frames-1.

� Read a series of frames from an AVI file.

Figure 16.11 shows a block diagram that reads the last 10 frames in the AVI
file, displays the images on the front panel image display, and writes the images
to separate numbered image files in a sequential order. By using the number of

Figure 16.8 IMAQ AVI Get Info.

IMAQ AVI
open

IMAQ AVI
Get info

IMAQ AVI
Read Frame

IMAQ AVI
close

Figure 16.7 AVI Read Procedure.

252 16 AVI File Write and Read

frames information from the AVI Get Info function (Figure 16.11), the frame
numbers for the last 10 frames can be programmatically determined, as seen
in Figure 16.11 Then, the last 10 image frames from the AVI file are retrieved
using IMAQ AVI2 Read Frame (Figure 16.11) and saved using IMAQ Write
(Figure 16.11).

Exercise 16.1

Using the front panel shown in Figure 16.12 as a template, build your own pro-
gram capable of reading a specific frame image (Figure 16.12) from an AVI
file and display the selected image (Figure 16.12). Also, build a VI, which can

Figure 16.9 Frame Data information.

Figure 16.10 IMAQ AVI Read Frame.

16.3 Read Frame from AVI Files 253

create a new AVI file consisting of a set of selected frames from an existing AVI
file by specifying the selected frames with a start frame () and end frame num-
ber (). For example, you can use event structure so that a new AVI file can be
created when selecting New AVI File, as seen in Figure 16.12 .

Figure 16.11 Reading image frame from AVI file and saving it as separate image file.

Figure 16.12 Front panel of VI to create a new AVI file from the existing AVI file.

254 16 AVI File Write and Read

17
Tracking

The tracking algorithm has the ability to identify an object in video images and
follow the object in subsequent sequential video frames. This is in order to track
the object’s trajectory, measure the speed, and/or to investigate the object’s
interaction with other objects.
Other algorithms such as pattern matching could be used for tracking objects,

but they will tend to fail to track the object in the presence of other objects that
are too similar. The tracking algorithm used in LabVIEW is based on a mean
shift method, which is effective in tracking target objects acquired in sequential
images even in the presence of similar other objects.
The current location is searched based on the histogram of the object in the

previous image frame and uses the mean shift of the result to find the peak of a
confidence map (probability density function) near the object’s old position. For
this to work correctly, the initial location of the target object needs to be cor-
rectly determined. As the video images progress sequentially in time, the target
object is searched while ignoring many other similar shaped objects.
You can find the NI-supplied tracking example VI in the following folder:

C:\Program Files\National Instruments\LabVIEW 2013\Examples\Vision
\Tracking, as seen in Figure 17.1. By running example VI, you will see a target
object (a car with rectangle overlay) being tracked throughout the video.

17.1
Tracking with the Use of Vision Assistant

In this section, a simple example will be used to help readers implement tracking
algorithms using Vision Assistant. In this example image, there are several simi-
lar shapes. It is important to identify and locate target objects while ignoring
similar shaped objects. To demonstrate the effectiveness of tracking, target
objects will be shown to be tracked as their locations move from one frame to
the next in the video. In this example, four target objects are printed and two of
them are used for tracking purposes. Complete the following steps to implement
tracking algorithm using Vision Assistant.

255

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

1) Use Vision Acquisition Express to acquire continuous images of the
objects you want to track, as seen in Figure 17.2.

2) Save one of the images to a file for use in Vision Assistant Express.
3) Drag the Vision Assistant Express icon from the functions palette on to a

block diagram and open the saved image from Vision Assistant.
4) Now, select the Object Tracking function from Processing Functions:

Machine Vision tab as seen in Figure 17.3. You will see the Object
Tracking Setup as shown in Figure 17.4.

Figure 17.1 Example VI for tracking.

Figure 17.2 Example image for tracking objects.

256 17 Tracking

5) Select New Object Tracking File . . . to create a new tracking file.
Now you will see the tracking training interface shown in Figure 17.5.

6) Draw a ROI around the object (Figure 17.5 ➀) you want to track and
adjust Histogram Bins to maximize the contrast of the object against the
background shown in the ROI Back-projected Image window. Select
Add (➁) to establish the object as the object to track. A representation of
the object will appear in the list of chosen objects (Figure 17.5 ➂). You

Figure 17.3 Vision Assistant Express for object tracking.

