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This	textbook	takes	the	reader	from	use	cases	to	complete	software	architectures
for	 real-time	 embedded	 systems	using	SysML,	UML,	 and	MARTE	and	 shows
how	 to	 apply	 the	 COMET/RTE	 design	 method	 to	 real-world	 problems.	 The
author	covers	key	topics	such	as	use	cases	for	real-time	systems,	state	machines
for	real-time	control,	architectural	patterns	for	distributed	and	hierarchical	real-
time	 control	 and	 for	 real-time	 component-based	 software	 architectures,
performance	analysis	of	real-time	designs	using	real-time	scheduling,	and	timing
analysis	on	single-and	multiple-processor	systems.
Five	complete	case	studies	illustrating	design	issues	include	a	light	rail	control

system,	 a	 railroad	 crossing	 control	 system,	 a	microwave	 oven	 control	 system,
and	an	automated	highway	toll	system.
Organized	as	an	introduction	followed	by	several	self-contained	chapters,	the

book	is	perfect	for	experienced	software	engineers	wanting	a	quick	reference	at
each	 stage	 of	 the	 analysis,	 design,	 and	 development	 of	 large-scale	 real-time
embedded	systems,	as	well	as	for	advanced	undergraduate	or	graduate	courses	in
computer	 science,	 software	 engineering,	 systems	 engineering,	 and	 computer
engineering	programs.
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taught	 short	 in-depth	 industrial	 courses	 on	 real-time	 software	 design	 in	 North
America,	 Europe,	 Japan,	 and	 South	 Korea.	 He	 has	 published	 more	 than	 200
technical	 papers	 and	 is	 the	 author	 of	 four	 other	 textbooks	 on	 software	 design,
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Preface

Overview
This	 book	 describes	 a	 comprehensive	 concurrent	 object-oriented	 and
component-based	 method	 for	 the	 real-time	 software	 design	 of	 distributed
embedded	systems	and	the	cyber	components	of	cyber-physical	systems.

The	 book	 starts	 with	 a	 discussion	 of	 the	 characteristics	 of	 real-time
embedded	systems	and	a	description	of	the	important	concepts	in	the	design	of
these	systems.	It	then	describes	a	detailed	object-oriented	and	component-based
method	for	developing	architectural	and	detailed	designs	of	real-time	embedded
software.	 The	 design	 method	 and	 the	 impact	 of	 design	 decisions	 are	 further
illustrated	through	the	use	of	detailed	case	studies	covering	a	range	of	real-time
embedded	 systems.	 All	 examples	 and	 case	 studies	 are	 documented	 using	 the
industry	 standard	UML,	 SysML,	 and	MARTE	 visual	modeling	 languages	 and
notations.

The	 book	 is	 aimed	 at	 both	 the	 professional	 market	 and	 the	 academic
market,	particularly	at	the	graduate	level.	It	assumes	a	basic	background	in	UML
and	object-oriented	principles,	although	a	brief	overview	is	given	of	each.



What	This	Book	Provides
There	 are	 various	 textbooks	 on	 the	 market	 describing	 general	 object-oriented
analysis	 and	 design	 concepts	 and	methods.	However,	 real-time	 and	 embedded
systems	have	special	needs,	which	are	only	treated	superficially	in	these	books.
Other	 books	 describe	 real-time	 systems	 in	 general	 or	 provide	 a	 survey-based
approach.	The	focus	of	this	book	is	on	real-time	software	design	for	embedded
systems.	Because	real-time	systems	are	usually	embedded,	the	method	described
in	 the	 book	 takes	 a	 systems-engineering	 perspective	 addressing	 system-wide
issues	involving	both	hardware	and	software.

This	book	provides	a	comprehensive	treatment	of	the	application	of	object-
oriented	and	component-based	concepts	 to	 the	 analysis	 and	design	of	 complex
real-time	 and	 embedded	 software.	The	distinguishing	 features	 of	 this	 book	 are
that	it:

1.	Describes	fundamental	concepts	in	the	software	design	of	object-oriented
real-time	and	embedded	systems.	This	includes	concurrent	tasks;	the	object-
oriented	concepts	of	information	hiding,	classes,	and	inheritance;
distributed	component	technology;	software	architectures;	finite	state
machines;	and	performance	analysis	of	real-time	software	designs	using
real-time	scheduling.

2.	Describes	in	considerable	detail	a	concurrent	object-oriented	analysis	and
design	method	for	real-time	and	embedded	software	that	is	suitable	for	use
in	large	and	complex	industrial	software	development	efforts.

3.	Seamlessly	and	systematically	integrates	several	important	design
concepts	for	real-time	software	design,	including	concurrency,	objects,



components,	services,	architectural	design	patterns,	software	product	lines,
and	real-time	scheduling.

4.	Presents	several	detailed	case	studies,	illustrating	different	characteristics
of	real-time	and	embedded	software	systems,	providing	a	step-by-step
description	of	how	to	proceed	from	real-time	systems	requirements	analysis
to	detailed	software	design.	All	case	studies	are	documented	using	the
SysML,	UML	2,	and	MARTE	visual	modeling	languages	and	notations.

5.	Provides	appendixes	on	a	catalog	of	architectural	design	patterns	and
pseudocode	templates	for	detailed	task	design	and	includes	a	glossary	and	a
bibliography,	as	well	as	teaching	considerations	on	how	to	teach	industrial
and	academic	courses	based	on	it.



Intended	Audience
This	 book	 is	 intended	 for	 both	 professional	 and	 academic	 audiences.	 The
professional	audience	includes	systems	engineers,	software	engineers,	computer
engineers,	analysts,	architects,	designers,	programmers,	project	leaders,	technical
managers,	and	quality	assurance	specialists,	who	are	involved	in	the	design	and
development	of	large-scale	real-time	and	embedded	software	systems	in	industry
and	 government.	 The	 academic	 audience	 includes	 senior	 undergraduate	 and
graduate-level	 students	 in	 computer	 science,	 software	 engineering,	 systems
engineering,	and	computer	engineering,	as	well	as	researchers	in	the	field.



Ways	to	Read	This	Book
This	book	may	be	read	in	various	ways.	It	can	be	read	in	the	order	in	which	it	is
presented,	 in	which	 case	 Chapters	 1	 through	 3	 provide	 introductory	 concepts;
Chapter	4	provides	an	overview	of	the	COMET/RTE	real-time	software	design
method	 for	 embedded	 systems;	 Chapters	 5	 through	 18	 provide	 an	 in-depth
treatment	 of	 real-time	 software	 design;	 and	 Chapters	 19	 through	 23	 provide
detailed	case	studies.

Alternatively,	some	readers	may	wish	to	skip	some	chapters,	depending	on
their	 level	 of	 familiarity	 with	 the	 topics	 discussed.	 Chapters	 1	 through	 3	 are
introductory	and	may	be	skipped	by	experienced	readers.	Readers	familiar	with
software	design	concepts	may	skip	Chapter	3.	Readers	particularly	interested	in
real-time	 software	 design	 can	 proceed	 directly	 to	 the	 description	 of
COMET/RTE,	 starting	 in	Chapter	4.	Readers	who	are	not	 familiar	with	UML,
SysML,	or	MARTE	can	read	Chapter	2	in	conjunction	with	Chapters	4	through
18.

Experienced	 software	 designers	 may	 also	 use	 this	 book	 as	 a	 reference,
referring	 to	 various	 chapters	 as	 their	 projects	 reach	 a	 particular	 stage	 of	 the
requirements,	 analysis,	 or	 design	 process.	 Each	 chapter	 is	 relatively	 self-
contained.	 For	 example,	 at	 different	 times	 one	might	 refer	 to	 Chapter	 5	 for	 a
discussion	 of	 structural	 modeling	 using	 SysML	 and	 UML,	 Chapter	 6	 for	 a
description	of	 use	 cases,	 and	 to	Chapter	 7	 for	 a	 description	of	 state	machines.
Chapter	 10	 can	 be	 referenced	 for	 an	 overview	 of	 real-time	 software
architectures;	 Chapter	 11	 and	 Appendix	 B	 for	 software	 architectural	 patterns;
Chapter	 12	 for	 component-based	 software	 architectures;	 and	 Chapter	 13	 for
concurrent	real-time	task	design	with	MARTE.	Chapter	15	can	be	consulted	for



software	 product	 line	 design;	 Chapter	 16	 for	 system	 and	 software	 quality
attributes;	 and	 Chapters	 17	 and	 18	 for	 performance	 analysis	 of	 real-time
software	designs.	One	can	also	 improve	one's	understanding	of	how	to	use	 the
COMET/RTE	method	 by	 reading	 the	 case	 studies	 in	Chapters	 19–23,	 because
each	 case	 study	 explains	 the	 decisions	 made	 at	 each	 step	 of	 requirements,
analysis,	and	design.

Hassan	Gomaa
George	Mason	University
November	2015
Email:	hgomaa@gmu.edu
www:	http://mason.gmu.edu/~hgomaa

http://mason.gmu.edu/~hgomaa
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Part	I:	Overview



Chapter	1.	Introduction

This	 chapter	 provides	 an	 overview	 of	 real-time	 embedded	 systems	 and
applications	and	then	describes	the	major	characteristics	of	real-time	embedded
systems,	both	centralized	and	distributed.	This	chapter	also	provides	an	overview
of	the	emerging	field	of	cyber-physical	systems,	for	which	real-time	software	is
a	 critical	 component.	 This	 chapter	 then	 introduces	 COMET/RTE,	 the	 design
method	for	real-time	embedded	systems	described	and	applied	in	the	book.



Chapter	2.	Overview	of	UML,	SysML,	and	MARTE

This	 chapter	 describes	 the	 main	 features	 of	 the	 UML,	 SysML,	 and	 MARTE
visual	modeling	languages	and	notations	that	are	particularly	suited	for	real-time
design	using	the	COMET/RTE	method.	The	purpose	of	this	chapter	is	not	to	be	a
full	 exposition	of	UML,	SysML,	 and	MARTE,	because	 several	 detailed	books
exist	on	these	topics,	but	rather	to	provide	a	brief	overview	of	each,	in	particular
those	parts	that	are	used	by	COMET/RTE.



Chapter	3.	Real-Time	Software	Design	and	Architecture	Concepts

This	chapter	describes	key	concepts	in	the	software	design	of	concurrent	object-
oriented	 real-time	 embedded	 systems	 as	 well	 as	 important	 concepts	 for
developing	the	architecture	of	these	systems.	The	concurrent	processing	concept
is	 introduced	 and	 the	 issues	 of	 communication	 and	 synchronization	 between
concurrent	tasks	are	described.	Some	general	design	concepts	are	also	discussed
from	the	perspective	of	their	applicability	to	real-time	design,	including	object-
oriented	 design	 concepts	 of	 information	 hiding	 and	 inheritance,	 software
architecture,	 and	 software	 components.	 This	 chapter	 also	 briefly	 discusses
technology	 issues	 related	 to	 real-time	 software	 design,	 including	 real-time
operating	systems	and	task	scheduling.



Part	II:	Real-Time	Software	Design	Method

Chapter	4.	Overview	of	Real-Time	Software	Design	Method	for
Embedded	Systems

This	chapter	provides	an	overview	of	 the	software	design	method	for	real-time
embedded	 systems	 called	 COMET/RTE	 (Concurrent	 Object	 Modeling	 and
Architectural	Design	Method	for	Real-Time	Embedded	systems),	which	uses	the
SysML,	 UML,	 and	 MARTE	 visual	 modeling	 languages	 and	 notations.	 This
chapter	 also	 describes	 the	 iterative	 system	 and	 software	 life	 cycle	 of
COMET/RTE	 and	 how	 it	 compares	 to	 other	 life	 cycles.	 It	 then	 describes	 the
main	steps	in	using	COMET/RTE.



Chapter	5.	Structural	Modeling	for	Real-Time	Embedded	Systems
with	SysML	and	UML

This	 chapter	 describes	 how	 structural	 modeling	 can	 be	 used	 as	 an	 integrated
approach	for	system	and	software	modeling	of	embedded	systems	consisting	of
both	hardware	and	software	components,	using	SysML	and	UML.	This	chapter
describes	structural	modeling	of	the	problem	domain,	structural	modeling	of	the
hardware/software	 system	 context,	 hardware/software	 boundary	 modeling,
structural	modeling	of	 the	software	system	context,	defining	hardware/software
interfaces,	and	system	deployment	modeling.



Chapter	6.	Use	Case	Modeling	for	Real-Time	Embedded	Systems

This	 chapter	 describes	 how	 use	 case	 modeling	 can	 be	 applied	 to	 real-time
embedded	 systems	 from	 both	 systems	 engineering	 and	 software	 engineering
perspectives.	After	an	overview	of	the	basic	principles	of	use	cases,	it	provides	a
more	in-depth	focus	on	capturing	the	functional	and	nonfunctional	requirements
for	 real-time	 and	 embedded	 systems.	 It	 also	 explains	 the	 difference	 between
system	and	software	use	cases	and	actors.



Chapter	7.	State	Machines	for	Real-Time	Embedded	Systems

This	chapter	describes	state	machine	modeling	concepts,	which	are	particularly
important	 for	 reactive	 real-time	 systems.	 This	 chapter	 covers	 events,	 states,
conditions,	 actions	 and	 activities,	 entry	 and	 exit	 actions,	 composite	 states,	 and
hierarchical	state	machines	with	sequential	and	orthogonal	substates.	The	issues
of	 developing	 cooperating	 state	 machines,	 inheritance	 in	 state	 machines,	 and
deriving	state	machines	from	use	cases	are	also	addressed.



Chapter	8.	Object	and	Class	Structuring	for	Real-Time	Embedded
Software

This	 chapter	 describes	 the	 identification	 and	 categorization	of	 software	 classes
and	 objects,	 in	 particular	 the	 role	 the	 class	 plays	 in	 the	 real-time	 software,
including	 boundary,	 control,	 and	 entity	 classes.	 It	 also	 describes	 the
corresponding	behavior	pattern	for	each	category	of	object.



Chapter	9.	Dynamic	Interaction	Modeling	for	Real-Time	Embedded
Software

This	 chapter	 describes	 dynamic	 interaction	 modeling	 concepts.	 Interaction
diagrams	 are	 developed	 for	 each	 use	 case,	 including	 the	 main	 scenario	 and
alternative	 scenarios.	 Specific	 discussions	 on	 state	 dependent	 real-time
embedded	 systems	 cover	 dynamic	 interaction	 modeling	 for	 state	 dependent
object	 interactions.	 This	 chapter	 describes	 how	 state	machines	 and	 interaction
diagrams	relate	to	each	other	and	how	to	make	them	consistent	with	each	other.



Chapter	10.	Software	Architectures	for	Real-Time	Embedded	Systems

This	chapter	introduces	software	architectural	concepts	for	distributed	real-time
embedded	systems.	 Issues	 in	Software	Architectural	Design	are	described.	The
benefits	of	developing	multiple	views	of	a	 software	architecture	are	explained.
This	 chapter	 also	 provides	 an	 introduction	 to	 software	 components	 and
component-based	 software	 architectures.	 The	 transition	 from	 requirements	 and
analysis	to	architectural	design	is	carefully	explained.	Separation	of	concerns	in
subsystem	design	and	subsystem	structuring	criteria	are	also	described.	This	 is
followed	by	designing	subsystem	message	communication	interfaces.



Chapter	11.	Software	Architectural	Patterns	for	Real-Time	Embedded
Systems

The	 role	 of	 architectural	 design	 patterns	 in	 developing	 the	 real-time	 software
architecture	 is	 described.	 An	 overview	 of	 software	 architectural	 patterns	 is
presented,	 including	 architectural	 structure	 and	 communication	 patterns.
Architectural	 patterns	 for	 real-time	 systems	 are	 described,	 including	 layered
patterns,	 real-time	 control	 patterns,	 client/service	 patterns,	 brokering	 patterns,
and	event-based	subscription/notification	patterns.



Chapter	12.	Component-Based	Software	Architectures	for	Real-Time
Embedded	Systems

This	chapter	describes	how	a	distributed	real-time	architecture	 is	designed	as	a
component-based	 software	 architecture,	 which	 can	 be	 deployed	 to	 multiple
nodes	 in	 a	 distributed	 environment.	 Component	 design	 issues	 are	 described,
including	 composite	 and	 simple	 components,	 component	 interface	 design	with
provided	 and	 required	 interfaces,	 ports,	 and	 connectors.	 The	 design	 of	 service
components	and	distributed	software	connectors	are	also	described.	Component
configuration	and	deployment	issues	are	explained.



Chapter	13.	Concurrent	Real-Time	Software	Task	Design

This	 chapter	 describes	 the	 design	 of	 concurrent	 tasks	 using	 the	MARTE	 real-
time	 modeling	 notation.	 Concurrent	 task	 structuring	 is	 described,	 including
event-driven	 tasks,	periodic	 tasks,	and	demand	driven	 tasks.	Task	clustering	of
objects	 is	 also	 described.	 Design	 of	 task	 interfaces	 is	 described,	 including
synchronous	and	asynchronous	message	communication,	event	synchronization,
and	communication	through	passive	objects.	The	implications	of	different	types
of	 message	 communication	 on	 the	 concurrent	 behavior	 of	 the	 software
architecture	are	described.



Chapter	14.	Detailed	Real-Time	Software	Design

This	 chapter	 describes	 the	 detailed	 design	 of	 concurrent	 tasks.	 The	 design	 of
composite	 tasks	with	nested	passive	classes	 is	described.	Task	 synchronization
of	access	to	passive	classes	is	described	using	mutual	exclusion,	multiple	readers
and	 writers,	 and	 monitors.	 The	 design	 of	 connectors	 for	 inter-task
communication	 is	 explained.	 The	 implementation	 of	 concurrent	 tasks	 as	 Java
threads	is	briefly	described.



Chapter	15.	Designing	Real-Time	Software	Product	Line	Architectures

This	chapter	describes	the	characteristics	of	real-time	software	product	lines.	The
important	 concepts	 of	 feature	 modeling,	 and	 modeling	 commonality	 and
variability,	 are	 explained.	 How	 to	 model	 variability	 in	 use	 cases,	 static	 and
dynamic	models,	and	software	architectures	is	explained.	The	chapter	goes	on	to
describe	 how	 to	model	 common	 and	 variable	 components	 in	 software	 product
line	 architectures.	 The	 engineering	 of	 software	 applications	 from	 product	 line
artifacts	is	explained.



Part	III:	Analysis	of	Real-Time	Software
Designs

Chapter	16.	System	and	Software	Quality	Attributes	for	Real-Time
Embedded	Systems

This	chapter	describes	system	and	software	quality	attributes	and	how	they	are
used	 to	 evaluate	 the	 quality	 of	 the	 real-time	 embedded	 system	 and	 software
architecture.	 System	 quality	 attributes	 include	 scalability,	 performance,
availability,	 safety,	 and	 security.	 Software	 quality	 attributes	 include
maintainability,	 modifiability,	 testability,	 traceability,	 and	 reusability.	 This
chapter	also	discusses	how	the	COMET/RTE	real-time	design	method	supports
the	system	and	software	quality	attributes.



Chapter	17.	Performance	Analysis	of	Real-Time	Software	Designs

This	 chapter	 presents	 methods	 for	 analyzing	 the	 performance	 of	 real-time
embedded	 software	 designs.	 It	 describes	 two	 approaches	 for	 analyzing	 the
performance	 of	 a	 design,	 real-time	 scheduling	 theory	 and	 event	 sequence
analysis,	which	are	then	combined	to	analyze	a	concurrent	multitasking	design.
Advanced	 real-time	 scheduling	 algorithms,	 including	 deadline	 monotonic
scheduling,	 dynamic	 priority	 scheduling,	 and	 multiprocessor	 scheduling,	 are
described.	Practical	approaches	for	analyzing	the	performance	of	multiprocessor
systems	 including	 multicore	 systems	 are	 also	 described.	 Estimation	 and
measurement	of	performance	parameters	are	discussed.



Chapter	18.	Applying	Performance	Analysis	to	Real-Time	Software
Designs

This	 chapter	 applies	 the	 real-time	 performance	 analysis	 concepts	 and	 theory
described	in	Chapter	17	to	the	real-time	design	of	a	Light	Rail	Control	System.
Real-time	 scheduling	 theory	 and	 event	 sequence	 analysis	 are	 both	 applied	 to
analyze	the	performance	of	the	concurrent	multitasking	design.	The	performance
of	 the	design	executing	on	single-processor	and	multiprocessor	 systems	 is	also
analyzed	and	compared.



Part	IV:	Real-Time	Software	Design	Case
Studies	for	Embedded	Systems

Chapter	19.	Microwave	Oven	Control	System	Case	Study

This	 chapter	 describes	 how	 the	COMET-RTE	design	method	 is	 applied	 to	 the
design	 of	 the	 embedded	 real-time	 software	 for	 a	 consumer	 product	 –	 a
microwave	oven	control	system.



Chapter	20.	Railroad	Crossing	Control	System	Case	Study

This	 chapter	 describes	 how	 the	COMET-RTE	design	method	 is	 applied	 to	 the
design	of	the	embedded	real-time	software	for	a	safety	critical	railroad	crossing
control	system.



Chapter	21.	Light	Rail	Control	System	Case	Study

This	 chapter	 describes	 how	 the	COMET-RTE	design	method	 is	 applied	 to	 the
design	of	an	embedded	light	rail	control	system,	in	which	the	automated	control
of	driverless	trains	must	be	done	safely	and	in	a	timely	manner.



Chapter	22.	Pump	Control	System	Case	Study

This	 chapter	 describes	 a	 concise	 case	 study	 of	 how	 the	 COMET-RTE	 design
method	is	applied	to	the	design	of	the	embedded	real-time	software	for	a	pump
control	system.



Chapter	23.	Highway	Toll	Control	System	Case	Study

This	 chapter	 describes	 a	 concise	 case	 study	 of	 how	 the	 COMET-RTE	 design
method	is	applied	 to	 the	design	of	 the	distributed	embedded	real-time	software
for	a	highway	toll	control	system.



Appendix	A.	Conventions	Used	in	This
Textbook

The	 conventions	 for	 naming	 requirements,	 analysis,	 and	 design	 artifacts	 are
described.	The	conventions	used	for	message	sequence	numbering	on	interaction
diagrams	are	described.



Appendix	B.	Catalog	of	Software
Architectural	Patterns

Each	 architectural	 structure	 and	 communication	 pattern	 is	 described	 using	 a
standard	design	pattern	template.



Appendix	C.	Pseudocode	Templates	for
Concurrent	Tasks

The	pseudocode	for	several	different	kinds	of	concurrent	tasks	is	provided.



Appendix	D.	Teaching	Considerations
An	 outline	 is	 given	 for	 teaching	 academic	 (both	 graduate	 and	 senior
undergraduate)	courses	and	industrial	courses.
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Part	I
◈

Overview



1

Introduction
◈

This	book	describes	how	to	design	the	real-time	software	for	embedded	systems.
This	 chapter	 provides	 an	 overview	 of	 real-time	 embedded	 systems	 and
applications	and	then	describes	the	major	characteristics	of	real-time	embedded
systems,	both	centralized	and	distributed.	This	chapter	also	provides	an	overview
of	the	emerging	field	of	cyber-physical	systems,	for	which	real-time	software	is
a	critical	component.	This	chapter	 then	 introduces	COMET/RTE,	 the	 real-time
software	 design	 method	 for	 embedded	 systems	 described	 and	 applied	 in	 this
book,	which	 uses	 the	Unified	Modeling	 Language	 (UML),	 Systems	Modeling
Language	 (SysML),	 and	 MARTE	 (Modeling	 and	 Analysis	 of	 Real-Time
Embedded	Systems)	visual	modeling	languages	and	notations.



1.1	The	Challenge
In	 the	 twenty-first	 century,	 a	 growing	 number	 of	 commercial,	 industrial,
military,	 medical,	 and	 consumer	 products	 are	 real-time	 embedded	 software
intensive	 systems,	 which	 are	 either	 software	 controlled	 or	 have	 a	 crucial
software	 component	 to	 them.	 These	 systems	 range	 from	 microwave	 ovens	 to
Blu-ray™	 video	 recorders,	 from	 driverless	 trains	 to	 driverless	 automobiles	 to
aircraft	that	“fly	by	wire,”	from	submarines	that	explore	the	depths	of	the	oceans
to	spacecraft	that	explore	the	far	reaches	of	space,	from	process	control	systems
to	 factory	 monitoring	 and	 control	 systems,	 from	 robot	 controllers	 to	 elevator
controllers,	from	city	traffic	control	to	air	traffic	control,	from	“smart”	sensors	to
“smart”	 phones,	 from	 “smart”	 networks	 to	 “smart”	 grids,	 an	 ever-growing
volume	of	mobile	and	pervasive	systems	–	the	list	is	continually	growing.	These
systems	 are	 concurrent,	 real-time,	 and	 embedded.	 Many	 of	 them	 are	 also
distributed.	Real-time	software	is	a	critical	component	of	these	systems.



1.2	Real-Time	Embedded	Systems	and
Applications

A	 real-time	 embedded	 system	 is	 a	 real-time	 computer	 system	 (hardware	 and
software)	 that	 is	 part	 of	 a	 larger	 system	 (called	 a	 real-time	 system	 or	 cyber-
physical	system)	that	typically	has	mechanical	and/or	electrical	parts,	such	as	an
airplane	or	automobile.	A	real-time	embedded	system	interfaces	to	the	external
environment	 through	 sensors	 and	 actuators,	 as	 depicted	 in	 Figure	 1.1.	 An
example	 of	 a	 real-time	 embedded	 system	 is	 a	 robot	 controller	 that	 is	 a
component	 of	 a	 robot	 system	 consisting	 of	 one	 or	 more	 mechanical	 arms,
servomechanisms	controlling	axis	motion,	multiple	sensors	to	provide	inputs	to
the	 system	 from	 external	 devices,	 and	 multiple	 actuators	 to	 control	 external
devices.



Figure	1.1.	Real-time	embedded	system.

Real-time	systems	are	computer	systems	with	timing	constraints.	The	term
real-time	 system	 usually	 refers	 to	 the	 whole	 system,	 including	 the	 real-time
application,	 real-time	 operating	 system,	 and	 the	 real-time	 I/O	 subsystem,	with
special-purpose	device	drivers	to	interface	to	a	variety	of	sensors	and	actuators.
Although	the	emphasis	in	this	book	is	on	designing	real-time	software,	in	order
to	 develop	 high-quality	 real-time	 software,	 it	 is	 necessary	 to	 consider	 the
complete	 real-time	 system,	 since	 many	 software	 quality	 attributes,	 such	 as
performance,	 availability,	 safety,	 and	 scalability,	 are	 heavily	 dependent	 on	 the
total	hardware/software	system.



Real-time	 systems	 are	 often	 complex	 because	 they	 have	 to	 deal	 with
multiple	 independent	 sequences	 of	 input	 events	 and	 produce	multiple	 outputs.
Frequently,	 the	 order	 of	 incoming	 events	 is	 not	 predictable.	 In	 spite	 of	 input
events	 having	 arrival	 rates	 and	 sequences	 that	 might	 vary	 significantly	 and
unpredictably	with	time,	the	real-time	system	must	be	capable	of	responding	to
these	 events	 in	 a	 predictable	manner	within	 timing	 constraints	 specified	 in	 the
system	requirements.

Real-time	systems	are	frequently	classified	as	hard	real-time	systems	or	soft
real-time	systems.	A	hard	real-time	system,	such	as	a	driverless	car	or	train,	has
time-critical	deadlines,	such	as	an	emergency	stop	in	front	of	an	obstacle,which
must	always	be	met	in	order	to	prevent	a	disastrous	system	failure.	A	hard	real-
time	 system	 in	 which	 a	 system	 failure	 could	 be	 catastrophic	 is	 also	 called	 a
safety-critical	 system	 (Kopetz	 2011).	 A	 soft	 real-time	 system,	 such	 as	 an
interactive	Web-based	 system,	 is	 a	 real-time	 system	 in	 which	 missing	 timing
deadlines	 occasionally,	 such	 as	 response	 time	 to	 a	 user	 input,	 is	 considered
undesirable	but	not	catastrophic.

A	 real-time	 embedded	 system	 can	 be	 designed	 to	 have	 a	 layered	 system
architecture,	 as	 shown	 in	 Figure	 1.2,	 consisting	 of	 the	 real-time	 embedded
application,	 the	 real-time	operating	system	(with	 the	 likely	addition	of	 special-
purpose	device	drivers),	and	the	computer	hardware.



Figure	1.2.	Layered	architecture	of	a	real-time	embedded	system.



1.3	Characteristics	of	Real-Time	Embedded
Systems

Real-time	 embedded	 systems	 (both	 centralized	 and	 distributed)	 have	 several
characteristics	that	distinguish	them	from	other	software	systems:

a)	Interaction	with	the	external	environment.	A	real-time	embedded	system
interacts	with	an	external	environment	that	is	to	a	large	extent	nonhuman.	For
example,	the	real-time	system	might	be	controlling	machines	or	manufacturing
processes,	or	it	might	be	monitoring	chemical	processes	and	reporting	alarm
conditions.

b)	Sensors	and	actuators.	Interaction	with	the	external	environment
necessitates	sensors	for	receiving	data	from	the	external	environment	and
actuators	for	outputting	data	to	and	controlling	the	external	environment	(see
Figure	1.1).
A	sensor	is	a	device	that	detects	events	or	changes	in	a	physical	property

(e.g.,	temperature)	or	entity	(e.g.,	switch)	and	converts	the	measurement	(e.g.,	of
temperature)	or	event	(e.g.,	switch	on)	into	an	electrical	or	optical	signal.	For
example,	a	thermocouple	is	a	sensor	that	converts	a	measurement	of	temperature
into	an	analog	voltage.	An	analog-to-digital	converter	then	converts	the	analog
voltage	into	digital	inputs	to	a	real-time	computer	system	(Kopetz	2011,	Lee	and
Seshia	2015).
An	actuator	is	the	means	by	which	a	real-time	computer	system	can	control

an	external	device	or	mechanism.	Many	actuators	are	devices	that	convert
electrical	energy	(e.g.,	in	the	form	of	a	current)	into	some	kind	of	motion,	for
example	to	open	or	close	a	door,	or	to	switch	a	light	on	or	off.



c)	Measuring	time.	A	real-time	system	models	the	passage	of	time	from	the	past
through	the	present	and	into	the	future.	An	event	occurs	at	an	instant	of	time
(conceptually	lasting	zero	time).	A	duration	is	an	interval	of	time	between	two
events,	a	starting	event	and	a	terminating	event.	A	period	is	a	measurement	of
recurring	intervals	of	the	same	duration.
There	are	different	units	of	time	in	a	real-time	system.	Execution	time	is	the

CPU	time	taken	to	execute	a	given	task	on	a	CPU	(or	CPUs	in	a	multiprocessor
system).	Elapsed	time	is	the	time	to	execute	a	task	from	start	to	finish,	which
consists	of	the	task	execution	time	in	addition	to	blocked	time,	which	is	waiting
time	when	the	task	is	not	using	the	CPU,	including	waiting	for	I/O	operations	to
complete,	waiting	for	messages	or	responses	to	arrive,	waiting	to	be	assigned	the
CPU,	and	waiting	for	entry	into	critical	sections.	Physical	time	(or	real-world
time)	is	the	total	time	for	a	real-time	command	to	be	completed,	for	example,	to
stop	a	train,	which	includes	the	elapsed	times	of	the	software	tasks	involved	and
then	the	much	longer	time	required	to	stop	the	train	physically	by	applying	the
brakes	and	gradually	slowing	down	to	a	halt.

d)	Timing	constraints.	Real-time	systems	have	timing	constraints;	in	particular,
they	must	process	events	within	a	given	time	frame.	Whereas	in	an	interactive
system,	a	human	might	be	inconvenienced	if	the	system	response	is	delayed,	a
delay	in	a	real-time	system	might	be	catastrophic.	For	example,	inadequate
response	in	an	air	traffic	control	system	could	result	in	a	midair	collision	of	two
aircraft.	The	required	response	time	will	vary	by	system,	ranging	from
milliseconds	in	some	cases	to	seconds	or	even	minutes	in	others.

e)	Real-time	control.	A	real-time	embedded	system	often	involves	real-time
control.	That	is,	the	real-time	system	makes	control	decisions	based	on	input
data	and	the	current	state,	without	any	human	intervention.	A	driverless	train	has
to	control	the	motion	of	the	train	automatically,	starting	from	a	stationary



position,	increasing	and	decreasing	speed,	cruising	at	constant	speed,	slowing
down	or	stopping	in	the	presence	of	obstacles,	and	stopping	at	stations	along	the
route.
In	some	real-time	embedded	systems,	the	control	function	can	be	viewed	as	a

process	control	problem	(Kopetz	2011),	as	shown	in	Figure	1.3.	For	example,
consider	the	speed	control	algorithm	in	an	automatically	controlled	driverless
train.	The	speed	control	algorithm	has	a	set	point,	which	is	the	target	cruising
speed,	and	a	controlled	variable,	which	is	the	current	speed	of	the	train.	The
speed	control	algorithm	compares	the	set	point	with	the	controlled	variable	with
the	goal	of	increasing	or	decreasing	the	current	speed	of	the	train	as	required	to
make	the	current	speed	equal	to	the	cruising	speed,	plus	or	minus	some	small
delta	value.	The	positive	or	negative	speed	adjustments	are	converted	into
electrical	voltage	and	applied	to	the	electric	motor,	which	in	turn	increases	or
decreases	the	speed	of	the	train.	A	train	speed	sensor	measures	the	current	speed
of	the	train	–	the	controlled	variable	–	and	sends	the	measured	speed	to	the
software	at	regular	intervals.

f)	Reactive	systems.	Many	real-time	systems	are	reactive	systems	(Harel	and
Politi	1998).	They	are	event	driven	and	must	respond	to	external	stimuli.	It	is
usually	the	case	in	reactive	systems	that	the	response	made	by	the	system	to	an
input	stimulus	is	state	dependent;	that	is,	the	response	depends	not	only	on	the
stimulus	itself	but	also	on	what	has	previously	happened	in	the	system,	which	is
captured	as	the	current	state	of	the	system.

g)	Concurrency.	Concurrent	tasking	is	an	effective	solution	to	the	design	of
real-time	embedded	systems	because	it	reflects	the	natural	parallelism	that	exists
in	the	real-time	problem	domain,	in	which	there	are	typically	many	real-world
events	occurring	in	parallel.	For	example,	in	an	air	traffic	control	system,	the
system	is	monitoring	several	aircraft,	so	many	activities	are	occurring	in	parallel.



Changes	in	weather	conditions	can	lead	to	unexpected	loads	and	unpredictable
patterns	of	behavior	in	the	system.	A	design	emphasizing	concurrent	tasks	is
clearer	and	easier	to	understand	because	it	is	a	more	realistic	model	of	the
problem	domain	than	a	sequential	program.	In	multiprocessing	systems,	such	as
multicore	systems,	concurrent	tasks	can	take	advantage	of	multiple	CPUs,	since
any	given	task	can	execute	in	parallel	with	other	tasks	executing	on	other	CPUs.

Figure	1.3.	Speed	control	algorithm	for	automatically	controlled	train.



1.4	Distributed	Real-Time	Embedded
Systems

Many	 real-time	 systems	are	 also	distributed.	A	distributed	 real-time	embedded
system	 executes	 in	 an	 environment	 consisting	 of	 multiple	 nodes	 that	 are	 in
locally	or	geographically	separated	locations.	In	the	example	given	in	Figure	1.4,
each	node	consists	of	a	real-time	embedded	subsystem.	Locally	separated	nodes
are	 connected	 to	 each	 other	 by	 means	 of	 a	 local	 area	 network,	 while
geographically	separated	nodes	are	connected	to	each	other	by	means	of	a	wide
area	network.



Figure	1.4.	Example	of	distributed	real-time	embedded	system.

A	distributed	real-time	embedded	system	has	the	following	advantages:

Distributed	control.	Instead	of	being	centralized,	control	is	distributed	among
several	interconnected	nodes	in	configurations	that	can	be	hierarchical	or	peer-
to-peer.

Improved	availability.	Operation	is	feasible	in	a	reduced	configuration	in	cases
in	which	some	nodes	are	temporarily	unavailable.	It	is	advantageous	to	design
the	system	such	that	it	has	no	single	point	of	failure.

Flexible	configuration.	A	given	system	can	be	configured	in	different	ways	by
selecting	the	appropriate	number	of	nodes	for	a	given	instance	of	the	system.

Localized	control	and	management.	A	distributed	subsystem,	executing	on	its
own	node,	can	be	designed	to	be	autonomous,	so	it	can	to	a	large	extent	execute
independently	relative	to	other	subsystems	on	other	nodes.

Incremental	system	expansion.	If	the	system	gets	overloaded,	the	system	can
be	expanded	by	adding	more	nodes.

Load	balancing.	In	some	systems,	the	overall	system	load	can	be	shared	among
several	nodes	and	can	be	dynamically	adjusted	with	varying	loads.

Figure	1.5	depicts	an	example	of	a	layered	architecture	for	a	distributed	real-time
embedded	system	in	which	the	distributed	nodes	are	interconnected	by	means	of
a	 local	 area	network.	Each	node	consists	of	 several	 layers,	which	are	 the	 real-
time	 embedded	 application	 software,	 middleware,	 real-time	 operating	 system,
and	 communication	 software,	with	 the	 computer	 and	 network	 hardware	 at	 the
lowest	 layer.	 Compared	 to	 Figure	 1.2,	 there	 are	 additional	 middleware	 and
communication	 software	 layers,	 as	well	 as	 additional	 network	 hardware	 in	 the
hardware	 layer.	 The	 communication	 software	 allows	 distributed	 nodes	 to



communicate	 with	 each	 other	 using	 network	 protocols,	 such	 as	 the	 Internet
Protocol	 (IP).	 Middleware	 is	 a	 software	 layer	 that	 lies	 above	 the	 operating
system	and	communication	software	to	provide	a	uniform	platform	above	which
distributed	applications	can	run	(Bacon	2003),	for	example,	to	provide	message
communication	 between	 applications	 executing	 on	 different	 nodes.	Distributed
operating	systems	often	integrate	the	middleware	into	the	operating	system.

Figure	1.5.	Example	of	layered	architecture	of	a	distributed	real-time
embedded	system.



1.4.1	The	Internet	of	Things

The	Internet	of	Things	(IoT)	is	a	concept	of	interconnecting	physical	things	to
the	Internet.	This	is	achieved	by	connecting	remote	sensors	and	actuators	to	the
Internet,	with	the	objective	of	providing	remote	access	to	sensor	data	and	remote
control	 of	 physical	 devices	 over	 the	 Internet	 (Kopetz	 2011).	 RFID	 is	 a
technology	that	can	be	used	to	enable	the	connection	of	physical	things	(referred
to	as	smart	objects)	to	the	Internet.	A	low-cost	electronic	RFID	tag	is	attached	to
a	physical	 product,	 allowing	 the	product	 to	become	a	 smart	 object	 that	 can	be
uniquely	 identified	over	 the	 Internet.	The	 IoT	provides	a	means	 for	 integrating
real-time	embedded	systems	with	the	Internet.



1.5	Cyber-Physical	Systems
A	 National	 Science	 Foundation	 vision	 statement	 describes	 cyber-physical
systems	(CPS)	as	“smart	networked	systems	with	embedded	sensors,	processors
and	actuators	that	are	designed	to	sense	and	interact	with	the	physical	world,	and
support	real-time,	guaranteed	performance	in	safety-critical	applications.	In	CPS
systems,	the	joint	behavior	of	the	‘cyber’	and	‘physical’	elements	of	the	system
is	critical	–	computing,	control,	sensing	and	networking	can	be	deeply	integrated
into	every	component,	and	the	actions	of	components	and	systems	must	be	safe
and	interoperable”	(Lee	and	Seshia	2015).

The	design	of	cyber-physical	systems	considers	 the	design	and	integration
of	both	the	embedded	cyber	system	and	the	physical	processes.	Furthermore,	the
real-time	 software	 design	 of	 cyber	 systems,	 which	 monitor	 and	 control	 the
physical	processes,	is	critical	in	the	design	of	cyber-physical	systems.

The	 automated	 driverless	 train	 described	 in	 Section	 1.3	 is	 an	 example	 of
both	an	embedded	system	and	a	cyber-physical	system.	In	the	design	of	the	train
CPS,	the	design	of	physical	systems	such	as	the	electric	motor,	braking	system,
speed	control	system,	and	transmission,	etc.	have	to	be	considered	in	addition	to
the	design	of	the	embedded	cyber	system	consisting	of	the	computer	hardware,
real-time	software,	and	network.	Computational	algorithms	need	to	be	designed
for	 controlling	 physical	 processes	 such	 as	 the	 electric	 motor	 and	 the	 braking
system.	Designers	of	these	algorithms	need	to	have	an	intimate	knowledge	of	the
design	and	operation	of	these	physical	systems.



1.6	Requirements	for	Real-Time	Software
Design	Method	for	Embedded	Systems

A	real-time	software	design	method	for	embedded	systems	needs	to	be	capable
of	addressing	the	following	characteristics	of	a	real-time	embedded	system:

Structural	modeling	–	to	model	the	problem	domain,	boundary	of	the
total	(hardware	and	software)	system,	interface	between	hardware	and
software	components,	and	the	boundary	of	the	software	system.

Dynamic	(behavioral)	modeling	–	to	model	the	interaction	sequences
between	system	and	software	artifacts	at	the	requirements,	analysis,	and
design	levels.

State	machines	–	to	react	to	external	events	as	determined	by	both	the
input	and	the	current	state	of	the	system.

Concurrency	–	to	handle	multiple	input	sequences	and	unpredictable
loads	by	modeling	activities	that	execute	in	parallel	with	each	other.

Component-based	software	architecture	–	to	provide	an	architecture
consisting	of	concurrent	object-oriented	components	and	connectors,
such	that	components	can	be	deployed	to	different	nodes	in	a	distributed
environment.

Performance	analysis	of	real-time	designs	–	to	analyze	the
performance	of	the	real-time	system	before	its	implementation	to	provide
an	early	determination	of	whether	the	system	will	meet	its	performance
goals.



These	 requirements	 are	 all	 addressed	 by	 the	 COMET/RTE	 real-time	 software
design	 method	 for	 embedded	 systems	 described	 in	 this	 book.	 How	 these
requirements	 are	 addressed	 by	 COMET/RTE	 is	 described	 in	 Chapter	 4.	 An
overview	of	COMET/RTE	is	given	next.



1.7	COMET/RTE:	A	Real-Time	Software
Design	Method	for	Embedded	Systems

This	book	describes	a	software	modeling	and	architectural	design	method	called
COMET/RTE	 (Concurrent	Object	Modeling	 and	Architectural	Design	Method
for	Real-Time	Embedded	Systems),	which	 is	 tailored	 to	 the	needs	of	 real-time
embedded	 systems.	 COMET/RTE	 is	 an	 iterative	 use	 case–driven	 and	 object-
oriented	method	that	addresses	the	requirements,	analysis,	and	design	modeling
phases	of	the	system	and	software	development	life	cycle.

Structural	modeling	is	used	to	analyze	the	problem	domain	from	a	systems
engineering	 perspective,	 identifying	 the	 static	 structure	 of	 the	 total
hardware/software	 system	 and	 then	 the	 boundary	 between	 hardware	 and
software.	 Requirements	 modeling	 is	 used	 to	 determine	 the	 functional	 and
nonfunctional	 requirements	of	 the	system.	In	use	case	modeling,	 the	functional
requirements	are	described	in	terms	of	actors	and	use	cases.	In	analysis	modeling
for	real-time	embedded	systems,	the	emphasis	is	on	dynamic	modeling.	The	use
cases	are	realized	to	describe	the	objects	that	participate	in	the	use	case	and	their
interactions.	 The	 state	 dependent	 parts	 of	 the	 system	 are	 analyzed	 using	 state
machines.	In	design	modeling,	the	software	architecture	is	developed,	addressing
issues	 of	 distribution,	 concurrency,	 and	 object	 orientation.	 Concurrent
components	use	a	blend	of	object-oriented	and	concurrency	concepts	 to	enable
the	 distribution	 of	 components	 among	 several	 nodes	 in	 a	 distributed
configuration.



1.8	Visual	Modeling	Languages:	UML,
SysML,	and	MARTE

The	 Unified	 Modeling	 Language	 (UML)	 is	 a	 standardized	 visual	 modeling
language	and	notation	for	describing	software	requirements	and	designs.	For	the
UML	notation	 to	 be	 applied	 effectively,	 however,	 it	 needs	 to	 be	 used	with	 an
object-oriented	 analysis	 and	 design	 method.	 Although	 UML	 is	 sufficient	 for
modeling	most	software	applications,	it	needs	to	be	supplemented	for	modeling
real-time	embedded	systems.	The	Systems	Modeling	Language	(SysML)	is	used
to	 model	 the	 total	 hardware/software	 system	 from	 a	 systems	 engineering
perspective.	MARTE	provides	UML	extensions	for	modeling	real-time	systems.

Modern	object-oriented	analysis	and	design	methods	are	model-based	and
use	 a	 combination	 of	 use	 case	 modeling,	 static	 modeling,	 state	 machine
modeling,	 and	 object	 interaction	modeling.	 Almost	 all	modern	 object-oriented
methods	(such	as	COMET,	as	described	in	Gomaa	2011)	use	the	UML	notation
for	describing	software	requirements,	analysis,	and	design	models	(Booch	et	al.
2005;	 Fowler	 2004;	 Rumbaugh	 et	 al.	 2005).	 This	 book	 describes	 how
COMET/RTE	can	be	used	to	design	real-time	embedded	systems	using	a	blend
of	the	UML,	SysML,	and	MARTE	modeling	languages	and	notations.



1.9	Summary
This	chapter	has	described	the	characteristics	of	real-time	embedded	systems	and
applications.	It	has	provided	overviews	of	the	COMET/RTE	design	method	for
real-time	 embedded	 systems	 and	 of	 its	 use	 of	 visual	 modeling	 languages	 and
notations.	Chapter	 2	 provides	 an	 overview	of	 the	UML,	SysML,	 and	MARTE
modeling	 language	 and	 notations,	 in	 particular	 those	 parts	 that	 are	 used	 by
COMET/RTE.	Chapter	 3	 describes	 the	 fundamental	 design	 concepts	 on	which
concurrent	 object-oriented	 design	 for	 real-time	 embedded	 systems	 is	 based.	 It
describes	object-oriented	concepts,	the	concurrent	tasking	concept	including	task
communication	 and	 synchronization,	 as	 well	 as	 operating	 system	 support	 for
concurrent	 tasks.	Chapter	 4	 provides	 an	 overview	 of	 the	COMET/RTE	design
method	 as	 well	 as	 the	 system	 and	 software	 life	 cycle	 for	 real-time	 embedded
systems.	Chapters	5	through	18	describe	the	details	of	the	method,	and	Chapters
19	 through	 23	 describe	 case	 studies	 of	 applying	COMET/RTE	 to	 design	 real-
time	embedded	systems.

A	 comprehensive	 and	 wide	 ranging	 textbook	 on	 real-time	 systems	 is
Kopetz	(2011).	Other	informative	textbooks	on	real-time	systems	are	Burns	and
Wellings	 (2009),	 Laplante	 (2011),	 Lee	 and	 Seshia	 (2015),	 and	 Li	 and	 Yao
(2003).



2

Overview	of	UML,	SysML,	and
MARTE

◈

The	 notation	 used	 for	 the	 COMET/RTE	 method	 is	 the	 Unified	 Modeling
Language	(UML),	supplemented	with	the	Systems	Modeling	Language	(SysML)
and	Modeling	and	Analysis	of	Real-Time	Embedded	Systems	 (MARTE).	This
chapter	 provides	 a	 brief	 overview	 of	 these	 three	 related	 visual	 modeling
notations.

The	 Object	 Management	 Group	 (OMG)	 maintains	 UML	 and	 SysML	 as
standards.	The	UML	notation	has	evolved	since	it	was	first	adopted	as	a	standard
in	1997.	A	major	 revision	 to	 the	 standard	was	 the	 introduction	of	UML	2.0	 in
2003.	Since	then	there	have	been	further	minor	changes,	and	the	latest	version	of
the	standard	is	UML	2.4.	The	versions	of	the	standard	before	UML	2	are	referred
to	 as	 UML	 1.x,	 and	 the	 current	 version	 is	 generally	 referred	 to	 as	 UML	 2.
SysML	is	based	on	UML	2,	using	some	parts	of	UML	2	and	extending	it	in	other
areas	for	systems	modeling.	MARTE	is	a	more	recent	UML	profile	for	real-time
embedded	 systems.	 Each	 of	 these	 notations	 is	 of	 a	 significant	 size,	 and	 it	 is
therefore	 beneficial	 for	 the	 real-time	 system	 modeler	 to	 pick	 and	 choose
carefully	 among	 the	multitude	 of	 diagrams	 and	 stereotypes	 provided	 by	 these
notations.



The	 UML	 notation	 has	 grown	 substantially	 over	 the	 years	 and	 supports
many	diagrams.	SysML	and	MARTE	extend	the	modeling	notations	further.	The
approach	taken	in	 this	book	is	 to	use	only	 those	parts	of	 the	UML	and	SysML
notation	 that	 provide	 a	 distinct	 benefit	 to	 the	 design	 of	 real-time	 embedded
systems,	and	to	use	the	parts	of	MARTE	that	can	be	most	usefully	blended	with
UML	 and	 SysML	 for	 the	 design	 of	 these	 systems.	 This	 chapter	 describes	 the
main	features	of	the	UML,	SysML,	and	MARTE	notations	that	are	particularly
suited	for	real-time	design	using	the	COMET/RTE	method.	The	purpose	of	this
chapter	 is	 not	 to	 be	 a	 full	 exposition	 of	UML,	 SysML,	 and	MARTE,	 because
several	 detailed	 books	 exist	 on	 these	 topics,	 but	 rather	 to	 provide	 a	 brief
overview	of	each.	The	main	features	of	each	of	the	diagrams	used	in	this	book
are	briefly	described,	but	lesser-used	features	are	omitted.



2.1	Model-Driven	Architecture	with	SysML
and	UML

In	the	OMG's	view,	“modeling	is	the	designing	of	software	applications	before
coding”	 (OMG	 2015).	 The	 OMG	 promotes	 model-driven	 architecture	 as	 the
approach	in	which	UML	models	of	the	software	architecture	are	developed	prior
to	 implementation.	According	to	 the	OMG,	UML	is	methodology-independent;
UML	is	a	notation	 for	describing	 the	 results	of	an	object-oriented	analysis	and
design	developed	via	the	methodology	of	choice.

SysML	can	be	used	to	model	the	total	hardware/software	embedded	system
to	 help	 design	 the	 hardware/software	 interface,	 and	 then	UML	 can	 be	 used	 to
model	 the	 software	 system	 in	more	detail.	MARTE	 is	 a	UML	profile	 that	 is	 a
real-time	 extension	 of	 UML	 that	 supports	 concepts	 for	 real-time	 embedded
systems	(Selic	and	Gerard	2014).

A	 UML	 model	 can	 be	 either	 a	 platform-independent	 model	 (PIM)	 or	 a
platform-specific	 model	 (PSM).	 The	 PIM	 is	 a	 precise	 model	 of	 the	 software
architecture	before	a	commitment	is	made	to	a	specific	platform.	Developing	the
PIM	first	is	particularly	useful	because	the	same	PIM	can	be	mapped	to	different
platforms,	such	as	.NET,	J2EE,	Web	Services,	or	a	RTE	platform.	A	typical	real-
time	embedded	platform	might	consist	of	one	or	more	processors	connected	by	a
high-speed	system	bus	or	local	area	network,	interfacing	to	several	sensors	and
actuators.

The	approach	in	this	book	is	to	use	the	concept	of	model-driven	architecture
to	 develop	 a	 component-based	 software	 architecture,	 which	 is	 expressed	 as	 a
UML	 PIM.	 The	 PIM	 is	 then	 mapped	 to	 a	 PSM	 deployed	 to	 a	 specific



configuration,	 the	 performance	 of	which	 can	 then	 be	 analyzed	 using	 real-time
scheduling,	as	described	in	Chapter	17.



2.1.1	UML	Diagrams

The	 UML	 diagrams	 used	 in	 this	 book	 for	 real-time	 embedded	 system
development	are:

Sequence	 and	 communication	 diagrams	 can	 also	 be	 used	 for	 modeling
concurrent	systems,	as	briefly	described	in	Section	2.8.

How	these	UML	diagrams	are	used	by	the	COMET/RTE	method	is	described	in
Chapters	5	through	18	and	in	the	case	studies	described	in	Chapters	19	through
23	of	this	book.

Use	case	diagram,	briefly	described	in	Section	2.2.

Class	diagram,	briefly	described	in	Section	2.4.

Sequence	diagram,	briefly	described	in	Section	2.5.1.

Communication	diagram,	which	in	UML	1.x	was	called	the
collaboration	diagram,	briefly	described	in	Section	2.5.2.

State	machine	diagram	(also	referred	to	as	a	statechart),	briefly
described	in	Section	2.6.

Composite	structure	diagram,	briefly	described	in	Section	2.10,	is	used
for	modeling	distributed	components	in	a	UML	PIM.

Package	diagram,	briefly	described	in	Section	2.7.

Deployment	diagram,	briefly	described	in	Section	2.9.

Timing	diagram,	briefly	described	in	Section	2.14,	is	a	time-annotated
sequence	diagram.



2.2	Use	Case	Diagrams
A	 use	 case	 defines	 a	 sequence	 of	 interactions	 between	 the	 actor(s)	 and	 the
system.	An	actor	is	external	to	the	system	and	is	depicted	as	a	stick	figure	on	a
use	case	diagram.	The	system	is	depicted	as	a	box.	A	use	case	is	depicted	as	an
ellipse	 inside	 the	box.	Communication	associations	connect	actors	with	 the	use
cases	 in	which	 they	participate.	Relationships	 among	use	 cases	 are	 defined	by
means	 of	 include	 and	 extend	 relationships.	 The	 notation	 is	 depicted	 in	 Figure
2.1.



Figure	2.1.	UML	notation	for	a	use	case	diagram.



2.3	Classes	and	Objects
Classes	 and	 objects	 are	 depicted	 as	 boxes	 in	 the	 UML	 notation,	 as	 shown	 in
Figure	2.2.	The	class	box	always	holds	the	class	name.	Optionally,	the	attributes
and	operations	of	a	class	may	also	be	depicted.	When	all	three	are	depicted,	the
top	compartment	of	the	box	holds	the	class	name,	the	middle	compartment	holds
the	attributes,	and	the	bottom	compartment	holds	the	operations.

Figure	2.2.	UML	notation	for	objects	and	classes.

To	distinguish	between	a	class	(the	type)	and	an	object	(an	instance	of	the
type),	an	object	name	is	shown	underlined.	An	object	can	be	depicted	in	full	with
the	 object	 name	 separated	 by	 a	 colon	 from	 the	 class	 name	 –	 for	 example,
anObject	 :	 Class.	 Optionally,	 the	 colon	 and	 class	 name	may	 be	 omitted,
leaving	just	the	object	name	–	for	example,	anObject.	Another	option	is	to	omit
the	object	name	and	depict	 just	 the	class	name	after	 the	colon,	as	 in	:	Class.
Classes	 and	 objects	 are	 depicted	 on	 various	 UML	 diagrams,	 as	 described	 in
Section	2.4.



2.4	Class	Diagrams
In	a	class	diagram,	classes	are	depicted	as	boxes,	and	the	static	(i.e.,	permanent)
relationships	 between	 them	 are	 depicted	 as	 lines	 connecting	 the	 boxes.	 The
following	 three	 main	 types	 of	 relationships	 between	 classes	 are	 supported:
associations,	 whole/part	 relationships,	 and	 generalization/specialization
relationships,	 as	 shown	 in	 Figure	 2.3.	 A	 fourth	 relationship,	 the	 dependency
relationship,	 is	 often	 used	 to	 show	 how	 packages	 are	 related,	 as	 described	 in
Section	2.7.

Figure	2.3.	UML	notation	for	relationships	on	a	class	diagram.



2.4.1	Associations

An	association	 is	a	 static,	 structural	 relationship	between	 two	or	more	classes.
An	association	between	two	classes,	which	is	referred	to	as	a	binary	association,
is	depicted	as	a	line	joining	the	two	class	boxes,	such	as	the	line	connecting	the
ClassA	box	to	the	ClassB	box	in	Figure	2.3a.	An	association	has	a	name	and
optionally	 a	 small	 black	 arrowhead	 to	 depict	 the	 direction	 in	 which	 the
association	name	should	be	read.	On	each	end	of	the	association	line	joining	the
classes	is	the	multiplicity	of	the	association,	which	indicates	how	many	instances
of	one	class	are	related	to	an	instance	of	the	other	class.	Optionally,	a	stick	arrow
may	 also	 be	used	 to	 depict	 the	 direction	of	 navigability,	 such	 as	 shown	 in	 the
association	from	ClassA	to	ClassC	in	Figure	2.3a.

The	multiplicity	 of	 an	 association	 specifies	 how	 many	 instances	 of	 one
class	 may	 relate	 to	 a	 single	 instance	 of	 another	 class	 (Figure	 2.3b).	 The
multiplicity	 of	 an	 association	 can	 be	 exactly	 one	 (1),	 optional	 (0..1),	 zero	 or
more	 (*),	 one	 or	more	 (1..*),	 or	 numerically	 specified	 (m..n),	 where	m	 and	 n
have	numeric	values.	Associations	are	described	in	more	detail	with	examples	in
Chapter	5.



2.4.2	Aggregation	and	Composition	Hierarchies

Aggregation	 and	 composition	 hierarchies	 are	 whole/part	 relationships.	 The
composition	 relationship	 (shown	 by	 a	 black	 diamond)	 is	 a	 stronger	 form	 of
whole/part	relationship	than	the	aggregation	relationship	is	(shown	by	a	hollow
diamond).	The	diamond	touches	the	aggregate	or	composite	(Class	Whole)	class
box	 (see	 Figures	 2.3d	 and	 2.3e).	 More	 detail	 with	 examples	 is	 provided	 in
Chapter	5.



2.4.3	Generalization/Specialization	Hierarchy

A	 generalization/specialization	 hierarchy	 is	 an	 inheritance	 relationship.	 A
generalization	 is	 depicted	 as	 an	 arrow	 joining	 the	 subclass	 (child)	 to	 the
superclass	(parent),	with	the	arrowhead	touching	the	superclass	box	(see	Figure
2.3c).



2.4.4	Visibility

Visibility	 refers	 to	whether	 an	 element	 of	 the	 class	 is	 visible	 from	outside	 the
class,	 as	 depicted	 in	 Figure	 2.4.	 Depicting	 visibility	 is	 optional	 on	 a	 class
diagram.	Public	visibility,	denoted	with	a	+	symbol,	means	that	 the	element	 is
visible	 from	 outside	 the	 class.	 Private	 visibility,	 denoted	 with	 a	 –	 symbol,
means	that	the	element	is	visible	only	from	within	the	class	that	defines	it	and	is
thus	hidden	 from	other	classes.	Protected	visibility,	denoted	with	a	#	 symbol,
means	that	the	element	is	visible	from	within	the	class	that	defines	it	and	within
all	subclasses	of	the	class.

Figure	2.4.	UML	notation	for	visibility	on	a	class	diagram.



2.5	Interaction	Diagrams
UML	has	two	kinds	of	interaction	diagrams,	which	depict	how	objects	interact:
the	 sequence	 diagram	 and	 the	 communication	 diagram.	 On	 these	 interaction
diagrams,	objects	are	depicted	in	rectangular	boxes.	However,	object	names	are
not	underlined.	The	main	features	of	these	diagrams	are	described	in	Sections
2.5.1	and	2.5.2.	Sequence	diagrams	and	communication	diagrams	depict	similar,
although	not	necessarily	identical,	information,	but	do	so	in	different	ways.



2.5.1	Sequence	Diagrams

A	 sequence	 diagram	 depicts	 cooperating	 objects	 dynamically	 interacting	 with
each	other	in	time	sequence,	as	shown	in	Figure	2.5.	A	sequence	diagram	is	a
two-dimensional	diagram	in	which	the	objects	participating	in	the	interaction	are
depicted	horizontally,	 the	vertical	dimension	 represents	 time,	and	 the	 sequence
of	message	 interactions	 is	depicted	 from	 top	 to	bottom.	Starting	at	 each	object
box	is	a	vertical	dashed	line,	referred	to	as	a	lifeline.	Optionally,	each	lifeline	has
an	activation	bar,	depicted	as	a	double	solid	line,	which	shows	when	the	object	is
executing.

Figure	2.5.	UML	notation	for	a	sequence	diagram.

The	 actor	 is	 usually	 shown	 at	 the	 extreme	 left	 of	 the	 page.	 Labeled
horizontal	 arrows	 represent	 messages.	 Only	 the	 source	 and	 destination	 of	 the
arrow	are	relevant.	The	message	is	sent	from	the	source	object	to	the	destination



object.	 Time	 increases	 from	 the	 top	 of	 the	 page	 to	 the	 bottom.	 The	 spacing
between	messages	is	not	semantically	significant	in	UML.

Because	 the	 sequence	 diagram	 shows	 the	 order	 of	 messages	 sent
sequentially	from	the	top	to	the	bottom	of	the	diagram,	numbering	the	messages
is	not	necessary.	However,	in	Figure	2.5,	the	messages	on	the	sequence	diagram
are	 numbered	 to	 show	 their	 correspondence	 to	 the	 communication	 diagram
described	in	the	next	section.

In	 addition	 to	 depicting	 specific	 scenarios,	 sequence	 diagrams	 can	 be
extended	 to	 depict	 multiple	 scenarios	 on	 the	 same	 diagram	 by	 incorporating
loops	and	alternative	sequences,	as	described	in	Chapter	9.



2.5.2	Communication	Diagrams

A	different	way	of	illustrating	the	interaction	among	objects	is	to	show	them	on
a	 communication	 diagram,	 which	 shows	 the	 objects	 participating	 in	 the
interaction	and	the	sequence	of	messages	passed	among	them.	Objects	are	shown
as	 boxes,	 and	 lines	 joining	 boxes	 represent	 object	 interconnection.	 Labeled
arrows	 adjacent	 to	 the	 arcs	 indicate	 the	 name	 and	 direction	 of	 message
transmission	 between	 objects.	 The	 sequence	 of	 messages	 passed	 between	 the
objects	 is	numbered.	The	notation	for	communication	diagrams	is	 illustrated	in
Figure	2.6.	An	iteration,	as	 illustrated	for	message	3	 in	Figure	2.6,	 is	 indicated
by	an	asterisk	(*),	which	means	that	a	message	may	be	sent	more	than	once.	A
conditional	message	means	that	the	message	is	only	sent	if	the	condition	shown
in	square	brackets	is	true.



Figure	2.6.	UML	notation	for	a	communication	diagram.



2.6	State	Machine	Diagrams
In	the	UML	notation,	a	state	transition	diagram	is	referred	to	as	a	state	machine
diagram	or	statechart	diagram.	 In	 this	book,	 the	shorter	 term	state	machine	 is
generally	used.	 In	 the	UML	notation,	 states	are	 represented	by	 rounded	boxes,
and	transitions	are	represented	by	arcs	that	connect	the	rounded	boxes,	as	shown
in	 Figure	 2.7.	 The	 initial	 state	 of	 the	 state	 machine	 is	 depicted	 as	 an	 arc
originating	 from	a	small	black	circle.	Optionally,	a	 final	 state	may	be	depicted
by	a	 small	black	circle	 inside	 a	 larger	white	 circle,	 sometimes	 referred	 to	 as	 a
bull's	 eye.	 A	 state	 machine	 may	 be	 hierarchically	 decomposed	 such	 that	 a
composite	state	is	broken	down	into	substates.

Figure	2.7.	UML	notation	for	a	state	machine:	composite	state	with	sequential
substates.



On	 the	 arc	 representing	 the	 state	 transition,	 the	 notation	 Event
[Condition]/Action	 is	 used.	The	event	 causes	 the	 state	 transition.	The	optional
Boolean	condition	must	be	true,	when	the	event	occurs,	for	the	transition	to	take
place.	The	optional	action	is	performed	as	a	result	of	the	transition.	Optionally,	a
state	may	have	any	of	the	following:

Figure	2.7	depicts	a	composite	state	A	decomposed	into	sequential	substates	A1
and	A2.	In	this	case,	the	state	machine	is	in	only	one	substate	at	a	time;	that	is,
first	substate	A1	is	entered	and	then	substate	A2.	Figure	2.8	depicts	a	composite
state	B	decomposed	 into	orthogonal	 regions	BC	and	BD.	 In	 this	case	 the	 state
machine	is	in	each	of	the	orthogonal	regions,	BC	and	BD,	at	the	same	time.	Each
orthogonal	 region	 is	 further	decomposed	 into	 sequential	 substates.	Thus,	when
the	composite	state	B	is	initially	entered,	each	of	the	substates	B1	and	B3	is	also
entered.

An	entry	action,	performed	when	the	state	is	entered

An	activity,	performed	for	the	duration	of	the	state

An	exit	action,	performed	on	exit	from	the	state



Figure	2.8.	UML	notation	for	a	state	machine:	composite	state	with
orthogonal	regions.



2.7	Package	Diagrams
In	UML,	a	package	is	a	grouping	of	model	elements	–	for	example,	to	represent
a	system	or	subsystem.	A	package	diagram	is	a	structural	diagram	used	to	model
packages	and	their	relationships,	as	shown	in	Figure	2.9.	A	package	is	depicted
by	a	folder	icon,	a	large	rectangle	with	a	small	rectangle	attached	on	one	corner.
Packages	 may	 also	 be	 nested	 within	 other	 packages.	 Possible	 relationships
between	 packages	 are	 dependency	 (shown	 in	 Figure	 2.9)	 and
generalization/specialization	 relationships.	 Packages	 may	 be	 used	 to	 contain
classes,	objects,	or	use	cases.

Figure	2.9.	UML	notation	for	packages.



2.8	Concurrent	Sequence	and
Communication	Diagrams

An	active	object	 –	 also	 referred	 to	 as	 a	concurrent	object,	process,	 thread,	 or
task	–	has	its	own	thread	of	control	and	executes	concurrently	with	other	objects.
By	contrast,	a	passive	object	has	no	thread	of	control.	A	passive	object	executes
only	when	another	object	(active	or	passive)	invokes	one	of	its	operations.

In	 UML,	 active	 objects	 are	 depicted	 on	 concurrent	 interaction	 diagrams,
either	 concurrent	 sequence	 diagrams	 or	 concurrent	 communication
diagrams.	 On	 a	 concurrent	 sequence	 or	 communication	 diagram,	 an	 active
object	is	depicted	as	a	rectangular	box	with	two	vertical	parallel	lines	on	the	left-
and	 right-hand	 sides;	 a	passive	object	 is	depicted	as	 a	 regular	 rectangular	box.
An	example	 is	 given	 in	Figure	2.10,	which	depicts	 the	notation	 for	 active	 and
passive	objects.	Also	shown	is	 the	notation	for	multiple	 instances	of	an	object,
which	 is	 used	 when	 more	 than	 one	 object	 can	 be	 instantiated	 from	 the	 same
class.	The	multiplicity	 indicator	 (e.g.,	 1..*)	 is	 depicted	 in	 the	 upper	 right-hand
corner	of	the	rectangular	box	and	can	be	omitted	if	the	multiplicity	is	1.

Figure	2.10.	UML	notation	for	active	and	passive	objects.



2.8.1	Message	Communication	on	Concurrent	Communication
Diagrams

Message	 interfaces	 between	 tasks	 on	 concurrent	 communication	 diagrams	 are
either	 asynchronous	 or	 synchronous.	 For	 synchronous	 message
communication,	two	possibilities	exist:	(1)	synchronous	message	communication
with	reply	and	(2)	synchronous	message	communication	without	reply.

The	 UML	 notation	 for	 message	 communication	 is	 summarized	 in	 Figure
2.11.	 Asynchronous	 messages	 are	 depicted	 with	 a	 stick	 arrowhead	 while
synchronous	messages	are	depicted	with	a	black	filled	arrowhead.	The	contents
of	the	message	are	depicted	as	an	input	argument	list	of	the	message	as	depicted
in	Figure	2.11	a)	and	b).	A	reply	to	a	synchronous	message	can	be	depicted	as	an
output	 argument	 list	 of	 the	 original	 message	 as	 illustrated	 in	 c1)	 option	 1	 in
Figure	2.11.	Alternatively,	 the	 reply	can	be	depicted	as	 a	dashed	arrow	with	a
stick	arrowhead	as	illustrated	in	c2)	option	2	in	Figure	2.11.

Figure	2.11.	UML	notation	for	messages.



Figure	2.12	and	2.13	respectively	depict	concurrent	versions	of	interaction
diagrams,	 namely	 the	 concurrent	 sequence	 and	 concurrent	 communication
diagram.	Each	diagram	depicts	active	objects	and	the	various	kinds	of	message
communication	 between	 them.	 In	 both	 diagrams,	objectA,	 after	 receiving	 an
input	event	 from	an	external	 sensor,	 sends	an	asynchronous	message	 (message
#2)	 to	 objectB,	 which	 in	 turn	 sends	 a	 synchronous	 message	 (message	 #3
without	reply)	to	objectC,	which	in	turn	sends	a	synchronous	message	(#4)	to
objectD,	which	then	responds	by	sending	a	reply	(#5).

Figure	2.12.	UML	notation	for	a	concurrent	sequence	diagram.



Figure	2.13.	UML	notation	for	a	concurrent	communication	diagram.



2.9	Deployment	Diagrams
A	deployment	diagram	shows	the	physical	configuration	of	the	system	in	terms
of	physical	nodes	and	physical	connections	between	the	nodes,	such	as	network
connections.	A	node	is	shown	as	a	cube,	and	the	connection	is	shown	as	a	line
joining	 the	 nodes.	 A	 deployment	 diagram	 is	 essentially	 a	 class	 diagram	 that
focuses	on	the	system's	nodes	(Booch	et	al.	2005).

In	 this	book,	a	node	usually	 represents	a	computer	node,	with	an	optional
constraint	(see	Section	2.10.3)	describing	how	many	instances	of	this	node	may
exist.	The	physical	connection	has	a	stereotype	(see	Section	2.10.1)	 to	 indicate
the	 type	 of	 connection,	 such	 as	 «local	 area	 network»	 or	 «wide	 area	 network».
Figure	2.14	shows	two	examples	of	deployment	diagrams:	In	the	first	example,
nodes	 are	 connected	 via	 a	wide	 area	 network	 (WAN);	 in	 the	 second,	 they	 are
connected	via	a	local	area	network	(LAN).	In	the	first	example,	the	ATM	Client
node	(which	has	one	node	for	each	ATM)	is	connected	to	a	Bank	Server	that
has	one	node.	Optionally,	the	objects	that	reside	at	the	node	may	be	depicted	in
the	node	cube.	In	the	second	example,	the	network	is	shown	as	a	node	cube.	This
form	of	the	notation	is	used	when	more	than	two	computer	nodes	are	connected
by	a	network.



Figure	2.14.	UML	notation	for	a	deployment	diagram.



2.10	Composite	Structure	Diagrams
Composite	 structure	 diagrams	 are	 used	 to	 depict	 component-based	 software
architectures	 consisting	 of	 components	 and	 their	 interfaces.	 An	 interface
specifies	 the	 externally	 visible	 operations	 of	 a	 class,	 service	 or	 component
without	revealing	the	internal	structure	(implementation)	of	the	operations.	Since
the	 same	 interface	 can	 be	 implemented	 in	 different	 ways,	 an	 interface	 can	 be
modeled	 separately	 from	 a	 component	 that	 realizes	 (i.e.,	 implements)	 the
interface.

An	 interface	 can	 be	 depicted	 with	 a	 different	 name	 from	 the	 class	 or
component	that	realizes	the	interface.	To	improve	clarity	across	UML	diagrams,
the	name	of	an	interface	starts	with	the	letter	I.	There	are	two	ways	to	depict	an
interface:	simple	and	expanded.	In	the	simple	case,	the	interface	is	depicted	as	a
little	 circle	 with	 the	 interface	 name	 next	 to	 it.	 The	 class	 or	 component	 that
provides	the	interface	is	connected	to	the	small	circle,	as	shown	in	Figure	2.15a.



Figure	2.15.	UML	notation	for	components	and	interfaces.

In	 the	 expanded	 case,	 the	 interface	 is	 depicted	 in	 a	 rectangular	 box,	 as
shown	in	Figure	2.15b,	with	the	stereotype	«interface»	and	the	interface	name	in
the	 first	 compartment.	The	operations	of	 the	 interface	are	depicted	 in	 the	 third
compartment.	 The	 second	 compartment	 is	 left	 blank	 (note	 that	 in	 other	 texts,
interfaces	 are	 sometimes	 depicted	 with	 the	 middle	 compartment	 omitted).	 An
example	 of	 an	 interface	 is	 IBasicAlarmService,	 which	 provides	 two
operations,	one	to	read	alarm	data	and	one	to	post	new	alarms.

The	component	 that	realizes	 the	 interface	 is	called	BasicAlarmService,
which	 provides	 the	 implementation	 of	 the	 interface.	 In	 UML,	 the	 realization
relationship	is	depicted	as	shown	in	Figure	2.15c	(dashed	arrow	with	a	triangular
arrowhead).	A	 required	 interface	 is	 depicted	with	 a	 small	 semi-circle	 notation
with	 the	 interface	 name	 next	 to	 it.	 The	 class	 or	 component	 that	 requires	 the
interface	is	connected	to	the	semi-circle,	as	shown	in	Figure	2.15d.	To	show	that



a	 component	 with	 a	 required	 interface	 uses	 a	 component	 with	 a	 provided
interface,	 the	 semi-circle	 (sometimes	 referred	 to	 as	 a	 socket)	with	 the	 required
interface	 is	 drawn	 around	 the	 circle	 (sometimes	 referred	 to	 as	 a	 ball)	with	 the
provided	interface,	as	shown	in	Figure	2.15e.



2.11	UML	Extension	Mechanisms	and
Profiles

UML	provides	 three	mechanisms	 to	 allow	 the	 language	 to	be	 extended.	These
are	stereotypes,	tagged	values,	and	constraints.

These	 extension	 mechanisms	 are	 also	 used	 to	 create	 UML	 profiles.
Rumbaugh	defines	a	UML	profile	as	a	“coherent	set	of	extensions	applicable	to
a	given	domain	or	purpose”	(Rumbaugh	et	al.	2005).	Two	relevant	UML	profiles
for	 real-time	 embedded	 systems	 are	 SysML	 and	 MARTE.	 SysML	 addresses
systems	 modeling	 concepts	 that	 are	 important	 for	 embedded	 systems	 because
models	 of	 these	 systems	 need	 to	 consider	 how	 hardware	 components	 and
software	 components	 interface	 to	 each	 other.	 MARTE	 is	 relevant	 because	 it
addresses	 real-time	 concepts.	 SysML	 is	 described	 further	 in	 Section	 2.12,	 and
MARTE	is	described	further	in	Section	2.13.



2.11.1	Stereotypes

A	stereotype	defines	a	new	building	block	that	is	derived	from	an	existing	UML
modeling	element	but	tailored	to	the	modeler's	problem	(Booch	et	al.	2005).	This
book	 makes	 extensive	 use	 of	 stereotypes.	 Several	 standard	 stereotypes	 are
defined	 in	 UML.	 In	 addition,	 a	 modeler	 may	 define	 new	 stereotypes.	 This
chapter	 includes	 several	 examples	 of	 stereotypes,	 both	 standard	 and	COMET-
specific.	Stereotypes	are	indicated	by	guillemets	(«	»).

In	 Figure	 2.1,	 two	 specific	 kinds	 of	 dependency	 between	 use	 cases	 are
depicted	by	 the	stereotype	notation:	«include»	and	«extend».	Figure	2.9	shows
the	stereotypes	«system»	and	«subsystem»	to	distinguish	between	two	different
kinds	of	packages.	Figure	2.11	uses	 stereotypes	 to	distinguish	among	different
kinds	of	messages.	In	UML,	a	modeling	element	can	also	be	depicted	by	more
than	one	stereotype.	Therefore,	different,	possibly	orthogonal,	characteristics	of
a	modeling	element	can	be	depicted	with	different	stereotypes.

The	UML	stereotype	notation	allows	a	modeler	to	tailor	a	UML	modeling
element	 to	a	 specific	problem.	 In	UML,	stereotypes	are	enclosed	 in	guillemets
usually	within	the	modeling	element	(e.g.,	class	or	object)	as	depicted	in	Figure
2.16a,	 in	which	 the	class	Sensor	Input	 is	depicted	as	a	«boundary»	class	 to
distinguish	it	from	Elevator	Control,	which	is	depicted	as	a	«control»	class.
However,	UML	also	allows	 stereotypes	 to	be	depicted	as	 symbols.	One	of	 the
most	 common	 such	 representations	was	 introduced	 by	 Jacobson	 (1992)	 and	 is
used	 in	 the	 Unified	 Software	 Development	 Process	 (USDP)	 (Jacobson	 et	 al.
1999).	 Stereotypes	 are	 used	 to	 represent	 «entity»	 classes,	 «boundary»	 classes,
and	«control»	classes.	Figure	2.16b	depicts	 the	Process	Plan	«entity»	class,
the	Elevator	Control	«control»	class,	and	 the	Sensor	Input	«boundary»
class	using	the	USDP's	stereotype	symbols.



Figure	2.16.	UML	notation	for	stereotypes.



2.11.2	Tagged	Values

A	 tagged	value	 extends	 the	properties	of	a	UML	building	block	 (Booch	et	 al.
2005),	thereby	adding	new	information.	A	tagged	value	is	enclosed	in	braces	in
the	form	{tag	=	value}.	Commas	separate	additional	tagged	values.	For	example,
a	class	may	be	depicted	with	the	tagged	values	{version	=	1.0,	author	=	Gill},	as
shown	in	Figure	2.17.

Figure	2.17.	UML	notation	for	tagged	values	and	constraints.



2.11.3	Constraints

A	constraint	specifies	a	condition	that	must	be	true.	In	UML,	a	constraint	is	an
extension	of	the	semantics	of	a	UML	element	to	allow	the	addition	of	new	rules
or	 modifications	 to	 existing	 rules	 (Booch	 et	 al.	 2005).	 For	 example,	 for	 the
Account	class	depicted	in	Figure	2.17,	the	constraint	on	the	attribute	balance
is	 that	 the	 balance	 can	 never	 be	 negative,	 depicted	 as	 {balance	 >	 =	 0}.
Optionally,	UML	provides	the	Object	Constraint	Language	(Warmer	and	Kleppe
1999)	for	expressing	constraints.



2.12	SysML
SysML	 is	 a	 general-purpose	 visual	 modeling	 language	 for	 modeling	 systems
requirements	and	designs.	It	has	been	approved	as	a	standard	by	OMG.	As	with
UML,	SysML	is	methodology-independent.	SysML	is	based	on	a	subset	of	UML
2	with	extensions	for	systems	modeling.

From	UML	2,	SysML	incorporates	the	following	diagrams	without	change,
which	are	used	in	this	book:

SysML	also	 introduces	diagrams	which	are	modifications	of	UML	2	diagrams.
Of	these,	the	following	diagram	is	used	in	this	book:

Use	case	diagram,	briefly	described	in	Section	2.2.

State	machine	diagram,	briefly	described	in	Section	2.6.

Sequence	diagram,	briefly	described	in	Section	2.5.1.

Package	diagram,	briefly	described	in	Section	2.7.

Block	definition	diagram,	which	is	a	modification	of	the	class	diagram
and	is	briefly	described	next.



2.12.1	Block	Definition	Diagrams

SysML	uses	block	definition	diagrams	to	depict	 the	system	in	 terms	of	blocks,
which	are	hardware,	software,	or	people	structural	elements.	SysML	blocks	are
static	 structural	 elements	 that	 are	 based	 on	 UML	 classes	 and	 extend	 the
capabilities	 of	 UML	 classes	 (Friedenthal	 et	 al.	 2015).	 The	 block	 notation	 is
compatible	 with	 the	 class	 notation,	 which	means	 that	 UML	 class	 diagrams	 in
which	classes	have	 the	stereotype	«block»	are	used	as	SysML	block	definition
diagrams.

Thus,	a	block	definition	diagram	is	equivalent	to	a	class	diagram	in	which
the	 classes	 have	 been	 stereotyped	 as	 blocks.	 This	 allows	 a	 block	 definition
diagram	 to	 represent	 and	 depict	 the	 same	 modeling	 relationships	 as	 a	 class
diagram,	 in	 particular	 associations,	 whole/part	 (composition	 or	 aggregation)
relationships,	 and	 generalization/specialization	 relationships.	 Thus,	 composite
relationships	are	used	to	depict	how	a	real-world	embedded	system	is	composed
of	 blocks.	 The	 modeling	 notation	 for	 block	 definition	 diagrams	 is	 given	 in
Figure	2.18,	which	 is	essentially	 the	same	notation	as	 in	Figure	2.3,	except	 for
the	classes	stereotyped	as	blocks.



Figure	2.18.	Notation	for	block	definition	diagram	in	SysML.



2.13	MARTE	Profile
MARTE	is	a	UML	profile	developed	explicitly	for	real-time	embedded	systems.
It	 provides	 several	 stereotypes	 for	 modeling	 elements	 in	 these	 systems.
Examples	depicted	in	Figure	2.19	are	stereotypes	for	a	hardware	device,	which	is
depicted	as	«hwDevice»,	a	timer	device,	which	is	referred	to	as	a	timer	resource
and	depicted	as	«timerResource»,	and	a	software	task,	which	is	referred	to	as	a
software	schedulable	resource	and	depicted	as	«swSchedulableResource».

Figure	2.19.	Examples	of	MARTE	stereotypes.

MARTE	 also	 allows	 for	 expressing	 timing	 values,	 for	 example	 a	 timer
resource	can	have	a	period	of	100	milliseconds	specified	by:	period	=	(100,	ms).
The	 «timerResource»	 stereotype	 has	 an	 attribute	is	Periodic,	which	 if	 true



means	 that	 the	 timer	 is	 recurring.	A	 software	 periodic	 task	 can	 be	 depicted	 as
both	a	«timerResource»	and	a	«swSchedulableResource»	as	depicted	 in	Figure
2.19.	More	MARTE	stereotypes	are	given	in	Chapter	13,	with	examples	of	their
use	in	the	concurrent	design	of	real-time	embedded	systems.



2.14	Timing	Diagrams
A	 timing	diagram	 is	a	 time	annotated	sequence	diagram,	which	 is	a	sequence
diagram	 that	 depicts	 a	 time-ordered	 execution	 sequence	 of	 a	 collection	 of
concurrent	 tasks.	Time	 is	 explicitly	 labelled	 on	 the	 left	 hand	 side	 of	 the	 page,
uniformly	 increasing	 from	 the	 top	of	 the	page	 to	 the	bottom	 in	equally	 spaced
intervals.	 The	 lifelines	 depict	 the	 tasks	 as	 active	 throughout,	 with	 the	 shaded
portions	 identifying	 when	 tasks	 are	 executing	 on	 a	 CPU	 and	 for	 how	 long.
Depending	 on	 whether	 there	 is	 one	 or	 more	 CPUs	 in	 the	 configuration,	 the
timing	 diagram	 can	 explicitly	 depict	 parallel	 execution	 of	 tasks	 on	 multiple
CPUs.	If	there	is	only	one	CPU,	as	in	the	example	in	Figure	2.20,	only	one	task
can	 execute	 at	 any	 one	 time.	When	 combined	 with	MARTE,	 tasks	 on	 timing
diagrams	 are	 labelled	 with	 the	MARTE	 stereotype	 «swSchedulableResource».
For	example,	in	Figure	2.20,	task	t1	executes	for	20	msec.



Figure	2.20.	Notation	for	timing	diagram.



2.15	Tool	Support	for	UML,	SysML,	and
MARTE

Because	 UML,	 SysML,	 and	 MARTE	 are	 standardized	 visual	 modeling
languages	maintained	by	OMG,	there	is	a	wide	range	of	tools	that	support	these
notations.	Of	the	many	UML	tools	available,	some	are	proprietary	and	some	are
open	 source.	 In	 principle,	 any	 tool	 that	 supports	 UML	 2	 can	 be	 used	 for
developing	 COMET/RTE	 designs.	 However,	 the	 tools	 vary	 widely	 in
functionality,	ease	of	use,	and	price.	Using	stereotypes,	the	designer	can	assign
stereotypes	to	depict	SysML	and	MARTE	concepts,	such	as	to	designate	a	UML
class	 as	 a	 SysML	 «block»	 or	 a	 MARTE	 «swSchedulableResource».	 For
developing	real-time	designs,	 the	most	effective	 tools	are	 those	 that	provide	an
execution	and/or	simulation	framework	that	allows	the	designer	to	dynamically
execute	the	model.	This	enables	the	designer	to	validate	the	design	by	iteratively
detecting	and	correcting	design	flaws,	and	hence	have	greater	confidence	in	the
design	before	it	is	implemented	and	deployed.



2.16	Summary
This	 chapter	has	briefly	described	 the	main	 features	of	 the	UML,	SysML,	and
MARTE	 notations	 and	 the	 main	 characteristics	 of	 the	 diagrams	 using	 these
notations	 in	 this	 book.	Appendix	A	 describes	 the	 naming	 conventions	 used	 in
this	book	for	classes	and	objects.

For	 further	 reading	 on	 UML,	 Fowler	 (2004)	 and	 Ambler	 (2005)	 provide
introductory	material.	More	 detailed	 information	 can	 be	 found	 in	Booch	 et	 al.
2005	and	Eriksson	et	al.	2004.	A	comprehensive	and	detailed	reference	to	UML
is	Rumbaugh	et	al.	2005.	For	further	reading	on	SysML,	Friedenthal	et	al.	(2015)
is	 a	 very	 informative	 book.	 For	 further	 reading	 on	MARTE,	 Selic	 and	Gerard
(2014)	is	an	outstanding	and	very	clear	explanation	of	MARTE.



3

Real-Time	Software	Design	and
Architecture	Concepts

◈

This	chapter	describes	key	concepts	in	the	software	design	of	concurrent	object-
oriented	 real-time	 embedded	 systems	 as	 well	 as	 important	 concepts	 for
developing	the	architecture	of	these	systems.	First,	object-oriented	concepts	are
introduced,	with	the	description	of	objects	and	classes,	as	well	as	a	discussion	of
the	 role	 of	 information	hiding	 in	 object-oriented	design	 and	 an	 introduction	 to
the	concept	of	inheritance.	Next,	the	concurrent	processing	concept	is	introduced
and	the	issues	of	communication	and	synchronization	between	concurrent	tasks
are	 described.	 These	 design	 concepts	 are	 building	 blocks	 in	 designing	 the
software	architecture	of	a	real-time	embedded	system:	the	overall	structure	of	the
system,	 its	 decomposition	 into	 components,	 and	 the	 interfaces	 between	 these
components.

Section	3.1	provides	an	overview	of	object-oriented	concepts.	Section	3.2
describes	information	hiding	and	how	it	is	used	in	software	design.	Section	3.3
describes	inheritance	and	generalization/specialization	relationships.	Section	3.4
describes	active	and	passive	objects,	while	Section	3.5	provides	an	overview	of
concurrent	 processing.	 Section	 3.6	 describes	 cooperation	 between	 concurrent
tasks,	 including	 mutual	 exclusion,	 task	 synchronization,	 and	 the



producer/consumer	 problem.	 Section	 3.7	 describes	 how	 information	 hiding	 is
applied	to	access	synchronization.	Section	3.8	provides	an	overview	of	runtime
support	 for	concurrent	processing,	while	Section	3.9	describes	 task	scheduling.
Finally,	 Section	 3.10	 provides	 an	 overview	 of	 software	 architecture	 and	 the
concepts	of	components	and	connectors.



3.1	Object-Oriented	Concepts
An	 object	 is	 a	 real-world	 physical	 or	 conceptual	 entity	 that	 provides	 an
understanding	 of	 the	 real	 world	 and	 hence	 forms	 the	 basis	 for	 a	 software
solution.	A	real-world	object	can	have	physical	properties	(they	can	be	seen	or
touched);	 examples	 are	 a	door,	motor,	 or	 lamp.	A	conceptual	 object	 is	 a	more
abstract	concept,	such	as	an	account	or	transaction.

From	 a	 design	 perspective,	 an	 object	 packages	 both	 data	 and	 procedures
that	 operate	 on	 the	 data.	 The	 procedures	 are	 usually	 called	 operations	 or
methods.	Some	approaches,	 including	the	UML	notation,	refer	 to	 the	operation
as	the	specification	of	a	function	performed	by	an	object	and	the	method	as	the
implementation	of	the	function	(Rumbaugh,	Booch,	and	Jacobson	2005).	In	this
book,	we	will	use	 the	 term	operation	 to	refer	 to	both	 the	specification	and	the
implementation,	 in	 common	 with	 Gamma	 et.	 al.	 (1995),	 Meyer	 (2000),	 and
others.

The	signature	of	an	operation	specifies	the	operation's	name,	the	operation's
parameters,	and	 the	operation's	 return	value.	An	object's	 interface	 is	 the	set	of
operations	it	provides,	as	specified	by	the	signatures	of	the	operations.

A	class	is	an	object	type;	for	example,	the	class	train	represents	all	trains	of
a	given	 type.	An	object	 is	an	 instance	of	a	class.	 Individual	objects,	which	are
instances	of	the	class,	are	instantiated	as	required	at	execution	time,	for	example,
a	specific	temperature	sensor	or	a	specific	train.

Figure	 3.1	 depicts	 a	 class	 called	 Sensor	 Data	 and	 two	 objects,
temperature	Sensor	Data:	Sensor	Data	and	pressure	Sensor	Data:
Sensor	 Data,	 which	 are	 instances	 of	 the	 class	 Sensor	 Data.	 The	 objects



humidity	 Sensor	 Data:	 Sensor	 Data	 and:	 Sensor	 Data	 are	 also
instances	of	the	class	Sensor	Data.

Figure	3.1.	Example	of	classes	and	objects.

An	attribute	is	a	data	value	held	by	an	object	in	a	class.	Each	object	has	a
specific	value	of	an	attribute.	Figure	3.2	shows	a	class	with	attributes.	The	class
Sensor	 Data	 has	 five	 attributes,	 namely	 sensor	 Name,	 sensor	 Value,
upper	 Limit,	 lower	 Limit,	 and	 alarm	 Status.	 Two	 objects	 of	 the
Sensor	 Data	 class	 are	 shown,	 namely	 temperature	 Sensor	 Data1	 and
temperature	 Sensor	 Data2.	 Each	 object	 has	 specific	 values	 of	 the



attributes.	For	example,	the	sensor	Value	of	the	first	object	is	12.57	while	the
sensor	Value	of	the	second	object	is	24.83.	The	alarm	Status	of	the	former
object	is	Normal	while	and	the	alarm	Status	of	the	latter	is	High.

Figure	3.2.	Example	of	class	with	attributes.

An	operation	is	the	specification	of	a	function	performed	by	an	object.	An
object	 has	 one	 or	more	 operations.	 The	 operations	 set,	 retrieve,	 or	modify	 the
values	of	one	or	more	attributes	maintained	by	the	object.	Operations	may	have
input	 and	 output	 parameters.	 For	 example,	 the	 class	 Analog	 Sensor



Repository	 (Figure	 3.3)	 has	 the	 operations	 read	 Analog	 Sensor	 and
update	Analog	Sensor.

Figure	3.3.	Example	of	class	with	operations.



3.2	Information	Hiding
Information	 hiding	 is	 a	 fundamental	 software	 design	 concept	 relevant	 to	 the
design	 of	 all	 software	 systems.	Early	 systems	were	 frequently	 error-prone	 and
difficult	 to	 modify	 because	 they	 made	 widespread	 use	 of	 global	 data.	 Parnas
(1972,	1979)	showed	 that	by	using	 information	hiding,	software	systems	could
be	designed	to	be	substantially	more	modifiable	by	greatly	reducing	or	–	ideally
–	eliminating	global	data.	Parnas	advocated	information	hiding	as	a	criterion	for
decomposing	a	software	system	into	modules.



3.2.1	Information	Hiding	in	Object-Oriented	Design

Information	 hiding	 is	 a	 basic	 concept	 of	 object-oriented	 design.	 Information
hiding	 is	 used	 in	 designing	 the	 class,	 in	 particular	 when	 deciding	 what
information	 should	 be	 visible	 and	 what	 information	 should	 be	 hidden.	 Those
parts	of	a	class	that	need	not	be	visible	to	other	classes	are	hidden.	Hence,	if	the
internals	 of	 the	 class	 change,	 only	 this	 class	 is	 impacted.	 The	 term
encapsulationis	also	used	to	describe	hiding	information	by	a	class	or	object.

With	 information	 hiding,	 the	 information	 that	 could	 potentially	 change	 is
encapsulated	(i.e.,	hidden)	inside	a	class.	External	access	to	the	information	can
only	be	made	indirectly	by	invoking	operations	–	access	procedures	or	functions
–	that	are	also	part	of	the	class.	Only	these	operations	can	access	the	information
directly.	Thus	the	hidden	information	and	the	operations	that	access	it	are	bound
together	 to	 form	 an	 information	 hiding	 class.	 The	 specification	 of	 the
operations	 (i.e.,	 the	 name	 and	 the	 parameters	 of	 the	 operations)	 is	 called	 the
interface	 of	 the	 class.	 The	 class	 interface	 is	 also	 referred	 to	 as	 the	 abstract
interface,	 virtual	 interface,	 or	 external	 interface	 of	 the	 class.	 The	 interface
represents	 the	visible	part	of	 the	class,	 that	 is,	 the	part	 that	 is	 revealed	 to	other
classes.

Two	examples	of	applying	information	hiding	in	software	design	are	given
next.	The	 first	 example	 is	 information	 hiding	 applied	 to	 the	 design	 of	 internal
data	 structures,	 and	 the	 second	 is	 information	 hiding	 applied	 to	 the	 design	 of
interfaces	to	I/O	devices.



3.2.2	Information	Hiding	Applied	to	Internal	Data	Structures

A	 potential	 problem	 in	 application	 software	 development	 is	 that	 an	 important
data	structure,	one	that	is	accessed	by	several	objects,	might	need	to	be	changed.
Without	information	hiding,	any	change	to	the	data	structure	is	likely	to	require
changes	to	all	 the	objects	that	access	the	data	structure.	Information	hiding	can
be	 used	 to	 hide	 the	 design	 decision	 concerning	 the	 data	 structure,	 its	 internal
linkage,	 and	 the	 details	 of	 the	 operations	 that	 manipulate	 it.	 The	 information
hiding	 solution	 is	 to	 encapsulate	 the	 data	 structure	 in	 an	 object.	 The	 data
structure	is	only	accessed	directly	by	the	operations	provided	by	the	object.

Other	objects	may	only	indirectly	access	the	encapsulated	data	structure	by
calling	the	operations	of	the	object.	Thus	if	the	data	structure	changes,	the	only
object	 impacted	 is	 the	one	containing	 the	data	 structure.	The	external	 interface
supported	by	the	object	does	not	change;	hence,	the	objects	that	indirectly	access
the	 data	 structure	 are	 not	 impacted	 by	 the	 change.	 This	 form	 of	 information
hiding	is	called	data	abstraction.

An	example	of	data	abstraction	is	the	Analog	Sensor	Repository	class
depicted	 in	Figure	3.3.	Whether	 the	 repository	 is	 implemented	as	a	 linked	 list,
array,	or	some	other	data	structure,	the	implementation	is	hidden	inside	the	class
and	 is	 not	 visible	 in	 the	 interface.	 If	 a	 decision	 is	 made	 to	 change	 the	 data
structure,	 for	example,	 from	an	array	 to	a	 linked	 list,	 this	change	only	 impacts
the	implementation	of	the	class	and	is	not	visible	to,	and	hence	does	not	affect,
other	classes	that	depend	on	this	class.



3.2.3	Information	Hiding	Applied	to	Interfacing	to	I/O	Devices

Information	hiding	can	be	used	to	hide	the	design	decision	of	how	to	interface	to
a	specific	I/O	device.	The	solution	is	to	provide	a	virtual	interface	to	the	device
that	 hides	 the	 device-specific	 details.	 If	 the	 designer	 decides	 to	 replace	 the
device	with	a	different	one	having	the	same	overall	functionality,	the	internals	of
the	 object	 will	 need	 to	 change.	 In	 particular,	 the	 internals	 of	 the	 object's
operations	need	to	change	because	they	must	deal	with	the	precise	details	of	how
to	interface	to	the	real	device.	However,	the	virtual	interface,	represented	by	the
specification	 of	 the	 operations,	 remains	 unchanged,	 as	 shown	 in	 Figure	 3.4;
hence,	the	objects	that	use	the	device	interface	will	not	need	to	change.

Figure	3.4.	Information	hiding	applied	to	I/O	device	interface.

As	 an	 example	 of	 information	 hiding	 applied	 to	 I/O	 devices,	 consider	 an
output	 display	 used	 on	 an	 automobile	 to	 display	 the	 average	 speed	 and	 fuel
consumption.	A	virtual	device	can	be	designed	that	hides	 the	details	of	how	to
format	data	for	and	how	to	interface	to	the	mileage	display.

The	 operations	 supported	 are	 displayAverageSpeed	 (in	 speed)
displayAverageMPG	(in	fuelConsumption)



Details	of	how	to	position	the	data	on	the	screen,	special	control	characters
to	be	used,	 and	other	device-specific	 information	are	hidden	 from	 the	users	of
the	 object.	 If	 we	 replace	 this	 device	 with	 a	 different	 device	 having	 the	 same
general	 functionality,	 the	 internals	 of	 the	 operations	 need	 to	 change,	 but	 the
virtual	interface	remains	unchanged.	Thus,	users	of	the	object	are	not	impacted
by	the	change	to	the	device.



3.3	Inheritance
Inheritance	is	a	useful	abstraction	mechanism	in	analysis	and	design.	Inheritance
naturally	models	objects	that	are	similar	in	some	but	not	all	respects,	thus	having
some	 common	 properties	 but	 other	 unique	 properties	 that	 distinguish	 them.
Inheritance	 is	 a	 classification	 mechanism	 that	 has	 been	 widely	 used	 in	 other
fields.	An	example	is	the	taxonomy	of	the	animal	kingdom,	in	which	animals	are
classified	 as	mammals,	 fish,	 reptiles,	 and	 so	 on.	Cats	 and	 dogs	 have	 common
properties	 that	 are	 generalized	 into	 the	 properties	 of	mammals.	However,	 they
also	have	unique	properties:	a	dog	barks	and	a	cat	mews.

Inheritance	is	a	mechanism	for	sharing	and	reusing	code	between	classes.
A	 child	 class	 inherits	 the	 properties	 (encapsulated	 data	 and	 operations)	 of	 a
parent	class.	It	can	then	adapt	the	structure	(i.e.,	encapsulated	data)	and	behavior
(i.e.,	 operations)	 of	 its	 parent	 class.	 The	 parent	 class	 is	 referred	 to	 as	 a
superclass	or	base	class.	The	child	class	is	referred	to	as	a	subclass	or	derived
class.	 The	 adaptation	 of	 a	 parent	 class	 to	 form	 a	 child	 class	 is	 referred	 to	 as
specialization.	Child	classes	may	be	further	specialized,	allowing	the	creation	of
class	hierarchies,	also	referred	to	as	generalization/specialization	hierarchies.

Class	 inheritance	 is	 a	 mechanism	 for	 extending	 an	 application's
functionality	by	reusing	the	functionality	specified	in	parent	classes.	Thus,	a	new
class	can	be	incrementally	defined	in	terms	of	an	existing	class.	A	child	class	can
adapt	the	encapsulated	data	(referred	to	as	instance	variables)	and	operations	of
its	parent	class.	It	adapts	the	encapsulated	data	by	adding	new	instance	variables.
It	 adapts	 the	 operations	 by	 adding	 new	 operations	 or	 by	 redefining	 existing
operations.	 It	 is	 also	 possible	 for	 a	 child	 class	 to	 suppress	 an	 operation	 of	 the



parent;	however,	this	is	not	recommended	because	the	subclass	no	longer	shares
the	interface	of	the	superclass.

An	example	of	inheritance	for	a	real-time	embedded	system	is	the	design	of
a	Sensor	Repository	 for	 storing	 current	 values	 of	 factory	 sensors,	 as	 shown	 in
Figure	3.5.	Sensor	Data	 is	designed	as	a	superclass	 that	 is	specialized	 into	 two
subclasses,	Boolean	Sensor	Data	and	Analog	Sensor	Data.

Figure	3.5.	Example	of	inheritance.



3.4	Active	and	Passive	Objects
So	 far,	 this	 chapter	 has	 described	 the	 characteristics	 of	 passive	 classes	 and
objects.	 In	 fact,	 a	 class	 or	 object	 can	 be	 designed	 to	 be	active	 or	passive.	 An
active	object	is	an	autonomous	object	that	executes	independently	of	other	active
objects.

Active	objects	are	also	referred	to	as	concurrent	objects,	concurrent	tasks,
or	 threads.	A	concurrent	object	 (active	object)	 has	 its	 own	 thread	of	 control
and	can	initiate	actions	 that	affect	other	objects.	A	passive	object,	which	is	an
instance	 of	 a	 passive	 class,	 has	 no	 thread	 of	 control.	 Passive	 objects	 have
operations	 that	 are	 invoked	 by	 concurrent	 objects.	 Passive	 objects	 can	 invoke
operations	 in	 other	 passive	 objects.	 An	 operation	 of	 a	 passive	 object,	 once
invoked	 by	 a	 concurrent	 object,	 executes	 within	 the	 thread	 of	 control	 of	 the
concurrent	 object.	 In	 a	 concurrent	 application,	 there	 are	 typically	 several
concurrent	objects,	each	with	its	own	thread	of	control.



3.5	Concurrent	Processing
A	 concurrent	 task	 represents	 the	 execution	 of	 a	 sequential	 program	 or	 a
sequential	 component	 in	 a	 concurrent	 program.	 Each	 task	 deals	 with	 one
sequential	 thread	 of	 execution;	 thus,	 no	 concurrency	 is	 allowed	within	 a	 task.
However,	 overall	 system	 concurrency	 is	 obtained	 by	 having	 multiple	 tasks
executing	 in	parallel.	The	 tasks	often	 execute	 asynchronously	 (i.e.,	 at	 different
speeds)	 and	 are	 relatively	 independent	 of	 each	 other	 for	 significant	 periods	 of
time.	From	 time	 to	 time,	 the	 tasks	need	 to	communicate	and	 synchronize	 their
operations	with	each	other.	The	UML	notation	for	concurrent	tasks	is	depicted	in
Section	2.8.

The	 body	 of	 knowledge	 on	 cooperating	 concurrent	 tasks	 has	 grown
substantially	since	Dijkstra's	seminal	work	(1968).	Among	the	significant	early
contributions	was	Hoare	1974,	who	developed	the	monitor	concept	that	applies
information	hiding	 to	 task	 synchronization.	Several	algorithms	were	developed
for	 concurrent	 task	 communication	 and	 synchronization,	 such	 as	 the	 multiple
readers	 and	 writers	 algorithm,	 the	 dining	 philosophers	 algorithm,	 and	 the
banker's	 algorithm	 for	 deadlock	 prevention.	 Because	 concurrent	 processing	 is
such	a	fundamental	concept,	 it	has	been	described	in	many	textbooks.	Some	of
the	best	sources	of	information	on	concurrency	are	books	on	operating	systems,
such	as	Silberschatz	et.	al.	(2013),	Tanenbaum	(2014).	Two	excellent	references
are	 Bacon	 (2003),	 which	 describes	 concurrent	 systems,	 both	 centralized	 and
distributed,	 and	 Magee	 and	 Kramer	 (2006),	 which	 describes	 concurrent
programming	with	Java.



3.5.1	Advantages	of	Concurrent	Tasking

The	advantages	of	using	concurrent	tasking	in	real-time	software	design	are:

Concurrent	tasking	is	a	natural	model	for	many	real-world	applications
because	it	reflects	the	natural	parallelism	that	exists	in	the	problem
domain,	where	several	activities	are	often	happening	simultaneously.

Structuring	a	concurrent	system	into	tasks	results	in	a	separation	of
concerns	about	what	each	task	does	from	when	it	does	it.	This	usually
makes	the	system	easier	to	understand,	manage,	and	develop.

A	system	structured	into	concurrent	tasks	can	result	in	an	overall
reduction	in	system	execution	time.	On	a	single	processor,	concurrent
tasking	results	in	improved	performance	by	allowing	I/O	operations	to	be
executed	in	parallel	with	computational	operations.	With	the	use	of
multiple	processors,	such	as	multicore	systems,	improved	performance	is
obtained	by	having	different	tasks	actually	execute	in	parallel	on
different	processors.

Structuring	the	system	into	concurrent	tasks	allows	greater	scheduling
flexibility	because	time-critical	tasks	with	hard	deadlines	can	be	given	a
higher	priority	than	less	critical	tasks.

Identifying	the	concurrent	tasks	early	in	the	design	can	allow	an	early
performance	analysis	to	be	made	of	the	system.	Many	tools	and
techniques	(for	example,	real-time	scheduling)	use	concurrent	tasks	as	a
fundamental	component	in	their	analysis.



3.5.2	Heavyweight	and	Lightweight	Processes

The	term	process	is	used	in	operating	systems	as	a	unit	of	resource	allocation	for
the	processor	(CPU)	and	memory.	The	traditional	operating	system	process	has	a
single	 thread	 of	 control	 and	 thus	 no	 internal	 concurrency.	 Some	 modern
operating	systems	allow	a	process,	referred	to	as	a	heavyweight	process,	to	have
multiple	 threads	 of	 control,	 thereby	 allowing	 internal	 concurrency	 within	 a
process.	The	heavyweight	process	has	its	own	allocated	memory.	Each	thread	of
control,	also	referred	to	as	a	lightweight	process,	shares	the	same	memory	with
the	 heavyweight	 process.	 Thus	 the	multiple	 threads	 of	 a	 heavyweight	 process
can	 access	 shared	 data	 in	 the	 process's	memory,	 although	 this	 access	must	 be
synchronized.

The	 terms	“heavyweight”	and	“lightweight”	refer	 to	 the	context	switching
overhead.	When	the	operating	system	switches	from	one	heavyweight	process	to
another,	 the	 context	 switching	 overhead	 is	 relatively	 high,	 requiring	CPU	 and
memory	allocation.	With	the	lightweight	process,	context	switching	overhead	is
low,	involving	only	CPU	allocation.

Process	 terminology	 varies	 considerably	 in	 different	 operating	 systems,
although	 the	most	common	 is	 to	 refer	 to	 the	heavyweight	process	as	a	process
(or	 task)	and	 the	 lightweight	process	as	a	 thread.	For	example,	 the	Java	virtual
machine	 usually	 executes	 as	 an	 operating	 system	 process	 supporting	 multiple
threads	of	control	(Magee	and	Kramer	2006).	However,	some	operating	systems
do	 not	 recognize	 that	 a	 heavyweight	 process	 actually	 has	 internal	 threads	 and
only	schedule	the	heavyweight	process	to	the	CPU.	The	process	then	has	to	do
its	own	internal	thread	scheduling.

Bacon	uses	the	term	process	to	refer	to	a	dynamic	entity	that	executes	on	a
processor	 and	 has	 its	 own	 thread	 of	 control,	 whether	 it	 is	 a	 single	 threaded



heavyweight	 process	 or	 a	 thread	within	 a	 heavyweight	 process	 (Bacon	 2003).
This	book	uses	instead	the	term	task	to	refer	to	such	a	dynamic	entity.	The	task
corresponds	 to	 a	 thread	 within	 a	 heavyweight	 process	 (i.e.,	 one	 that	 executes
within	 a	 process)	 or	 to	 a	 single	 threaded	 heavyweight	 process.	 Many	 of	 the
issues	 concerning	 task	 interaction	 apply	 whether	 the	 threads	 are	 in	 the	 same
heavyweight	process	or	in	different	heavyweight	processes.	Task	scheduling	and
context	switching	are	described	in	more	detail	in	Section	3.9.



3.6	Cooperation	between	Concurrent	Tasks
In	the	design	of	concurrent	systems,	several	problems	need	to	be	considered	that
do	not	arise	when	designing	sequential	systems.	In	most	concurrent	applications,
it	 is	 necessary	 for	 concurrent	 tasks	 to	 cooperate	 with	 each	 other	 in	 order	 to
perform	the	services	required	by	the	application.	The	following	three	problems
commonly	arise	when	tasks	cooperate	with	each	other:

1.	The	mutual	exclusion	problem.	This	occurs	when	tasks	need	to	have
exclusive	access	to	a	resource,	such	as	shared	data	or	a	physical	device.	A
variation	on	this	problem,	in	which	the	mutual	exclusion	constraint	can	be
relaxed	in	certain	situations,	is	the	multiple	readers	and	writers	problem,	as
described	in	Chapters	12	and	14.

2.	Task	synchronization	problem.	Two	tasks	need	to	synchronize	their
operations	with	each	other.	Task	synchronization	involves	one	task	waiting	for
an	event	that	is	signaled	by	a	different	task.

3.	The	producer/consumer	problem.	This	occurs	when	tasks	need	to
communicate	with	each	other	in	order	to	pass	data	from	one	task	to	another.
Communication	between	tasks	is	often	referred	to	as	inter-process
communication	(IPC).

These	problems	and	their	solutions	are	described	next.



3.6.1	Mutual	Exclusion	Problem

Mutual	exclusion	arises	when	it	is	necessary	for	a	shared	resource	to	be	accessed
by	only	one	task	at	a	time.	With	concurrent	systems,	more	than	one	task	might
simultaneously	 wish	 to	 access	 the	 same	 resource.	 Consider	 the	 following
situations:

To	solve	this	problem,	it	is	necessary	to	provide	a	synchronization	mechanism	to
ensure	 that	 access	 to	 a	 critical	 resource	 by	 concurrent	 tasks	 is	 mutually
exclusive.	A	task	must	first	acquire	the	resource,	that	is,	get	permission	to	access
the	 resource,	 use	 the	 resource,	 and	 then	 release	 the	 resource.	 When	 task	 A
releases	 the	 resource,	 another	 task	 B	 may	 now	 acquire	 the	 resource.	 If	 the
resource	 is	 in	use	by	A	when	 task	B	wishes	 to	acquire	 it,	B	must	wait	until	A
releases	the	resource.

The	classical	 solution	 to	 the	mutual	exclusion	problem	was	 first	proposed
by	Dijkstra	(1968),	using	binary	semaphores.	A	binary	semaphore	is	a	Boolean
variable	 that	 is	 accessed	 only	 by	 means	 of	 two	 atomic	 (i.e.,	 indivisible)
operations,	acquire	 (semaphore)	and	release	 (semaphore).	Dijkstra	originally
called	these	the	P	(for	acquire)	and	V	(for	release)	operations.

The	indivisible	acquire	(semaphore)	operation	is	executed	by	a	task	when	it
wishes	to	acquire	a	resource.	The	semaphore	is	initially	set	to	1,	meaning	that	the

If	two	or	more	tasks	are	allowed	to	write	to	a	printer	simultaneously,
output	from	the	tasks	will	be	randomly	interleaved	and	a	garbled	report
will	be	produced.

If	two	or	more	tasks	are	allowed	to	write	to	a	data	repository
simultaneously,	inconsistent	and/or	incorrect	data	will	be	written	to	the
data	repository.



resource	is	free.	As	a	result	of	executing	the	acquire	operation,	the	semaphore	is
decremented	by	1	to	0	and	the	task	is	allocated	the	resource.	If	the	semaphore	is
already	set	to	0	when	the	acquire	operation	is	executed	by	task	A,	this	means	that
another	 task,	say	B,	already	has	 the	resource.	 In	 this	case,	 task	A	is	suspended
until	task	B	releases	the	resource	by	executing	a	release	(semaphore)	operation.
As	 a	 result,	 task	 A	 is	 allocated	 the	 resource.	 It	 should	 be	 noted	 that	 the	 task
executing	 the	 acquire	 operation	 is	 suspended	 only	 if	 the	 resource	 has	 already
been	acquired	by	another	task.	The	code	executed	by	a	task	while	it	has	access	to
the	mutually	exclusive	resource	 is	referred	 to	as	 the	critical	section	or	critical
region.



3.6.2	Example	of	Mutual	Exclusion

An	 example	 of	 mutual	 exclusion	 is	 a	 shared	 sensor	 data	 repository,	 which
contains	 the	 current	 values	 of	 several	 sensors.	 Some	 tasks	 read	 from	 the	 data
repository	in	order	 to	process	or	display	the	sensor	values,	and	other	 tasks	poll
the	external	environment	and	update	the	data	repository	with	the	latest	values	of
the	sensors.	To	ensure	mutual	exclusion	in	the	sensor	data	repository	example,	a
sensor	Data	Repository	Semaphore	 is	used.	Each	 task	must	 execute	 an
acquire	 operation	 before	 it	 starts	 accessing	 the	 data	 repository	 and	 execute	 a
release	 operation	 after	 it	 has	 finished	 accessing	 the	 data	 repository.	 The
Pseudocode	for	acquiring	the	sensor	Data	Repository	Semaphore	to	enter
the	 critical	 section	 and	 releasing	 the	 semaphore	 is	 as	 follows:	 acquire
(sensorDataRepositorySemaphore)	 Access	 sensor	 data

repository[this	 is	 the	 critical	 section.]	 release

(sensorDataRepositorySemaphore)

The	solution	assumes	 that	during	 initialization,	 the	 initial	values	of	 the	sensors
are	stored	before	any	reading	takes	place.

In	 some	 concurrent	 applications,	 it	might	 be	 too	 restrictive	 to	 only	 allow
mutually	 exclusive	 access	 to	 a	 shared	 resource.	 Thus,	 in	 the	 sensor	 data
repository	example	 just	described,	 for	a	writer	 task	 to	have	mutually	exclusive
access	to	the	data	repository	is	essential.	However,	it	is	permissible	to	have	more
than	 one	 reader	 task	 concurrently	 reading	 from	 the	 data	 repository,	 providing
there	 is	 no	writer	 task	writing	 to	 the	 data	 repository	 at	 the	 same	 time.	This	 is
referred	 to	 as	 the	 multiple	 readers	 and	 writers	 problem	 (Bacon	 2003;
Silberschatz	et.	al.	2013;	Tanenbaum	2014).	This	problem	may	also	be	solved	by
using	semaphores	and	is	described	further	in	Chapter	14.



3.6.3	Task	Synchronization	Problem

Event	 synchronization	 is	 used	 when	 two	 tasks	 need	 to	 synchronize	 their
operations	 without	 communicating	 data	 between	 the	 tasks.	 The	 source	 task
signals	an	event.	The	destination	task	waits	for	the	event	and	is	suspended	until
the	event	arrives.	In	UML,	the	two	tasks	are	depicted	as	active	objects	with	an
asynchronous	 event	 signal	 sent	 from	 the	 sender	 task	 to	 the	 receiver	 task,	 as
depicted	in	Figure	3.6.

Figure	3.6.	Task	synchronization	with	event	signals.

Task	 synchronization	 may	 also	 be	 achieved	 by	 means	 of	 message
communication	as	described	next.



3.6.4	Producer/Consumer	Problem

A	 common	 problem	 in	 concurrent	 systems	 is	 that	 of	 producer	 and	 consumer
tasks.	The	producer	 task	produces	 information,	which	 is	 then	consumed	by	 the
consumer	task.	For	this	to	happen,	data	needs	to	be	passed	from	the	producer	to
the	 consumer.	 In	 a	 sequential	 program,	 a	 calling	 operation	 (procedure)	 also
passes	 data	 to	 a	 called	 operation.	 However,	 control	 passes	 from	 the	 calling
operation	to	the	called	operation	at	the	same	time	as	the	data.

In	a	concurrent	system,	each	task	has	its	own	thread	of	control	and	the	tasks
execute	 asynchronously.	 It	 is	 therefore	 necessary	 for	 the	 tasks	 to	 synchronize
their	 operations	 when	 they	 wish	 to	 exchange	 data.	 Thus,	 the	 producer	 must
produce	the	data	before	the	consumer	can	consume	it.	If	the	consumer	is	ready	to
receive	the	data	but	the	producer	has	not	yet	produced	it,	then	the	consumer	must
wait	for	the	producer.	If	the	producer	has	produced	the	data	before	the	consumer
is	ready	to	receive	it,	then	either	the	producer	has	to	be	held	up	or	the	data	needs
to	be	buffered	for	the	consumer,	thereby	allowing	the	producer	to	continue.

A	 common	 solution	 to	 this	 problem	 is	 to	 use	 message	 communication
between	 the	 producer	 and	 consumer	 tasks.	 Message	 communication	 between
tasks	serves	two	purposes:

1.	Transfer	of	data	from	a	producer	(source)	task	to	a	consumer	(destination)
task.

2.	Synchronization	between	producer	and	consumer.	If	no	message	is	available,
the	consumer	has	to	wait	for	the	message	to	arrive	from	the	producer.	In	some
cases,	the	producer	waits	for	a	reply	from	the	consumer.

Message	 communication	 between	 tasks	may	 be	 synchronous	 or	 asynchronous.
The	tasks	may	reside	on	the	same	node	or	be	distributed	over	different	nodes	in	a



distributed	application.
With	asynchronous	message	communication,	the	producer	sends	a	message

to	 the	 consumer	 and	 continues	 without	 waiting	 for	 a	 response,	 as	 depicted	 in
UML	in	Figure	3.7.	With	synchronous	message	communication	with	reply,	 the
producer	 sends	 a	 message	 to	 the	 consumer	 and	 then	 immediately	 waits	 for	 a
response,	 as	 depicted	 in	 UML	 in	 Figure	 3.8.	 Chapter	 11	 provides	 a	 detailed
description	 of	 message	 communication	 patterns	 including	 synchronous	 and
asynchronous	message	communication.

Figure	3.7.	Asynchronous	message	communication	between	concurrent	tasks.

Figure	3.8.	Synchronous	message	communication	with	reply	between
concurrent	tasks.



3.7	Information	Hiding	Applied	to	Access
Synchronization

The	 solution	 to	 the	 mutual	 exclusion	 problem	 described	 previously	 is	 error-
prone.	It	is	possible	for	a	coding	error	to	be	made	in	one	of	the	tasks	accessing
the	 shared	 data,	 which	 would	 then	 lead	 to	 serious	 synchronization	 errors	 at
execution	time.	Consider,	for	example,	the	mutual	exclusion	problem	described
in	Section	3.6.2.	If	the	acquire	and	release	operations	were	reversed	by	mistake,
the	Pseudocode	would	be

release	(sensorDataRepositorySemaphore)

	Access	sensor	data	repository	[should	be	critical	section]

	acquire	(sensorDataRepositorySemaphore)

As	a	result	of	this	error,	the	task	enters	the	critical	section	without	first	acquiring
the	semaphore.	Hence,	 it	 is	possible	 to	have	 two	 tasks	executing	 in	 the	critical
section,	thereby	violating	the	mutual	exclusion	principle.	Instead,	the	following
coding	error	might	be	made:	acquire	(sensorDataRepositorySemaphore)
Access	 sensor	 data	 repository	 [should	 be	 critical	 section]

acquire	(sensorDataRepositorySemaphore)
In	this	case,	a	task	enters	its	critical	section	for	the	first	time	but	is	then	not	able
to	 leave	 because	 it	 is	 trying	 to	 acquire	 a	 semaphore	 it	 already	 possesses.
Furthermore,	 it	 prevents	 any	 other	 task	 from	 entering	 its	 critical	 section,	 thus
provoking	a	deadlock,	where	no	task	is	able	to	proceed.

In	these	examples,	synchronization	is	a	global	problem	that	every	task	has
to	 be	 concerned	 about,	 which	 makes	 these	 solutions	 error-prone.	 By	 using
information	hiding,	the	global	synchronization	problem	can	be	reduced	to	a	local
synchronization	 problem,	 making	 the	 solution	 less	 error-prone.	 With	 this



approach,	 only	 one	 information	 hiding	 object	 need	 be	 concerned	 about
synchronization,	 as	 described	 in	 Chapters	 11	 and	 14.	 An	 information	 hiding
object	 that	 hides	 details	 of	 synchronizing	 concurrent	 access	 to	 data	 is	 also
referred	to	as	a	monitor	(Hoare	1974),	as	described	in	Chapter	14.



3.8	Runtime	Support	for	Real-Time
Concurrent	Processing

Runtime	support	for	concurrent	processing	can	be	provided	by:

With	 sequential	 programming	 languages,	 such	as	C,	C++,	Pascal,	 and	Fortran,
there	 is	 no	 support	 for	 concurrent	 tasks.	 To	 develop	 a	 concurrent	multitasked
application	using	a	sequential	programming	language,	it	is	therefore	necessary	to
use	a	kernel	or	threads	package.

With	 concurrent	 programming	 languages,	 such	 as	 Ada	 and	 Java,	 the
language	 supports	 constructs	 for	 task	 communication	 and	 synchronization.	 In
this	 case,	 the	 language's	 runtime	 system	 provides	 the	 services	 and	 underlying
mechanisms	to	support	inter-task	communication	and	synchronization.

Kernel	of	an	operating	system.	This	has	the	functionality	to	provide
services	for	concurrent	processing.	In	some	modern	operating	systems,	a
micro-kernel	provides	minimal	functionality	to	support	concurrent
processing,	with	most	services	provided	by	system	level	tasks.

Runtime	support	system	for	a	concurrent	language.

Threads	package.	This	provides	services	for	managing	threads
(lightweight	processes)	within	heavyweight	processes.



3.8.1	Operating	System	Services

The	following	are	typical	services	provided	by	an	operating	system	kernel:

Examples	of	widely	used	operating	systems	with	kernels	that	support	concurrent
processing	are	several	versions	of	Unix,	Linux,	and	Windows.

With	 an	 operating	 system	 kernel,	 the	 send	message	 and	 receive	 message
operations	 for	message	 communication	 and	 the	wait	 and	 signal	 operations	 for
event	synchronization	are	direct	calls	to	the	kernel.	Mutually	exclusive	access	to
critical	 sections	 is	 ensured	by	using	 the	wait	 and	signal	 semaphore	operations,
which	are	also	provided	by	the	kernel.

Task	scheduling	–	allocation	of	tasks	to	the	CPU	using	a	scheduling
algorithm.

Inter-task	communication	using	messages.

Mutual	exclusion	using	semaphores.

Event	synchronization	using	signals.	Alternatively,	messages	may	be
used	for	synchronization	purposes.

Interrupt	handling	and	basic	I/O	services.

Memory	management.	This	handles	the	mapping	of	each	task's	virtual
memory	onto	physical	memory.



3.8.2	Real-Time	Operating	Systems

Much	of	the	operating	system	technology	for	concurrent	systems	is	also	required
for	 real-time	 systems.	 Most	 real-time	 operating	 systems	 support	 a	 kernel	 or
micro-kernel,	as	described	previously.	However,	real-time	systems	have	special
needs,	 many	 of	 which	 relate	 to	 the	 need	 for	 predictable	 behavior.	 It	 is	 more
useful	 to	 consider	 the	 requirements	 of	 a	 real-time	 operating	 system	 than	 to
provide	 an	 extensive	 survey	 of	 available	 real-time	 operating	 systems,	 because
the	list	changes	on	a	regular	basis.	Thus,	a	real-time	operating	system	must:

Support	multitasking.

Support	priority	preemption	task	scheduling.	This	means	each	task	needs
to	have	its	own	priority.	The	task	scheduling	algorithm	assigns	the
CPU(s)	to	the	highest	priority	task(s)	as	soon	as	it	is	ready,	for	example,
after	it	receives	a	message	for	which	it	was	waiting.

Provide	task	synchronization	and	communication	mechanisms.

Provide	a	memory-locking	capability	for	tasks.	In	hard	real-time	systems,
it	is	usually	the	case	that	all	concurrent	tasks	are	memory	resident.	This	is
to	eliminate	the	uncertainty	and	variation	in	response	time	introduced	by
paging	overhead.	This	memory-locking	capability	allows	all	time-critical
tasks	with	hard	deadlines	to	be	locked	in	main	memory	so	that	they	are
never	paged	out.

Provide	a	mechanism	for	priority	inheritance,	as	described	in	Chapter	17.
When	a	task,	task	A,	enters	a	critical	section,	its	priority	must	be
temporarily	raised	to	the	highest	priority	of	all	tasks	that	are	capable	of
entering	this	critical	section.	Otherwise,	task	A	is	liable	to	get	preempted
by	a	higher	priority	task,	which	is	then	unable	to	enter	its	critical	section



because	of	task	A;	hence,	the	higher	priority	task	would	block
indefinitely.

Have	a	predictable	behavior	(for	example,	for	task	context	switching,
task	synchronization,	and	interrupt	handling).	Thus,	there	should	be	a
predictable	maximum	response	time	under	all	anticipated	system	loads.



3.9	Task	Scheduling
On	 single	 processor	 (CPU)	 or	 multiprocessor	 systems,	 the	 operating	 system
kernel	 has	 to	 schedule	 concurrent	 tasks	 for	 one	 or	 more	 CPUs.	 The	 kernel
maintains	 a	Ready	List	 of	 all	 tasks	 that	 are	 ready	 to	 use	 a	CPU.	Various	 task
scheduling	 algorithms	 have	 been	 designed	 to	 provide	 alternative	 strategies	 for
allocating	 tasks	 to	 a	 CPU,	 such	 as	 round-robin	 scheduling	 and	 priority
preemption	scheduling.



3.9.1	Task	Scheduling	Algorithms

The	goal	of	the	round-robin	scheduling	algorithm	is	to	provide	a	fair	allocation
of	resources.	Tasks	are	queued	on	a	FIFO	basis.	The	top	task	on	the	Ready	List
is	allocated	to	a	CPU	and	given	a	fixed	unit	of	time	called	a	“time	slice.”	If	the
time	 slice	 expires	before	 the	 task	has	blocked	 (for	 example,	 to	wait	 for	 I/O	or
wait	for	a	message),	the	task	is	suspended	by	the	kernel	and	placed	on	the	end	of
the	Ready	List.	The	CPU	 is	 then	 allocated	 to	 the	 task	 at	 the	 top	of	 the	Ready
List.	In	a	multiprocessor	system,	the	number	of	tasks	that	could	be	in	Executing
state	is	equal	to	the	number	of	processors.

However,	 in	 real-time	systems,	 round-robin	 scheduling	 is	not	 satisfactory.
A	 fair	 allocation	 of	 resources	 is	 not	 a	 prime	 concern,	 and	 tasks	 need	 to	 be
assigned	 priorities	 according	 to	 the	 importance	 of	 the	 operations	 they	 are
executing.	Thus,	 time-critical	 tasks	need	to	be	certain	of	executing	before	 their
deadlines	elapse.	A	more	satisfactory	scheduling	algorithm	for	real-time	systems
is	priority	preemption	scheduling.	Each	task	is	assigned	a	priority	and	the	Ready
List	is	ordered	by	priority.	The	task(s)	with	the	highest	priority	is	assigned	to	a
CPU.	A	task	will	then	execute	until	it	blocks	or	is	preempted	by	a	higher	priority
task	 (which	 has	 just	 become	 unblocked).	 Tasks	 with	 the	 same	 priority	 are
assigned	to	a	CPU	on	a	FIFO	basis.	It	should	be	noted	that	priority	preemption
scheduling	does	not	use	time	slicing.



3.9.2	Task	States

Consider	the	various	states	a	task	goes	through	from	creation	to	termination,	as
depicted	 on	 the	 state	machine	 in	 Figure	 3.9.	 These	 states	 are	maintained	 by	 a
multitasking	kernel	that	uses	a	priority	preemption	scheduling	algorithm.

Figure	3.9.	State	machine	for	a	concurrent	task.

When	a	task	is	first	created,	it	is	placed	in	Ready	state,	during	which	time	it
is	on	the	Ready	List.	When	it	reaches	the	top	of	the	Ready	List,	it	is	assigned	to	a
CPU,	at	which	 time	 it	 transitions	 into	Executing	 state.	The	 task	might	 later	be
preempted	 by	 another	 task	 and	 reenter	 Ready	 state,	 at	 which	 time	 the	 kernel
places	it	on	the	Ready	List	in	a	position	determined	by	its	priority.

Alternatively,	while	in	Executing	state,	the	task	may	block,	in	which	case	it
enters	 the	 appropriate	 blocked	 state.	 A	 task	 can	 block	 while	 waiting	 for	 I/O,



while	waiting	for	a	message	from	another	task,	while	waiting	for	a	timer	event	or
an	event	signaled	by	another	task,	or	while	waiting	to	enter	a	critical	section.	A
blocked	task	reenters	Ready	state	when	the	reason	for	blocking	is	removed	–	in
other	words,	when	the	I/O	completes,	 the	message	arrives,	 the	event	occurs,	or
the	task	gets	permission	to	enter	its	critical	section.



3.9.3	Task	Context	Switching

When	a	task	is	suspended	because	of	either	blocking	or	preemption,	 its	current
context	or	processor	state	must	be	saved.	This	includes	saving	the	contents	of	the
hardware	 registers,	 the	 task's	 program	 counter	 (which	 points	 to	 the	 next
instruction	 to	 be	 executed),	 and	 other	 relevant	 information.	 When	 a	 task	 is
assigned	to	a	CPU,	its	context	must	be	restored	so	it	can	resume	executing.	This
whole	process	is	referred	to	as	context	switching.

In	a	shared	memory	multiprocessing	environment,	an	instance	of	the	kernel
usually	executes	on	each	processor.	Each	processor	selects	the	task	at	the	top	of
the	 Ready	 List	 to	 execute.	 Mutually	 exclusive	 access	 to	 the	 Ready	 List	 is
achieved	by	means	of	a	hardware	semaphore	typically	implemented	by	means	of
a	Test	 and	 Set	 Lock	 instruction.	 Thus,	 the	 same	 task	 can	 execute	 on	 different
processors	at	different	times.	In	some	multiprocessing	environments,	threads	of
the	same	multithreaded	process	can	concurrently	execute	on	different	processors.
More	 information	 on	 task	 scheduling	 is	 given	 in	 books	 on	 operating	 systems,
such	as	those	by	Silberschatz	et.	al.	(2013)	and	Tanenbaum	(2014).



3.10	Software	Architecture	and	Components
A	software	 architecture	 (Shaw	and	Garlan	1996;	Bass,	Clements,	 and	Kazman
2013;	Taylor	et	al.	2009)	separates	the	overall	structure	of	the	system,	in	terms
of	 components	 and	 their	 interconnections,	 from	 the	 internal	 details	 of	 the
individual	components.

A	software	architecture	can	be	described	at	different	 levels	of	detail.	At	a
high	 level,	 it	 can	 describe	 the	 decomposition	 of	 the	 software	 system	 into
subsystems.	At	a	 lower	 level,	 it	 can	describe	 the	decomposition	of	 subsystems
into	modules	or	components.	In	each	case,	the	emphasis	is	on	the	external	view
of	the	subsystem/component,	 that	is	the	interfaces	it	provides	and	requires,	and
its	interconnections	with	other	subsystems/components.

The	 software	 quality	 attributes	 of	 a	 system	 should	 be	 considered	 when
developing	 the	 software	 architecture.	 These	 attributes	 relate	 to	 how	 the
architecture	 addresses	 important	 nonfunctional	 requirements,	 such	 as
performance,	security,	and	maintainability,	and	are	described	in	Chapter	16.

A	software	architecture	can	be	described	from	different	views,	as	discussed
in	Chapter	4.	 It	 is	 important	 to	ensure	 that	 the	architecture	fulfills	 the	software
requirements,	 both	 functional	 (what	 the	 software	 has	 to	 do)	 and	 nonfunctional
(how	well	it	should	do	it).	It	is	also	the	starting	point	for	the	detailed	design	and
implementation,	when	typically	the	development	team	is	much	larger.



3.10.1	Components	and	Component	Interfaces

The	term	component	is	used	in	different	ways.	It	is	often	used	in	a	general	sense
to	mean	a	module	 in	modular	 systems.	There	 is	 a	more	precise	definition	of	 a
component	that	is	part	of	a	component-based	software	architecture.

A	 component	 is	 a	 self-contained,	 usually	 concurrent,	 object	with	 a	well-
defined	 interface,	 capable	 of	 being	 used	 in	 different	 applications	 from	 that	 for
which	 it	was	originally	designed.	 In	distributed	 applications,	 a	 component	 is	 a
basic	unit	of	deployment	and	distribution,	as	described	 in	Chapter	12.	To	fully
specify	 a	 component,	 it	 is	 necessary	 to	 define	 it	 in	 terms	 of	 the	 operations	 it
provides	 and	 the	 operations	 it	 requires.	 Such	 a	 definition	 is	 in	 contrast	 to
conventional	object-oriented	approaches,	which	describe	an	object	only	in	terms
of	 the	 operations	 it	 provides.	 However,	 if	 a	 preexisting	 component	 is	 to	 be
integrated	into	a	component-based	system,	it	is	just	as	important	to	understand	–
and	 therefore	 to	 represent	 explicitly	 –	 both	 the	 operations	 that	 the	 component
requires	and	those	that	 it	provides.	Components	are	described	in	more	detail	 in
Chapter	12.



3.10.2	Connectors

In	addition	to	defining	the	components,	a	software	architecture	must	define	the
connectors	 that	 join	 the	 components.	 A	 connector	 encapsulates	 the
interconnection	 protocol	 between	 two	 or	more	 components.	Different	 kinds	 of
message	 communication	 between	 components	 include	 asynchronous	 and
synchronous	communication.	The	 interaction	protocols	for	each	of	 these	 types
of	 communication	 can	 be	 encapsulated	 in	 a	 connector.	 For	 example,	 although
asynchronous	message	communication	between	components	on	the	same	node	is
logically	 the	 same	 as	 between	 components	 on	 different	 nodes,	 different
connectors	would	 be	 used	 in	 the	 two	 cases.	 In	 the	 former	 case,	 the	 connector
could	 use	 a	 shared	 memory	 buffer;	 the	 latter	 case	 would	 use	 a	 different
connector	that	sends	messages	over	a	network.	Connectors	are	described	in	more
detail	in	Chapter	12.



3.11	Summary
This	 chapter	 has	 described	 key	 concepts	 in	 the	 software	 design	 of	 concurrent
object-oriented	 real-time	 embedded	 systems	 as	well	 as	 important	 concepts	 for
developing	the	architecture	of	these	systems.	The	object-oriented	and	concurrent
tasking	 concepts	 introduced	 here	 form	 the	 basis	 of	 several	 of	 the	 forthcoming
chapters.	 From	 a	 design	 perspective,	 class	 design	 is	 described	 in	 Chapter	 14.
Concurrent	tasking	and	inter-task	communication	aspects	are	addressed	in	more
detail	from	two	perspectives.	A	large-grained	perspective	is	given	in	Chapter	12
on	 the	 software	 architecture	 of	 distributed	 applications.	 A	 smaller-grained
perspective	on	task	design	is	described	in	Chapters	13	and	14.	Issues	relating	to
synchronization	 of	 access	 to	 information-hiding	 classes	 are	 addressed	 in	more
detail	in	Chapter	14.	Software	architecture	is	described	in	more	detail	in	Chapter
10.	Architectural	structure	and	communication	patterns	are	described	in	Chapter
11.	Software	quality	attributes	are	described	in	Chapter	16.



Part	II
◈

Real-Time	Software	Design
Method



4

Overview	of	Real-Time	Software
Design	Method	for	Embedded

Systems
◈

Model-based	 systems	 engineering	 (Buede	 2009,	 Sage	 2000)	 and	 model-based
software	engineering	(Booch	2007,	Gomaa	2011,	Blaha	2005)	are	recognized	as
important	 engineering	 disciplines	 in	 which	 the	 system	 under	 development	 is
modeled	and	analyzed	prior	to	implementation.	In	particular,	embedded	systems,
which	are	software	intensive	systems	consisting	of	both	hardware	and	software
components,	 benefit	 considerably	 from	 a	 combined	 approach	 that	 uses	 both
system	 and	 software	 modeling.	 As	 described	 in	 Chapter	 2,	 the	 modeling
languages	 used	 in	 this	 book	 are	 SysML	 for	 systems	 modeling	 and	 UML	 for
software	modeling.

This	chapter	provides	an	overview	of	the	real-time	software	design	method
for	 embedded	 systems	 called	COMET/RTE	 (Concurrent	Object	Modeling	 and
Architectural	 Design	Method	 for	Real-Time	Embedded	 systems),	 which	 uses
the	SysML,	UML,	and	MARTE	notations.	Section	4.1	starts	with	an	overview	of
the	COMET/RTE	systems	and	software	life	cycle.	Section	4.2	describes	each	of
the	main	phases	of	COMET/RTE.	Section	4.3	compares	 the	COMET/RTE	 life



cycle	 with	 the	 Unified	 Software	 Development	 Process,	 the	 spiral	 model,	 and
agile	software	development.	Section	4.4	provides	a	survey	of	design	methods	for
real-time	 embedded	 systems.	 Finally,	 Section	 4.5	 gives	 an	 introduction	 to	 the
multiple	view	modeling	and	design	of	real-time	embedded	software	architectures
described	in	this	textbook.



4.1	COMET/RTE	System	and	Software	Life
Cycle	model

This	 section	presents	 an	overview	of	 the	COMET/RTE	method	 from	a	 system
and	 software	 life	 cycle	 perspective.	 COMET/RTE	 starts	 with	 a	 systems
structural	 analysis	 and	 modeling	 of	 the	 total	 system	 (hardware,	 software,
people),	 which	 leads	 to	 defining	 the	 boundary	 between	 the	 system	 and	 the
external	 environment	and	 to	designing	 the	hardware/software	 interface.	This	 is
followed	by	an	iterative	software	development	process,	which	is	both	use	case–
based	and	object-oriented.	The	COMET/RTE	life	cycle	model,	which	is	depicted
in	 Figure	 4.1,	 is	 highly	 iterative	 and	 encompasses	 both	 system	 and	 software
modeling.	 Iteration	 is	 between	 successive	 phases,	 as	 well	 as	 iterating	 back
through	multiple	phases	using	an	incremental	development	approach.

Figure	4.1.	COMET/RTE	life	cycle	model.



Studies	 have	 shown	 that	 errors	 in	 requirements	 engineering	 and	 software
architectural	design	are	usually	the	last	to	be	discovered	and	the	most	costly	to
fix	 (Boehm	 2006),	 and	 this	 is	 particularly	 the	 case	 for	 real-time	 embedded
systems.	COMET/RTE	 focuses	 on	 requirements	 and	design	within	 an	 iterative
system	and	software	life	cycle,	as	described	in	this	section.



4.2	Phases	in	COMET/RTE	Life	Cycle	model
This	 section	 provides	 an	 overview	 of	 the	 main	 phases	 of	 the	 COMET/RTE
method	from	a	system	and	software	life	cycle	perspective.



4.2.1	System	Structural	Modeling

System	modeling	focuses	on	static	structural	modeling	of	the	total	system	using
SysML	to	get	a	better	understanding	of	the	system.	The	following	steps	consider
the	 total	 system	 perspective,	 consisting	 of	 hardware,	 software,	 and	 people,
without	consideration	of	what	functionality	is	carried	out	in	hardware	and	what
functionality	in	software.	The	details	of	these	steps	are	provided	in	Chapter	5.

a)	Structural	Modeling	of	the	Problem	Domain

Structural	 modeling	 of	 the	 problem	 domain	 involves	 static	 modeling	 of	 real-
world	entities,	 including	 relevant	systems,	 relevant	users,	physical	entities,	and
information	entities,	and	determining	the	relationships	between	them.	Structural
modeling	 of	 the	 problem	 domain	 is	 carried	 out	 using	 SysML	 block	 definition
diagrams.

b)	Structural	Modeling	of	the	System	Context

Structural	 modeling	 of	 the	 system	 context	 involves	 explicitly	 determining	 the
boundary	 between	 the	 total	 system,	 which	 is	 treated	 as	 a	 black	 box,	 and	 the
external	 environment.	 In	 considering	 the	 total	 hardware/software	 system,	users
and	 external	 systems	 are	 external	 to	 the	 system,	 while	 both	 hardware	 and
software	 entities	 are	 inside	 the	 system.	 This	 static	 structural	 model	 requires
developing	a	system	context	block	definition	diagram	using	SysML.

c)	Hardware/Software	Boundary	Modeling

This	 step	 involves	 the	 decomposition	 of	 the	 total	 system	 into	 hardware	 and
software	components.	Each	hardware	component	is	identified	and	its	interface	to



the	software	system	is	determined.	If	the	software	system	is	to	interface	to	other
existing	systems	or	new	systems	under	development,	then	each	of	these	systems
is	depicted	as	a	component.

d)	Software	System	Context	Modeling

Once	 the	 hardware/software	 boundary	 has	 been	 determined,	 the	 next	 step
addresses	 developing	 the	 software	 system	 context	 model.	 This	 step	 involves
determining	the	boundary	of	the	software	system,	in	particular	how	the	software
system	 interfaces	 to	 the	hardware	components	 that	are	external	 to	 the	software
system.	 This	 static	 structural	 model	 requires	 developing	 a	 software	 system
context	block	definition	diagram	using	SysML.

e)	System	Deployment	Modeling

Develop	 a	deployment	diagram	depicting	 the	deployment	of	 system	 (hardware
and	 software)	 components,	 in	 particular	 how	 components	 are	 allocated	 to
physical	nodes.	Deployment	modeling	is	particularly	useful	for	distributed	real-
time	embedded	systems.



4.2.2	Requirements	Modeling

During	 the	 requirements	 modeling	 phase,	 both	 the	 functional	 and
nonfunctional	 requirements	of	 the	 system	are	determined.	A	use	case	model	 is
developed	 in	which	 the	 functional	 requirements	of	 the	 system	are	described	 in
terms	 of	 actors	 and	 use	 cases.	 A	 narrative	 description	 of	 each	 use	 case	 is
developed.	User	inputs	and	active	participation	are	essential	to	this	effort.	If	the
requirements	are	not	well	understood,	a	throwaway	prototype	(Gomaa	2011)	can
be	developed	to	help	clarify	the	requirements.

The	activities	in	requirements	modeling	are:

Develop	use	cases.	The	system	and	software	functional	requirements	of
the	system	are	described	in	terms	of	use	cases	and	actors.	The	use	case
descriptions	are	a	behavioral	view;	the	relationships	among	the	use	cases
give	a	structural	view.	Use	case	modeling	is	described	in	Chapter	6.

Develop	nonfunctional	requirements.	Addressing	nonfunctional
requirements	(also	referred	to	as	quality	requirements)	is	also	important
at	the	requirements	phase.	The	UML	notation	does	not	specifically
address	this	activity.	However,	the	use	case	modeling	approach	can	be
supplemented	to	address	nonfunctional	requirements,	as	described	in
Chapter	6.



4.2.3	Analysis	Modeling

In	 the	 analysis	 modeling	 phase,	 static	 and	 dynamic	 models	 of	 the	 software
system	 are	 developed.	 The	 static	 model	 defines	 the	 structural	 relationships
among	 problem	 domain	 classes,	 as	 described	 in	 Chapter	 5.	 Object	 structuring
criteria	are	used	to	determine	the	objects	to	be	considered	for	the	analysis	model.
A	dynamic	 interaction	model	 is	 then	developed.	 In	 the	dynamic	 state	machine
model,	state-dependent	parts	of	the	system	are	designed	using	state	machines.	In
the	dynamic	 interaction	model,	 the	use	 cases	 from	 the	 requirements	model	 are
realized	 to	 show	 the	 objects	 that	 participate	 in	 each	 use	 case	 and	 how	 they
interact	 with	 each	 other.	 Objects	 and	 their	 interactions	 are	 depicted	 on
interaction	diagrams,	either	sequence	diagrams	or	communication	diagrams.

Dynamic	 modeling	 is	 particularly	 important	 for	 real-time	 embedded
systems,	since	it	is	important	to	determine	the	dynamic	reaction	of	the	system	to
the	 different	 sequences	 of	 external	 events.	 In	 most	 real-time	 systems,	 static
modeling	 is	much	 simpler	 than	 dynamic	modeling	 and	 can	 be	 largely	 or	 even
completely	addressed	during	system	structural	modeling.

In	 the	 analysis	model,	 the	 analysis	 of	 the	 problem	 domain	 is	 considered.
The	activities	are:

Static	modeling.	This	is	a	structural	view	of	the	information	provided	in
the	system.	Classes	are	defined	in	terms	of	their	attributes,	as	well	as
their	relationship	with	other	classes.	Static	modeling	is	described	in
Chapter	5.

Dynamic	state	machine	modeling.	The	state	dependent	view	of	the
system	is	defined	using	hierarchical	state	machines.	Designing	state
machines	is	described	in	Chapter	7.



Object	structuring.	Determine	the	objects	that	participate	in	each	use
case.	Object	structuring	criteria	are	provided	to	help	determine	the
software	objects	in	the	system,	which	can	be	entity	objects,	boundary
objects,	control	objects,	and	application	logic	objects.	State	machines	are
encapsulated	in	state	dependent	control	objects.	Object	structuring	is
described	in	Chapter	8.	After	the	objects	have	been	determined,	the
dynamic	relationships	between	objects	are	depicted	in	the	dynamic
interaction	model.

Dynamic	interaction	modeling.	The	use	cases	are	realized	to	show	the
interaction	among	the	objects	participating	in	each	use	case.	Interaction
diagrams,	either	sequence	diagrams	or	communication	diagrams,	are
developed	to	depict	how	objects	communicate	with	each	other	to	execute
each	use	case.	Chapter	9	describes	both	stateless	dynamic	interaction
modeling	and	state-dependent	dynamic	interaction	modeling,	in	which
the	interaction	among	the	state	dependent	control	objects	and	the	state
machines	they	execute	is	explicitly	modeled.



4.2.4	Design	Modeling

In	the	design	modeling	phase,	the	real-time	software	architecture	of	the	system
is	 designed,	 in	 which	 the	 analysis	 model,	 with	 its	 emphasis	 on	 the	 problem
domain,	 is	 mapped	 to	 the	 design	 model,	 with	 its	 emphasis	 on	 the	 solution
domain.	Subsystem	structuring	criteria	are	provided	to	structure	the	system	into
subsystems,	which	are	considered	as	composite	objects.	Special	consideration	is
given	 to	 designing	 distributed	 subsystems	 as	 configurable	 concurrent
components	that	communicate	with	each	other	using	messages.	Each	subsystem
is	then	designed.	For	the	design	of	real-time	embedded	systems,	it	 is	necessary
to	consider	 concurrent	 tasking	concepts	 in	 addition	 to	object-oriented	concepts
of	information	hiding,	classes,	and	inheritance.

For	designing	 real-time	software	architectures,	 the	 following	activities	are
performed:

Transition	from	analysis	to	design.	The	use	case–based	interaction
diagrams	(developed	during	dynamic	interaction	modeling)	are
integrated	to	produce	integrated	communication	diagrams.	The	transition
from	analysis	to	design	is	described	in	Chapter	10.

Make	decisions	about	subsystem	structure	and	interfaces;	develop	the
overall	software	architecture;	structure	the	application	into	subsystems.
Subsystem	design	is	described	in	Chapter	10.

Make	decisions	about	what	software	architectural	and	design	patterns	to
use	in	the	software	architecture.	Software	architectural	patterns	are
described	in	Chapter	11.

Make	decisions	about	how	to	structure	the	distributed	application	into
distributed	subsystems,	in	which	subsystems	are	designed	as



configurable	components,	and	define	the	message	communication
interfaces	between	the	components.	Designing	component-based
software	architectures	is	described	in	Chapter	12.

For	each	subsystem,	structure	the	system	into	concurrent	tasks	(active
objects).	During	task	structuring,	tasks	are	structured	using	the	task
structuring	criteria,	and	task	interfaces	are	defined.	Designing	concurrent
tasks	is	described	in	Chapter	13.

Make	decisions	about	the	characteristics	of	messages,	in	particular,
whether	they	are	asynchronous	or	synchronous	(with	or	without	reply).
Architectural	communication	patterns	are	described	in	Chapter	11	and
applied	in	Chapters	12	and	13.

Develop	the	detailed	software	design,	in	which	tasks	that	contain	nested
passive	objects	are	designed,	detailed	task	synchronization	issues	are
addressed,	connector	classes	are	designed	to	encapsulate	the	details	of
inter-task	communication,	and	each	task's	internal	event	sequencing	logic
is	defined.	Detailed	software	design	is	described	in	Chapter	14.

Incorporate	system	and	software	quality	into	the	software	architecture.
System	and	software	quality	attributes,	and	how	to	incorporate	them	into
a	real-time	software	architecture,	are	described	in	Chapter	16.

Analyze	the	performance	of	the	real-time	software	design	before	it	is
implemented	using	real-time	scheduling	and/or	event	sequence	analysis,
to	determine	whether	the	design	meets	its	performance	requirements.
Performance	analysis	of	concurrent	real-time	software	designs	is
described	in	Chapter	17.



4.2.5	Incremental	Software	Construction

After	 completion	of	 the	 software	 architectural	 design,	 an	 incremental	 software
construction	approach	is	taken.	This	approach	is	based	on	selecting	a	subset	of
the	 system	 to	 be	 constructed	 for	 each	 increment.	 The	 subset	 is	 determined	 by
choosing	 the	 use	 cases	 to	 be	 included	 in	 this	 increment	 and	 the	 objects	 that
participate	in	these	use	cases.	Incremental	software	construction	consists	of	 the
detailed	 design,	 coding,	 and	 unit	 testing	 of	 the	 classes	 in	 the	 subset.	 This	 is	 a
phased	approach	by	which	 the	software	 is	gradually	constructed	and	 integrated
until	the	whole	system	is	built.



4.2.6	Incremental	Software	Integration

During	incremental	software	integration,	the	integration	testing	of	each	software
increment	is	performed.	The	integration	test	for	the	increment	is	based	on	the	use
cases	 selected	 for	 the	 software	 increment.	 Integration	 test	 cases	 are	 developed
for	each	use	case.	Integration	testing	is	a	form	of	white	box	testing,	in	which	the
interfaces	between	the	objects	that	participate	in	each	use	case	are	tested.

Each	 software	 increment	 forms	 an	 incremental	 prototype.	 After	 the
software	increment	is	judged	to	be	satisfactory,	the	next	increment	is	constructed
and	 integrated	 by	 iterating	 through	 the	 incremental	 software	 construction	 and
incremental	 software	 integration	 phases.	 However,	 if	 significant	 problems	 are
detected	 in	 testing	 the	 software	 increment,	 further	 iteration	 through	 the
requirements	modeling,	analysis	modeling,	and	design	modeling	phases	might	be
necessary.



4.2.7	System	Testing

System	testing	includes	the	functional	and	nonfunctional	testing	of	the	system	–
namely,	testing	the	system	against	its	functional	and	nonfunctional	requirements.
This	testing	is	black	box	testing,	that	is,	it	is	conducted	without	knowledge	of	the
system	internals	and	is	based	on	test	cases	developed	from	the	use	cases.	Thus,
functional	test	cases	are	built	for	each	use	case.	Any	software	increment	that	is
to	 be	 released	 to	 the	 customer	 needs	 to	 go	 through	 System	 Testing	 before
release.



4.3	Comparison	of	the	COMET/RTE	Life
Cycle	with	Other	Software	Processes

This	 section	 briefly	 compares	 the	 COMET/RTE	 life	 cycle	 with	 the	 Unified
Software	 Development	 Process	 (USDP),	 the	 spiral	 model,	 and	 agile	 software
development.	The	COMET/RTE	method	can	be	used	in	conjunction	with	either
the	USDP	or	the	spiral	model.	Some	agile	approaches	can	be	used	usefully	with
COMET/RTE,	but	others	should	be	avoided.



4.3.1	Comparison	of	COMET/RTE	with	Unified	Software	Development
Process

The	Unified	Software	Development	Process,	as	described	in	(Jacobson,	Booch,
and	 Rumbaugh	 1999,	 Kruchten	 2003,	 Kroll	 and	 Kruchten	 2003)	 emphasizes
process	 and	 –	 to	 a	 lesser	 extent	 –	 method.	 The	 USDP	 provides	 considerable
detail	about	the	life	cycle	aspects	and	some	detail	about	the	method	to	be	used.
The	 COMET/RTE	 method	 is	 compatible	 with	 USDP.	 The	 workflows	 of	 the
USDP	 are	 the	 requirements,	 analysis,	 design,	 implementation,	 and	 test
workflows.

Several	 phases	 of	 the	 COMET/RTE	 software	 life	 cycle	 correspond	 to
workflows	of	 the	USDP.	The	Requirements	Modeling,	Analysis	Modeling	and
Design	 Modeling	 phases	 of	 COMET/RTE	 correspond	 to	 the	 first	 three
workflows	of	 the	USDP.	The	COMET/RTE	 incremental	 software	construction
phase	 corresponds	 to	 the	 USDP	 implementation	 workflow.	 The	 incremental
software	integration	and	system	testing	phases	of	COMET/RTE	map	to	the	test
workflow	of	USDP.	COMET/RTE	separates	these	activities	because	integration
testing	 is	viewed	as	a	development	 team	activity,	whereas	a	 separate	 test	 team
should	carry	out	system	testing.



4.3.2	Comparison	of	COMET/RTE	with	the	Spiral	Model

The	 COMET/RTE	 method	 can	 also	 be	 used	 with	 the	 spiral	 model	 (Boehm
1988),	 which	 is	 a	 risk	 driven	 process	 model	 consisting	 of	 four	 activities
(depicted	 in	 four	 quadrants)	 that	 are	 iteratively	 carried	 out.	During	 the	 project
planning	 for	 a	 given	 cycle	 of	 the	 spiral	 model	 (first	 quadrant),	 the	 project
manager	 decides	 what	 specific	 technical	 activity	 should	 be	 performed	 in	 the
third	 quadrant,	 which	 is	 the	 product	 development	 quadrant.	 The	 selected
technical	activity,	such	as	requirements	modeling,	analysis	modeling,	or	design
modeling,	 is	 then	 performed	 in	 the	 third	 quadrant.	 The	 risk	 analysis	 activity,
performed	 in	 the	second	quadrant,	and	cycle	planning,	performed	 in	 the	 fourth
quadrant,	 determine	 how	 many	 iterations	 are	 required	 through	 each	 of	 the
technical	activities.



4.3.3	Comparison	of	COMET/RTE	with	Agile	Methods

Agile	methods	have	become	widely	used	in	software	development	(Beck	2005,
Cockburn	2006,	Sutherland	2014).	As	Meyer	(2014)	points	out	in	his	insightful
assessment	 of	 agile	 methods,	 there	 is	 the	 good,	 the	 hype,	 and	 the	 ugly.	 This
assessment	 is	 particularly	 important	 when	 time-critical	 and	 safety-critical
software	systems	are	being	developed.	In	particular,	agile	software	development
largely	avoids	upfront	requirements	and	design	activities.

Substituting	agile	user	stories	(Cohn	2006)	for	a	requirements	specification
is	 not	 an	 effective	 solution	 for	 real-time	 embedded	 software.	 Starting	 from	 a
sketchy	 design	 instead	 of	 a	 well-designed	 software	 architecture	 is	 also
inadequate	for	real-time	software	development.	However,	some	agile	approaches
can	be	used	effectively	in	real-time	software	development	after	the	requirements
have	 been	 specified	 and	 software	 architecture	 has	 been	 designed.	 Thus,	 agile
approaches	have	some	similarities	to	the	iterative	development	approaches	used
in	COMET/RTE,	USDP	and	 the	spiral	model.	 In	particular,	 the	agile	emphasis
on	 team	 communication	 and	 frequent	 team	meetings,	 short	 iterations,	 frequent
integration,	and	emphasis	on	software	testing	including	regression	testing,	can	be
used	effectively	in	real-time	software	development.



4.4	Survey	of	Design	Methods	for	Real-Time
Embedded	Systems

This	 section	 provides	 a	 survey	 and	 description	 of	 the	 evolution	 of	 design
methods	 for	 real-time	 embedded	 systems.	 For	 the	 design	 of	 these	 systems,	 a
major	 contribution	 came	 in	 the	 late	 seventies	 with	 the	 introduction	 of	 the
MASCOT	 notation	 (Simpson	 1979)	 and	 later	 the	 MASCOT	 design	 method
(Simpson	1986).	Based	on	a	data	flow	approach,	MASCOT	formalized	the	way
tasks	 communicate	 with	 each	 other,	 via	 either	 channels	 for	 message
communication	 or	 pools	 (information	 hiding	 modules	 that	 encapsulate	 shared
data	structures).

The	 1980s	 saw	 a	 general	 maturation	 of	 software	 design	 methods,	 and
several	 system	design	methods	were	 introduced.	Parnas's	work	with	 the	Naval
Research	Lab,	in	which	he	explored	the	use	of	information	hiding	in	large-scale
software	 design,	 led	 to	 the	 development	 of	 the	 Naval	 Research	 Lab	 (NRL)
Software	Cost	Reduction	Method	(Parnas,	Clements,	and	Weiss	1984).	Work	on
applying	Structured	Analysis	and	Structured	Design	to	concurrent	and	real-time
systems	 led	 to	 the	 development	 of	Real-Time	 Structured	Analysis	 and	Design
(RTSAD)	 (Ward	 1985,	Hatley	 1988)	 and	 the	Design	Approach	 for	Real-Time
Systems	(DARTS)	(Gomaa	1984,	1986)	methods.

Another	 software	 development	method	 to	 emerge	 in	 the	 early	 1980s	was
Jackson	System	Development	 (JSD)	 (Jackson	 1983).	 JSD	was	 one	 of	 the	 first
methods	 to	 advocate	 that	 the	 design	 should	 model	 reality	 first	 and,	 in	 this
respect,	predated	the	object-oriented	analysis	methods.	The	system	is	considered
a	simulation	of	the	real	world	and	is	designed	as	a	network	of	concurrent	tasks,
in	which	each	real-world	entity	is	modeled	by	means	of	a	concurrent	task.	JSD



also	defied	 the	 then-conventional	 thinking	of	 top-down	design	by	advocating	a
scenario-driven	 behavioral	 approach	 to	 software	 design.	 This	 approach	 was	 a
precursor	 of	 object	 interaction	 modeling,	 an	 essential	 part	 of	 modern	 object-
oriented	development.

The	 early	 object-oriented	 analysis	 and	 design	 methods	 emphasized	 the
structural	 issues	 of	 software	 development	 through	 information	 hiding	 and
inheritance	but	neglected	the	dynamic	issues	and	hence	were	less	useful	for	real-
time	 design.	 A	 major	 contribution	 by	 the	 Object	 Modeling	 Technique
(Rumbaugh	et	al.	1991)	was	to	clearly	demonstrate	that	dynamic	modeling	was
equally	important.	In	addition	to	introducing	the	static	modeling	notation	for	the
object	diagrams,	OMT	showed	how	dynamic	modeling	could	be	performed	with
statecharts	 (hierarchical	state	 transition	diagrams	originally	conceived	by	Harel
[1996,	 1998])	 for	 showing	 the	 state-dependent	 behavior	 of	 active	 objects	 and
with	sequence	diagrams	to	show	the	sequence	of	interactions	between	objects.

The	 Concurrent	 Design	 Approach	 for	 Real-Time	 Systems	 (CODARTS)
method	 (Gomaa	1993)	built	on	 the	strengths	of	earlier	concurrent	design,	 real-
time	design,	and	early	object-oriented	design	methods.	These	included	Parnas's
NRL	 Method,	 Booch's	 Object-Oriented	 Design	 Method	 (described	 in	 Booch
2007),	 JSD,	 and	 the	DARTS	method	 by	 emphasizing	 both	 information	 hiding
module	structuring	and	task	structuring.	In	CODARTS,	concurrency	and	timing
issues	 are	 considered	 during	 task	 design	 and	 information	 hiding	 issues	 are
considered	during	module	design.

Octopus	 (Awad,	Kuusela,	 and	Ziegler	1996)	 is	 a	 real-time	design	method
based	 on	 use	 cases,	 static	 modeling,	 object	 interactions,	 and	 statecharts.	 By
combining	concepts	from	Jacobson's	use	cases	with	Rumbaugh's	static	modeling
and	statecharts,	Octopus	anticipated	the	merging	of	the	notations	that	is	now	the
UML.	For	real-time	design,	Octopus	places	particular	emphasis	on	interfacing	to
external	devices	and	on	concurrent	task	structuring.