Figure 17.4 Object tracking setup.

17.1 Tracking with the Use of Vision Assistant 257

can add more objects as well as delete them (○4). In this example, we have
two objects selected for tracking.

7) Upon selecting OK, you will be able to save the trained objects as a NI
Object Tracking File. The filename will be given an extension of .nitf.
In this example, the tracking file is saved as tracking.nitf.

8) Upon saving the file, the file path will be shown in the Main tab of the
Object Tracking Setup, as shown in Figure 17.6 ➀. The Edit Object
Tracking File . . . button (➁) will now become active and will be availa-
ble if we later want to change some aspect of the tracking file.

9) Figure 17.6 shows the results of tracking the target objects when the
tracking file is applied. You can confirm the results as seen in ➂ and ○4 .
It should be noted that the initial identification of target objects is
important. If the target objects fail to be identified in the first image, the
tracking is not likely to be successful throughout the sequential video
frames.

10) After selecting OK, you can click on the Select Controls>> button to set
up controls and indicators so that they are available to the block diagram
of the LabVIEW VI, as seen in Figure 17.7.

Figure 17.5 Object tracking interface.

258 17 Tracking

17.2
VI Creation for Tracking Objects

Figure 17.8 shows the block diagram for tracking objects. On the front panel
shown in Figure 17.9, the tracked results are automatically overlaid on the image
display, so an additional VI for overlaying results is not required. The output of
Vision Assistant Express is the cluster array, named Objects (Pixel), which has
information on the tracked objects such as score, angle, and location values.
With the use of the tracking method, the location of objects can be identified

when the objects move, as seen in Figure 17.9a. However, an initial location of
the objects is important to establish tracking because subsequent searches of
sequential images are based on previous images. Figure 17.9b shows an example
of when the initial location of target objects failed to be identified.

Figure 17.6 Object tracking results.

Figure 17.7 Selection of controls and indicators.

17.2 VI Creation for Tracking Objects 259

Figure 17.8 Block diagram of tracking.

Figure 17.9 Tracking results when objects are moving.

260 17 Tracking

Exercise 17.1

Find the AVI file named Traffic.avi from C:\Program Files\National
Instruments\Vision\Examples\Images\AVIs. Build your own program using
Vision Assistant Express to track a target object as seen in Figure 17.10. You
may refer to the example VI in Figure 17.1, which was built via the conventional
VI method and compare the results.

Figure 17.10 Exercise for tracking via Vision Assistant Express.

17.2 VI Creation for Tracking Objects 261

18
LabVIEW Machine Vision Applications*

Some of the main applications of machine vision include automatic inspection
and gauging (measurement). There are many examples where inspection by the
human eye can be replaced and, in most cases, enhanced with the use of
machine vision. For many applications, machine vision is the only way to accom-
plish the task due to advantages of high precision, high speed, and capability of
operating in harsh environments. In industry, machine vision is often synchro-
nized with other systems such as motion systems and data acquisition. By using
vision algorithms, the movement of a specific object can be measured with
respect to time. Also, the motion of the objects can be analyzed. The defects of a
product can be inspected and dimensions of an object can be measured rapidly
in real time. Information obtained from machine vision can be used for real-time
automated motion control, quality assurance, measurement feedback, and pro-
cess control. Machine vision applications are now essential to many different
industries such as manufacturing, semiconductor, surveillance, automobile, and
medical applications.
In this chapter, a few examples of machine vision applications will be

discussed.

18.1
Semiconductor Manufacturing

In the field of semiconductor industry, machine vision has been used for inspec-
tion, positioning, and alignment of substrates. For example, photolithography of
VLSI circuits requires critical alignment of an optical mask to prepatterned
wafer substrates, as depicted in Figure 18.1. To align a wafer, machine vision is
used to determine the position and orientation of the wafer or pattern on the
wafer by locating fiducials (i.e., alignment marks). The fiducials are used as
known reference positions on the object. Pattern matching or color pattern
matching can be used to locate the fiducials for alignment so that a motion-

*All images containing (LabVIEW, IMAQ and LabVIEW Vision applications in chapter 18) are
provided by or originate from the hardware and software of National Instruments Corporation and its
affiliates. National Instruments reserves all rights including trademarks in such images.