ROOM	 –	 Real-Time	 Object-Oriented	Modeling	 –	 (Selic,	 Gullekson,	 and
Ward	1994)	is	a	real-time	design	method	that	is	closely	tied	in	with	a	Computer
Assisted	Software	Engineering	 tool	called	ObjecTime.	ROOM	is	based	around
actors,	which	are	active	objects	that	are	modeled	using	a	variation	on	statecharts
called	 ROOMcharts.	 A	 ROOM	model,	 which	 has	 been	 specified	 in	 sufficient
detail,	may	be	executed.	Thus,	a	ROOM	model	is	operational	and	may	be	used
as	 an	 early	 prototype	 of	 the	 system.	 ObjecTime	 is	 a	 precursor	 of	 executable
design	modeling	frameworks,	which	(as	described	in	Chapter	2)	are	particularly
effective	for	developing	real-time	systems.

Buhr	 (see	 Buhr	 and	 Casselman	 1996)	 introduced	 an	 interesting	 concept
called	the	use	case	map	(based	on	the	use	case	concept)	to	address	the	issue	of
dynamic	modeling	of	large-scale	systems.	Use	case	maps	consider	the	sequence
of	interactions	between	objects	(or	aggregate	objects	in	the	form	of	subsystems)
at	a	larger	grained	level	of	detail	than	do	communication	diagrams.

For	 UML-based	 real-time	 software	 development,	 Douglass	 (1999,	 2004)
has	 described	 how	UML	 can	 be	 applied	 to	 real-time	 systems.	 The	 2004	 book
describes	applying	 the	UML	notation	 to	 the	development	of	 real-time	systems.
The	1999	book	is	a	detailed	compendium	covering	a	wide	range	of	topics	in	real-
time	system	development.

An	early	version	of	the	COMET/RTE	method	described	in	this	book	is	the
original	COMET	method	(Gomaa	2000),	which	used	UML	1.0	and	was	oriented
toward	the	design	of	concurrent,	real-time,	and	distributed	applications.



4.5	Multiple	Views	of	System	and	Software
Architecture

Real-time	 system	 and	 software	 architectures	 can	 be	 considered	 from	 different
perspectives,	 which	 are	 referred	 to	 as	 different	 views.	 Kruchten	 (1995)
introduced	the	4+1	view	model	of	software	architecture,	in	which	he	advocated	a
multiple	 view	modeling	 approach	 for	 software	 architectures,	 in	which	 the	 use
case	view	is	the	unifying	view	(the	1	view	of	the	4+1	views).

This	book	describes	and	depicts	the	different	modeling	views	of	a	real-time
system	and	 software	 architecture	using	 the	UML,	SysML,	 and	MARTE	visual
notations.	The	modeling	views,	which	address	 the	 requirements	 for	a	 real-time
software	design	method	outlined	in	Chapter	1,	are:

Structural	view.	The	structural	view	of	the	total	hardware/software
system	architecture	is	depicted	on	SysML	block	definition	diagrams	in
terms	of	blocks	and	relationships.	The	structural	view	of	the	software
architecture	is	depicted	on	UML	class	diagrams	in	terms	of	classes	and
relationships.	Relationships	can	be	associations,	whole/part	relationships
(compositions	or	aggregations),	or	generalization/specialization
relationships.	This	view	is	similar	to	the	logical	view	in	the	4+1	view
model.

Use	case	view.	This	view	is	a	functional	requirements	view,	which	is	an
input	to	develop	the	software	architecture.	Each	use	case	describes	the
sequence	of	interactions	between	one	or	more	actors	(external	users	or
entities)	and	the	system.	This	view	is	the	same	as	the	use	case	view,
which	is	the	1	view,	in	the	4+1	view	model.



Dynamic	interaction	view.	This	view	describes	the	architecture	in	terms
of	objects	as	well	as	the	message	communication	between	them.	This
view	can	also	be	used	to	depict	the	execution	sequence	of	specific
scenarios.	Depicted	on	UML	interaction	diagrams,	either	sequence	or
communication	diagrams.

Dynamic	state	machine	view.	This	view	depicts	the	internal	control	and
sequencing	of	a	control	object	using	a	state	machine.	Depicted	on	UML
state	machine	diagrams.

Structural	component	view.	This	view	depicts	the	software	architecture
in	terms	of	components,	which	are	interconnected	through	ports,	which
in	turn	support	provided	and	required	interfaces.	Depicted	on	UML
structured	class	diagrams.	This	view	is	similar	to	the	development	view
in	the	4+1	view	model.

Dynamic	concurrent	view.	This	view	depicts	the	software	architecture
as	concurrent	components	(tasks),	executing	on	distributed	nodes	and
communicating	by	messages.	Depicted	on	UML	concurrent
communication	diagrams.	This	view	is	similar	to	the	process	view	in	the
4+1	view	model.

Deployment	view.	This	view	depicts	a	specific	configuration	of	the
distributed	architecture	with	components	assigned	to	hardware	nodes.
Depicted	on	UML	deployment	diagrams.	This	view	is	similar	to	the
physical	view	in	the	4+1	view	model.

Timing	view.	This	view	analyzes	the	concurrent	tasks	composing	the
real-time	software	architecture	from	a	timing	perspective.	This	analysis
considers	each	task's	execution	time	on	the	target	platform,	as	well	as	its



elapsed	time	as	it	competes	for	resources	with	other	tasks,	and	whether	it
will	meet	its	hard	deadlines.



4.6	Summary
This	chapter	has	described	the	COMET/RTE	system	and	software	life	cycle	for
the	 development	 of	 real-time	 embedded	 systems.	 The	 chapter	 then	 described
each	 of	 the	 main	 phases	 of	 the	 COMET/RTE	 method.	 The	 chapter	 then
compared	 the	COMET/RTE	life	cycle	with	 the	Unified	Software	Development
Process,	the	spiral	model,	and	agile	software	development,	which	was	followed
by	 a	 survey	 and	 description	 of	 the	 evolution	 of	 design	 methods	 for	 real-time
systems.	 It	 then	 described	 the	 different	 modeling	 views	 of	 the	 COMET/RTE
method.	 Each	 of	 the	 steps	 in	 the	 COMET/RTE	 method	 is	 described	 in	 more
detail	in	the	subsequent	chapters	of	this	textbook.



5

Structural	Modeling	for	Real-
Time	Embedded	Systems	with

SysML	and	UML
◈

This	 chapter	 describes	 how	 structural	 modeling	 can	 be	 used	 as	 an	 integrated
approach	for	system	and	software	modeling	of	embedded	systems	consisting	of
both	 hardware	 and	 software	 components.	The	 structural	 view	of	 a	 system	 is	 a
static	modeling	view,	which	does	not	change	with	time.	A	static	model	describes
the	static	structure	of	 the	system	being	modeled,	first	 the	static	structure	of	 the
total	hardware/software	 system	 followed	by	 the	 static	 structure	of	 the	 software
system.

Since	a	class	 is	a	software	concept	describing	a	software	element,	a	more
general	term	is	needed	to	refer	to	a	system	element.	SysML	uses	the	concept	of	a
block	as	a	system	structural	element,	which	is	a	broader	modeling	concept	than	a
class	 that	 can	 be	 used	 to	 refer	 to	 a	 hardware,	 software,	 or	 person	 structural
element.	 In	 this	chapter,	 the	 term	structural	element	 is	used	 to	refer	 to	either	a
block	or	class.

The	 SysML	block	 definition	 diagram	 notation	 is	 used	 to	 depict	 the	 static
model	 of	 the	 total	 hardware/software	 system	 and	 the	 UML	 class	 diagram



notation	is	used	to	depict	the	static	model	of	the	software	system.	SysML	block
definition	diagrams	and	UML	class	diagrams	were	first	introduced	in	Chapter	2.
For	 system	 modeling,	 this	 chapter	 describes	 system-wide	 structural	 modeling
concepts	 including	 blocks,	 attributes	 of	 blocks,	 and	 relationships	 between
blocks.	 For	 software	 modeling,	 this	 chapter	 describes	 software	 structural
modeling	 concepts	 including	 classes,	 attributes	 of	 classes	 and	 relationships
between	 classes.	 Software	 design	 concepts	 such	 as	 class	 operations	 (methods)
are	deferred	to	software	class	design	as	described	in	Chapter	14.

The	objective	of	 the	model-based	approach	described	 in	 this	 chapter	 is	 to
clearly	 delineate	 between	 total	 system	 (i.e.,	 hardware	 and	 software)	 modeling
and	 strictly	 software	modeling,	with	 a	well-defined	 transition	between	 the	 two
modeling	 activities.	 This	 chapter	 starts	 with	 a	 brief	 description	 of	 static
modeling,	 in	particular	 the	relationships	between	structural	elements	(blocks	or
classes)	 in	Section	5.1.	Three	 types	of	 relationship	are	described:	associations,
composition	 and	 aggregation	 relationships,	 and	 generalization/specialization
relationships.	After	the	introduction	to	static	modeling,	this	chapter	addresses	the
categorization	of	blocks	and	classes	using	stereotypes	 in	Section	5.2,	structural
modeling	of	the	problem	domain	with	SysML	in	Section	5.3,	structural	modeling
of	 the	 system	context	 in	Section	5.4,	hardware/software	boundary	modeling	 in
Section	5.5,	 structural	modeling	of	 the	 software	 system	context	 in	Section	5.6,
and	 defining	 hardware/software	 interfaces	 in	 Section	 5.7.	 Finally,	 system
deployment	modeling	is	described	in	Section	5.8.



5.1	Static	Modeling	Concepts
This	section	provides	an	overview	of	static	modeling	concepts,	which	are	used	in
the	 structural	 modeling	 of	 embedded	 systems.	 A	 static	 model	 defines	 the
structural	elements	of	a	system	in	terms	of	blocks	in	the	total	hardware/software
system	 and	 classes	 in	 the	 software	 system,	 as	 well	 as	 the	 attributes	 of	 the
structural	elements	and	the	relationships	between	them.	The	concepts	of	objects
and	classes,	as	well	as	class	attributes	and	operations,	are	described	in	Chapter	3.
This	 section	describes	 the	 three	main	 types	of	 relationships	between	structural
elements	 (whether	 system	 blocks	 or	 software	 classes):	 associations,	whole/part
relationships,	 and	 generalization/specialization	 relationships.	 The	 relationships
described	in	this	section	apply	equally	to	relationships	between	UML	classes	and
to	 relationships	 between	 SysML	 blocks.	 More	 information	 on	 the	 static
modeling	 notation	 is	 given	 in	 Chapter	 2.	 The	 following	 subsections	 describe
each	type	of	relationship	in	turn.



5.1.1	Associations

An	association	is	a	static,	structural	relationship	between	two	or	more	structural
elements.	 The	multiplicity	 of	 an	 association	 specifies	 how	many	 instances	 of
one	 structural	 element	 can	 relate	 to	 a	 single	 instance	 of	 another	 structural
element.	The	multiplicity	of	an	association	may	be:

An	example	of	structural	elements	that	depicts	classes	and	their	associations	in	a
factory	automation	system	is	given	 in	Figure	5.1.	A	workflow	plan	defines	 the
steps	for	manufacturing	a	part	of	a	given	type;	it	contains	several	manufacturing
operations,	 where	 each	 operation	 defines	 a	 single	 manufacturing	 step.
Consequently,	there	is	a	one-to-many	association	between	the	Workflow	Plan
class	 and	 the	 Manufacturing	 Operation	 class.	 A	 work	 order	 defines	 the

One-to-one	(1..1).	In	a	one-to-one	association	between	two	structural
elements,	the	association	is	one-to-one	in	both	directions.

One-to-many	(1..*).	In	a	one-to-many	association,	two	structural
elements	have	a	one-to-many	association	in	one	direction	and	a	one-to-
one	association	in	the	opposite	direction.

Numerically	specified	(m..n).	A	numerically	specified	association	is	an
association	that	refers	to	a	specific	range	of	numbers.

Optional	(0..1).	In	an	optional	association,	two	structural	elements	have
a	zero-to-one	association	in	one	direction	and	a	one-to-one	association	in
the	opposite	direction.	This	means	that	there	might	not	always	be	a	link
from	an	instance	of	one	structural	element	to	an	instance	of	the	other.

Many-to-many	(*).	In	a	many-to-many	association,	two	structural
elements	have	a	one-to-many	association	in	each	direction.



number	of	parts	to	be	manufactured	of	a	given	part	type.	Thus	the	Work	Order
class	 has	 a	 one-to-many	 association	with	 the	Part	 class.	Because	 a	workflow
plan	defines	how	all	parts	of	a	given	part	type	are	manufactured,	the	Workflow
Plan	 class	 also	 has	 a	 one-to-many	 association	 with	 the	 Part	 class.	 The
attributes	 of	 these	 classes	 are	 also	 shown	 in	 Figure	 5.1.	 For	 example,	 the
Workflow	Plan	class	has	attributes	for	the	type	of	part	to	be	manufactured,	the
raw	 material	 type	 to	 be	 used	 for	 manufacturing	 a	 part,	 and	 the	 number	 of
manufacturing	steps	required	to	produce	a	part.





Figure	5.1.	Example	of	classes,	attributes,	and	associations	on	a	class
diagram.



5.1.2	Composition	and	Aggregation	Hierarchies

Composition	 and	 aggregation	 are	 special	 forms	 of	 relationships	 in	 which
structural	elements	 (blocks	or	classes)	are	bound	by	a	whole/part	 relationship.
Both	composition	and	aggregation	hierarchies	address	a	structural	element	that	is
made	up	of	other	structural	elements.

A	 composition	 is	 a	 stronger	 form	 of	 whole/part	 relationship	 than	 an
aggregation,	and	an	aggregation	is	stronger	than	an	association.	In	particular,	the
composition	relationship	demonstrates	a	stronger	relationship	between	the	parts
and	 the	whole	 than	 does	 the	 aggregation	 relationship.	A	 composition	 is	 also	 a
relationship	 among	 instances.	 Thus	 the	 part	 objects	 are	 created,	 live,	 and	 die
together	with	the	whole.	The	part	object	can	belong	to	only	one	whole.

An	 example	 of	 a	 composition	 hierarchy	 is	 the	 block	 Microwave	 Oven
Embedded	System,	which	represents	the	whole	and	is	composed	of	several	part
blocks:	 Door	 Sensor,	 Heating	 Element,	 Keypad,	 Display,	 Weight
Sensor,	 Beeper,Lamp,Turntable,	 and	 Timer.	 There	 is	 a	 one-to-one
association	 between	 the	 Microwave	 Oven	 Embedded	 System	 composite
block	and	each	of	the	part	blocks,	as	shown	in	Figure	5.2.

Figure	5.2.	Example	of	a	composition	hierarchy.

The	aggregation	hierarchy	is	a	weaker	form	of	whole/part	relationship.	In
an	aggregation,	part	instances	can	be	added	to	and	removed	from	the	aggregate



whole.	For	 this	 reason,	 aggregations	are	 likely	 to	be	used	 to	model	conceptual
structural	elements	rather	 than	physical	ones.	 In	addition,	a	part	may	belong	to
more	than	one	aggregation.

An	 example	 of	 an	 aggregation	 hierarchy	 is	 the	Automated	Storage	&
Retrieval	 System	 (ASRS),	 which	 consists	 of	 one-to-many	 relationships
with	 ASRS	 Bin,	 ASRS	 Stand,	 and	 Forklift	 Truck	 (see	 Figure	 5.3).	 An
ASRS	consists	of	ASRS	bins	(where	parts	are	stored),	ASRS	stands	(where	parts
are	placed	after	retrieval	from	an	ASRS	bin	or	prior	to	storage	in	an	ASRS	bin),
and	forklift	trucks	(which	move	parts	from	the	stands	to	the	bins	for	storage	and
vice	versa	for	retrieval).	The	reason	that	the	ASRS	is	modeled	as	an	aggregation
is	that	it	could	be	expanded	to	add	more	bins,	stands,	and	trucks	after	it	has	been
created.	The	attributes	for	the	three	part	classes	are	also	depicted	in	Figure	5.3.
For	example,	ASRS	Bin	has	attributes	for	the	bin	#,	the	ID	of	the	part	located	in
the	bin,	and	the	status	of	the	bin	(occupied	or	empty).

Figure	5.3.	Example	of	an	aggregation	hierarchy.



5.1.3	Inheritance	and	Generalization/Specialization

Inheritance	is	a	useful	abstraction	mechanism	in	structural	modeling	and	design.
Inheritance	permits	modeling	of	structural	elements	that	are	similar	in	some	but
not	 all	 respects,	 thus	 having	 some	 common	 properties	 but	 other	 unique
properties	 that	 distinguish	 them.	 Inheritance	 is	 a	 classification	mechanism	 that
has	been	widely	used	in	other	fields.	An	example	is	the	taxonomy	of	the	animal
kingdom,	in	which	animals	are	classified	as	mammals,	fish,	reptiles,	and	so	on.
Cats	and	dogs	have	common	properties	that	are	generalized	into	the	properties	of
mammals.	However,	 they	 also	 have	 unique	 properties:	A	 dog	 barks	 and	 a	 cat
mews.

The	following	description	is	in	terms	of	software	classes,	but	it	can	also	be
applied	 to	 system	 blocks.	 Inheritance	 is	 a	 mechanism	 for	 sharing	 properties
between	classes.	A	child	class	inherits	the	properties	(e.g.,	encapsulated	data)	of
a	parent	class.	It	can	then	modify	the	structure	(i.e.,	attributes)	of	its	parent	class
by	adding	new	attributes.	The	parent	class	is	referred	to	as	a	superclass	or	base
class.	The	child	class	is	referred	to	as	a	subclass	or	derived	class.	The	adaptation
of	 a	 parent	 class	 to	 form	 a	 child	 class	 is	 referred	 to	 as	 specialization.	 Child
classes	 may	 be	 further	 specialized,	 allowing	 the	 creation	 of	 class	 hierarchies,
also	referred	to	as	generalization/specialization	hierarchies.

Consider	an	example	from	a	factory	automation	system	given	in	Figure	5.4.
There	 are	 three	 types	 of	 factory	 workstations	 –	 receiving	 workstations,	 line
workstations,	 and	 shipping	 workstations	 –	 so	 they	 are	 modeled	 as	 a
generalization/specialization	 hierarchy;	 that	 is,	 the	 Factory	 Workstation

class	 is	 specialized	 into	 three	 subclasses:	 Receiving	 Workstation,
Shipping	Workstation,	and	Line	Workstation.	All	 factory	workstations
have	 attributes	 for	 workstation	 name,	 workstation	 ID,	 and	 location,



which	 are	 therefore	 attributes	 of	 the	 superclass	 and	 are	 inherited	 by	 the
subclasses.	 Since	 factory	 workstations	 are	 physically	 laid	 out	 in	 an	 assembly
line,	 the	Receiving	Workstation	class	has	a	next	workstation	ID,	 the
Shipping	Workstation	has	a	previous	workstation	ID,	while	a	Line
Workstation	 has	 both	 a	 previous	 workstation	 ID	 and	 a	 next
workstation	ID.	Because	of	these	differences,	previous	and	next	workstation
IDs	are	attributes	of	the	subclasses,	as	shown	in	Figure	5.4.

Figure	5.4.	Example	of	a	generalization/specialization	hierarchy.



5.2	Categorization	of	Blocks	and	Classes
using	Stereotypes

This	section	describes	how	blocks	and	classes	can	be	categorized	(i.e.,	grouped
together)	using	a	classification	approach.	The	dictionary	definition	of	category	is
“a	 specifically	 defined	 division	 in	 a	 system	 of	 classification.”	 Whereas
classification	based	on	inheritance	is	an	objective	of	object-oriented	modeling,	it
is	 essentially	 tactical	 in	 nature.	Thus,	 classifying	 the	Factory	Workstation
class	into	a	Receiving	Workstation,	Shipping	Workstation,	and	Line
Workstationis	a	good	idea	because	Receiving	Workstation,	Shipping
Workstation,	and	Line	Workstation	have	some	properties	(e.g.,	attributes)
in	 common	 and	 others	 that	 differ.	 Categorization,	 however,	 is	 a	 strategic
classification	–	a	decision	 to	organize	classes	 into	certain	groups	because	most
software	systems	have	these	kinds	of	classes	and	categorizing	classes	in	this	way
helps	to	better	understand	the	system	being	developed.

In	UML	and	SysML,	stereotypes	are	used	to	distinguish	among	the	various
kinds	of	modeling	elements.	A	stereotype	is	a	subclass	of	an	existing	modeling
element	(for	example	an	application	or	external	class),	which	is	used	to	represent
a	usage	distinction	(for	example	the	kind	of	application	or	external	class).	In	the
UML	notation,	a	stereotype	is	enclosed	by	guillemets,	like	this:	«input	device».

Examples	 shown	 in	 Figure	 5.5	 from	 the	microwave	 oven	 system	 are	 the
input	 devices	 Door	 Sensor	 and	 Weight	 Sensor,	 the	 output	 devices
Heating	Element	and	Lamp,	and	the	timer	Oven	Timer.



Figure	5.5.	Example	of	UML	modeling	elements	and	their	stereotypes.



5.3	Structural	Modeling	of	the	Problem
Domain	with	SysML

Structural	 modeling	 of	 the	 problem	 domain	 for	 real-time	 embedded	 systems
refers	to	modeling	the	external	entities	that	interface	to	the	embedded	system	to
be	 developed,	 as	well	 as	 the	 hardware	 and	 software	 structural	 elements	 of	 the
embedded	system.	In	this	structural	modeling,	the	embedded	system	refers	to	the
total	 hardware/software	 system,	 consisting	 of	 hardware	 elements,	 such	 as
sensors	and	actuators,	and	software	elements.	The	software	system	refers	to	the
software	 elements,	 in	 particular	 the	 software	 components	 that	 compose	 the
software	system	to	be	developed.



5.3.1	Modeling	Real-World	Entities	in	the	Problem	Domain

With	 structural	 modeling	 of	 the	 problem	 domain	 for	 real-time	 embedded
systems,	the	designer	uses	SysML	block	definition	diagrams	(see	Section	2.12)
to	 depict	 real-world	 structural	 elements	 (such	 as	 hardware	 elements,	 software
elements,	or	people)	as	blocks	and	defines	the	relationships	among	these	blocks.
A	block	definition	diagram	is	equivalent	to	a	class	diagram	in	which	the	classes
have	been	stereotyped	as	blocks,	thereby	allowing	a	block	definition	diagram	to
depict	the	same	modeling	relationships	as	a	class	diagram.

In	 structural	 modeling	 of	 the	 problem	 domain,	 the	 initial	 emphasis	 is	 on
modeling	real-world	entities	to	create	a	conceptual	static	model,	which	includes
relevant	systems,	users,	physical	entities	and	information	entities.	Relevant	real-
world	entities	in	the	problem	domain	of	embedded	systems	include:

1.	Physical	entity.	A	physical	entity	is	an	entity	in	the	problem	domain	that	has
physical	characteristics	–	that	is,	it	can	be	seen	or	touched.	Such	entities	include
physical	devices,	which	are	often	part	of	the	problem	domain	in	embedded
applications.	For	example,	in	the	railroad	crossing	system,	the	train	is	a	physical
entity	that	must	be	detected	by	the	system.	Other	relevant	physical	entities
controlled	by	the	system	are	the	railroad	crossing	barrier,	the	warning	flashing
lights,	and	the	audio	warning	alarm.

2.	Human	user.	A	human	user	of	the	system	interacts	with	the	system,
providing	inputs	to	the	system	and	receiving	outputs	from	the	system.	For
example,	the	microwave	user	is	a	human	user.

3.	Human	observer.	A	human	observer	views	the	outputs	of	the	system	but
does	not	interact	directly	with	the	system,	that	is,	does	not	provide	any	inputs	to
the	system.	An	example	of	a	human	observer	is	a	vehicle	driver	or	pedestrian



who	is	alerted	of	the	imminent	train	arrival	by	the	closing	of	the	barrier,	the
flashing	lights,	and	the	audio	alarm.

4.	Relevant	system.	A	relevant	system	is	the	system	to	be	developed	or	any
other	system	that	interfaces	to	it.	Relevant	systems	can	be	embedded	systems,
information	systems,	or	external	systems.

5.	Information	entity.	An	information	entity	is	a	conceptual	data-intensive
entity	that	is	often	persistent	–	that	is,	long-living.	Information	entities	are
particularly	prevalent	in	information	systems	(e.g.,	in	a	banking	application,
examples	include	accounts	and	transactions)	but	may	also	be	needed	by	some
real-time	systems	(for	example	to	store	status	information	or	system
configuration	information).	Information	entities	are	modeled	as	UML	classes	as
described	in	Section	5.3.3.

An	example	of	a	conceptual	structural	model	of	the	problem	domain	is	shown	in
the	 block	 definition	 diagram	 for	 the	 Railroad	 Crossing	 Embedded	 System	 in
Figure	 5.6.	 From	 a	 total	 system	perspective,	 the	 problem	 domain	 for	Railroad
Crossing	Embedded	System	consists	of	the	following	blocks:

Railroad	Crossing	Embedded	System,	which	is	the	embedded
system	to	be	developed;

Train,	which	is	a	physical	entity	detected	by	the	system;

Barrier,	which	is	a	physical	entity	controlled	by	the	system	and	which
consists	of	a	barrier	actuator	and	a	barrier	sensor;

Warning	Alarm,	which	consists	of	Warning	Lights	and	Warning	Audio
and	which	is	a	physical	entity	controlled	by	the	system;

Observer	(who	waits	at	the	railroad	crossing),	which	is	an	observer	of
the	system;



Figure	5.6.	Example	of	conceptual	structural	model	of	problem	domain.

Rail	Operations	Service,	which	is	an	external	system	that	is
notified	of	the	status	of	the	railroad	crossing.



5.3.2	Modeling	the	Embedded	System

In	 embedded	 systems,	 in	 which	 there	 are	 several	 physical	 devices	 such	 as
sensors	 and	 actuators,	 block	definition	diagrams	 can	help	with	modeling	 these
real-world	devices.	 In	 the	microwave	oven	 system,	 for	 example,	 it	 is	useful	 to
model	 real-world	 devices	 (such	 as	 the	 door,	 heating	 element,	 weight	 sensor,
turntable,	beeper,	display,	keypad,	 lamp,	and	 timer),	 their	associations,	and	 the
multiplicity	of	the	associations.	Composite	blocks	are	often	used	to	show	how	a
real-world	 composite	 modeling	 element,	 such	 as	 the	 Microwave	 Oven
Embedded	 System	 composite	 block	 (see	 Figure	 5.2),	 is	 composed	 of	 other
blocks.	 Individual	 blocks	 are	 categorized	 as	 input	 devices,	 output	 devices,
timers,	 and	 systems	 and	 are	 depicted	 on	 block	 definition	 diagrams	 using
stereotypes.	 An	 example	 of	 a	 structural	 model	 is	 for	 the	 Microwave	 Oven
System,	which	is	an	embedded	system	described	in	the	case	study	in	Chapter	19.



5.3.3	Modeling	Information	Entities	as	Entity	Classes

Information	Entities	are	modeled	as	entity	classes,	which	are	depicted	as	UML
classes	with	the	stereotype	«entity».	Entity	classes	are	conceptual	data-intensive
classes.	Some	entity	classes	store	persistent	(i.e.,	 long-lasting)	data	 that,	during
execution,	is	typically	accessed	by	several	objects.	Entity	classes	are	particularly
prevalent	 in	 information	 systems;	 however,	 many	 real-time	 and	 distribution
applications	have	significant	data-intensive	functionality.

During	 static	 modeling	 of	 the	 problem	 domain,	 the	 emphasis	 is	 on
determining	 the	 entity	 classes	 that	 are	 defined	 in	 the	 problem,	 their	 attributes,
and	their	relationships.	For	example,	in	a	Factory	Automation	System,	there	are
parts,	workflow	plans,	manufacturing	operations,	and	work	orders	all	mentioned
in	 the	 problem	 description.	 Each	 of	 these	 real-world	 conceptual	 entities	 is
modeled	as	an	entity	class	and	depicted	with	the	stereotype	«entity»,	as	depicted
in	 Figure	 5.1.	 The	 attributes	 of	 each	 entity	 class	 are	 determined	 and	 the
relationships	among	entity	classes	are	defined,	as	described	in	Section	5.1.



5.4	Structural	Modeling	of	the	System
Context

It	 is	 very	 important	 to	 understand	 the	 system	 context,	 that	 is	 the	 scope	 of	 a
computer	 system	–	 in	 particular,	what	 is	 to	 be	 included	 inside	 the	 system	 and
what	 is	 to	be	excluded	 from	 the	system.	Context	modeling	explicitly	 identifies
what	is	inside	the	system	and	what	is	outside.	Context	modeling	can	be	done	at
the	 total	 system	 (hardware	 and	 software)	 level	 or	 at	 the	 software	 system
(software	 only)	 level.	 The	 system	 context	 is	 determined	 after	 modeling	 and
understanding	the	problem	domain,	as	described	in	Section	5.3.

A	 system	 context	 diagram	 is	 a	 block	 definition	 diagram	 that	 explicitly
depicts	 the	 boundary	 between	 the	 system	 (hardware	 and	 software),	 which	 is
modeled	 as	 one	 block,	 and	 the	 external	 environment.	 By	 contrast,	 a	 software
system	 context	 diagram	 explicitly	 shows	 the	 boundary	 between	 the	 software
system,	 also	modeled	 as	 one	 block,	 and	 the	 external	 environment,	which	 now
includes	the	hardware.

When	 developing	 the	 system	 context	 (which	 is	 depicted	 on	 a	 block
definition	 diagram)	 it	 is	 necessary	 to	 consider	 the	 context	 of	 the	 total
hardware/software	system	before	considering	the	context	of	the	software	system.
In	 considering	 the	 total	 hardware/software	 system,	 only	 users	 and	 external
system	modeling	elements	are	outside	the	system,	while	hardware	and	software
modeling	elements	are	 internal	 to	 the	system.	Thus,	I/O	devices	are	part	of	 the
hardware	 of	 the	 system	 and	 are	 therefore	 part	 of	 the	 total	 hardware/software
system.



5.4.1	Modeling	External	Entities	of	the	Embedded	System

When	modeling	an	embedded	hardware/software	system,	many	of	the	real-world
entities	 described	 in	 Section	 5.3.1	 are	 external	 entities	 that	 interface	 to	 the
embedded	system.	Possible	external	entities	are:

1.	External	physical	entity.	A	physical	entity	is	an	external	entity	that	the
system	has	to	detect	and/or	control.	For	example,	in	the	railroad	crossing	system,
the	train	is	an	external	physical	entity	that	has	to	be	detected	by	the	system.
Other	external	physical	entities,	which	are	controlled	by	the	system,	are	the
railroad	crossing	barrier,	the	warning	flashing	lights,	and	the	audio	warning
alarm.Some	external	physical	entities,	such	as	smart	devices,	might	provide
input	to	or	receive	output	from	the	system.

2.	External	system.	An	external	system	is	a	separate	system	that	interfaces	to
and	communicates	with	the	system	under	development.	An	external	system
might	be	an	existing	system	that	was	previously	developed	or	a	new	system	that
is	to	be	developed	by	a	different	organization.	An	external	system	typically
sends	input	messages	to	the	system	under	development	and/or	receives	output
messages	from	the	system.

3.	External	user.	An	external	user	is	a	human	user	of	the	system	who	interacts
with	the	system,	providing	inputs	to	the	system	and	receiving	outputs	from	the
system.	For	example,	the	microwave	user	is	an	external	user.

4.	External	observer.	An	external	observer	is	a	human	being	who	views	the
outputs	of	the	system	but	does	not	interact	directly	with	the	system,	that	is,	does
not	provide	any	inputs	to	the	system.	An	example	of	an	external	observer	is	a
vehicle	driver	or	pedestrian	who	is	alerted	of	the	imminent	train	arrival	by	the
closing	of	the	barrier,	the	flashing	lights,	and	the	audio	alarm.



Using	 the	 SysML	 notation,	 the	 system	 context	 is	 depicted	 showing	 the
hardware/software	system	as	an	aggregate	block	with	the	stereotype	«embedded
system».	 The	 external	 environment	 is	 depicted	 in	 terms	 of	 external	 entities,
depicted	as	blocks,	to	which	the	system	has	to	interface.	Stereotypes	are	used	to
differentiate	 between	 the	 different	 kinds	 of	 external	 blocks.	 For	 the	 system
context	 diagram,	 an	 external	 block	 could	 be	 an	 «external	 system»,	 «external
physical	entity»,	«external	user»,	or	an	«external	observer».



5.4.2	Modeling	Associations	on	the	System	Context	Diagram

The	 associations	 between	 the	 embedded	 system	 block	 and	 the	 external	 blocks
are	 depicted	 on	 the	 system	 context	 diagram,	 showing	 in	 particular	 the
multiplicity	 of	 the	 associations	 between	 the	 external	 blocks	 and	 the	 embedded
system.	These	can	be	one-to-one	or	one-to-many	associations.	In	addition,	each
association	 is	 given	 a	 standard	 name,	 which	 describes	 what	 the	 association	 is
between	the	embedded	system	and	the	external	block.	The	standard	association
names	 on	 system	 context	 block	 diagrams	 are	 Inputs	 to,	 Outputs	 to,
Communicates	with,	 Interacts	with,	Detects,	Controls,	 and	Observes.	Note	 that
in	 some	 cases,	 there	 is	 more	 than	 one	 standard	 association	 name	 between	 an
external	block	and	the	embedded	system,	if	different	associations	between	them
are	 possible.	 These	 associations	 are	 used	 as	 follows:	 «embedded	 system»
Outputs	 to	 «external	 user»	 «external	 physical	 entity»	 Inputs	 to	 «embedded
system»	 «embedded	 system»	 Detects	 «external	 physical	 entity»	 «embedded
system»	 Controls	 «external	 physical	 entity»	 «external	 observer»	 Observes
«embedded	 system»	 «external	 user»	 Interacts	 with	 «embedded	 system»
«external	system»	Communicates	with	«embedded	system»
Examples	 of	 associations	 on	 system	 context	 block	 diagrams	 are	 as	 follows:
Factory	Automation	System	Outputs	to	Operator	Smart	Device	Inputs	to	Factory
Automation	System	Railroad	Crossing	System	Detects	Train	Railroad	Crossing
System	 Controls	 Barrier	 Observer	 Observes	 Barrier	 User	 Interacts	 with
Microwave	 Oven	 System	 Railroad	 Crossing	 System	Communicates	 with	 Rail
Operations	System



5.4.3	Example	of	System	Context	Diagrams

As	 an	 example	 of	 a	 system	 context	 diagram,	 consider	 the	 Railroad	 Crossing
Embedded	System,	which	is	depicted	on	the	block	definition	diagram	in	Figure
5.7,	which	is	derived	from	Figure	5.6.	Whereas	the	conceptual	structural	model
in	Figure	5.6	 is	a	model	of	 the	problem	domain,	 the	Figure	5.7	 focuses	on	 the
boundary	 of	 the	 system	 to	 be	 developed,	 The	 Railroad	 Crossing	 Embedded
System	 is	categorized	as	an	«embedded	system»	«block».	From	a	 total	 system
perspective,	the	system	interfaces	to	four	external	blocks:

Note	 that	 Observer	 (vehicle	 driver,	 cyclist,	 or	 pedestrian	 who	 stops	 at	 the
railroad	crossing)	is	an	external	observer	of	the	system.

Train,	which	is	an	external	physical	entity	detected	by	the	system;

Barrier,	which	is	an	external	physical	entity	controlled	by	the	system
and	which	consists	of	a	barrier	actuator	(to	raise	or	lower	the	barrier)	and
barrier	sensor	(to	detect	that	the	barrier	has	been	raised	or	lowered;

Warning	Alarm,	which	consists	of	Warning	Lights	and	Warning
Audio	and	which	is	an	external	physical	entity	controlled	by	the	system;

Rail	Operations	Service,	which	is	an	external	system	that	is
notified	of	the	status	of	the	railroad	crossing.



Figure	5.7	System	context	diagram	for	Railroad	Crossing	Embedded	System.



5.5	Hardware/Software	Boundary	Modeling
To	 determine	 the	 boundary	 between	 the	 hardware	 and	 software	 blocks	 in
preparation	 for	 modeling	 the	 software	 system	 context	 diagram,	 the	 modeler
starts	with	 the	 system	context	 diagram	and	 then	determines	 the	decomposition
into	hardware	and	software	blocks.

From	a	software	engineering	perspective,	some	external	blocks	are	modeled
in	 the	 same	 way	 as	 in	 the	 systems	 engineering	 perspective,	 while	 others	 are
modeled	 differently.	 In	 the	 former	 category	 are	 external	 system	 blocks	 and
external	 users	 who	 interact	 with	 the	 system	 using	 standard	 I/O	 devices;	 these
external	blocks	are	depicted	on	the	software	system	context	diagram	in	the	same
way	as	on	the	system	context	diagram.

External	 blocks	 that	 are	modeled	 differently	 from	 a	 software	 engineering
perspective	 are	 external	 physical	 entity	 blocks	 that	 often	 do	 not	 physically
connect	to	a	system,	and	therefore	need	sensors	or	actuators	to	make	the	physical
connection.	As	described	in	Section	5.4.2,	the	association	between	the	embedded
system	 and	 such	 a	 physical	 entity	 is	 detects	 and/or	 controls.	 Detection	 of
physical	entities	is	done	by	means	of	sensors	while	control	of	physical	entities	is
done	 by	 means	 of	 actuators.	 Consider	 the	 external	 physical	 entities	 in	 the
Railroad	Crossing	 Embedded	 System.	 The	 arrival	 of	 a	 train	 is	 detected	 by	 an
arrival	sensor	and	the	departure	is	detected	by	a	departure	sensor.



5.6	Structural	Modeling	of	the	Software
System	Context

As	described	in	Section	5.4,	the	system	context	diagram	depicts	the	systems	and
users	that	are	external	 to	the	total	hardware/software	system,	which	is	modeled
as	 one	 composite	 block.	 The	 hardware	 blocks	 (such	 as	 sensors	 and	 actuators)
and	software	blocks	are	internal	to	the	system	and	are	therefore	not	depicted	on
the	 system	 context	 diagram.	 Together	 with	 the	 hardware/software	 boundary
modeling	 described	 in	 the	 previous	 section,	 this	 is	 the	 starting	 point	 for	 the
software	context	modeling.

A	 software	 system	 context	 diagram	 is	 a	 block	 definition	 diagram	 that
explicitly	depicts	the	boundary	between	the	software	system,	which	is	modeled
as	 one	 block	 with	 the	 stereotype	 «software	 system»,	 and	 the	 external
environment.	The	software	system	context	diagram	is	determined	by	analyzing
the	 external	 blocks	 that	 connect	 to	 the	 software	 system.	 In	 particular,	 physical
hardware	 devices	 (such	 as	 sensors	 and	 actuators)	 are	 external	 to	 the	 software
system.

The	software	system	is	depicted	on	the	software	system	context	diagram	as
an	 aggregate	 block	 with	 the	 stereotypes	 «software	 system»	 «block»,	 and	 the
external	environment	is	depicted	as	external	blocks	to	which	the	software	system
has	to	interface.



5.6.1	Modeling	External	Entities	of	the	Software	System

For	 a	 real-time	 embedded	 system,	 it	 is	 desirable	 to	 identify	 low-level	 external
blocks	 that	 correspond	 to	 all	 the	 external	 elements	 that	 the	 system	 has	 to
interface	 to	 and	 communicate	 with,	 including	 physical	 I/O	 devices,	 external
timers,	external	systems,	and	external	users.	External	blocks	are	categorized	by
stereotype,	 as	 described	 in	Section	 5.7.	 Figure	 5.8	 depicts	 the	 classification	 of
external	 blocks	 using	 inheritance,	 in	which	 stereotypes	 are	 used	 to	 distinguish
among	 the	 different	 kinds	 of	 external	 blocks.	 Thus,	 an	 external	 block	 is
classified	as	an	«external	user»	block,	an	«external	device»	block,	an	«external
system»	 block,	 or	 an	 «external	 timer»	 block.	Only	 external	 users	 and	 external
systems	can	be	external	to	the	total	system.	Hardware	devices	and	timers	are	part
of	 the	 total	 (hardware	 and	 software)	 system	 but	 are	 external	 to	 the	 software
system.	Thus	Figure	5.8	categorizes	external	blocks	from	the	software	system's
perspective.

An	external	device	block	is	classified	further	as	follows:

External	input	device.	A	device	that	only	provides	input	to	the	system	–
for	example,	a	sensor;

External	output	device.	A	device	that	only	receives	output	from	the
system	–	for	example,	an	actuator;

External	input/output	device.	A	device	that	both	provides	input	to	the
system	and	receives	output	from	the	system	–	for	example,	a	card	reader
for	an	automated	teller	machine.



Figure	5.8.	Classification	of	external	blocks	by	stereotype.

These	 external	 blocks	 are	 depicted	 with	 the	 stereotypes	 «external	 input
device»,	«external	output	device»,	and	«external	input/output	device».	Examples
are	the	Door	Sensor	external	input	device	and	the	Heating	Element	external
output	device	 in	 the	microwave	oven	 system	 (see	Figure	5.9).	Other	 examples
are	the	Arrival	Sensor	external	input	device	and	the	Motor	external	output	device
in	the	Train	Control	System.



Figure	5.9.	Microwave	Oven	System	software	system	context	diagram

A	 human	 user	 often	 interacts	 with	 the	 system	 by	 means	 of	 standard	 I/O
devices	 such	 as	 a	 keyboard/display	 and	 mouse.	 The	 characteristics	 of	 these
standard	I/O	devices	are	of	no	interest	because	they	are	handled	by	the	operating
system.	 The	 interface	 to	 the	 user	 is	 of	much	 greater	 interest	 in	 terms	 of	what
information	is	being	output	to	the	user	and	what	information	is	being	input	from
the	 user.	 For	 this	 reason,	 an	 external	 user	 interacting	 with	 the	 system	 via
standard	 I/O	 devices	 is	 depicted	 as	 an	 «external	 user».	 An	 example	 is	 the
Factory	Operator	in	the	factory	automation	system.

A	 general	 guideline	 is	 that	 a	 human	 user	 should	 be	 represented	 as	 an
external	 user	 block	 only	 if	 the	 user	 interacts	with	 the	 system	via	 standard	 I/O
devices.	However,	 if	 the	user	 interacts	with	 the	system	via	application-specific
I/O	 devices,	 these	 I/O	 devices	 should	 be	 represented	 as	 external	 I/O	 device
blocks.



An	«external	timer»	block	is	used	if	the	application	needs	to	keep	track	of
time	 and/or	 if	 it	 needs	 external	 timer	 events	 to	 initiate	 certain	 actions	 in	 the
system.	 External	 timer	 blocks	 are	 frequently	 needed	 in	 real-time	 embedded
systems.	An	example	from	the	Microwave	Oven	System	is	the	external	Timer.
It	is	needed	because	the	system	needs	to	keep	track	of	elapsed	time	to	determine
the	 cooking	 time	 for	 food	 placed	 in	 the	 oven	 and	 count	 down	 the	 remaining
cooking	 time,	which	 it	 displays	 to	 the	 user.	When	 the	 time	 remaining	 reaches
zero,	 the	 system	 needs	 to	 stop	 cooking.	 In	 the	 Train	 Control	 System,	 time	 is
needed	 to	 compute	 the	 speed	 of	 the	 train.	 Sometimes	 the	 need	 for	 periodic
activities	only	becomes	apparent	during	design.

An	«external	system»	block	is	needed	when	the	system	interfaces	to	other
systems,	 to	 either	 send	 data	 or	 receive	 data.	 Thus,	 in	 the	 Factory	Automation
System,	 the	 system	 interfaces	 to	 two	 external	 systems:	 the	 Pick	 &	 Place
Robot	and	the	Assembly	Robot.



5.6.2	Modeling	Associations	on	the	Software	System	Context	Diagram

The	associations	between	the	software	system	aggregate	block	and	the	external
blocks	 are	 depicted	 on	 the	 software	 system	 context	 diagram,	 showing	 in
particular	 the	multiplicity	 of	 the	 associations	 and	 the	 name	 of	 the	 association.
The	standard	association	names	on	software	system	context	diagrams	are	Inputs
to,	 Outputs	 to,	 Communicates	 with,	 Interacts	 with,	 and	 Signals.	 These
associations	 are	 used	 as	 follows:	 «external	 input	 device»	 Inputs	 to	 «software
system»	«software	system»	Outputs	to	«external	output	device»	«external	user»
Interacts	 with	 «software	 system»	 «external	 system»	 Communicates	 with
«software	system»	«external	timer»	Signals	«software	system»
Examples	of	 associations	on	 software	 system	context	 diagrams	 are	 as	 follows:
Door	Sensor	 Inputs	 to	Microwave	Oven	Software	System	Microwave
Oven	Software	System	Outputs	to	Heating	Element	Factory	Operator
Interacts	 with	 Factory	 Automation	 Software	 System	 Pick	 &	 Place
Robot	Communicates	with	Factory	Automation	Software	System	Clock
Signals	Microwave	Oven	Software	System



5.6.3	Examples	of	Software	System	Context	Modeling

An	 example	 of	 a	 software	 system	 context	 diagram	 is	 depicted	 in	 the	 block
definition	diagram	in	Figure	5.9,	which	shows	the	external	blocks	to	which	the
Microwave	Oven	System	has	 to	 interface.	From	 the	 total	 system	perspective	–
that	is,	both	hardware	and	software	–	the	microwave	oven	user	is	external	to	the
system,	whereas	the	I/O	devices,	which	include	the	door	sensor,	weight	sensor,
heating	element	and	lamp,	are	part	of	 the	system.	The	software	system	context
diagram	is	modeled	from	the	perspective	of	the	software	system	to	be	developed,
the	Microwave	Oven	System,	which	is	depicted	with	 the	stereotypes	«software
system»	«block».

From	the	software	system	point	of	view,	the	hardware	sensors	and	actuators
are	 external	 to	 the	 software	 system	and	 interface	 to	 the	 software	 system.	Thus
the	blocks	outside	the	software	system	are	the	external	input	and	output	devices,
and	the	external	timer,	as	depicted	in	Figure	5.9.	In	the	example,	there	are	three
external	input	device	blocks:	the	Door	Sensor,	 the	Weight	Sensor,	and	the
Keypad.	 There	 are	 also	 five	 external	 output	 device	 blocks,	 the	 Heating
Element,	Display,	Beeper,	Turntable,	 and	Lamp,	 as	well	 as	one	 timer,
namely	Timer.	There	is	one	instance	of	each	of	these	external	blocks	for	a	given
microwave	 oven.	This	 example	 is	 described	 in	more	 detail	 for	 the	Microwave
Oven	Control	System	case	study	in	Chapter	19.

A	 second	 example	 of	 a	 software	 system	 context	 diagram	 is	 from	 the
Railroad	Crossing	Control	System,	as	depicted	in	Figure	5.10.	This	system	has
three	 external	 input	 devices	 representing	 different	 sensors:	Arrival	Sensor,
Departure	 Sensor,	 and	 Barrier	 Detection	 Sensor.	 There	 are	 three
output	devices	representing	different	actuators:	Barrier	Actuator,	Warning
Light	 Actuator,	 and	 the	 Warning	 Audio	 Actuator.	 There	 is	 also	 an



external	 Timer.	 This	 example	 is	 described	 in	 more	 detail	 for	 the	 Railroad
Crossing	Control	System	case	study	in	Chapter	20.

Figure	5.10.	Railroad	Crossing	Control	System	software	system	context
diagram.



5.7	Defining	Hardware/Software	Interfaces
In	 defining	 the	 hardware/software	 boundary,	 it	 is	 also	 necessary	 to	 define	 the
interface	 between	 each	 hardware	 input	 and	 output	 device	 and	 the	 software
system.	 For	 example,	 in	 the	 Railroad	 Crossing	 Control	 System,	 the	 Arrival
Sensor	 input	 device	 sends	 arrival	 event	 inputs	 to	 the	 software	 system.	 The
software	system	sends	switch	on	and	switch	off	outputs	to	the	Warning	Light
Actuator	 output	 device.	 Specification	 of	 the	 hardware/software	 boundary
needs	to	clearly	describe	the	function	of	each	I/O	device	and	its	interface	to	the
software	system.	The	template	for	an	I/O	specification	is:

Name	of	I/O	device:

Type	of	I/O	device:

Function	of	I/O	device:

Inputs	from	device	to	software	system:

Outputs	from	software	system	to	device:

An	I/O	device	boundary	specification	can	also	be	depicted	as	a	table.	Examples
of	 input	 and	 output	 device	 boundary	 specifications	 for	 the	 Railroad	 Crossing
Control	System	(Figure	5.10)	are	given	in	Table	5.1.

Table	5.1.	I/O	Device	Boundary	Specification

Device
name

Device
type

Device	function Inputs	from
device

Outputs	to
device

Arrival
Sensor

Input Signals	when	train
arrives

Arrival	Event

Departure Input Signals	when	train Departure	Event



Departure
Sensor

Input Signals	when	train
departs

Departure	Event

Barrier
Detection
Sensor

Input Signals	when
barrier	has	been
raised	or	lowered

Barrier	Lowered
Event,	Barrier
Raised	Event

Barrier
Actuator

Output Raises	and	lowers
barrier

Raise
Barrier,
Lower
Barrier

Warning
Light
Actuator

Output Switches	warning
lights	on	and	off

Switch	On,
Switch	Off

Warning
Audio
Actuator

Output Switches	audio
warning	on	and	off

Switch	On,
Switch	Off



5.8	System	Deployment	Modeling
The	 next	 step	 is	 to	 consider	 the	 physical	 deployment	 of	 the	 system	 (hardware
and	software)	blocks	of	the	embedded	system.	One	possible	configuration	for	the
Distributed	Light	Rail	 System	 is	 depicted	 in	 the	UML	deployment	 diagram	 in
Figure	5.11,	in	which	the	system	blocks	of	the	distributed	embedded	system	are
deployed	 to	different	physical	nodes,	which	are	connected	by	means	of	a	wide
area	network.	The	blocks	are	Railroad	Crossing	Control,	which	has	one
node	 per	 railroad	 crossing,	 Train	 Control,	 which	 has	 one	 node	 per	 train,
Wayside	 Monitoring,	 which	 has	 one	 node	 per	 wayside	 location,	 Rail
Operations	 Service,	 which	 has	 one	 node,	 and	 Rail	 Operations

Interaction,	which	has	one	node	per	operator.

Figure	5.11.	Deployment	diagram	for	Distributed	Light	Rail	Embedded
System.



5.9	Summary
This	chapter	has	described	how	structural	modeling	using	SysML	and	UML	can
be	 used	 as	 an	 integrated	 approach	 for	 system	 and	 software	 modeling	 of
embedded	systems	consisting	of	both	hardware	and	software	modeling	elements.
This	chapter	started	by	describing	some	of	the	basic	concepts	of	static	modeling,
including	using	blocks	to	depict	system	modeling	elements	and	classes	to	depict
software	 modeling	 elements,	 as	 well	 as	 defining	 the	 relationships	 between
structural	modeling	elements.	Three	types	of	relationships	have	been	described:
associations,	 composition/aggregation	 relationships,	 and
generalization/specialization	 relationships.	 This	 chapter	 then	 described
categorization	 of	 blocks	 using	 stereotypes,	 structural	modeling	 of	 the	 problem
domain,	 system	context	modeling,	 developing	 the	 hardware/software	 boundary
of	a	system,	software	system	context	modeling,	designing	the	interface	between
hardware	 and	 software	 blocks,	 and	 system	 deployment	 modeling.	 The
categorization	of	software	classes	using	stereotypes	is	described	in	Chapter	8.



6

Use	Case	Modeling	for	Real-Time
Embedded	Systems

◈

Use	case	modeling	is	widely	used	for	specifying	the	functional	requirements	of
software	systems.	This	chapter	describes	how	use	case	modeling	can	be	applied
to	real-time	embedded	systems	from	both	a	systems	engineering	and	a	software
engineering	 perspective.	 With	 use	 case	 modeling,	 the	 system	 is	 viewed	 as	 a
black	box,	so	that	only	the	external	characteristics	of	the	system	are	considered.
Both	 functional	 and	 nonfunctional	 requirements	 need	 to	 be	 described	 for
embedded	 systems.	 Functional	 requirements	 address	 the	 functionality	 that	 the
system	needs	to	provide.	Nonfunctional	requirements,	sometimes	referred	to	as
quality	 attributes,	 address	 quality	 of	 service	 goals	 for	 the	 system,	 which	 are
particularly	 important	 for	 real-time	 embedded	 systems.	 Although	 use	 case
modeling	 is	 typically	 only	 used	 for	 specifying	 functional	 requirements,	 this
chapter	describes	how	it	can	be	extended	to	specify	nonfunctional	requirements.
Several	examples	of	use	case	modeling	for	embedded	systems	are	given	in	this
chapter.

Section	 6.1	 gives	 an	 overview	 of	 use	 case	 modeling.	 Section	 6.2	 then
describes	 actors	 and	 their	 role	 in	 use	 case	 modeling	 from	 both	 systems
engineering	and	software	engineering	perspectives.	The	important	topic	of	how



to	 identify	 use	 cases	 is	 covered	 in	 Section	 6.3.	 Section	 6.4	 describes	 how	 to
document	 use	 cases.	 Section	 6.5	 describes	 how	 to	 specify	 nonfunctional
requirements,	which	 is	 particularly	 important	 for	 real-time	 embedded	 systems.
Section	6.6	gives	detailed	examples	of	use	case	descriptions	from	both	systems
engineering	 and	 software	 engineering	 perspectives.	 Section	 6.7	 then	 describes
use	 case	 relationships;	 modeling	 with	 the	 include	 relationship	 is	 described	 in
Section	6.8;	modeling	with	 the	extend	 relationship	 is	 described	 in	Section	6.9.
Finally,	use	case	packages	for	structuring	large	use	case	models	are	described	in
Section	6.10.



6.1	Use	Cases
In	the	use	case	modeling	approach,	functional	requirements	are	defined	in	terms
of	actors,	which	are	external	to	the	system,	and	use	cases.	A	use	case	defines	a
sequence	of	 interactions	between	one	or	more	actors	 and	 the	 system.	The	use
case	model	describes	the	functional	requirements	of	the	system	in	terms	of	the
actors	and	use	cases.	In	particular,	the	use	case	model	considers	the	system	as	a
black	box	and	describes	the	interactions	between	the	actor(s)	and	the	system	in	a
narrative	 textual	 form	 consisting	 of	 actor	 inputs	 and	 system	 responses.	 The
system	is	 treated	as	a	black	box,	 that	 is,	dealing	with	what	 the	system	does	 in
response	to	the	actor's	inputs,	not	the	internals	of	how	it	does	it.

For	real-time	embedded	systems,	both	use	cases	and	actors	can	be	modeled
from	 a	 systems	 engineering	 perspective	 or	 from	 a	 software	 engineering
perspective.	As	these	perspectives	are	different	for	real-time	embedded	systems,
this	chapter	describes	both	perspectives.

A	 use	 case	 always	 starts	 with	 input	 from	 an	 actor.	 A	 use	 case	 typically
consists	 of	 a	 sequence	 of	 interactions	 between	 the	 actor	 and	 the	 system.	Each
interaction	consists	of	an	input	from	the	actor	followed	by	a	response	from	the
system.	 Thus,	 an	 actor	 provides	 inputs	 to	 the	 system	 and	 the	 system	 provides
responses	to	the	actor.	The	system	is	always	considered	as	a	black	box,	so	that
its	internals	are	not	revealed.	Whereas	a	simple	use	case	might	only	involve	one
interaction	between	an	actor	and	the	system,	a	more	typical	use	case	will	consist
of	 several	 interactions	 between	 the	 actor	 and	 the	 system.	 More	 complex	 use
cases	might	also	involve	more	than	one	actor.

An	 example	 of	 a	 simple	 use	 case	 model	 in	 which	 there	 is	 no	 difference
between	 the	 system	 and	 software	 perspectives	 is	 given	 in	 Figure	 6.1.	 In	 this



example,	 there	 is	 one	 use	 case,	 View	 Alarms,	 and	 one	 actor,	 Factory
Operator,	 who	 is	 a	 human	 actor.	 In	View	Alarms,	 the	 operator	 requests	 to
view	factory	alarms,	and	the	system	responds	by	displaying	the	current	alarms	to
the	operator.

Figure	6.1.	Example	of	actor	and	use	case.



6.2	Actors
An	actor	characterizes	an	external	entity	(i.e.,	outside	the	system)	that	interacts
with	the	system.	In	the	use	case	model,	actors	are	the	only	external	entities	that
interact	with	 the	 system.	 In	other	words,	actors	are	outside	 the	 system	and	not
part	of	it.	An	actor	interacts	with	the	system	by	providing	inputs	to	the	system	or
by	responding	to	outputs	from	the	system.

An	 actor	 represents	 a	 role	 played	 in	 the	 application	 domain.	 An	 actor
represents	the	role	played	by	all	external	instances	of	the	same	type,	such	as	all
users	of	the	same	type.	For	example,	in	the	View	Alarms	use	case	(Figure	6.1),
there	 are	 several	 factory	 operators	 who	 are	 represented	 by	 the	 Factory
Operator	actor.	Thus,	Factory	Operator	models	a	user	type,	and	individual
factory	operators	are	instances	of	the	actor.



6.2.1	Actors	in	Real-Time	Embedded	Systems

In	many	 information	 systems,	humans	 are	 the	only	 actors.	For	 this	 reason,	 the
UML	 notation	 depicts	 an	 actor	 using	 a	 stick	 figure.	 However,	 in	 real-time
embedded	systems,	 there	are	other	 types	of	actors	 in	addition	 to	or	 in	place	of
human	actors.	In	fact,	in	embedded	systems,	the	nonhuman	actors	are	frequently
more	 important	 than	 human	 actors.	 External	 I/O	 devices	 and	 timer	 actors	 are
particularly	 prevalent	 in	 embedded	 systems.	 I/O	 device	 actors	 are	 needed
because	the	system	interacts	with	the	external	environment	through	sensors	and
actuators.	Timer	actors	are	needed	because	many	functions	in	real-time	systems
need	to	be	performed	periodically.

An	external	entity	that	is	purely	passive,	that	is,	only	receives	outputs	from
the	 system	 and	 never	 responds	 to	 these	 outputs,	 is	 not	 considered	 an	 actor	 in
some	 use	 case	 modeling	 approaches.	 However,	 with	 embedded	 systems,	 it	 is
important	 to	 explicitly	 consider	 the	 interactions	 with	 each	 external	 device,
whether	 input	 or	 output.	 It	 is	 therefore	 preferable	 to	 explicitly	 incorporate
passive	 output	 devices	 into	 the	 use	 case	 models	 when	 modeling	 embedded
systems	from	a	software	engineering	perspective,	as	described	in	Section	6.2.5.



6.2.2	Systems	and	Software	Engineering	Perspectives	on	Actors

For	systems	in	which	the	actors	are	usually	entirely	human,	such	as	information
systems	 and	 Web-based	 systems,	 there	 is	 little	 or	 no	 difference	 between	 the
systems	and	software	engineering	perspectives	of	the	use	case	model.	However,
in	real-time	embedded	systems,	there	can	be	significant	differences	between	the
system	and	software	engineering	perspectives.

Consider	the	case	of	a	 train	that	does	not	 interact	directly	with	the	system
because	 its	 arrival	 and	 departure	 are	 detected	 by	 sensors.	 From	 a	 systems
engineering	perspective,	the	train	is	the	actor	because	it	is	a	physical	entity	that
is	 external	 to	 and	 detected	 by	 the	 system,	 whereas	 the	 arrival	 and	 departure
sensors	are	internal	to	the	total	(hardware/software)	system	and	therefore	are	not
actors.	 However,	 from	 a	 software	 engineering	 perspective,	 the	 arrival	 and
departure	sensors	are	actors	because	they	are	external	to	the	software	system	and
provide	inputs	to	it.	Thus,	depending	on	which	perspective	is	taken	for	real-time
embedded	 systems,	 systems	 or	 software	 engineering,	 the	 actors	 are	 usually
different,	and	consequently	the	use	cases	are	described	differently.



6.2.3	Primary	and	Secondary	Actors

A	primary	 actor	 initiates	 a	 use	 case.	 Thus,	 the	 use	 case	 starts	 with	 an	 input
from	the	primary	actor	to	which	the	system	has	to	respond.	Other	actors,	referred
to	as	secondary	actors,	may	also	participate	in	the	use	case	by	providing	inputs
and	receiving	outputs.	A	primary	actor	in	one	use	case	can	be	a	secondary	actor
in	another	use	case.	At	least	one	of	the	actors	must	gain	value	from	the	use	case;
usually	this	is	the	primary	actor.	If	there	is	only	one	actor	in	the	use	case,	then
that	actor	is	also	the	primary	actor.

In	 real-time	embedded	 systems,	however,	where	 the	primary	actor	 can	be
an	external	I/O	device	or	timer,	the	primary	beneficiary	of	the	use	case	can	be	a
secondary	 human	 actor	 who	 receives	 some	 information	 from	 the	 system	 or	 a
human	observer	who	only	observes	but	does	not	interact	with	the	system.

An	example	of	primary	and	secondary	actors	 is	 shown	 in	Figure	6.2.	The
Factory	Robot	 actor	 (an	 external	 computer	 system)	 initiates	 the	Generate
Alarm	 use	 case	 by	 sending	 monitoring	 data	 to	 the	 system.	 The	 system
determines	 that	 there	 is	 an	 alarm	 condition,	 which	 it	 displays	 to	 the	 factory
operator.	In	this	use	case,	the	Factory	Robot	is	the	primary	actor	that	initiates
the	use	case,	and	the	Factory	Operator	is	a	secondary	actor	that	receives	the
alarm	and	hence	gains	value	from	the	use	case.	However,	Factory	Operator
is	 a	 primary	 actor	 in	 the	 View	 Alarms	 use	 case	 (Figure	 6.1),	 in	 which	 the
operator	requests	to	view	alarm	data.



Figure	6.2.	Example	of	primary	and	secondary	actors,	as	well	as	external
system	actor.



6.2.4	Modeling	Actors	from	a	Systems	Engineering	Perspective

From	a	systems	engineering	perspective,	an	actor	can	be	a	human	user	(either	as
an	active	participant	in	the	use	case	or	as	an	observer),	an	external	system,	or	a
physical	entity.

A	 human	 actor	 frequently	 interacts	 with	 the	 system	 via	 standard	 I/O
devices,	such	as	a	keyboard,	display,	or	mouse.	However,	in	real-time	embedded
systems,	a	human	actor	might	interact	with	the	system	indirectly	via	nonstandard
I/O	devices,	 such	 as	 various	 sensors.	 From	 a	 systems	 engineering	 perspective,
the	human	is	the	actor	and	the	I/O	devices	are	internal	to	the	hardware/software
system.

Consider	an	example	of	a	human	actor	who	interacts	with	the	system	using
standard	I/O	devices.	In	the	factory	monitoring	system,	the	Factory	Operator
is	a	human	actor	who	interacts	with	the	system	via	standard	I/O	devices,	such	as
a	keyboard,	display,	or	mouse,	as	shown	in	Figures	6.1	and	6.2.	An	example	of	a
human	 actor	 who	 interacts	 with	 the	 system	 by	 using	 several	 nonstandard	 I/O
devices	is	a	user	of	a	microwave	oven,	as	shown	in	Figure	6.3.	To	cook	food,	the
user	 interacts	 with	 the	 system	 by	 using	 several	 I/O	 devices,	 including	 a	 door
sensor,	weight	sensor,	and	keypad,	 in	addition	to	an	oven	heater,	oven	display,
and	oven	timer.	Modeling	the	Cook	Food	use	case	from	a	systems	engineering
perspective,	the	user	is	the	actor.



Figure	6.3.	Example	of	human	actor.

An	observer	is	a	human	user	who	passively	views	the	system	but	does	not
participate	 in	 the	 use	 case	 by	 providing	 any	 inputs.	 For	 example,	 in	 Railroad
Crossing	System,	a	driver	is	an	observer	who	stops	when	the	warning	lights	are
flashing	but	does	not	affect	the	system	in	any	way.

An	 actor	 can	 also	 be	 an	 external	 system	 actor	 that	 either	 initiates	 (as
primary	actor)	or	participates	(as	secondary	actor)	in	a	use	case.	An	example	of
an	 external	 system	 actor	 is	 the	 Factory	 Robot	 in	 the	 Factory	 Monitoring
System.	 The	 Factory	 Robot	 initiates	 the	 Generate	 Alarm	 use	 case,	 as
shown	in	Figure	6.2,	by	sending	an	alarm	to	the	system.	The	system	receives	the
alarm	and	sends	alarm	data	that	is	displayed	to	factory	operators.	The	Factory
Operator	is	a	secondary	actor	in	this	use	case.

An	example	of	a	physical	entity	actor	is	a	Train	actor,	as	shown	in	Figure
6.4.	From	a	systems	engineering	perspective,	the	train	is	the	primary	actor	of	the
Arrive	at	Railroad	Crossing	and	Depart	from	Railroad	Crossing
use	cases,	since	it	is	the	arrival	of	the	train	that	triggers	the	first	use	case	and	the
departure	of	the	train	that	triggers	the	second	use	case.



Figure	6.4.	Example	of	physical	entity	actor	(systems	engineering
perspective).



6.2.5	Modeling	Actors	from	a	Software	Engineering	Perspective

From	a	software	engineering	perspective,	some	actors	are	modeled	in	the	same
way	 as	 in	 the	 systems	 engineering	 perspective	 while	 others	 are	 modeled
differently.	 In	 the	 former	category	are	external	 system	actors	and	human	users
who	interact	with	the	system	using	standard	I/O	devices.	Actors	that	are	modeled
only	from	a	software	engineering	perspective	are	 input	device	actors	and	 timer
actors.

A	physical	entity	actor	in	the	systems	engineering	view	is	typically	replaced
by	one	or	more	 input	 device	 actors	when	viewing	 the	 system	 from	a	 software
engineering	perspective,	since	it	is	the	input	devices	(such	as	sensors)	that	detect
the	presence	of	 a	 physical	 entity.	From	a	 systems	 engineering	perspective,	 the
physical	 entity	 is	 the	 actor	 and	 the	 I/O	 devices	 are	 internal	 to	 the
hardware/software	system.

Furthermore,	a	human	actor	in	the	systems	engineering	view	who	interacts
with	the	system	indirectly	via	nonstandard	I/O	devices,	such	as	various	sensors,
is	typically	replaced	in	the	software	engineering	view	by	one	or	more	I/O	device
actors.	Thus,	an	actor	can	be	an	 input	device	actor	or	an	 input/output	device
actor.	Typically,	 the	 input	device	 actor	 interacts	with	 the	 system	via	 a	 sensor.
The	reason	why	this	kind	of	actor	only	appears	in	a	software	engineering	view	is
because	 an	 input	 device	 or	 sensor	 is	 external	 to	 the	 software	 system	 but	 is
internal	 to	 the	 larger	 hardware/software	 system.	 Thus,	 from	 a	 systems
engineering	perspective,	the	input	device	or	sensor	is	inside	the	system,	whereas
from	the	software	engineering	perspective	it	is	outside	the	system.

An	example	of	an	input	device	actor	is	Arrival	Sensor,	which	provides
sensor	 input	 to	 the	 Arrive	 at	 Railroad	 Crossing	 use	 case	 (shown	 in
Figure	 6.5)	 to	 notify	 the	 system	 of	 the	 train	 arrival.	 A	 second	 example	 is	 the



Departure	 Sensor,	 which	 provides	 sensor	 input	 to	 the	 Depart	 from

Railroad	 Crossing	 use	 case.	 This	 use	 case	 was	 depicted	 in	 the	 previous
section	 from	 a	 systems	 engineering	 perspective	 in	 which	 the	 Train	 was	 the
actor.	However,	 from	a	software	engineering	perspective,	 the	 train	actor	 in	 the
systems	 engineering	 perspective	 (Figure	 6.4)	 is	 replaced	 in	 the	 software
engineering	perspective	by	the	arrival	sensor	that	detects	the	train	arrival	and	the
departure	sensor	that	detects	the	train	departure.

Figure	6.5.	Example	of	input	device	actors	(software	engineering
perspective).



An	actor	can	also	be	a	timer	actor,	which	periodically	sends	timer	events
to	 the	 system.	 Periodic	 use	 cases	 are	 needed	 in	 real-time	 embedded	 systems
when	certain	 functions	need	 to	be	performed	periodically,	 such	 as	 information
that	 needs	 to	 be	 output	 by	 the	 system	 on	 a	 regular	 basis.	 An	 example	 of	 a
periodic	 use	 case	 and	 timer	 actor	 is	 given	 in	 Figure	 6.6.	 The	 Timer	 actor
initiates	 the	 Display	 Time	 of	 Day	 use	 case,	 which	 periodically	 (every
minute)	computes	and	updates	the	time-of-day	clock	and	displays	its	value	to	the
user.	 In	 this	case,	 the	 timer	 is	 the	primary	actor,	 and	 the	user	 is	 the	 secondary
actor.	This	is	an	example	of	the	secondary	actor	gaining	value	from	the	use	case.

Figure	6.6.	Example	of	timer	actor	(software	engineering	perspective).



6.2.6	Generalization	and	Specialization	of	Actors

In	 some	 systems,	different	 actors	might	have	 some	 roles	 in	 common	but	other
roles	that	are	different.	In	this	situation,	the	actors	can	be	generalized,	so	that	the
common	part	of	 their	 roles	 is	 captured	as	 a	generalized	actor	 and	 the	different
parts	 by	 specialized	 actors.	 For	 an	 example,	 consider	 the	 actors	 in	 a	 factory
automation	system	depicted	in	Figure	6.7.	The	Factory	Robot	actor	captures
the	generalized	role	played	by	all	factory	robots.	However,	the	Pick	&	Place
Robot	 and	Assembly	Robot	 actors	 are	modeled	 as	 specialized	 roles,	 which
inherit	 the	 common	 role	 of	 all	 robots	 from	 Factory	 Robot	 and	 extend	 this
with	specialized	roles	for	the	specific	types	of	robot.



Figure	6.7.	Example	of	generalization	and	specialization	of	actors.



6.3	Identifying	Use	Cases
To	determine	the	use	cases	in	the	system,	it	is	useful	to	start	by	considering	the
actors	and	the	interactions	they	have	with	the	system.	Each	use	case	describes	a
sequence	 of	 interactions	 between	 the	 actor(s)	 and	 the	 system.	 In	 this	way,	 the
functional	 requirements	 of	 the	 system	 are	 defined	 in	 terms	 of	 the	 use	 cases,
which	constitute	a	functional	specification	of	a	system.

A	use	case	starts	with	input	from	the	primary	actor.	The	main	sequence	of
the	use	 case	 describes	 the	most	 common	 sequence	of	 interactions	 between	 the
actor	and	the	system.	There	may	also	be	branches	off	the	main	sequence	of	the
use	 case,	 which	 address	 less	 frequent	 interactions	 between	 the	 actor	 and	 the
system.	 These	 deviations	 from	 the	 main	 sequence	 are	 executed	 only	 under
certain	circumstances	–	for	example,	if	the	actor	makes	an	incorrect	input	to	the
system.	Depending	on	the	application	requirements,	these	alternative	sequences
through	the	use	case	might	join	up	later	with	the	main	sequence.	The	alternative
sequences	are	also	described	in	the	use	case.

Consider	 the	 use	 case	 model	 for	 the	 microwave	 oven	 system,	 which	 is
viewed	from	a	systems	engineering	perspective.	This	system	has	three	use	cases:
the	Cook	Food,	Set	Time	of	Day,	and	Display	Time	of	Day	use	cases
(see	Figure	6.8).	From	a	 systems	 engineering	perspective,	 the	primary	 actor	 is
the	user	who	wishes	to	cook	food	and	not	the	I/O	devices.	In	the	main	sequence
of	 the	Cook	Food	use	case,	 the	user	opens	 the	door,	places	 the	food	in	 the
oven,	 closes	 the	 door,	 selects	 the	 cooking	 time,	 and	 presses	 Start.	 The	 oven
starts	cooking	the	food.	When	the	cooking	time	elapses,	the	oven	stops	cooking.
The	user	opens	the	door	and	removes	the	food.



Figure	6.8.	Use	case	model	for	Microwave	Oven	System	(systems
engineering	perspective).

Each	sequence	through	the	use	case	is	called	a	scenario.	A	use	case	usually
describes	 several	 scenarios,	 one	 main	 sequence	 (sometimes	 referred	 to	 as	 the
sunny	day	scenario)	and	a	number	of	alternative	sequences.	Note	that	a	scenario
is	 a	 complete	 sequence	 through	 the	 use	 case,	 so	 a	 scenario	 could	 start	 out
executing	the	main	sequence	and	then	follow	an	alternative	branch	at	a	decision
point.	In	the	Cook	Food	use	case,	there	are	several	alternative	scenarios	to	the
main	 sequence	 sunny	 day	 scenario.	 For	 example,	 one	 scenario	 is	 that	 the	 user
might	 open	 the	 door	 before	 cooking	 is	 finished,	 in	 which	 case	 cooking	 is
stopped.	In	another	scenario,	 the	user	might	press	Cancel	or	might	press	Start
when	the	door	is	open.



6.3.1	Use	Case	Structuring	Guidelines

When	developing	use	cases,	it	is	important	to	avoid	a	functional	decomposition
in	 which	 several	 small	 use	 cases	 describe	 individual	 functions	 of	 the	 system
rather	 than	describing	a	 sequence	of	 events	 that	provides	a	useful	 result	 to	 the
actor.

Although	 careful	 application	 of	 use	 case	 relationships	 can	 help	 with	 the
overall	 organization	 of	 the	 use	 case	 model,	 use	 case	 relationships	 should	 be
employed	 judiciously.	 Small	 inclusion	 use	 cases	 corresponding	 to	 individual
functions	 (such	 as	 Open	 Door,	 Update	 Display,	 and	 Start	 Cooking)
should	be	avoided.	These	functions	are	too	small,	and	making	them	separate	use
cases	would	 result	 in	a	 functional	decomposition	with	 fragmented	use	cases	 in
which	 the	 use	 case	 descriptions	 would	 be	 only	 a	 sentence	 each	 and	 not	 a
description	of	a	sequence	of	interactions.	The	result	would	be	a	use	case	model
that	is	overly	complex	and	difficult	to	understand	–	in	other	words,	a	problem	of
not	being	able	to	see	the	forest	(the	overall	sequence	of	interactions)	for	the	trees
(the	individual	functions)!



6.4	Documenting	Use	Cases	in	the	Use	Case
Model

Use	cases	are	documented	in	the	use	case	model	as	follows:

Use	case.	Each	use	case	is	given	a	name.

Summary.	This	section	briefly	describes	the	use	case,	typically	in	one	or
two	sentences.

Dependency.	This	optional	section	describes	whether	the	use	case
depends	on	other	use	cases,	that	is,	whether	it	includes	or	extends	another
use	case.

Actors.	This	section	names	the	actors	in	the	use	case.	There	is	always	a
primary	actor	who	initiates	the	use	case.	In	addition,	there	might	be	one
or	more	secondary	actors	who	also	participate	in	the	use	case.

Preconditions.	This	section	specifies	one	or	more	conditions	that	must
be	true	at	the	start	of	use	case,	from	the	perspective	of	this	use	case.

Main	sequence.	The	bulk	of	the	use	case	is	a	narrative	textual
description	of	the	main	sequence	of	the	use	case,	which	is	the	most	usual
sequence	of	interactions	between	the	actor	and	the	system.	The
description	is	in	the	form	of	the	input	from	the	actor,	followed	by	the
response	of	the	system.

Alternative	sequences.	This	section	provides	a	textual	description	of	the
alternative	sequences	that	branch	off	from	the	main	sequence.	The
descriptions	of	each	alternative	sequence,	as	well	as	the	step	in	the	main
sequence	at	which	the	alternative	branches	off,	need	to	be	documented.



Nonfunctional	requirements.	This	section	provides	a	textual	description
of	the	nonfunctional	requirements,	which	could	include	one	or	more	of
performance	requirements,	safety	requirements,	availability
requirements,	and	security	requirements.	(Refer	to	Section	6.5	for	more
information	about	nonfunctional	requirements).

Postcondition.	This	section	specifies	the	condition(s)	that	is	always	true
at	the	end	of	the	use	case,	if	the	main	sequence	has	been	followed,	from
the	perspective	of	this	use	case.

Outstanding	questions.	This	section	documents	any	questions	about	the
use	case	for	discussions	with	stakeholders.



6.5	Specifying	Nonfunctional	Requirements
Nonfunctional	 requirements	 address	 quality-of-service	 goals	 of	 the	 system,	 in
other	words	 how	well	 the	 functional	 requirements	 are	 fulfilled.	Nonfunctional
requirements	 are	 particularly	 important	 for	 embedded	 systems	 and	 include
performance	 requirements,	 safety	 requirements,	 availability	 requirements,	 and
security	 requirements.	 An	 example	 of	 a	 nonfunctional	 requirement	 for	 the
Authenticate	Operator	use	case	 is	 the	security	requirement	 that	 the	operator	ID
and	password	must	be	encrypted.	An	example	of	a	nonfunctional	requirement	for
the	Cook	 Food	 use	 case	 is	 the	 performance	 requirement	 that	 the	 system	must
respond	 to	 the	 timer	 inputs	 within	 100	 milliseconds.	 An	 example	 of	 a
nonfunctional	 safety	 requirement	 for	a	 furnace	 is	 that	 if	 the	 temperature	of	 the
furnace	exceeds	a	certain	limit,	which	indicates	a	safety	hazard	of	overheating,
the	furnace	should	be	switched	off.	If	the	nonfunctional	requirements	apply	to	a
group	of	related	use	cases,	then	they	can	be	documented	as	such.

The	 nonfunctional	 requirements	 are	 specified	 in	 a	 separate	 section	 of	 the
use	case,	as	described	in	Section	6.4.	Nonfunctional	requirements	include:

a)	Performance	requirements	are	system	throughput	and/or	response	time
goals.	For	example:	System	shall	respond	to	timer	inputs	within	100
milliseconds.

b)	Safety	requirements	are	requirements	to	protect	against	injury.	For	example:
System	shall	switch	off	the	furnace	if	temperature	exceeds	a	pre-specified	hazard
level.

c)	Availability	requirements	address	the	extent	to	which	the	system	is
operational	for	users.	For	example:	System	shall	be	operational	99.9	percent	of



required	time.

d)	Security	requirements	are	requirements	to	protect	information	and	system
resources.	For	example:	System	shall	encrypt	operator	ID	and	password.

e)	Scalability	requirements	address	the	capability	of	system	to	grow	beyond
initial	system	deployment.	For	example:	CPU,	main	memory,	and	secondary
storage	shall	be	capable	of	an	expansion	of	30	percent	after	initial	system
deployment.

f)	Configuration	requirements	address	decisions	that	can	be	made	about	the
software	system	at	deployment	time.	For	example:	There	is	a	choice	of	language
for	displaying	messages.	The	display	language	is	set	during	system
configuration.



6.6	Examples	of	Use	Case	Descriptions

6.6.1	Example	of	Use	Case	from	a	Systems	Engineering	Perspective

This	 section	 gives	 an	 example	 of	 a	 use	 case	 description	 from	 a	 systems
engineering	perspective	 for	 the	Cook	Food	use	case	 (see	Figure	6.8)	 from	the
microwave	 oven	 system.	 From	 this	 perspective,	 the	 actor	 is	 the	 human	 user,
rather	than	the	I/O	devices	used	by	the	user,	since	the	human	user	is	outside	the
total	system	whereas	 the	I/O	devices	are	part	of	 the	hardware/software	system.
The	use	case	description	is	given	for	the	main	sequence	of	the	use	case,	followed
by	 a	description	of	 the	 alternative	 sequences.	 In	 this	 use	 case,	 the	 steps	 in	 the
main	 sequence	 are	 numbered.	 Each	 alternative	 sequence	 identifies	 the	 step
number	 at	 which	 the	 alternative	 applies.	 A	 nonfunctional	 configuration
requirement	is	also	described.

Use	case:	Cook	Food.
Summary:	 User	 puts	 food	 in	 oven,	 and	 microwave	 oven	 cooks

food.
Actors:	User	Precondition:	Microwave	oven	is	idle.
Main	Sequence:

1.	User	opens	the	door.

2.	System	switches	on	the	oven	light.

3.	User	puts	food	in	the	oven	and	closes	the	door.

4.	System	switches	off	the	oven	light.

5.	User	presses	the	Cooking	Time	button.



6.	System	prompts	for	cooking	time.

7.	User	enters	cooking	time	on	the	numeric	keypad	and	presses	Start.

8.	System	starts	cooking	the	food,	starts	the	turntable,	and	switches	on	the
light.

9.	System	continually	displays	the	cooking	time	remaining.

10.	System	timer	detects	that	the	cooking	time	has	elapsed.

11.	System	stops	cooking	the	food,	switches	off	the	light,	stops	the	turntable,
sounds	the	beeper,	and	displays	the	end	message.

12.	User	opens	the	door.

13.	System	switches	on	the	oven	light.

14.	User	removes	the	food	from	the	oven	and	closes	the	door.

15.	System	switches	off	the	oven	light	and	clears	the	display.

Alternative	 Sequences:	 Step	 3:	 User	 presses	 Start	 when	 the	 door	 is	 open.
System	does	not	start	cooking.

Step	5:	User	presses	Start	when	the	door	is	closed	and	the	oven	is	empty.
System	does	not	start	cooking.

Step	5:	User	presses	Start	when	the	door	is	closed	and	the	cooking	time	is
equal	to	zero.	System	does	not	start	cooking.

Step	5:	User	presses	Minute	Plus,	which	results	in	the	system	adding	one
minute	 to	 the	 cooking	 time.	 If	 the	 cooking	 time	was	 previously	 zero,	System
starts	cooking,	starts	the	timer,	starts	the	turntable,	and	switches	on	the	light.

Step	7:	User	opens	door	before	pressing	the	Start	button.	System	switches
on	the	light.



Step	9:	User	presses	Minute	Plus,	which	results	in	the	system	adding	one
minute	to	the	cooking	time.

Step	9:	User	opens	door	during	cooking.	System	stops	cooking,	 stops	 the
turntable,	and	stops	the	timer.	The	user	closes	the	door	(system	then	switches	off
the	light)	and	presses	Start;	System	resumes	cooking,	resumes	the	timer,	starts
the	turntable,	and	switches	on	the	light.

Step	 9:	 User	 presses	 Cancel.	 System	 stops	 cooking,	 stops	 the	 timer,
switches	off	 the	 light,	and	stops	 the	 turntable.	User	may	press	Start	 to	 resume
cooking.	Alternatively,	user	may	press	Cancel	again;	system	then	cancels	timer
and	clears	display.

Configuration	requirement:	Name:	Display	Language.
Description:	There	is	a	choice	of	language	for	displaying	messages,	which

is	set	during	system	configuration.	The	default	 is	English.	Alternative	mutually
exclusive	languages	are	French,	Spanish,	German,	and	Italian.

Postcondition:	Microwave	oven	has	cooked	the	food.
The	main	sequence	for	the	use	case,	which	describes	the	sequence	of	actor	inputs
to	the	system	and	the	system's	responses,	should	be	relatively	straightforward	to
develop.	 However,	 the	 alternative	 sequences	 are	 often	 trickier	 to	 develop,
because	so	many	of	the	system	actions	are	state	dependent.	Figuring	out	all	the
alternatives	 of	 a	 state	 dependent	 use	 case	 is	 helped	 considerably	 by
supplementing	the	use	case	with	a	state	machine	design,	as	described	in	the	next
chapter.	 The	 biggest	 contribution	 the	 alternatives	 section	 of	 the	 use	 case
description	can	provide	is	to	point	out	all	 the	alternative	events	initiated	by	the
actors	 that	 need	 to	 be	 addressed.	 Determining	 the	 details	 of	 how	 the	 system
should	react	to	these	events	can	then	be	done	with	the	aid	of	a	state	machine.



6.6.2	Example	of	Use	Case	from	a	Software	Engineering	Perspective

This	 section	 gives	 an	 example	 of	 a	 use	 case	 description	 from	 a	 software
engineering	 perspective	 for	 the	 Arrive	 at	 Railroad	 Crossing	 use	 case
(see	 Figure	 6.9)	 from	 the	 Railroad	 Crossing	 Control	 System.	 From	 this
perspective,	 the	 actors	 are	 the	 I/O	 devices	 (which	 are	 outside	 the	 software
system	 but	 inside	 the	 total	 hardware/software	 system)	 rather	 than	 the	 train
physical	entity;	in	particular,	it	is	the	arrival	sensor	that	detects	the	arrival	of	the
train.	The	use	case	description	 is	given	 for	 the	main	 sequence	of	 the	use	case,
followed	 by	 a	 description	 of	 the	 alternative	 sequences.	 Nonfunctional
requirements	for	safety	and	performance	are	also	specified.

Use	case:	Arrive	at	Railroad	Crossing.
Summary:	Train	approaches	 railroad	crossing.	The	 system	 lowers

the	 barrier,	 switches	 on	 the	 warning	 lights,	 and	 switches	 on	 the	 audio
warning	alarm.

Actors:

Precondition:	The	system	is	operational,	and	 there	 is	either	no	 train	or
one	train	in	the	railroad	crossing.

Main	Sequence:

1.	Arrival	Sensor	detects	the	train	arrival	and	informs	the	system.

Primary	actor:	Arrival	Sensor.

Secondary	actors:	Barrier	Detection	Sensor,	Barrier	Actuator,	Warning
Light	Actuator,	Warning	Audio	Actuator,	Rail	Operations	Service,
Barrier	Timer.



2.	System	commands	each	Barrier	Actuator	to	lower	a	barrier,	each	Warning
Light	Actuator	to	switch	on	the	flashing	lights,	and	each	Warning	Audio
Actuator	to	switch	on	the	audio	warning.

3.	Barrier	Detection	Sensor	detects	that	a	barrier	has	been	lowered	and
informs	the	system.

4.	System	sends	a	train	arrival	message	to	Rail	Operations	Service.

Alternative	Sequences:	Step	2:	 If	 there	is	another	 train	already	at	 the	railroad
crossing,	skip	steps	2	and	3.

Step	 3:	 If	 Barrier	 Timer	 notifies	 the	 system	 that	 the	 lowering	 timer	 has
timed	 out,	 the	 system	 sends	 a	 safety	 warning	message	 to	 the	 Rail	 Operations
Service.

Nonfunctional	Requirements:

a)	Safety	requirements:

b)	Performance	requirement:

Postcondition:	The	barrier	has	been	closed,	the	warning	lights	are	flashing,	and
the	audio	warning	is	sounding.

Barrier	lowering	time	shall	not	exceed	a	pre-specified	time.	If	timer	times
out,	the	system	shall	notify	Rail	Operations	Service.

System	shall	keep	track	of	the	number	of	trains	at	the	railroad	crossing,
such	that	the	barrier	is	lowered	when	the	first	train	arrives	and	only
raised	after	the	last	train	departs.

The	elapsed	time	from	the	detection	of	train	arrival	to	sending	the
command	to	the	barrier	actuator	shall	not	exceed	a	pre-specified	response
time.



As	with	the	Cook	Food	use	case,	the	trickiest	part	of	the	use	case	description	is
dealing	with	the	alternative	sequences,	particularly	relating	to	the	issue	of	there
being	one	or	two	trains	in	the	railroad	crossing	at	train	arrival	and	departure.	The
intricacies	of	 this	problem	are	best	handled	with	 the	aid	of	a	 state	machine,	as
described	in	the	case	study	in	Chapter	20.

Figure	6.9.	Use	case	model	for	Railroad	Crossing	Control	System	(software
engineering	perspective).



6.7	Use	Case	Relationships
When	 use	 cases	 get	 too	 complex,	 dependencies	 between	 use	 cases	 can	 be
defined	 by	 using	 the	 include	 and	 extend	 relationships.	 The	 objective	 is	 to
maximize	extensibility	and	reuse	of	use	cases.

Another	 use	 case	 relationship	 provided	 by	 the	 UML	 is	 the	 use	 case
generalization.	 Use	 case	 generalization	 is	 similar	 to	 the	 extend	 relationship
because	 it	 is	also	used	for	addressing	variations.	However,	users	often	find	 the
concept	 of	 use	 case	 generalization	 confusing,	 so	 in	 the	 COMET	 method,	 the
concept	 of	 generalization	 is	 confined	 to	 classes.	 Use	 case	 variations	 can	 be
adequately	handled	by	the	extend	relationship.



6.8	The	Include	Use	Case	Relationship
After	the	use	cases	for	an	application	are	initially	developed,	common	sequences
of	 interactions	between	 the	actor	and	 the	system	can	sometimes	be	determined
that	 span	 several	 use	 cases.	 These	 common	 sequences	 of	 interactions	 reflect
functionality	that	is	common	to	more	than	one	use	case.	A	common	sequence	of
interactions	can	be	extracted	from	several	of	the	original	use	cases	and	made	into
a	new	use	case,	which	is	called	an	inclusion	use	case.

Inclusion	use	cases	reflect	functionality	that	is	common	to	more	than	one
use	 case.	 When	 this	 common	 functionality	 is	 separated	 into	 an	 inclusion	 use
case,	the	inclusion	use	case	can	be	reused	by	several	base	(executable)	use	cases.
An	 inclusion	 use	 case	 is	 executed	 in	 conjunction	with	 a	 base	 use	 case,	which
includes,	and	hence	executes,	the	inclusion	use	case.	In	programming	terms,	an
inclusion	 use	 case	 is	 analogous	 to	 a	 library	 routine	 and	 a	 base	 use	 case	 is
analogous	to	a	program	that	calls	the	library	routine.

An	inclusion	use	case	might	not	have	a	specific	actor.	The	actor	 is	 in	fact
the	 actor	 of	 the	 base	 use	 case	 that	 includes	 the	 inclusion	 use	 case.	 Because
different	base	use	cases	use	the	inclusion	use	case,	it	is	possible	for	the	inclusion
use	case	to	be	used	by	different	actors.



6.8.1	Example	of	Include	Relationship	and	Inclusion	Use	Cases

As	an	example	of	inclusion	use	cases,	consider	a	Light	Rail	Control	System	(see
case	 study	 described	 in	 Chapter	 21),	 which	 is	 described	 from	 a	 software
engineering	 perspective.	 In	 particular,	 there	 is	 a	 use	 case,	 Suspend	 Train,
which	includes	the	Arrive	at	Station	and	Control	Train	at	Station
inclusion	use	cases	(this	example	is	a	simplified	version	of	that	in	Chapter	21).
Suspend	Train	has	one	human	actor,	the	Rail	Operator,	who	commands	a
train	to	go	out	of	service,	and	one	input	device	actor,	Door	Sensor.	Suspend
Train	includes	the	Arrive	at	Station	use	case,	which	has	two	input	device
actors,	 the	 Approaching	 Sensor	 (to	 detect	 when	 the	 train	 is	 nearing	 the
station)	 and	 the	 Arrival	 Sensor	 (to	 detect	 when	 the	 train	 is	 entering	 the
station)	as	well	as	two	output	device	actors,	Motor	(to	first	decelerate	and	then
stop	 the	 train)	and	Door	Actuator	 (to	open	 the	 train	doors).	SuspendTrain
then	includes	the	Control	Train	at	Station,	which	has	one	input	device
actor,	the	Door	Sensor,	which	detects	when	the	train	doors	have	opened,	and
the	Door	Actuator,	which,	after	an	interval,	 is	commanded	to	close	the	train
doors.	The	use	case	descriptions	of	the	three	use	cases	are	given	next.

Control	 Train	 at	 Station	 use	 case:	 Use	 case:	 Control	 Train	 at
Station.

Actors:	Door	Sensor	(primary),	Door	Actuator.
Precondition:	Train	is	stopped	at	station	with	doors	opening.
Main	sequence:

1)	Door	Sensor	sends	Doors	Opened	message.



2)	After	time	interval,	System	sends	Close	Doors	command	to	the	Door
Actuator.

Postcondition:	Train	is	stopped	at	station	with	doors	closing.
Arrive	at	Station	use	case:	Use	case:	Arrive	at	Station.
Actors:	 Approaching	 Sensor	 (primary),	 Arrival	 Sensor,	 Motor,

DoorActuator.
Precondition:	Train	is	moving	toward	next	station.
Main	sequence:

1)	Approaching	Sensor	signals	that	train	is	approaching	station

2)	System	sends	Decelerate	command	to	Motor.

3)	Arrival	Sensor	signals	that	train	is	entering	station

4)	System	sends	Stop	Motor	command	to	Motor.

5)	Motor	responds	that	train	has	stopped.

6)	System	sends	Open	Doors	command	to	the	Door	Actuator.

Postcondition:	Train	has	stopped	at	station	with	doors	opening.
Suspend	Train	base	use	case:	Use	case:	Suspend	Train.
Actor:	Rail	Operator	(primary),	Door	Sensor.
Dependency:	Includes	Arrive	at	Station,	Control	Train	at	Station	usecases.
Precondition:	Train	is	operational	and	moving	toward	next	station.
Main	sequence:

1)	Rail	Operator	sends	suspend	train	operation	command	to	System.

2)	Include	Arrive	at	Station	use	case.

3)	Include	Control	Train	at	Station	use	case.



4)	Door	Sensor	sends	Doors	Closed	message	to	System.

Postcondition:	Train	is	stationary	at	station	and	out	of	service.

Figure	6.10.	Example	of	inclusion	use	cases	and	include	relationships.



6.8.2	Structuring	a	Lengthy	Use	Case

The	 include	 relationship	 can	 also	 be	 used	 to	 structure	 a	 lengthy	 use	 case.	The
base	use	case	provides	the	high-level	sequence	of	 interactions	between	actor(s)
and	 system.	 Inclusion	 use	 cases	 provide	 lower-level	 sequences	 of	 interactions
between	actor(s)	and	system.	An	example	of	 this	 is	 the	Manufacture	High-
Volume	 Part	 use	 case	 (see	 Figure	 6.11),	 which	 describes	 the	 sequence	 of
interactions	 in	 manufacturing	 a	 part.	 This	 process	 involves	 receiving	 the	 raw
material	 for	 the	part	 to	be	manufactured	 (described	 in	 the	Receive	Part	use
case),	executing	a	manufacturing	step	at	each	factory	workstation	(described	in
the	Process	Part	at	High-Volume	Workstation	use	case),	and	shipping
the	manufactured	part	(described	in	the	Ship	Part	use	case).

Figure	6.11.	Example	of	multiple	inclusion	use	cases	and	include
relationships.



6.9	The	Extend	Use	Case	Relationship
In	 certain	 situations,	 a	 use	 case	 can	 get	 very	 complex,	 with	 many	 alternative
branches.	The	extend	 relationship	 is	 used	 to	model	 alternative	paths	 that	 a	use
case	might	take	under	certain	conditions.	A	use	case	can	become	too	complex	if
it	has	too	many	alternative,	optional,	and	exceptional	sequences	of	interactions.
A	solution	 to	 this	problem	is	 to	split	off	an	alternative	or	optional	sequence	of
interactions	 into	 a	 separate	 use	 case.	 The	 purpose	 of	 this	 new	 use	 case	 is	 to
extend	the	old	use	case,	if	 the	appropriate	condition	holds.	The	use	case	that	is
extended	 is	 referred	 to	 as	 the	 base	 use	 case,	 and	 the	 use	 case	 that	 does	 the
extending	is	referred	to	as	the	extension	use	case.

Under	certain	conditions,	a	base	use	case	can	be	extended	by	a	description
given	 in	 the	 extension	 use	 case.	A	 base	 use	 case	 can	 be	 extended	 in	 different
ways,	depending	on	which	condition	is	true.	The	extend	relationship	can	be	used
as	follows:

It	 is	 important	 to	 note	 that	 the	 base	 use	 case	 does	 not	 depend	 on	 the
extension	use	case.	The	extension	use	case,	however,	depends	on	 the	base	use
case	 and	 executes	 only	 if	 the	 condition	 in	 the	 base	 use	 case	 that	 causes	 it	 to
execute	 is	 true.	Although	an	 extension	use	 case	usually	 extends	only	one	base
use	case,	 it	 is	possible	 for	 it	 to	extend	more	 than	one.	A	base	use	case	can	be
extended	by	more	than	one	extension	use	case.

To	show	a	conditional	part	of	the	base	use	case	that	is	executed	only
under	certain	circumstances

To	model	complex	or	alternative	paths.



6.9.1	Extension	Points

Extension	points	are	used	to	specify	the	precise	locations	in	the	base	use	case	at
which	extensions	can	be	added.	An	extension	use	case	may	extend	the	base	use
case	only	at	these	extension	points	(Fowler	2004,	Rumbaugh	et	al.	2005).

Each	extension	point	 in	 the	base	use	case	 is	given	a	name.	The	extension
use	case	has	one	insertion	segment	(usually	the	main	sequence	of	the	extension
use	case)	for	the	extension	point.	This	segment	is	inserted	at	the	location	of	the
extension	point	in	the	base	use	case.	The	extend	relationship	can	be	conditional,
meaning	that	a	condition	is	defined	that	must	be	true	for	the	extension	use	case
to	be	invoked.	Thus	it	is	possible	to	have	more	than	one	extension	use	case	for
the	same	extension	point,	but	with	each	extension	use	case	satisfying	a	different
condition.

A	segment	defines	a	behavior	sequence	to	be	executed	when	the	extension
point	 is	 reached.	When	an	instance	of	 the	use	case	 is	executed	and	reaches	 the
extension	point	in	the	base	use	case,	if	the	condition	is	satisfied,	then	execution
of	the	use	case	is	transferred	to	the	corresponding	segment	in	the	extension	use
case.	 Execution	 transfers	 back	 to	 the	 base	 use	 case	 after	 completion	 of	 the
segment.

An	extension	point	with	multiple	extension	use	cases	can	be	used	to	model
several	 alternatives	 in	 which	 each	 extension	 use	 case	 specifies	 a	 different
alternative.	The	extension	conditions	are	designed	such	that	only	one	condition
can	 be	 true,	 and	 hence	 only	 one	 extension	 use	 case	 selected,	 for	 any	 given
situation.

The	value	of	the	extension	condition	is	set	during	runtime	execution	of	the
use	case	because	at	any	one	time,	one	extension	use	case	could	be	chosen,	and	at
a	 different	 time	 an	 alternative	 extension	 use	 case	 could	 be	 chosen.	 In	 other



words,	 the	 extension	 condition	 is	 set	 during	 runtime	 of	 the	 use	 case	 and	 can
change	during	execution.



6.9.2	Example	of	Extension	Point	and	Extension	Use	Cases

Consider	 the	 following	 example	 for	 a	 green	 zone	 system	 (Figure	 6.12).	 The
green	zone	is	an	area	in	the	center	of	the	city	in	which	there	is	restricted	access
by	motor	vehicles.	Vehicles	 entering	 the	green	zone	have	a	green	zone	permit
number	 encoded	 on	 a	 RFID	 (radio	 frequency	 ID)	 transponder,	 which	 is
displayed	on	 the	windshield	 of	 the	 vehicle.	When	 the	 vehicle	 enters	 the	 green
zone,	a	remote	transponder	detector	reads	the	permit	number	RFID	and	transmits
it	 to	 the	Green	 Zone	Monitoring	 System.	 This	 functionality	 is	 handled	 by	 the
base	use	case,	Enter	Green	Zone.	However,	a	car	entering	the	green	zone	without
a	permit	is	handled	by	an	extension	use	case,	Process	Unauthorized	Vehicle.	The
extension	 point	 is	 called	 Unauthorized	 (Figure	 6.12)	 and	 is	 located	 in	 an
alternative	sequence	of	the	Enter	Green	Zone	use	case	for	handling	unrecognized
or	 missing	 permit	 numbers.	 The	 use	 cases	 are	 described	 from	 a	 systems
engineering	perspective,	so	the	primary	actor	is	the	Vehicle	(not	the	sensors	that
detect	 the	vehicle),	and	 the	secondary	actors	 for	 the	extension	use	case	are	 the
external	DMV	System	and	Police	Patrol	Car.

Enter	Green	Zone	base	use	case	Use	case:	Enter	Green	Zone.
Summary:	 Vehicle	 enters	 restricted	 Green	 Zone;	 System	 starts

trackingthe	vehicle.
Actor:	Vehicle.
Precondition:	Green	Zone	entry	point	is	clear.
Main	Sequence:

1.	Vehicle	approaches	green	zone	entry	point.

2.	System	detects	vehicle	entering	the	green	zone.



3.	System	reads	vehicle	permit	number	RFID.

4.	System	checks	that	permit	number	is	valid.

5.	System	stores	the	following	information:	permit	number,	entry	time/date,
entry	location.

Alternative	 Sequence:	 Step	 4:	 Unauthorized	 (i.e.,	 unrecognized	 or	 missing
permit	number):Extend	with	Process	Unauthorized	Vehicle	use	case.

Postcondition:	Vehicle	has	entered	green	zone.
Process	 Unauthorized	 Vehicle	 extension	 use	 case	 Use	 case:	 Process

Unauthorized	Vehicle.
Summary:	 The	 license	 number	 of	 the	 unauthorized	 vehicle	 is

detected,decoded,	and	sent	to	the	police.
Actor:	 Vehicle	 (primary),	 Police	 Patrol	 Car	 (secondary),	 DMV

System(secondary).
Dependency:	Extends	Enter	Green	Zone	use	case.
Precondition:	Vehicle	has	an	invalid	or	nonexistent	permit	number.
Description	of	insertion	segment:

1.	System	takes	photograph	of	vehicle	license	plate.

2.	System	uses	an	image	processing	algorithm	to	analyze	the	photograph	and
extract	the	state	name	and	vehicle	license	number.

3.	System	sends	a	message	to	the	DMV	system	of	the	vehicle's	state	containing
the	vehicle	license	number	and	requesting	owner	name	and	address.

4.	The	DMV	system	sends	a	message	to	the	system	containing	the	name	and
address	of	the	vehicle	owner.

5.	The	system	issues	and	prints	a	fine	to	be	sent	by	mail	to	the	vehicle	owner.



Postcondition:	The	unauthorized	vehicle	has	been	detected	and	a	finehas	been
issued.

Alternative	 sequence:	 Step	 2:	 The	 license	 plate	 cannot	 be	 decoded
(because	of	bad	photograph,	bad	weather,	covered	license	plate);	System	sends
alert	message	to	the	Police	Patrol	Car.

Figure	6.12.	Example	of	an	extend	relationship	and	an	extension	use	case.



6.10	Use	Case	Packages
For	large	systems	that	have	to	deal	with	a	large	number	of	use	cases,	the	use	case
model	 can	 become	 unwieldy.	 A	 good	 way	 to	 handle	 this	 scale-up	 issue	 is	 to
introduce	a	use	case	package	that	groups	together	related	use	cases.	In	this	way,
use	 case	 packages	 can	 represent	 high-level	 requirements	 that	 address	 major
subsets	 of	 the	 functionality	 of	 the	 system.	 Because	 actors	 often	 initiate	 and
participate	in	related	use	cases,	use	cases	can	be	grouped	into	packages	based	on
the	major	actors	that	use	them.	Nonfunctional	requirements	that	apply	to	a	group
of	related	use	cases	could	be	assigned	to	the	use	case	package	that	contains	those
use	cases.

Figure	 6.13	 shows	 an	 example	 of	 a	 use	 case	 package	 for	 the	 Factory
Automation	System,	namely	the	Factory	Monitoring	Use	Case	Package,
encompassing	four	use	cases.	The	Factory	Operator	 is	the	primary	actor	of
the	View	Alarms	 and	View	Monitoring	Data	 use	 cases	 and	 a	 secondary
actor	 of	 the	 other	 use	 cases.	The	Factory	Robot	 is	 the	 primary	 actor	 of	 the
Generate	Alarm	and	Generate	Monitoring	Data	use	cases.



Figure	6.13.	Example	of	use	case	package.



6.11	Summary
This	 chapter	 has	 described	 the	 use	 case	 approach	 to	 specifying	 the	 functional
requirements	 of	 the	 system	 from	 both	 systems	 engineering	 and	 software
engineering	perspectives.	It	has	described	the	concepts	of	actor	and	use	cases.	It
has	 also	 described	 use	 case	 relationships,	 in	 particular,	 the	 extend	 and	 include
relationships.	 Furthermore,	 use	 case	modeling	 can	 be	 supplemented	with	 state
machine	modeling	 to	 provide	 a	more	 precise	 specification	 for	 state	 dependent
real-time	embedded	systems,	as	described	in	Chapter	7.

Use	 cases	 developed	 from	 a	 systems	 engineering	 perspective	 are	 less
detailed	than	use	cases	developed	from	a	software	engineering	perspective.	The
former	 use	 cases	 can	 be	 developed	 earlier	 in	 the	 COMET/RTE	 life	 cycle,	 in
particular	 before	 hardware/software	 boundary	 modeling	 and	 software	 system
context	modeling,	as	described	in	Chapter	5.

The	 use	 case	 model	 has	 a	 strong	 influence	 on	 subsequent	 software
development.	Thus,	use	cases	are	realized	in	the	analysis	model	during	dynamic
interaction	modeling,	as	described	 in	Chapter	9.	For	each	use	case,	 the	objects
that	 participate	 in	 the	 use	 case	 are	 determined	 by	 using	 the	 object	 structuring
criteria	 described	 in	 Chapter	 8,	 and	 the	 sequence	 of	 interactions	 between	 the
objects	is	defined.	Software	can	be	incrementally	developed	by	selecting	the	use
cases	 to	 be	developed	 in	 each	phase	of	 the	project,	 as	 described	 in	Chapter	 4.
Integration	and	system	test	cases	should	also	be	based	on	use	cases.



7

State	Machines	for	Real-Time
Embedded	Systems

◈

State	machines	(also	referred	to	as	finite	state	machines)	are	used	for	modeling
control	and	sequencing	in	a	system.	This	 is	particularly	 important	for	real-time
embedded	systems,	which	are	usually	highly	state	dependent.	 In	particular,	 the
actions	of	a	state	dependent	system	depend	not	only	on	the	inputs	to	the	system
but	also	on	what	happened	previously	in	the	system,	which	is	captured	as	a	state.
A	 state	 machine	 can	 be	 used	 to	 depict	 the	 states	 of	 a	 system,	 subsystem,
component,	 or	 object.	 Notations	 used	 to	 define	 state	 machines	 are	 the	 state
transition	diagram,	state	machine	diagram,	statechart,	and	state	 transition	 table.
In	 highly	 state	 dependent	 systems,	 these	 notations	 help	 substantially	 to
understand	the	complexity	of	these	systems.

A	state	machine	specification	is	typically	more	precise	and	understandable
than	 a	 textual	 or	 use	 case	 description.	 State	 machines	 can	 enhance	 or	 even
replace	 use	 case	 descriptions	 of	 requirements	 by	 providing	 more	 precise
specifications.	In	particular,	state	machines	are	essential	for	specifying	systems
with	significant	state	dependent	behavior.

In	 the	 UML	 notation,	 a	 state	 transition	 diagram	 is	 referred	 to	 as	 a	 state
machine	diagram.	The	UML	state	machine	diagram	notation	is	based	on	Harel's



statechart	 notation	 (Harel	 and	Gery	1996;	Harel	 and	Politi	 1998).	 In	 this	book
the	 terms	 state	machine	 and	 state	machine	 diagram	 are	 used	 interchangeably.
This	 chapter	 refers	 to	 a	 traditional	 state	 transition	 diagram,	 which	 is	 not
hierarchical,	as	a	flat	state	machine	and	uses	the	term	hierarchical	state	machine
to	refer	to	the	concept	of	hierarchical	state	decomposition,	a	concept	introduced
by	Harel.	A	brief	overview	of	 the	state	machine	notation	 is	given	in	Chapter	2
(Section	2.6).

This	chapter	starts	by	considering	the	characteristics	of	flat	state	machines
and	 then	 describes	 hierarchical	 state	 machines.	 To	 show	 the	 benefits	 of
hierarchical	state	machines,	this	chapter	starts	with	the	simplest	form	of	flat	state
machine	and	gradually	shows	how	it	can	be	 improved	upon	 to	achieve	 the	full
modeling	power	of	hierarchical	state	machines.	The	process	of	developing	state
machines	 from	 use	 cases	 is	 then	 described.	 Several	 examples	 are	 given
throughout	 the	 chapter	 from	 two	 case	 studies,	 the	Microwave	Oven	 and	Train
Control	state	machines.

Section	 7.1	 describes	 events	 and	 states	 in	 state	 machines.	 Section	 7.2
introduces	 the	 Microwave	 Oven	 Control	 state	 machine	 example.	 Section	 7.3
describes	events	and	guard	conditions,	while	Section	7.4	describes	state	machine
actions.	 Section	 7.5	 describes	 hierarchical	 state	machines,	 both	 sequential	 and
orthogonal.	 Section	 7.6	 describes	 cooperating	 state	 machines,	 while	 state
machine	inheritance	is	described	in	Section	7.7.	The	process	of	developing	state
machines	from	use	cases	is	then	described	in	Sections	7.8	and	7.9.



7.1	State	Machines
A	 state	machine	 is	 a	 conceptual	machine	with	 a	 finite	 number	 of	 states.	 The
state	 machine	 can	 be	 in	 only	 one	 of	 the	 states	 at	 any	 specific	 time.	 A	 state
transition	is	a	change	in	state	that	is	caused	by	an	input	event.	In	response	to	an
input	event,	the	state	machine	might	transition	to	a	different	state.	Alternatively,
the	event	has	no	effect	and	the	state	machine	remains	in	the	same	state.	The	next
state	depends	on	 the	current	 state	as	well	as	on	 the	 input	event.	Optionally,	an
output	action	might	result	from	the	state	transition.

A	state	machine	can	be	used	to	depict	the	state	of	a	system,	subsystem,	or
component.	 However,	 in	 object-oriented	 systems,	 a	 state	 machine	 (even	 if	 it
describes	 the	 state	 of	 a	 system)	 should	 always	 be	 encapsulated	 in	 a	 class,	 as
described	in	Chapter	8.



7.1.1	Events

An	event	occurs	at	a	point	in	time;	it	is	also	known	as	a	discrete	event,	discrete
signal,	or	stimulus.	An	event	is	an	atomic	occurrence	(i.e.,	not	interruptible)	and
conceptually	has	zero	duration.	Examples	of	events	are	Door	Opened,	Item
Placed,	Timer	expired,	and	Cruising	Speed	Reached.

Events	can	depend	on	each	other.	For	example,	 in	a	microwave	oven,	 the
event	 Door	 Opened	 always	 precedes	 the	 event	 Item	 Placed	 for	 a	 given
sequence	 of	 events.	 In	 this	 situation,	 the	 first	 event	 (Door	Opened)	 causes	 a
transition	 into	 the	 state	 (Door	 Open),	 while	 the	 next	 event	 (Item	 Placed)
causes	 the	 transition	 out	 of	 that	 state;	 the	 precedence	 of	 the	 two	 events	 is
reflected	 in	 the	 state	 that	 connects	 them,	 as	 shown	 in	 Figure	 7.1.	 However,
events	 can	 be	 completely	 independent	 of	 each	 other.	 For	 example,	 the	 event
Train	x	Departed	from	New	York	 is	 independent	of	 the	event	Train	y
Departed	from	Washington.



Figure	7.1.	Example	of	main	sequence	of	state	machine	(partial	state
machine).

An	 event	 can	 originate	 from	 an	 external	 source,	 such	 as	 Door	 Opened
(which	 is	 the	 result	 of	 the	 user	 opening	 the	 oven	 door),	 or	 the	 event	 can	 be
internally	generated	by	the	system,	such	as	Cruising	Speed	Reached.

A	 timer	 event	 is	 a	 special	 event,	 specified	 by	 the	 keyword	after,	 which
indicates	 that	 an	 event	 will	 occur	 after	 an	 elapsed	 time	 identified	 by	 an
expression	 in	 parentheses,	 such	 as	after	 (ten	 seconds)	 or	after	 (elapsed	 time).
On	a	state	machine,	the	timer	event	causes	a	transition	out	of	a	given	state.	The
elapsed	 time	 is	measured	 from	 the	 time	of	 entry	 into	 that	 state	 (e.g.,	when	 the



timer	is	started)	until	exit	from	the	state,	which	is	caused	by	the	timer	expiration
event.

State	machines	are	assumed	 to	observe	run	 to	completion	 semantics.	This
means	that	each	event	is	executed	to	completion	before	starting	the	next	event.
Thus,	if	two	events	arrive	at	essentially	the	same	time,	one	event	is	selected	and
processed	 completely	 before	 the	 next	 event	 is	 selected.	 Executing	 an	 event
includes	 executing	 any	 hierarchical	 or	 orthogonal	 transitions	 and	 actions
resulting	from	the	event.



7.1.2	States

A	state	 represents	a	 recognizable	 situation	 that	exists	over	an	 interval	of	 time.
Whereas	an	event	occurs	at	a	point	 in	 time,	a	state	machine	 is	 in	a	given	state
over	an	interval	of	time.	The	current	state	is	the	name	given	to	the	state	that	the
state	machine	is	currently	occupying.	The	arrival	of	an	event	at	the	state	machine
usually	causes	a	transition	from	one	state	to	another.	Alternatively,	an	event	can
have	a	null	effect,	in	which	case	the	state	machine	remains	in	the	same	state.	In
theory,	a	state	transition	takes	zero	time	to	occur.	In	practice,	the	time	for	a	state
transition	to	occur	is	negligible	compared	to	the	time	spent	in	the	state.

Some	 states	 represent	 the	 state	 machine	 waiting	 for	 an	 event	 from	 the
external	 environment,	 for	 example	 the	 state	 Ready	 to	 Cook	 is	 the	 state	 in
which	 the	 state	 machine	 is	 waiting	 for	 the	 user	 to	 press	 the	 Start	 button,	 as
shown	in	Figure	7.1.	Other	states	represent	situations	in	which	the	state	machine
is	waiting	for	a	response	from	another	part	of	the	system.	For	example,	Cooking
is	the	state	in	which	food	is	being	cooked	and	the	next	event	is	an	internal	timer
event	that	is	generated	when	the	cooking	timer	expires.

The	initial	state	of	a	state	machine	is	the	state	that	is	entered	when	the	state
machine	 is	 activated.	 For	 example,	 the	 initial	 state	 in	 the	 Microwave	 state
machine	 is	 the	Door	Shut	 state,	 as	 identified	 in	UML	by	 the	 arc	 originating
from	the	small	black	circle	in	Figure	7.1.



7.2	Examples	of	State	Machine
As	 an	 example	 of	 a	 state	 machine,	 consider	 the	 partial	 state	 machine	 for	 the
Microwave	Oven,	which	is	taken	from	the	microwave	oven	system	case	study
and	shown	in	Figure	7.1.	The	state	machine	follows	the	main	sequence	described
in	 the	 Cook	 Food	 use	 case	 (see	 Chapters	 6	 and	 19)	 and	 shows	 the	 different
states	for	cooking	food.	The	initial	state	is	Door	Shut.	When	the	user	opens	the
door,	the	state	machine	transitions	into	the	Door	Open	state.	The	user	places	an
item	 in	 the	 oven,	 causing	 the	 state	machine	 to	 transition	 into	 the	Door	Open
with	 Item	 state.	 When	 the	 user	 closes	 the	 door,	 the	 state	 machine	 then
transitions	 into	 the	 Door	 Shut	 with	 Item	 state.	 After	 the	 user	 inputs	 the
cooking	time,	 the	Ready	to	Cook	state	 is	entered.	When	the	user	presses	 the
Start	 button,	 the	 state	 machine	 transitions	 into	 the	 Cooking	 state.	When	 the
timer	 expires,	 the	 Door	 Shut	 with	 Item	 state	 is	 reentered.	 The	 user	 then
opens	 the	 door	 and	 the	 state	 machine	 transitions	 back	 to	 Door	 Open	 with
Item	 state.	The	user	 removes	 the	food	and	 the	state	machine	 transitions	 to	 the
Door	 Open	 state.	 From	 there,	 if	 the	 user	 closes	 the	 door,	 the	 state	 machine
transitions	back	to	the	Door	Shut	state.

The	 above	 description	 closely	 follows	 the	 use	 case	 description	 and
describes	the	states	entered	and	exited	during	the	execution	of	the	main	sequence
of	 the	Cook	Food	 use	 case.	A	 state	machine	 can	 also	 depict	 alternative	 state
transitions	out	of	a	state.	It	is	possible	to	have	more	than	one	transition	out	of	a
state,	with	each	 transition	caused	by	a	different	event.	Consider	 the	alternative
state	transition	out	of	Cooking	state.	If,	instead	of	the	timer	expiration	causing
the	transition	from	Cooking	state,	the	user	opens	the	door	during	cooking	(see
Figure	 7.2),	 the	 state	machine	would	 then	 transition	 to	 the	Door	Open	with



Item	state.	From	this	state,	the	user	could	then	either	close	the	door	(transition
to	Door	Shut	with	Item	state)	or	remove	the	item	(transition	to	Door	Open
state).	These	alternative	state	transitions	are	clearly	visible	in	the	state	machine
and	are	more	precisely	described	than	in	a	textual	use	case	description.

Figure	7.2.	Example	of	alternative	state	transitions	on	state	machine	(partial
state	machine).



In	 some	 cases,	 it	 is	 also	 possible	 for	 the	 same	 event	 to	 occur	 in	 different
states	 and	 have	 different	 effects.	 For	 example,	 in	 Figure	 7.2,	 if	 the	 door	 is
opened	in	Door	Shut	state,	the	state	machine	transitions	to	Door	Open	state.	If
the	 door	 is	 opened	 in	 Door	 Shut	 with	 Item	 state,	 the	 state	 machine
transitions	to	Door	Open	with	Item	state.	However,	if	the	door	is	opened	in
Cooking	 state,	 the	 transition	 is	 also	 to	 Door	 Open	 with	 Item	 state.	 In
addition,	on	this	transition	out	of	Cooking	state,	cooking	is	stopped.	This	issue
is	discussed	further	in	Section	7.4.



7.3	Events	and	Guard	Conditions
It	 is	 possible	 to	 specify	 conditional	 state	 transitions	 through	 the	 use	 of	 guard
conditions.	This	can	be	achieved	by	combining	events	and	guard	conditions	 in
defining	state	transitions.	The	notation	used	is	Event	[Condition].	A	condition	is
a	 Boolean	 expression	 given	 in	 square	 brackets	with	 a	 value	 of	 True	 or	 False,
which	holds	 for	 some	period	of	 time.	When	 the	event	arrives,	 it	 causes	a	 state
transition,	provided	that	the	guard	condition	is	True.	Conditions	are	optional.

In	some	cases,	an	event	does	not	cause	an	immediate	state	transition,	but	its
impact	 needs	 to	 be	 remembered	 because	 it	will	 affect	 a	 future	 state	 transition.
The	 fact	 that	 an	 event	 has	 occurred	 can	 be	 stored	 as	 a	 condition	 that	 can	 be
checked	later.

Examples	 of	 guard	 conditions	 in	 Figure	 7.3	 are	 Zero	 Time	 and	 Time
Remaining	 in	 the	microwave	state	machine.	Two	of	 the	 transitions	out	of	 the
Door	 Open	 with	 Item	 state	 are	 Door	 Closed	 [Zero	 Time]	 and	 Door
Closed	[Time	Remaining].	 Thus	 the	 transition	 taken	 depends	 on	whether
the	user	has	previously	entered	 the	 time	or	not.	 If	 the	condition	Zero	Time	 is
true	when	the	door	is	closed,	the	state	machine	transitions	to	Door	Shut	with
Item,	waiting	for	the	user	to	enter	the	time.	If	the	condition	Time	Remaining
is	 true	when	 the	door	 is	closed,	 the	state	machine	 transitions	 to	 the	Ready	to
Cook	state.	(It	should	be	noted	that	these	conditions	can	be	depicted	as	states	on
a	separate	state	machine	as	described	in	Section	7.5.5).





Figure	7.3.	Example	of	events	and	conditions	(partial	state	machine).



7.4	Actions
Associated	with	 a	 state	 transition	 is	 an	 optional	 output	 action.	 An	 action	 is	 a
computation	that	executes	as	a	result	of	a	state	transition.	While	an	event	is	the
cause	of	a	state	 transition,	an	action	 is	 the	effect	of	 the	 transition.	An	action	 is
triggered	at	a	state	 transition.	 It	executes	and	 then	 terminates	 itself.	The	action
executes	instantaneously	at	the	state	transition;	thus	conceptually	an	action	is	of
zero	duration.	In	practice,	the	duration	of	an	action	is	very	small	compared	to	the
duration	of	a	state.

Actions	can	be	depicted	on	state	 transitions,	as	described	in	Section	7.4.1.
Certain	actions,	namely	entry	and	exit	actions,	can	be	depicted	more	concisely	as
being	associated	with	 the	state	rather	 than	with	 the	 transition	into	or	out	of	 the
state.	 Entry	 actions	 are	 triggered	 when	 the	 state	 is	 entered,	 as	 described	 in
Section	7.4.2,	and	exit	actions	are	triggered	on	leaving	the	state,	as	described	in
Section	7.4.3.



7.4.1	Actions	on	State	Transitions

A	transition	action	 is	an	action	 that	 is	a	 result	of	a	 transition	from	one	state	 to
another	–	it	could	also	happen	if	the	state	machine	transitions	back	to	the	same
state.	 To	 depict	 a	 transition	 action	 on	 a	 state	 machine,	 the	 state	 transition	 is
labeled	Event/Action	or	Event	[Condition]/Action.

As	 examples	 of	 actions,	 consider	 the	Microwave	 state	machine	 of	 Figure
7.1	with	the	actions	added,	as	shown	in	Figure	7.4.	Consider	the	situation	when
the	user	presses	the	start	button	and	the	machine	is	in	the	Ready	to	Cook	state.
The	state	machine	transitions	into	the	Cooking	state.	The	actions	are	to	start	the
timer	and	start	cooking.



Figure	7.4.	Example	of	actions	in	main	sequence	(partial	state	machine).

There	can	be	more	 than	one	action	associated	with	a	 transition.	Since	 the
actions	 all	 execute	 simultaneously,	 there	 must	 not	 be	 any	 interdependencies
between	 the	actions.	Thus,	 in	 the	above	example,	 the	actions	 to	 start	 the	 timer
and	 start	 cooking	 are	 independent	 of	 each	 other.	However,	 it	 is	 not	 correct	 to
have	 two	 simultaneous	 actions,	 such	 as	 Compute	 Change	 and	 Display
Change.	 Since	 there	 is	 a	 sequential	 dependency	 between	 the	 two	 actions,	 the
change	cannot	be	displayed	before	it	has	been	computed.	To	avoid	this	problem,
introduce	 an	 intermediate	 state	 called	 Computing	 Change.	 The	 Compute



Change	 action	 is	 executed	 on	 entry	 to	 this	 state	 and	 the	 Display	 Change
action	is	executed	on	exit	from	this	state.

An	example	of	a	state	machine	with	alternative	state	transitions	and	actions
is	shown	in	Figure	7.5.	In	particular,	there	are	three	alternative	state	transitions
out	 of	 Cooking	 state,	 which	 have	 different	 resulting	 actions.	 From	 Cooking
state,	if	the	timer	expires,	the	transition	is	to	Door	Shut	with	Item	state,	and
the	action	is	to	Stop	Cooking.	By	contrast,	if	the	door	is	opened,	the	transition
is	to	Door	Open	with	Item,	and	the	actions	are	Stop	Cooking	(as	before)
and	 Stop	 Timer.	 Stop	 Timer	 is	 necessary	 in	 the	 door	 opened	 scenario
because	there	will	be	a	non-zero	cooking	time	left	 if	 the	door	is	opened	before
the	 timer	 expires.	 If	 cooking	 is	 later	 resumed,	 the	 oven	 will	 cook	 for	 the
remaining	 time.	 The	 same	 two	 actions	 are	 also	 executed	 if	 the	 user	 presses
Cancel,	although	the	transition	is	to	Ready	to	Cook	state.



Figure	7.5.	Example	of	alternative	state	transitions	and	actions	(partial	state
machine).

The	same	event	can	occur	 in	different	states.	Depending	on	the	 individual
state,	the	actions	could	be	the	same	or	different.	Figure	7.5	gives	an	example	of
the	 Door	 Opened	 event,	 which	 can	 occur	 in	 four	 different	 states.	 In	 each
scenario,	the	transition	is	to	a	different	state;	in	three	scenarios	(transition	out	of
Door	 Shut	 state	 to	 Door	 Open	 state,	 transition	 out	 of	 Door	 Shut	 with
Item	 state	 to	Door	Open	with	Item	 state,	 and	 transition	out	of	Ready	to
Cook	state	to	Door	Open	with	Item	state)	there	is	no	action.	However,	in	the
fourth	scenario,	transition	out	of	Cooking	state,	the	transition	is	to	Door	Open
with	Item,	and	the	actions	are	Stop	Cooking	and	Stop	Timer.



7.4.2	Entry	Actions

An	entry	action	 is	an	 instantaneous	action	 that	 is	performed	on	 transition	 into
the	 state.	 An	 entry	 action	 is	 represented	 by	 the	 reserved	 word	 entry	 and	 is
depicted	as	entry/Action	inside	the	state	box.	Whereas	transition	actions	(actions
explicitly	depicted	on	state	transitions)	can	always	be	used,	entry	actions	should
only	be	used	in	certain	situations.	The	best	time	to	use	an	entry	action	is	when:

In	this	situation,	the	action	is	only	depicted	once	inside	the	state	box,	instead	of
on	 each	 transition	 into	 the	 state.	 However,	 if	 an	 action	 is	 only	 performed	 on
some	transitions	into	the	state	and	not	others,	then	the	entry	action	must	not	be
used.	Instead,	transition	actions	should	be	used	on	the	relevant	state	transitions.

An	example	of	an	entry	action	is	given	in	Figure	7.6.	In	Figure	7.6a,	actions
are	shown	on	the	state	transitions.	If	the	Start	button	is	pressed	(resulting	in	the
Start	 event)	while	 the	microwave	 oven	 is	 in	 the	Ready	to	Cook	 state,	 the
state	machine	 transitions	 to	 the	Cooking	 state.	 There	 are	 two	 actions,	Start
Cooking	and	Start	Timer.	 However,	 if	Minute	Pressed	 event	 arrives
(to	cook	 the	food	for	one	minute)	while	 in	Door	Shut	with	Item	 state,	 the
state	machine	will	also	transition	to	the	Cooking	state.	However,	in	this	case	the
actions	are	Start	Cooking	and	Start	Minute.	Thus,	 in	 the	 two	 transitions
into	Cooking	state,	one	action	is	the	same	(Start	Cooking)	but	the	second	is
different.	An	alternative	decision	is	to	use	an	entry	action	for	Start	Cooking
as	shown	in	Figure	7.6b.	On	entry	 into	Cooking	 state,	 the	entry	action	Start

There	is	more	than	one	transition	into	a	state.

The	same	action	needs	to	be	performed	on	every	transition	into	this	state.

The	action	is	performed	on	entry	into	this	state	and	not	on	exit	from	the
previous	state.



Cooking	is	executed	because	this	action	is	executed	on	every	transition	into	the
state.	 However,	 the	 Start	 Timer	 action	 is	 shown	 as	 an	 action	 on	 the	 state
transition	from	Ready	to	Cook	 state	 into	Cooking	 state.	This	 is	because	 the
Start	Timer	action	is	only	executed	on	that	specific	transition	into	Cooking
state	and	not	on	the	other	transition.	For	the	same	reason,	on	the	transition	from
Door	Shut	with	Item	 state	 into	Cooking	 state,	 there	 is	 a	 transition	action
Start	Minute.	Figures	7.6a	and	7.6b	are	semantically	equivalent	to	each	other
but	Figure	7.6b	is	more	concise.



Figure	7.6.	Example	of	entry	action.	(a)	Actions	on	state	transitions.	(b)	Entry
action.



7.4.3	Exit	Actions

An	exit	action	 is	an	instantaneous	action	that	 is	performed	on	transition	out	of
the	state.	An	exit	action	is	represented	by	the	reserved	word	exit	and	is	depicted
as	exit/Action	inside	the	state	box.	Whereas	transition	actions	(actions	explicitly
depicted	 on	 state	 transitions)	 can	 always	 be	 used,	 exit	 actions	 should	 only	 be
used	in	certain	situations.	The	best	time	to	use	an	exit	action	is	when:

In	this	situation,	the	action	is	only	depicted	once	inside	the	state	box,	instead	of
on	each	 transition	out	of	 the	state.	However,	 if	an	action	 is	only	performed	on
some	transitions	out	of	the	state	and	not	others,	then	the	exit	action	must	not	be
used.	Instead,	transition	actions	should	be	used	on	the	relevant	state	transitions.

An	example	of	an	exit	action	is	given	in	Figure	7.7.	In	Figure	7.7a,	actions
are	 shown	 on	 the	 state	 transitions	 out	 of	 Cooking	 state.	 Consider	 the	 action
Stop	Cooking.	 If	 the	 timer	expires,	 the	microwave	oven	 transitions	 from	 the
Cooking	 state	 to	 the	 Door	 Shut	 with	 Item	 state	 and	 the	 action	 Stop
Cooking	 is	 executed	 (Figure	7.7a).	 If	 the	door	 is	opened,	 the	oven	 transitions
out	of	the	Cooking	state	into	Door	Open	with	Item	state.	In	this	transition,
two	 actions	 are	 executed,	 Stop	 Cooking	 and	 Stop	 Timer.	 Thus,	 in	 both
transitions	 out	 of	 Cooking	 state	 (Figure	 7.7a),	 the	 action	 Stop	 Cooking	 is
executed.	However,	when	the	door	is	opened	and	the	transition	is	to	Door	Open
with	Item	state,	 there	 is	an	additional	Stop	Timer	action.	An	alternative

There	is	more	than	one	transition	out	of	a	state.

The	same	action	needs	to	be	performed	on	every	transition	out	of	the
state.

The	action	is	performed	on	exit	from	this	state	and	not	on	entry	into	the
next	state.



design	is	shown	in	Figure	7.7b,	where	an	exit	action	Stop	Cooking	is	depicted.
This	means	 that	whenever	 there	 is	 a	 transition	 out	 of	Cooking	 state,	 the	 exit
action	Stop	Cooking	is	executed.	In	addition,	in	the	transition	to	Door	Open
with	Item	state,	 the	 transition	 action	Stop	Timer	will	 also	 be	 executed.
Having	the	Stop	Cooking	action	as	an	exit	action	instead	of	an	action	on	the
state	 transition	 is	 more	 concise,	 as	 shown	 in	 Figure	 7.7b.	 The	 alternative	 of
having	transition	actions,	as	shown	in	Figure	7.7a,	requires	the	Stop	Cooking
action	 to	 be	 explicitly	 depicted	 on	 each	 of	 the	 state	 transitions	 out	 of	 the
Cooking	state.	Figures	7.7a	and	7.7b	are	semantically	equivalent	to	each	other
but	Figure	7.7b	is	more	concise.



Figure	7.7.	Example	of	exit	action.	(a)	Actions	on	state	transitions.	(b)	Exit
action.



Figure	 7.8	 depicts	 an	 alternative	 version	 of	 the	Microwave	Oven	Control
state	machine	in	which	the	transition	actions	to	Start	Cooking	and	Stop	Cooking
on	Figure	7.5	are	replaced	by	an	entry	action	in	Cooking	state	to	Start	Cooking
and	an	exit	action	to	Stop	Cooking.

Figure	7.8.	State	machine	for	Microwave	Oven	Control	with	entry	and	exit
actions.



7.4.4	Activities

In	addition	to	actions,	it	is	also	possible	to	have	an	activity	executed	as	a	result
of	a	state	transition.	An	activity	is	a	computation	that	executes	for	the	duration
of	a	state.	Thus,	unlike	an	action,	which	takes	no	time,	an	activity	executes	for	a
finite	amount	of	time.	An	activity	is	enabled	on	entry	into	the	state	and	disabled
on	exit	from	the	state.	The	cause	of	the	state	change,	which	results	in	disabling
the	 activity,	 is	 usually	 an	 input	 event	 from	 a	 source	 that	 is	 not	 related	 to	 the
activity.	 However,	 in	 some	 cases,	 the	 activity	 itself	 generates	 the	 event	 that
causes	the	state	change.

An	 activity	 is	 depicted	 as	 being	 associated	 with	 the	 state	 in	 which	 it
executes.	This	is	achieved	by	showing	the	activity	in	the	state	box	and	having	a
dividing	 line	 between	 the	 state	 name	 and	 the	 activity	 name.	 The	 activity	 is
depicted	as	do	/	Activity,	where	do	is	a	reserved	word.	This	means	the	activity
is	enabled	on	entry	into	the	state	and	disabled	on	exit	from	the	state.

For	 examples	 of	 activities,	 consider	 an	 Automobile	 Cruise	 Control	 state
machine.	Consider	the	transition	from	Initial	state	into	Accelerating	state,
as	shown	in	Figure	7.9.	An	activity	–	namely,	Increase	Speed	–	is	enabled	on
entry	 into	Accelerating	 state.	This	 activity	 executes	 for	 the	duration	of	 this
state	 and	 is	 disabled	 on	 exit	 from	 this	 state.	 The	 activity	 is	 depicted	 as	 do	 /
Increase	Speed.

If	 a	 transition	 from	 one	 state	 to	 another	 has	 a	 combination	 of	 actions,
enabled	activities,	and	disabled	activities,	there	are	specific	rules	about	the	order
in	which	these	occur:

1.	First,	the	activity	in	the	state	being	exited	is	disabled.

2.	Second,	the	action(s)	is	executed	(if	one	exists).



3.	Third,	the	activity	in	the	state	being	entered	is	enabled.

For	 example,	 consider	 the	Reached	Cruising	 event	 that	 causes	 a	 transition
from	 Accelerating	 state	 to	 Cruising	 state.	 First,	 the	 activity	 Increase
Speed	 is	 disabled,	 and	 then	 the	 activity	 Maintain	 Speed	 is	 enabled	 and
remains	active	throughout	Cruising	state.	The	semantics	of	this	state	transition
are:

Figure	 7.9	 depicts	 three	 activities	 in	 total:	 besides	 Increase	 Speed	 and
Maintain	 Speed,	 there	 is	 the	 activity	 Reduce	 Speed,	 which	 executes	 in
Decelerating	state.

Increase	Speed	is	disabled	on	exit	from	Accelerating	state.

Maintain	Speed	is	enabled	on	entry	into	Cruising	state.





Figure	7.9.	Example	of	state	machine	with	activities	(partial	state	machine).



7.5	Hierarchical	State	Machines
One	of	the	potential	problems	of	flat	state	machines	is	the	proliferation	of	states
and	 transitions,	 which	makes	 the	 state	machine	 very	 cluttered	 and	 difficult	 to
read.	A	very	 important	way	of	 simplifying	 state	machines	 and	 increasing	 their
modeling	 power	 is	 to	 introduce	 composite	 states,	 which	 are	 also	 known	 as
superstates,	 and	 the	 hierarchical	 decomposition	 of	 state	 machines.	 With	 this
approach,	a	composite	state	at	one	level	of	a	state	machine	is	decomposed	into
two	or	more	substates	on	a	lower-level	state	machine.

The	objective	of	hierarchical	state	machines	is	to	exploit	the	basic	concepts
and	 visual	 advantages	 of	 state	 transition	 diagrams,	 while	 overcoming	 the
disadvantages	 of	 overly	 complex	 and	 cluttered	 diagrams,	 through	 hierarchical
structuring.	 Note	 that	 any	 hierarchical	 state	 machine	 can	 be	 mapped	 to	 a	 flat
state	 machine,	 so	 for	 every	 hierarchical	 state	 machine	 there	 is	 a	 semantically
equivalent	flat	state	machine.

There	are	 two	main	approaches	 to	developing	hierarchical	state	machines.
The	first	approach	is	a	top-down	approach	to	determine	major	high-level	states,
sometimes	referred	to	as	modes	of	operation.	For	example,	in	an	airplane	control
state	machine,	 the	modes	might	be	Taking	Off,	 In	Flight,	and	Landing.	Within
each	mode,	 there	are	several	states,	some	of	which	might	 in	 turn	be	composite
states.	 The	 second	 approach	 is	 to	 first	 develop	 a	 flat	 state	 machine	 and	 then
identify	 states	 that	 can	 be	 aggregated	 into	 composite	 states,	 as	 described	 in
Section	7.5.3.



7.5.1	Sequential	State	Decomposition

State	 machines	 can	 often	 be	 significantly	 simplified	 by	 the	 hierarchical
decomposition	of	states,	 in	which	a	composite	state	 is	decomposed	into	 two	or
more	 interconnected	 sequential	 substates.	 This	 kind	 of	 hierarchical
decomposition	is	referred	to	as	sequential	state	decomposition.	The	notation	for
state	decomposition	also	allows	both	the	composite	state	and	the	substates	to	be
shown	on	 the	 same	diagram	or,	 alternatively,	on	 separate	diagrams,	depending
on	the	complexity	of	the	decomposition.

An	 example	 of	 hierarchical	 sequential	 state	 decomposition	 is	 given	 next.
Figure	 7.10	 depicts	 a	 flat	 state	 machine	 with	 six	 states,	 including	 the
Accelerating,	Cruising,	and	Approaching	states.	Figure	7.11a	depicts	an
equivalent	 state	 machine	 using	 hierarchical	 sequential	 state	 decomposition,	 in
which	there	 is	a	composite	state	called	In	Motion,	which	is	decomposed	into
three	 substates,	 namely	 the	 Accelerating,	 Cruising,	 and	 Approaching
substates.	 (On	 the	 hierarchical	 state	 machine,	 the	 composite	 state	 is	 the	 outer
rounded	box,	which	contains	the	name	of	the	composite	state	at	the	top	left.	The
substates	are	shown	as	 inner	rounded	boxes).	When	the	state	machine	 is	 in	 the
In	 Motion	 composite	 state,	 it	 is	 in	 one	 (and	 only	 one)	 of	 the	 substates.
Hierarchical	sequential	state	decomposition	results	in	a	sequential	state	machine,
in	which	 the	 substates	 are	 entered	 sequentially.	 Figure	 7.11a	 depicts	 the	 same
hierarchical	 state	machine	but	 this	 time	without	 its	 substates.	This	depiction	 is
referred	to	as	a	high-level	state	machine.



Figure	7.10.	Example	of	flat	state	machine	for	Train	Control	(partial	state
machine).

Figure	7.11.	Example	of	hierarchical	state	machine	for	Train	Control.	(a)
Hierarchical	state	machine	depicted	with	its	substates.	(b)	High-level
depiction	of	hierarchical	state	machine	without	its	substates.





7.5.2	Composite	States

Composite	 states	 can	be	depicted	 in	 two	ways	on	 state	machines,	 as	described
next.	A	composite	state	can	be	depicted	with	its	internal	substates,	as	shown	for
the	In	Motion	composite	state	in	Figure	7.11a.	Alternatively,	a	composite	state
can	be	depicted	as	a	black	box	without	revealing	its	internal	substates,	as	shown
in	 Figure	 7.11b.	 It	 should	 be	 pointed	 out	 that	 when	 a	 composite	 state	 is
decomposed	 into	 substates,	 the	 transitions	 into	 and	 out	 of	 the	 composite	 state
must	 be	 preserved.	 Thus,	 there	 is	 one	 state	 transition	 into	 the	 In	 Motion
composite	state	and	two	transitions	out	of	it,	as	shown	in	both	Figures	7.11a	and
7.11b.

Each	transition	into	the	composite	state	In	Motion	is,	in	fact,	a	transition
into	one	(and	only	one)	of	the	substates	on	the	lower-level	state	machine,	namely
the	Accelerating	 substate.	Each	 transition	 out	 of	 the	 composite	 state	 has	 to
actually	 originate	 from	 one	 (and	 only	 one)	 of	 the	 substates	 (Accelerating,
Cruising,	or	Approaching)	on	the	lower-level	state	machine.



7.5.3	Aggregation	of	State	Transitions

The	hierarchical	state	machine	notation	also	allows	a	transition	out	of	every	one
of	the	substates	on	a	state	machine	to	be	aggregated	into	a	transition	out	of	the
composite	state.	Careful	use	of	this	feature	can	significantly	reduce	the	number
of	state	transitions	depicted	on	a	state	machine	diagram.

In	 the	 flat	 state	machine	 in	Figure	 7.10,	 the	Obstacle	Detected	 event
can	 occur	 in	 any	 one	 of	 the	 Accelerating,	 Cruising,	 or	 Approaching
states,	in	which	case	the	state	machine	transitions	to	the	Emergency	Stopping
state.	With	 the	hierarchical	 state	machine	 in	Figure	7.11a,	 instead	of	depicting
the	 Obstacle	 Detected	 event	 as	 causing	 a	 transition	 out	 of	 each	 of	 the
Accelerating,	Cruising,	or	Approaching	substates,	it	is	more	concise	to
show	 this	event	causing	 the	 transition	out	of	 the	composite	 state	In	Motion,
as	depicted	in	Figure	7.11a.	The	transitions	out	of	the	three	substates	(of	the
In	 Motion	 composite	 state)are	 not	 explicitly	 shown	 on	 Figure	 7.11a,	 even
though	an	 individual	Obstacle	Detected	event	would	actually	occur	 in	one
of	 these	substates	and	cause	 the	 transition	 to	 the	Emergency	Stopping	state.
However,	 the	 advantage	 is	 the	 simplification	 of	 the	 state	 machine	 due	 to	 the
significant	reduction	in	state	transition	arcs.



7.5.4	History	State

The	history	state	 is	another	useful	characteristic	 in	hierarchical	 state	machines.
Indicated	by	an	H	inside	a	small	circle,	a	history	state	is	a	pseudostate	within	a
sequential	composite	state,	which	means	that	the	composite	state	remembers	its
previously	 active	 substate	 after	 it	 exits.	 Thus,	 when	 the	 composite	 state	 is
reentered,	the	previously	active	substate	is	entered.

An	example	of	sequential	state	decomposition	with	a	history	state	is	given
in	 Figure	 7.12,	 in	 which	 the	 Door	 Shut	 with	 Item	 composite	 state	 is
decomposed	into	the	Waiting	for	User	and	Waiting	for	Cooking	Time
substates.	The	history	state	is	used	to	remember	which	of	these	two	substates	the
composite	state	(Door	Shut	with	Item)	is	in,	when	an	event	transitions	the
state	machine	out	of	the	composite	state.	Thus,	the	previous	substate	is	reentered
when	the	Door	Shut	with	Item	composite	state	is	reentered.	For	example,	if
the	 composite	 state	 is	 in	 the	 Waiting	 for	 User	 substate	 when	 the	 door	 is
opened,	the	state	machine	will	transition	to	Door	Open	with	Item.	When	the
door	 is	 closed	 (and	 assuming	 zero	 time),	 the	 Door	 Shut	 with	 Item

composite	state	is	reentered,	and	in	particular	the	Waiting	for	User	substate
is	reentered.	However,	if	the	composite	state	is	in	the	Waiting	for	Cooking
Time	substate	when	the	door	is	opened,	then	that	substate	is	reentered	when	the
door	is	closed.	Without	the	history	state,	this	behavior	would	be	more	difficult	to
model.



Figure	7.12.	Example	of	history	state	in	hierarchical	state	machine.



7.5.5	Orthogonal	State	Machines

Another	 kind	 of	 hierarchical	 state	 decomposition	 is	 orthogonal	 state
decomposition,	which	can	be	used	to	model	different	views	of	the	same	object's
state.	With	this	approach,	a	high-level	state	on	one	state	machine	is	decomposed
into	 two	 (or	more)	 orthogonal	 regions.	The	 two	 orthogonal	 regions	 are	 shown
separated	 by	 a	 dashed	 line.	 When	 the	 higher-level	 state	 machine	 is	 in	 the
composite	state,	it	is	simultaneously	in	one	of	the	substates	on	each	of	the	lower-
level	orthogonal	regions.

Although	 an	 orthogonal	 state	 machine	 can	 be	 used	 to	 depict	 concurrent
activity	within	the	object	containing	the	state	machine,	it	is	better	to	use	this	kind
of	decomposition	to	show	different	perspectives	of	the	same	object	that	are	not
concurrent.	 Designing	 active	 objects	 with	 only	 one	 thread	 of	 control	 is	 much
simpler	and	 is	strongly	recommended.	Where	 true	concurrency	 is	 required,	use
separate	active	objects	and	define	each	object	with	its	own	state	machine.

An	 example	 of	 using	 an	 orthogonal	 state	 machine	 to	 depict	 guard
conditions	 is	 given	 in	Figure	 7.13	 for	 the	microwave	oven	 state	machine.	The
Microwave	Oven	Control	state	machine	is	decomposed	into	two	orthogonal
regions:	 one	 for	 sequencing	 the	 events	 and	 actions	 in	 the	 oven	 (Microwave
Oven	Sequencing),	and	 the	other	 for	Cooking	Time	Condition.	The	 two
regions	are	depicted	on	a	high-level	state	machine,	with	a	dashed	line	separating
them.



Figure	7.13.	Example	of	orthogonal	state	machine.

At	any	one	time,	the	Microwave	Oven	Control	composite	state	is	in	one
of	 the	substates	of	 the	Microwave	Oven	Sequencing	 region	and	one	of	 the
substates	 of	 the	 Cooking	 Time	 Condition	 region.	 The	 Cooking	 Time

Condition	 region	 consists	 of	 two	 substates	 –	 Zero	 Time	 and	 Time
Remaining	 –	with	Zero	Time	 as	 the	 initial	 substate.	The	Update	Cooking
Time	event	causes	a	transition	from	Zero	Time	 to	Time	Remaining.	Either
the	Timer	Expired	event	or	 the	Cancel	Timer	event	can	cause	a	transition
back	 to	Zero	Time.	 The	Microwave	Oven	Sequencing	 region	 consists	 of
the	 Microwave	 Oven	 Sequencing	 Composite	 State,	 which	 is
decomposed	 to	 depict	 the	 sequence	 of	 states	 the	 oven	 goes	 through	 while
handling	a	user	request	to	cook	food,	as	shown	in	Figure	7.8.	The	current	state	of
the	 Microwave	 Oven	 Control	 state	 machine	 is	 the	 union	 of	 the	 current



substates	 in	 each	 of	 the	 Microwave	 Oven	 Sequencing	 and	 the	 Cooking
Time	Condition	regions.

The	Zero	Time	 and	Time	Remaining	 substates	of	 the	Cooking	Time
Condition	 region	 (see	 Figure	 7.13)	 are	 the	 guard	 conditions	 checked	 in	 the
Microwave	 Oven	 Sequencing	 region	 when	 the	 Door	 Closed	 event	 is
received	 while	 in	 the	 Door	 Open	 with	 Item	 substate	 (see	 Figure	 7.8).
Cancel	 Timer	 is	 an	 action	 (cause)	 in	 the	 Microwave	 Oven	 Sequencing
region	and	an	event	(effect)	on	the	Cooking	Time	Condition	region,	which
causes	a	transition	to	the	Zero	Time	state.	Update	Cooking	Time	is	also	an
action	on	 the	 former	 region	and	an	event	on	 the	 latter.	Timer	Expired	 is	 an
event	in	both	regions.



7.6	Cooperating	State	Machines
State	 machines	 can	 model	 concurrent	 processes	 by	 using	 cooperating	 state
machines.	 With	 this	 approach,	 the	 control	 problem	 is	 divided	 between	 two
separate	state	machines,	which	cooperate	with	each	other.	The	cooperation	is	by
means	of	an	action	on	one	state	machine	that	propagates	as	an	event	to	the	other
state	machine,	and	vice	versa.

An	example	of	this	 is	used	in	the	Microwave	Oven	problem,	which	uses
two	 cooperating	 state	 machines,	 namely	 the	 Microwave	 Oven	 Control

(Figure	 7.8)	 and	Oven	Timer	 (Figures	 7.14)	 state	machines.	Oven	Timer	 is
used	 to	 control	 decrementing	 the	 cooking	 time	 down	 to	 zero	 and	 notifying
Microwave	Oven	Control	when	the	 timer	expires.	The	initial	state	of	Oven
Timer	 is	Cooking	Time	Idle.	Cooking	food	 is	 initiated	by	 the	 transition	of
Microwave	Oven	Control	 from	Ready	to	Cook	state	 into	Cooking	state,
which	 results	 in	 the	 Start	 Cooking	 entry	 action	 and	 the	 Start	 Timer

transition	action.	The	Start	Timer	action	in	the	Microwave	Oven	Control
state	machine	propagates	as	an	event	of	the	same	name	to	the	Oven	Timer	state
machine,	 causing	 the	 latter	 to	 transition	 from	 Cooking	 Time	 Idle	 state	 to
Cooking	Food	 state.	 Each	 second,	 a	Timer	Event	 causes	 an	Oven	Timer
action	 to	 decrement	 the	 cooking	 time	 by	 cycling	 through	 the	 Updating
Cooking	 Time	 transient	 state	 and	 back	 to	 Cooking	 Food	 state.	 When	 the
cooking	 time	 remaining	 reaches	 zero,	 the	 Finished	 event	 causes	 the	 Oven
Timer	 state	 machine	 to	 transition	 from	 Updating	 Cooking	 Time	 state	 to
Cooking	Time	Idle	 state.	An	 action	 on	 this	 transition	 is	Timer	Expired,
which	propagates	as	an	event	of	the	same	name	back	to	the	Microwave	Oven
Control	 state	 machine.	 This	 event	 causes	 Microwave	 Oven	 Control	 to



transition	 from	 Cooking	 state	 to	 Door	 Shut	 with	 Item	 and	 the	 resulting
action	 is	Stop	Cooking.	It	should	be	noted	that	the	Stop	Timer
action	in	the	Microwave	Oven	Control	state	machine	also	propagates	as	an
event	of	the	same	name	to	the	Oven	Timer	state	machine,	causing	the	latter	to
transition	from	Cooking	Food	state	to	Cooking	Time	Idle	state.

Figure	7.14.	State	machine	for	Oven	Timer.



7.7	Inherited	State	Machines
Inheritance	 can	 be	 used	 to	 introduce	 change	 to	 a	 state	machine.	When	 a	 state
machine	 is	 specialized,	 the	 child	 state	 machine	 inherits	 the	 properties	 of	 the
parent	state	machine;	that	is,	it	inherits	the	states,	events,	transitions,	actions,	and
activities	 depicted	 in	 the	 parent	 state	machine	model.	 The	 child	 state	machine
can	then	modify	the	inherited	state	machine	as	follows:

1.	Add	new	states.	The	new	states	can	be	at	the	same	level	of	the	state	machine
hierarchy	as	the	inherited	states.	Furthermore,	new	substates	can	be	defined	for
either	the	new	or	the	inherited	states.	In	other	words,	a	state	in	the	parent	state
machine	can	be	decomposed	further	in	the	child	state	machine.	It	is	also	possible
to	add	new	orthogonal	states	–	that	is,	new	states	that	execute	orthogonally	with
the	inherited	states.

2.	Add	new	events	and	transitions.	These	events	cause	new	transitions	to	new
or	inherited	states.

3.	Add	or	remove	actions	and	activities.	New	actions	can	be	defined	that	are
executed	on	transitions	into	and	out	of	new	or	inherited	states.	Exit	and	entry
actions,	as	well	as	new	activities,	can	be	defined	for	new	or	inherited	states.	It	is
also	possible	to	remove	predefined	actions	and	activities,	although	this	should	be
done	with	care	and	is	generally	not	recommended.

The	child	state	machine	must	not	delete	states	or	events	defined	in	the	parent.	It
must	not	change	any	composite	state/substate	dependency	defined	in	the	parent
state	machine.



Examples	of	Inherited	State	Machines

As	 an	 example	 of	 an	 inherited	 state	machine,	 consider	 the	Microwave	Oven
Control	 class	 from	 the	 microwave	 oven	 system,	 which	 specifies	 the	 state
machine	of	 the	same	name.	The	Microwave	Oven	Control	state	machine	is
depicted	in	Figures	7.8.	The	Microwave	Oven	Control	state	machine	is	then
specialized	 to	 provide	 the	 additional	 features	 for	 the	 Enhanced	 Microwave
Oven	 Control	 child	 state	 machine.	 The	 specialization	 of	 the	 Microwave
Oven	 Control	 state	 dependent	 control	 superclass	 to	 produce	 the	 Enhanced
Microwave	Oven	Control	subclass	is	depicted	in	the	class	diagram	of	Figure
7.15.



Figure	7.15.	Example	of	inheritance	of	a	state	dependent	control	class.

The	state	machine	for	the	Enhanced	Microwave	Oven	Control	class	is
shown	 in	 Figure	 7.16.	 Consider	 the	 impact	 of	 the	 following	 extensions
incorporated	into	the	specialized	state	machine,	which	are	referred	to	as	features:

TOD	Clock

Turntable

Light

Beeper



	

Example	of	new	states	added.	To	support	the	TOD	(time-of-day)	Clock
feature,	the	inherited	Door	Shut	state	is	specialized	to	create	three	new
substates	(see	Chapter	19).

Example	of	new	transitions	added.	To	support	the	Minute	Plus	feature,	a
new	Minute	Plus	transition	(see	Figure	7.16)	is	introduced	from	the	Door
Shut	with	Item	state	to	the	Cooking	state,	since	pressing	the	Minute
Plus	button	when	the	door	is	shut	with	an	item	inside	it	results	in	the	oven
cooking	the	food	for	a	minute.	If	the	Minute	Plus	button	is	pressed	while
the	food	is	cooking,	there	is	a	transition	from	Cooking	state	back	to	itself.

Example	of	new	actions	added	(see	Figure	7.16).	To	support	the
Turntable	feature,	two	new	actions	are	provided:	Start	Turning
(which	is	executed	on	entry	into	the	inherited	Cooking	state)	and	Stop
Turning	(which	is	executed	on	exit	from	the	Cooking	state).	To	support
the	Light	feature,	two	new	actions	are	provided:	Switch	On,	which	is
both	an	entry	action	(into	the	inherited	Cooking	state)	and	a	transition
action	(between	other	inherited	states),	and	the	Switch	Off	transition
action.	To	support	the	Beeper	feature,	the	Beep	transition	action	is	added.

Minute	Plus



Figure	7.16.	Inherited	state	machine	for	Enhanced	Microwave	Oven
Control.



7.8	Developing	State	Machines	from	Use
Cases

This	section	describes	a	systematic	approach	to	develop	a	state	machine	from	a
use	case.	The	approach	starts	with	a	typical	scenario	given	by	the	use	case,	that
is,	 one	 specific	 path	 through	 the	 use	 case.	 This	 scenario	 should	 be	 the	 main
sequence	through	the	use	case,	involving	the	most	usual	sequence	of	interactions
between	 the	 actor(s)	 and	 the	 system.	 Now	 consider	 the	 sequence	 of	 external
events	 given	 in	 the	 scenario.	 Usually,	 an	 input	 event	 from	 the	 external
environment	 causes	 a	 transition	 to	 a	 new	 state,	 which	 is	 given	 a	 name
corresponding	 to	what	happens	 in	 that	 state.	 If	an	action	 is	associated	with	 the
transition,	 the	 action	 occurs	 in	 the	 transition	 from	one	 state	 to	 the	 other.	 If	 an
activity	 is	 to	be	performed	 in	 that	 state,	 the	 activity	 is	 enabled	on	entry	 to	 the
state	and	disabled	on	exit	from	the	state.	Actions	and	activities	are	determined	by
considering	 the	 response	 of	 the	 system	 to	 the	 input	 event,	 as	 given	 in	 the	 use
case	description.

Initially,	 a	 flat	 state	 machine	 is	 developed,	 which	 follows	 the	 event
sequence	given	 in	 the	main	 scenario.	The	 states	depicted	on	 the	 state	machine
should	all	be	externally	visible	states.	That	is,	the	actor	should	be	aware	of	each
of	these	states.	In	fact,	the	states	represent	consequences	of	actions	taken	by	the
actor,	 either	 directly	 or	 indirectly.	 This	 is	 illustrated	 in	 the	 detailed	 example
given	in	the	next	section.

To	 complete	 the	 state	machine,	 determine	 all	 the	 possible	 external	 events
that	could	be	input	to	the	state	machine.	Do	this	by	considering	the	description
of	 alternative	 paths	 given	 in	 the	 use	 case.	 Several	 alternatives	 describe	 the
reaction	of	the	system	to	alternative	inputs	from	the	actor.	Determine	the	effect



of	the	arrival	of	these	events	on	each	state	of	the	initial	state	machine;	in	many
cases,	an	event	could	not	occur	in	a	given	state	or	will	have	no	impact.	However,
in	other	states,	the	arrival	of	an	event	will	cause	a	transition	to	an	existing	state
or	 some	 new	 state	 that	 needs	 to	 be	 added	 to	 the	 state	 machine.	 The	 actions
resulting	from	each	alternative	state	transition	also	need	to	be	considered.	These
actions	should	already	be	documented	in	the	alternative	sequences	section	of	the
use	case	description	as	the	system	reaction	to	alternative	input	events.	However,
for	complex	state	machines,	the	actions	may	not	have	been	fully	worked	out	and
documented	in	the	use	cases,	in	which	case	the	actions	need	to	be	fully	designed
for	the	state	machine(s).



7.9	Example	of	Developing	a	State	Machine
from	a	Use	Case

As	an	example	of	a	state	machine	developed	from	a	use	case,	consider	how	the
Microwave	Oven	Control	state	machine	 is	developed	from	the	Microwave
Oven	use	case,	which	is	taken	from	the	microwave	oven	system	case	study.



7.9.1	Develop	State	Machine	for	Main	Sequence	of	Use	Case

The	 state	 machine	 needs	 to	 follow	 the	 interaction	 sequence	 described	 in	 the
Cook	Food	use	case	(see	Chapters	6	and	19)	and	show	the	different	states	for
cooking	 food.	 In	 general,	 user	 inputs	 should	 correspond	 to	 input	 events	 that
cause	 state	 transitions.	 System	 responses	 should	 correspond	 to	 actions	 on	 the
state	machine.

The	 precondition	 given	 for	 the	 use	 case	 is	Microwave	Oven	Is	Idle
with	Door	Shut.	We	 therefore	 decide	 that	 the	 initial	 state	 should	 be	 called
Door	Shut.	The	first	step	of	the	use	case	states	that	the	user	opens	the	door	and
in	response	the	system	switches	the	oven	light	on.	The	user	then	puts	food	in	the
oven	and	closes	the	door.	These	use	case	steps	consist	of	three	input	events	from
the	user:	 open	 the	door,	 insert	 the	 food,	 and	close	 the	door,	which	we	 treat	 as
follows:

When	the	user	opens	the	door,	the	state	machine	needs	to	transition	into	a
new	state,	which	we	name	the	Door	Open	state.	This	causes	the	state
machine	action	to	switch	on	the	light.

When	the	user	places	an	item	in	the	oven,	the	state	machine	needs	to
transition	again;	we	name	the	new	state	Door	Open	with	Item	state.

When	the	user	closes	the	door,	the	state	machine	transitions	into	a	third
state,	which	we	name	the	Door	Shut	Waiting	for	User	state,	and	a
resulting	action	is	to	switch	off	the	light.	Note	that	we	designate	a
different	state	from	the	initial	Door	Shut	state	in	order	to	differentiate
between	the	states	of	Door	Shut	with	Item	in	the	oven	and	Door
Shut	without	an	item.



In	 the	 next	 use	 case	 step,	 the	 user	 presses	 the	 Cooking	 Time	 button,	 so	 the
microwave	 needs	 to	 transition	 to	 a	 new	 state,	 which	 we	 name	 Door	 Shut
Waiting	for	Cooking	Time.	 Step	 6	 of	 the	 use	 case	 states	 that	 the	 system
prompts	 for	 cooking	 time.	 As	 this	 prompt	 is	 a	 system	 response,	 the	 system
output	 in	 the	use	case	needs	 to	be	an	output	action	on	the	state	machine.	After
the	user	inputs	the	cooking	time,	the	oven	is	ready	to	start	cooking,	so	we	name
the	 next	 state	 Ready	 to	 Cook.	When	 the	 user	 presses	 the	Start	 button,	 the
oven	starts	cooking	the	food,	so	we	designate	the	next	state	the	Cooking	state.
Step	8	of	the	use	case	states	that	the	system	starts	cooking	the	food.	For	this	to
happen,	the	system	needs	to	start	the	timer,	start	cooking	the	food,	start	turning
the	 turntable,	 and	 switch	 on	 the	 light.	All	 these	 concurrent	 actions	 need	 to	 be
specified	on	the	state	machine	as	a	result	of	the	Start	transition.	Since	there	are
several	actions	 that	result	 from	entering	the	Cooking	state	(Start	Cooking,
Start	 Turning,	 Switch	 on	 Light),	 these	 actions	 are	 designed	 as	 entry
actions.	However,	Start	Timer	is	designed	as	a	transition	action	because	it	is
does	 not	 happen	 on	 every	 transition	 into	 the	 Cooking	 state	 (as	 depicted	 in
Figure	7.16).