263

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

controlled stage can move the wafer into an aligned position with an optical
mask. It is common to have fiducials for each layer to determine the error, or
runout from each added masking layer to track accuracy of aligners.
Machine vision can also be used as inspection tools for measuring the dimen-

sion of patterns and shapes after a manufacturing process. Expected features can
be inspected for defects as seen in Figure 18.2.

18.2
Automobile Industry

In the auto industry, machine vision measurement has been used to increase
assembly accuracy, performance, and reliability. In many cases, machine vision
has been incorporated with different kinds of sensor signals acquired by digital
acquisition systems.

Figure 18.1 Semiconductor wafer alignment.

Figure 18.2 Inspection of defects.

264 18 LabVIEW Machine Vision Applications

For example, car speedometers can be automatically calibrated via vision mea-
surement, as seen in Figure 18.3. A fuse box in Figure 18.4 is inspected to check
for any missing or wrong fuses. Impact analysis such as airbag deployment and
safety tests can be performed using vision algorithms, as seen in Figures 18.5
and 18.6.

Figure 18.3 Speedometer calibration.

Figure 18.4 Fuse box inspection.

Figure 18.5 Airbag Test.

18.2 Automobile Industry 265

18.3
Medical and Bio Applications

In the medical, pharmaceutical, and bio areas, vision systems can be useful tools
for analysis and automation. For example, the human eye movement can be
measured and analyzed, as seen in Figure 18.7.
In bio industry, the number of cells as well as the size can be analyzed, as seen

in Figure 18.8. Also, the movement can be analyzed in real time.
In the pharmaceutical industry, medicine packages can be inspected. For

example, machine vision can inspect whether a medicine is in the right place or
can detect incorrect or missing pills in a blister pack, as seen in Figure 18.9.
As another example, the color extraction can be used to classify the drugs and

the number of specific medicines can be counted, as seen in Figure 18.10.

Figure 18.6 Collision analysis.

Figure 18.7 Eye tracking.

266 18 LabVIEW Machine Vision Applications

Figure 18.8 Bio applications.

Figure 18.9 Package inspection.

Figure 18.10 Drug classification.

18.3 Medical and Bio Applications 267

18.4
Inspection

Defects can be detected during the manufacturing process. For example, color
pattern matching can be used to inspect complicated printed circuit boards with
dense part placement in order to detect assembly mistakes such as missing or
incorrect parts and incorrect part orientation, as seen in Figure 18.11.
Machine vision can measure the dimensions at a specific part of an object.

Various objects can be classified according to the shape.
Package and label inspection can be possible by machine vision. For example,

serial number can be inspected using OCR algorithm, as seen in Figure 18.12.
The infrared light can be used to obtain thermal images of objects

(Figure 18.13) instead of the light from visual part of the spectrum. This can be
used to detect a heat-generating fault condition in a machine. Still or time-
sequenced video thermal images can be used to analyze heat transfer to verify
thermal performance of a design.

Figure 18.11 Inspection of PCB manufacturing.

Figure 18.12 Serial number inspection based on OCR.

268 18 LabVIEW Machine Vision Applications

18.5
Industrial Printing

Machine vision has been used in large-scale printing of graphics and functional
materials for the purpose of overprinting alignment (Figure 18.14) and process
control. Modern higher end document and graphics printers often have
embedded vision systems to monitor four or more color separation and general
feature placement as well as color matching control. The real-time monitoring

Figure 18.13 Heat analysis from thermal imaging camera.

Figure 18.14 Machine vision alignment example in printed electronics.

18.5 Industrial Printing 269

supplies feedback on print runout and color gamut during a print run to ensure
uniform quality as aspects of the printing machine change from run to run or
even within a print job.
One application that machine vision has had a significant role is in tuning and

process control of industrial inkjet printers. The ejection of ink droplets from a
multiejector printhead is often characterized using machine vision with the use
of freeze frame video by strobe illumination (Figure 18.15). Automated data col-
lection in real time can provide information on droplet size, velocity, angle, and
satellite production. These data can be used to monitor multiejector uniformity
and performance consistency.

Figure 18.15 Time-elapsed evolution of inkjet droplets using a strobe light to monitor drop
volume and production of satellite droplets in real time.

270 18 LabVIEW Machine Vision Applications

19
Student Projects

Several selected student projects are presented. These tasks are used as final year
end test projects for undergraduate students in Soonchunhyang University,
South Korea. To be able to use the machine vision concepts learned from this
book, we encourage readers to choose at least one team-based student project.
The project may be selected from this chapter or self-selected by students. For
better evaluations of the suggested projects, screen captures of the student
reports are included here. LabVIEW block diagrams are not included in this
section. There can be a lot of different approaches to implement the projects
and creative programing is always recommended!

Project 1: Noncontact Motion Measurement and Its Analysis

As seen in Figure 19.1, an object is in pendulum motion. The motion is to be
measured and analyzed in real time via image analysis. The trajectory of the
object is plotted on graph. Also, the overlay on the object in the image display
can be used for motion measurement verification. As an example, the period of
pendulum motion (T) can be calculated from the measured motion. From the
period T, calculate the gravity constant g to confirm that g is about 9.81m/s at
the sea level. Note that the pendulum motion is one of the examples for non-
contact motion measurement. You can extend this concept to other noncontact
motion measurement applications.
(Hint: Color pattern matching, pattern matching, tracking method)

Project 2: Intelligent Surveillance Camera

Develop a low-cost and multifunction surveillance camera system by using a
low-cost USB camera (Figure 19.2). In the case of conventional CCTV (closed cir-
cuit television), all the images are being recorded. To investigate and find any
unusual occurrences, all the images need to be searched, which may take a sig-
nificant time. So, unusual occurrences (e.g., people coming in through a door)
need to be detected in real time. Then, an image or AVI file of the occurrence is
saved. In this way, the use of disk memory for file saving can be minimized. Also,

271

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

the searching time for events can be reduced significantly. After saving the
image files (or AVI), the monitored results (image or AVI files) can be sent to
security personnel via e-mail. At the same time, a text message can be sent to
the securities via a mobile phone.
Program concept: An image is acquired via USB camera. A template image is

saved as a reference image for (color) pattern matching. If the acquired images
are different from the reference template image, the acquired images are saved
for a specific time period or until they match with the template image. (The
image can differ from the template image when the door is open and somebody
comes in through the door.)
(Hint: (Color) Pattern matching, Image save, AVI write)

Figure 19.1 Pendulum motion measurement.

Figure 19.2 Intelligent surveillance system.

272 19 Student Projects

Project 3: Driving a LEGO NXT Car (LEGO Mindstorms) with Finger Motion

Edge detection techniques can find the number of fingers along the ROI line
(see Figure 19.3). Use fingers along a ROI line to control remote control device.
For example, a remote control car (via Bluetooth) made by Lego NXT can be
used. Two different line ROIs may be used to count the number of fingers. If
there is no finger in both line ROIs, the remote control car does not move. If
there are fingers in the ROI in the left (or right), the remote car makes left (or
right) turn. If there are fingers in both ROIs, you can make the remote control
car go straight ahead (see Figure 19.4).
(Hint: Multiple ROI, edge detection methods)

Project 4: Piano Keyboard Using Machine Vision

Multiple ROIs can be used as a noncontacting switch or selecting a specific func-
tion without actually touching a switch or device. As an example, develop a vir-
tual piano keyboard using multiple ROIs, which will divide the image into many

Figure 19.3 Edge detection techniques for finding the number of fingers.

Figure 19.4 Driving a remote control car with figure motion only.

19 Student Projects 273

selectable areas. Figure 19.5 shows five different selectable keys. Note that you
may make more selections just by making more ROIs. In order to make multiple
ROIs, GetImageSize is used to obtain the total pixel size of the image. Then, the
image is divided by the number of ROIs to define any selectable areas. If you
select any ROIs by using finger motion, the existence of fingers in ROIs can be
detected by using the particle analysis (Figure 19.6). When the fingers are
detected, generate sounds that correspond to the keyboard action.
(Hint: Multiple ROI, binary image, particle analysis)

Figure 19.5 Piano keyboards using machine vision.