When	 the	 timer	 expires,	 the	 state	 machine	 reenters	 the	 Door	 Shut

Waiting	for	User	state.	Actions	on	this	transition	need	to	be	to	stop	cooking
the	food,	stop	turning	the	turntable,	switch	off	the	light,	and	beep.	Two	actions
that	 result	 from	 leaving	 the	Cooking	 state	 are	 designed	 as	 exit	 actions	 (Stop
Cooking	 and	 Stop	 Turning).	 The	 other	 two	 actions,	 Switch	 off	 Light
and	Beep,	are	designed	as	 transition	actions	as	 these	actions	do	not	happen	on
every	 transition	 out	 of	 Cooking	 state	 (as	 explained	 in	 the	 next	 section	 and
depicted	in	Figure	7.16).

Continuing	with	 the	main	 sequence,	 the	user	 then	opens	 the	door	 and	 the
state	machine	transitions	back	to	Door	Open	with	Item	state,	with	the	action
to	 switch	 on	 the	 light.	 The	 user	 removes	 the	 food,	 which	 causes	 the	 state



machine	to	transition	back	to	Door	Open	state.	Finally,	the	user	closes	the	door
and	 the	state	machine	 transitions	back	 to	 the	 initial	Door	Shut	 state,	with	 the
action	to	switch	off	the	light.	This	sequence	of	transitions	on	the	state	machine	is
depicted	in	Figure	7.17.

Figure	7.17.	State	machine	for	Microwave	Oven	Control	(main
sequence	of	Cook	Food	use	case).



7.9.2	Consider	Alternative	Sequences	of	Use	Case

The	 state	machine	 so	 far	 corresponds	 to	 the	main	 sequence	 through	 the	Cook
Food	use	case	and	describes	the	states	entered	and	exited	during	the	execution	of
the	 use	 case.	Next	we	must	 consider	 the	 alternative	 sequences	 in	 the	 use	 case
description.	Some	of	the	alternatives	are	events	that	occur	in	states	in	which	they
are	 prohibited	 from	 causing	 a	 transition	 and	 therefore	 correspond	 to	 null
transitions.	Examples	are	user	pressing	START	with	 the	door	open	(alternative
in	step	3	of	the	use	case),	door	closed	with	empty	oven	(alternative	in	step	5),	or
door	closed	with	food	 in	 the	oven	but	zero	 time	entered	(another	alternative	 in
step	 5).	 However,	 the	 alternative	 in	 step	 9	 where,	 instead	 of	 timer	 expiration
from	Cooking	state,	the	user	opens	the	door	during	cooking,	necessitates	a	new
transition	on	the	state	machine	from	Cooking	state	into	the	Door	Open	with
Item	state,	as	depicted	in	Figure	7.16,	from	which	the	user	could	either	close	the
door	or	remove	the	item.	In	this	transition	out	of	Cooking	state,	since	the	timer
has	not	expired,	 there	needs	 to	be	an	action	 to	stop	 the	 timer.	Note	 that	 in	 this
transition,	the	light	remains	on.	These	alternative	sequences	are	clearly	visible	in
the	state	machine	but	are	less	easy	to	describe	precisely	in	a	use	case.

Another	alternative	 is	for	 the	user	 to	open	the	door	after	 the	cooking	time
has	 been	 selected	 but	 before	 the	 cooking	 time	 has	 been	 entered.	 The	 system
response	is	to	return	to	Door	Open	with	Item	state	and	switch	on	the	light.



7.9.3	Develop	Integrated	State	Machine

In	 some	 applications,	 one	 state	machine	 can	 participate	 in	more	 than	 one	 use
case.	In	such	situations,	there	will	be	one	partial	state	machine	for	each	use	case.
The	 partial	 state	machines	will	 need	 to	 be	 integrated	 to	 form	 a	 complete	 state
machine.	The	implication	is	that	there	is	some	precedence	in	the	execution	of	(at
least	some	of)	the	use	cases	and	their	corresponding	state	machines.	To	integrate
two	partial	state	machines,	it	is	necessary	to	find	one	or	more	common	states.	A
common	state	might	be	 the	 last	 state	of	one	partial	 state	machine	and	 the	 first
state	of	 the	other	partial	 state	machine.	However,	other	 situations	are	possible.
The	integration	approach	is	to	integrate	the	partial	state	machines	at	the	common
state,	in	effect	superimposing	the	common	state	of	the	second	state	machine	on
top	 of	 the	 same	 state	 on	 the	 first	 state	 machine.	 This	 can	 be	 repeated	 as
necessary,	depending	on	how	many	partial	state	machines	need	to	be	integrated.
An	example	of	this	state	machine	integration	is	given	for	the	Light	Rail	Control
System	case	study	in	Chapter	21.



7.9.4	Develop	Hierarchical	State	Machine

It	 is	 usually	 easier	 to	 initially	 develop	 a	 flat	 state	 machine	 before	 trying	 to
develop	a	hierarchical	state	machine.	After	completing	the	flat	state	machine	by
considering	 alternative	 events,	 look	 for	ways	 to	 simplify	 the	 state	machine	 by
developing	a	hierarchical	state	machine.	Look	for	states	that	can	be	aggregated
because	 they	 constitute	 a	 natural	 composite	 state.	 In	 particular,	 look	 for
situations	where	the	aggregation	of	state	transitions	simplifies	the	state	machine.

For	the	integrated	flat	state	machine	of	the	Microwave	Oven,	the	decision	is
made	 to	 aggregate	 the	 Waiting	 for	 User	 and	 Waiting	 for	 Cooking
Time	 states	 into	 the	Door	Shut	with	Item	composite	state,	as	described	 in
Section	7.5.4	and	shown	in	Figure	7.12.	This	decision	results	in:

Furthermore,	 an	 orthogonal	 state	 machine	 can	 be	 developed	 to	 depict	 guard
conditions	 for	 the	microwave	 oven	 state	machine,	 as	 depicted	 in	 Figure	 7.13.
The	 Microwave	 Oven	 Control	 state	 machine	 is	 decomposed	 into	 two
orthogonal	regions:	one	to	depict	the	sequencing	of	the	events	and	actions	in	the
oven	 (Microwave	Oven	Sequencing),	 and	 the	other	 to	depict	 the	Cooking
Time	Condition,	as	described	in	Section	7.5.5.

Waiting	for	User	and	Waiting	for	Cooking	Time	becoming
substates	of	the	Door	Shut	with	Item	composite	state.

The	aggregation	of	transitions	out	of	each	of	these	substates	into	a
transition	out	of	the	composite	state,	when	the	door	is	opened.

The	creation	of	a	history	state	to	allow	reentry	to	the	substate	that	was
previously	active.



7.10	Summary
This	 chapter	 has	 described	 the	 characteristics	 of	 flat	 state	machines,	 including
events,	states,	guard	conditions,	actions,	and	activities.	This	was	followed	by	a
description	 of	 hierarchical	 state	 machines,	 including	 sequential	 state
decomposition,	history	states,	and	orthogonal	state	machines.	Cooperating	state
machines	 and	 state	 machine	 inheritance	 were	 also	 described.	 The	 process	 of
developing	 a	 state	machine	 from	 a	 use	 case	was	 then	 described	 in	 detail.	 It	 is
also	possible	for	a	state	machine	to	support	several	use	cases,	with	each	use	case
contributing	to	some	subset	of	the	state	machine.	Such	cases	are	often	easier	to
model	 by	 considering	 the	 state	 machine	 in	 conjunction	 with	 the	 object
interaction	model,	in	which	a	state	dependent	object	executes	the	state	machine,
as	described	in	Chapter	9.	Several	other	examples	of	state	machines	are	given	in
the	case	studies.



8

Object	and	Class	Structuring	for
Real-Time	Embedded	Software

◈

After	 structural	modeling	and	defining	 the	use	case	and	 state	machine	models,
the	 next	 step	 is	 to	 determine	 the	 software	 classes	 and	 objects	 in	 the	 real-time
embedded	system.	Using	a	model-based	approach,	 the	emphasis	 is	on	software
objects	that	model	real-world	objects	in	the	problem	domain.	Furthermore,	since
concurrency	 is	so	fundamental	 to	 real-time	software	design,	an	 important	 issue
that	 is	 addressed	 at	 this	 stage	 is	 whether	 the	 objects	 are	 concurrent	 or	 not.
Another	 key	 issue	 described	 in	 this	 chapter	 is	 the	 behavior	 pattern	 of	 each
category	of	object.

This	chapter	provides	guidelines,	 in	particular	 structuring	criteria,	on	how
to	 determine	 the	 classes	 and	 objects	 in	 the	 system.	 As	 with	 system	 structural
modeling	(see	Chapter	5),	software	classes	and	objects	are	categorized	by	using
stereotypes.	Section	8.1	gives	an	overview	of	object	and	class	structuring	while
Section	 8.2	 describes	 object	 and	 class	 structuring	 categories.	 Section	 8.3
describes	object	behavior	and	patterns.	Section	8.4	describes	the	different	kinds
of	boundary	classes	and	objects.	Section	8.5	describes	entity	classes	and	objects,
which	 were	 first	 introduced	 in	 Chapter	 5.	 Section	 8.6	 describes	 the	 different



kinds	 of	 control	 classes	 and	 objects.	 Section	 8.7	 describes	 application	 logic
classes	and	objects.



8.1	Object	and	Class	Structuring	Criteria
In	 software	 applications,	 a	 class	 is	 categorized	 by	 the	 role	 it	 plays	 in	 the
application.	 Object	 and	 class	 structuring	 criteria	 are	 provided	 to	 assist	 the
designer	 in	 structuring	 a	 system	 into	 its	 constituent	 classes	 and	 objects.	 The
approach	 used	 for	 identifying	 objects	 is	 to	 look	 for	 real-world	 objects	 in	 the
problem	domain	and	then	design	corresponding	software	objects	that	model	the
real	world.	After	the	objects	have	been	identified,	the	interactions	among	objects
are	 depicted	 in	 the	 dynamic	 model	 on	 sequence	 diagrams	 or	 communication
diagrams,	as	described	in	Chapter	9.

Classes	 are	 categorized	 in	 order	 to	 group	 together	 classes	 with	 similar
characteristics.	Figure	8.1	shows	the	categorization	of	application	classes	using
inheritance.	As	described	in	Chapter	5,	stereotypes	(See	Sections	5.2	and	5.6)	are
used	 to	distinguish	among	 the	various	kinds	of	classes.	Application	classes	are
categorized	 according	 to	 their	 role	 in	 the	 application,	 in	particular	 «boundary»
class,	 «entity»	 class,	 «control»	 class,	 or	 «application	 logic»	 class.	 Because	 an
object	 is	 an	 instance	of	 a	 class,	 an	object	 has	 the	 same	 stereotype	 as	 the	 class
from	which	 it	 is	 instantiated.	Thus,	 the	categorization	described	 in	 this	 section
applies	equally	to	classes	and	objects.



Figure	8.1.	Classification	of	application	classes	by	stereotype.

The	classification	process	depicted	in	Figure	8.1	is	analogous	to	classifying
books	in	a	library,	with	major	classes	such	as	fiction	and	nonfiction,	and	further
classification	 of	 fiction	 into	 classics,	 mysteries,	 adventure,	 and	 so	 on	 and
nonfiction	 into	 biography,	 autobiography,	 travel,	 cooking,	 history,	 and	 other
categories.	It	is	also	analogous	to	the	taxonomy	of	the	animal	kingdom,	which	is
divided	 into	major	 categories	 (mammal,	 bird,	 fish,	 reptile,	 and	 so	 on)	 that	 are
further	 divided	 into	 subclasses	 (e.g.,	 cat,	 dog,	 and	 monkey	 are	 subclasses	 of
mammal).



8.2	Object	and	Class	Structuring	Categories
Objects	 and	 classes	 are	 categorized	 according	 to	 the	 roles	 they	 play	 in	 the
application.	 There	 are	 four	 main	 object	 and	 class	 structuring	 categories,	 as
shown	 in	 Figure	 8.1:	 boundary	 classes,	 entity	 classes,	 control	 classes,	 and
application	 logic	 classes.	Most	 applications	will	 have	 classes	 from	each	of	 the
four	 categories.	Real-time	embedded	 systems	are	 likely	 to	have	 several	 device
I/O	boundary	classes	 to	 interface	 to	 the	various	sensors	and	actuators.	Because
real-time	 systems	 are	 highly	 state	 dependent,	 they	 are	 also	 likely	 to	 have
complex	 state	 dependent	 control	 classes.	 The	 four	 main	 object	 and	 class
structuring	 categories	 (Figure	 8.1)	 are	 summarized	below	and	 are	 described	 in
detail	in	Sections	8.4	through	8.7.

1.	Boundary	object.	Software	object	that	interfaces	to	and	communicates
with	the	external	environment.	Boundary	objects	are	further	categorized	as:

2.	Control	object.	A	control	object	that	provides	the	overall	coordination
for	a	collection	of	objects.	Control	objects	are	further	categorized	as:

Device	I/O	boundary	object.	Software	object	that	receives	input	from
and/or	outputs	to	a	hardware	I/O	device.

Proxy	object.	Software	object	that	interfaces	to	and	communicates
with	an	external	system	or	subsystem.

User	interaction	object.	Software	object	that	interacts	with	and
interfaces	to	a	human	user.

Coordinator	object.	A	software	object	that	controls	other	objects	but
is	not	state	dependent.



3.	Entity	object.	A	software	object	that	encapsulates	information	and
provides	access	to	the	information	it	stores.	Entity	objects	are	classified
further	as	data	abstraction	or	wrapper	objects.

4.	Application	logic	object.	A	software	object	that	encapsulates	the	details
of	the	application	logic.	For	real-time,	scientific,	or	engineering
applications,	application	logic	objects	include	algorithm	objects,	which
execute	problem-specific	algorithms,	and	service	objects,	which	provide
services	for	client	objects,	typically	in	client/server	or	service-oriented
architectures	where	there	are	one	or	more	real-time	objects	that	access	a
service.	Business	logic	objects	are	rarely	used	in	real-time	systems.

In	most	cases,	what	category	an	object	fits	into	is	usually	obvious.	However,	in
some	 cases,	 it	 is	 possible	 for	 an	 object	 to	 satisfy	more	 than	 one	 of	 the	 above
criteria.	 For	 example,	 an	 object	 could	 have	 characteristics	 of	 both	 an	 entity
object,	 in	 that	 it	 encapsulates	 some	 data,	 and	 an	 algorithm	 object,	 in	 that	 it
executes	an	algorithm.	In	such	cases,	allocate	the	object	to	the	category	it	seems
to	 fit	best	 in.	Note	 that	 it	 is	more	 important	 to	determine	all	 the	objects	 in	 the
system	 than	 to	 be	 unduly	 concerned	 about	 how	 to	 categorize	 a	 few	borderline
cases.

State	dependent	control	object.	A	software	object	that	controls	other
objects	and	is	state	dependent

Timer	object.	A	software	object	that	controls	other	objects	on	a
periodic	basis.



8.3	Object	Behavior	and	Patterns
During	object	and	class	structuring,	two	important	decisions	can	be	made	about
object	 behavior;	 the	 first	 concerns	 the	 concurrent	 nature	 of	 the	object,	 and	 the
second	concerns	the	behavior	pattern	of	the	object.

Because	concurrency	is	so	fundamental	to	real-time	software	design,	during
object	 structuring,	 a	 first	 attempt	 can	 be	 made	 to	 determine	 whether	 each
software	object	is	concurrent	or	not.	As	a	general	rule,	apart	from	entity	objects,
each	 object	 is	 initially	 considered	 to	 be	 concurrent;	 that	 is,	 each	 object	 is
considered	active	with	a	separate	thread	of	control	and	can	therefore	execute	in
parallel	 with	 other	 objects.	 Entity	 objects	 are	 considered	 passive.	 A	 passive
object	does	not	have	a	thread	of	control	and	can	therefore	only	execute	when	one
of	its	operations	is	invoked	by	another	object.	The	initial	assumption	concerning
inter-object	 communication	 is	 that	 all	 communication	 between	 concurrent
objects	 is	 asynchronous,	 whereas	 all	 communication	 with	 a	 passive	 object	 is
synchronous,	that	is,	corresponding	to	an	operation	call,	as	described	in	Chapter
3.	 Additional	 concurrency	 decisions	 are	 made	 during	 concurrent	 task	 design,
including	revising	initial	design	decisions,	for	example	by	using	task	clustering
or	a	different	inter-task	communication	pattern,	as	described	in	Chapter	13.	An
example	 of	 two	 concurrent	 robot	 objects	 interacting	 with	 each	 other	 using
asynchronous	communication	(as	described	in	Chapter	2)	is	given	in	Figure	8.2a,
while	 an	 example	 of	 two	 concurrent	 objects	 accessing	 a	 passive	 sensor	 data
repository	 entity	 object	 using	 read	 and	 write	 operation	 invocation	 is	 given	 in
Figure	8.2b.	For	more	details	of	the	communication	patterns,	refer	to	Chapter	11.



Figure	8.2.	a.	Example	of	communicating	concurrent	objects.	b.	Example	of
concurrent	objects	communicating	with	a	passive	object.

Another	important	decision	taken	during	object	and	class	structuring	is	that
for	each	object	 structuring	criterion,	 there	 is	a	corresponding	object	behavioral
pattern,	which	describes	how	the	object	interacts	with	its	neighboring	objects.	It
is	useful	to	understand	the	object's	typical	pattern	of	behavior,	because	when	this
category	of	 object	 is	 used	 in	 an	 application,	 it	 is	 likely	 to	 interact	 in	 a	 similar
way	 with	 the	 same	 kinds	 of	 neighboring	 objects.	 Each	 behavioral	 pattern	 is
depicted	on	 a	UML	communication	diagram	 (first	 introduced	 in	Chapter	 2)	 as
depicted	in	the	next	several	figures.



8.4	Boundary	Classes	and	Objects
This	section	describes	the	characteristics	of	the	three	different	kinds	of	software
boundary	 objects	 that	 interface	 to	 and	 communicate	with	 the	 external	 objects,
namely	device	I/O	boundary	objects,	proxy	objects,	and	user	interaction	objects.
In	each	case,	an	example	is	given	of	a	boundary	object,	followed	by	an	example
of	 a	 behavioral	 pattern	 in	 which	 a	 boundary	 object	 communicates	 with
neighboring	objects	in	a	typical	interaction	sequence.



8.4.1	External	Objects	and	Software	Boundary	Objects

Boundary	 objects	 are	 software	 objects	 that	 interface	 to	 and	 communicate	with
the	 external	 objects	 that	 are	 outside	 the	 system	 (see	 Section	 5.6).	 To	 help
determine	 the	 boundary	 objects	 in	 the	 system,	 it	 is	 necessary	 to	 consider	 the
external	 objects	 to	 which	 they	 are	 connected.	 In	 fact,	 identifying	 the	 external
objects	 that	 communicate	 with	 and	 interface	 to	 the	 system	 helps	 identify	 the
boundary	objects.	Each	external	object	communicates	with	a	boundary	object	in
the	system.	External	objects	interface	to	software	boundary	objects	as	follows:

An	external	device	object	provides	input	to	and/or	receives	output	from
a	device	I/O	boundary	object.	An	external	device	represents	an	I/O
device	type.	An	external	I/O	device	object	represents	a	specific	I/O
device,	that	is,	an	instance	of	the	device	type.	An	external	device	object
can	be	one	of	the	following:

An	external	input	device	object	provides	input	to	an	input	object.

An	external	output	device	object	receives	output	from	an	output
object.

An	external	input/output	device	object	provides	input	to	and
receives	output	from	an	input/output	object.

An	external	system	object	interfaces	to	and	communicates	with	a	proxy
object.	An	external	smart	(i.e.,	software-intensive)	device	object	also
interfaces	to	and	communicates	with	a	smart	device	proxy	object.

An	external	timer	object	signals	to	a	software	timer	object.

An	external	user	object	interfaces	to	and	interacts	with	a	user
interaction	object.



8.4.2	Device	I/O	Boundary	Objects

A	device	I/O	boundary	object	provides	the	software	interface	to	a	hardware	I/O
device.	 Device	 I/O	 boundary	 objects	 are	 needed	 for	 nonstandard	 application-
specific	I/O	devices,	which	are	more	prevalent	 in	real-time	embedded	systems.
Standard	I/O	devices	are	typically	handled	by	the	operating	system	and	so	do	not
need	 special-purpose	 device	 I/O	 boundary	 objects	 developed	 as	 part	 of	 the
application.

A	physical	object	in	the	application	domain	is	a	real-world	object	that	has
some	 physical	 characteristics	 –	 for	 example,	 it	 can	 be	 seen	 and	 touched.	 For
every	real-world	physical	object	that	is	relevant	to	the	problem,	there	should	be	a
corresponding	 software	 object	 in	 the	 system.	 For	 example,	 in	 the	Microwave
Oven	 System,	 the	 door	 sensor	 and	 heating	 element	 are	 relevant	 real-world
physical	 objects	 because	 they	 interact	with	 the	 software	 system.	However,	 the
oven	casing	is	not	a	relevant	real-world	object,	because	it	does	not	interact	with
the	 software	 system.	 In	 the	 software	 system,	 the	 relevant	 real-world	 physical
objects	 are	 modeled	 by	 means	 of	 software	 objects,	 such	 as	 the	 door	 sensor
interface	and	heating	element	interface	software	objects.

Real-world	physical	objects	usually	interface	to	the	system	via	sensors	and
actuators.	These	 real-world	objects	provide	 inputs	 to	 the	 system	via	 sensors	or
are	 controlled	by	 (receive	outputs	 from)	 the	 system	via	 actuators.	Thus,	 to	 the
software	 system,	 the	 real-world	 objects	 are	 actually	 I/O	 devices	 that	 provide
inputs	 to	 and	 receive	 outputs	 from	 the	 system.	Because	 the	 real-world	 objects
correspond	to	I/O	devices,	the	software	objects	that	interface	to	them	are	referred
to	as	device	I/O	boundary	objects.

For	example,	in	the	Microwave	Oven	System,	the	microwave	door	is	a	real-
world	object	that	has	a	sensor	(input	device)	that	provides	inputs	to	the	system.



The	 heating	 element	 is	 a	 real-world	 object	 that	 is	 controlled	 by	 means	 of	 an
actuator	(output	device)	that	receives	outputs	from	the	system.

An	input	object	is	a	device	I/O	boundary	object	that	receives	input	events
or	data	from	an	external	input	device.	In	common	with	all	boundary	objects,	an
input	 object	 is	 assumed	 to	 be	 concurrent.	 Figure	 8.3	 shows	 an	 example	 of	 an
input	class	Door	Sensor	Input	and	an	instance	of	this	class,	a	Door	Sensor
Input	 object,	 which	 receives	 door	 sensor	 inputs	 from	 an	 external	 hardware
Door	 Sensor	 input	 device.	 Figure	 8.3	 also	 shows	 the	 hardware/software
boundary,	 as	well	 as	 the	 stereotypes	 for	 the	 hardware	 «external	 input	 device»
and	 the	 software	 «input»	 objects.	Thus,	 the	 input	 object	 provides	 the	 software
interface	 to	 the	 external	 hardware	 input	 device.	 Because	 boundary	 objects	 are
assumed	to	be	concurrent,	 the	 input	object	 is	depicted	using	 the	UML	notation
for	a	concurrent	object.

Figure	8.3.	Example	of	input	class	and	object.



An	output	object	 is	a	device	 I/O	boundary	object	 that	sends	output	 to	an
external	output	device.	As	with	all	boundary	objects,	an	output	object	is	assumed
to	 be	 concurrent.	 Figure	 8.4	 shows	 an	 example	 of	 an	 output	 class	 called
Heating	Element	Output,	 as	well	 as	 an	 instance	 of	 this	 class,	 a	Heating
Element	Output	object,	which	sends	outputs	to	an	external	real-world	object,
the	 Heating	 Element	 Actuator	 external	 output	 device.	 The	 Heating
Element	 Output	 software	 object	 sends	 Switch	 On	 and	 Switch	 Off	 heating
commands	 to	 the	 hardware	 Heating	 Element	 Actuator.	 Figure	 8.4	 also
shows	the	hardware/software	boundary.



Figure	8.4.	Example	of	output	class	and	object.

A	hardware	I/O	device	is	a	device	that	both	sends	inputs	to	the	system	and
receives	 outputs	 from	 the	 system.	 The	 corresponding	 software	 class	 is	 an	 I/O
class,	and	a	software	object	 that	 is	 instantiated	from	this	class	 is	an	I/O	object.
An	input/output	(I/O)	object	is	a	device	I/O	boundary	object	that	receives	input
from	and	sends	output	 to	an	external	 I/O	device.	This	 is	 the	case	with	 the	ATM
Card	Reader	I/O	class	shown	in	Figure	8.5a	and	its	instance,	the	ATM	Card
Reader	I/O	object	(see	Figure	8.5b),	which	receives	ATM	card	input	from	the
external	I/O	device,	the	ATM	Card	Reader.	In	addition,	ATM	Card	Reader
I/O	sends	eject	and	confiscate	output	commands	to	the	card	reader.



Figure	8.5.	Example	of	I/O	class	and	object.

Each	 software	 boundary	 object	 should	 hide	 the	 details	 of	 the	 physical
interface	 to	 the	 real-world	 object	 from	 which	 it	 receives	 input	 or	 to	 which	 it
provides	 output.	 However,	 a	 software	 object	 should	 model	 the	 events
experienced	 by	 the	 real-world	 object	 to	 which	 it	 corresponds.	 The	 events
experienced	by	the	real-world	object	are	inputs	to	the	system,	in	particular,	to	the
software	object	that	interfaces	to	it.	In	this	way,	the	software	object	can	simulate
the	behavior	of	 the	 real-world	object.	 In	 the	case	of	a	 real-world	object	 that	 is
controlled	 by	 the	 system,	 the	 software	 object	 generates	 an	 output	 event	 that
determines	the	behavior	of	the	real-world	object.



8.4.3	Proxy	Objects

A	proxy	object	interfaces	to	and	communicates	with	an	external	system	or	smart
device.	Although	an	external	system	can	be	very	different	from	a	smart	device,
the	behavior	of	the	two	types	of	proxy	object	is	similar.	The	proxy	object	is	the
local	representative	of	the	external	system	or	smart	device	and	hides	the	details
of	 “how”	 to	 communicate	 with	 the	 external	 system	 or	 smart	 device.	 A	 proxy
object	is	assumed	to	be	concurrent.

An	example	of	a	proxy	class	is	a	Pick	&	Place	Robot	Proxy	class.	An
example	of	a	behavioral	pattern	for	a	proxy	object	is	given	in	Figure	8.6,	which
depicts	 a	 concurrent	Pick	&	Place	Robot	Proxy	 object	 that	 interfaces	 to
and	 communicates	 with	 the	 external	 Pick	 &	 Place	 Robot.	 The	 Pick	 &
Place	Robot	Proxy	 object	 sends	pick	 and	place	 robot	 commands	 to	 the
Pick	&	Place	Robot.	The	real-world	robot	responds	to	the	commands.



Figure	8.6.	Example	of	proxy	class	and	object.

Each	proxy	object	hides	the	details	of	how	to	interface	to	and	communicate
with	 the	 particular	 external	 system.	 A	 proxy	 object	 is	 more	 likely	 to
communicate	by	means	of	messages	to	an	external,	computer-controlled	system,
such	 as	 the	 robot	 in	 the	 above	 example,	 rather	 than	 through	 sensors	 and
actuators,	as	is	the	case	with	device	I/O	boundary	objects.	However,	these	issues
are	not	addressed	until	the	design	phase.



8.4.4	User	Interaction	Objects

This	 section	 addresses	 real-time	 embedded	 systems	 that	 need	 to	 interact	 with
human	 users.	A	user	 interaction	 object	 communicates	 directly	with	 a	 human
user,	receiving	input	from	the	user	and	providing	output	to	the	user	via	standard
I/O	devices,	such	as	the	keyboard,	visual	display,	and	mouse.	Depending	on	the
user	 interface	 technology,	 the	 user	 interface	 could	 be	 very	 simple	 (such	 as	 a
command	line	interface)	or	it	could	be	more	complex	(such	as	a	graphical	user
interface	 [GUI]	 object).	 A	 user	 interaction	 object	 may	 be	 a	 composite	 object
composed	of	 several	 simpler	user	 interaction	objects.	This	means	 that	 the	user
interacts	with	 the	 system	via	 several	 user	 interaction	 objects	 such	 as	windows
and	 menus.	 Such	 objects	 are	 depicted	 with	 the	 «user	 interaction»	 stereotype.
However,	it	is	initially	assumed	that	only	the	composite	user	interaction	object	is
concurrent.	 Further	 design	 of	 user	 interaction	 objects	 is	 addressed	 during
concurrent	task	design	in	Chapter	13.

An	 example	 of	 a	 simple	 user	 interaction	 class	 called	 Operator

Interaction	 is	 depicted	 in	 Figure	 8.7.	 An	 instance	 of	 this	 class	 is	 the
Operator	Interaction	object	(see	Figure	8.7),	which	is	depicted	in	a	typical
behavioral	 pattern	 for	 user	 interaction	 objects.	 The	 object	 accepts	 operator
commands	 from	 the	operator	 actor;	 requests	 sensor	data	 from	an	entity	object,
Sensor	Data	Repository;	and	displays	the	data	it	receives	to	the	operator.
More	 complex	 user	 interaction	 objects	 are	 also	 possible.	 For	 example,	 the
Operator	Interaction	 object	 could	 be	 a	 composite	 user	 interaction	 object
composed	 of	 several	 simpler	 user	 interaction	 objects.	 This	 would	 allow	 the
operator	 to	 receive	 dynamic	 updates	 of	 workstation	 status	 in	 one	 window,
receive	 dynamic	 updates	 of	 alarm	 status	 in	 another	 window,	 and	 conduct	 an



interactive	dialog	with	the	system	in	a	third	window.	Each	window	is	composed
of	several	GUI	widgets,	such	as	menus	and	buttons.

Figure	8.7.	Example	of	user	interaction	class	and	object.



8.4.5	Depicting	External	Entities	and	Boundary	Classes

Chapter	5	described	how	to	develop	a	software	system	context	diagram,	which
shows	all	 the	external	entities,	which	are	depicted	as	blocks	 (Section	5.6),	 that
interface	 to	 and	 communicate	with	 the	 software	 system.	 It	 is	 useful	 to	 expand
this	diagram	 to	 show	 the	boundary	classes	 that	 communicate	with	 the	external
blocks.	 The	 boundary	 classes	 are	 software	 classes	 inside	 the	 software	 system.
The	software	system	is	depicted	with	the	stereotype	«software	system»,	and	the
boundary	 classes,	which	 are	 part	 of	 the	 software	 system,	 are	 shown	 inside	 the
software	system.	Each	external	block,	which	is	external	to	the	software	system,
has	 a	 one-to-one	 association	 with	 a	 boundary	 class.	 Thus,	 starting	 with	 the
external	 blocks,	 as	 depicted	 on	 the	 software	 system	 context	 diagram,	 helps
determine	the	boundary	classes.

Starting	with	the	software	system	context	diagram	for	the	Microwave	Oven
System,	we	determine	 that	each	external	block	communicates	with	a	boundary
class	 (see	Figure	8.8).	The	 software	 system	contains	 the	boundary	 classes	 that
interface	 to	 the	 external	 blocks.	 In	 this	 application,	 there	 are	 eight	 device	 I/O
boundary	 classes.	The	device	 I/O	boundary	 classes	 are	 the	 three	 input	 classes,
the	Door	Sensor	Input,	which	sends	inputs	when	the	oven	door	is	opened	or
closed,	 the	Weight	Sensor	Input,	which	sends	 item	weight	 inputs,	and	 the
Keypad	 Input,	 which	 sends	 keypad	 inputs	 from	 the	 user.	 The	 five	 output
classes	are	the	Heating	Element	Output	class	(which	receives	commands	to
switch	the	heater	on	and	off),	Lamp	Output	class	(which	receives	commands	to
switch	 the	 lamp	 on	 and	 off),	 Turntable	 Output	 class	 (which	 receives
commands	 to	 start	 and	 stop	 the	 turntable),	 Beeper	 Output	 class	 (which
receives	 a	 command	 to	 beep),	 and	 the	Oven	Display	Output	 class	 (which



displays	textual	messages	and	prompts	to	the	user).	There	is	one	instance	of	each
of	these	boundary	classes	for	a	microwave	oven.

Figure	8.8.	Microwave	Oven	System	external	classes	and	boundary	classes.



8.5	Entity	Classes	and	Objects
An	entity	object	is	a	software	object	that	stores	information.	Entity	objects	are
instances	 of	 entity	 classes,	whose	 attributes	 and	 relationships	with	 other	 entity
classes	are	determined	during	static	modeling,	as	described	in	Chapter	5.	There
are	 two	kinds	of	entity	objects:	data	abstraction	objects	and	database	wrapper
objects.	 Entity	 objects	 are	 assumed	 to	 be	 passive	 and	 are	 therefore	 accessed
directly	by	concurrent	objects	via	operation	(i.e.,	method)	calls.

In	 many	 applications,	 including	 real-time	 embedded	 systems,	 the	 entity
objects	 are	 stored	 in	 main	 memory	 and	 are	 referred	 to	 as	 data	 abstraction
objects.	 Some	 applications	 have	 a	 need	 for	 the	 information	 encapsulated	 by
entity	objects	to	be	stored	in	a	file	or	database.	In	these	cases,	the	entity	object	is
persistent,	meaning	that	the	information	it	contains	is	preserved	when	the	system
is	shut	down	and	then	later	powered	up.

Persistent	entity	classes	are	often	mapped	to	a	database	in	the	design	phase.
In	 this	 case,	 the	 data	 is	 stored	 in	 the	 database	 and	 access	 to	 it	 is	 by	means	 of
database	wrapper	objects.	Database	wrapper	objects	encapsulate	how	 to	access
persistent	data,	which	is	stored	on	long-term	storage	devices,	such	as	on	files	and
data	bases	stored	on	disks.	However,	 the	data	encapsulated	by	data	abstraction
objects	is	stored	in	main	memory	and	is	therefore	not	persistent.

Database	wrapper	objects	are,	 in	general,	 less	frequently	used	 in	real-time
embedded	 systems.	 For	 example,	 they	 might	 be	 used	 during	 initialization	 to
retrieve	 system	 configuration	 data	 or	 before	 system	 shutdown	 to	 store	 data
previously	 gathered.	 However,	 data	 accessed	 at	 initialization	 time	 or	 stored
during	 run	 time	 execution	 is	 more	 likely	 to	 be	 obtained	 from	 or	 stored	 at	 a
service	object,	as	described	in	Section	8.7.2.	For	these	reasons,	unless	explicitly



stated	otherwise,	an	entity	object	in	this	book	refers	to	a	data	abstraction	object.
Thus	the	following	examples	all	relate	to	entity	objects	that	are	data	abstraction
objects.

An	 example	 of	 an	 entity	 class	 from	 a	 sensor	 monitoring	 example	 is	 the
Sensor	Data	class	(see	Figure	8.9).	This	class	stores	information	about	analog
sensors.	The	attributes	are	sensor	Name,	sensor	Value,	upper	Limit,
lower	Limit,	and	alarm	Status.	An	example	of	an	instance	of	this	class	is
the	 temperature	 Sensor	 Data	 object.	 An	 example	 of	 a	 Sensor	 Data
Repository	entity	object	is	shown	in	Figure	8.7	and	described	in	Section	8.4.4.
The	 Microwave	 System	 depicted	 in	 Figure	 8.8	 has	 two	 entity	 objects,	 Oven
Data	and	Oven	Prompts.

Figure	8.9.	Example	of	entity	class	and	object.



8.6	Control	Classes	and	Objects
A	control	object	provides	the	overall	coordination	for	a	group	of	objects,	which
could	 be	 boundary	 or	 entity	 objects	 A	 control	 object	 is	 analogous	 to	 the
conductor	of	an	orchestra,	who	orchestrates	(controls)	the	behavior	of	the	other
objects.	 In	 particular,	 a	 control	 object	 decides	when,	 and	 in	what	 order,	 other
objects	 participate	 in	 an	 interaction	 sequence,	 notifying	 each	 object	when	 and
what	 to	perform.	Depending	on	the	characteristics	of	 the	object	and	interaction
sequence,	 the	 control	 object	may	 be	 state	 dependent.	 There	 are	 three	 kinds	 of
control	objects,	as	described	next.



8.6.1	State	Dependent	Control	Objects

A	state	dependent	control	object	 is	a	control	object	whose	behavior	varies	 in
each	 of	 its	 states.	 A	 state	 machine	 is	 used	 to	 define	 the	 behavior	 of	 a	 state
dependent	 control	 object,	 as	 described	 in	Chapter	 7.	This	 section	 only	 gives	 a
brief	overview	of	state	dependent	control	objects,	which	are	described	in	much
more	detail	in	Chapter	9.

Although	a	whole	system	can	be	modeled	by	means	of	a	state	machine	(see
Chapter	 7),	 in	 object-oriented	 analysis	 and	 design,	 a	 state	 machine	 is
encapsulated	inside	one	object.	In	other	words,	the	object	is	state	dependent	and
is	always	in	one	of	the	states	of	the	state	machine.	In	an	object-oriented	model,
the	state	dependent	parts	of	a	system	are	defined	by	means	of	one	or	more	state
machines,	where	each	state	machine	is	encapsulated	inside	its	own	object.	If	the
state	machines	need	to	communicate	with	each	other,	they	do	so	indirectly	since
the	 objects	 that	 contain	 them	 send	 messages	 to	 each	 other,	 as	 described	 in
Chapter	9.

A	state	dependent	control	object	receives	 incoming	events	 that	cause	state
transitions	 and	 generates	 output	 events	 that	 control	 other	 objects.	 The	 output
event	 generated	 by	 a	 state	 dependent	 control	 object	 depends	 not	 only	 on	 the
input	 received	 by	 the	 object	 but	 also	 on	 the	 current	 state	 of	 the	 object.	 An
example	 of	 a	 state	 dependent	 control	 object	 is	 from	 the	 Microwave	 Oven
System,	where	the	control	and	sequencing	of	the	microwave	oven	is	modeled	by
means	of	a	state	dependent	control	object,	Microwave	Oven	Control	object
(see	Figures	8.8	and	8.10),	which	is	defined	by	means	of	the	Microwave	Oven
Control	state	machine.	In	the	example,	Microwave	Oven	is	shown	receiving
inputs	 from	an	 input	object,	Door	Sensor	Input	and	controlling	 two	output
boundary	objects,	Heating	Element	Output	and	Oven	Display	Output.



Figure	8.10.	Example	of	state	dependent	control	class	and	object.

In	a	control	system,	 there	are	usually	one	or	more	state	dependent	control
objects.	It	is	also	possible	to	have	multiple	state	dependent	control	objects	of	the
same	type.	Each	object	executes	an	instance	of	the	same	state	machine,	although
each	object	 is	 likely	 to	be	 in	 a	different	 state.	An	example	of	 this	 is	 the	Light
Rail	Control	System,	which	has	several	trains,	where	each	train	has	an	instance
of	 the	 state	 dependent	 control	 class,	 Train	 Control,	 as	 shown	 in	 Figure
8.11using	 the	 1..*	 notation	 (see	 Chapter	 2)	 to	 depict	 multiple	 instances	 of	 an
object.	 Each	Train	Control	 object	 executes	 its	 own	 instance	 of	 the	Train
Control	 state	 machine	 and	 keeps	 track	 of	 the	 state	 of	 the	 local	 train.	 More
information	about	state	dependent	control	objects	is	given	in	Chapter	9.



Figure	8.11.	Example	of	multiple	instances	of	state	dependent	control	object.



8.6.2	Coordinator	Objects

A	coordinator	object	 is	an	overall	decision-making	object	 that	determines	 the
overall	 sequencing	 for	 a	 collection	 of	 objects.	A	 coordinator	 object	makes	 the
overall	decisions	and	decides	when,	and	in	what	order,	other	objects	participate
in	the	interaction	sequence.	A	coordinator	object	makes	its	decision	based	on	the
input	 it	 receives	 and	 is	 not	 state	 dependent.	 Thus	 an	 action	 initiated	 by	 a
coordinator	 object	 depends	 only	 on	 the	 information	 contained	 in	 the	 incoming
message	and	not	on	what	previously	happened	in	the	system.

An	example	of	a	coordinator	class	 is	 the	Hierarchical	Coordinator,
which	is	depicted	in	Figure	8.12a.	The	instance	of	this	class,	the	Hierarchical
Coordinator,	 coordinates	 several	 state	 dependent	 control	 objects.	 The
coordinator	provides	high-level	 coordination	by	deciding	 the	next	 job	 for	 each
control	 object	 and	 sending	 a	 command	 directly	 to	 the	 control	 object.	 The
coordinator	 also	 receives	 status	 responses	 from	 the	 control	 objects	 (see	Figure
8.12b).



Figure	8.12.	Example	of	coordinator	class	and	object.



8.6.3	Timer	Objects

A	 timer	 object	 is	 a	 control	 object	 that	 is	 activated	 by	 an	 external	 timer,	 for
example,	 a	 real-time	 clock	 or	 operating	 system	 clock.	 The	 timer	 object	 either
performs	 some	 action	 itself	 or	 activates	 another	 object	 to	 perform	 the	 desired
action.

An	example	of	a	timer	class,	Microwave	Timer,	is	given	in	Figure	8.13.
An	instance	of	this	class,	the	timer	object	Microwave	Timer,	is	activated	by	a
timer	 event	 from	 an	 external	 timer,	 the	 Digital	 Clock.	 It	 decrements	 the
cooking	 time	 in	 the	 entity	 object	Oven	Data,	 and	 if	 the	 time	 left	 is	 zero,	 the
timer	 object	 sends	 a	 Timer	 Expired	 message	 to	 the	 Microwave	 Control
object.	It	is	also	possible	for	a	timer	object	to	have	its	own	local	state	machine,
in	which	 case	 the	 timer	 object	 is	 state	 dependent.	 The	Microwave	Timer	 in
Figure	 8.13	 is	 a	 state	 dependent	 timer	 object	 because	 it	 behaves	 differently	 in
different	states,	as	described	in	Chapter	19.



Figure	8.13.	Example	of	a	timer	class	and	object.



8.7	Application	Logic	Classes	and	Objects
Application	logic	classes	and	objects	are	needed	when	it	is	desirable	to	hide	the
application	 logic	 separately	 from	 the	 data	 being	 manipulated	 because	 it	 is
considered	 likely	 that	 the	 application	 logic	 could	 change	 independently	 of	 the
data.	 This	 section	 describes	 two	 kinds	 of	 application	 logic	 objects,	 namely
algorithm	objects	and	service	objects.	Another	kind	of	application	logic	object	is
the	business	logic	object	(Gomaa	2011),	which	is	typically	only	used	in	business
applications	and	is	therefore	omitted	from	this	discussion.



8.7.1	Algorithm	Objects

An	 algorithm	 object	 encapsulates	 an	 algorithm	 used	 in	 the	 problem	 domain.
This	 kind	 of	 object	 is	 more	 prevalent	 in	 real-time,	 scientific,	 and	 engineering
domains.	Algorithm	objects	are	used	when	there	is	a	substantial	algorithm	used
in	 the	 problem	 domain	 that	 can	 change	 independently	 of	 the	 other	 objects.
Simple	algorithms	are	usually	operations	of	an	entity	object,	which	operate	on
the	 data	 encapsulated	 in	 the	 entity	 object.	 However,	 in	 many	 scientific	 and
engineering	 domains,	 complex	 algorithms	 need	 to	 be	 encapsulated	 in	 separate
objects	 because	 they	 are	 frequently	 improved	 independently	 of	 the	 data	 they
manipulate,	for	example,	to	improve	performance	or	accuracy.

An	 example	 from	a	Light	Rail	Control	System	 is	 the	Cruiser	 algorithm
class.	An	instance	of	this	class,	the	Cruiser	object,	calculates	what	adjustments
to	the	speed	should	be	made	by	comparing	the	current	speed	of	the	train	with	the
cruising	 speed	 (see	 Figure	 8.14).	 The	 algorithm	 is	 complex	 because	 it	 must
provide	 gradual	 acceleration	 or	 deceleration	 of	 the	 train	 as	 needed,	 so	 as	 to
provide	a	smooth	ride.



Figure	8.14.	Example	of	algorithm	class	and	object.

An	algorithm	object	frequently	encapsulates	data	it	needs	for	computing	its
algorithm.	 This	 data	 may	 be	 initialization	 data,	 intermediate	 result	 data,	 or
threshold	data,	such	as	maximum	or	minimum	values.

An	algorithm	object	frequently	has	to	interact	with	other	objects	in	order	to
execute	 its	 algorithm,	 for	 example,	 Cruiser.	 In	 this	 way,	 it	 resembles	 a
coordinator	 object.	 However,	 unlike	 a	 coordinator	 object,	 whose	 main
responsibility	 is	 to	 supervise	 other	 objects,	 the	 prime	 responsibility	 of	 an
algorithm	object	is	to	encapsulate	and	execute	the	algorithm.



8.7.2	Service	Objects

A	service	object	is	an	object	that	provides	a	service	for	other	objects.	Although
these	 objects	 are	 usually	 provided	 in	 client/server	 or	 service-oriented
architectures	and	applications,	it	is	possible	for	a	real-time	embedded	system	to
make	use	of	a	service,	for	example	to	read	configuration	data	or	store	status	data.
Client	objects	make	requests	to	the	service	object,	which	the	service	object	will
respond	to.	A	service	object	never	initiates	a	request;	however,	in	response	to	a
service	 request,	 it	 might	 seek	 the	 assistance	 of	 other	 service	 objects.	 Service
objects	play	an	important	role	in	service-oriented	architectures,	although	they	are
used	 in	 other	 architectures	 as	 well,	 such	 as	 client/server	 architectures	 and
component-based	software	architectures.	A	service	object	could	be	designed	 to
encapsulate	the	data	it	needs	to	service	client	requests;	alternatively,	it	could	be
designed	to	access	another	entity	object(s)	that	encapsulates	the	data.

An	example	of	a	real-time	service	class	is	the	Alarm	Service	class	given
in	Figure	8.15a,	from	a	factory	automation	example.	An	example	of	executing	an
instance	of	this	class,	the	Alarm	Service	object,	is	also	shown	in	Figure	8.15b.
The	Alarm	Service	 object	 provides	 support	 for	 storing	 and	viewing	various
factory	 alarms.	 In	 the	 example,	 a	Robot	Proxy	 object	 sends	 alarms	 received
from	 an	 external	 robot	 to	 Alarm	 Service.	 The	 Operator	 Interaction
object	requests	Alarm	Service	to	view	alarms.



Figure	8.15.	Example	of	service	class	and	object.



8.8	Summary
This	chapter	has	described	how	to	determine	the	software	objects	and	classes	in
the	 real-time	 software	 system.	 Object	 and	 class	 structuring	 criteria	 were
provided,	and	the	objects	and	classes	were	categorized	by	using	stereotypes.	The
emphasis	is	on	problem	domain	objects	and	classes,	which	are	to	be	found	in	the
real	world,	and	not	on	solution	domain	objects,	which	are	determined	at	design
time.	The	initial	object	structuring	decisions	assume	that	boundary,	control,	and
application	logic	objects	are	concurrent,	while	entity	objects	are	assumed	to	be
passive.	 These	 decisions	 can	 be	 revisited	 at	 design	 time	 if	 necessary,	 as
described	in	Chapter	13.

The	object	 and	 structuring	criteria	 are	usually	 applied	 to	 each	use	 case	 in
turn	 during	 dynamic	 interaction	 modeling,	 as	 described	 in	 Chapter	 9,	 to
determine	 the	 objects	 that	 participate	 in	 each	 use	 case.	 The	 sequence	 of
interaction	among	the	objects	is	then	determined.	Subsystem	(that	is,	composite
object)	structuring	criteria	are	described	in	Chapter	10.	The	design	of	concurrent
tasks	using	task	structuring	criteria,	as	well	as	message	communication	between
concurrent	tasks,	is	described	in	Chapter	13,	while	the	design	of	the	operations
provided	 by	 passive	 classes	 and	 synchronization	 of	 access	 to	 these	 classes	 is
described	in	Chapter	14.



9

Dynamic	Interaction	Modeling	for
Real-Time	Embedded	Software

◈

Dynamic	modeling	provides	a	dynamic	(also	referred	to	as	behavioral)	view	of
a	system	in	which	control	and	sequencing	is	considered,	either	within	an	object
(by	 means	 of	 a	 state	 machine)	 or	 among	 objects	 (by	 analysis	 of	 object
interactions).	Dynamic	 state	machine	modeling	 is	 described	 in	Chapter	7.	This
chapter	 describes	 dynamic	 interaction	 modeling	 among	 objects.	 However,	 for
state	dependent	control	objects,	 this	chapter	also	describes	how	state	machines
are	used	 to	help	determine	state	dependent	object	 interactions.	Please	note	 that
all	references	to	system	in	this	chapter	are	to	the	software	system.

Dynamic	interaction	modeling	is	based	on	the	realization	of	the	use	cases
developed	 during	 use	 case	 modeling.	 For	 each	 use	 case,	 it	 is	 necessary	 to
determine	how	 the	objects	 that	participate	 in	 the	use	case	dynamically	 interact
with	 each	 other.	 The	 object	 structuring	 criteria	 described	 in	 Chapter	 8	 are
applied	 to	determine	 the	objects	 that	participate	 in	 each	use	case.	This	 chapter
describes	how,	for	each	use	case,	an	interaction	diagram	is	developed	to	depict
the	objects	that	participate	in	the	use	case	and	the	sequence	of	messages	passed
between	 them.	 The	 interaction	 is	 depicted	 on	 either	 a	 sequence	 diagram	 or	 a



communication	 diagram.	A	 textual	 description	 of	 the	 object	 interaction	 is	 also
provided	in	a	message	sequence	description.

There	 are	 two	 main	 kinds	 of	 dynamic	 interaction	 modeling.	 Stateless
dynamic	 interaction	 modeling	 is	 applied	 if	 the	 interaction	 sequence	 does	 not
involve	 a	 state	 dependent	 control	 object.	 State	 dependent	 dynamic	 interaction
modeling	 is	 applied	 if	 at	 least	 one	 of	 the	 objects	 is	 a	 state	 dependent	 control
object,	 in	 which	 case	 the	 interaction	 is	 state	 dependent	 and	 necessitates	 the
execution	of	a	 state	machine.	State	dependent	dynamic	 interaction	modeling	 is
particularly	 important	 in	 real-time	 embedded	 systems,	 because	 object
interactions	in	these	systems	are	frequently	state	dependent.

For	large	systems,	a	preliminary	determination	of	the	subsystems	is	usually
necessary	 –	 for	 example,	 based	 on	 geographical	 distribution,	 as	 in	 distributed
component-based	 systems	 described	 in	 Chapter	 12.	 The	 analysis	 is	 then
conducted	to	determine	the	object	communication	in	each	subsystem.	Subsystem
structuring	is	carried	out	in	more	depth	during	the	design	phase	as	described	in
Chapter	10.

Section	9.1	gives	an	overview	of	object	 interaction	modeling.	Section	9.2
describes	message	sequence	descriptions.	Section	9.3	introduces	an	approach	for
dynamic	interaction	modeling,	which	can	be	either	state	dependent	or	stateless,
depending	 on	 whether	 the	 object	 communication	 is	 state	 dependent	 or	 not.
Section	 9.4	 describes	 a	 systematic	 approach	 for	 stateless	 dynamic	 interaction
modeling	with	 two	examples	of	 this	approach	provided	 in	Section	9.5.	Section
9.6	 describes	 a	 systematic	 approach	 for	 state	 dependent	 dynamic	 interaction
modeling	with	an	example	of	this	approach	provided	in	Section	9.7.	Appendix	A
describes	 the	 convention	 for	 message	 sequence	 numbering	 on	 interaction
diagrams.



9.1	Object	Interaction	Modeling
For	 each	 use	 case,	 the	 objects	 that	 realize	 the	 use	 case	 dynamically	 cooperate
with	each	other	and	are	depicted	on	either	a	UML	sequence	diagram	or	a	UML
communication	 diagram.	 An	 introduction	 to	 these	 interaction	 diagrams	 was
given	 in	Chapter	 2,	 Sections	 2.5	 and	 2.8.	 Further	 examples	 of	 using	 sequence
and	communication	diagrams	are	given	in	the	examples	in	Sections	9.5	and	9.7.
Following	 from	Chapter	 8,	 objects	 are	 depicted	 as	 concurrent	 (active)	 objects
except	for	entity	objects,	which	are	depicted	as	passive	objects.



9.1.1	Analysis	and	Design	Decisions	in	Object	Interaction	Modeling

During	 analysis	 modeling,	 an	 interaction	 diagram	 (sequence	 diagram	 or
communication	 diagram)	 is	 developed	 for	 each	 use	 case;	 only	 objects	 that
participate	 in	 the	use	case	are	depicted.	The	sequence	of	messages	depicted	on
the	 interaction	 diagram	 should	 be	 consistent	with	 the	 sequence	 of	 interactions
between	the	actor	and	the	system	already	described	in	the	use	case.

In	 the	analysis	model,	messages	represent	 the	 information	passed	between
objects.	At	 the	analysis	 stage,	all	messages	passed	between	concurrent	 (active)
objects	are	assumed	to	be	asynchronous,	while	all	communication	with	a	passive
entity	object	is	assumed	to	be	synchronous.	During	design,	we	might	decide	that
two	different	messages	arriving	at	a	passive	object	invoke	different	operations	–
or	alternatively,	the	same	operation,	with	the	message	name	being	a	parameter	of
the	operation.	However,	 these	decisions	 are	postponed	 to	 the	design	phase.	At
the	 analysis	 stage,	 it	 is	 assumed	 that	 all	 messages	 passed	 between	 concurrent
objects	are	asynchronous,	but	this	initial	decision	can	be	reversed	at	design	time.



9.1.2	Sequence	Diagrams	and	Communication	Diagrams	in	Object
Interaction	Modeling

COMET/RTE	 uses	 a	 combination	 of	 communication	 and	 sequence	 diagrams.
Communication	 diagrams	 are	 used	 primarily	 to	 present	 the	 layout	 and
interconnections	among	the	objects	participating	in	the	use	case,	while	sequence
diagrams	 are	 used	 to	 depict	 the	 details	 of	 the	 sequence	 of	 messages	 passed
between	 the	 interacting	 objects.	 Sequence	 diagrams	 are	 particularlyhelpful	 for
intricate	object	interactions	and	for	timing	diagrams,	as	described	in	Chapter	17.

An	important	step	in	the	transition	from	analysis	to	design	is	to	integrate	the
interaction	 diagrams	 developed	 during	 object	 interaction	modeling,	 in	 order	 to
create	the	first	version	of	the	software	architecture	of	the	system,	as	described	in
Chapter	10.	This	can	be	done	more	readily	with	communication	diagrams	 than
with	sequence	diagrams.	If	sequence	diagrams	are	used	for	dynamic	interaction
modeling,	 it	 is	 necessary	 to	 ensure	 that,	 during	 the	 transition	 to	 design,	 every
object	 interaction	 on	 each	 sequence	 diagram	 is	 mapped	 to	 the	 integrated
communication	diagrams	to	ensure	that	the	integration	is	complete.



9.1.3	Generic	and	Instance	Forms	of	Interaction	Diagrams

A	 scenario	 is	 one	 specific	 sequence	 of	 object	 interactions,	 which	 is	 typically
depicted	 on	 an	 interaction	 diagram.	 In	 particular,	 a	 scenario	 with	 its	 specific
message	 sequence	 can	 be	 used	 to	 depict	 the	 realization	 of	 one	 interaction
sequence	(main	or	alternative)	of	a	use	case.

The	two	forms	of	an	interaction	(sequence	or	communication)	diagram	are
the	generic	form	and	the	instance	form.	The	generic	form	(also	called	descriptor
form)	 describes	 all	 possible	 interactions	 in	which	 the	 objects	might	 participate
and	 so	 can	 include	 loops,	 branches,	 and	 conditions.	 The	 generic	 form	 of	 an
interaction	 diagram	 can	 be	 used	 to	 describe	 both	 the	 main	 sequence	 and	 the
alternative	sequences	of	a	use	case.	The	instance	form	is	used	to	depict	a	specific
scenario,	 either	 the	 main	 sequence	 or	 an	 alternative	 sequence	 of	 a	 use	 case.
Using	 the	 instance	 form	 requires	 several	 interaction	diagrams	 to	 fully	 depict	 a
given	 use	 case,	 one	 diagram	 for	 the	main	 sequence	 and	 one	 diagram	 for	 each
alternative	 sequence.	 Examples	 of	 instance	 and	 generic	 forms	 of	 interaction
diagrams,	 both	 communication	 diagrams	 and	 sequence	 diagrams,	 are	 given	 in
the	examples	in	Sections	9.5	and	9.7.



9.2	Message	Sequence	Description
A	message	 sequence	 description	 is	 supplementary	 documentation,	 which	 is
useful	 to	 provide	 with	 an	 interaction	 diagram.	 It	 is	 developed	 as	 part	 of	 the
dynamic	model	and	describes	how	the	analysis	model	objects	participate	in	each
use	 case	 as	 depicted	 on	 an	 interaction	 diagram.	 The	 message	 sequence
description	is	a	textual	description	of	what	happens	when	each	message	arrives
at	 a	 destination	 object	 depicted	 on	 a	 communication	 diagram	 or	 sequence
diagram.	The	message	sequence	description	uses	the	message	sequence	numbers
that	 appear	 on	 the	 interaction	 diagram.	 It	 describes	 the	 sequence	 of	messages
sent	 from	 source	 objects	 to	 destination	 objects	 and	 describes	 what	 each
destination	 object	 does	 with	 a	 message	 it	 receives.	 The	 message	 sequence
description	 usually	 provides	 additional	 information	 that	 is	 not	 depicted	 on	 an
interaction	 diagram.	 For	 example,	 every	 time	 an	 entity	 object	 is	 accessed,	 the
message	sequence	description	can	provide	additional	information,	such	as	which
attributes	 of	 the	 object	 are	 referenced.	 Examples	 of	 message	 sequence
descriptions	are	given	in	Section	9.5.



9.3	Approach	for	Dynamic	Interaction
Modeling

Dynamic	interaction	modeling	 is	an	iterative	approach	to	help	determine	how
the	 analysis	 objects	 interact	 with	 each	 other	 to	 realize	 each	 use	 case.	 A	 first
attempt	is	made	to	determine	the	objects	that	participate	in	a	use	case,	using	the
object	structuring	criteria	described	in	Chapter	8.	Next,	 the	way	in	which	these
objects	 collaborate	 to	 execute	 the	 use	 case	 is	 analyzed.	 This	 analysis	 might
demonstrate	a	need	to	define	additional	objects	and/or	additional	interactions.

Dynamic	 interaction	 modeling	 can	 be	 either	 state	 dependent	 or	 stateless,
depending	on	whether	the	object	communication	is	state	dependent.	Section	9.4
describes	 stateless	 dynamic	 interaction	 modeling.	 State	 dependent	 dynamic
interaction	modeling	is	described	in	Section	9.6.



9.4	Stateless	Dynamic	Interaction	Modeling
This	 section	 describes	 the	 main	 steps	 in	 the	 stateless	 dynamic	 interaction
modelingapproach	starting	from	the	use	case	(described	in	Chapter	6).	The	first
step	 is	 to	 consider	 the	 objects	 needed	 to	 realize	 the	 use	 case,	 using	 the	 object
structuring	 criteria	 described	 in	 Chapter	 8.	 There	 will	 need	 to	 be	 at	 least	 one
boundary	object	to	receive	inputs	from	the	actor.	A	stateless	control	object,	such
as	a	coordination	or	 timer	object,	 is	needed	 if	some	coordination	and	decision-
making	is	required.	An	entity	object	is	needed	if	information	has	to	be	stored	or
retrieved.	Next,	determine	 the	 sequence	of	message	communication	among	 the
objects,	 following	 the	 interaction	 sequences	 described	 in	 the	 use	 case.	 The
details	are	as	follows:

1.	Analyze	use	case	model.	For	dynamic	modeling,	consider	each	interaction
between	the	primary	actor	and	the	system,	as	described	in	the	main	sequence	of
the	use	case.	The	primary	actor	starts	the	interaction	with	the	system	through	an
external	input.	The	system	responds	to	this	input	with	some	internal	execution
and	then	typically	provides	a	system	output.	The	sequence	of	actor	inputs	and
system	responses	is	described	in	the	use	case.	Start	by	developing	the	interaction
sequence	for	the	scenario	described	in	the	main	path	of	the	use	case.

2.	Determine	objects	needed	to	realize	use	case.	This	step	requires	applying
the	object	structuring	criteria	(see	Chapter	8)	to	determine	the	software	objects
needed	to	realize	the	use	case,	both	boundary	objects	(2a	below)	and	internal
software	objects	(2b	below).

2a.	Determine	boundary	object(s).	Consider	the	actor	(or	actors)	that
participates	in	the	use	case;	determine	the	external	objects	(external	to	the



system)	through	which	the	actor	communicates	with	the	system,	and	the
software	objects	that	receive	the	actor's	inputs.
Considering	the	inputs	from	each	external	object	to	the	system.	For	each

external	input	event,	consider	the	software	object	required	to	process	the	event.
A	software	boundary	object	(such	as	an	input	object	or	user	interaction	object)	is
needed	to	receive	the	input	from	the	external	object.	On	receipt	of	the	external
input,	the	boundary	object	does	some	processing	and	typically	sends	a	message
to	an	internal	(i.e.,	non-boundary)	object.

2b.	Determine	internal	software	objects.	Consider	the	main	sequence	of	the
use	case.	Using	the	object	structuring	criteria,	determine	the	internal	software
objects	that	participate	in	the	use	case,	such	as	control	or	entity	objects.

3.	Determine	message	communication	sequence.	For	each	input	event	from
the	external	object,	consider	the	communication	required	between	the	boundary
object	that	receives	the	input	event	and	the	subsequent	objects	–	entity	or	control
objects	–	that	cooperate	in	processing	this	event.	Draw	a	sequence	diagram	or
communication	diagram	showing	the	objects	participating	in	the	use	case	and	the
sequence	of	messages	passing	between	them.	This	sequence	typically	starts	with
an	external	input	from	the	actor	(external	object)	to	the	boundary	object,
followed	by	a	sequence	of	messages	among	the	participating	software	objects,
through	to	a	boundary	object	that	provides	an	external	output	to	the	actor
(external	object).	Repeat	this	process	for	each	subsequent	interaction	between
the	actor(s)	and	the	system.	As	a	result,	additional	objects	might	be	required	to
participate,	and	additional	message	communication,	along	with	message
sequence	numbering,	might	need	to	be	specified.

4.	Determine	alternative	sequences.	Consider	the	different	alternatives,	such	as
error	handling,	which	are	described	in	the	alternatives	section	of	the	use	case.



Then	consider	what	objects	need	to	participate	in	executing	the	alternative
branches	and	the	sequence	of	message	communication	among	them.

In	 the	 case	 of	 a	 periodic	 activity	 –	 for	 example,	 a	 report	 that	 is	 generated
periodically	–	it	is	necessary	to	consider	a	software	timer	object	that	is	activated
by	 a	 timer	 event	 from	 an	 external	 hardware	 timer.	 The	 software	 timer	 object
triggers	an	entity	object	or	algorithm	object	to	perform	the	required	activity.	In	a
periodic	use	case,	the	external	timer	is	the	actor	and	the	software	timer	object	is
the	control	object.	Each	significant	system	output,	such	as	a	report,	requires	an
object	to	produce	the	data	and	then	typically	send	the	data	to	a	boundary	object,
which	outputs	it	to	the	external	environment.



9.5	Examples	of	Stateless	Dynamic
Interaction	Modeling

Two	contrasting	examples	are	given	of	stateless	dynamic	 interaction	modeling.
The	first	example	starts	with	the	use	case	for	View	Alarms,	in	which	the	primary
actor	 is	 a	 human	 user.	 The	 second	 example	 starts	 with	 the	 use	 case	 for	 Send
Status,	 in	which	 the	primary	actor	 is	an	external	 timer.	Both	examples	 follows
the	four	steps	for	dynamic	modeling	described	in	Section	9.4,	although	because
they	 are	 simple	 examples,	 there	 are	 no	 alternative	 sequences.	 An	 example	 of
alternative	sequences	is	given	in	Section	9.7.



9.5.1	View	Alarms	Example

1.	Develop	Use	Case	Model

There	is	one	actor	in	the	View	Alarms	use	case,	Monitoring	Operator,	who	can
request	 to	 view	 the	 status	 of	 alarms,	 as	 shown	 in	 Figure	 9.1.	 The	 use	 case
description	is	briefly	described	as	follows:

Use	case:	View	Alarms.
Actor:	Monitoring	Operator.
Summary:	 The	 monitoring	 operator	 views	 current	 alarms	 and

acknowledges	that	the	cause	of	an	alarm	is	being	addressed.
Precondition:	The	monitoring	operator	is	logged	in.
Main	sequence:

1.	Monitoring	Operator	requests	to	view	the	current	alarms.

2.	The	system	displays	the	current	alarms.	For	each	alarm,	the	system	displays
the	name	of	the	alarm,	alarm	description,	location	of	alarm,	and	severity	of	alarm
(high,	medium,	low).

Postcondition:	Outstanding	alarms	have	been	displayed.

Figure	9.1.	Use	case	diagram	for	the	View	Alarms	use	case.

2.	Determine	Objects	Needed	to	Realize	Use	Case



Because	View	Alarms	is	a	simple	use	case,	only	two	objects	participate	in	the
realization	of	the	use	case,	as	shown	in	the	sequence	diagram	in	Figure	9.2	and
the	 communication	 diagram	 in	 Figure	 9.3.	 The	 required	 objects	 can	 be
determined	by	a	careful	reading	of	the	use	case,	as	shown	in	bold	in	the	above
use	case.	These	are	a	user	 interaction	object	called	Operator	Interaction,
which	 receives	 inputs	 from	and	 send	outputs	 to	 the	 actor,	 and	a	 service	object
called	 Alarm	 Service,	 which	 provides	 access	 to	 the	 alarm	 repository	 and
responds	to	alarm	requests.	Figures	9.2	and	9.3	depict	the	same	information	but
in	different	ways,	as	described	in	Section	2.5.

Figure	9.2.	Sequence	diagram	for	the	View	Alarms	use	case.



Figure	9.3.	Communication	diagram	for	the	View	Alarms	use	case.

3.	Determine	Message	Communication	Sequence

The	message	 communication	 sequence	 among	 the	 objects,	 depicted	 in	 Figures
9.2	and	9.3,	is	an	elaboration	of	the	interaction	sequence	between	the	actor	and
the	system	described	 in	 the	use	case.	Appendix	A	describes	 the	convention	for
message	 sequence	 numbering	 on	 interaction	 diagrams.	 The	 Monitoring
Operator	 makes	 a	 request	 (message	 A1)	 to	 the	 user	 interaction	 object,
Operator	Interaction,	which	in	turn	makes	a	request	(message	A1.1)	to	the
service	 object,	 Alarm	 Service.	 The	 service	 object	 responds	 (message
A1.2)	 with	 the	 desired	 information,	 which	 the	 user	 interaction
object	 displays	 to	 the	 operator	 (message	 A1.3).	 The	 message	 interaction
sequence	is	described	as	follows:



A1:	Monitoring	Operator	requests	an	alarm	handling	service	–	for	example,
to	view	alarms	or	to	subscribe	to	receive	alarm	messages	of	a	specific	type.	The
request	is	sent	to	Operator	Interaction.

A1.1:	Operator	Interaction	sends	the	alarm	request	to	Alarm	Service.

A1.2:	Alarm	Service	performs	the	request	–	for	example,	read	the	list	of
current	alarms	or	add	the	name	of	this	user	interaction	object	to	the	subscription
list	–	and	sends	a	response	to	the	Operator	Interaction	object.

A1.3:	Operator	Interaction	displays	the	response	–	for	example,	alarm
information	–	to	the	operator.



9.5.2	Send	Vehicle	Status	Example

1.	Develop	Use	Case	Model

The	 next	 example	 describes	 a	 periodic	 scenario,	which	 is	 initiated	 by	 a	 timer.
There	are	two	actors	in	the	Send	Vehicle	Status	use	case,	the	primary	actor	is	a
timer	 actor	 called	 Digital	 Timer,	 which	 periodically	 initiates	 the	 interaction
sequence,	while	the	secondary	actor	is	a	human	actor	called	Driver,	who	views
the	vehicle	status,	as	shown	in	Figure	9.4.

Figure	9.4.	Use	case	diagram	for	the	Send	Vehicle	Status	use	case.

The	use	case	description	is	briefly	described	as	follows:
Use	case:	Send	Vehicle	Status.
Summary:	 The	 vehicle	 sends	 status	 information	 about	 its	 location	 and

speed	to	the	driver.
Actor:	Digital	Timer	(primary),	Driver	(secondary).
Precondition:	The	vehicle	is	operational.
Main	sequence:

1.	Digital	Timer	notifies	the	System	that	the	timer	has	expired.

2.	System	reads	the	location	and	speed	status	information	about	the	vehicle



location.

3.	System	sends	the	vehicle	status	information	to	the	Driver.

Postcondition:	 System	 has	 sent	 location	 and	 speed	 status	 information	 to	 the
Driver.

2.	Determine	Objects	Needed	to	Realize	Use	Case

The	software	objects	that	realize	this	use	case	are	the	Vehicle	Timer	(which
receives	 timer	 events	 from	 the	 external	 Digital	 Timer),	 Vehicle	 Data,
which	 stores	 location	 and	 speed	 status	 information,	 and	 Vehicle	 Display
Output,	which	sends	vehicle	status	to	the	external	Driver.

3.	Determine	Message	Communication	Sequence

The	 sequence	 diagram	 for	 the	Send	Vehicle	Status	 use	 case	 is	 shown	 in
Figure	9.5	and	the	communication	diagram	in	Figure	9.6,	both	of	which	depict
the	same	message	communication	scenario.



Figure	9.5.	Sequence	diagram	for	the	Send	Vehicle	Status	use	case.

Figure	9.6.	Communication	diagram	for	the	Send	Vehicle	Status	use
case.

The	message	sequence	starts	with	the	external	timer	event	from	the	external
Digital	Timer,	and	is	described	next:

1.	Digital	Timer	sends	Timer	Event	to	Vehicle	Timer.

2.	Vehicle	Timer	reads	speed	and	location	data	from	Vehicle	Data.

3.	Vehicle	Timer	sends	Vehicle	Status	message	to	Vehicle	Display
Output.

4.	Vehicle	Display	Output	sends	Vehicle	Status	to	external	Driver.



9.6	State	Dependent	Dynamic	Interaction
Modeling

State	dependent	dynamic	interaction	modeling	addresses	the	situations	in	which
interactions	 among	 objects	 are	 state	 dependent.	 A	 state	 dependent	 interaction
involves	 at	 least	 one	 state	 dependent	 control	 object	 that,	 by	 executing	 a	 state
machine	(as	described	in	Chapter	7)	provides	the	overall	control	and	sequencing
of	its	interactions	with	other	objects.	In	more	complex	interactions,	it	is	possible
to	have	more	than	one	state	dependent	control	object,	each	of	which	executes	a
separate	state	machine.

This	 section	 gives	 a	 detailed	 description	 of	 state	 dependent	 dynamic
interaction	modeling	and	is	followed	by	an	example	of	the	approach.



9.6.1	Messages	and	Events

State	dependent	dynamic	modeling	relies	heavily	on	both	messages	and	events.
It	is	important	to	understand	how	messages	relate	to	events.	A	message	consists
of	an	event	together	with	the	data	that	accompanies	the	event,	referred	to	as	the
attributes	 of	 the	message.	 For	 example,	 the	 event	approachingStation	 has
two	 attributes,	 which	 are	 the	 data	 items	 that	 accompany	 the	 event.	 These	 are
stationID	 and	 platform#.	 The	 message	 is	 depicted	 as	 message	 =	 event
(message	 attributes);	 for	 example:	 approachingStation	 (stationID,
platform#)
It	 is	possible	for	an	event	not	 to	have	any	data	associated	with	it;	 for	example,
the	event	door	Closed	does	not	have	any	attributes.

The	 message	 name	 corresponds	 to	 the	 name	 of	 the	 event.	 The	 message
parameters	correspond	to	the	message	attributes.	Thus,	for	interaction	diagrams,
we	can	use	the	terms	“event	sequence”	and	“message	sequence”	synonymously.
To	 understand	 the	 sequence	 of	 interactions	 among	 objects,	 we	 often	 initially
concentrate	on	the	events;	hence	the	term	event	sequence	analysis.



9.6.2	Steps	in	State	Dependent	Dynamic	Interaction	Modeling

In	 state	dependent	dynamic	 interaction	modeling,	 the	objective	 is	 to	determine
the	interaction	between	the	following	objects:

The	interaction	among	these	objects	is	depicted	on	a	communication	diagram	or
sequence	diagram.

The	 main	 steps	 in	 the	 state	 dependent	 dynamic	 interaction	 modeling
approach	are	as	follows.	The	sequence	of	interactions	needs	to	reflect	the	main
sequence	of	interactions	described	in	the	use	case:

1.	Determine	the	boundary	object(s).	Consider	the	objects	that	receive	the
inputs	sent	by	the	external	objects	in	the	external	environment.

2.	Determine	the	state	dependent	control	object.	There	is	at	least	one	state
dependent	control	object,	which	executes	the	state	machine.	Others	might	also
be	required.

3.	Determine	the	other	software	objects.	These	are	software	objects	that
interact	with	the	control	object,	by	executing	actions	or	activities,	or	boundary
objects.

The	state	dependent	control	object,	which	executes	the	state	machine.

The	objects	(usually	software	boundary	objects)that	send	events	to	the
control	object.	These	events	cause	state	transitions	in	the	control	object's
internal	state	machine.

The	objects	that	provide	and	execute	the	actions	and	activities,	which	are
triggered	by	the	control	object	as	a	result	of	the	state	transitions.

Any	other	objects	that	participate	in	realizing	the	use	case.



4.	Determine	object	interactions	in	the	main	sequence	scenario.	Carry	out
this	step	in	conjunction	with	step	5	because	the	interaction	between	the	state
dependent	control	object	and	the	encapsulated	state	machine	it	executes	needs	to
be	determined	in	detail.

5.	Determine	the	execution	of	the	state	machine.	This	is	described	in	the	next
section.

6.	Consider	alternative	sequence	scenarios.	Perform	the	state	dependent
dynamic	analysis	on	scenarios	described	by	the	alternative	sequences	of	the	use
case.	This	is	also	described	in	the	next	section.



9.6.3	Modeling	Interaction	Scenarios	Controlled	by	State	Machines

This	 section	 describes	 how	 interaction	 diagrams	 –	 in	 particular,	 sequence
diagrams	 and	 communication	 diagrams	 –	 can	 be	 used	 with	 state	 machines	 to
model	state-dependent	interaction	scenarios,	as	outlined	in	steps	5	and	6	above.

A	 message	 on	 an	 interaction	 diagram	 consists	 of	 an	 event	 and	 data	 that
accompanies	the	event.	Consider	the	relationship	between	messages	and	events
in	 the	 case	 of	 a	 state	 dependent	 control	 object	 that	 executes	 its	 internal	 state
machine.	 When	 a	 message	 arrives	 at	 the	 control	 object	 on	 an	 interaction
diagram,	 the	 event	 part	 of	 the	message	 causes	 the	 state	 transition	 on	 the	 state
machine.	The	action	on	the	state	machine	is	the	result	of	the	state	transition	and
corresponds	to	the	output	event	depicted	on	the	interaction	diagram.	In	general,	a
message	 on	 an	 interaction	 diagram	 (communication	 or	 sequence	 diagram)	 is
referred	 to	 as	 an	 event	 on	 a	 state	machine;	 in	 descriptions	 of	 state	 dependent
dynamic	scenarios,	however,	for	conciseness	only	the	term	event	is	used.

A	source	object	 sends	an	event	 to	 the	 state	dependent	 control	object.	The
arrival	 of	 this	 input	 event	 causes	 a	 state	 transition	 on	 the	 state	 machine.	 The
effect	of	 the	 state	 transition	 is	one	or	more	output	events.	The	 state	dependent
control	object	sends	each	output	event	to	a	destination	object.	An	output	event	is
depicted	on	the	state	machine	as	an	action	(which	can	be	a	state	transition	action,
an	entry	action,	or	an	exit	action),	an	enable	activity,	or	a	disable	activity.

To	ensure	that	the	interaction	diagram	and	state	machine	are	consistent	with
each	other,	the	equivalent	interaction	diagram	message	and	state	machine	event
are	given	the	same	name.	Furthermore,	for	a	given	state	dependent	scenario,	it	is
necessary	 to	use	 the	 same	event	 sequence	numbering	on	both	diagrams.	Using
the	 same	 sequence	numbers	 ensures	 that	 the	 scenario	 is	 represented	 accurately
on	both	diagrams	and	can	be	reviewed	for	consistency.



An	initial	state	machine	might	have	already	been	developed	to	get	a	better
understanding	of	the	state	dependent	parts	of	the	system,	as	described	in	Chapter
7.	At	 this	 stage,	 the	 initial	 state	machine	probably	needs	 further	 refinement.	 If
the	state	machine	was	developed	prior	to	the	interaction	diagram,	it	needs	to	be
reviewed	to	see	if	it	is	consistent	with	the	interaction	diagram	and,	if	necessary,
modified.

Developing	 the	 interaction	 diagram	 and	 the	 state	 machine	 is	 usually
iterative;	each	input	event	(to	the	control	object	and	its	state	machine)	and	each
output	event	(from	the	state	machine	and	control	object)	need	to	be	considered	in
sequence.	They	can	actually	be	further	broken	down	as	follows:

1.	The	arrival	of	an	event	at	the	state	dependent	control	object	(often	from	a
boundary	object)	causes	a	state	transition.	For	each	state	transition,	determine	all
the	actions	and	activities	that	result	from	this	change	in	state.	Remember	that	an
action	is	executed	instantaneously,	whereas	an	activity	executes	for	a	finite
amount	of	time	–	conceptually,	an	action	is	executed	at	a	state	transition,	and	an
activity	executes	for	the	duration	of	the	state.	When	triggered	by	a	control	object
at	a	state	transition,	an	action	executes	instantaneously	and	then	terminates	itself.
An	activity	is	enabled	by	the	control	object	on	entry	into	the	state	and	disabled
by	the	control	object	on	exit	from	the	state.
Determine	all	the	objects	that	execute	the	identified	actions	and	activities.	It	is

also	necessary	to	determine	if	any	activity	should	be	disabled.

2.	For	each	triggered	or	enabled	object,	determine	what	messages	it	generates
and	whether	these	messages	are	sent	to	another	object	or	output	to	the	external
environment.

3.	Depict	the	incoming	external	event	and	the	subsequent	internal	events	on	both
the	state	machine	and	the	interaction	diagram.	The	events	are	numbered	to	show
the	sequence	in	which	they	are	executed.	The	same	event	sequence	numbers	are



used	on	the	interaction	diagram,	state	machine,	and	sequence	diagram,	as	well	as
on	the	message	sequence	description	that	describes	the	object	interactions.

When	 the	 state	 dependent	 dynamic	 analysis	 has	 been	 completed	 for	 the	main
sequence,	the	alternative	sequences	need	to	be	considered	as	follows:

1.	Analyze	the	alternative	branches	described	in	the	use	case	to	develop
additional	states	and	transitions	in	the	state	machine.	For	example,	alternative
branches	are	needed	for	error	handling.

2.	To	complete	the	state	dependent	dynamic	analysis,	it	is	necessary	to	walk
through	the	object	interaction	scenarios	to	ensure	that:

The	state	machine	has	been	driven	through	every	state	and	every	state
transition	at	least	once.

Each	action	and	activity	has	been	performed	at	least	once,	so	that	each
state	dependent	action	has	been	triggered	and	each	state	dependent
activity	has	been	enabled	and	subsequently	disabled.



9.7	Example	of	State	Dependent	Dynamic
Interaction	Modeling:	Microwave	Oven

System
As	 an	 example	 of	 state	 dependent	 dynamic	 interaction	modeling,	 consider	 the
following	example	from	the	Microwave	Oven	System,	the	Cook	Food	use	case,
which	 is	 described	 in	 Chapter	 6,	 Section	 6.6.1.	 The	 software	 objects	 that
participate	in	the	realization	of	this	use	case	are	determined	by	applying	the	class
and	 object	 structuring	 criteria	 described	 in	Chapter	 8.	As	 described	 in	 Section
8.4,	 there	 is	a	need	for	software	boundary	objects,	since	the	user	 interacts	with
the	system	via	several	external	devices,	in	particular	input	and	output	objects.

a)	To	communicate	with	the	external	input	devices,	the	corresponding	input
objects	are	Door	Sensor	Input,	Weight	Sensor	Input,	and	Keypad
Input.

b)	To	communicate	with	the	external	output	devices,	the	corresponding
output	objects	are	Heating	Element	Output,	Lamp	Output,
Turntable	Output,	Beeper	Output,	and	Oven	Display	Output
objects.

c)	Because	of	the	need	to	measure	elapsed	cooking	time,	there	needs	to	be	a
software	timer	object,	Oven	Timer.

d)	There	also	needs	to	be	an	entity	object	to	store	the	cooking	time,	which
is	called	Oven	Data,	and	an	entity	object	to	store	Oven	Prompts.

e)	Furthermore,	to	provide	the	overall	control	and	sequencing	for	the
microwave	oven,	there	is	a	need	for	a	control	object,	Microwave	Oven



Control.	Since	the	actions	of	this	control	object	depend	on	what	happened
previously,	the	control	object	needs	to	be	state	dependent	and	therefore
execute	a	state	machine.

By	 executing	 the	 Microwave	 Oven	 Control	 state	 machine,	 the	 state
dependent	 control	object,	Microwave	Oven	Control,	 controls	 the	execution
of	 several	 objects.	 To	 fully	 understand	 and	 design	 the	 state	 dependent
interactions,	 it	 is	 necessary	 to	 analyze	 how	 the	 interaction	 diagram	 and	 state
machine	work	together.	A	message	on	the	interaction	diagram	and	its	equivalent
event	 on	 the	 state	machine	 are	 given	 the	 same	 name	 and	 sequence	 number	 to
emphasize	 how	 the	 diagrams	 work	 together.	 First,	 the	 main	 sequence	 is
considered,	followed	by	the	alternative	sequences.



9.7.1	Determine	Main	Sequence

Consider	the	main	sequence	of	the	Cook	Food	use	case,	which	is	described	in
Chapter	6,	Section	6.6.	It	describes	the	user	opening	the	microwave	oven	door,
inserting	the	food	into	the	oven,	then	entering	the	cooking	time	and	pressing	the
Start	 button.	The	 system	 sets	 the	 timer	 and	 starts	 cooking	 the	 food.	When	 the
timer	elapses,	the	system	stops	cooking	the	food.	The	user	then	opens	the	door	to
remove	the	food.

This	use	case	starts	when	the	user	opens	 the	oven	door,	which	 is	detected
by	the	door	sensor.	The	message	sequence	number	starts	at	1,	which	is	the	first
external	 event	 initiated	 by	 the	 user	 actor,	 as	 described	 in	 the	Cook	Food	 use
case.	Subsequent	numbering	in	sequence,	representing	the	objects	in	the	system
reacting	to	the	input	event	from	the	external	object,	is	1.1	and	1.2.	The	next	input
event	from	the	external	environment	is	the	external	event	from	the	weight	sensor
numbered	2,	and	so	on.	The	object	 interactions	for	 the	main	sequence	scenario
are	shown	on	the	sequence	diagrams	in	Figures	9.7	and	continued	on	Figure	9.8,
which	depict	external	input	and	timer	objects	in	addition	to	software	objects,	but
for	space	reasons	do	not	depict	external	output	objects.



Figure	9.7.	Sequence	diagram	for	Cook	Food	use	case:	main	sequence
scenario.

Figure	9.8.	Sequence	diagram	for	Cook	Food	use	case:	main	sequence
scenario	(continued).

The	message	sequencing	on	the	object	interaction	diagrams	is	faithful	to	the
main	sequence	of	the	use	case	as	given	by	the	use	case	description.	The	message
sequence	 from	 1	 to	 1.2	 starts	 with	 the	 door	 being	 opened	 by	 the	 user	 and
detected	by	 the	hardware	Door	Sensor.	Door	Sensor	 then	passes	 this	 input
event	 to	 the	software	Door	Sensor	Input	object,	which	consequently	 sends
the	Door	Opened	 (message	1.1	on	Figure	9.7)	message	 to	Microwave	Oven
Control.	 This	 state	 dependent	 control	 object	 executes	 the	Microwave	Oven
Control	 state	machine,	shown	in	Figure	9.9.	The	Door	Opened	event	 (event
1.1	on	Figure	 9.9)	 causes	 the	 state	machine	 to	 transition	 from	 the	 initial	 state,
Door	 Shut,	 to	 Door	 Open.	 The	 resulting	 state	 machine	 action	 Switch	 On



(event	1.2)	leads	to	the	Microwave	Oven	Control	object	sending	the	Switch
On	(message	1.2	on	Figure	9.7)	message	to	the	Lamp	Output	object.

Figure	9.9.	State	machine	diagram	for	Cook	Food	use	case:	main	sequence
scenario.

The	message	sequence	from	2	to	2.1	follows	a	similar	sequence	involving
the	 Weight	 Sensor	 Input	 object.	 Arrival	 of	 the	 Item	 Placed	 message
(message	2.1	 on	Figure	 9.7)	 causes	 the	 state	machine	 to	 transition	 to	 the	 state
Door	Open	with	Item	 (event	2.1	on	Figure	9.9).	This	sequence	 is	followed
by	 the	message	 sequence	 from	3	 to	3.2,	which	 involves	 closing	 the	oven	door
and	 again	 involves	 the	 Door	 Sensor	 Input	 object,	 which	 sends	 the	 Door
Closed	 message	 (3.1)	 causing	 the	 state	machine	 to	 transition	 to	Door	Shut
Waiting	for	User	and	the	action	Switch	Off.



The	 message	 sequence	 from	 4	 to	 4.4	 starts	 with	 the	 user	 pressing	 the
Cooking	 Time	 button	 (message	 #4	 on	 Figure	 9.7),	 which	 is	 received	 by	 the
Keypad	Input,	which	sends	the	Cooking	Time	Selected	message	(#4.1)	to
Microwave	Oven	Control,	which	then	transitions	 to	Door	Shut	Waiting
for	Cooking	Time.	The	resulting	action	is	Prompt	for	Time	(action	#4.2on
Figure	9.9),	which	is	sent	as	a	message	to	Oven	Display	Output,	which	then,
given	 the	 prompt	 id,	 reads	 the	 time	 prompt	 from	 the	 Oven	 Prompts	 entity
object	 (messages	 #4.3,	 4.4	 on	 Figure	 9.7)	 and	 outputs	 it	 to	 the	 user.	 The	 user
then	 enters	 the	 cooking	 time	 by	 pressing	 the	 appropriate	 number	 one	 or	more
times	 (message	 5).	 For	 each	 digit,	 Keypad	 Input	 sends	 Cooking	 Time

Entered	 (#5.1)	message	containing	 the	digit	 to	Microwave	Oven	Control.
The	 state	 machine	 then	 transitions	 to	 Ready	 to	 Cook	 state.	 There	 are	 two
actions	associated	with	this	transition,	Display	Cooking	Time,	which	is	sent
to	 Oven	 Display	 Output	 (#5.2)	 for	 output	 to	 the	 display	 and	 Update
Cooking	Time,	which	 adds	 the	 digit	 to	 the	 cooking	 time	 stored	 in	 the	Oven
Data	entity	object	(#5.2a).	Note	that	because	these	actions	are	concurrent,	they
are	labeled	5.2	and	5.2a,	according	to	the	numbering	convention	for	concurrent
events	and	messages	(see	Appendix	A).

When	the	user	presses	the	Start	key,	the	external	Keypad	object	sends	the
Start	Pressed	message	 (message	 6	 on	 Figure	 9.8)	 to	 the	 software	Keypad
Input	 object,	 which	 in	 turn	 sends	 a	 Start	 message	 (message	 6.1)	 to	 the
Microwave	 Oven	 Control	 object.	 The	 arrival	 of	 the	 message	 triggers	 the
Start	 event	on	 the	Microwave	Oven	Control	 state	machine	 (event	6.1	on
Figure	9.9),	which	in	turn	causes	the	state	transition	from	the	Ready	to	Cook
state	 to	 the	Cooking	 state.	 The	 resulting	 concurrent	 actions	 are	 the	 transition
action	Start	Timer	 (action	6.2a	on	Figure	9.9)	 and	 the	 entry	 actions	Start
Cooking	(action	6.2),	Switch	On	(action	6.2b),	and	Start	Turning	(action
6.2c).	These	four	actions	correspond	to	the	four	messages	of	the	same	name	sent



concurrently	(i.e.,	at	the	same	time)	by	Microwave	Oven	Control	on	Figure
9.8:	Start	Cooking	(message	6.2)	to	the	Heating	Element	Output	object,
Start	Timer	(message	6.2a)	to	the	Oven	Timer	object,	Switch	On	(message
6.2b)	 to	Lamp	Output,	 and	Start	Turning	 (message	 6.2c)	 to	Turntable
Output.

While	 cooking	 the	 food,	 the	 Oven	 Timer	 continually	 decrements	 the
cooking	time	(messages	7,	7.1,	7.2	on	Figure	9.8)	stored	in	Oven	Data.	When
the	timer	counts	down	to	zero	(#8,	8.1,	8.2),	the	Oven	Timer	object	sends	the
Timer	Expired	message	(#	8.3	on	Figures	9.8	and	9.9)	to	Microwave	Oven
Control	and	sends	the	Display	End	Prompt	(#8.3a)	to	the	Oven	Display
Output	 object.	 The	 Timer	 Expired	 event	 causes	 the	 state	 machine	 to
transition	 to	Door	Shut	Waiting	for	User	 state	 (Figure	9.9)	 and	execute
four	 concurrent	 actions,	 the	 two	 exit	 actions	Stop	Cooking	 (action	 8.4)	 and
Stop	Turning	(action	8.4c),	as	well	as	the	two	transition	actions	Beep	(action
8.4a)	and	Switch	Off	(action	8.4b).	These	four	actions	correspond	to	the	four
messages	of	 the	same	name	sent	concurrently	by	Microwave	Oven	Control
on	 Figure	 9.8:Stop	 Cooking	 (message	 8.4)	 to	 the	 Heating	 Element

Output	 object,	 Beep	 (message	 8.4a)	 to	 Beeper	 Output,	 Switch	 Off

(message	 8.4b)	 to	 Lamp	 Output,	 and	 Stop	 Turning	 (message	 8.4c)	 to
Turntable	Output.

Various	 concurrent	 sequences	 are	 shown	 in	 Figures	 9.7	 and	 9.8.	 For
example,	 Microwave	 Oven	 Control	 simultaneously	 sends	 messages	 to
display	 the	 cooking	 time	 (#5.2)	 and	 update	 the	 cooking	 time	 in	 Oven	 Data
(#5.2a);	Microwave	Timer	sends	the	Timer	Expired	message	to	Microwave
Oven	 Control	 (#8.3)	 and	 the	 Display	 End	 Prompt	 to	 Oven	 Display
Output	(#8.3a).

The	 message	 sequence	 description,	 which	 describes	 the	 messages	 on	 the
sequence	 diagram	 (shown	 on	 Figures	 9.7	 and	 9.8)	 and	 the	 events	 on	 the	 state



machine	diagram	(shown	in	Figure	9.9),	is	described	in	detail	in	the	Microwave
Oven	Control	System	case	study	in	Section	19.6.



9.7.2	Determine	Alternative	Sequences

The	 interaction	 sequence	 described	 in	 the	 previous	 section	 follows	 the	 main
sequence	described	 in	 the	use	case.	Next,	consider	 the	alternative	sequences	of
the	Cook	Food	use	case,	which	are	given	in	the	Alternatives	section	of	the	use
case	 (given	 in	 full	 in	 Chapter	 6).	 Some	 alternatives	 have	 little	 impact	 on	 the
system.	 However,	 there	 are	 three	 alternatives	 of	 note	 in	 the	 use	 case,	 which
impact	 both	 the	 interaction	 diagrams	 and	 the	 state	 machine,	 two	 of	 which
involve	the	user	pressing	the	Minute	Plus	button	and	the	third	involves	the	user
opening	the	door	during	cooking.



9.7.3	Alternative	Minute	Plus	Scenarios

The	 Minute	 Plus	 alternative	 scenarios	 affect	 the	 Cook	 Food	 sequence
diagram	in	different	ways.	If	Minute	Plus	 is	pressed	after	cooking	has	started,
then	the	cooking	time	is	updated.	If	Minute	Plus	is	pressed	before	cooking	has
started,	 then	 the	cooking	 time	 is	updated	and	cooking	 is	started	(assuming	 that
the	oven	has	the	door	shut	and	there	is	an	item	in	the	oven).

The	 two	 alternative	 Minute	 Plus	 scenarios	 are	 depicted	 inside	 the	 alt
frame	 (drawn	 as	 a	 rectangle	 with	 an	 alt	 title	 in	 the	 top	 left	 corner)	 on	 the
sequence	diagram	in	Figure	9.10,	in	which	an	alternative	sequence	is	identified
by	a	[condition]	 that	must	be	True	for	 it	 to	be	executed.	The	conditions	reflect
whether	the	microwave	oven	is	[Cooking]	or	[Not	Cooking]	at	the	start	of	each
alternative	sequence.	A	dashed	line	is	the	separator	between	the	two	alternative
sequences.

Both	Minute	 Plus	 scenarios	 start	 in	 the	 same	way.	 The	 user	 presses	 the
Minute	Plus	button	on	the	keypad	after	pressing	the	Start	button	(message	6).
This	is	depicted	in	Figure	9.10	as	the	Keypad	external	input	device	sending	the
Minute	 Plus	 Pressed	 message	 (6.10).	 Keypad	 Input	 sends	 the	 Minute
Plus	message	(shown	as	message	6.11)	to	Microwave	Oven	Control.	What
follows	 is	 state	 dependent	 and	 depicted	 in	 the	 alt	 segment.	 If	 cooking	 is	 in
progress,	 the	 alternative	 sequence	 for	 the	 [Cooking]	 condition	 is	 taken:
Microwave	Oven	Control	 sends	 an	Add	Minute	 message	 (6.12)	 to	Oven
Timer,	which	adds	sixty	seconds	to	the	cooking	time	in	Oven	Data	(messages
6.13	and	6.14).	The	scenario	then	exits	the	alternative	sequence,	rejoins	the	main
sequence,	and	sends	the	new	time	to	Oven	Display	Output	(6.15),	which	in
turn	outputs	the	Display	Time	message	(6.16)	to	the	external	display.



Figure	9.10.	Sequence	diagram	for	the	Cook	Food	use	case:	impact	of	the
Minute	Plus	alternative	scenarios.

The	 alternative	 scenario	 of	 pressing	Minute	Plus	when	 cooking	 is	 not	 in
progress	 is	 depicted	 with	 an	 alternative	 message	 sequence	 starting	 with	 4M.
Keypad	Input	sends	the	Minute	Plus	message	(4M.1)	to	Microwave	Oven
Control.	Microwave	Oven	Control	behaves	differently	in	this	situation,	as
depicted	by	the	alternative	sequence	for	the	[Not	Cooking]	condition	on	Figure
9.10,	 by	 sending	 a	 Start	 Minute	 message	 (4M.2)	 to	 Oven	 Timer	 and	 a
Start	 Cooking	 message	 (4M.2a)	 to	 Heating	 Element	 Output.	 Oven
Timer	 then	 sets	 the	 cooking	 time	 to	 sixty	 seconds	 in	 Oven	 Data	 (message
4M.3).	The	scenario	 then	rejoins	 the	main	sequence	and	sends	 the	new	time	to
Oven	Display	Output	(message	4M.3a),	which	in	turn	outputs	the	Display
Time	message	(4M.4)	to	the	external	display.	To	avoid	clutter	on	the	sequence
diagram	 for	 the	 Not	 Cooking	 alternative	 scenario,	 the	 Lamp	 Output	 and
Turntable	Output	objects	are	omitted,	as	well	as	the	Switch	On	and	Start
Turning	messages	sent	respectively	 to	 them	by	Microwave	Oven	Control.
These	interactions	are	similar	to	those	for	the	Cook	Food	main	sequence	diagram
in	Figure	9.8.



9.7.4	Impact	of	Alternative	Scenarios	on	State	Machine

Consider	the	impact	of	the	minute	plus	alternative	scenarios	on	the	Microwave
Oven	Control	state	machine,	which	is	depicted	in	Figure	9.11.	If	the	oven	is	in
Cooking	state	when	the	Minute	Plus	button	is	pressed,	the	Minute	Plus	event
(#	6.11)	causes	a	transition	back	to	the	Cooking	state,	and	the	action	is	to	Add
Minute	 (#6.12).	 Entry	 and	 exit	 actions	 are	 not	 affected	 by	 this	 internal
transition.	However,	if	Minute	Plus	is	pressed	from	Door	Shut	Waiting	for
User	 state,	 the	Minute	Plus	 event	 (#4M.1)	 causes	 a	 transition	 to	Cooking
state.	The	effects	of	this	transition	are	the	execution	of	four	concurrent	actions,
the	 three	 entry	 actions	Start	Cooking,	Start	Turning,	 and	Switch	On
and	the	transition	action	Start	Minute	(#4M.2).

Figure	9.11.	State	machine	diagram	for	Cook	Food	use	case:	Open	Door
while	Cooking	and	Minute	Plus	scenarios.



Consider	the	alternative	scenario	in	which	the	door	is	opened	while	the	food
is	 cooking.	 This	 causes	 the	 state	machine	 to	 transition	 from	Cooking	 state	 to
Door	Open	with	Item	state.	Since	this	event	occurs	after	cooking	has	started
(i.e.,	 after	 event	 6.3	 and	 assumed	 to	 be	 after	 the	 first	 timer	 event	 7	 on	 Figure
9.7),	we	assign	the	event	Door	Opened	on	the	state	machine	(Figure	9.11)	the
sequence	 number	 7.10.	 There	 are	 three	 concurrent	 actions	 resulting	 from	 this
transition,	 the	 two	 exit	 actions	 Stop	 Cooking,	 Stop	 Turning,	 and	 the
transition	 action	 Stop	 Timer.	 From	 this	 state,	 the	 user	 could	 close	 the	 door
(event	 7.12),	 causing	 the	 state	machine	 to	 transition	 to	Ready	to	Cook	 state
(since	 the	 condition	 [Time	Remaining]	 is	True)	 or	 remove	 the	 item,	 causing
the	state	machine	to	transition	to	Door	Open	state.



9.8	Summary
This	chapter	has	described	dynamic	 interaction	modeling,	 in	which	 the	objects
that	participate	in	each	use	case	are	determined,	as	well	as	the	sequence	of	their
interactions.	 This	 chapter	 described	 the	 details	 of	 the	 dynamic	 interaction
modeling	 approach	 for	 determining	 how	 objects	 collaborate	 with	 each	 other.
State	 dependent	 dynamic	 interaction	 modeling	 involves	 a	 state	 dependent
collaboration	controlled	by	a	state	machine,	and	stateless	dynamic	interaction
modeling	does	not.

During	 the	 transition	from	analysis	 to	design	described	 in	Chapter	10,	 the
interaction	 diagrams	 corresponding	 to	 each	 use	 case	 are	 synthesized	 into	 an
integrated	communication	diagram,	which	represents	the	first	step	in	developing
the	software	architecture	of	the	system.	During	analysis,	all	message	interactions
are	 depicted	 as	 asynchronous	 messages	 between	 concurrent	 objects	 and
synchronous	 messages	 for	 communication	 with	 passive	 entity	 objects.	 During
design,	these	decisions	can	be	changed,	as	described	in	Chapter	13.	Appendix	A
describes	message	sequence	numbering	conventions	on	interaction	diagrams	and
state	machines,	as	used	in	the	examples	in	this	chapter	and	in	the	case	studies.



10

Software	Architectures	for	Real-
Time	Embedded	Systems

◈

To	 address	 the	 complexity	 of	 large	 scale	 real-time	 embedded	 systems,	 it	 is
necessary	 to	provide	an	approach	 for	decomposing	 the	system	 into	subsystems
and	 components	 and	 designing	 the	 software	 architecture	 of	 the	 system.	 The
software	 architecture	 separates	 the	 overall	 structure	 of	 the	 system,	 in	 terms	 of
components	 and	 their	 interfaces,	 from	 the	 internal	 details	 of	 the	 individual
components.	This	chapter	presents	an	overview	of	software	architecture	for	real-
time	 embedded	 systems.	 Designing	 a	 software	 architecture,	 which	 is	 also
referred	 to	 as	 a	 high	 level	 design,	 consists	 of	 structuring	 the	 system	 into
subsystems	 (composite	 components)	 and	 subsystems	 into	 components,	 in
addition	to	designing	the	interfaces	between	components.

Developing	 the	 software	 architecture	 is	 the	 first	 step	 in	 software	 design
modeling.	Whereas	 requirements	modeling	 addresses	 analyzing	 and	 specifying
software	 requirements,	 and	 analysis	 modeling	 considers	 the	 problem	 domain
from	 static	 and	 dynamic	 modeling	 perspectives,	 the	 software	 architecture
addresses	 the	 solution	 domain.	During	 analysis	modeling,	 dynamic	 interaction
modeling	 considers	 the	 software	 system	 from	 a	 use	 case–based	 perspective,
determining	 the	 software	 objects	 required	 to	 realize	 each	 use	 case	 and	 the



interaction	sequence	of	these	objects.	During	software	architecture,	the	use	case–
based	interaction	diagrams	are	synthesized	into	an	initial	software	design,	from
which	the	software	architecture	can	be	developed.

An	 introduction	 to	 software	 architecture,	 components,	 and	 interfaces	was
given	 in	 Chapter	 3.	 In	 this	 chapter,	 Section	 10.1	 describes	 the	 concepts	 of
software	 architecture	 and	 component-based	 software	 architecture.	 Section	 10.2
then	describes	how	multiple,	different	views	of	a	software	architecture	help	with
both	 its	 design	 and	 its	 understanding.	 Section	 10.3	 describes	 a	 systematic
approach	 for	 the	 transition	 from	 analysis	 to	 design.	 Section	 10.4	 describes	 the
important	topic	of	separation	of	concerns	in	subsystem	design,	which	leads	into
the	description	in	Section	10.5	of	how	to	use	subsystem	structuring	criteria	as	a
means	 of	 identifying	 software	 subsystems.	 Finally,	 Section	 10.6	 describes	 the
decisions	 that	 need	 to	 be	 made	 in	 the	 design	 of	 message	 communication
interfaces	 between	 subsystems.	 This	 chapter	 addresses	 subsystem	 design
whereas	 Chapter	 12	 describes	 component-based	 design.	 Software	 architectural
patterns	are	described	in	Chapter	11.



10.1	Overview	of	Software	Architectures
A	software	architecture	is	defined	by	Bass	et	al.	(2013)	as	follows:

“The	 software	 architecture	 of	 a	 program	 or	 computing	 system	 is	 the
structure	 or	 structures	 of	 the	 system,	 which	 comprise	 software	 elements,	 the
externally	 visible	 properties	 of	 those	 elements,	 and	 the	 relationships	 among
them.”
The	 above	 definition	 considers	 a	 software	 architecture	 primarily	 from	 a
structural	 perspective.	 However,	 in	 order	 to	 fully	 understand	 a	 software
architecture,	it	is	also	necessary	to	study	it	from	several	perspectives,	including
both	 static	 and	 dynamic	 perspectives,	 as	 described	 in	 Section	 10.2.	 It	 is	 also
necessary	to	address	the	architecture	from	functional	(i.e.,	functionality	provided
by	the	architecture)	and	nonfunctional	perspectives	(i.e.,	quality	of	service	[QoS]
provided).	 The	 software	 quality	 attributes	 of	 an	 architecture	 are	 described	 in
Chapter	16.

A	 software	 architecture	 is	 structured	 into	 subsystems	 in	 which	 each
subsystem	 has	 a	 well-defined	 interface	 to	 other	 subsystems.	 Applying	 the
separation	of	concerns	concept	to	subsystem	design	is	described	in	Section	10.4.
Structuring	criteria	for	subsystem	design	are	described	in	Section	10.5



10.1.1	Sequential	Software	Architectures

A	 sequential	 software	 architecture	 is	 designed	 as	 a	 sequential	 program	with
one	 thread	 of	 control.	 A	 sequential	 object-oriented	 software	 architecture	 is	 an
object-oriented	 program	 designed	 using	 the	 concepts	 of	 information	 hiding,
classes,	and	inheritance,	a	described	in	Chapter	3.	Objects	are	instantiated	from
classes	and	are	accessed	through	operations,	which	are	also	called	methods.	The
program	has	one	thread	of	control,	and	the	internal	objects	are	passive	without	a
thread	of	control.

A	 sequential	 software	 architecture	 is	 a	 limitation	 for	 real-time	 design
because	it	means	that	the	design	cannot	take	advantage	of	concurrent	processing
concepts.	A	sequential	real-time	design	can	be	designed	using	a	cyclic	executive,
in	which	there	is	a	main	cyclic	loop	that	polls	I/O	devices	on	a	regular	basis	to
determine	 if	 there	 are	 any	 new	 inputs	 and	 takes	 the	 appropriate	 actions
accordingly.	However,	 this	sequential	design	approach	does	not	take	advantage
of	concurrency,	multiprocessing	(using	multicore	systems),	or	the	possibility	of	a
distributed	design.	Thus,	there	are	several	disadvantages	to	restricting	a	modern
embedded	real-time	system	to	a	sequential	design.



10.1.2	Concurrent	Software	Architectures

In	a	concurrent	software	architecture,	 there	are	 several	concurrent	processes
(tasks),	 each	with	 its	 own	 thread	 of	 execution.	 In	 a	 concurrent	 object-oriented
software	 architecture,	 there	 are	 multiple	 active	 classes.	 Each	 instance	 of	 an
active	class	 is	an	active	object	with	 its	own	 thread	of	control.	Each	 thread	can
execute	 on	 a	 processor	 in	 parallel	 with	 other	 tasks	 in	 a	 multiprocessor	 (e.g.,
multicore)	environment.

A	 real-time	system	can	be	effectively	designed	using	concurrent	 tasks	 for
the	 reasons	 given	 in	 Chapter	 3.	 In	 particular,	 a	 multitasking	 design	 permits	 a
real-time	system	to	manage	multiple	streams	of	input	events	in	parallel	(i.e.,	one
stream	per	task).	It	also	allows	a	real-time	system	to	handle	multiple	periodic	or
aperiodic	events	concurrently,	including	external	events	that	arrive	from	sources
outside	the	system	and	internal	events	that	arrive	from	other	tasks.	In	concurrent
designs,	 tasks	 can	 communicate	 with	 each	 other	 using	 different	 architectural
communication	patterns,	as	described	in	Chapter	11,	including	synchronous	and
asynchronous	 communication.	 A	 multitasking	 design	 can	 be	 deployed	 to
multiple	 nodes	 in	 a	 distributed	 environment	 since	 each	 task	 can	 execute	 on	 a
separate	node.	One	approach	for	a	distributed	configuration	is	to	preassign	each
task	 to	 a	 given	 node.	 However,	 greater	 flexibility	 in	 task	 deployment	 can	 be
achieved	using	a	component-based	software	architecture,	as	described	next.



10.1.3	Component-Based	Software	Architectures

A	 component-based	 software	 architecture	 consists	 of	 multiple	 components
that	are	each	self-contained	and	encapsulate	information.	A	component	is	either
a	 composite	 component	 or	 a	 simple	 component.	 Unless	 explicitly	 stated,	 the
term	component	refers	to	both	a	component	type	and	a	component	instance.

A	 component	 provides	 an	 interface	 through	 which	 it	 communicates	 with
other	 components.	 All	 information	 that	 is	 needed	 for	 one	 component	 to
communicate	 with	 another	 component	 is	 contained	 in	 the	 interface,	 which	 is
separate	from	the	implementation.	Thus,	a	component	can	be	considered	a	black
box	since	its	implementation	is	hidden	from	other	components.	In	a	component-
based	software	architecture,	a	subsystem	is	a	composite	component.

In	 a	 distributed	design,	 component	 instances	 can	be	 deployed	 to	 different
nodes	 in	 a	 distributed	 environment	 and	 execute	 in	 parallel	 with	 component
instances	on	the	same	or	other	nodes.	The	basic	unit	of	component	deployment	is
a	 simple	 component.	 In	 a	 concurrent	 and	 distributed	 design,	 components	 can
communicate	with	each	other	using	several	different	communication	patterns,	as
described	 in	 Chapter	 11,	 including	 synchronous,	 asynchronous,	 brokered,	 and
group	 communication.	 An	 underlying	 middleware	 framework	 is	 typically
provided	 to	 allow	 distributed	 components	 to	 communicate	with	 each	 other,	 as
described	in	Chapter	12.

Since	 real-time	 embedded	 systems	 can	 also	 be	 distributed,	 a	 distributed
real-time	design	can	be	effectively	designed	using	a	component-based	software
architecture.	 With	 this	 approach,	 different	 instances	 of	 the	 same	 real-time
component-based	 software	 architecture	 are	 capable	 of	 being	 deployed	 to
different	hardware	configurations.



An	 important	 goal	 of	 both	 object-oriented	 design	 and	 component-based
software	architecture	is	the	separation	of	the	interface	from	the	implementation.
An	 interface	 specifies	 the	 externally	 visible	 operations	 of	 a	 class,	 service,	 or
component	without	revealing	the	internal	structure	(i.e.,	 implementation)	of	 the
operations.	The	 interface	can	be	considered	a	contract	between	 the	designer	of
the	external	view	of	the	class	and	the	implementer	of	the	class	internals.	It	is	also
a	contract	between	a	class	that	requires	the	interface	(i.e.,	invokes	the	operations
provided	 by	 the	 interface)	 and	 the	 class	 that	 provides	 the	 interface.	The	UML
notation	for	depicting	interfaces	is	described	in	Chapter	2.	Defining	component
interfaces	is	described	in	more	detail	in	Section	10.6	and	Chapter	12.

Components	are	depicted	on	composite	structure	diagrams,	as	described	in
Section	10.2.1.	Component	instances	are	depicted	on	concurrent	communication
diagrams,	as	described	in	Section	10.2.2.



10.1.4	Architecture	Stereotypes

In	UML	2,	a	modeling	element	can	be	described	with	more	than	one	stereotype.
During	analysis	modeling,	a	stereotype	is	used	to	represent	the	role	characteristic
of	 a	 modeling	 element	 (class	 or	 object).	 During	 design	 modeling,	 the	 role
stereotype	is	carried	over	from	analysis	modeling	to	describe	the	role	played	by
the	modeling	element,	 such	as	whether	 it	 is	 a	«boundary»	or	«entity»	class.	A
second	 stereotype,	 the	 architecture	 stereotype,	 is	 used	 in	 design	 modeling	 to
represent	 the	 architectural	 characteristic	 of	 a	 modeling	 element,	 such	 as
«subsystem»	 (as	 described	 in	 Sections	 10.2	 and	 10.5),	 «component»	 (as
described	in	Section	10.1.3	and	Chapter	12),	«service»	(as	described	in	Section
10.5.8),	 or	 concurrent	 task,	 which	 is	 depicted	 using	 the	 MARTE	 stereotype
«swSchedulableResource»	(as	described	in	Chapter	13).	It	is	important	to	realize
that	 for	 a	 given	 class,	 the	 role	 stereotype	 and	 the	 architecture	 stereotype	 are
orthogonal	–	that	is,	independent	of	each	other.



10.2	Multiple	Views	of	a	Software
Architecture

The	 design	 of	 the	 software	 architecture	 can	 be	 depicted	 from	 different
perspectives,	referred	to	as	different	views.	The	structural	view	of	 the	software
architecture	is	depicted	on	class	diagrams	and	composite	structure	diagrams,	as
described	 in	 Section	 10.2.1.	 The	 dynamic	 view	 of	 the	 software	 architecture	 is
depicted	 on	 communication	 diagrams,	 as	 described	 in	 Section	 10.2.2.	 The
deployment	 view	 of	 the	 software	 architecture	 is	 depicted	 on	 deployment
diagrams,	as	described	in	Section	10.2.3.



10.2.1	Structural	View	of	a	Software	Architecture

The	 structural	 view	of	 a	 software	 architecture	 is	 a	 static	 view,	which	does	not
change	with	 time.	At	 the	 highest	 level,	 subsystems	 are	 depicted	 as	 concurrent
subsystems	 or	 components	 on	 subsystem	 class	 diagrams	 or	 on	 composite
structure	 diagrams.	 A	 subsystem	 class	 diagram	 depicts	 the	 static	 structural
relationship	 between	 the	 subsystems,	 which	 are	 represented	 as	 composite
classes,	 and	 the	multiplicity	 of	 associations	 among	 them.	The	 subsystem	 class
diagram	 is	 useful	 for	 considering	 structural	 relationships	 between	 subsystem
classes.	 However,	 for	 considering	 the	 interfaces	 between	 subsystems,	 the
composite	structure	diagram	is	more	useful.

As	 an	 example	 of	 the	 structural	 view	of	 a	 software	 architecture,	 consider
the	design	of	the	Light	Rail	System	(Figure	10.1),	which	is	depicted	on	a	class
diagram	as	a	system	of	systems	consisting	of	three	software	systems:	Railroad
Crossing	 System,	 Wayside	 Monitoring	 System,	 and	 Light	 Rail

Control	 System.	 Each	 of	 these	 classes	 is	 depicted	 with	 the	 architectural
structuring	 stereotype	 of	 «software	 system»	 to	 clearly	 identify	 its	 role.	 The
Light	 Rail	 Control	 System	 is	 modeled	 as	 a	 composite	 class,	 which	 is
composed	of	four	subsystem	classes:	Train	Control,	of	which	there	are	many
instances,	 Station,	 of	 which	 there	 are	 many	 instances,	 Rail	 Operations
Interaction,	 of	 which	 there	 are	 many	 instances,	 and	 Rail	 Operations
Service,	of	which	there	is	one	instance.



Figure	10.1.	Structural	view	of	software	architecture:	high	level	class	diagram
for	Light	Rail	System.

A	composite	 structure	 diagram	 (as	 described	 in	Section	 2.10)	 depicts	 the
static	 structural	 relationship	 between	 components.	 The	 diagram	 depicts
component	 types	 (and	 in	 some	 cases	 component	 instances),	 ports,	 and
connectors	 that	 join	 the	 component	 ports	 together,	 as	 described	 in	 detail	 in
Chapter	12.	They	also	allow	provided	and	required	interfaces	of	each	component
to	be	explicitly	specified,	as	described	in	Chapter	12.

An	example	of	a	composite	structure	diagram	for	the	Light	Rail	System	is
given	 in	 Figure	 10.2,	 which	 depicts	 the	 subsystems	 as	 concurrent	 component
types	 and	 the	 connectors	 that	 join	 the	 components	 together.	 Four	 of	 the
components	 constitute	 the	 parts	 of	 the	 Light	 Rail	 Control	 System	 (see
Figure	 10.1)	 and	 two	 represent	 the	 other	 software	 systems,	 Railroad
Crossing	System	 and	Wayside	Monitoring	System.	 Several	 connectors
are	 depicted,	 for	 example	 there	 is	 one	 connector	 between	Rail	Operations
Interaction	 and	 Train	 Control,	 one	 connector	 between	 Rail

Operations	Interaction	and	Station,	and	one	connector	between	Train
Control	and	Station.	Each	component	is	depicted	with	both	a	role	stereotype
and	an	architecture	stereotype.	Thus,	Train	Control	is	depicted	with	the	role
stereotype	 «control»	 and	 the	 architecture	 stereotype	 «component».	 Five	 of	 the
components	 are	 clients	 of	 Rail	 Operations	 Service.	 The	 composite
structure	 diagram	 is	 described	 further	 in	 Chapter	 12,	 and	 this	 example	 is
described	in	more	detail	in	Chapter	21.



Figure	10.2.	Structural	view	of	software	architecture:	composite	structure
diagram	for	Light	Rail	System.



10.2.2	Dynamic	View	of	a	Software	Architecture

The	 dynamic	 view	 of	 a	 software	 architecture	 is	 a	 behavioral	 view,	 which	 is
depicted	 on	 a	 communication	 diagram.	 A	 subsystem	 communication	 diagram
shows	 the	 subsystems	 (depicted	 as	 composite	 objects	 or	 composite	 component
instances)	and	the	message	communication	between	them.	If	the	subsystems	can
be	 deployed	 to	 different	 nodes,	 they	 are	 depicted	 as	 concurrent	 component
instances,	since	they	execute	in	parallel	and	communicate	with	each	other	over	a
network.	The	 subsystem	communication	diagram	 is	 also	 sometimes	 referred	 to
as	a	high	level	communication	diagram.

An	example	of	the	dynamic	view	of	the	software	architecture	for	the	Light
Rail	 System	 depicts	 the	 six	 concurrent	 components	 (from	 Figure	 10.2)	 on	 a
subsystem	 communication	 diagram	 in	 Figure	 10.3.	 Four	 of	 the	 six	 concurrent
components	are	part	of	the	Light	Rail	Control	System,	of	which	there	are
many	 instances	 of	 Train	 Control,	 Station,	 and	 Rail	 Operations

Interaction	 and	 one	 instance	 of	 Rail	 Operations	 Service.	 Each
instance	of	Train	Control	sends	train	arrival	and	departure	status	messages	to
each	 instance	 of	 Station.	 Rail	 Operations	 Interaction	 sends	 train
command	messages	 to	 a	 given	 instance	 of	Train	Control	 to	 transition	 into
and	 out	 of	 service.	 All	 communication	 between	 the	 distributed	 components	 is
asynchronous,	 except	 for	 the	 synchronous	 communication	 between	 Rail
Operations	Interaction	and	Rail	Operations	Service.



Figure	10.3.	Dynamic	view	of	software	architecture:	subsystem
communication	diagram	for	Light	Rail	System.

A	subsystem	communication	diagram	is	a	generic	communication	diagram
because	it	depicts	all	possible	interactions	between	objects	(see	Section	9.1.5).	In
particular,	 generic	 communication	 diagrams	 depict	 generic	 instances,	 that	 is,
they	depict	potential	 instances	rather	than	actual	 instances.	In	addition	to	being
generic,	 a	 subsystem	 communication	 diagram	 is	 also	 concurrent	 because	 it
depicts	objects	executing	concurrently.	Thus,	Figure	10.3	depicts	six	concurrent
subsystems,	each	of	which	is	designed	as	a	component.



10.2.3	Deployment	View	of	a	Software	Architecture

The	 deployment	 view	 of	 the	 software	 architecture	 depicts	 the	 physical
configuration	of	 the	 software	architecture.	 In	particular,	 a	deployment	diagram
depicts	how	the	component-based	subsystems	of	the	architecture	are	allocated	to
physical	nodes	in	a	distributed	configuration.	A	deployment	diagram	can	depict
a	specific	deployment	with	a	fixed	number	of	nodes.	Alternatively,	it	can	depict
the	overall	structure	of	the	deployment,	for	example	identifying	that	a	subsystem
can	have	many	instances,	each	deployable	to	a	separate	node,	but	not	depicting
the	specific	number	of	instances.

An	example	of	the	deployment	view	is	given	in	Figure	10.4	for	the	software
architecture	of	the	Light	Rail	System.	In	this	deployment	diagram,	each	instance
of	Railroad	Crossing	Control	is	allocated	to	its	own	physical	node,	as	is
each	 instance	 of	 theWayside	 Monitoring.	 There	 are	 multiple	 instances	 of
Train	Control,	Station,	and	Rail	Operations	Interaction,	each	of
which	 is	 allocated	 to	 its	 own	 physical	 node.	 There	 is	 one	 instance	 of	 Rail
Operations	Service,	 which	 is	 assigned	 to	 a	 physical	 node.	 The	 nodes	 are
geographically	 distributed	 and	 connected	 by	 a	 wide	 area	 network.
Communication	with	a	mobile	component,	such	as	Train	Control,	of	which
there	is	one	instance	for	each	train,	needs	to	be	by	wireless	communication.



Figure	10.4.	Deployment	view	of	software	architecture:	deployment	diagram
for	Light	Rail	System.



10.3	Transition	from	Analysis	to	Design
During	 the	 dynamic	 interaction	modeling	 step	 of	 the	 analysis	modeling	 phase
(see	Chapter	 9),	 the	 objects	 that	 realize	 each	 use	 case	 are	 determined	 and	 the
sequence	of	object	 interactions	are	determined	and	depicted	on	use	case–based
interaction	diagrams.	Thus,	the	analysis	is	carried	out	on	a	use	case–by–use	case
basis.	 To	 transition	 from	 analysis	 to	 design	 and	 to	 structure	 the	 system	 into
component-based	 subsystems,	 it	 is	 necessary	 to	 synthesize	 an	 initial	 software
design	 from	 the	 dynamic	 interaction	model,	 by	 integrating	 the	 use	 case–based
interaction	 diagrams.	 Although	 dynamic	 interaction	 between	 objects	 can	 be
depicted	 on	 either	 sequence	 diagrams	 or	 communication	 diagrams,	 this
integration	 needs	 to	 be	 depicted	 on	 communication	 diagrams	 because	 these
diagrams	 visually	 depict	 the	 interconnection	 between	 objects,	 as	 well	 as	 the
messages	passed	between	them.

In	the	analysis	model,	at	least	one	interaction	diagram	is	developed	for	each
use	 case.	 The	 integrated	 communication	 diagram	 is	 a	 synthesis	 of	 all	 the
communication	diagrams	developed	to	realize	the	use	cases	and	is	developed	as
follows:	Frequently,	there	is	a	precedence	order	in	which	use	cases	are	executed.
The	order	of	the	synthesis	of	the	communication	diagrams	should	correspond	to
the	 order	 in	which	 the	 use	 cases	 are	 executed.	 From	 a	 visual	 perspective,	 the
integration	is	done	as	follows:	Start	with	the	communication	diagram	for	the	first
use	case	and	superimpose	the	communication	diagram	for	the	second	use	case	on
top	 of	 the	 first	 to	 form	 an	 integrated	 diagram.	 Next,	 superimpose	 the	 third
diagram	 on	 top	 of	 the	 integrated	 diagram	 of	 the	 first	 two,	 and	 so	 on.	 In	 each
case,	 add	 new	 objects	 and	 new	 message	 interactions	 from	 each	 subsequent
diagram	 onto	 the	 integrated	 diagram,	 which	 gradually	 gets	 bigger	 as	 more



objects	 and	message	 interactions	 are	 added.	 Objects	 and	message	 interactions
that	appear	on	more	than	one	communication	diagram	are	only	shown	once.

It	 is	 important	 to	 realize	 that	 the	 integrated	 communication	diagram	must
show	 all	 message	 communication	 derived	 from	 the	 individual	 use	 case–based
communication	 diagrams.	 Communication	 diagrams	 often	 show	 the	 main
sequence	through	a	use	case,	but	not	necessarily	all	the	alternative	sequences.	In
the	integrated	communication	diagram,	it	is	necessary	to	show	the	messages	that
are	sent	as	a	result	of	executing	the	alternative	sequences	in	addition	to	the	main
sequence	through	each	use	case.

The	integrated	communication	diagram	is	thus	a	synthesis	of	all	relevant
use	case–based	communication	diagrams	showing	the	realization	of	all	use	case
scenarios,	 and	all	objects	 and	 their	 interactions.	The	 integrated	communication
diagram	is	represented	as	a	generic	UML	communication	diagram	(see	Section
10.2.2),	which	means	that	it	depicts	all	possible	interactions	between	the	objects.
On	the	integrated	communication	diagram,	objects	and	messages	are	shown,	but
the	message	sequence	numbering	is	usually	not	shown	because	this	would	make
the	 diagram	 too	 cluttered.	 As	 with	 the	 use	 case–based	 interaction	 diagrams,
messages	 on	 the	 integrated	 communication	 diagram	 are	 depicted	 as
asynchronous	 messages	 between	 concurrent	 objects	 and	 synchronous	 when
communicating	 with	 a	 passive	 object.	 These	 initial	 decisions	 can	 later	 be
reversed,	 when	 decisions	 about	 the	 type	 of	 message	 communication
(synchronous	or	asynchronous)	are	finalized,	as	described	in	Section	10.6.

An	 example	 of	 an	 integrated	 communication	 diagram	 for	 the	 Railroad
Crossing	 System	 is	 given	 in	 Figure	 10.5,	 which	 integrates	 the	 object
interaction	 diagrams	 that	 realize	 the	 Arrive	 at	 Railroad	 Crossing	 and
Depart	from	Railroad	Crossing	use	cases.	This	consists	of	the	integration
of	 the	 communication	 diagrams	 that	 realize	 the	 two	 use	 cases	 of	 this	 system,
including	 the	main	 and	 alternative	 sequences	 for	 each	 use	 case.	 In	 this	 figure,



most	 of	 the	 objects	 participate	 in	 both	 of	 the	 use	 case–based	 communication
diagrams,	 except	 for	 the	 Arrival	 Sensor	 Input	 object,	 which	 only
participates	in	the	arrival	use	case,	and	the	Departure	Sensor	Input	object,
which	only	participates	in	the	departure	use	case.	In	addition,	several	messages
are	 derived	 from	 one	 or	 the	 other	 of	 the	 use	 case–based	 communication
diagrams.	Thus,	the	Train	Arrived,	Lower	Barrier,	Activate	Light,
Activate	 Audio,	 and	 Barrier	 Lowered	 messages	 originate	 from	 the
Arrive	 at	 Railroad	 Crossing	 use	 case,	 while	 the	 Train	 Departed,
Raise	Barrier,	Deactivate	Light,	Deactivate	Audio,	and	Barrier
Raised	messages	originate	from	the	Depart	from	Railroad	Crossing	use
case.	The	messages	Start	Timer,	Cancel	Timer,	and	Status	Messages
originate	from	both	use	cases.	The	Timer	Expired	message	originates	from	a
timeout	alternative	sequence	in	each	use	case.



Figure	10.5.	Integrated	communication	diagram	for	Railroad	Crossing
System.

For	 a	 large	 system,	 the	 integrated	 communication	 diagram	 can	 get	 very
complicated;	 it	 is	 therefore	 necessary	 to	 have	 ways	 to	 reduce	 the	 amount	 of
information	 depicted.	 One	 way	 to	 reduce	 the	 amount	 of	 information	 on	 the
diagram	 is	 to	 aggregate	 the	 messages	 –	 that	 is,	 if	 one	 object	 sends	 several
individual	messages	 to	 another,	 instead	 of	 showing	 all	 these	messages	 on	 the
diagram,	use	one	aggregate	message.	The	aggregate	message	is	a	useful	way	of
grouping	messages	 to	 reduce	 clutter	 on	 the	 diagram.	 It	 does	 not	 represent	 an
actual	message	sent	from	one	object	to	another;	rather	it	represents	the	collection
of	 messages	 sent	 at	 different	 times	 between	 the	 same	 pair	 of	 objects.	 For
example,	 the	messages	 sent	 by	 the	Railroad	Crossing	Control	 object	 to
the	 Rail	 Operations	 Proxy	 object	 in	 Figure	 10.5	 are	 aggregated	 into	 an
aggregate	 message	 called	 Status	 Messages.	 A	 message	 dictionary	 is	 then
used	to	define	the	contents	of	Status	Messages,	as	shown	in	Table	10.1.

Table	10.1.	Example	of	a	Message	Dictionary	with	an	Aggregate	Message
Consisting	of	Simple	Messages

Aggregate
message

Consists	of	simple	messages

Status
Messages

Train	Arrived,	Train	Departed,	Barrier	Raised,	Barrier	Lowered,
Barrier	Raising	Timeout	Message,	Barrier	Lowering	Timeout
Message

Furthermore,	showing	all	the	objects	on	one	communication	diagram	might
not	 be	 practical.	 A	 solution	 to	 this	 problem	 is	 to	 develop	 a	 higher-level
subsystem	 communication	 diagram	 to	 show	 the	 interaction	 between	 the



subsystems	 and	 to	 develop	 an	 integrated	 communication	 diagram	 for	 each
subsystem.

The	dynamic	interactions	between	subsystems	are	depicted	on	a	subsystem
communication	 diagram,	 which	 is	 a	 high-level	 integrated	 communication
diagram.	 An	 example	 of	 this	 is	 shown	 in	 Figure	 10.3	 for	 the	 Light	 Rail
System,	which	depicts	the	Railroad	Crossing	System	as	a	subsystem.	The
structure	of	an	 individual	 subsystem	can	be	depicted	on	a	 separate	 lower	 level
integrated	 communication	 diagram,	 for	 example	 the	 Railroad	 Crossing

System,	 which	 shows	 all	 the	 objects	 in	 the	 subsystem	 and	 their
interconnections,	as	depicted	in	Figure	10.5.



10.4	Separation	of	Concerns	in	Subsystem
Design

Some	 important	 structuring	 decisions	 need	 to	 be	 made	 when	 designing
subsystems.	 The	 following	 design	 considerations	 addressing	 separation	 of
concerns	should	be	made	when	structuring	the	system	into	subsystems.	The	goal
is	 to	 make	 subsystems	 more	 self-contained,	 so	 that	 different	 concerns	 are
addressed	by	different	subsystems.



10.4.1	Composite	Object

Objects	 that	 are	 part	 of	 the	 same	 composite	 object	 should	 be	 in	 the	 same
subsystem	 and	 separate	 from	 objects	 that	 are	 not	 part	 of	 the	 same	 composite
object.	 As	 described	 in	 Chapter	 5,	 both	 aggregation	 and	 composition	 are
whole/part	 relationships;	 however,	 composition	 is	 a	 stronger	 form	 of
aggregation.	 With	 composition,	 the	 composite	 object	 (the	 whole)	 and	 its
constituent	 objects	 (the	 parts)	 are	 created	 together,	 live	 together,	 and	 die
together.	Thus,	a	subsystem	consisting	of	a	composite	object	and	its	constituent
objects	is	more	strongly	coupled	than	one	consisting	of	an	aggregate	object	and
its	constituent	objects.

A	 subsystem	 supports	 information	 hiding	 at	 a	 higher	 level	 of	 abstraction
than	an	 individual	object	does.	A	software	object	can	be	used	 to	model	a	 real-
world	 object	 in	 the	 problem	 domain.	A	 composite	 object	models	 a	 composite
real-world	 object	 in	 the	 problem	 domain.	 A	 composite	 object	 is	 typically
composed	 of	 a	 group	 of	 related	 objects	 that	 work	 together	 in	 a	 coordinated
fashion.	 This	 arrangement	 is	 analogous	 to	 the	 assembly	 structure	 in
manufacturing.	 Often,	 multiple	 instances	 of	 a	 composite	 object	 (and	 hence
multiple	instances	of	each	of	its	constituent	objects)	are	needed	in	an	application.
The	 relationship	 between	 a	 composite	 class	 and	 its	 constituent	 classes	 is	 best
depicted	in	the	static	model	because	the	class	diagram	depicts	the	multiplicity	of
the	association	between	each	constituent	class	and	the	composite	class.

An	example	of	a	composite	class	from	the	Railroad	Crossing	System
is	the	Barrier	composite	class,	which	is	composed	of	three	classes	(see	Figure
10.6a):	Barrier	Actuator	Output,	which	sends	commands	 to	 the	physical
barrier	actuator;	Barrier	Detection	Input,	which	receives	inputs	from	the
physical	barrier	detection	sensor;	and	Barrier	Timer,	which	detects	if	there	is



a	delay	in	barrier	raising	or	lowering.	The	Barrier	composite	class	is	designed
as	a	composite	component	called	Barrier	Component	that	encapsulates	three
simple	barrier	related	components	(designed	as	concurrent	tasks),	as	depicted	in
Figure	10.6b.	Another	example	of	a	composite	class	 is	 the	Microwave	Oven,
which	consists	of	a	door,	a	weight	sensor,	a	keyboard,	a	heating	element,	and	a
display.

Figure	10.6.	Example	of	a	composite	class:	Barrier	Component.	(a)
Barrier	composite	class.	(b)	Barrier	composite	component.



10.4.2	Geographical	Location

If	two	objects	could	potentially	be	physically	separated	in	different	geographical
locations,	 mobile	 or	 stationary,	 they	 should	 be	 in	 different	 subsystems.	 In	 a
distributed	 environment,	 component-based	 subsystems	 communicate	 only	 by
means	of	messages	that	can	be	sent	from	one	component	to	another.	In	the	Light
Rail	System	shown	on	the	deployment	diagram	in	Figure	10.4,	there	are	several
instances	 of	 each	 of	 the	 Railroad	 Crossing	 Control,	 Wayside

Monitoring,	Train	Control,	 and	Station	 components.	Each	 instance	of
these	mobile	(Train	Control)	or	stationary	components	physically	resides	on
a	separate	node	located	in	a	different	geographical	location,	connected	by	a	wide
area	network.



10.4.3	Clients	and	Services

Clients	 and	 services	 should	 be	 in	 separate	 subsystems.	 This	 guideline	 can	 be
viewed	 as	 a	 special	 case	 of	 the	 geographical	 location	 rule	 because	 clients	 and
services	are	usually	at	different	locations.	For	example,	the	distributed	light	rail
system,	as	 shown	 in	Figures	10.3	and	10.4,	has	many	client	 subsystems	of	 the
same	 type,	 which	 reside	 at	 different	 locations,	 some	 static	 and	 some	 mobile,
distributed	around	the	region	serviced	by	the	system.	Client	subsystems	include
Train	 Control,	 for	 which	 there	 is	 one	 instance	 for	 each	 train,	 Railroad
Crossing	System,	 for	which	there	is	one	instance	for	each	railroad	crossing,
and	Wayside	Monitoring	System,	 for	which	 there	 is	one	 instance	for	each
wayside	location.	Rail	Operations	Service	is	a	service	subsystem	located
at	a	centralized	location,	and	it	is	used	for	monitoring	the	progress	of	the	whole
light	rail	network.



10.4.4	User	Interaction

Users	 often	 use	 their	 own	PCs,	 laptops,	 tablets,	 or	mobile	 phones	 as	 part	 of	 a
larger	 distributed	 configuration,	 so	 the	 most	 flexible	 option	 is	 to	 keep	 user
interaction	objects	 in	 separate	 subsystems.	Because	user	 interaction	objects	are
usually	 clients,	 this	 guideline	 can	 be	 viewed	 as	 a	 special	 case	 of	 the	 above
client/service	 guideline.	 Furthermore,	 a	 user	 interaction	 object	 may	 be	 a
composite	 user	 interaction	object	 composed	of	 several	 simpler	 user	 interaction
objects.	The	Rail	Operations	Interaction	component	in	Figure	10.7	is	an
example	of	a	composite	user	interaction	object,	which	contains	three	simple	user
interaction	objects,	an	Operator	Interaction	object,	a	Train	Monitoring
Window	object,	and	a	Station	Monitoring	Window	object,	as	described	 in
more	detail	 in	Chapter	12.	This	subsystem	 is	used	 for	 rail	operators	 to	 interact
with	the	Rail	Operations	Service	Subsystem	and	other	subsystems	in	the
Light	Rail	Control	System.

Figure	10.7.	Example	of	user	interaction	subsystem.



10.4.5	Interface	to	External	Objects

A	subsystem	deals	with	a	subset	of	the	external	real-world	objects	shown	on	the
software	context	diagram.	An	external	real-world	object	should	interface	to	only
one	 subsystem.	An	example	 is	given	 for	 the	Train	Control	Subsystem	 in
Figure	 10.8,	 in	which	 the	Train	Control	Subsystem	 interfaces	 to	 several
external	 real-world	 entities,	 including	 several	 sensors	 including	 the
Approaching	 Sensor,	 Arrival	 Sensor,	 Departure	 Sensor,

Proximity	 Sensor,	 Door	 Sensor,	 Location	 Sensor,	 and	 Speed
Sensor.	 There	 are	 also	 several	 external	 actuators,	 including	 Motor

Actuator,	 Door	 Actuator,	 and	 other	 output	 devices	 such	 as	 Train
Display	 and	Train	Audio	Device.	Each	 instance	of	 the	Train	Control
Subsystem	interfaces	to	instances	of	these	sensors	and	actuators.	These	external
devices	 interface	 to	 software	 boundary	 classes,	 including	 input	 and	 output
classes,	as	shown	in	Figure	10.8.



Figure	10.8.	Example	of	interfacing	to	external	classes.



10.4.6	Scope	of	Control

A	control	object	and	all	the	entity	and	boundary	(such	as	input/output)	objects	it
directly	 controls	 should	 all	 be	 part	 of	 one	 subsystem	 and	 not	 split	 among
subsystems.	An	example	 is	 the	Railroad	Crossing	Control	object	within
the	Railroad	Crossing	Subsystem,	shown	in	Figures	10.5,	which	provides
the	overall	control	of	the	objects	in	this	subsystem,	including	several	internal	I/O
objects	(such	as	Arrival	Sensor	Input	and	Barrier	Actuator	Output)
and	proxy	objects	(such	as	Rail	Operations	Proxy).



10.5	Subsystem	Structuring	Criteria
The	design	considerations	described	in	the	previous	section	can	be	formalized	as
subsystem	structuring	criteria,	which	help	 ensure	 that	 subsystems	are	designed
effectively.	The	subsystem	structuring	criteria	are	described	in	this	section	with
examples.	Subsystems	are	depicted	with	the	stereotype	«subsystem».	For	certain
software	 architectures	 consisting	 of	 distributed	 component-based	 subsystems,
the	 stereotype	 «component»is	 used	 for	 such	 a	 subsystem	 and	 in	 component-
based	 architectures	 or	 service-oriented	 architectures	 that	 contain	 service
subsystems,	the	stereotype	«service»	is	used	for	such	a	subsystem.



10.5.1	Control	Subsystem

A	 control	 subsystem	 controls	 a	 given	 part	 of	 the	 system.	 The	 subsystem
receives	 its	 inputs	 from	 the	 external	 environment	 and	 sends	 outputs	 to	 the
external	 environment,	 usually	 without	 any	 human	 intervention.	 A	 control
subsystem	is	usually	state-dependent,	in	which	case	it	includes	at	least	one	state
dependent	control	object.	In	some	cases,	some	input	data	might	be	gathered	by
some	 other	 subsystem(s)	 and	 used	 by	 this	 subsystem.	 Alternatively,	 this
subsystem	might	provide	some	data	for	use	by	other	subsystems.

A	 control	 subsystem	 might	 receive	 some	 high-level	 commands	 from
another	subsystem	giving	it	overall	direction,	after	which	it	provides	the	lower-
level	 control.	 A	 control	 subsystem	 might	 also	 send	 status	 information	 to
neighboring	nodes,	either	on	an	ongoing	basis	or	on	demand.

An	example	of	a	control	subsystem	is	the	Railroad	Crossing	System,
which	is	a	control	subsystem	of	the	distributed	Light	Rail	System,	depicted
in	 Figures	 10.3	 and	 10.5.	 There	 are	 multiple	 instances	 of	 the	 Railroad
Crossing	System,	 one	 for	 each	 railroad	 crossing;	 however,	 each	 instance	 is
independent	of	the	others	and	only	communicates	with	the	Rail	Operations
Service	 subsystem	 (Figure	 10.3).	 The	 control	 behavior	 of	 Railroad
Crossing	Control	is	to	sequence	the	interactions	with	the	various	sensors	and
actuators	and	to	control	the	I/O	devices	that	raise	and	lower	the	barrier	and	start
and	stop	the	warning	light	and	audio	devices.	The	control	behavior	is	explicitly
depicted	in	the	Railroad	Crossing	Control	state	machine	(see	case	study
in	 Chapter	 20),	 in	 which	 the	 state	 machine	 actions	 trigger	 actions	 in	 the
controlled	objects.

Another	 example	 of	 a	 control	 subsystem	 is	 from	 the	 Factory	Automation
System	given	in	Figure	10.9,	in	which	the	control	subsystem	is	the	Automated



Guided	 Vehicle	 System,	 which	 receives	 move	 commands	 from	 a
Supervisory	System,	 commanding	 it	 to	move	 to	 locations	 in	 the	 factory	 to
load	and	unload	parts.	Automated	Guided	Vehicle	System	 sends	vehicle
acknowledgments	 to	 the	 Supervisory	 System	 and	 vehicle	 status	 to	 the
Display	System.

Figure	10.9.	Example	of	control	and	coordinator	subsystems	in	Factory
Automation	System.



10.5.2	Coordinator	Subsystem

In	 software	 architectures	 with	 multiple	 control	 subsystems,	 it	 is	 sometimes
necessary	 to	 have	 a	 coordinator	 subsystem	 that	 coordinates	 the	 control
subsystems.	 If	 the	multiple	 control	 subsystems	 are	 completely	 independent	 of
each	other,	 no	coordination	 is	 required.	 In	 some	 real-time	 systems,	 the	 control
subsystems	 can	 coordinate	 activities	 among	 themselves.	 Such	 distributed
coordination	 is	 usually	 possible	 if	 the	 coordination	 is	 relatively	 simple.	 If	 the
coordination	 activity	 is	 relatively	 complex,	 however,	 it	 is	 usually	 more
advantageous	 to	have	a	hierarchical	control	system	with	a	separate	coordinator
subsystem	 overseeing	 the	 control	 subsystems.	 For	 example,	 the	 coordinator
subsystem	might	decide	what	item	of	work	a	control	subsystem	should	do	next.

An	 example	 of	 a	 coordinator	 subsystem	 assigning	 jobs	 to	 control
subsystems	 is	 given	 for	 the	 Factory	 Automation	 System,	 in	 which	 the
Supervisory	 System	 (Figure	 10.9)	 is	 a	 coordinator	 subsystem	 that	 assigns
jobs	to	the	individual	instances	of	the	Automated	Guided	Vehicle	System
to	move	to	a	factory	station,	pick	up	a	part,	and	transport	it	to	a	different	station,
where	it	is	unloaded.



10.5.3	User	Interaction	Subsystem

A	user	interaction	subsystem	provides	the	user	interface	and	performs	the	role
of	a	client	in	a	client/server	system,	providing	user	access	to	services.	There	may
be	more	than	one	user	interaction	subsystem	–	one	for	each	category	of	user.	A
user	 interaction	 subsystem	 is	 usually	 a	 composite	 object	 that	 is	 composed	 of
several	simpler	user	 interaction	objects.	 It	may	also	contain	one	or	more	entity
objects	 for	 local	 storage	 and/or	 caching,	 as	well	 as	 control	 objects	 for	 overall
sequencing	of	user	input	and	output.

With	the	proliferation	of	graphical	workstations	and	personal	computers,	a
subsystem	 providing	 a	 user	 interaction	 role	 might	 run	 on	 a	 separate	 node,
interacting	with	subsystems	on	other	nodes.	This	kind	of	subsystem	can	provide
rapid	 responses	 to	 simple	 requests	 supported	 completely	 by	 the	 node,	 and
relatively	slower	responses	to	requests	requiring	the	cooperation	of	other	nodes.
This	kind	of	 subsystem	usually	needs	 to	 interface	 to	 specific	user	 I/O	devices,
such	as	visual	displays	and	keyboards.

A	user	 interaction	 client	 subsystem	could	 support	 a	 simple	user	 interface,
consisting	 of	 a	 command	 line	 interface	 or	 a	 graphical	 user	 interface,	 which
contains	multiple	objects.	A	simple	user	interaction	client	subsystem	would	have
a	single	thread	of	control.

A	 more	 complex	 user	 interaction	 subsystem	 would	 typically	 involve
multiple	 windows	 and	 multiple	 threads	 of	 control.	 For	 example,	 a	 Windows
client	 consists	 of	 multiple	 windows	 operating	 independently,	 each	 window
supported	 by	 a	 concurrent	 object	with	 its	 own	 separate	 thread	 of	 control.	 The
concurrent	objects	might	access	 some	shared	data.	An	example	 from	 the	Light
Rail	System	is	given	in	Figure	10.7	where	Rail	Operations	Interaction
is	a	user	interaction	subsystem	that	has	several	windows	and	communicates	with



other	 components	 including	 Train	 Control,	 Station,	 and	 Rail

Operations	Service.	An	example	of	a	user	interaction	subsystem	interacting
with	multiple	 services	 in	 an	 emergency	monitoring	 system	 is	 given	 in	 Figure
10.10.	Operator	Presentation	 is	 a	 user	 interaction	 subsystem,	which	 has
several	 instances.	 The	Operator	Presentation	 subsystem	 has	 one	 internal
user	 interaction	 object	 to	 display	 alarms	 in	 an	 Alarm	 Window	 and	 a	 second
internal	 user	 interaction	 object	 to	 display	 monitoring	 status	 in	 an	 Event
Monitoring	 Window.	 Alarm	 Window	 instance	 sends	 synchronous	 requests
with	 reply	 to	 the	 Alarm	 Service	 subsystem,	 and	 Event	 Monitoring

Window	communicates	in	the	same	way	with	the	Monitoring	Data	Service
subsystem.

Figure	10.10.	Example	of	user	interaction	subsystem	with	multiple	windows.



10.5.4	Input/Output	Subsystem

An	 input,	 output,	 or	 input/output	 subsystem	 is	 a	 subsystem	 that	 performs
input	and/or	output	operations	on	behalf	of	other	subsystems.	It	can	be	designed
to	 be	 relatively	 autonomous.	 In	 particular,	 “smart”	 devices	 are	 given	 greater
local	autonomy	and	consist	of	 the	hardware	plus	the	software	that	 interfaces	to
and	 controls	 the	 device.	 An	 I/O	 subsystem	 typically	 consists	 of	 one	 or	 more
input	and/or	output	objects	that	interface	to	external	I/O	devices,	and	it	may	also
contain	 control	 objects	 to	 provide	 localized	 control	 and	 entity	 objects	 to	 store
local	data.

An	 example	 of	 an	 input	 subsystem	 is	 the	 Monitoring	 Sensor

Component	 in	 the	 emergency	 monitoring	 system	 depicted	 in	 Figure	 10.12.
There	are	several	instances	of	this	subsystem,	each	of	which	receive	inputs	from
remote	 sensors	 that	 monitor	 a	 section	 of	 the	 external	 environment,	 and	 send
sensory	status	information	to	the	Monitoring	Data	Service	subsystem	and
post	alarms	to	the	Alarm	Service	subsystem.



10.5.5	Data	Collection	Subsystem

A	 data	 collection	 subsystem	 collects	 data	 from	 the	 external	 environment.	 In
some	cases,	it	stores	the	data,	possibly	after	collecting,	analyzing,	and	reducing
the	data.	Depending	on	 the	application,	 the	subsystem	responds	 to	 requests	 for
values	 of	 the	 data.	Alternatively,	 the	 subsystem	 passes	 on	 the	 data	 in	 reduced
form	–	for	example,	it	might	collect	several	raw	sensor	readings	and	pass	on	the
average	 value,	 converted	 to	 engineering	 units.	 It	 should	 be	 noted	 that	 a	 data
collection	 subsystem	 should	 do	 significantly	 more	 processing	 of	 the	 data	 it
receives	than	an	input/output	subsystem.

An	 example	 of	 a	 data	 collection	 subsystem	 is	 the	 Sensor	 Data

Collection	subsystem	in	Figure	10.11,	which	collects	raw	data	from	a	variety
of	digital	and	analog	sensors	in	real	time.	The	frequency	with	which	the	data	is
collected	 depends	 on	 the	 characteristics	 of	 the	 sensors.	 Data	 collected	 from
analog	sensors	is	converted	to	engineering	units.	Processed	sensor	data	is	sent	to
consumer	subsystems	such	as	the	Sensor	Data	Analysis	and	Sensor	Data
Service	subsystems.



Figure	10.11.	Examples	of	data	collection	and	data	analysis	subsystems.



10.5.6	Data	Analysis	Subsystem

A	data	analysis	 subsystem	analyzes	data	 and	provides	 reports	 and/or	 displays
for	 data	 collected	 by	 another	 subsystem.	 It	 is	 also	 possible	 for	 a	 subsystem	 to
provide	both	data	collection	and	data	analysis.	In	some	cases,	data	collection	is
done	in	real	time,	whereas	data	analysis	is	a	non-real-time	activity.

An	example	of	a	data	analysis	subsystem	is	the	Sensor	Data	Analysis
subsystem	shown	in	Figure	10.11,	which	receives	sensor	data	from	the	Sensor
Data	 Collection	 subsystem.	 The	 Sensor	 Data	 Analysis	 subsystem
analyzes	current	and	historical	sensor	data,	performs	statistical	analysis	(such	as
computing	 means	 and	 standard	 deviations),	 produces	 trend	 reports,	 and
generates	alarms	if	disturbing	trends	are	detected.



10.5.7	Client	Subsystem

A	 client	 subsystem	 is	 a	 requester	 of	 one	 or	 more	 services.	 There	 are	 many
different	 types	of	clients,	 some	of	which	may	be	wholly	dependent	on	a	given
service,	while	others	are	partially	dependent.	The	former	only	communicate	with
one	 service	 while	 the	 latter	 might	 communicate	 with	 more	 than	 one	 service.
Possible	 client	 subsystems	 include	 control	 subsystems,	 user	 interaction
subsystems,	 I/O	 subsystems,	 and	 data	 collection	 subsystems,	 which	 are
described	 in	 more	 detail	 in	 Sections	 10.5.1,	 10.5.3,	 10.5.4,	 and	 10.5.5,
respectively.

In	 the	 Light	 Rail	 System	 shown	 in	 Figures	 10.2	 and	 10.3,	 there	 is	 one
service	 subsystem,	 Rail	 Operations	 Service.	 The	 Train	 Control,

Station,	 Railroad	 Crossing	 System,	 Wayside	 Monitoring

System,	and	Rail	Operations	Interaction	components	are	all	clients	of
Rail	 Operations	 Service.	 Examples	 of	 client	 subsystems	 from	 the
emergency	 monitoring	 system,	 shown	 in	 Figure	 10.12,	 are	 the	 Monitoring
Sensor	 Component,	 Remote	 System	 Proxy	 and	 Operator

Presentation	subsystems,	which	are	described	in	the	next	section.



10.5.8	Service	Subsystem

A	 service	 subsystem	 is	 a	 subsystem	 that	 provides	 a	 service	 for	 client
subsystems.	It	responds	to	requests	from	client	subsystems,	although	it	does	not
initiate	any	requests.	Service	subsystems	are	usually	composite	objects	 that	are
composed	 of	 two	 or	 more	 objects.	 These	 include	 entity	 objects,	 coordinator
objects,	 which	 service	 client	 requests	 and	 determine	 what	 object	 should	 be
assigned	 to	 handle	 them,	 and	 application	 logic	 objects,	 which	 encapsulate
application	specific	logic,	such	as	algorithms.	Frequently,	a	service	is	associated
with	 a	 data	 repository	 or	 a	 set	 of	 related	data	 repositories,	 or	 it	might	 provide
access	to	a	database	or	a	file	system.

A	 service	 subsystem	 may	 be	 designed	 as	 part	 of	 a	 service-oriented
architecture	(Gomaa	2011)	or	it	may	be	designed	as	a	service	component	within
a	component-based	software	architecture.	A	service	subsystem	is	often	allocated
its	own	node.	A	data	service	supports	remote	access	to	a	centralized	database	or
file	store.	An	I/O	service	processes	requests	for	a	physical	resource	that	resides
at	that	node.

An	example	of	a	system	with	one	data	service	subsystem	is	the	Light	Rail
System,	 which	 has	 a	 service	 subsystem,	 Rail	 Operations	 Service,	 to
maintain	the	current	status	of	the	trains	and	stations	in	the	system,	as	depicted	in
Figures	10.2	and	10.3.	Examples	of	multiple	data	 service	 subsystems	are	 from
the	 emergency	 monitoring	 system,	 in	 which	 the	 Alarm	 Service	 and	 the
Monitoring	Data	Service	subsystems,	shown	in	Figure	10.12,	store	current
and	historical	alarm	and	sensor	data	respectively.	Monitoring	Data	Service
receives	 new	 sensor	 data	 from	 the	 Monitoring	 Sensor	 Component	 and
Remote	System	Proxy	 subsystems.	Sensor	 data	 is	 requested	 by	other	 client



subsystems,	such	as	the	Operator	Presentation	subsystem,	which	displays
the	data.

Figure	10.12.	Examples	of	client	and	service	subsystems	in	the	emergency
monitoring	system.

Another	example	of	a	data	service	is	the	Sensor	Data	Service	shown	in
Figure	 10.11,	 which	 stores	 current	 and	 historical	 sensor	 data.	 It	 receives	 new
sensor	 data	 from	 the	 Sensor	 Data	 Collection	 subsystem.	 Sensor	 data	 is
requested	 by	 other	 subsystems,	 such	 as	 multiple	 instances	 of	 the	 Operator
Interaction	 subsystem,	 which	 displays	 the	 data.	 The	 design	 of	 concurrent
service	subsystems	is	described	in	Chapter	12.



10.6	Decisions	about	Message
Communication	between	Subsystems

In	 the	 transition	 from	 analysis	 to	 design,	 one	 of	 the	most	 important	 decisions
relates	 to	 what	 type	 of	 message	 communication	 is	 needed	 between	 the
subsystems.	A	second	related	decision	is	to	determine	more	precisely	the	name
and	 parameters	 of	 each	 message,	 that	 is,	 the	 interface	 specification.	 In	 the
analysis	 model,	 an	 initial	 decision	 is	 made	 about	 the	 type	 of	 message
communication.	In	addition,	the	emphasis	is	on	the	information	passed	between
objects,	 rather	 than	 on	 precise	 message	 names	 and	 parameters.	 In	 design
modeling,	 after	 the	 subsystem	 structure	 is	 determined	 (as	 described	 in	 Section
10.5),	 a	 decision	 has	 to	 be	 made	 about	 the	 precise	 semantics	 of	 message
communication,	 such	 as	whether	message	 communication	will	 be	 synchronous
or	asynchronous,	introduced	in	Chapters	2	and	3,	and	the	precise	content	of	the
message.

Message	communication	between	two	subsystems	can	be	unidirectional	or
bidirectional.	Figure	10.13a	gives	 an	 analysis	model	 example	of	 unidirectional
message	 communication	 between	 a	 producer	 and	 a	 consumer,	 as	 well	 as	 an
example	of	bidirectional	message	communication	between	a	client	and	a	service.
All	messages	between	concurrent	objects	in	the	analysis	model	are	depicted	with
one	notation	 (the	 stick	arrowhead)	because	 it	 is	 assumed	 initially	 that	message
communication	is	asynchronous.	During	design	modeling,	this	decision	is	either
confirmed	 or	 changed,	 so	 the	 designer	 now	 needs	 to	 decide	 what	 type	 of
message	communication	is	required	in	both	of	 these	examples.	(In	UML	2,	 the
stick	 arrowhead	means	 asynchronous	 communication	 and	 the	 black	 arrowhead
means	 synchronous	communication.	For	 an	overview	of	 the	UML	notation	 for



message	 communication,	 see	 Chapter	 2,	 Section	 2.8.1.)	

Figure	10.13.	Transition	from	analysis	to	design:	decisions	about	type	of
message	communication.	(a)	Analysis	Model	–	before	decisions	about	type	of
message	communication.	(b)	Design	Model	–	after	decisions	about	type	of
message	communication.



Figure	10.13b	shows	the	result	of	message	design	decisions	concerning	the
type	of	message	communication	between	the	subsystems.	Figure	10.13b	depicts
the	decision	to	use	asynchronous	message	communication	between	the	producer
and	consumer	because	 this	 is	one-way	message	communication	with	no	reason
to	 hold	 up	 the	 producer.	 By	 contrast,	 synchronous	message	 communication	 is
used	 between	 the	 client	 and	 service	 because	 the	 client	 needs	 to	 wait	 for	 the
response	from	the	service.	In	addition,	the	precise	name	and	parameters	of	each
message	 are	 determined.	 The	 asynchronous	 message	 has	 the	 name	 send
Asynchronous	 Message	 and	 content	 called	 message.	 The	 synchronous
message	has	the	name	send	Asynchronous	Message	with	Reply,	with	the
input	content	called	message	and	the	service's	reply	called	response.

The	 above	 decisions	 concerning	 asynchronous	 and	 synchronous
communication	 are	 formalized	 into	 architectural	 communication	 patterns,	 as
described	 in	 Chapter	 11.	 Thus,	 the	 Asynchronous	 Message	 Communication
pattern	 is	 applied	 to	 the	 unidirectional	 message	 between	 the	 producer	 and
consumer	and	 the	Synchronous	Message	Communication	with	Reply	pattern	 is
applied	to	the	message	and	response	between	the	client	and	service.



10.7	Summary
This	chapter	has	given	an	overview	of	software	architecture	including	different
kinds	of	software	architecture.	It	has	described	the	multiple	views	of	a	software
architecture,	 in	 particular	 the	 static,	 dynamic,	 and	 deployment	 views.	 After
describing	a	systematic	approach	for	the	transition	from	analysis	to	design,	this
chapter	described	the	separation	of	concerns	in	subsystem	design	and	how	to	use
subsystem	 structuring	 criteria	 as	 a	 means	 of	 identifying	 software	 subsystems.
Finally,	this	chapter	described	the	decisions	that	need	to	be	made	in	the	design	of
message	communication	interfaces	between	subsystems.

During	software	design	modeling,	design	decisions	are	made	relating	to	the
characteristics	 of	 the	 software	 architecture.	 In	 designing	 the	 overall	 software
architecture,	 it	 helps	 to	 consider	 applying	 the	 software	 architectural	 patterns,
both	 architectural	 structure	 patterns	 and	 architectural	 communication	 patterns.
Chapter	11	describes	the	software	architectural	design	patterns	and	how	they	can
be	used	in	the	design	of	real-time	embedded	systems.	Chapter	12	describes	the
design	 of	 component-based	 software	 architectures,	 including	 the	 design	 of
component	 interfaces,	 with	 component	 ports	 that	 have	 provided	 and	 required
interfaces,	 and	 connectors	 that	 join	 compatible	 ports.	Chapter	 13	describes	 the
design	 of	 real-time	 software	 architectures,	 which	 are	 concurrent	 architectures
that	 frequently	 have	 to	 deal	with	multiple	 streams	of	 input	 events.	Chapter	 14
describes	the	detailed	design	of	software	architectures.	Chapter	15	describes	the
design	of	software	product	line	architectures,	which	are	architectures	for	families
of	 products	 that	 need	 to	 capture	 both	 the	 commonality	 and	 variability	 in	 the
family.



System	and	software	quality	issues	in	developing	the	software	architecture
of	real-time	embedded	systems	are	described	in	Chapters	16	and	17.	Chapter	16
describes	 the	 system	 and	 software	 quality	 attributes	 of	 a	 real-time	 system	 and
how	they	are	used	to	evaluate	the	quality	of	the	software	architecture.	Chapters
17	and	18	describes	performance	analysis	of	software	designs.	Chapters	19	to	23
provide	 case	 study	 examples	 of	 applying	 COMET/RTE	 to	 the	 modeling	 and
design	of	different	real-time	embedded	software	architectures.



11

Software	Architectural	Patterns
for	Real-Time	Embedded	Systems

◈

In	 software	 design,	 designers	 frequently	 encounter	 a	 problem	 that	 they	 have
solved	 before	 on	 a	 previous	 project.	 Often	 the	 context	 of	 the	 problem	 is
different;	 it	might	be	a	different	application,	a	different	platform,	or	a	different
programming	language.	Because	of	the	different	context,	a	designer	usually	ends
up	redesigning	and	reimplementing	the	solution,	thereby	falling	into	the	trap	of
“reinventing	 the	wheel.”	The	 field	of	 software	patterns,	 including	 architectural
and	 design	 patterns,	 is	 helping	 developers	 avoid	 unnecessary	 redesign	 and
reimplementation.

In	 software	 development,	 the	 field	 of	 design	 patterns	was	 popularized	 by
Gamma,	Helm,	Johnson,	and	Vlissides	in	their	book	Design	Patterns	(1995),	in
which	 they	 described	 twenty-three	 design	 patterns.	 Later,	 Buschmann	 et	 al.
(1996)	 described	 patterns	 that	 span	 different	 levels	 of	 abstraction,	 from	 high-
level	architectural	patterns	through	design	patterns	to	low-level	idioms.