Figure 19.6 Binary image conversion (Particle analysis).

274 19 Student Projects

Index

a
area of interest (AOI) 9, 10
audio video interleaved
– file creation, using image files 249–251
– file format 249, 254
– IMAQ AVI close 251
– IMAQ AVI2 Close 251
– IMAQ AVI2 Create function 249, 250
– IMAQAVI2Get CodecNames function 249
– IMAQ AVI Get Info 252
– IMAQ AVI Open function 252
– IMAQ AVI read frame 253
– IMAQ AVI2 read frame 253
– IMAQ AVI2 Write Frame 250
– IMAQ AVI Write Frame function 250, 251
– New AVI File 254
– read frame from files 252–254
– read procedure 252
– real-time image acquisition, file creation

251
automated data collection 270
Automated Imaging Association (AIA) 11
AVI. See audio video interleaved
AVI Read Frame function 252

b
binary image 2, 3
– conversion 33, 40–43, 52, 62, 191, 274
–– from color to grayscale image 41
–– from grayscale to binary image 42, 43
binary particle classification 191
– main VI for classification 206–208
– overlay for classification 204–206
– Vision Acquisition Express to load image

files 192–194
– Vision Assistant Express for

classification 194–199
BMP, image format 241–243
Build Path function 244

c
calibration. See also LabVIEW Vision
– axis 233
–– setup 234
– image 229
– results 233
– setup, image 230
– type 231
camera 6
– analog 10, 11
– area scan vs. line scan 7, 8
– bus 10
– 1394 camera vs. USB 12, 13
– color and monochrome 6
– GigE 13
– IEEE 1394 12, 13
– intelligent surveillance 271, 272
– lens selection 9
– line scan 6
– misalignment, image distortion 228
– monochrome analog 10
– sensors 8, 9
– USB 4, 13, 17
–– image acquisition 210
Camera Link 5, 11
– cable 11
– camera description files 12
– NI software, to acquire camera image

12
CCTV (closed circuit television) 271
– AVI file 271
collision analysis 266
color extraction 266
color image 3
– acquired 4
– 32 bit 3
– pixel location 4
– RGB values 4
color pattern matching 105, 106

275

Practical Guide to Machine Vision Software: An Introduction with LabVIEW, First Edition.
Kye-Si Kwon and Steven Ready.
 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.

– example patterns for 106
– Main VI 112–116
– Vision Acquisition Express 107, 108
–– image acquisition 107
–– saving image to a file 107
– Vision Assistant Express 105, 108–112
–– image acquisition 107
Color Plane Extraction function 41, 213
continuous image acquisition 20, 49, 50, 85,

119, 136, 137, 158, 212, 228
contour analysis 209, 210
– defect detection
–– Analyze Curvature tab 215
–– by comparing contours 216–219
–– contour template 217, 218
–– curvature profile 215, 219, 222
– reference image for 214
– result 221
– setup 213, 215, 217
– USB camera, image acquisition 210–212
– using Vision Assistant 212–215, 218
– VI creation 219–225
– Vision Assistant Express 218
Contour Defect Inspection.vi 209, 226

d
defect detection. See also contour analysis
– block diagram 224
– distance, threshold value 222, 224
– example images for 226
– on threshold value 225
– using contour 211
–– difference 210
– using curvature 215, 216
–– profile 211
– using template contour 218
deletion, folder 244. See also reading image
digital color images 3
Distortion Model (Grid) 229

e
edge detection 75
– IMAQ ExtractSingleColorPlane function 83
– via Vision Assistant 75–78
– VI for real-time-based 81–85
– Vision Assistant Express 85, 86
Ethernet, communication interface 5
Exists.vi folder, checking 244

f
file/folder exists, Boolean output 244
FireWire 5, 12
focal length, calculation 15

folder creation 244, 245
– SubVI, block diagram 243
folder deletion 244
frame grabbers 5, 8, 10–13
frame rate 6, 11, 24, 29, 250, 251
frames per second 6, 250
frame trigger 8

g
geometric matching 149, 150
– for circles 151–155
– for ellipses 155–158
– shape matching
–– functions 160
–– results for ellipse 164
– using Vision Assistant Express 150, 151
Gigabit Ethernet (GigE) 5, 10, 13
Grab function 20, 23, 251
graph properties 220
grayscale image 1, 2, 6, 33, 39–41, 40, 42, 52, 60,