This	 chapter	 describes	 several	 software	 architectural	 patterns	 that	 can	 be
used	in	the	development	of	real-time	embedded	systems.	Section	11.1	provides
an	 overview	of	 the	 different	 kinds	 of	 software	 patterns.	 Sections	 11.2	 through
11.7	 describe	 the	 different	 software	 architectural	 patterns,	 with	 Sections	 11.2



through	 11.4	 focusing	 on	 patterns	 that	 address	 the	 structure	 of	 the	 software
architecture	and	Sections	11.5	through	11.7	discussing	patterns	that	address	the
message	 communication	 among	 distributed	 components	 of	 the	 software
architecture.	 Section	 11.8	 describes	 how	 to	 document	 software	 architectural
patterns	using	a	standard	template.	Section	11.9	describes	how	to	apply	software
architectural	patterns	to	build	a	new	software	architecture.



11.1	Software	Design	Patterns
A	design	pattern	describes	a	recurring	design	problem	to	be	solved,	a	solution
to	the	problem,	and	the	context	in	which	that	solution	works	(Buschmann	et	al.
1996,	Gamma	et	al.	1995).	The	description	is	in	terms	of	communicating	objects
and	classes	customized	to	solve	a	general	design	problem	in	a	particular	context.
A	design	pattern	is	a	larger-grained	form	of	reuse	than	a	class.	A	design	pattern
involves	more	than	one	class	along	with	the	interconnection	among	the	different
classes.

After	 the	 original	 success	 of	 the	 design	 pattern	 concept,	 other	 kinds	 of
patterns	were	developed.	The	main	kinds	of	reusable	patterns	are	given	below:

Design	patterns.	In	a	widely	cited	book	(Gamma	et	al.	1995),	design
patterns	were	described	by	four	software	designers	–	Erich	Gamma,
Richard	Helm,	Ralph	Johnson,	and	John	Vlissides	–	who	were	named	in
some	quarters	as	the	“gang	of	four.”	A	design	pattern	is	a	small	group	of
collaborating	objects.

Architectural	patterns.	This	work	was	described	by	Buschmann	et	al.
(1996)	at	Siemens.	Architectural	patterns	are	larger-grained	than	design
patterns,	addressing	the	structure	of	major	subsystems	of	a	system.	This
was	followed	by	books	describing	architectural	patterns	in	different
application	domains	(Buschmann	et	al.	(2007).

Analysis	patterns.	Analysis	patterns	were	described	by	Fowler	(2002),
who	found	similarities	during	analysis	of	different	application	domains.
He	described	recurring	patterns	found	in	object-oriented	analysis	and
described	them	with	static	models,	expressed	in	class	diagrams.



Domain-specific	patterns.	These	are	patterns	used	in	specific
application	areas,	such	as	factory	automation	or	electronic	commerce.	By
concentrating	on	a	specific	application	domain,	design	patterns	can
provide	more	tailored	domain-specific	solutions.

Idioms.	Idioms	are	low-level	patterns	that	are	specific	to	a	given
programming	language	and	describe	implementation	solutions	to	a
problem	that	use	the	features	of	the	language	–	for	example,	Java	or	C++.
These	patterns	are	closest	to	code,	but	they	can	be	used	only	by
applications	that	are	coded	in	the	same	programming	language.

Design	anti-patterns.	These	are	patterns	that	should	not	be	used	because
they	are	incorrect	or	ineffective	solutions	to	a	recurring	problems.	For
example,	they	lead	to	potential	performance	pitfalls.	An	example	of	this
is	for	a	component	to	use	up	CPU	time	unnecessarily	by	continually
checking	for	message	arrival,	instead	of	waiting	on	a	message	arrival
event.



11.1.1	Software	Architectural	Patterns

As	introduced	in	the	previous	section,	software	architectural	patterns	provide
the	skeleton	or	template	for	the	overall	software	architecture	or	high-level	design
of	 an	 application.	 Shaw	 and	 Garlan	 (1996)	 referred	 to	 architectural	 styles	 or
patterns	 of	 software	 architecture,	 which	 are	 recurring	 architectures	 used	 in	 a
variety	of	software	applications	(see	also	Bass	et	al.	2013).	These	include	such
widely	used	architectures	as	client/service	and	layered	architectures.

This	 chapter	 groups	 software	 architectural	 patterns	 into	 two	 main
categories,	as	described	in	the	following	sections:	architectural	structure	patterns
(which	 address	 the	 static	 structure	 of	 the	 architecture)	 and	 architectural
communication	 patterns	 (which	 address	 the	 message	 communication	 among
distributed	components	of	 the	architecture).	Furthermore,	 it	 is	also	possible	 for
an	 architectural	 structure	 pattern	 to	 incorporate	 other	 architectural	 structure
and/or	communication	patterns.



11.2	Layered	Software	Architectural
Patterns

This	 section	 describes	 layered	 software	 architectural	 structure	 patterns,	 which
address	the	static	structure	of	the	architecture	by	organizing	the	architecture	into
hierarchical	layers	or	levels	of	abstraction.



11.2.1	Layers	of	Abstraction	Architectural	Pattern

The	Layers	of	Abstraction	pattern	 (also	known	as	 the	Hierarchical	Layers	or
Levels	 of	 Abstraction	 pattern)	 is	 a	 common	 architectural	 pattern,	 which	 is
applied	in	many	different	software	domains	(Buschmann	et	al.	1996).	Operating
systems,	 database	management	 systems,	 and	 network	 communication	 software
are	examples	of	software	systems	that	are	often	structured	as	hierarchies.

As	Parnas	(1979)	pointed	out	in	his	seminal	paper	on	designing	software	for
ease	 of	 extension	 and	 contraction	 (see	 also	 Hoffman	 and	 Weiss	 2001),	 if
software	is	designed	in	the	form	of	layers,	it	can	be	extended	by	the	addition	of
upper	 layers	 that	 use	 services	 provided	 by	 lower	 layers	 and	 contracted	 by	 the
removal	of	some	or	all	the	components	in	the	upper	layers.

With	 a	 strict	 layered	 hierarchy,	 each	 layer	 uses	 services	 in	 the	 layer
immediately	below	it;	for	example,	layer	3	can	only	invoke	services	provided	by
layer	 2.	With	 a	 flexible	 layered	 hierarchy,	 a	 layer	 does	 not	 have	 to	 invoke	 a
service	at	the	layer	immediately	below	it	but	can	instead	invoke	services	at	more
than	 one	 layer	 below;	 for	 example,	 layer	 3	 could	 directly	 invoke	 services
provided	by	layer	1.

The	 Layers	 of	 Abstraction	 architectural	 pattern	 is	 used	 in	 the	 TCP/IP
protocol,	which	is	the	most	widely	used	protocol	on	the	Internet	(Comer	2008).
Each	 layer	 deals	with	 a	 specific	 characteristic	 of	 network	 communication	 and
provides	 an	 interface,	 as	 a	 set	 of	 operations,	 to	 the	 layer	 above	 it.	 This	 is	 an
example	of	a	strict	layered	hierarchy.	For	each	layer	on	the	sender	node,	there	is
an	 equivalent	 layer	 on	 the	 receiver	 node.	 TCP/IP	 is	 organized	 into	 five
conceptual	layers,	as	shown	in	Figure	11.1:

Layer	1:	Physical	layer.	Corresponds	to	the	basic	network	hardware,
including	electrical	and	mechanical	interfaces,	and	the	physical



transmission	medium.

Layer	2:	Network	interface	layer.	Specifies	how	data	is	organized	into
frames	and	how	frames	are	transmitted	over	the	network.

Layer	3:	Internet	Protocol	(IP)	layer.	Specifies	the	format	of	packets	sent
over	the	Internet	and	the	mechanisms	for	forwarding	packets	through	one	or
more	routers	from	a	source	to	a	destination	(see	Figure	11.2).	The	router
node	in	Figure	11.2	is	a	gateway	that	interconnects	a	local	area	network	to	a
wide	area	network.

Layer	4:	Transport	layer	(TCP).	Assembles	packets	into	messages	in	the
order	they	were	originally	sent.	TCP	is	the	Transmission	Control	Protocol,
which	uses	the	IP	network	protocol	to	send	and	receive	messages.	It
provides	a	virtual	connection	from	an	application	on	one	node	to	an
application	on	a	remote	node,	hence	providing	what	is	termed	an	end-to-end
protocol	(see	Figure	11.2).

Layer	5:	Application	layer.	Supports	various	network	applications,	such
as	file	transfer	(FTP),	electronic	mail,	and	the	World	Wide	Web.

An	interesting	characteristic	of	the	layered	architecture	is	that	it	is	possible
to	replace	 the	upper	 layers	of	 the	architecture	with	different	 layers	 that	use	 the
unchanged	services	provided	by	the	lower	layers,	as	shown	in	Figure	11.2.	The
router	node	uses	the	lower	three	layers	(layers	1-3)	of	the	TCP/IP	protocol,	while
the	application	nodes	use	all	 five	 layers.	The	Voice	over	IP	application	(VoIP)
used	for	 Internet	 telephony	 is	an	example	of	a	 real-time	application	 that	sits	at
the	application	layer	(see	Figure	11.2).	Because	VoIP	has	real-time	constraints,	it
uses	a	faster	but	less	reliable	connectionless	protocol	at	the	transport	layer,	UDP
(User	Datagram	Protocol)	instead	of	TCP.	However,	like	TCP,	UDP	uses	the	IP
network	protocol	to	carry	messages	(Comer	2008).



Figure	11.1.	Layers	of	Abstraction	architectural	pattern:	Example	of	the
Internet	(TCP/IP)	reference	model.



Figure	11.2.	Layers	of	Abstraction	architectural	pattern:	Internet
communication	with	IP.

An	example	of	the	flexible	Layers	of	Abstraction	architectural	pattern	is	the
Emergency	Monitoring	 System,	 as	 shown	 in	 Figure	 11.3.	 Each	 layer	 contains
one	or	more	composite	subsystems	(components	or	services).	At	layer	one	is	the
service	layer,	which	provides	two	services,	Alarm	Service	and	Monitoring
Data	 Service,	 which	 are	 used	 by	 higher	 layers.	 At	 layer	 two	 is	 the
Monitoring	 layer,	 which	 has	 two	 components,	 Monitoring	 Sensor

Component	 and	 Remote	 System	 Proxy.	 At	 layer	 three	 is	 a	 user	 layer
consisting	of	a	user	interaction	object,	Operator	Presentation.



Figure	11.3.	Example	of	the	Layers	of	Abstraction	architectural	pattern:
Emergency	Monitoring	System.



11.2.2	Kernel	Architectural	Pattern

With	the	Kernel	pattern,	the	core	of	a	software	system	is	encapsulated	inside	a
kernel.	 If	 the	 kernel	 is	 very	 small,	 then	 this	 pattern	 is	 sometimes	 called	 the
Microkernel	 pattern	 (Buschmann	 et	 al.	 1996).	 The	 kernel	 provides	 a	 well-
defined	 interface	 consisting	 of	 operations,	 in	 the	 form	 of	 procedures	 and/or
functions,	which	can	be	called	by	other	parts	of	the	software	system.	This	pattern
is	 frequently	 used	 in	 operating	 systems	 in	 which	 the	 kernel	 or	 microkernel
provides	 the	 minimal	 essential	 functionality	 that	 is	 needed	 for	 the	 operating
system.	Other	 services	 provided	by	 the	 operating	 system	use	 the	 core	 services
provided	by	 the	kernel.	The	UNIX,	Linux,	and	Windows	operating	systems	all
have	 a	 kernel.	 The	 kernel	 of	 an	 application	 can	 also	 be	 the	 lowest	 layer	 of	 a
hierarchical	 architecture	 developed	 with	 the	 Layers	 of	 Abstraction	 pattern
(described	in	Section	11.2.1).



Figure	11.4.	Example	of	the	Kernel	architectural	pattern.

Figure	 11.4	 shows	 the	 operating	 system	 kernel	 layer	 as	 layer	 one	 in	 a
layered	 architecture.	 Typical	 services	 provided	 by	 an	 operating	 system	 kernel,
such	as	task	scheduling,	are	described	in	Chapter	3.	Above	the	kernel	layer	is	the
operating	system	services	layer,	which	provides	additional	services,	such	as	file
management	 and	 user	 account	management.	 The	 third	 layer	 is	 the	 application
layer,	where	applications	consist	of	concurrent	 tasks	 that	 take	advantage	of	 the
services	 of	 the	 lower	 layers.	 In	 some	 real-time-embedded	 systems,	 the
application	layer	is	built	directly	above	the	kernel	layer.	This	can	happen	when



the	services	provided	in	the	operating	system	services	layer	are	not	needed.	The
microwave	 oven	 control	 system	 case	 study	 (see	 Chapter	 19)	 and	 railroad
crossing	 control	 system	 (see	Chapter	 20)	 are	 examples	 of	 real-time	 embedded
systems	that	would	not	need	the	operating	system	services	layer.



11.3	Control	Patterns	for	Real-Time
Software	Architectures

Many	 real-time	 systems	 have	 an	 important	 control	 function.	 This	 section
describes	 the	 different	 kind	 of	 control	 patterns	 that	 could	 be	 used	 for	 this
purpose:	 centralized	 control	 patterns,	 distributed	 control	 patterns,	 and
hierarchical	 control	 patterns.	 To	 make	 the	 patterns	 applicable	 to	 component-
based	software	architectures	 in	addition	 to	 real-time	software	architectures,	 the
«component»	stereotype	is	used	in	these	patterns.



11.3.1	Centralized	Control	Architectural	Pattern

In	 the	 Centralized	 Control	 pattern,	 there	 is	 one	 control	 component,	 which
conceptually	 executes	 a	 state	 machine	 and	 provides	 the	 overall	 control	 and
sequencing	of	the	system	or	subsystem.	The	control	component	receives	events
from	other	components	that	it	interacts	with.	These	include	events	from	various
input	 components	 that	 interact	 with	 the	 external	 environment,	 for	 example,
through	 sensors	 that	 detect	 changes	 in	 the	 environment.	 An	 input	 event	 to	 a
control	 component	 usually	 causes	 a	 state	 transition	 on	 its	 encapsulated	 state
machine,	 which	 results	 in	 one	 or	 more	 state	 dependent	 actions.	 The	 control
component	 uses	 these	 actions	 to	 control	 other	 components,	 such	 as	 output
components,	which	output	to	the	external	environment	–	for	example,	to	switch
actuators	 on	 and	 off.	 Entity	 objects	 are	 also	 used	 to	 store	 any	 temporary	 data
needed	by	the	other	objects.

Examples	 of	 this	 pattern	 can	 be	 found	 in	 the	 railroad	 crossing	 control
system	(see	Chapter	20)	and	the	microwave	oven	control	system	case	study	(see
Chapter	 19).	 Figure	 11.5	 gives	 an	 example	 of	 the	 Centralized	 Control
architectural	 pattern	 from	 the	 latter	 case	 study,	 in	 which	 the	 concurrent
components	 are	 depicted	 on	 a	 concurrent	 communication	 diagram.	 The
Microwave	 Control	 component	 is	 a	 centralized	 control	 component,	 which
executes	the	state	machine	that	provides	the	overall	control	and	sequencing	for
the	microwave	oven.	Microwave	Control	receives	messages	from	three	input
components	 –	 Door	 Component,	 Weight	 Component,	 and	 Keypad

Component	 –	 when	 they	 detect	 inputs	 from	 the	 external	 environment.
Microwave	Control	 actions	 are	 sent	 to	 two	 output	 components	 –	Heating
Element	Component	(to	switch	the	heating	element	on	or	off)	and	Microwave
Display	(to	display	information	and	prompts	to	the	user).



Figure	11.5.	Example	of	the	Centralized	Control	pattern.



11.3.2	Distributed	Collaborative	Control	Architectural	Pattern

The	 Distributed	 Collaborative	 Control	 pattern	 contains	 several	 control
components.	Each	of	 these	 components	 controls	 a	given	part	 of	 the	 system	by
conceptually	executing	a	state	machine.	Control	is	distributed	among	the	various
control	components,	with	no	single	component	in	overall	control.	To	notify	each
other	 of	 important	 events,	 the	 components	 communicate	 through	 peer-to-peer
communication.	The	components	also	interact	with	the	external	environment	as
in	the	Centralized	Control	pattern	(see	Section	11.3.1).

An	 example	 of	 the	 Distributed	 Collaborative	 Control	 pattern	 is	 given	 in
Figure	11.6,	in	which	control	is	distributed	among	several	distributed	controller
components.	Each	Distributed	Controller	executes	an	encapsulated	state
machine,	 receiving	 inputs	 from	 the	 external	 environment	 through	 sensor
components	 and	 controlling	 the	 external	 environment	 by	 sending	 outputs	 to
actuator	components.	Each	Distributed	Controller	communicates	with	the
other	 Distributed	 Controller	 components	 by	 sending	 status	 messages
containing	events	of	interest.

Figure	11.6.	Example	of	the	Distributed	Collaborative	Control	architectural
pattern.



11.3.3	Distributed	Independent	Control	Architectural	Pattern

The	 Distributed	 Independent	 Control	 pattern	 differs	 from	 the	 Distributed
Collaborative	Control	pattern	in	that	although	control	is	also	distributed	among
several	control	components	with	no	single	component	in	overall	control,	there	is
no	 communication	 among	 the	 control	 components.	 It	 is	 often	 the	 case	 with
Distributed	 Independent	 Control	 that	 the	 components	 communicate
asynchronously	 to	 send	 status	 information	 to	 another	 component,	 such	 as	 a
service	component,	This	pattern	 is	also	different	 from	 the	Hierarchical	Control
pattern	 (see	 Section	 11.3.4)	 because	 the	 service	 does	 not	 provide	 any
coordination	or	control.	It	should	also	be	noted	that	this	pattern	is	different	from
the	 client/service	 pattern,	 in	 which	 a	 control	 component	 needs	 to	 wait	 for	 a
response	to	a	service	request,	as	described	in	Section	11.4.

An	 example	 of	 distributed	 independent	 control	 with	 unidirectional
communication	to	a	service	is	from	the	Light	Rail	Control	System	(Chapter	21)
and	 depicted	 in	 Figure	 11.7.	 Each	 train	 is	 controlled	 by	 a	 Train	 Control
component	that	sends	train	status	information,	such	as	arrival	and	departure	from
railroad	stations,	to	a	Rail	Operations	Service	component.	In	this	system,
there	are	other	 independent	control	components	 that	 send	status	 information	 to
the	 service	 component,	 including	 the	 Railroad	 Crossing	 Control

components	(not	shown)	that	send	status	information	about	raising	and	lowering
of	barriers	at	railroad	crossings.



Figure	11.7.	Example	of	the	Distributed	Independent	Control	pattern	with
unidirectional	communication	to	a	service.



11.3.4	Hierarchical	Control	Architectural	Pattern

The	 Hierarchical	 Control	 pattern	 (also	 known	 as	 the	 Multilevel	 Control
pattern)	contains	several	control	components.	Each	component	controls	a	given
part	 of	 a	 system	 by	 conceptually	 executing	 a	 state	 machine.	 In	 addition,	 a
coordinator	 component	 provides	 the	 overall	 system	 control	 by	 coordinating
several	 control	 components.	 The	 coordinator	 provides	 high-level	 control	 by
deciding	 the	 next	 job	 for	 each	 control	 component	 and	 communicating	 that
information	 directly	 to	 the	 control	 component.	 The	 coordinator	 also	 receives
status	information	from	the	control	components.

One	example	of	the	Hierarchical	Control	pattern	is	given	in	Figure	11.8,	in
which	a	coordinator	component,	the	Hierarchical	Controller,	sends	high-
level	commands	to	each	of	the	distributed	controllers.	The	distributed	controllers
provide	the	low-level	control,	 interacting	with	sensor	and	actuator	components,
and	 respond	 to	 the	 Hierarchical	 Controller	 when	 they	 have	 finished.
They	may	also	send	progress	messages	to	the	Hierarchical	Controller.

Figure	11.8.	Example	of	the	Hierarchical	Control	architectural	pattern.



11.3.5	Master/Slave	Architectural	Pattern

In	 the	Master/Slave	 pattern,	 there	 is	 one	 control	 component	 that	 provides	 the
overall	 control	 and	 sequencing	 of	 several	 slave	 components.	 The	 Master
component	divides	up	the	work	to	be	performed	and	assigns	each	part	to	a	slave.
Each	slave	executes	its	assignment	and,	when	it	has	finished,	sends	a	response	to
the	 master.	 The	 master	 integrates	 the	 slave	 responses.	 This	 pattern	 takes
advantage	 of	 concurrency	 and	 multiprocessing	 by	 allowing	 several	 slave
components	to	execute	in	parallel.	The	slaves	do	not	typically	interact	with	each
other	 and	 can	 therefore	 take	 advantage	 of	 executing	 in	 parallel	 on	 different
processors	on	a	multiprocessor	system.

This	 pattern	 is	 different	 from	 the	Hierarchical	 Control	 pattern	 in	 that	 the
slaves,	 unlike	 a	 lower	 level	 controller,	 do	 not	 have	 any	 localized	 control.	 It	 is
also	 different	 from	 the	 centralized	 control	 pattern,	 in	 which	 the	 controller
typically	 interacts	 with	 multiple	 sensors	 and	 actuators.	 An	 example	 of	 this
pattern	is	given	in	Figure	11.9,	in	which	the	Master	sends	assignment	commands
to	 each	 Slave.	 After	 completing	 the	 assignment,	 Slave	 sends	 its	 response	 to
Master.

Figure	11.9.	Example	of	the	Master/Slave	architectural	pattern.



11.4	Client/Service	Software	Architectural
Patterns

This	section	describes	two	client/service	software	architectural	structure	patterns,
specifically	 multiple	 clients	 with	 a	 single	 service	 and	 multiple	 clients	 with
multiple	services.	Although	client/service	architectural	patterns	can	be	used	for	a
wide	range	of	software	applications,	they	also	have	a	role	to	play	in	the	design	of
real-time	embedded	systems.	This	section	describes	the	patterns	that	can	be	used
for	this	purpose	with	real-time	examples.

This	 chapter	 differentiates	 between	 a	 server	 and	 a	 service.	 A	 server	 is	 a
hardware/software	 platform	 that	 provides	 one	 or	 more	 services	 for	 multiple
clients.	A	service	in	a	client/server	system	is	an	application	software	component
that	fulfills	the	needs	of	multiple	clients.	Since	services	execute	on	servers,	there
is	sometimes	confusion	between	the	two	terms,	and	the	two	terms	are	sometimes
used	 interchangeably.	 Sometimes,	 a	 server	 will	 support	 just	 one	 service	 or
perhaps	more	 than	one;	other	 times,	 a	 large	 service	might	 span	more	 than	one
server	 node.	 In	 client/server	 systems,	 the	 service	 executes	 on	 a	 fixed	 server
node(s),	and	the	client	has	a	fixed	connection	to	the	server.	In	component-based
systems,	 a	 service	 is	 designed	 to	 be	 a	 component	 that	 can	 be	 instantiated	 and
assigned	to	a	separate	node	at	deployment	time,	as	described	in	Chapter	12.	In	a
service-oriented	 architecture,	 services	 are	 autonomous	 and	 are	 typically
accessed	using	brokering	patterns,	as	described	in	Section	11.6.



11.4.1	Multiple	Client/Single	Service	Architectural	Pattern

The	Multiple	 Client/Single	 Service	 pattern	 consists	 of	 clients	 that	 request
services	 and	 a	 service	 that	 fulfills	 client	 requests.	 The	 simplest	 and	 most
common	client/service	architecture	has	one	service	and	many	clients,	and	for	this
reason	the	Multiple	Client/Single	Service	architectural	pattern	is	also	known	as
the	Client/Server	 or	Client/Service	 pattern.	 The	Multiple	Client/Single	 Service
architectural	 pattern	 can	 be	 depicted	 on	 a	 deployment	 diagram,	 as	 in	 Figure
11.10,	which	 shows	multiple	 clients	 connected	 to	 a	 service	 that	 executes	 on	 a
server	node	via	a	local	area	network.

Figure	11.10.	Multiple	Client/Single	Service	architectural	pattern.



An	example	of	 this	 pattern	 comes	 from	a	banking	 system	 (Gomaa	2011),
which	is	depicted	in	Figure	11.11	and	consists	of	multiple	ATMs	connected	to	a
Banking	Service	component	by	means	of	a	wide	area	network.	Each	ATM	is
controlled	 by	 an	 ATM	 Controller	 component.	 Each	 ATM	 Controller	 is
independent	of	the	other	ATM	Controllers,	but	all	of	them	communicate	with
the	Banking	Service.	 A	 typical	 ATM	 control	 sequence	 consists	 of	 an	ATM
Controller	 reading	a	customer's	ATM	card,	prompting	for	 the	PIN	and	cash
amount,	 and	 communicating	with	 the	Banking	Service	 to	 validate	 the	 PIN
and	 determine	 that	 there	 is	 enough	 cash	 in	 the	 customer's	 account.	 If	 the
Banking	 Service	 approves	 the	 request,	 then	 the	 ATM	 Controller

component	dispenses	the	cash,	prints	the	receipt,	and	ejects	the	ATM	card.	Each
ATM	Controller	executes	a	state	machine	 that	controls	 the	above	 interaction
sequence,	 receiving	 inputs	 from	 the	 card	 reader	 and	 customer	 keypad	 and
controlling	outputs	 to	 the	cash	dispenser,	 receipt	printer,	customer	display,	and
card	reader.



Figure	11.11.	Example	of	Multiple	Client/Single	Service	architectural	pattern:
Banking	System.

The	 clients	 in	 Figure	 11.11	 are	 ATM	 Controller	 components,	 which
communicate	 with	 the	 Banking	 Service	 using	 the	 synchronous	 message
communication	with	reply	pattern	(see	Section	11.5.4)	because	a	client	sends	a
message	 to	 the	 service	 and	 then	 waits	 for	 a	 response.	 After	 receiving	 the
message,	the	service	processes	the	message,	prepares	a	reply,	and	sends	the	reply
to	the	client.	After	receiving	the	response,	the	client	resumes	execution.



11.4.2	Multiple	Client/Multiple	Service	Architectural	Pattern

More	 complex	 client/service	 systems	 might	 support	 multiple	 services.	 In	 the
Multiple-Client/Multiple-Service	 pattern,	 a	 client	 might	 communicate	 with
several	 services,	 as	 depicted	 in	 Figure	 11.12.	With	 this	 pattern,	 a	 client	 could
communicate	with	each	service	sequentially	or	could	communicate	with	multiple
services	concurrently.

Figure	11.12.	Multiple-Client/Multiple-Service	architectural	pattern.

An	example	of	the	Multiple-Client/Multiple-Service	architectural	pattern	is
the	 emergency	 monitoring	 system	 (Gomaa	 2011),	 in	 which	 this	 pattern	 is
incorporated	into	a	layered	architecture.	There	are	two	service	components,	 the



Alarm	Service	and	the	Monitoring	Data	Service,	shown	at	layer	one	of
the	 layered	hierarchy	 in	Figure	11.13,	which	 store	current	 and	historical	 alarm
and	 sensor	 data	 respectively.	 Each	 service	 component	 receives	 data	 from	 two
clients,	 which	 are	 at	 layer	 two.	 Thus,	Monitoring	Data	Service	 receives
new	 sensor	 data	 from	 the	 Monitoring	 Sensor	 Component	 and	 Remote
System	 Proxy	 client	 components.	 Sensor	 data	 is	 requested	 by	 other	 clients,
such	 as	 the	 Operator	 Presentation	 component	 at	 layer	 three,	 which
displays	the	data.

Figure	11.13.	Example	of	Multiple-Client/Multiple-Service	architectural
pattern:	emergency	monitoring	system.



11.5	Basic	Software	Architectural
Communication	Patterns

Architectural	 communication	 patterns	 address	 the	 dynamic	 communication
among	 concurrent	 and/or	 distributed	 components	 of	 the	 architecture.	 This
section	 describes	 the	 basic	 communication	 patterns.	 The	 first	 pattern	 is	 the
synchronized	 object	 access	 pattern,	 which	 is	 restricted	 to	 usage	 between
concurrent	 components	 that	 execute	 on	 the	 same	 node.	 All	 the	 other	 patterns
address	 message	 communication	 between	 either	 concurrent	 components	 that
reside	on	the	same	node	or	distributed	components	that	reside	on	different	nodes.
Communication	 patterns	 are	 frequently	 used	 sequences	 of	 interactions	 (also
referred	 to	 as	 interaction	 protocols)	 by	 which	 concurrent	 and	 distributed
components	communicate	with	each	other.	Concurrent	communication	diagrams
are	 the	 most	 effective	 way	 to	 depict	 patterns	 that	 address	 message
communication	 between	 concurrent	 components.	 More	 advanced	 architectural
communication	 patterns,	 namely	 brokered	 and	 group	 communication	 patterns
are	described	in	Sections	11.6	and	11.7	respectively.



11.5.1	Synchronized	Object	Access	Pattern

The	Synchronized	Object	Access	pattern	is	used	when	two	or	more	concurrent
components	(tasks)	on	the	same	node	communicate	with	each	through	a	passive
information	hiding	object	to	access	shared	data.	In	this	pattern,	each	task	calls	an
operation	(procedure	or	function)	provided	by	the	passive	object.	The	operations
of	 the	 object	 provide	 synchronized	 access,	 such	 as	 mutually	 exclusive,	 to	 the
data.	 Access	 synchronization	 to	 shared	 data	 is	 described	 in	 more	 detail	 in
Chapter	14.

As	 an	 example	 of	 the	 Synchronized	 Object	 Access	 pattern	 used	 by	 two
tasks	interacting	with	a	passive	object,	consider	the	example	depicted	in	Figure
11.14.	The	Analog	Sensor	Repository	object	encapsulates	sensor	data	and
provides	 synchronized	 access	 to	 the	data.	This	 object	 provides	 an	operation	 to
read	 sensor	 data	 from	 the	 repository,	 which	 is	 called	 by	 reader	 tasks,	 and	 an
operation	to	update	sensor	data,	which	is	called	by	writer	tasks,	as	described	in
more	detail	in	Chapter	14.



Figure	11.14.	Example	of	Synchronized	Object	Access	pattern.



11.5.2	Asynchronous	Message	Communication	Pattern

With	 the	 Asynchronous	 Message	 Communication	 pattern,	 the	 producer
component	sends	a	message	to	the	consumer	component	(Figure	11.15)	and	does
not	wait	 for	 a	 reply.	The	producer	 continues	because	 it	 either	 does	not	 need	 a
response	or	has	other	functions	to	perform	before	receiving	a	response	(see	the
discussion	of	bidirectional	asynchronous	communication	in	Section	11.5.3).	The
consumer	 receives	 the	 message;	 if	 the	 consumer	 is	 busy	 when	 the	 message
arrives,	the	message	is	queued.	Because	the	producer	and	consumer	components
proceed	 asynchronously	 (i.e.,	 at	 different	 speeds),	 a	 first-in,	 first-out	 (FIFO)
message	queue	can	build	up	between	producer	and	consumer;	that	is,	messages
are	 queued	 in	 the	 order	 they	 are	 received.	 If	 a	message	 is	 available	when	 the
consumer	 requests	 one,	 the	 consumer	 receives	 the	 message	 and	 continues
executing.	 If	 no	 message	 is	 available,	 the	 consumer	 is	 suspended.	 When	 a
message	 arrives,	 the	 consumer	 is	 reawakened.	 This	 pattern	 is	 also	 often	 used
with	 multiple	 producers	 and	 one	 consumer.	 In	 distributed	 environments,
asynchronous	 message	 communication	 is	 used	 wherever	 possible	 for	 greater
flexibility.	This	pattern	is	particularly	appropriate	if	 the	sender	does	not	need	a
response	from	the	receiver.

Figure	11.15.	Asynchronous	Message	Communication	pattern.

In	a	distributed	environment,	an	additional	requirement	is	that	the	producer
needs	 to	 receive	 a	 positive	 or	 negative	 acknowledgment	 indicating	whether	 or
not	 the	message	has	arrived	at	 its	destination.	This	 is	not	an	indication	that	 the



message	 has	 been	 received	 by	 the	 destination	 component	 –	merely	 that	 it	 has
safely	arrived	at	 the	destination	node.	Thus,	 a	 significant	 additional	 amount	of
time	 might	 elapse	 before	 the	 message	 is	 actually	 received	 by	 the	 destination
component.	A	timeout	can	be	associated	with	sending	a	message	so	that	a	delay
or	 failure	 in	 message	 transmission	 will	 result	 in	 a	 negative	 acknowledgment
being	 returned	 to	 the	 source	 component.	 It	 is	 up	 to	 the	 source	 component	 to
decide	how	to	handle	this	situation.

An	example	of	the	Asynchronous	Message	Communication	pattern	is	given
in	Figure	11.16	for	 the	microwave	control	system,	in	which	all	communication
between	 the	 components	 is	 asynchronous.	 The	 Asynchronous	 Message
Communication	pattern	is	used	in	the	microwave	oven	software	system	because
most	communication	is	one-way,	and	this	pattern	has	the	advantage	of	not	letting
the	consumers	hold	up	the	producers.	The	order	in	which	messages	are	sent	by
the	 three	producer	 components	 (Door	Component,	Weight	Component,	 and
Keypad	 Component)	 to	 the	 Microwave	 Control	 component	 (see	 Figure
11.16)	 is	 nondeterministic,	 because	 it	 is	 based	 on	 the	 user's	 actions.	 The
Microwave	Oven	Control	component	needs	to	be	able	to	receive	a	message
from	 any	 of	 its	 three	 producers	 in	 any	 order.	 The	 best	 way	 to	 handle	 this
requirement	 for	 flexibility	 is	 through	 asynchronous	 message	 communication,
with	 one	 input	 message	 queue	 for	 the	 Microwave	 Control	 component	 in
which	incoming	messages	are	queued	in	the	order	they	are	received.



Figure	11.16.	Example	of	the	Asynchronous	Message	Communication
pattern:	microwave	oven	system.



11.5.3	Bidirectional	Asynchronous	Message	Communication	Pattern

The	Bidirectional	Asynchronous	Message	Communication	pattern	 is	used	in
situations	in	which	the	producer	needs	to	send	messages	asynchronously	to	the
consumer,	 and,	 although	 it	 does	 not	 need	 an	 immediate	 reply,	 it	 does	 need	 a
reply	 later	 (as	 shown	 in	 Figure	 11.17).	 This	 pattern	 is	 more	 flexible	 than	 the
Asynchronous	 Message	 Communication	 with	 Callback	 pattern	 (see	 Section
11.5.5),	which	only	addresses	a	response	to	a	single	asynchronous	message.	The
Bidirectional	Asynchronous	Message	Communication	pattern	can	be	used	when
the	producer	needs	to	send	a	burst	of	messages	before	receiving	the	response	to
the	first	message.	Producer	messages	are	queued	up	at	the	consumer.	Consumer
responses	are	queued	up	at	the	producer,	which	receives	them	when	it	needs	to.

Figure	11.17.	Bidirectional	Asynchronous	Message	Communication	pattern.

An	 example	 of	 the	 Bidirectional	 Asynchronous	Message	 Communication
pattern	 in	 a	 distributed	 environment	 is	 given	 in	 Figure	 11.18	 for	 the	 factory
control	 system,	 in	 which	 all	 communication	 between	 the	 components	 is
asynchronous.	 The	 Supervisory	 System	 component	 sends	 asynchronous
messages	 containing	 move	 Command	 requests	 to	 the	 Automated	 Guided

Vehicle	 (AGV)	 System	 component,	 requesting	 it	 to	 move	 to	 specific
locations	 in	 the	 factory.	 The	 AGV	 System	 sends	 asynchronous	 response
messages	 containing	 move	 Ack	 acknowledgments	 (indicating	 its	 current
location,	the	direction	it	is	taking,	and	its	eventual	arrival	at	the	destination).	In
this	 example,	 Supervisory	 System	 could	 send	 several	 move	 requests	 to	 a



given	AGV	to	visit	various	factory	locations.	The	AGV	gradually	services	these
requests	 as	 it	 moves	 around	 the	 factory,	 acknowledging	 the	 locations	 it	 is
visiting.

Figure	11.18.	Example	of	the	Bidirectional	Asynchronous	Message
Communication	pattern:	factory	control	system.



11.5.4	Synchronous	Message	Communication	with	Reply	Pattern

The	Synchronous	Message	Communication	with	Reply	 pattern	 can	 be	 used
between	 a	 producer	 and	 a	 consumer	 or	 alternatively	 between	 a	 client	 and	 a
service.	In	either	case,	a	sender	(producer	or	client)	component	sends	a	message
to	a	receiver	(consumer	or	service)	component	and	then	waits	for	a	reply.	When
the	message	arrives,	 the	receiver	accepts	 it,	processes	 it,	generates	a	reply,	and
then	 sends	 the	 reply	 to	 the	 sender.	 For	 a	 given	 producer/consumer	 pair,	 no
message	 queue	 develops	 between	 them.	 The	 producer/consumer	 usage	 of	 the
Synchronous	 Message	 Communication	 with	 Reply	 pattern	 is	 described	 in
more	detail	in	Chapter	13.

A	client/service	usage	of	the	Synchronous	Message	Communication	with
Reply	 pattern	 typically	 involves	 multiple	 clients	 and	 one	 service.	 In	 typical
client/service	patterns,	 several	clients	send	requests	 to	a	service	and	a	message
queue	 can	 build	 up	 at	 the	 service.	 The	 client	 uses	 synchronous	 message
communication	and	waits	for	a	response	from	the	service,	as	depicted	in	Figure
11.19.	The	service	processes	each	incoming	message	on	a	FIFO	basis	and	sends
a	 response	 to	 the	 client.	Alternatively,	 a	 client	 can	 use	 asynchronous	message
communication	with	callback	as	described	in	Section	11.5.5.

Figure	11.19.	Synchronous	Message	Communication	with	Reply	pattern
between	multiple	clients	and	a	service.

Whether	 the	 client	 uses	 synchronous	 or	 asynchronous	 message
communication	with	the	service	depends	on	the	application	and	does	not	affect



the	design	of	the	service.	Indeed,	some	of	a	service's	clients	may	communicate
with	 it	 via	 synchronous	message	 communication	 and	 others	 via	 asynchronous
message	 communication.	 In	 distributed	 environments,	 synchronous	 message
communication	 is	 typically	 provided	 by	 middleware	 technology	 such	 as	 the
remote	procedure	call	or	remote	method	invocation.

An	 example	 of	 Multiple-Client/Single-Service	 message	 communication
using	synchronous	communication	is	shown	in	Figure	11.20,	where	the	service
is	 Pump	 Status	 Service,	 which	 responds	 to	 service	 requests	 from	 multiple
Operator	Interaction	clients.	Pump	Status	Service	has	a	message	queue
of	 incoming	 requests	 from	 the	 multiple	 user	 interaction	 clients.	 Pump	 Status
Service	processes	each	incoming	status	Request	message	on	a	FIFO	basis
and	 then	 sends	 the	 synchronous	 status	 Response	 to	 the	 client.	 Each
Operator	Interaction	client	sends	a	message	to	Pump	Status	Service	and
then	waits	for	the	response.

Figure	11.20.	Example	of	the	Synchronous	Message	Communication	with
Reply	pattern	between	multiple	clients	and	a	service.



11.5.5	Asynchronous	Message	Communication	with	Callback	Pattern

The	Asynchronous	Message	 Communication	 with	 Callback	 pattern	 is	 used
between	 a	 client	 and	 a	 service	 when	 the	 client	 does	 not	 need	 to	 wait	 for	 the
service	 response	 but	 does	 need	 the	 service	 response	 later	 (Figure	 11.21).	 The
callback	is	an	asynchronous	response	to	a	message	sent	previously.	This	pattern
allows	 the	 client	 to	 execute	 asynchronously	 but	 still	 follows	 the	 client/service
paradigm	in	which	a	client	sends	only	one	message	at	a	time	to	the	service.

Figure	11.21.	Asynchronous	Message	Communication	with	Callback	pattern.

With	 the	 callback	 pattern,	 the	 client	 sends	 a	 remote	 reference	 or	 handle,
which	 is	 then	 used	 by	 the	 service	 to	 respond	 to	 the	 client.	A	 variation	 on	 the
callback	pattern	is	for	the	service	to	delegate	the	response	to	another	component
by	forwarding	to	it	the	callback	handle,	as	described	in	the	examples	in	Section
12.7.

The	Asynchronous	Message	Communication	with	Callback	pattern	 is	 less
flexible	 than	 the	Bidirectional	Asynchronous	Message	Communication	pattern,
since	the	latter	allows	a	burst	of	messages	before	a	response	is	sent.



11.5.6	Synchronous	Message	Communication	without	Reply	Pattern

In	 the	 Synchronous	 Message	 Communication	 without	 Reply	 pattern,	 the
producer	sends	a	message	to	the	consumer	and	then	waits	for	acceptance	of	the
message	 by	 the	 consumer	 (Figure	 11.22).	 When	 the	 message	 arrives,	 the
consumer	 accepts	 it,	 thereby	 releasing	 the	 producer.	 The	 producer	 and	 the
consumer	 then	 both	 continue.	 The	 consumer	 is	 suspended	 if	 no	 message	 is
available.	 For	 a	 given	 producer/consumer	 pair,	 no	 message	 queue	 develops
between	 the	 producer	 and	 the	 consumer.	 The	 best	 time	 to	 use	 this	 pattern	 is
when	the	producer	is	faster	than	the	consumer	and	it	is	necessary	to	slow	down
the	producer	so	that	it	does	not	get	ahead	of	the	consumer.

Figure	11.22.	Synchronous	Message	Communication	without	Reply	pattern.

An	 example	 of	 the	 Synchronous	Message	 Communication	without	 Reply
pattern	 is	 shown	 in	 Figure	 11.23.	 The	 producer	 component,	 Sensor

Statistics	 Algorithm,	 sends	 temperature	 and	 pressure	 statistics	 to	 the
consumer	 component,	 Sensor	 Statistics	 Display	 Output,	 which	 then
displays	 the	 information.	 In	 this	example,	 the	decision	 is	made	 that	 there	 is	no
point	 in	 having	 the	 Sensor	 Statistics	 Algorithm	 component	 compute
temperature	 and	 pressure	 statistics	 if	 the	 Sensor	 Statistics	 Display

Output	 component	 cannot	 keep	 up	 with	 displaying	 them.	 Consequently,	 the
communication	 between	 the	 two	 components	 uses	 the	 Synchronous	 Message
Communication	 without	 Reply	 pattern,	 as	 depicted	 on	 the	 concurrent
communication	diagram	in	Figure	11.23.



Figure	11.23.	Example	of	the	Synchronous	Message	Communication	without
Reply	pattern.

The	 Sensor	 Statistics	 Algorithm	 component	 computes	 the
statistics,	sends	 the	message,	and	then	waits	for	 the	message	to	be	accepted	by
Sensor	Statistics	Display	Output	before	resuming	execution.	Sensor
Statistics	 Algorithm	 is	 held	 up	 until	 Sensor	 Statistics	 Display
Output	 finishes	 displaying	 the	 previous	 message.	 As	 soon	 as	 Sensor
Statistics	 Display	 Output	 accepts	 the	 latest	 message,	 Sensor

Statistics	Algorithm	is	released	from	its	wait	and	computes	the	next	set	of
statistics	while	Sensor	Statistics	Display	Output	displays	the	previous
set.	 This	 approach	 allows	 computation	 of	 the	 statistics	 (a	 compute-bound
activity)	 to	 be	 overlapped	 with	 displaying	 of	 the	 statistics	 (an	 I/O-bound
activity),	while	preventing	an	unnecessary	message	queue	buildup	of	statistics	at
the	 display	 component.	 Thus,	 synchronous	 communication	 without	 reply
between	the	two	components	acts	as	a	brake	on	the	producer	component.

In	 distributed	 communication,	 synchronous	 message	 communication
without	reply	is	usually	not	necessary	and	should	be	used	only	in	situations	such
as	 those	described	 in	 this	section.	Communication	between	components	should
be	 asynchronous	 whenever	 possible;	 synchronous	 message	 communication
should	be	used	primarily	when	a	response	is	required.



11.6	Software	Architectural	Broker	Patterns
In	a	distributed	component-based	environment,	clients	and	services	are	designed
as	distributed	components.	In	brokered	communication	patterns	(which	are	also
known	as	Object	Broker	or	Object	Request	Broker	patterns),	the	broker	acts	as
an	 intermediary	 between	 the	 clients	 and	 services.	 Services	 register	 with	 the
broker.	Clients	locate	services	through	the	broker.

The	broker	provides	both	location	transparency	and	platform	transparency.
Location	 transparency	 means	 that	 if	 the	 service	 is	 moved	 to	 a	 different
location,	 clients	 are	 unaware	 of	 the	 move	 and	 only	 the	 broker	 needs	 to	 be
notified.	 Platform	 transparency	 means	 that	 each	 service	 can	 execute	 on	 a
different	hardware/software	platform	and	does	not	need	to	maintain	information
about	the	platforms	that	other	services	execute	on.

With	brokered	communication,	the	service	has	to	first	register	with	a	broker
as	described	by	the	service	registration	pattern	in	Section	11.6.1.	The	pattern	of
communication,	 in	 which	 the	 client	 knows	 the	 service	 required	 but	 not	 the
location,	is	referred	to	as	white	page	brokering,	analogous	to	the	white	pages	of
the	 telephone	 directory,	 and	 is	 described	 in	 Section	 11.6.2.	 Yellow	 page
brokering,	 in	which	 the	 specific	 service	 is	 discovered,	 is	 described	 in	 Section
11.6.3.

Although	 brokering	 patterns	 are	 used	 widely	 in	 service-oriented
architectures,	 as	 described	 in	Gomaa	 (2011),	 they	 are	 also	 effectively	 used	 in
distributed	 real-time	 embedded	 systems	 to	 allow	 dynamic	 binding	 of
components	at	run	time.	Thus	components	can	register	their	names	with	a	name
service,	which	acts	as	a	broker	for	components,	as	described	in	Chapter	12.



11.6.1	Service	Registration	Pattern

In	 broker	 patterns,	 the	 service	 needs	 to	 register	 service	 information	 with	 the
broker,	including	the	service	name,	a	description	of	the	service,	and	the	location
at	which	the	service	is	provided.	Service	registration	is	carried	out	the	first	time
the	service	joins	the	brokering	exchange	(analogous	to	the	stock	exchange).	On
subsequent	 occasions,	 if	 the	 service	 relocates,	 it	 needs	 to	 re-register	 with	 the
broker	 by	 providing	 its	 new	 location.	 The	 service	 registration	 pattern	 is
illustrated	 in	 Figure	 11.24,	 which	 depicts	 the	 service	 registering	 (or	 re-
registering	after	a	relocation)	a	service	with	the	broker	in	the	following	message
sequence:

R1:	The	Service	sends	a	register	Service	request	to	the	broker.

R2:	The	Broker	registers	the	service	in	the	service	registry	and	sends	a
registration	Ack	acknowledgment	to	the	service.



Figure	11.24.	Service	registration	with	Broker.



11.6.2	Broker	Handle	Pattern

With	 the	Broker	Handle	 pattern,	 the	broker	 is	 an	 intermediary	 for	 establishing
connections	between	clients	and	services.	Once	connected	to	a	service,	a	client
communicates	with	the	service	directly	without	involving	the	broker.

Most	commercial	object	brokers	use	a	Broker	Handle	design.	This	pattern	is
particularly	 useful	when	 the	 client	 and	 service	 are	 likely	 to	 have	 a	 dialog	 and
exchange	 several	 messages	 between	 them.	 The	 pattern	 is	 depicted	 in	 Figure
11.25	and	consists	of	the	following	message	sequence:

B1:	The	Service	Requester	client	sends	a	service	request	to	the
Broker.

B2:	The	Broker	looks	up	the	location	of	the	service	and	returns	a	service
handle	to	the	client.

B3:	The	Service	Requester	client	uses	the	service	handle	to	make	the
request	to	the	appropriate	Service.

B4:	The	Service	executes	the	request	and	sends	the	reply	directly	to	the
Service	Requester	client.

An	alternative	brokering	pattern	is	the	Broker	Forwarding	pattern,	in	which	the
broker	is	an	intermediary	for	every	message	sent	between	the	client	and	service.
Broker	 Forwarding	 is	 less	 efficient	 if	 the	 client/service	 dialog	 results	 in	 the
exchange	 of	 several	 messages.	 The	 reason	 is	 that	 with	 Broker	 Handle,	 the
interaction	with	the	broker	is	only	done	once	at	the	start	of	the	dialog	instead	of
every	time,	as	with	Broker	Forwarding.

The	 message	 traffic	 using	 the	 Broker	 Handle	 pattern	 is	 equal	 to	 2n+2,
assuming	that	each	request	n	has	one	response,	and	that	two	additional	messages
are	needed	for	the	client	to	communicate	with	the	broker	and	receive	a	response.



Compared	 with	 the	 Client/Service	 pattern	 (see	 Section	 11.4.1)	 in	 which	 the
message	traffic	is	equal	to	2n,	the	brokering	overhead	decreases	as	the	value	of	n
increases.

For	 a	 real	 time	embedded	 system,	 the	Broker	Handle	pattern	 can	be	used
efficiently	 to	 establish	 a	 connection	 between	 client	 and	 service	 components	 at
initialization	 time,	 and	 then	 during	 normal	 operation,	 communication	 between
components	is	done	efficiently	without	broker	intervention.

Figure	11.25.	Broker	Handle	(white	page	brokering)	pattern.



11.6.3	Service	Discovery	Pattern

The	 brokered	 patterns	 of	 communication	 described	 earlier,	 in	which	 the	 client
knows	 the	 service	 required	 but	 not	 the	 location,	 are	 referred	 to	 as	white	 page
brokering.	A	different	brokering	pattern	is	yellow	page	brokering,	analogous	to
the	yellow	pages	of	the	telephone	directory,	in	which	the	client	knows	the	type
of	service	required	but	not	the	specific	service.	This	pattern,	which	is	shown	in
Figure	11.26,	is	also	known	as	the	Service	Discovery	pattern	because	it	allows
the	 client	 to	 discover	 new	 services.	 The	 client	 sends	 a	 query	 request	 to	 the
broker,	requesting	all	services	of	a	given	type.	The	broker	responds	with	a	list	of
all	services	 that	match	the	client's	 request.	The	client	selects	a	specific	service.
The	broker	returns	the	service	handle,	which	the	client	uses	for	communicating
directly	with	the	service.

The	pattern	interactions,	 in	which	a	yellow	pages	request	is	followed	by	a
white	pages	request,	are	described	in	more	detail	as	follows:

1:	The	Service	Requester	client	sends	a	yellow	pages	request	to	the	Broker
requesting	information	about	all	services	of	a	given	type.

2:	The	Broker	looks	up	this	information	and	returns	a	list	of	all	services	that
satisfy	the	query	criteria.

3:	The	Service	Requester	client	selects	one	of	the	services	and	sends	a	white
pages	request	to	the	Broker.

4:	The	Broker	looks	up	the	location	of	the	service	and	returns	a	service	handle
to	the	Service	Requester	client.

5:	The	Service	Requester	client	uses	the	service	handle	to	send	a	request	to
the	appropriate	Service



6:	The	Service	executes	the	request	and	sends	the	response	directly	to	the
Service	Requester	client.

The	 message	 traffic	 using	 yellow	 page	 brokering	 followed	 by	 white	 page
brokering	 is	 equal	 to	 2n+4.	 This	 assumes	 that	 each	 client	 request	 n	 has	 one
response,	 two	 messages	 are	 needed	 for	 yellow	 page	 brokering,	 and	 two
additional	messages	 are	 needed	 for	 white	 page	 brokering.	 Compared	with	 the
Client/Service	pattern	(see	Section	11.4.1)	in	which	the	message	traffic	is	equal
to	2n,	 the	brokering	overhead	decreases	as	 the	value	of	n	 increases.	For	a	 real
time	 embedded	 system,	 an	 efficient	 usage	 of	 these	 patterns	 is	 to	 establish	 a
connection	between	client	and	service	components	at	initialization	time	using	the
yellow	pages	 service	 discovery	 pattern	 followed	 by	 the	white	 pages	 brokering
pattern,	 and	 then	 during	 subsequent	 operation,	 components	 can	 communicate
efficiently	with	each	other	without	any	broker	intervention.

Figure	11.26.	Service	discovery	(yellow	page	brokering)	pattern.



11.7	Group	Message	Communication
Patterns

The	message	communication	patterns	described	so	far	have	involved	one	source
and	 one	 destination	 component.	 A	 desirable	 property	 in	 some	 distributed
applications	 is	 group	 communication.	 This	 is	 a	 form	 of	 one-to-many	message
communication	 in	which	a	 sender	 sends	one	message	 to	many	 recipients.	Two
kinds	 of	 group	 message	 communication	 (sometimes	 referred	 to	 as	 groupcast
communication)	supported	in	distributed	applications	are	broadcast	and	multicast
communication.



11.7.1	Broadcast	Message	Communication	Pattern

With	 the	 Broadcast	 (or	 Broadcast	 Communication)	 pattern,	 an	 unsolicited
message	is	sent	to	all	recipients,	perhaps	informing	them	of	a	pending	shutdown.
Each	 recipient	 must	 then	 decide	 whether	 it	 wishes	 to	 process	 the	 message	 or
discard	it.	An	example	of	the	Broadcast	pattern	is	given	in	Figure	11.27.	Alarm
Handling	Service	sends	alarm	Broadcast	messages	to	all	instances	of	the
Operator	 Interaction	 component.	 Each	 recipient	 must	 decide	 whether	 it
wishes	 to	 take	 action	 in	 response	 to	 the	 alarm	 or	 to	 ignore	 the	message.	 The
pattern	interactions	are	described	in	more	detail	as	follows:

B1:	Event	Monitor	sends	an	alarm	message	to	Alarm	Handling
Service.

B2a,	B2b,	B2c:	Alarm	Handling	Service	broadcasts	the	alarm	as	an
alarm	Broadcast	message	to	all	instances	of	the	Operator
Interaction	component.	Each	recipient	decides	whether	to	take	action	or
discard	the	message.



11.7.2	Subscription/Notification	Message	Communication	Pattern

Multicast	 communication	 provides	 a	 more	 selective	 form	 of	 group
communication,	 in	which	 the	same	message	 is	sent	 to	all	members	of	a	group.
The	 Subscription/Notification	 pattern	 (also	 called	 Publish/Subscribe	 pattern)
uses	 a	 form	 of	 multicast	 communication	 in	 which	 components	 subscribe	 to	 a
group	and	receive	messages	destined	for	all	members	of	the	group.	A	component
can	subscribe	to	(request	to	join)	or	unsubscribe	from	(leave)	a	group	and	can	be
a	member	 of	more	 than	 one	 group.	 A	 sender,	 also	 referred	 to	 as	 a	 publisher,
sends	 a	message	 to	 the	 group	without	 having	 to	 know	who	 all	 the	 individual
members	are.	The	message	is	then	sent	to	all	members	of	the	group.	Sending	the
same	 message	 to	 all	 members	 of	 a	 group	 is	 referred	 to	 as	 multicast
communication.	A	message	 sent	 to	 a	 subscriber	 is	 also	 referred	 to	 as	 an	event
notification.	While	 on	 a	 subscription	 list,	 a	member	 can	 receive	 several	 event
notification	messages.	 The	 Subscription/Notification	 pattern	 is	widely	 used	 on
the	Internet.



Figure	11.27.	Broadcast	pattern.

Real-Time	systems	can	use	utilize	the	Subscription/Notification	pattern	by
making	 subscriptions	at	 initialization	 time	and	using	event	notifications	during
normal	 execution	 at	 run	 time.	 A	 variation	 on	 this	 pattern	 is	 the	 Multicast
Notification	 pattern,	 in	 which	 multicast	 connections	 among	 components	 are
made	 via	 a	 connection	 table	 (also	 called	 a	 name	 table,	 see	 Chapter	 12)	 at
initialization	time.	Thus	the	connection	is	implicit	rather	than	through	an	explicit
subscription	and	event	notifications	are	handled	as	usual	at	run	time.

An	 example	 of	 the	 Subscription/Notification	 pattern	 is	 shown	 in	 Figure
11.28.	First,	three	instances	of	the	Operator	Interaction	component	send	a
subscribe	 message	 to	 Alarm	 Handling	 Service	 to	 receive	 alarms	 of	 a
certain	type.	Every	time	the	Alarm	Handling	Service	component	receives	a
new	alarm	message	of	 this	 type,	 it	multicasts	 the	alarm	Notify	notification



message	 to	 all	 subscriber	Operator	Interaction	 components.	 The	 pattern
interactions	are	described	in	more	detail	as	follows:

S1,	S2,	S3:	Operator	Interaction	components	subscribe	to	receive
alarm	notifications.

N1:	Event	Monitor	sends	an	alarm	message	to	Alarm	Handling
Service.

N2a,	N2b,	N2c:	Alarm	Handling	Service	looks	up	the	list	of
subscribers	who	have	requested	to	be	notified	of	alarms	of	this	type.	It
multicasts	the	alarm	Notify	message	to	all	instances	of	the	Operator
Interaction	component	that	are	on	the	subscription	list.	Each	recipient
takes	appropriate	action	in	response	to	the	alarm	notification.

Another	 variation	 on	 the	 Subscription/Notification	 pattern	 is	 to	 have	 only	 one
subscriber.	 This	 arrangement	 is	 useful	 in	 peer-to-peer	 situations	 in	 which	 the
producer	does	not	know	who	the	consumer	 is	and	 the	consumer	might	change.
The	 consumer	 can	 subscribe	 to	 the	 producer,	 sending	 it	 a	 handle,	 which	 the
producer	 then	 uses	 for	 sending	 messages	 to	 the	 consumer.	 This	 is	 useful	 for
reversing	a	dependency	because,	by	virtue	of	 the	subscription,	 the	consumer	 is
dependent	on	the	producer	rather	than	vice	versa.



Figure	11.28.	Example	of	the	Subscription/Notification	pattern.



11.8	Documenting	Software	Architectural
Patterns

Whatever	 the	 category	 of	 pattern,	 it	 is	 very	 useful	 to	 have	 a	 standard	way	 of
describing	 and	 documenting	 a	 pattern	 so	 that	 it	 can	 be	 easily	 referenced,
compared	with	other	patterns,	and	reused.	Three	 important	aspects	of	a	pattern
that	need	to	be	captured	(Buschmann	et	al.	1996)	are	the	context,	problem,	and
solution.	The	context	 is	 the	situation	 that	gives	rise	 to	a	problem.	The	problem
refers	to	a	recurring	problem	that	arises	in	this	context.	The	solution	is	a	proven
resolution	 to	 the	 problem.	 A	 template	 for	 describing	 a	 pattern	 usually	 also
addresses	 its	 strengths,	 weaknesses,	 and	 related	 patterns.	 A	 typical	 template
looks	like	this:

Pattern	name.

Aliases.	Other	names	by	which	this	pattern	is	known.

Context.	The	situation	that	gives	rise	to	this	problem.

Problem.	Brief	description	of	the	problem.

Summary	of	solution.	Brief	description	of	the	solution.

Strengths	of	solution.	Use	to	determine	if	the	solution	is	right	for	your
problem.

Weaknesses	of	solution.	Use	to	determine	if	the	solution	is	wrong	for
your	problem.

Applicability.	Situations	in	which	you	can	use	the	pattern.

Related	patterns.	Other	patterns	to	consider	for	your	solution.



The	 patterns	 described	 in	 this	 chapter	 are	 documented	 with	 this	 standard
template	in	Appendix	B.

Reference.	Where	you	can	find	more	information	about	the	pattern.



11.9	Applying	Software	Architectural
Patterns

This	 section	 describes	 how	 to	 develop	 a	 software	 architecture	 starting	 from
software	architectural	patterns.	A	very	important	decision	is	to	determine	which
architectural	 patterns	 –	 in	 particular,	 which	 architectural	 structure	 and
communication	 patterns	 –	 are	 required.	 Architectural	 structure	 patterns	 can
initially	 be	 identified	 during	 dynamic	 interaction	 modeling	 (see	 Chapter	 9)
because	 patterns	 can	 be	 recognized	 during	 development	 of	 the	 interaction
diagrams.	 For	 example,	 any	 of	 the	 control	 patterns	 can	 first	 be	 used	 during
dynamic	 modeling.	 Although	 architectural	 structure	 patterns	 can	 be	 identified
during	 dynamic	 modeling,	 the	 real	 decisions	 are	 made	 during	 software
architectural	 design.	 It	 is	 necessary	 to	 first	 decide	what	 architectural	 structure
patterns	to	apply	in	order	to	determine	the	organization	of	the	components	in	the
architecture,	 and	 then	 to	 apply	 the	 architectural	 communication	 patterns	 to
determine	how	components	communicate	with	each	other.

The	different	architectural	structure	and	communication	patterns	described
in	this	chapter	can	be	used	together.	Thus,	a	Layers	of	Abstraction	architecture
might	incorporate	the	control,	Kernel	and	Client/Service	patterns.	For	example,
the	 light	 rail	 control	 system	 (Chapter	 21)	 incorporates	 various	 control	 patterns
and	client/service	patterns	within	a	 layered	architectural	pattern.	 It	also	applies
several	 communication	 patterns,	 including	 asynchronous	 and	 synchronous
message	 communication,	 bidirectional	 message	 communication,	 and
subscription/notification.



11.10	Summary
This	chapter	has	described	several	software	architectural	patterns.	Architectural
structure	 patterns	 are	 used	 to	 address	 the	 structure	 of	 a	 software	 architecture.
Architectural	 communication	 patterns	 address	 how	 distributed	 components	 of
the	 software	 architecture	 communicate	with	 each	 other.	 Software	 architectural
patterns	can	be	combined	 to	develop	a	new	software	architecture,	starting	with
the	 architectural	 structure	 patterns	 and	 then	 incorporating	 architectural
communication	patterns.

This	 chapter	 has	 also	 described	 how	 to	 document	 software	 architectural
patterns	using	a	standard	template.	The	software	architectural	patterns	described
in	 this	 chapter	 are	 documented	with	 this	 template	 in	Appendix	B.	 Chapter	 12
discusses	 several	 important	 topics	 in	 designing	 component-based	 software
architectures.	The	case	studies	in	Chapters	19	through	23	give	several	examples
of	 applying	 the	 software	 architectural	 structure	 and	 communication	 patterns	 to
real-time	software	designs.



12

Component-Based	Software
Architectures	for	Real-Time

Embedded	Systems
◈

In	earlier	chapters,	 the	 term	component	has	been	used	 informally.	This	chapter
describes	 the	 design	 of	 distributed	 component-based	 software	 architectures	 in
which	the	architecture	for	a	real-time	embedded	system	is	designed	in	terms	of
components	that	can	be	deployed	to	execute	on	different	nodes	in	a	distributed
environment.	 It	 describes	 the	 component	 structuring	 criteria	 for	 designing
components	that	can	be	deployed	to	execute	in	a	distributed	configuration.	The
design	 of	 component	 interfaces	 is	 described,	 with	 component	 ports	 that	 have
provided	and	required	interfaces	and	connectors	that	join	compatible	ports.

Components	are	 initially	designed	using	 the	subsystem	structuring	criteria
described	in	Chapter	10.	Additional	component	configuration	criteria	are	used	to
ensure	 that	 components	 are	 configurable,	 in	 other	 words	 that	 they	 can	 be
effectively	deployed	to	distributed	physical	nodes	in	a	distributed	environment.
Architectural	 structure	 and	 communication	 patterns	 described	 previously	 in
Chapter	 11	 are	 also	 used	 in	 the	 design	 of	 component-based	 software
architectures.



Components	 can	 be	 effectively	 modeled	 in	 UML	 with	 structured	 classes
and	depicted	on	composite	structure	diagrams.	Structured	classes	have	ports	with
provided	 and	 required	 interfaces.	 Structured	 classes	 can	 be	 interconnected
through	their	ports	via	connectors	that	join	the	ports	of	communicating	classes.
Chapter	 2,	 Section	 2.10	 and	 Chapter	 10,	 Section	 10.2.1	 introduce	 the	 UML
notation	for	composite	structure	diagrams.	This	chapter	describes	in	detail	how
component-based	software	architectures	are	designed.

Section	12.1	describes	 concepts	 for	 distributed	 component-based	 software
architectures.	 Section	 12.2	 describes	 the	 steps	 in	 designing	 distributed
component-based	software	architectures.	Section	12.3	describes	how	component
interfaces	 are	 designed	 with	 provided	 and	 required	 interfaces.	 Section	 12.4
describes	 the	 concepts	 and	 design	 of	 composite	 subsystems	 and	 components.
Section	12.5	describes	some	examples	of	distributed	component-based	software
architectures.	 Section	 12.6	 describes	 component	 structuring	 criteria	 for
structuring	 a	 software	 architecture	 into	 configurable	 distributed	 components.
Section	 12.7	 describes	 the	 design	 of	 sequential	 and	 concurrent	 service
subsystems.	 Section	 12.8	 describes	 issues	 in	 the	 distribution	 of	 data	 in
distributed	 systems.	 Section	 12.9	 describes	 component	 deployment	 to	 a
distributed	configuration.	Finally,	Section	12.10	describes	the	design	of	software
connectors.



12.1	Concepts	for	Component-Based
Software	Architectures

A	 component	 integrates	 the	 concepts	 of	 encapsulation	 and	 concurrency.	 An
important	 goal	 of	 a	 component-based	 software	 architecture	 is	 to	 provide	 a
concurrent	message-based	design	that	is	highly	configurable.	In	other	words,	the
objective	 is	 that	 the	 same	 software	 architecture	 should	 be	 capable	 of	 being
deployed	 to	many	 different	 distributed	 configurations.	 Thus,	 a	 given	 software
system	 could	 be	 configured	 to	 have	 each	 component	 instance	 allocated	 to	 its
own	separate	physical	node,	or	alternatively	to	have	all	or	some	of	its	component
instances	 allocated	 to	 the	 same	 physical	 node.	To	 achieve	 this	 flexibility,	 it	 is
necessary	 to	 design	 the	 software	 architecture	 in	 such	 a	 way	 that	 the	 decision
about	how	component	instances	will	be	allocated	to	physical	nodes	is	made	not
at	design	time	but	later,	at	system	deployment	time.

A	 component-based	 software	 development	 approach,	 in	 which	 each
subsystem	is	designed	as	a	distributed	self-contained	component,	helps	achieve
the	 goal	 of	 a	 distributed,	 highly	 configurable,	 message-based	 design.	 A
distributed	 component	 is	 a	 logical	 unit	 of	 distribution	 and	 deployment.	 A
component	 can	 be	 either	 a	 composite	 component	 or	 a	 simple	 component.	 A
composite	 component	 contains	 internal	 components,	 which	 are	 themselves
either	composite	or	simple	components.	A	simple	component	has	no	constituent
components	 within	 it.	 However,	 a	 simple	 component	 can	 encapsulate	 one	 or
more	objects,	which	could	be	active	or	passive,	providing	at	least	one	object	is
active.

Because	components	can	be	deployed	to	different	nodes	in	a	geographically
distributed	 environment,	 all	 communication	 between	 components	 must	 be



restricted	 to	message	 communication.	 Thus,	 a	 source	 component	 on	 one	 node
sends	 a	 message	 over	 the	 network	 to	 a	 destination	 component	 on	 a	 different
node.	 Components	 communicate	 with	 each	 other	 using	 the	 architectural
communication	 patterns	 described	 in	Chapter	 11.	 The	 details	 of	 these	 patterns
are	encapsulated	in	connectors	that	interconnect	the	components.



12.2	Designing	Distributed	Component-
Based	Software	Architectures

A	 distributed	 component-based	 software	 architecture	 for	 a	 real-time
embedded	system	consists	of	distributed	components	 that	can	be	configured	 to
execute	 on	 distributed	 physical	 nodes.	 To	 successfully	 manage	 the	 inherent
complexity	of	large-scale	distributed	real-time	embedded	systems,	it	is	necessary
to	provide	an	approach	for	structuring	the	software	architecture	into	components
in	which	each	component	instance	can	potentially	execute	on	its	own	node.	After
this	design	is	performed	and	the	interfaces	between	the	components	are	carefully
defined,	each	component	can	be	designed	independently.

The	three	main	steps	in	designing	a	distributed	component-based	software
architecture	are:

1.	Design	software	architecture.	Structure	the	software	architecture	into
constituent	components	that	potentially	could	execute	on	separate	nodes	in	a
distributed	environment.	Because	component	instances	can	reside	on	separate
nodes,	all	communication	between	components	must	be	restricted	to	message
communication.	The	interfaces	between	components	are	defined.	The	subsystem
structuring	criteria,	as	described	in	Section	10.4,	are	used	to	initially	determine
the	components.	Additional	component	structuring	criteria	are	used	to	ensure
that	the	components	are	designed	as	configurable	components	that	can	be
effectively	deployed	to	physical	nodes.

2.	Design	constituent	components	as	composite	or	simple	components.	A
composite	component	is	designed	as	described	in	step	1.	A	simple	component	is
structured	into	concurrent	objects	and	passive	information	hiding	objects,	as



described	in	Chapter	13.	By	definition,	a	simple	component	can	execute	on	only
one	node

3.	Deploy	the	software	components.	After	the	component-based	software
architecture	has	been	designed	and	implemented,	component	instances	can	be
deployed	to	a	distributed	configuration.	During	this	stage,	the	component
instances	of	the	software	are	defined,	instantiated,	mapped	to	physical	nodes,
interconnected,	and	deployed	to	a	hardware	configuration	consisting	of
distributed	physical	nodes.



12.3	Component	Interface	Design
This	section	describes	the	design	of	component	interfaces,	an	important	issue	in
software	 architecture.	 In	 particular,	 this	 section	 describes	 how	 interfaces	 are
specified	 before	 describing	 provided	 and	 required	 interfaces,	 ports	 (and	 how
they	are	specified	in	terms	of	provided	and	required	interfaces),	and	connectors
that	interconnect	components.



12.3.1	Component	Interfaces

An	important	goal	of	both	object-oriented	design	and	component-based	software
architecture	 is	 the	 separation	 of	 the	 interface	 from	 the	 implementation.	 An
interface	 specifies	 the	 externally	 visible	 operations	 of	 a	 class,	 service,	 or
component	 without	 revealing	 the	 internal	 structure	 (implementation)	 of	 the
operations,	 as	 described	 in	 Section	 10.1.3.	 A	 given	 interface	 it	 provides	 is
designed	to	consist	of	a	selection	of	its	operations,	tailored	to	meet	the	needs	of	a
subset	of	its	client	components.

Three	interfaces	from	an	emergency	monitoring	system	will	be	used	in	the
examples	 that	 follow.	 Each	 interface	 consists	 of	 one	 or	 more	 operations,	 as
follows:

1.	Interface:	IAlarmService	Operations	provided:

2.	Interface:	IAlarmStatus	Operation	provided:	post	(in	alarm)

3.	Interface:	IAlarmNotification	Operation	provided:	alarmNotification	(in
alarm)

The	interface	of	a	component	can	be	depicted	with	the	static	modeling	notation
(see	Chapter	2),	as	shown	in	Figure	12.1,	with	the	stereotype	«interface».

alarmRequest	(in	request,	out	alarmData)

alarmSubscribe	(in	request,	in	notificationHandle,	out	ack)



Figure	12.1.	Example	of	component	interfaces.



12.3.2	Provided	and	Required	Interfaces

To	provide	a	complete	definition	of	the	component-based	software	architecture,
it	 is	 necessary	 to	 specify	 the	 interface(s)	 provided	by	 each	 component	 and	 the
interface(s)	 required	 by	 each	 component.	 A	 provided	 interface	 specifies	 the
operations	 that	 a	 component	 must	 fulfill.	 A	 required	 interface	 describes	 the
operations	that	other	components	provide	for	this	component	to	operate	properly
in	a	particular	environment.

Although	 many	 components	 are	 designed	 to	 provide	 one	 interface,	 it	 is
possible	 for	 a	 component	 to	 provide	more	 than	 one	 interface.	 To	 do	 this,	 the
component	 designer	 selects	 for	 each	 provided	 interface	 a	 subset	 of	 the
component's	operations	that	are	required	by	some	of	its	clients.	An	example	of	a
component	 that	 provides	 more	 than	 one	 interface	 is	 the	 Alarm	 Service

component,	which	provides	two	of	the	interfaces	in	Figure	12.1,
IAlarmService	 and	 IAlarmStatus.	 IAlarmService	 is	 required	 by	 the
Operator	Alarm	Presentation	component	and	IAlarmStatus	is	required
by	the	Monitoring	Sensor	Component,	as	shown	in	Figure	12.2.



12.3.3	Ports	and	Interfaces

A	 component	 has	 one	 or	 more	 ports	 through	 which	 it	 interacts	 with	 other
components.	 Each	 component	 port	 is	 defined	 in	 terms	 of	 provided	 and/or
required	 interfaces.	 A	 provided	 interface	 of	 a	 port	 specifies	 the	 requests	 that
other	 components	 can	make	of	 this	 component.	A	 required	 interface	 of	 a	 port
specifies	 the	 requests	 that	 this	 component	 can	 make	 of	 other	 components.	 A
provided	 port	 supports	 a	 provided	 interface.	 A	 required	 port	 supports	 a
required	 interface.	 A	 complex	 port	 supports	 both	 a	 provided	 interface	 and	 a
required	interface.	A	component	can	have	more	than	one	port.	In	particular,	if	a
component	communicates	with	more	than	one	component,	it	can	use	a	different
port	 for	 each	 component	 with	 which	 it	 communicates.	 Figure	 12.2	 shows	 an
example	of	components	with	ports,	as	well	as	provided	and	required	interfaces.
Figure	 12.2	 depicts	 each	 component	with	 two	 stereotypes:	 the	 first	 stereotype
corresponding	 to	 its	 subsystem	 structuring	 criterion	 (Section	 10.5),	 such	 as
«service»	or	«user	interaction»,	and	the	second	stereotype	is	«component».



Figure	12.2.	Examples	of	component	ports,	with	provided	and	required
interfaces.

By	 convention,	 the	 name	 of	 a	 component's	 required	 port	 starts	 with	 the
letter	 R	 to	 emphasize	 that	 the	 component	 has	 a	 required	 port.	 The	 name	 of	 a
component's	 provided	 port	 starts	 with	 the	 letter	 P	 to	 emphasize	 that	 the
component	 has	 a	 provided	 port.	 In	 Figure	 12.2,	 the	 Monitoring	 Sensor

Component	 has	 one	 required	 port,	 called	 RAlarmStatus,	 which	 supports	 a
required	 interface	 called	 IAlarmStatus,	 as	 defined	 in	 Figure	 12.1.	 The
Operator	 Alarm	 Presentation	 component	 is	 a	 client	 component,	 which
has	a	required	port	with	a	required	interface	(PAlarmService)	and	a	provided
port	 with	 a	 provided	 interface	 PAlarmNotification.	 The	 Alarm	 Service
component	 has	 two	 provided	 ports,	 called	 PAlarmStatus	 and
PAlarmService,	 and	 one	 required	 port,	 RAlarmNotification.	 The	 port
PAlarmStatus	 provides	 an	 interface	 called	 IAlarmStatus,	 through	 which
alarm	 status	 messages	 are	 sent.	 The	 port	 PAlarmService	 provides	 the	 main
interface	 through	 which	 clients	 request	 alarm	 services	 (provided	 interface
IAlarmService).	The	Alarm	Service	 component	 sends	 alarm	notifications
through	its	RAlarmNotification	port.



12.3.4	Connectors	and	Interconnecting	Components

A	connector	 joins	 the	 required	port	of	one	component	 to	 the	provided	port	of
another	 component.	 The	 connected	 ports	must	 be	 compatible	with	 each	 other.
This	means	 that	 if	 two	 ports	 are	 connected,	 the	 required	 interface	 of	 one	 port
must	 be	 compatible	 with	 the	 provided	 interface	 of	 the	 other	 port;	 that	 is,	 the
operations	 required	 in	one	component's	 required	 interface	must	be	 the	 same	as
the	operations	provided	in	the	other	component's	provided	interface.	In	the	case
of	a	connector	joining	two	complex	ports	(each	with	one	provided	interface	and
one	 required	 interface),	 the	 required	 interface	 of	 the	 first	 port	 must	 be
compatible	 with	 the	 provided	 interface	 of	 the	 second	 port,	 and	 the	 required
interface	of	 the	 second	port	must	be	compatible	with	 the	provided	 interface	of
the	first	port.

Figure	 12.3	 shows	 how	 the	 three	 components	 (Monitoring	 Sensor

Component,	 Operator	 Alarm	 Presentation,	 and	 Alarm	 Service)	 are
interconnected.	The	first	connector	 is	unidirectional	 (as	shown	by	 the	direction
of	 the	 arrow	 representing	 the	 connector)	 and	 joins	 Monitoring	 Sensor

Component's	 RAlarmStatus	 required	 port	 to	 Alarm	 Service's
PAlarmStatus	provided	port.	Figure	12.2	shows	that	these	ports	are	compatible
because	 it	 results	 in	 the	IAlarmStatus	 required	 interface	 being	 connected	 to
the	 IAlarmStatus	 provided	 interface.	 The	 second	 connector	 is	 also
unidirectional	 and	 joins	 Operator	 Alarm	 Presentation's	 required	 port
RAlarmService	 to	 Alarm	 Service's	 provided	 port	 PAlarmService.
Examination	 of	 the	 port	 design	 in	 Figure	 12.2	 shows	 that	 these	 ports	 are	 also
compatible,	 with	 the	 required	 IAlarmService	 interface	 connected	 to	 the
provided	interface	of	the	same	name.	The	third	connector	is	also	unidirectional
and	 joins	 Alarm	 Service's	 RAlarmNotification	 required	 port	 to



Operator	 Alarm	 Presentation's	 PAlarmNotification	 provided	 port,
and	 it	 is	 through	 this	 connector	 that	 alarm	 notifications	 are	 sent	 via	 the
IAlarmNotification	interface.

Figure	12.3.	Example	of	components,	ports,	and	connectors	in	a	software
architecture.



12.4	Designing	Composite	Components
A	 composite	 component	 is	 a	 component	 that	 encapsulates	 the	 internal
components	 it	 contains.	 The	 component	 is	 both	 a	 logical	 and	 a	 physical
container;	 however,	 it	 adds	 no	 further	 functionality.	 Thus,	 a	 component's
functionality	is	provided	entirely	by	the	constituent	components	it	contains.	An
example	 of	 a	 composite	 component	 with	 internal	 components	 is	 depicted	 in
Figure	12.4,	in	which	the	composite	Operator	Presentation	user	interaction
component	 contains	 three	 internal	 simple	 components,	 Operator

Interaction,	Alarm	Window,	and	Event	Monitoring	Window.

Figure	12.4.	Example	of	composite	component	with	nested	simple
components.

Incoming	messages	 to	 a	 composite	 component	 are	 passed	 through	 to	 the
appropriate	 internal	 destination	 component,	 and	 outgoing	 messages	 from	 an
internal	 component	 are	 passed	 through	 to	 the	 appropriate	 external	 (to	 the
component)	 destination	 component.	 The	 exact	 pass-through	 mechanisms	 are
implementation-dependent.



A	composite	component	 is	 structured	 into	part	components.	A	component
with	 no	 internal	 components	 is	 referred	 to	 as	 a	 simple	 component.	 The	 part
components	within	a	composite	component	can	be	depicted	as	instances	because
it	is	possible	to	have	more	than	one	instance	of	the	same	part	component	within
the	composite	component.

Figure	 12.5	 shows	 an	 example	 of	 a	 composite	 component,	 the	 Warning
Alarm	component	 from	the	Railroad	Crossing	Control	System,	which	contains
two	 simple	 components:	 Warning	 Light	 Output	 and	 Warning	 Audio

Output.	 The	 composite	 component	 is	 depicted	 with	 the	 «component»
stereotype.	The	simple	components	are	designed	as	demand	driven	output	tasks
(see	 Chapter	 13)	 and	 are	 therefore	 depicted	 with	 the	 stereotypes	 «demand»
«output»	«swSchedulableResource».

The	provided	port	Plight	of	the	composite	Warning	Alarm	component	is
connected	directly	to	the	provided	port	Plight	of	the	internal	Warning	Light
Output	component.	The	connector	joining	the	two	ports	is	called	a	delegation
connector,	 which	means	 that	 the	 outer	 delegating	 port	 provided	 by	 Warning
Alarm	forwards	each	message	it	receives	to	the	inner	port	provided	by	Warning
Light	 Output.	 By	 convention,	 the	 two	 ports	 are	 given	 the	 same	 name,
Plight,	because	 they	provide	 the	 same	 interface	ILight,	 as	 shown	 in	Figure
12.5.	 Delegation	 means	 that	 the	 operations	 of	 the	 outer	 component	 call	 the
operations	of	 the	same	name	in	the	inner	component.	Thus,	 the	activate	and
deactivate	operations	of	the	ILight	interface	of	the	Warning	Alarm	outer
component	 respectively	call	 the	activate	 and	deactivate	operations	of	 the
ILight	interface	of	the	Warning	Light	Output	inner	component.	The	inner
activate	and	deactivate	operations	are	 implemented	differently	since	they
send	 switch	on	 and	 switch	off	 commands	 respectively	 to	 the	physical	warning
light.	This	discussion	of	connector	delegation	also	applies	 to	 the	PAudio	ports
and	 the	 IAudio	 interfaces	 of	 the	 outer	 component	 Warning	 Alarm	 and	 the



inner	component	Warning	Audio	Output.	Although	the	IAudio	interfaces	of
the	outer	and	inner	components	are	the	same,	their	implementation	is	different.

Figure	12.5.	Design	of	composite	component.

Only	 distributed	 components	 can	 be	 deployed	 to	 the	 physical	 nodes	 of	 a
distributed	configuration.	Passive	objects	cannot	be	independently	deployed,	nor
can	any	active	object	that	directly	invokes	the	operations	of	a	passive	object;	in
that	 situation,	 only	 the	 component	 (which	 contains	 the	 active	 and	 passive
objects)	 can	 be	 deployed.	 By	 a	 COMET/RTE	 convention,	 only	 deployable
components	are	depicted	with	the	component	stereotype.



12.5	Examples	of	Component-Based
Software	Architecture

As	an	example	of	a	distributed	component-based	software	architecture,	consider
the	 Factory	 Automation	 System,	 which	 is	 shown	 on	 the	 concurrent
communication	 diagram	 in	 Figure	 12.6.	 It	 depicts	 the	 three	 interacting
distributed	systems	(designed	as	components),	 the	Supervisory	System,	 the
Automated	Guided	Vehicle	System,	and	the	Display	System.	There	is
one	 instance	 of	 the	 Supervisory	 System	 and	 multiple	 instances	 of	 the
Automated	 Guided	 Vehicle	 System	 and	 the	 Display	 System.	 All
communication	 between	 the	 distributed	 components	 is	 asynchronous,	 allowing
the	greatest	flexibility	in	message	communication.	Communication	between	the
Supervisory	System	and	the	Automated	Guided	Vehicle	System	is	an
example	of	 the	bidirectional	asynchronous	communication	pattern.	This	pattern
is	mapped	to	the	component-based	software	architecture,	as	described	below.



Figure	12.6.	Concurrent	communication	diagram	for	Factory	Automation
System.

The	 component-based	 software	 architecture	 for	 the	 Factory	 Automation
System	 is	 shown	 in	 Figure	 12.7,	 in	 which	 the	 three	 systems	 are	 designed	 as
distributed	 components.	 The	 Automated	 Guided	 Vehicle	 System	 has	 a
provided	 port	 for	 receiving	messages	 from	 the	 Supervisory	 System	 and	 a
required	port	for	sending	messages	to	the	Display	System.	The	provided	port
PAGVSystem	is	a	complex	port	as	it	has	both	a	provided	interface	IAGVSystem
for	 receiving	 command	 messages	 and	 a	 required	 interface
ISupervisorySystem	 for	 sending	 acknowledgment	 messages,	 as	 shown	 in
Figure	12.8.	The	required	port	RDisplaySystem	 supports	a	 required	 interface
IDisplaySystem	for	sending	AGV	status	messages	to	the	Display	System.
The	three	component	interfaces	are	also	defined	in	Figure	12.8.

To	 support	 the	 bidirectional	 asynchronous	 communication	 pattern,	 the
Supervisory	 System	 sends	 asynchronous	 move	 command	 messages	 to



Automated	Guided	Vehicle	System	 through	 the	RAGVSystem	 port	 using
the	 moveCommand	 operation	 of	 the	 required	 interface	 IAGVSystem.	 The
Pseudocode	is:	RAGVSystem.moveCommand	(in	command);

Automated	 Guided	 Vehicle	 System	 responds	 by	 sending
asynchronous	acknowledgment	messages	to	Supervisory	System	through	the
PAGVSystem	 port	 using	 the	 AGVAck	 operation	 of	 the	 provided	 interface
ISupervisorySystem.	The	Pseudocode	is:	PAGVSystem.AGVAck	(in	status);

Note	 that	each	component	sends	a	message	by	communicating	 through	its
own	local	port,	which	means	that	it	need	have	no	knowledge	of	the	component
that	will	actually	receive	the	message.

Figure	12.7.	Component-based	software	architecture	for	Factory	Automation
System.



Figure	12.8.	Composite	component	ports	and	interfaces	for	Factory
Automation	System.



12.6	Component	Structuring	Criteria
A	distributed	 software	 architecture	must	be	designed	with	 an	understanding	of
the	 distributed	 environments	 in	 which	 it	 is	 likely	 to	 operate.	 The	 component
structuring	criteria	provide	guidelines	on	how	to	structure	a	software	architecture
into	configurable	distributed	components,	instances	of	which	can	be	deployed	to
geographically	distributed	nodes.	The	actual	assignment	of	component	instances
to	physical	nodes	is	done	later,	when	an	individual	target	system	is	instantiated
and	deployed.	However,	it	is	necessary	to	design	the	components	as	configurable
components,	 instances	 of	 which	 are	 indeed	 capable	 of	 later	 being	 effectively
deployed	to	distributed	physical	nodes.	Consequently,	the	component	structuring
criteria	must	take	into	account	the	characteristics	of	distributed	environments.

In	 a	 distributed	 environment,	 a	 component	 might	 be	 associated	 with	 a
particular	 physical	 location	 or	 constrained	 to	 execute	 on	 a	 given	 hardware
resource.	In	such	a	case,	the	component	is	constrained	to	execute	on	the	node	at
that	location.



12.6.1	Proximity	to	the	Source	of	Physical	Data	and/or	Physical
Component

In	a	distributed	environment,	the	sources	of	data	and/or	the	physical	components
being	 controlled	 might	 be	 physically	 distant	 from	 each	 other.	 Designing	 a
software	component	to	be	close	to	the	source	of	physical	data	ensures	fast	access
to	 the	 data,	 which	 is	 particularly	 important	 if	 data	 access	 rates	 are	 high.
Proximity	 of	 a	 software	 component	 to	 a	 physical	 component	 permits	 a
deployable	 software	 component	 to	 be	 physically	 located	 with	 the	 hardware
component	 as	 one	 system	 (hardware/software)	 composite	 component,	which	 is
also	referred	to	as	a	smart	device.

An	example	of	a	software	component	designed	to	be	in	close	proximity	to	a
physical	component	that	it	controls	is	the	Barrier	Component	in	the	Railroad
Crossing	Control	System,	as	 shown	 in	Figure	12.9,	which	 is	designed	 to	be	 in
close	proximity	to	the	physical	railroad	barrier.	The	Barrier	Component	is	a
composite	component	that	encapsulates	three	simple	barrier-related	components:
Barrier	Actuator	Output,	which	 sends	 commands	 to	 the	physical	 barrier
actuator;	 Barrier	 Detection	 Input,	 which	 receives	 inputs	 from	 the
physical	barrier	detection	sensor;	and	Barrier	Timer,	which	detects	if	there	is
a	 delay	 in	 barrier	 raising	or	 lowering.	Each	of	 the	 three	 simple	 components	 is
designed	as	a	concurrent	task;	for	example,	Barrier	Detection	Input	is	an
event	 drive	 input	 task	 and	 is	 depicted	 with	 the	 stereotypes	 «event-driven»
«input»	«swSchedulableResource»,	as	described	in	more	detail	in	Chapter	13.



Figure	12.9.	Example	of	component	proximity	to	the	source	of	physical	data:
Barrier	Component.

Another	example	of	a	component	designed	to	be	in	close	proximity	to	the
physical	component	is	the	Warning	Alarm	component	in	Figure	12.5,	which	is
designed	 to	 be	 close	 to	 the	 physical	 audio	 and	 visual	 warning	 alarms	 in	 the
Railroad	Crossing	Control	System.



12.6.2	Localized	Autonomy

A	distributed	 component	 often	performs	 a	 specific	 site-related	 function,	where
the	same	function	is	performed	at	multiple	sites.	Each	instance	of	the	component
resides	 on	 a	 separate	 node,	 thereby	 providing	 greater	 localized	 autonomy.
Greater	 autonomy	 means	 that	 the	 component	 can	 execute	 on	 a	 given	 node
independently	of	other	nodes.	Thus,	it	can	be	operational	even	if	the	other	nodes
are	 temporarily	 unavailable.	 Examples	 of	 autonomous	 components	 from	 the
Light	Rail	System	are	the	Train	Control	component,	an	instance	of	which	is
deployed	 to	 each	 physical	 train,	Station	 component,	 an	 instance	 of	which	 is
deployed	to	each	physical	railroad	station,	and	Railroad	Crossing	Control
component,	an	instance	of	which	is	deployed	to	each	physical	railroad	crossing,
as	depicted	in	the	deployment	diagram	in	Figure	12.10.	Thus	the	execution	of	a
Train	Control	component	on	a	given	train	is	not	affected	if	other	trains	stop
at	stations	or	go	out	of	service.	An	instance	of	Railroad	Crossing	Control
is	not	affected	if	other	railroad	crossings	are	inoperable.

Figure	12.10.	Examples	of	component	localized	autonomy	and	control	in
deployment	of	Light	Rail	System.



Another	 example	 of	 localized	 autonomy	 is	 from	 the	 Factory	 Automation
System	 in	which	 an	 instance	 of	 the	Automated	Guided	Vehicle	System
component	is	deployed	to	each	physical	vehicle,	as	depicted	in	Figures	12.6	and
12.7.



12.6.3	Performance

If	a	 time-critical	function	is	executed	entirely	by	a	component	on	a	given	node
without	 involving	 components	 on	 other	 nodes,	 better	 and	 more-predictable
component	performance	can	often	be	achieved.	 In	a	given	distributed	software
architecture,	 a	 real-time	 component	 can	 perform	 a	 time-critical	 function	 at	 a
given	node,	with	less-time-critical	functions	performed	elsewhere.	Examples	of
components	 that	 satisfy	 this	 criterion	 are	 the	Train	Control	 and	Railroad
Crossing	 Control	 components	 in	 Figure	 12.10	 and	 the	 AGV	 System

component	in	Figure	12.7.



12.6.4	Specialized	Hardware

A	 component	 might	 need	 to	 reside	 on	 a	 particular	 node	 because	 it	 supports
special-purpose	 hardware,	 such	 as	 interfacing	 to	 special-purpose	 peripherals,
sensors,	 or	 actuators	 that	 are	 connected	 to	 a	 specific	 node.	 Both	 the	 Train
Control	 component	 and	 the	 Railroad	 Crossing	 Control	 component
(Figure	12.10)	interface	to	special	purpose	sensors	and	actuators.



12.6.5	I/O	Component

An	I/O	component	can	be	designed	to	be	execute	on	a	separate	node	and	in	close
proximity	 to	 the	 source	 of	 physical	 data.	 In	 particular,	 “smart”	 devices	 are
typically	 given	 local	 autonomy,	 communicating	 with	 other	 components	 as
needed,	 and	 consist	 of	 the	 hardware	 plus	 the	 software	 that	 interfaces	 to	 and
controls	 the	 device.	 An	 I/O	 component	 typically	 consists	 of	 one	 or	 more
input/output	 objects	 that	 interface	 to	 and	 communicate	 with	 external	 devices
such	as	sensors	and	actuators,	and	it	may	also	contain	control	objects	to	provide
localized	control	and	entity	objects	to	store	local	data.

I/O	component	is	a	general	name	given	to	components	that	interact	with	the
external	 environment;	 they	 include	 input	 components,	 output	 components,	 I/O
components	 (which	 provide	 both	 input	 and	 output),	 network	 interface
components,	and	system	interface	components.

Examples	 of	 I/O	 components	 are	 the	Barrier	Component	 (depicted	 in
Figure	 12.9)	 and	 the	 Warning	 Alarm	 (depicted	 in	 Figure	 12.5)	 composite
components	 from	 the	 Railroad	 Crossing	 Control	 System.	 The	 design	 of	 the
Barrier	Component	is	described	in	Section	12.6.1.



12.7	Design	of	Service	Components
Service	components	play	an	important	role	in	the	design	of	distributed	software
architectures.	Real-time	embedded	systems	particularly	need	service	components
for	storing	and	accessing	status	and	alarm	data,	as	well	as	for	configuration	data,
which	can	be	used	during	software	initialization.	A	service	component	provides
a	 service	 for	 multiple	 client	 components,	 as	 described	 by	 the	 client/service
patterns	in	Chapter	11.	Typical	service	components	are	file	services	and	database
services.

In	distributed	software	architectures,	a	service	component	can	encapsulate
one	 or	more	 entity	 objects.	 A	 simple	 service	 component	 does	 not	 initiate	 any
requests	 for	 services;	 it	 only	 responds	 to	 requests	 from	 clients.	 There	 are	 two
kinds	of	service	components,	sequential	and	concurrent,	as	described	next.



12.7.1	Sequential	Service	Component

A	sequential	 service	component	 services	 client	 requests	 sequentially;	 that	 is,	 it
completes	one	request	before	it	starts	servicing	the	next.	A	sequential	service	is
designed	 as	 one	 active	 object	 (thread	 of	 control)	 that	 provides	 one	 or	 more
services	and	responds	to	requests	from	client	components	to	access	the	service.
For	example,	a	simple	sequential	service	component	 responds	 to	 requests	 from
client	components	to	update	or	read	data	from	a	passive	entity	object.	When	the
service	component	 receives	a	message	 from	a	client	component,	 it	 invokes	 the
appropriate	 operation	 provided	 by	 the	 passive	 entity	 object	 –	 for	 example,	 to
read	or	update	the	current	value	of	a	sensor.	The	Banking	Service	described
in	Chapter	11,	Section	11.4	and	Rail	Operations	Service	in	Figure	12.10
are	 both	 designed	 as	 sequential	 services.	 Sequential	 service	 components	 are
described	 in	 more	 detail	 in	 chapters	 on	 the	 design	 of	 client/server	 software
architectures	and	the	Banking	System	case	study	in	Gomaa	(2011).



12.7.2	Concurrent	Service	Component	with	Multiple	Readers	and
Writers

In	a	concurrent	service	design,	the	service	functionality	is	shared	among	several
concurrent	(active)	objects.	If	the	client	demand	for	services	is	high	enough	that
the	 sequential	 service	 component	 could	potentially	 become	a	bottleneck	 in	 the
system,	an	alternative	approach	is	for	the	services	to	be	provided	by	a	concurrent
service	component	and	hence	shared	among	several	concurrent	objects.

A	 concurrent	 service	 can	 be	 designed	 as	 a	 multithreaded	 service
component.	Each	 incoming	 service	 request	 is	 assigned	a	new	 thread,	 such	 that
each	 thread	 executes	 the	 same	 code.	 Such	 a	 design	must	 ensure	 thread	 safety
such	 that	 any	 access	 to	 shared	 data	 encapsulated	 in	 passive	 objects	 must	 be
synchronized,	as	described	in	Chapter	14.	With	this	approach,	 there	could	be	a
performance	problem	if	 too	may	requests	are	serviced	concurrently.	A	solution
to	this	problem	is	to	provide	a	fixed	number	of	threads	such	that	there	is	a	limit
to	the	number	of	concurrent	threads	that	could	be	concurrently	executing	at	any
one	time.	When	a	service	request	is	received,	a	thread	is	assigned	to	execute	the
request.	When	the	request	is	completed,	the	thread	is	released	and	is	assigned	the
next	 service	 request	 or	 becomes	 idle	 if	 there	 are	 no	 outstanding	 requests.
Requests	that	exceed	the	thread	limit	are	placed	in	a	waiting	queue.

Another	 approach	 to	 providing	 concurrent	 service	 design	 using	 multiple
readers	and	writers	is	described	next.	In	a	concurrent	service	component,	several
concurrent	objects	might	wish	 to	 access	 a	data	 repository	at	 the	 same	 time,	 so
access	must	 be	 synchronized.	 Possible	 synchronization	 algorithms	 include	 the
mutual	exclusion	algorithm	and	the	multiple	readers	and	writers	algorithm.	In
the	 latter	 case,	multiple	 readers	 are	 allowed	 to	 access	 a	 shared	 data	 repository



concurrently;	however,	only	one	writer	is	allowed	to	update	the	data	repository
at	any	one	time,	and	only	after	the	readers	have	finished.

In	 the	multiple	 readers	 and	writers	 solution	 shown	 in	 Figure	 12.11,	 each
read	and	write	service	is	performed	by	a	concurrent	object,	either	a	reader	or	a
writer.	The	Service	Coordinator	object	keeps	track	of	all	service	requests	–
those	currently	being	serviced	and	those	waiting	to	be	serviced.	When	it	receives
a	 request	 from	 a	 client,	 Service	 Coordinator	 allocates	 the	 request	 to	 an
appropriate	 reader	 or	 writer	 concurrent	 object	 to	 perform	 the	 service.	 For
example,	if	the	coordinator	receives	a	read	request	from	a	client,	it	instantiates	a
Reader	 object	 and	 increments	 its	 count	 of	 the	 number	 of	 readers.	 The	 reader
notifies	 the	coordinator	when	 it	 finishes,	so	 that	 the	coordinator	can	decrement
the	 reader	 count.	 If	 a	 write	 request	 is	 received	 from	 a	 client,	 the	 coordinator
allocates	 the	 request	 to	 a	Writer	 object	 only	when	 all	 readers	 have	 finished.
This	delay	is	to	ensure	that	each	writer	has	mutually	exclusive	access	to	the	data.
If	 the	 overhead	 of	 instantiating	 new	 concurrent	 objects	 is	 too	 high,	 the
coordinator	 can	 maintain	 a	 pool	 of	 concurrent	 Reader	 objects	 and	 one
concurrent	Writer	 object	 and	allocate	new	 requests	 to	 concurrent	objects	 that
are	free.



Figure	12.11.	Example	of	a	concurrent	service	component:	multiple	readers
and	writers.

If	 new	 readers	 keep	 coming	 and	 are	 permitted	 to	 read,	 a	writer	 could	 be
indefinitely	 prevented	 from	 writing;	 this	 problem	 is	 referred	 to	 as	 writer
starvation.	The	 coordinator	 avoids	writer	 starvation	by	queuing	up	new	 reader
requests	after	receiving	a	writer	request.	After	the	current	readers	have	finished
reading,	 the	waiting	writer	 is	 then	allowed	to	write	before	any	new	readers	are
permitted	to	read.

In	 this	 example,	 the	 clients	 communicate	 with	 the	 service	 by	 using	 the
Asynchronous	 Message	 Communication	 with	 Callback	 pattern	 (see	 Section
11.5.5).	This	means	 that	 the	clients	do	not	wait	and	can	do	other	 things	before
receiving	the	service	response.	In	this	case,	the	service	response	is	handled	as	a
callback.	With	the	callback	approach,	the	client	sends	an	operation	handle	with
the	 original	 request.	 The	 service	 uses	 the	 handle	 to	 remotely	 call	 the	 client



operation	 (the	 callback)	 when	 it	 finishes	 servicing	 the	 client	 request.	 In	 the
example	illustrated	in	Figure	12.11,	Service	Coordinator	passes	the	client's
callback	handle	to	the	reader	(or	writer).	On	completion,	the	Reader	concurrent
object	 remotely	 invokes	 the	 callback,	 which	 is	 depicted	 on	 as	 the	 service
Response	message	sent	to	the	client.



12.7.3	Concurrent	Service	Component	with	Subscription	and
Notification

Another	example	of	a	concurrent	service	component	 is	shown	in	Figure	12.12,
which	 uses	 the	 Subscription/Notification	 Pattern	 (see	 Section	 11.7.2).	 This
service	maintains	an	event	archive	and	also	provides	a	subscription/notification
service	 to	 its	 clients.	An	example	 is	given	of	 a	Real-Time	Event	Monitor
concurrent	 component	 that	 monitors	 external	 events.	 The	 Subscription
Service	 component	 maintains	 a	 subscription	 list	 of	 clients	 that	 wish	 to	 be
notified	 of	 these	 events.	When	 an	 external	 event	 occurs,	 Real-Time	 Event
Monitor	 updates	 the	 event	 archive	 and	 informs	Event	Distributor	 of	 the
event	 arrival.	 Event	 Distributor	 queries	 Subscription	 Service	 to
determine	the	clients	that	have	subscribed	to	receive	events	of	this	type	and	then
notifies	those	clients	of	the	new	event.

Figure	12.12.	Example	of	a	concurrent	service	component:



subscription/notification.

The	 concurrent	 communication	 diagram	 in	 Figure	 12.12	 shows	 three
separate	 interactions:	 a	 simple	 query	 interaction,	 an	 event	 subscription
interaction,	and	an	event	notification	interaction.	In	the	query	interaction	(which
does	 not	 involve	 a	 subscription)	 a	 client	 makes	 a	 request	 to	 Service
Coordinator,	 which	 queries	 Event	 Archive	 Service	 and	 sends	 the
response	 directly	 to	 Client.	 The	 three	 event	 sequences	 are	 given	 different
prefixes	to	differentiate	them:

Query	interaction	(Q	prefix):

Q1:	A	client	sends	a	query	to	Service	Coordinator	–	for	example,
requesting	events	over	the	past	twenty-four	hours.

Q2:	Service	Coordinator	forwards	the	query	to	Event	Archive
Service.

Q3:	Event	Archive	Service	sends	the	appropriate	archive	data	–	for
example,	events	over	the	past	twenty-four	hours	–	to	the	client.

Event	subscription	interaction	(S	prefix):

S1:	Service	Coordinator	receives	a	subscription	request	from	a	client.

S2:	Service	Coordinator	sends	a	subscribe	message	to	Subscription
Service.

S3:	Subscription	Service	confirms	the	subscription	by	sending	a	service
Response	message	to	the	client.

Event	notification	interaction	(E	prefix):

E1:	An	external	event	arrives	at	Real-Time	Event	Monitor.



E2:	Real-Time	Event	Monitor	determines	that	this	is	a	significant	event	and
sends	an	update	message	to	Event	Archive	Service.

E3:	Real-Time	Event	Monitor	sends	an	event	Arrival	message	to
Event	Distributor.

E4,	E5:	Event	Distributor	queries	Subscription	Service	to	get	the	list
of	event	subscribers	(i.e.,	clients	that	have	subscribed	to	receive	events	of	this
type).

E6:	Event	Distributor	multicasts	an	event	Notification	message	to	all
clients	that	have	subscribed	for	this	event.



12.8	Distribution	of	Data
Both	 sequential	 and	 concurrent	 service	 subsystems	 are	 single-service
subsystems;	 thus,	 the	 data	 repositories	 they	 encapsulate	 are	 centralized.	 In
distributed	 software	 architectures,	 the	 potential	 disadvantages	 of	 centralized
services	are	that	the	service	could	become	a	bottleneck	and	that	it	is	liable	to	be	a
single	 point	 of	 failure.	 A	 solution	 to	 these	 problems	 is	 data	 distribution.	 Two
approaches	to	data	distribution	are	the	distributed	service	and	data	replication.



12.8.1	Distributed	Service

With	the	distributed	service,	data	that	is	collected	at	several	locations	is	stored
at	 those	 locations.	 Each	 location	 has	 a	 local	 service,	which	 responds	 to	 client
requests	 for	 that	 location's	 data.	 This	 approach	 is	 used	 in	 the	 distributed
emergency	response	system	(see	Figure	12.13),	where	sensor	monitoring	status
data	 is	 maintained	 at	 regional	 locations	 by	 a	 Monitoring	 Data	 Service
component	 for	 each	 region,	 as	 described	 further	 in	Section	12.9.2.	Clients	 can
request	sensor	status	data	from	one	or	more	regional	data	services.



12.8.2	Data	Replication

With	data	replication,	the	same	data	is	duplicated	at	more	than	one	location	to
speed	up	access	 to	 it.	Ensuring	 that	procedures	exist	 for	updating	 the	different
copies	 of	 the	 replicated	 data	 is,	 of	 course,	 important	 so	 that	 the	 data	 does	 not
become	 outdated	 and/or	 inconsistent.	 This	 approach	 is	 used	 in	 the	 distributed
Light	Rail	System	example	in	Figure	12.10.	Each	instance	of	Train	Control
(one	per	train)	maintains	its	own	Train	Data	in	an	entity	object	to	keep	track
of	 where	 the	 train	 is	 and	 which	 stations	 it	 stops	 at.	 Each	 instance	 of	 Train
Control	sends	train	status	to	Rail	Operations	Service,	thereby	allowing
rail	 operations	 to	 monitor	 the	 status	 of	 all	 trains.	 For	 this	 purpose,	 Rail
Operations	Service	maintains	its	own	copy	of	each	train's	status	in	a	Rail
Operations	 Status	 entity	 object.	 See	 case	 study	 of	 Light	 Rail	 Control
System	in	Chapter	21	for	more	detail.



12.9	Software	Deployment
After	 the	 real-time	 software	 for	 a	 distributed	 embedded	 system	 has	 been
designed	and	implemented,	instances	of	it	can	be	defined	and	deployed.	During
software	deployment,	an	instance	of	the	distributed	software	system	–	referred	to
as	 a	 target	 system	 –	 is	 defined	 and	 mapped	 to	 a	 distributed	 configuration
consisting	of	multiple	geographically	distributed	physical	nodes	connected	by	a
network.



12.9.1	Software	Deployment	Issues

During	 software	 deployment,	 a	 decision	 is	 made	 about	 what	 component
instances	 are	 required.	 In	 addition,	 it	 is	 necessary	 to	 determine	 how	 the
component	 instances	 should	 be	 allocated	 to	 nodes,	 and	 how	 the	 component
instances	should	be	interconnected.	Specifically,	the	following	activities	need	to
be	performed:

Define	instances	of	the	component.	For	each	component	that	can	have
multiple	instances,	it	is	necessary	to	define	the	instances	desired.	For
example,	in	a	distributed	Light	Rail	system,	it	is	necessary	to	define	the
number	of	instances	of	components	required	in	the	target	system.	It	is
thus	necessary	to	define	one	Railroad	Crossing	Control	instance
for	each	railroad	crossing,	one	Train	Control	instance	for	each	train,
one	Station	instance	for	each	physical	station,	one	instance	of	the	Rail
Operations	Interaction	component	for	each	operator,	and	one
instance	of	the	service	component,	Rail	Operations	Service.	Each
component	instance	must	have	a	unique	name	so	that	it	can	be	uniquely
identified.	For	components	that	are	parameterized,	the	parameters	for
each	instance	need	to	be	defined.	Examples	of	component	parameters	are
instance	name	(such	as	train	ID,	station	ID,	or	operator	ID),	sensor
names,	sensor	limits,	and	alarm	names.

Map	the	component	instances	to	physical	nodes.	Each	component
instance	is	assigned	to	a	node.	For	example,	two	component	instances
could	be	deployed	such	that	each	one	could	run	on	a	separate	physical
node.	Alternatively,	they	could	both	run	on	the	same	physical	node.	The
physical	configuration	of	the	target	system	is	depicted	on	a	deployment
diagram.



Interconnect	component	instances.	The	component-based	software
architecture	defines	how	components	communicate	with	one	another.	At
this	stage,	the	component	instances	are	connected	to	each	other	using
software	connectors,	as	described	in	Section	12.10.	In	the	distributed
Light	Rail	system	in	Figure	12.10,	for	example,	each	instance	of	the
Train	Control	component	is	connected	to	each	instance	of	the
Station	component	as	well	as	to	the	single	instance	of	the	Rail
Operations	Service.	This	interconnection	can	be	done	either	at
deployment	time	or	at	initialization	time	using	a	brokering	service,	as
described	in	Section	12.10.



12.9.2	Examples	of	Software	Deployment

An	 example	 of	 software	 deployment	 is	 given	 for	 the	 distributed	 Light	 Rail
System	in	Section	12.6.2	and	depicted	 in	Figure	12.10.	As	another	example	of
software	 deployment,	 consider	 the	 distributed	 emergency	 monitoring	 system.
The	distributed	software	configuration	is	depicted	on	a	deployment	diagram,	as
shown	 in	 Figure	 12.13.	 Each	 instance	 of	 Monitoring	 Sensor	 Component
(one	 per	 monitoring	 location)	 is	 allocated	 to	 a	 node	 to	 achieve	 localized
autonomy	and	adequate	performance.	Thus,	 the	failure	of	one	sensor	node	will
not	 affect	 other	 nodes.	 Each	 instance	 of	 Remote	 System	 Proxy	 (one	 per
remote	 system)	 is	 allocated	 to	 a	 node	 because	 of	 proximity	 to	 the	 source	 of
physical	 data.	 Loss	 of	 a	 remote	 system	 node	 means	 that	 the	 specific	 remote
system	 will	 not	 be	 serviced,	 but	 other	 nodes	 will	 not	 be	 affected.	 Alarm
Service	and	Monitoring	Data	Service	 are	 allocated	 to	 separate	 nodes
for	performance	reasons,	so	that	they	can	be	responsive	to	service	requests.	For	a
large	configuration,	sensor	monitoring	status	data	can	be	maintained	at	regional
locations	 by	having	multiple	 instances	 of	Monitoring	Data	Service,	with
one	 instance	 for	 each	 region.	 Each	 operator	 has	 an	 instance	 of	 the	Operator
Presentation	 component,	 which	 is	 assigned	 to	 its	 own	 node,	 which	 is	 the
operator's	desktop	node,	laptop,	or	tablet.



Figure	12.13.	Example	of	a	distributed	software	deployment:	emergency
monitoring	system.



12.10	Design	of	Software	Connectors
This	section	describes	how	software	connectors	are	designed	in	conjunction	with
distributed	 operating	 systems	 and	 middleware.	 Example	 of	 connectors	 for
distributed	 message	 communication	 between	 producers	 and	 consumer
components	are	provided.

Architectural	 communication	 patterns	 address	 different	 types	 of	 message
communication	 among	 distributed	 components,	 as	 described	 in	 Chapter	 11.
These	communication	patterns	can	be	used	as	the	basis	for	designing	distributed
message	 connectors,	 which	 hide	 the	 communication	 details	 between
components.



12.10.1	Distributed	Message	Communication

This	section	describes	distributed	message	communication	services	provided	by
distributed	real-time	operating	systems	(RTOS)	before	describing	the	design	of
connectors	 that	 take	 advantage	 of	 these	 services.	 A	 distributed	 RTOS	 is	 an
operating	 system	 that	 provides	 network	 communication	 services	 in	 addition	 to
operating	system	services	(see	Chapter	3).	As	described	in	Chapter	1,	distributed
operating	 systems	 take	 advantage	 of	 middleware	 technology	 to	 integrate	 the
middleware	 into	 the	 RTOS.	 Transparent	 message	 communication	 between
distributed	 components	 can	 be	 handled	 by	means	 of	 a	 distributed	 kernel	 of	 a
distributed	RTOS.	There	is	one	instance	of	the	distributed	kernel	at	each	node.

In	a	distributed	environment,	 it	 is	desirable	 to	have	 location	 transparency;
that	is,	a	component	that	wishes	to	send	a	message	to	another	component	should
not	need	to	know	where	that	component	resides.	For	a	component	A	to	explicitly
refer	 to	 another	 component	 B	 by	 its	 location	 is	 inflexible.	 If	 component	 B	 is
moved,	then	component	A	will	need	to	be	updated.	Thus,	it	is	desirable	to	have	a
name	service	with	location-independent	names.	A	name	service	in	a	distributed
RTOS	 is	 a	 brokering	 service	 (as	 described	 in	 Chapter	 11)	 that	 maintains	 the
names	and	locations	of	all	components	registered	with	it.	An	example	of	a	name
service	is	the	Domain	Name	System	(DNS)	used	on	the	Internet	(Comer	2008).

A	 distributed	 RTOS	 can	 provide	 communication	 among	 distributed
components	 by	 using	 a	 name	 service.	 With	 this	 approach,	 each	 component
registers	 its	 name	 and	 location	 with	 the	 name	 service,	 thereby	 allowing
components	to	communicate	with	components	on	other	nodes	without	knowing
their	 location.	 Establishing	 the	 interconnection	 between	 components	 is	 done
through	the	name	service	at	run	time,	which	is	referred	to	as	dynamic	binding.	If
dynamic	binding	between	components	is	done	at	initialization	time	and	does	not



subsequently	change,	 then	 the	RTOS	kernel	at	each	node	could	 (after	dynamic
binding	 is	 completed)	 keep	 a	 local	 copy	 of	 the	 name	 table	 for	 faster	 access
during	run	time	execution.



12.10.2	Connectors	for	Distributed	Components

Using	the	services	provided	by	a	distributed	RTOS,	connectors	are	designed	for
transmitting	 messages	 among	 distributed	 components.	 Producer	 components
sends	 messages	 to	 consumer	 components	 via	 message	 queue	 connectors	 (for
asynchronous	 communication)	 or	message	 and	 response	 buffer	 connectors	 (for
synchronous	communication).	For	this	to	work,	the	connector	itself	needs	to	be
distributed	with	part	of	it	servicing	the	producer	component	on	the	source	node
and	part	 of	 it	 servicing	 the	 consumer	 component	 on	 the	 destination	 node.	The
connectors	are	active	objects	and	use	services	of	the	distributed	RTOS	kernel	to
deliver	 messages.	 The	 local	 kernel	 on	 the	 source	 node	 is	 responsible	 for
determining	the	location	of	the	destination	component	and	sending	the	message
to	 the	remote	kernel	on	the	destination	node,	from	where	 it	 is	passed	on	to	 the
destination	component	via	the	connector.

Consider	 an	 example	 of	 a	 producer	 component	 sending	 an	 asynchronous
message	to	a	consumer	component	on	a	different	node.	To	send	a	message,	the
producer	sends	the	message	by	making	a	send	(in	message)	request	to	the	source
connector	 (message	 1	 on	 Figure	 12.14).	 The	 source	 connector	 then	 passes	 the
message	to	the	local	RTOS	kernel,	which	communicates	with	the	name	service
(or	a	 local	name	 table)	 to	determine	 the	destination	node	 for	 the	message.	The
local	kernel	then	sends	the	message	to	its	counterpart	kernel	on	the	remote	node
(message	2).	On	receiving	the	message,	the	remote	kernel	routes	the	message	to
the	 destination	 connector	 on	 that	 node.	The	 connector	 adds	 the	message	 to	 its
FIFO	 queue.	 When	 the	 consumer	 needs	 a	 message,	 it	 makes	 a	 receive	 (out
message)	 request	 (message	 3)	 to	 the	 destination	 connector,	 which	 returns	 the
first	message	on	the	queue,	if	one	is	available.	Otherwise	the	component	has	to
wait	for	a	message	to	arrive.



Figure	12.14.	Example	of	software	connector	design.



12.10.3	Design	of	Distributed	Message	Connectors

The	 distributed	 message	 connectors	 are	 a	 distributed	 version	 of	 the	 three
message	 connectors	 described	 in	 Chapter	 14.	 Each	 distributed	 message
connector	 consists	 of	 a	 source	 connector	 and	 a	 destination	 connector,	 as
described	next.

a)	Distributed	message	queue	connector	for	asynchronous
communication	(see	Figure	12.14).	The	source	connector	provides	a	send
(in	message)	operation	and	encapsulates	an	outgoing	message	queue.	The
destination	connector	provides	a	receive	(out	message)	operation	and
encapsulates	an	incoming	message	queue.

b)	Distributed	message	buffer	connector	for	synchronous	message
communication	without	reply.	The	source	connector	provides	a	send	(in
message)	operation	and	encapsulates	an	outgoing	message	buffer.	The
destination	connector	provides	a	receive	(out	message)	operation	and
encapsulates	an	incoming	message	buffer.

c)	Distributed	message	buffer	and	response	connector	for	synchronous
message	communication	with	reply.	The	source	connector	provides	a
send	(in	message,	out	response)	operation	and	encapsulates	an	outgoing
message	buffer	and	incoming	response	buffer.	The	destination	connector
provides	receive	(out	message)	and	reply	(in	response)	operations	and
encapsulates	an	incoming	message	buffer	and	outgoing	response	buffer.

For	 bidirectional	 asynchronous	 message	 communication,	 two	 distributed
message	 queue	 connectors	 are	 provided,	 one	 for	 asynchronous	 messages	 sent
from	 the	 producer	 component	 to	 the	 consumer,	 and	 the	 second	 connector	 for
asynchronous	response	messages	sent	from	the	consumer	component	back	to	the



producer.	 Synchronous	 connectors	 for	 distributed	message	 communication	 can
also	be	designed	using	Java	Remote	Method	Invocation	(RMI),	as	described	in
Chapter	15	of	Gomaa	(2011).



12.11	Summary
This	 chapter	 has	 described	 the	 design	 of	 component-based	 software
architectures.	 After	 describing	 concepts	 for	 these	 architectures,	 this	 chapter
described	 the	 main	 steps	 in	 designing	 distributed	 component-based	 software
architectures.	 Next,	 the	 design	 of	 component	 interfaces	 was	 described,	 with
component	ports	that	have	provided	and	required	interfaces	and	connectors	that
join	 compatible	 ports,	 followed	 by	 a	 description	 of	 the	 design	 of	 composite
components.	 Next,	 this	 chapter	 described	 component	 structuring	 criteria	 for
structuring	 a	 software	 architecture	 into	 configurable	 distributed	 components.
This	was	 followed	by	 a	description	of	 the	design	of	 sequential	 and	 concurrent
service	 subsystems,	 after	 which	 there	 was	 a	 discussion	 of	 issues	 in	 the
distribution	 of	 data	 in	 distributed	 systems.	 Next,	 software	 deployment	 was
described.	 Considerations	 and	 tradeoffs	 in	 component	 design	 were	 also
discussed.	Finally,	the	design	of	software	connectors	was	described.	The	design
of	 components	 as	 tasks	 is	 described	 in	 Chapter	 13.	 Discussion	 of	 system	 and
software	quality	attributes	in	the	design	of	distributed	component-based	software
architectures	continues	in	Chapter	16.	Examples	of	designing	component-based
software	architectures	are	given	in	the	case	studies	in	Chapters	19	through	23.



13

Concurrent	Real-Time	Software
Task	Design

◈

For	 a	 real-time	 embedded	 system,	 an	 important	 consideration	 in	 system	 or
subsystem	design	is	the	design	of	the	concurrent	tasks	it	contains	as	well	as	the
communication	 and	 synchronization	 between	 these	 tasks,	 as	 described	 in	 this
chapter.	A	task	type	is	an	active	class	and	a	task	is	an	active	object	with	its	own
thread	of	control.	A	passive	object	 is	an	 instance	of	a	passive	class	and	has	no
thread	of	control.

During	concurrent	 task	design,	a	task	architecture	 is	developed	 in	which
the	 system	 is	 structured	 into	 concurrent	 tasks	 and	 the	 task	 interfaces	 and
interconnections	 are	 designed.	 To	 help	 determine	 the	 concurrent	 tasks,	 task
structuring	criteria	are	provided	to	assist	in	mapping	an	object-oriented	analysis
model	of	the	system	to	a	concurrent	tasking	architecture.	These	criteria	are	a	set
of	 heuristics,	 also	 referred	 to	 as	 guidelines,	 which	 capture	 expert	 designer
knowledge	 in	 the	 software	 design	 of	 concurrent	 real-time	 systems.	 Task
structuring	decisions	are	depicted	using	stereotypes.	This	chapter	uses	MARTE
stereotypes	(Selic	2014)	 to	depict	concurrent	 tasks,	as	 introduced	in	Chapter	3.
After	 task	 structuring,	 the	 task	 interfaces	and	 interconnections	are	designed	by
applying	the	architectural	communication	patterns	described	in	Chapter	11.



Real-time	software	architectures	can	also	be	distributed;	for	this	reason	they
can	be	considered	a	special	case	of	component-based	software	architectures.	In
this	 context,	 a	 simple	 component	 is	 either	 designed	 as	 one	 task	 or	 as	 a
component	 that	 contains	multiple	 active	objects	 (tasks)	 and	passive	objects,	 as
described	in	Chapter	12.

This	chapter	is	organized	as	follows:	Section	13.1	describes	concurrent	task
structuring	 issues.	 Section	 13.2	 describes	 categorizing	 concurrent	 tasks	 using
task	 structuring	 criteria.	 Section	 13.3	 describes	 I/O	 task	 structuring	 criteria,
while	 Section	 13.4	 describes	 internal	 task	 structuring	 criteria.	 Section	 13.6
describes	 task	 clustering	 structuring	 criteria.	 Section	 13.7	 describes	 design
restructuring	using	task	inversion.	Section	13.8	describes	the	steps	in	developing
the	 concurrent	 task	 architecture.	 Section	 13.9	 describes	 designing	 the	 task
interfaces	 using	 task	 communication	 and	 synchronization.	 Section	 13.10
describes	documenting	task	interface	and	behavior	specifications.



13.1	Concurrent	Task	Structuring	Issues
A	concurrent	 task	 is	 an	 active	object,	 also	 referred	 to	 as	 a	 concurrent	object,
process	or	thread.	In	this	chapter,	the	term	concurrent	task	is	used	to	refer	to	an
active	 object	 with	 one	 thread	 of	 control.	 Concurrent	 tasking	 concepts	 are
described	in	Chapter	3.

With	 the	 advent	 of	 relatively	 cheap	multi-core	 processors,	multitasking	 is
even	 more	 important	 to	 consider	 with	 the	 need	 to	 structure	 a	 system	 into
concurrent	 tasks	 in	 order	 to	 take	 advantage	 of	 executing	 multiple	 tasks
concurrently	on	multiple	processors.	As	described	in	Chapter	3,	there	are	many
advantages	to	having	a	concurrent	tasking	design;	however,	the	designer	must	be
careful	 in	 designing	 the	 task	 structure.	 Too	 many	 tasks	 in	 a	 system	 can
unnecessarily	 increase	complexity	because	of	greater	 inter-task	communication
and	 synchronization	 and	 can	 lead	 to	 increased	 overhead	 because	 of	 additional
context	switching	(see	Section	3.10).	The	system	designer	must,	therefore,	make
tradeoffs	between,	on	the	one	hand,	introducing	tasks	to	simplify	and	clarify	the
design	and,	on	the	other	hand,	not	introducing	too	many	tasks,	which	could	make
the	design	overly	complex.	The	task	structuring	criteria	are	intended	to	help	the
designer	 make	 these	 tradeoffs.	 They	 also	 enable	 the	 designer	 to	 analyze
alternative	task	architectures.

The	concurrent	structure	of	a	system	is	best	understood	by	considering	the
dynamic	characteristics	of	the	system.	In	the	analysis	model	interaction	diagrams
(Chapter	9)	and	the	integrated	communication	diagrams	(Chapter	10),	the	system
is	 represented	 as	 a	 collection	 of	 collaborating	 objects	 that	 communicate	 by
means	of	messages.	As	described	 in	Chapter	8,	during	analysis,	 all	objects	are
depicted	 as	 concurrent	 objects	 except	 for	 entity	 objects,	which	 are	 depicted	 as



passive	objects.	During	 the	 task	structuring	phase,	 the	concurrent	nature	of	 the
system	 is	 formalized	 by	 designing	 the	 concurrent	 tasks	 as	 well	 as	 the
communication	and	synchronization	interfaces	between	them.



13.2	Categorizing	Concurrent	Tasks
Following	the	approach	used	in	Chapter	8	for	object	structuring,	stereotypes	are
used	 to	 differentiate	 among	 the	 different	 kinds	 of	 concurrent	 tasks.	 During
concurrent	 task	design,	 if	an	object	 is	determined	to	be	active,	 it	 is	categorized
further	to	show	its	concurrent	task	characteristics.	A	concurrent	task	is	depicted
using	the	MARTE	stereotype	of	«swSchedulableResource»,	which	identifies	the
task	as	a	resource	that	is	scheduled	to	execute	on	a	CPU.	Each	task	is	depicted
with	 two	 other	 stereotypes,	 the	 first	 is	 the	 object	 role	 criterion,	 determined
during	object	structuring	as	described	in	Chapter	8,	which	is	carried	over	to	the
task	design	and	referred	to	as	the	role	stereotype.	The	second	stereotype	is	used
to	 depict	 the	 type	 of	 concurrency,	which	 is	periodic,	 event	 driven,	 or	demand
driven	 and	 is	 referred	 to	 as	 the	 concurrency	 stereotype.	 Event	 driven	 and
demand	 driven	 tasks	 are	 also	 known	 as	 aperiodic	 tasks	 to	 differentiate	 them
from	 periodic	 tasks.	 The	 next	 section	 elaborates	 on	 the	 use	 of	 stereotypes	 to
identify	the	different	kinds	of	concurrent	tasks,	with	examples	of	their	use.

MARTE	stereotypes	are	also	used	 to	depict	 the	kinds	of	devices	 to	which
the	 concurrent	 tasks	 interface.	 Thus,	 an	 external	 hardware	 device	 is	 classified
with	the	stereotype	«hwDevice»,	and	an	interrupt-driven	device	is	also	classified
with	the	stereotype	«interruptResource».

The	 task	 structuring	 criteria	 are	 described	 next.	 In	 each	 case,	 a	 task
structuring	criterion	is	described	followed	by	an	example	of	a	behavioral	pattern
in	which	 an	 instance	 of	 a	 task	 of	 that	 type,	 such	 as	 an	 event	 driven	 I/O	 task,
communicates	with	neighboring	tasks	in	a	typical	interaction	sequence.



13.2.1	Task	Structuring	Criteria

The	 task	 structuring	 criteria	 are	 organized	 into	 groups	 based	 on	 how	 they	 are
used	 to	 assist	 in	 the	 task	 structuring	 activity.	 The	 following	 are	 the	 four	 task
structuring	groups:

1.	I/O	task	structuring	criteria.	Address	how	I/O	objects	are	mapped	to	I/O
tasks	as	well	as	when	and	how	an	I/O	task	is	activated.

2.	Internal	task	structuring	criteria.	Address	how	internal	objects	are	mapped
to	internal	tasks	as	well	as	when	and	how	an	internal	task	is	activated.

3.	Task	priority	criteria.	Address	the	importance	of	executing	a	given	task
relative	to	others.

4.	Task	clustering	criteria.	Address	whether	and	how	multiple	objects	should
be	grouped	into	a	concurrent	task.	A	form	of	task	clustering	is	task	inversion,
which	is	used	for	merging	tasks	to	reduce	task	overhead.

The	task	structuring	criteria	are	applied	in	two	stages.	In	the	first	stage,	the	I/O
task	structuring	criteria,	the	internal	task	structuring	criteria,	and	the	task	priority
criteria	 are	 applied.	 This	 results	 in	 a	 one-to-one	 mapping	 of	 objects	 in	 the
analysis	 model	 to	 tasks	 in	 the	 design	 model.	 In	 the	 second	 stage,	 the	 task
clustering	 criteria	 are	 applied,	 with	 the	 objective	 of	 reducing	 the	 number	 of
physical	tasks.	For	an	experienced	designer,	these	two	stages	can	be	combined.
After	the	tasks	have	been	determined,	the	task	interfaces	are	designed.



13.3	I/O	Task	Structuring	Criteria
This	 section	 describes	 the	 various	 I/O	 task	 structuring	 criteria.	 An	 important
factor	 in	 deciding	 on	 the	 characteristics	 of	 an	 I/O	 task	 is	 to	 determine	 the
characteristics	of	the	I/O	device	to	which	it	has	to	interface.



13.3.1	Characteristics	of	I/O	Devices

There	 is	 certain	 hardware-related	 information	 concerning	 I/O	 devices	 that
interface	 to	 the	 embedded	 system,	 which	 is	 essential	 to	 determining	 the
characteristics	 of	 tasks	 that	 interface	 to	 the	 devices.	 Before	 the	 I/O	 task
structuring	 criteria	 can	 be	 applied,	 it	 is	 necessary	 to	 determine	 the	 hardware
characteristics	of	the	I/O	devices	that	interface	to	the	system.	It	is	also	necessary
to	determine	the	nature	of	the	data	being	input	to	the	system	by	these	devices	or
being	output	 by	 the	 system	 to	 these	devices.	 In	 this	 section,	 the	 following	 I/O
issues	specific	to	task	structuring	are	described:

Characteristics	of	I/O	devices.	It	is	necessary	to	determine	whether	the
I/O	device	is	event	driven	(interrupt-driven),	passive,	or	a	smart	device.
Three	major	classes	of	I/O	devices	are

1.	Event	driven	I/O	devices	(sometimes	referred	to	as	asynchronous	I/O
devices),	which	are	interrupt-driven	I/O	devices.	An	event	driven	input
device	generates	an	interrupt	when	it	has	produced	some	input	that
requires	processing	by	the	system.	An	event	driven	output	device
generates	an	interrupt	when	it	has	finished	processing	an	output	operation
and	is	ready	to	perform	some	new	output.	Stereotypes	are	used	to	depict
the	device	as	an	input	or	output,	interrupt-driven,	hardware	device,	such
as	«input»	«interruptResource»	«hwDevice».

·

2.	Passive	I/O	devices.	A	passive	I/O	device	does	not	generate	an
interrupt	on	completion	of	the	input	or	output	operation.	Thus,	the	input
from	a	passive	input	device	needs	to	be	read	either	on	a	polled	basis	or
on	demand.	Similarly,	in	the	case	of	a	passive	output	device,	output
needs	to	be	provided	on	either	a	regular	(i.e.,	periodic)	basis	or	on

·



Characteristics	of	data.	It	is	necessary	to	determine	whether	the	I/O	device
provides	discrete	data	or	continuous	data.	Discrete	data	either	are	Boolean	or
have	a	finite	number	of	values.	Analog	data	are	continuous	data	and	can	in
principle	have	an	infinite	number	of	values.	An	I/O	device	that	provides	analog
data	will	almost	certainly	have	to	be	polled	or	accessed	on	demand.	If	an	analog
device	generated	an	I/O	interrupt	every	time	its	value	changed,	it	would	be	likely
to	flood	the	system	with	interrupts.

Passive	I/O	device.	For	a	passive	I/O	device,	it	is	necessary	to	determine
whether:

demand.	Stereotypes	are	used	to	depict	the	device	as	an	input	or	output,
passive,	hardware	device,	such	as	«input»	«passive»	«hwDevice».

3.	Smart	devices.	A	smart	device	is	a	microprocessor-driven	I/O	device.
It	is	usually	connected	to	the	embedded	system	by	means	of	a
communication	link,	which	might	be	a	point-to-point	link	or	over	a	local
area	network.	A	communication	protocol	is	used	to	specify	how	the
embedded	system	and	smart	device	communicate	with	each	other	(for
example,	TCP/IP).	At	the	application	level,	tasks	in	the	embedded	system
communicate	with	the	smart	device	by	means	of	messages,	as	described
in	this	chapter.

·

Sampling	the	device	on	demand	is	sufficient,	in	particular	when	some
consumer	task	needs	the	data.

The	device	needs	to	be	polled	on	a	periodic	basis	so	that	any	change	in
value	is	sent	to	a	consumer	task	without	being	explicitly	requested,	or	the
value	is	written	to	an	entity	object	with	sufficient	frequency	so	that	the
data	do	not	get	out	of	date.



Polling	frequency.	If	a	passive	I/O	device	is	to	be	polled	on	a	periodic	basis,
it	is	necessary	to	determine	the	polling	frequency.	The	polling	frequency
depends	on	how	critical	the	input	is	and	how	frequently	it	is	expected	to	change.
In	the	case	of	an	output	device,	the	polling	frequency	depends	on	how	often	the
data	should	be	output	in	order	to	prevent	data	previously	generated	from	getting
out	of	date.



13.3.2	Event	Driven	I/O	Tasks

An	event	driven	I/O	task	is	needed	when	there	is	an	interrupt-driven	I/O	device
(also	 referred	 to	 as	 an	 event	 driven	 or	 asynchronous	 I/O	 device)	 to	which	 the
system	has	 to	 interface.	The	 event	 driven	 I/O	 task	 is	 activated	 by	 an	 interrupt
from	the	event	driven	device.	During	task	design,	each	device	I/O	object	in	the
analysis	model	that	interfaces	to	an	interrupt-driven	I/O	device	is	designed	as	an
event	driven	I/O	task.	Stereotypes	are	used	to	depict	an	event	driven	I/O	task	as
an	 input	 and/or	 output,	 event	 driven	 task,	 such	 as	 «event	 driven»	 «input»
«swSchedulableResource».

An	event	driven	I/O	device	interface	task	is	often	a	device	driver	task.	It	is
typically	activated	by	a	low-level	interrupt	handler	or	–	in	some	cases	–	directly
by	the	hardware.	An	event	driven	I/O	task	is	constrained	to	execute	at	the	speed
of	the	I/O	device	with	which	it	interacts.	Thus,	an	input	task	might	be	suspended
indefinitely	 awaiting	 an	 input.	 However,	 when	 activated	 by	 an	 interrupt,	 the
input	 task	 typically	 has	 to	 respond	 to	 a	 subsequent	 interrupt	 within	 a	 few
milliseconds	to	avoid	any	loss	of	data.	After	the	input	data	is	read,	the	input	task
might	send	the	data	to	be	processed	by	another	task	or	update	a	passive	object.
This	frees	the	input	task	to	respond	to	another	interrupt	that	might	closely	follow
the	first.

As	 an	 example	 of	 an	 event	 driven	 input	 task,	 consider	 the	 Arrival
Sensor	Input	object	shown	on	the	analysis	model	communication	diagram	in
Figure	 13.1a.	 The	 Arrival	 Sensor	 Input	 object	 receives	 inputs	 from	 the
real-world	 arrival	 sensor,	 which	 is	 depicted	 as	 an	 input	 hardware	 device.	 In
preparation	for	task	structuring,	the	Arrival	Sensor	is	assigned	the	MARTE
stereotypes	 «input»	 «hwDevice».	 The	 Arrival	 Sensor	 Input	 object	 then
converts	the	input	to	an	internal	format	and	sends	the	train	arrival	message	to	the



Train	Control	object.	For	task	structuring,	it	is	given	that	the	arrival	sensor	is
an	 interrupt-driven	 input	 hardware	 device,	 depicted	 on	 the	 design	 model
concurrent	 communication	 diagram	 (see	 Figure	 13.1b)	 with	 the	 stereotypes
«interruptResource»	 «input»	 «hwDevice»,	 which	 generates	 an	 interrupt	 when
the	train	arrival	is	detected.	The	Arrival	Sensor	Input	object	is	designed	as
an	 event	 driven	 input	 task	 of	 the	 same	 name,	 depicted	 on	 the	 concurrent
communication	 diagram	 with	 the	 stereotypes	 «event	 driven»	 «input»
«swSchedulableResource».	 When	 the	 task	 is	 activated	 by	 the	 arrival
Interrupt,	it	reads	the	arrival	Data,	converts	the	input	data	to	an	internal
format,	 and	 sends	 the	 data	 as	 a	 train	 Arrival	 message	 to	 the	 Train
Control	task.	In	the	design	model,	the	interrupt	is	depicted	as	an	asynchronous
event.

Figure	13.1.	Example	of	event	driven	input	task.



13.3.3	Periodic	I/O	Tasks

While	an	event	driven	I/O	task	interfaces	with	an	interrupt-driven	I/O	device,	a
periodic	 I/O	 task	 interfaces	with	 a	 passive	 I/O	 device.	 Since	 a	 passive	 device
does	 not	 generate	 an	 interrupt	when	 input	 is	 available,	 the	 device	 needs	 to	 be
polled	on	a	regular	basis.	In	this	situation,	the	activation	of	the	task	is	periodic,
but	its	function	is	I/O-related.	The	periodic	I/O	task	is	activated	by	a	timer	event,
performs	 an	 I/O	 operation	 (read	 or	 write),	 and	 then	 waits	 for	 the	 next	 timer
event.	The	task's	period	is	the	time	between	successive	activations.	Stereotypes
are	used	to	depict	a	periodic	I/O	task	as	an	input	or	output	periodic	task	that	is
both	 a	 timer	 resource	 and	 a	 software	 schedulable	 resource,	 such	 as
«timerResource»	«input»	«swSchedulableResource».

Periodic	I/O	tasks	are	often	used	for	simple	I/O	devices	 that,	unlike	event
driven	I/O	devices,	do	not	generate	interrupts	when	I/O	is	available.	Thus,	they
are	often	used	for	passive	sensor	devices	that	need	to	be	sampled	periodically.

13.3.3.1	Sensor-Based	Periodic	I/O	Tasks

The	 concept	 of	 a	 periodic	 I/O	 task	 is	 used	 in	 many	 sensor-based	 industrial
systems.	Such	systems	often	have	a	large	number	of	digital	and	analog	sensors.
A	 sensor-based	 periodic	 I/O	 task	 is	 activated	 on	 a	 regular	 basis,	 scans	 the
sensors,	 and	 reads	 their	 values.	 A	 passive	 input	 device	 could	 be	 a	 digital	 or
analog	sensor.	A	digital	sensor	might	be	a	passive	device	because	it	 is	cheaper
than	 an	 interrupt-driven	 device,	 and	 if	 there	 are	 large	 numbers	 of	 sensors	 to
interface	to,	the	difference	in	price	between	interrupt-driven	and	passive	devices
could	 be	 significant.	 However,	 an	 analog	 sensor	 is	 often	 passive	 because	 the
value	of	an	analog	sensor	 is	usually	changing	continuously,	 in	which	case	 it	 is
frequently	more	practical	to	sample	it	periodically.



Consider	a	passive	digital	 input	device	–	for	example,	a	door	sensor.	This
could	be	handled	by	a	periodic	I/O	task.	The	task	is	activated	by	a	timer	event
and	 then	 reads	 the	 status	 of	 the	 device.	 If	 the	 value	 of	 the	 digital	 sensor	 has
changed	since	the	previous	time	it	was	sampled,	the	task	indicates	the	change	in
status.	 In	 the	 case	 of	 an	 analog	 sensor	 –	 a	 temperature	 or	 pressure	 sensor,	 for
example	–	the	device	is	sampled	periodically	and	the	current	value	of	the	sensor
is	read.	As	an	example	of	a	periodic	input	task,	consider	the	Pressure	Sensor
Input	 object	 shown	 in	 Figure	 13.2a.	 In	 the	 analysis	 model	 depicted	 on	 the
communication	 diagram,	 the	Pressure	Sensor	Input	 object	 is	 an	 «input»
object	 that	 receives	 inputs	 from	 the	 real-world	 Pressure	 Sensor	 input
hardware	device,	which	 in	preparation	 for	 task	 structuring	 is	depicted	with	 the
stereotype	 «input»	 «hwDevice».	Because	 this	 analog	 sensor	 is	 a	passive	 input
hardware	device,	 it	 is	depicted	on	the	design	model	concurrent	communication
diagram	with	the	stereotype	«passive»	«input»	«hwDevice»	(see	Figure	13.2b).
Because	a	passive	device	does	not	generate	an	 interrupt,	 an	event	driven	 input
task	cannot	be	used.	 Instead,	 this	 case	 is	handled	by	a	periodic	 input	 task,	 the
Pressure	Sensor	Input	task,	which	is	activated	periodically	by	an	external
timer	to	sample	the	value	of	the	pressure	sensor.	Thus,	the	Pressure	Sensor
Input	 object	 is	 designed	 as	 the	 Pressure	 Sensor	 Input	 task,	 which	 is
depicted	 as	 «timerResource»	 «input	 »	 «swSchedulableResource»	 on	 the
concurrent	communication	diagram.	To	activate	the	Pressure	Sensor	Input
task	 periodically,	 it	 is	 necessary	 to	 add	 an	 external	 timer	 object,	 the	Digital
Timer,	 which	 is	 depicted	 as	 a	 hardware	 timer	 resource,	 «timerResource»
«hwDevice»	 in	Figure	13.2b.	When	activated,	 the	Pressure	Sensor	Input
task	samples	the	pressure	sensor,	updates	the	Pressure	Data	entity	object	with	the
new	pressure	reading	and	then	waits	for	the	next	timer	event.	The	timer	event	is
depicted	as	an	asynchronous	event	on	the	concurrent	communication	diagram.



Figure	13.2.	Example	of	a	periodic	input	task.

13.3.3.2	Timing	Considerations	for	Periodic	I/O	Tasks

The	 frequency	 with	 which	 a	 task	 samples	 a	 sensor	 depends	 on	 the	 frequency
with	which	the	sensor's	value	is	expected	to	change.	It	also	depends	on	the	delay
that	can	be	tolerated	in	reporting	this	change.	For	example,	ambient	temperature
varies	slowly	and	so	can	be	polled	with	a	frequency	in	minutes.	By	contrast,	to
provide	a	fast	response	to	the	opening	of	a	door,	assuming	the	door	is	a	passive
input	device,	the	door	sensor	might	need	to	be	polled	every	100	milliseconds.

Although	 digital	 input	 can	 be	 supported	 by	means	 of	 an	 interrupt-driven
input	 device,	 analog	 input	 is	 rarely	 supported	 by	means	 of	 an	 interrupt-driven
input	device.	If	an	analog	input	device	generated	an	interrupt	every	time	its	value
changed,	it	would	very	probably	impose	a	heavy	interrupt	load	on	the	system.



The	higher	the	sampling	rate	of	a	given	task,	the	greater	the	overhead	that
will	 be	 generated.	 For	 a	 digital	 input	 device,	 a	 periodic	 input	 task	 is	 likely	 to
consume	 more	 overhead	 than	 the	 equivalent	 event	 driven	 input	 task.	 This	 is
because	there	will	 likely	be	times	when	the	periodic	input	task	is	activated	and
the	value	of	the	sensor	being	monitored	will	not	have	changed.	If	the	sampling
rate	 chosen	 is	 too	 high,	 significant	 unnecessary	 overhead	 could	 be	 generated.
The	sampling	rate	selected	for	a	given	task	depends	on	the	characteristics	of	the
input	 device	 as	 well	 as	 the	 characteristics	 of	 the	 environment	 external	 to	 the
application.



13.3.4	Demand	Driven	I/O	Tasks

Demand	driven	I/O	tasks	are	used	when	dealing	with	passive	I/O	devices	that
do	not	need	to	be	polled	and	hence	do	not	need	periodic	I/O	tasks.	In	particular,
they	are	used	when	it	is	considered	desirable	to	overlap	computation	with	I/O.	A
demand	driven	I/O	task	is	used	in	such	a	situation	to	interface	to	the	passive	I/O
device.	Stereotypes	are	used	 to	depict	a	demand	driven	I/O	 task	as	an	 input	or
output	 demand	 driven	 task,	 such	 as	 «demand»	 «output»
«swSchedulableResource».

Consider	the	following	cases:

Demand	 driven	 I/O	 tasks	 are	 used	 more	 often	 with	 output	 devices	 than	 with
input	devices	because	the	output	can	be	overlapped	with	the	computation	more
often,	as	shown	 in	 the	 following	example.	Usually,	 if	 the	 I/O	and	computation
are	to	be	overlapped	for	a	passive	input	device,	a	periodic	input	task	is	used.

In	the	case	of	input,	overlap	the	input	from	the	passive	device	with	the
computational	task	that	receives	and	consumes	the	data.	This	is	achieved
by	using	a	demand	driven	input	task	to	read	the	data	from	the	input
device,	when	requested	to	do	so.	Separate	demand	driven	input	and
computational	tasks	are	only	useful	if	the	computational	task	has	some
computation	to	do	while	the	input	task	is	reading	the	input.	If	the
computational	task	has	to	wait	for	the	input,	the	input	can	be	performed
in	the	same	thread	of	control.

In	the	case	of	output,	overlap	the	output	to	the	device	with	the
computational	task	that	produces	the	data.	This	is	achieved	by	using	a
demand	driven	output	task	to	output	to	the	device	when	requested	to	do
so,	usually	via	a	message.



Consider	 a	 demand	 driven	 output	 task	 that	 receives	 a	 message	 from	 a
producer	 task.	Overlapping	computation	and	output	 is	achieved	as	 follows:	 the
consumer	 task	outputs	 the	data	 contained	 in	 the	message	 to	 the	passive	output
device,	the	display,	while	the	producer	is	preparing	the	next	message.	This	case
is	shown	in	Figure	13.3.	Speed	Display	Output	 is	a	demand	driven	output
task.	 It	 accepts	 a	 message	 containing	 the	 current	 speed	 from	 the	 Speed
Computation	Algorithm	task	and	then	formats	and	displays	the	speed	while
the	Speed	Computation	Algorithm	task	is	computing	the	next	speed	value
to	 display.	 Thus,	 the	 computation	 is	 overlapped	 with	 the	 output.	 The	 Speed
Display	Output	 task	 is	 depicted	 on	 the	 concurrent	 communication	 diagram
with	 the	 stereotypes	 «demand»	 «output»	 «swSchedulableResource».	 The
Display	 passive	 output	 hardware	 device	 is	 depicted	 with	 the	 stereotypes
«passive»	«output»	«hwDevice».	This	example	is	continued	in	Section	13.9.3.

Figure	13.3.	Example	of	a	demand	driven	output	task.



13.3.5	Resource	Monitor	Tasks

A	 resource	 monitor	 task	 is	 a	 special	 case	 of	 the	 demand	 driven	 I/O	 task
considered	earlier.	An	input	or	output	device	that	receives	requests	from	multiple
sources	should	have	a	resource	monitor	task	to	coordinate	these	requests,	even	if
the	device	is	passive.	A	resource	monitor	task	has	to	sequence	these	requests	so
as	 to	 maintain	 data	 integrity	 and	 ensure	 that	 no	 data	 is	 corrupted	 or	 lost.	 A
resource	monitor	task	is	depicted	with	the	same	stereotypes	as	a	demand	driven
I/O	task,	that	is,	«demand»	«output»	«swSchedulableResource».

For	 example,	 if	 two	 or	 more	 tasks	 are	 allowed	 to	 write	 to	 a	 printer
simultaneously,	 output	 from	 the	 tasks	 will	 be	 randomly	 interleaved,	 and	 a
garbled	report	will	be	produced.	To	avoid	this	problem,	it	is	necessary	to	design
a	printer	resource	monitor	task.	This	task	receives	output	requests	from	multiple
source	tasks	and	has	to	deal	with	each	request	sequentially.	Because	the	request
from	a	second	source	task	might	arrive	before	the	first	task	has	finished,	having
a	resource	monitor	task	to	handle	the	requests	ensures	that	multiple	requests	are
dealt	with	sequentially.

An	example	of	 a	 resource	monitor	 task	 is	given	 in	Figure	13.4.	Printer
Output	is	an	output	object	that	receives	requests	from	the	multiple	instances	of
Printer	Client	 to	print	messages	 (Figure	13.4).	The	 real-world	printer	 is	 a
passive	 output	 device.	 Because	 this	 output	 device	 can	 receive	 requests	 from
multiple	 sources,	 the	 Printer	 Output	 object	 is	 structured	 as	 a	 resource
monitor	 task	–	 the	Printer	Output	 task	–	 that	coordinates	all	printer	output
requests.	The	task	is	depicted	on	the	concurrent	communication	diagram	with	the
stereotypes	«demand»	«output»	«swSchedulableResource»	task.



Figure	13.4.	Example	of	a	demand	driven	resource	monitor	task.



13.3.6	Event	Driven	Proxy	Tasks

Another	kind	of	event	driven	task	is	the	event	driven	proxy	task,	which	interfaces
to	 an	 external	 computer-based	 system	 such	 as	 a	 smart	 device	 or	 an	 external
system.	An	external	system	is	outside	the	scope	of	the	embedded	system	under
development	 but	 typically	 communicates	 with	 it	 over	 a	 network	 as	 part	 of	 a
larger	 distributed	 system.	 An	 event	 driven	 proxy	 task	 usually	 interacts	 with
external	 computer-based	 systems	 by	 using	messages,	 as	 described	 later	 in	 this
chapter.	A	proxy	 task	 is	depicted	with	 the	 stereotypes	«event	driven»	«proxy»
«swSchedulableResource».

An	 example	 of	 an	 event	 driven	 proxy	 task	 is	 a	 Pick	 &	 Place	 Robot
Proxy	 task,	 which	 communicates	 with	 and	 interfaces	 to	 a	 Pick	 &	 Place
Robot,	which	is	an	external	computer-based	system,	as	given	in	Figure	13.5.

Figure	13.5.	Example	of	an	event	driven	proxy	task.



13.4	Internal	Task	Structuring	Criteria
Whereas	 the	 I/O	 task	 structuring	 criteria	 are	 used	 to	 determine	 I/O	 tasks,	 the
internal	 task	 structuring	 criteria	 are	 used	 to	 determine	 internal	 (i.e.,	 non	 I/O)
tasks.



13.4.1	Periodic	Tasks

Many	 real-time	 systems	have	 activities	 that	 need	 to	 be	 executed	on	 a	 periodic
basis,	such	as	counting	down	the	microwave	oven	cooking	time	or	measuring	the
time	 for	 raising	 and	 lowering	 the	 railroad	 crossing	 barrier.	 These	 periodic
activities	 are	 typically	 handled	 by	 periodic	 tasks.	 Although	 periodic	 I/O
activities	 are	 structured	 as	 periodic	 I/O	 tasks,	 periodic	 internal	 activities	 are
structured	as	periodic	tasks.	In	some	cases,	periodic	activities	are	grouped	into	a
temporally	clustered	task,	as	described	in	Section	13.6.1.	Internal	periodic	tasks
include	periodic	algorithm	tasks.	Stereotypes	are	used	to	depict	a	periodic	 task
as	both	a	 timer	resource	and	a	software	schedulable	resource:	«timerResource»
«swSchedulableResource».	An	additional	stereotype	is	used	to	depict	the	role	of
the	periodic	task,	such	as	«algorithm».

An	activity	 that	needs	 to	be	executed	periodically	 (i.e.,	at	 regular,	equally
spaced	 intervals	 of	 time)	 is	 structured	 as	 a	 separate	 periodic	 task.	 The	 task	 is
activated	by	a	timer	event,	performs	the	periodic	activity,	and	then	waits	for	the
next	 timer	 event.	The	 task's	 period	 is	 the	 time	between	 successive	 activations.
The	 «timerResource»	 stereotype	 has	 two	 attributes,	 a	 Boolean	 attribute
isPeriodic	 and	 a	period	 attribute	 in	 units	 of	 time.	For	 example	 a	 periodic	 task
with	a	period	of	100	msecs	is	depicted	with	the	tagged	value	{isPeriodic	=	true,
period	=	(100,	ms)}.

As	an	example	of	a	periodic	 task,	consider	 the	Microwave	Timer	object
shown	 in	Figure	13.6a.	The	Microwave	Timer	 object	 is	 activated	by	a	 timer
event	 every	 second.	 It	 then	 requests	 the	 Oven	 Data	 object	 to	 decrement	 the
cooking	 time	 by	 one	 second	 and	 return	 the	 time	 left.	 If	 the	 cooking	 time	 has
expired,	then	the	Microwave	Timer	object	sends	a	Timer	Expired	message
to	 Microwave	 Control.	 The	 Microwave	 Timer	 object	 is	 designed	 as	 a



periodic	task	(Figure	13.6b)	that	is	activated	at	regular	intervals	of	1	second,	at
which	 time	 it	 requests	 the	Oven	Data	 passive	 entity	 object	 to	 decrement	 the
cooking	 time.	 The	 Microwave	 Timer	 task	 is	 depicted	 on	 the	 concurrent
communication	 diagram	 with	 the	 stereotype	 «timerResource»
«swSchedulableResource»	 task.	 The	 attributes	 of	 the	 «timerResource»
stereotype	are	set	to	{isPeriodic	=	true,	period	=	(1,	sec)},	which	means	that	the
task	 is	 periodic	 and	 the	 length	 of	 the	 period	 is	 1	 second.	 The	 timer	 event	 is
depicted	as	an	asynchronous	event.

Figure	13.6.	Example	of	a	periodic	task.



13.4.2	Demand	Driven	Tasks

Many	real-time	and	concurrent	systems	have	activities	that	need	to	be	executed
on	demand.	These	demand	driven	 activities	 are	 typically	handled	by	means	of
demand	 driven	 tasks.	 Whereas	 demand	 driven	 I/O	 tasks	 are	 activated	 by	 the
arrival	 of	 external	 interrupts,	 demand	 driven	 internal	 tasks	 (also	 referred	 to	 as
aperiodic	 tasks)	are	activated	on	demand	by	the	arrival	of	 internal	messages	or
events.

An	 object	 that	 is	 activated	 on	 demand	 (i.e.,	 when	 it	 receives	 an	 internal
message	 or	 event	 sent	 by	 a	 different	 task)	 is	 structured	 as	 a	 separate	demand
driven	 task.	The	 task	 is	activated	on	demand	by	 the	arrival	of	 the	message	or
event	sent	by	the	requesting	task,	performs	the	demanded	request,	and	then	waits
for	 the	 next	 message	 or	 event.	 Internal	 demand	 driven	 tasks	 include	 demand
driven	algorithm	 tasks.	A	demand	driven	 task	 is	 depicted	with	 the	 stereotypes
«demand»	«swSchedulableResource».	An	additional	stereotype	is	used	to	depict
the	role	of	the	demand	driven	task,	such	as	«algorithm».

An	example	of	a	demand	driven	task	is	given	in	Figure	13.7.	In	the	analysis
model,	the	Speed	Adjustment	object	is	activated	on	demand	by	the	arrival	of
a	Cruise	Command	message	from	the	Train	Control	object,	reads	from	the
Current	 Speed	 and	 Cruising	 Speed	 entity	 objects,	 calculates	 the
adjustment	 to	 the	 speed,	 and	 sends	 a	 Speed	 Value	 message	 with	 the	 speed
adjustment	to	the	Motor	Output	object	(Figure	13.7a).	In	the	design	model,	the
Speed	 Adjustment	 object	 is	 structured	 as	 a	 demand	 driven	 algorithm	 task
called	 Speed	 Adjustment,	 which	 is	 activated	 by	 the	 arrival	 of	 a	 cruise
Command	message.	The	Speed	Adjustment	task	is	depicted	on	the	concurrent
communication	 diagram	 with	 the	 stereotypes	 «demand»	 «algorithm»
«swSchedulableResource»	 task	 (Figure	 13.7b).	 The	 Train	 Control	 and



Motor	 Output	 objects	 are	 also	 structured	 as	 demand	 driven	 tasks.	 The
Current	Speed	and	Cruising	Speed	objects	are	passive	entity	objects.

Figure	13.7.	Example	of	a	demand	driven	algorithm	task.



13.4.3	State	Dependent	Control	Tasks

In	the	analysis	model,	a	state	dependent	control	object	executes	a	state	machine.
Using	 the	 restricted	 form	 of	 state	 machines	 whereby	 concurrency	 within	 an
object	is	not	permitted,	it	follows	that	the	execution	of	a	state	machine	is	strictly
sequential.	Hence,	a	task	whose	execution	is	also	strictly	sequential	can	perform
the	 control	 activity.	A	 task	 that	 executes	 a	 sequential	 state	machine	 (typically
implemented	 as	 a	 state	 transition	 table)	 is	 referred	 to	 as	 a	 state	 dependent
control	task.	A	control	task	is	usually	a	demand	driven	task,	which	is	activated
on	demand	by	the	arrival	of	a	message	sent	by	another	task.	A	state	dependent
control	task	is	depicted	with	the	stereotypes	«demand»	«state	dependent	control»
«swSchedulableResource».

An	example	of	a	demand	driven	 state	dependent	control	 task	 is	 shown	 in
Figure	13.8.	Train	Control	 (Figure	13.8a)	 is	structured	as	a	state	dependent
control	 task	 because	 it	 executes	 the	Train	Control	 state	machine,	which	 is
strictly	 sequential.	 The	 Train	 Control	 task	 (Figure	 13.8b)	 receives	 train
arrival	 events	 from	 an	 Arrival	 Sensor	 Input	 task	 and	 sends	 speed
commands	 to	 a	 Speed	 Adjustment	 algorithm	 task.	 The	 Train	 Control
demand	 driven	 state	 dependent	 control	 task	 is	 depicted	 on	 the	 concurrent
communication	 diagram	 with	 the	 stereotypes	 «demand»	 «	 state	 dependent
control»	«swSchedulableResource».



Figure	13.8.	Example	of	a	demand	driven	state	dependent	control	task.

Another	 example	 of	 a	 state	 dependent	 control	 task	 is	 the	 Character
Control	task,	which	executes	the	state	machine	for	a	computer	game	character,
in	 which	 all	 characters	 are	 of	 the	 same	 type.	 There	 are	 multiple	 Character
Control	objects	(depicted	by	using	the	multiple	instance	1..*	notation	in	Figure
13.9a).	 Each	Character	Control	 instance	 is	 structured	 as	 a	demand	 driven
state	dependent	control	task.	Consequently,	there	is	one	Character	Control
task	 for	 each	 game	 character,	 which	 is	 also	 depicted	 by	 using	 the	 multiple
instance	 notation	 in	 Figure	 13.9b.	 The	 game	 character	 tasks	 are	 identical,	 and
each	 task	 executes	 an	 instance	 of	 the	 same	 state	 machine.	 However,	 each
character	is	likely	to	be	in	a	different	state	on	its	state	machine	and	either	waiting
for	or	executing	a	different	event.



Figure	13.9.	Example	of	multiple	control	tasks	of	same	type.



13.4.4	Coordinator	Tasks

In	 addition	 to	 state	 dependent	 control	 objects,	 coordinator	 objects	 from	 the
analysis	 model	 are	 mapped	 to	 coordinator	 tasks.	 A	 coordinator	 task	 is	 a
decision-making	 task	 that	 is	not	state	dependent.	A	coordinator	 task	 is	demand
driven	and	 is	activated	on	demand	by	 the	arrival	of	a	message	sent	by	another
task.	The	decisions	a	coordinator	task	makes	are	based	entirely	on	the	content	of
the	message	it	receives.	A	demand	driven	coordinator	task	is	depicted	with	the
stereotypes	«demand»	«coordinator»	«swSchedulableResource».

An	 example	 of	 a	 coordinator	 task	 is	 the	 Hierarchical	 Coordinator
task	in	Figure	13.10,	which	sends	high-level	commands	to	each	of	the	distributed
controllers.	The	distributed	controllers,	which	are	state	dependent,	provide	low-
level	 control,	 interacting	with	 various	 sensors	 and	 actuators	 and	 responding	 to
the	 Hierarchical	 Coordinator	 when	 they	 have	 finished.	 They	 may	 also
send	progress	reports	to	the	Hierarchical	Coordinator.

Figure	13.10.	Example	of	a	demand	driven	coordinator	task.



13.4.5	User	Interaction	and	Service	Tasks

A	 user	 typically	 performs	 a	 set	 of	 sequential	 actions.	 Because	 the	 user's
interaction	with	the	system	is	a	sequential	activity,	this	can	be	handled	by	a	user
interaction	task.	The	speed	of	this	task	is	frequently	constrained	by	the	speed	of
user	 interaction.	As	 its	name	implies,	a	user	 interaction	object	 in	 the	analysis
model	 is	 mapped	 to	 a	 user	 interaction	 task.	 Because	 a	 user	 interaction	 task
receives	its	inputs	from	an	external	user,	it	is	considered	event	driven.	An	event
driven	user	interaction	task	is	depicted	with	the	stereotypes	«event	driven»	«user
interaction»	«swSchedulableResource».

A	user	interaction	task	usually	interfaces	with	various	standard	I/O	devices
–	 such	 as	 the	 input	 keyboard,	 output	 display,	 and	 mouse	 –	 that	 are	 typically
handled	by	the	operating	system.	Because	the	operating	system	usually	provides
a	 standard	 interface	 to	 these	 devices,	 it	 is	 not	 necessary	 to	 develop	 special-
purpose	I/O	tasks	to	handle	them.

The	 concept	 of	 one	 task	 per	 sequential	 activity	 is	 used	 on	 modern
workstations	 with	 multiple	 windows.	 Each	 window	 executes	 a	 sequential
activity,	so	there	is	one	task	for	each	window.	In	the	Windows	operating	system,
it	 is	possible	 for	 the	user	 to	have	Word	executing	 in	one	window,	PowerPoint
executing	in	another	window,	and	the	user	browsing	the	Web	in	a	third	window.
There	is	one	user	interaction	task	for	each	window,	and	each	of	these	tasks	can
spawn	other	tasks	(for	example,	to	overlap	printing	with	editing).