76, 81, 83, 85, 86, 89, 101, 102, 105, 120, 137,
149, 150, 165, 170, 171, 191, 229, 231, 252

grid
– calibration 238
–– distortion model/camera model 230
– features, extract 231, 232
– image, nonlinear 239
– pattern 227
– spacing, specify 233, 237

h
HSL (hue, saturation, and luminance) 4, 5

i
IEEE 1394 10, 12, 13
image acquisition 7–10, 12, 30, 31, 35, 228
– AVI file creation based on real-time 251
– continuous 20, 28, 68, 85, 212, 228
– Gigabit Ethernet 13
– Grab function 20, 24
– IMAQ Create function 22
– IMAQ image save (BMP) 243
– making AVI file 251
– USB camera 17–31, 181, 210
– Vision Acquisition Express 26–31
image calibration 227–240. See also

calibration; image correction
image correction 237
– comparison 236
– real-time
–– results 239
–– VI for 238
– setup 237

276 Index

– using Vision Assistant Express 234–237
– VI creation for 237–240
Image Create function 22, 238
– IMAQ 101
image distortion 225, 227
– calibration file, creation 228, 229
– due to camera misalignment 228
– due to perspective error 226
image management functions 21
– IMAQ Create 22
– IMAQ Dispose 22
image pixel
– binary 2
– value 1–4
image quality 241
image read
– block diagram for 245, 246
– from file 245–248
–– Image Read function 246, 247, 249
–– IMAQ Readfile 245
– Recursive File List.vi 247
– saving part of image defined by ROI 247
image resolution 8, 9
– calculation 9
image save 247, 248
– image defined by ROI 247
imaging system, components of 5, 6
IMAQ Extract Tetragon function 248
IMAQ Overlay Multiple Line 2 224
IMAQ Readfile 245–246
IMAQ write file 241

j
JPEG
– image format 241, 242
– IMAQ Write file 241, 242
– JPEG2000, IMAQ Write file 241, 242

l
LabVIEW 4, 255
– acquiring images using 19
–– block diagram 23
–– IMAQdx Close Camera 21
–– IMAQdx Configure Grab 20
–– IMAQdx functions 19
–– IMAQdx Grab 20
–– IMAQdx Open Camera 19, 20
– code (See LabVIEW code creation)
– image acquisition with 17, 23–25
– machine vision applications (See LabVIEW

Machine Vision applications)
– particle analysis provided by 34
– using vision assistant 34

– Vision Acquisition Module 17
– Vision Development Module 3
– vision function palettes 19
LabVIEW code creation 47–49, 145. See also

Vision Assistant
– block diagram 50
–– of created VI from Vision Assistant 50
–– modification of Image Read or Image

Acquisition Code 50
– code generation 47
– created LabVIEW software 49
– VI creation wizard 47, 48
LabVIEW Machine Vision applications 263
– automobile industry 264–266
– industrial printing 269, 270
– inspection 268, 269
–– of defects 264
– medical/bio applications 266, 267
– semiconductor manufacturing 263, 264
– semiconductor wafer alignment 264
lens 13
– focal length 15
lightings 14, 15
– back 14
– DC/high-frequency 15
– diffused 14
– importance of 15
– ring 14
– strobe 14, 15
List.vi, recursive file 247

m
Measurement & Automation Explorer

(MAX) 17
– acquiring images with 17, 18
–– steps 18
– imaging system configuration via 18
morphology functions 2, 3, 33, 39, 43, 44, 52,

66, 170

n
National Instruments LabVIEW software 17
NI Vision Calibration tools 227
NI Vision Development Module 2
nonlinear grid image 239

o
object tracking setup 256
OCR. See Optical Character Recognition
Optical Character Recognition 177
– character training using Vision

Assistant 177–181
–– edit character set file 181

Index 277

–– OCR/OCV function 179
–– OCR setup 180
–– OCR training interface 180
–– open image file of characters to be

trained 179
– OCR VI creation for Using Vision

Assistant 185
–– block diagram 186

p
particle analysis 33
– binary image conversion 40–43
– morphology 43, 44
– Particle Analysis function 44, 45
pattern matching 89, 137
– Matches 101
– Matches array 99
– using Vision Assistant 90–95
pixels 259. See also color image; grayscale

image; image resolution
– conversion to real-world units 71–74
–– image pixel to distance conversion using

line ROI 72
–– IMAQ convert ROI to Line function 72
–– pixel to distance ratio calculation 73
– value 1, 2, 42, 44, 75, 79
PNG, image format 241, 242

r
reading image
– frame from AVI file and saving 254
– from image files 246
real-time image correction 238–239
Recursive File List function 246, 247
reference coordinate system 135–145
region of interest 9, 99, 119, 127, 146
– Image Mask function 38
– image mask setup 40
– image size reduction due to 41
RGB values 4, 22, 39
ROI. See region of interest

s
saving image 68, 107, 241–245
sensor size 9, 15
shape detection 159–163

standard analog video 11
strip path function 243, 244
student projects
– driving a LEGO NXT car 273
– intelligent surveillance camera 271, 272
– noncontact motion measurement 271
– piano keyboard using machine vision 273,

274
subfolder generation, from current

folder 244

t
target points, contour analysis 220, 221
template points, contour analysis 220, 221
TIFF, image format 241, 242
tracking 259, 260
– algorithm 255
– block diagram for 259, 260
– Vision Assistant 255–259

u
USB communication interfaces 5, 10

v
VI creation 31, 47, 48, 96, 97, 126–127,

158–159, 172, 185, 199–200, 219, 237, 259
Vision Acquisition Express 26–31
Vision Assistant 35–50
– edge detection 75–78
– pattern matching 90–96
Vision Assistant Express 26, 68, 69, 85, 86,

101–103, 108, 112, 113, 117, 129, 135,
150, 170, 202, 206, 212, 222, 226, 257,
259, 261

– for contour analysis 218
– conversion to a Standard VI 145–148
– exercise for tracking via 261

w
waveform graph, cursor creation from 223
working distance 15, 73

z
Zoom to Fit menu 25
zoom tool 24

278 Index

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley's ebook
EULA.

	An Introduction with LabVIEW Practical Guide to Machine: Vision Software
	Contents
	About the Authors
	Preface
	1. Basics of Machine Vision
	1.1 Digital Images
	1.1.1 Grayscale Image
	1.1.2 Binary Image
	1.1.3 Color Image

	1.2 Components of Imaging System
	1.2.1 Camera
	1.2.2 Camera Bus: The Method to Connect PC and Camera
	1.2.3 Lens
	1.2.4 Lighting

	2. Image Acquisition with LabVIEW
	2.1 Acquiring Images with MAX
	2.2 Acquiring Images Using LabVIEW
	2.2.1 IMAQdx Functions
	2.2.2 Image Management Functions
	2.2.3 Block Diagram for Image Acquisition
	2.2.4 Image Acquisition from Example
	2.2.5 Vision Acquisition Express

	3 Particle Analysis
	3.1 Particle Analysis Using Vision Assistant
	3.1.1 Image Acquisition Using Vision Assistant
	3.1.2 Image Processing Functions
	3.1.3 Setting a ROI (Region of Interest)
	3.1.4 Binary Image Conversion
	3.1.5 Morphology
	3.1.6 Particle Analysis

	3.2 LabVIEW Code Creation Using Vision Assistant
	3.2.1 Block Diagram of Created LabVIEW Code
	3.2.2 Image Type Modification

	3.3 LabVIEW Code Modification
	3.3.1 SubVI for Particle Analysis

	3.4 Particle Analysis Using Vision Express
	3.4.1 Vision Acquisition Express
	3.4.2 Vision Assistant Express

	3.5 Conversion of Pixels to Real-World Units

	4. Edge Detection
	4.1 Edge Detection via Vision Assistant
	4.2 LabVIEW Code for Edge Detection
	4.3 VI for Real-Time-Based Edge Detection
	4.4 The Use of Vision Assistant Express for Real-Time Edge Detection

	5. Pattern Matching
	5.1 Pattern Matching Using Vision Assistant
	5.2 LabVIEW Code Creation and Modification
	5.3 Main VI for Pattern Matching
	5.4 Vision Assistant Express