An	 example	 of	 a	 user	 interaction	 task	 is	 given	 in	 Figure	 13.11.	 The
Operator	 Interaction	 task	 accepts	 operator	 commands,	 requests	 sensor
data	 from	 the	 Sensor	 Data	 Service	 task,	 and	 displays	 this	 data	 to	 the
operator	(Figure	13.11a).	Because	all	operator	interactions	are	sequential	in	this
example,	 the	Operator	Interaction	object	 is	 structured	as	an	event	driven



user	 interaction	 task	 (Figure	 13.11b).	 The	 task	 is	 depicted	 on	 the	 concurrent
communication	diagram	with	 the	stereotypes	«event	driven»	«user	 interaction»
«swSchedulableResource».

A	 service	 object	 that	 is	 designed	 as	 a	demand	 driven	 service	 task	 is	 also
depicted	 in	 Figure	 13.11.	 The	 Sensor	 Data	 Service	 task	 is	 activated	 on
demand	by	the	arrival	of	sensor	requests	from	its	clients.	The	task	is	depicted	on
the	 concurrent	 communication	 diagram	with	 the	 stereotypes	 «demand	 driven»
«service»	«swSchedulableResource».	See	Chapter	12	for	a	longer	discussion	on
the	design	of	service	subsystems.

Figure	13.11.	Example	of	event	driven	user	interaction	tasks	and	demand



driven	service	tasks.

In	 a	multiple	 window	workstation	 environment,	 a	 factory	 operator	might
view	factory	status	in	one	window	(supported	by	one	user	interaction	task)	and
acknowledge	 alarms	 in	 another	 window	 (supported	 by	 a	 different	 user
interaction	 task).	An	 example	of	 this	 is	 given	 in	Figure	 13.11c.	There	 are	 two
event	 driven	 user	 interaction	 tasks,	Factory	Status	Window	 and	Factory
Alarm	Window,	which	are	active	concurrently.	The	Factory	Status	Window
task	interacts	with	the	Factory	Status	Service	demand	driven	service	task
while	 the	Factory	Alarm	Window	 task	 interacts	with	 the	Factory	Alarm
Service	task.



13.4.6	Multiple	Tasks	of	Same	Type

As	pointed	out	earlier,	it	is	possible	to	have	many	objects	of	the	same	type.	Each
object	 is	mapped	 to	 a	 task,	where	 all	 the	 tasks	 are	 instances	 of	 the	 same	 task
type.	An	example	of	multiple	state	dependent	control	 tasks	of	 the	same	type	 is
given	in	Figure	13.9,	in	which	there	are	multiple	instances	of	the	computer	game
Character	Control	task.

It	might	be	that,	for	a	given	application,	 there	are	too	many	objects	of	 the
same	type	to	allow	each	to	be	mapped	to	a	separate	task.	This	issue	is	addressed
by	using	task	inversion,	as	described	in	Section	13.7.



13.5	Task	Priority	Criteria
Task	 priority	 criteria	 take	 into	 account	 priority	 considerations	 in	 task
structuring;	 in	 particular,	 high-and	 low-priority	 tasks	 are	 considered.	 Task
priority	 is	 often	 addressed	 late	 in	 the	 development	 cycle.	The	main	 reason	 for
considering	it	during	the	task	structuring	phase	is	to	identify	any	time-critical	or
non-time-critical	 computationally	 intensive	 objects	 that	 need	 to	 be	 treated	 as
separate	 tasks.	 Priorities	 for	 most	 tasks	 are	 determined	 based	 on	 real-time
scheduling	considerations,	as	described	in	Chapter	17.



13.5.1	Time-Critical	Tasks

A	 time-critical	 task	 is	 a	 task	 that	 needs	 to	meet	 a	 hard	 deadline.	Such	 a	 task
needs	 to	 run	 at	 a	 high	 priority.	 High-priority	 time-critical	 tasks	 are	 needed	 in
most	real-time	systems.

Consider	the	case	where	the	execution	of	a	time-critical	object	is	followed
by	a	non-time-critical	object.	To	ensure	that	the	time-critical	object	gets	serviced
rapidly,	it	should	be	allocated	to	its	own	high-priority	task.

As	an	example	of	a	time-critical	task,	consider	a	Furnace	Temperature
Control	object	that	monitors	the	temperature	of	a	furnace.	If	the	temperature	is
above	 100	 degrees	 Centigrade,	 the	 furnace	 must	 be	 switched	 off.	 Furnace
Temperature	 Control	 is	 mapped	 to	 a	 high-priority	 task.	 It	 must	 execute
within	 a	 predefined	 time;	 otherwise,	 the	 contents	 of	 the	 furnace	 could	 be
damaged.

Other	examples	of	time-critical	tasks	are	control	tasks	and	event	driven	I/O
tasks.	A	 control	 task	 executes	 a	 state	machine	 and	 needs	 to	 execute	 at	 a	 high
priority	because	state	transitions	must	be	executed	rapidly.	An	event	driven	I/O
task	needs	to	have	a	high	priority	so	it	can	service	interrupts	quickly;	otherwise,
there	 is	 a	 danger	 that	 it	 might	miss	 interrupts.	 An	 example	 of	 a	 high-priority
event	driven	input	task	is	the	Arrival	Sensor	Input	task	in	Figure	13.1.



13.5.2	Non-Time-Critical	Computationally	Intensive	Tasks

A	non-time-critical	computationally	intensive	task	may	run	as	a	low-priority
task	consuming	spare	CPU	cycles.	A	low-priority	computationally	intensive	task
executes	as	a	background	task	that	is	preempted	by	higher-priority	tasks	that	are
more	time	critical.

An	example	of	a	non-time-critical	computationally	intensive	task	is	given	in
Figure	13.3.	The	Speed	Computation	Algorithm	object	computes	the	next
speed	value	to	display	and	then	passes	this	data	to	the	Speed	Display	Output
object	 (Figure	 13.3a).	 Because	 the	 Sensor	 Computation	 Algorithm

executes	at	a	low	priority,	it	is	mapped	to	a	low-priority	background	task	(Figure
13.3b)	 that	 uses	 up	 spare	CPU	 time.	 The	Speed	Computation	Algorithm
task,	 which	 is	 activated	 on	 demand,	 is	 depicted	 on	 the	 concurrent
communication	 diagram	 with	 the	 stereotypes	 «demand»	 «algorithm»
«swSchedulableResource».

A	computationally	intensive	algorithm	cannot	always	be	mapped	to	a	low-
priority	task.	The	priority	of	the	algorithm	is	application-dependent.	Hence,	it	is
possible	 in	 some	 applications	 for	 a	 computationally	 intensive	 algorithm	 to	 be
time-critical	and	thus	need	to	be	executed	at	a	high	priority.



13.6	Task	Clustering	Criteria
An	 analysis	 model	 can	 have	 a	 large	 number	 of	 objects,	 each	 of	 which	 is
potentially	 concurrent	 and	 mapped	 to	 a	 candidate	 task.	 This	 high	 degree	 of
concurrency	in	the	analysis	model	provides	considerable	flexibility	in	the	design.
In	fact,	each	object	in	the	analysis	model	could	be	mapped	to	a	task	in	the	design
model.	However,	if	each	object	became	a	task,	this	could	lead	to	a	large	number
of	 small	 tasks,	 potentially	 resulting	 in	 increased	 system	 complexity	 and
execution	overhead.

The	 task	 clustering	 criteria	 are	 used	 to	 determine	whether	 certain	 tasks,
determined	 during	 the	 first	 stage	 of	 task	 structuring,	 could	 be	 consolidated
further	 to	 reduce	 the	overall	number	of	 tasks.	The	 tasks	determined	during	 the
first	 phase	 of	 task	 structuring	 (by	 using	 the	 I/O,	 internal,	 and	 priority	 task
structuring	 criteria	 described	 in	 the	 previous	 subsections)	 are	 referred	 to	 as
candidate	 tasks.	Candidate	 tasks	 can	 actually	 be	 combined	 into	 physical	 tasks,
based	on	the	task	clustering	criteria	described	in	this	subsection.

The	clustering	criteria	provide	a	means	of	analyzing	the	concurrent	nature
of	the	candidate	tasks	and	hence	provide	a	basis	for	determining	whether	two	or
more	 candidate	 tasks	 should	 be	 grouped	 into	 a	 single	 physical	 task	 and,	 if	 so,
how.	 Thus,	 if	 two	 candidate	 tasks	 are	 constrained	 so	 they	 cannot	 execute
concurrently	 and	 must	 instead	 execute	 sequentially,	 combining	 them	 into	 one
physical	task	usually	simplifies	the	design.	There	are	exceptions	to	this	general
rule,	as	described	later.

Although,	task	clustering	is	described	as	a	second	stage	of	task	structuring,
the	experienced	designer	can	combine	the	two	stages.



This	 chapter	 describes	 task	 structuring	 by	 using	 the	 clustering	 criteria.
However,	the	internal	design	of	clustered	tasks	is	described	in	Chapter	14.



13.6.1	Temporal	Clustering

Certain	candidate	tasks	may	be	activated	by	the	same	event,	for	example,	a	timer
event.	Each	time	the	tasks	are	awakened,	they	execute	some	activity.	If	there	is
no	 sequential	 dependency	 between	 the	 candidate	 tasks	 –	 that	 is,	 no	 required
sequential	order	 in	which	 the	 tasks	must	execute	–	 the	candidate	 tasks	may	be
grouped	 into	 the	same	 task,	based	on	 the	 temporal	clustering	 criterion.	When
the	task	is	activated,	each	of	the	clustered	activities	is	executed	in	turn.	Because
there	is	no	sequential	dependency	between	these	clustered	activities,	an	arbitrary
execution	order	needs	to	be	selected	by	the	designer.

Temporal	clustering	is	usually	applied	to	candidate	tasks	that	are	activated
periodically.	Thus,	it	is	often	the	case	that	candidate	tasks	activated	by	the	same
periodic	event	and	with	the	same	frequency	may	be	grouped	into	the	same	task,
according	to	the	temporal	clustering	criterion.	In	this	case,	a	temporal	clustered
task	 is	 depicted	 with	 the	 stereotypes	 «timerResource»	 «temporal	 clustering»
«swSchedulableResource».

13.6.1.1	Example	of	Temporal	Clustering

An	example	of	 temporal	 clustering	 is	given	 in	Figure	13.12.	Consider	 two	 I/O
objects,	one	of	which	receives	inputs	from	a	temperature	sensor	while	the	other
receives	 inputs	 from	a	pressure	sensor.	 If	 these	were	event	driven	 I/O	devices,
each	device	would	be	handled	by	a	separate	event	driven	I/O	task,	which	would
be	activated	by	a	device	interrupt	every	time	there	was	an	input	from	the	device.
However,	if	the	two	sensors	are	passive,	the	only	way	for	the	system	to	be	aware
of	a	change	 in	sensor	status	 is	 for	 it	 to	 sample	 the	sensors	periodically.	Figure
13.12a	 shows	 that	 each	 input	 object	 is	 structured	 as	 a	 periodic	 input	 task,
depicted	 on	 the	 concurrent	 communication	 diagram	 with	 the	 stereotypes



«timerResource»	 «input»	 «swSchedulableResource».	 The	 attributes	 of	 each
«timerResource»	stereotype	are	set	to	{isPeriodic	=	true,	period	=	(100,	ms)}.

Figure	13.12.	Example	of	temporal	clustering.



In	 Figure	 13.12a,	 the	Temperature	Sensor	Input	 periodic	 input	 task
periodically	 reads	 the	 current	 value	 of	 the	 temperature	 sensor	 and	 updates	 the
current	 temperature	 in	 the	Sensor	Data	Repository	 object.	 Similarly,	 the
Pressure	 Sensor	 Input	 periodic	 input	 task	 periodically	 reads	 the	 current
value	 of	 the	 pressure	 sensor	 and	 updates	 the	 current	 pressure	 in	 the	 Sensor
Data	Repository	object.

Now,	assume	that	 the	sensors	are	 to	be	sampled	with	 the	same	frequency,
perhaps	 every	 100	 milliseconds.	 In	 this	 case,	 the	 Temperature	 Sensor

Input	 and	 the	 Pressure	 Sensor	 Input	 tasks	 can	 be	 grouped	 into	 a	 task
called	Sensor	Monitor,	based	on	 the	 temporal	clustering	criterion,	as	shown
in	Figure	13.12b.	The	Sensor	Monitor	task	is	depicted	as	a	periodic	temporal
clustering	 task	 on	 the	 concurrent	 communication	 diagram	with	 the	 stereotypes
«timerResource»	«temporal	clustering»	«swSchedulableResource».

The	Sensor	Monitor	task	is	activated	periodically	by	a	timer	event	from
the	 external	 timer	 and	 then	 samples	 the	 current	 values	 of	 the	 temperature	 and
pressure	 sensors.	 It	 then	 updates	 the	 values	 of	 the	 current	 temperature	 and
pressure	 in	 the	Sensor	Data	Repository,	which	 is	 a	passive	 entity	object.
The	 attributes	 of	 the	 «timerResource»	 are	 set	 to	 {isPeriodic	 =	 true,	 period	 =
(100,	ms)},	which	means	that	each	sensor	is	sampled	with	a	frequency	given	by
the	period	value	of	100	msec.

Although	 this	 example	 only	 has	 two	 sensors,	 the	 benefits	 of	 temporal
clustering	become	more	apparent	if	one	considers	100	sensors	sampled	with	the
same	 period	 being	 clustered	 into	 one	 temporally	 cohesive	 task	 instead	 of	 into
100	periodic	tasks.

13.6.1.2	Issues	in	Temporal	Clustering



In	deciding	whether	to	combine	candidate	tasks	into	a	temporally	clustered	task,
some	tradeoffs	need	to	be	considered:

If	one	candidate	task	is	more	time-critical	than	a	second	candidate	task,
the	tasks	should	not	be	combined;	this	gives	the	additional	flexibility	of
allocating	different	priorities	to	the	two	tasks.

If	it	is	considered	likely	that	two	candidate	tasks	for	temporal	clustering
could	be	executed	on	separate	processors,	they	should	be	kept	as	separate
tasks	because	each	candidate	task	would	execute	on	its	own	processor.

Preference	should	be	given	in	temporal	clustering	to	tasks	that	are
functionally	related	and	likely	to	be	of	equal	importance	from	a
scheduling	viewpoint.

Period	or	sampling	rate.	Another	issue	is	whether	it	is	possible	to	group
two	periodic	tasks	that	are	functionally	related	to	each	other	but	have
different	periods	into	a	temporally	clustered	task.	This	approach	can	be
used	if	the	periods	are	multiples	of	one	another.	However,	this	form	of
temporal	clustering	is	weaker	than	if	the	periods	are	identical.	For
example,	two	periodic	I/O	tasks	may	be	grouped	into	one	task	if	one	task
samples	a	sensor	(A)	every	50	msec	and	the	second	task	samples	another
sensor	(B)	every	100	msec.	The	temporally	clustered	task	has	a	period	of
50	msec	and	samples	sensor	A	every	time	it	is	activated	and	sensor	B
every	second	time	it	is	activated.	However,	there	are	cases	when	tasks
should	not	be	combined	based	on	sampling	rate.	For	example,	if	there	are
three	periodic	activities	with	periods	of	15,	20,	and	25	msec,	the
combined	temporally	clustered	task	would	need	to	have	a	period	of	5
msec	(the	highest	common	factor),	resulting	in	a	higher	overhead	than
with	three	separate	periodic	tasks.



In	 short,	 the	 use	 of	 temporal	 clustering	 for	 related	 tasks	 is	 recommended	 in
certain	cases.	However,	grouping	periodic	tasks	that	are	not	functionally	related
into	 one	 task	 is	 not	 considered	 desirable	 from	 a	 design	 viewpoint,	 although	 it
might	 be	done	 for	 optimization	purposes	 if	 the	 tasking	overhead	 is	 considered
too	high.



13.6.2	Sequential	Clustering

The	execution	of	 certain	 candidate	 tasks	might	be	 constrained	by	 the	needs	of
the	application	to	be	carried	out	in	a	sequential	order.	The	first	candidate	task	in
the	sequence	is	triggered	by	an	aperiodic	or	periodic	event.	The	other	candidate
tasks	 are	 then	 executed	 sequentially	 after	 it.	 These	 sequentially	 dependent
candidate	tasks	may	be	grouped	into	a	 task	based	on	the	sequential	clustering
criterion.	 A	 sequentially	 clustered	 task	 is	 depicted	 with	 the	 stereotypes
«sequential	clustering»	«swSchedulableResource».

Depending	on	the	application,	sequentially	clustered	tasks	can	be	activated
on	 demand	 or	 periodically,	 in	 which	 case	 an	 additional	 stereotype	 is	 used,
«demand»	for	the	former	case	and	«timerResource»	for	the	latter	case.

13.6.2.1	Example	of	Sequential	Clustering

As	an	example	of	sequential	clustering,	consider	the	two	candidate	tasks	shown
in	 Figure	 13.13a.	 The	 Vehicle	 Timer	 task	 is	 a	 periodic	 task,	 activated
periodically	 to	prepare	 a	 report.	When	activated,	 it	 reads	 information	 from	 the
entity	object	Vehicle	Status,	prepares	the	report,	and	then	sends	the	report	to
the	 Status	 Display	 Output	 task,	 which	 outputs	 the	 report.	 The	 Status
Display	 Output	 task	 is	 a	 demand	 driven	 output	 task,	 and	 the	 display	 is	 a
passive	 output	 device	 dedicated	 to	 displaying	 this	 report.	 If	 the	 report	 is
generated	infrequently	–	perhaps	once	every	500	msec	–	there	is	in	practice	no
overlapping	 of	 generation	 of	 the	 report	with	 the	 display	 of	 the	 report.	 This	 is
because	 generation	 of	 the	 report	 is	 completed	 before	 it	 is	 displayed,	 and
displaying	 the	report	completes	before	 it	 is	 time	 to	generate	 the	next	 report.	 In
this	 situation,	 the	Vehicle	Timer	 and	Status	Display	Output	 candidate
tasks	 can	 be	 combined	 into	 one	 sequentially	 clustered	 task	 (Figure	 13.13b)



instead	 of	 being	 structured	 as	 two	 separate	 tasks.	 The	 Vehicle	 Status

Generator	 task	 is	 depicted	 periodic	 sequential	 clustering	 task	 on	 the
concurrent	 communication	 diagram	 with	 the	 stereotypes	 «timerResource»
«sequential	clustering»	«swSchedulableResource».

Figure	13.13.	Example	of	sequential	clustering.

13.6.2.2	Issues	in	Sequential	Clustering

When	combining	successive	 tasks	by	using	sequential	clustering,	 the	following
guidelines	apply:

If	the	last	candidate	task	in	a	sequence	does	not	send	an	inter-task
message,	this	terminates	the	group	of	tasks	to	be	considered	for



sequential	clustering.	This	happens	with	the	Status	Display	Output
candidate	task	in	Figure	13.13a,	which	ends	a	sequence	of	two
sequentially	connected	candidate	tasks	by	displaying	the	report.

If	the	next	candidate	task	in	the	sequence	also	receives	inputs	from
another	source	and	therefore	can	also	be	activated	by	receiving	input
from	that	source,	this	candidate	task	should	be	left	as	a	separate	task.
This	happens	in	the	case	of	the	Microwave	Control	task	(Figure
13.16b),	which	can	receive	inputs	from	the	Door	Sensor	Input	task
as	well	as	from	the	Weight	Sensor	and	Keypad	Input	tasks	(Figure
13.16b).	The	four	candidate	tasks	are	not	combined.

If	the	next	candidate	task	in	the	sequence	is	likely	to	hold	up	the
preceding	candidate	task(s)	such	that	they	could	miss	either	an	input	or	a
state	change,	the	next	candidate	task	should	be	structured	as	a	separate,
lower-priority	task.	This	is	what	happens	with	the	Arrival	Sensor
Input	task	in	Figure	13.1,	which	receives	arrival	events	from	the
external	arrival	sensor,	which	it	then	passes	on	to	the	Train	Control
task.	The	Arrival	Sensor	Input	task	must	not	miss	any	external
events,	so	it	is	structured	as	a	higher-priority	input	task	separate	from	the
Train	Control	task.

If	the	next	candidate	task	in	sequence	is	of	a	lower	priority	and	follows	a
time-critical	task,	the	two	tasks	should	be	kept	as	separate	tasks.	This	is
discussed	in	more	detail	in	Task	Priority	Criteria	in	Section	13.5.



13.6.3	Control	Clustering

A	state	dependent	control	object,	which	executes	a	sequential	state	machine,	 is
mapped	 to	 a	 state	dependent	 control	 task.	 In	 certain	 cases,	 the	 state	dependent
control	 task	may	be	combined	with	other	objects	 that	execute	actions	 triggered
by	 the	 state	 machine.	 This	 is	 referred	 to	 as	 control	 clustering.	 A	 control
clustered	task	is	activated	on	demand	by	the	arrival	of	a	message	from	another
task.	 A	 demand	 driven	 control	 clustering	 task	 is	 therefore	 depicted	 with	 the
stereotypes	«demand»	«control	clustering»	«swSchedulableResource».

In	the	analysis	model,	a	state	dependent	control	object	is	defined	by	means
of	 a	 sequential	 state	 machine.	 The	 control	 object	 should	 be	 structured	 as	 a
separate	state	dependent	control	task	(Section	13.4.3)	because	the	execution	of	a
state	machine	 is	defined	 to	be	strictly	sequential.	Furthermore,	 the	control	 task
might	execute	other	state	dependent	actions	within	its	thread	of	control.	Consider
the	following	cases:

State	dependent	actions	that	are	triggered	by	the	control	object	because
of	a	state	transition.	Consider	an	action	(designed	as	an	operation
provided	by	a	separate	object)	that	is	triggered	at	the	state	transition	and
both	starts	and	completes	execution	during	the	state	transition.	Such	an
action	operation	does	not	execute	concurrently	with	the	control	object.
When	mapped	to	tasks,	the	operation	is	executed	within	the	thread	of
control	of	the	control	task.	If	all	the	action	operations	of	an	object	are
executed	within	the	thread	of	control	of	the	control	task,	that	object	can
be	combined	with	the	control	task,	based	on	the	control	clustering	task
structuring	criterion.

State	dependent	activities	that	are	either	enabled	or	disabled	by	the
control	object	because	of	a	state	transition.	Consider	an	activity



13.6.3.1	Example	of	Control	Clustering

An	 example	 of	 control	 clustering	 is	 given	 from	 the	Pump	Control	 problem.
Figure	13.14a	shows	a	state	dependent	control	 task	Pump	Control	 that	 sends
Start	 Pump	 and	 Stop	 Pump	messages	 to	 a	 Pump	 Engine	 Output	 task.	 The
messages	sent	by	Pump	Control	are	actually	state	dependent	actions,	which	are
triggered	 by	 incoming	 events	 that	 cause	 state	 transitions	 on	Pump	Control's
internal	state	machine.	Thus,	Start	Pump	is	the	state	dependent	action	executed
on	 the	 transition	 into	 the	Pumping	state,	and	Stop	Pump	 is	 the	state	dependent
action	executed	on	the	transition	out	of	the	Pumping	state.	When	Pump	Engine
Output	 receives	 a	 Start	 or	 Stop	 Pump	 message,	 it	 converts	 this	 to	 a	 pump
command,	which	it	sends	to	the	external	Pump	Engine	without	delay.	The	Pump
Engine	 output	 device	 is	 passive.	 Because	 each	 action	 is	 executed	 at	 a	 state
transition,	Pump	Control	and	Pump	Engine	Output	can	be	clustered	into	the
same	task	using	control	clustering.

(executed	by	a	separate	object)	that	is	enabled	at	a	state	transition	and
then	executes	continuously	until	disabled	at	a	subsequent	state	transition.
This	activity	should	be	structured	as	a	separate	task,	because	both	the
control	object	and	the	activity	will	need	to	be	active	concurrently.



Figure	13.14.	Example	of	control	clustering.

Consequently,	 the	 state	 dependent	 control	 object	Pump	Control	 and	 the
output	object	Pump	Engine	Output	are	grouped	into	a	demand	driven	control
clustering	 task	 –	 the	 Pump	 Controller	 task	 –	 which	 is	 depicted	 with	 the
stereotypes	 «demand»	 «control	 clustering»	 «swSchedulableResource»	 on	 the
concurrent	communication	diagram	shown	in	Figure	13.14b.



13.7	Design	Restructuring	by	Using	Task
Inversion

Task	inversion	is	a	concept	that	originated	in	Jackson	Structured	Programming
and	Jackson	System	Development	(Jackson	1983),	whereby	the	number	of	tasks
in	a	 system	can	be	 reduced	 in	a	 systematic	way.	At	one	extreme,	a	concurrent
solution	can	be	mapped	to	a	sequential	solution.

The	 task	 inversion	 criteria	 are	 used	 for	 merging	 tasks	 to	 reduce	 task
overhead.	The	 task	 inversion	 criteria	 –	 and	 in	particular	multiple	 instance	 task
inversion	–	may	be	used	during	 initial	 task	structuring	 if	high	 task	overhead	 is
anticipated.	Alternatively,	they	may	be	used	for	design	restructuring	in	situations
in	 which	 there	 are	 concerns	 about	 high	 tasking	 overhead.	 In	 particular,	 task
inversion	can	be	used	if	a	performance	analysis	of	the	design	indicates	that	the
tasking	overhead	is	too	high.



13.7.1	Multiple	Instance	Task	Inversion

Handling	 multiple	 control	 tasks	 of	 the	 same	 type	 was	 described	 in	 Section
13.4.6.	With	this	approach,	several	objects	of	the	same	type	can	be	modeled	by
using	one	task	instance	for	each	object,	where	all	the	tasks	are	of	the	same	type.
The	problem	is	 that,	for	a	given	application,	 the	system	overhead	for	modeling
each	object	by	means	of	a	separate	task	might	be	too	high.

With	multiple	instance	task	inversion,	all	identical	tasks	of	the	same	type
are	 replaced	 by	 one	 task	 that	 performs	 the	 same	 functionality.	 For	 example,
instead	of	mapping	each	control	object	to	a	separate	task,	all	control	objects	of
the	 same	 type	 are	mapped	 to	 the	 same	 task.	Each	 object's	 state	 information	 is
captured	in	a	separate	passive	entity	object.	A	multiple	instance	inversion	task	is
typically	activated	on	demand	by	the	arrival	of	a	message	destined	for	one	of	the
inverted	tasks.	A	demand	driven	multiple	instance	inversion	task	is	depicted	with
the	 stereotypes	 «demand»	 «multiple	 instance	 inversion»
«swSchedulableResource».

As	 an	 example	 of	multiple	 instance	 task	 inversion,	 consider	 the	 example
described	 in	 Section	 13.4.6,	 in	 which	 each	 computer	 game	 Character
Control	 object	 is	mapped	 to	 a	 separate	 game	Character	Control	 task.	 If
there	 are	 a	 very	 large	 number	 of	 computer	 game	 characters	 and	 the	 system
overhead	 is	 too	 high	 to	 allow	 this,	 an	 alternative	 solution	 is	 to	 have	 only	 one
game	 Character	 Controller	 task.	 A	 separate	 passive	 entity	 object	 is
designed	 for	 each	 game	 character	 called	 Character	 State	 Information,
which	contains	the	state	machine	information	for	a	specific	game	character	(see
Figure	 13.15).	 With	 task	 inversion,	 the	 main	 procedure	 of	 the	 task	 is	 a
coordination	procedure,	which	reads	all	inputs	to	the	task	and	decides	for	which
game	character	the	data	is	intended,	thereby	ensuring	that	the	appropriate	game



character	entity	object	is	used.	There	are	other	possible	solutions	such	as	having
more	 than	one	Character	Control	 task	but	 applying	multiple	 instance	 task
inversion	to	assign	a	subset	of	the	game	characters	(such	as	every	ten	or	fifteen
characters)	to	a	task.	This	example	is	described	in	more	detail	in	Albassam	and
Gomaa	(2014).





Figure	13.15.	Example	of	multiple	instance	task	inversion.



13.8	Developing	the	Task	Architecture
The	task	structuring	criteria	can	be	applied	to	the	analysis	model	in	the	following
order.	 In	 each	 case,	 a	 decision	must	 first	 be	made	whether	 the	 analysis	model
object	 should	 be	mapped	 to	 an	 active	 object	 (task)	 or	 a	 passive	 object	 in	 the
design	model.

1.	I/O	tasks.	Start	with	the	I/O	objects	that	interact	with	the	outside	world.
Determine	whether	the	object	should	be	structured	as	an	event	driven	I/O
task,	a	periodic	I/O	task,	a	demand	driven	I/O	task,	a	resource	monitor	task,
or	a	temporally	clustered	periodic	I/O	task.

2.	Control	tasks.	Analyze	each	control	object	(state	dependent	control
object	or	coordinator	object).	Structure	this	object	as	a	demand	driven
control	task.	Any	object	that	executes	an	action	(operation)	triggered	by	the
control	task	can	potentially	be	combined	with	the	control	task	based	on	the
control	clustering	criterion	(for	a	state	dependent	object)	or	sequential
clustering	criterion	(for	a	coordinator	object).	Any	activity	that	the	control
task	enables	and	subsequently	disables	should	be	structured	as	a	separate
task.

3.	Periodic	tasks.	Analyze	the	internal	periodic	activities,	which	are
structured	as	periodic	tasks.	Determine	if	any	candidate	periodic	tasks	are
triggered	by	the	same	event.	If	they	are,	they	may	be	grouped	into	the	same
task,	based	on	the	temporal	clustering	criterion.	Other	candidate	tasks	that
execute	in	sequence	may	be	structured	into	the	same	task,	according	to	the
sequential	clustering	criterion.



4.	Other	internal	tasks.	For	each	internal	candidate	task	activated	by	an
internal	event,	identify	whether	any	adjacent	candidate	tasks	on	the
concurrent	communication	diagram	may	be	grouped	into	the	same	task
according	to	the	temporal,	sequential,	or	multiple	instance	task	inversion
clustering	criteria.

The	 guidelines	 for	mapping	 analysis	model	 objects	 to	 design	model	 tasks	 are
summarized	in	Table	13.1.	In	cases	in	which	the	clustering	criterion	applies,	this
means	 that	 the	 analysis	 model	 object	 is	 designed	 as	 a	 passive	 object	 nested
inside	a	clustered	task,	as	described	in	more	detail	in	Chapter	14.

Table	13.1	Mapping	from	Analysis	Model	to	Design	Model	Tasks

Analysis	Model	(object) Design	Model	(task)

User	interaction Event	driven	user	interaction

Input/Output	(input,	output,
I/O)

Event	driven	I/O	(input,	output,	I/O)

Periodic	I/O	(input,	output,	I/O)

Demand	driven	I/O	(usually	output	tasks)

Demand	driven	resource	monitor	(usually
output	tasks)

Periodic	temporal	clustering	(usually	input
objects)

Sequential	clustering

Control	clustering	(usually	with	output	objects)

Proxy Event	driven	proxy



Any	clustering	criterion

Entity Service

Any	clustering	criterion

Passive	object	(not	a	task)

Timer Periodic	timer

Periodic	temporal	clustering

Periodic	sequential	clustering

State	dependent	control Control

Control	clustering

Coordinator Coordinator

Sequential	clustering

Algorithm Event	driven	algorithm

Periodic	algorithm

Any	clustering	criterion

Table	13.2	depicts	the	stereotypes	for	all	the	tasks	described	in	this	chapter.

Table	13.2	Stereotypes	for	Concurrent	Tasks

Task Stereotypes

Event	driven	user	interaction
task

«event	driven»	«user	interaction»
«swSchedulableResource»



Event	driven	Input/Output
(input,	output,	I/O)	task

«event
driven»«input»«swSchedulableResource»
«event	driven»	«output»

«swSchedulableResource»
«event	driven»	«I/O»

«swSchedulableResource»

Periodic	I/O	(input,	output,	I/O)
task

«timerResource»	«input»
«swSchedulableResource»
«timerResource»	«output»

«swSchedulableResource»
«timerResource»	«I/O»

«swSchedulableResource»

Demand	driven	I/O	(usually
output)	task

«demand»	«output»
«swSchedulableResource»

Demand	driven	resource	monitor
(usually	output)	task

«demand»	«output»
«swSchedulableResource»

Periodic	temporal	clustering	task «timerResource»	«temporal	clustering»
«swSchedulableResource»

Demand	driven	sequential
clustering	task

«demand»	«sequential	clustering»
«swSchedulableResource»

Periodic	sequential	clustering
task

«timerResource»	«sequential	clustering»
«swSchedulableResource»

Demand	driven	control
clustering	task

«demand»	«control	clustering»
«swSchedulableResource»



Event	driven	proxy	task «event	driven»	«proxy»
«swSchedulableResource»

Demand	driven	service	task «demand»	«service»
«swSchedulableResource»

Periodic	(timer)	task «timerResource»
«swSchedulableResource»

Demand	driven	state	dependent
control	task

«demand»	«state	dependent	control»
«swSchedulableResource»

Demand	driven	coordinator	task «demand»	«coordinator»
«swSchedulableResource»

Demand	driven	algorithm	task «demand»	«	algorithm»
«swSchedulableResource»

Periodic	algorithm	task «timerResource»	«	algorithm»
«swSchedulableResource»

Demand	driven	multiple	instance
inversion	task

«demand»	«multiple	instance	inversion»
«swSchedulableResource».



13.9	Task	Communication	and
Synchronization

After	structuring	the	system	into	concurrent	tasks,	the	next	step	is	to	design	the
task	 interfaces.	 At	 this	 stage,	 the	 default	 interfaces	 between	 tasks	 are
asynchronous	 messages	 and	 the	 interface	 to	 a	 passive	 object	 is	 through
synchronous	 communication,	 as	 depicted	 on	 the	 analysis	 model	 interaction
diagrams	(Chapter	9)	and	the	integrated	communication	diagrams	(Chapter	10).
It	is	now	necessary	to	confirm	or	change	these	task	interfaces,	which	need	to	be
in	 the	 form	 of	 message	 communication,	 event	 synchronization,	 or	 access	 to
information-hiding	objects.

The	UML	notation	for	message	communication	 is	described	 in	Chapter	2.
Message	 interfaces	 between	 tasks	 are	 either	 asynchronous	 or	 synchronous,	 as
introduced	 in	 Chapter	 3	 and	 described	 in	 Chapter	 11	 in	 the	 section	 on
architectural	communication	patterns.	For	synchronous	message	communication,
two	 possibilities	 exist:	 synchronous	 message	 communication	 with	 reply	 and
synchronous	message	 communication	without	 reply.	 In	 this	 step	 of	 the	 design
modeling,	 the	 task	 interfaces	 are	 designed	 and	 depicted	 on	 revised	 concurrent
communication	diagrams.

Various	 mechanisms	 for	 providing	 message	 communication	 services	 are
described	in	Chapter	3.	These	include	the	operating	system	kernel,	the	constructs
of	 a	 concurrent	 programming	 language,	 or	 a	 threads	 package.	 Alternatively,
message	 communication	 connectors	 can	 be	 used,	 as	 described	 in	 Chapter	 14.
The	 various	 forms	 of	 inter-task	 communication	 are	 described	 next,	 with
examples	of	their	use.



13.9.1	Asynchronous	Message	Communication

With	 the	asynchronous	message	 communication	 pattern	 (Section	 11.5.2)	 the
producer	sends	a	message	to	the	consumer	and	continues	without	waiting	for	a
response.	Because	the	producer	and	consumer	tasks	proceed	at	different	speeds,
a	 first-in-first-out	 (FIFO)	 message	 queue	 can	 build	 up	 between	 producer	 and
consumer.	 If	 no	 message	 is	 available	 when	 the	 consumer	 requests	 one,	 the
consumer	is	suspended.

Consider	 the	 concurrent	 communication	 diagram	 (Figure	 13.16a),	 which
depicts	 the	Door	Sensor	Input	 task	 sending	 a	message	 to	 the	Microwave
Control	task.	The	Door	Sensor	Input	task	sends	the	message	and	does	not
wait	 for	 it	 to	 be	 accepted	 by	 the	Microwave	Control	 task.	 This	 allows	 the
Door	Sensor	Input	task	to	quickly	service	any	new	external	input	that	might
arrive.	 Asynchronous	 message	 communication	 also	 provides	 the	 greatest
flexibility	for	the	Microwave	Control	task	because	it	can	wait	on	a	queue	of
messages	 that	 arrive	 from	multiple	 sources	–	 in	addition	 to	 the	Door	Sensor
Input	 task,	 there	 are	 also	 the	Weight	Sensor	Input	 and	Keypad	Input
tasks	 that	 send	 control	 requests	 as	messages	 to	Microwave	Control	 (Figure
13.16b).	The	messages	from	these	producer	tasks	are	queued	FIFO	in	a	message
queue	for	Microwave	Control.	The	Microwave	Control	task	processes	the
requests	 in	 the	 order	 in	which	 they	 arrive.	 This	 example	 is	 described	 in	more
detail	in	Chapter	19.



Figure	13.16.	Examples	of	asynchronous	message	communication.



13.9.2	Synchronous	Message	Communication	with	Reply

In	 the	 case	 of	 the	 synchronous	 message	 communication	 with	 reply	 pattern
(Section	11.5.4),	 the	producer	sends	a	message	to	 the	consumer	and	then	waits
for	 a	 reply.	 When	 the	 message	 arrives,	 the	 consumer	 accepts	 the	 message,
processes	it,	generates	a	reply,	and	sends	the	reply.	The	producer	and	consumer
then	both	continue.	The	consumer	is	suspended	if	no	message	is	available.

Although	 used	 in	 client/server	 systems	 (see	 Chapter	 12),	 synchronous
message	communication	with	reply	can	also	involve	a	single	producer	sending	a
message	to	a	consumer	and	then	waiting	for	a	reply,	in	which	case	no	message
queue	 develops	 between	 the	 producer	 and	 the	 consumer.	 An	 example	 of
synchronous	 message	 communication	 with	 reply	 involving	 a	 producer	 and
consumer	 is	 a	 producer	 task,	Vehicle	Control,	 which	 sends	 start	 and	 stop
messages	 to	 the	 consumer	 task,	 Motor	 Output,	 and	 waits	 for	 a	 reply,	 as
depicted	 on	 the	 concurrent	 communication	 diagram	 (Figure	 13.17).	 The
producer	 must	 use	 synchronous	 communication	 with	 the	 consumer	 because	 it
sends	a	message	and	then	waits	for	a	response.	After	receiving	the	message,	the
consumer	 processes	 the	message,	 prepares	 a	 reply,	 and	 sends	 the	 reply	 to	 the
producer.	The	notation	 for	 synchronous	message	communication	with	 reply	on
the	 concurrent	 communication	 diagram	 (Figure	 13.17)	 shows	 a	 synchronous
message	 sent	 from	 the	 producer	 to	 the	 consumer	 with	 a	 dashed	 message,
representing	the	response,	sent	by	the	consumer	back	to	the	producer.

Figure	13.17.	Example	of	synchronous	message	communication	with	reply.



13.9.3	Synchronous	Message	Communication	without	Reply

In	the	case	of	the	synchronous	message	communication	without	reply	pattern
(Section	11.5.6),	 the	producer	sends	a	message	to	 the	consumer	and	then	waits
for	acceptance	of	the	message	by	the	consumer.	When	the	message	arrives,	the
consumer	accepts	the	message,	thereby	releasing	the	producer.	The	producer	and
consumer	 then	 both	 continue.	 The	 consumer	 is	 suspended	 if	 no	 message	 is
available.

An	 example	 of	 synchronous	 message	 communication	 without	 reply	 is
shown	 in	 Figure	 13.18.	 The	 Speed	 Display	 Output	 is	 a	 demand	 driven
output	 task.	 It	 displays	 the	 speed	 of	 the	 car	 while	 the	 Speed	 Computation
Algorithm	 task	 is	 computing	 the	 next	 value	 of	 thecar	 speed.	 Thus,	 the
computation	is	overlapped	with	the	output.

Figure	13.18.	Example	of	synchronous	message	communication	without
reply.

In	 this	 example,	 the	 decision	made	 is	 that	 there	 is	 no	point	 in	 having	 the
Speed	Computation	Algorithm	 producer	 task	 compute	 values	 of	 speed	 if
the	Speed	Display	Output	 consumer	 task	 cannot	 keep	 up	with	 displaying
them.	 Consequently,	 the	 interface	 between	 the	 two	 tasks	 is	 mapped	 to	 a
synchronous	 message	 communication	 without	 reply	 interface,	 as	 depicted	 on
Figure	 13.18.	 The	 Speed	 Computation	 Algorithm	 computes	 the	 speed,
sends	 the	 message,	 and	 then	 waits	 for	 the	 acceptance	 of	 the	 message	 by	 the
Speed	 Display	 Output	 before	 resuming	 execution.	 The	 Speed



Computation	 Algorithm	 is	 held	 up	 until	 the	 Speed	 Display	 Output
finishes	 displaying	 the	 previous	 message.	 As	 soon	 as	 the	 Speed	 Display
Output	 accepts	 the	 new	message,	 the	 Speed	 Computation	 Algorithm	 is
released	 from	 its	wait	 and	 computes	 the	 next	 value	 of	 speed	while	 the	Speed
Display	Output	displays	 the	previous	value.	By	 this	means,	computation	of
the	 new	 value	 of	 speed	 (a	 compute-bound	 activity)	 can	 be	 overlapped	 with
displaying	 of	 the	 previous	 value	 of	 speed	 (an	 I/O-bound	 activity),	 while
preventing	 an	 unnecessary	 message	 queue	 build-up	 of	 speed	 messages	 at	 the
display	 task.	 Thus,	 the	 synchronous	 message	 communication	 without	 reply
between	the	two	tasks	acts	as	a	brake	on	the	producer	task.



13.9.4	External	and	Timer	Event	Synchronization

Three	 types	 of	 event	 synchronization	 are	 possible:	 an	 external	 event,	 a	 timer
event,	and	an	 internal	event.	This	 section	describes	event	 synchronization	with
external	 and	 timer	 events.	 The	 next	 section	 described	 internal	 event
synchronization.

An	external	event	is	an	event	from	an	external	entity,	typically	an	interrupt
from	an	external	I/O	device.	A	timer	event	represents	a	periodic	activation	of	a
task.	Events	are	depicted	in	UML,	using	the	asynchronous	message	notation	to
depict	an	event	signal.

An	 example	 of	 an	 external	 event,	 typically	 a	 hardware	 interrupt	 from	 an
input	device,	is	given	in	Figure	13.19.	The	Door	Sensor	«interrupt	Resource»
«input»	 «hwDevice»	 generates	 an	 interrupt	 when	 it	 has	 door	 Input.	 The
interrupt	 activates	 the	 Door	 Sensor	 Input	 «event	 driven»	 «input»
«swSchedulableResource»	 task,	 which	 then	 reads	 the	 door	 Input.	 This
interaction	could	be	depicted	as	an	event	signal	input	from	the	device,	followed
by	a	read	by	the	task.	However,	it	is	more	concise	to	depict	the	interaction	as	an
asynchronous	event	signal	sent	by	the	device,	with	the	input	data	as	a	parameter,
as	depicted	on	the	concurrent	communication	diagram	(Figure	13.19).

Figure	13.19.	Example	of	external	event.



An	 example	 of	 a	 timer	 event	 is	 given	 in	 Figure	 13.20.	 The	 digital	 timer,
which	is	a	timer	resource	hardware	device,	generates	a	timer	event	to	awaken	the
Microwave	 Timer	 «timerResource»	 «swSchedulableResource»	 task.	 The
Microwave	 Timer	 task	 then	 performs	 a	 periodic	 activity	 –	 in	 this	 case,
decrementing	the	cooking	time	by	one	second	and	checking	whether	the	cooking
time	has	expired.	The	timer	event	is	generated	at	fixed	intervals	of	time.

Figure	13.20.	Example	of	timer	event.



13.9.5	Internal	Event	Synchronization

An	internal	event	represents	internal	synchronization	between	a	source	task	and
a	destination	task.	Internal	event	synchronization	is	used	when	two	tasks	need	to
synchronize	their	operations	without	communicating	data	between	the	tasks.	The
source	 task	 executes	 a	 signal	 (event)	 operation,	 which	 sends	 the	 event.	 The
destination	task	executes	a	wait	(event)	operation,	which	suspends	the	task	until
the	 event	 is	 signaled.	 The	 destination	 task	 is	 not	 suspended	 if	 the	 event	 has
previously	 been	 signaled.	 The	 event	 signal	 is	 depicted	 in	 UML	 by	 an
asynchronous	 message	 that	 does	 not	 contain	 any	 data.	 An	 example	 of	 this	 is
shown	in	Figure	13.21,	in	which	the	pick-and-place	robot	task	signals	the	event
part	Ready.	This	 awakens	 the	drilling	 robot,	which	operates	on	 the	part	 and
then	 signals	 the	 event	 part	 Completed,	 which	 the	 pick-and-place	 robot	 is
waiting	to	receive.	This	example	is	described	in	more	detail	in	Section	14.6.1.

Figure	13.21.	Example	of	internal	event	synchronization	between	two	tasks.



13.9.5	Task	Interaction	via	Information-Hiding	Object

It	 is	 also	 possible	 for	 tasks	 to	 exchange	 information	 by	 means	 of	 a	 passive
information-hiding	object,	as	described	in	Section	3.7	and	in	Section	11.5.1	with
the	 Synchronized	 Object	 Access	 Pattern.	 If	 two	 tasks	 are	 accessing	 the	 same
passive	entity	object,	and	at	least	one	of	these	tasks	is	writing	to	the	object,	then
mutual	 exclusion	must	 be	 enforced.	A	 shared	 entity	 object	 is	 labeled	with	 the
MARTE	 stereotype	 «sharedDataComResource»	 because	 it	 is	 a	 resource	 for
sharing	 data	 that	 is	 communicated	 between	 tasks.	 In	 addition,	 if	 access	 to	 the
object	 is	mutually	exclusive,	 then	 the	object	 is	 labeled	with	a	 second	MARTE
stereotype	 «sharedMutualExclusionResource»	 because	 it	 is	 a	 resource	 that
ensures	mutually	 exclusive	 access	 to	 the	 shared	data.	Thus,	 the	 full	 stereotype
depiction	for	an	entity	object,	which	is	both	a	mutually	exclusive	and	shared	data
communication	 resource,	 is	 «entity»	 «sharedDataComResource»
«swMutualExclusionResource».

An	example	of	task	access	to	a	passive	information-hiding	object	is	given	in
Figure	13.22,	in	which	the	Sensor	Statistics	Algorithm	task	reads	from
the	 Sensor	 Data	 Repository	 entity	 object,	 and	 the	 Sensor	 Input	 task
updates	 the	 entity	 object.	 Because	 mutually	 exclusive	 access	 to	 the	 Sensor
Data	 Repository	 needs	 to	 be	 enforced,	 the	 passive	 shared	 entity	 object	 is
labeled	 with	 the	 stereotypes	 «entity»	 «sharedDataComResource»
«sharedMutualExclusionResource».	 This	 example	 of	 synchronized	 access	 to	 a
passive	object	is	described	in	more	detail	in	Chapter	14.

Figure	13.22.	Example	of	tasks	invoking	operations	of	passive	object.



It	 is	 important	 to	 realize	 how	 the	 synchronous	 message	 notation	 used
between	two	concurrent	tasks	differs	from	that	used	between	a	task	and	a	passive
object.	 The	 notation	 looks	 the	 same	 in	 the	 UML:	 an	 arrow	 with	 a	 filled-in
arrowhead.	 The	 semantics	 are	 different,	 however.	 The	 synchronous	 message
notation	 between	 two	 concurrent	 tasks	 represents	 message	 communication
between	 two	 tasks	 in	which	 the	 producer	 task	waits	 for	 the	 consumer	 task,	 as
shown	 in	Figures	13.17	 and	13.18	using	 the	 synchronous	 communication	with
reply	 and	 without	 reply	 patterns	 respectively.	 However,	 the	 synchronous
message	 notation	 between	 a	 task	 and	 a	 passive	 object	 represents	 an	 operation
call	 (as	 shown	 in	 Figure	 13.22)	 in	which	 the	 task	 invokes	 an	 operation	 of	 the
object,	 which	 executes	 in	 the	 thread	 of	 control	 of	 the	 task,	 using	 the
Synchronized	Object	Access	pattern	(see	Chapter	11).



13.10	Task	Interface	and	Task	Behavior
Specifications

A	task	interface	specification	(TIS)	describes	a	concurrent	task's	interface.	It	is
an	 extension	 of	 the	 class	 interface	 specification	 (Gomaa	2011)	with	 additional
information	 specific	 to	 a	 task,	 including	 task	 structure,	 timing	 characteristics,
relative	 priority,	 and	 errors	 detected.	 A	 task	 behavior	 specification	 (TBS)
describes	 the	 task's	 event	 sequencing	 logic.	The	 task's	 interface	defines	how	 it
interfaces	 to	 other	 tasks.	 The	 task's	 structure	 describes	 how	 its	 structure	 is
derived,	 using	 the	 task	 structuring	 criteria.	 The	 task's	 timing	 characteristics
addresses	 frequency	 of	 activation	 and	 estimated	 execution	 time.	 This
information	 is	 used	 for	 real-time	 scheduling	purposes,	 as	 described	 in	Chapter
17.

The	 TIS	 is	 introduced	 with	 the	 task	 architecture	 to	 specify	 the
characteristics	of	each	 task.	The	TBS	 is	defined	 later,	during	detailed	 software
design	 (Chapter	 14),	 and	 describes	 the	 task	 event	 sequencing	 logic,	which	 is
how	the	task	responds	to	each	of	its	message	or	event	inputs,	in	particular,	what
output	is	generated	as	a	result	of	each	input.

A	 task	 (active	 class)	 differs	 from	 a	 passive	 class	 in	 that	 it	 should	 be
designed	with	only	one	operation	 (in	Java,	 this	can	be	 implemented	as	 the	run
method).	 For	 this	 reason,	 the	 TIS	 only	 has	 a	 specification	 of	 one	 operation,
instead	of	several	for	a	typical	passive	class.	The	TIS	is	defined	as	follows,	with
the	first	five	items	identical	to	a	class	interface	specification:

Name.

Information	hidden.



Errors	detected.	This	section	describes	the	possible	errors	that	could	be
detected	during	execution	of	this	task.

Examples	 of	 task	 interface	 specifications	 for	 tasks	 in	 the	 Railroad	 Crossing
Control	System	are	described	in	Chapter	20.

Structuring	criteria:	Both	the	role	criterion	(e.g.,	input)	and
concurrency	criterion	(e.g.,	event	driven)	need	to	be	described.

Assumptions

Anticipated	Changes

Task	interface.	The	task	interface	should	include	a	definition	of:

a)	Messages	inputs	and	outputs.	For	each	message	interface	(input	or
output)	there	should	be	a	description	of
·

Type	of	interface:	asynchronous,	synchronous	with	reply,	or
synchronous	without	reply

For	each	message	type	supported	by	this	interface:	message	name
and	message	parameters

b)	Events	signaled	(input	and	output),	name	of	event,	type	of	event:
external,	internal,	timer
·

c)	External	inputs	or	outputs.	Define	the	inputs	from	and	outputs	to	the
external	environment.
·

d)	Passive	objects	referenced·



13.11	Summary
During	the	concurrent	task	design	phase,	the	system	is	structured	into	concurrent
tasks	 and	 the	 task	 interfaces	 are	 designed.	 To	 help	 determine	 the	 concurrent
tasks,	 task	 structuring	 criteria	 are	 provided	 to	 assist	 in	 mapping	 an	 object-
oriented	analysis	model	of	the	system	to	a	concurrent	tasking	architecture.	Tasks
are	 labeled	 using	 MARTE	 stereotypes.	 The	 task	 communication	 and
synchronization	interfaces	are	also	designed.

Following	 concurrent	 task	 design,	 Chapter	 14	 describes	 the	 detailed
software	design,	in	which	tasks	that	contain	nested	passive	objects	are	designed,
detailed	 task	 synchronization	 issues	 are	 addressed,	 connector	 classes	 are
designed	to	encapsulate	the	details	of	inter-task	communication,	and	each	task's
internal	event	sequencing	logic	is	designed.	Examples	of	task	event	sequencing
logic	 for	 the	 different	 kinds	 of	 tasks	 described	 in	 this	 chapter	 are	 given	 in
Appendix	C.	As	 soon	 as	 the	 task	 architecture	 has	 been	 designed,	 performance
analysis	 of	 the	 concurrent	 real-time	 design	 can	 commence,	 as	 described	 in
Chapter	17.	Several	 examples	of	 task	 structuring	 and	designing	 task	 interfaces
are	described	in	the	case	studies	in	Chapters	19–23.



14

Detailed	Real-Time	Software
Design

◈

After	structuring	the	system	into	tasks	(in	Chapter	13),	this	chapter	describes	the
detailed	 software	 design.	 In	 this	 step,	 the	 internals	 of	 composite	 tasks	 that
contain	 nested	 objects	 are	 designed,	 detailed	 synchronization	 issues	 of	 tasks
accessing	 passive	 classes	 are	 addressed,	 connector	 classes	 are	 designed	 that
encapsulate	 the	 details	 of	 inter-task	 communication,	 and	 each	 task's	 internal
event	sequencing	logic	is	defined.	Several	examples	are	given	in	Pseudocode	of
the	 detailed	 design	 of	 task	 synchronization	mechanisms,	 connector	 classes	 for
inter-task	communication,	and	task	event	sequencing	logic.

The	 detailed	 software	 design	 is	 depicted	 on	 a	 detailed	 concurrent
communication	 diagram,	 which	 adds	 more	 detail	 to	 the	 concurrent
communication	diagram	developed	during	task	structuring.	It	depicts	the	internal
design	of	clustered	tasks	and	the	design	of	connector	objects.

Section	14.1	describes	the	design	of	composite	tasks,	including	the	internal
design	 of	 temporal	 and	 control	 clustering	 tasks.	 Section	 14.2	 describes	 the
synchronization	 of	 access	 to	 classes	 using	 different	 synchronization
mechanisms,	including	the	mutual	exclusion	algorithm	and	the	multiple	readers
and	writers	 algorithm.	 Section	 14.3	 describes	 the	 synchronization	 of	 access	 to



passive	objects	using	the	monitor	concept.	Section	14.4	describes	the	design	of
connectors	 for	 inter-task	 communication,	 in	 particular	 for	 synchronous	 and
asynchronous	 message	 communication.	 Section	 14.5	 describes	 the	 detailed
software	design	of	tasks	using	task	behavior	specifications	and	event	sequencing
logic.	 Section	 14.6	 provides	 detailed	 software	 design	 examples	 of	 task
communication	 and	 synchronization	 in	 real-time	 robot	 and	 vision	 systems.
Finally,	 Section	 14.7	 briefly	 describes	 implementing	 concurrent	 tasks	 in	 Java
using	threads.



14.1	Design	of	Composite	Tasks
A	composite	 task	 is	 a	 task	 that	 encapsulates	one	or	more	nested	objects.	This
section	 describes	 the	 detailed	 design	 of	 composite	 tasks,	which	 includes	 tasks
that	were	structured	using	the	task	clustering	criteria.	Such	tasks	are	designed	as
composite	 active	 classes	 that	 contain	 nested	 passive	 classes.	 In	 a	 real-time
design,	 typical	 nested	 classes	 are	 entity	 classes,	 input/output	 classes,	 and	 state
machine	classes.

After	 considering	 the	 relationship	 between	 tasks	 and	 classes,	 this	 section
describes	situations	where	it	is	useful	to	divide	the	responsibility	between	tasks
and	 classes.	 Next,	 the	 design	 of	 two	 composite	 tasks	 is	 described	 in	 detail:	 a
temporal	clustering	task	and	a	control	clustering	task.



14.1.1	Separation	of	Concerns	between	Tasks	and	Nested	Classes

The	 relationship	 between	 tasks	 and	 classes	 is	 handled	 as	 follows.	 The	 active
object,	the	task,	is	activated	by	an	external,	internal,	or	timer	event.	It	then	calls
an	operation	provided	by	a	passive	object,	which	might	be	nested	inside	the	task,
as	described	in	this	section,	or	external	to	the	task,	as	described	in	Section	14.2.

Separation	of	concerns	is	applied	to	divide	the	responsibility	between	tasks
and	nested	classes.	Responsibility	for	control,	sequencing,	and	communication	is
given	to	the	task.	Classes	are	designed	using	the	information-hiding	concept	as
described	 in	Section	3.2	of	Chapter	3.	 In	 real-time	embedded	 software	design,
information	hiding	can	be	applied	to	the	design	of:

Consider	 how	 separation	 of	 concerns	 is	 used	 to	 interface	 to	 an	 input/output
device:	 a	 composite	 task	 encapsulates	 one	 or	more	 nested	 device	 I/O	 objects.
The	 I/O	 object	 addresses	 the	 details	 of	 how	 to	 read	 from	or	write	 to	 the	 real-
world	device	 (as	described	 in	Section	14.1.2),	 and	 the	 task	addresses	 issues	of
when	and	how	the	task	is	activated	(which	determines	whether	it	is	event	driven,

Entity	classes	that	encapsulate	internal	data	structures	(also	referred	to	as
data	abstraction	classes),	as	described	initially	in	Section	3.2.2.	Design
of	entity	classes	that	are	accessed	by	multiple	tasks	is	described	in
Section	11.5.1,	in	Section	13.9.5,	and	in	much	more	details	in	this
chapter	in	Section	14.2.

Device	input	or	output	classes	that	hide	the	details	of	how	to	interface	to
I/O	devices,	as	described	in	Section	3.2.3	and	in	more	detail	in	Section
14.1.2.

State	machine	classes	that	hide	the	details	of	the	encapsulated	state
transition	table,	as	described	in	Section	14.1.3.



demand	 driven,	 or	 periodic)	 and	 communication	 with	 other	 active	 or	 passive
objects.	 Consider	 how	 this	 works	 in	 the	 case	 of	 an	 input	 device.	 The	 task	 is
activated	 by	 an	 interrupt	 or	 timer	 event,	 calls	 an	 operation	 provided	 by	 the
passive	object	to	read	the	input,	and	then	either	sends	the	data	in	a	message	to	a
consumer	task	or	invokes	an	update	operation	of	a	passive	entity	object.

Another	case	of	division	of	responsibility	occurs	between	a	composite	task
and	 a	 nested	 state	machine	 object.	 The	 object	 encapsulates	 the	 state	 transition
table	and	maintains	the	current	state	of	the	object,	as	described	in	Section	14.1.3.
The	 control	 task	 (see	 Chapter	 13)	 receives	 messages	 containing	 events	 from
several	producer	 tasks,	extracts	 the	event	 from	the	message,	and	calls	 the	state
machine	 object	 with	 the	 event	 as	 an	 input	 parameter.	 The	 object	 returns	 the
action	to	be	performed,	and	the	task	initiates	the	action	by	sending	a	message	to
a	consumer	task	or	invoking	an	operation	on	another	object.

A	composite	task	with	several	nested	objects	can	be	depicted	on	a	detailed
concurrent	 communication	 diagram.	 Each	 composite	 task	 has	 a	 coordinator
object,	 which	 receives	 the	 task's	 incoming	 messages	 and	 can	 then	 invoke
operations	provided	by	other	nested	objects.



14.1.2	Design	of	Device	I/O	Classes

A	device	I/O	class	provides	a	virtual	interface	that	hides	the	actual	interface	to	a
real-world	I/O	device.	The	rationale	for	designing	such	classes	using	information
hiding	is	described	in	Section	3.2.3.	This	section	describes	the	design	of	the	class
operations.

A	 device	 I/O	 class	 interfaces	 to	 the	 real-world	 device	 and	 provides	 the
operations	 that	read	from	and/or	write	 to	 the	device.	A	device	I/O	class	has	an
initialize	 operation.	 When	 an	 object	 is	 instantiated	 from	 the	 class,	 this
operation	 is	 called	 at	 device	 initialization	 time	 to	 initialize	 the	 device	 and	 any
internal	 variables	 used	 by	 the	 object.	 The	 other	 operations	 depend	 on	 the
characteristics	of	the	device.	For	example,	a	device	input	class	is	likely	to	have	a
read	operation,	and	a	device	output	class	is	likely	to	have	a	write	or	update
operation.	A	device	interface	class	that	provides	both	input	and	output	is	likely
to	have	both	read	and	write	operations.

An	 example	 of	 a	 passive	 input	 class	 for	 reading	 a	 temperature	 sensor	 is
given	 in	Figure	14.1a.	The	Temperature	Sensor	Input	passive	 input	class
supports	 two	operations:	read	 (out	tempData)	 and	initialize.	The	read
operation	 samples	 the	 current	 value	 of	 the	 temperature	 sensor	 and	 returns	 the
value	as	an	output	parameter.





Figure	14.1.	a.	Example	of	passive	input	class.	b.	Example	of	passive	output
class.

An	example	of	a	passive	output	class	 for	starting	and	stopping	an	electric
pump	is	given	in	Figure	14.1b.	The	Pump	Engine	Output	passive	output	class
provides	 an	initialize	 operation	 as	well	 as	 operations	 to	start	 the	 pump
and	stop	the	pump.



14.1.3	Design	of	State	Machine	Classes

A	 state	 machine	 class	 encapsulates	 the	 information	 contained	 in	 a	 state
machine.	The	state	machine	executed	by	the	state	machine	object	is	encapsulated
in	 a	 state	 transition	 table,	 in	 which	 the	 rows	 are	 indexed	 by	 event	 and	 the
columns	 are	 indexed	 by	 state.	 Each	 element	 in	 the	 table	 is	 an	 intersection	 of
event	and	state	and	contains	the	next	state	and	the	values	of	the	action(s)	to	be
executed.	The	state	machine	class	hides	the	contents	of	the	state	transition	table
and	maintains	the	current	state	of	the	machine.

The	 state	 machine	 class	 provides	 the	 operations	 that	 access	 the	 state
transition	 table	 and	 change	 the	 state	 of	 the	 object.	 In	 particular,	 one	 or	 more
operations	are	designed	to	process	the	incoming	events	that	cause	state	changes.
One	 way	 of	 designing	 the	 operations	 of	 a	 state	 machine	 class	 is	 to	 have	 one
operation	for	each	incoming	event.	This	means	that	each	state	machine	class	is
designed	explicitly	for	a	particular	state	machine.	However,	it	is	more	desirable
to	design	a	state	machine	class	 that	 is	application	 independent	and	hence	more
reusable.

A	reusable	state	machine	class	hides	the	contents	of	the	state	transition	table
and	 the	 current	 state	of	 the	machine.	 It	 provides	 three	 reusable	operations	 that
are	 not	 application	 specific:	 initializeSTM	 ()	 processEvent	 (in	 event,	 out
action)	currentState	():	State
The	processEvent	 operation	 is	 called	when	 there	 is	 a	 new	event	 to	 process,
with	the	new	event	passed	in	as	an	input	parameter.	Given	the	current	state	of	the
machine	and	any	specified	conditions	that	must	hold,	the	operation	looks	up	the
state	transition	table	entry	for	Table	(new	event,	current	state).	The	information
contained	 in	 that	 entry	 is	 the	 next	 state	 and	 action(s)	 to	 be	 performed.	 The
current	 state	 is	 then	 updated	 to	 the	 new	 state	 and	 the	 action	 or	 action	 list	 is



returned	as	an	output	parameter.	The	current	State	operation	is	optional;	 it
returns	 the	 state	 of	 the	machine	 and	 is	 only	 needed	 in	 applications	where	 the
current	state	needs	to	be	known	by	tasks	using	the	state	machine	class.

A	state	machine	class	is	a	reusable	class	in	that	it	can	be	used	to	encapsulate
any	state	transition	table.	The	contents	of	the	table	are	application-dependent	and
are	defined	at	 the	 time	the	state	machine	class	 is	 instantiated	and/or	 initialized.
At	 initialization	 time,	 the	initializeSTM	 operation	 is	 called	 to	 populate	 the
state	 machine	 (typically	 from	 a	 file)	 with	 the	 states,	 events,	 actions,	 and
conditions,	as	well	as	setting	the	current	state	of	the	machine	to	the	initial	state.

An	example	of	a	state	machine	class	from	the	Microwave	Oven	Control
System	 is	 the	 Microwave	 State	 Machine	 state	 machine	 class,	 shown	 in
Figure	 14.2.	 The	 class	 encapsulates	 the	 microwave	 oven	 state	 transition	 table
(which	 is	 mapped	 from	 the	 microwave	 oven	 state	 machine,	 as	 depicted	 in
Chapters	 7	 and	 19)	 and	 provides	 the	initializeSTM,	processEvent,	 and
currentState	operations.	At	 initialization	 time,	 the	current	 state	of	 the	 state
machine	 is	 set	 to	 Door	 Closed,	 which	 is	 the	 initial	 state	 of	 the	 microwave
oven.



Figure	14.2.	Example	of	passive	state	machine	class.



14.1.4	Temporal	Clustering	Task	and	Device	Interface	Objects

Consider	 the	 case	 of	 polled	 I/O	 from	 both	 the	 task	 structuring	 and	 class
structuring	perspectives.	With	polled	 I/O,	 structure	 the	 task	according	 to	either
periodic	 I/O	 (for	 one	 I/O	 device)	 or	 temporal	 clustering	 (for	 two	 or	more	 I/O
devices)	 task	 structuring	 criteria.	 The	 details	 of	 how	 to	 interface	 to	 a	 given
passive	 I/O	 device	 is	 encapsulated	 in	 a	 device	 interface	 class.	 Define	 the
operations	provided	by	the	device	interface	class.	Place	the	device	interface	class
inside	the	task.

Consider	the	dynamic	behavior.	The	task	is	first	activated	by	a	timer	event.
It	then	calls	the	operations	provided	by	each	device	interface	object	to	obtain	the
latest	status	of	each	device	and	then	either	sends	the	device	status	to	a	consumer
task	or	writes	it	to	a	passive	entity	object.

An	 example	 of	 polled	 I/O	 is	 given	 in	 Figure	 14.3.	 The	 initial	 design
decision	is	to	design	two	separate	periodic	input	tasks,	one	for	each	input	object,
Temperature	Sensor	Input	and	Pressure	Sensor	Input	(Figure	14.3a),
which	monitor	the	temperature	and	pressure	sensors	respectively.	Given	that	the
temperature	 and	 pressure	 sensors	 are	 sampled	 periodically	 and	 with	 the	 same
frequency,	 an	 alternative	 design	 decision	 is	 to	 design	 one	 temporal	 clustering
task,	 which	 samples	 both	 temperature	 and	 pressure,	 as	 described	 in	 Section
13.6.1	and	shown	in	Figure	14.3b.



Figure	14.3.	Example	of	temporal	clustering	and	input	objects.	a.	Periodic
input	tasks	before	temporal	clustering.	b.	Periodic	input	with	one	temporal
clustering	task.



Figure	14.3c.	Design	of	nested	input	classes.



Figure	14.3d.	Temporal	clustering	task	with	nested	input	objects.

From	 a	 task	 structuring	 perspective,	 the	 Temperature	 Sensor	 Input
and	Pressure	Sensor	Input	objects	are	grouped	into	a	task	called	Sensor
Monitor	based	on	the	temporal	clustering	criterion.	The	Sensor	Monitor	task
(Figure	14.3b)	is	activated	periodically	by	a	timer	event,	at	which	time	it	reads
the	 current	 values	 of	 the	 sensors.	 It	 then	 updates	 the	 Sensor	 Data

Repository	entity	object	with	the	latest	sensor	values.
From	a	class	structuring	perspective,	two	separate	input	classes	are	created

for	 the	 temperature	 and	 pressure	 sensors	 (Figure	 14.3c),	 namely	 the
Temperature	Sensor	Input	and	Pressure	Sensor	Input	classes.	Each
input	 class	 supports	 two	 operations:	 for	 Temperature	 Sensor	 Input,	 the
operations	 are	 read	 (out	 tempData)	 and	 initialize.	 For	 Pressure
Sensor	Input,	they	are	read	(out	pressureData)	and	initialize.

From	a	combined	task	and	class	perspective,	the	Sensor	Monitor	task	is
structured	as	a	composite	task,	which	contains	three	nested	objects:	a	coordinator
object,	 the	 Sensor	 Coordinator,	 and	 two	 input	 objects,	 Temperature



Sensor	 Input	 and	 Pressure	 Sensor	 Input.	 The	 Sensor	 Data

Repository	 entity	 class	 is	 outside	 the	 task	 and	 has	 operations	 to	 update	 and
read	 the	 temperature	 and	 pressure	 sensor	 values,	 namely	 update	 (in

currentPressure),	 update	 (in	 currentTemp),	 read	 (out

pressureValue),	and	read	(out	temperatureValue).
Consider	 the	 dynamic	 behavior	 as	 depicted	 in	 Figure	 14.3d.	The	Sensor

Monitor	 task	 is	 activated	 periodically	 by	 a	 timer	 event.	 At	 this	 time,	 the
coordinator	object,	Sensor	Monitor	Coordinator,	 reads	the	current	values
of	 the	 sensors	 by	 calling	 each	 of	 the	 operations,	 Temperature	 Sensor

Input.read	 (out	 tempData)	 and	 Pressure	 Sensor	 Input.read	 (out
pressureData).	 It	 then	 invokes	 the	 update	 operations	 of	 the	 Sensor	 Data
Repository	entity	object,	namely	Sensor	Data	Repository.update	(in
currentTemp),	 and	 Sensor	 Data	 Repository.update	 (in

currentPressure).
By	separating	the	concern	of	how	a	device	is	accessed	into	the	input	class

from	the	concern	of	when	the	device	is	accessed	into	the	task,	greater	flexibility
and	potential	 reuse	 is	achieved.	Thus,	 for	example,	 the	 temperature	 input	class
could	be	used	in	different	applications	by	an	event	driven	input	task,	a	periodic
input	 task,	 or	 a	 temporally	 clustered	 periodic	 I/O	 task.	 Furthermore,	 the
characteristics	of	different	temperature	sensors	could	be	hidden	inside	the	input
class	while	preserving	the	same	virtual	device	interface.



14.1.5	Control	Clustering	Task	and	Information-Hiding	Objects

The	 next	 case	 to	 be	 considered	 is	 the	 design	 of	 a	 control	 clustering	 task	with
nested	information-hiding	objects.	The	task	is	activated	on	demand.	It	then	calls
operations	provided	by	one	or	more	passive	objects.

Figure	 14.4	 gives	 an	 example	 of	 a	 control	 clustering	 task	 and	 the	 nested
objects	 to	 which	 it	 interfaces.	 The	 initial	 design	 decision	 before	 control
clustering	 (Figure	 14.4a)	 is	 to	 have	 the	 control	 task	 Pump	 Control,	 which
encapsulates	 a	 state	machine,	 sends	 start	 and	 stop	messages	 (at	 different	 state
transitions)	to	the	Pump	Engine	Output	task.

Figure	14.4.	Example	of	a	control	clustering	task	with	passive	objects.	a.
Tasks	before	control	clustering.	b.	Control	clustering	task.



Figure	14.4c.	Design	of	nested	classes.

Figure	14.4d.	Control	clustering	task	with	nested	passive	objects.

As	described	 in	Section	13.6.3,	an	alternative	design	decision	 is	 to	design
one	control	clustering	task	Pump	Controller	(Figure	14.4b)	that	executes	the
start	 and	 stop	 state	 dependent	 actions	 in	 its	 thread	 of	 control.	 From	 a	 class
structuring	 perspective	 (Figure	 14.4c),	 there	 are	 two	 passive	 classes:	 a	 state
machine	 class	 Pump	 Control,	 which	 hides	 the	 structure	 and	 content	 of	 the
Pump	Control	 state	 transition	 table,	and	one	output	class,	 the	Pump	Engine
Output	class.	Pump	Control	provides	an	operation	process	Event,	which	is
called	to	process	a	new	event	and	returns	the	action	to	be	performed.	The	start



and	stop	actions	are	designed	as	 the	operations	provided	by	 the	passive	Pump
Engine	Output	class,	which	start	and	stop	the	electric	pump.

From	 a	 combined	 task-and	 class	 structuring	 perspective	 (Figure	 14.4d),
there	 is	 one	 task,	 the	 Pump	 Controller	 task,	 which	 is	 structured	 as	 a
composite	 task.	 It	 contains	 three	 nested	 objects:	 a	 state	machine	 object	 called
Pump	Control,	 a	passive	output	object	called	Pump	Engine	Output,	 and	a
nested	 coordinator	 object	 called	 Pump	 Coordinator,	 which	 provides	 the
overall	 internal	coordination	of	 the	 task.	When	a	new	message	arrives	at	Pump
Controller,	it	is	received	by	Pump	Coordinator,	which	extracts	the	specific
event	from	the	request	and	calls	PumpControl.processEvent	(in	event,
out	 action).	 Pump	 Control	 looks	 up	 the	 state	 transition	 table,	 given	 the
current	state	and	the	new	event.	The	entry	in	the	table	contains	the	new	state	and
the	action	to	be	performed.	Pump	Control	updates	the	current	state	and	returns
the	action	to	be	performed.	Pump	Coordinator	then	initiates	the	action.	If	the
action	 is	 to	 start	or	 stop	 the	pump,	 it	 invokes	 the	start	 or	stop	 operation	of
Pump	Engine	Output.



14.2	Synchronization	of	Access	to	Classes
If	 a	 class	 is	 accessed	 by	 more	 than	 one	 task,	 the	 class's	 operations	 must
synchronize	 the	 access	 to	 the	 data	 it	 encapsulates,	 as	 described	 in	 the	 Object
Access	 Pattern	 in	 Section	 11.5.1.	 This	 section	 describes	 mechanisms	 for
providing	 this	 synchronization	 using	 the	 mutual	 exclusion	 algorithm	 and	 the
multiple	readers	and	writers	algorithm.



14.2.1	Example	of	Synchronization	of	Access	to	Class

As	an	example	of	synchronization	of	access	to	a	class,	consider	a	passive	entity
class	–	 the	Analog	Sensor	Repository	 class,	which	encapsulates	 a	 sensor
data	 repository.	 In	 designing	 this	 class,	 one	 design	 decision	 relates	 to	whether
the	 internal	 sensor	data	 structure	 is	 to	be	designed	as	 an	array	or	 a	 linked	 list.
Another	 design	 decision	 relates	 to	 the	 nature	 of	 the	 synchronization	 required,
whether	 an	 object	 of	 this	 class	 is	 to	 be	 accessed	 by	 more	 than	 one	 task
concurrently,	and	–	if	so	–	whether	mutual	exclusion	or	the	multiple	readers	and
writers	algorithm	is	required.	These	design	decisions	relate	to	the	design	of	the
class	and	need	not	concern	users	of	the	class.

By	 separating	 the	 concerns	 of	 what	 the	 class	 does	 –	 namely	 the
specification	of	the	operations	–	from	how	it	does	it	–	namely	the	internal	design
of	the	class	–	any	changes	to	the	internals	of	the	class	have	no	impact	on	users	of
the	class.	Possible	changes	are

The	 impact	 of	 these	 changes	 is	 only	 on	 the	 internals	 of	 the	 class,	 namely,	 the
internal	 data	 structure	 and	 the	 internals	 of	 the	 operations	 that	 access	 the	 data
structure.

Changes	to	the	internal	data	structure,	such	as	from	array	to	linked	list;

Changes	to	the	internal	synchronization	of	access	to	the	data,	such	as
from	mutual	exclusion	to	multiple	readers	and	writers;



14.2.2	Operations	Provided	for	Synchronized	Access	to	Class

For	 the	 same	 external	 interface	 of	 the	 Analog	 Sensor	 Repository	 entity
class,	consider	two	different	internal	designs	for	the	synchronization	of	access	to
the	sensor	data	repository:	mutual	exclusion	and	multiple	readers	and	writers.	As
described	in	Section	13.9.5	and	depicted	in	Figure	14.5,	a	shared	entity	class	is
labeled	with	the	MARTE	stereotypes	«sharedDataComResource»	because	it	is	a
resource	 for	 sharing	 data	 that	 is	 communicated	 between	 tasks	 and
«sharedMutualExclusionResource»	 because	 it	 is	 also	 a	 resource	 that	 ensures
mutually	 exclusive	 access	 to	 the	 shared	data.	 It	 should	be	pointed	out	 that	 the
mutual	 exclusion	 stereotype	 is	 interpreted	 as	meaning	 that	mutual	 exclusion	 is
enforced	 when	 necessary	 and	 not	 that	 every	 access	 to	 the	 data	 is	 mutually
exclusive.

In	 the	 sensor	 repository	 example,	 the	 Analog	 Sensor	 Repository

entity	class	provides	the	following	two	operations	(see	Figure	14.5).

readAnalogSensor	(in	sensorID,	out	sensorValue,	out	upperLimit,	out

	lowerLimit,	out	alarmCondition)

This	operation	 is	 called	by	 reader	 tasks	 that	wish	 to	 read	 from	 the	 sensor	data
repository.	Given	the	sensor	ID,	this	operation	returns	the	current	sensor	value,
upper	 limit,	 lower	 limit,	 and	 alarm	 condition	 to	 users	 who	 might	 wish	 to
manipulate	 or	 display	 the	 data.	 The	 range	 between	 the	 lower	 limit	 and	 upper
limit	is	the	normal	range	within	which	the	sensor	value	can	vary	without	causing
an	alarm.	If	the	value	of	the	sensor	is	below	the	lower	limit	or	above	the	upper
limit,	the	alarmCondition	is	equal	to	low	or	high,	respectively.

updateAnalogSensor	(in	sensorID,	in	sensorValue)



This	 operation	 is	 called	 by	 writer	 tasks	 that	 wish	 to	 write	 to	 the	 sensor	 data
repository.	It	is	used	to	update	the	value	of	the	sensor	in	the	data	repository	with
the	 latest	 reading	 obtained	 by	 monitoring	 the	 external	 environment.	 It	 checks
whether	the	value	of	the	sensor	is	below	the	lower	limit	or	above	the	upper	limit,
and	if	so	sets	the	value	of	the	alarmCondition	to	low	or	high,	respectively.	If
the	 sensor	 value	 is	 within	 the	 normal	 range,	 the	 alarmCondition	 is	 set	 to
normal.

Figure	14.5.	Example	of	concurrent	access	to	passive	entity	object.



14.2.3	Synchronization	Using	Mutual	Exclusion

Consider	 first	 the	 mutual	 exclusion	 solution	 using	 a	 binary	 semaphore	 (see
Section	3.6.1)	in	which	the	acquire	and	release	operations	on	the	semaphore
are	provided	by	the	operating	system.	To	ensure	mutual	exclusion	in	the	sensor
repository	 example,	 each	 task	 must	 execute	 an	 acquire	 operation	 on	 the
semaphore	readWriteSemaphore	 (initially	 set	 to	1)	before	 it	 starts	accessing
the	data	 repository.	 It	must	 also	execute	a	release	 operation	on	 the	 semaphore
after	it	has	finished	accessing	the	data	repository.	The	Pseudocode	for	the	read
and	 update	 operations	 is	 as	 follows:	 class	 AnalogSensorRepository	 private
readWriteSemaphore	 :	 Semaphore	 =	 1	public	 readAnalogSensor	 (in	 sensorID,
out	 sensorValue,	 out	 upperLimit,	 out	 lowerLimit,	 out	 alarmCondition)	 --
Critical	 section	 for	 read	 operation.	  acquire	 (readWriteSemaphore);	  
sensorValue	 :=	 sensorDataRepository	 (sensorID,	 value);	   upperLimit	 :=
sensorDataRepository	 (sensorID,	 upLim);	   lowerLimit	 :=
sensorDataRepository	 (sensorID,	 loLim);	   alarmCondition	 :=
sensorDataRepository	 (sensorID,	 alarm);	   release(readWriteSemaphore);
end	readAnalogSensor;
In	 the	 case	 of	 the	update	 operation,	 in	 addition	 to	 updating	 the	 value	 of	 the
sensor	 in	 the	 data	 repository,	 it	 is	 also	 necessary	 to	 determine	 whether	 the
sensor's	alarm	condition	is	high,	low,	or	normal.

public	updateAnalogSensor	(in	sensorID,	in	sensorValue)

	 --	Critical	section	for	write	operation.
	 acquire	(readWriteSemaphore);
	 sensorDataRepository	(sensorID,	value)	:=	sensorValue;
	 if	sensorValue	≥	sensorDataRepository	(sensorID,	upLim)
	  then	sensorDataRepository	(sensorID,	alarm)	:=	high;
	 elseif	sensorValue	≤	sensorDataRepository	(sensorID,	loLim)
	  then	sensorDataRepository	(sensorID,	alarm)	:=	low;
	  else	sensorDataRepository	(sensorID,	alarm)	:=	normal;
	 end	if;



	 release	(readWriteSemaphore);
	end	updateAnalogSensor;



14.2.4	Synchronization	of	Multiple	Readers	and	Writers

With	the	multiple	readers	and	writers	solution,	multiple	reader	tasks	may	access
the	data	repository	concurrently,	and	writer	tasks	have	mutually	exclusive	access
to	 it.	 Two	 binary	 semaphores	 are	 used,	 readerSemaphore	 and
readWriteSemaphore,	which	are	both	initially	set	to	1.	A	count	of	the	number
of	 readers,	 numberOfReaders,	 is	 also	 maintained,	 initially	 set	 to	 0.	 The
readerSemaphore	is	used	by	readers	to	ensure	mutually	exclusive	updating	of
the	 reader	 count.	 Writers	 use	 the	 readWriteSemaphore	 to	 ensure	 mutually
exclusive	access	 to	 the	sensor	data	repository.	This	semaphore	 is	also	accessed
by	 readers.	 It	 is	 acquired	 by	 the	 first	 reader	 prior	 to	 reading	 from	 the	 data
repository	and	 released	by	 the	 last	 reader	 after	 finishing	 reading	 from	 the	data
repository.	The	Pseudocode	for	the	read	and	update	operations	is	as	follows:
class	 AnalogSensorRepository	 private	 numberOfReaders	 :	 Integer	 =	 0;	  
readerSemaphore:	 Semaphore	 =	 1;	 readWriteSemaphore:	 Semaphore	 =	 1;
public	 readAnalogSensor	 (in	 sensorID,	 out	 sensorValue,	 out	 upperLimit,	 out
lowerLimit,	 out	 alarmCondition)	 --	 Read	 operation	 called	 by	 reader	 tasks.
Several	readers	are	 --	allowed	to	access	the	data	repository	providing	there	is
no	 --	 writer	 accessing	 it.	  acquire	 (readerSemaphore);	  Increment
numberOfReaders;	   if	 numberOfReaders	 =	 1	 then	 acquire
(readWriteSemaphore);	   release	 (readerSemaphore);	   sensorValue	 :=
sensorDataRepository	 (sensorID,	 value);	   upperLimit	 :=
sensorDataRepository	 (sensorID,	 upLim);	   lowerLimit	 :=
sensorDataRepository	 (sensorID,	 loLim);	   alarmCondition	 :=
sensorDataRepository	(sensorID,	alarm);	  acquire	(readerSemaphore);	  
Decrement	 numberOfReaders;	   if	 numberOfReaders	 =	 0	 then	 release



(readWriteSemaphore);	   release	 (readerSemaphore);	 end
readAnalogSensor;
The	 Pseudocode	 for	 the	 update	 operation	 is	 similar	 to	 that	 for	 the	 mutual
exclusion	example	because	it	is	necessary	to	ensure	that	writer	tasks	that	call	the
update	operation	have	mutually	exclusive	access	to	the	sensor	data	repository.

public	updateAnalogSensor	(in	sensorID,	in	sensorValue)

	 --	critical	section	for	write	operation.
	  acquire	(readWriteSemaphore);
	  sensorDataRepository	(sensorID,	value)	:=	sensorValue;
	  if	sensorValue	≥	sensorDataRepository	(sensorID,	upLim)
	   then	sensorDataRepository	(sensorID,	alarm)	:=	high;
	  elseif	sensorValue	≤	sensorDataRepository	(sensorID,	loLim)
	   then	sensorDataRepository	(sensorID,	alarm)	:=	low;
	   else	sensorDataRepository	(sensorID,	alarm)	:=	normal;
	  end	if;
	  release	(readWriteSemaphore);
	end	updateAnalogSensor;

	end	AnalogSensorRepository;

This	 solution	 solves	 the	 problem;	 however,	 it	 intertwines	 the	 synchronization
solution	with	the	access	to	the	data	repository.	It	is	possible	to	separate	these	two
concerns,	as	described	next.



14.3	Designing	Monitors
Synchronization	 of	 access	 to	 passive	 objects	 can	 also	 be	 achieved	 using
monitors,	 as	 described	 in	 this	 section.	 A	 monitor	 combines	 the	 concepts	 of
information	 hiding	 and	 synchronization.	 A	 monitor	 is	 a	 data	 object	 that
encapsulates	data	and	has	operations	that	are	executed	mutually	exclusively.	The
critical	 section	 of	 each	 task	 is	 replaced	 by	 a	 call	 to	 a	 monitor	 operation.	 An
implicit	 semaphore	 is	 associated	with	 each	monitor,	 referred	 to	 as	 the	monitor
lock.	 Thus,	 only	 one	 task	 is	 active	 in	 a	 monitor	 at	 any	 one	 time.	 A	 call	 to	 a
monitor	operation	results	in	the	calling	task	acquiring	the	associated	semaphore.
However,	 if	 the	 lock	 is	already	 taken,	 the	 task	blocks	until	 the	monitor	 lock	 is
acquired.	 An	 exit	 from	 the	 monitor	 operation	 results	 in	 a	 release	 of	 the
semaphore,	 that	 is,	 the	monitor	 lock	 is	 released	so	 that	 it	can	be	acquired	by	a
different	task.	The	mutually	exclusive	operations	of	a	monitor	are	also	referred
to	as	guarded	operations	or	synchronized	methods	in	Java.



14.3.1	Example	of	Mutual	Exclusion	with	Monitor

An	example	of	mutually	exclusive	access	to	the	analog	sensor	repository	using	a
monitor	is	described	next.	The	monitor	solution	is	to	encapsulate	the	sensor	data
repository	 in	 an	 Analog	 Sensor	 Repository	 information-hiding	 object,
which	supports	 read	and	update	operations.	These	operations	are	called	by	any
task	wishing	 to	 access	 the	 data	 repository.	 The	 details	 of	 how	 to	 synchronize
access	to	the	data	repository	are	hidden	from	the	calling	tasks.

The	monitor	 provides	 for	mutually	 exclusive	 access	 to	 the	 analog	 sensor
repository.	There	 are	 two	mutually	 exclusive	operations,	 one	 to	 read	 from	and
one	to	update	the	contents	of	the	analog	repository.	The	specification	of	the	two
operations	 is	 given	 in	 Section	 14.2.2	 and	 depicted	 in	 Figure	 14.5.	 The
Pseudocode	 for	 the	 mutually	 exclusive	 operations	 is	 as	 follows:	 monitor
AnalogSensorRepository	 public	 readAnalogSensor	 (in	 sensorID,	 out
sensorValue,	 out	 upperLimit,	 out	 lowerLimit,	 out	 alarmCondition)	  
sensorValue	 :=	 sensorDataRepository	 (sensorID,	 value);	  upperLimit	 :=
sensorDataRepository	 (sensorID,	 upLim);	  lowerLimit	 :=
sensorDataRepository	 (sensorID,	 loLim);	  alarmCondition	 :=
sensorDataRepository	 (sensorID,	 alarm);	 end	 readAnalogSensor;	 public
updateAnalogSensor	 (in	 sensorID,	 in	 sensorValue)	  sensorDataRepository
(sensorID,	 value)	 :=	 sensorValue;	 if	 sensorValue	 ≥	 sensorDataRepository
(sensorID,	upLim)	   then	sensorDataRepository	(sensorID,	alarm)	:=	high;
 elseif	 sensorValue	 ≤	 sensorDataRepository	 (sensorID,	 loLim)	   then
sensorDataRepository	(sensorID,	alarm)	:=	low;	  else	sensorDataRepository
(sensorID,	 alarm)	 :=	 normal;	  end	 if;	 end	 updateAnalogSensor;	 end
AnalogSensorRepository;



14.3.2	Monitors	and	Condition	Synchronization

In	 addition	 to	 providing	 synchronized	 operations,	 monitors	 support	 condition
synchronization.	This	allows	a	 task	executing	 the	monitor's	mutually	exclusive
operation	 to	block	by	executing	a	wait	operation	until	 a	particular	condition	 is
true,	for	example,	waiting	for	a	buffer	to	become	full	or	empty.	When	a	task	in	a
monitor	blocks,	it	releases	the	monitor	lock,	allowing	a	different	task	to	acquire
the	monitor	lock.	A	task	that	blocks	in	a	monitor	is	awakened	by	some	other	task
executing	 a	 signal	 operation	 (referred	 to	 as	 notify	 in	 Java).	 For	 example,	 if	 a
reader	 task	 needs	 to	 read	 an	 item	 from	 a	 buffer	 and	 the	 buffer	 is	 empty,	 it
executes	a	wait	operation.	The	reader	remains	blocked	until	a	writer	task	places
an	item	in	the	buffer	and	executes	a	notify	operation.

If	 semaphore	 support	 is	 unavailable,	 mutually	 exclusive	 access	 to	 a
resource	 may	 be	 provided	 by	 means	 of	 a	 monitor	 with	 condition
synchronization,	as	described	next.	The	Boolean	variable	busy	 is	encapsulated
by	 the	 monitor	 to	 represent	 the	 state	 of	 the	 resource.	 A	 task	 that	 wishes	 to
acquire	the	resource	calls	the	acquire	operation.	The	task	is	suspended	on	the
wait	operation	if	the	resource	is	busy.	On	exiting	from	the	wait,	the	task	will	set
busy	 equal	 to	 true,	 thereby	 taking	 possession	 of	 the	 resource.	When	 the	 task
finishes	with	 the	 resource,	 it	 calls	 the	release	 operation,	which	 sets	busy	 to
false	and	calls	the	notify	operation	to	awaken	a	waiting	task.

The	 following	 is	 the	 monitor	 design	 for	 mutually	 exclusive	 access	 to	 a
resource:	 monitor	 Semaphore	  --	 Declare	 Boolean	 variable	 called	 busy,
initialized	 to	 false.	private	 busy	 :	Boolean	=	 false;	 --	 acquire	 is	 called	 to	 take
possession	of	the	resource	--	the	calling	task	is	suspended	if	the	resource	is	busy
public	 acquire	 ()	  while	 busy	 =	 true	do	wait;	  busy	 :=	 true;	  end
acquire;	--	release	is	called	to	relinquish	possession	of	the	resource	--	if	a	task	is



waiting	for	the	resource,	it	will	be	awakened	public	release	()	  busy	:=	false;
  notify;	end	release;	end	Semaphore;



14.3.3	Synchronization	of	Multiple	Readers	and	Writers	Using	a
Monitor

This	 section	 describes	 a	 monitor	 solution	 to	 the	 multiple	 readers	 and	 writers
problem.	Because	the	operations	of	a	monitor	are	executed	mutually	exclusively,
a	 mutual	 exclusion	 solution	 to	 the	 sensor	 repository	 problem	 can	 easily	 be
achieved	 using	monitors,	 as	 described	 in	 Section	 14.3.1.	 However,	 a	multiple
readers	and	writers	solution	cannot	use	a	monitor	solution	for	the	design	of	the
Analog	 Sensor	 Repository	 class	 because	 the	 readAnalogSensor

operation	 needs	 to	 be	 executed	 by	 several	 readers	 concurrently.	 Instead,	 the
synchronization	 parts	 of	 the	 multiple	 readers	 and	 writers	 algorithm	 are
encapsulated	in	a	monitor,	which	is	then	used	by	a	redesigned	Analog	Sensor
Repository	 class.	 Two	 solutions	 to	 this	 problem	 are	 presented,	 the	 first
providing	 the	 same	 functionality	 as	 the	 previous	 section.	 The	 second	 solution
provides	an	added	capability,	that	of	preventing	writer	starvation.

A	ReadWrite	monitor	 is	declared	 that	uses	 two	 semaphore	monitors	 and
provides	 four	 mutually	 exclusive	 operations.	 The	 semaphores	 are	 the
readerSemaphore	 and	 the	 readWriteSemaphore.	 The	 four	 mutually
exclusive	 operations	 are	 the	 startRead,	 endRead,	 startWrite,	 and
endWrite	 operations.	 A	 reader	 task	 calls	 the	 startRead	 operation	 before	 it
starts	reading	and	the	endRead	operation	after	it	has	finished	reading.	A	writer
task	calls	the	startWrite	operation	before	it	starts	writing	and	the	endWrite
operation	 after	 it	 has	 finished	 writing.	 A	 semaphore	 monitor	 (Section	 14.3.2)
provides	an	acquire	operation	–	which	is	called	to	first	get	hold	of	the	resource
and	 involves	 a	 possible	 delay	 if	 the	 resource	 is	 initially	 busy	 –	 and	 a	 release
operation	to	free	up	the	resource.



The	 startRead	 operation	 has	 to	 first	 acquire	 the	 readerSemaphore,
increment	 the	number	of	readers,	and	then	release	 the	semaphore.	 If	 the	reader
count	was	 zero	 before	 incrementing,	 then	startRead	 also	 has	 to	 acquire	 the
readWriteSemaphore,	which	 is	 acquired	 by	 the	 first	 reader	 and	 released	 by
the	last	reader.	Although	monitor	operations	are	executed	mutually	exclusively,
the	 readerSemaphore	 is	 still	 needed.	 This	 is	 because	 it	 is	 possible	 for	 the
reader	to	be	suspended,	waiting	for	the	readWriteSemaphore	semaphore,	and
hence	release	the	ReadWrite	monitor	 lock.	If	another	reader	now	acquires	 the
monitor	lock	by	calling	startRead	or	endRead,	it	is	suspended,	waiting	for	the
readerSemaphore.

The	 design	 of	 the	 ReadWrite	 monitor	 is	 described	 next:	 monitor
ReadWrite	 --	Design	for	multiple	readers/single	writer	access	to	resource	 --
Declare	 an	 integer	 counter	 for	 the	 number	 of	 readers.	 --	Declare	 semaphore
for	accessing	count	of	number	of	readers	 --	Declare	a	semaphore	for	mutually
exclusive	 access	 to	 buffer	 private	 numberOfReaders	 :	 Integer	 =	 0;	   
readerSemaphore:	 Semaphore	 =	 1;	  readWriteSemaphore:	 Semaphore	 =	 1;
public	startRead	()	 --	A	reader	calls	this	operation	before	it	starts	to	read	  
readerSemaphore.acquire;	   if	 numberOfReaders	 =	 0	 then
readWriteSemaphore.acquire	 ();	   Increment	 numberOfReaders;	   
readerSemaphore.release;	end	startRead;	public	endRead	()	 --	A	reader	calls
this	operation	after	 it	has	 finished	 reading	  readerSemaphore.acquire;	  
Decrement	 numberOfReaders;	   if	 numberOfReaders	 =	 0	 then
readWriteSemaphore.release	 ();	   readerSemaphore.release;	 end	 endRead;
public	 startWrite	 ()	 --	 A	writer	 calls	 this	 operation	 before	 it	 starts	 to	 write
  readWriteSemaphore.acquire	 ();	end	 startRead;	public	endWrite	 ()	 --	A
writer	 calls	 this	 operation	 after	 it	 has	 finished	 writing	   
readWriteSemaphore.release	();	end	endWrite;	end	ReadWrite;



To	 take	 advantage	 of	 the	 ReadWrite	 monitor,	 the	 Analog	 Sensor

Repository	 is	 now	 redesigned	 to	 declare	 its	 own	 private	 instance	 of	 the
ReadWrite	 monitor	 called	 multiReadSingleWrite.	 The
readAnalogSensor	 operation	 now	 calls	 the	 startRead	 operation	 of	 the
monitor	 before	 reading	 from	 the	 repository	 and	 calls	 the	 endRead	 operation
after	 finishing	 reading.	 The	 updateAnalogSensor	 operation	 calls	 the
startWrite	operation	of	 the	monitor	before	updating	 the	 repository	and	calls
the	endWrite	operation	after	completing	the	update.

class	AnalogSensorRepository

	private	multiReadSingleWrite	:	ReadWrite

	public	readAnalogSensor	(in	sensorID,	out	sensorValue,	out	upperLimit,	

	lowerLimit,	out	alarmCondition)

	  multiReadSingleWrite.startRead();
	  sensorValue	:=	sensorDataRepository	(sensorID,	value);
	  upperLimit	:=	sensorDataRepository	(sensorID,	upLim);
	  lowerLimit	:=	sensorDataRepository	(sensorID,	loLim);
	  alarmCondition	:=	sensorDataRepository	(sensorID,	alarm);
	  multiReadSingleWrite.endRead();
	end	readAnalogSensor;

	public	updateAnalogSensor	(in	sensorID,	in	sensorValue)

	 --	Critical	section	for	write	operation.
	  multiReadSingleWrite.startWrite();
	  sensorDataRepository	(sensorID,	value)	:=	sensorValue;
	  if	sensorValue	≥	sensorDataRepository	(sensorID,	upLim)
	   then	sensorDataRepository	(sensorID,	alarm)	:=	high;
	  elseif	sensorValue	≤	sensorDataRepository	(sensorID,	loLim)
	   then	sensorDataRepository	(sensorID,	alarm)	:=	low;
	   else	sensorDataRepository	(sensorID,	alarm)	:=	normal;
	  end	if;
	  multiReadSingleWrite.endWrite();
	end	updateAnalogSensor;

	end	AnalogSensorRepository;



14.3.4	Synchronization	of	Multiple	Readers	and	Writers	without
Writer	Starvation

The	 previous	 solution	 to	 this	 problem	 has	 a	 limitation	 in	 that	 a	 busy	 reader
population	 could	 indefinitely	 prevent	 a	 writer	 from	 accessing	 the	 buffer,	 a
problem	referred	to	as	writer	starvation.	The	following	monitor	solution	prevents
this	 problem	 by	 adding	 a	 writerWaitingSemaphore.	 The	 startWrite
operation	must	 now	 acquire	 the	writerWaitingSemaphore	 before	 acquiring
the	readWriteSemaphore.	The	startRead	operation	must	acquire	(and	then
release)	 the	 writerWaitingSemaphore	 before	 acquiring	 the
readerSemaphore.

The	 reason	 for	 these	 changes	 is	 explained	 in	 the	 following	 scenario.
Assume	 that	 several	 readers	 are	 reading	and	a	writer	now	attempts	 to	write.	 It
successfully	 acquires	 the	 writerWaitingSemaphore	 but	 is	 then	 suspended
while	trying	to	acquire	the	readWriteSemaphore,	which	is	held	by	the	readers.
If	 a	 new	 reader	 tries	 to	 read	 from	 the	 buffer,	 it	 calls	startRead	 and	 is	 then
suspended,	waiting	 to	acquire	 the	writerWaitingSemaphore.	Gradually,	 the
current	readers	will	finish	reading	until	 the	last	reader	reduces	the	reader	count
to	 zero	 and	 releases	 the	 readWriteSemaphore.	 The	 semaphore	 is	 now
acquired	by	the	waiting	writer,	which	releases	the	writerWaitingSemaphore,
thereby	 allowing	 a	 reader	 or	 writer	 to	 acquire	 the	 semaphore.	 The	 monitor
solution	 is	 given	 next	 –	 compared	with	 the	 previous	 solution,	 the	startRead
and	startWrite	operations	have	changed.

monitor	ReadWrite

	 --	Prevent	writer	starvation	by	adding	new	semaphore.
	 --	Design	for	multiple	readers/single	writer	access	to	resource.
	 --	Declare	an	integer	counter	for	the	number	of	readers.
	 --	Declare	semaphore	for	accessing	count	of	number	of	readers
	 --	Declare	a	semaphore	for	mutually	exclusive	access	to	buffer
	 --	Declare	a	semaphore	for	writer	waiting



	private	numberOfReaders	:	Integer	=	0;

	  readerSemaphore:	Semaphore	=	1;
	  readWriteSemaphore:	Semaphore	=	1;
	  writerWaitingSemaphore:	Semaphore	=	1;
	public	startRead	()

	 --	A	reader	calls	this	operation	before	it	starts	to	read
	  writerWaitingSemaphore.acquire
	  writerWaitingSemaphore.release
	  readerSemaphore.acquire;
	  if	numberOfReaders	=	0	then	readWriteSemaphore.acquire	();
	  Increment	numberOfReaders;
	  readerSemaphore.release;
	end	startRead;

	public	endRead	()

	 --	A	reader	calls	this	operation	after	it	has	finished	reading
	  readerSemaphore.acquire;
	  Decrement	numberOfReaders;
	  if	numberOfReaders	=	0	then	readWriteSemaphore.release	();
	  readerSemaphore.release;
	end	endRead;

	public	startWrite	()

	 --	A	writer	calls	this	operation	before	it	starts	to	write
	  writerWaitingSemaphore.acquire();
	  readWriteSemaphore.acquire	();
	  writerWaitingSemaphore.release();
	end	startRead;

	public	endWrite	()

	 --	A	writer	calls	this	operation	after	it	has	finished	writing
	  readWriteSemaphore.release	();
	end	endWrite;

	end	ReadWrite;

No	 change	 is	 required	 in	 the	 design	 of	 the	Analog	Sensor	Repository	 class	 to
take	advantage	of	this	variant.



14.4	Designing	Connectors	for	Inter-Task
Communication

As	described	in	Chapter	3,	a	multitasking	kernel	can	provide	services	for	inter-
task	 communication	 and	 synchronization.	 Some	 concurrent	 programming
languages,	 such	 as	 Ada	 and	 Java,	 also	 provide	 mechanisms	 for	 inter-task
communication	 and	 synchronization.	 An	 alternative	 approach	 is	 to	 use	 a
connector	 that	 encapsulate	 the	 details	 of	 inter-task	 communication	 and
synchronization.

This	 section	 describes	 the	 design	 of	 three	 connectors	 to	 handle
asynchronous	 message	 communication,	 synchronous	 message	 communication
without	 reply,	 and	 synchronous	 message	 communication	 with	 reply.	 Each
connector	is	designed	as	a	monitor,	which	combines	the	concepts	of	information
hiding	 and	 task	 synchronization	 as	 described	 in	 the	 previous	 section.	 These
monitors	can	be	used	on	a	 single	processor	 system	or	a	multiprocessor	 system
with	shared	memory.

Each	 connector	 is	 depicted	 with	 the	 stereotypes	 «connector»
«sharedDataComResource»	«sharedMutualExclusionResource»	because	it	stores
data	(the	messages)	that	are	communicated	from	the	sender	task	to	the	receiver
task	and	ensures	mutually	exclusive	access	to	the	tasks	so	that	they	can	store	and
remove	messages.



14.4.1	Design	of	Message	Queue	Connector

A	 message	 queue	 connector	 is	 used	 to	 encapsulate	 the	 communication
mechanism	 for	 asynchronous	 message	 communication.	 The	 connector	 is
designed	as	a	monitor	that	encapsulates	a	message	queue,	usually	implemented
as	 a	 linked	 list.	 The	 connector	 provides	 synchronized	 operations	 to	 send	 a
message,	which	 is	 called	 by	 a	 producer	 task,	 and	 receive	 a	message,	which	 is
called	by	a	consumer	task	(see	Figure	14.6).	Figure	14.6a	depicts	asynchronous
message	 communication	 between	 producer	 and	 consumer	 tasks.	 Figure	 14.6b
depicts	 the	Producer	 and	Consumer	 tasks	 interacting	via	 a	Message	Queue
connector.	 Figure	 14.6c	 depicts	 the	 specification	 of	 the	 Message	 Queue

connector	with	 the	public	send	 and	receive	 operations	 and	 the	 encapsulated
data	structure	for	the	message	queue.

To	send	a	message,	the	producer	calls	the	send	operation	and	is	suspended
if	the	queue	is	full	(messageCount	=	maxCount).	The	producer	is	reactivated
when	a	slot	becomes	available	to	accept	the	message.	After	adding	the	message
to	 the	 queue,	 the	 producer	 continues	 executing	 and	 might	 send	 additional
messages.	To	receive	a	message,	the	consumer	calls	the	receive	operation	and
is	suspended	if	the	message	queue	is	empty	(messageCount	=	0).	When	a	new
message	arrives,	the	consumer	is	activated	and	given	the	message.	The	consumer
is	not	suspended	if	there	is	a	message	on	the	queue.	It	is	assumed	that	there	can
be	 several	 producers	 and	 one	 consumer.	 The	 Pseudocode	 for	 the	 connector	 is
described	next.

monitor	MessageQueue

	 --	Encapsulate	message	queue	that	holds	max	of	maxCount	messages
	 --	Monitor	operations	are	executed	mutually	exclusively;
	private	messageQ	:	Queue;

	private	maxCount	:	Integer;

	private	messageCount	:	Integer	=	0;

	public	send	(in	message)



	  while	messageCount	=	maxCount	do	wait;
	  place	message	in	messageQ;
	  Increment	messageCount;
	  if	messageCount	=	1	then	notify;
	end	send;

	public	receive	(out	message)

	  while	messageCount	=	0	do	wait;
	  remove	message	from	messageQ;
	  Decrement	messageCount;
	  if	messageCount	=	maxCount-1	then	notify;
	end	receive;

	end	MessageQueue;



Figure	14.6.	Design	of	a	message	queue	connector.



14.4.2	Design	of	Message	Buffer	Connector

A	 message	 buffer	 connector	 is	 used	 to	 encapsulate	 the	 communication
mechanism	 for	 synchronous	 message	 communication	 without	 reply.	 The
connector	is	designed	as	a	monitor	that	encapsulates	a	single	message	buffer	and
provides	synchronized	operations	to	send	a	message	and	receive	a	message	(see
Figure	14.7).	Figure	14.7a	depicts	synchronous	message	communication	without
reply	between	producer	and	consumer	tasks.	Figure	14.7b	depicts	the	Producer
and	 Consumer	 tasks	 interacting	 via	 a	 Message	 Buffer	 connector.	 Figure
14.7c	 depicts	 the	 specification	 of	 the	 Message	 Buffer	 connector	 with	 the
public	send	and	receive	operations	and	the	encapsulated	data	structure	for	the
message	 buffer.	The	 producer	 task	 calls	 the	send	 operation	 and	 the	 consumer
task	calls	the	receive	operation	in	Figure	14.7b.

To	 send	 a	 message,	 the	 producer	 calls	 the	 send	 operation.	 After	 it	 has
written	the	message	into	the	buffer,	the	producer	is	suspended	until	the	consumer
receives	 the	 message.	 The	 consumer	 calls	 the	 receive	 operation	 and	 is
suspended	 if	 the	message	buffer	 is	 empty.	 It	 is	 assumed	 that	 there	 is	only	one
producer	and	one	consumer.	The	Pseudocode	for	the	connector	is	described	next.

monitor	MessageBuffer

	 --	Encapsulate	a	message	buffer	that	holds	at	most	one	message.
	 --	Monitor	operations	are	executed	mutually	exclusively
	private	messageBuffer	:	Buffer;

	private	messageBufferFull	:	Boolean	=	false;

	public	send	(in	message)

	  place	message	in	messageBuffer;
	  messageBufferFull	:=	true;
	  notify;
	  while	messageBufferFull	=	true	do	wait;
	end	send;

	public	receive	(out	message)

	  while	messageBufferFull	=	false	do	wait;
	  remove	message	from	messageBuffer;
	  messageBufferFull	:=	false;



	  notify;
	end	receive;

	end	MessageBuffer;

Figure	14.7.	Design	of	a	message	buffer	connector.



14.4.3	Design	of	Message	Buffer	and	Response	Connector

A	 message	 buffer	 and	 response	 connector	 is	 used	 to	 encapsulate	 the
communication	mechanism	for	synchronous	message	communication	with	reply.
The	connector	is	designed	as	a	monitor	that	encapsulates	a	single	message	buffer
and	 a	 single	 response	 buffer.	 It	 provides	 synchronized	 operations	 to	 send	 a
message,	 receive	 a	message,	 and	 send	 a	 reply	 (see	 Figure	 14.8).	 Figure	 14.8a
depicts	 synchronous	message	communication	with	 reply	between	producer	and
consumer	 tasks.	 Figure	 14.8b	 depicts	 the	 Producer	 and	 Consumer	 tasks
interacting	 via	 a	 Message	 Buffer	 &	 Response	 connector.	 Figure	 14.8c
depicts	 the	 specification	of	 the	connector	with	 the	public	send,	receive,	 and
reply	 operations	 and	 the	 encapsulated	 data	 structures	 for	 the	 message	 and
response	buffers.

The	producer	calls	the	send	message	operation	(S1	in	Figure	14.8b).	After
it	 has	written	 the	message	 into	 the	message	 buffer,	 the	 producer	 is	 suspended
until	 the	 response	 is	 received	 from	 the	 consumer.	 The	 consumer	 calls	 the
receive	 message	 operation	 (R1)	 and	 is	 suspended	 if	 the	 message	 buffer	 is
empty.	 When	 a	 message	 is	 available,	 the	 consumer	 processes	 the	 message,
prepares	the	response,	and	calls	 the	reply	operation	(R2)to	place	the	response
in	 the	 response	 buffer.	 It	 is	 assumed	 that	 there	 is	 only	 one	 producer	 and	 one
consumer.	The	Pseudocode	for	the	connector	is	described	next.

monitor	MessageBuffer&Response

	 --	Encapsulates	a	message	buffer	that	holds	at	most	one	message
	 --	and	a	response	buffer	that	holds	at	most	one	response.
	 --	Monitor	operations	are	executed	mutually	exclusively.
	private	messageBuffer	:	Buffer;

	private	responseBuffer	:	Buffer;

	private	messageBufferFull	:	Boolean	=	false;

	private	responseBufferFull	:	Boolean	=	false;

	public	send	(in	message,	out	response)

	  place	message	in	messageBuffer;



	  messageBufferFull	:=	true;
	  notify;
	  while	responseBufferFull	=	false	do	wait;
	  remove	response	from	responseBuffer;
	  responseBufferFull	:=	false;
	end	send;

	public	receive	(out	message)

	  while	messageBufferFull	=	false	do	wait;
	  remove	message	from	messageBuffer;
	  messageBufferFull	:=	false;
	end	receive;

	public	reply	(in	response)

	  Place	response	in	responseBuffer;
	  responseBufferFull	:=	true;
	  notify;
	end	reply;

	end	MessageBuffer&Response;



Figure	14.8.	Design	of	a	message	buffer	and	response	connector.



14.4.4	Design	of	Cooperating	Tasks	Using	Connectors

Next,	consider	the	design	of	a	group	of	cooperating	tasks	that	communicate	by
means	 of	 connector	 objects.	 This	 is	 illustrated	 by	means	 of	 an	 example	 taken
from	 the	 Microwave	 Oven	 Control	 System	 case	 study	 in	 which	 four
producer	tasks	send	asynchronous	messages	to	the	Microwave	Oven	Control
consumer	 task,	 as	 depicted	 in	 Figure	 14.9a.	 In	 addition,	 Microwave	 Oven
Control	 is	 a	 producer	 task	 that	 sends	 asynchronous	 messages	 to	 the	 Oven
Timer	 consumer	 task.	 Thus,	 the	 asynchronous	 communication	 between
Microwave	Oven	Control	and	Oven	Timer	is	bidirectional.

The	connectors	 for	 the	Microwave	Oven	Control	 task	are	depicted	on
Figure	 14.9b.	 The	 Oven	 Control	 Message	 Q	 encapsulates	 the	 queue	 of
incoming	 messages	 to	 the	 Microwave	 Oven	 Control	 consumer	 task,	 for
which	 there	 are	 four	 producers.	 In	 each	 case,	 a	 producer	 calls	 the
sendControlRequest	 operation	 of	 the	 message	 queue	 connector	 object	 to
insert	 a	 message	 in	 the	 connector	 queue,	 and	 the	 consumer	 calls	 the
receiveControlRequest	 operation	 to	 remove	 a	 message	 from	 the	 queue.
There	is	also	an	Oven	Timer	Message	Q	message	queue	connector	object	to
encapsulate	 the	 asynchronous	 communication	 between	 the	 Microwave	 Oven
Control	 producer	 task	 and	 the	 Oven	 Timer	 consumer	 task,	 in	 which	 the
producer	 calls	 the	 sendTimerRequest	 operation	 of	 the	 connector	 and	 the
consumer	calls	the	receiveTimerRequest	operation.



Figure	14.9a.	Example	of	cooperating	tasks	using	asynchronous	message
communication	and	bidirectional	asynchronous	message	communication.

Figure	14.9b.	Example	of	cooperating	tasks	using	message	queue	connectors.

An	example	of	a	message	buffer	and	response	connector	is	given	in	Figure
14.10,	 in	 which	 the	 Vehicle	 Control	 producer	 task	 sends	 a	 synchronous
message	to	the	Motor	Output	consumer	task	and	then	waits	for	a	reply	(Figure



14.10a).	 In	Figure	14.10b	using	a	connector,	 the	Vehicle	Control	producer
calls	the	send	operation	of	the	message	buffer	and	response	connector	to	insert	a
message	in	the	connector's	message	buffer	and	then	waits	for	the	response.	The
Motor	Output	consumer	calls	 the	receive	operation	to	remove	the	message
from	the	buffer	and	then,	after	preparing	the	response,	calls	the	reply	operation
to	insert	the	response	in	the	connector's	response	buffer.	The	response	is	returned
to	Vehicle	Control	as	the	output	parameter	of	the	send	operation.

Figure	14.10.	Example	of	synchronous	message	communication	using	a
message	buffer	and	response	connector.



14.4.5	Detailed	Design	of	Components	with	Connectors

It	should	be	noted	 that	 if	 the	 task	 is	designed	 to	be	 inside	a	simple	component
(see	Chapter	12),	a	producer	 task	will	 send	a	message	 through	 its	component's
required	 interface	 and	 a	 consumer	 task	 will	 receive	 the	 message	 through	 its
component's	 provided	 interface.	 The	 operation	 in	 the	 provided	 interface	 will
place	 the	 incoming	 message	 in	 a	 message	 buffer	 (for	 synchronous
communication)	 or	 a	 message	 queue	 (for	 asynchronous	 communication)	 from
which	 the	 consumer	 task	 removes	 the	 message.	 With	 this	 approach,	 the
connector	 is	 designed	 to	 be	 inside	 the	 consumer	 component.	 As	 before,	 the
operations	 of	 the	 connector	 are	 designed	 to	 have	 synchronized	 access	 to	 the
encapsulated	 buffer	 or	 queue.	 Examples	 of	 this	 approach	 are	 given	 in	 the
Microwave	Oven	case	study	in	Chapter	19.



14.5	Task	Event	Sequencing	Logic
During	the	detailed	software	design,	the	task	event	sequencing	logic	of	the	Task
Behavior	Specification,	as	described	in	Chapter	13,	is	specified.	The	task's	event
sequencing	 logic	 describes	 how	 the	 task	 responds	 to	 each	 of	 its	 message	 or
event	 inputs	–	 in	particular,	what	output	 is	generated	as	a	 result	of	each	 input.
The	event	sequencing	logic	is	described	informally	in	Pseudocode	or	in	Precise
English	and	may	be	supplemented	by	a	diagram	–	for	example,	to	depict	a	state
machine	diagram	or	state	transition	table	for	a	control	task.

For	 a	 composite	 task	 with	 several	 nested	 objects,	 a	 nested	 coordinator
object	 receives	 the	 task's	 incoming	 messages	 and	 then	 invokes	 operations
provided	by	other	nested	objects.	In	such	cases,	the	coordinator	object	executes
the	task's	event	sequencing	logic.



14.5.1	Example	of	Event	Sequencing	Logic	for	Sender	and	Receiver
Tasks

The	 event	 sequencing	 logic	 for	 a	 sender	 task,	 which	 sends	messages	 to	 other
tasks,	 is	 given	 next.	The	 exact	 form	of	 the	send	(message)	will	 depend	 on
whether	 this	 is	a	service	provided	by	the	operating	system	or	whether	 it	uses	a
connector,	as	described	in	the	previous	section.

loop

	  Prepare	message	containing	message	name	(type)	and	optional	message
	parameters;

	  send	(message)	to	receiver;
	endloop;

The	 event	 sequencing	 logic	 for	 a	 receiver	 task,	 which	 receives	 incoming
messages	from	other	tasks,	is	loop	 receive	(message)	from	sender;	 Extract
message	 name	 and	 any	message	 parameters	 from	message	 case	message	 of
  message	 type	1:	   objectA.operationX	(optional	parameters);	   
….	   message	 type	 2:	    objectB.operationY	 (optional	 parameters);
   …..	 endcase;	endloop;
If	 a	 connector	 called	 aConnector	 is	 used,	 the	 send	 message	 becomes
aConnector.send	(message)
and	the	receive	message	becomes	aConnector.receive	(message)
Templates	 in	 Pseudocode	 for	 the	 task	 event	 sequencing	 logic	 for	 the	 different
kinds	of	 tasks	 described	 in	Chapter	 13	 are	 given	 in	Appendix	C.	Examples	 of
task	 event	 sequencing	 logic	 for	 task	 communication	 and	 synchronization	 are
given	next,	and	in	the	Microwave	Oven	Control	case	study	described	in	Chapter
19.



14.6	Detailed	Real-Time	Software	Design	in
Robot	and	Vision	Systems

Consider	 the	 following	 detailed	 software	 design	 examples	 of	 task
communication	and	synchronization	in	real-time	robot	and	vision	systems.	Each
robot	 and	 vision	 system	 is	 designed	 as	 a	 real-time	 embedded	 system.	 In	 each
robot	system,	a	task	controls	a	robot	arm	that	performs	factory	operations	such
as	picking	up	a	part,	placing	down	a	part,	or	welding	 two	parts	 together.	Each
vision	 system	 has	 a	 task	 that	 analyzes	 images	 of	 factory	 parts	 and	 extracts
important	properties,	such	as	the	type	and	location	of	the	part.	In	these	examples,
the	 interaction	between	 tasks	 is	explained	 in	detail	by	providing	 the	 task	event
sequencing	logic	for	each	task's	behavior.



14.6.1	Example	of	Event	Synchronization	between	Robot	Tasks

The	first	example	is	of	event	synchronization	(see	Section	13.9.4)	between	two
robot	tasks,	in	which	a	pick-and-place	robot	brings	a	part	to	the	work	location	so
that	a	drilling	robot	can	drill	four	holes	in	the	part.	On	completion	of	the	drilling
operation,	the	pick-and-place	robot	moves	the	part	away.

Several	 synchronization	 problems	 need	 to	 be	 solved.	 First,	 there	 is	 a
collision	zone	where	the	pick-and-place	and	drilling	robot	arms	could	potentially
collide.	 Second,	 the	 pick-and-place	 robot	 must	 deposit	 the	 part	 before	 the
drilling	 robot	 can	 start	 drilling	 the	 holes.	 Third,	 the	 drilling	 robot	must	 finish
drilling	before	 the	pick-and-place	robot	can	remove	the	part.	The	solution	is	 to
use	event	synchronization,	as	described	next.

The	pick-and-place	robot	moves	the	part	to	the	work	location,	moves	out	of
the	collision	zone,	and	then	signals	 the	event	part	Ready,	as	depicted	in	Figure
14.11.	This	 awakens	 the	drilling	 robot,	which	moves	 to	 the	work	 location	 and
drills	 the	 holes.	 After	 completing	 the	 drilling	 operation,	 it	 moves	 out	 of	 the
collision	zone	and	then	signals	a	second	event,	part	Completed,	which	the	pick-
and-place	robot	is	waiting	to	receive.	After	being	awakened,	the	pick-and-place
robot	 removes	 the	 part.	 Each	 robot	 task	 executes	 a	 loop,	 because	 the	 robots
repetitively	perform	 their	operations,	as	described	 in	 the	 task	event	 sequencing
logic	below.

Figure	14.11.	Example	of	event	synchronization	between	Robot	Tasks.



Pick	&	Place	Robot:

loop

	while	workAvailable	do

	Pick	up	part;

	Move	part	to	work	location;

	Release	part;

	Move	to	safe	position;

	signal	(partReady);

	wait	(partCompleted);

	Pick	up	part;

	Remove	part	from	work	location;

	Place	part;

	end	while;

	end	loop;



Drilling	Robot:

loop

	while	workAvailable	do

	wait	(partReady);

	Move	to	work	location;

	Drill	four	holes	in	part;

	Move	to	safe	position;

	signal	(partCompleted);

	end	while;

	end	loop;



14.6.2	Example	of	Message	Communication	between	Vision	and	Robot
Tasks

Consider	 next	 an	 example	 of	 task	 communication,	 in	 particular	 synchronous
message	communication	with	 reply	 (see	Section	13.9.2),	between	a	vision	 task
and	 a	 robot	 task.	 The	 vision	 task	 has	 to	 inform	 the	 robot	 of	 the	 type	 of	 part
coming	down	a	conveyor,	for	example,	whether	the	car	body	frame	is	a	sedan	or
station	 wagon.	 The	 robot	 has	 a	 different	 welding	 program	 for	 each	 car	 body
type.	 In	 addition,	 the	 vision	 task	 has	 to	 send	 the	 robot	 information	 about	 the
location	and	orientation	of	a	part	on	a	conveyor.	Usually	this	information	is	sent
as	 an	 offset	 (i.e.,	 relative	 position)	 from	 a	 point	 known	 to	 both	 systems.	 The
vision	task	sends	the	robot	a	synchronous	message,	the	carIDMessage,	which
contains	the	carModelID	and	carBodyOffset,	and	then	waits	for	a	reply	from
the	 robot.	 The	 robot	 indicates	 that	 it	 has	 completed	 the	 welding	 operation	 by
sending	the	doneReply.	This	message	exchange	is	illustrated	in	Figure	14.12.

Figure	14.12.	Example	of	message	communication	between	Vision	and	Robot
Tasks.

In	 addition,	 the	 following	 event	 synchronization	 is	 needed.	 Initially,	 a
sensor	signals	the	external	event	carArrived	to	notify	the	vision	task.	Finally,
the	vision	task	signals	the	actuator	moveCar,	which	results	in	the	taking	away	of
the	car	by	the	conveyor.	The	task	event	sequencing	logic	is	described	next.



Vision	Task:

loop

	while	workAvailable	do

	wait	(carArrived)	from	arrival	sensor;

	Take	image	of	car	body;

	Identify	the	model	of	car;

	Determine	location	and	orientation	of	car	body;

	send	carIdMessage	(carModelId,	carBodyOffset)	to	Robot	Task;

	wait	for	reply	from	Robot	Task;

	signal	(moveCar)	to	conveyor	actuator;

	end	while;

	end	loop;



Robot	Task:

loop

	while

	workAvailable	do

	wait	for	message	from	Vision	Task;

	receive	carIDMessage	(carModelId,	carBodyOffset);

	Select	welding	program	for	carModelId;

	Execute	welding	program	using	carBodyOffset	for	car	position;

	send	(doneReply)	to	Vision	Task;

	end	while;

	end	loop;



14.7	Implementing	Concurrent	Tasks	in
Java

In	Java,	tasks	are	implemented	as	threads.	The	simplest	way	to	design	a	thread
class	 in	 Java	 is	 to	 inherit	 from	 the	 Java	 Thread	 class,	which	 has	 one	method,
called	run.	The	new	 thread	class	must	 then	 implement	 the	 run	method,	which,
when	invoked,	will	execute	independently	with	its	own	thread	of	control.	In	the
following	 example,	 the	 Railroad	 Crossing	 Control	 class	 is	 designed	 to	 be	 a
thread.	 The	 body	 of	 the	 thread	 is	 contained	 in	 the	 run	method.	 Typically,	 the
body	of	 the	 task	 is	 a	 loop,	 in	which	 the	 task	would	wait	 for	 either	 an	external
event	(from	an	external	device	or	timer)	or	a	message	from	a	producer	task.

public	class	RailroadCrossingControl	extendsThread{}

	public	void	run	()

	while	(true)	{//task	body/}

More	 information	 about	 implementing	 tasks	 in	 Java	 is	 given	 in	 textbooks	 on
concurrency	and	multithreading	in	Java	(Carver	2006,	Goetz	2006)	and	real-time
programming	in	Java	(Bruno	and	Bollella	2009,	Wellings	2004).

In	Java,	it	is	possible	for	an	object	to	encapsulate	a	thread	but	also	to	have
operations	 (methods	 in	 Java)	 that	 may	 be	 invoked	 by	 other	 threads.	 These
operations	do	not	necessarily	need	to	be	synchronized	with	the	internal	thread.	In
this	 case,	 the	 object	 has	 both	 active	 and	 passive	 characteristics.	 In	 this	 book,
however,	 we	 will	 maintain	 a	 distinction	 between	 active	 and	 passive	 objects.
Thus,	an	object	is	defined	as	active	or	passive,	but	not	both.



14.8	Summary
After	structuring	the	system	into	tasks	in	Chapter	13,	this	chapter	has	described
the	 detailed	 software	 design.	 In	 this	 step,	 the	 internals	 of	 composite	 tasks	 that
contain	 nested	 objects	 are	 designed,	 detailed	 task	 synchronization	 issues	 are
addressed	 using	 semaphores	 and	monitors,	 connector	 classes	 are	 designed	 that
encapsulate	 the	 details	 of	 inter-task	 communication,	 and	 each	 task's	 internal
event	sequencing	logic	 is	defined.	Several	examples	were	given	in	Pseudocode
of	the	detailed	design	of	task	synchronization	mechanisms,	connector	classes	for
inter-task	 communication,	 and	 task	 event	 sequencing	 logic.	 Detailed	 software
design	examples	were	given	of	task	communication	and	synchronization	in	real-
time	 robot	 and	 vision	 systems.	 Templates	 in	 Pseudocode	 for	 the	 task	 event
sequencing	 logic	 for	 the	 different	 kinds	 of	 tasks	 are	 given	 in	 Appendix	 C.
Finally,	 a	 brief	 overview	was	 given	 of	 implementing	 concurrent	 tasks	 in	 Java
using	threads.



15

Designing	Real-Time	Software
Product	Line	Architectures

◈

A	 software	 product	 line	 (SPL)	 consists	 of	 a	 family	 of	 software	 systems	 that
have	some	common	functionality	and	some	variable	functionality	(Parnas	1979,
Clements	 2002,	 Weiss	 1999).	 Software	 product	 line	 engineering	 involves
developing	the	requirements,	architecture,	and	component	implementations	for	a
family	 of	 systems,	 from	 which	 products	 (family	 members)	 are	 derived	 and
configured.	The	problems	of	developing	individual	software	systems	are	scaled
upward	 when	 developing	 software	 product	 lines	 because	 of	 the	 increased
complexity	 due	 to	 variability	management.	 This	 chapter	 gives	 an	 overview	 of
designing	 software	 product	 line	 architectures	 using	 the	 PLUS	 (Product	 Line
UML-based	Software	engineering)	method.	The	topic	is	covered	in	considerable
detail	in	the	author's	book	on	this	topic	(Gomaa	2005a).

SPL	technology	is	particularly	valuable	for	developing	real-time	embedded
product	families,	in	which	some	external	devices,	such	as	sensors	and	actuators,
may	be	optional	(such	as	 light	or	 turntable	 in	a	microwave	oven	SPL)	in	some
family	members	 or	 there	may	be	variants	 (one-level	 on/off	 heating	 element	 or
multi-level	 high/medium/low/off	 heating	 element)	 that	 are	 used	 by	 different
family	 members.	 To	 manage	 the	 variability	 of	 SPL	 architectures	 and



implementations	 necessitates	 developing	 feature	models	 to	 determine	what	 the
variability	is	and	developing	variable	software	architectures	consisting	of	kernel,
optional,	and	variant	components	to	determine	how	the	variability	is	mapped	to
the	design.

As	with	 single	 systems,	 a	 better	 understanding	of	 a	 software	 product	 line
can	be	obtained	by	considering	the	multiple	views,	such	as	requirements	models,
static	 models,	 and	 dynamic	 models	 of	 the	 product	 line.	 A	 visual	 modeling
language	such	as	UML	helps	in	developing,	understanding,	and	communicating
the	different	views.	A	key	view	in	the	multiple	views	of	a	software	product	line
is	 the	 feature	 modeling	 view.	 The	 feature	 model	 is	 crucial	 for	 managing
variability	and	product	derivation	as	it	describes	the	product	line	requirements	in
terms	 of	 commonality	 and	 variability,	 as	 well	 as	 defining	 the	 product	 line
dependencies.	Furthermore,	it	is	necessary	to	have	a	development	approach	that
promotes	 software	 evolution,	 such	 that	 original	 development	 and	 subsequent
maintenance	are	both	treated	using	feature-driven	evolution.

Section	 15.1	 describes	 the	 software	 process	 model	 for	 SPL	 Engineering.
Section	15.2	presents	the	problem	description	for	the	SPL	example	used	in	this
chapter.	 Section	 15.3	 describes	 requirements	modeling	 for	 SPLs,	 in	 particular
use	 case	 modeling	 and	 feature	 modeling	 for	 SPLs.	 Section	 15.4	 describes
analysis	 modeling	 for	 SPLs,	 in	 particular	 how	 variability	 is	 handled	 in	 static
models,	 dynamic	 interaction	 models,	 and	 dynamic	 state	 machine	 models	 for
SPLs.	Section	15.5	describes	 how	variability	 is	 addressed	 in	 design	models	 of
SPLs.



15.1	Software	Product	Line	Engineering
The	software	process	model	 for	SPL	Engineering	 is	a	highly	 iterative	software
process	that	eliminates	the	traditional	distinction	between	software	development
and	maintenance.	Furthermore,	because	new	software	systems	are	outgrowths	of
existing	ones,	the	process	takes	a	software	product	line	perspective;	it	consists	of
two	main	processes	(see	Figure	15.1):

a)	Software	Product	Line	Engineering	(also	referred	to	as	Domain
Engineering).	A	product	line	multiple-view	model,	which	addresses	the
multiple	views	of	a	software	product	line,	is	developed.	The	product	line
requirements	model,	product	line	analysis	model,	product	line	architecture,	and
reusable	component	types	(referred	to	as	core	assets	in	Clements	[2002])	are
developed	and	stored	in	the	product	line	repository.

b)	Software	Application	Engineering.	A	software	application	is	an	individual
product	line	member	derived	from	the	software	product	line	models	and
architecture	in	the	SPL	repository.	The	user	selects	the	required	features	for	the
individual	product	line	member.	Given	the	features,	the	product	line	models	and
architecture	are	adapted	and	tailored	to	derive	the	application	models	and
architecture.	The	architecture	determines	which	of	the	reusable	component	types
are	needed	for	deriving	and	configuring	the	executable	application.



Figure	15.1.	Software	process	model	for	software	product	line	engineering.



15.2	Problem	Description	of	Microwave
Oven	SPL

The	manufacturer	of	the	microwave	oven	product	line	is	an	original	equipment
manufacturer	with	 an	 international	market.	The	microwave	oven	will	 form	 the
basis	of	this	product	line,	which	will	offer	options	from	basic	to	top-of-the-line.

The	basic	microwave	oven	system	has	input	buttons	for	selecting	Cooking
Time,	Start,	and	Cancel,	as	well	as	a	numeric	keypad.	It	also	has	a	display	to
show	 the	 cooking	 time	 left.	 In	 addition,	 the	 oven	 has	 a	 microwave	 heating
element	for	cooking	the	food,	a	door	sensor	to	sense	when	the	door	is	open,	and
a	weight	sensor	to	detect	if	there	is	an	object	in	the	oven.

Options	available	 for	more	advanced	ovens	are	a	beeper	 to	 indicate	when
cooking	is	finished,	a	light	that	is	switched	on	when	the	door	is	open	and	when
food	is	being	cooked,	and	a	turntable	that	turns	during	cooking.	The	microwave
oven	 displays	 messages	 to	 the	 user	 such	 as	 prompts	 and	 warning	 messages.
Because	 the	 oven	 is	 to	 be	 sold	 around	 the	world,	 it	must	 be	 able	 to	 vary	 the
display	language.	The	default	language	is	English,	but	other	possible	languages
are	French,	Spanish,	German,	and	Italian.	The	basic	oven	has	a	one-line	display;
more-advanced	ovens	can	have	multi-line	displays.	Other	options	include	a	time-
of-day	clock,	which	needs	the	multi-line	display	option.

The	 top-of-the-line	 oven	 has	 a	 recipe	 cooking	 feature,	 which	 needs	 an
analog	weight	sensor	in	place	of	the	basic	Boolean	weight	sensor,	the	multi-line
display	feature,	and	a	multi-power	level	feature	(high,	medium,	low)	in	place	of
the	 basic	 on/off	 power	 feature.	 Vendors	 can	 configure	 their	 microwave	 oven
systems	of	 choice	 from	a	wealth	 of	 optional	 and	 alternative	 features,	 although
feature	dependency	constraints	must	be	obeyed.



15.3	Requirements	Modeling	for	Software
Product	Lines

For	single	systems,	use	case	modeling	(see	Chapter	6)	is	the	primary	vehicle	for
describing	software	functional	requirements.	For	software	product	lines,	feature
modeling	is	an	additional	important	part	of	requirements	modeling.	The	strength
of	 feature	modeling	 is	 in	 differentiating	between	 the	 functionality	 provided	by
the	 different	 family	 members	 of	 the	 product	 line	 in	 terms	 of	 common
functionality,	optional	functionality,	and	alternative	functionality.



15.3.1	Use	Case	Modeling	for	Software	Product	Lines

The	 functional	 requirements	of	a	 system	are	defined	 in	 terms	of	use	cases	and
actors.	For	a	single	system,	all	use	cases	are	required.	In	a	software	product	line,
only	 some	 of	 the	 use	 cases,	 which	 are	 referred	 to	 as	 kernel	 use	 cases,	 are
required	by	all	members	of	the	family.	Other	use	cases	are	optional,	in	that	they
are	required	by	some	but	not	all	members	of	the	family.	Some	use	cases	may	be
alternative;	 that	 is,	 different	 versions	 of	 the	 use	 case	 are	 required	 by	 different
members	of	 the	 family.	 In	UML,	 the	use	cases	are	 labeled	with	 the	 stereotype
«kernel»,	 «optional»,	 or	 «alternative»	 (Gomaa	 2005a).	 In	 addition,	 variability
can	be	incorporated	into	a	use	case	by	means	of	variation	points,	which	specify
where	in	the	use	case	description	variability	can	be	introduced	(Jacobson	1997,
Webber	and	Gomaa	2004,	Gomaa	2005a).

Analyzing	 the	 commonality	 and	 variability	 in	 the	 functionality	 of	 the
microwave	oven	SPL	indicates	that	commonality	can	be	captured	by	one	kernel
use	 case,	 Cook	 Food,	 which	 all	 members	 of	 the	 product	 line	 must	 provide.
Some	of	the	variability	in	the	product	line	can	be	captured	by	variation	points	in
the	 kernel	 use	 case,	 reflecting	 small	 variations.	 However,	 the	 large	 variations
need	 to	 be	 addressed	 by	 different	 use	 cases,	 which	 are	 the	 three	 optional	 use
cases	Set	Time	of	Day,	Display	Time	of	Day,	 and	Cook	Food	with
Recipe.	Only	some	members	of	the	product	line	realize	these	use	cases.	The	use
case	model	is	depicted	on	the	use	case	diagram	in	Figure	15.2.



Figure	15.2.	Software	product	line	use	cases.

Variation	 points	 are	 provided	 for	 both	 the	 kernel	 and	 optional	 use	 cases.
One	variation	point	concerns	the	display	prompt	language.	Since	the	Microwave
System	family	members	will	be	deployed	in	different	countries,	the	appropriate
prompt	 language	 can	 be	 selected	 for	 a	 given	 microwave	 oven	 product.	 The
default	 language	 is	 English,	with	 alternative	 languages	 being	 French,	 Spanish,
Italian,	and	German.	An	example	of	a	variation	point	is	for	all	steps	that	involve
displaying	 information	 to	 the	customer	 in	 the	Cook	Food	use	case.	Mandatory
alternative	means	that	a	selection	among	the	alternative	choices	must	be	made.

Variation	point	in	Cook	Food	use	case:

Name:	Display	Language.

Type	of	functionality:	Mandatory	alternative.



Use	case	step	number(s):	3,	8.

Description	of	functionality:	There	is	a	choice	of	language	for	displaying
messages.	The	default	is	English.	Alternative	mutually	exclusive	languages
are	French,	Spanish,	Italian,	and	German.



15.3.2	Feature	Modeling

Feature	modeling	 is	 an	 important	modeling	 view	 for	 product	 line	 engineering
(Kang	 et	 al.	 1990),	 as	 it	 addresses	 SPL	 variability.	 Features	 are	 analyzed	 and
categorized	 as	 common	 features	 (must	 be	 supported	 in	 all	 product	 line
members),	 optional	 features	 (only	 required	 in	 some	 product	 line	 members),
alternative	 features	 (a	 choice	 of	 feature	 is	 available),	 and	 prerequisite	 features
(dependent	on	other	features).	There	may	also	be	dependencies	among	features,
such	 as	 mutually	 exclusive	 features.	 The	 emphasis	 in	 feature	 modeling	 is
capturing	 the	 product	 line	 variability,	 as	 given	 by	 optional	 and	 alternative
features,	 since	 these	 features	 differentiate	 one	 member	 of	 the	 product	 family
from	the	others.

Features	are	used	widely	 in	product	 line	engineering	but	 are	not	 typically
used	 in	 UML.	 In	 order	 to	 effectively	 model	 product	 lines,	 it	 is	 necessary	 to
incorporate	feature	modeling	concepts	into	UML.	Features	are	incorporated	into
UML	in	 the	PLUS	method	using	 the	meta-class	concept,	 in	which	 features	are
modeled	 using	 the	 UML	 static	 modeling	 notation	 and	 given	 stereotypes	 to
differentiate	 between	 «common	 feature»,	 «optional	 feature»,	 and	 «alternative
feature»	(Gomaa	2005a).	Feature	dependencies	are	depicted	as	associations	with
the	 name	 requires;	 for	 example,	 the	TOD	Clock	 feature	 requires	 the	Multi-
Line	Display	 feature.	Furthermore,	 feature	groups,	which	place	 a	 constraint
on	 how	 certain	 features	 can	 be	 selected	 for	 a	 product	 line	 member,	 such	 as
mutually	 exclusive	 features,	 are	 also	 modeled	 using	 meta-classes	 and	 given
stereotypes,	 such	 as	 «zero-or-one-of	 feature	 group»	 or	 «exactly-one-of	 feature
group»	 (Gomaa	 2005a).	 A	 feature	 group	 is	 modeled	 as	 an	 aggregation	 of
features,	since	a	feature	is	part	of	a	feature	group.



The	 common	 features	 identify	 the	 common	 functionality	 in	 the	 SPL,	 as
specified	by	 the	kernel	use	case;	 the	optional	and	alternative	 features	 represent
the	variability	in	the	product	line	as	specified	by	the	optional	use	cases	and	the
variation	points.	The	common	feature	in	the	Microwave	SPL	is	the	Microwave
Oven	Kernel,	which	corresponds	to	the	core	functionality	described	in	the	Cook
Food	kernel	use	case.

The	 variable	 features	 correspond	 to	 optional	 or	 alternative	 functional
requirements,	 which	 are	 determined	 from	 the	 use	 case	 model.	 A	 number	 of
features	 are	 determined	 from	 the	 kernel	 use	 case,	Cook	Food.	 Some	 of	 these
(e.g.,	Light,	Turntable,	and	Beeper)	are	optional	features	that	can	be	added
to	 the	 kernel	 functionality.	 Two	 features	 correspond	 to	 the	 optional	 use	 cases.
The	TOD	Clock	 feature	corresponds	to	a	use	case	package	containing	the	Set
Time	of	Day	 and	Display	Time	of	Day	 use	 cases.	 The	Recipe	 feature
corresponds	to	the	Cook	Food	with	Recipe	use	case.	The	feature	model	for
the	Microwave	Oven	is	depicted	in	Figure	15.3.



Figure	15.3.	Features	and	feature	groups	in	Microwave	Oven	feature	model.

Some	features	have	prerequisite	features,	meaning	that	for	the	feature	to	be
selected,	 the	 prerequisite	 feature	 must	 also	 be	 selected.	 Some	 features	 are
alternative	features;	that	is,	one	out	of	a	group	of	alternatives	must	be	chosen.	If
an	 alternative	 is	 not	 chosen,	 then	 the	 default	 is	 used.	 Feature	 groups,	 such	 as
Display	 Unit	 and	 Heating	 Element,	 use	 alternative	 features	 to	 specify
alternative	 I/O	 devices	 (both	 the	 hardware	 and	 software	 support)	 that	 can	 be
chosen	for	the	oven	display	and	oven	heating	unit	respectively.



In	 single	 systems,	 use	 cases	 are	 used	 to	 determine	 the	 functional
requirements	of	a	system;	 they	can	also	serve	 this	purpose	 in	product	 families.
Griss	 (1998)	 has	 pointed	 out	 that	 the	 goal	 of	 the	 use	 case	 analysis	 is	 to	 get	 a
good	understanding	of	 the	functional	requirements,	whereas	 the	goal	of	feature
analysis	is	to	enable	reuse.	Use	cases	and	features	complement	each	other.	Thus,
optional	and	alternative	use	cases	are	mapped	to	optional	and	alternative	features
respectively,	 while	 use	 cases	 variation	 points	 are	 also	 mapped	 to	 features
(Gomaa	2005a).

The	relationship	between	use	cases	and	features	can	be	explicitly	depicted
in	a	feature/use	case	relationship	table,	as	shown	in	Table	15.1.	For	each	feature,
the	 use	 case	 it	 relates	 to	 is	 depicted.	 In	 the	 case	 of	 a	 feature	 derived	 from	 a
variation	point,	the	variation	point	name	is	listed.

Three	 features	 correspond	 to	 use	 cases,	 and	 the	 remaining	 features
correspond	to	variation	points	in	the	use	cases.	For	example,	Microwave	Oven
Kernel	is	a	common	feature	determined	from	the	kernel	use	case,	Cook	Food.
Light	 is	 an	 optional	 feature	 determined	 from	 the	 Cook	 Food	 use	 case;
however,	it	represents	a	use	case	variation	point	also	called	Light.	TOD	Clock
is	an	optional	feature	that	corresponds	to	the	two	optional	time-of-day	use	cases.
Language	 is	 an	 exactly-one-of	 feature	 group,	 which	 corresponds	 to	 the
Language	variation	point	in	the	use	case	model.	This	feature	group	consists	of
the	default	feature	English	and	the	alternative	features	of	Spanish,	French,
Italian,	or	German.

Table	15.1.	Feature/Use	Case	Relationship	Table	for	Microwave	Oven	SPL

Feature
Name

Feature
Category

Use	Case
Name

Use	Case
Category/
Variation	Point
(vp)

Variation
Point
Name



Microwave
Oven
Kernel

common Cook
Food

kernel

Light optional Cook
Food

vp Light

Turntable optional Cook
Food

vp Turntable

Beeper optional Cook
Food

vp Beeper

Minute	Plus optional Cook
Food

vp Minute
Plus

One-Line
Display

default Cook
Food

vp Display
Unit

Multi-Line
Display

alternative Cook
Food

vp Display
Unit

English default Cook
Food

vp Display
Language

French alternative Cook
Food

vp Display
Language

Spanish alternative Cook
Food

vp Display
Language

German alternative Cook
Food

vp Display
Language

Italian alternative Cook
Food

vp Display
Language

Boolean default Cook vp Weight



Boolean
Weight

default Cook
Food

vp Weight
Sensor

Analog
Weight

alternative Cook
Food

vp Weight
Sensor

One-Level
Heating

default Cook
Food

vp Heating
Element

Multi-Level
Heating

alternative Cook
Food

vp Heating
Element

Power
Level

optional Cook
Food

vp Power
Level

TOD	Clock optional Set	Time
of	Day

optional

Display
Time	of
Day

optional

12/24	Hour
Clock

parameterized Set	Time
of	Day

vp 12/24
Hour
Clock

Display
Time	of
Day

Recipe optional Cook
Food	with
Recipe

optional



15.4.	Analysis	Modeling	for	Software
Product	Lines

As	with	 single	 systems,	 analysis	modeling	consists	of	both	 static	 and	dynamic
modeling.	However,	 both	modeling	 approaches	need	 to	 address	modeling	SPL
variability.



15.4.1	Static	Modeling	for	Software	Product	Lines

In	single	systems,	a	class	is	categorized	by	the	role	it	plays.	Application	classes
are	classified	according	to	their	role	in	the	application	using	stereotypes,	such	as
«entity»,	 «control»,	 and	 «boundary»	 (see	 Chapter	 8).	 In	 modeling	 software
product	lines,	each	class	can	be	categorized	according	to	its	reuse	characteristic
using	the	stereotypes	«kernel»,	«optional»,	and	«variant».	In	UML,	a	modeling
element	can	be	described	with	more	 than	one	 stereotype.	Thus,	one	 stereotype
can	be	used	to	represent	 the	reuse	characteristic,	while	a	different	stereotype	is
used	 to	represent	 the	role	of	 the	modeling	element.	The	role	of	a	class	and	 the
reuse	characteristic	are	orthogonal.

After	 developing	 the	 use	 case	 and	 feature	 models,	 the	 next	 step	 is	 to
develop	a	structural	model	of	the	problem	domain	(see	Chapter	5),	from	which
the	product	line	software	context	diagram	is	developed.	This	diagram	defines	the
boundary	between	a	product	 line	system	(i.e.,	any	member	of	 the	product	 line)
and	 the	external	environment	 (i.e.,	 the	external	entities	 (depicted	using	SysML
blocks)	 to	which	members	 of	 the	 product	 line	 have	 to	 interface).	 The	 product
line	 software	 context	model	 is	 depicted	 on	 a	 block	 definition	 diagram	 (Figure
15.4)	and	shows	the	multiplicity	of	the	associations	between	the	external	blocks
and	the	product	line	system,	which	is	depicted	as	one	aggregate	block.



Figure	15.4.	Software	context	diagram	for	the	microwave	oven	software
product	line.

Each	external	block	is	depicted	with	three	stereotypes:	The	first	stereotype
represents	the	reuse	category,	whether	the	external	block	is	a	kernel	or	optional
block	 in	 the	 product	 line.	 The	 second	 stereotype	 represents	 the	 role	 of	 the
external	block;	for	example,	Door	Sensor	is	an	external	input	device.	The	third
stereotype	is	the	SysML	notation	for	«block»,	as	described	in	Chapter	5.	In	this
case	study,	Door	Sensor,	Weight	Sensor,	and	Keypad	are	all	external	input
devices;	 they	 are	 also	 kernel	 blocks.	 Heating	 Element	 and	 Display	 are
external	 output	 devices	 that	 are	 also	kernel.	Clock	 is	 an	 external	 timer	 that	 is
kernel.	 However,	Beeper,	Turntable,	 and	Lamp	 are	 external	 output	 devices
that	are	optional.	Kernel	external	blocks	have	a	one-to-one	association	with	the
product	line	system;	optional	external	blocks	have	a	zero-to-one	association	with
the	product	line	system.



15.4.2	Dynamic	Interaction	Modeling	for	Software	Product	Lines

Dynamic	 interaction	 modeling	 for	 software	 product	 lines	 uses	 an	 iterative
strategy	 called	evolutionary	dynamic	analysis	 to	 help	determine	 the	dynamic
impact	 of	 each	 feature	 on	 the	 software	 architecture.	 This	 results	 in	 new
components	 being	 added	 or	 existing	 components	 having	 to	 be	 adapted.	 The
kernel	system	is	a	minimal	member	of	the	product	line.	In	some	product	lines,
the	 kernel	 system	 consists	 of	 only	 the	 kernel	 objects.	 For	 other	 product	 lines,
some	default	objects	may	be	needed	in	addition	to	the	kernel	objects.	The	kernel
system	is	developed	by	considering	the	kernel	use	cases,	which	are	required	by
every	 member	 for	 the	 product	 line.	 For	 each	 kernel	 use	 case,	 an	 interaction
diagram	 is	developed	depicting	 the	objects	needed	 to	 realize	 the	use	case.	The
kernel	system	consists	of	the	integration	of	all	these	objects	and	the	classes	from
which	they	are	instantiated.

The	 software	 product	 line	 evolution	 approach	 starts	 with	 the	 kernel
system	and	considers	the	impact	of	optional	and/or	alternative	features	(Gomaa
2005a).	 This	 results	 in	 the	 addition	 of	 optional	 or	 variant	 components	 to	 the
product	 line	 architecture.	 This	 analysis	 is	 done	 by	 considering	 the	 variable
(optional	and	alternative)	use	cases,	as	well	as	any	variation	points	in	the	kernel
or	 variable	 use	 cases.	 For	 each	 optional	 or	 alternative	 use	 case,	 an	 interaction
diagram	is	developed	consisting	of	new	optional	or	variant	objects	–	the	variant
objects	are	kernel	or	optional	objects	that	are	impacted	by	the	variable	scenarios
and	must	therefore	be	adapted.

An	 example	 of	 evolutionary	 dynamic	 analysis	 for	 the	Microwave	 SPL	 is
given	in	Figure	15.5,	which	depicts	the	impact	of	the	Light	feature	on	the	use
case–based	communication	diagram	for	Cook	Food.	The	 impact	of	 the	Light
feature	is	that	the	lamp	is	switched	on	whenever	the	door	is	opened	or	whenever



food	 is	 cooking.	 The	 lamp	 is	 switched	 off	 whenever	 the	 door	 is	 closed	 or
whenever	cooking	is	stopped.	The	first	impact	is	the	need	for	the	Lamp	external
output	device	and	 the	Lamp	Output	object,	as	shown	 in	Figure	15.5.	 It	 is	 the
responsibility	 of	 the	Microwave	Oven	Control	 object	 to	 send	 the	Switch
On	and	Switch	Off	messages	 (which	correspond	 to	state	machine	actions)	 to
the	 Lamp	 Output	 object,	 as	 depicted	 in	 Figure	 15.5.	 Microwave	 Oven

Control	sends	the	Switch	On	message	when	the	door	is	opened	(message	1.2)
and	when	cooking	is	started	(message	6.2b).	It	sends	the	Switch	Off	message
when	 the	door	 is	 closed	 (message	3.2)	 and	when	cooking	 is	 stopped	 (message
8.4b).	Lamp	Output	in	turn	sends	the	Switch	On	command	(messages	1.3	and
6.2b.1,)	and	Switch	Off	command	(3.3	and	8.4b.1)	to	the	Lamp	external	output
device.	 On	 the	 communication	 diagram,	 Switch	 On	 and	 Switch	 Off

messages	 are	 guarded	 by	 the	 [light]	 feature	 condition.	 The	 impact	 on	 the
Microwave	 Oven	 Control	 state	 machine	 is	 the	 addition	 of	 the	 optional
Switch	 On	 and	 Switch	 Off	 actions,	 which	 are	 also	 guarded	 by	 the	 [light]
feature	condition,	as	described	in	Section	15.5.



Figure	15.5.	Evolutionary	dynamic	analysis	of	Light	feature	on	Cook	Food
communication	diagram.

The	 relationship	 between	 features	 and	 the	 classes	 can	 be	 depicted	 on	 a
feature/class	 table,	 which	 shows	 for	 each	 feature	 the	 classes	 that	 realize	 the
feature,	as	well	as	the	class	reuse	category	(kernel,	optional,	or	variant)	and,	in
the	case	of	a	parameterized	class,	the	class	parameter.	This	table	(see	Table	15.2)



is	 developed	 after	 the	 dynamic	 impact	 analysis	 has	 been	 carried	 out	 using
evolutionary	dynamic	analysis.

Table	15.2.	Feature/Class	Dependency	Table	for	Microwave	Oven	SPL

Feature
Name

Feature
Category

Class	Name Class
Category

Class	Parameter

Microwav
e	Oven
Kernel

common Door	Sensor
Interface

kernel

Weight
Sensor
Interface

kernel-
abstract-
vp

Keypad
Interface

kernel-
param-vp

Heating
Element
Interface

kernel-
abstract-
vp

Display
Interface

kernel-
abstract-
vp

Microwave
Oven	Control

kernel-
param-vp

Oven	Timer kernel-
param-vp

Oven	Data kernel-
param-vp



Display
Prompts

kernel-
abstract-
vp

Light optional Lamp
Interface

optional

Microwave
Oven	Control

kernel-
param-vp

light	:	Boolean

Turntable optional Turntable
Interface

optional

Microwave
Oven	Control

kernel-
param-vp

turntable	:	Boolean

Beeper optional Beeper
Interface

optional

Microwave
Oven	Control

kernel-
param-vp

beeper	:	Boolean

Minute
Plus

optional Keypad
Interface

kernel-
param-vp

minuteplus	:
Boolean

Microwave
Oven	Control

kernel-
param-vp

minuteplus	:
Boolean

Oven	Timer kernel-
param-vp

minuteplus	:
Boolean

Oven	Data kernel-
param-vp

minuteplus	:
Boolean

One-Line
Display

default One-Line
Display
Interface

default



Interface

Multi-
Line
Display

alternative Multi-Line
Display
Interface

variant

English default English
Display
Prompts

default

French alternative French
Display
Prompts

variant

Spanish alternative Spanish
Display
Prompts

variant

German alternative German
Display
Prompts

variant

Italian alternative Italian
Display
Prompts

variant

Boolean
Weight

default Boolean
Weight
Sensor
Interface

default

Analog
Weight

alternative Analog
Weight
Sensor
Interface

variant

Oven	Data kernel-
param-vp

itemWeight	:	Real



param-vp

One-Level
Heating

default One-Level
Heating
Element
Interface

default

Multi-
Level
Heating

alternative Multi-Level
Heating
Element
Interface

variant

Microwave
Oven	Control

kernel-
param-vp

multi-levelHeating
:	Boolean

Oven	Data kernel-
param-vp

selectedPowerLevel
:	Integer

Power
Level

optional Keypad
Interface

kernel-
param-
VP

powerLevel	:
Boolean

Microwave
Oven	Control

kernel-
param-
VP

powerLevel	:
Boolean

TOD
Clock

optional TOD	Timer optional

Keypad
Interface

kernel-
param-
VP

TODClock	:
Boolean

Microwave
Oven	Control

kernel-
param-
VP

TODClock	:
Boolean

Oven	Data kernel- TODvalue	:	Real



Oven	Data kernel-
param-
VP

TODvalue	:	Real

12/24
Hour
Clock

parameterized Oven	Data kernel-
param-vp

TODmaxHour	:
Integer

Recipe optional Recipes optional

Recipe optional

Keypad
Interface

kernel-
param-vp

recipe	:	Boolean

Microwave
Oven	Control

kernel-
param-vp

recipe	:	Boolean

Oven	Data kernel-
param-vp

selectedRecipe	:
Integer

Oven	Timer kernel-
param-vp

recipe	:	Boolean



15.4.3	Dynamic	State	Machine	Modeling	for	Software	Product	Lines

When	components	are	adapted	for	product	lines,	there	are	two	main	approaches
to	consider,	specialization	and	parameterization.	Specialization	is	effective	when
there	are	a	relatively	small	number	of	changes	to	be	made,	so	that	the	number	of
specialized	 classes	 is	 manageable.	 However,	 in	 product	 lines,	 there	 can	 be	 a
large	degree	of	variability.	Consider	the	key	issue	for	real-time	product	lines	of
variability	 in	 state	 machines,	 which	 can	 be	 handled	 either	 by	 using
parameterized	 state	 machines	 or	 specialized	 state	 machines.	 Depending	 on
whether	the	product	line	uses	a	centralized	or	decentralized	approach,	it	is	likely
that	 there	 will	 be	 several	 different	 state	 dependent	 control	 components,	 each
modeled	by	its	own	state	machine.	The	following	discussion	relates	to	variability
within	a	given	state	dependent	component.

To	 capture	 state	 machine	 variability,	 it	 is	 necessary	 to	 specify	 optional
states,	 events	 and	 transitions,	 and	 actions.	 A	 further	 decision	 that	 needs	 to	 be
made	 is	 whether	 to	 use	 state	 machine	 inheritance	 or	 parameterization.	 The
problem	 with	 using	 inheritance	 is	 that	 a	 different	 state	 machine	 is	 needed	 to
model	each	alternative	or	optional	feature,	or	feature	combination,	which	rapidly
leads	 to	 a	 combinatorial	 explosion	 of	 inherited	 state	 machines.	 For	 example,
with	 only	 three	 features	 that	 could	 impact	 the	 state	 machine,	 there	 would	 be
eight	possible	 feature	 and	 feature	 combinations,	 resulting	 in	 eight	 variant	 state
machines.	With	ten	features,	 there	would	be	over	1,000	variant	state	machines.
However,	 ten	features	can	be	easily	modeled	on	a	parameterized	state	machine
as	ten	feature-dependent	transitions,	states,	or	actions.

It	is	often	more	effective	to	design	a	parameterized	state	machine,	in	which
there	 are	 feature-dependent	 states,	 events,	 and	 transitions.	 Optional	 transitions
are	specified	by	having	an	event	qualified	by	a	Boolean	feature	condition,	which



guards	 entry	 into	 the	 state.	 Optional	 actions	 are	 also	 guarded	 by	 a	 Boolean
feature	condition,	which	is	set	to	True	if	the	feature	is	selected	and	False	if	the
feature	is	not	selected	for	a	given	SPL	member.

Examples	of	feature-dependent	events	and	actions	are	given	for	an	extract
from	a	Microwave	Oven	product	line.	Minute	Plus	is	an	optional	microwave
oven	 feature	 that	 cooks	 food	 for	 a	 minute.	 In	 the	 state	 machine,	 Minute
Pressed	 is	 a	 feature-dependent	 transition	 guarded	 by	 the	 feature	 condition
minuteplus	 in	Figure	15.6,	which	is	True	if	 the	feature	is	selected.	There	are
feature-dependent	actions,	such	as	Switch	On	and	Switch	Off	in	Figure	15.6,
which	 are	 only	 enabled	 if	 the	light	 feature	 condition	 is	 True,	 and	 the	Beep
action,	which	is	only	enabled	if	the	beeper	feature	condition	is	True.	Thus,	the
feature	condition	 is	True	 if	 the	optional	 feature	 is	 selected	 for	 a	given	product
line	 member,	 and	 false	 if	 the	 feature	 is	 not	 selected.	 The	 impact	 of	 feature
interactions	 can	 be	 modeled	 very	 precisely	 using	 state	 machines	 through	 the
introduction	 of	 alternative	 states	 or	 transitions.	 Designing	 parameterized	 state
machines	is	often	more	manageable	than	designing	specialized	state	machines.

Figure	15.6.	Feature-dependent	transitions	and	actions.



15.5	Design	Modeling	for	Software	Product
Lines

In	 design	 modeling,	 variability	 is	 handled	 by	 developing	 variant	 and
parameterized	components.	Certain	software	architectural	patterns	(see	Chapter
11)	are	particularly	appropriate	for	SPLs	because	they	encourage	variability	and
evolution.



15.5.1	Modeling	Component-Based	Software	Architectures

A	software	component's	interface	is	specified	separately	from	its	implementation
and,	unlike	a	class,	 the	component's	 required	 interface	 is	designed	explicitly	 in
addition	to	the	provided	interface,	as	described	in	Chapter	12.	This	is	particularly
important	 for	 architecture-centric	 adaptation,	 since	 it	 is	 necessary	 to	 know	 the
impact	of	a	change	to	a	component	on	all	components	that	interface	to	it.

This	 capability	 for	 modeling	 component-based	 software	 architectures	 is
particularly	 valuable	 in	 product	 line	 engineering,	 to	 allow	 the	 development	 of
kernel,	 optional,	 and	 variant	 components,	 “plug-compatible”	 components,	 and
component	interface	inheritance.	There	are	various	ways	to	design	components.
It	 is	 highly	 desirable,	 where	 possible,	 to	 design	 components	 that	 are	 plug-
compatible,	 so	 that	 the	required	port	of	one	component	 is	compatible	with	 the
provided	ports	 of	 other	 components	 to	which	 it	 needs	 to	 connect	 (see	Chapter
12).	Consider	the	case	in	which	a	producer	component	must	be	able	to	connect
to	different	alternative	consumer	components	in	different	product	line	members,
as	shown	in	Figure	15.7.	The	most	desirable	approach,	 if	possible,	 is	 to	design
all	 the	 consumer	 components	 with	 the	 same	 provided	 interface,	 so	 that	 the
producer	 can	 be	 connected	 to	 any	 consumer	 without	 changing	 its	 required
interface.	 In	 Figure	 15.7,	 Oven	 Display	 Output	 can	 be	 connected	 to	 any
variant	version	of	the	Display	Prompts	component	(which	correspond	to	the
default	 and	 alternative	 features	 in	 Figure	 15.3).	 The	 component	 interface	 is
shown	 in	 Figure	 15.7,	 which	 specifies	 two	 operations,	 to	 initialize	 the
component	 and	 read	prompt	 text	 given	 the	prompt	 ID.	Each	default	 or	 variant
component,	 such	 as	 English	 Display	 Prompts	 or	 French	 Display

Prompts,	which	realizes	the	interface	inherits	the	component	interface	from	the



variant	 Display	 Prompts	 component	 and	 provides	 the	 language-specific
implementation.

Figure	15.7.	Design	of	plug-compatible	variant	components.

It	is	possible	for	a	component	to	connect	to	different	components	and	have
different	 interconnections	 such	 that	 in	 one	 case	 it	 communicates	 with	 one
component	 and	 in	 a	 different	 case	 it	 communicates	 with	 two	 different
components.	 This	 flexibility	 helps	 in	 providing	 variability	 in	 the	 software
architecture.	When	plug-compatible	components	are	not	practical,	an	alternative
component	 design	 approach	 is	 component	 interface	 inheritance.	 Consider	 a
component	architecture	that	is	modified	in	such	a	way	that	the	interface	through
which	 the	 two	 components	 communicate	 must	 be	 specialized	 to	 allow	 for
additional	 functionality.	 In	 this	 case,	 both	 the	 component	 that	 provides	 the
interface	and	the	component	that	requires	the	interface	have	to	be	modified	–	the
former	 to	 realize	 the	 new	 functionality,	 and	 the	 latter	 to	 request	 it.	 These
approaches	can	be	used	to	complement	compositional	approaches	for	developing
component-based	software	architectures.



15.5.2	Software	Architectural	Patterns

Software	architectural	patterns	(described	in	Chapter	11)	provide	the	skeleton	or
template	 for	 the	 overall	 software	 architecture	 or	 high-level	 design	 of	 an
application.	These	 include	 such	widely	 used	 architectures	 as	 client/service	 and
layered	architectures.	Basing	the	software	architecture	of	a	product	 line	on	one
or	 more	 software	 architectural	 patterns	 helps	 in	 designing	 the	 original
architecture	as	well	as	modifying	the	architecture.

Most	software	systems	and	product	lines	can	be	based	on	well-understood
overall	 software	 architectures.	 For	 example,	 the	 client/server	 software
architecture	 is	 prevalent	 in	 many	 software	 applications.	 There	 is	 the	 basic
client/service	architectural	pattern,	with	one	service	and	many	clients.	However,
there	are	also	many	variations	on	this	theme,	such	as	the	multiple	client/multiple
service	architectural	patterns	and	broker	patterns	(see	Chapter	11).	Furthermore,
with	 a	 client/service	 pattern,	 services	 can	 evolve	 with	 the	 addition	 of	 new
services,	which	are	discovered	and	invoked	by	clients.	New	clients	can	be	added
that	discover	services	provided	by	one	or	more	service	providers.

An	 architectural	 pattern	 that	 is	worth	 considering	 because	 of	 its	 desirable
properties	 for	 SPLs	 is	 the	 layered	 architecture.	A	 layered	 architectural	 pattern
allows	for	ease	of	extension	and	contraction	(Parnas	1979)	because	components
can	be	added	to	or	removed	from	higher	layers,	which	use	the	services	provided
by	components	at	lower	layers	of	the	architecture.

In	 addition	 to	 these	 architectural	 structure	 patterns,	 certain	 architectural
communication	patterns	also	encourage	evolution.	In	software	product	lines,	it	is
often	 desirable	 to	 decouple	 components.	 The	 Broker,	 Discovery,	 and
Subscription/Notification	patterns	(see	Chapter	11)	encourage	such	decoupling.
With	 the	 broker	 patterns,	 services	 register	 with	 brokers,	 and	 clients	 can	 then



discover	new	services.	Thus,	a	product	line	can	evolve	with	the	addition	of	new
clients	and	services.	A	new	version	of	a	service	can	replace	an	older	version	and
register	 itself	 with	 the	 broker.	 Clients	 communicating	 via	 the	 broker	 are
automatically	 connected	 to	 the	 new	 version	 of	 the	 service.	 The
Subscription/Notification	 pattern	 also	 decouples	 the	 original	 sender	 of	 the
message	from	the	recipients	of	the	message.



15.6	Summary
This	 chapter	 has	 given	 an	 overview	 of	 designing	 software	 product	 line
architectures.	 The	 requirements,	 analysis,	 and	 design	 modeling	 steps	 of
COMET/RTE	 are	 extended	 and	 applied	 to	 modeling	 commonality	 and
variability	in	SPLs	as	follows:

a)	Requirements	modeling	–	develop	use	case	model	and	feature	model.

b)	Analysis	modeling	–	develop	static	model,	dynamic	interaction	model,	and
dynamic	state	machine	model;	analyze	feature/class	dependencies.

c)	Design	modeling	–	develop	component-based	software	architecture	by
applying	software	architectural	patterns.

The	feature	model	is	the	unifying	model	for	relating	variability	in	requirements
to	 variability	 in	 the	 SPL	 architecture.	 For	 more	 information	 on	 these	 topics,
considerable	 detail	 is	 provided	 in	 the	 author's	 book	 on	 designing	 software
product	lines	with	UML	(Gomaa	2005a).



Part	III
◈

Analysis	of	Real-Time	Software
Designs
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System	and	Software	Quality
Attributes	for	Real-Time

Embedded	Systems
◈

Software	 quality	 attributes	 (Bass	 et	 al.	 2013)	 refer	 to	 nonfunctional
requirements	of	software,	which	can	have	a	profound	effect	on	the	quality	of	a
real-time	embedded	system.	During	requirements	specification,	software	quality
requirements	are	specified	as	nonfunctional	requirements.	Many	software	quality
attributes	can	be	addressed	and	evaluated	at	the	time	the	software	architecture	is
developed.

Some	quality	attributes	are	actually	system	quality	attributes	because	both
hardware	and	software	considerations	are	needed	to	achieve	high	quality.	These
system	 quality	 attributes	 include	 scalability,	 performance,	 availability,	 safety,
and	security.	Other	quality	attributes	are	purely	software	in	nature	because	they
rely	 entirely	 on	 the	 quality	 of	 the	 software.	 These	 software	 quality	 attributes
include	 maintainability,	 modifiability,	 testability,	 traceability,	 and	 reusability.
This	chapter	provides	an	overview	of	system	and	software	quality	attributes,	and
discusses	how	they	are	supported	by	the	COMET/RTE	software	design	method.



16.1	Scalability
Scalability	 is	 the	 extent	 to	 which	 the	 system	 is	 capable	 of	 growing	 after	 its
initial	 deployment.	 There	 are	 system	 and	 software	 factors	 to	 consider	 in
scalability.	 From	 a	 system	 perspective,	 there	 are	 issues	 of	 adding	 further
hardware	 to	 increase	 the	 capacity	 of	 the	 system.	 In	 a	 centralized	 system,	 the
scope	 for	 scalability	 is	 limited,	 such	 as	 adding	 more	 memory,	 more	 disk
capacity,	or	an	additional	CPU.	A	distributed	system	offers	much	more	scope	for
scalability	by	adding	more	nodes	to	the	configuration.

From	a	software	perspective,	the	system	needs	to	be	designed	in	such	a	way
that	it	is	capable	of	growth.	A	distributed	component-based	software	architecture
is	much	more	capable	of	scaling	upward	than	a	centralized	design.	Components
are	designed	such	that	multiple	instances	of	each	component	can	be	deployed	to
different	 nodes	 in	 a	 distributed	 configuration.	 A	 light	 rail	 control	 system	 that
supports	 multiple	 trains	 and	 multiple	 stations	 can	 have	 a	 component-based
software	 design,	 such	 that	 there	 is	 one	 instance	 of	 a	 train	 component	 for	 each
train	and	one	instance	of	a	station	component	for	each	station.	Such	a	software
architecture	can	be	deployed	to	execute	in	a	small	town,	in	a	large	city,	or	in	a
wide	 geographical	 region.	A	 service-oriented	 architecture	 can	 be	 scaled	 up	 by
adding	more	 services	 or	 additional	 instances	 of	 existing	 services.	 New	 clients
can	 be	 added	 to	 the	 system	 as	 needed.	 Clients	 can	 discover	 new	 services	 and
take	advantage	of	their	offerings.

COMET/RTE	addresses	scalability	by	providing	the	capability	of	designing
distributed	 component-based	 software	 architectures	 and	 service-oriented
architectures	that	can	be	scaled	up	after	deployment.	For	example,	the	Light	Rail
Control	System	can	be	expanded	by	adding	more	instances	of	Train	Control



(one	for	each	added	train),	and	if	the	railway	system	is	expanded,	more	instances
of	 Station	 (one	 for	 each	 new	 station),	 more	 instances	 of	 Railroad
Crossing	 Control	 and	 Wayside	 Monitoring	 (for	 additional	 railroad
crossings	 and	 sensor	 monitoring	 clusters	 respectively),	 and	 more	 instances	 of
Rail	Operations	Interaction	(for	additional	operators).	It	would	also	be
possible	to	add	more	instances	of	the	Rail	Operations	Service	component,
one	for	each	region	to	accommodate	the	expansion	of	the	light	rail	system	over	a
wider	geographical	area.	The	deployment	diagram	for	 the	expanded	Light	Rail
Control	 System	 (Figure	 16.1)	 shows	 how	 the	 component-based	 software
architecture	could	be	scaled	up.

Scalability	can	also	be	achieved	by	hierarchical	layering.	This	is	frequently
used	 in	 factory	 automation	 systems	 in	 which	 at	 the	 lowest	 layer	 are	 the
individual	 robots,	 automated	 guided	 vehicles,	 programmable	 logic	 controllers,
etc.	At	 the	next	 level	are	factory	workstations	consisting	for	example	of	a	pick
and	 place	 robot	 and	 an	 assembly	 robot.	 Next	 is	 a	 factory	 cell	 consisting	 of	 a
cluster	 of	 factory	 workstations	 or	 an	 assembly	 line	 consisting	 of	 factory
workstations	connected	in	sequence.	Each	area	in	the	factory	is	controlled	by	an
area	 controller.	 The	 different	 area	 controllers	 are	 connected	 to	 a	 factory
management	 system,	 which	 sets	 and	 tracks	 overall	 production	 goals	 for	 each
factory	 area.	 In	 a	multi-national	 company,	 each	 of	 the	 factories	 reports	 to	 the
corporate	 level	management	 system.	 There	 are	 different	 levels	 of	 networks	 at
several	levels,	including	the	Internet	for	general	communication	and	intranets	for
internal	 communication.	 Architectural	 patterns	 used	 to	 support	 this	 hierarchy
include	 the	 layered	 pattern,	 hierarchical	 control,	 client/service,	 and	 brokered
patterns.



Figure	16.1.	Scale-up	in	emergency	monitoring	system.



16.2	Performance
Performance	is	also	an	important	consideration	in	many	systems	(Menascé	et	al.
2004).	For	real-time	embedded	systems,	performance	analysis	during	design	is
a	quantitative	analysis	of	a	real-time	software	design	conceptually	executing	on
a	 given	 hardware	 configuration	 with	 a	 given	 external	 workload	 applied	 to	 it.
Performance	modeling	 is	an	abstraction	of	 the	real	computer	system	behavior
developed	for	the	purpose	of	gaining	greater	insight	into	the	performance	of	the
system,	whether	 or	 not	 the	 system	 actually	 exists.	 Performance	modeling	 of	 a
system	during	design	is	important	to	determine	whether	the	system	will	meet	its
performance	 goals,	 such	 as	 throughput	 and	 response	 times.	 Performance
modeling	 methods	 include	 queuing	 modeling	 (Gomaa	 and	 Menascé	 2001,
Menascé	and	Gomaa	2000)	and	simulation	modeling	 (Jain	2015).	Performance
modeling	is	particularly	important	in	real-time	systems,	in	which	failing	to	meet
a	deadline	could	be	catastrophic.

In	COMET/RTE,	performance	analysis	of	software	designs	is	achieved	by
applying	real-time	scheduling	theory.	Real-time	scheduling	(Buttazzo	2011)	is
an	approach	that	is	particularly	appropriate	for	hard	real-time	systems	that	have
deadlines	 that	must	be	met.	With	 this	approach,	 the	 real-time	design	executing
on	a	given	hardware	configuration	is	analyzed	to	determine	whether	it	can	meet
its	deadlines.	A	second	approach	for	analyzing	the	performance	of	a	design	is	to
use	event	sequence	analysis	and	to	integrate	this	with	the	real-time	scheduling
theory.	Event	sequence	analysis	 is	used	to	analyze	scenarios	of	communicating
tasks	and	annotate	them	with	the	timing	parameters	for	each	of	the	participating
tasks,	in	addition	to	considering	system	overhead	for	inter-object	communication



and	context	switching.	Performance	analysis	of	real-time	designs	using	real-time
scheduling	is	described	in	considerable	detail	in	Chapters	17	and	18.



16.3	Availability
Availability	is	the	extent	to	which	the	system	is	available	for	operational	usage.
Availability	 addresses	 system	 failure	 and	 its	 impact	 on	 users	 or	 other	 systems
(Bass	 et	 al.	 2013).	 There	 are	 times	 when	 the	 system	 is	 not	 available	 due	 to
scheduled	system	maintenance;	this	planned	unavailability	is	not	usually	counted
in	 measures	 of	 availability.	 However,	 unplanned	 system	 maintenance	 due	 to
system	failure	is	always	counted.	Some	real-time	systems	need	to	be	operational
at	 all	 times;	 thus,	 the	 effect	 of	 a	 system	 failure	 on	 a	 system	 controlling	 an
airplane	or	spacecraft	could	be	catastrophic.

Fault-tolerant	systems	have	recovery	built	into	them	so	that	the	system	can
recover	 from	 failure	 automatically.	 However,	 such	 systems	 are	 typically	 very
expensive,	 requiring	such	capabilities	as	 triple	 redundancy	and	voting	systems.
Other	 less	 expensive	 solutions	 are	 possible,	 such	 as	 a	 hot	 standby,	which	 is	 a
machine	 ready	 for	 usage	 very	 soon	 after	 the	 failure	 of	 the	 system.	 The	 hot
standby	could	be	for	a	server	in	a	client/server	system.	It	is	possible	to	design	a
distributed	system	without	a	single	point	of	failure,	such	that	the	failure	of	one
node	results	in	reduced	service	with	the	system	operational	in	a	degraded	mode.
This	is	usually	preferable	to	having	no	service	whatever.

From	a	software	design	perspective,	support	for	availability	necessitates	the
design	 of	 systems	 without	 single	 points	 of	 failure.	 COMET/RTE	 supports
availability	by	providing	an	approach	for	designing	distributed	component-based
software	 architectures	 that	 can	 be	 deployed	 to	multiple	 nodes	with	 distributed
control,	data,	and	services,	so	that	the	system	does	not	fail	if	a	single	node	goes
down	but	can	operate	in	a	degraded	mode.



For	the	case	study	examples,	 the	hot	standby	could	be	used	for	a	Banking
System,	which	is	a	centralized	client/server	system	in	which	the	Bank	Server	is	a
single	 point	 of	 failure.	 A	 hot	 standby	 is	 a	 backup	 server	 that	 can	 be	 rapidly
deployed	 if	 the	 main	 server	 goes	 down.	 An	 example	 of	 a	 distributed	 system
without	a	single	hardware	point	of	failure	is	the	Emergency	Monitoring	System
(Figure	16.2),	 in	which	 the	 remote	 system	and	 sensor	monitoring	 components,
the	monitoring	and	alarm	services,	and	the	operator	interaction	components	can
all	be	replicated.	There	are	several	instances	of	each	of	the	client	components,	so
if	 a	 component	 goes	 down,	 the	 system	 can	 still	 operate.	 The	 services	 can	 be
replicated	so	that	there	are	multiple	instances	of	Monitoring	Data	Service
and	Alarm	Service.	 This	 is	 illustrated	 in	 the	 deployment	 diagram	 in	Figure
16.2.	It	is	assumed	that	the	network	used	is	the	Internet,	in	which	there	might	be
local	failures	but	not	a	global	failure,	so	that	 individual	nodes	or	even	regional
subnets	 might	 be	 unavailable	 at	 times	 but	 other	 regions	 would	 still	 be
operational.

Figure	16.2.	Example	of	system	with	no	single	hardware	point	of	failure.



16.4	Safety
The	 Federal	 Aviation	 Administration	 (FAA)	 describes	 system	 safety	 as:	 “The
primary	 objective	 of	 system	 safety	 is	 accident	 prevention.	 Proactively
identifying,	 assessing,	 and	 eliminating	 or	 controlling	 safety-related	 hazards,	 to
acceptable	levels,	can	achieve	accident	prevention.”	According	to	the	FAA,	“A
hazard	 is	 a	 present	 condition,	 event,	 or	 circumstance	 that	 could	 lead	 to	 or
contribute	to	an	unplanned	or	undesired	event”	(FAA	2000).

For	a	real-time	system,	safety	is	a	critically	important	consideration.	In	an
industrial	 furnace	 control	 system,	 an	 important	 safety	 requirement	 is	 that	 the
temperature	 of	 the	 furnace	 shall	 not	 exceed	 a	 pre-specified	 maximum
temperature,	and	if	it	does,	then	the	furnace	must	be	switched	off	so	that	it	can
cool	 down.	 In	 the	 Railroad	 Crossing	 Control	 System	 (Chapter	 20),	 a	 safety
requirement	 is	 that	 the	barrier	must	be	 lowered	within	 a	pre-specified	 time.	 In
addition,	 the	 system	 must	 keep	 track	 of	 the	 number	 of	 trains	 at	 the	 railroad
crossing,	 such	 that	 the	 barrier	 is	 lowered	when	 the	 first	 train	 arrives	 and	 only
raised	after	the	last	train	departs.	In	the	Light	Rail	Control	System	(Chapter	21),
there	 is	 a	 safety	 requirement	 that	 the	 train	 must	 slow	 down	 to	 a	 stop	 if	 an
obstacle	is	detected	on	the	rail	track	ahead.

A	safety	critical	system	must	be	designed	in	such	a	way	that	safety-related
hazards	 are	 identified	 during	 requirements	 specification	 and	 documented	 as
nonfunctional	 safety	 requirements.	 The	 software	 design	must	 then	 ensure	 that
these	hazards	will	be	detected	and	that	safety	mechanisms	are	designed	into	the
system	to	avoid	undesirable	events	that	might	be	caused	by	these	hazards.



16.5	Security
Security	 is	 an	 important	 consideration	 in	 many	 systems.	 There	 are	 many
potential	threats	to	distributed	application	systems,	such	as	electronic	commerce
and	 banking	 systems.	 There	 are	 several	 textbooks	 that	 address	 computer	 and
network	 security,	 including	Bishop	 (2004)	 and	Pfleeger	 et	 al.	 (2015).	Some	of
the	potential	threats	are:

COMET/RTE	 extends	 the	 use	 case	 descriptions	 to	 allow	 the	 description	 of
nonfunctional	requirements,	which	include	security	requirements.	An	example	of
the	 extension	 of	 use	 cases	 to	 allow	 nonfunctional	 requirements	 is	 given	 in
Chapter	6.

System	penetration	–	An	unauthorized	person	tries	to	gain	access	to	an
application	system	and	execute	unauthorized	transactions.

Authorization	violation	–	A	person	authorized	to	use	an	application
system	misuses	or	abuses	it.

Confidentiality	disclosure	–	Secret	information	such	as	card	numbers	and
bank	accounts	are	disclosed	to	an	unauthorized	person.

Integrity	compromise	–	An	unauthorized	person	changes	application	data
in	database	or	communication	data.

Repudiation	–	A	person	who	performs	some	transaction	or
communication	activity	later	falsely	denies	that	the	transaction	or	activity
occurred.

Denial	of	service	–	Legitimate	access	to	application	systems	is
deliberately	disturbed.



These	 potential	 threats	 can	 be	 addressed	 in	 the	 following	 ways	 for	 a
Banking	System,	not	all	of	which	can	be	addressed	by	software	means:

As	 cybersecurity	 threats	 become	 more	 dangerous	 and	 widespread,	 including
malware,	 security	 risks,	 vulnerabilities,	 and	 spam,	 the	 security	 response	 must
also	 become	 more	 sophisticated.	 This	 cyber	 warfare	 between	 security	 attacks
and	security	defense	is	likely	to	continue	to	be	waged	for	the	foreseeable	future.

System	penetration	–Messages	must	be	encrypted	at	the	source,	in
particular	transactions	originating	at	the	ATM	Client	and	the	responses
sent	by	the	Banking	Service,	and	then	decrypted	at	the	destination.

Authorization	violation	–	A	person	authorized	to	use	an	application
system	misuses	or	abuses	it.	A	log	of	all	access	to	the	system	must	be
maintained,	so	that	cases	of	misuse	or	abuse	can	be	tracked	down	and
any	abuse	can	be	corrected.

Confidentiality	disclosure	–	Secret	information	such	as	card	numbers	and
bank	accounts	must	be	protected	by	an	access	control	method	that	only
allows	users	with	the	appropriate	privileges	to	access	the	data.

Integrity	compromise	–	An	access	control	method	must	be	enforced	to
ensure	that	unauthorized	persons	are	prevented	from	making	changes	to
application	data	in	the	database	or	communication	data.

Repudiation	–	A	log	must	be	maintained	of	all	transactions	so	that	a
claim	that	the	transaction	or	activity	did	not	occur	can	be	verified	by
analyzing	the	log.

Denial	of	service	–	An	intrusion	detection	capability	is	required	so	that
the	system	can	detect	unauthorized	intrusions	and	act	to	reject	them.



16.6	Maintainability
Maintainability	 is	 the	 extent	 to	 which	 software	 is	 capable	 of	 being	 changed
after	deployment.	Reasons	why	the	software	may	need	to	be	modified	are:

In	 many	 cases,	 software	 maintenance	 is	 actually	 a	 misnomer	 for	 software
evolution.	 In	 particular,	 unanticipated	 changes	 in	 software	 requirements
necessitate	modifications	 to	 the	software	 that	could	be	extensive.	To	cope	with
future	 evolution,	 software	 should	 be	 designed	 for	 change	 and	 adaptability.
Quality	must	 be	built	 into	 the	original	 product	 to	make	 it	maintainable,	which
means	using	a	good	software	development	process	and	providing	comprehensive
documentation	of	 the	product.	The	documentation	should	be	kept	up	to	date	as
the	 software	 is	 modified.	 Design	 rationale	 should	 be	 provided	 to	 explain	 the
design	decisions	that	were	made.	Otherwise,	maintainers	will	have	no	option	but
to	work	with	undocumented	code,	which	might	well	be	poorly	structured.

COMET/RTE	 supports	 maintainability	 by	 providing	 comprehensive
documentation	 of	 the	 design.	 Design	 decisions	 are	 actually	 captured	 in	 the
design	through	the	use	of	stereotypes,	which	allows	design	structuring	decisions
to	be	included	in	the	design.	Textual	documentation	of	tasks	in	task	interface	and

Fix	remaining	errors.	These	are	errors	that	were	not	detected	during
testing	of	the	software	prior	to	deployment.

Address	performance	issues.	Performance	problems	may	not	become
apparent	until	after	the	software	application	has	been	deployed	and	is
operational	in	the	field.

Changes	in	software	requirements.	The	biggest	agent	for	software	change
is	frequently	due	to	changes	in	software	requirements.



behavior	 specifications	 (Chapters	 13	 and	 14),	 and	 classes	 with	 class	 interface
specifications,	can	be	included	with	the	task	and	class	code,	thereby	facilitating
updating	the	documentation	at	the	same	time	the	code	is	modified.

With	the	use	case–based	development	approach,	the	effect	of	a	change	to	a
requirement	can	be	traced	from	use	case	to	software	design	and	implementation
(Section	16.9).	 In	addition	 the	COMET/RTE	support	 for	modifiability	 (Section
16.7)	 and	 testability	 (Section	 16.8)	 greatly	 assists	 in	 the	maintainability	 of	 the
product.



16.7	Modifiability
Modifiability	 is	 the	 extent	 to	 which	 software	 is	 capable	 of	 being	 modified
during	 and	 after	 initial	 development.	A	modular	 design	 consisting	 of	modules
with	well-defined	 interfaces	 is	 essential.	 Parnas	 et	 al.	 (1984)	 advocated	design
for	 change	 based	 on	 the	 information-hiding	 concept,	 in	 which	 change	 is
anticipated	and	managed	by	each	information-hiding	module	hiding	a	secret	that
could	change	independently	of	other	parts	of	the	software.	Information	Hiding	is
a	fundamental	concept	and	forms	the	basis	of	OOD.

COMET/RTE	supports	modifiability	by	providing	support	 for	 information
hiding	at	the	class	and	component	level	and	providing	support	for	separation	of
concerns	at	the	subsystem	level.	Decisions	such	as	encapsulating	each	finite	state
machine	 within	 a	 separate	 state	 machine	 class,	 each	 interface	 to	 a	 separate
external	 device,	 system,	 or	 user	 within	 a	 separate	 boundary	 class,	 and	 each
separate	 data	 structure	 within	 a	 separate	 data	 abstraction	 class,	 assist	 with
modifiability.	 At	 the	 architecture	 level,	 the	 COMET/RTE	 component-based
software	 architectural	 design	 approach	 leads	 to	 the	 design	 of	 components	 that
can	be	deployed	 to	different	distributed	nodes	at	 software	deployment	 time,	so
that	 the	 same	architecture	can	be	deployed	 to	many	different	 configurations	 in
support	of	different	instances	of	the	application.

As	an	example	of	how	modifiability	is	provided	in	COMET/RTE,	consider
a	 change	 in	 requirements	 that	 necessitates	 that	 the	 Microwave	 Oven	 System
shall	 become	 available	 in	 South	 America,	 Europe,	 Asia,	 and	 Africa.	 In
particular,	 this	requires	that	prompts	be	displayed	in	different	languages.	Every
use	 case	 that	 provides	 prompts	 to	 the	 customer	 is	 potentially	 affected	 by	 this
change.	An	analysis	of	the	design	reveals	that	 the	only	object	that	 interfaces	to



the	customer	is	Oven	Display	Output.	A	good	design	solution	would	attempt
to	limit	the	design	change	to	a	minimum.	A	change	to	achieve	this	goal	is	that	all
prompts	 sent	 by	 the	 Microwave	 Control	 object	 to	 the	 Oven	 Display

Output	object	have	a	prompt	ID	instead	of	the	prompt	text.	If	Oven	Display
Output	 already	 has	 the	 prompt	messages	 hardcoded,	 the	 prompts	 need	 to	 be
removed	and	placed	in	a	prompt	table.	The	prompt	table	will	have	one	column
for	 prompt	 IDs	 and	 a	 second	 column	 for	 the	 corresponding	 prompt	 text.	 A
simple	table	lookup	will,	given	the	prompt	ID,	return	the	prompt	text.	At	system
initialization	time,	the	prompt	table	for	the	desired	language	will	be	loaded.	The
default	prompt	 table	will	be	 in	English.	For	 the	South	American	market	 (apart
from	 Brazil)	 and	 for	 the	 Spanish	 market,	 the	 Spanish	 prompt	 table	 will	 be
loaded.	For	France,	Quebec,	and	large	parts	of	West	Africa,	the	French	prompt
table	will	be	loaded	at	initialization	time.	An	example	of	the	prompt	table	with
English	prompts	is	given	in	Table	16.1.

Table	16.1.	Example	of	Modifiability	–	Prompt	Table	with	Language-Specific
Prompts

Prompt	ID Prompt	Text

time-prompt Please	enter	cooking	time:

end-Prompt Cooking	food	complete

door-prompt Close	door	and	press	Start	to	resume	cooking.

By	 applying	 the	 information-hiding	 concept,	 the	 prompt	 table	 should	 be
encapsulated	 in	 a	 prompt	 class.	 Because	 support	 for	 different	 languages	 is
required,	a	good	approach	is	 to	design	a	superclass	called	Oven	Prompts	and
design	 subclasses	 for	 each	 language,	 the	 initial	 requirement	 is	 for	 English



(default),	 French,	 Italian,	 Spanish,	 and	 German	 language	 prompts	 (see	 Figure
16.3).	However,	 the	design	should	allow	for	extension	 to	other	 languages.	The
solution	 is	 to	 design	 the	 Oven	 Prompts	 class	 as	 an	 abstract	 class	 with	 the
encapsulated	 data	 structure	 for	 the	 prompt	 table	 and	 a	 common	 interface
consisting	of	a	readPrompt	operation,	which	reads	a	prompt	from	the	prompt
table	 given	 the	 prompt	 ID,	 and	 an	 abstract	initializeLanguage	 operation.
The	 language-specific	 prompt	 subclass	 inherits	 the	data	 structure	 and	 interface
unchanged	 and	 then	 provides	 the	 language-specific	 implementation	 of	 the
initializeLanguage	 operation,	 which	 populates	 the	 prompt	 table	 with
prompts	 in	 the	 appropriate	 language.	 An	 alternative	 solution	 to	 this	 problem
using	software	product	line	technology	is	described	in	Chapter	15.

Figure	16.3.	Example	of	modifiability	–	abstract	Oven	Prompts	superclass
and	language-specific	subclasses.



16.8	Testability
Testability	is	the	extent	to	which	software	is	capable	of	being	tested	during	and
after	 its	 initial	 development	 (Bass	 et	 al.	 2013).	 It	 is	 important	 to	 develop	 a
software	test	plan	early	in	the	software	life	cycle	and	to	plan	on	developing	test
cases	in	parallel	with	software	development.	The	following	paragraphs	describe
how	 the	 different	 stages	 of	 software	 testing	 can	 be	 integrated	 with	 the
COMET/RTE	 method.	 A	 comprehensive	 introduction	 to	 software	 testing	 is
given	by	Ammann	and	Offutt	(2008).

During	the	Requirements	Phase,	it	is	necessary	to	develop	functional	(black
box)	 test	cases.	These	 test	cases	can	be	developed	from	the	use	case	model,	 in
particular	 the	use	case	descriptions.	Because	 the	use	case	descriptions	describe
the	sequence	of	user	interactions	with	the	system,	they	describe	the	user	inputs
that	must	be	captured	for	 the	 test	cases	and	 the	expected	system	output.	A	 test
case	must	be	developed	for	each	use	case	scenario,	one	of	the	main	sequence	and
one	 for	 each	 alternative	 sequence	 of	 the	 use	 case.	 Using	 this	 approach,	 a	 test
suite	can	be	developed	to	test	the	functional	requirements	of	the	system.

During	Software	Architectural	Design,	it	is	necessary	to	develop	integration
test	cases,	which	 test	 the	 interfaces	between	 the	components	 that	communicate
with	each	other.	A	testing	approach	called	scenario-based	testing	can	be	used	to
test	the	software	using	a	sequence	of	scenarios	that	correspond	to	the	realization
of	 the	 use	 case	 scenarios	 on	 interaction	 models	 (diagrams),	 which	 show	 the
sequence	 of	 objects	 communicating	 with	 each	 other	 and	 messages	 passed
between	 the	 objects.	 Thus,	 an	 integration	 test	 case(s)	 would	 be	 developed	 for
each	object	communication	scenario.



During	 detailed	 design	 and	 coding,	 in	 which	 the	 internal	 algorithms	 for
each	component	are	developed,	white	box	test	cases	can	be	developed	that	 test
the	component	 internals	using	well-known	coverage	criteria,	 such	as	executing
every	 line	 of	 code	 and	 the	 outcome	 of	 every	 decision.	 By	 this	 means,	 it	 is
possible	 to	 develop	 unit	 test	 cases	 to	 test	 the	 individual	 units,	 such	 as
components.

An	example	of	a	black	box	test	case	based	on	the	Cook	Food	use	case	in
the	Microwave	Oven	System	would	 consist	 of	 opening	 the	oven	door,	 placing
the	food	 in	 the	oven,	closing	 the	door,	entering	 the	cooking	 time,	and	pressing
the	Start	button.	Initially	a	test	stub	object	could	be	developed,	which	simulates
the	customer	going	through	the	earlier-discussed	sequence.	The	system	prompts
for	the	cooking	time	and	after	the	cooking	time	has	expired,	outputs	the	end	of
cooking	 prompt.	 A	 test	 environment	 could	 be	 set	 up	 with	 an	 external
environment	simulator	simulating	 the	door	and	weight	sensors	 inputting	events
to	the	system,	and	the	oven	starting	and	stopping	cooking.	This	would	allow	the
main	sequence	of	the	Cook	Food	use	case	as	well	as	all	the	alternative	sequences
to	 be	 tested	 (door	 opened	 after	 cooking	 has	 started,	 customer	 pressing	 cancel,
pressing	Minute	Plus	before	and	after	cooking	has	started,	etc.).



16.9	Traceability
Traceability	is	the	extent	to	which	artifacts	of	each	phase	can	be	traced	back	to
products	 of	 previous	 phases.	 Requirements	 traceability	 is	 used	 to	 ensure	 that
each	 software	 requirement	 has	 been	 designed	 and	 implemented.	 Each
requirement	 is	 traced	 to	 the	software	architecture	and	 to	 the	 implemented	code
modules.	 Requirements	 traceability	 tables	 are	 a	 useful	 tool	 during	 software
architecture	 reviews	 for	 analyzing	 whether	 the	 software	 architecture	 has
addressed	all	the	software	requirements.

It	 is	possible	to	build	traceability	into	software	development	method,	as	is
the	 case	 with	 the	 COMET/RTE	 method.	 COMET/RTE	 is	 a	 use	 case–based
development	 approach,	 which	 starts	 with	 use	 cases	 and	 then	 determines	 the
objects	required	to	realize	each	use	case.	Each	use	case	described	in	the	software
requirements	 is	 elaborated	 into	 a	 use	 case–based	 interaction	 diagram,	 which
describes	the	sequence	of	object	communication	resulting	from	an	external	input
described	 in	 the	use	case	 through	 to	system	output.	These	 interaction	diagrams
are	 integrated	 into	 the	 software	architecture.	This	means	 that	each	 requirement
can	be	traced	from	use	case	to	software	design	and	implementation.	The	impact
of	a	change	to	a	requirement	can	therefore	be	determined	by	following	the	trace
from	requirement	through	to	design.

As	an	example	of	traceability,	consider	the	Cook	Food	use	case	from	the
Microwave	Oven	System.	This	 use	 case	 is	 realized	 in	 the	 dynamic	 interaction
model	by	the	Cook	Food	communication	diagram.	The	change	required	by	the
addition	 of	 the	 prompt	 language	 requirement	 can	 be	 determined	 by	 an	 impact
analysis,	which	reveals	that	the	prompt	object	would	need	to	be	accessed	by	the
Oven	 Display	 Output	 object	 prior	 to	 displaying	 the	 prompt,	 as	 shown	 in



Figure	 16.4a.	 Figure	 16.4a	 shows	 the	 original	 design	 with	 Oven	 Display

Output	outputting	directly	to	the	display,	and	Figure	16.4b	shows	the	modified
design	with	Oven	Display	Output	 reading	 the	 prompt	 text	 from	 the	Oven
Prompts	 object	 before	 outputting	 to	 the	 display.	 A	 solution	 to	 this	 problem
using	product	line	concepts	is	described	in	Chapter	15.

Figure	16.4.	Traceability	analysis	before	and	after	change	to	introduce	Oven
Prompts	object.



16.10	Reusability
Software	reusability	is	the	extent	to	which	software	is	capable	of	being	reused.
In	 traditional	 software	 reuse,	 a	 library	 of	 reusable	 code	 components	 is
developed,	 such	 as	 a	 statistical	 subroutine	 library.	 This	 approach	 requires	 the
establishment	 of	 a	 library	 of	 reusable	 components	 and	 of	 an	 approach	 for
indexing,	locating,	and	distinguishing	between	similar	components	(Jacobson	et
al.	 1997).	 Problems	with	 this	 approach	 include	managing	 the	 large	 number	 of
components	 that	 such	 a	 reuse	 library	 is	 likely	 to	 contain	 and	 distinguishing
among	similar	though	not	identical	components.

When	 a	 new	 design	 is	 being	 developed,	 the	 designer	 is	 responsible	 for
designing	the	software	architecture	–	that	is,	the	overall	structure	of	the	program
and	 the	 overall	 flow	 of	 control.	 Having	 located	 and	 selected	 a	 reusable
component	 from	 the	 library,	 the	 designer	 must	 then	 determine	 how	 this
component	fits	into	the	new	architecture.

Instead	of	reusing	an	individual	component,	it	is	much	more	advantageous
to	 reuse	 a	whole	 design	 or	 subsystem,	 consisting	 of	 the	 components	 and	 their
interconnections.	 This	means	 reuse	 of	 the	 control	 structure	 of	 the	 application.
Architecture	reuse	has	much	greater	potential	than	component	reuse	because	it	is
large-grained	 reuse,	 which	 focuses	 on	 reuse	 of	 requirements	 and	 design.	 The
most	promising	approach	for	architecture	reuse	is	to	develop	a	software	product
line	 (SPL)	 architecture,	 which	 explicitly	 captures	 the	 commonality	 and
variability	in	the	family	of	systems	that	constitutes	the	product	line.

COMET/PLUS	is	an	extension	of	COMET	to	design	software	product	line
architectures.	 An	 overview	 of	 COMET/PLUS	 is	 given	 in	 Chapter	 15,	 with	 a
complete	and	detailed	description	of	how	it	can	be	applied	 to	develop	reusable



SPL	 architectures	 given	 in	 Gomaa	 (2005a).	 The	 example	 of	 how	 the	 Oven
Prompts	superclass	and	language-specific	subclasses	could	be	designed	using	a
software	product	line	approach	is	described	in	Chapter	15.



16.11	Summary
This	chapter	has	provided	an	overview	of	system	and	software	quality	attributes
of	a	software	architecture	and	how	they	are	used	 to	evaluate	 the	quality	of	 the
software	 architecture.	 The	 system	 quality	 attributes	 described	 in	 this	 chapter
include	scalability,	performance,	availability,	safety,	and	security.	The	software
quality	attributes	described	in	this	chapter	include	maintainability,	modifiability,
testability,	traceability,	and	reusability.	Software	quality	attributes	are	described
in	more	detail	in	Bass	et	al.	(2013)	and	Taylor	et	al.	(2009).



17

Performance	Analysis	of	Real-
Time	Software	Designs

◈

Performance	analysis	of	software	designs	is	particularly	important	for	real-time
systems.	The	consequences	of	a	real-time	system	failing	to	meet	a	deadline	can
be	 catastrophic.	 It	 is	 therefore	 necessary	 to	 analyze	 the	performance	of	 a	 real-
time	software	design	before	it	is	implemented.	Since	the	performance	analysis	is
for	a	concurrent	design,	it	can	be	carried	out	as	soon	as	the	task	architecture	has
been	designed,	as	described	in	Chapter	13.

Quantitative	analysis	of	a	real-time	system	design	allows	the	early	detection
of	potential	performance	problems.	The	analysis	 is	 for	 the	concurrent	 software
design	conceptually	 executing	on	a	given	hardware	 configuration	with	 a	given
external	 workload	 applied	 to	 it.	 Early	 detection	 of	 potential	 performance
problems	allows	alternative	software	designs	and	hardware	configurations	to	be
investigated,	including	single-processor	and	multiprocessor	systems.

This	 chapter	 describes	 performance	 analysis	 of	 software	 designs	 by
applying	real-time	scheduling	 theory	 to	software	designs.	Real-time	scheduling
is	 a	 particularly	 appropriate	 approach	 for	 hard	 real-time	 systems	 that	 have
deadlines	that	must	be	met	(Sha	and	Goodenough	1990).	With	this	approach,	the
real-time	design	is	analyzed	to	determine	whether	it	can	meet	its	deadlines.



This	chapter	describes	 two	approaches	for	analyzing	 the	performance	of	a
design.	 The	 first	 approach	 uses	 real-time	 scheduling	 theory,	 and	 the	 second
uses	 event	 sequence	 analysis.	 The	 two	 approaches	 are	 then	 combined.	 Both
real-time	scheduling	theory	and	event	sequence	analysis	are	applied	to	a	design
consisting	of	a	set	of	concurrent	tasks.	Section	17.1	provides	an	introduction	to
real-time	scheduling	theory,	in	particular	the	rate-monotonic	algorithm	and	two
of	its	theorems,	the	utilization	bound	theorem,	and	the	completion	time	theorem.
Section	 17.2	 describes	 how	 real-time	 scheduling	 theory	 can	 be	 extended	 to
address	 aperiodic	 tasks	 and	 task	 synchronization.	 Section	 17.3	 describes	 the
generalized	real-time	scheduling	theory,	which	can	be	applied	in	cases	in	which
the	rate-monotonic	assumptions	do	not	hold.	Section	17.4	describes	performance
analysis	 of	 real-time	 software	 designs	 using	 event	 sequence	 analysis.	 Section
17.5	then	describes	how	real-time	scheduling	theory	and	event	sequence	analysis
can	 be	 combined	 to	 analyze	 the	 performance	 of	 real-time	 software	 designs.
Section	 17.6	 describes	 advanced	 real-time	 scheduling	 algorithms,	 including
deadline-monotonic	scheduling,	dynamic	priority	scheduling,	and	scheduling	for
multiprocessor	 systems.	 Section	 17.7	 describes	 performance	 analysis	 of
multiprocessor	 systems,	 including	 multicore	 systems.	 Finally,	 Section	 17.8
describes	the	estimation	and	measurement	of	performance	parameters.



17.1	Real-Time	Scheduling	Theory
Real-time	scheduling	theory	addresses	 the	 issues	of	priority-based	scheduling
of	concurrent	tasks	with	hard	deadlines.	The	theory	addresses	how	to	determine
whether	a	group	of	tasks,	whose	individual	CPU	utilization	is	known,	will	meet
their	deadlines.	The	theory	assumes	a	priority	preemption	scheduling	algorithm,
as	described	in	Chapter	3.	This	section	is	based	on	the	reports	and	book	on	real-
time	 scheduling	 produced	 at	 the	 Software	 Engineering	 Institute	 (Sha	 and
Goodenough	1990,	SEI	1993),	which	should	be	referenced	for	more	information
on	this	topic.

As	real-time	scheduling	theory	has	evolved,	it	has	gradually	been	applied	to
more	 complicated	 scheduling	 problems.	 Problems	 that	 have	 been	 addressed
include	scheduling	independent	periodic	tasks,	scheduling	in	situations	in	which
there	 are	 both	 periodic	 and	 aperiodic	 (i.e.,	 event	 driven	 and	 demand	 driven)
tasks,	and	scheduling	in	cases	in	which	task	synchronization	is	required.



17.1.1	Scheduling	Periodic	Tasks

Initially,	 real-time	 scheduling	 algorithms	 were	 developed	 for	 independent
periodic	 tasks	–	 that	 is,	periodic	 tasks	 that	do	not	communicate	or	synchronize
with	 each	 other	 (Liu	 and	 Layland	 1973).	 Since	 then,	 the	 theory	 has	 been
developed	considerably	so	it	can	now	be	applied	to	other	practical	problems,	as
will	be	illustrated	in	the	examples.	In	this	chapter,	it	is	necessary	to	start	with	the
basic	rate-monotonic	theory	for	independent	periodic	tasks	for	us	to	understand
how	it	has	been	extended	to	address	more	complex	situations.

A	periodic	task	has	a	period	T	(the	frequency	with	which	it	executes)	and
an	 execution	 time	 C	 (the	 CPU	 time	 required	 during	 the	 period).	 Its	 CPU
utilization	U	 is	 the	 ratio	C⁄T.	A	 task	 is	schedulable	 if	all	 its	deadlines	are	met,
that	is,	 if	 the	task	completes	its	execution	before	its	period	elapses.	A	group	of
tasks	is	considered	schedulable	if	each	task	can	meet	its	deadlines.

For	 a	 set	 of	 independent	 periodic	 tasks,	 the	 rate-monotonic	 algorithm
assigns	each	 task	a	 fixed	priority	based	on	 its	period,	 such	 that	 the	 shorter	 the
period	of	a	 task,	 the	higher	 its	priority.	Consider	 three	 tasks	 ta,	 tb,	 and	 tc,	with
periods	10,	20,	and	30,	respectively.	The	highest	priority	is	given	to	ta,	the	task
with	the	shortest	period;	the	medium	priority	is	given	to	task	tb;	and	the	lowest
priority	is	given	to	tc,	the	task	with	the	longest	period.

In	 Liu	 and	 Layland	 (1973),	 it	 is	 formally	 proven	 that	 for	 a	 set	 of
independent	 periodic	 real-time	 tasks,	 the	 rate-monotonic	priority	 assignment	 is
optimal	among	all	schemes	that	assign	unique	and	fixed	priorities	to	individual
tasks,	 when	 the	 tasks	 have	 to	 complete	 their	 execution	 by	 their	 respective
periods.



17.1.2	Utilization	Bound	Theorem

According	 to	 the	 rate-monotonic	 scheduling	 theory	 (RMS),	 a	 group	 of	 n-
independent	 periodic	 tasks	 can	 be	 shown	 to	 always	 meet	 their	 deadlines,
providing	 the	 sum	of	 the	 ratios	C⁄T	 for	 each	 task	 is	 below	 an	 upper	 bound	 of
overall	CPU	utilization.

The	Utilization	Bound	Theorem	(Liu	and	Layland	1973)	states	that:

Utilization	Bound	Theorem	(Theorem	1):

A	set	of	n-independent	periodic	tasks	scheduled	by	the	rate-monotonic
algorithm	will	always	meet	its	deadlines	for	all	task	phasings,	if:

where	Ci	and	Ti	are	the	execution	time	and	period	of	task	ti	respectively.

The	upper	bound	U(n)	converges	to	69	percent	(ln	2)	as	the	number	of	tasks
approaches	infinity.	The	utilization	bounds	for	up	to	nine	tasks,	according	to	the
Utilization	 Bound	 Theorem,	 are	 given	 in	 Table	 17.1.	 This	 is	 a	 worst-case
approximation,	and	 for	a	 randomly	chosen	group	of	 tasks,	Lehoczky,	Sha,	and
Ding	 (1989)	 show	 that	 the	 likely	 upper	 bound	 is	 88	 percent.	 For	 tasks	 with
harmonic	 periods	 –	 that	 is,	with	 periods	 that	 are	multiples	 of	 each	other	 –	 the
upper	 bound	 is	 even	 higher	 and	 could	 reach	 100	 percent	 if	 all	 the	 tasks	 have
harmonic	periods.

Table	17.1.	Utilization	Bound	Theorem

Number	of	Tasks	n Utilization	Bound	U(n)

1 1.000



2 0.828

3 0.779

4 0.756

5 0.743

6 0.734

7 0.728

8 0.724

9 0.720

Infinity ln	2	(0.69)

The	 rate-monotonic	 algorithm	 has	 the	 advantage	 of	 being	 stable	 in
conditions	in	which	there	is	a	transient	overload.	In	other	words,	a	subset	of	the
total	 number	 of	 tasks	 –	 namely,	 those	 with	 the	 highest	 priorities	 (and	 hence,
shortest	periods)	–	will	still	meet	their	deadlines	if	the	system	is	overloaded	for	a
relatively	short	time.	The	lower	priority	tasks,	namely	those	with	longer	periods,
might	occasionally	miss	their	deadlines	as	the	processor	load	increases.



17.1.3	Example	of	Applying	Utilization	Bound	Theorem

As	an	example	of	applying	the	Utilization	Bound	Theorem,	consider	three	tasks
with	 the	 following	 characteristics,	where	 all	 times	 are	 in	milliseconds	 and	 the
utilization	Ui	=	Ci⁄Ti:

Task	t1:	C1	=	20;	T1	=	100;	U1	=	0.2

Task	t2:	C2	=	30;	T2	=	150;	U2	=	0.2

Task	t3:	C3	=	60;	T3	=	200;	U3	=	0.3

It	is	assumed	that	the	context-switching	overhead,	once	at	the	start	of	the	task's
execution	and	once	at	the	end	of	its	execution,	is	included	in	the	CPU	times.

The	 total	 utilization	 of	 the	 three	 tasks	 is	 0.7,	 which	 is	 below	 0.779,	 the
Utilization	Bound	Theorem's	upper	bound	for	 three	tasks.	Thus,	 the	three	tasks
can	meet	their	deadlines	in	all	cases.

However,	consider	that	the	task	t3's	characteristics	are	instead	as	follows:

Task	t3:	C3	=	90;	T3	=	200;	U3	=	0.45

In	this	case,	 the	total	utilization	of	 the	three	tasks	is	0.85,	which	is	higher	than
0.779,	 the	Utilization	Bound	Theorem's	upper	bound	 for	 three	 tasks.	Thus,	 the
Utilization	Bound	Theorem	indicates	that	the	tasks	may	not	meet	their	deadlines.
Next,	 a	 check	 is	made	 to	determine	whether	 the	 first	 two	 tasks	 can	meet	 their
deadlines.

Given	that	the	rate-monotonic	algorithm	is	stable,	the	first	two	tasks	can	be
checked	by	using	 the	Utilization	Bound	Theorem.	The	utilization	of	 these	 two
tasks	 is	0.4,	well	below	 the	Utilization	Bound	Theorem's	upper	bound	 for	 two
tasks	of	0.828.	Thus,	the	first	two	tasks	always	meet	their	deadlines.	Given	that
the	Utilization	Bound	Theorem	is	a	pessimistic	theorem,	a	further	check	can	be



made	to	determine	whether	Task	t3	can	meet	its	deadlines	by	applying	the	more
exact	Completion	Time	Theorem.



17.1.4	Completion	Time	Theorem

If	a	set	of	tasks	have	a	utilization	greater	than	the	Utilization	Bound	Theorem's
upper	 bound,	 the	 Completion	 Time	 Theorem,	 which	 gives	 a	 more	 exact
schedulability	criterion	(Lehoczky,	Sha,	and	Ding	1989),	can	be	checked.	For	a
set	 of	 independent	 periodic	 tasks,	 the	 Completion	 Time	 Theorem	 provides	 an
exact	determination	of	whether	the	tasks	are	schedulable.	The	theorem	assumes	a
worst	case	of	all	 the	periodic	tasks	ready	to	execute	at	 the	same	time,	which	is
sometimes	referred	to	as	the	critical	instant.	It	has	been	shown	that	in	this	worst
case,	if	a	task	completes	execution	before	the	end	of	its	first	period,	it	will	never
miss	 a	 deadline	 (Liu	 and	Layland	 1973;	Lehoczky,	 Sha,	 and	Ding	 1989).	The
Completion	 Time	 Theorem	 therefore	 checks	 whether	 each	 task	 can	 complete
execution	before	the	end	of	its	first	period.

Completion	Time	Theorem	(Theorem	2):

For	a	set	of	independent	periodic	tasks,	if	each	task	meets	its	first	deadline
when	all	tasks	are	started	at	the	same	time,	the	deadlines	will	be	met	for	any
combination	of	start	times.

To	do	this,	it	is	necessary	to	check	the	end	of	the	first	period	of	a	given	task	ti,	as
well	 as	 the	 end	 of	 all	 periods	 of	 higher	 priority	 tasks	 in	 interval	 [0,	 Ti].
Following	the	rate-monotonic	theory,	these	tasks	will	have	shorter	periods	than
ti.	These	periods	are	referred	 to	as	scheduling	points.	Task	 ti	will	execute	once
for	a	total	CPU	amount	of	Ci	during	its	period	Ti.	However,	higher	priority	tasks
will	execute	more	often	and	can	preempt	ti	at	least	once.	It	is	therefore	necessary
to	consider	the	CPU	time	used	up	by	the	higher	priority	tasks	as	well.

The	Completion	Time	Theorem	can	be	illustrated	graphically	with	a	timing
diagram.	A	timing	diagram	 is	a	time-annotated	sequence	diagram,	based	on



the	UML	sequence	diagram,	which	is	a	sequence	diagram	that	explicitly	depicts
the	 passage	 of	 time	 in	 a	 time-ordered	 execution	 sequence	 of	 a	 group	 of
concurrent	tasks.	See	Section	2.14	for	more	details	of	the	timing	diagram.



17.1.5	Example	of	Applying	Completion	Time	Theorem

Consider	 the	 example	 described	 in	 Section	 17.1.3	 of	 three	 tasks	 with	 the
following	characteristics:

Task	t1:	C1	=	20;	T1	=	100;	U1	=	0.2

Task	t2:	C2	=	30;	T2	=	150;	U2	=	0.2

Task	t3:	C3	=	90;	T3	=	200;	U3	=	0.45

The	 execution	of	 the	 three	 tasks	 is	 illustrated	by	 the	 timing	diagram	 shown	 in
Figure	17.1.	The	tasks	are	shown	as	active	throughout,	with	the	shaded	portions
identifying	when	tasks	are	executing.	Because	there	is	one	CPU	in	this	example,
only	one	task	can	execute	at	any	one	time.



Figure	17.1.	Timing	diagram	for	tasks	executing	on	a	single-processor
system.

Given	the	worst	case	of	the	three	tasks	being	ready	to	execute	at	the	same
time,	 t1	 executes	 first	 because	 it	 has	 the	 shortest	 period	 and	 hence	 the	 highest
priority.	It	completes	after	20	msec,	after	which	the	task	t2	executes	for	30	msec.
On	completion	of	 t2,	 t3	executes.	At	 the	end	of	 the	first	scheduling	point,	T1	=
100,	which	corresponds	to	t1's	deadline;	t1	has	already	completed	execution	and



thus	met	 its	 deadline.	Task	 t2	 has	 also	 completed	 execution	 and	 easily	met	 its
deadline	of	150	msec,	and	t3	has	executed	for	50	msec	out	of	the	necessary	90.

At	 the	 start	 of	 task	 t1's	 second	 period,	 t3	 is	 preempted	 by	 task	 t1.	 After
executing	for	20	msec,	 t1	completes	and	relinquishes	 the	CPU	to	 task	 t3	again.
Task	 t3	 executes	 until	 the	 end	 of	 period	 T2	 (150	msec),	 which	 represents	 the
second	 scheduling	 point	 due	 to	 t2's	 deadline.	 Because	 t2	 completed	 before	 T1
(which	is	less	than	T2)	elapsed,	it	easily	met	its	deadline.	At	this	time,	t3	has	used
up	80	msec	out	of	the	necessary	90.

Task	 t3	 is	 preempted	 by	 task	 t2	 at	 the	 start	 of	 t2's	 second	 period.	 After
executing	for	30	msec,	t2	completes,	relinquishing	the	CPU	to	task	t3	again.	Task
t3	executes	for	another	10	msec,	at	which	time	it	has	used	up	all	its	CPU	time	of
90	msec,	 thereby	 completing	 before	 its	 deadline.	 Figure	 17.1	 shows	 the	 third
scheduling	point,	which	is	both	the	end	of	t1's	second	period	(2T1	=	200)	and	the
end	of	t3's	first	period	(T3	=	200).	Figure	17.1	also	shows	that	each	of	the	three
tasks	 completes	 execution	 before	 the	 end	 of	 its	 first	 period,	 and	 thus	 they
successfully	meet	their	deadlines.

Figure	17.1	shows	that	the	CPU	is	idle	for	10	msec	before	the	start	of	t1's
third	period	(also	the	start	of	t3's	second	period).	It	should	be	noted	that	a	total
CPU	 time	of	 190	msec	was	 used	 up	 over	 the	 200	msec	 period,	 giving	 a	CPU
utilization	 for	 this	 200	msec	 period	 of	 0.95,	 although	 the	 overall	 utilization	 is
0.85.	 After	 an	 elapsed	 time	 equal	 to	 the	 least	 common	 multiple	 of	 the	 three
periods	(600	msec	in	this	example)	the	utilization	averages	out	to	0.85.



17.1.6	Mathematical	Formulation	of	Completion	Time	Theorem

The	Completion	Time	Theorem	 for	 single-processor	 systems	 can	be	 expressed
mathematically	in	Theorem	3	(Sha	and	Goodenough	1990)	as	follows:

Mathematical	Formulation	of	Completion	Time	Theorem	(Theorem	3):

A	set	of	n-independent	periodic	tasks	scheduled	by	the	rate-monotonic
algorithm	will	always	meet	its	deadlines	for	all	task	phasings,	if	and	only	if:

where	Cj	and	Tj	are	the	execution	time	and	period	of	task	tj	respectively	and
Ri	=	{(k,	p)|1	⩽	k	⩽	i,	p	=	1,	….,	⌊Ti/Tk⌋}.

In	the	formula,	ti	denotes	the	task	to	be	checked,	and	tk	denotes	each	of	the
higher	priority	tasks	that	impact	the	completion	time	of	task	ti.	For	a	given	task	ti
and	a	given	task	tk,	each	value	of	p	represents	a	scheduling	point	of	task	tk.	At
each	scheduling	point,	it	is	necessary	to	consider	task	ti's	CPU	time	Ci	once,	as
well	 as	 the	 CPU	 time	 used	 by	 the	 higher	 priority	 tasks.	 Hence,	 you	 can
determine	whether	ti	can	complete	its	execution	by	that	scheduling	point.

Consider	Theorem	3	applied	to	the	three	tasks,	which	were	illustrated	with
the	 timing	 diagram	 in	 Figure	 17.1.	 The	 timing	 diagram	 is	 a	 graphical
representation	of	what	Theorem	3	computes.	Again,	the	worst	case	is	considered
of	the	three	tasks	being	ready	to	execute	at	the	same	time.	The	inequality	for	the
first	scheduling	point,	T1	=	100,	is	given	from	Theorem	3:



For	 this	 inequality	 to	 be	 satisfied,	 all	 three	 tasks	 would	 need	 to	 complete
execution	within	the	first	task	t1's	period	T1.	This	is	not	the	case	because	before
t3	completes,	it	is	preempted	by	t1	at	the	start	of	t1's	second	period.

The	 inequality	 for	 the	 second	 scheduling	 point,	 T2	 =	 150,	 is	 given	 from
Theorem	3:

For	 this	 inequality	 to	 be	 satisfied,	 task	 t1	 would	 need	 to	 complete	 execution
twice	and	tasks	t2	and	t3	would	each	need	to	complete	execution	once	within	the
second	task	t2's	period	T2.	This	is	not	the	case,	because	t3	is	preempted	by	task	t2
at	the	start	of	t2's	second	period.

The	inequality	for	 the	third	scheduling	point,	which	is	both	the	end	of	 t1's
second	period	 (2T1	=	200)	and	 the	end	of	 t3's	 first	period	 (T3	=	200),	 is	given
from	Theorem	3:

This	time	the	inequality	is	satisfied	and	all	 three	tasks	meet	their	deadlines.	As
long	 as	 all	 three	 tasks	meet	 at	 least	 one	of	 the	 scheduling	point	 deadlines,	 the
tasks	are	schedulable.



17.2	Real-Time	Scheduling	for	Aperiodic
Tasks	and	Task	Synchronization

Real-time	scheduling	 theory	can	be	extended	 to	address	aperiodic	 tasks,	which
do	 not	 execute	 periodically,	 and	 to	 situations	 in	which	 task	 synchronization	 is
needed,	as	described	in	this	section.



17.2.1	Scheduling	Periodic	and	Aperiodic	Tasks

To	address	aperiodic	 tasks	as	well	as	periodic	 tasks,	 the	 rate-monotonic	 theory
must	be	extended.	An	aperiodic	task	is	assumed	to	arrive	randomly	and	execute
once	within	some	period	Ta,	which	represents	the	minimum	inter-arrival	time	of
the	event	that	activates	the	task.	The	CPU	time	Ca	used	by	the	aperiodic	task	to
process	the	event	is	reserved	as	a	ticket	of	value	Ca	for	each	period	Ta.	When	the
event	arrives,	the	aperiodic	task	is	activated,	claims	its	ticket,	and	consumes	up
to	Ca	 units	 of	CPU	 time.	 If	 the	 task	 is	 not	 activated	 during	 the	 period	Ta,	 the
ticket	is	discarded.	Thus,	based	on	these	assumptions,	the	CPU	utilization	of	the
aperiodic	task	is	Ca⁄Ta.	However,	this	represents	the	worst-case	CPU	utilization
because,	in	general,	reserved	tickets	are	not	always	claimed.

If	 there	 are	 many	 aperiodic	 tasks	 in	 the	 application,	 the	 sporadic	 server
algorithm	(Sprunt,	Lehoczy,	and	Sha	1989)	can	be	used.	From	a	schedulability
analysis	 viewpoint,	 an	 aperiodic	 task	 (referred	 to	 as	 the	 sporadic	 server)	 is
equivalent	to	a	periodic	task	whose	period	is	equal	to	the	minimum	inter-arrival
time	of	the	events	that	activate	the	aperiodic	task.	Hence	Ta,	the	minimum	inter-
arrival	 time	 for	 an	 aperiodic	 task	 ta,	 can	 be	 considered	 the	 period	 of	 an
equivalent	 periodic	 task.	 Each	 aperiodic	 task	 is	 also	 allocated	 a	 budget	 of	 Ca
units	of	CPU	time,	which	can	be	used	up	at	any	time	during	its	equivalent	period
Ta.	 In	 this	 way,	 aperiodic	 tasks	 can	 be	 placed	 at	 different	 priority	 levels
according	to	their	equivalent	periods	and	treated	as	periodic	tasks.



17.2.2	Scheduling	with	Task	Synchronization

Real-time	 scheduling	 theory	 has	 also	 been	 extended	 to	 address	 task
synchronization.	The	problem	here	is	that	a	task	that	enters	a	critical	section	can
block	other,	higher	priority	tasks	that	wish	to	enter	the	critical	section.	The	term
priority	inversion	is	used	to	refer	to	the	case	where	a	low	priority	task	prevents
a	higher	priority	 task	 from	executing,	 typically	by	acquiring	a	 resource	needed
by	the	latter.

Unbounded	 priority	 inversion	 can	 occur	 because	 the	 lower	 priority	 task,
while	 in	 its	 critical	 section,	 could	 itself	 be	 blocked	 by	 other	 medium	 priority
tasks,	thereby	prolonging	the	total	delay	experienced	by	the	higher	priority	task.
One	 solution	 to	 this	 problem	 is	 to	 prevent	 preemption	 of	 tasks	 while	 in	 their
critical	sections.	This	is	acceptable	only	if	tasks	have	very	short	critical	sections.
For	 long	critical	sections,	 lower	priority	 tasks	could	block	higher	priority	 tasks
that	do	need	to	access	the	shared	resource.

The	priority	ceiling	protocol	 (Sha	and	Goodenough	1990)	avoids	mutual
deadlock	 and	 provides	 bounded	 priority	 inversion;	 that	 is,	 one	 lower	 priority
task,	 at	most,	 can	 block	 a	 higher	 priority	 task.	 Only	 the	 simplest	 case	 of	 one
critical	section	is	considered	here.

Adjustable	priorities	are	used	 to	prevent	 lower	priority	 tasks	from	holding
up	higher	priority	tasks	for	an	arbitrarily	long	time.	While	a	low	priority	task	tl	is
in	its	critical	section,	higher	priority	tasks	can	become	blocked	by	it	because	they
wish	to	acquire	the	same	resource.	If	that	happens,	tl's	priority	is	increased	to	the
highest	 priority	 of	 all	 the	 tasks	 blocked	 by	 it.	 The	 goal	 is	 to	 speed	 up	 the
execution	of	the	lower	priority	task	so	blocking	time	for	higher	priority	tasks	is
reduced.



The	priority	ceiling	P	of	a	binary	semaphore	S	is	the	highest	priority	of	all
tasks	that	may	acquire	the	semaphore.	Thus,	a	low	priority	task	that	acquires	S
can	have	its	priority	increased	up	to	P,	depending	on	what	higher	priority	tasks	it
blocks.

Another	case	that	could	occur	is	deadlock,	in	which	two	tasks	each	need	to
acquire	 two	 resources	 before	 they	 can	 complete.	 If	 each	 task	 acquires	 one
resource,	neither	will	be	able	 to	complete,	because	each	one	 is	waiting	 for	 the
other	to	release	its	resource	–	a	deadlock	situation.	The	priority	ceiling	protocol
overcomes	this	problem	(Sha	and	Goodenough	1990).

The	rate-monotonic	scheduling	theorems	need	to	be	extended	to	address	the
priority	inversion	problem,	as	described	in	the	next	section.



17.3	Generalized	Real-Time	Scheduling
Theory

In	 real-world	 problems,	 situations	 often	 arise	 in	 which	 the	 rate-monotonic
assumptions	do	not	hold.	There	are	many	practical	cases	in	which	tasks	have	to
execute	 at	 actual	 priorities	 different	 from	 their	 rate-monotonic	 priorities.	 It	 is
therefore	 necessary	 to	 extend	 the	 basic	 rate-monotonic	 scheduling	 theory	 to
address	these	cases.	One	case	is	given	in	the	previous	section	concerning	lower
priority	tasks	blocking	higher	priority	tasks	from	entering	critical	sections.

A	second	case	often	happens	when	there	are	aperiodic	tasks.	As	discussed
in	Section	17.2.1,	aperiodic	tasks	can	be	treated	as	periodic	tasks,	with	the	worst-
case	 inter-arrival	 time	 considered	 the	 equivalent	 periodic	 task's	 period.
Following	 the	 rate-monotonic	 scheduling	algorithm,	 if	 the	aperiodic	 task	has	a
longer	period	than	a	periodic	task,	it	should	execute	at	a	lower	priority	than	the
periodic	 task.	However,	 if	 the	aperiodic	 task	 is	 interrupt-driven,	 it	will	need	 to
execute	as	soon	as	the	interrupt	arrives,	even	if	its	worst-case	inter-arrival	time,
and	hence	equivalent	period,	is	longer	than	that	of	the	periodic	task.



17.3.1	Priority	Inversion

The	term	priority	inversion	is	given	to	any	case	in	which	a	task	cannot	execute
because	 it	 is	 blocked	 by	 a	 lower	 priority	 task.	 In	 the	 case	 of	 rate-monotonic
priority	inversion,	the	term	“priority”	refers	to	the	rate-monotonic	priority;	 that
is,	 the	priority	assigned	 to	a	 task	based	entirely	on	 the	 length	of	 its	period	and
not	on	its	relative	importance.	A	task	may	be	assigned	an	actual	priority	that	is
different	 from	 the	 rate-monotonic	 priority.	 Rate-monotonic	 priority	 inversion
refers	 to	a	 task	A	preempted	by	a	higher	priority	 task	B,	when	 in	 fact	 task	B's
rate-monotonic	priority	is	lower	than	A's	(i.e.,	B's	period	is	longer	than	A's).

This	 is	 illustrated	 by	 the	 following	 example	 of	 rate-monotonic	 priority
inversion,	 in	 which	 there	 is	 a	 periodic	 task	 with	 a	 period	 of	 25	msec	 and	 an
interrupt-driven	 task	 with	 a	 worst-case	 inter-arrival	 time	 of	 50	 msec.	 The
periodic	 task	 has	 the	 higher	 rate-monotonic	 priority	 because	 it	 has	 the	 shorter
period;	 however,	 in	 practice,	 giving	 the	 interrupt-driven	 task	 the	 higher	 actual
priority	 is	 preferable	 so	 it	 can	 service	 the	 interrupt	 as	 soon	 as	 it	 arrives.
Whenever	the	interrupt-driven	task	preempts	the	periodic	task,	this	is	considered
a	 case	 of	 priority	 inversion	 relative	 to	 the	 rate-monotonic	 priority	 assignment,
because	if	the	interrupt-driven	task	had	been	given	its	rate-monotonic	priority,	it
would	not	have	preempted	the	periodic	task.

It	 is	 necessary	 to	 extend	 the	 basic	 rate-monotonic	 scheduling	 theory	 to
address	these	practical	cases	of	rate-monotonic	priority	inversion.	This	has	been
achieved	 by	 extending	 the	 basic	 algorithms	 to	 take	 into	 account	 the	 blocking
effect	 from	 lower	 priority	 tasks	 as	well	 as	 preemption	by	higher	 priority	 tasks
that	 do	 not	 observe	 rate-monotonic	 priorities	 (SEI	 1993).	 Because	 rate-
monotonic	scheduling	 theory	assumes	 rate-monotonic	priorities,	preemption	by



higher	priority	 tasks	that	do	not	observe	the	rate-monotonic	priorities	 is	 treated
in	a	similar	way	to	blocking	by	lower	priority	tasks.

Consider	 a	 task	 ti	 with	 a	 period	 Ti	 during	which	 it	 consumes	Ci	 units	 of
CPU	 time.	 The	 extensions	 to	 Theorems	 1,	 2,	 and	 3	 mean	 it	 is	 necessary	 to
consider	explicitly	each	task	ti	to	determine	whether	it	can	meet	its	first	deadline.
In	particular,	four	factors	must	be	considered	for	each	task:

a.	Preemption	time	by	higher	priority	tasks	with	periods	less	than	ti.
These	tasks	can	preempt	ti	many	times.	Call	this	set	Hn	and	let	there	be	j
tasks	in	this	set.	Let	Cj	be	the	CPU	time	for	task	j	and	Tj	the	period	of	task	j,
where	Tj<	Ti,	the	period	of	task	ti.	The	utilization	of	a	task	j	in	the	Hn	set	is
given	by	Cj⁄Tj.

b.	Execution	time	for	the	task	ti.	Task	ti	executes	once	during	its	period	Ti
and	consumes	Ci	units	of	CPU	time.

c.	Preemption	by	higher	priority	tasks	with	longer	periods.	These	are
tasks	with	non-rate-monotonic	priorities.	They	can	only	preempt	ti	once
because	they	have	longer	periods	than	ti.	Call	this	set	H1	and	let	there	be	k
tasks	in	this	set.	Let	the	CPU	time	used	by	a	task	in	this	set	be	Ck.	The
worst-case	utilization	of	a	task	k	in	the	H1	set	is	given	by	Ck⁄Ti,	because	this
means	k	preempts	ti	and	uses	up	all	its	CPU	time	Ck	during	the	period	Ti.

d.	Blocking	time	by	lower	priority	tasks,	as	described	in	the	previous
section.	These	tasks	can	also	execute	only	once	because	they	have	longer
periods.	Blocking	delays	have	to	be	analyzed	on	an	individual	basis	for
each	task	to	determine	its	worst-case	blocking	situation	as	given	by	the
priority	ceiling	protocol.	If	Bi	is	the	worst-case	blocking	time	for	a	given
task	ti,	the	worst-case	blocking	utilization	for	the	period	Ti	is	Bi⁄Ti.



17.3.2	Generalized	Utilization	Bound	Theorem

Because	for	any	given	task	ti	factors	a	and	b	of	the	preceding	paragraph	are	taken
care	 of	 by	 Theorems	 1,	 2,	 and	 3,	 the	 generalization	 of	 these	 theorems	 is
necessary	 to	 take	 into	 account	 factors	 c	 and	 d.	 Theorem	 1,	 the	 Utilization
Bound	 Theorem,	 is	 extended	 to	 address	 all	 four	 factors	 described	 in	 the
preceding	paragraph	as	follows:

Generalized	Utilization	Bound	Theorem	(Theorem	4):

Ui	 is	 the	 utilization	 bound	 during	 a	 period	Ti	 for	 task	 ti.	 The	 first	 term	 in	 the
Generalized	 Utilization	 Bound	 Theorem	 is	 the	 total	 preemption	 utilization	 by
higher	 priority	 tasks	with	 periods	 of	 less	 than	 ti.	 The	 second	 term	 is	 the	CPU
utilization	 by	 task	 ti.	 The	 third	 term	 is	 the	 worst-case	 blocking	 utilization
experienced	by	 ti.	The	 fourth	 term	 is	 the	 total	preemption	utilization	by	higher
priority	tasks	with	longer	periods	than	ti.

By	 substituting	 in	 the	 equation	 for	 Theorem	 4,	 the	 utilization	 Ui	 can	 be
determined	for	a	given	 task.	 If	Ui	 is	 less	 than	 the	worst-case	upper	bound,	 this
means	 the	 task	 ti	 will	 meet	 its	 deadline.	 It	 is	 important	 to	 realize	 that	 the
utilization	bound	test	needs	to	be	applied	to	each	task	because	in	this	generalized
theory,	in	which	rate-monotonic	priorities	are	not	necessarily	observed,	the	fact
that	a	given	task	meets	its	deadline	is	no	guarantee	that	a	higher	priority	task	will
meet	its	deadline.



17.3.3	Generalized	Completion	Time	Theorem

As	before,	if	the	generalized	utilization	bound	theorem	fails,	a	more	precise	test
is	 available	 that	 verifies	 whether	 each	 task	 can	 complete	 execution	 during	 its
period.	 This	 is	 a	 generalization	 of	 the	 Completion	 Time	 Theorem.	 The
Generalized	Completion	Time	Theorem	 determines	whether	 ti	 can	 complete
execution	by	the	end	of	its	period,	given	preemption	by	higher	priority	tasks	and
blocking	 by	 lower	 priority	 tasks.	 The	 theorem	 assumes	 the	worst	 case	 that	 all
tasks	 are	 ready	 for	 execution	 at	 the	 start	 of	 the	 task	 ti's	 period.	Pictorially,	 the
Generalized	Completion	Time	Theorem	can	be	illustrated	by	drawing	a	timing
diagram	for	all	the	tasks	up	to	the	end	of	task	ti's	period	Ti.	An	example	of	this	is
given	in	Section	17.3.6.



17.3.4	Real-Time	Scheduling	and	Design

Real-time	 scheduling	 theory	 can	 be	 applied	 to	 a	 set	 of	 concurrent	 tasks	 at	 the
design	 stage	 or	 after	 the	 tasks	 have	 been	 implemented.	 In	 this	 book,	 the
emphasis	is	on	applying	real-time	scheduling	theory	at	the	design	stage.	During
design,	 because	 all	 CPU	 times	 are	 estimates,	 it	 is	 best	 to	 err	 on	 the	 side	 of
caution.	For	 real-time	 tasks	with	hard	deadlines,	 it	 is	 therefore	safer	 to	 rely	on
the	more	 pessimistic	Utilization	Bound	Theorem.	 This	 theorem	 has	 a	worst-
case	upper	bound	utilization	of	0.69.	 If	 this	worst-case	upper	bound	cannot	be
satisfied,	 alternative	 solutions	 should	 be	 investigated.	 From	 a	 pessimistic
designer's	perspective,	a	predicted	upper	bound	utilization	of	higher	than	0.69	is
acceptable,	providing	the	utilization	above	0.69	is	entirely	due	to	lower	priority
soft	 real-time	 or	 non-real-time	 tasks.	 For	 these	 tasks	 to	 miss	 their	 deadlines
occasionally	is	not	serious.

It	is	also	the	case	at	design	time	that	the	designer	has	the	freedom	to	choose
the	priorities	to	be	assigned	to	the	tasks.	In	general,	wherever	possible,	priorities
should	be	assigned	according	 to	 the	 rate-monotonic	 theory.	This	 is	most	easily
applied	to	the	periodic	tasks.	Estimate	the	worst-case	inter-arrival	 times	for	the
aperiodic	tasks	and	attempt	to	assign	the	rate-monotonic	priorities	to	these	tasks.
Interrupt-driven	tasks	will	often	need	to	be	given	the	highest	priorities	to	allow
them	to	quickly	service	interrupts.	This	means	that	an	interrupt-driven	task	may
need	to	be	allocated	a	priority	 that	 is	higher	 than	its	rate-monotonic	priority.	If
two	tasks	have	the	same	period	and	hence	the	same	rate-monotonic	priority,	it	is
up	to	the	designer	to	resolve	the	tie.	In	general,	assign	the	higher	priority	to	the
task	that	is	more	important	from	an	application	perspective.

The	Generalized	Utilization	Bound	Theorem	described	 in	 this	chapter	can
be	 applied	 to	 analyzing	 the	 performance	 of	 software	 designs	 executing	 on	 a



single-processor	 system.	 As	 described	 previously,	 for	 time-critical	 tasks	 that
miss	 their	 deadlines	 according	 to	 the	 Utilization	 Bound	 Theorem,	 the
Generalized	 Completion	 Time	 Theorem	 can	 be	 applied	 for	 a	 more	 precise
analysis.



17.3.5	Example	of	Applying	Generalized	Utilization	Bound	Theorem

As	an	example	of	applying	the	generalized	real-time	scheduling	theory	with	the
Generalized	 Utilization	 Bound	 Theorem	 (Section	 17.3.2),	 consider	 the
following	 case.	 There	 are	 four	 tasks,	 of	 which	 two	 are	 periodic	 and	 two	 are
aperiodic.	 One	 of	 the	 aperiodic	 tasks,	 ta,	 is	 interrupt-driven	 and	must	 execute
within	 200	msec	 of	 the	 arrival	 of	 its	 interrupt	 or	 data	 will	 be	 lost.	 The	 other
aperiodic	task,	t2,	has	a	worst-case	inter-arrival	time	of	T2,	which	is	taken	to	be
the	 period	 of	 the	 equivalent	 periodic	 task.	 The	 detailed	 characteristics	 are	 as
follows,	where	all	times	are	in	msec	and	the	utilization	Ui	=	Ci⁄Ti:

Periodic	task	t1:	C1	=	20;	T1	=	100;	U1	=	0.2

Aperiodic	task	t2:	C2	=	15;	T2	=	150;	U2	=	0.1

Interrupt-driven	aperiodic	task	ta:	Ca	=	4;	Ta	=	200,	Ua	=	0.02

Periodic	task	t3:	C3	=	30;	T3	=	300;	U3	=	0.1

In	addition,	t1,	 t2,	and	t3	all	access	the	same	data	store,	which	is	protected	by	a
semaphore	s.	It	is	assumed	that	the	context-switching	overhead,	once	at	the	start
of	a	task's	execution	and	once	at	the	end	of	its	execution,	is	included	in	the	CPU
times.

If	 tasks	were	allocated	priorities	 strictly	according	 to	 their	 rate-monotonic
priorities,	t1	would	have	the	highest	priority,	followed	respectively	by	t2,	ta,	and
t3.	However,	because	of	ta's	stringent	response	time	need,	it	is	given	the	highest
priority.	The	priority	assignment	is	therefore	ta	highest,	followed	respectively	by
t1,	t2,	and	t3.

The	 overall	 CPU	 utilization	 is	 0.42,	 which	 is	 below	 the	 worst-case
utilization	 bound	 of	 0.69.	 However,	 it	 is	 necessary	 to	 investigate	 each	 task
individually	 because	 rate-monotonic	 priorities	 have	 not	 been	 assigned.	 First



consider	 the	 interrupt-driven	 task	 ta.	Task	 ta	 is	 the	highest	 priority	 task,	which
always	gets	 the	CPU	when	it	needs	 it.	 Its	utilization	 is	0.04,	so	 it	will	have	no
difficulty	meeting	its	deadline.

Next	consider	the	task	t1,	which	executes	for	20	msec	during	its	period	T1
of	duration	100	msec.	Applying	the	Generalized	Utilization	Bound	Theorem,
it	is	necessary	to	consider	the	following	four	factors:

a.	Preemption	time	by	higher	priority	tasks	with	periods	less	than	T1.
There	are	no	tasks	with	periods	less	than	T1.

b.	Execution	time	C1	for	the	task	t1	=	20.	Execution	utilization	=	U1	=
0.2.

c.	Preemption	by	higher	priority	tasks	with	longer	periods.	The	task	ta
falls	into	this	category.	Preemption	utilization	during	the	period	T1	=	Ca⁄T1
=	4⁄100	=	0.04.

d.	Blocking	time	by	lower	priority	tasks.	Both	t2	and	t3	can	potentially
block	t1.	Based	on	the	priority	ceiling	algorithm,	at	most,	one	lower	priority
task	can	actually	block	t1.	The	worst	case	is	t3,	because	it	has	a	longer	CPU
time	of	30	msec.	Blocking	utilization	during	the	period	T1	=	B3⁄T1	=	30⁄100
=	0.3.

Worst-case	 utilization	 =	 preemption	 utilization	 +	 execution	 utilization	 +
blocking	utilization	=	0.04	+	0.2	+	0.3	=	0.54	<	worst-case	upper	bound	of	0.69.
Consequently,	t1	will	meet	its	deadline.

Next	consider	 task	 t2,	which	executes	 for	15	msec	during	 its	period	T2	of
duration	 150	 msec.	 Again,	 applying	 the	 Generalized	 Utilization	 Bound
Theorem,	it	is	necessary	to	consider	the	following	four	factors:

a.	Preemption	time	by	higher	priority	tasks	with	periods	less	than	T2.
Only	one	task,	t1,	has	a	period	less	than	T2.	Its	preemption	utilization	during



the	period	T2	=	U1	=	0.2.

b.	Execution	time	C2	for	the	task	t2	=	15.	Execution	utilization	=	U2	=
0.1.

c.	Preemption	by	higher	priority	tasks	with	longer	periods.	The
interrupt-driven	task	ta	falls	into	this	category.	Preemption	utilization	during
the	period	T2	=	Ca⁄T2	=	4⁄150	=	0.03.	Total	preemption	utilization	by	t1	and
ta	=	0.2	+	0.03	=	0.23.

d.	Blocking	time	by	lower	priority	tasks.	The	task	t3	can	block	t2.	In	the
worst	case,	it	blocks	t2	for	its	total	CPU	time	of	30	msec.	Blocking
utilization	during	the	period	T2	=	B3⁄T2	=	30⁄150	=	0.2.

Worst-case	 utilization	 =	 preemption	 utilization	 +	 execution	 utilization	 +
blocking	utilization	=	0.23	+	0.1	+	0.2	=	0.53	<	worst-case	upper	bound	of	0.69.
Consequently,	t2	will	meet	its	deadline.

Finally,	consider	task	t3,	which	executes	for	30	msec	during	its	period	T3	of
duration	 300	msec.	 Once	 again,	 applying	 the	Generalized	Utilization	Bound
Theorem,	it	is	necessary	to	consider	the	following	four	factors:

a.	Preemption	time	by	higher	priority	tasks	with	periods	less	than	t3.
All	three	higher	priority	tasks	fall	into	this	category,	so	total	preemption
utilization	=	U1	+	U2	+	Ua	=	0.2	+	0.1	+	0.02	=	0.32.

b.	Execution	time	C3	for	the	task	t3.	Execution	utilization	=	U3	=	0.1

c.	Preemption	by	higher	priority	tasks	with	longer	periods.	No	tasks	fall
into	this	category.

d.	Blocking	time	by	lower	priority	tasks.	No	tasks	fall	into	this	category.

Worst-case	utilization	=	preemption	utilization	+	execution	utilization	=	0.32	+
0.1	 =	 0.42	 <	 worst-case	 upper	 bound	 of	 0.69.	 Consequently,	 t3	 will	 meet	 its



deadline.
In	conclusion,	all	four	tasks	will	meet	their	deadlines.



17.3.6	Example	of	Applying	Generalized	Completion	Time	Theorem

Consider	how	the	Generalized	Completion	Time	Theorem	(Section	17.3.3)	is
applied	 to	 the	 example	 given	 in	 the	 previous	 section,	 in	 which	 there	 are	 two
periodic	tasks	(t1	and	t3)and	two	aperiodic	tasks	(ta	and	t3).	Three	of	the	tasks	(t1,
t2,	and	t3)	have	mutually	exclusive	access	to	a	critical	section.	Given	that	one	of
the	 aperiodic	 tasks,	 ta,	 needs	 to	 be	 assigned	 the	 highest	 priority,	 which	 is
different	 from	 its	 rate-monotonic	priority,	 the	priority	 assignment	 is	 ta	 highest,
followed	respectively	by	the	t1,	t2,	and	t3.	The	execution	of	these	four	tasks	on	a
single-processor	 system	 is	 depicted	 on	Figure	 17.2,	which	 considers	 the	worst
case	 of	 the	 four	 tasks	 being	 ready	 to	 execute	 at	 the	 same	 time.	 The	 highest
priority	 task	 ta	 executes	 first	 for	 4	 msec,	 followed	 by	 the	 task	 with	 the	 next
highest	priority	t1	for	its	execution	time	of	20	msec.	The	next	two	tasks,	t2,	and
t3,	 also	 execute	 in	 order	 of	 priority	 and	 all	 tasks	meet	 their	 deadlines.	 In	 this
example,	mutual	exclusion	is	ensured	by	the	tasks	executing	in	sequence.



Figure	17.2.	Timing	diagram	for	tasks	executing	on	a	single-processor	system
with	mutual	exclusion.



17.4	Performance	Analysis	Using	Event
Sequence	Analysis

During	 the	 requirements	 phase	 of	 the	 project,	 the	 system's	 required	 response
times	 to	 external	 events	 are	 specified.	After	 task	 structuring,	 a	 first	 attempt	 at
allocating	time	budgets	to	the	concurrent	tasks	in	the	system	can	be	made.	Event
sequence	 analysis	 is	 used	 to	 determine	 the	 sequence	 of	 tasks	 that	 need	 to	 be
executed	 to	 service	a	given	external	 event.	The	 first	 task	 in	an	event	 sequence
waits	for	 the	event	 that	 initiates	 the	sequence	(such	as	an	external	event)	while
the	other	 tasks	 in	 the	event	sequence	execute	 in	a	strict	sequence	because	each
task	is	activated	by	a	message	sent	by	its	predecessor.	It	 is	also	possible	for	an
event	 sequence	 to	 divide	 into	 more	 than	 one	 event	 sequence,	 if	 a	 given	 task
sends	messages	 to	more	 than	 one	waiting	 task.	 A	 timing	 diagram	 is	 used	 to
depict	the	sequence	of	internal	events	and	tasks	activated	after	the	arrival	of	the
external	event.	The	approach	is	described	next.

Consider	an	external	 event.	Determine	which	 I/O	 task	 is	 activated	by	 this
event	 and	 then	 determine	 the	 sequence	 of	 internal	 events	 that	 follow.	 This
necessitates	 identifying	 the	 tasks	 that	 are	 activated	 and	 the	 I/O	 tasks	 that
generate	 the	 system	 response	 to	 the	external	 event.	Estimate	 the	CPU	 time	 for
each	 task.	 Estimate	 the	 CPU	 overhead,	 which	 consists	 of	 context-switching
overhead,	 interrupt-handling	 overhead,	 and	 inter-task	 communication	 and
synchronization	 overhead.	 It	 is	 also	 necessary	 to	 consider	 any	 other	 tasks	 that
execute	 during	 this	 period.	 The	 sum	 of	 the	 CPU	 times	 for	 the	 tasks	 that
participate	 in	 the	 event	 sequence,	 plus	 any	 additional	 tasks	 that	 execute,	 plus
CPU	overhead,	must	be	less	than	or	equal	to	the	specified	system	response	time.



If	 there	 is	some	uncertainty	over	 the	CPU	time	for	each	 task,	allocate	a	worst-
case	upper	bound.

To	estimate	overall	CPU	utilization,	it	is	necessary	to	estimate,	for	a	given
time	interval,	the	CPU	time	for	each	task.	If	there	is	more	than	one	path	through
the	 task,	estimate	 the	CPU	time	for	each	path.	Next,	estimate	 the	 frequency	of
activation	 of	 tasks.	 This	 is	 easily	 computed	 for	 periodic	 tasks.	 For	 aperiodic
tasks,	consider	 the	average	and	maximum	activation	rates.	Multiply	each	task's
CPU	time	by	its	activation	rate.	Sum	all	 the	task	CPU	times	and	then	compute
CPU	utilization.

An	example	of	applying	the	event	sequence	analysis	approach	is	given	next.
A	more	detailed	example	is	given	in	Chapter	18.



17.4.1	Example	of	Performance	Analysis	Using	Event	Sequence
Analysis

For	an	example	of	applying	the	event	sequence	analysis	approach,	consider	four
tasks	with	the	same	CPU	times	and	periods	as	those	described	in	Section	17.3.5.
However,	this	time	consider	the	situation	where	three	of	these	tasks	are	involved
in	an	event	sequence	in	which	the	tasks	execute	in	the	order	t1,	 t2,	and	t3,	such
that	task	t1	is	awakened	by	an	external	event,	and	tasks	t2	and	t3	each	wait	for	a
message	 from	 their	 predecessor	 task	 in	 the	 event	 sequence.	 As	 before,	 the
priority	assignment	is	ta	highest,	followed	respectively	by	the	tasks	t1,	t2,	and	t3.
The	 execution	 of	 these	 four	 tasks	 on	 a	 single-processor	 system	 is	 depicted	 on
Figure	17.3	with	 the	worst-case	 scenario	of	all	 tasks	being	 ready	 to	execute	at
the	same	time.

In	 this	 situation,	 the	 highest	 priority	 task	 ta	 executes	 first	 for	 4	 msec,
followed	by	the	task	with	the	next	highest	priority	t1	for	its	execution	time	of	20
msec.	Task	t1	sends	a	message	to	task	t2	just	before	completing	execution.	Task
t2	 is	 then	 unblocked	 and	 starts	 executing.	 However	 the	 lower	 priority	 task	 t3
remains	blocked	waiting	for	a	message	from	t2.	When	task	t2	sends	the	message
to	task	t3,	t3	is	unblocked,	and	when	t2	completes	execution,	t3	starts	executing	to
completion.



Figure	17.3.	Timing	diagram	for	tasks	in	an	event	sequence	executing	on	a
single-processor	system.



17.5	Performance	Analysis	Using	Real-Time
Scheduling	Theory	and	Event	Sequence

Analysis
This	 section	 describes	 how	 the	 real-time	 scheduling	 theory	 can	 be	 combined
with	 the	 event	 sequence	 analysis	 approach.	 Instead	 of	 considering	 individual
tasks,	 it	 is	 necessary	 to	 consider	 all	 the	 tasks	 in	 an	 event	 sequence.	 The	 task
activated	by	the	external	event	executes	first	and	then	initiates	a	series	of	internal
events,	 resulting	 in	 activation	 and	 execution	 of	 other	 internal	 tasks.	 It	 is
necessary	 to	 determine	 whether	 all	 the	 tasks	 in	 the	 event	 sequence	 can	 be
executed	before	the	deadline.

Initially	 attempt	 to	 allocate	 all	 the	 tasks	 in	 the	 event	 sequence	 the	 same
priority.	 These	 tasks	 can	 then	 collectively	 be	 considered	 one	 equivalent	 task
from	 a	 real-time	 scheduling	 viewpoint.	 This	 equivalent	 task	 has	 a	 CPU	 time
equal	 to	 the	 sum	 of	 the	 CPU	 times	 of	 the	 tasks	 in	 the	 event	 sequence,	 plus
context-switching	 overhead,	 plus	 message	 communication	 or	 event
synchronization	overhead.	The	worst-case	inter-arrival	time	of	the	external	event
that	initiates	the	event	sequence	is	then	made	the	period	of	this	equivalent	task.

To	 determine	 whether	 the	 equivalent	 task	 can	 meet	 its	 deadline,	 it	 is
necessary	 to	 apply	 the	 real-time	 scheduling	 theorems.	 In	 particular,	 it	 is
necessary	 to	 consider	 preemption	 by	 higher	 priority	 tasks,	 blocking	 by	 lower
priority	 tasks,	 and	 execution	 time	 of	 this	 equivalent	 task.	 An	 example	 of
combining	 event	 sequence	 analysis	 with	 real-time	 scheduling	 using	 the
equivalent	 task	 approach	 is	 given	 in	 Chapter	 18,	 for	 the	 Light	 Rail	 Control
System.



In	some	cases,	you	cannot	assume	that	all	 the	 tasks	 in	 the	event	sequence
can	be	replaced	by	an	equivalent	task.	This	happens	if	one	of	the	tasks	is	used	in
more	than	one	event	sequence	or	if	executing	the	equivalent	task	at	that	priority
would	prevent	other	tasks	from	meeting	their	deadlines.	In	such	cases,	the	tasks
in	 the	 event	 sequence	 need	 to	 be	 analyzed	 separately	 and	 assigned	 different
priorities.	In	determining	whether	the	tasks	in	the	event	sequence	will	meet	their
deadlines,	 it	 is	 necessary	 to	 consider	 preemption	 and	 blocking	 on	 a	 per	 task
basis;	however,	 it	 is	 still	 necessary	 to	determine	whether	 all	 tasks	 in	 the	 event
sequence	 will	 complete	 before	 the	 deadline.	 An	 example	 of	 this	 case	 is	 also
described	in	Chapter	18.



17.6	Advanced	Real-Time	Scheduling
Algorithms

The	 scheduling	 theory	 for	 performance	 analysis	 of	 real-time	designs	described
so	 far	 in	 this	 chapter	 has	 considered	 implicit	 deadline	 task	 sets,	 where	 the
relative	 deadline	 of	 each	 task	 coincides	 with	 its	 next	 arrival	 time.	While	 this
represents	many	 real-time	applications,	 there	 are	 cases	when	 the	deadlines	 can
be	 less	 than	 the	 periods.	 For	 such	 cases,	 the	 deadline-monotonic	 algorithm,
which	assigns	fixed	priorities	according	to	the	relative	deadlines,	is	known	to	be
optimal	 among	 all	 fixed-priority	 scheduling	 algorithms	 (Leung	 and	Whitehead
1982).

The	 rate-monotonic	 and	 deadline-monotonic	 priority	 assignments	 fall
within	 the	 general	 class	 of	 fixed-priority	 scheduling	 algorithms,	 in	 which	 all
tasks	are	 assigned	a	 static	priority	before	execution.	This	has	 the	advantage	of
supporting	directly	most	of	the	existing	real-time	embedded	systems	with	limited
priority	 levels.	However,	 in	dynamic	priority	 systems,	 the	 relative	priorities	of
tasks	 can	 change	during	 execution.	For	 instance,	with	 the	preemptive	Earliest-
Deadline-First	 (EDF)	 scheduling	 algorithm,	which	 assigns	 the	 priorities	 to	 the
current	active	jobs	by	considering	their	absolute	deadlines,	the	utilization	bound
is	100	percent	on	a	single-processor	system	(Liu	and	Layland	1973).

This	 chapter	 has	 focused	 so	 far	 on	 single-processor	 systems.	 For
multiprocessor	 systems,	 there	 are	 two	 general	 approaches	 in	 real-time
scheduling.	With	partitioned	scheduling,	tasks	are	first	partitioned	on	individual
processors	and	then	the	schedulability	is	analyzed	on	each	processor	separately.
However,	 in	 general,	 making	 optimal	 partitioning	 decisions	 is	 an	 NP-Hard
problem.	With	global	 scheduling,	 tasks	 are	 allowed	 to	migrate;	 that	 is,	 at	 any



time,	a	ready	task	may	be	assigned	to	any	of	the	idle	processors.	However,	 the
fact	 that	 a	 given	 task	 can	 only	 execute	 on	 one	 processor	 at	 a	 time	 in	 a
multiprocessor	 system	 creates	 significant	 difficulties	 for	 the	 schedulability
analysis.	 For	 instance,	 it	 is	 known	 that	 for	 fixed-priority	 assignments	 (such	 as
RMS),	 the	worst-case	 response	 time	for	 tasks	 is	not	necessarily	obtained	when
tasks	 are	 activated	 simultaneously	 (Lauzac	 et	 al.	 1998).	Moreover,	 the	 general
utilization	bound	 for	RMS	on	a	 real-time	system	consisting	of	m	processors	 is
only	m/3,	as	long	as	the	largest	task	utilization	in	the	workload	does	not	exceed
1/3	 (Baruah	 and	 Goossens	 2003).	 The	 reader	 is	 referred	 to	 a	 comprehensive
survey	 (Davis	 and	 Burns	 2011)	 for	 recent	 results	 on	 multiprocessor
schedulability	theory	including	partitioned	and	global	scheduling	approaches.

Given	 the	 issues	 with	 applying	 real-time	 scheduling	 theory	 to	 tasks
executing	 on	 multiprocessor	 systems,	 one	 approach	 is	 to	 consider	 using
partitioned	scheduling,	such	that	a	subset	of	the	task	set	is	exclusively	assigned
to	 each	 processor.	 The	 real-time	 scheduling	 theory	 for	 a	 single	 processor	 can
then	be	applied	to	analyze	the	performance	of	those	tasks	assigned	to	execute	on
each	individual	processor	in	turn.	Thus,	for	two	CPUs,	the	partitioned	scheduling
algorithm	would	consider	 the	 tasks	assigned	 to	CPU	A	 independently	of	 those
assigned	to	CPU	B.	An	advantage	of	this	approach	on	multicore	systems	is	that
there	is	likely	to	be	less	cache	flushing	at	context-switching	time	than	in	global
scheduling	approaches,	which	negatively	impacts	performance.



17.7	Performance	Analysis	of
Multiprocessor	Systems

To	analyze	the	performance	of	tasks	executing	on	a	multiprocessor	system	using
global	 scheduling,	a	practical	approach	 is	 to	use	 timing	diagrams.	This	 section
describes	three	examples	of	analyzing	the	performance	of	concurrent	tasks	on	a
dual-processor	system	using	timing	diagrams.	However	the	approach	can	easily
be	 extended	 to	 multiprocessor	 systems	 with	 more	 than	 two	 processors,	 as
described	in	the	case	studies	in	Chapters	19	and	20.



17.7.1	Performance	Analysis	of	Independent	Tasks	on	Multiprocessor
Systems

Consider	 the	 example	 of	 the	 three	 tasks	 described	 in	 Section	 17.1.5	 (and
depicted	 on	 Figure	 17.1)	 executing	 on	 a	 dual-processor	 system,	 which	 can
execute	two	tasks	in	parallel	on	CPU	A	and	CPU	B.	The	execution	of	the	three
tasks	is	illustrated	by	the	timing	diagram	shown	in	Figure	17.4.	The	execution	of
the	 tasks	 is	 depicted	 with	 the	 shaded	 portions	 identifying	 when	 tasks	 are
executing	on	CPU	A	or	CPU	B.	Because	 there	are	 two	CPUs	 in	 this	example,
two	tasks	can	execute	at	any	one	time,	providing	they	are	ready	to	execute.



Figure	17.4.	Timing	diagram	for	tasks	executing	on	a	dual-processor	system.

Consider	 the	 worst	 case	 of	 the	 three	 tasks	 being	 ready	 to	 execute	 at	 the
same	 time	 when	 there	 are	 two	 CPUs	 available.	 This	 scenario	 starts	 with	 t1
executing	on	CPU	A	and	 t2	 executing	on	CPU	B,	because	both	 t1	 and	 t2	 have
shorter	periods	and	hence	higher	priorities	than	t3.	Task	t1	completes	execution
on	 CPU	 A	 after	 20	 msec	 and	 thus	 meets	 its	 deadline.	 Task	 t3	 then	 starts
executing	on	CPU	A	while	task	t2	continues	executing	on	CPU	B.	After	a	further
10	msec,	 task	 t2	 completes	 execution	 (easily	meeting	 its	 deadline)	 on	CPU	B,



which	then	becomes	idle,	as	task	t1	is	not	yet	ready	to	resume	execution.	At	the
start	of	task	t1's	second	period,	T1	=	100,	task	t1	resumes	executing	but	this	time
on	CPU	B.

After	executing	for	90	msec,	t3	completes,	which	after	a	total	elapsed	time
of	110	msec	is	less	than	its	deadline	of	200	msec.	As	there	is	no	ready	task,	CPU
A	becomes	idle.	After	executing	for	20	msec,	 t1	completes	and,	since	there	are
no	 ready	 tasks,	CPU	B	 becomes	 idle	 again.	At	 this	 time,	 both	CPUs	 are	 idle.
Task	 t2	 resumes	executing	again	at	 the	start	of	 its	second	period,	T2	=	150,	on
CPU	A	and	finishes	30	msec	later.

Now	consider	the	same	tasks	executing	with	partitioned	scheduling	instead
of	global	scheduling.	Assume	tasks	are	partitioned	such	 that	 tasks	 t1	and	 t3	are
assigned	 CPU	 A	 and	 task	 t2	 is	 assigned	 CPU	 B.	 There	 is	 no	 difference	 in
execution	 until	 the	 start	 of	 t1's	 second	 period,	 T1	 =	 100.	 With	 partitioned
scheduling,	 task	 t1	 resumes	 execution	 on	 CPU	 A	 (instead	 of	 CPU	 B)	 by
preempting	 task	 t3,	 which	 by	 then	 has	 been	 executing	 for	 80	 msec.	 Task	 t1
completes	execution	after	20	msec,	at	which	time	task	t3	 resumes	executing	on
CPU	 A	 and	 completes	 execution	 after	 a	 further	 10	 msec.	 Task	 t2	 resumes
executing	 at	 the	 start	 of	 its	 second	 period,	 T2	 =	 150,	 but	 this	 time	 on	CPU	B
instead	 of	CPU	A.	Thus	 all	 tasks	meet	 their	 deadlines.	Comparing	 partitioned
scheduling	with	global	scheduling	for	this	example,	all	tasks	meet	their	deadlines
in	both	cases.	In	fact,	there	is	no	difference	in	the	elapsed	times	for	tasks	t1	and
t2.	However,	the	elapsed	time	for	task	t3	is	extended	from	110	msec	withglobal
scheduling	 to	 130	 msec	 with	 partitioned	 scheduling,	 which	 is	 less	 than	 its
deadline	 of	 200	 msec.	 (The	 timing	 diagram	 for	 partitioned	 scheduling	 is	 not
depicted	and	is	left	as	an	exercise	for	the	reader).

These	 examples	 show	 how	 tasks	 can	 take	 advantage	 of	 an	 additional
processor	by	meeting	their	deadlines	earlier	than	on	the	single-processor	system
described	in	Section	17.1.5.	However,	it	is	often	the	case	that	tasks	cannot	take



full	 advantage	 of	 a	 second	 (or	 more)	 processor(s)	 because	 they	 are	 held	 up
waiting	for	a	scarce	resource	(such	as	shared	memory	or	I/O)	or	for	a	message
from	 another	 task.	 Furthermore,	memory	 contention	 can	 also	 negatively	 affect
the	performance	of	multicore	systems.



17.7.2	Performance	Analysis	of	Multiprocessor	Systems	with	Mutual
Exclusion

Consider	 next	 the	 case	 of	 the	 four	 tasks	 described	 in	 Section	 17.3.6	 (and
depicted	 on	 Figure	 17.2),	 in	which	 three	 of	 the	 tasks	 have	mutually	 exclusive
access	to	a	critical	section,	executing	on	a	dual-processor	system.	We	assume	the
same	worst-case	scenario	of	all	tasks	being	ready	to	execute	at	the	same	time.	In
this	 situation,	 the	 two	 highest	 priority	 tasks,	 ta	 and	 t1,	 execute	 in	 parallel	 on
CPUs	 A	 and	 B	 respectively,	 as	 depicted	 in	 Figure	 17.5.	 Task	 ta	 completes
execution	 on	 CPU	 A	 after	 4	 msec.	 However,	 because	 task	 t1	 has	 mutually
exclusive	access	to	its	critical	section	for	the	duration	of	its	execution,	neither	t2
nor	 t3	 can	 execute	 as	 they	 are	 both	 blocked	 waiting	 to	 enter	 their	 critical
sections;	 consequently,	 CPU	 A	 becomes	 idle.	When	 task	 t1	 leaves	 its	 critical
section	 just	before	completing	execution	on	CPU	B,	 task	 t2	 is	 then	unblocked,
starts	executing	on	CPU	A,	and	enters	 its	critical	section.	However,	 the	 lowest
priority	 task,	 t3,	 remains	 blocked	 and	 cannot	 take	 advantage	 of	 a	 free	 CPU.
When	task	t2	leaves	its	critical	section	before	completing	execution	on	CPU	A,	t3
is	then	unblocked,	starts	executing	on	CPU	B,	and	enters	its	critical	section.



Figure	17.5.	Timing	diagram	for	tasks	executing	on	a	dual-processor	system
with	mutual	exclusion.

This	 example	 shows	 that,	 with	 multiprocessor	 systems,	 there	 can	 be
situations	when	concurrent	 tasks	are	unable	 to	 take	 full	 advantage	of	 available
CPUs	because	the	tasks	are	blocked	waiting	for	scarce	resources.



17.7.3	Performance	Analysis	of	Multiprocessor	Systems	with	Event
Sequence	Analysis

Consider	next	applying	the	event	sequence	analysis	approach	to	tasks	executing
on	a	dual-processor	system.	This	example	uses	the	same	four	tasks	with	the	same
CPU	 times	 and	 periods	 as	 those	 described	 in	 Section	 17.3.6	 and	 depicted	 in
Figure	17.3.	However,	this	time	consider	the	situation	where	three	of	these	tasks
are	involved	in	an	event	sequence	in	which	the	tasks	execute	in	the	order	t1,	t2,
and	t3,	such	that	task	t1	is	awakened	by	an	external	event,	and	tasks	t2	and	t3	each
wait	for	a	message	from	their	predecessor	task	in	the	event	sequence.	As	before,
the	priority	assignment	is	ta	highest,	followed	respectively	by	the	tasks	t1,	t2,	and
t3.	The	execution	of	 these	four	 tasks	on	a	dual-processor	system	is	depicted	on
Figure	17.6	with	 the	worst-case	 scenario	of	all	 tasks	being	 ready	 to	execute	at
the	same	time.

In	this	situation,	the	two	highest	priority	tasks,	ta	and	t1,	start	executing	in
parallel	on	CPUs	A	and	B	respectively.	Task	ta	completes	execution	on	CPU	A
after	4	msec.	However,	because	tasks	t2	and	t3	are	blocked	waiting	for	messages,
neither	of	these	tasks	can	execute,	and	consequently	CPU	A	becomes	idle.	Just
before	completing	execution	on	CPU	B,	task	t1	sends	a	message	to	task	t2.	Task
t2	is	then	unblocked	and	executes	on	CPU	A.	However,	the	lower	priority	task,
t3,	remains	blocked	waiting	for	a	message	from	t2	and	cannot	take	advantage	of	a
free	CPU.	When	 task	 t2	 sends	 the	message	 to	 task	 t3,	 t3	 is	 then	unblocked	and
executes	on	CPU	B.



Figure	17.6.	Timing	diagram	for	tasks	in	an	event	sequence	executing	on	a
dual-processor	system.

As	with	the	example	in	the	previous	section,	this	example	of	applying	event
sequence	analysis	shows	 that,	with	multiprocessor	systems,	 there	are	situations
when	 concurrent	 tasks	 are	 unable	 to	 take	 full	 advantage	of	 available	CPUs,	 in
this	case	because	they	are	blocked	waiting	for	messages	from	other	tasks.



17.8	Estimation	and	Measurement	of
Performance	Parameters

Several	 performance	 parameters	 must	 be	 determined	 through	 estimation	 or
measurement	before	a	real-time	performance	analysis	can	be	carried	out.	These
are	 independent	variables	whose	values	are	 inputs	 to	 the	performance	analysis.
Dependent	 variables	 are	 variables	whose	values	 are	 estimated	by	 the	 real-time
scheduling	theory.

A	major	assumption	made	for	the	real-time	scheduling	is	that	all	 tasks	are
locked	 in	main	memory	so	 there	 is	no	paging	overhead.	Paging	overhead	adds
another	degree	of	uncertainty	and	delay	that	cannot	be	tolerated	in	hard	real-time
systems.

The	following	parameters	must	be	estimated	for	each	 task	 involved	 in	 the
performance	analysis:

a.	The	task's	period	Ti,	which	is	the	frequency	with	which	it	executes.
For	a	periodic	task,	the	period	is	fixed	(refer	to	Chapter	13	for	more	details
on	periodic	tasks).	For	an	aperiodic	task,	use	the	worst-case	(i.e.,	minimum)
external	event	inter-arrival	time	for	an	input	task	and	then	extrapolate	from
this	for	downstream	internal	tasks	that	participate	in	the	same	event
sequence.

b.	The	execution	time	Ci,	which	is	the	CPU	time	required	for	the
period.	At	design	time,	this	figure	is	an	estimate.	Estimate	the	number	of
source	lines	of	code	for	the	task,	and	then	estimate	the	number	of	compiled
lines	of	code.	Use	benchmarks	of	programs	developed	in	the	selected
source	language	executing	on	the	selected	hardware	with	the	selected
operating	system.	Compare	benchmark	results	with	the	size	of	the	task	to



estimate	compiled	code	execution	time.	When	the	task	has	been
implemented,	substitute	performance	measurements	of	the	task	executing
on	the	hardware	for	the	task	estimates.

CPU	system	overhead	parameters	are	also	needed	for	the	performance	analysis.
These	 parameters	 can	 be	 determined	 by	 performance	 measurements	 of
benchmark	programs.	These	programs	need	to	be	developed	in	the	programming
language	selected	for	 the	real-time	system,	executing	on	the	hardware	platform
selected	for	the	RT	system,	and	with	the	multitasking	operating	system	or	kernel
selected	for	the	RT	system.	The	following	system	overhead	parameters	must	be
measured:

a.	Context-switching	overhead.	The	CPU	time	for	the	operating	system	to
switch	the	CPU	allocation	from	one	task	to	another	(see	Chapter	3).

b.	Interrupt-handling	overhead.	The	CPU	time	required	to	handle	an
interrupt.

c.	Inter-task	communication	and	synchronization	overhead.	The	CPU
time	to	send	a	message	or	signal	an	event	from	a	source	task	to	a
destination	task.	This	will	depend	on	the	communication	and
synchronization	primitives	used	by	the	tasks	in	the	real-time	application.

d.	Memory	contention	in	multicore	systems.	The	system	overhead	due	to
memory	contention	between	tasks	executing	in	parallel	on	different
processors	needs	to	be	measured.

These	overhead	parameters	must	be	factored	into	the	computation	of	 task	CPU
time,	as	described	in	this	chapter	and	applied	in	the	next	chapter.



17.9	Summary
This	 chapter	 has	 described	 the	 performance	 analysis	 of	 software	 designs	 by
applying	real-time	scheduling	theory	to	a	concurrent	tasking	design	executing	on
single-processor	 or	 multiprocessor	 systems.	 This	 approach	 is	 particularly
appropriate	 for	 hard	 real-time	 systems	 with	 deadlines	 that	 must	 be	 met.	 This
chapter	has	described	two	approaches	for	analyzing	the	performance	of	a	design:
real-time	scheduling	theory	and	event	sequence	analysis.	The	two	approaches
were	 then	 combined.	 This	 chapter	 also	 briefly	 described	 advanced	 real-time
scheduling	 algorithms,	 including	 deadline-monotonic	 scheduling,	 dynamic
priority	 scheduling,	 and	 scheduling	 for	 multiprocessor	 systems.	 Because	 the
performance	 analysis	 is	 applied	 to	 a	 design	 consisting	 of	 a	 set	 of	 concurrent
tasks,	the	analysis	can	start	as	soon	as	the	task	architecture	has	been	designed,	as
described	 in	 Chapter	 13.	 It	 can	 then	 be	 refined	 as	 the	 real-time	 application
development	progresses	through	detailed	software	design	and	implementation.	A
detailed	 example	 of	 performance	 analysis	 of	 a	 real-time	 software	 design	 is
described	in	Chapter	18.	Other	examples	of	performance	analysis	are	described
in	the	case	studies	of	real-time	embedded	systems	in	Chapters	19	and	20.



18

Applying	Performance	Analysis	to
Real-Time	Software	Designs

◈

This	 chapter	 applies	 the	 real-time	 performance	 analysis	 concepts	 and	 theory
described	in	Chapter	17	to	a	real-time	embedded	system,	namely	the	Light	Rail
Control	 System.	 The	 complete	 case	 study	 is	 described	 in	 Chapter	 21.	 This
chapter	focuses	on	the	real-time	performance	analysis	using	real-time	scheduling
theory	and	event	sequence	analysis.

Sections	 18.1	 through	 18.3	 provide	 a	 detailed	 example	 of	 analyzing	 the
performance	 of	 the	 Light	 Rail	 Control	 System.	 Section	 18.1	 describes	 a
performance	 analysis	 using	 event	 sequence	 analysis.	 Section	 18.2	 describes	 a
performance	analysis	using	real-time	scheduling	theory.	Section	18.3	describes	a
performance	analysis	using	both	real-time	scheduling	theory	and	event	sequence
analysis.	Section	18.4	describes	design	restructuring	to	meet	performance	goals.



18.1	Example	of	Performance	Analysis
Using	Event	Sequence	Analysis

The	 example	 of	 performance	 analysis	 using	 event	 sequence	 analysis	 describes
three	time-critical	event	sequences	for	a	train	approaching	a	station,	arriving	at	a
station,	and	detecting	a	hazard.	Assume	that	the	first	case	to	be	analyzed	is	that
of	the	Approaching	Sensor	detecting	that	the	train	is	approaching	a	station	at
which	 it	must	 stop,	 followed	by	 the	Arrival	Sensor	detecting	 that	 the	 train
has	arrived	at	the	station.	Assume	also	that	the	train	is	operating	at	the	cruising
speed.	A	performance	requirement	is	that	the	system	must	respond	to	each	of	the
approaching	 sensor	 and	 arrival	 sensor	 input	 events	 within	 200	 msec.	 The
sequence	of	 internal	 events	 following	 the	 approaching	 sensor	 input	 is	depicted
by	the	event	sequence	on	the	timing	diagram	in	Figure	18.1,	in	which	there	are
two	 hardware	 devices	 and	 four	 software	 tasks	 shown	 with	 their	 appropriate
stereotypes	 (see	 Chapter	 13).	 Tasks	 that	 are	 not	 involved	 in	 this	 scenario	 are
excluded	from	the	figure.



Figure	18.1.	Event	sequence	timing	diagram	for	a	train	approaching	a	station.

Assume	 that	 the	 Train	 Control	 state	 machine	 is	 in	 Cruising	 state.
Consider	the	case	of	input	from	the	approaching	sensor.	The	event	sequence	is	as
follows,	with	the	CPU	time	to	process	each	event	given	in	parentheses	(where	Ci
is	the	CPU	time	required	to	process	event	i).

A0:	Approaching	Sensor	sends	an	Approached	event	(i.e.,
interrupt)	to	the	Approaching	Sensor	Input	task	to	indicate
that	the	train	is	approaching	a	station.

A1:	The	Approaching	Sensor	Input	task	receives	an	interrupt
from	the	Approaching	Sensor	and	reads	the	approaching	sensor
input.

A2:	Approaching	Sensor	Input	sends	an	Approached	station
message	to	Train	Control.



A3:	Train	Control	receives	the	message,	executes	its	state
machine,	and	changes	state	from	Cruising	to	Approaching.

A4:	Train	Control	sends	a	Decelerate	message	to	Speed
Adjustment.

A5:	Speed	Adjustment	receives	the	Decelerate	message	and
computes	the	deceleration	rate.

A6:	Speed	Adjustment	sends	a	Decelerate	message	with	the
deceleration	rate	to	the	Motor	Output	task.

A7:	The	Motor	Output	task	receives	the	message	and	converts	the
deceleration	rate	to	electric	motor	units	(e.g.,	volts)	and	computes
the	gradual	adjustment	required	to	the	external	motor.

A8:	Motor	Output	task	sends	the	electric	motor	adjustment	rate	to
Motor	Actuator.

Now	consider	the	event	sequence	following	input	from	the	arrival	sensor,	which
is	depicted	on	the	timing	diagram	in	Figure	18.2	and	is	described	as	follows:

B0:	Arrival	Sensor	sends	an	Arrival	event	(i.e.,	interrupt)	to	the
Arrival	Sensor	Input	task	to	indicate	that	the	train	is	entering	the
station.

B1:	The	Arrival	Sensor	Input	task	reads	the	arrival	sensor	input.

B2:	The	Arrival	Sensor	Input	task	sends	an	Arrived	at	station
message	to	Train	Control.

B3:	Train	Control	receives	the	message,	executes	its	state	machine,	and
changes	state	from	Approaching	to	Stopping.



(Equation
2)

B4:	Train	Control	sends	a	Stop	message	to	Speed	Adjustment.

B5:	Speed	Adjustment	receives	the	Stop	message.

B6:	Speed	Adjustment	sends	a	Stop	message	to	the	Motor	Output
task.

B7:	The	Motor	Output	task	receives	the	Stop	message.

B8:	Motor	Output	sends	a	Stop	command	to	Motor	Actuator	to	stop
the	train.

Table	18.1	depicts	each	task	in	the	Train	Subsystem	in	the	first	column	with	the
CPU	time	Ci	depicted	in	the	second	column.	Every	time	a	periodic	task	executes,
there	 could	be	 two	context	 switches,	 assuming	 that	 the	 executing	 task	has	one
context	switch	in	at	the	start	of	the	period	and	one	context	switch	out	at	the	end
of	 the	 period.	 For	 periodic	 tasks,	 the	 third	 column	 depicts	 the	 total	 execution
time	Cp	for	a	periodic	task,	which	is	the	CPU	time	Ci	plus	the	context-switching
time	 Cx	 before	 and	 after	 task	 execution,	 which	 is	 given	 by	 Equation	 1:	

(Equation	1)
For	tasks	in	the	event	sequence,	the	execution	time	for	a	task	must	account	for
both	 the	 context-switching	 time	 and	 the	 message	 communication	 time,	 as
depicted	in	the	fourth	column	for	the	tasks	in	the	Arrival	Sensor	event	sequence
and	in	the	fifth	column	for	the	tasks	in	the	Proximity	Sensor	event	sequence.	For
a	task	that	participates	in	an	event	sequence,	the	execution	time	Ce	is	the	sum	of
the	 CPU	 time	 Ci,	 context-switching	 time	 Cx	 before	 execution,	 and	 message
communication	 time	 Cm	 to	 send	 a	 message	 to	 the	 next	 task	 in	 the	 event
sequence,	which	is	given	by	Equation	2.	(Note	that	Cm	does	not	apply	to	the	last
task	in	the	event	sequence).

	Since	the	Approaching	Sensor	and	Arrival
Sensor	scenarios	are	very	similar	and	occur	in	sequence,	we	will



Figure
18.2.

consider	the	train	arrival	event	sequence	from	events	B1	through
B8,	which	is	more	time-critical	since	it	requires	the	train	to	stop	at
the	station.	The	event	sequence	diagram	(Figure	18.2)	shows	that
four	tasks	(Arrival	Sensor	Input,	Train	Control,	Speed
Adjustment,	and	Motor	Output)	are	required	to	support	the
arrival	sensor	external	event.	Assume	that	the	CPU	time	to	execute
event	Bi	is	Ci.	There	is	also	a	minimum	of	four	context	switches
required,	4*Cx,	where	Cx	is	the	context-switching	overhead,	as	well
as	three	message	transfers.

Event	sequence	timing	diagram	for	a	train	arriving	at	a
station.

The	total	CPU	time	for	the	tasks	in	the	arrival	event	sequence
(Ce)	 is	 the	 sum	 of	 CPU	 time	 for	 the	 four	 tasks	 in	 the	 event
sequence	 (C1,	 C3,	 C5,	 C7),	 plus	 CPU	 time	 for	 message
communication	 (C2,	 C4,	 C6)	 and	 context-switching	 overhead
(4*Cx):	

Assume	that	message	communication	overhead	Cm	is	the	same	in	all	cases.	The
times	C2,	C4,	 and	C6	 for	message	communication	 should	 therefore	be	equal	 to



Cm.	 The	 execution	 time	 Ce	 is	 thus	 equal	 to:	
(Equation	3)

A	second	event	 sequence	of	note	 is	depicted	 in	 the	 fifth	column	of	Table	18.1
and	 is	 for	 the	 tasks	 in	 the	 Proximity	 Sensor	 event	 sequence,	 which	 detects
hazards	ahead	on	the	rail	track	such	as	approaching	too	close	to	an	earlier	train,	a
hazard	signal	indicating	a	problem	with	the	rail	track,	or	a	vehicle	stopped	on	a
railroad	 crossing.	 The	 total	 CPU	 time	 for	 the	 tasks	 in	 the	 proximity	 event
sequence	is	based	on	the	four	tasks	in	the	event	sequence,	which	are	Proximity
Sensor	 Input,	 Train	 Control,	 Speed	 Adjustment,	 and	 Motor
Output,	 three	 of	which	 are	 also	 in	 the	 arrival	 event	 sequence.	 The	 execution

time	Cp	is	thus	equal	to:	 (Equation
4)
This	event	sequence	consists	of	the	following	events,	as	depicted	in	Figure	18.3:

P1,	P2:	The	Proximity	Sensor	Input	task	receives	an	interrupt
from	the	Proximity	Sensor	and	reads	the	proximity	sensor	input,
which	indicates	that	a	hazard	has	been	detected	ahead	of	the	train.

P3:	The	Proximity	Sensor	Input	task	sends	a	Hazard	Detected
message	to	Train	Control.

P4:	Train	Control	receives	the	message,	executes	its	state
machine,	and	changes	state	from	Cruising	to	Emergency	Stopping.

P5:	Train	Control	sends	an	Emergency	Stop	message	to	Speed
Adjustment.

P6,	P7:	Speed	Adjustment	receives	the	Emergency	Stop	message
and	sends	it	to	the	Motor	Output	task.



P8,	P9:	The	Motor	Output	task	receives	the	Emergency	Stop
message	and	outputs	the	Stop	command	to	Motor	Actuator	to
stop	the	train.

Figure	18.3.	Event	sequence	timing	diagram	for	a	hazard	detected.

Table	18.1.	Train	Subsystem	CPU	Times

Task Ci
(msec)

Periodic
tasks	(Ci

+	2*	Cx)
(msec)

Arrival	sensor
event	sequence
tasks	(Ci	+	Cx	+
Cm)	(msec)

Proximity	sensor
event	sequence
tasks(Ci	+	Cx+
Cm)(msec)

Approaching
Sensor	Input
(C0)

4 5

Arrival	Sensor
Input	(C1)

4 5 5

Train	Control 5 6 6 6



Train	Control
(C3)

5 6 6 6

Speed
Adjustment

(C5)

9 10 10 10

Motor	Output
(C7)

4 5 5 5

Message
communication
overhead	(Cm)

0.7

Context-
switching
overhead	(Cx)

0.3

Proximity
Sensor	Input
(C8)

4 5 5

Speed	Sensor
Input	(C9)

2 3

Location
Sensor	Input
(C10)

5 6

Train	Status
Dispatcher
(C11)

10 11

Train	Display
Output	(C12)

14 15



Train	Audio
Output	(C13)

11 12

Total	CPU
time	used	by
tasks	in	event
sequence

26 26



18.2	Example	of	Performance	Analysis
Using	Real-Time	Scheduling	Theory

This	 section	 applies	 the	 real-time	 scheduling	 theory	 to	 the	 Light	 Rail	 Control
System.	 The	 performance	 analysis	 starts	 by	 considering	 the	worst-case	 steady
state	in	which	the	train	is	in	motion	and	cruising	at	the	maximum	speed.	In	this
state,	several	periodic	tasks	execute	as	well	as	some	aperiodic	tasks.	In	the	case
of	 an	 aperiodic	 task,	 an	 equivalent	 period	 is	 assigned,	 which	 is	 the	minimum
inter-arrival	time	of	the	event	that	activates	the	task.

Table	18.2	depicts	the	real-time	scheduling	parameters	for	the	steady	state
periodic	 and	 aperiodic	 tasks.	 Table	 18.2	 depicts	 the	 period	 of	 each	 task	 Ti	 in
Column	3	and	the	CPU	time	required	by	the	task	Ci	in	Column	2.	The	CPU	time
for	 each	 periodic	 task	 includes	 the	 CPU	 time	 for	 two	 context	 switches,	 as
depicted	 in	Table	18.1.	Each	 task's	CPU	utilization	Ui,	which	 is	 the	 ratio	Ui	=
Ci⁄Ti,	is	depicted	in	Column	4	of	Table	18.2.	There	are	some	rounding	errors	in
the	computation	of	CPU	utilization	Ui	in	this	and	subsequent	tables.	The	periodic
and	aperiodic	tasks	are	described	next.

Speed	Sensor	Input.	It	is	assumed	that	this	task	is	a	periodic	task.	It	is
actually	aperiodic	because	it	is	activated	by	a	shaft	interrupt.	However,
the	interrupt	arrives	on	a	regular	basis,	every	shaft	rotation,	so	the	task	is
assumed	to	behave	as	a	periodic	task.	Assume	a	worst	case	of	6,000	rpm,
meaning	there	will	be	an	interrupt	every	10	msec,	which	therefore
represents	the	minimum	period	of	the	equivalent	periodic	task.	Because
this	task	has	the	shortest	period,	it	is	assigned	the	highest	priority.	Its
CPU	time	is	3	msec.



The	rate-monotonic	priorities	of	the	tasks	are	assigned	in	inverse	proportion
to	their	periods	(as	depicted	in	Column	5	of	Table	2),	such	that	higher	priorities
are	 allocated	 to	 tasks	 with	 shorter	 periods.	 Thus,	 the	 highest	 priority	 task	 is
Speed	 Sensor	 Input,	 which	 has	 a	 period	 of	 10	 msec.	 The	 next	 highest
priority	task	is	Location	Sensor	Input,	which	has	a	period	of	50	msec.	Next

Proximity	Sensor	Input.	This	task	has	a	period	of	100	msec	and	a	CPU
time	of	5	msec.

Train	Status	Dispatcher.	This	task	has	a	period	of	600	msec	and	a	CPU
time	of	11	msec.

Speed	Adjustment.	When	activated	under	automated	control,	this	task
executes	periodically	every	100	msec	to	compute	the	required	speed
value	and	has	a	CPU	time	of	10	msec.

Motor	Output.	This	task	is	activated	by	a	message	from	the	periodic
Speed	Adjustment	task.	It	is	therefore	assumed	that	the	Motor
Output	task	has	period	equal	to	that	of	Speed	Adjustment,	namely
100	msec,	and	executes	for	5	msec.

Location	Sensor	Input.	This	task	executes	aperiodically	with	an
equivalent	period	of	50	msec	and	has	a	CPU	time	of	6	msec.	It	executes
on	a	regular	basis	to	determine	the	location	of	the	train.

Train	Display	Output.	This	task	is	activated	by,	and	therefore	has	the
same	period	(600	msec)	as	Train	Status	Dispatcher.	Its	CPU	time	is	15
msec.

Train	Audio	Output.	This	task	is	also	activated	by,	and	therefore	has
the	same	period	(600	msec)	as	Train	Status	Dispatcher.	Its	CPU	time	is
12	msec.



highest	 priority	 is	 Proximity	 Sensor	 Input,	 which	 has	 a	 period	 of	 100
msec.	 Two	 other	 tasks	 have	 a	 period	 of	 100	msec:	Speed	Adjustment	 and
Motor	 Output.	 Even	 though	 Speed	 Adjustment	 sends	 messages	 that	 are
consumed	by	Motor	Output,	the	higher	priority	is	given	to	Motor	Output
because	it	interfaces	to	the	external	motor.	Priorities	are	next	assigned	to	Train
Status	 Dispatcher,	 Train	 Display	 Output,	 and	 Train	 Audio

Output	 tasks.	 Since	 these	 tasks	 all	 have	 the	 same	 priority,	 higher	 priority	 is
given	to	Train	Status	Dispatcher,	which	is	the	producer	of	the	messages
consumed	by	the	other	two	tasks.

Table	18.2.	Real-Time	Scheduling	Parameters:	Steady-State	Periodic	and
Aperiodic	Task	Parameters

Task CPU	time
Ci

Period
Ti

Utilization
Ui

Priority

Speed	Sensor	Input 3 10 0.30 1

Location	Sensor	Input 6 50 0.12 2

Proximity	Sensor	Input 5 100 0.05 3

Motor	Output 5 100 0.05 4

Speed	Adjustment 10 100 0.10 5

Train	Status	Dispatcher 11 600 0.02 6

Train	Display	Output 15 600 0.03 7

Train	Audio	Output 12 600 0.02 8

Total	Utilization	for	all
tasks

0.68



From	 Table	 18.2,	 the	 total	 utilization	 of	 the	 steady-state	 periodic	 and
aperiodic	tasks	is	0.68,	which	is	below	the	theoretical	worst-case	upper	bound	of
0.69	given	by	the	Utilization	Bound	Theorem.	Therefore,	according	to	the	rate-
monotonic	algorithm,	all	the	tasks	are	able	to	meet	their	deadlines.



18.3	Example	of	Performance	Analysis
Using	Real-Time	Scheduling	Theory	and

Event	Sequence	Analysis
Next,	consider	the	case	of	an	external	event,	such	as	that	from	the	approaching
sensor,	arrival	sensor,	or	proximity	sensor,	 triggering	an	event	sequence.	Since
the	approaching	sensor	event	occurs	a	significant	time	before	the	arrival	sensor
event,	 the	 approaching	 sensor	 event	 sequence	 and	 the	 arrival	 sensor	 event
sequence	 do	 not	 overlap	 in	 time.	 Because	 the	 two	 event	 sequences	 are	 very
similar	in	behavior,	only	one	of	them	needs	to	be	considered.	This	analysis	must
consider	the	tasks	in	the	event	sequence,	in	addition	to	the	steady-state	periodic
and	aperiodic	tasks	described	in	the	previous	section.	The	first	solution	uses	an
equivalent	event	sequence	task	to	replace	the	tasks	in	the	event	sequence.



18.3.1	Equivalent	Event	Sequence	Tasks

It	 is	 necessary	 to	 consider	 the	 impact	 of	 the	 additional	 load	 imposed	 by	 the
arrival	 sensor	 event	 sequence	 or	 the	 proximity	 sensor	 event	 sequence	 on	 the
steady-state	load	of	the	periodic	and	aperiodic	tasks.	This	is	done	by	considering
the	 impact	 of	 the	 tasks	 in	 each	 event	 sequence	 on	 the	 steady-state	 analysis
described	in	Section	18.1.	For	the	four	aperiodic	tasks	participating	in	the	arrival
sensor	event	sequence	(namely	Arrival	Sensor	Input,	Train	Control,
Speed	 Adjustment,	 and	 Motor	 Output)	 consider	 the	 equivalent	 aperiodic
task,	which	is	referred	to	as	the	event	sequence	task.

First	 consider	 an	 input	 from	 the	 arrival	 sensor.	As	 described	 in	 the	 event
sequence	analysis	and	shown	in	the	event	sequence	diagram,	the	tasks	required
to	process	this	input	are	Arrival	Sensor	Input,	Train	Control,	Speed
Adjustment,	 and	 Motor	 Output.	 Although	 four	 tasks	 are	 involved	 in	 the
event	 sequence,	 they	 have	 to	 execute	 in	 strict	 sequence	 because	 each	 task	 is
activated	by	a	message	sent	by	its	predecessor	in	the	sequence.	We	can	therefore
assume,	 to	 a	 first	 approximation,	 that	 the	 four	 tasks	 are	 equivalent	 to	 one
aperiodic	task	whose	CPU	time	is	Ce.	Ce	is	the	sum	of	the	CPU	times	of	the	four
individual	 tasks	 plus	message	 communication	 overhead	 and	 context-switching
overhead,	as	given	by	Equation	3.	The	equivalent	aperiodic	task	is	referred	to	as
the	arrival	event	sequence	task.	From	Equation	3	and	Table	18.1,	Ce	is	equal	to
26	msec.

From	the	real-time	scheduling	theory,	an	aperiodic	task	can	be	treated	as	a
periodic	 task	whose	 period	 is	 given	 by	 the	minimum	 inter-arrival	 time	 of	 the
aperiodic	requests.	Let	the	period	for	the	equivalent	periodic	event	sequence	task
be	Te.	Assume	that	Te	 is	also	 the	necessary	response	 time	 to	 the	arrival	sensor



input.	For	example,	if	Te	is	200	msec,	the	desired	response	to	the	external	event
from	the	arrival	sensor	is	200	msec.

Now	consider	the	second	event	sequence	task,	which	is	the	proximity	event
sequence	task.	This	event	sequence	is	initiated	by	the	proximity	sensor	detecting
a	 hazard	 on	 the	 track.	 However,	 an	 event	 sequence	 will	 only	 occur	 if	 the
Proximity	Sensor	Input	task	actually	detects	a	hazard	ahead;	if	it	does	not,
then	it	just	completes	executing	and	waits	for	the	next	timer	event.	If	a	hazard	is
detected,	then	an	input	from	the	proximity	sensor	can	be	treated	in	a	similar	way
to	the	arrival	event	sequence.	In	the	proximity	sensor	case,	the	tasks	in	the	event
sequence	 are	 Proximity	 Sensor	 Input,	 Train	 Control,	 Speed

Adjustment,	and	Motor	Output,	with	the	last	three	identical	to	those	for	the
arrival	sensor.	The	main	difference	is	that	the	Proximity	Sensor	Input	task
is	periodic,	with	a	period	of	100	msec,	and	hence	is	activated	more	frequently.
From	Table	18.1,	the	estimated	CPU	time	for	Proximity	Sensor	Input	of	5
msec.	 Thus,	 from	 Equation	 4	 and	 Table	 18.1,	 the	 CPU	 time	 to	 process	 input
from	 the	 proximity	 sensor	 is	 26	 msec.	 However,	 the	 period	 for	 Proximity
Sensor	Input	is	100	msec,	which	is	lower	than	the	arrival	sensor.	The	higher
sampling	 rate	 for	 the	 proximity	 sensor	 is	 to	 ensure	 the	 quick	 detection	 of
hazards,	which	are	unexpected,	in	comparison	to	train	arrival	at	a	station,	which
is	 expected.	 This	 allows	 approaching	 sensors	 to	 be	 placed	 at	 a	 preplanned
distance	from	each	station	to	allow	the	train	to	decelerate	to	a	slower	speed	and
allows	the	arrival	sensors	 to	be	placed	near	 the	entrance	to	 the	station	to	allow
the	train	to	stop	at	the	station.



18.3.2	Assigning	Rate-Monotonic	Priorities

Next,	 consider	 the	 real-time	 scheduling	 impact	 of	 adding	 each	 event	 sequence
task	 in	 turn	 on	 the	 steady-state	 situation	 previously	 considered.	 Table	 18.3
provides	 the	 real-time	 scheduling	parameters	 in	which	 the	 two	 event	 sequence
tasks	are	added	to	the	steady	state	tasks	from	Table	18.2.	Besides	the	CPU	time
and	period	for	each	periodic	 task	and	event	sequence	 task,	 in	columns	2	and	3
respectively,	 the	 data	 for	 three	 scenarios	 are	 provided.	 Columns	 4	 and	 5
respectively	 depict	 the	CPU	 utilization	 and	 priorities	 for	 tasks	 participating	 in
the	arrival	event	sequence.	Columns	6	and	7	provide	 the	same	 information	for
tasks	 in	 the	 proximity	 event	 sequence,	 while	 columns	 8	 and	 9	 provide	 this
information	 for	 tasks	 when	 the	 arrival	 and	 proximity	 event	 sequences	 occur
simultaneously.

When	 assigning	 a	 priority	 to	 the	 event	 sequence	 task,	 the	 task	 is	 initially
assigned	its	rate-monotonic	priority,	which	is	based	on	its	period.	First	consider
the	periodic	proximity	 event	 sequence	 task.	When	an	obstacle	 is	 detected,	 this
event	 sequence	 task,	 consisting	 of	 the	 four	 tasks	 starting	with	 the	Proximity
Sensor	Input	 task	 (in	Table	18.3),	which	 replaces	 the	Proximity	Sensor
Input	 task	 executing	 alone.	 The	 proximity	 event	 sequence	 task	 has	 the	 same
period	and	therefore	is	assigned	the	same	rate-monotonic	priority	as	Proximity
Sensor	Input	(the	third	highest	after	Speed	Sensor	Input)	and	has	a	CPU
time	of	26	msec.	Given	that	the	period	is	100	msec,	the	CPU	utilization	for	this
event	 sequence	 task	 is	0.26.	The	 total	CPU	utilization	of	 the	steady-state	 tasks
and	the	proximity	event	sequence	task	is	0.89	(column	6	in	Table	18.3),	which	is
well	above	the	worst-case	upper	bound	of	0.69	given	by	the	Utilization	Bound
Theorem.	Consequently,	the	proximity	event	sequence	task	is	likely	to	miss	its
deadline.



Table	18.3.	Real-Time	Scheduling	Parameters	with	Event	Sequencing	Tasks

Task CPU
time
Ci

Period
Ti

Arrival
event
sequence
utilization
Ua

Arrival
event
sequence
priority

Proximity
event
sequence
utilization
Up

Proximity
event
sequence
priority

Speed
Sensor
Input

3 10 0.30 1 0.30 1

Location
Sensor
Input

6 50 0.12 2 0.12 2

Proximity
Sensor
Input

5 100 0.05 3

Motor
Output

5 100 0.05 4 0.05 4

Speed
Adjustment

10 100 0.10 5 0.10 5

Train
Status
Dispatcher

11 600 0.02 7 0.02 6

Train
Display
Output

15 600 0.03 8 0.03 7

Train
Audio

12 600 0.02 9 0.02 8



Audio
Output

Arrival
Event
Sequence
Task

26 200 0.13 6

Proximity
Event
Sequence
Task

26 100 0.26 3

Total
Utilization
for	all	tasks

0.81 0.89

Next	consider	the	arrival	event	sequence	task,	which	is	aperiodic.	Because
this	 task	 has	 a	 longer	 period	 than	 five	 other	 steady-state	 tasks,	 namely	Speed
Sensor	Input,	Proximity	Sensor	Input,	Location	Sensor	Input,

Speed	Adjustment,	 and	Motor	Output,	 it	 is	given	a	 lower	 rate-monotonic
priority	than	these	five	tasks.	The	real-time	scheduling	parameters	for	this	case,
as	well	 as	 the	 assigned	 task	 priorities,	 are	 given	 in	Table	 18.3.	Given	 that	 the
arrival	 event	 sequence	 task	 has	 a	CPU	 time	Ce	 of	 26	msec	 and	 an	 equivalent
period	Te	of	200	sec,	the	task	CPU	utilization	is	0.13.	The	total	CPU	utilization
of	the	steady-state	tasks	(column	4	in	Table	18.3)	and	the	arrival	event	sequence
task	is	0.81,	which	is	also	above	the	worst-case	upper	bound	of	0.69	given	by	the
Utilization	 Bound	 Theorem.	 Consequently,	 the	 arrival	 event	 sequence	 task
could	also	miss	its	deadline	in	addition	to	all	the	periodic	tasks.

It	 should	 be	 noted	 that	 the	 impact	 of	 each	 event	 sequence	 task	 on	 the
steady-state	periodic	tasks	was	considered	separately.	What	would	the	impact	be
if	both	event	sequence	tasks	were	triggered	in	quick	succession?	This	analysis	is



depicted	 in	 columns	 8	 and	 9	 of	Table	 18.3.	 The	 total	CPU	utilization	 is	 1.02,
which	is	obviously	an	impossible	number	(more	than	100%)	and	well	above	the
utilization	 bound	 upper	 limit	 of	 0.69.	 Since	 rapid	 successive	 inputs	 from	 the
arrival	 and	 proximity	 sensors	 would	 be	 interleaved,	 this	 impact	 needs	 a	more
detailed	analysis.	A	more	detailed	 rate-monotonic	analysis	 is	given	 in	 the	next
section.



18.3.3	Detailed	Rate-Monotonic	Analysis

A	more	comprehensive	analysis	of	the	light	rail	control	problem	is	obtained	by
treating	each	of	the	tasks	in	the	event	sequences	separately	rather	than	together.
The	 CPU	 parameters	 for	 each	 task,	 including	 the	 individual	 tasks	 in	 the
proximity	and	arrival	event	sequences,	are	shown	in	Table	18.4,	 in	which	each
task	has	its	context-switching	and	message	communication	overhead	added	to	its
CPU	time.	Table	18.4	provides	the	CPU	time,	period,	and	utilization	(in	columns
2,	3,	and	4	respectively)	for	all	periodic	and	aperiodic	tasks.	All	the	tasks	in	the
event	sequence	are	treated	as	periodic	tasks	with	a	period	equal	to	the	minimum
inter-arrival	time	of	200	msec	for	the	tasks	in	the	arrival	event	sequence	and	100
msec	for	the	tasks	in	the	proximity	event	sequence.	However,	since	three	of	the
tasks	 (Train	 Control,	 Speed	 Adjustment,	 and	 Motor	 Output)	 are	 in
both	event	 sequences,	 this	worst-case	analysis	assigns	all	 three	 tasks	 the	 lower
period	of	100	msecs.

Table	18.4.	Real-Time	Scheduling:	Periodic	and	Aperiodic	Task	Parameters
(*tasks	in	event	sequence)

Task CPU
time
Ci

Period
Ti

Utilization
Ui

Rate-
monotonic
priorities
(Case	1)

Non-rate-
monotonic
priorities
(Case	2)

Speed
Sensor	Input

3 10 0.30 1 1

Location
Sensor	Input

6 50 0.12 2 2

Proximity
Sensor

5 100 0.05 3 4



Sensor
Input*

Motor
Output*

5 100 0.05 4 5

Speed
Adjustment*

10 100 0.10 6 7

Train	Status
Dispatcher

11 600 0.02 8 8

Train
Display
Output

15 600 0.03 9 9

Train	Audio
Output

12 600 0.02 10 10

Arrival
Sensor
Input*

5 200 0.03 7 3

Train
Control*

6 100 0.06 5 6

Total
Utilization
for	all	tasks

0.77

The	 detailed	 analysis	 initially	 assigns	 the	 rate-monotonic	 priority	 to	 each
task	 (case	 1	 in	 Table	 18.4).	 As	 before,	 Speed	 Sensor	 Input	 is	 given	 the
highest	 rate-monotonic	 priority	 because	 it	 has	 the	 shortest	 period	 of	 10	msec,
followed	 by	 Location	 Sensor	 Input.	 The	 third	 highest	 rate-monotonic
priority	 is	 Proximity	 Sensor	 Input	 (which	 initiates	 the	 proximity	 event



sequence)	since	 it	has	 the	next	shortest	period	of	100	msec.	Next	are	 the	 three
other	tasks	in	the	proximity	event	sequence,	namely	Train	Control,	Speed
Adjustment,	and	Motor	Output.	Because	these	three	tasks	participate	in	both
the	 arrival	 and	 proximity	 event	 sequences,	which	 have	 different	 periods,	 for	 a
worst-case	 analysis,	 the	 three	 tasks	 are	 assumed	 to	 have	 the	 shorter	 proximity
sensor	 period	 of	 100	 msec.	 In	 addition,	 Speed	 Adjustment	 and	 Motor
Output	also	execute	in	the	steady-state	situation	when	the	train	is	accelerating
or	 cruising	with	 a	 period	 of	 100	msec.	 Because	 all	 three	 tasks	 have	 the	 same
period	of	100	msec	as	Proximity	Sensor	Input,	they	are	assigned	the	same
rate-monotonic	 priority.	 The	 decision	 is	 made	 to	 give	 Motor	 Output	 the
highest	priority	of	 the	 three	 tasks	because	 it	outputs	 to	 the	motor,	 followed	by
Train	 Control,	 because	 it	 is	 the	 control	 task,	 and	 then	 Speed
Adjustment,	which	is	an	algorithm	task	with	the	longest	CPU	time	of	the	three.
Rate-monotonic	 priorities	 are	 then	 assigned	 to	 the	 remaining	 tasks,	 namely
Arrival	 Sensor	 Input	 with	 a	 period	 of	 200	 msec,	 Train	 Status

Dispatcher,	Train	Display	Output,and	Train	Audio	Output	 tasks,	all
three	of	which	have	a	period	of	600	msec.

From	 column	 4	 in	 Table	 18.4,	 the	 total	 utilization	 of	 these	 tasks	 is	 0.77,
which	 is	 above	 the	 theoretical	 worst-case	 upper	 bound	 of	 0.69	 given	 by	 the
Utilization	 Bound	 Theorem.	 Therefore,	 according	 to	 the	 rate-monotonic
algorithm,	not	all	the	tasks	will	be	able	to	meet	their	deadlines	in	the	worst	case
with	the	execution	of	the	tasks	in	both	the	proximity	and	arrival	event	sequences.



18.3.4	Assigning	Non-Rate-Monotonic	Priorities

The	detailed	 analysis	described	 in	 the	previous	 section	 assumed	 that	 each	 task
was	assigned	its	rate-monotonic	priority,	that	is,	priority	in	inverse	proportion	to
its	period.	The	major	concern	 is	 that	Arrival	Sensor	Input,	which	should
be	a	high-priority	input	task	to	respond	to	the	arrival	sensor	interrupt	in	a	timely
manner,	 is	 assigned	 a	 relatively	 low	 rate-monotonic	 priority	 because	 of	 its
relatively	 long	 period	 of	 200	 msec.	 A	 problem	 with	 giving	 the	 Arrival
Sensor	Input	task	its	rate-monotonic	priority	is	that	the	task	could	potentially
miss	 the	 arrival	 sensor	 interrupt	 if	 it	 has	 to	 wait	 for	 six	 higher-priority	 tasks
(Speed	 Sensor	 Input,	 Proximity	 Sensor	 Input,	 Speed

Adjustment,	 Train	 Control,	 Location	 Sensor	 Input,	 and	 Motor
Output)	to	execute.

Because	of	the	risk	of	missing	the	arrival	interrupt,	it	is	therefore	decided	to
raise	the	priority	of	the	Arrival	Sensor	Input	task	above	its	rate-monotonic
priority.	Assigning	the	Arrival	Sensor	Input	task	the	highest	priority	could
lead	to	Speed	Sensor	Input	missing	its	deadlines	because	it	is	also	interrupt-
driven	 and	 has	 a	much	 shorter	 period	 of	 10	msec.	 In	 addition,	 the	Location
Sensor	Input	 is	also	an	 input	 task	 that	 receives	 time-critical	external	 inputs.
To	avoid	delaying	these	two	input	 tasks,	 the	Arrival	Sensor	Input	 task	is
given	 a	 lower	 priority	 than	 these	 tasks	 but	 a	 higher	 priority	 than	 all	 the	 other
tasks,	 which	 is	 therefore	 the	 third	 highest	 priority.	 This	 means	 the	 Arrival
Sensor	Input	 task	is	given	a	higher	priority	 than	its	rate-monotonic	priority,
as	 shown	 in	 Table	 18.4	 (case	 2).	 The	 assignment	 of	 non-rate-monotonic
priorities	is	described	next.



18.3.5	Applying	Generalized	Real-Time	Scheduling	Theory	to	Tasks
with	Non-Rate-Monotonic	Priorities

To	carry	out	a	full	analysis	of	tasks	assigned	non-rate-monotonic	priorities,	it	is
necessary	 to	apply	 the	Generalized	Real-Time	Scheduling	Theory,	as	described
in	 Section	 17.3.	 Because	 of	 the	 assignment	 of	 non-rate-monotonic	 priorities,
each	 task	 must	 be	 checked	 explicitly	 against	 its	 upper	 bound	 to	 determine
whether	it	meets	its	deadline.	This	section	analyzes	the	performance	of	the	tasks
shown	in	Table	18.4	(case	2).

In	this	analysis,	Proximity	Sensor	Input	 is	considered	with	the	other
tasks	 in	 the	proximity	event	sequence	because	 it	 is	 important	 to	determine	 that
all	 four	 tasks	 complete	 before	 the	 100	 msec	 deadline.	 Similarly,	 Arrival
Sensor	Input	is	considered	with	the	other	tasks	in	the	arrival	event	sequence
in	order	to	determine	that	all	four	tasks	complete	before	the	200	msec	deadline.
Note	that	even	though	we	are	considering	the	four	tasks	together,	this	analysis	is
different	 from	 the	 equivalent	 event	 sequence	 task	 analysis	 given	 in	 Section
18.3.2	because	the	tasks	are	considered	separately	in	all	other	cases.

Performance	Analysis	of	Tasks	in	Proximity	Event	Sequence

Consider	 the	 four	 tasks	 in	 the	proximity	 event	 sequence	 (Proximity	Sensor
Input,	Train	Control,	Speed	Adjustment,	 and	Motor	Output)	 over
the	period	Te	of	100	msec.	The	objective	is	to	determine	that	the	four	tasks	will
complete	 execution	 before	 the	 100	msec	 deadline.	 It	 is	 necessary	 to	 apply	 the
Generalized	 Utilization	 Bound	 Theorem,	 and	 if	 necessary	 the	 Generalized
Completion	Time	Theorem,	to	consider	the	following	four	factors:

a.	Execution	time	for	the	tasks	in	the	event	sequence.	The	total	execution	time
for	the	four	tasks	in	the	event	sequence,	Ce	=	26	msec	and	Te	=	100	msec.



Execution	utilization	=	0.26.

b.	Preemption	time	by	higher-priority	tasks	with	shorter	periods,	i.e.,	less
than	100	msec,	the	period	of	the	tasks	in	the	event	sequence.	There	are	two	tasks
in	this	set.

c.	Preemption	by	higher-priority	tasks	with	longer	periods.	There	is	one	task
in	this	set,	namely	the	Arrival	Sensor	Input,	which	could	preempt	once	all
four	tasks	in	the	proximity	event	sequence,	namely	Proximity	Sensor
Input,	Train	Control,	Speed	Adjustment,	and	Motor	Output.

Speed	Sensor	Input,	with	a	period	of	10	msec,	can	preempt	any	of
the	four	tasks	a	maximum	of	ten	times	over	100	msec	for	a	total
preemption	time	of	10*3	msec	=	30	msec	and	preemption	utilization	of
0.3.

The	other	task	is	Location	Sensor	Input,	with	a	period	of	50	msec,
can	preempt	any	of	the	four	tasks	a	maximum	of	twice	over	100	msec	for
a	total	preemption	time	of	2*6	msec	=	12	msec	and	preemption	utilization
of	0.12.

Total	preemption	time	of	these	two	higher-priority	tasks	=	30	+	12	=	42
msec.

Total	preemption	utilization	of	these	two	higher-priority	tasks	in	the	100
msec	period	=	0.3	+	0.12	=	0.42.

Total	preemption	time	=	5	msec.

Total	preemption	utilization	during	the	100	msec	period	=	0.05.

Total	preemption	time	by	higher-priority	tasks	with	both	shorter	and
longer	periods	=	42	+5	=	47	msec.

Total	preemption	utilization	by	higher-priority	tasks	with	both	shorter



d.	Blocking	time	by	lower-priority	tasks.	Possible	blocking	of	Speed
Adjustment	task	by	tasks	that	access	the	shared	passive	entity	object	Train
Data,	namely	Speed	Sensor	Input,	Location	Sensor	Input,	and
Train	Status	Dispatcher.	The	first	two	of	these	tasks	have	already	been
accounted	for	in	factor	b.

After	 considering	 these	 four	 factors,	we	 now	 determine	 the	 total	 elapsed	 time
and	total	utilization:

The	 total	 utilization	 of	 0.84	 is	 greater	 than	 the	Generalized	Utilization	Bound
Theorem's	 upper	 bound	 of	 0.69.	 However,	 the	 more	 accurate	 timing	 analysis
using	 the	 Generalized	 Completion	 Time	 Theorem,	 which	 considers	 the	 actual
execution	time	of	the	tasks,	determines	that	the	four	tasks	in	the	proximity	event
sequence	all	meet	 their	 deadlines	because	 the	 total	 elapsed	 time	of	84	msec	 is
less	than	the	period	of	100	msec.

Performance	Analysis	of	Tasks	in	Arrival	Event	Sequence

The	 analysis	 for	 the	 tasks	 in	 the	 arrival	 event	 sequence	 (Arrival	 Sensor
Input,	Train	Control,	Speed	Adjustment,	and	Motor	Output)	is	also
carried	out	using	the	Generalized	Utilization	Bound	Theorem,	as	described	next.

and	longer	periods	during	the	100	msec	period	=	0.42	+	0.05	=	0.47.

Worst-case	blocking	time	of	Train	Status	Dispatcher	=	11	msec

Worst-case	blocking	utilization	during	the	100	msec	period	=	0.11

Total	elapsed	time	=	total	execution	time	+	total	preemption	time	+
worst-case	blocking	time	=	26	+	47	+	11	=	84	<	100

Total	utilization	=	execution	utilization	+	preemption	utilization	+	worst-
case	blocking	utilization	=	0.26	+	0.47	+	0.11	=	0.84	>	0.69



Consider	the	four	tasks	in	the	arrival	event	sequence	over	the	period	Te	of	200
msec.	Because	the	Arrival	Sensor	Input	is	assigned	a	higher	priority	than
its	rate-monotonic	priority,	in	order	to	respond	to	the	arrival	sensor	interrupt	in	a
timely	manner,	a	detailed	rate-monotonic	analysis	is	needed.

As	 before,	 the	 objective	 is	 to	 determine	 that	 the	 four	 tasks	 in	 the	 arrival
event	 sequence	 will	 complete	 execution	 before	 the	 200	 msec	 deadline.	 It	 is
necessary	to	apply	the	Generalized	Utilization	Bound	Theorem	and	consider	the
following	four	factors:

a.	Execution	time	for	the	tasks	in	the	event	sequence.	The	total	execution	time
for	the	four	tasks	in	the	event	sequence,	Ce	=	26	msec	and	Te	=	200	msec.
Execution	time	=	26	msec.	Execution	utilization	=	0.13.

b.	Preemption	time	by	higher-priority	tasks	with	shorter	periods,	i.e.,	less
than	200	msec,	the	period	of	the	tasks	in	the	event	sequence.	There	are	three
tasks	in	this	set.

Speed	Sensor	Input,	with	a	period	of	10	msec,	can	preempt	any	of
the	four	tasks	a	maximum	of	twenty	times	for	a	total	of	20*3	msec	=	60
msec	and	preemption	utilization	of	60/200	=	0.3.

Location	Sensor	Input,	with	a	period	of	50	msec,	can	preempt	any
of	the	four	tasks	a	maximum	of	four	times	over	200	msec	for	a	total
preemption	time	of	4*6	msec	=	24	msec	and	preemption	utilization	of
24/200	=	0.12.

Proximity	Sensor	Input,	with	a	period	of	100	msec,	can	preempt
three	of	the	four	tasks	a	maximum	of	twice	over	200	msec	for	a	total
preemption	time	of	2*5	msec	=	10	msec	and	preemption	utilization	of
10/200	=	0.05.



c.	Preemption	by	higher-priority	tasks	with	longer	periods.	There	are	no
such	tasks.

d.	Blocking	time	by	lower-priority	tasks.	Possible	blocking	of	Speed
Adjustment	task	by	tasks	that	access	the	shared	passive	entity	object	Train
Data,	namely	Speed	Sensor	Input,	Location	Sensor	Input,	and
Train	Status	Dispatcher.	The	first	two	of	these	tasks	have	already	been
accounted	for	in	factor	b.

After	 considering	 these	 four	 factors,	we	 now	 determine	 the	 total	 elapsed	 time
and	total	utilization:

The	 total	 utilization	 of	 0.66	 is	 less	 than	 the	 Generalized	 Utilization	 Bound
Theorem's	upper	bound	of	0.69,	so	the	four	tasks	in	the	event	sequence	all	meet
their	 deadlines.	 This	 result	 is	 confirmed	 by	 the	Generalized	Completion	 Time
Theorem.

Performance	Analysis	of	Highest	Priority	Tasks

Total	preemption	time	by	higher-priority	tasks	with	shorter	periods	=	60
+	24	+	10	=	94	msec.

Total	preemption	utilization	by	higher-priority	tasks	with	shorter	periods
=	0.3	+	0.12	+	0.05	=	0.47

Worst-case	blocking	time	of	Train	Status	Dispatcher	=	11	msec;

Worst-case	blocking	utilization	during	the	200	msec	period	=	0.06.

Total	elapsed	time	=	total	execution	time	+	total	preemption	time	+
worst-case	blocking	time	=	26	+	94	+11	=	131	<	200;

Total	utilization	=	execution	utilization	+	preemption	utilization	+	worst-
case	blocking	utilization	=	0.13	+	0.47	+	0.06	=	0.66	<	0.69.



To	 determine	whether	 the	 two	 highest	 priority	 tasks	 (Speed	Sensor	Input
and	Location	Sensor	Input)	 with	 the	 shorter	 periods	 of	 10	 and	 50	msec
respectively	 meet	 their	 deadlines,	 it	 is	 necessary	 to	 check	 preemption	 and
execution	times	during	the	50	msec	period.

a.	Execution	time	for	the	two	tasks.	In	the	50	msec	period,	Speed
Sensor	Input	will	execute	5	times	for	3	msec	each	time	while	Location
Sensor	Input	will	execute	once	for	6	msec.	Total	execution	time	=	5*3	+
6	=	21	msec.	Execution	utilization	=	0.3	+	0.12	=	0.42.

b.	Preemption	time	by	higher-priority	tasks	with	shorter	periods,	i.e.,
less	than	50	msec.	There	are	no	such	tasks.

c.	Preemption	by	higher-priority	tasks	with	longer	periods.	There	are	no
such	tasks.

d.	Blocking	time	by	lower-priority	tasks.	Possible	blocking	of	both
Speed	Sensor	Input	and	Location	Sensor	Input	tasks	by	tasks	that
access	the	shared	passive	entity	object	Train	Data,	namely	Speed
Adjustment	and	Train	Status	Dispatcher.

After	 considering	 these	 four	 factors,	we	 now	 determine	 the	 total	 elapsed	 time
and	total	utilization:

Worst-case	blocking	time	of	Speed	Adjustment	and	Train
Status	Dispatcher	=	10	+	11	=	21	msec;	assuming	each	task
executes	once	in	a	50	msec	period.

Worst-case	blocking	utilization	during	the	50	msec	period	=	21/50	=
0.42.

Total	elapsed	time	=	total	execution	time	+	total	preemption	time	+
worst-case	blocking	time	=	21	+	0	+	21	=	42	<	50;



The	 total	 utilization	 of	 0.84	 is	 greater	 than	 the	Generalized	Utilization	Bound
Theorem's	 upper	 bound	 of	 0.69.	 However,	 the	 more	 accurate	 timing	 analysis
using	the	Generalized	Completion	Time	Theorem	determines	that	the	two	high-
priority	tasks	with	the	shorter	periods	will	meet	their	deadlines	because	the	total
elapsed	time	of	42	msec	is	less	than	the	period	of	50	msec.

Performance	Analysis	of	Lowest	Priority	Tasks

The	remaining	tasks	that	need	to	be	analyzed	are	the	three	lowest	priority	tasks
that	 execute	with	 a	 600	msec	 period,	 namely	Train	Status	Dispatcher,
Train	Display	Output,	 and	Train	Audio	Output	 tasks.	Consider	 these
three	 tasks.	 These	 three	 tasks	 are	 the	 lowest-priority	 tasks	 and	 so	 will	 be
preempted	by	all	the	other	tasks:

a.	Execution	time	for	the	three	tasks.	In	the	600	msec	period,	each	task	will
execute	once.

b.	Preemption	time	by	higher-priority	tasks	with	periods	less	than	600	msec.
There	are	seven	tasks	with	higher	priorities	that	will	preempt	these	tasks.	Speed
Sensor	Input	will	execute	sixty	times	while	Location	Sensor	Input	will
execute	twelve	times.	Proximity	Sensor	Input,	Train	Control,
Speed	Adjustment,	and	Motor	Output	will	each	execute	six	times,	and
Arrival	Sensor	Input	will	execute	three	times.

Total	utilization	=	execution	utilization	+	preemption	utilization	+	worst-
case	blocking	utilization	=	0.42	+	0.0	+	0.42	=	0.84	>	0.69.

Total	execution	time	=	11	+	15	+12	=	38	msec.

Execution	utilization	=	0.02	+	0.03	+	0.02	=	0.07.



c.	Preemption	by	higher-priority	tasks	with	longer	periods.	There	are	no
such	tasks.

d.	Blocking	time	by	lower-priority	tasks.	Possible	blocking	of	Train	Status
Dispatcher	task	by	tasks	that	access	the	shared	passive	entity	object	Train
Data,	namely	Speed	Sensor	Input,	Location	Sensor	Input,	and
Speed	Adjustment.	However,	all	three	of	these	tasks	have	already	been
accounted	for	in	factor	b.

After	 considering	 these	 four	 factors,	 we	 now	 determine	 the	 total	 elapsed
time	and	total	utilization:

The	 total	 utilization	 of	 0.78	 is	 greater	 than	 the	Generalized	Utilization	Bound
Theorem's	 upper	 bound	 of	 0.69,	 so	 according	 to	 this	 theorem,	 the	 three	 tasks
could	 miss	 their	 deadlines.	 However,	 the	 Generalized	 Completion	 Time
Theorem,	which	considers	the	actual	execution	time	of	the	tasks,	shows	that	461
msec	out	of	600	msec	are	used,	so	that	the	three	tasks	do	meet	their	deadlines.

Total	utilization	is	=	0.30	+	0.12	+	0.05	+	0.06	+	0.10	+	0.05	+	0.03	=
0.71.

Total	preemption	time	=	60*3	+	12*6	+	6*5	+	6*6	+	6*10	+	6*5	+	3*5	=
423	msec.