	6. Color Pattern Matching
	6.1 Color Pattern Matching Using Vision Assistant Express
	6.1.1 Vision Acquisition Express
	6.1.2 Vision Assistant Express
	6.1.3 Main VI

	7. Dimension Measurement
	7.1 Dimension Measurement Using Vision Assistant Express
	7.1.1 Find Circular Edge Function
	7.1.2 Clamp Function
	7.1.3 Caliper Function

	7.2 VI Creation for Dimension Measurement
	7.2.1 Vision Assistant Express VI for Dimension Measurement
	7.2.2 ROI Array
	7.2.3 Front Panel of Main VI
	7.2.4 Block Diagram of the Main VI

	8. Dimension Measurement Using Coordinate System
	8.1 Measurement Based on a Reference Coordinate System Using Vision Assistant Express
	8.1.1 Pattern Matching
	8.1.2 Coordinate System
	8.1.3 Dimension Measurement Using the Clamp Function
	8.1.4 Measurement of Circle Edge

	8.2 Conversion of Vision Assistant Express to a Standard VI

	9. Geometric Matching
	9.1 Geometric Matching Using Vision Assistant Express
	9.1.1 Geometric Matching for Circles
	9.1.2 Geometric Matching for Ellipses

	9.2 VI Creation for Geometric Matching
	9.3 Shape Detection

	10. Binary Shape Matching
	10.1 Accessing Previously Saved Images with Vision Acquisition Express
	10.2 Binary Shape Matching Using Vision Assistant
	10.2.1 Binary Template Images
	10.2.2 Binary Shape Matching

	10.3 Overlay VI Creation for Shape Matching
	10.4 VI for Binary Shape Matching

	11. OCR (Optical Character Recognition)
	11.1 OCR Using Vision Assistant
	11.1.1 Character Training Using Vision Assistant
	11.1.2 Character Identification Using Vision Assistant

	11.2 VI for OCR
	11.2.1 VI Creation for OCR Using Vision Assistant
	11.2.2 SubVI for OCR
	11.2.3 Main VI

	12. Binary Particle Classification
	12.1 Vision Acquisition Express to Load Image Files
	12.2 Vision Assistant Express for Classification
	12.2.1 Train for Particle Classification
	12.2.2 VI Creation

	12.3 VI Modification
	12.4 Overlay for Classification
	12.5 Main VI for Classification

	13. Contour Analysis
	13.1 Contour Analysis
	13.1.1 Image Acquisition Using a USB Camera
	13.1.2 Contour Analysis Using Vision Assistant
	13.1.3 Defect Detection Using Curvature
	13.1.4 Defect Detection by Comparing Contours
	13.1.5 VI Creation

	13.2 VIs for Contour Analysis
	13.2.1 Main VI
	13.2.2 Overlay for Defects
	13.2.3 Perspective Errors in Images

	14. Image Calibration and Correction
	14.1 Method for Creating an Image Correction File
	14.1.1 Image Acquisition
	14.1.2 New Calibration File

	14.2 Image Correction
	14.2.1 Image Correction Using Vision Assistant Express
	14.2.2 VI Creation for Image Correction

	15. Saving and Reading Images
	15.1 Saving Image
	15.2 Image Read from File
	15.2.1 IMAQ Readfile
	15.2.2 Example of Reading Image from Image Files

	16. AVI File Write and Read
	16.1 AVI File Creation Using Image Files
	16.2 AVI File Creation Based on Real-Time Image Acquisition
	16.3 Read Frame from AVI Files

	17. Tracking
	17.1 Tracking with the Use of Vision Assistant
	17.2 VI Creation for Tracking Objects

	18. LabVIEW Machine Vision Applications*
	18.1 Semiconductor Manufacturing
	18.2 Automobile Industry
	18.3 Medical and Bio Applications
	18.4 Inspection
	18.5 Industrial Printing

	19. Student Projects
	Project 1: Noncontact Motion Measurement and its Analysis
	Project 2: Intelligent Surveillance Camera
	Project 3: Driving a LEGO NXT Car (LEGO Mindstorm) with Finger Motion
	Project 4: Piano Keyboard Using Machine Vision

	Index
	End User License Agreement