Total	utilization	=	execution	utilization	+	preemption	utilization	=	0.07	+
0.71	=	0.78	>	0.69

Total	elapsed	time	=	total	execution	time	+	total	preemption	time	=	38	+
423	=	461	<	600



18.3.6	Applying	the	Generalized	Completion	Time	Theorem	to	Tasks
with	Non-Rate-Monotonic	Priorities

The	Generalized	Completion	Time	Theorem,	as	described	in	Section	17.3.6,	was
also	applied	to	evaluate	the	performance	of	the	multitasking	design	described	in
the	previous	section.	The	results	of	this	performance	analysis	are	depicted	on	the
timing	diagram	in	Figure	18.4,	which	shows	the	execution	of	the	seven	highest-
priority	tasks	in	Table	18.4	on	a	single	processor.

The	scenario	depicted	in	Figure	18.4	is	for	train	arrival	at	a	station	with	the
Arrival	Sensor	Input	task	initiating	an	arrival	event	sequence	(which	also
consists	 of	Train	Control,	Speed	Adjustment,	 and	Motor	Output)	 in
addition	to	the	tasks	Speed	Sensor	Input,	Location	Sensor	Input,	and
Proximity	Sensor	Input	(not	detecting	a	hazard).	Assume	a	worst	case	that
all	tasks	are	ready	to	execute	at	the	start	of	this	scenario,	except	that	the	tasks	in
the	arrival	event	sequence	must	execute	according	to	that	sequence.



Figure	18.4.	Timing	diagram	for	tasks	in	Train	Control	Subsystem	executing
on	single	CPU.

Speed	 Sensor	 Input	 is	 the	 highest-priority	 task,	 with	 a	 period	 of	 10
msec.	 Consequently,	 it	 executes	 first	 for	 3	 msec,	 as	 depicted	 in	 Figure	 18.4.
When	Speed	Sensor	Input	needs	to	execute,	it	preempts	all	other	tasks	and
thus	 always	meets	 its	 deadline.	 On	 completion,	 next	 to	 execute	 is	 the	 second
highest-priority	 task,	Location	Sensor	Input,	which	 executes	 for	 6	msec.
The	next	highest-priority	task	to	execute	is	Arrival	Sensor	Input,	which	is
the	first	task	in	the	arrival	event	sequence.	It	start	executing	for	1	msec	before	it
is	preempted	by	Speed	Sensor	Input	(at	the	start	of	its	second	period)	for	3
msec,	 after	 which	 Arrival	 Sensor	 Input	 resumes	 execution	 for	 the
remaining	4	msec	and	sends	a	message	to	Train	Control	before	terminating.
The	next	highest-priority	task,	Proximity	Sensor	Input,	then	executes	for	3
msec	before	it	is	in	turn	preempted	by	Speed	Sensor	Input	(third	period)	for
3	 msec,	 after	 which	 Proximity	 Sensor	 Input	 resumes	 execution	 for	 the
remaining	2	msec.	After	this,	Train	Control	(second	task	in	the	arrival	event
sequence)	 executes	 for	 5	 msec	 before	 being	 preempted	 by	 Speed	 Sensor
Input	(fourth	period)	for	3	msec.	Train	Control	then	resumes	execution	for
the	 remaining	 1	 msec	 and	 sends	 a	 message	 to	 Speed	 Adjustment	 before
terminating.	Next	 to	 execute	 is	Speed	Adjustment	 (third	 task	 in	 the	 arrival
event	sequence),	which	executes	for	6	msec	before	being	preempted	by	Speed
Sensor	Input	 (fifth	 period)	 for	 3	msec.	Speed	Adjustment	 then	 resumes
execution	for	the	remaining	4	msec	and	sends	a	message	to	Motor	Output	before
terminating.	Motor	Output	(fourth	and	last	task	in	the	arrival	event	sequence)	is
next	 to	 execute	 for	 3	 msec	 before	 being	 preempted	 by	 both	 Speed	 Sensor
Input	 (for	 its	 sixth	 period)	 and	 Location	 Sensor	 Input	 (for	 its	 second
period)	 for	3	msec	and	6	msec	 respectively.	After	 this,	Motor	Output	 resumes



execution	for	1	msec,	before	being	preempted	again	by	Speed	Sensor	Input
(seventh	period)	after	which	it	completes	the	last	msec.

In	conclusion,	 in	 this	scenario	 the	 total	elapsed	 time	(from	the	start	of	 the
scenario)	 for	 tasks	 in	 the	 arrival	 event	 sequence	 to	 complete	 execution	 is	 64
msec,	 during	 which	 time	 Speed	 Sensor	 Input	 executes	 seven	 times,
Location	Sensor	Input	 executes	 twice,	 and	Proximity	Sensor	Input
executes	once.	Thus,	all	four	tasks	in	the	arrival	event	sequence	complete	before
the	 200	 msec	 deadline.	 Similarly,	 if	 Proximity	 Sensor	 Input	 detected	 a
hazard	 it	would	 initiate	 the	 hazard	 detected	 event	 sequence,	which	would	 also
complete	execution	before	the	100	msec	deadline.	Note	that	the	timing	analysis
described	 in	 this	section	only	considers	 the	scenario	over	70	msec	whereas	 the
real-time	scheduling	analysis	in	the	previous	section	considered	the	elapsed	time
over	a	200	msec	period.



18.3.7	Performance	Analysis	of	Tasks	Executing	on	a	Multiprocessor
System

If	the	concurrent	tasks	in	the	software	design	are	to	execute	on	a	multiprocessor
system,	then	the	performance	can	be	analyzed	using	timing	diagrams	to	evaluate
the	impact	of	increasing	the	number	of	processors,	as	described	in	Section	17.7.

Consider	 the	 task	 in	 the	 event	 sequence	 described	 in	 Section	 18.3.6
executing	 on	 a	 dual-processor	 system,	 as	 depicted	 on	 the	 timing	 diagram	 in
Figure	18.5,	using	global	scheduling.	The	scenario	is	for	train	arrival	at	a	station
with	 the	Arrival	Sensor	Input	 initiating	an	arrival	event	sequence,	which
also	 consists	 of	 Train	 Control,	 Speed	 Adjustment,and	 Motor	 Output,
and	Proximity	Sensor	Input	 not	 detecting	 a	 hazard.	 As	 before,	 a	 worst-
case	scenario	is	assumed	in	which	all	tasks	are	ready	to	execute	at	the	start	of	the
scenario,	 except	 that	 the	 tasks	 in	 the	 arrival	 event	 sequence	 must	 execute
according	to	that	sequence.



Figure	18.5.	Timing	diagram	for	tasks	in	Train	Control	Subsystem	executing
on	two	CPUs.

With	a	dual-processor	system,	the	two	highest-priority	tasks	can	execute	in
parallel.	 Thus,	 this	 scenario	 starts	 with	 both	 Speed	 Sensor	 Input	 and
Location	 Sensor	 Input	 executing	 in	 parallel	 on	 CPU	 A	 and	 CPU	 B
respectively.	 Speed	 Sensor	 Input	 completes	 execution	 after	 3	 msec	 and
releases	CPU	A	for	the	highest-priority	ready	task,	which	is	Arrival	Sensor
Input.	 After	 executing	 for	 6	 msec,	 Location	 Sensor	 Input	 completes
execution	 and	 releases	 CPU	 B	 for	 the	 highest-priority	 ready	 task,	 which	 is
Proximity	Sensor	Input.	Arrival	Sensor	Input	 sends	a	message	 to
Train	Control	before	completing	execution	after	5	msec	and	releasing	CPU
A.	 Train	 Control	 is	 next	 to	 execute	 on	 CPU	 A	 for	 2	 msec	 before	 being
preempted	by	Speed	Sensor	Input	at	the	start	of	its	second	period	(elapsed
time	 of	 10	 msec).	 Proximity	 Sensor	 Input	 completes	 executing	 after	 6
msec	and	releases	CPU	B.	Train	Control	can	now	resume	execution	for	 its
remaining	 4	 msec	 on	 CPU	 B.	 Speed	 Sensor	 Input	 completes	 its	 second
execution	cycle	of	3	msec	and	releases	CPU	A,	which	becomes	idle	because	the
other	 tasks	 are	 blocked	 waiting	 for	 a	 message	 or	 for	 their	 period	 to	 elapse.
Train	Control	sends	a	message	to	the	next	task	in	the	event	sequence,	Speed
Adjustment,	before	completing	execution	and	releasing	CPU	B.	The	arrival	of
the	message	unblocks	Speed	Adjustment,	which	starts	executing	on	CPU	A
for	10	msec.	Speed	Sensor	Input	is	ready	to	execute	at	the	start	of	its	third
period	(elapsed	time	of	20	msec)	and	is	assigned	to	the	free	CPU	B,	on	which	it
executes	for	a	further	3	msec	before	releasing	the	CPU.	Just	before	completing
execution	for	10	msec,	Speed	Adjustment	sends	a	message	to	the	last	task	in
the	event	sequence,	Motor	Output,	which	immediately	starts	executing	on	the
free	CPU	B	for	5	msec.	At	elapsed	time	of	30	msec,	Speed	Sensor	Input	is



ready	to	execute	at	the	start	of	its	fourth	period	on	the	free	CPU	A	for	a	further	3
msec.	At	elapsed	time	of	31	msec,	Motor	Output	completes	its	execution	time
of	5	msec.

In	conclusion,	in	this	scenario	the	total	elapsed	time	of	the	four	tasks	in	the
arrival	 event	 sequence	 to	 complete	 execution	 is	 31	msec.	At	 this	 time,	Speed
Sensor	 Input	 is	 executing	 for	 the	 fourth	 time,	 while	 Location	 Sensor
Input	and	Proximity	Sensor	Input	have	both	completed	execution	once.
Thus,	all	 four	 tasks	in	 the	arrival	event	sequence	complete	 long	before	the	200
msec	 deadline,	 and	 the	 tasks	 that	 execute	 periodically	 also	 all	 meet	 their
deadlines.	Similarly,	if	Proximity	Sensor	Input	detected	a	hazard	it	would
initiate	 the	 hazard	 detected	 event	 sequence,	 which	 would	 also	 complete
execution	before	the	100	msec	deadline.

A	different	multiprocessing	performance	analysis	could	also	be	carried	out
using	partitioned	 scheduling,	 as	 described	 in	Chapter	 17.	A	caveat,	 as	 pointed
out	 in	 Section	 17.7,	 is	 that	 memory	 contention	 can	 negatively	 affect	 the
performance	of	multicore	systems.



(Equation
5)

18.4	Design	Restructuring
If	the	performance	analysis	determines	that	the	real-time	design	does	not	meet	its
performance	goals,	the	design	needs	to	be	restructured.	This	can	be	achieved	by
applying	the	task	clustering	criteria,	in	which	two	or	more	tasks	are	combined
to	execute	in	the	same	task.	In	particular,	temporal	task	clustering,	sequential
task	 clustering,	 and	multiple	 instance	 task	 inversion	 can	 be	 applied.	 This
could	potentially	reduce	the	task	overhead.

If	 there	 is	 a	 performance	 problem	 in	 the	 Light	 Rail	 Control	 System
example,	 one	 attempt	 at	 design	 restructuring	 is	 to	 apply	 sequential	 clustering.
Consider	 the	 case	 of	 the	 Train	 Control	 task	 sending	 a	 speed	 command
message	to	 the	Speed	Adjustment	 task,	which	in	 turn	sends	speed	messages
to	the	Motor	Output	 task.	These	three	tasks	could	be	combined	into	one	task
using	 sequential	 clustering,	 the	 clustered	 Train	 Control	 task	 with	 passive
objects	 for	 Speed	 Adjustment	 and	 Motor	 Output.	 This	 eliminates	 the
message	 communication	overhead	between	 these	 tasks,	 as	well	 as	 the	 context-
switching	 overhead.	 Let	 the	 CPU	 time	 for	 the	 clustered	 task	 be	 Cv.	 Then,
referring	to	Table	18.1:

The	CPU	time	for	the	two	tasks	in	the	new	event	sequence	Cee	is	now
given	by	 (Equation	6)
It	 is	 interesting	 to	 compare	Equation	 6	 (with	 two	 tasks	 in	 the	 event	 sequence)
with	 Equation	 3	 in	 Section	 18.1	 (with	 four	 tasks	 in	 the	 event	 sequence):	 the
message	communication	overhead	is	reduced	from	3*Cm	to	Cm,	and	the	context-
switching	 overhead	 is	 reduced	 from	4*Cx	 to	 2*Cx.	Given	 the	 estimated	 timing



parameters	in	Table	18.1	and	substituting	for	them	in	Equations	3	and	6	results
in	 a	 reduction	 of	 total	 CPU	 time	 from	 26	 msec	 to	 24	 msec.	 If	 the	 message
communication	 and	 context-switching	 overhead	 times	were	 larger,	 the	 savings
would	 be	 more	 substantial.	 However,	 if	 the	 overhead	 times	 were	 shorter,	 the
savings	would	be	less.

A	performance	study	measuring	performance	of	multitasking	on	multicore
systems	(Albassam	and	Gomaa	2014)	showed	that,	although	less	necessary	than
in	 earlier	 systems,	 there	 are	 still	 multitasking	 situations,	 when	 there	 are
potentially	 a	 large	 number	 of	 tasks,	 where	 task	 clustering	 is	 useful	 with
multicore	systems.



18.5	Summary
This	 chapter	 has	 described	 a	 detailed	 example	 of	 how	 to	 analyze	 the
performance	 of	 a	 real-time	 software	 design	 by	 applying	 real-time	 scheduling
theory	 and	 event	 sequence	 analysis.	 A	 detailed	 performance	 analysis	 was
described	 of	 the	 Train	 Control	 subsystem	 of	 the	 Light	 Rail	 Control	 System,
showing	a	progressively	more	detailed	analysis.	The	case	study	of	the	design	of
this	 real-time	embedded	system	is	given	 in	Chapter	21.	Other	case	studies	 that
have	examples	of	analyzing	the	performance	of	concurrent	real-time	designs	are
the	Microwave	Oven	Control	System,	described	in	Chapter	19,	and	the	Railroad
Crossing	Control	System,	described	in	Chapter	20.



Part	IV
◈

Real-Time	Software	Design	Case
Studies	for	Embedded	Systems
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Microwave	Oven	Control	System
Case	Study

◈

This	chapter	describes	a	case	 study	 for	a	microwave	oven	control	 system.	The
software	design	for	this	embedded	system	is	typical	of	many	consumer	products.
Thus,	 the	 microwave	 oven	 embedded	 system	 interfaces	 with	 the	 external
environment	by	means	of	several	sensors	and	actuators,	supports	a	simple	user
interface,	keeps	track	of	time,	and	provides	centralized	control	that	necessitates
the	design	of	a	state	machine.	As	the	microwave	oven	is	an	embedded	system,
the	 design	 approach	 benefits	 from	 starting	 with	 a	 systems	 engineering
perspective	of	the	total	hardware/software	system	before	the	software	modeling
and	design.

The	problem	is	described	in	Section	19.1.	Section	19.2	describes	structural
modeling	 of	 the	microwave	 oven	 embedded	 system,	 in	 which	 the	 system	 and
software	context	block	definition	diagrams	are	developed.	Section	19.3	describes
the	use	case	model	for	the	microwave	oven	system.	Section	19.4	describes	how
the	object	and	class	structuring	criteria	are	applied	 to	 this	system.	Section	19.5
describes	 the	design	of	 the	state	machines	 for	controlling	 the	microwave	oven.
Section	 19.6	 describes	 how	 dynamic	 interaction	 modeling	 is	 used	 to	 develop
sequence	 diagrams	 from	 the	 use	 cases.	 Section	 19.7	 describes	 the	 design



modeling	 for	 the	 microwave	 oven	 software	 system,	 which	 is	 designed	 as	 a
concurrent	 component-based	 software	 architecture	 based	 on	 architectural
structure	 and	 communication	 patterns.	 Section	 19.8	 describes	 the	 performance
analysis	 of	 the	 real-time	 design.	 Section	 19.9	 describes	 the	 design	 of
components,	 interfaces,	 and	 connectors	 of	 the	 component-based	 software
architecture.	Section	19.10	describes	detailed	software	design	and	Section	19.11
describes	system	deployment.



19.1	Problem	Description
The	 microwave	 oven	 has	 input	 buttons	 for	 selecting	 Cooking	 Time,	 Start,
Minute	Plus,	Time	of	Day,	and	Cancel,	as	well	as	a	numeric	keypad.	It	also	has
a	display	to	show	the	cooking	time	left	and	time	of	day.	In	addition,	the	oven	has
a	microwave	heating	element	for	cooking	the	food,	a	door	sensor	to	sense	when
the	door	 is	open,	and	a	weight	 sensor	 to	detect	 if	 there	 is	an	 item	 in	 the	oven.
Cooking	is	only	permitted	when	the	door	is	closed	and	when	there	is	something
in	the	oven.	The	oven	has	several	actuators.	Besides	 the	heating	element,	 there
are	 light,	 beeper,	 and	 turntable	 actuators.	 The	 microwave	 oven	 displays	 the
cooking	 time,	 the	 time-of-day	 clock,	 as	 well	 as	 messages	 to	 the	 user	 such	 as
prompts	and	warning	messages.

To	 allow	 for	 international	 sales,	 the	microwave	 oven	 system	 needs	 to	 be
configurable.	 In	 particular,	 the	 display	 language	 and	 the	 type	 of	 time-of-day
clock,	 twelve-or	 twenty-four-hour	 clock,	 must	 be	 selected	 at	 system
configuration	(generation)	time.



19.2	Structural	Modeling
An	important	step	in	system	and	software	modeling	is	to	determine	the	boundary
of	the	system.	Using	a	system	engineering	modeling	approach,	the	first	step	is	to
develop	a	 conceptual	 structural	model	of	 the	problem	domain,	 from	which	 the
system	 and	 software	 context	 block	 definition	 diagrams	 are	 developed.	 These
diagrams	 define	 the	 boundary	 of	 the	 total	 (hardware/software)	 system	 and
software	system	respectively.	SysML	block	definition	diagrams	are	used	for	this
structural	modeling	of	the	system.



19.2.1	Conceptual	Structural	Model	of	Problem	Domain

The	 real-world	 entities	 that	 compose	 the	Microwave	Oven	 Embedded	 System
are	determined	by	structural	modeling	of	 the	problem	domain.	The	microwave
oven	contains	many	real-world	devices,	including	several	sensors	and	actuators,
which	interact	with	the	external	environment.	The	conceptual	structural	model	of
the	problem	domain	is	depicted	on	a	block	definition	diagram	in	Figure	19.1.

The	Microwave	Oven	Embedded	System	is	modeled	as	a	composite	block
with	 the	 stereotype	 «embedded	 system»,	which	 is	 composed	 of	 several	 blocks
including	sensors	and	actuators.	The	oven	is	composed	of	three	input	devices:	a
door	 sensor,	which	 senses	when	 the	 door	 is	 opened	 and	 closed	 by	 the	 user,	 a
weight	sensor	 to	weigh	food,	and	a	keypad	for	entering	user	commands.	There
are	 five	 output	 devices:	 a	 heating	 element	 for	 cooking	 food,	 a	 lamp	 that	 is
switched	 on	 during	 cooking	 and	when	 the	 door	 is	 open,	 a	 turntable	 that	 turns
during	 cooking,	 a	 beeper	 that	 beeps	 when	 the	 food	 is	 cooked,	 and	 an	 oven
display	for	displaying	information	and	prompts	to	the	user.	There	is	also	a	timer
block,	namely	the	real-time	timer.

Figure	19.1.	Conceptual	structural	model	for	the	microwave	oven	embedded
system	–	SysML	block	definition	diagram.



19.2.2	System	Context	Model

The	system	context	model,	which	is	also	referred	to	as	a	system	context	diagram,
is	 determined	 from	 the	 structural	 model	 of	 the	 problem	 domain.	 The	 system
context	 diagram	 defines	 the	 boundary	 between	 the	 total	 hardware/software
system	 and	 the	 external	 environment,	 which	 is	 modeled	 as	 external	 blocks	 to
which	 the	 system	has	 to	 interface.	The	context	model	 is	depicted	on	a	SysML
block	definition	diagram	(Figure	19.2),	which	shows	the	embedded	system,	the
external	blocks,	and	multiplicity	of	the	associations	between	the	external	blocks
and	the	system.	The	Microwave	Oven	Embedded	System	is	modeled	as	a	single
composite	 block	 and	 is	 labelled	 with	 the	 stereotypes	 «embedded	 system»
«block».	 The	 system	 context	 diagram	 for	 the	 Microwave	 Oven	 Embedded
System	is	quite	simple,	as	there	is	only	one	external	entity,	the	microwave	oven
user	 (depicted	 as	 an	 actor),	 which	 has	 a	 one-to-one	 association	 with	 the
embedded	system	block	Microwave	Oven	Embedded	System.	The	reason	is	that
the	 embedded	 system	 is	 a	 hardware/software	 system,	 which	 contains	 all	 the
hardware	microwave	sensors	and	actuators,	and	the	physical	timer.

Figure	19.2.	System	context	diagram	for	the	microwave	oven	embedded
system	–	SysML	block	definition	diagram.



19.2.3	Software	System	Context	Model

The	 software	 system	 context	 diagram	 for	 the	 software	 system,	 namely	 the
Microwave	Oven	System,	is	depicted	in	Figure	19.3.	The	user	from	the	system
context	 diagram	 is	 replaced	 on	 the	 software	 system	 context	 diagram	 by	 the
external	 input	 devices	 through	 which	 the	 user	 interacts	 with	 the	 system,	 the
external	 output	 devices	 that	 are	 controlled	 by	 the	 software	 system,	 and	 the
external	timer	that	provides	timer	events	for	the	system.

Figure	19.3.	Software	context	diagram	for	the	microwave	oven	software
system.

Each	 external	 block	 on	 the	 software	 context	 diagram	 is	 depicted	 with	 a
stereotype	that	represents	the	role	of	the	external	device.	In	this	case	study,	Door
Sensor,	Weight	Sensor,	and	Keypad	are	all	external	input	devices.	Heating
Element,	 Lamp,	 Turntable,	 Beeper,	 and	 Display	 are	 external	 output



devices.	 There	 is	 also	 an	 external	 timer	 called	Timer.	 The	 external	 blocks	 all
have	a	one-to-one	association	with	the	software	system	aggregate	block.



19.3	Use	Case	Modeling
As	described	in	Chapter	6,	use	case	modeling	can	be	applied	at	 the	systems	or
software	 engineering	 level.	 In	 the	 former	 case,	 the	 user	 is	 the	 primary	 actor,
whereas	 in	 the	 latter	 case,	 the	 various	 I/O	 devices	 are	 the	 actors.	 For	 this
problem,	 we	 decide	 to	 use	 a	 combination	 of	 the	 systems	 engineering	 and
software	 engineering	 approach	 for	 the	 use	 case	 model.	 In	 particular,	 from	 a
systems	 engineering	 perspective,	we	 consider	 the	 user	 as	 an	 actor	 and	 not	 the
various	input	devices	(in	particular	the	door	and	weight	sensors,	and	keypad)	he
or	 she	 uses.	 From	 a	 software	 engineering	 perspective,	 the	 timer	 is	 also
considered	an	actor.	This	is	because	the	timer	plays	a	very	important	role	in	the
use	case	model	as	it	counts	down	the	cooking	time	and	notifies	the	system	when
the	cooking	time	has	elapsed.

The	 functionality	 of	 the	microwave	 oven	 system	 is	 captured	 by	 three	 use
cases,	Cook	Food,	Set	Time	of	Day,	and	Display	Time	of	Day.	The
use	case	model	is	depicted	on	the	use	case	diagram	in	Figure	19.4.	The	User	is
the	primary	actor	for	the	Cook	Food	and	Set	Time	of	Day	use	cases,	and	a
secondary	 actor	 for	 the	Display	Time	of	Day	 use	 case.	 The	Timer	 is	 the
primary	actor	for	 the	Display	Time	of	Day	use	case	and	a	secondary	actor
for	the	Cook	Food	use	case.



Figure	19.4.	Use	case	model	for	the	microwave	oven	software	system.



19.3.1	Cook	Food	Use	Case

The	Cook	Food	 use	 case	 is	 the	 primary	 use	 case	 of	 the	 system,	 because	 the
description	 of	 the	main	 and	 alternative	 sequences	 of	 the	 use	 case	 address	 the
different	 scenarios	 for	cooking	 food	 in	 the	oven.	The	user	 is	 the	primary	actor
because	this	actor	initiates	the	use	case	by	opening	the	door	and	putting	the	food
in	the	oven.	The	timer	is	a	secondary	actor	because	it	counts	down	the	cooking
time	and	notifies	 the	 system	when	 the	 time	has	elapsed.	 In	addition,	 there	 is	 a
nonfunctional	configuration	requirement,	namely	the	choice	of	display	language.

Use	case:	Cook	Food.
Summary:	 User	 puts	 food	 in	 oven,	 and	 microwave	 oven	 cooks

food.
Actors:	User	(primary),	Timer	(secondary).
Precondition:	Microwave	oven	is	idle.
Main	sequence:

1.	User	opens	the	door.

2.	System	switches	on	the	oven	light.

3.	User	puts	food	in	the	oven	and	closes	the	door.

4.	System	switches	off	the	oven	light.

5.	User	presses	the	Cooking	Time	button.

6.	System	prompts	for	cooking	time.

7.	User	enters	cooking	time	on	the	numeric	keypad	and	presses	Start.



8.	System	starts	cooking	the	food,	starts	the	turntable,	and	switches	on	the
light.

9.	System	continually	displays	the	cooking	time	remaining.

10.	Timer	notifies	the	system	when	the	cooking	time	has	elapsed.

11.	System	stops	cooking	the	food,	switches	off	the	light,	stops	the	turntable,
sounds	the	beeper,	and	displays	the	end	message.

12.	User	opens	the	door.

13.	System	switches	on	the	oven	light.

14.	User	removes	the	food	from	the	oven	and	closes	the	door.

15.	System	switches	off	the	oven	light	and	clears	the	display.

Alternative	 sequences:	 Step	 3:	 User	 presses	 Start	 when	 the	 door	 is	 open.
System	does	not	start	cooking.

Step	5:	User	presses	Start	when	the	door	is	closed	and	the	oven	is	empty.
System	does	not	start	cooking.

Step	5:	User	presses	Start	when	the	door	is	closed	and	the	cooking	time	is
equal	to	zero.	System	does	not	start	cooking.

Step	5:	User	presses	Minute	Plus,	which	results	in	the	system	adding	one
minute	 to	 the	 cooking	 time.	 If	 the	 cooking	 time	was	 previously	 zero,	System
starts	cooking,	starts	the	timer,	starts	the	turntable,	and	switches	on	the	light.

Step	7:	User	opens	door	before	pressing	the	Start	button.	System	switches
on	the	light.

Step	9:	User	presses	Minute	Plus,	which	results	in	the	system	adding	one
minute	to	the	cooking	time.



Step	9:	User	opens	door	during	cooking.	System	stops	cooking,	 stops	 the
turntable,	and	stops	the	timer.	The	user	closes	the	door	(system	then	switches	off
the	light)	and	presses	Start;	System	resumes	cooking,	resumes	the	timer,	starts
the	turntable,	and	switches	on	the	light.

Step	 9:	 User	 presses	 Cancel.	 System	 stops	 cooking,	 stops	 the	 timer,
switches	off	 the	 light,	and	stops	 the	 turntable.	User	may	press	Start	 to	 resume
cooking.	Alternatively,	user	may	press	Cancel	again;	system	then	cancels	timer
and	clears	display.

Configuration	requirement:	Name:	Display	Language.
Description:	 There	 is	 a	 choice	 of	 language	 for	 displaying	messages.	 The

default	is	English.	Alternative	mutually	exclusive	languages	are	French,	Spanish,
German,	and	Italian.

Postcondition:	Microwave	oven	has	cooked	the	food.



19.3.2	Set	Time	of	Day	Use	Case

Set	 Time	 of	 Day	 and	 Display	 Time	 of	 Day	 are	 separate	 use	 cases
because	 they	 have	 different	 primary	 actors	 and	 separate	 sequences	 of
interactions.	The	user	is	the	only	actor	for	the	Set	Time	of	Day	use	case.	The
Set	Time	of	Day	use	case	also	has	a	configuration	requirement	relating	to	the
type	of	clock:	twelve-hour	or	twenty-four-hour.

Use	case:	Set	Time	of	Day.
Summary:	User	sets	time-of-day	clock.
Actor:	User.
Precondition:	Microwave	oven	is	idle.
Main	sequence:

1.	User	presses	Time	of	Day	(TOD)	button.

2.	System	prompts	for	time	of	day.

3.	User	enters	the	time	of	day	(in	hours	and	minutes)	on	the	numeric	keypad.

4.	System	stores	and	displays	the	entered	time	of	day.

5.	User	presses	Start.

6.	System	starts	the	time-of-day	timer.

Alternative	 sequences:	 Lines	 1,	 3:	 If	 the	 oven	 is	 busy,	 the	 system	 will	 not
accept	the	user	input.

Line	5:	The	user	may	press	Cancel	 if	 the	 incorrect	 time	was	entered.	The
system	clears	the	display.

Configuration	requirement:	Name:	Twelve-/Twenty-Four-Hour	Clock.



Description:	 There	 is	 a	 choice	 of	 whether	 the	 TOD	 clock	 display	 is	 a
twelve-hour	clock	(U.S.	civilian	style)	or	a	twenty-four-hour	clock	(U.S.	military
and	 European	 style).	 The	 default	 of	 these	 two	 alternatives	 is	 the	 twelve-hour
clock.

Postcondition:	TOD	clock	has	been	set.



19.3.3	Display	Time	of	Day	Use	Case

The	timer	is	the	primary	actor	for	the	Display	Time	of	Day	use	case,	and	the
user	 is	 the	 secondary	 actor.	This	 use	 case	 executes	periodically,	 every	 second,
when	triggered	by	the	timer	actor.

Use	case:	Display	Time	of	Day.
Summary:	System	displays	time	of	day.
Actors:	Timer	(primary	actor),	User	(secondary	actor).
Precondition:	TOD	clock	has	been	set	(by	Set	Time	of	Day	use

case).
Main	sequence:

1.	Timer	notifies	system	that	one	second	has	elapsed.

2.	System	increments	TOD	clock	every	second,	adjusting	for	minutes	and
hours.

3.	System	updates	the	display	with	time	of	day	every	minute.

Postcondition:	 TOD	 clock	 has	 been	 updated	 (every	 second)	 and	 time	 of	 day
displayed	(every	minute).



19.4	Object	and	Class	Structuring
The	next	step	is	to	determine	the	software	classes	and	objects	needed	to	realize
the	 use	 cases.	 The	 software	 system	 context	 diagram	 for	 an	 embedded	 system
also	helps	with	this	step	as	the	type	of	each	external	device	helps	determine	the
software	 class	 that	 needs	 to	 interface	 to	 it.	 The	 software	 classes	 are	 primarily
determined	 by	 consideration	 of	 the	 Cook	 Food	 use	 case.	 The	 classes	 are
categorized	according	to	the	object	and	class	structuring	criteria.	As	described	in
Chapter	8,	it	 is	assumed	that	all	classes	except	for	entity	classes	are	concurrent
and	are	therefore	modeled	as	active	(i.e.,	concurrent)	classes.

The	software	input	classes	are	determined	by	consideration	of	the	external
device	classes	on	the	software	system	context	diagram.	In	this	case	study,	Door
Sensor	Input,	Weight	Sensor	Input,	and	Keypad	Input	are	all	software
input	classes	 that	communicate	with	 the	corresponding	external	device	classes.
Heating	 Element	 Output,	 Lamp	 Output,	 Turntable	 Output,

Beeper	Output,	and	Oven	Display	Output	are	software	output	classes	that
communicate	 with	 the	 corresponding	 external	 output	 devices.	 Clock	 is	 an
external	 timer	 that	 appears	 on	 the	 context	 diagram.	 A	 software	 timer	 object,
namely	Oven	Timer,	receives	timer	events	from	Clock.	Oven	Timer	needs
to	keep	track	of	the	cooking	time	remaining	and	when	the	cooking	time	expires,
as	well	as	the	time	of	day.

There	is	also	a	need	for	an	entity	class	to	store	microwave	oven	data,	such
as	the	cooking	time,	which	is	called	Oven	Data.	In	addition,	because	there	is	a
need	to	provide	display	prompts	to	the	user,	configurable	in	different	languages,
the	decision	 is	made	 to	 separate	 the	 textual	 prompts	 from	 the	Oven	Display
Output	object.	The	prompts	are	stored	in	an	entity	class	called	Oven	Prompts.



Finally,	because	of	the	complex	sequencing	and	control	required	for	the	oven,	a
state	dependent	control	class	is	required	–	Microwave	Oven	Control	–	which
executes	 the	 state	 machine	 for	 the	 oven.	 The	 software	 classes	 are	 therefore
categorized	as	follows:

Input	classes:

Door	Sensor	Input

Weight	Sensor	Input

Keypad	Input

Output	classes:

Heating	Element	Output

Lamp	Output

Turntable	Output

Beeper	Output

Oven	Display	Output

State	Dependent	Control	classes:

Microwave	Oven	Control

Timer	classes:

Oven	Timer	(it	should	be	noted	that	this	class	is	a	timer	because	it
is	activated	by	timer	events	from	the	hardware	timer,	but	it	is	also
state	dependent	and	is	therefore	designed	using	a	state	machine	as
described	in	the	next	section).

Entity	classes:

Oven	Data



The	 software	classes	are	depicted	on	a	class	diagram,	as	 shown	 in	Figure
19.5.

Figure	19.5.	Software	classes	in	the	microwave	oven	software	system.

Oven	Prompts



19.5	Dynamic	State	Machine	Modeling
This	 section	 describes	 the	 state	 machines	 for	 the	 Microwave	 Oven	 Control
System.	 Two	 state	 machines	 are	 developed,	 one	 for	 Microwave	 Oven

Control	 and	 the	 other	 for	 Oven	 Timer.	 Chapter	 7	 describes	 how	 the
Microwave	 Oven	 Control	 state	 machine	 can	 be	 developed	 from	 the	 Cook
Food	use	case.



19.5.1	State	Machine	Model	for	Microwave	Oven	Control

The	state	machine	for	Microwave	Oven	Control	 (Figure	19.6)	 is	composed
of	two	orthogonal	finite	state	machines.	One	is	Microwave	Oven	Sequencing
(which	 is	 decomposed	 into	 substates	 as	 shown	 in	 Figure	 19.7);	 the	 other	 is
Cooking	Time	Condition,	which	consists	of	two	sequential	substates:	Zero
Time	and	Time	Remaining.	The	 reason	for	 this	design	 is	 to	explicitly	model
the	time	condition,	without	which	Microwave	Oven	Control	would	be	a	lot
more	 complicated.	 Thus,	 the	Zero	Time	 and	Time	Remaining	 substates	 of
Cooking	 Time	 Condition	 are	 guard	 conditions	 on	 the	 Microwave	 Oven
Sequencing	 state	machine	 (Figure	19.6).	The	sequence	numbers	 for	 the	main
Cook	Food	 scenario	are	also	shown	on	 the	 figures.	This	state	machine	 is	also
used	as	an	example	in	Chapter	7.



Figure	19.6.	State	machine	for	Microwave	Oven	Control:	top-level	state
machine.

Figure	19.7.	State	machine	for	Microwave	Oven	Control:	decomposition
of	the	Microwave	Oven	Sequencing	Composite	State.

Microwave	Oven	Sequencing	 is	 hierarchically	 structured	 and	 consists
of	the	following	substates	(see	Figure	19.7):

Door	Shut.	This	is	the	initial	state,	in	which	the	oven	is	idle	with	the
door	shut	and	there	is	no	food	in	the	oven.

Door	Open.	In	this	state	the	door	is	open	and	there	is	no	food	in	the
oven.



Door	Open	with	Item.	This	state	is	entered	after	an	item	has	been
placed	in	the	oven.

Door	Shut	with	Item.	This	state	is	entered	after	the	door	has	been
closed	with	an	item	in	the	oven.	This	state	is	a	composite	state	consisting
of	the	following	substates	(see	Figure	19.8):

Because	of	the	effect	of	opening	and	closing	the	door,	two	substates	of
theDoor	Shut	with	Item	composite	state	are	entered	via	a	history
state	H,	as	described	in	Chapter	7.	This	mechanism	is	used	to	ensure	that
when	the	door	is	opened	(e.g.,	while	in	the	Waiting	for	Cooking
Time	substate)	and	then	closed	again,	the	previously	active	substate	(in
this	example	Waiting	for	Cooking	Time)	is	reentered.

Waiting	for	User.	Waiting	for	user	to	press	the	Cooking	Time
button.

Waiting	for	Cooking	Time.	Waiting	for	user	to	enter	the
cooking	time.

Ready	to	Cook.	The	oven	is	ready	to	start	cooking	food.

Cooking.	The	food	is	cooking.	This	state	is	entered	from	the	Ready	to
Cook	state	when	the	Start	button	is	pressed.	This	state	is	exited	if	the
timer	expires,	the	door	is	opened,	or	Cancel	is	pressed.



Figure	19.8.	State	machine	for	Microwave	Oven	Control:	decomposition
of	the	Door	Shut	with	Item	composite	state.



19.5.2	State	Machines	for	Oven	Timer	and	Cooking	Timer

Timing	decisions	in	the	microwave	oven	are	state	dependent,	and	for	this	reason
the	 Oven	 Timer	 object	 is	 designed	 to	 contain	 a	 state	 machine.	 Because	 two
different	 times	need	 to	be	controlled	 in	 the	microwave	oven,	 the	Oven	Timer
object	is	composed	of	two	orthogonal	timer	state	machines,	one	to	keep	track	of
cooking	time	(after	cooking	has	started)	and	the	other	to	keep	track	of	the	time
of	 day.	 For	 this	 reason,	 the	 Oven	 Timer	 is	 designed	 as	 an	 orthogonal	 state
machine	 with	 two	 orthogonal	 regions,	 one	 for	 the	 Cooking	 Timer	 state
machine	 and	 the	 other	 for	 the	 TOD	 Timer,	 as	 depicted	 in	 Figure	 19.9.	 This
section	describes	the	Cooking	Timer	state	machine,	and	the	TOD	Timer	state
machine	is	described	in	Section	19.6.2.

Because	 time	 plays	 such	 an	 important	 and	 wide-ranging	 role	 in	 the
operation	 of	 the	microwave	 oven,	 it	 is	 advantageous	 to	 consider	 the	 different
states	that	 the	oven	timer	needs	to	go	through.	The	state	machine	for	Cooking
Timer	has	the	following	states	for	cooking	food	(Figure	19.10):

Cooking	Time	Idle.	This	is	the	initial	state,	in	which	the	oven	is	idle.

Cooking	Food.	The	timer	is	keeping	track	of	the	cooking	time.	This
state	is	entered	when	the	timer	is	started.

Updating	Cooking	Time.	This	state	is	entered	every	time	a	timer
event	is	received,	which	is	every	second.	It	is	an	interim	state	from	which
either	Cooking	Food	is	reentered	if	the	timer	has	not	yet	expired	or
Cooking	Time	Idle	is	entered	if	the	timer	has	expired.



Figure	19.9.	State	machine	for	Oven	Timer.

Figure	19.10.	State	machine	for	Cooking	Timer.

The	sequence	numbers	on	the	state	transitions	of	the	Cooking	Timer	state
machine	 (depicted	 on	 Figure	 19.10)	 correspond	 to	 the	 Cook	 Food	 scenario
described	 in	 Section	 19.6.1,	 in	 particular	 the	 Start	 Timer,	 Timer	 Event,	 Time



Left,	and	Finished	state	transitions.	Additional	state	transitions	for	Start	minute
and	Add	Minute	correspond	to	 the	Minute	Plus	scenarios	described	in	 the	next
section.



19.5.3	Impact	of	Minute	Plus	Alternative	Scenarios

The	Minute	Plus	button	on	the	oven	keypad	provides	a	fast	way	for	the	user	to
add	 a	 minute	 to	 the	 cooking	 time.	 However,	 the	 system	 behaves	 differently
depending	on	whether	 food	 is	being	cooked	or	not	when	 the	button	 is	pressed.
This	 necessitates	 two	 alternative	 scenarios	 on	 state	 machine	 diagrams	 and
sequence	diagrams	 to	be	considered,	 as	described	 in	detail	 in	Sections	7.7	and
9.7	respectively.

The	 impact	 of	 the	 Minute	 Plus	 alternative	 scenarios	 feature	 is	 state
dependent	 and	 results	 in	 additional	 transitions	 on	 the	 Microwave	 Oven

Control	state	machine	(	Figure	19.7).	Minute	Plus	can	be	pressed	when
the	oven	 is	 in	 the	 state	Door	Shut	with	Item,	 in	which	case	 the	Cooking
state	is	entered	and	the	output	action	is	Start	Minute	in	addition	to	the	entry
actions	of	Cooking	state.	Minute	Plus	can	also	be	pressed	while	the	oven	is	in
the	 Cooking	 state,	 in	 which	 case	 the	 state	 is	 not	 changed	 and	 an	 internal
transition	causes	the	Add	Minute	action.	These	output	actions	are	sent	to	Oven
Timer,	as	described	next.

The	 impact	 of	 the	 Minute	 Plus	 alternative	 scenarios	 results	 in	 two
additional	state	transitions	on	the	Cooking	Timer	state	machine,	as	depicted	in
Figure	 19.10.	 If	 the	 timer	 is	 in	 the	Cooking	Time	Idle	 state	when	Minute
Plus	is	pressed,	the	input	event	(sent	by	Microwave	Oven	Control)	is	Start
Minute,	and	the	timer	transitions	to	the	Cooking	Food	state.	However,	 if	 the
state	machine	is	in	the	Cooking	Food	state	when	Minute	Plus	 is	pressed,	the
input	event	is	Add	Minute	and	the	timer	transitions	to	the	Updating	Cooking
Time	state.	The	actions	corresponding	to	each	transition	are	depicted	in	Figure
19.10.



19.6	Dynamic	Interaction	Modeling
With	 the	 dynamic	 interaction	 modeling	 approach,	 a	 sequence	 diagram	 is
developed	 for	each	use	case.	For	 state	dependent	 scenarios,	 the	 state	machines
for	 the	 state	 dependent	 objects	 are	 also	 developed.	 This	 section	 describes	 the
sequence	 diagrams	 developed	 for	 the	 three	 use	 cases	 depicted	 in	 Figure	 19.4,
namely	 the	Cook	Food,	Set	Time	of	Day,	 and	Display	Time	of	Day
use	cases.



19.6.1	Dynamic	Interaction	Modeling	of	Cook	Food	use	case

First	consider	 the	Cook	Food	use	case.	Because	of	 the	amount	of	detail,	 three
sequence	 diagrams	 are	 developed	 to	 depict	 the	 event	 sequencing	 among	 the
objects	 that	 realize	 the	 use	 case.	 The	 first	 sequence	 diagram	 (Figure	 19.11)
provides	 a	 black	 box	 perspective,	 which	 depicts	 the	 sequence	 of	 interactions
between	 the	 external	 input	 and	 output	 devices	 with	 the	 Microwave	 Oven

software	System	 (depicted	as	a	 composite	concurrent	object).	The	 second	and
third	sequence	diagrams	(Figures	19.12	and	19.13)	depict	the	interactions	among
the	 software	 objects	 that	 realize	 the	 Cook	 Food	 use	 case,	 in	 addition	 to	 the
external	 input	 devices.	 Because	 these	 interactions	 are	 state	 dependent,	 the
scenario	 is	 also	 shown	 on	 the	 state	 machines	 for	 the	 state	 dependent	 objects:
Microwave	Oven	Control	and	Oven	Timer	 (Figures	19.7,	19.8,	and	19.10
respectively)	as	described	in	the	previous	section.	For	more	information	on	how
to	 develop	 the	 object	 interaction	 sequence	 from	 the	 Cook	 Food	 use	 case	 in
conjunction	 with	 the	 Microwave	 Oven	 Control	 state	 machine,	 see	 the
description	in	Chapter	9,	Section	9.7.



Figure	19.11.	Sequence	diagram	for	Cook	Food	use	case	depicting	external
input	and	output	devices	interacting	with	software	system.



Figure	19.12.	Sequence	diagram	for	Cook	Food	use	case	depicting
interactions	among	software	objects.

Figure	19.13.	Sequence	diagram	for	Cook	Food	use	case	depicting
interactions	among	software	objects	(continued).

The	 following	 is	 the	 sequence	of	messages	 for	 the	 sequence	diagram	and
state	machines	based	on	the	main	sequence	through	the	Cook	Food	use	case,	as
described	in	Section	19.2.1.	The	sequence	numbers	correspond	to	the	messages
on	 the	 sequence	diagrams	depicted	 in	Figures	 19.11	 through	19.13,	 and	 to	 the
events	and	actions	depicted	on	the	state	machines	in	Figures	19.7	through	19.10.

1:	Door	Opened	Event.	The	user	opens	the	door.	The	external
Door	Sensor	object	sends	this	input	to	the	Door	Sensor	Input
object.



1.1:	Door	Opened.	Door	Sensor	Input	sends	the	Door	Opened
message	to	the	Microwave	Oven	Control	object,	which	changes
state.

1.2,	1.3:	Switch	On.	Microwave	Oven	Control	sends
Switch	On	message	to	the	Lamp	Output	object,	which

in	turn	sends	the	Switch	On	message	to	the

external	Lamp.

2:	Weight	Event.	The	user	places	an	item	to	be	cooked	into	the
oven.	The	external	Weight	Sensor	object	sends	this	input	to	the
Weight	Sensor	Input	object.

2.1:	Item	Placed.	Weight	Sensor	Input	sends	the	Item
Placed	message	to	the	Microwave	Oven	Control	object,	which
changes	state.

3:	Door	Closed	Event.	The	user	closes	the	door.	The	external	Door
Sensor	object	sends	this	input	to	the	Door	Sensor	Input	object.

3.1:	Door	Closed.	Door	Sensor	Input	sends	the	Door	Closed
message	to	the	Microwave	Oven	Control	object,	which	changes
state.

3.2,	3.3:	Switch	Off.	Microwave	Oven	Control	sends
Switch	Off	message	to	the	Lamp	Output	object,

which	in	turn	sends	the	Switch	Off	message	to	the

external	Lamp.

4:	Cooking	Time	Pressed.	The	user	presses	the	Cooking	Time
button	on	the	keypad.	The	external	Keypad	object	sends	this	input
to	the	Keypad	Input	object.



4.1:	Cooking	Time	Selected.	Keypad	Input	sends	the	Cooking
Time	Selected	message	to	the	Microwave	Oven	Control
object,	which	changes	state.

4.2:	Prompt	for	Time.	As	a	result	of	changing	state,	Microwave
Oven	Control	sends	the	Prompt	for	Time	message	to	the	Oven
Display	Output	object.

4.3:	Read.	The	message	arriving	at	Oven	Display	Output
contains	a	prompt	ID,	so	Oven	Display	Output	sends	a	Read
message	to	Oven	Prompts	to	get	the	corresponding	prompt
message.

4.4:	Prompt.	Oven	Prompts	returns	the	text	for	the	Time
Prompt	message.

4.5:	Time	Prompt.	Oven	Display	Output	sends	the	Time
Prompt	output	to	the	external	Display	object.

5:	Numeric	Key	Pressed.	The	user	enters	the	numeric	value	of	the
time	on	the	keypad.	Keypad	sends	the	value	of	the	numeric	key(s)
input	to	Keypad	Input.

5.1:	Cooking	Time	Entered.	Keypad	Input	sends	the	internal
value	of	each	numeric	key	to	Microwave	Oven	Control.

5.2:	Display	Cooking	Time.	Microwave	Oven	Control	sends
the	value	of	each	numeric	key	to	Oven	Display	Output,	to
ensure	that	these	values	are	sent	only	in	the	appropriate	state.

5.2a:	Update	Cooking	Time.	Microwave	Oven	Control
concurrently	sends	the	numeric	value	of	each	numeric	key	to	Oven
Data	to	update	the	cooking	time.



5.3:	Display	Time.	Oven	Display	Output	shifts	the	previous
digit	to	the	left	and	adds	the	new	digit.	It	then	sends	the	new	value
of	cooking	time	to	the	external	Display	object.

6:	Start	Pressed.	The	user	presses	the	Start	button.	The	external
Keypad	object	sends	this	input	to	the	Keypad	Input	object.

6.1:	Start.	Keypad	Input	sends	the	Start	message	to
Microwave	Oven	Control,	which	changes	state.

6.2:	Start	Cooking.	As	a	result	of	changing	state,	Microwave
Oven	Control	sends	the	Start	Cooking	message	to	the
Heating	Element	Output	object.

6.2a:	Start	Timer.	Microwave	Oven	Control	concurrently
notifies	the	Oven	Timer	to	start	the	oven	timer.

6.2b,	6.2b.1:	Switch	On.	Microwave	Oven	Control
concurrently	sends	the	Switch	On	message	to	Lamp	Output,	which
in	turn	sends	the	Switch	On	message	to	the	external	Lamp.

6.2c,	6.2c.1:	Start	Turning.	Microwave	Oven	Control
concurrently	sends	the	Start	Turning	message	to	Turntable	Output,
which	in	turn	sends	the	Start	Turning	message	to	the	external
Turntable.

6.3:	Start	Cooking.	Heating	Element	Output	sends	this	output
to	Heating	Element	to	start	cooking	the	food.

7:	Timer	Event.	The	external	Clock	object	sends	a	timer	event
every	second	to	Oven	Timer.

7.1:	Decrement	Cooking	Time.	As	Oven	Timer	is	counting,	it
sends	this	message	to	the	Oven	Data	object,	which	maintains	the



cooking	time.

7.2:	Time	Left.	After	decrementing	the	cooking	time,	which	is
assumed	to	be	greater	than	zero	at	this	step	of	the	scenario,	Oven
Data	sends	the	Time	Left	message	to	Oven	Timer.

7.3:	Update	Cooking	Time	Display.	Oven	Timer	sends	the
cooking	time	left	to	Oven	Display	Output.

7.4:	Display	Time.	Oven	Display	Output	sends	the	new
cooking	time	value	to	the	external	Display	object.

8:	Timer	Event.	The	external	Clock	object	sends	a	timer	event
every	second	to	Oven	Timer.

8.1:	Decrement	Cooking	Time.	As	Oven	Timer	is	counting,	it
sends	this	message	to	the	Oven	Data	object,	which	maintains	the
cooking	time.

8.2:	Finished.	After	decrementing	the	cooking	time,	which	is
assumed	to	be	equal	to	zero	at	this	step	of	the	scenario,	Oven	Data
sends	the	Finished	message	to	Oven	Timer.

8.3:	Timer	Expired.	Oven	Timer	sends	the	Timer	Expired
message	to	Microwave	Oven	Control,	which	changes	state.

8.3a:	Display	End	Prompt.	Oven	Timer	concurrently	sends	the
Display	End	Prompt	message	to	Oven	Display	Output.

8.3a.1:	Read.	The	message	arriving	at	Oven	Display	Output
contains	a	prompt	ID,	so	Oven	Display	Output	sends	a	Read
message	to	Oven	Prompts	to	get	the	corresponding	prompt
message.

8.3a.2:	Prompt.	Oven	Prompts	returns	the	text	for	the	End



Prompt	message.

8.3a.3:	End	Prompt.	Oven	Display	Output	sends	the	End
Prompt	message	to	the	external	Display	object.

8.4,	8.5:	Stop	Cooking.	As	a	result	of	changing	state	(in	step	8.3),
Microwave	Oven	Control	sends	the	Stop	Cooking	message	to
Heating	Element	Output	object,	which	in	turn	sends	this
message	to	the	Heating	Element	object	to	stop	cooking	the	food.

8.4a,	8.4a.1:	Beep.	Microwave	Oven	Control	sends	the	Beep
message	to	Beeper	Output	object,	which	in	turn	sends	this
message	to	the	external	Beeper.

8.4b,	8.4b.1:	Switch	Off.	Microwave	Oven	Control	sends
Switch	Off	message	to	the	Lamp	Output	object,

which	in	turn	sends	the	Switch	Off	message	to	the

external	Lamp.

8.4c,	8.4c.1:	Stop	Turning.	Microwave	Oven	Control	sends	the
Stop	Turning	message	to	Turntable	Output	object,	which	in
turn	sends	this	message	to	the	external	Turntable.

8.5:	Stop	Cooking.	Heating	Element	Output	sends	this
message	to	the	Heating	Element	object	to	stop	cooking	the	food.

Because	of	 lack	of	space,	 the	remaining	messages	are	only	depicted	on
the	 sequence	 diagram	 depicting	 external	 objects	 (Figure	 19.11)	 and	 as
events	and	actions	on	the	state	machine	(Figure	19.7):

9:	Door	Opened	Event.	The	user	opens	the	door.	The	external	Door	Sensor
object	sends	this	input	to	the	Door	Sensor	Input	object.



9.1:	Door	Opened.	Door	Sensor	Input	sends	the	Door	Opened	message
to	the	Microwave	Oven	Control	object,	which	changes	state.

9.2,	9.3:	Switch	On.	Microwave	Oven	Control	sends	Switch	On
message	to	the	Lamp	Output	object,	which	in	turn	sends	the

Switch	On	message	to	the	external	Lamp.

10:	Weight	Event.	The	user	removes	the	cooked	item	from	the	oven.	The
external	Weight	Sensor	object	sends	this	message	to	the	Weight	Sensor
Input	object.

10.1:	Item	Removed.	Weight	Sensor	Input	sends	the	Item	Removed
message	to	the	Microwave	Oven	Control	object,	which	changes	state.

11.1:	Door	Closed	Event.	Door	Sensor	Input	sends	the	Door	Closed
message	to	the	Microwave	Oven	Control	object,	which	changes	state.

11.2,	11.3:	Switch	Off.	Microwave	Oven	Control	sends	Switch	Off
message	to	the	Lamp	Output	object,	which	in	turn	sends	the

Switch	Off	message	to	the	external	Lamp.



19.6.2	Dynamic	Modeling	for	the	TOD	Clock	Use	Cases

The	TOD	Clock	 use	 cases	 are	Set	Time	of	Day	 and	Display	Time	of
Day.	 Because	 these	 are	 different	 use	 cases,	 it	 is	 necessary	 to	 determine	 the
objects	needed	to	support	each	of	them	and	to	develop	new	sequence	diagrams
to	depict	the	dynamic	execution	of	the	objects	for	these	use	cases.

For	 the	 Set	 Time	 of	 Day	 use	 case,	 the	 objects	 needed	 are	 Keypad
Input	 (to	 receive	 inputs	 from	 the	 TOD	 Clock	 button),	 Microwave	 Oven
Control	(because	the	time	of	day	can	be	set	only	when	the	oven	is	idle),	Oven
Data	(to	store	the	current	time	of	day),	Oven	Display	Output	(to	display	the
TOD),	and	Oven	Timer	(in	particular	the	orthogonal	state	machine	within	it	(see
Figure	19.9),	the	TOD	Timer).

For	 the	Display	Time	of	Day	 use	 case,	 the	 objects	 needed	 are	Oven
Timer	(to	receive	timer	events),	Oven	Data	(to	store	the	time	of	day	that	must
be	incremented),	and	Oven	Display	Output	(to	display	the	new	time).

Figures	19.14	and	19.15	respectively	depict	the	sequence	diagrams	for	the
Set	Time	of	Day	and	the	Display	Time	of	Day	use	cases.	The	following
is	 the	 sequence	 of	 messages	 for	 the	 sequence	 diagrams	 and	 state	 machines
developed	 for	 these	 use	 cases.	 The	 sequence	 numbers	 correspond	 to	 the
messages	on	the	sequence	diagrams	depicted	in	Figures	19.14	and	19.15	and	to
the	events	and	actions	depicted	on	the	state	machine	for	TOD	Timer	 in	Figure
19.16	 and	 state	machine	 for	 the	Door	Shut	 composite	 state	 in	 Figure	 19.17,
which	 is	 in	 turn	 a	 substate	 of	 the	Microwave	Oven	Control	 state	machine
depicted	in	Figure	19.7	and	described	in	Section	19.5.1.



Figure	19.14.	Sequence	diagram	for	Set	Time	of	Day	use	case.

Figure	19.15.	Sequence	diagram	for	Display	Time	of	Day	use	case.



Figure	19.16.	State	machine	for	TOD	Timer	(orthogonal	state	machine	within
the	Oven	Timer	state	machine).

Figure	19.17.	State	machine	for	Door	Shut	(substate	of	Microwave
Oven	Control)	composite	state.

The	message	sequence	for	the	Set	Time	of	Day	use	case	is	as	follows:

C1:	TOD	Clock	Key.	The	user	presses	the	TOD	Clock	button	on	the
keypad.	The	external	Keypad	object	sends	this	input	to	the	Keypad	Input
object.



C1.1:	TOD	Clock	Selected.	Keypad	Input	sends	the	TOD	Clock
Selected	message	to	the	Microwave	Oven	Control	object,	which
changes	state.

C1.2:	Prompt	for	TOD.	As	a	result	of	changing	state,	one	action	is	for
Microwave	Oven	Control	to	send	the	Prompt	for	TOD	message	to	the
Oven	Display	Output	object.

C1.2a:	Stop	TOD	Timer.	As	a	result	of	changing	state,	a	second
concurrent	action	is	for	Microwave	Oven	Control	to	send	the	Stop
TOD	Timer	message	to	the	TOD	Timer	object	(within	Oven	Timer).

C1.2b:	Clear	TOD.	As	a	result	of	changing	state,	a	third	concurrent	action
is	for	Microwave	Oven	Control	to	send	the	Clear	TOD	message	to	the
Oven	Data	object.

C1.3:	Read.	The	message	arriving	at	Oven	Display	Output	contains	a
prompt	ID,	so	Oven	Display	Output	sends	a	Read	message	to	Oven
Prompts	to	get	the	corresponding	prompt	message.

C1.4:	Prompt.	Oven	Prompts	returns	the	text	for	the	Enter	TOD
Prompt	message.

C1.5:	Enter	TOD	Prompt.	Oven	Display	Output	sends	the	Enter
TOD	Prompt	message	to	the	external	Display	object.

C2:	Numeric	Key	Input.	The	user	enters	the	numeric	value	of	the	time	on
the	keypad.	Keypad	sends	the	value	of	the	numeric	key(s)	input	to	Keypad
Input.

C2.1:	Time	Entered.	Keypad	Input	sends	the	internal	value	of	each
numeric	key	to	Microwave	Oven	Control.



C2.2:	Display	TOD.	Microwave	Oven	Control	sends	the	value	of	each
numeric	key	to	Oven	Display	Output,	to	ensure	that	these	values	are
sent	only	in	the	appropriate	state.

C2.2a:	Update	TOD.	Microwave	Oven	Control	concurrently	sends	the
numeric	value	of	each	numeric	key	to	Oven	Data	to	update	the	time	of
day.

C2.3:	Display	TOD.	Oven	Display	Output	shifts	the	previous	digit	to
the	left	and	adds	the	new	digit.	It	then	sends	the	new	time	of	day	to	the
external	Display.

C3:	Start	Key.	User	presses	the	Start	button.	The	external	Keypad	object
sends	this	input	to	the	Keypad	Input	object.

C3.1:	Start.	Keypad	Input	sends	the	Start	message	to	Microwave
Oven	Control,	which	changes	state.

C3.2:	Start	TOD	Timer.	As	a	result	of	changing	state,	Microwave	Oven
Control	notifies	TOD	Timer	(within	Oven	Timer)	to	start	the	TOD
timer.

The	message	sequence	for	the	Display	Time	of	Day	use	case	is	as	follows:

T1:	Timer	Event.	The	external	Clock	sends	a	timer	event	every	second	to
TOD	Timer	(within	Oven	Timer).

T1.1:	Increment	TOD	Clock	Time.	TOD	Timer	(within	Oven	Timer)
sends	this	message	to	the	Oven	Data	object,	which	adds	one	second	to	the
time	of	day.

T1.2:	TOD.	After	incrementing	the	time	of	day,	Oven	Data	sends	the	TOD
message	to	TOD	Timer	(within	Oven	Timer).

T1.3:	Update	TOD	Display.	TOD	Timer	(within	Oven	Timer)	sends	the



current	time	of	day	to	Oven	Display	Output.

T1.4:	Display	TOD.	Oven	Display	Output	sends	the	new	TOD	value
to	the	external	Multi-line	Display.



19.6.3	State	Machines	for	TOD	Timer	and	Door	Shut

TOD	 Timer	 is	 an	 orthogonal	 state	 machine	 within	 the	 Oven	 Timer	 state
machine	as	depicted	in	Figure	19.10.	The	state	machine	for	TOD	Timer,	which
is	depicted	in	Figure	19.16,	has	three	states:

The	 state	 machine	 for	 the	 composite	 state	 Door	 Shut,	 which	 is	 a
substate	of	the	Microwave	Oven	Control	state	machine,	is	depicted	in
Figure	19.17.	In	 the	Door	Shut	state,	 the	oven	is	 idle	with	the	door	shut,	and
there	is	no	food	in	the	oven.	Setting	the	TOD	clock	is	allowed	in	this	state.	To
allow	for	controlling	the	TOD	clock,	the	Door	Shut	state	is	a	composite	state
consisting	of	the	following	substates:

These	substates	are	entered	via	a	history	state	H.	Entry	via	a	history	state	allows
a	 composite	 state	 that	 has	 sequential	 substates	 to	 remember	 the	 last	 substate
entered	and	to	return	to	it	when	the	composite	state	is	reentered.	This	mechanism
is	used	in	the	Door	Shut	composite	state	so	that	when	the	door	is	opened	(e.g.,

TOD	Idle.

Displaying	TOD.	The	TOD	clock	is	active.	This	state	is	entered	when
the	TOD	clock	receives	the	Start	TOD	event,

Updating	TOD.	This	is	a	transient	state,	which	is	entered	when	a	Timer
Event	is	received,	which	results	in	incrementing	the	TOD	Time	(stored	in
Oven	data).

Idle,

Waiting	for	TOD,

Setting	TOD.



while	in	the	Waiting	for	TOD	substate)	and	then	closed	again,	the	previously
active	substate	(in	this	example	Waiting	for	TOD)	is	reentered.

Figure	19.18.	Oven	Data	entity	class.



19.6.4	Design	of	Entity	Classes

The	 entity	 classes,	 instances	 of	 which	 are	 depicted	 in	 the	 three	 sequence
diagrams	described	earlier,	are	designed	as	follows:

a)	Oven	Data.	This	entity	class	contains	all	the	data	that	needs	to	be	stored	for
cooking	food	and	displaying	the	time	of	day.	This	class	is	designed	as	one	class
with	three	attributes,	which	are:

The	attributes	held	by	the	Oven	Data	class	are	depicted	in	Figure	19.18,	which
shows	the	variable	name,	the	type	of	variable,	the	range	for	the	variable,	and
permitted	values.	Configuration	parameters,	such	as	TODmaxHour,	are	depicted
as	static	variables	because	once	the	value	of	the	parameter	is	set	at	configuration
time,	it	cannot	be	changed.	When	TODvalue	is	incremented	every	minute,	this
parameter	is	checked	to	determine	whether	after	12:59,	the	clock	should	be	set	to
1:00	or	13:00.

b)	Oven	Prompts.	This	class	is	needed	because	the	prompt	language	is	selected
at	system	configuration	time.	Each	set	of	language	prompts	is	stored	in	a
separate	subclass,	as	depicted	in	Figure	19.19:

cookingTime	(remaining	time	to	cook	food).	The	value	of	this	attribute
must	be	>	=	0	and	for	safety	reasons	needs	to	have	an	upper	bound,
which	is	nominally	set	to	20	mins.

TODvalue.	This	attribute	is	a	time	variable	initialized	to	12:00.

TODmaxHour.	This	attribute	is	a	parameterized	constant	set	at	system
configuration	to	12:00	or	24:00	to	indicate	the	maximum	hour	on	the
clock.

Abstract	class:	«entity»	Oven	Prompts



Each	prompt	is	identified	by	a	prompt	ID,	which	is	an	index	into	a	prompt	table
encapsulated	in	Oven	Prompts	class	that	contains	the	prompt	text
corresponding	to	each	prompt	ID.	Each	subclass	has	an	initialize	operation,
which	is	used	at	initialization	to	populate	the	prompt	table	with	the	text	prompts
for	the	selected	language.

Default	subclass:	«entity»	English	Oven	Prompts

Variant	subclasses:

«entity»	French	Oven	Prompts,

«entity»	Spanish	Oven	Prompts,

«entity»	German	Oven	Prompts,

«entity»	Italian	Oven	Prompts.



Figure	19.19.	Oven	Prompts	class	and	subclasses.



19.7	Design	Modeling
The	 microwave	 oven	 software	 system	 is	 designed	 as	 a	 component-based
software	 architecture,	 in	which	 simple	 components	 are	 designed	 as	 concurrent
tasks	and	depicted	using	COMET	and	MARTE	stereotypes.	The	architecture	is
based	 on	 the	 Centralized	 Control	 pattern	 (see	 Chapter	 11).	 Thus,	 there	 is	 one
control	 task	that	provides	the	overall	control	of	 the	system,	receiving	messages
from	other	tasks	that	contain	events	causing	the	control	task	to	change	state	and
send	action	messages	to	other	tasks.

The	steps	to	develop	the	software	design	model	are:

1.	Integrate	the	use	case–based	interaction	diagrams	and	develop	integrated
communication	diagrams.

2.	Design	the	concurrent	software	architecture	(based	on	the	centralized	control
pattern)	by	applying	the	task	structuring	criteria.

3.	Design	the	task	interfaces	based	on	the	architectural	communication	patterns.

4.	Analyze	the	performance	of	the	concurrent	real-time	software	design.

5.	Design	the	component-based	software	architecture	that	allows	components	to
be	deployed	to	different	system	configurations.

6.	Develop	the	detailed	task	design	using	Pseudocode.

7.	Deploy	the	component-based	software	architecture	to	the	target	system
configuration.



19.7.1	Integration	of	Interaction	Diagrams

The	 initial	 attempt	 at	 design	 modeling	 is	 to	 develop	 the	 integrated
communication	diagram	for	the	Microwave	Oven	System,	which	necessitates	the
integration	 of	 the	 three	 use	 case–based	 interaction	 diagrams	 for	 Cook	 Food
(Figures	 19.12	 and	 19.13),	 Set	 Time	 of	 Day	 (Figure	 19.14)	 and	 Display
Time	of	Day	(Figure	19.15).	Since	these	diagrams	are	sequence	diagrams,	the
objects	 and	 object	 interactions	 must	 be	 depicted	 on	 the	 integrated
communication	 diagram	 as	 in	 Figure	 19.20.	 Figure	 19.20	 depicts	 12	 objects,
which	 are	 instances	 of	 the	 12	 classes	 depicted	 in	 Figure	 19.5,	 as	 well	 as	 the
interactions	between	them	as	determined	from	the	sequence	diagrams.	Since	the
sequence	 diagrams	 realize	 the	 main	 sequence	 of	 each	 use	 case,	 it	 is	 also
necessary	to	consider	the	alternative	sequences	that	are	not	depicted	on	the	three
use	case–based	 sequence	diagrams.	This	 includes	 the	 interaction	 sequences	 for
Minute	Plus	(depicted	in	Figure	9.10	in	Chapter	9)	as	well	as	other	alternative
sequences,	 such	 as	 opening	 the	 door	 while	 cooking.	 The	 integrated
communication	diagram	depicts	all	possible	interactions	between	the	objects.



Figure	19.20.	Integrated	communication	diagram	for	Microwave	Oven
System.



19.7.2	Concurrent	Software	Architecture

In	 this	 concurrent	 real-time	 design,	 the	 task	 structuring	 criteria	 are	 applied	 to
determine	 the	 concurrent	 tasks	 in	 the	 Microwave	 Oven	 System.	 The
concurrent	software	architecture	(Figure	19.21)	is	developed	by	starting	from	the
integrated	communication	diagram	in	Figure	19.20,	which	shows	all	the	objects
in	the	system.	Apart	from	the	passive	entity	objects,	all	the	objects	are	active	and
designed	 as	 tasks,	 because	 they	 need	 to	 operate	 asynchronously.	 Each	 task	 is
depicted	with	the	MARTE	stereotype	for	task:	«swSchedulableResource».

Figure	19.21.	Software	architecture	for	the	Microwave	Oven	System:
component	and	task	structuring.

This	paragraph	describes	 the	mapping	 from	 the	 integrated	communication
diagram	 of	 Figure	 19.20	 to	 the	 concurrent	 component-based	 software
architecture	 depicted	 in	 Figure	 19.21.	 There	 are	 two	 simple	 components,	 the
Microwave	Control	 and	Microwave	Display	 components,	which	 contain



tasks	 and	 passive	 objects.	 All	 the	 other	 components	 are	 simple	 components
designed	as	tasks.

Input	components	designed	as	tasks.	Each	input	components	is
designed	as	a	concurrent	task	that	receives	inputs	from	an	external	input
device	and	sends	corresponding	messages	to	the	control	component.
Door	Component,	Weight	Component,	and	Keypad	Component	(see
Figure	19.21)	are	simple	components	determined	from	the	input	objects
depicted	in	integrated	communication	diagram	(see	Figure	19.20):	Door
Sensor	Input,	Weight	Sensor	Input,	and	Keypad	Sensor
Input,	respectively.	Each	input	component	is	designed	as	an	event
driven	input	task,	which	is	awakened	by	the	arrival	of	a	sensor	or	keypad
input	event.	The	three	input	tasks	are	each	depicted	with	the	stereotypes
«event	driven»	«input»	«swSchedulableResource».

Control	component	containing	two	tasks	and	a	passive	object.	The
Microwave	Control	component	is	the	centralized	control	component
for	the	system.	It	contains	two	concurrent	tasks,	Microwave	Oven
Control	and	Oven	Timer,	and	the	Oven	Data	passive	entity	object,	as
shown	in	Figure	19.21.	All	three	internal	objects	are	determined	from	the
integrated	communication	diagram	(see	Figure	19.20).	These	three
objects	are	grouped	into	the	Microwave	Control	component	because
the	overall	control	of	the	microwave	oven	needs	both	the	state	dependent
control	task	Microwave	Oven	Control	and	the	timer	task,	Oven
Timer,	as	well	as	the	entity	object	Oven	Data,	which	stores	essential
data.	Microwave	Oven	Control	is	a	demand-driven	state	dependent
control	task	and	is	hence	depicted	with	the	stereotypes	«demand»	«state
dependent	control»	«swSchedulableResource».	Oven	Timer	is	a
software	periodic	(i.e.,	timer)	task	and	is	hence	depicted	with	the



MARTE	stereotypes	«timerResource»	«swSchedulableResource».	Oven
Data	is	an	entity	object	that	is	both	shared	(hence	given	the	MARTE
stereotype	«sharedDataComResource»)	and	accessed	mutually
exclusively	by	two	tasks	(hence	given	the	MARTE	stereotype
«sharedMutualExclusionResource»).	Thus,	the	full	stereotype	depiction
for	an	entity	object,	which	is	a	mutually	exclusive	shared	data
communication	resource,	is	«entity»	«sharedDataComResource»
«sharedMutualExclusionResource».

Output	components	designed	as	tasks.	The	Heating	Element
Component	is	designed	as	a	concurrent	task	that	interfaces	to	the
external	Heating	Element.	The	Heating	Element	Output	object
(Figure	19.20)	is	designed	as	a	simple	output	component,	Heating
Element	Component	(see	Figure	19.21).	Other	output	components	are
designed	in	the	same	way,	namely	Turntable	Component,	Beeper
Component,	and	Lamp	Component,	which	interface	respectively	with
the	external	Turntable,	Beeper,	and	Lamp	output	devices.	The	output
components	are	designed	as	demand	driven	output	tasks,	which	are
awakened	by	the	arrival	of	messages	from	Microwave	Oven
Control.	The	four	output	tasks	are	each	depicted	with	the	stereotypes
«demand»	«output»	«swSchedulableResource».

Output	component	containing	a	task	and	a	passive	object.	The
Microwave	Display	component	contains	the	Oven	Display	Output
task	and	the	Oven	Prompts	passive	entity	object,	as	shown	in	Figure
19.21.	These	two	objects	are	grouped	together	because	they	must	always
be	used	together.	Oven	Display	Output	receives	commands	to
display	prompts,	in	which	each	prompt	is	identified	by	a	prompt	ID.	The
text	for	the	prompts	is	maintained	by	the	Oven	Prompts	entity	object.



This	separation	of	concerns	means	that	the	prompt	language	and	prompt
text	can	be	changed	independently	of	the	other	objects.	The	output	task	is
depicted	with	the	stereotypes	«demand»	«output»
«swSchedulableResource»,	and	since	it	is	only	accessed	by	one	task	and
thus	not	shared,	the	entity	object	is	only	depicted	with	the	stereotype
«entity».



19.7.3	Architectural	Communication	Patterns

The	messages	to	be	sent	between	the	components	in	the	microwave	oven	system
are	determined	from	the	integrated	communication	diagram	in	Figure	19.20.	The
actual	 type	 of	message	 communication	 –	 synchronous	 or	 asynchronous	 –	 still
needs	 to	 be	 determined.	 To	 handle	 the	 variety	 of	 communication	 between	 the
components	in	the	architecture,	three	communication	patterns	are	applied:

Asynchronous	Message	Communication.	The	Asynchronous	Message
Communication	pattern	is	widely	used	in	the	microwave	oven	software
system	because	most	communication	is	one-way,	and	this	pattern	has	the
advantage	of	not	letting	the	consumers	hold	up	the	producers.	The	order
in	which	messages	are	sent	by	the	four	producer	(three	input	and	one
timer)	components	to	the	Microwave	Oven	Control	component	(see
Figures	19.22	and	19.23)	is	nondeterministic	because	it	is	based	on	the
user's	actions.	The	Microwave	Oven	Control	component	needs	to	be
able	to	receive	a	message	from	any	of	its	four	producers	in	any	order.
The	best	way	to	handle	this	requirement	for	flexibility	is	through
asynchronous	message	communication,	with	one	input	message	queue
for	the	Microwave	Oven	Control	component.	The	Microwave	Oven
Control	component	receives	messages	from	each	of	the	three	input
components	and	the	Oven	Timer	component	(see	Figure	19.23),	which
arrive	on	the	same	message	queue.
The	Microwave	Display	component	also	receives	messages	from

two	producers:	the	Microwave	Oven	Control	component	and	the
Oven	Timer	component	(see	Figures	19.23	and	19.24),	which	are
displayed	on	one	line	of	the	display.	To	avoid	race	conditions,	the	two
producer	components	are	designed	to	send	display	Time	messages	in



different	states.	The	Microwave	Oven	Control	component	sends
display	Time	messages	only	when	the	oven	is	not	cooking.	The	Oven
Timer	component	sends	display	Time	messages	when	the	oven	is
cooking.	The	Oven	Timer	component	also	sends	display	TOD	messages
to	Microwave	Display	whether	the	oven	is	cooking	or	not.	However,
these	messages	are	displayed	on	a	separate	line	of	the	display	and	so	do
not	interfere	with	the	other	messages.	The	Oven	Display	Output
component	(Figure	19.24)	receives	all	display	messages	on	a	message
queue	and	determines	from	the	message,	which	line	it	should	be
displayed	on.

Bidirectional	Asynchronous	Message	Communication.	This	pattern	is
used	when	the	producer	sends	asynchronous	messages	to	a	consumer	and
requires	an	eventual	response	but	does	not	need	to	wait	for	it.	This
pattern	is	used	between	the	Microwave	Oven	Control	and	Oven
Timer	components	(see	Figure	19.23),	both	of	which	are	within	the
Microwave	Control	component.	The	Microwave	Oven	Control
component	sends	Start	Timer	and	Cancel	Timer	messages	as	timer
requests	to	the	Oven	Timer	component.	After	sending	the	Start
Timer	request,	the	Microwave	Oven	Control	component	needs	to
continue	executing	because	a	relatively	long	time	is	likely	to	elapse
before	Oven	Timer	responds	with	the	timer	expiration	response,	during
which	time	the	user	might	open	the	door	or	cancel	the	timer.	At	timer
expiration,	Oven	Timer	sends	an	asynchronous	timer	expiration
message	as	a	control	request	to	Microwave	Oven	Control.

Synchronized	Object	Access.	This	pattern	is	used	for	the	invocation	of
operations	on	shared	passive	entity	objects	accessed	by	more	than	one
task	–	in	particular,	the	Oven	Data	(see	Figure	19.23)	entity	object.



Figure	19.22.	Distributed	software	architecture	for	the	Microwave	Oven
System:	message	interfaces.

Access	to	this	shared	object	by	the	Microwave	Oven	Control	and
Oven	Timer	tasks	must	be	mutually	exclusive.



Figure	19.23.	Concurrent	communication	diagram	for	the	Microwave
Control	component.



Figure	19.24.	Concurrent	communication	diagram	for	the	Microwave
Display	component.



19.8	Performance	Analysis	of	Real-Time
Software	Design

This	 section	 describes	 the	 real-time	 performance	 analysis	 of	 the	 Microwave
Oven	 Control	 System.	 The	 software	 system	 is	 both	 event	 driven	 (because	 it
reacts	 to	 external	 events)	 and	 periodic	 (because	 certain	 events	 happen	 on	 a
regular	basis).	To	analyze	the	performance,	it	is	necessary	to	consider	the	time-
critical	 scenarios	 using	 an	 event	 sequence	 analysis	 for	 each	 scenario	 with	 the
help	of	timing	diagrams,	as	described	in	Chapters	17	and	18.

A	 time-critical	 scenario	 is	 the	 Oven	 Timer	 counting	 down	 the	 cooking
time	 and	 alerting	 Microwave	 Oven	 Control	 when	 the	 cooking	 time	 has
expired.	This	event	sequence	is	fully	described	in	Section	19.6.	The	seven	tasks
that	 participate	 in	 this	 scenario	 are	 depicted	 in	 the	 first	 column	of	Table	 19.1,
with	the	CPU	time	Ci	depicted	in	the	second	column,	and	the	task	execution	time
depicted	 in	 the	 third	 column.	 The	 execution	 time	 for	 each	 task	 in	 the	 event
sequence	 is	 the	 sum	 of	 its	 CPU	 time,	 context-switching	 time,	 and	 message
communication	 time	 (apart	 from	 the	 last	 task	 in	 the	 event	 sequence).	The	 task
priorities	 are	 depicted	 in	 the	 fourth	 column.	 Heating	 Element	 Output	 is
given	the	highest	priority,	followed	by	three	other	output	tasks	because	they	are
the	more	 time-critical	 tasks	 and	 can,	 if	 necessary,	 preempt	Microwave	Oven
Control,	which	is	given	the	next	highest	priority	followed	by	Oven	Timer	and
Oven	Display	Output.

Table	19.1.	Microwave	Oven	Control	CPU	Times

Task Task
CPU

Timer	event
sequence	tasks	(Ci

Task
Priority



time
Ci(msec)

+	Cx	+	Cm)	(msec)

Oven	Timer 6 7 6

Microwave	Oven	Control
(from	Oven	Timer	message	to
first	message	sent)

5 6 5

Microwave	Oven	Control	(for
each	subsequent	message	sent)

1 2

Heating	Element	Output 4 5 1

Oven	Display	Output 6 7 7

Lamp	Output 5 6 3

Turntable	Output 4 5 2

Beeper	Output 3 4 4

Message	communication
overhead	(Cm)

0.7

Context-switching	overhead
(Cx)

0.3



19.8.1	Performance	Analysis	on	Single	Processor	System

The	task	execution	for	 the	event	sequence	on	a	single	processor	 is	depicted	on
the	 timing	 diagram	 in	 Figure	 19.25.	 In	 this	 timer-driven	 scenario,	 the	 event
sequence	starts	with	the	external	Timer	sending	a	timer	event	that	activates	the
Oven	Timer	task,	which	then	executes	for	7	msec,	during	which	it	decrements
the	cooking	 time.	 In	 this	scenario,	Oven	Timer	determines	 that	 the	 remaining
time	is	zero,	and	therefore	 it	sends	a	 timer	expired	message	to	 the	Microwave
Oven	 Control	 task.	 At	 this	 time,	 all	 other	 tasks	 are	 blocked,	 so	 that	 even
though	Microwave	Oven	Control	has	a	lower	priority	than	the	output	tasks,
it	 is	 the	highest	priority	 task	ready	to	execute	when	the	message	arrives,	and	it
preempts	Oven	Timer.

The	 Timer	 Expired	 event	 causes	 a	 state	 transition	 on	 the	 internal
Microwave	Oven	Control	state	machine	from	Cooking	state	to	Door	Shut
with	Item	state	(Figure	19.7).	The	effect	of	the	state	transition	is	to	trigger	four
concurrent	 actions	 to	 Stop	 Cooking,	 Stop	 Turning,	 Switch	 Off

Light,	 and	 Beep.	 On	 the	 timing	 diagram,	 this	 is	 depicted	 as	 follows:	 after
executing	 for	6	msec,	Microwave	Oven	Control	 sends	 the	Stop	Cooking
message	 to	 Heating	 Element	 Component.	 Because	 this	 output	 task	 has	 a
higher	priority	than	Microwave	Oven	Control,	when	it	receives	the	message,
it	 unblocks	 and	 preempts	Microwave	Oven	Control.	After	 executing	 for	 5
msec	it	sends	the	Stop	Cooking	command	to	the	external	heating	element	and
terminates.

Microwave	 Oven	 Control	 then	 resumes	 execution	 for	 2	 msec	 before
sending	 the	 Beep	 message	 to	 Beeper	 Component.	 Because	 it	 has	 a	 higher
priority,	 upon	 receiving	 the	 message,	 Beeper	 Component	 preempts
Microwave	Oven	Control,	executes	for	4	msec,	sends	the	Beep	command	to



the	external	beeper	device,	and	terminates.	The	same	procedure	is	then	followed
with	Microwave	Oven	Control	resuming	execution	and	sending	messages	to
Lamp	Component	and	Turntable	Component,	which	in	turn	execute	for	their
allotted	 times.	 After	 Turntable	 Component	 completes	 execution,	 the	 only
ready	 task,	 Oven	 Timer,	 resumes	 execution	 and	 sends	 a	 prompt	 message	 to
Oven	Display	Output.	As	can	be	seen	from	Figure	19.25,	 the	 total	elapsed
time	for	this	scenario	is	48	msec.

Figure	19.25.	Timing	diagram	for	Microwave	Oven	System	tasks	executing
on	a	single	processor	system.
(Note	that	«swSchedulableResource»	is	abbreviated	to	«swSR»	for	space
reasons).



19.8.2	Performance	Analysis	on	Multiprocessor	System

Now	 consider	 the	 same	 event	 sequence	 executing	 on	 a	multiprocessor	 system
with	 four	 CPUs,	 as	 depicted	 on	 the	 timing	 diagram	 in	 Figure	 19.26.	 This
scenario	 starts	 in	 the	 same	way	with	Oven	Timer	 activated	by	 a	 timer	 event,
executing	 for	 7	msec	 on	 CPU	A	 and	 sending	 a	Timer	Expired	 message	 to
Microwave	 Oven	 Control.	 In	 this	 multiprocessor	 scenario,	 Oven	 Timer
then	continues	executing	on	CPU	A	for	a	further	2	msec	and	sends	a	Display
End	 Prompt	 message	 to	 Oven	 Display	 Output	 before	 terminating.	 Upon
receiving	the	Timer	Expired	message,	Microwave	Oven	Control	executes
for	6	msec	on	CPU	B	(initially	in	parallel	with	Oven	Timer	on	CPU	A	and	later
in	 parallel	 with	 Oven	 Display	 Output	 on	 CPU	C)	 before	 sending	 a	 Stop
Cooking	message	to	Heating	Element	Component.

In	 this	 multiprocessor	 scenario,	 Microwave	 Oven	 Control	 continues
executing	on	CPU	B	in	parallel	with	Heating	Element	Component	executing
on	 CPU	D	 and	Oven	Display	Output	 on	 CPU	C.	After	 a	 further	 2	msec,
Microwave	Oven	Control	 sends	 a	Beep	message	 to	Beeper	Component,
which	 then	 executes	 in	 parallel	 on	 CPU	 A.	 Microwave	 Oven	 Control

continues	executing	on	CPU	B	and	after	a	further	2	msec	sends	a	Switch	Off
message	to	Lamp	Component,	which	starts	executing	in	parallel	on	CPU	C	(by
this	time	having	been	released	by	Oven	Display	Output).	At	this	time,	there
are	 tasks	 executing	 in	 parallel	 on	 all	 four	 CPUs.	 After	 a	 further	 2	 msec,
Railroad	 Crossing	 Control	 sends	 a	 Stop	 Turning	 message	 to
Turntable	Component,	which	then	executes	on	CPU	D,	replacing	the	recently
terminated	Heating	Element	Component.

As	depicted	on	Figure	19.26,	the	total	elapsed	time	for	this	multiprocessor
scenario	 is	23	msec,	which	 is	25	msec	 less	 than	 the	 single	processor	 scenario.



This	 comparison	 shows	 that	 there	 are	 situations	when	a	multiprocessor	 system
can	 be	 used	 to	 great	 advantage,	 in	 particular	 when	 there	 are	 multiple	 tasks
concurrently	executing	 independent	actions.	However,	 it	 should	be	pointed	out
that	 due	 to	 memory	 contention,	 the	 actual	 elapsed	 time	 could	 be	 longer	 on	 a
multicore	system.

Figure	19.26.	Timing	diagram	for	Microwave	Oven	System	tasks	executing
on	a	multiprocessor	system.
(Note	that	«swSchedulableResource»	is	abbreviated	to	«swSR»	for	space
reasons).



19.9	Component-Based	Software
Architecture

Figure	 19.27	 depicts	 a	UML	 composite	 structure	 diagram	 showing	 the	 overall
microwave	oven	component-based	software	architecture,	component	 interfaces,
and	connectors.	All	the	components	are	concurrent	and	communicate	with	other
components	 through	 ports.	 The	 composite	 structure	 of	 the	 component
architecture	 and	 connectivity	 among	 components	 depicted	 in	 Figure	 19.27	 is
determined	from	the	concurrent	communication	design	depicted	in	Figure	19.22.



Figure	19.27.	Microwave	Oven	System	component-based	software
architecture.



19.9.1	Design	of	Components	Structured	as	Tasks

Because	the	three	input	components	(Door	Component,	Weight	Component,
and	 Keypad	 Component)	 send	 messages	 to	 the	 Microwave	 Control

component	in	Figure	19.22,	each	input	component	is	designed	to	have	an	output
port,	referred	to	as	a	required	port,	which	is	joined	by	means	of	a	connector	to
the	control	component's	 input	port,	 referred	 to	as	a	provided	port,	 as	shown	 in
Figure	 19.27.	 The	 name	 of	 the	 required	 port	 on	 each	 input	 component	 is
RMWControl;	by	a	COMET/RTE	convention,	the	first	letter	of	the	port	name	is
R	 to	 emphasize	 that	 the	 component	 has	 a	 required	 port.	 The	 name	 of
Microwave	 Control	 Component's	 provided	 port	 is	 PMWControl;	 the	 first
letter	of	the	port	name	is	P	to	emphasize	that	the	component	has	a	provided	port.
Connectors	join	the	required	ports	of	the	three	input	components	to	the	provided
port	of	the	control	component.	Because	all	the	connectors	are	unidirectional,	the
direction	 in	 which	 messages	 are	 sent	 is	 explicitly	 shown	 on	 the	 composite
structure	diagram	in	Figure	19.27.

Each	 component	 port	 is	 defined	 in	 terms	 of	 its	 provided	 and/or	 required
interfaces.	Some	producer	 components	 –	 in	 particular,	 the	 input	 components	 –
do	 not	 provide	 a	 software	 interface	 because	 they	 receive	 their	 inputs	 directly
from	 the	 external	 hardware	 input	 devices.	 However,	 they	 require	 an	 interface
provided	 by	 the	 control	 component	 in	 order	 to	 send	 messages	 to	 the	 control
component.	Figure	19.28	depicts	 the	ports	and	required	 interfaces	 for	 the	 three
input	 components	 of	 Figure	 19.27:	 Door	 Component,	 Weight	 Component,
and	 Keypad	 Component.	 Each	 of	 the	 three	 input	 components	 has	 the	 same
required	 interface	 –	 IMWControl	 –	 which	 is	 provided	 by	 the	 Microwave
Control	component.



Figure	19.28.	Ports	and	required	interfaces	of	input	components.

The	 Microwave	 Control	 component	 has	 several	 required	 ports	 from
which	 it	 sends	messages	 to	 the	 provided	 ports	 of	 the	 five	 output	 components
depicted	in	Figure	19.27	(Heating	Element	Component,	Lamp	Component,
Turntable	Component,	Beeper	Component,	and	Microwave	Display).

The	 output	 components	 do	 not	 require	 a	 software	 interface,	 because	 their
outputs	go	directly	to	external	hardware	output	devices.	However,	 they	need	to
provide	an	interface	to	receive	messages	sent	by	the	control	component.	Figure
19.29	depicts	the	ports	and	provided	interfaces	for	all	the	output	components	of
the	system.	Figure	19.29	also	shows	the	specifications	of	the	interfaces	in	terms
of	 the	 operations	 they	 provide.	 Lamp	 Component,	 Turntable	 Component,
and	Beeper	Component	are	output	components,	each	of	which	has	a	provided
port	–	 for	example,	PLamp	 for	Lamp	Component,	which	provides	an	 interface
(e.g.,	ILamp).



Figure	19.29.	Ports	and	provided	interfaces	of	output	components.

Consider	next	Heating	Element	Component,	which	has	a	provided	port
called	PHeater,	which	in	turn	provides	an	interface	called	IHeatingElement.
The	provided	interface	(IHeatingElement)	has	one	provided	port	(PHeater).
The	interface	specifies	three	operations	called	initialize,	start	Cooking,
and	stop	Cooking.

The	 Microwave	 Display	 component	 has	 a	 provided	 port	 called
PDisplay,	which	in	turn	provides	an	interface	called	IDisplay.	This	interface
specifies	 four	 operations,	 display	 Prompt,	 display	 Time,	 clear



Screen,	 and	 display	 TOD.	 Figure	 19.29	 shows	 the	 specification	 of	 the
interface.

Some	components,	such	as	control	components,	need	to	provide	interfaces
for	 the	 input	 components	 to	 use	 and	 require	 interfaces	 that	 are	 provided	 by
output	 components.	The	Microwave	Control	 component	has	 several	ports	–
one	 provided	 port	 and	 five	 required	 ports	 –	 as	 shown	 in	 Figure	 19.30.	 Each
required	port	is	used	to	interface	to	a	different	output	component	and	is	given	the
prefix	R	–	for	example,	RLamp.	The	provided	port,	which	is	called	PMWControl,
provides	the	interface	IMWControl,	which	is	required	by	the	input	components.
This	interface	is	specified	in	Figure	19.30.	It	is	kept	simple	by	having	only	one
operation	(send	Control	Request),	with	a	parameter	for	the	type	of	request
instead	of	one	operation	for	each	type	of	request.	Designing	each	control	request
as	 a	 separate	 operation	 would	 make	 the	 interface	 more	 complicated.	 It	 also
makes	 it	easier	 to	modify	 the	design	of	 the	Microwave	Control	component,
since	an	additional	 request	 type	only	 requires	a	new	value	 for	 the	 request	 type
parameter	 instead	 of	 necessitating	 a	 change	 to	 the	 interface	 to	 add	 a	 new
operation.



Figure	19.30.	Ports	and	interfaces	of	the	Microwave	Control	component.



19.9.2	Design	of	Components	Containing	Multiple	Objects

The	 Microwave	 Control	 component	 is	 designed	 to	 contain	 two	 concurrent
tasks	 (Microwave	 Oven	 Control	 and	 Oven	 Timer)	 and	 a	 passive	 entity
object	(Oven	Data).	Because	the	entity	object	is	passive,	as	depicted	in	Figure
19.23,	 the	 two	 concurrent	 tasks	 that	 access	 it	 directly,	 Microwave	 Oven

Control	 and	Oven	Timer,	 cannot	be	deployed	 to	different	nodes	as	 separate
components.	 The	 unit	 of	 deployment	 is	 therefore	 the	 Microwave	 Control
component,	 which	 for	 this	 reason	 is	 a	 simple	 component	 with	 no	 internal
component	structuring.

The	passive	object	Oven	Data	is	designed	as	an	information	hiding	object
with	two	provided	interfaces,	one	to	specify	operations	relating	to	updating	the
cooking	time,	ICookingTimeData	,	and	the	other	to	specify	operations	related
to	updating	the	time-of-day	clock,	ITODData,	as	depicted	in	Figure	19.31.



Figure	19.31.	Interfaces	of	passive	objects.

The	Microwave	Display	component	is	designed	to	contain	one	task	and
one	 passive	 entity	 object,	 as	 shown	 in	 Figure	 19.24:	 a	 concurrent	 task	 called
Oven	Display	Output	and	a	passive	entity	object	called	Oven	Prompts.	As
with	the	Microwave	Control	component,	because	the	entity	object	is	passive,
the	Oven	Display	Output	task	that	accesses	it	directly	cannot	be	deployed	to
its	own	node	as	a	separate	component.	The	unit	of	deployment	 is	 therefore	 the



Microwave	Display	 component,	which	 is	 thus	 a	 simple	 component	with	 no
internal	component	structuring.

The	Oven	Display	Output	 task	 receives	 asynchronous	messages	 from
its	producers	(Figure	19.24).	For	each	message	that	requires	a	text	prompt	to	be
displayed,	 given	 the	 prompt	 ID,	 Oven	 Display	 Output	 retrieves	 the
appropriate	prompt	text	by	invoking	the	read	operation	(Figure	19.24)	provided
by	 the	 passive	 Oven	 Prompts	 entity	 object.	 The	 Oven	 Prompts	 object	 is
designed	as	 an	 information	hiding	object	with	a	provided	 interface	depicted	 in
Figure	19.31.



19.9.3	Design	of	Connectors

All	communication	between	the	components	depicted	in	Figures	19.22	and	19.23
is	 asynchronous.	 This	 necessitates	 the	 design	 of	 message	 queue	 connectors
between	the	components	as	described	in	Chapter	14.	This	section	describes	the
design	of	two	message	queue	connectors	that	are	used	by	the	Microwave	Oven
Control	component,	which	is	a	simple	component	designed	as	a	task.

The	 Microwave	 Oven	 Control	 task	 (see	 Figure	 19.23),	 which
conceptually	executes	the	microwave	oven	state	machine,	receives	asynchronous
control	request	messages	from	several	producer	tasks,	as	shown	in	Figure	19.23.
These	messages	are	placed	on	a	message	queue	by	 the	producers	and	removed
from	the	queue	by	the	only	consumer,	the	Microwave	Oven	Control	task,	as
depicted	in	Figure	19.32	using	the	Oven	Control	Message	Q	connector.	Each
message	 has	 an	 input	 parameter	 that	 holds	 the	 name	 and	 contents	 of	 the
individual	control	request.



Figure	19.32.	Microwave	Oven	tasks	communicating	through	message	queue
connectors.

Microwave	Oven	Control	 is	 a	 consumer	 task	when	 it	 receives	 control
request	 messages	 from	 the	 four	 producer	 tasks	 through	 the	 Oven	 Control
Message	 Q	 connector.	 However,	 Microwave	 Oven	 Control	 acts	 as	 a
producer	 when	 it	 sends	 timer	 request	 messages	 to	 Oven	 Timer	 through	 a
message	queue	connector	called	Oven	Timer	Message	Q.

Oven	Timer	is	a	producer	task	when	it	sends	control	request	messages	to
Microwave	Oven	Control	in	the	same	way	as	the	input	components	through
the	 Oven	 Control	 Message	 Q	 connector.	 However,	 Oven	 Timer	 is	 a
consumer	 task	when	 it	 receives	asynchronous	 timer	 request	messages	 from	 the
producer	Microwave	Oven	Control	 task.	 This	 necessitates	 the	 design	 of	 a
different	 connector,	 the	 Oven	 Timer	 Message	 Q	 connector	 (as	 depicted	 in
Figure	 19.32)	 to	 hold	 the	 timer	 request	 messages.	 Each	 message	 has	 an
parameter	called	timerRequest	that	holds	the	name	of	the	individual	message
–	 for	 example,	 startOven	 Timer,	 stopOvenTimer,	 addMinute,	 and
startMinute.



19.10	Detailed	Software	Design
The	detailed	software	design	involves	developing	the	Pseudocode	for	the	single
threaded	 components,	 such	 as	 Door	 Component,	 and	 tasks	 inside	 the
components	 that	 contain	 multiple	 objects,	 such	 as	 the	 Microwave	 Oven

Control	 and	 Oven	 Timer	 tasks	 that	 are	 inside	 the	 Microwave	 Control
component,	as	shown	in	Figure	19.23.

Door	Component	 is	 designed	 as	 a	producer	 task	 that	 sends	door	opened
and	 door	 closed	 control	 request	 messages	 to	 Microwave	 Oven	 Control

through	 a	 message	 queue	 connector	 called	 Oven	 Control	 Message	 Q,	 as
depicted	 in	 Figure	 19.32.	 However,	 this	 connector	 is	 inside	 the	 Microwave
Control	 component	 and	 is	 therefore	 accessed	 via	 the	 required	 port
RMWControl	 of	 DoorComponent,	 which	 invokes	 the	 sendControlRequest
operation	 provided	 by	 the	 IMWControl	 interface.	 The	 task	 event	 sequencing
logic	described	in	Pseudocode	for	DoorComponent	is	as	follows.

Initialize	door	sensor;

	loop

	--	Wait	for	external	asynchronous	event	from	door	sensor;

	wait	(inputEvent);

	Read	door	event;

	if	event	=	doorOpened

	then

	--	send	message	to	Microwave	Oven	Control	task	through	connector;

	RMWControl.sendControlRequest	(in	doorOpened);

	elseif	event	=	doorClosed;

	then

	--	send	message	to	Microwave	Oven	Control	task	through	connector;

	RMWControl.sendControlRequest	(in	doorClosed);

	else

	Handle	error	case;

	end	if;

	end	loop;



The	task	event	sequencing	logic	for	Microwave	Oven	Control	task	is	as
follows.	 Note	 that	 the	 actions	 are	 determined	 by	 the	 Microwave	 Oven

Control	 state	 machine	 (depicted	 in	 Figures	 19.7	 and	 19.8),	 which	 is
encapsulated	as	a	state	transition	table	inside	the	MOCStateMachine	object,	as
described	 in	Chapter	 14.	Note	 also	 that	Microwave	Oven	Control	 receives
control	 request	messages	 from	 its	 four	 producers	 through	 the	Oven	Control
Message	Q	 connector	 and	 sends	 timer	messages	 to	Oven	Timer	 through	 the
Oven	 Timer	 Message	 Q	 connector;	 both	 these	 connectors	 are	 inside	 the
Microwave	 Control	 component.	 However,	 Microwave	 Oven	 Control

sends	 messages	 to	 the	 output	 components,	 such	 Heating	 Element

Component,	 by	 invoking	 an	 operation	 in	 the	 Microwave	 Control

component's	required	port	 interface	for	connecting	to	that	component	(depicted
in	 Figures	 19.27	 and	 19.30).	 For	 example,	 to	 start	 cooking	 food,	Microwave
Control	 invokes	 the	startCooking	 operation	 (from	 the	IHeatingElement
interface	 provided	 by	 Heating	 Element	 Component	 in	 Figure	 19.29),
through	the	requiredRHeater	port	(see	Figure	19.30),	as	described	next.

loop

	--	Messages	from	all	senders	are	received	on	Oven	Control	Message	Q

	OvenControlMessageQ.receiveControlRequest	(out	controlEvent);

	--	Extract	the	event	name	and	any	message	parameters

	newEvent	=	controlEvent

	--	Assume	state	machine	is	encapsulated	in	object	MOCStateMachine;

	--	Given	the	incoming	event,	lookup	state	transition	table;

	--	change	state	if	required;	return	action	to	be	performed;

	MOCStateMachine.processEvent	(in	newEvent,	out	action);

	--	Execute	state	dependent	action(s)	given	by	MOC	state	machine;

	case	action	of

	Start	Actions:

	OvenTimerMessageQ.sendTimerRequest	(in	startTimer);

	RHeater.startCooking	();

	RLamp.switchOn	();

	RTurntable.startTurning	();

	exit;

	Timer	Expired	Actions:

	RHeater.stopCooking	();



	RTurntable.stopTurning	();

	RLamp.switchOff	();

	RBeeper.beep	();

	exit;

	Door	Opened	while	Cooking	Actions:

	RHeater.stopCooking	();

	RTurntable.stopTurning	();

	OvenTimerMessageQ.sendTimerRequest	(in	stopTimer);

	exit;

	Switch	On	Action:

	RLamp.switchOn	();

	exit;

	Switch	Off	Action:

	RLamp.switchOff	();

	exit;

	Cancel	Timer	Action:

	OvenTimerMessageQ.sendTimerRequest	(in	cancelTimer);

	exit;

	Add	Minute:

	OvenTimerMessageQ.sendTimerRequest	(in	addMinute);

	exit;

	Start	Minute:

	OvenTimerMessageQ.sendTimerRequest	(in	startMinute);

	exit;

	Display	Cooking	Time	Actions:

	RDisplay.displayTime	(in	time);

	OvenData.updateCookingTime	(in	time)

	exit;

	--	other	actions	not	shown

	end	case;

	end	loop;

The	task	event	sequencing	logic	for	Heating	Element	Component	task
is	given	next.	It	is	assumed	that	incoming	messages	arrive	on	its	message	queue,
where	 they	are	placed	by	the	startCooking	and	stopCooking	operations	of
the	Heating	Element	Component.

Initialize	heating	element	actuator;

	loop

	--	Wait	for	message	from	Microwave	Oven	Control	task	arriving	via

	connector;

	heatingElementMessageQ.receive	(in	message);

	Extract	action	event	from	message;

	--	Process	message;



	if	action	=	startCooking

	then

	Send	startCookingCommand	to	heating	element	actuator;

	elseif	action	=	stopCooking

	then

	Send	stopCookingCommand	to	heating	element	actuator

	else	error	condition;

	end	if;

	end	loop;



19.11	System	Configuration	and
Deployment

At	system	deployment	 time,	 the	 type	of	configuration	required	–	centralized	or
distributed	 –	 is	 determined.	 Figure	 19.33	 shows	 one	 possible	 configuration,	 in
which	each	of	the	component-based	subsystems	is	allocated	to	a	separate	node	in
a	distributed	configuration.	The	nodes	 are	physically	 connected	by	means	of	 a
high-speed	bus.

Figure	19.33.	Distributed	system	configuration.

Only	distributable	components	can	be	deployed	to	the	physical	nodes	of	a
distributed	configuration.	Passive	objects	(such	as	Oven	Data	in	Figure	19.31)
cannot	 be	 independently	 deployed,	 nor	 can	 any	 task	 that	 directly	 invokes	 the
operations	 of	 a	 passive	 component	 (such	 as	Microwave	Oven	Control	 and



Oven	 Timer	 in	 Figure	 19.23).	 In	 this	 situation,	 only	 the	 distributable
component	(which	contains	the	passive	object	and	concurrent	 tasks	that	 invoke
operations	 of	 the	 passive	 object)	 can	 be	 deployed.	Thus,	 only	 the	Microwave
Control	 composite	 component	 can	 be	 deployed,	 as	 depicted	 in	Figure	 19.33.
Note	 that	 this	 figure	 depicts	 a	 reduced	 configuration	 with	 only	 two	 output
components,	Heating	Element	Component	and	Microwave	Display.



20

Railroad	Crossing	Control	System
Case	Study

◈

This	 chapter	 describes	 a	 case	 study	 for	 a	 railroad	 crossing	 control	 embedded
system.	This	software	design	is	for	a	safety-critical	system,	in	which	the	raising
and	lowering	of	railroad	barriers	must	be	done	safely	and	in	a	timely	manner.	As
is	 typical	 of	 embedded	 systems,	 the	 system	 interfaces	 with	 the	 external
environment	by	means	of	several	sensors	and	actuators.	It	also	must	send	status
messages	 to	a	Rail	Operations	Service.	Control	of	 the	railroad	crossing	 is	state
dependent,	which	necessitates	 the	design	of	 a	 state	machine	 to	provide	overall
control	 of	 the	 software	 system.	 As	 the	 Railroad	 Crossing	 Control	 System
(RXCS)	is	an	embedded	system,	the	design	approach	benefits	from	starting	with
a	 systems	 engineering	 perspective	 of	 the	 total	 hardware/software	 system,	 the
Railroad	Crossing	Embedded	System.

The	 problem	 is	 described	 in	 Section	 20.1.	 Section	 20.2	 describes	 the
structural	 modeling	 of	 the	 system,	 consisting	 of	 the	 structural	 model	 of	 the
problem	domain,	 followed	by	 the	 system	and	software	 system	context	models,
and	the	hardware/software	boundary	model.	Section	20.3	describes	the	use	case
model	 from	 a	 software	 engineering	 perspective,	 describing	 both	 the	 functional
and	 nonfunctional	 requirements	 of	 the	 safety-critical	 system.	 Section	 20.4



describes	 the	dynamic	 state	machine	modeling,	which	 is	particularly	 important
to	model	 the	state	dependent	 intricacies	of	 this	embedded	system.	Section	20.5
describes	how	the	object	and	class	structuring	criteria	are	applied	to	this	system.
Section	 20.6	 describes	 how	 dynamic	 interaction	 modeling	 is	 used	 to	 develop
sequence	diagrams	from	the	use	cases.	Section	20.7	describes	the	design	model
for	the	software	system,	which	is	designed	as	a	concurrent	software	architecture
that	 is	 based	 on	 software	 architectural	 patterns.	 Section	 20.8	 describes	 the
performance	 analysis	 of	 the	 real-time	 design	 executing	 on	 single	 and
multiprocessor	 systems.	 Section	 20.9	 describes	 the	 design	 of	 the	 RXCS
component-based	software	architecture	 that	 is	part	of	 the	distributed	Light	Rail
System	described	 in	Chapter	 21.	 Section	 20.10	 describes	 system	configuration
and	deployment.



20.1	Problem	Description
A	railroad	crossing	consists	of	 two	barriers,	each	with	a	flashing	warning	 light
and	 an	 audio	 warning	 signal.	 The	 barriers	 are	 normally	 raised.	 When	 a	 train
approaches,	 the	 barriers	 are	 lowered,	 the	warning	 lights	 start	 flashing,	 and	 the
audio	warnings	are	sounded.	When	the	train	departs,	the	barriers	are	raised,	the
warning	lights	stop	flashing,	and	the	audio	warnings	are	stopped.	Since	there	are
two	 sets	 of	 rails,	 it	 is	 possible	 for	 two	 trains	 to	 be	 at	 the	 railroad	 crossing
simultaneously,	 in	 which	 case	 the	 barriers	 are	 lowered	 when	 the	 first	 train
arrives	and	only	raised	when	the	second	train	has	departed.



20.2	Structural	Modeling
From	 a	 structural	 modeling	 perspective,	 four	 diagrams	 are	 developed	 and
depicted	on	SysML	block	definition	diagrams.	First	 there	 is	a	conceptual	static
model	 of	 the	 problem	 domain,	 which	 views	 the	 system	 in	 its	 real-world
perspective.	A	structural	model	is	then	developed	of	the	total	hardware/software
system.	From	these	two	diagrams,	the	system	context	block	definition	diagram	is
developed	depicting	 the	external	entities	 to	 the	 total	hardware/software	system.
Finally,	 the	 software	 system	 context	 block	 definition	 diagram	 is	 developed
depicting	the	software	system	and	the	external	entities	that	interface	to	it.



20.2.1	Structural	Model	of	the	Problem	Domain

The	conceptual	structural	model	of	the	problem	domain	is	depicted	on	a	SysML
block	 definition	 diagram	 in	 Figure	 20.1.	 From	 a	 total	 system	 perspective,	 the
problem	 domain	 for	 Railroad	 Crossing	 Embedded	 System	 consists	 of	 the
following	blocks:

Railroad	Crossing	Embedded	System,	which	is	the	embedded
system	to	be	developed.

Train,	which	is	a	physical	entity	detected	by	the	system.

Barrier,	which	is	a	physical	entity	controlled	by	the	system	and	which
consists	of	a	barrier	actuator	and	a	barrier	sensor.

Warning	Alarm,	which	consists	of	Warning	Lights	and	Warning	Audio
and	which	is	a	physical	entity	controlled	by	the	system.

Observer,	who	is	a	driver,	cyclist,	or	pedestrian	who	stops	at	the
railroad	crossing	and	who	is	a	human	observer	of	the	system.

Rail	Operations	Service,	which	is	an	external	system	that	is
notified	of	the	status	of	the	railroad	crossing.



Figure	20.1.	Conceptual	structural	model	of	the	problem	domain.



20.2.2	Structural	Model	of	the	Total	System

Using	the	SysML	notation,	the	structural	model	of	the	total	system	is	depicted	on
a	 block	 definition	 diagram	 in	 Figure	 20.2.	 The	 Railroad	 Crossing	 Embedded
System	 is	 depicted	 as	 a	 composite	 block,	which	 is	 composed	of	 the	 following
part	blocks:

Two	barriers,	which	are	commanded	by	the	system	to	move	up	and
down.	Each	Barrier	is	composed	of	a	Barrier	Actuator,	a
Barrier	Detection	Sensor,	and	a	Timer.

Barrier	Actuator	is	commanded	to	lower	and	raise	the	barrier.

Barrier	Detection	Sensor	detects	when	the	barrier	has	been
lowered	and	raised	and	sends	barrier	lowered	and	barrier	raised
messages.

Barrier	Timer	times	out	if	a	barrier	exceeds	pre-specified
lowering	and	raising	times.

Two	warning	signals.	Each	Warning	Signal	is	composed	of	a
Warning	Light	Actuator	and	Warning	Audio	Actuator:

Warning	Light	Actuator	is	commanded	by	the	system	to
switch	and	switch	off	the	warning	light.

Warning	Audio	Actuator	is	commanded	by	the	system	to
switch	on	and	switch	off	the	audio	warning.

Train	arrival	at	and	departure	from	the	railroad	crossing	is	detected	by
two	sets	of	sensors.	Train	Sensor	is	specialized	into	Arrival
Sensor	and	Departure	Sensor.



Figure	20.2.	Structural	model	for	Railroad	Crossing	Embedded	System.

Arrival	Sensor	detects	when	a	train	is	approaching	the	railroad
crossing.

Departure	Sensor	detects	when	a	train	has	departed	from	the
railroad	crossing.

In	addition,	the	system	sends	notification	and	safety	messages	to	Rail
Operations	Service,	which	is	an	external	system.



20.2.3	System	Context	Model

The	system	context	model	depicts	the	Railroad	Crossing	Embedded	System	from
a	total	system	perspective,	as	depicted	on	a	SysML	block	definition	diagram	in
Figure	 20.3.	 It	 is	 derived	 from	 the	 conceptual	 static	 model	 of	 the	 problem
domain.	There	are	five	external	blocks:

In	 the	 system	context	model,	 the	 train	 is	 depicted	 (Figure	20.3)	 as	 an	 external
physical	entity,	which	is	detected	by	the	system.	The	observer,	in	particular	the
vehicle	driver,	is	an	external	observer	of	the	system.	It	is	worth	noting	that	two
of	 the	external	blocks	on	 the	system	context	diagram,	namely	 the	 train	and	the
observer,	do	not	physically	interact	with	the	system.	The	arrival	and	departure	of
the	train	are	detected	by	arrival	and	departure	sensors.	The	observer	is	alerted	of
an	imminent	train	arrival	by	the	closing	of	the	barrier,	the	warning	lights,	and	the
warning	audio	alarm.

The	Train,	which	is	an	external	physical	entity	detected	by	the	system.

Barrier,	which	is	an	external	physical	entity	controlled	by	the	system
(barrier	actuator	+	barrier	sensor).

Warning	Alarm,	which	consists	of	Warning	Lights	and	Warning	Audio,
is	an	external	physical	entity	controlled	by	the	system.

The	Rail	Operations	Service,	which	is	an	external	system	that	is
notified	by	the	system	of	the	status	of	the	railroad	crossing.

The	Observer	(who	stops	at	the	railroad	crossing),	who	is	an	external
observer	of	the	system.



Figure	20.3.	System	context	model	for	Railroad	Crossing	Embedded	System.



20.2.4	Software	System	Context	Model

The	 software	 system	 context	model	 for	 RXCS	 is	 depicted	 on	 a	 SysML	 block
definition	diagram	in	Figure	20.4.	As	 is	 typical	 for	an	embedded	system,	 there
are	 several	 external	 input	 and	output	 devices,	which	 are	 depicted	by	means	of
SysML	blocks.	These	 I/O	devices	are	part	of	 the	embedded	hardware/software
system	and	hence	not	depicted	in	Figure	20.3.	However,	they	are	external	to	the
software	 system	 and	 therefore	 need	 to	 be	 depicted	 on	 the	 software	 system
context	model.

Since	 train	 arrival	 and	 departure	 are	 detected	 by	 arrival	 and	 departure
sensors,	 the	Train	 external	physical	entity	block	on	 the	system	context	model
(Figure	 20.3)	 is	 replaced	 by	 Arrival	 Sensor	 and	 Departure	 Sensor

external	input	device	blocks	on	the	software	system	context	model	(Figure	20.4).
Since	 the	 raising	 and	 lowering	 of	 the	 Barrier	 external	 physical	 entity	 is
controlled	by	an	actuator	and	detected	by	a	sensor,	it	is	replaced	by	the	Barrier
Actuator	 external	 output	 device	 and	 the	 Barrier	 Detection	 Sensor

external	input	device.	In	addition,	there	is	a	Timer	to	help	determine	if	there	are
delays	 in	 lowering	 or	 raising	 the	 barrier.	 Since	 the	Warning	Alarm	 external
physical	entity	 is	activated	by	switching	actuators	on	and	off,	 it	 is	 replaced	by
the	 Warning	 Light	 Actuator	 and	 Warning	 Audio	 Actuator	 external
output	 devices.	 Since	 the	 Observer	 on	 the	 system	 context	 diagram	 does	 not
interact	with	the	software	system,	it	is	not	needed	on	the	software	system	context
diagram.	 Finally,	 the	 external	 Rail	 Operations	 Service	 on	 the	 system
context	diagram	is	also	depicted	on	the	software	system	context	diagram.

Consider	next	the	multiplicity	between	the	software	system	and	the	external
devices.	The	software	 system	 interfaces	 to	 two	 instances	of	each	of	 the	arrival
and	departure	 sensors,	 one	pair	 for	 each	 railroad	 track,	 and	 two	barriers.	Each



barrier	 consists	 of	 a	 barrier	 actuator,	 barrier	 detection	 sensor,	 barrier	 timer,
warning	 light	actuator	and	warning	audio	actuator.	Thus,	as	depicted	 in	Figure
20.4,	the	software	system	interfaces	to	two	instances	of	each	external	device	and
one	instance	of	the	external	system.

Figure	20.4.	Software	system	context	model	for	Railroad	Crossing	Control
System.



20.2.5	Hardware/Software	Boundary	Model

The	 specification	 of	 the	 I/O	 devices,	 in	 particular	 the	 three	 input	 sensors	 and
three	output	actuators,	are	given	in	Table	20.1.	The	inputs	to	the	software	system
from	 the	 three	 input	 sensors	 and	 the	 outputs	 from	 the	 software	 system	 to	 the
three	 output	 actuators	 are	 specified.	 An	 example	 of	 an	 input	 device	 is	 the
Barrier	Detection	Sensor,	which	sends	Barrier	Raised	and	Barrier
Lowered	input	events	to	the	software	system.	An	example	of	an	output	device	is
the	 Barrier	 Actuator,	 which	 receives	 Raise	 Barrier	 and	 Lower
Barrier	commands	from	the	software	system.

The	hardware	characteristics	of	the	I/O	devices	are	that	all	sensors	are	event
driven;	that	is,	an	interrupt	is	generated	when	there	is	an	input	from	one	of	these
devices.	The	output	devices	are	passive;	that	is,	they	do	not	generate	interrupts.

Table	20.1.	I/O	Device	Boundary	Specification

Device
name

Device
type

Device	function Inputs	from
device

Outputs	to
device

Arrival
Sensor

Input Signals	when	train
arrives

Arrival	Event

Departure
Sensor

Input Signals	when	train
departs

Departure	Event

Barrier
Detection
Sensor

Input Signals	when
barrier	has	been
raised	or	lowered

Barrier	Lowered
Event,	Barrier
Raised	Event

Barrier
Actuator

Output Raises	and	lowers
barrier

Raise
Barrier,
Lower
Barrier



Barrier

Warning
Light
Actuator

Output Switches	warning
lights	on	and	off

Switch	On,
Switch	Off

Warning
Audio
Actuator

Output Switches	audio
warning	on	and	off

Switch	On,
Switch	Off



20.3	Use	Case	Modeling
For	an	embedded	system	such	as	the	RXCS,	there	are	no	human	external	actors.
The	use	cases	reflect	the	requirements	of	the	system,	namely	Arrive	at	Railroad
Crossing	 and	 Depart	 from	 Railroad	 Crossing.	 The	 use	 case	 model	 can	 be
developed	 from	 a	 systems	 engineering	 perspective	 or	 a	 software	 engineering
perspective.	 From	 a	 systems	 engineering	 perspective,	 the	 train	 is	 the	 primary
actor	of	both	use	cases,	since	it	is	the	arrival	of	the	train	that	triggers	the	Arrive
at	 Railroad	 Crossing	 use	 case	 and	 the	 departure	 of	 the	 train	 that	 triggers	 the
Depart	from	Railroad	Crossing	use	case.	However,	from	a	software	engineering
perspective,	 the	 train	 is	 replaced	 in	 the	software	 level	use	cases	by	 the	sensors
that	 detect	 the	 arrival	 and	 departure	 of	 the	 train.	 The	 actors	 in	 the	 software
engineering	 view	 are	 therefore	 input	 device	 actors	 (corresponding	 to	 the
sensors),	output	device	actors	 (corresponding	 to	 the	actuators),	 a	 timer,	 and	an
external	system.	The	arrival	sensor	is	the	primary	actor	of	the	Arrive	at	Railroad
Crossing	use	case	(Figure	20.5a)	because	it	is	the	arrival	of	the	train	that	initiates
this	use	case.	Similarly,	 the	departure	sensor	is	 the	primary	actor	of	 the	Depart
from	Railroad	Crossing	use	case	(Figure	20.5b).	The	use	case	specifications	are
as	 follows,	 which	 include	 both	 functional	 requirements	 and	 nonfunctional
requirements.	 The	 use	 cases	 are	 modeled	 from	 a	 software	 engineering
perspective	to	allow	full	consideration	of	the	sensors	and	actuators.

Figure	20.5.	Use	case	model	for	Railroad	Crossing	Control	System.







20.3.1	Arrive	at	Railroad	Crossing	Use	Case

The	Arrive	at	Railroad	Crossing	use	case	starts	with	an	 input	 from	 the	Arrival
Sensor	actor:

Use	case:	Arrive	at	Railroad	Crossing.
Summary:	 Train	 approaches	 railroad	 crossing.	 The	 system	 lowers	 the

barriers,	 switches	 on	 the	 warning	 lights,	 and	 switches	 on	 the	 audio	 warning
alarm.

Actors:

Precondition:	There	is	either	no	train	or	one	train	in	the	railroad	crossing.
Main	sequence:

1.	Arrival	Sensor	detects	the	train	arrival	and	informs	the	system.

2.	System	commands	each	Barrier	Actuator	to	lower	a	barrier,	each	Warning
Light	Actuator	to	switch	on	the	flashing	lights,	and	each	Warning	Audio
Actuator	to	switch	on	the	audio	warning.

3.	Barrier	Detection	Sensor	detects	that	a	barrier	has	been	lowered	and	informs
the	system.

4.	System	sends	a	train	arrival	message	to	Rail	Operations	Service.

Alternative	 sequences:	Step	2:	 If	 there	 is	 another	 train	already	at	 the	 railroad
crossing,	skip	steps	2	and	3.

Primary	actor:	Arrival	Sensor

Secondary	actors:	Barrier	Detection	Sensor,	Barrier	Actuator,	Warning
Light	Actuator,	Warning	Audio	Actuator,	Rail	Operations	Service,
Barrier	Timer.



Step	 3:	 If	 a	 barrier	 lowering	 timer	 times	 out,	 the	 system	 sends	 a	 safety
warning	message	to	the	Rail	Operations	Service.

Nonfunctional	requirements:

Postcondition:	 The	 barriers	 have	 been	 closed,	 the	warning	 lights	 are	 flashing
and	the	audio	warning	is	sounding.

Safety	requirements:

Barrier	lowering	time	shall	not	exceed	a	pre-specified	time.	If	a
barrier	timer	times	out,	the	system	shall	notify	Rail	Operations
Service.

System	shall	keep	track	of	the	number	of	trains	at	the	railroad
crossing,	such	that	the	barrier	shall	only	be	lowered	when	the	first
train	arrives.

Performance	requirement:	The	elapsed	time	from	the	detection	of	the
train	arrival	to	sending	the	command	to	the	barrier	actuator	shall	not
exceed	a	pre-specified	response	time.



20.3.2	Depart	from	Railroad	Crossing	Use	Case

The	 Depart	 from	 Railroad	 Crossing	 use	 case	 starts	 with	 an	 input	 from	 the
Departure	Sensor	actor:

Use	case:	Depart	from	Railroad	Crossing.
Summary:	 Train	 departs	 from	 railroad	 crossing.	 The	 system	 raises	 the

barriers,	 switches	 off	 the	 warning	 lights,	 and	 switches	 off	 the	 audio	 warning
alarm.

Actors:

Precondition:	There	is	at	least	one	train	in	the	railroad	crossing.
Main	sequence:

1.	Departure	Sensor	detects	that	the	train	has	departed	and	informs	the	system.

2.	System	commands	each	Barrier	Actuator	to	raise	a	barrier.

3.	Barrier	Detection	Sensor	detects	that	a	barrier	has	been	raised	and	informs	the
system.

4.	System	commands	each	Warning	Light	Actuator	to	switch	off	the	flashing
lights	and	each	Warning	Audio	Actuator	to	switch	off	the	audio	warning.

5.	System	sends	a	train	departed	message	to	Rail	Operations	Service.

Alternative	sequences:	Step	2:	If	there	is	another	train	at	the	railroad	crossing,
skip	steps	2,	3,	and	4.

Primary	actor:	Departure	Sensor

Secondary	actors:	Barrier	Detection	Sensor,	Barrier	Actuator,	Warning
Light	Actuator,	Warning	Audio	Actuator,	Rail	Operations	Service,
Barrier	Timer.



Step	 3:	 If	 a	 barrier	 raising	 timer	 times	 out,	 the	 system	 sends	 a	 safety
message	to	the	Rail	Operations	Service.

Nonfunctional	requirements:

Postcondition:	 The	 barrier	 has	 been	 raised,	 the	 warning	 lights	 and	 the	 audio
warning	signal	have	been	switched	off.

Safety	requirement:

Barrier	raising	time	must	not	exceed	a	pre-specified	time.	If	timer
times	out,	the	Rail	Operations	Service	shall	be	notified.

System	shall	keep	track	of	the	number	of	trains	at	the	railroad
crossing,	such	that,	if	there	is	more	than	one	train	at	the	railroad
crossing,	the	barrier	shall	not	be	raised	until	the	last	train	has
departed.

Performance	requirement:	The	elapsed	time	from	the	detection	of	the
train	departure	to	sending	the	command	to	the	barrier	actuator	shall	not
exceed	a	pre-specified	response	time.



20.4	Dynamic	State	Machine	Modeling
The	state	machine	for	RXCS	is	an	orthogonal	state	machine	that	consists	of	two
orthogonal	 regions,	 Barrier	 Control	 and	 Train	 Count,	 as	 depicted	 in
Figure	 20.6a.The	 reason	 for	 this	 is	 because	 barrier	 control	 actions	 depend	 on
whether	 there	are	one	or	 two	 trains	 in	 the	 railroad	crossing.	The	state	machine
for	Barrier	Control	 is	 depicted	 in	 Figure	 20.6b	 and	 the	 state	machine	 for
Train	Count	 in	Figure	20.6c.	There	are	four	states	 in	Barrier	Control	as
follows:

Up	–	This	is	the	initial	state	in	which	the	railroad	crossing	is	open.	This
state	is	also	entered	when	the	barrier	sensor	detects	that	the	second
barrier	has	been	raised.	The	associated	transition	(into	this	state)	actions
are	to	switch	off	both	the	warning	lights	and	the	audio	warnings,	send	a
departed	message,	and	cancel	the	barrier	timer.

Lowering	–	This	state	is	entered	when	the	first	train	arrives.	The
associated	transition	actions	are	to	lower	the	barriers,	sound	the	audio
warning	signals,	switch	on	the	flashing	lights,	and	start	the	barrier	timers.
If	the	timer	elapses	while	in	this	state,	which	indicates	that	lowering	a
physical	barrier	is	too	slow,	a	warning	message	is	sent.

Down	–	This	state	is	entered	when	the	barrier	sensor	detects	that	the	first
barrier	has	been	lowered.	The	associated	transition	actions	are	to	send	the
arrived	message	and	cancel	the	barrier	timer.	There	is	no	change	of	state
if	a	barrier	lowered	event	indicates	that	the	second	barrier	has	been
lowered	or	a	timer	elapsed	event	indicates	that	lowering	the	second
physical	barrier	is	too	slow.



Figure	20.6.	State	Machine	model	for	Railroad	Crossing	Control	System.

Raising	–	This	state	is	entered	when	the	last	train	has	departed.	The
associated	transition	actions	are	to	raise	the	barrier	and	to	start	the	barrier
timers.	There	is	no	change	of	state	if	a	barrier	raised	event	indicates	that
the	first	barrier	has	been	raised	or	a	timer	elapsed	event	indicates	that
raising	a	physical	barrier	is	too	slow,	in	which	case,	a	warning	message	is
sent.





Since,	it	is	possible	for	two	trains	to	be	passing	the	railroad	crossing	at	the
same	time,	it	is	vital	to	ensure	that	the	barrier	is	not	raised	until	the	second	train
has	 left.	 It	 is	 therefore	 necessary	 to	 keep	 track	 of	 the	 number	 of	 trains	 at	 the
railroad	crossing,	so	that	the	barrier	is	only	lowered	when	the	first	train	arrives
and	only	raised	when	the	last	train	leaves.	For	this	reason,	a	second	orthogonal
region	 is	 designed	 to	 maintain	 the	 Train	 Count,	 as	 shown	 in	 Figure	 20.6c.
There	is	one	state	for	each	train	count.



To	 avoid	 race	 conditions	 in	 the	 two	 orthogonal	 regions,	 the	Train	Arrived
and	Train	Departed	sensor	inputs	come	to	the	Train	Count	state	machine.
The	 first	 Train	 Arrived	 input	 causes	 a	 transition	 from	 No	 Trains	 in

Railroad	 Crossing	 to	 One	 Train	 in	 Railroad	 Crossing	 state.	 The
action	on	this	transition	is	First	Train	Arrived.	This	action	is	propagated	as
an	input	event	to	the	Barrier	Control	state	machine	(Figure	20.6b),	which	causes
the	 transition	 from	 Up	 state	 to	 Lowering	 state,	 thereby	 triggering	 the	 Lower
Barrier	 and	 related	 actions.	 The	 second	 Train	 Arrived	 event	 causes	 a
transition	 to	 Two	 Trains	 in	 Railroad	 Crossing	 state	 in	 the	 Train
Count	state	machine	but	has	no	effect	on	the	Barrier	Control	state	machine.
A	similar	approach	is	used	on	train	departure.	The	first	Train	Departed	input
causes	a	 transition	from	Two	Trains	in	Railroad	Crossing	state	 to	One
Train	in	Railroad	Crossing	state	in	the	Train	Count	state	machine	but
has	 no	 effect	 on	 the	 Barrier	 Control	 state	 machine.	 The	 second	 Train
Departed	 input	 causes	 a	 transition	 from	 One	 Train	 in	 Railroad

Crossing	 state	 to	No	Trains	in	Railroad	Crossing	 state	 in	 the	Train
Count	state	machine.	The	action	on	this	transition	is	Last	Train	Departed,

No	Trains	in	Railroad	Crossing.	This	is	the	initial	state	when
there	is	no	train	in	the	railroad	crossing.	This	state	is	also	entered	when
the	last	train	leaves	the	railroad	crossing,	in	which	case	the	action	on	the
transition	into	the	state	is	Last	Train	Departed.

One	Train	in	Railroad	Crossing.	This	state	is	entered	when	the
first	train	arrives	at	the	railroad	crossing.	The	action	on	the	transition	is
First	Train	Arrived.

Two	Trains	in	Railroad	Crossing.	This	state	is	entered	when	the
second	train	arrives	at	the	railroad	crossing.	When	the	first	of	two	trains
leaves	the	railroad	crossing,	the	state	machine	transitions	out	of	this	state.



which	is	propagated	as	an	input	event	to	the	Barrier	Control	state	machine
(Figure	20.6b)	and	causes	a	transition	from	Down	state	to	Raising	state,	thereby
triggering	the	Raise	Barrier	and	Start	Timer	actions.



20.5	Object	and	Class	Structuring
Software	 class	 structuring	 is	 carried	out	 in	preparation	 for	dynamic	 interaction
modeling.	 Given	 that	 the	 system	 to	 be	 developed	 is	 a	 real-time	 embedded
system,	it	is	assumed	that	all	classes,	except	for	entity	classes,	are	concurrent	and
will	therefore	be	modeled	as	active	(i.e.,	concurrent)	classes.

The	software	boundary	classes	in	the	system	can	be	determined	by	careful
consideration	 of	 the	 external	 classes	 on	 the	 software	 context	 diagram.	 There
must	 be	 a	 software	 input	 class	 to	 interface	 to	 and	 communicate	 with	 each
external	input	device	depicted	on	the	software	context	diagram.	Since	there	are
three	 external	 input	 devices,	 the	 corresponding	 input	 classes	 are	 the	Arrival
Sensor	 Input,	 Departure	 Sensor	 Input,	 and	 Barrier	 Detection

Sensor	Input	classes.	Similarly,	 there	needs	 to	be	a	software	output	class	 to
interface	to	and	communicate	with	each	external	output	device	on	the	software
context	diagram.	Since	there	are	three	external	output	devices,	the	corresponding
output	 classes	 are	 the	 Barrier	 Actuator	 Output,	 Warning	 Light

Output,	and	Warning	Audio	Output	classes.	There	is	also	a	need	for	a	state
dependent	 control	 class,	 namely	 Railroad	 Crossing	 Control,	 which
executes	its	encapsulated	state	machine	to	control	the	other	classes.	There	is	also
a	proxy	class,	Rail	Operations	Proxy,	to	interface	to	and	communicate	with
the	 external	 Rail	 Operations	 Service.	 Since	 there	 are	 no	 entity	 classes,
these	 software	 classes	 are	 all	 considered	 to	 be	 active,	 meaning	 each	 object	 is
instantiated	from	an	active	class,	has	its	own	thread	of	control,	and	can	execute
concurrently	with	the	other	active	objects.

The	 software	 classes	 in	 the	 system	 are	 depicted	 in	 Figure	 20.7	 inside	 the
outer	box	that	represents	the	software	system.	The	external	blocks	that	interface



to	 and	 communicate	 with	 the	 boundary	 classes	 (input,	 output,	 and	 proxy)	 are
also	depicted	outside	 the	box	 representing	 the	 software	 system	 in	Figure	 20.7.
Because	there	are	two	instances	of	each	of	the	external	sensors	and	each	of	the
external	 actuators,	 there	 are	 correspondingly	 two	 instances	 of	 each	 of	 the
software	input	classes	and	output	classes	that	interface	to	these	external	devices.

Figure	20.7.	Software	classes	in	Railroad	Crossing	Control	System.



20.6	Dynamic	Interaction	Modeling
Next,	 the	 dynamic	 interaction	 model	 is	 developed	 to	 depict	 the	 interaction
among	the	objects	that	realize	the	two	use	cases,	Arrive	at	Railroad	Crossing	and
Depart	 from	 Railroad	 Crossing.	 Because	 of	 the	 large	 number	 of	 objects	 that
realize	each	use	case,	it	is	clearer	to	show	the	object	interaction	sequence	on	two
sequence	 diagrams	 for	 each	 use	 case	 instead	 of	 one,	 the	 first	 depicting
interaction	between	the	external	objects	and	the	software	system,	and	the	second
depicting	 the	 interaction	 among	 the	 external	 input	 objects	 and	 the	 software
objects.	The	 sequence	diagrams	depict	 the	 realization	of	 the	main	 sequence	of
each	use	case.



20.6.1	Sequence	Diagrams	for	Arrive	at	Railroad	Crossing

The	 first	 sequence	 diagram	depicts	 the	 interaction	 of	 the	 external	 objects	with
the	software	system,	as	shown	in	Figure	20.8	for	Arrive	at	Railroad	Crossing.	On
this	sequence	diagram,	there	are	two	external	input	devices,	three	external	output
devices	and	one	external	system	in	addition	to	the	RXCS	software	system,	which
is	 depicted	 as	 one	 composite	 object.	 This	 sequence	 diagram	 faithfully	 follows
the	 interaction	 sequence	described	 in	 the	Arrive	 at	Railroad	Crossing	 software
level	 use	 case.	 The	 sequence	 starts	 with	 the	 arrival	 input	 event	 from	 the
Arrival	 Sensor	 external	 input	 device	 (message	 #1),	 which	 results	 in	 the
system	lowering	 the	barrier,	 switching	on	 the	warning	 lights,	and	switching	on
the	 warning	 audio.	 When	 the	 barrier	 has	 been	 lowered,	 the	 Barrier
Detection	Sensor	sends	a	Barrier	Lowered	event	to	the	system	(message
#2),	 which	 causes	 the	 system	 to	 send	 a	 status	 message	 to	 the	 external	 Rail
Operations	Service.

Figure	20.8.	Sequence	diagram	for	Arrive	at	Railroad	Crossing	use	case
(external	objects).

The	 second	 sequence	 diagram	 depicts	 the	 interaction	 among	 the	 external
input	objects	and	 the	software	objects	within	 the	software	system,	as	shown	in
Figure	20.9	for	Arrive	at	Railroad	Crossing.	The	first	object	in	this	sequence	is



the	 external	 Arrival	 Sensor.	 The	 interaction	 sequence	 (for	 all	 messages
depicted	 on	 Figure	 20.9	 and	 messages	 to	 external	 output	 objects	 depicted	 on
Figure	20.8)	is	described	as	follows:

1:	Arrival	Sensor	detects	train	arrival	and	sends	the	Arrival	Event	to
Arrival	Sensor	Input	object.

1.1:	Arrival	Sensor	Input	sends	Train	Arrived	message	to	Railroad
Crossing	Control.

1.2:	Railroad	Crossing	Control	commands	the	Barrier	Actuator
Output	object	to	lower	the	barrier.

1.2a:	Railroad	Crossing	Control	commands	the	Warning	Light
Output	object	to	activate	(i.e.,	switch	on)	the	warning	lights.

1.2b:	Railroad	Crossing	Control	commands	the	Warning	Audio
Output	object	to	activate	the	audio	warning	signal.

1.2c:	Railroad	Crossing	Control	commands	the	Timer	to	start	the	barrier
lowering	timer.

1.2a.1:	Warning	Light	Output	sends	the	Switch	On	message	to	the
external	Warning	Light	Actuator	(see	Figure	20.8).

1.2a.2:	Warning	Audio	Output	sends	the	Switch	On	message	to	the
external	Warning	Audio	Actuator	(see	Figure	20.8).

1.3:	Barrier	Actuator	Output	sends	the	Lower	Barrier	message	to	the
external	Barrier	Actuator	(see	Figure	20.8).

2:	Barrier	Detection	Sensor	detects	that	the	barrier	has	been	lowered	and
sends	the	Barrier	Lowered	Event	to	the	Barrier	Detection	Sensor
Input	object.



2.1:	Barrier	Detection	Sensor	Input	sends	Barrier	Lowered	message
to	Railroad	Crossing	Control.

2.2:	Railroad	Crossing	Control	sends	a	train	arrived	message	to	Rail
Operations	Proxy.

2.2a:	Railroad	Crossing	Control	cancels	the	barrier	lowering	timer.

2.3:	Rail	Operations	Proxy	sends	the	train	arrival	message	to	the	external
Rail	Operations	Service	(see	Figure	20.8).

Figure	20.9.	Sequence	diagram	for	Arrive	at	Railroad	Crossing	use	case
(external	input	objects	and	software	objects).

It	 should	 be	 noted	 that	 in	 Figures	 20.8	 through	 20.11,	 Railroad	Crossing
Control	 sends	concurrent	messages	 (corresponding	 to	concurrent	 actions	on	 its
encapsulated	 state	 machine)	 such	 as	 messages	 1.2,	 1.2a,	 1.2b,	 and	 1.2c.	 The
subsequent	 message	 for	 #1.2	 is	 #1.3,	 for	 #1.2a	 is	 #1.2a.1,	 and	 so	 on	 (see
Appendix	A	for	conventions	on	message	sequence	numbering).



20.6.2	Sequence	Diagrams	for	Depart	from	Railroad	Crossing

The	Depart	from	Railroad	Crossing	interaction	sequence	is	also	depicted	on	two
sequence	diagrams.	Figure	20.10	depicts	 the	 interaction	of	 the	external	objects
with	 the	 software	 system,	which	 starts	 with	 the	Departure	Event	 from	 the
external	Departure	Sensor	(message	#1),	which	results	in	the	system	raising
the	barrier.	When	the	Barrier	Detection	Sensor	detects	that	the	barrier	has
been	 raised,	 it	 sends	a	Barrier	Raised	Event	 (message	#2)	 to	 the	 system.
The	system	then	switches	off	the	warning	lights,	switches	off	the	warning	audio
signal,	 and	 sends	 a	 train	 departed	 status	 message	 to	 Rail	 Operations

Service.

Figure	20.10.	Sequence	diagram	for	Depart	from	Railroad	Crossing	use	case
(external	objects).

The	 second	 sequence	 diagram	 depicts	 the	 interaction	 among	 the	 external
input	objects	and	 the	software	objects	within	 the	software	system,	as	shown	in
Figure	20.11	for	Depart	from	Railroad	Crossing.	The	first	object	in	this	sequence
is	the	Departure	Sensor.	The	interaction	sequence	(for	all	messages	depicted
on	 Figure	 20.11	 and	 messages	 to	 external	 output	 objects	 depicted	 on	 Figure
20.10)	is	described	as	follows:



1:	Departure	Sensor	sends	Departure	Event	to	Departure	Sensor
Input.

1.1:	Departure	Sensor	Input	sends	Train	Departed	message	to
Railroad	Crossing	Control.

1.2:	Railroad	Crossing	Control	sends	Raise	Barrier	command	to
Barrier	Actuator	Output.

1.2a:	Railroad	Crossing	Control	commands	the	Timer	to	start	the	barrier
raising	timer.

1.3:	Barrier	Actuator	Output	sends	the	Raise	Barrier	message	to	the
external	Barrier	Actuator	(see	Figure	20.10).

2:	Barrier	Detection	Sensor	detects	the	raising	of	the	barrier	and	sends
the	Barrier	Raised	Event	to	the	Barrier	Detection	Sensor	Input
object.

2.1:	Barrier	Detection	Sensor	Input	sends	Barrier	Raised	message
to	Railroad	Crossing	Control.

2.2:	Railroad	Crossing	Control	commands	Warning	Light	Output	to
deactivate	(i.e.,	switch	off)	the	warning	lights.

2.2a:	Railroad	Crossing	Control	commands	Warning	Audio	Output	to
deactivate	the	audio	warning	signal.

2.2b:	Railroad	Crossing	Control	sends	a	train	departed	message	to	Rail
Operations	Proxy.

2.2c:	Railroad	Crossing	Control	cancels	the	barrier	raising	timer.

2.3:	Warning	Light	Output	sends	the	switch	off	message	to	the	Warning
Light	Actuator	(see	Figure	20.10).



2.2a.1:	Warning	Audio	Output	sends	the	switch	off	message	to	the	Warning
Audio	Actuator	(see	Figure	20.10).

2.2b.1:	Rail	Operations	Proxy	sends	the	train	departed	message	to	Rail
Operations	Service(see	Figure	20.10).

Figure	20.11.	Sequence	diagram	for	Depart	from	Railroad	Crossing	use	case
(external	input	objects	and	software	objects).



20.7	Design	Modeling
The	software	architecture	of	 the	Railroad	Crossing	Control	System	is	designed
around	 a	 Centralized	 Control	 Pattern.	 Centralized	 control	 is	 provided	 by	 the
Railroad	Crossing	Control	 component	 receiving	 inputs	 from	 the	arrival,
departure,	 and	 barrier	 detection	 sensors	 via	 input	 objects	 and	 controlling	 the
external	environment	by	means	of	the	barrier,	warning	light,	and	warning	audio
actuators	via	output	objects.	However,	viewed	from	the	larger	distributed	Light
Rail	 System	 (Chapter	 21),	 the	 Railroad	 Crossing	 Control	 System	 is	 also	 an
example	of	a	Distributed	Independent	Control	pattern,	because	each	instance	of
the	 control	 system	 is	 independent	 of	 the	 other	 instances	 and	 sends	 status
messages	to	Rail	Operations	Service.	The	initial	software	architecture	 is
designed	by	integrating	the	use	case–based	sequence	diagrams.



20.7.1	Integrated	Communication	Diagram

The	 initial	 attempt	 at	 design	 modeling	 is	 to	 develop	 the	 integrated
communication	 diagram	 for	 the	 Railroad	 Crossing	 Control	 System,	 which
necessitates	the	integration	of	the	use	case–based	interaction	diagrams	shown	in
Figures	 20.8	 through	 20.11.	 Since	 these	 diagrams	 are	 sequence	 diagrams,	 the
objects	and	object	interactions	must	be	mapped	to	an	integrated	communication
diagram	 as	 depicted	 in	 Figure	 20.12.	 In	 addition,	 it	 is	 necessary	 to	 address
alternative	 sequences	 that	 are	 not	 depicted	 on	 the	 sequence	 diagrams,	 in
particular	 for	 the	 barrier	 lowering	 and	 raising	 timers.	 The	 integration	 is	 quite
straightforward	 because	most	 of	 the	 objects	 support	 both	 use	 cases.	However,
the	Arrival	Sensor	Input	object	only	supports	the	Arrival	use	case,	and	the
Departure	Sensor	Input	object	only	supports	 the	Departure	use	case.	The
integrated	 communication	 diagram	 is	 a	 generic	 concurrent	 communication
diagram	in	that	it	depicts	all	possible	communications	between	the	objects.



Figure	20.12.	Integrated	communication	diagram	for	Railroad	Crossing
Control	System.



20.7.2	Concurrent	Software	Architecture

In	 this	 concurrent	 real-time	 design,	 the	 concurrent	 task	 structuring	 criteria	 are
applied	 to	 determine	 the	 tasks	 in	 the	 Railroad	 Crossing	 Control	 System.	 The
concurrent	communication	diagram	for	the	Railroad	Crossing	Control	System	is
shown	 in	 Figure	 20.13,	 which	 depicts	 the	 concurrent	 tasks	 in	 the	 software
architecture.	 The	 concurrent	 task	 design	 is	 developed	 by	 starting	 from	 the
integrated	communication	diagram	in	Figure	20.12,	which	depicts	all	the	objects
in	 the	system.	The	most	 flexible	design	 is	 for	all	 the	objects	 to	be	designed	as
tasks	 that	 execute	 concurrently.	 Each	 task	 is	 depicted	 with	 the	 MARTE
stereotype	 for	 task:	 «swSchedulableResource».	 The	 concurrent	 tasks	 are
described	as	follows:

Input	tasks.	Concurrent	input	tasks	receive	inputs	from	the	external
environment	and	send	corresponding	messages	to	the	control	task.	There
are	three	input	tasks	–	Arrival	Sensor	Input,	Departure
Sensor	Input,	and	Barrier	Detection	Sensor	Input	–	each
of	which	is	designed	as	an	event	driven	input	task	that	is	awakened	by
the	arrival	of	the	corresponding	sensor	input.	Thus,	the	three	input	tasks
are	all	depicted	with	the	stereotypes	«event	driven»	«input»
«swSchedulableResource».

Control	task.	Railroad	Crossing	Control	is	the	centralized	state
dependent	control	task	for	the	Railroad	Crossing	Control	System.	It
executes	the	Railroad	Crossing	Control	state	machine,	receiving
messages	from	the	input	and	timer	tasks,	and	sends	action	messages	to
the	output,	proxy,	and	timer	tasks.	Railroad	Crossing	Control	is
designed	as	a	demand	driven	task	awakened	by	the	arrival	of	a	message
from	any	of	the	input	tasks	or	timer	task.	The	control	task	is	depicted



with	the	stereotypes	«demand»	«state	dependent	control»
«swSchedulableResource».

Output	tasks.	There	are	three	output	objects,	each	of	which	is	designed
as	a	demand	driven	task	awakened	on	demand	by	the	arrival	of	a
message	from	the	Railroad	Crossing	Control	task	and	then
outputs	to	an	external	actuator.	The	three	demand	driven	output	tasks	are
Barrier	Actuator	Output,	which	interfaces	to	the	external	barrier
actuator,	Warning	Light	Output,	which	interfaces	to	the	external
warning	light	actuator,	and	Warning	Audio	Output,	whichinterfaces
to	the	external	warning	audio	actuator.	The	three	output	tasks	are	all
depicted	with	the	stereotypes	«demand»	«output»
«swSchedulableResource».

Proxy	task.	Rail	Operations	Proxy	is	the	proxy	task	that	sends
railroad	crossing	status	message	to	the	Rail	Operations	Service.
Rail	Operations	Proxy	is	designed	as	a	demand	driven	task
awakened	by	messages	from	Railroad	Crossing	Control.	The
proxy	task	is	depicted	with	the	stereotypes	«demand»	«proxy»
«swSchedulableResource».

Timer	task.	Barrier	Timer	is	designed	as	a	periodic	task	awakened	by
timer	events	from	the	external	timer.	Its	timing	is	initiated	by	a	start	timer
message	from	Railroad	Crossing	Control,	which	can	later	be
cancelled.	When	it	does	time	out,	it	sends	a	timeout	message	to
Railroad	Crossing	Control	to	warn	it	that	the	barrier	raising	or
lowering	is	slower	than	expected.	The	periodic	task	is	depicted	with	the
stereotypes	«timerResource»	«swSchedulableResource».



Figure	20.13.	Concurrent	communication	diagram	for	Railroad	Crossing
Control	System.



20.7.3	Architectural	Communication	Patterns

Next	 the	 communication	 patterns	 between	 the	 tasks	 are	 considered.	 The
messages	 to	be	 sent	between	 the	 tasks	 in	 the	RXCS	system	(Figure	20.13)	are
determined	from	the	integrated	communication	diagram	(Figure	20.12)	in	which
all	messages	between	tasks	are	assumed	to	be	asynchronous.	The	actual	type	of
message	 communication	–	 synchronous	or	 asynchronous	–	 is	 now	determined.
To	 handle	 the	 communication	 between	 the	 tasks	 in	 the	 Railroad	 Crossing
Control	System,	two	communication	patterns	are	applied:

Asynchronous	Message	Communication.	The	Asynchronous	Message
Communication	pattern	is	widely	used	in	the	RXCS	system	because	most
communication	is	one-way,	and	this	pattern	has	the	advantage	of	preventing	the
consumers	from	holding	up	the	producers.	The	Railroad	Crossing	Control
consumer	task	needs	to	be	able	to	receive	messages	from	any	of	its	four
producers,	Arrival	Sensor	Input,	Departure	Sensor	Input,
Barrier	Detection	Sensor	Input,	and	Barrier	Timer,	in	whatever
order	they	arrive.	The	best	way	to	handle	this	requirement	for	flexibility	is
through	asynchronous	message	communication,	with	one	input	message	queue
for	the	Railroad	Crossing	Control	task,	so	that	the	control	task	will
receive	whichever	message	is	sent	first.	Asynchronous	message	communication
is	also	used	between	Railroad	Crossing	Control	as	a	producer	to	four
consumers,	the	three	output	tasks,	and	the	proxy	task.	The	reason	is	that	the
producer	in	this	case	frequently	sends	messages	concurrently	to	several
consumers	and	does	not	need	a	response.	Message	communication	between	the
Rail	Operations	Proxy	task	and	Rail	Operations	Service	subsystem
is	also	asynchronous	because	the	former	sends	status	messages	to	the	latter	and
does	not	need	a	response.



Bidirectional	asynchronous	communication.	This	communication	pattern	is
used	between	the	Railroad	Crossing	Control	and	Barrier	Timer.	After
Railroad	Crossing	Control	sends	a	start	timer	message	to	the	Barrier
Timer,	it	waits	for	a	message	from	either	Barrier	Detection	Sensor
Input	(either	a	barrier	lowered	or	barrier	raised	message)	or	a	timer	expiration
message	from	Barrier	Timer	(indicating	a	timeout)	and	accepts	the	first	message
to	arrive.



20.7.4	Examples	of	Task	Interface	Specification

This	section	provides	two	examples	of	task	interface	specifications	(see	Chapter
13).	The	first	TIS	is	for	the	Railroad	Crossing	Control	task	as	described
next:

Name:	Railroad	Crossing	Control.
Information	 hidden:	 Details	 of	 the	 encapsulated	 Railroad	 Crossing

Control	state	machine.
Structuring	criteria:	Role	criterion:	 state	dependent	control;	 concurrency

criterion:	demand	driven.
Assumptions:	 At	 most	 two	 trains	 can	 be	 simultaneously	 in	 the	 railroad

crossing.
Anticipated	 changes:	 Possible	 addition	 of	 further	 sensors	 and	 actuators,

requiring	 changes	 to	 the	 encapsulated	 state	 machine	 and	 communication	 with
additional	tasks.

Task	 interface:	 Task	 inputs:	 Asynchronous	 message	 communication:
sendControlRequest	 (eventRX)	 –	 values	 of	 eventRX:	 trainArrived,
trainDeparted,	 barrierRaised,	 barrierLowered,	 timerExpired	 Task	 outputs:
Asynchronous	 message	 communication:	 raise,	 lower,	 activateLight,
deactivateLight,	 activateAudio,	 deactivateAudio,	 start,	 cancel,	 sendRXstatus
(status).

Errors	detected:	Unrecognized	message.
The	 second	 task	 interface	 specification	 is	 for	 the	 Arrival	 Sensor	 Input
task:

Name:	Arrival	Sensor	Input.
Information	hidden:	Details	of	processing	input	from	the	hardware	arrival

sensor.



Structuring	 criteria:	 Role	 criterion:	 input;	 concurrency	 criterion:	 event
driven	Assumptions:	Only	one	arrival	sensor	input	is	handled	at	one	time.

Anticipated	 changes:	 Possible	 additional	 information	will	 be	 sent	 by	 the
arrival	sensor.

Task	interface:	Task	inputs:	Event	input:	Arrival	sensor	external	interrupt
to	indicate	that	train	arrival	has	been	detected.

External	input:	Arrival	Event.
Task	 outputs:	 Asynchronous	 message	 communication:

sendControlRequest	(train	Arrived)	Errors	detected:	Unrecognized	input	event;
sensor	malfunction.
The	 development	 of	 task	 behavior	 specifications,	 which	 describe	 the	 event
sequencing	logic	for	these	tasks,	is	left	as	an	exercise	for	the	reader.



20.8	Performance	Analysis	of	Real-Time
Software	Design

This	 section	 describes	 the	 real-time	 performance	 analysis	 of	 the	 Railroad
Crossing	 Control	 System.	 The	 system	 is	 event	 driven	 because	 it	 reacts	 to	 the
external	 events	 arriving	 at	 the	 system.	 Consequently,	 a	 combination	 of	 event
sequence	analysis	and	 timing	diagrams,	as	described	 in	Chapters	17	and	18,	 is
applied.

A	 time-critical	 scenario	 is	 the	 arrival	 of	 a	 train	 at	 the	 railroad	 crossing,
which	 is	 detected	 by	 the	 arrival	 sensor	 and	 results	 in	 the	 system	 lowering	 the
barrier.	This	barrier	lowering	event	sequence	is	fully	described	in	Section	20.6.
The	 tasks	 that	 participate	 in	 this	 scenario	 are	 depicted	 in	Table	 20.2,	with	 the
CPU	 time	 Ci	 depicted	 in	 the	 second	 column.	 The	 execution	 times	 for	 the	 six
tasks	 that	 participate	 in	 the	 arrival	 event	 sequence	 are	 depicted	 in	 the	 third
column.	The	execution	time	for	each	task	in	the	event	sequence	is	the	sum	of	its
CPU	time,	context-switching	time,	and	message	communication	time.	The	task
priorities	 are	 depicted	 in	 the	 fourth	 column.	 Arrival	 Sensor	 Input	 and
Barrier	Actuator	Output	are	given	the	highest	priorities	because	they	are
the	most	time-critical	tasks.	The	other	input	and	output	tasks	are	given	the	next
highest	priorities	so	that	they	can,	if	necessary,	preempt	Railroad	Crossing
Control,	which	is	given	a	lower	priority.

Table	20.2.	Railroad	Crossing	Control	CPU	Times

Task Task
CPUtime
Ci(msec)

Arrival	sensor
eventsequence
tasks(C	i	+	Cx	+	Cm)
(msec)

Taskpriority



Arrival	Sensor	Input 4 5 1

Railroad	Crossing
Control	–	from	Oven
Timer	message	to	first
message	sent

5 6 6

Railroad	Crossing
Control	–	for	each
subsequent	message	sent

1 2

Barrier	Actuator	Output 4 5 2

Warning	Light	Output 6 7 4

Warning	Audio	Output 5 6 5

Timer 3 4 7

Barrier	Sensor	Input 4 3

Rail	Operations	Proxy 5 8

Message	communication
overhead	(Cm)

0.7

Context	switching
overhead	(Cx)

0.3



20.8.1	Performance	Analysis	on	Single	Processor	System

The	task	execution	for	 the	event	sequence	on	a	single	processor	 is	depicted	on
the	timing	diagram	in	Figure	20.14.	In	this	event	driven	scenario,	at	the	start	of
the	analysis,	the	system	is	idle,	waiting	for	an	external	event.	The	event	sequence
starts	 with	 the	 Arrival	 Sensor	 sending	 an	 Arrival	 Event	 to	 Arrival
Sensor	Input,	which	is	activated	by	the	interrupt,	executes	for	5	msec,	sends	a
Train	Arrived	message	to	Railroad	Crossing	Control,	and	terminates.
When	 the	message	arrives	at	Railroad	Crossing	Control,	 even	 though	 it
has	a	lower	priority	than	most	of	the	other	tasks,	it	is	the	only	task	available	to
execute	because	all	other	tasks	are	blocked.	Assuming	that	this	is	the	only	train
at	the	railroad	crossing,	the	Train	Arrived	event	causes	a	state	transition	from
Up	 state	 to	Lowering	 state	 on	 the	 internal	Barrier	Control	 state	machine
(Figure	 20.6).	 The	 effect	 of	 the	 state	 transition	 is	 to	 trigger	 four	 concurrent
actions	 to	 Lower	 Barrier,	 Activate	 Light,	 Activate	 Audio,	 and
Start	Timer.

On	the	timing	diagram,	after	executing	for	6	msec,	Railroad	Crossing
Control	 sends	 the	 Lower	 Barrier	 message	 to	 Barrier	 Actuator

Output.	When	it	receives	the	message,	because	Barrier	Actuator	Output
has	 a	 higher	 priority	 than	 Railroad	 Crossing	 Control,	 it	 unblocks	 and
preempts	 Railroad	 Crossing	 Control.	 After	 executing	 for	 5	 msec,
Barrier	Actuator	Output	sends	the	lower	barrier	command	to	the	external
barrier	actuator	and	 terminates.	Railroad	Crossing	Control	 then	resumes
execution	for	2	msec	before	sending	the	Activate	Light	message	to	Warning
Light	Output.	Because	the	latter	task	has	a	higher	priority,	upon	receiving	the
message,	 Warning	 Light	 Output	 preempts	 Railroad	 Crossing

Control,	executes	for	7	msec,	sends	the	activate	command	to	the	warning	light,



and	 then	 terminates.	 The	 same	 procedure	 is	 then	 followed	 with	 Railroad
Crossing	 Control	 resuming	 execution	 and	 sending	 messages	 to	 Warning
Audio	 Actuator	 and	 Barrier	 Timer	 respectively.	 As	 can	 be	 seen	 from
Figure	20.14,	the	total	elapsed	time	for	this	scenario	is	39	msec.

Figure	20.14.	Timing	diagram	for	Railroad	Crossing	Control	tasks	executing
on	a	single-processor	system.



20.8.2	Performance	Analysis	on	Multiprocessor	System

Now	 consider	 the	 same	 event	 sequence	 executing	 on	 a	multiprocessor	 system
with	 four	 CPUs,	 as	 depicted	 on	 the	 timing	 diagram	 in	 Figure	 20.15.	 This
scenario	 starts	 with	 Arrival	 Sensor	 Input	 activated	 by	 an	 interrupt,
executing	 for	 5	 msec	 on	 CPU	 A	 and	 sending	 a	 Train	 Arrived	 message.
Railroad	Crossing	Control	receives	the	message	and	executes	for	6	msec
on	 CPU	 B	 before	 sending	 a	 lower	 barrier	 message	 to	 Barrier	 Actuator
Output.	 However,	 in	 this	 multiprocessor	 scenario,	 Railroad	 Crossing

Control	continues	executing	on	CPU	B	in	parallel	with	Barrier	Actuator
Output	 executing	 on	 CPU	C.	 After	 a	 further	 2	msec,	Railroad	Crossing
Control	 sends	an	activate	message	 to	Warning	Light	Output,	which	 then
starts	 executing	 on	 CPU	 D.	 Railroad	 Crossing	 Control	 continues
executing	on	CPU	B	and,	after	 a	 further	2	msec,	 sends	an	activate	message	 to
Warning	Audio	Output,	which	starts	executing	on	CPU	A.	At	this	time,	there
are	tasks	executing	in	parallel	on	all	four	CPUs.

After	a	further	2	msec,	Railroad	Crossing	Control	sends	a	start	timer
message	 to	 Barrier	 Timer,	 which	 then	 executes	 on	 CPU	 C,	 replacing	 the
recently	 terminated	 Barrier	 Actuator	 Output.	 As	 depicted	 on	 Figure
20.15,	the	total	elapsed	time	for	this	multiprocessor	scenario	is	21	msec,	which	is
18	 msec	 less	 than	 the	 single-processor	 scenario.	 This	 comparison	 shows	 that
there	 are	 situations	 when	 a	 multiprocessor	 system	 can	 be	 used	 to	 significant
advantage,	 in	 particular	 when	 there	 are	 multiple	 tasks	 concurrently	 executing
independent	actions.	However,	it	should	be	pointed	out	that	memory	contention
negatively	 affects	 performance,	 and	 therefore	 elapsed	 times,	 in	 multicore
systems.



Figure	20.15.	Timing	diagram	for	Railroad	Crossing	Control	tasks	executing
on	a	multiprocessor	system.



20.9	Component-Based	Software
Architecture

The	 design	 for	 the	 component-based	 software	 architecture	 for	 the	 Railroad
Crossing	 Control	 System	 is	 given	 on	 Figure	 20.16,	 which	 depicts	 a	 UML
composite	 structure	 diagram	 showing	 the	 RXCS	 components,	 ports,	 and
connectors.	 All	 the	 components	 are	 concurrent	 and	 communicate	 with	 other
components	 through	 ports.	 The	 overall	 architecture	 and	 connectivity	 among
components	 is	 initially	 determined	 from	 the	RXCS	 concurrent	 communication
diagram	 shown	 in	 Figure	 20.13.	 However,	 there	 are	 other	 factors	 to	 consider
concerning	 the	 creation	 of	 composite	 components.	 In	 particular,	 composite
components	are	created	such	that	they	could	be	deployed	to	execute	on	different
nodes	in	a	distributed	configuration.



20.9.1	Design	of	Components

RXCS	is	designed	as	a	composite	component	that	contains	six	components,	four
of	 which	 are	 simple	 components	 and	 two	 of	 which	 are	 in	 turn	 composite
components,	 as	depicted	 in	Figure	20.16.	Each	 simple	 component	has	 a	 single
thread	of	 control	 (Arrival	Sensor	Input,	Departure	Sensor	Input,
Railroad	Crossing	Control,	and	Rail	Operations	Proxy).	These
simple	 components	 correspond	 to	 the	 concurrent	 tasks	 determined	 in	 the
concurrent	 communication	 diagram	 of	 Figure	 20.13	 and	 are	 depicted	with	 the
MARTE	stereotype	«swSchedulableResource».	The	two	composite	components
are	 Barrier	 Component	 (which	 contains	 the	 simple	 components
Barrier	Actuator	Output,	Barrier	Detection	Input,	and	Barrier
Timer)	 and	Warning	Alarm	Component	 (which	contains	the	simple
components	Warning	Light	Output	and	Warning	Audio	Output).	The
composite	components	are	depicted	with	the	component	stereotype.	This	design
allows	components	 to	be	deployed	to	be	 in	close	proximity	 to	 the	devices	 they
monitor	 or	 control,	 in	 particular	 the	 barrier	 sensor	 monitoring	 and	 barrier
actuator	 control	 components	 (within	 the	 Barrier	 Component)	 and

warning	video	and	audio	alarm	components	 (within	the	Warning	Alarm
Component).	 The	 tasks	 Arrival	 Sensor	 Input	 and	 Departure	 Sensor
Input	are	not	combined	into	a	component	because	it	is	likely	that	they	will	be	in
physically	separate	locations,	as	the	arrival	sensor	is	located	before	the	entrance
to	the	railroad	crossing	while	the	departure	sensor	is	located	at	the	exit	from	the
railroad	crossing.



Figure	20.16.	Railroad	Crossing	Control	System	component-based	software
architecture.

In	Figure	20.16,	Railroad	Crossing	Control,	which	executes	the	state
machine,	 has	 one	 provided	 port	 PRXControl,	 through	 which	 it	 receives	 all
incoming	messages	from	its	producers,	namely	Arrival	Sensor	Input	(train
Arrived),	Departure	Sensor	Input	(train	Departed),	Barrier	Detection
Input	(barrier	Raised,	barrier	Lowered),	and	Barrier	Timer	(timer	Expired).
In	 this	way,	Railroad	Crossing	 receives	all	 incoming	messages	on	a	FIFO
basis.

Because	 the	 three	 producer	 components	 (Arrival	 Sensor	 Input,

Departure	 Sensor	 Input,	 Barrier	 Component	 (from	 the	 internal
Barrier	 Detection	 Input	 and	 Barrier	 Timer	 components)	 send
messages	 to	 the	Railroad	Crossing	Control	 component	 in	Figure	 20.13,



each	 producer	 component	 is	 designed	 to	 have	 an	 output	 port,	 referred	 to	 as	 a
required	 port,	 which	 is	 joined	 by	 means	 of	 a	 connector	 to	 the	 control
component's	input	port,	referred	to	as	a	provided	port,	as	shown	in	Figure	20.16.
The	name	of	 the	 required	port	on	each	producer	 component	 is	RRXCtrl;	 by	 a
COMET/RTE	convention,	the	first	letter	of	the	port	name	is	R	to	emphasize	that
the	 component	 has	 a	 required	 port.	 The	 name	 of	 Railroad	 Crossing

Control's	 provided	 port	 is	PRXCtrl;	 the	 first	 letter	 of	 the	 port	 name	 is	 P	 to
emphasize	that	the	component	has	a	provided	port.	Connectors	join	the	required
ports	 of	 the	 three	 producer	 components	 to	 the	 provided	 port	 of	 the	 control
component.

Railroad	 Crossing	 Control	 also	 has	 five	 required	 ports	 through
which	 it	 communicates	 with	 Rail	 Operations	 Proxy,	 Barrier

Component	 (in	 particular	 the	 internal	 Barrier	 Actuator

Output	 and	 Barrier	 Timer	 components),	 and	 Warning	 Alarm	 (in
particular	 the	 internal	 Warning	 Light	 Output	 and	 Warning
Audio	 Output	 simple	 components).	 For	 example,	 the	 RLight	 and	 RAudio
required	ports	of	Railroad	Crossing	Control	are	respectively	connected	to
the	PLight	and	PAudio	ports	of	the	Warning	Alarm	composite	component.

It	should	be	noted	that	delegation	connectors	join	the	RRXCtrl	ports	of	the
Barrier	Detection	Input	and	Barrier	Timer	internal	components	to	the
port	of	the	same	name	in	the	composite	component	Barrier	Component.	Note
also	 that	 delegation	 connectors	 join	 the	 PLight	 and	 PAudio	 ports	 of	 the
composite	 component	 Warning	 Alarm	 respectively	 to	 the	 ports	 of	 the	 same
name	in	 the	 two	internal	components	Warning	Light	Output	and	Warning
Audio	 Output.	 This	 means	 that	 the	 outer	 port	 for	 Plight	 forwards	 the
messages	 it	 receives	 to	 the	 inner	 Plight	 port.	 The	 two	 ports	 have	 the	 same
name	because	they	provide	the	same	interface.



20.9.2	Design	of	Component	Interfaces

Each	 component	 port	 is	 defined	 in	 terms	 of	 its	 provided	 and/or	 required
interfaces.	Some	producer	 components	 –	 in	 particular,	 the	 input	 components	 –
do	 not	 provide	 a	 software	 interface	 because	 they	 receive	 their	 inputs	 directly
from	 the	 external	 hardware	 input	 device.	 However,	 they	 require	 an	 interface
(which	is	provided	by	the	control	component)	 in	order	to	send	messages	to	the
control	component.	Figure	20.17	depicts	the	port	and	required	interfaces	for	the
input	 components	 Arrival	 Sensor	 Input	 and	 Departure	 Sensor

Input.	 These	 input	 components,	 as	 well	 as	 the	 Barrier	 Component	 (in
addition	 to	 the	 internal	 Barrier	 Detection	 Input	 and	 Barrier	 Timer
component)	 have	 the	 same	 required	 interface	 –	 IRXControl	 –	 which	 is
provided	by	the	Railroad	Crossing	Control	component.

Figure	20.17.	Component	ports	and	interfaces	for	input	components.

Control	 components	 need	 to	 provide	 interfaces	 for	 the	 producer
components	 to	 use	 and	 require	 interfaces	 that	 are	 provided	 by	 output
components.	 The	 Railroad	 Crossing	 Control	 component	 (see	 Figure
20.16	 and	 20.18),	 which	 conceptually	 executes	 the	 Railroad	 Crossing

Control	 state	machine,	 receives	 asynchronous	 control	 request	messages	 from



its	 producer	 components,	 as	 depicted	 in	 Figure	 20.13.	 The	 provided	 interface
IRXControl,	 which	 is	 specified	 in	 Figure	 20.18,	 is	 kept	 simple	 by	 having
only	 one	 operation	 (sendcontrolRequest),	 which	 has	 an	 input	 parameter
(eventRX)	that	holds	the	name	and	contents	of	the	individual	message.	Having
each	 control	 request	 as	 a	 separate	 operation	 would	 make	 the	 interface	 more
complicated	 because	 it	 would	 consist	 of	 five	 operations	 instead	 of	 one.
Furthermore,	evolution	of	 the	system	would	 require	 the	addition	or	deletion	of
operations	 rather	 than	 leaving	 the	 interface	unchanged	and	adding	a	parameter
value	 to	 the	 eventRX	 input	 parameter	 of	 the	 send	 controlRequest

operation.

Figure	20.18.	Component	ports	and	interfaces	for	control	and	proxy
components.



Figure	 20.18	 also	 depicts	 the	 port	 and	 provided	 interface	 for	 the	 Rail
Operations	Proxy.	The	provided	interface	IOps	is	a	required

interface	of	the	Railroad	Crossing	Control	component.
Figure	 20.19	 depicts	 the	 ports	 and	 provided	 interfaces	 for	 the	 Warning

Light	Output	and	Warning	Audio	Output	components,	which	are	simple
components	 contained	 within	 the	 Warning	 Alarm	 component,	 which	 is	 also
shown.	Figure	20.19	also	shows	the	specifications	of	the	component	interfaces	in
terms	 of	 the	 operations	 they	 provide.	 Each	 output	 component	 provides	 an
interface	 to	 receive	messages	sent	by	 the	control	component.	However,	 it	does
not	require	a	software	 interface	because	 it	sends	outputs	directly	 to	an	external
hardware	output	device.



Figure	20.19.	Component	ports	and	interfaces	for	output	and	composite
components.



The	output	components	each	have	a	provided	port:

The	 Barrier	 Component	 composite	 component	 and	 simple	 components	 it
contains	 are	depicted	 in	Figure	20.20.	The	ports	 and	 interfaces	of	 the	periodic
timer	 inner	 component	 are	 also	 shown	 in	 Figure	 20.20.	 The	 encapsulated
Barrier	 Timer	 simple	 component	 has	 one	 provided	 port	 with	 a	 provided
interface	and	one	required	port	with	a	required	interface.	The	provided	interface
is	 ITimer,	 which	 allows	 it	 to	 receive	 start	 and	 cancel	 timer	 requests	 from
Railroad	 Crossing	 Control	 via	 a	 delegation	 connector	 from	 the
composite	Barrier	Component.	The	required	interface	is	IRXControl,	which
allows	 Barrier	 Timer	 to	 send	 timer	 expired	 messages	 to	 Railroad
Crossing	 Control	 via	 a	 delegation	 connector	 to	 the	 composite	 Barrier
Component.	 The	 Barrier	 Detection	 Input	 inner	 component
communicates	 with	 Railroad	 Crossing	 Control	 via	 the	 IRXControl
required	 interface	 in	 the	 same	 way.	 The	 Barrier	 Actuator	 Output	 inner
component	has	a	port	PBarrier,	which	provides	the	interface	IBarrier.	The
provided	operations	are	to	raise	and	lower	the	barrier.

PLight	for	Warning	Light	Output,	which	provides	the	interface
ILight.	The	provided	operations	are	to	activate	and	deactivate	the
warning	lights.

PAudio	for	Warning	Audio	Output,	which	provides	the	interface
IAudio.	The	provided	operations	are	to	activate	and	deactivate	the
audio	warning	device.



Figure	20.20.	Component	ports	and	interfaces	for	Barrier	composite
component	and	simple	components	it	contains.



20.10	System	Configuration	and
Deployment

During	 system	configuration	 and	deployment,	 the	 components	 are	 deployed	 to
execute	on	different	nodes	in	a	distributed	configuration.	An	example	of	system
deployment	is	shown	on	the	deployment	diagram	in	Figure	20.21,	in	which	there
are	 five	nodes	connected	by	a	 local	 area	network.	The	Barrier	Component,
Warning	 Alarm	 Component,	 Arrival	 Sensor	 Input,	 and	 Departure
Sensor	Input	components	are	all	deployed	to	separate	nodes.	This	 is	so	that
each	software	component	can	be	in	close	proximity	to	the	hardware	sensor	from
which	 it	 receives	 inputs	 and/or	 the	 hardware	 actuator(s)	 to	 which	 it	 sends
outputs.	Thus	Barrier	Component	is	near	the	barrier	actuator	and	the	barrier
detection	 sensor;	Warning	Alarm	Component	 is	 near	 the	warning	 light	 and
audio	 actuators;	Arrival	Sensor	Input	 and	Departure	Sensor	Input
are	 respectively	 near	 the	 arrival	 and	 departure	 sensors.	 The	 remaining
components,	 the	 Railroad	 Crossing	 Control	 and	 Rail	 Operations

Proxy	components,	are	deployed	to	the	same	node.
The	performance	requirement	that	the	elapsed	times	from	detection	of	train

arrival/departure	 to	 sending	 a	 command	 to	 the	 barrier	 actuator	 do	 not	 exceed
predetermined	 response	 times	 is	 addressed	 by	 the	 performance	 analysis	 in
Section	20.8.	The	safety	requirement	that	the	system	keep	track	of	the	number	of
trains	at	the	railroad	crossing,	such	that	the	barrier	is	lowered	when	the	first	train
arrives	and	raised	when	the	last	 train	departs,	 is	addressed	by	the	design	of	the
Railroad	Crossing	Control	state	machine.	The	safety	requirement	that	the	system
measure	 the	 barrier	 lowering	 and	 raising	 times	 and	 raise	 a	 warning	 if



predetermined	 elapsed	 times	 are	 exceeded	 is	 addressed	 by	 the	 design	 of	 the
Barrier	Timer	object	and	the	Railroad	Crossing	Control	state	machine.

Figure	20.21.	Example	of	component	deployment	for	Railroad	Crossing
Control	System.



21

Light	Rail	Control	System	Case
Study

◈

This	 chapter	 describes	 a	 case	 study	 for	 an	 embedded	 Light	 Rail	 Control
System.	 This	 design	 is	 for	 a	 safety-critical	 system,	 in	 which	 the	 automated
control	 of	 driverless	 trains	must	 be	 done	 safely	 and	 in	 a	 timely	manner.	As	 is
typical	 of	 embedded	 systems,	 the	 system	 interfaces	 with	 the	 external
environment	by	means	of	several	sensors	and	actuators.	Control	of	each	train	is
state	 dependent,	 which	 necessitates	 the	 design	 of	 a	 state	 machine	 to	 provide
control	of	the	train.	As	this	system	is	an	embedded	system,	the	design	approach
benefits	 from	 starting	 with	 a	 systems	 engineering	 perspective	 of	 the	 total
hardware/software	 system	 before	 the	 real-time	 software	 modeling	 and	 design.
The	Light	Rail	Embedded	System	refers	to	the	total	hardware/software	system,
while	Light	Rail	Control	System	refers	to	the	software	system.

The	 problem	 is	 described	 in	 Section	 21.1.	 Section	 21.2	 describes	 the
structural	 modeling	 of	 the	 system,	 consisting	 of	 the	 structural	 model	 of	 the
problem	domain,	 followed	by	 the	 system	and	software	 system	context	models.
Section	 21.3	 describes	 the	 use	 case	 model	 from	 a	 software	 engineering
perspective,	 describing	 both	 the	 functional	 and	 nonfunctional	 requirements	 of
the	 safety-critical	 system.	 Section	 21.4	 describes	 the	 dynamic	 state	 machine



modeling,	 which	 is	 particularly	 important	 to	 model	 the	 state	 dependent
intricacies	 of	 this	 embedded	 system.	 Section	 21.5	 describes	 how	 the	 system
structuring	criteria	are	applied	 to	 this	 system,	 followed	by	Section	21.6,	which
describes	 how	 the	 object	 and	 class	 structuring	 criteria	 are	 applied	 to	 each
subsystem.	Section	21.7	describes	how	dynamic	interaction	modeling	is	used	to
develop	 sequence	 diagrams	 from	 the	 use	 cases.	 Section	 21.8	 provides	 an
overview	 of	 the	 design	model	 for	 the	 software	 system.	 Section	 21.9	 describes
developing	integrated	communication	diagrams,	which	leads	to	the	design	of	the
distributed	 software	 architecture	 in	 Section	 21.10,	 and	 the	 component-based
software	 architecture	 in	 Section	 21.11.	 Section	 21.12	 describes	 system
configuration	and	deployment.



21.1	Problem	Description
The	Light	Rail	Control	 System	 consists	 of	 several	 trains	 that	 travel	 between
stations	along	a	 track	 in	both	directions	with	 a	 semi-circular	 loop	at	 each	end.
Trains	have	to	stop	at	each	station.	If	a	proximity	sensor	detects	a	hazard	ahead,
the	train	decelerates	before	stopping.	If	taken	out	of	service,	a	train	stops	at	the
next	station	to	discharge	passengers,	after	which	it	goes	out	of	service	with	doors
closed.

For	each	train,	there	are	the	following	I/O	devices:

A	motor	actuator.	Controlled	by	commands	to	accelerate,	cruise,
decelerate,	and	stop.

Door	actuators.	Each	door	actuator	is	controlled	by	commands	to	open
and	close	a	door.

Door	sensors.	For	each	door	actuator,	there	is	also	a	door	sensor	to
detect	when	the	door	is	open.

Approaching	Sensor	Detects	when	train	is	approaching	station.	Used	to
start	deceleration	of	train.

Arrival	Sensor.	Detects	when	train	arrives	at	station.	Used	to	stop	train.

Departure	Sensor.	Detects	when	train	has	left	the	station.

Proximity	Sensor.	Detects	when	a	hazard	is	on	or	crossing	the	railroad
track	ahead	of	the	train	and	when	the	hazard	is	removed.

A	GPS	location	sensor,	which	determines	the	coordinates	of	the	train	at
regular	intervals.



For	each	station,	there	are	the	following	I/O	devices

There	are	several	railroad	crossings	that	cross	the	track,	the	operation	of	which
is	described	in	Chapter	20.

The	hardware	characteristics	of	 the	 I/O	devices	are	 that	all	 sensors	except
for	the	proximity	sensor	are	event	driven;	that	is,	an	interrupt	is	generated	when
there	is	an	input	from	one	of	these	devices.	The	proximity	sensor	and	all	output
devices	are	passive.

A	speed	sensor,	which	determines	the	current	speed	of	the	train.

Train	displays.	Display	the	next	stations	to	be	visited	by	the	train.

Train	audio	devices.	Broadcast	audio	messages	to	the	train	passengers,
informing	them	of	arrival	at	station.

A	station	display.	Displays	the	next	trains	in	sequence	to	arrive	and
expected	times	of	arrival.

A	station	audio	device.	Broadcasts	audio	messages	to	the	station
passengers.



21.2	Structural	Modeling
The	static	structural	model	of	the	problem	domain	captures	the	structural	entities
(modeled	 as	 SysML	 blocks)	 and	 relationships	 in	 the	 Light	 Rail	 Embedded
System,	 as	 depicted	 in	 Figure	 21.1.	 The	 Light	 Rail	 Embedded	 System	 is
modeled	as	an	embedded	system	composite	block,	which	is	composed	of	several
Train	 and	 Station	 blocks.	 The	 Train	 is	 a	 modeled	 as	 an	 embedded
subsystem	composite	block	composed	of	input	and	output	device	blocks.	Thus,
there	 are	 several	 output	 device	 blocks:	 one	 Motor,	 many	 Door	 Actuators,
many	Train	Displays,	and	many	Train	Audio	Device	blocks.	There	are
also	 several	 train	 sensors,	 which	 are	 generalized	 into	 a	 Sensor	 input	 device
block.	The	specialized	sensor	blocks	are	the	Approaching	Sensor,	Arrival
Sensor,	Departure	Sensor,	Proximity	Sensor,	Location	Sensor,
Speed	Sensor,	and	Door	Sensor.	Station	is	also	modeled	as	an	embedded
subsystem	 composite	 block,	 composed	 of	 Station	 Display	 and	 Station
Audio	Device	blocks.	The	Train	block	has	a	many-to-many	association	with
the	Station	block,	as	any	train	can	stop	at	any	station.	The	embedded	systems
Railroad	 Crossing	 System	 and	 Wayside	 Monitoring	 System

communicate	with	the	Light	Rail	Embedded	System.



Figure	21.1.	Conceptual	structural	model	for	Light	Rail	Embedded	System.

Next,	 the	 system	 context	 block	 diagram	 is	 developed	 for	 the	Light	 Rail
Embedded	System,	which	models	the	external	entities	to	the	hardware/software
system	and	is	depicted	in	Figure	21.2.	From	a	system	point	of	view,	all	sensors
and	actuators	are	part	of	the	system.	The	external	entities	are	the	Train	(which
is	an	external	physical	entity	block	that	is	detected	and	controlled	by	the	system),
Hazard	(which	is	an	external	physical	entity	block	such	as	train	or	vehicle	ahead
that	 is	detected	by	 the	 system),	the	Rail	Operator	 (an	external	user	block
that	 interacts	 with	 the	 system),	 the	 external	 observer	 blocks	 Train

Passenger,	 Station	 User,	 and	 Rail	 Operations	 Observer,	 and	 the
external	 system	 blocks	 Railroad	 Crossing	 System	 and	 Wayside

Monitoring	System.



Figure	21.2.	Light	Rail	Embedded	System	context	block	diagram.

After	modeling	the	system	context,	the	next	step	is	to	develop	the	software
system	 context	 block	 diagram,	 which	 depicts	 in	 Figure	 21.3	 the	 Light	 Rail
Control	 System	 as	 a	 software	 system	block	 that	 interfaces	 to	 several	 external
input	and	output	device	blocks,	two	external	system	blocks,	and	an	external	user
block.	 From	 the	 conceptual	 static	 model	 in	 Figure	 21.1,	 the	 input	 and	 output
device	blocks	that	are	part	of	the	Train	and	Station	composite	blocks	are	in	fact
external	input	and	output	devices	to	the	Light	Rail	Control	System.	The	Train
and	 Hazard	 external	 physical	 entities	 in	 the	 system	 context	 block	 diagram
(Figure	 21.2)	 are	 represented	 on	 the	 software	 context	 block	 diagram	 by	 the
sensors	 that	 detect	 them	 and/or	 actuators	 that	 control	 them.	 Thus,	 the	 train's
arrival	and	departure	are	detected	by	Approaching	Sensor,	which	detects	that
the	 train	 is	 approaching	 a	 station,	Arrival	Sensor,	which	detects	 the	 train's
imminent	arrival	at	a	station,	and	Departure	Sensor	block	which	detects	that
the	 train	 has	 left	 the	 station.	 The	 train's	 location	 and	 speed	 are	 measured
respectively	by	a	Location	Sensor	and	a	Speed	Sensor.	Train	door	status



is	 detected	 by	 a	 Door	 Sensor.	 A	 physical	 hazard	 ahead	 of	 the	 train	 is
detected	by	a	Proximity	Sensor.	The	system	is	controlled	by	outputs	 to	 the
Motor	 Actuator	 and	 many	 Door	 Actuators.	 The	 external	 sensors	 and
actuators	are	respectively	depicted	on	the	software	system	context	block	diagram
as	external	input	or	output	device	blocks	that	interface	to	the	Light	Rail	Control
System.	The	external	 train,	 station,	and	rail	operations	observers	 in	 the	system
block	 diagram	 are	 replaced	 respectively	 by	 the	 Train	 Display,	 Station
Display,	and	Rail	Operations	Display	they	view	and	the	Train	Audio
Device	 and	 Station	 Audio	 Device	 they	 hear.	 The	 remaining	 external
blocks	 carry	 over	 from	 the	 system	 context	 diagram,	 namely	 a	 human	 external
user,	 the	 Rail	 Operator	 and	 two	 external	 systems,	 Railroad	 Crossing
System	and	Wayside	Monitoring	System.

Figure	21.3.	Light	Rail	Control	software	system	context	block	diagram.



21.3	Use	Case	Modeling
The	 next	 step	 is	 to	 develop	 the	 use	 case	 model	 for	 the	 Light	 Rail	 Control
System.	 Because	 this	 is	 an	 embedded	 system	with	many	 external	 sensors	 and
actuators,	 it	 is	 desirable	 to	 develop	 a	 more	 detailed	 use	 case	 model	 from	 a
software	engineering	perspective,	 in	which	 there	will	be	many	actors.	There	 is
one	human	actor,	 namely	 the	Rail	Operator,	 several	 I/O	device	 actors,	 and
two	 external	 system	 actors.	 There	 are	 nine	 input	 and/or	 output	 device	 actors,
which	 are	 the	 Approaching	 Sensor,	 Arrival	 Sensor,	 Departure

Sensor,	Proximity	Sensor,	Motor,	Door	Actuator,	Door	Sensor,

Location	 Sensor,	 and	 Speed	 Sensor.	 The	 input	 and	 output	 actors
correspond	 to	 the	 external	 input	 and	 output	 device	 blocks	 on	 the	 software
context	 block	 diagram.	 There	 is	 one	 generalized	 actor	 representing	 the
Railroad	 Media.	 There	 are	 two	 external	 system	 actors,	 Railroad

Crossing	System	and	Wayside	Monitoring	System.
Because	the	use	case	model	for	the	Light	Rail	Control	System	has	many

use	cases	and	actors,	it	is	preferable	to	structure	the	use	case	model	into	use	case
packages,	 which	 group	 together	 related	 use	 cases.	 Thus,	 the	 use	 cases	 are
grouped	into	four	use	case	packages	based	on	their	functionality.	Because	of	the
number	 of	 use	 cases	 and	 actors,	 each	 of	 the	 four	 use	 case	 packages	 with	 its
corresponding	 use	 cases	 and	 actors	 is	 shown	 on	 a	 separate	 use	 case	 diagram.
From	 the	 problem	 definition,	 the	 use	 case	 packages	 and	 use	 cases	 in	 each
package	are	identified	and	described	next.



21.3.1	Use	Case	Package	for	Light	Rail	Operations

Use	 cases	 that	 address	 the	 train	 arriving	 and	 leaving	 a	 station	 during	 normal
operation.	 These	 use	 cases	 are	 grouped	 into	 a	 use	 case	 package	 called	Light
Rail	Operations,	as	depicted	in	Figure	21.4:

The	use	case	descriptions	are	given	next.	The	Arrive	at	Station	 use	case
starts	with	an	input	from	the	Approaching	Sensor	actor.

Use	case:	Arrive	at	Station.
Actors:	 Approaching	 Sensor	 (primary),	 Arrival	 Sensor,	 Motor,

Door	Actuator.
Precondition:	Train	is	moving	toward	next	station.
Main	sequence:

Arrive	at	Station.	A	train	arrives	at	the	station.	The	actors	are
Approaching	Sensor	(primary	actor),	Arrival	Sensor,	Motor,	and	Door
Actuator.

Control	Train	at	Station.	Addresses	opening	and	closing	of	train
doors	at	the	station.	The	actors	are	Door	Sensor	(primary	actor)	and
Door	Actuator.

Depart	from	Station.	A	train	leaves	the	station.	The	actors	are	Door
Sensor	(primary	actor),	Departure	Sensor,	and	Motor.

Control	Train	Operation,	which	is	a	high	level	use	case	that
includes	the	Arrive	at	Station,	Control	Train	at	Station,
and	Depart	from	Station	use	cases.	It	describes	the	sequence	of	use
cases	for	normal	train	operation.	The	actor	for	this	use	case	is	Railroad
Media,	which	is	also	an	actor	of	the	inclusion	use	cases.



1)	Approaching	Sensor	signals	that	train	is	approaching	station

2)	System	sends	Decelerate	command	to	Motor.

3)	System	sends	Train	Approaching	message	to	Railroad	Media.

4)	System	continues	decelerating	and	monitoring	speed	of	train.

5)	Arrival	Sensor	signals	that	train	is	entering	the	station.

6)	System	sends	Stop	Motor	command	to	Motor.

7)	Motor	responds	that	train	has	stopped.

8)	System	sends	Open	Doors	command	to	Door	Actuator.

9)	System	sends	Train	Arrival	message	to	Railroad	Media.

Alternative	 sequences:	Steps	1	 to	4:	 If	hazard	 is	detected,	extend	with	Detect
Hazard	 Presence	 use	 case.	 When	 hazard	 is	 removed	 and	 train	 is	 stationary,
extend	with	Detect	Hazard	Removal	use	case.

Postcondition:	Train	has	stopped	at	station	with	doors	opening.
The	Control	Train	at	Station	use	case	starts	with	an	input	from	the	Door
Sensor	actor.

Use	case:	Control	Train	at	Station.
Actors:	Door	Sensor	(primary),	Door	Actuator.
Precondition:	Train	is	stopped	at	station	with	doors	opening.
Main	sequence:

1)	Door	Sensor	sends	Doors	Opened	message.

2)	After	time	interval,	System	sends	Close	Doors	command	to	Door	Actuator.



3)	System	sends	Train	Departing	message	to	Railroad	Media

Alternative:	 Step	 2:	 If	 there	 is	 a	 hazard	 ahead,	 train	 remains	 at	 station	 with
doors	open	until	the	hazard	has	been	removed.

Postcondition:	Train	is	stopped	at	station	with	doors	closing.
The	 Depart	 from	 Station	 use	 case	 starts	 with	 an	 input	 from	 the	 Door
Sensor	actor.

Use	case:	Depart	from	Station.
Actor:	Door	Sensor	(primary),	Departure	Sensor,	Motor.
Precondition:	Train	is	stopped	at	station	with	doors	closing.
Main	sequence:

1)	Door	Sensor	sends	doors	have	closed	message	to	System.

2)	System	commands	Motor	to	accelerate	train	to	cruising	speed.

3)	Departure	Sensor	detects	that	the	train	has	left	the	station	and	notifies
System.

4)	System	sends	Train	Departed	message	to	Railroad	Media.

5)	System	continues	accelerating	and	monitoring	speed	of	train.

6)	When	train	has	reached	cruising	speed,	System	commands	Motor	to	stop
accelerating	and	start	cruising	at	a	constant	speed.

7)	System	maintains	the	train's	speed	at	the	predefined	cruising	speed.

Alternative	sequences:	Steps	5	to	7:	If	a	hazard	is	detected,	extend	with	Detect
Hazard	 Presence	 use	 case.	 When	 hazard	 is	 removed	 and	 train	 is	 stationary,



extend	with	Detect	Hazard	Removal	use	case.
Postcondition:	Train	is	moving	toward	next	station	at	cruising	speed.

The	Control	Train	Operation	 is	a	high	 level	use	case	 that	 includes	 three
use	cases.

Use	case:	Control	Train	Operation.
Actor:	Railroad	Media.
Dependency:	 Includes	Arrive	at	Station	use	case,	Control	Train	at

Station	use	case,	Depart	from	Station	use	case.
Precondition:	Train	is	moving	toward	next	station.
Main	sequence:

1)	Include	Arrive	at	Station	use	case.

2)	Include	Control	Train	at	Station	use	case.

3)	Include	Depart	from	Station	use	case.

Postcondition:	Train	is	moving	toward	next	station	at	cruising	speed.



Figure	21.4.	Light	Rail	Control	System	actors	and	use	cases:	Light	Rail
Operations	use	case	package.



21.3.2	Use	Case	Package	for	Train	Dispatch	and	Suspend

Use	cases	that	address	the	train	going	out	of	service	and	going	back	into	service
are	 grouped	 into	 Train	 Dispatch	 and	 Suspend	 use	 case	 package,	 which
also	include	use	cases	from	the	Light	Rail	Operations	use	case	package,	as
depicted	 in	Figure	21.5.	A	train	 is	dispatched	into	service	using	 the	Dispatch
Train	 use	 case	 and	 then	 continues	 normal	 operation	 as	 described	 in	 the
Control	Train	Operation	use	case.	It	can	then	be	suspended	from	service
using	the	Suspend	Train	use	case.

The	use	case	descriptions	are	given	next.	The	Suspend	Train	use	case	starts
with	an	input	from	the	Rail	Operator	actor.

Use	case:	Suspend	Train.
Actor:	Rail	Operator	(primary),	Door	Sensor,	Railroad	Media.
Dependency:	 Includes	Arrive	at	Station	use	case,	Control	Train	at

Station	use	case.
Precondition:	Train	is	operational	and	moving	toward	next	station.

Dispatch	Train.	The	Rail	Operator	commands	a	train	to	start	or
resume	service.	This	use	case	includes	the	Control	Train	at
Station	and	Depart	from	Station	use	cases.	Actors	of	this	use	case
are	the	Rail	Operator	(primary	actor),	Door	Actuator,	and
Railroad	Media.

Suspend	Train.	The	Rail	Operator	commands	a	train	to	go	out	of
service.	This	use	case	includes	the	Arrive	at	Station	and	Control
Train	at	Station	use	cases.	Actors	of	this	use	case	are	the	Rail
Operator	(primary	actor),	Door	Sensor,	and	Railroad	Media.



Main	sequence:

1)	Rail	Operator	sends	suspend	train	operation	command	to	System.

2)	System	sends	arriving	train	is	going	out	of	service	message	to	Railroad
Media.

3)	Include	Arrive	at	Station	use	case.

4)	Include	Control	Train	at	Station	use	case.

5)	Door	Sensor	sends	doors	have	closed	message	to	system.

6)	System	confirms	that	the	train	is	out	of	service.

Alternative	 sequence:	 Step	 3:	 If	 the	 train	 is	 already	 at	 the	 station	with	 doors
open,	then,	after	the	time	interval,	the	system	sends	a	close	doors	message	to	the
door	actuator	and	resumes	at	step	5.

Postcondition:	Selected	Train	has	been	commanded	to	go	out	of	service.
The	Dispatch	Train	use	case	starts	with	an	input	from	the	Rail	Operator
actor.

Use	case:	Dispatch	Train.
Actor:	Rail	Operator	(primary),	Door	Actuator,	Railroad	Media.
Dependency:	 Include	 Control	 Train	 at	 Station	 and	 Depart	 from

Station	use	cases.
Precondition:	Train	is	out	of	service,	stopped	at	station	with	doors

closed.
Main	sequence:

1)	Rail	Operator	sends	a	command	for	the	train	to	resume	service.



2)	System	sends	open	doors	command	to	Door	Actuator.

3)	System	sends	Train	in	Service	message	to	Railroad	Media.

4)	Include	Control	Train	at	Station	use	case.

5)	Include	Depart	from	Station	use	case.

Postcondition:	Train	has	resumed	service.



Figure	21.5.	Light	Rail	Control	System:	Train	Dispatch	and	Suspend	use	case
package.



21.3.3	Use	Case	Package	for	Railroad	Hazard	Detection

Use	cases	that	address	the	train	detecting	the	presence	of	a	hazard	and	removal
of	 the	 hazard	 are	 grouped	 into	 the	Railroad	Hazard	Detection	 use	 case
package	as	depicted	 in	Figure	21.6.	These	use	cases	extend	use	cases	from	the
Light	Rail	Operations	use	case	package.	Actors	of	both	use	cases	are	the
Proximity	Sensor	(primary	actor)	and	Motor:

The	use	case	descriptions	are	given	next.	The	Detect	Hazard	Presence	use
case	starts	with	an	input	from	the	Proximity	Sensor	actor.

Use	case:	Detect	Hazard	Presence.
Actors:	Proximity	Sensor	(primary),	Motor.
Dependency:	 Extends	 Arrive	 at	 Station	 use	 case,	 Depart	 from

Station	use	cases.
Precondition:	Train	is	moving	toward	next	station.
Main	sequence:

1)	Proximity	sensor	detects	a	hazard	ahead	and	sends	message	to	System.

Detect	Hazard	Presence.	When	a	hazard	ahead	is	detected,	the	train
slows	down	to	a	stop.	This	use	case	is	an	extension	use	case	that	extends
the	Arrive	at	Station	and	Depart	from	Station	use	cases	when
they	encounter	a	hazard.

Detect	Hazard	Removal.	When	the	hazard	is	removed,	the	train	starts
moving.	This	use	case	is	an	extension	use	case	that	extends	the	Arrive
at	Station	and	Depart	from	Station	use	cases	when	a	hazard
they	previously	encountered	is	removed.



2)	System	sends	decelerate	to	stop	command	to	Motor.

3)	Motor	responds	to	System	when	train	has	stopped.

4)	Exit	use	case	and	return	to	base	use	case.

Alternative	 sequence:	 Step	 3:	 If	 proximity	 changes	 to	 clear	 (>100	 meters)
before	train	has	stopped,	system	commands	motor	to	start	accelerating.	Exit	use
case	and	return	to	base	use	case.

Postcondition:	Train	has	stopped	because	of	hazard	ahead.
The	 Detect	 Hazard	 Removal	 use	 case	 starts	 with	 an	 input	 from	 the
Proximity	Sensor	actor.

Use	case:	Detect	Hazard	Removal.
Actors:	Proximity	Sensor	(primary),	Motor.
Dependency:	 Extends	 Arrive	 at	 Station	 use	 case,	 Depart	 from

Station	use	cases.
Precondition:	Train	has	stopped	because	of	hazard.
Main	sequence:

1)	Proximity	sensor	detects	hazard	removal	and	sends	message	to	System.

2)	System	commands	Motor	to	start	accelerating.

3)	Exit	use	case	and	return	to	base	use	case.

Postcondition:	Train	has	resumed	operation	following	removal	of	hazard.



Figure	21.6.	Light	Rail	Control	System:	Railroad	Hazard	Detection	use	case
package.



21.3.4	Use	Case	Package	for	Railroad	Monitoring

Use	 cases	 that	 monitor	 the	 progress	 of	 the	 train	 and	 the	 light	 rail	 system	 are
grouped	 into	 the	 Railroad	 Monitoring	 use	 case	 package,	 as	 depicted	 in
Figure	21.7:

In	 addition,	 the	 actor	 Railroad	 Media	 is	 specialized	 to	 the	 five	 actors	 that
receive	 railroad	 status	messages,	 as	 depicted	 in	 Figure	 21.8.	 These	 are	Train
Display,	Train	Audio	Device,	Station	Display,	Station	Audio

Device,	and	Rail	Operations	Display.

Monitor	Train	Location.	GPS	Location	Sensor	actor	informs
train	of	its	current	location.

Monitor	Train	Speed.	Speed	Sensor	actor	informs	train	of	its
current	speed.

Monitor	Rail	Operations.	The	external	Railroad	Crossing
System	and	Wayside	Monitoring	System	(modeled	as	actors)	send
status	information,	such	as	status	of	rail	track	and	railroad	crossing,	to	the
system.



Figure	21.7.	Light	Rail	Control	System:	Railroad	Monitoring	use	case
package.



Figure	21.8.	Light	Rail	Control	System:	Railroad	Media	generalized	and
specialized	actors.

The	use	case	descriptions	are	given	next.	The	Monitor	Train	Speed	use
case	starts	with	an	input	from	the	Speed	Sensor	actor.

Use	case:	Monitor	Train	Speed.
Actors:	Speed	Sensor	(primary),	Rail	Operations	Display.
Precondition:	Train	is	moving.
Main	sequence:

1)	Speed	Sensor	notifies	System	of	current	speed	of	Train.



2)	System	converts	current	speed	to	engineering	units	and	stores	the	current
value.

3)	System	outputs	current	speed	to	Rail	Operations	Display.

Postcondition:	Current	Speed	has	been	updated	and	displayed.
The	Monitor	Train	Location	 use	 case	 starts	 with	 an	 input	 from	 the	GPS
Location	Sensor	actor.

Use	case:	Monitor	Train	Location.
Actors:	GPS	Location	Sensor	(primary),	Railroad	Media.
Precondition:	Train	is	moving.
Main	sequence:

1)	GPS	Location	Sensor	sends	physical	location	of	Train.

2)	System	uses	train	location	and	current	speed	to	estimate	arrival	times	at
Train	stations

3)	System	sends	train	location	to	Railroad	Media.

Postcondition:	Location	and	speed	information	has	been	stored	and	distributed.
The	Monitor	 Rail	 Operations	 use	 case	 starts	 with	 an	 input	 from	 the	 Railroad
Crossing	System	or	Wayside	Monitoring	System	actor.

Use	case:	Monitor	Rail	Operations.
Actors:	 Railroad	 Crossing	 System,	 Wayside	 Monitoring	 System,

Rail	Operations	Display.
Precondition:	System	is	operational.



Main	sequence:

1)	Railroad	Crossing	System	or	Wayside	Monitoring	System	notifies	System
of	status	of	rail	equipment.

2)	System	stores	current	status	of	rail	equipment.

3)	System	displays	warning	message	on	Rail	Operations	Display	of	rail
equipment	that	is	outside	normal	limits	or	malfunctioning.

Postcondition:	Status	of	rail	equipment	has	been	stored	and	displayed.



21.4	Dynamic	State	Machine	Modeling
State	machine	modeling	starts	by	considering	the	states	and	transitions	on	a	use
case–by–use	case	basis,	as	described	in	Section	21.4.1,	from	which	the	complete
state	machine	is	then	composed,	as	described	in	Section	21.4.2.	In	the	following,
the	incoming	events,	state	transitions,	and	resulting	actions	(transition,	entry,	or
exit	actions)	are	described.	In	parentheses	(because	they	are	not	depicted	in	the
state	machine)	are	 the	actors	 (see	Section	21.3)	 that	 send	 the	events	or	 receive
the	actions.



21.4.1	Use	Case-Based	State	Machines

The	state	machine	for	the	Arrive	at	Station	use	case	starts	with	the	train	in
Cruising	state,	as	depicted	in	Figure	21.9.	The	Approached	event	(originating
from	 the	 Approaching	 Sensor)	 causes	 the	 state	 machine	 to	 transition	 to
Approaching	 state,	 with	 a	 resulting	 Decelerate	 transition	 action	 (sent	 to
Motor)	 and	 an	 entry	 action	 to	 Send	 Approaching	 message	 (to	 Railroad
Media).	 The	 next	 event	 is	 the	 Arrived	 event	 (from	 the	 Arrival	 Sensor),
which	causes	 a	 state	 transition	 to	Stopping	 state,	with	 a	 resulting	action	of	 a
Stop	 command	 (to	 Motor).	 This	 is	 followed	 by	 the	 Stopped	 event	 (from
Motor),	which	causes	a	state	change	to	Doors	Opening	state,	an	entry	action
to	 Open	 Doors,	 and	 a	 transition	 action	 to	 Send	 Arrived	 message	 (to
Railroad	Media).





Figure	21.9.	State	machine	for	Arrive	at	Station	use	case.

The	state	machine	 for	 the	Control	Train	at	Station	use	case	 starts
with	 the	 train	 in	 Doors	 Opening	 state,	 as	 depicted	 in	 Figure	 21.10.	 The
Opened	event	(originating	from	the	Door	Sensor)	causes	the	state	machine	to
transition	to	Doors	Open	state,	with	a	resulting	Start	Timer	transition	action
(to	the	local	timer).	After	the	timeout	event,	and	assuming	no	hazards	ahead	(i.e.,
[All	 Clear]	 guard	 condition	 is	 True),	 the	 state	 machine	 transitions	 state	 to
Doors	Closing	 state	 from	Doors	Open	 state,	with	a	 resulting	exit	action	 to
send	a	command	to	Close	Doors	(to	Door	Actuator)	and	a	transition	action
to	Send	Departing	message	(to	Railroad	Media).



Figure	21.10.	State	machine	for	Control	Train	at	Station	use	case.

The	state	machine	for	the	Depart	from	Station	use	case	starts	with	the
train	 in	Doors	Closing	 state	as	depicted	 in	Figure	21.11.	The	Closed	event
(originating	 from	 the	Door	Sensor)	 causes	 the	 state	machine	 to	 transition	 to
Accelerating	 state,	 with	 a	 resulting	 entry	 action	 to	 send	 an	 Accelerate
command	 (to	Motor).	The	Departed	 event	 (originating	 from	 the	Departure
Sensor)	causes	a	transition	to	the	Accelerating	state	and	the	transition	action
to	Send	Departed	message	(to	Railroad	Media).	When	the	system	detects



that	 the	 train	 has	 reached	 the	 cruising	 speed,	 the	 state	 machine	 transitions	 to
Cruising	state	and	sends	a	Cruise	command	(to	Motor).

Figure	21.11.	State	machine	for	Depart	from	Station	use	case.

The	state	machine	for	the	Suspend	Train	use	case	starts	with	the	train	in
Doors	Open	state,	when	the	timeout	expires.	If	the	train	has	been	commanded
to	 go	 out	 of	 service	 (i.e.,	 [Suspending]	 guard	 condition	 is	 True),	 the	 state
machine	 will	 transition	 to	 Out	 of	 Service	 state,	 which	 results	 in	 an	 exit
action	 to	Close	Doors	 (sent	 to	Door	Actuator)	 and	 a	 transition	 action	 to
Send	Out	of	Service	message	(to	Railroad	Media)	as	depicted	in	Figure
21.12.



Figure	21.12.	State	machine	for	Suspend	Train	use	case.

The	state	machine	for	the	Dispatch	Train	use	case	starts	with	the	train	in
Out	 of	 Service	 state	 when	 a	 Dispatch	 message	 arrives	 (from	 the	 Rail
Operator).	 The	 state	 machine	 transitions	 to	 Doors	 Opening	 state,	 which
results	 in	 an	 entry	 action	 to	 send	 an	 Open	 Doors	 command	 to	 the	 Door
Actuator	and	a	 transition	action	to	Send	In	Service	message	(to	Railroad
Media),	as	depicted	in	Figure	21.13.



Figure	21.13.	State	machine	for	Dispatch	Train	use	case.

The	state	machine	for	the	Detect	Hazard	Presence	use	case	starts	with
the	 train	 in	 any	 of	 the	Accelerating,	Cruising,	 or	Approaching	 states.
When	 the	 proximity	 sensor	 sends	 a	 Hazard	 Detected	 message,	 the	 state
machine	transitions	to	Emergency	Stopping	state,	leading	to	entry	actions	to
send	 an	 Emergency	 Stop	 message	 (to	 Motor)	 and	 to	 Send	 Hazard

Detected	message	(to	Railroad	Media),	as	depicted	 in	Figure	21.14.	If	 the
Motor	 sends	 a	 Stopped	 event,	 the	 state	 machine	 transitions	 to	 Emergency
Halt	 state,	which	 results	 in	a	 transition	action	 to	Send	Stopped	message	 (to
Railroad	Media).



Figure	21.14.	State	machine	for	Detect	Hazard	Presence	use	case.

The	state	machine	for	the	Detect	Hazard	Removal	use	case	starts	with
the	 train	 in	 either	Emergency	Stopping	 or	Emergency	Halt	 states.	 If	 the
proximity	 sensor	 sends	 a	 Hazard	 Removed	 message	 (as	 depicted	 in	 Figure
21.15),	 this	causes	the	state	machine	to	transition	to:	(a)	Approaching	state	 if
the	 train	 is	 approaching	 a	 station,	 in	 which	 case	 the	 transition	 actions	 are	 to
Accelerate	 Slowly	 and	 Send	 Hazard	 Removed	 message	 or	 (b)
Accelerating	state	if	the	train	is	not	approaching	a	station,	in	which	case	the
actions	are	to	Accelerate	and	Send	Hazard	Removed	message.



Figure	21.15.	State	machine	for	Detect	Hazard	Removal	use	case.



21.4.2	Integrated	Train	Control	State	Machine

Because	the	state	machine	modeling	involves	seven	state	dependent	use	cases,	it
is	 necessary	 to	 integrate	 the	 partial	 state	 machines	 of	 these	 use	 cases	 and
consider	 alternative	 branches	 to	 create	 an	 initial	 integrated	 Train	 Control
state	machine,	which	is	depicted	in	Figure	21.16.

Figure	21.16.	Flat	state	machine	for	Train	Control.

The	 initial	 integrated	 state	 machine	 is	 a	 flat	 state	 machine	 without	 any
hierarchy;	hence,	 there	 is	an	opportunity	 to	design	a	hierarchical	state	machine
by	 defining	 composite	 states	 to	 represent	 the	 major	 states	 of	 the	 train.	 It	 is



possible	 to	 group	 certain	 states	 in	 Figure	 21.16	 into	 a	 composite	 state.	 In
particular,	 the	 Accelerating,	 Cruising,	 and	 Approaching	 states	 can	 be
grouped	 to	 become	 substates	 of	 a	 composite	 state	 called	 In	 Motion.	 The
reason	is	 that	 the	Hazard	Detected	transition	from	each	of	 the	Accelerating,
Cruising,	and	Approaching	substates	can	be	replaced	with	a	Hazard	Detected
transition	 from	 the	 In	 Motion	 composite	 state.	 Similarly,	 Emergency
Stopping	 and	 Emergency	 Halt	 can	 be	 grouped	 to	 become	 substates	 of	 a
composite	 state	 called	 Emergency.	 The	 reason	 is	 that	 the	 Hazard	 Removed
transition	from	the	Emergency	Stopping	and	Emergency	Halt	substates	can
be	replaced	with	a	Hazard	Removed	transition	from	the	Emergency	composite
state.

The	 composite	 states	 and	 substates	 of	 the	Train	Control	 hierarchical	 state
machine	are	described	next	and	depicted	in	Figure	21.17.	The	initial	state	is	Out
of	Service:

Out	of	Service.	The	train	is	stationary	at	a	station	with	doors	closed.

Doors	Opening.	This	state	is	entered	when	the	train	has	stopped	at	a
station	and	the	doors	are	opening.	It	is	also	entered	when	a	train	is
dispatched	into	service.	On	the	state	machine,	the	Open	Doors	action	is
shown	as	an	entry	action	because	the	transition	to	Doors	Opening	state
can	arrive	from	either	the	Out	of	Service	state	or	the	Stopping	state.
It	is	more	concise	to	depict	one	entry	action	on	the	state	machine	instead
of	transition	actions	on	each	of	the	two	incoming	state	transitions.

Doors	Open.	This	state	is	entered	when	the	train	doors	have	completed
opening.	There	is	an	action	to	start	a	timer	on	transition	into	the	state.
When	the	timeout	expires,	there	are	three	possible	transitions.	If	the
Hazard	condition	is	True,	this	state	is	re-entered.	If	the	Suspending
condition	is	True,	the	state	machine	transitions	to	Out	of	Service



state.	If	the	All	Clear	condition	is	True,	the	state	machine	transitions
to	Doors	Closing	state.	On	exit	from	this	state	to	either	Doors
Closing	or	Out	of	Service	state,	there	is	an	exit	action	to	Close
Doors.	It	should	be	noted	that	the	All	Clear	condition	is	defined	in
terms	of	the	Hazard	and	Suspending	conditions	using	the	following
Boolean	expression:

All	Clear	=	NOT	Hazard	AND	NOT	Suspending

Doors	Closing.	This	state	is	entered	when	the	train	doors	start	closing
to	satisfy	a	request	to	move	to	the	next	station.

In	Motion.	This	is	a	composite	state,	which	is	entered	when	the	train	is
moving	and	consists	of	the	following	substates:

Accelerating.	A	train	is	increasing	speed	until	it	reaches	the
cruising	state.

Cruising.	A	train	is	moving	at	a	constant	speed.

Approaching.	A	train	is	approaching	a	station.

Stopping.	This	state	is	entered	when	the	train	is	arriving	at	a	station.

Emergency.	This	is	a	composite	state,	which	is	entered	when	a	hazard	is
detected	and	consists	of	the	following	substates:

Emergency	Stopping.	If	a	hazard	is	detected	ahead,	the	train
slows	down,	eventually	to	an	emergency	stop	if	the	hazard	is	not
removed.	This	substate	can	be	entered	from	any	of	the	In	Motion
substates:	Accelerating,	Cruising,	or	Approaching.	If	the
hazard	is	removed,	the	train	transitions	to	Approaching	substate	(if
it	is	near	a	station)	or	Accelerating	substate	(if	it	is	not).

Emergency	Halt.	The	train	has	stopped	because	of	the	emergency



Figure	21.17.	Hierarchical	state	machine	for	Train	Control.

with	doors	closed.	This	substate	is	entered	from	Emergency
Stopping	substate.



21.5	Subsystem	Structuring
As	 the	Light	Rail	Control	 System	 is	 a	 large	 system	with	many	 objects,	 it	 is
necessary	to	considering	how	the	system	is	structured	into	subsystems.	Because
this	 is	 a	 distributed	 application,	 the	 geographical	 location	 and
aggregation/composition	 considerations	 take	 precedence.	 From	 a	 geographical
perspective,	 train	 and	 stations	 are	 distinct	 distributed	 entities.	 The	 conceptual
static	 model	 in	 Figure	 21.1	 shows	 that	 there	 are	 multiple	 trains	 and	 multiple
stations,	 each	 of	which	 is	 composed	of	 several	 parts.	Thus,	 trains	 and	 stations
can	be	modeled	structurally	as	geographically	distributed	subsystems.

Because	 the	 primary	 purpose	 of	 the	 train	 subsystem	 is	 to	 control	 the
physical	 train,	 the	 subsystem	 is	 named	 the	 Train	 Control	 Subsystem,	 of
which	there	is	one	instance	for	each	train.	There	is	also	a	Station	Subsystem,
of	which	there	is	one	instance	for	each	station	in	the	system.	This	subsystem	is
an	output	subsystem,	as	its	main	function	is	to	output	train	status	information	to
station	visual	displays	and	audio	devices.

Because	 the	 system	 needs	 an	 operator	 to	 view	 train	 and	 station
status,	as	well	as	to	command	trains	to	go	into	and	out	of	service	and	to	notify
stations	 of	 delays,	 a	 user	 interaction	 subsystem	 is	 designed	 called	 Rail
Operations	 Interaction.	 Finally,	 Rail	 Operations	 Service	 is	 a
service	subsystem	of	which	 there	 is	only	one	 instance.	 It	 is	 independent	of	 the
number	of	trains	and	stations	and	is	responsible	for	maintaining	the	status	of	the
system,	as	well	as	dynamically	outputting	real-time	train	and	station	statuses	on
large	screens	in	the	rail	operations	center.

Thus,	 the	 Light	 Rail	 Control	 System	 consists	 of	 four	 subsystems,	 as
depicted	 in	 Figure	 21.18.	 They	 are	 the	 Train	 Control	 Subsystem,	 the



Station	Subsystem,	the	Rail	Operations	Services	subsystem,	and	the
Rail	 Operations	 Interaction	 subsystem.	 Starting	 from	 the	 software
context	 diagram	 depicted	 in	 Figure	 21.3,	 Figure	 21.18	 depicts	 these	 four
subsystems	as	well	as	the	external	entities	to	which	they	interface.

Figure	21.18.	Light	Rail	Control	software	subsystems.



21.6	Object	and	Class	Structuring
Because	 this	 is	 a	 real-time	 embedded	 system,	 there	 are	many	 external	 devices
and	 consequently	 many	 software	 boundary	 classes.	 The	 COMET/RTE	 object
and	class	structuring	criteria	are	applied	to	determine	the	objects	and	classes	in
each	subsystem.	The	behavior	of	 these	objects	 is	described	 in	detail	 in	Section
21.7.

All	train-related	classes,	such	as	the	train's	proximity	sensor	and	motor,	are
part	of	the	Train	Control	Subsystem.	Boundary	classes	are	determined	by
considering	 the	 software	 classes	 that	 interface	 to	 and	 communicate	 with	 the
external	 entities.	 Input	 classes	 are	 needed	 to	 receive	 inputs	 from	 the	 seven
external	input	devices	shown	in	Figures	21.18.	As	depicted	in	Figure	21.19,	the
corresponding	 seven	 input	 classes,	 which	 are	 all	 in	 the	 Train	 Control

Subsystem,	are	Approaching	Sensor	Input,	Arrival	Sensor	Input,
Departure	Sensor	Input,	Proximity	Sensor	Input,	Door	Sensor

Input,	Location	Sensor	Input,	and	Speed	Sensor	Input.



Figure	21.19.	Input	and	output	classes	for	Train	Control	Subsystem.

Next,	 the	 output	 classes	 that	 output	 to	 the	 external	 output	 devices	 are
determined.	Figure	21.3	shows	that	there	are	seven	external	output	devices.	Four
of	the	corresponding	output	classes	are	in	the	Train	Control	Subsystem,	as
depicted	 in	 Figure	 21.19.	 These	 are	 Door	 Actuator	 Output,	 Motor

Output,	Train	Display	Output,	and	Train	Audio	Output.
Now	 consider	 the	 control	 objects	 needed	 by	 the	 Train	 Control

Subsystem.	A	Train	Control	object	is	needed	for	each	train.	This	must	be	a
state	 dependent	 control	 object	 that	 executes	 the	 state	 machine	 described	 in
Section	21.4.	Since	 controlling	 the	 speed	of	 the	 train	 is	 an	 important	 factor	 in
this	system,	there	needs	to	be	a	separate	Speed	Adjustment	algorithm	object,
which	 sends	 speed	 commands	 to	 the	 Motor	 Output	 object,	 which	 in	 turn



interfaces	to	the	external	motor.	There	also	must	be	a	Train	Timer	for	periodic
events,	such	as	the	time	that	train	doors	need	to	be	kept	open	at	a	station.

An	entity	object	is	needed	to	hold	Train	Data,	including	the	current	speed
and	 location	of	 the	 train.	Because	 train	 status	needs	 to	be	 sent	 to	various	 train
and	station	objects	on	a	regular	basis,	a	coordinator	object,	the	Train	Status
Dispatcher,	is	designed	for	this	purpose.

Next	consider	the	classes	needed	by	the	Station	Subsystem.	Two	output
classes	are	in	the	Station	Subsystem,	namely	Station	Display	Output	and
Station	Audio	Output,	as	depicted	in	Figure	21.20.	For	each	station,	there	is
also	a	need	for	a	coordinator	object,	the	Station	Coordinator,	and	an	entity
object,	Station	Status.



Figure	21.20.	Classes	for	Station	Subsystem.

The	 Rail	 Operations	 Interaction	 subsystem	 consists	 of	 one	 user
interaction	object,	Operator	Interaction,	which	 interacts	with	 an	 external
user,	the	Rail	Operator.

The	 Rail	 Operations	 Service	 subsystem	 consists	 of	 a	 coordinator
object,	Rail	Ops	Coordinator,	a	passive	entity	object,	Rail	Operations
Status,	 and	an	output	object,	Rail	Operations	Display	Output,	which
outputs	to	the	external	Rail	Operations	Display.	Although	there	are	two	external
systems,	Railroad	Crossing	System	and	Wayside	Monitoring	System,



that	 communicate	 with	 Rail	 Operations	 Service,	 they	 are	 actually
designed	 as	 subsystems	 of	 a	 larger	 Light	 Rail	 Component-based	 System	 (see
Section	 21.11),	 and	 thus	 proxy	 objects	 are	 not	 needed	 to	 communicate	 with
them.



21.7	Dynamic	Interaction	Modeling
The	 next	 step	 is	 to	 design	 the	 object	 interactions	 that	 correspond	 to	 each	 use
case.	A	 sequence	diagram	 is	developed	 for	 each	use	case	 to	depict	 the	objects
that	 participate	 in	 the	 use	 case	 and	 the	 sequence	 of	 object	 interactions.	 The
message	descriptions	 are	 also	given	 for	 each	 sequence	diagram.	 In	 addition,	 if
the	interaction	involves	the	Train	Control	state	dependent	control	object,	the
events	and	actions	on	the	internal	Train	Control	state	machine	are	described.
Note	 that	 Section	 21.4	 described	 how	 the	 state	 machine	 receives	 inputs	 from
actors	and	sends	outputs	to	actors,	which	correspond	to	the	use	case	description.
After	 object	 structuring,	 this	 section	 describes	 the	 interactions	 of	 the	 state
dependent	 control	object	 (which	executes	 the	 state	machine)	with	 the	 software
objects	(such	as	input	and	output	objects),	which	in	turn	interact	with	input	and
output	devices	that	correspond	to	the	actors.

Sequence	numbers	are	depicted	with	whole	numbers.	For	some	use	cases,
an	 optional	 letter	 (a	 use	 case	 identifier)	 precedes	 the	 sequence	 number.	 See
Appendix	A	for	more	information	on	message	sequence	numbering	conventions.



21.7.1	Sequence	Diagram	for	Arrive	at	Station

Because	 of	 the	 larger	 number	 of	 objects	 involved,	 this	 use	 case	 is	 realized	 by
two	sequence	diagrams,	one	for	the	external	objects	interacting	with	the	system,
and	the	second	depicting	the	interaction	among	the	software	objects.	The	former
sequence	 diagram	 is	 depicted	 in	 Figure	 21.21	 and	 described	 first:	

Figure	21.21.	Sequence	diagram	for	Arrive	at	Station	use	case	(external
objects).

External	objects	participating	in	this	use	case	are

1:	The	Approaching	Sensor	sends	an	Approach	event	to	the	system.

2:	The	system	sends	a	Decelerate	message	to	the	Motor	Actuator.

3:	The	Arrival	Sensor	sends	an	Arrive	event	to	the	system.

4:	The	system	sends	a	Stop	message	to	the	Motor	Actuator.

5:	When	the	train	has	stopped,	the	Motor	Actuator	sends	a	Stopped	event	to
the	system.

6:	The	system	sends	an	Open	Doors	message	to	the	Door	Actuator.



7:	The	system	sends	an	Arrived	message	to	the	Train	Display	and	the
Train	Audio	Device	(event	8).

The	 second	 sequence	 diagram	 (Figure	 21.22)	 depicts	 the	 software	 objects	 and
internal	 message	 interactions	 among	 them,	 following	 the	 input	 from	 the
approaching	sensor:

1:	The	Approaching	Sensor	sends	an	Approach	event	to	Approaching
Sensor	Input	object.	The	Approaching	Sensor	Input	object	sends	the
station	number	in	the	Approached	message	to	the	Train	Control	object.	On
receiving	this	message,	Train	Control	transitions	from	Cruising	state	to
Approaching	state.

2:	As	a	result	of	the	transition	to	Approaching	state,	the	Train	Control
object	sends	a	Decelerate	command	to	Speed	Adjustment	object.

3:	By	reading	current	speed	and	cruising	speed,	Speed	Adjustment	object
computes	the	deceleration	rate	and	sends	a	Decelerate	message	with	the
deceleration	rate	as	a	parameter	to	Motor	Output.	The	Motor	Output	object
converts	the	deceleration	rate	to	electrical	units	and	sends	the	voltage	to	be
applied	to	the	real-world	motor.

4:	(parallel	sequence	with	event	2	because	both	are	actions	associated	with	the
state	transition):	Train	Control	sends	a	Send	Approached	message	to
Train	Status	Dispatcher.

5:	Arrival	Sensor	Input	object	receives	an	arrival	event	from	the	external
Arrival	Sensor	indicating	that	the	train	has	arrived	at	the	station.	The
Arrival	Sensor	Input	object	sends	the	Arrived	message	to	the	Train
Control	object.	On	receiving	this	message,	Train	Control	transitions	from
Approaching	state	to	Stopping	state.



6:	Train	Control	sends	Stop	message	to	Speed	Adjustment	object.

7:	Speed	Adjustment	object	sends	Stop	message	to	Motor	Output,	which	in
turn	sends	Stop	message	to	the	real-world	motor.

8:	When	the	train	has	stopped,	the	motor	sends	a	stopped	response	to	the	Motor
Output	object.	Motor	Output	object	sends	a	Stopped	message	to	the	Speed
Adjustment	object.

9:	Speed	Adjustment	object	sends	a	Stopped	message	to	Train	Control
object,	which	then	transitions	to	Doors	Opening	state.

10:	(parallel	sequence	because	there	are	two	actions	associated	with	the	state
transition)	On	transitioning	to	Doors	Opening	state,	the	Train	Control
object	sends	the	Door	Actuator	Output	object	a	command	to	Open	Doors.
On	the	state	machine,	the	Open	Doors	event	is	shown	as	an	entry	action,
because	the	transition	to	Doors	Opening	state	can	arrive	from	either	the	Out
of	Service	state	or	the	Stopping	state.	It	is	more	concise	to	depict	one	entry
action	on	the	state	machine	instead	of	two	actions,	one	on	each	of	the	incoming
state	transitions.

11:	(parallel	sequence	because	there	are	two	actions	associated	with	the	state
transition)	The	Train	Control	object	sends	a	Send	Arrived	message	to	the
Train	Status	Dispatcher.



Figure	21.22.	Sequence	diagram	for	Arrive	at	Station	use	case	(software
objects).



21.7.2	Sequence	Diagram	for	Train	Status	Dispatcher

The	Train	Status	Dispatcher	 sends	multicast	 status	messages	 to	 all	 the
Railroad	Media	actors	depicted	in	Figure	21.23.	The	corresponding	objects	that
received	 status	 messages	 are:	 Train	 Display	 Output,	 Train	 Audio

Output,	 Station	 Subsystem	 (for	 Station	 Display	 Output	 and
Station	 Audio	 Output),	 Rail	 Operations	 Service	 (for	 Rail

Operations	Display),	and	also	the	Train	Status	entity	object,	as	shown
in	Figure	21.23.

1:	Train	Status	Dispatcher	sends	a	train	status	message	to	the	Train
Display	Output,	which	updates	the	train	display.

2:	Train	Status	Dispatcher	sends	a	train	status	message	to	the	Train
Audio	Output,	which	sends	the	message	to	the	train	audio	device.

3:	Train	Status	Dispatcher	updates	the	Train	Status	entity	object
with	the	arrival	status.

4:	Train	Status	Dispatcher	sends	the	multicast	message	Arrived
Station	n	message	to	all	instances	of	the	Station	Subsystem	object.
The	Station	Manager	object	in	the	Station	subsystem	receives	the
multicast	station	arrived	message	and	updates	the	station	display	and	the
audio	device	via	the	objects	Station	Display	Output	and	Station
Audio	Output,	as	well	as	updating	the	Station	Status	entity	object.

5:	Train	Status	Dispatcher	sends	a	train	status	message	to	the	Rail
Operations	Service	subsystem.



Figure	21.23.	Sequence	diagram	for	Train	Status	Dispatcher.



21.7.3	Sequence	Diagram	for	Control	Train	at	Station

This	sequence	diagram	(Figure	21.24)	depicts	 the	software	objects	and	internal
message	interactions	among	them	following	the	door	sensor	detecting	train	doors
have	opened:

S1:	The	Door	Sensor	sends	the	Opened	message	to	the	Door	Sensor
Input	object.

S2:	The	Door	Sensor	Input	object	sends	an	Opened	message	to	the
Train	Control	object,	which	then	transitions	to	Doors	Open	state.

S3:	The	Train	Control	object	sends	a	Start	Timer	message	to	the
Train	Timer	to	start	a	timer.

S4:	A	timer	event	is	generated	after	a	period	of	time	equal	to	timeout.
Timer	object	sends	Timer	Elapsed	event	to	Train	Control.

S5:	If	the	track	condition	is	All	Clear,	then	Train	Control	object
transitions	to	Doors	Closing	state	and	sends	a	Close	Doors	command
to	Door	Actuator	Output.
(Note	that	in	the	case	that	there	is	a	hazard	ahead,	the	Train	will	remain

at	the	station	and	periodically	check	if	the	hazard	has	been	cleared.	Once
the	hazard	has	been	cleared,	the	Train	will	resume	its	movement).

S6:	Door	Actuator	Output	sends	a	Close	Doors	command	to	the
real-world	doors	actuator.

S5a:	(parallel	sequence	with	S5	because	there	are	two	actions	associated
with	the	state	transition):	The	Train	Control	object	sends	a	Send
Departing	message	to	the	Train	Status	Dispatcher.



Figure	21.24.	Sequence	diagram	for	Control	Train	at	Station	use	case.



21.7.4	Sequence	Diagram	for	Depart	from	Station

This	sequence	diagram	(Figure	21.25)	depicts	 the	software	objects	and	internal
message	interactions	among	them	following	the	door	sensor	detecting	train	doors
closed:

D1:	The	real-world	door	sensor	sends	a	Closed	message	when	all	the
doors	are	closed.	The	Door	Sensor	Input	in	turn	sends	a	Closed
message	to	Train	Control,	which	transitions	to	Accelerating	state.

D2:	Train	Control	sends	an	Accelerate	command	to	the	Speed
Adjustment	object.

D3:	Speed	Adjustment	object	computes	the	acceleration	rate	and	sends
Accelerate	message	with	the	acceleration	rate	as	a	parameter	to	Motor
Output,	such	that	the	acceleration	gradually	increases	the	speed	of	the
train.

D4:	The	Motor	Output	object	sends	the	Accelerate	command	to	the
real-world	motor.

D5:	The	Departure	Sensor	Input	sends	a	Departed	message	to
Train	Control,	indicating	that	the	train	has	left	the	station.

D6:	The	Train	Control	object	sends	a	Send	Departed	message	to	the
Train	Status	Dispatcher.

D7:	By	comparing	current	speed	with	the	cruising	speed,	the	Speed
Adjustment	object	determines	when	the	train	has	reached	the	cruising
speed.	Speed	Adjustment	object	sends	a	Reached	Cruising	message
to	Train	Control,	which	transitions	to	Cruising	state.



D8:	Train	Control	sends	a	Cruise	command	to	the	Speed
Adjustment	object.

D9:	By	comparing	current	speed	with	the	cruising	speed,	the	Speed
Adjustment	object	determines	what	plus	or	minus	delta	adjustments	are
needed	to	the	train	speed.	It	then	sends	a	Cruise	message	with	the	delta
amounts	to	the	Motor	Output	object.

D10:	The	Motor	Output	object	converts	the	delta	amounts	to	electrical
units	and	sends	the	voltage	setting	to	the	real-world	motor.

Figure	21.25.	Sequence	diagram	for	Depart	from	Station	use	case.



21.7.5	Sequence	Diagram	for	Detect	Hazard	Presence

This	sequence	diagram	(Figure	21.26)	depicts	 the	software	objects	and	internal
message	 interactions	among	 them	following	 the	proximity	 sensor	detecting	 the
presence	of	a	hazard	ahead	of	the	train:

P1:	Proximity	Sensor	detects	the	presence	of	a	hazard	and	sends
message	to	Proximity	Sensor	Input.

P2:	Proximity	Sensor	Input	sends	Hazard	Detected	message	to
Train	Control.	If	the	train	is	in	the	In	Motion	composite	state,	Train
Control	transitions	to	Emergency	Stopping	state.	The	state	machine
Hazard	condition	is	set	to	True.

P3:	Train	Control	sends	Emergency	Stop	message	to	Speed	Adjustment
object.

P4:	Speed	Adjustment	object	computes	fast	deceleration	value	for	motor
and	sends	Emergency	Stop	message	with	the	deceleration	rate	as	a
parameter	to	Motor	Output.

P5:	Motor	Output	converts	deceleration	amount	to	electrical	units	and
sends	Stop	message	to	Motor.

P6	(parallel	sequence	with	P3	because	there	are	two	actions	associated	with
the	state	transition):	The	Train	Control	object	sends	a	Hazard
Detected	message	to	the	Train	Status	Dispatcher.

P7:	Motor	responds	that	train	has	stopped.

P8,	P9:	Motor	Output	sends	Stopped	message	to	Speed	Adjustment,
which	forwards	the	Stopped	message	to	Train	Control.	Train
Control	transitions	to	Emergency	Halt	state.



P10:	The	Train	Control	action	is	to	send	the	Send	Stopped	message
to	the	Train	Status	Dispatcher.

Figure	21.26.	Sequence	diagram	for	Detect	Hazard	Presence	use	case.



21.7.6	Sequence	Diagram	for	Detect	Hazard	Removal

This	sequence	diagram	(Figure	21.27)	depicts	 the	software	objects	and	internal
message	 interactions	among	 them	following	 the	proximity	 sensor	detecting	 the
removal	of	the	hazard:

R1:	Proximity	Sensor	detects	the	removal	of	the	hazard	and	sends
message	to	Proximity	Sensor	Input.

R2:	Proximity	Sensor	Input	sends	Hazard	Removed	message	to
Train	Control.	Train	Control	transitions	from	its	current	state
(Emergency	Stopping	or	Emergency	Halt)	to	Accelerating	or
Approaching	state.	Train	Control	state	machine's	Hazard	condition	is
set	to	False.

R3:	Assuming	Train	Control	transitions	to	Accelerating	state,	the
resulting	action	is	for	Train	Control	to	send	the	Accelerate	message
to	Speed	Adjustment	object.

R4:	Speed	Adjustment	object	computes	the	acceleration	rate	and	sends
Accelerate	message	with	the	acceleration	rate	as	a	parameter	to	Motor
Output,	such	that	acceleration	gradually	increases	the	speed	of	the	train.

R5:	The	Motor	Output	object	sends	the	accelerate	command	to	the
real-world	motor.

R6:	(parallel	sequence	with	R3	because	there	are	two	actions	associated
with	the	state	transition):	The	Train	Control	action	is	to	Send	Hazard
Removed	message	to	the	Train	Status	Dispatcher.



Figure	21.27.	Sequence	diagram	for	Detect	Hazard	Removal	use	case.



21.7.7	Sequence	Diagram	for	Dispatch	Train

This	sequence	diagram	(Figure	21.28)	depicts	 the	software	objects	and	internal
message	 interactions	 among	 them	 following	 the	 operator	 sending	 a	 dispatch
message	to	the	train:

I1:	Operator	sends	Dispatch	Train	message	to	Operator
Interaction	object.

I2:	Operator	Interaction	object	sends	Dispatch	Train	message	to
selected	Train	Control	object.	Train	Control	transitions	from	Out
of	Service	state	to	Doors	Opening	state.	Train	Control	state
machine's	Suspending	condition	is	set	to	False.

I3:	On	transitioning	to	Doors	Opening	state,	the	Train	Control	object
sends	the	Door	Actuator	Output	object	a	command	to	Open	Doors.

I3a	(parallel	sequence	with	I3):	The	Train	Control	object	sends	an	In
Service	message	to	the	Train	Status	Dispatcher.

I4:	The	Door	Actuator	Output	object	sends	the	Open	Doors	command
to	the	real-world	Door	Actuator.

Figure	21.28.	Sequence	diagram	for	Dispatch	Train	use	case.



21.7.8	Other	Event	Sequences

The	following	event	sequences	are	very	simple;	consequently	sequence	diagrams
are	not	provided.

Event	sequence	for	Suspend	Train:

1:	Operator	sends	Suspend	Train	message	to	Operator
Interaction	object.

2:	Operator	Interaction	object	sends	Suspend	Train
message	to	designated	Train	Control	object.	Train	Control
state	machine's	Suspending	condition	is	set	to	True.

3:	Timeout	arrives	at	Train	Control	when	the	state	machine	is	in
Doors	Open	state	AND	the	Suspending	condition	is	True.	As	a
result,	the	state	machine	transitions	to	Out	of	Service	state.

Event	sequence	for	Monitor	Train	Speed:

1:	Speed	Sensor	object	sends	current	train	speed	to	Speed
Sensor	Input	object.

2:	Speed	Sensor	Input	object	converts	speed	to	engineering
units	and	updates	Train	Data	object.



21.8	Design	Modeling
After	developing	the	analysis	model	of	the	Light	Rail	Control	System,	the	next
major	step	is	to	develop	the	software	design	model.	The	steps	in	this	process	are:

1.	Integrate	the	use	case–based	sequence	diagrams	and	develop	an	integrated
communication	diagram	for	each	subsystem.

2.	Structure	the	Light	Rail	Control	System	into	subsystems	based	on	the
architectural	structure	patterns	and	design	the	subsystem	interfaces	based	on	the
architectural	communication	patterns.

3.	For	each	subsystem,	structure	the	subsystem	into	concurrent	tasks	using	the
task	structuring	criteria	and	design	the	task	interfaces.

4.	Analyze	the	performance	of	the	concurrent	real-time	software	design.	This
step	is	described	in	detail	in	Chapter	18	for	the	Light	Rail	Control	System.

5.	Design	a	distributed	component-based	software	architecture	that	allows
components	to	be	deployed	to	a	distributed	system	configuration.



21.9	Subsystem	Integrated	Communication
Diagrams

The	 first	 step	 in	 software	 design	 modeling	 involves	 developing	 integrated
communication	diagrams	for	each	subsystem;	subsystems	were	first	determined
in	Section	21.6.	This	necessitates	the	integration	of	the	objects	and	interactions
from	the	use	case-based	sequence	diagrams	and	assigning	 them	to	subsystems.
The	integrated	communication	diagram	for	the	Train	Control	Subsystem	is
depicted	 on	 Figure	 21.29.	 Because	 of	 the	 large	 number	 of	 objects	 in	 this
subsystem,	the	figure	focuses	on	the	software	objects	and	the	interaction	among
these	objects	and	with	other	subsystems.



Figure	21.29.	Train	Control	Subsystem:	integrated	communication	diagram.

Figure	21.29	depicts	 the	 state	 dependent	 control	 object	Train	Control,
which	 receives	 messages	 from	 several	 input	 objects	 including	 Approaching
Sensor	 Input,	 Arrival	 Sensor	 Input,	 Proximity	 Sensor	 Input,
Departure	 Sensor	 Input,	 and	 Door	 Sensor	 Input.	 The	 events
contained	 in	 these	 messages	 cause	 state	 transitions	 in	 the	 state	 machine
encapsulated	 by	Train	Control	 (Figure	 21.17).	 The	 resulting	 state	machine
actions	 are	 sent	 as	 speed	 command	 messages	 to	 Speed	 Adjustment,	 door
command	messages	to	Door	Actuator	Output,	and	train	status	messages	to
Train	Status	Dispatcher.	 Train	 location	 and	 speed	 data	 is	 stored	 in	 the
Train	 Data	 entity	 object,	 which	 is	 updated	 periodically	 by	 the	 Location



Sensor	 Input	 and	 Speed	 Sensor	 Input	 objects.	 Train	 Status

Dispatcher	reads	and	combines	this	data	with	the	train	status	messages	that	it
sends	to	the	Train	Display	Output	and	Train	Audio	Output	objects	as
well	as	the	Station	Subsystem	and	Rail	Operations	Service.

The	 integrated	 communication	 diagram	 for	 the	 Station	 Subsystem	 is
depicted	 in	Figure	21.30.	The	Station	Subsystem	 consists	of	 a	 coordinator
object,	 the	 Station	 Coordinator,	 which	 receives	 train	 status	 from	 Train
Status	Dispatcher	 in	the	Train	Control	Subsystem	and	forwards	this	status
to	Station	Display	Output	and	Station	Audio	Output,	 in	addition	 to
updating	 the	 Station	 Status	 entity	 object.	 Station	 Coordinator	 also
receives	 station	 commands	 from	 Operator	 Interaction	 in	 the	 Rail	 Operations
Interaction	subsystem,	which	are	commands	to	output	station	status	information
(such	as	train	delays)	to	the	Station	Display	Output	and	Station	Audio
Output	objects,	in	addition	to	updating	the	Station	Status	entity	object.



Figure	21.30.	Station	Subsystem:	integrated	communication	diagram.

The	 integrated	 communication	 diagram	 for	 the	 Rail	 Operations

Interaction	 and	 Rail	 Operations	 Service	 subsystems	 is	 depicted	 in
Figure	 21.31.	The	Rail	Operations	Interaction	 subsystem	 consists	 of
the	 user	 interaction	 object	 called	 Operations	 Interaction,	 which	 sends
train	commands	 to	dispatch	and	suspend	trains	 to	 the	Train	Control	Subsystem
and	 station	 commands	 to	 the	Station	Subsystem.	 The	Rail	Operations
Service	 consists	 of	 three	 objects.	 The	 coordinator	 object	 Rail	 Ops

Coordinator	receives	rail	status	messages	from	Train	Control	Subsystem	and
Station	 Subsystem,	 as	 well	 as	 the	 external	 systems	 Railroad	 Crossing	 System
and	Wayside	Monitoring	 System.	 It	 updates	 the	Rail	Operations	Status
entity	object	with	this	rail	status	and	sends	rail	status	to	the	output	object	Rail



Operations	Display	Output,	which	dynamically	outputs	real-time	train	and
station	status	on	large	screens	in	the	rail	operations	center.

Figure	21.31.	Rail	Operations	Interaction	and	Rail	Operations	Service
Subsystems:	integrated	communication	diagram.



21.10	Design	of	Distributed	Light	Rail
System

The	overall	software	design	of	the	distributed	Light	Rail	System	consists	of
the	 four	 subsystems	 of	 the	 Light	 Rail	 Control	 System	 (Train	 Control

Subsystem,	Station	Subsystem,	Rail	Operations	Interaction,	 and
Rail	 Operations	 Service)	 in	 addition	 to	 the	 Railroad	 Crossing

System	 (described	 as	 a	 separate	 case	 study	 in	 Chapter	 20)	 and	 the	 Wayside
Monitoring	System,	which	monitors	rail	sensors	inserted	in	the	rail	track.	The
Railroad	Crossing	System	 and	 the	Wayside	Monitoring	System	 are
both	 embedded	 systems	 that	 send	 status	 messages	 to	 the	 Rail	 Operations
Service.	 This	 section	 describes	 the	 overall	 distributed	 software	 architecture
before	 describing	 the	 task	 architecture	 for	 each	 subsystem	 in	 the	 Light	 Rail
Control	 System.	 The	 starting	 point	 for	 this	 design	 are	 the	 integrated
communication	 diagrams	 for	 the	 four	 subsystems	 depicted	 in	 Figures	 21.29
through	21.31.



21.10.1	Design	of	Distributed	Software	Architecture

Applying	the	subsystem	structuring	criteria	described	in	Chapter	10,	the	Train
Control	 Subsystem	 is	 a	 control	 subsystem	 because	 each	 instance
automatically	controls	a	driverless	train;	the	Station	Subsystem	is	an	output
subsystem	because	 it	 receives	 status	 information	 from	other	 subsystems	 that	 it
outputs	 to	 audio	 devices	 and	 visual	 displays;	 Rail	 Operations

Interaction	is	a	user	interaction	subsystem	because	it	allows	a	rail	operator	to
sends	train	commands	to	Train	Control	Subsystem	and	station	commands
to	Station	Subsystem;	 and	 the	Rail	Operations	Service	 is	 a	 service
subsystem	 that	maintains	 the	 rail	 status	 it	 receives	 from	 other	 subsystems	 and
responds	to	rail	status	requests	from	Rail	Operations	Interaction.	From
the	 perspective	 of	 the	 distributed	 Light	 Rail	 System,	 the	 Railroad
Crossing	 System	 is	 a	 control	 subsystem	 because	 it	 controls	 a	 railroad
crossing,	 and	 the	 Wayside	 Monitoring	 System	 is	 a	 data	 collection
subsystem	 because	 it	 gathers	 data	 from	 several	 rail	 track	 sensors,	 tracks	 their
status	 and	 sends	 summary	 status	 information	 and	 warnings	 of	 malfunction	 to
Rail	Operations	Service.

In	a	distributed	software	architecture,	it	is	necessary	to	enforce	the	rule	that
all	 communication	 between	 distributed	 subsystems	 is	 only	 by	 means	 of
messages.	 The	 overall	 distributed	 software	 architecture	 is	 depicted	 in	 Figure
21.32	on	a	concurrent	communication	diagram,	which	shows	multiple	instances
of	the	Train	Control	Subsystem	(one	instance	per	train),	multiple	instances
of	 the	Station	Subsystem	 (one	 instance	 per	 station),	 multiple	 instances	 of
Rail	 Operations	 Interaction	 (one	 per	 operator),	 multiple	 instances	 of
Railroad	 Crossing	 System	 (one	 for	 each	 railroad	 crossing),	 multiple



instances	 of	Wayside	Monitoring	System	 (one	 for	 each	monitoring	 area),
and	one	instance	of	the	Rail	Operations	Service	subsystem.

The	 architectural	 structure	 patterns	 used	 by	 the	 distributed	 Light	 Rail
System	are

a)	Centralized	Control	pattern.	Used	by	each	instance	of	Train
Control	Subsystem	and	Railroad	Crossing	System.

b)	Distributed	Independent	Control	pattern.	Each	control	subsystem	is
independent	of	the	other	control	subsystems	but	sends	status	data	as
asynchronous	messages	to	Rail	Operations	Service.

c)	Client/Service	pattern.	The	Rail	Operations	Interaction
subsystem	requests	data	from	Rail	Operations	Service.

Figure	21.32.	Software	architecture	for	Distributed	Light	Rail	System.



21.10.2	Design	of	Subsystem	Message	Communication

All	 communication	 between	 the	 subsystems	 is	 (with	 one	 exception)	 via
asynchronous	 message	 communication.	 The	 Asynchronous	 Message
Communication	pattern	is	used	for	all	unidirectional	communication,	such	as	for
all	 status	messages	 sent	 from	multiple	 instances	 of	 the	 four	 producers	 (Train
Control	 Subsystem,	 Station	 Subsystem,	 Railroad	 Crossing

System,	 and	 Wayside	 Monitoring	 System)	 to	 the	 Rail	 Operations

Service	 consumer.	 Asynchronous	 communication	 is	 also	 used	 for	 messages
sent	 from	multiple	 instances	 of	 the	Train	Control	Subsystem	 to	multiple
instances	 of	 the	 Station	 Subsystem.	 The	 Bidirectional	 Asynchronous
Message	 Communication	 pattern	 is	 applied	 between	 Rail	 Operations

Interaction	in	its	respective	interactions	with	Train	Control	Subsystem
and	Station	Subsystem.

There	 are	 two	 reasons	 for	 the	 emphasis	 on	 asynchronous	 message
communication:	 firstly,	 the	 producer	 task	 is	 not	 delayed	 by	 a	 consumer	 task.
Secondly,	the	design	of	the	consumer	task	is	less	complex	if	it	receives	incoming
asynchronous	 messages	 from	 multiple	 producers	 on	 a	 single	 FIFO	 message
queue,	 which	 it	 then	 services	 in	 the	 order	 of	 messages	 received.	 The
Synchronous	Message	 Communication	 with	 Reply	 pattern	 is	 applied	 between
Rail	 Operations	 Interaction	 and	 Rail	 Operations	 Service	 for
requests	that	need	a	response.	The	Subscription/Notification	pattern	is	also	used
between	Rail	Operations	Interaction	 (which	 subscribes	 to	 receive	 rail
notifications)	 and	 Rail	 Operations	 Service,	 which	 responds	 with	 a
notification	every	time	it	receives	a	rail	status	update.

Because	 there	 is	 no	 shared	 memory	 in	 a	 distributed	 configuration,
information	 about	 train	 and	 station	 status	 cannot	 be	 shared	 by	 the	 different



subsystems	through	a	passive	entity	object.	Instead,	train	and	station	status	needs
to	 be	 sent	 to	 other	 subsystems	 through	 message	 communication.	 The	 most
effective	 way	 to	 achieve	 this	 is	 by	 using	 a	 variation	 on	 the
Subscription/Notification	 pattern,	 namely	 the	 Multicast	 Notification	 pattern,
which	 involves	 sending	 asynchronous	 notification	 messages	 to	 multiple
recipients	during	system	operation	without	explicit	 subscription;	essentially	 the
recipients	 are	 determined	 at	 initialization	 time.	 This	 pattern	 is	 used	 by	Train
Status	Dispatcher	in	the	Train	Control	Subsystem	to	send	train	status
to	multiple	recipients,	as	described	in	Section	21.7.2.



21.10.3	Concurrent	Task	Design	of	Train	Control	Subsystem

In	 the	 distributed	 design,	 there	 is	 one	 instance	 of	 the	 Train	 Control

Subsystem	 for	 each	 train.	 Each	 task	 in	 this	 subsystem	 is	 depicted	 with	 the
MARTE	stereotype	for	a	task:	«swSchedulableResource».	The	task	architecture
for	 the	Train	Control	Subsystem	 is	 shown	 in	Figure	21.33.	During	 target
system	configuration	(as	described	in	Section	21.12),	each	instance	of	the	Train
Subsystem	 is	 deployed	 to	 a	 separate	 train	 node.	 Thus,	 each	 train	 node	 can
execute	autonomously	on	its	own	node	independently	of	the	other	nodes.

Each	instance	of	this	subsystem	is	composed	of	one	instance	of	each	of	the
following	tasks:

a)	Event	driven	input	tasks.	There	are	several	event	driven	input	tasks,	each	of
which	is	depicted	with	the	stereotypes	«event	driven»	«input»
«swSchedulableResource».

b)	Periodic	input	tasks.	There	are	several	periodic	input	tasks,	each	of	which	is
depicted	with	the	stereotypes	«timerResource»	«input»
«swSchedulableResource».

Approaching	Sensor	Input.	Awakened	by	interrupt	when	train
approaches	station.

Arrival	Sensor	Input.	Awakened	by	interrupt	when	train	arrives	at
station.

Departure	Sensor	Input.	Awakened	by	interrupt	when	train	departs
from	station.

Door	Sensor	Input.	Awakened	by	interrupt	when	train	doors	have
opened	or	closed.



c)	Demand	driven	state	dependent	control	task.	Train	Control	task	is
activated	by	messages	from	several	producer	tasks	including	five	input	tasks	and
train	commands	from	Rail	Operations	Interaction.	Incoming	messages
are	input	events	on	the	encapsulated	Train	Control	state	machine.	State
machine	actions	are	sent	as	outgoing	messages	from	the	Train	Control	task.
This	task	is	depicted	with	the	stereotypes	«demand»	«state	dependent	control»
«swSchedulableResource».

d)	Demand	driven	coordinator	task.	Train	Status	Dispatcher	receives
train	status	from	Train	Control,	which	it	multicasts	to	all	instances	of
Station	Subsystem	and	Rail	Operations	Service,	as	well	as	the	Train
Display	Output	and	Train	Audio	Output	tasks.	This	coordinator	task	is
depicted	with	the	stereotypes	«demand»	«coordinator»
«swSchedulableResource».

e)	Demand	driven	algorithm	task.	Speed	Adjustment	is	initially	activated
by	a	speed	command	message	on	demand	from	Train	Control	and	then
executes	periodically	to	adjust	train	speed	by	sending	messages	to	Motor
Output	when	the	train	is	in	motion.	This	task	is	depicted	with	the	stereotypes
«demand»	«algorithm»	«swSchedulableResource».	This	task	is	categorized	as	a
demand	driven	task	because	it	is	initially	activated	on	demand.

f)	Event	driven	output	task.	Motor	Output	is	activated	by	messages	from
Speed	Adjustment,	which	then	sends	motor	commands	to	the	external	electric
motor	and	receives	an	interrupt	when	the	motor	has	completed	the	command.

Proximity	Sensor	Input.	Periodically	monitors	distance	between
train	and	hazard	ahead	(e.g.,	train	or	vehicle	at	railroad	crossing).

Speed	Sensor	Input.	Periodically	monitors	current	speed	of	train.

Location	Sensor	Input.	Periodically	monitors	GPS	location	of	train.



This	output	task	is	depicted	with	the	stereotypes	«event	driven»	«output»
«swSchedulableResource».	This	task	is	categorized	as	an	event	driven	output
task	because	it	receives	interrupts	from	the	output	device,	whereas	a	demand
driven	output	task	interfaces	to	a	passive	output	device	that	does	not	generate
interrupts.

g)	Demand	driven	output	tasks.	These	output	tasks	are	activated	on	demand	by
messages	from	other	tasks	in	the	Train	Control	Subsystem.	Each	task	is
depicted	with	the	stereotypes	«demand»	«output»	«swSchedulableResource».

Door	Actuator	Output.	Activated	on	demand	by	messages	from
Train	Control	and	interfaces	to	external	door	actuator.

Train	Display	Output.	Activated	on	demand	by	messages	from
Train	Status	Dispatcher	and	interfaces	to	external	train	display.

Train	Audio	Output.	Activated	on	demand	by	messages	from	Train
Status	Dispatcher	and	interfaces	to	external	train	audio	device.



Figure	21.33.	Task	architecture	of	Train	Control	Subsystem.

Passive	Objects	in	Station	Subsystem

Each	instance	of	the	Train	Control	Subsystem	also	maintains	its	own	local
instance	of	the	Train	Data	passive	entity	object,	which	stores	the	current	GPS
location	 (updated	 periodically	 by	 Location	 Sensor	 Input),	 current	 speed
(updated	 periodically	 by	 Speed	 Sensor	 Input),	 and	 status	 (in	 motion,
arriving,	 at	 station,	 departing)	 of	 train	 (updated	 by	 Train	 Status

Dispatcher).	 Since	 this	 passive	 object	 is	 accessed	 mutually	 exclusively	 by
multiple	 tasks,	 it	 is	 depicted	 with	 the	 stereotypes	 «entity»	 «sharedDataCom-
Resource»	«sharedMutualExclusionResource».

Design	of	Message	Communication	Interfaces



Design	of	Message	Communication	Interfaces

The	Train	Control	 task	 is	 at	 the	 heart	 of	 the	Train	Control	 subsystem.
Because	of	this,	it	is	essential	that	all	communication	with	it	is	asynchronous.	It
receives	 messages	 from	 several	 input	 tasks,	 such	 as	 the	 Arrival	 Sensor
Input	 and	Proximity	Sensor	Input	 tasks.	Train	Control	 sends	 speed
control	 messages	 to	 Speed	 Adjustment	 (which	 in	 turn	 sends	 messages	 to
Motor	 Output),	 door	 control	 messages	 to	 Door	 Actuator	 Output,	 and
status	 messages	 to	 Train	 Status	 Dispatcher.	 Train	 Control

Subsystem	 receives	 Dispatch	 and	 Suspend	 messages	 from	 the	 Rail
Operations	 Interaction	 subsystem	 to	 enter	 and	 leave	 normal	 operation.
The	 Train	 Status	 Dispatcher	 sends	 train	 status	 messages	 to	 Train
Display	Output	and	Train	Audio	Output,	the	Station	Subsystem,	and
Rail	Operations	Service.



21.10.4	Concurrent	Task	Design	of	Station	Subsystem

In	the	distributed	design,	there	is	one	instance	of	the	Station	Subsystem	for
each	station.	Each	instance	of	the	Station	Subsystem	has	one	instance	each
of	 the	Station	Coordinator,	Station	Display	Output,	and	Station
Audio	Output	tasks,	and	one	instance	of	the	Station	Status	passive	object.
The	task	architecture	for	the	Station	Subsystem	is	shown	in	Figure	21.34.

Figure	21.34.	Task	architecture	of	Station	Subsystem.

The	Station	Coordinator	 task	 receives	 train	 status	 from	 the	multiple
instances	of	Train	Control	Subsystem	and	uses	this	to	update	the	Station
Status	passive	entity	object	and	to	send	status	messages	to	Station	Display



Output	and	Station	Audio	Output.	The	tasks	in	the	Station	Subsystem
are:

Passive	object	in	Station	Subsystem:

Station	Coordinator.	Demand	driven	coordinator	task.	A
coordinator	task	is	depicted	with	the	stereotypes	«demand»
«coordinator»	«swSchedulableResource».

Station	Display	Output.	Demand	driven	output	task	sends
messages	to	station	displays	concerning	train	arrival	at	station	and
departure	from	station,	as	well	as	estimated	time-of-arrival	(ETA)	of
forthcoming	trains	at	this	station.	The	output	tasks	are	all	depicted	with
the	stereotypes	«demand»	«output»	«swSchedulableResource».

Station	Audio	Output.	Demand	driven	output	task	sends	messages
to	station	audio	device	concerning	train	arrival	at	station	and	departure
from	station.

Station	Data.	Because	this	passive	entity	object	is	not	shared,	it	is
only	labeled	with	the	stereotype	«entity».



21.10.5	Concurrent	Task	Design	of	Rail	Operations	Interaction	and
Service	Subsystems

The	 task	 architecture	 for	 the	 Rail	 Operations	 Service	 and	 Rail
Operations	 Interaction	 subsystems	 is	 shown	 in	 Figure	 21.35,	 which
depicts	the	tasks	and	task	interfaces	in	these	subsystems.

Figure	21.35.	Task	architecture	of	Rail	Operations	Service	and	Rail
Operations	Interaction	Subsystems.

There	 is	 only	 one	 instance	 of	 the	 Rail	 Operations	 Service

Subsystem,	 which	 consists	 of	 two	 tasks	 and	 one	 passive	 information-hiding
object.	The	information-hiding	object	is	the	Rail	Operations	Status	entity



object,	which	contains	the	current	status	of	each	train	and	station.	The	tasks	are
the	 Rail	 Ops	 Coordinator	 task	 (a	 coordinator	 task)	 and	 the	 Rail
Operations	 Display	 Output	 task	 (an	 output	 task).	 The	 Rail	 Ops

Coordinator	 task	 receives	 status	 messages	 from	 each	 instance	 of	 Train
Control	Subsystem	and	Station	Subsystem,	 in	addition	to	each	instance
of	Railroad	Crossing	System	 and	Wayside	Monitoring	System;	 and
updates	the	Rail	Operations	Status	entity	object.	The	Rail	Operations
Display	Output	task	receives	status	data	from	Rail	Ops	Coordinator	and
then	 displays	 the	 status	 of	 all	 trains	 and	 stations	 on	 the	 large	 rail	 operations
display.

The	 Rail	 Operations	 Interaction	 subsystem	 consists	 of	 one	 user
interaction	 task.	The	Operator	Interaction	 task	views	 the	status	of	 trains,
but	more	importantly	it	commands	trains	to	enter	and	leave	operational	service.

Tasks	in	Rail	Operations	Service	Subsystem:

Passive	object	in	Rail	Operations	Service	subsystem:

Rail	Ops	Coordinator.	Demand	driven	coordinator	task.	Receives
train	and	station	status	and	updates	Rail	Operations	Status	object.
This	task	is	depicted	with	the	stereotypes	«demand»	«coordinator
«swSchedulableResource».

Rail	Operations	Display	Output.	Demand	driven	output	task.
Outputs	status	of	all	trains	and	stations	to	rail	operations	display.	The
output	task	is	depicted	with	the	stereotypes	«demand»	«output»
«swSchedulableResource».

Rail	Operations	Status.	Because	this	passive	entity	object	is	not
shared,	it	is	only	labeled	with	the	stereotype	«entity».



Tasks	in	Rail	Operations	Interaction	Subsystem.	There	is	only	one
task	in	this	subsystem:

Operator	Interaction.	Event	driven	user	interaction	task.	Sends
train	commands	to	Train	Control	and	Station	Subsystems,	and
requests	status	from	Rail	Operations	Service	subsystem.	A	user
interaction	task	is	depicted	with	the	stereotypes	«event	driven»	«user
interaction»	«swSchedulableResource».



21.11	Component-Based	Software
Architecture

Because	 this	 is	a	 software	design	 for	a	distributed	 real-time	embedded	system,
the	 system	 is	 structured	 into	 component-based	 subsystems,	 such	 that	 each
component	 instance	 can	 be	 deployed	 to	 execute	 on	 a	 separate	 node	 in	 a
distributed	 configuration.	 The	 component-based	 software	 architecture	 for	 the
distributed	Light	Rail	System	is	depicted	on	Figure	21.36,	which	depicts	a	UML
composite	structure	diagram	showing	the	components,	ports,	and	connectors.	All
the	components	are	concurrent	and	communicate	with	other	components	through
ports.	 The	 overall	 architecture	 and	 connectivity	 among	 components	 is	 initially
determined	 from	 the	 Light	 Rail	 System	 concurrent	 communication	 diagram
depicted	in	Figure	21.32.	Figure	21.36	depicts	the	four	subsystems	of	the	Light
Rail	 Control	 System,	 as	 well	 as	 the	 external	 Railroad	 Crossing

System	and	the	Wayside	Monitoring	System.	The	latter	two	systems	send
status	messages	 to	 the	 Rail	 Operations	 Service.	 Each	 subsystem	 of	 the	 LRCS
(Train	Control	Subsystem,	Station	Subsystem,	Rail	Operations
Interaction,	and	Rail	Operations	Service)	and	each	external	embedded
system	(Railroad	Crossing	System	and	Wayside	Monitoring	System)
is	designed	as	a	separate	component.



Figure	21.36.	Distributed	Light	Rail	System	component-based	software
architecture.



21.11.1	Software	Component	Structuring

There	 are	 five	 client	 components	 of	 the	 Rail	 Operations	 Service	 (see
Figure	21.36),	 four	of	which	have	required	ports	called	RRailStatus	 that	are
connected	to	the	PRailStatus	provided	port	of	Rail	Operations	Service
to	 allow	 them	 to	 send	 their	 status	 at	 regular	 intervals.	 Rail	 Operations
Interaction	 is	 also	 a	 client	 of	Rail	Operations	Service,	 which	 has	 a
required	port	called	ROps	that	are	connected	to	the	POps	provided	port	of	Rail
Operations	Service.	 In	 addition,	Rail	Operations	Interaction	 also
has	 connectors	 to	 Train	 Control	 Subsystem	 (RTrain	 connected	 to
PTrain)	 and	 Station	 Subsystem	 (RStation	 connected	 to	 PStation),
through	 which	 it	 sends	 train	 and	 station	 commands	 respectively.	 Train
Control	 Subsystem	 also	 has	 a	 connector	 to	 Station	 Subsystem

(RTrainStatus	 connected	 to	 PTrainStatus),	 through	 which	 it	 sends	 train
status.	 There	 are	 multiple	 instances	 of	 all	 components	 except	 for	 Rail
Operations	Service.



21.11.2	Design	of	Component	Interfaces

Each	 component	 port	 is	 defined	 in	 terms	 of	 its	 provided	 and/or	 required
interfaces.	Figure	21.37	depicts	the	provided	and	required	interfaces	for	the	six
components.	 The	 four	 client	 components	 (Train	 Control	 Subsystem,
Station	Subsystem,	Railroad	Crossing,	 and	Wayside	Monitoring)
that	 send	 status	messages	 to	Rail	Operations	Service	 all	 have	 the	 same
required	 interface	 –	 IRailStatus	 –	 which	 is	 provided	 by	 the	 Rail
Operations	Service	component,	as	depicted	in	Figure	21.37.

Figure	21.37.	Component	ports	and	interfaces	for	components.



The	Train	Control	Subsystem	component	has	two	required	ports	from
which	 it	 sends	messages	 to	 the	 provided	 ports	 of	 two	 components	 depicted	 in
Figure	 21.36	 (Station	 Subsystem	 and	 Rail	 Operations	 Service).	 It
sends	 train	 status	messages	 to	both	 components	using	 the	ITrainStatus	 and
IRailStatus	required	interfaces	respectively	depicted	in	Figure	21.37.	Train
Control	 also	 has	 one	 complex	 port	 PTrain,	 with	 both	 a	 provided	 and	 a
required	 interface,	 to	 allow	 it	 to	 receive	 asynchronous	 commands	 from	 Rail
Operations	 Interaction	 on	 the	 ITrain	 provided	 interface	 and	 send
asynchronous	responses	on	the	ITrainResp	required	interface.

The	Station	Subsystem	component	has	one	required	port	from	which	it
sends	messages	to	the	provided	port	of	Rail	Operations	Service	using	the
IRailStatus	 interface.	 It	 receives	 status	 messages	 from	 Train

ControlSubsystem	on	the	PTrainStatus	port	through	the	ITrain	Status
provided	 interface.	 It	 also	 has	 a	 complex	 port	 PStation	 through	 which	 it
receives	 asynchronous	 commands	 on	 the	 IStation	 provided	 interface	 and
sends	 asynchronous	 responses	 on	 the	 IStationResp	 required	 interface,	 as
depicted	in	Figure	21.37.

The	 Rail	 Operations	 Interaction	 component	 has	 three	 complex
ports,	which	allow	it	to	be	a	client	of	each	of	the	Train	Control	Subsystem,
Station	Subsystem,	and	Rail	Operations	Service	components,	sending
requests	 on	 its	 required	 interface	 and	 receiving	 responses	 on	 its	 provided
interface.	For	example,	it	sends	asynchronous	train	commands	(such	as	Suspend
Train	 x)	 on	 the	 ITrain	 required	 interface	 and	 receives	 asynchronous	 train
responses	(such	as	Train	x	Suspended)	on	the	ITrainResp	provided	interface.
For	communication	with	Rail	Operations	Service,	the	complex	port
between	 them	 supports	 the	 IRailOps	 interface	 through	 which

Rail	 Operations	 Service	 provides	 synchronous	 communication

with	response	for	status	and	subscription	requests,	as	well



as	 an	 IRailNotification	 interface	 provided	 by	 Rail

Operations	 Interaction	 through	 which	 it	 receives

asynchronous	notifications.

Finally,	 the	 components	 Railroad	 Crossing	 System	 and	 Wayside
Monitoring	 System	 each	 have	 one	 required	 port	 with	 a	 required	 interface
IRailStatus	 through	 which	 they	 send	 asynchronous	 status	 messages	 to	 the
Rail	Operations	Service	component.

The	 component	 interface	 specifications,	 which	 describe	 the	 operations
provided	by	each	interface,	are	depicted	in	Figure	21.38.	These	operation	names
of	the	provided	interfaces	correspond	to	the	incoming	messages	that	arrive	at	the
destination	tasks	depicted	in	Figure	21.37.	For	example	the	incoming	messages
from	Train	Control	Subsystem	to	Rail	Operations	Service	on	Figure
21.32	 are	 defined	 by	 the	 interface	 depicted	 in	 Figure	 21.38,	 namely
updateTrainStatus	(in	trainId,	in	trainStatus).



Figure	21.38.	Design	of	component	interface	specifications.



21.12	System	Configuration	and
Deployment

During	 system	configuration	 and	deployment,	 the	 components	 are	 deployed	 to
execute	on	different	nodes	 in	a	distributed	configuration.	 In	 the	Distributed
Light	 Rail	 System,	 the	 physical	 configuration	 consists	 of	 multiple	 nodes
interconnected	 by	 a	wide	 area	 network.	An	 example	 of	 system	 deployment	 is
shown	on	the	deployment	diagram	in	Figure	21.39,	in	which	there	are	six	node
types	 interconnected	 by	 a	 wide	 area	 network.	 Communication	 with	 a	 mobile
component,	 such	 as	Train	Control,	 of	which	 there	 is	 one	 instance	 for	 each
train,	needs	to	be	by	wireless	communication.

Each	instance	of	Train	Control	(one	per	train)	is	allocated	to	a	node	to
achieve	localized	autonomy	and	adequate	performance.	Thus,	the	failure	of	one
train	 node	 does	 not	 affect	 other	 nodes.	 For	 the	 same	 reason,	 each	 instance	 of
Railroad	Crossing	Control	 (one	 per	 crossing)	 is	 assigned	 its	 own	node.
Station	 Subsystem	 (one	 per	 station)	 is	 allocated	 to	 a	 node	 for	 localized
autonomy.	 Loss	 of	 a	 station	 node	means	 that	 the	 station	 is	 temporarily	 out	 of
service	but	does	not	affect	other	nodes.	Wayside	Monitoring	is	also	allocated
to	a	separate	node	for	each	wayside	area	to	be	in	close	proximity	to	the	sensors
that	it	is	monitoring.	Rail	Operations	Interaction	is	assigned	a	separate
node	 so	 that	 it	 can	 be	 both	 dedicated	 and	 responsive	 to	 its	 local	 user.	 Rail
Operations	Service	is	assigned	a	separate	node	so	that	it	can	be	responsive
to	service	requests.	There	is	only	one	instance	of	this	node.	However,	a	backup
hot	standby	node	could	be	provided,	which	would	receive	all	status	information
sent	to	the	primary	Rail	Operations	Service	node	and	would	therefore	be



available	to	be	immediately	switched	into	service	should	there	be	a	failure	on	the
primary	node.

Figure	21.39.	Example	of	component	deployment	for	Distributed	Light	Rail
System.

The	performance	analysis	in	Chapter	18	confirms	that	the	real-time	design
addresses	 performance	 requirements	 that	 the	 elapsed	 times	 for	 detection	 of	 a
train	 approaching	 a	 station,	 stopping	 on	 arrival	 at	 a	 station,	 and	 stopping	 on
detection	of	a	hazard,	do	not	exceed	predetermined	 response	 times.	The	safety
requirement	 that	 a	 train	 respond	 to	 a	 hazard	 ahead	 is	 provided	 by	 the	 Train
Control	 state	 machine	 reacting	 to	 input	 from	 the	 hazard	 detection	 sensor	 and
commanding	the	electric	motor	to	stop	the	train.



22

Pump	Control	System	Case	Study
◈

This	 chapter	 describes	 a	 concise	 case	 study	 of	 a	 real-time	 embedded	 system,
namely	 a	 Pump	 Control	 System.	 Of	 particular	 interest	 are	 several	 periodic
activities	 necessitating	 the	design	of	 periodic	 tasks,	 in	 addition	 to	 examples	of
task	design	with	temporal	and	control	clustering.	There	is	also	a	need	for	a	state
machine	 that	 is	 designed	 with	 three	 separate	 orthogonal	 regions	 in	 order	 to
separate	 three	 different	 but	 interrelated	 control	 concerns.	 This	 is	 one	 of	 the
shorter	 case	 studies	 in	 which	 the	 details	 of	 dynamic	 interaction	 modeling
(covered	in	detail	in	other	case	studies)	are	left	as	an	exercise	for	the	reader.	The
end	 product	 of	 dynamic	 interaction	 modeling	 is	 an	 integrated	 communication
diagram,	which	is	used	to	transition	into	design	modeling.

The	problem	description	is	given	in	Section	22.1.	Section	22.2	describes	the
structural	modeling,	and	Section	22.3	describes	the	use	case	model.	Section	22.4
describes	 the	 object	 and	 class	 structuring.	 Section	 22.5	 describes	 the	 state
machine	model.	Section	22.6	describes	the	integrated	interaction	model,	which	is
an	outcome	of	dynamic	interaction	modeling.	Section	22.7	describes	the	design
modeling,	 which	 consists	 of	 the	 distributed	 software	 design	 and	 distributed
software	 deployment.	 This	 is	 followed	 by	 the	 design	 of	 the	 concurrent	 task
architecture	and	detailed	software	design.



22.1	Problem	Description
A	 Pump	 Control	 System	 for	 a	 mineral	 mine	 has	 several	 pumps	 situated
underground,	which	are	used	to	pump	out	water	that	has	collected	at	the	bottom
of	the	mine.	Each	pump	has	an	engine,	which	is	controlled	automatically	by	the
system.	The	system	uses	Boolean	high-and	low-level	water	sensors,	in	addition
to	 an	 analog	 methane	 sensor,	 to	 monitor	 the	 environment	 inside	 the	 mineral
mine.	Detection	of	the	high	water	level	causes	the	system	to	pump	water	out	of
the	mine	 until	 the	 low	water	 level	 is	 detected.	 For	 safety	 reasons,	 the	 system
must	switch	off	the	pump	when	the	level	of	methane	in	the	atmosphere	exceeds	a
preset	 safety	 limit.	 Once	 the	 pump	 has	 been	 switched	 off,	 five	 minutes	 must
elapse	before	it	can	be	switched	on	again.	For	each	pump,	status	information	on
the	methane	 and	water	 level	 sensors,	 as	well	 as	 the	 pump	 engine,	 is	 sent	 to	 a
central	server.	Human	operators	can	view	the	status	of	the	various	pumps.

For	the	design	of	the	system,	it	is	assumed	that	all	I/O	devices	are	passive
(do	 not	 generate	 interrupts)	 and	 that	 an	 external	 timer	 is	 used	 to	 generate
periodic	timer	events.



22.2	Structural	Modeling
Structural	 modeling	 starts	 with	 the	 development	 of	 a	 conceptual	 structural
model,	which	is	depicted	as	a	block	definition	diagram.	Each	structural	element
is	modeled	as	 a	SysML	block	with	 a	 stereotype	 identifying	 its	 role.	The	Pump
Control	Embedded	System	 in	Figure	22.1	is	modeled	as	a	composite	block
with	 the	 stereotype	 «embedded	 system»,	 which	 contains	 four	 part	 blocks,	 the
High	Water	Sensor	«input	device»,	the	Low	Water	Sensor	«input	device»,
the	Methane	Sensor	«input	device»,	and	the	Pump	Engine	«output	device».
The	system	generates	Pump	Status,	which	 is	 stored	 in	an	«entity»	block	and
viewed	by	the	Operator	«external	user».	An	external	Timer	signals	the	system
at	regular	intervals.

Figure	22.1.	Conceptual	Structural	Model	for	Pump	Control	Embedded
System.

From	 the	 conceptual	 static	 model,	 a	 software	 system	 context	 block
definition	diagram	for	 the	Pump	Control	System	 is	developed,	as	 shown	 in



Figure	22.2,	 in	which	 the	software	system	and	external	entities	are	depicted	as
SysML	blocks.	There	 are	 three	 external	 input	device	blocks,	 namely	 the	High
and	 Low	 Water	 Sensors	 and	 the	 Methane	 Sensor,	 one	 external	 output
device	 block,	 namely	 the	 Pump	 Engine,	 one	 external	 Timer	 block,	 and	 one
external	user	block,	the	Operator.	There	are	multiple	instances	of	each	external
block.

Figure	22.2.	Pump	Control	System	software	system	context	diagram.



22.3	Use	Case	Modeling
The	use	case	model	for	the	Pump	Control	System	is	depicted	in	Figure	22.3,	in
which	there	are	two	use	cases,	Control	Pump	and	View	Pump	Status.	The
use	cases	are	depicted	at	the	software	engineering	level,	which	is	the	reason	for
having	six	actors	that	correspond	to	the	external	classes	on	the	software	context
class	 diagram:	 three	 representing	 the	 three	 external	 sensors	 (High	 Water

Sensor,	 Low	 Water	 Sensor,	 and	 Methane	 Sensor),	 one	 for	 the	 Pump
Engine,	 one	 Timer	 actor,	 and	 an	 external	 user	 actor,	 the	 Operator.	 The
external	Timer	signals	timer	events	to	the	system	every	second.



Figure	22.3.	Use	case	model	for	Pump	Control	System.

The	use	case	descriptions	are	as	 follows.	The	Control	Pump	use	case	 is
started	with	an	input	from	the	High	Water	Sensor	actor.

Use	case:	Control	Pump.
Summary:	 Based	 on	 inputs	 from	 the	water	 and	methane	 sensors,

the	system	determines	when	to	switch	the	pump	engine	on	and	off.
Actors:	 High	 Water	 Sensor	 (primary	 actor),	 Low	 Water	 Sensor,

Methane	Sensor,	Pump	Engine,	Timer.
Preconditions:	Water	level	is	low,	methane	is	at	a	safe	level,	pump

engine	is	switched	off.
Main	sequence:

1.	High	water	sensor	indicates	that	the	water	level	is	high.

2.	System	switches	on	pump	engine.

3.	Low	water	sensor	indicates	that	the	water	level	is	low.

4.	System	switches	off	pump	engine.

Alternative	sequences:	Step	2:	 If	 the	methane	sensor	detects	 that	 the	methane
level	is	unsafe	when	the	high	water	level	is	detected,	the	system	does	not	switch
on	the	pump	engine.

Step	2:	If	the	methane	sensor	detects	that	the	methane	level	becomes	unsafe
while	the	pump	engine	is	operational,	the	system	switches	off	the	pump	engine.

Step	 2:	 If	 the	methane	 sensor	 detects	 that	 the	methane	 level	 has	 become
safe	 when	 the	 water	 level	 is	 high,	 the	 system	 switches	 on	 the	 pump	 engine,
providing	it	has	been	off	for	at	least	five	minutes.



Step	 4:	 After	 switching	 off	 the	 pump	 engine,	 five	 minutes	 must	 elapse
before	the	system	can	switch	on	the	engine	again.

Step	 4:	 After	 the	 five	 minutes	 elapsed	 time,	 the	 system	 switches	 on	 the
pump	engine,	if	the	water	level	is	high	and	the	methane	level	is	safe.

Nonfunctional	 requirements:	 Safety	 requirement:	 System	 must	 not
switch	on	the	Pump	Engine	when	the	methane	level	is	unsafe.

Performance	 requirement:	 After	 switching	 off	 the	 pump	 engine,	 the
system	must	 not	 switch	 on	 the	 Pump	 Engine	 until	 at	 least	 five	 minutes	 have
elapsed.

Postcondition.	The	pump	engine	has	been	switched	off.
The	View	Pump	Status	use	case	is	started	with	an	input	from	the	Operator
actor.

Use	case:	View	Pump	Status.
Summary:	Operator	views	pump	status.
Actor:	Operator.
Preconditions.	Operator	is	logged	on.
Main	sequence:

1.	The	operator	requests	the	pump	status	for	a	given	pump.

2.	The	system	displays	the	pump	status	for	the	given	pump.

Alternative	sequence:	Step	2:	If	the	pump	is	down,	the	system	displays	a	pump
unavailable	message.

Postcondition.	Pump	status	has	been	displayed



22.4	Object	and	Class	Structuring
The	 software	 system	 context	 class	 diagram	 is	 a	 good	 starting	 point	 for
identifying	 the	 software	 boundary	 objects	 and	 classes.	 For	 each	 external	 input
device,	there	is	a	corresponding	software	input	object:

For	 each	 external	 output	 device,	 there	 is	 a	 corresponding	 software	 output
object:

For	 each	 external	 user,	 there	 is	 a	 corresponding	 software	 user	 interaction
object:

For	each	external	timer,	there	is	a	corresponding	software	timer	object:

In	addition,	because	this	is	a	real-time	control	system,	there	is	a	need	for	a
state	dependent	control	object	to	execute	an	encapsulated	state	machine:

Furthermore,	since	the	pump	controller	and	the	user	interaction	object	need
to	be	on	separate	nodes	in	a	distributed	configuration,	the	pump	status	needs	to
be	maintained	by	a	service	object:

High	Water	Sensor	Input,	Low	Water	Sensor	Input,

Methane	Sensor	Input.

Pump	Engine	Output.

Operator	Interaction.

Pump	Timer.

Pump	Control.

Pump	Status	Service.



22.5	Dynamic	State	Machine	Modeling
Next,	 the	 Pump	 Control	 state	 machine	 is	 designed.	 Since	 it	 is	 necessary	 to
track	 three	orthogonal	but	 interrelated	 states,	namely	 the	Pump	State,	Water
State,	and	Methane	State,	it	is	more	effective	to	design	the	Pump	Control
state	 machine	 to	 consist	 of	 three	 orthogonal	 state	 machines	 for	 Pump	 State
(substates	are	Pump	Idle,	Pumping,	and	Resetting	Pump),	Water	State
(substates	 are	 Initial	 Water,	 High	 Water,	 and	 Low	 Water),	 and
Methane	 State	 (substates	 are	 Initial	 Methane,	 Methane	 Safe,	 and
Methane	 Unsafe),	 as	 depicted	 in	 Figure	 22.4.	 The	 High	 Water	 and	 Low
Water	 substates	 on	 the	 Water	 State	 machine	 are	 guard	 conditions	 on	 the
Pump	State	machine.	The	Methane	Safe	and	Methane	Unsafe	substates	on
the	Methane	State	 machine	 are	 also	 guard	 conditions	 on	 the	Pump	State
machine.

In	 the	Pump	 State	machine,	 the	water	 and	methane	 conditions	 need	 to	 be
checked	before	deciding	whether	or	not	to	switch	the	pump	on.	For	pumping	to
be	started	from	the	Pump	Idle	 state,	both	 the	high	water	guard	condition	and
the	methane	safe	guard	condition	must	be	true.	If	either	High	Water	is	detected
(when	 the	 guard	 condition	 Methane	 Safe	 is	 True)	 or	 Methane	 Safe	 is
detected	 (when	 the	 guard	 condition	 High	 Water	 is	 True),	 Pump	 State

transitions	 from	Pump	Idle	 state	 to	Pumping	 state,	 and	 the	entry	action	 is	 to
start	(i.e.,	switch	on)	the	pump.	If	either	of	the	events	Low	Water	Detected	or
Methane	 Unsafe	 Detected	 arrives,	 then	 Pump	 State	 transitions	 from
Pumping	state	to	Resetting	Pump	state.	In	the	transition,	the	actions	are	for
the	 system	 to	 stop	 (i.e.,	 switch	 off)	 the	 pump	 and	 start	 the	 timer.	A	minimum
time	must	 elapse	 before	 the	 pump	 can	 be	 switched	 on	 again.	When	 the	 timer



elapses	 with	 the	 event	 After	 (Timeout),	 the	 Pump	 State	 transitions	 from
Resetting	Pump	back	to	Pumping	state,	providing	both	the	High	Water	and
Methane	Safe	guard	conditions	are	True.	However,	if	either	the	Low	Water	or
Methane	Unsafe	guard	condition	is	True,	 the	state	machine	transitions	to	the
Pump	Idle	state.

Figure	22.4.	Pump	Control	state	machine.





22.6	Dynamic	Interaction	Modeling
In	 this	 shorter	 description	of	 the	 solution,	 the	dynamic	 interaction	modeling	 is
shortened,	 so	 that	 the	 development	 of	 the	 sequence	 diagrams	 is	 left	 as	 an
exercise	for	the	reader.	Assuming	there	are	three	sequence	diagrams	developed,
two	for	the	Control	Pump	use	case	and	one	for	the	View	Pump	Status	use
case:

a)	The	first	Control	Pump	sequence	diagram	is	for	the	main	sequence	of	the
use	case,	which	consists	of	an	input	from	the	High	Water	Sensor	that	results
in	the	system	switching	on	the	pump	and	transitioning	to	Pumping	state,
followed	later	by	an	input	from	the	Low	Water	Sensor	that	results	in	the
system	switching	off	the	pump	and	transitioning	to	Resetting	Pump	state.
This	is	followed	by	a	transition	to	Pump	Idle	state	after	the	timeout.

b)	The	second	Control	Pump	sequence	diagram	addresses	the	alternative
sequence	in	which,	after	switching	on	the	pump	and	transitioning	to	Pumping
state,	an	unsafe	Methane	Sensor	reading	is	detected	that	results	in	the	system
switching	off	the	pump	and	transitioning	to	the	Resetting	Pump	state.	After
five	minutes,	the	pump	transitions	to	Pump	Idle	state.	A	safe	Methane
Sensor	reading	is	then	detected,	when	the	High	Water	guard	condition	is
True,	which	results	in	the	system	switching	on	the	pump	and	transitioning	back
to	the	Pumping	state.	This	is	later	followed	by	an	input	Low	Water	Detected
from	the	Low	Water	Sensor	that	results	in	the	system	switching	off	the	pump
and	transitioning	to	Resetting	Pump	state.

After	 completing	 the	 dynamic	 interaction	 modeling,	 an	 integrated
communication	 diagram	 is	 developed	 that	 depicts	 all	 the	 software	 objects	 and



their	interactions,	as	depicted	in	Figure	22.5.	In	Figure	22.5,	there	are	three	input
objects,	 High	 Water	 Sensor	 Input,	 Low	 Water	 Sensor	 Input,	 and
Methane	 Sensor	 Input,	 which	 receive	 inputs	 from	 the	 corresponding
external	 input	 devices.	 There	 is	 one	 output	 object,	 Pump	 Engine	 Output,
which	outputs	 to	 the	 external	Pump	Engine	 output	 device.	There	 is	 one	 state
dependent	control	object,	Pump	Control,	which	executes	the	state	machine	in
Figure	 22.4,	 and	 a	 Pump	 Timer	 object	 that	 receives	 timer	 events	 from	 the
external	timer.	All	these	objects	are	active	objects.

Figure	22.5.	Integrated	Communication	diagram	for	Pump	Control	System.

Messages	 sent	 to	 the	 Pump	 Control	 object,	 such	 as	 High	 Water

Detected	and	Low	Water	Detected	from	the	High	Water	Sensor	Input
and	Low	Water	Sensor	Input	 objects	 respectively	 in	 Figure	 22.5,	 are	 the
events	 that	cause	state	changes	on	the	state	machine	in	Figure	22.4.	Actions	 in



Figure	 22.4,	 such	 as	 Start	 Pump	 and	 Stop	 Pump,	 correspond	 to	 output
messages	from	the	Pump	Control	object	to	the	Pump	Engine	Output	object
in	Figure	22.5.

The	 three	 input	 objects	 also	 send	 water	 and	 methane	 sensor	 status
information	 to	 the	 Pump	 Status	 Service	 object.	 The	 Operator

Interaction	 object	 requests	 status	 information	 from	 the	 Pump	 Status

Service.



22.7	Design	Modeling

22.7.1	Distributed	Software	Architecture

The	 Pump	 Control	 System	 is	 structured	 into	 three	 distributed	 subsystems,	 as
depicted	on	Figure	22.6.	The	three	subsystems	are	Pump	Subsystem	(a	control
subsystem	 of	 which	 there	 is	 one	 instance	 for	 each	 pump),	 Pump	 Status

Service	 (a	 service	subsystem	of	which	 there	 is	one	 instance),	and	Operator
Interaction	 (a	user	 interaction	subsystem	of	which	 there	 is	one	 instance	for
each	operator).

Figure	 22.6	 also	 depicts	 the	 message	 communication	 between	 the	 three
subsystems.	 The	 Pump	 Subsystem	 sends	 asynchronous	 pump	 control	 status
messages	 to	 the	 Pump	 Status	 Service	 subsystem.	 The	 Operator

Interaction	 subsystem	 communicates	 with	 the	 Pump	 Status	 Service

using	 synchronous	 communication	 with	 response,	 requesting	 and	 receiving
pump	status	data.



Figure	22.6.	Distributed	software	architecture.



22.7.2	Distributed	System	Deployment

Each	subsystem	is	designed	as	a	configurable	component	so	that	instances	of	the
three	 subsystems	 can	 be	 deployed	 to	 a	 distributed	 configuration.	 The
configuration	 of	 the	 distributed	 real-time	 system	 is	 depicted	 on	 a	 deployment
diagram,	 an	 example	 of	which	 is	 depicted	 in	 Figure	 22.7,	with	 the	 subsystem
instances	 deployed	 to	 distributed	 nodes	 communicating	 over	 a	 local	 area
network.

Figure	22.7.	Distributed	system	deployment.



22.7.3	Concurrent	Task	Architecture

The	task	architecture	for	the	Pump	Control	System	is	given	in	Figure	22.8.	There
are	four	tasks	in	the	Pump	Subsystem:

A	periodic	input	task,	Methane	Sensor	Input,	to	monitor	the	status	of
a	passive	methane	sensor.	The	MARTE	stereotypes	for	this	task,	which
correspond	to	it	being	a	periodic	input	task,	are	«timerResource»	«input»
«swSchedulableResource».

A	periodic	temporal	clustering	task,	Water	Sensors,	to	monitor	the
status	of	the	high	and	low	water	sensors.	These	sensors	need	to	be
monitored	with	the	same	frequency	and	are	therefore	grouped	into	the
same	task.	The	stereotypes	for	this	task,	which	correspond	to	it	being	a
periodic	temporal	clustering	task,	are	«timerResource»	«temporal
clustering»	«swSchedulableResource».

A	demand	driven	control	clustering	task,	Pump	Controller,	in	which
the	Pump	Control	task	is	clustered	with	Pump	Engine	Output,	since
the	start	and	stop	pump	commands	are	executed	at	state	transitions.	The
stereotypes	for	this	task,	which	correspond	to	it	being	a	demand	driven
control	clustering	task,	are	«demand»	«control	clustering»
«swSchedulableResource».

A	periodic	timer	task,	Pump	Timer,	to	receive	the	timer	events	from	the
clock.	The	MARTE	stereotypes	for	this	task,	which	correspond	to	it
being	a	periodic	task,	are	«timerResource»	«swSchedulableResource».



Figure	22.8.	Pump	Subsystem	–	task	architecture.



22.7.4	Detailed	Software	Design

The	 detailed	 design	 of	 a	 periodic	 temporal	 clustering	 task	 is	 given	 in	 Figure
22.9.	The	Water	Sensors	task	of	Figure	22.8	is	a	composite	task	that	contains
three	 passive	 objects,	 a	 coordinator	 object	 called	 the	 Water	 Sensors

Coordinator,	two	input	objects	called	the	High	Water	Sensor	Input	and
Low	Water	Sensor	Input	objects.

Figure	22.9.	Water	Sensors	–	temporal	clustering	with	nested	passive	objects.

The	detailed	design	of	a	demand	driven	control	clustering	task	 is	given	in
Figure	 22.10.	 The	Pump	Controller	 is	 a	 composite	 task	 that	 contains	 three
passive	objects,	a	coordinator	object	called	the	Pump	Coordinator,	an	output
object	 called	Pump	Engine	Output,	 and	 a	 state	machine	object	 called	Pump
Control.



Figure	22.10.	Pump	Controller	–	control	clustering	with	nested	passive
objects.

The	design	of	the	passive	information-hiding	classes,	instances	of	which	are
nested	 in	 the	 two	clustered	 tasks,	are	depicted	 in	Figure	22.11.	The	classes	are
High	Water	Sensor	Input	and	Low	Water	Sensor	Input	 (instances	of
which	are	nested	in	the	Water	Sensors	task),	and	Pump	Engine	Output	and
Pump	Control	(instances	of	which	nested	in	the	Pump	Controller	task).



Figure	22.11.	Design	of	passive	information-hiding	classes.



22.7.5	Applying	Software	Architectural	Patterns

The	 Pump	 Control	 System	 uses	 several	 software	 architectural	 structure	 and
communication	patterns.	The	Centralized	Control	pattern	 is	used	because	 for	a
given	 Pump	 Subsystem,	 there	 is	 one	 control	 task,	 which	 executes	 a	 state
machine.	 It	 receives	 sensor	 input	 from	 input	 tasks	 and	 controls	 the	 external
environment	 via	 an	 output	 task,	 as	 shown	 in	 Figure	 22.8	 for	 the	 Pump
Controller	 task.	In	a	Centralized	Control	pattern,	 the	control	 task	executes	a
state	 machine,	 which	 for	 Pump	 Controller	 is	 depicted	 in	 Figure	 22.4.	 A
second	 architectural	 structure	 pattern	 used	 in	 the	 Pump	Control	 System	 is	 the
Distributed	 Independent	 Control	 pattern	 because	 the	 system	 has	 several
instances	 of	 the	Pump	Subsystem,	 each	of	which	 is	 a	 control	 subsystem	 that
executes	independently	of	the	other	control	subsystems	and	sends	pump	status	to
the	Pump	Status	Service	 subsystem.	Note	 that	 each	 instance	 of	 the	Pump
Subsystem	 is	 independent	 of	 the	 service	 subsystem	 because	 it	 sends
unidirectional	asynchronous	messages	 to	 the	service	and	 therefore	never	has	 to
wait	 for	 a	 response.	 The	 third	 architectural	 structure	 pattern	 is	 the	 Multiple
Client/Single	 Service	 pattern,	 as	 shown	 in	 Figure	 22.6,	 in	 which	 the	 multiple
instances	 of	 the	Operator	Interaction	 subsystem	 are	 clients	 of	 the	Pump
Status	Service	 subsystem,	because	each	client	 sends	status	 requests	 to	and
receives	 status	 responses	 from	 the	 service	 subsystem.	 The	 difference	 between
the	second	and	third	architectural	structure	patterns	is	that	the	Pump	Subsystem
is	 independent	 of	 the	 Pump	 Status	 Service	 subsystem	 whereas	 the
Operator	Interaction	subsystem	is	dependent	on	the	service	subsystem	as	it
has	to	wait	for	responses	from	it.

Architectural	 communication	 patterns	 for	 real-time	 systems	 include	 the
Asynchronous	Communication	and	Synchronous	Communication	patterns,	both



with	 and	 without	 reply.	 In	 the	 Pump	 Control	 System,	 both	 asynchronous
message	 communication	 (e.g.,	 between	Pump	Subsystem	 and	Pump	Status
Service)	 and	 synchronous	message	 communication	with	 reply	 (e.g.,	 between
Operator	Interaction	and	Pump	Status	Service)	are	used,	as	shown	in
Figures	22.6	and	22.8.



23

Highway	Toll	Control	System	Case
Study

◈

This	chapter	describes	a	concise	case	study	of	a	Highway	Toll	Control	System	in
which	there	are	several	entry	and	exit	 toll	booths.	Each	toll	booth	is	controlled
by	 a	 real-time	 embedded	 subsystem	 that	 communicates	 with	 a	 Highway	 Toll
Service	 subsystem,	 which	 receives	 entry	 and	 exit	 transactions	 from	 the	 toll
booths	 and	 charges	 customer	 accounts.	 At	 each	 toll	 booth	 there	 are	 multiple
sensors	and	actuators,	requiring	state	dependent	entry	and	exit	control.	Because
entry	and	exit	toll	booths	are	similarly	configured	and	behave	in	a	similar	way,
this	shorter	case	study	concentrates	on	the	design	of	the	entry	toll	booth.	There	is
less	 emphasis	 on	 the	 structural	 modeling	 in	 this	 case	 study,	 which	 has	 been
covered	in	detail	in	other	case	studies.

The	problem	description	is	given	in	Section	23.1.	Section	23.2	describes	the
use	 case	 model,	 and	 Section	 23.3	 describes	 the	 software	 system	 context
modeling.	Section	23.4	describes	 the	object	 and	class	 structuring.	Section	23.5
describes	 the	 state	 machine	 model,	 and	 Section	 23.6	 describes	 the	 dynamic
interaction	modeling.	Section	23.7	describes	the	design	modeling,	which	consists
of	the	distributed	software	design	and	distributed	software	deployment,	followed
by	the	design	of	the	concurrent	task	architecture	and	detailed	software	design.



23.1	Problem	Description
A	highway	toll	road	has	several	entry	and	exit	points,	at	each	of	which,	there	is	a
toll	plaza	with	one	or	more	tollbooths.	To	use	the	system,	a	customer	purchases	a
RFID	 (radio	 frequency	 ID)	 transponder,	 which	 holds	 the	 encoded	 customer
account	number,	from	the	Highway	Toll	Service	and	mounts	the	transponder	on
the	 windshield	 of	 the	 vehicle.	 The	 Highway	 Toll	 Service	 maintains	 customer
accounts	 in	 a	 database	 including	 owner	 and	 vehicle	 information,	 and	 account
balance.	Customers	purchasing	a	 transponder	must	pay	 in	advance	for	 toll	 fees
by	 credit	 card.	Accounts	 are	 reduced	 by	 the	 toll	 charge	 incurred	 at	 the	 end	 of
each	 trip.	 The	 toll	 charge	 to	 be	 paid	 depends	 on	 the	 length	 of	 the	 trip	 and
category	of	the	vehicle.

All	tollbooths	consist	of	a	vehicle	arrival	sensor	(placed	fifty	feet	in	front	of
the	tollbooth),	a	vehicle	departure	sensor,	a	 traffic	 light	 to	indicate	whether	 the
vehicle	has	been	authorized	to	pass	through	the	tollbooth,	a	transponder	detector,
and	a	camera.

The	 traffic	 light	 at	 each	 tollbooth	 is	 initially	 red.	 When	 a	 vehicle
approaches	the	tollbooth,	the	vehicle	sensor	detects	the	vehicle's	presence.	If	the
transponder	 detector	 detects	 a	 valid	 transponder	 (i.e.,	 the	 transponder	 holds	 a
valid	customer	account)	in	the	approaching	vehicle,	the	system	switches	the	light
to	green.	 If	 there	 is	no	 transponder	or	 the	account	 is	 low	on	 funds,	 the	 system
switches	 the	 light	 to	 yellow.	 In	 addition,	 the	 video	 camera	 photographs	 the
license	 plate,	 and	 the	 image	 is	 sent	 to	 Highway	 Toll	 Service.	 After	 the	 car
departs,	the	system	switches	the	light	to	red.



23.2	Use	Case	Modeling
The	use	case	model	for	the	Highway	Toll	Control	System	is	depicted	in	Figure
23.1,	 in	which	 there	are	 two	use	cases,	Enter	Highway	and	Exit	Highway.
The	use	cases	are	depicted	at	the	system	engineering	level,	which	is	the	reason
for	having	only	three	actors:	the	Vehicle	actor,	movement	of	which	is	tracked
by	four	input	devices,	Traffic	Light	actor,	which	corresponds	to	the	output
device	 of	 the	 same	 name,	 and	 the	 external	 system	 actor,	 the	 Highway	 Toll
Service.	The	timer	is	assumed	to	be	internal	to	the	system.

Figure	23.1.	Use	case	model	for	Highway	Toll	Control	System.

The	use	case	descriptions	are	as	follows.	The	Enter	Highway	use	case	is
started	with	an	input	from	the	Vehicle	actor.



Use	 case:	 Enter	 Highway	 Actor:	 Vehicle	 (primary),	 Traffic	 Light,
Highway	Toll	Service	Summary:	Vehicle	enters	highway	through	a	toll
booth	 Precondition:	 Tollbooth	 is	 open,	 and	 the	 traffic	 light	 at	 the
tollbooth	is	set	to	red.

Main	sequence:

1.	Vehicle	approaches	the	tollbooth.

2.	System	detects	vehicle's	presence.

3.	System	reads	the	account	RFID	in	the	approaching	vehicle.

4.	System	sends	a	vehicle	entry	transaction	consisting	of	time	of	entry,	day,
location,	and	transponder	ID,	to	Highway	Toll	Service.

5.	System	switches	traffic	light	to	green.

6.	Vehicle	passes	through	the	tollbooth.

7.	System	detects	that	the	vehicle	has	departed.

8.	System	switches	traffic	light	to	red.

Alternative	sequences:	Step	3:	Unrecognized	or	missing	account	RFID.	If	 the
system	detects	a	vehicle	with	an	unrecognized	or	missing	account	RFID,	System
switches	 the	 traffic	 light	 to	 yellow.	 System	 commands	 video	 camera	 to
photograph	 the	vehicle's	 license	plate.	System	sends	 the	 license	plate	 image	 to
the	Highway	Toll	Service.

Step	3:	Account	is	low	in	funds.	If	the	system	determines	that	the	account
is	low	in	funds,	System	switches	traffic	light	to	yellow.

Postcondition:	The	vehicle	has	departed	from	the	toll	booth.



The	Exit	Highway	use	case	is	started	with	an	input	from	the	Vehicle	actor.
For	information	purposes,	this	use	case	describes	functionality	performed	by	the
Highway	Toll	Service	actor.

Use	 case:	 Exit	 Highway	 Actor:	 Vehicle	 (primary),	 Traffic	 Light,
Highway	Toll	Service	Summary:	Vehicle	exits	highway	 through	a	 toll
booth.

Precondition:	Tollbooth	is	open	and	the	traffic	light	at	the	tollbooth
is	red	Main	sequence:

1.	Vehicle	approaches	toll	booth.

2.	System	detects	vehicle's	presence.

3.	System	reads	the	account	RFID	in	the	approaching	vehicle.

4.	System	sends	a	vehicle	exit	transaction	consisting	of	time	of	exit,	day,
location,	vehicle	type,	and	transponder	ID,	to	Highway	Toll	Service.

5.	Highway	Toll	Service	calculates	toll	based	on	start	time	and	day,	exit	time
and	day,	start	location,	exit	location,	and	vehicle	type.

6.	Highway	Toll	Service	deducts	toll	amount	from	customer's	account.

7.	System	switches	traffic	light	to	green.

8.	Vehicle	leaves	the	tollbooth.

9.	System	detects	that	the	vehicle	has	departed	and	switches	traffic	light	to
red.

Alternative	sequences:	Step	3:	Unrecognized	or	missing	account	RFID.	If	 the
system	detects	a	vehicle	with	an	unrecognized	or	missing	account	RFID,	System



switches	 the	 traffic	 light	 to	 yellow.	 System	 commands	 video	 camera	 to
photograph	 the	vehicle's	 license	plate.	System	sends	 the	 license	plate	 image	 to
the	Highway	Toll	Service.

Step	 3:	 Insufficient	 funds.	 If	 the	 system	 determines	 that	 there	 are
insufficient	funds	in	the	account,	System	switches	traffic	light	to	yellow.

Postcondition:	The	vehicle	has	departed	from	the	toll	booth.



23.3	Software	System	Context	Modeling
The	 software	 system	 context	 diagram	 for	 the	 Highway	 Toll	 Control

System,	 which	 is	 shown	 in	 Figure	 23.2,	 depicts	 the	 software	 system	 and
external	entities	as	SysML	blocks.	The	Vehicle	actor	from	the	use	case	model
is	 replaced	 by	 two	 external	 input	 devices,	 namely	 the	Arrival	Sensor	 and
Departure	 Sensor,	 and	 two	 external	 input/output	 devices,	 the	 Video
Camera	and	the	Transponder	Detector.	There	is	one	external	output	device,
namely	 the	Traffic	Light	Actuator,	 which	 corresponds	 to	 the	Traffic
Light	 actor,	 and	 one	 external	 system,	 the	 Highway	 Toll	 Service,	 which
corresponds	to	the	actor	of	the	same	name.

The	 association	 between	 Highway	 Toll	 Control	 System	 and
Transponder	Detector	is	bidirectional	because	the	software	system	requests
the	 transponder	 to	 provide	 input	 and	 the	 transponder	 responds	with	 the	 input.
The	 association	 between	 Highway	 Toll	 Control	 System	 and	 Video
Camera	is	bidirectional	for	the	same	reason.



Figure	23.2.	Highway	Toll	Control	software	system	context	diagram.



23.4	Object	and	Class	Structuring
Analysis	Modeling	 is	 based	 around	 the	 Enter	 Highway	 use	 case.	 Next,	 the
software	objects	and	classes	are	determined	that	realize	this	use	case.	All	objects,
except	 for	 entity	 objects,	 are	 assumed	 to	 be	 concurrent.	 The	 software	 system
context	 class	 diagram	 is	 a	 good	 starting	 point	 for	 identifying	 the	 software
boundary	 objects	 and	 classes.	 For	 each	 external	 input	 device,	 there	 is	 a
corresponding	software	input	object:

For	 each	 external	 input/output	 device,	 there	 is	 a	 corresponding	 software
input/output	object:

For	 each	 external	 output	 device,	 there	 is	 a	 corresponding	 software	 output
object:

For	each	external	system,	there	is	a	corresponding	software	proxy	object:

In	addition,	because	the	behavior	of	this	control	system	is	state	dependent,
there	will	need	to	be	a	state	dependent	control	object	to	execute	an	encapsulated
state	machine:

Furthermore,	 there	 needs	 to	 be	 a	 passive	 entity	 object	 to	 store	 the	 entry
transaction,	before	it	is	sent	to	the	Highway	Toll	Service:

Arrival	Sensor	Input,	Departure	Sensor	Input.

Video	Camera	I/O	and	Transponder	Detector	I/O.

Traffic	Light	Output.

Highway	Toll	Service	Proxy.

Entry	Control.



Entry	Transaction.



23.5	Dynamic	State	Machine	Modeling
Next	the	Entry	Control	state	machine	is	designed,	as	depicted	in	Figure	23.3.
The	states	are:

Waiting	for	Arrival.	In	this	state,	the	tollbooth	is	idle.

Detecting	Transponder.	This	state	is	entered	upon	receipt	of	the
Vehicle	Arrives	event.	The	system	attempts	to	detect	the	transponder
in	this	state.

Creating	Transaction.	After	the	transponder	is	detected	and	the
transponder	ID	read,	a	transaction	is	created.

Validating	Account.	The	entry	transaction	is	sent	to	the	Highway
Toll	Service	for	validation.

Waiting	for	Departure.	If	the	account	is	valid,	this	state	is	entered.

Waiting	for	Photo.	This	state	is	entered	if	no	transponder	is	detected
or	if	the	account	is	invalid.

Taking	Photo.	This	state	is	entered	after	a	vehicle	with	no	transponder
or	an	invalid	account	has	departed.



Figure	23.3.	Entry	Control	state	machine.



23.6	Dynamic	Interaction	Modeling
This	 section	 describes	 the	 dynamic	 modeling	 interaction	 sequence,	 which	 is
depicted	on	both	the	sequence	diagram	for	the	Enter	Highway	use	case	(Figure
23.4)	 and	 the	 state	 machine	 (Figure	 23.3).	 Messages	 arriving	 at	 the	 Entry
Control	object	on	Figure	23.4	correspond	to	events	on	the	encapsulated	Entry
Control	 state	 machine	 (Figure	 23.3),	 while	 actions	 on	 the	 state	 machine
correspond	 to	 messages	 leaving	 the	 Entry	 Control	 object.	 The	 sequence
diagram	 starts	 when	 the	 Arrival	 Sensor	 Input	 object	 (after	 receiving	 an
arrival	event	from	the	arrival	sensor)	sends	a	Vehicle	Arrived	message	to	the
Entry	Control	object.	This	event	causes	the	Entry	Control	state	machine
to	transition	from	Waiting	for	Arrival	state	to	Detecting	Transponder
state.	The	resulting	action	is	Detect	Transponder,	which	is	sent	as	a	message
of	 the	 same	 name	 from	Entry	Control	 to	Transponder	Detector	I/O.
The	 latter	object	 responds	with	 the	Transponder	Detected	message,	which
arrives	at	Entry	Control,	causing	it	to	transition	to	Creating	Transaction
state;	 the	 resulting	 action	 is	 to	 send	 a	 create	 entry	 transaction	 request	 to	 the
Entry	 Transaction	 object,	 which	 responds	 with	 the	 entry	 transaction	 data
containing	the	 transaction	ID	and	transponder	ID.	Entry	Control	 then	sends
the	 entry	 transaction	 to	 the	Highway	Toll	Service	Proxy,	 which	 in	 turn
sends	 it	 to	 the	 Highway	 Toll	 Service	 to	 validate	 the	 vehicle	 account.
Highway	 Toll	 Service	 Proxy	 sends	 the	 service	 response	 (whether	 the
transponder	account	is	valid	or	not)	to	Entry	Control.	If	the	account	is	valid,
Entry	Control	sends	a	Switch	Light	Green	message	to	Traffic	Light
Output.	 Alternatively,	 if	 the	 account	 is	 invalid	 or	 low	 in	 funds	 or	 if	 no
transponder	 is	 detected,	 Entry	 Control	 sends	 a	 Switch	 Light	 Yellow



message	to	Traffic	Light	Output.	When	the	Vehicle	Departed	message
is	received	by	Entry	Control,	and	if	the	account	is	invalid	or	no	transponder
is	detected,	Entry	Control	sends	a	Take	Photo	message	to	Video	Camera
I/O.	When	 the	Photo	Taken	 response	 is	 received,	Entry	Control	 sends	 a
Process	Photo	message	 to	 the	Highway	Toll	Service	Proxy,	which	 in
turn	 sends	 the	 message	 to	 the	 Highway	 Toll	 Service.	 For	 all	 scenarios,
when	 the	 Vehicle	 Departed	 message	 is	 received,	 Entry	 Control	 sends	 a
Switch	Light	Red	message	to	Traffic	Light	Output.

Figure	23.4.	Sequence	diagram	for	Enter	Highway	use	case.

The	 objects	 in	 the	Entry	Tollbooth	Controller	 subsystem	 are	 also
depicted	on	an	integrated	communication	diagram	in	Figure	23.5,	which	depicts



all	 the	 objects	 in	 this	 subsystem	 as	 well	 as	 all	 the	 messages	 passed	 between
them.

Figure	23.5.	Integrated	Communication	diagram	for	Entry	Tollbooth
Controller	subsystem.



23.7	Design	Modeling

23.7.1	Distributed	Software	Architecture

The	Highway	Toll	System	(which	consists	of	the	Highway	Toll	Control
System	and	 the	Highway	Toll	Service)	 is	structured	 into	 three	distributed
subsystems,	 as	 depicted	 on	 Figure	 23.6.	 The	 three	 subsystems	 are	 Entry
Tollbooth	Controller	subsystem	(a	control	subsystem	of	which	there	is	one
instance	 for	each	entry	 tollbooth),	Exit	Tollbooth	Controller	 subsystem
(a	control	subsystem	of	which	there	is	one	instance	for	each	exit	tollbooth),	and
Highway	Toll	Service	(a	service	subsystem	of	which	there	is	one	instance).

Figure	 23.6	 also	 depicts	 the	 message	 communication	 between	 the	 three
subsystems.	 The	 Entry	 Tollbooth	 Controller	 and	 Exit	 Tollbooth

Controller	subsystems	send	asynchronous	entry	and	exit	transaction	messages
respectively,	as	well	as	asynchronous	process	photo	messages,	 to	 the	Highway
Toll	Service	 subsystem.	 The	 service	 subsystem	 responds	 to	 entry	 and	 exit
transactions	with	asynchronous	valid	or	invalid	account	status	messages.



Figure	23.6.	Distributed	software	architecture.



23.7.2	Distributed	System	Deployment

Each	subsystem	is	designed	as	a	configurable	component	so	that	instances	of	the
three	 subsystems	 can	 be	 deployed	 to	 a	 distributed	 configuration.	 The
configuration	 of	 the	 distributed	 real-time	 system	 is	 depicted	 on	 a	 deployment
diagram,	 an	 example	 of	which	 is	 depicted	 in	 Figure	 23.7,	with	 the	 subsystem
instances	 deployed	 to	 distributed	 nodes	 communicating	 over	 a	 wide	 area
network.	 Each	 instance	 of	 the	 Entry	 Tollbooth	 Controller	 and	 Exit
Tollbooth	Controller	is	assigned	to	its	own	node	and	the	single	instance	of
the	Highway	Toll	Service	is	assigned	to	a	separate	node.

Figure	23.7.	Distributed	system	deployment	for	Highway	Toll	Control
System.



23.7.3	Concurrent	Task	Architecture

The	task	architecture	for	the	Entry	Booth	Controller	subsystem	is	given	in
Figure	 23.8.	 Tasks	 are	 depicted	 using	 MARTE	 stereotypes.	 There	 are	 seven
tasks	in	this	subsystem:

An	event	driven	input	task,	Arrival	Sensor	Input,	which	receives
inputs	from	the	arrival	sensor.	The	stereotypes	for	this	task,	which
correspond	to	it	being	an	event	driven	input	task,	are	«event	driven»
«input»	«swSchedulableResource».

A	second	event	driven	input	task,	Departure	Sensor	Input,	which
receives	inputs	from	the	departure	sensor.	The	stereotypes	for	this	task
are	also	«event	driven»	«input»	«swSchedulableResource».

An	event	driven	input/output	task,	Transponder	Detector	I/O,
which	receives	the	transponder	ID	from	the	transponder	detector.	The
stereotypes	for	this	task	are	«event	driven»	«I/O»
«swSchedulableResource».

A	demand	driven	control	clustering	task,	Entry	Controller,	in	which
the	Entry	Control	task	is	clustered	with	the	Entry	Transaction
entity	object	to	create	a	control	clustering	task.	The	stereotypes	for	this
task,	which	correspond	to	it	being	a	demand	driven	control	clustering
task,	are	«demand»	«control	clustering»	«swSchedulableResource».

A	demand	driven	input/output	task,	Video	Camera	I/O,	which	sends	a
command	to	the	external	video	camera	to	take	a	photo	of	the	car	before	it
departs.	The	stereotypes	for	this	task	are	«demand»	«I/O»
«swSchedulableResource».



Figure	23.8.	Entry	Tollbooth	Controller	Subsystem	–	task	architecture.

A	demand	driven	output	task,	Traffic	Light	Output,	which	sends
commands	to	the	external	traffic	light	to	change	the	color	of	the	light	to
red,	green,	or	yellow.	The	stereotypes	for	this	task	are	«demand»
«output»	«swSchedulableResource».

Finally,	there	is	a	demand	driven	proxy	task,	Highway	Toll	Service
Proxy,	which	sends	requests	to	the	external	Highway	Toll	Service
to	process	entry	and	exit	transactions	for	cars	with	valid	transponders	or
to	process	photos	of	cars	with	invalid	or	no	transponders.	The	stereotypes
for	this	task	are	«demand»	«proxy»	«swSchedulableResource».



23.7.4	Detailed	Software	Design

The	detailed	design	of	a	demand	driven	control	clustering	task	is	given	in	Figure
23.9.	The	Entry	Controller	 is	 a	composite	 task	 that	contains	 three	passive
objects,	a	coordinator	called	 the	Entry	Coordinator,	an	entity	object	called
Entry	 Transaction,	 and	 a	 state	 machine	 object	 called	 Entry	 Control.
Entry	 Coordinator	 receives	messages	 from	 the	 three	 producer	 tasks,	Arrival
Sensor	Input,	Departure	Sensor	Input,	and	Transponder	Detector
I/O	on	a	FIFO	queue,	and	invokes	the	operations	of	 the	Entry	Control	and
Entry	Transaction	passive	objects.

Figure	23.9.	Entry	Controller	–	control	clustering	with	nested	passive	objects.



23.7.5	Architectural	Pattern	Usage

The	 Highway	 Toll	 Control	 System	 uses	 several	 software	 architectural
structure	and	communication	patterns.	The	Centralized	Control	pattern	is	used	in
the	 Entry	 Tollbooth	 Controller	 and	 Exit	 Tollbooth	 Controller
subsystems	 because	 in	 each	 case,	 there	 is	 one	 control	 task,	 which	 executes	 a
state	 machine.	 It	 receives	 sensor	 input	 from	multiple	 input	 and	 I/O	 tasks	 and
controls	 the	external	environment	via	output	and	I/O	tasks,	as	shown	in	Figure
23.8	 for	 the	 Entry	 Tollbooth	 Controller	 subsystem.	 In	 a	 Centralized
Control	 pattern,	 the	 control	 task	 executes	 a	 state	 machine,	 which	 for	 Entry
Tollbooth	 Controller	 is	 depicted	 in	 Figure	 23.3.	 Another	 architectural
pattern	 used	 in	 the	 Highway	 Toll	 Control	 System	 is	 the	 Multiple-
Client/Single-Service	 pattern,	 as	 shown	 in	 Figure	 23.6,	 in	 which	 the	 multiple
instances	 of	 the	 Entry	 Tollbooth	 Controller	 and	 Exit	 Tollbooth

Controller	 subsystems	 are	 clients	 of	 the	 service	 subsystem,	 the	 Highway
Toll	Service.

Architectural	 communication	 patterns	 used	 in	 the	 Highway	 Toll

Control	 System	 are	 the	 Asynchronous	 Message	 Communication	 and
Bidirectional	 Asynchronous	 Message	 Communication	 patterns,	 as	 shown	 in
Figures	23.6	and	23.8.



Appendix	A
Conventions	Used	in	This	Textbook

For	 improved	 readability,	 certain	 conventions	 are	used	 in	 this	book.	These	 are
the	 naming	 conventions	 used	 in	 this	 book	 and	 the	 conventions	 for	 message
sequence	numbering	on	interaction	diagrams.



A.1	Naming	Conventions	Used	in	This	Book
For	 improved	 readability,	 the	conventions	used	 for	depicting	names	of	classes,
objects,	 and	 so	on	 in	 the	 figures	are	 sometimes	different	 from	 the	conventions
used	for	the	same	names	in	the	text.	In	the	figures,	examples	are	shown	in	Times
New	Roman	 font.	 In	 the	 body	 of	 the	 text,	 however,	 examples	 are	 shown	 in	 a
different	 font	 to	 distinguish	 them	 from	 the	 regular	 Cambria	Math	 font.	 Some
specific	additional	conventions	used	in	the	book	vary	depending	on	the	phase	of
the	project.	For	example,	 the	conventions	 for	capitalization	are	different	 in	 the
analysis	model	 (which	 is	 less	 formal)	 than	 in	 the	design	model	 (which	 is	more
formal).

A.1.1	Requirements	Modeling

In	both	figures	and	text,	use	cases	are	shown	with	initial	uppercase	and	spaces	in
multiword	names	–	for	example,	Cook	Food.

A.1.2	Analysis	Modeling

The	naming	conventions	for	the	analysis	model	are	as	follows.

Classes

Classes	 are	 shown	with	 an	 uppercase	 initial	 letter.	 In	 the	 figures,	 there	 are	 no
spaces	 in	 multiword	 names	 –	 for	 example,	 HeatingElement.	 In	 the	 text,
however,	 spacing	 is	 introduced	 to	 improve	 the	 readability	 –	 for	 example,
Heating	Element.



Attributes	are	shown	with	a	lowercase	initial	letter	–	for	example,	weight.
For	multiword	attributes,	 there	are	no	spaces	between	the	words	in	figures,	but
spaces	are	introduced	in	the	text.	The	first	word	of	 the	multiword	name	has	an
initial	 lowercase	 letter;	 subsequent	words	have	 an	 initial	 uppercase	 letter	 –	 for
example,	sensorValue	in	figures	and	sensor	Value	in	text.

The	 type	 of	 the	 attribute	 has	 an	 initial	 uppercase	 letter	 –	 for	 example,
Boolean,	Integer,	or	Real.

Objects

An	object	may	be	depicted	in	various	ways,	in	particular	as:

This	 means	 that,	 depending	 on	 how	 the	 object	 is	 depicted	 in	 a	 figure,	 it	 will
appear	 in	 the	 text	 sometimes	 with	 a	 first	 word	 initial	 letter	 uppercase	 and
sometimes	with	a	first	word	initial	letter	lowercase.

Messages

An	individual	named	object.	In	this	case,	the	first	letter	of	the	first	word
is	lowercase,	and	subsequent	words	have	an	uppercase	first	letter.	In
figures,	the	objects	appear	as,	for	example,	aWarningAlarm	and
anotherWarningAlarm.	In	the	text,	these	objects	appear	as	a
Warning	Alarm	and	another	Warning	Alarm.

An	individual	unnamed	object.	Some	objects	are	shown	in	the	figures
as	class	instances	without	a	given	object	name	–	for	example	:
WarningAlarm.	In	the	text,	this	object	is	referred	to	as	Warning
Alarm.	For	improved	readability,	the	colon	is	removed,	and	a	space	is
introduced	between	the	individual	words	of	a	multiword	name.



In	 the	 analysis	 model,	 messages	 are	 depicted	 with	 an	 uppercase	 initial	 letter.
Multiword	 messages	 are	 shown	 with	 spaces	 in	 both	 figures	 and	 text	 –	 for
example,	Simple	Message	Name.

State	Machines

In	both	figures	and	text,	states,	events,	conditions,	actions,	and	activities	are	all
shown	 with	 initial	 letter	 uppercase	 and	 spaces	 in	 multiword	 names	 –	 for
example,	 the	 state	Emergency	Stopping,	 the	 event	Timer	Event,	 and	 the
action	Open	Doors.

A.1.3	Design	Modeling

The	naming	conventions	for	the	design	model	are	as	follows.

Active	and	Passive	Classes

The	 naming	 conventions	 for	 active	 classes	 (concurrent	 classes)	 and	 passive
classes	are	the	same	as	for	classes	in	the	analysis	model	(see	Section	A.1.2).

Active	and	Passive	Objects

The	 naming	 conventions	 for	 active	 objects	 (concurrent	 objects)	 and	 passive
objects	are	the	same	as	for	objects	in	the	analysis	model	(see	Section	A.1.2).

Messages

In	the	design	model,	the	first	letter	of	the	first	word	of	the	message	is	lowercase,
and	subsequent	words	have	an	uppercase	first	letter.	In	both	the	figures	and	text,
there	is	no	space	between	words,	as	in	alarmMessage.



Message	parameters	are	shown	with	a	lowercase	initial	letter	–	for	example,
speed.	For	multiword	attributes,	there	are	no	spaces	between	the	words	in	both
the	figures	and	the	text.	The	first	word	of	the	multiword	name	has	a	lowercase
initial	letter,	and	subsequent	words	have	an	uppercase	initial	letter	–	for	example,
cumulativeDistance	in	both	figures	and	text.

Operations

The	naming	conventions	for	operations	(a.k.a.	methods)	follow	the	conventions
for	messages	 in	both	 figures	and	 text.	Thus,	 the	 first	 letter	of	 the	 first	word	of
both	 the	operation	and	 the	parameter	 is	 lowercase,	and	subsequent	words	have
an	 uppercase	 first	 letter.	 There	 is	 no	 space	 between	 words	 –	 for	 example,
validatePassword	(userPassword).



A.2	Message	Sequence	Numbering	on
Interaction	Diagrams

Messages	on	a	communication	diagram	or	sequence	diagram	are	given	message
sequence	 numbers.	 This	 section	 provides	 some	 guidelines	 for	 numbering
message	 sequences.	 These	 guidelines	 follow	 the	 general	 UML	 conventions;
however,	 they	 have	 been	 extended	 to	 address	 concurrency,	 alternatives,	 and
large	message	sequences	better.	These	conventions	are	followed	in	the	examples
given	in	this	book,	including	the	case	studies	in	Chapters	19	through	23.

A.2.1	Message	Labels	on	Interaction	Diagrams

A	message	 label	 on	 a	 communication	 or	 sequence	 diagram	 has	 the	 following
syntax	 (only	 those	 parts	 of	 the	message	 label	 that	 are	 relevant	 in	 the	 analysis
phase	are	described	here):

[sequence	expression]:	Message	Name	(argument	list)

where	the	sequence	expression	consists	of	the	message	sequence	number	and	an
indicator	of	recurrence.

Message	sequence	number.	The	message	sequence	number	is	described
as	follows:	The	first	message	sequence	number	represents	the	event	that
initiates	the	message	sequence	depicted	on	the	communication	diagram.
Typical	message	sequences	are	1,	2,	3,…;	A1,	A2,	A3,…
A	more	elaborate	message	sequence	can	be	depicted	with	the	Dewey

classification	system,	such	that	A1.1	precedes	A1.1.1,	which	in	turn
precedes	A1.2.	In	the	Dewey	system,	a	typical	message	numbering
sequence	would	be	A1,	A1.1,	A1.1.1,	A1.2.



There	can	also	be	optional	return	values	from	the	message	sent.

A.2.2	Message	Sequence	Numbering	on	Interaction	Diagrams

On	a	sequence	or	communication	diagram	supporting	a	use	case,	the	sequence	in
which	 the	 objects	 participate	 in	 each	 use	 case	 is	 described	 and	 depicted	 by
message	 sequence	 numbers.	A	message	 sequence	 number	 for	 a	 use	 case	 takes
the	following	form:

Recurrence.	The	recurrence	term	is	optional	and	represents	conditional
or	iterative	execution.	The	recurrence	term	represents	zero	or	more
messages	that	are	sent,	depending	on	the	conditions	being	met.

1.	*	[iteration-clause].	An	asterisk	(*)	is	added	after	the	message
sequence	number	to	indicate	that	more	than	one	message	is	sent.	The
optional	iteration	clause	is	used	to	specify	repeated	execution,	such	as
[j	:	=	1,n].	An	example	of	an	iteration	by	putting	an	asterisk	after	the
message	sequence	number	is	3*.

·

2.	[condition-clause].	A	condition	is	specified	in	square	brackets	to
indicate	a	branch	condition.	The	optional	condition	clause	is	used	for
specifying	branches	–	for	example,	[x	<	n]	–	meaning	that	the	message
is	sent	only	if	the	condition	is	true.	Examples	of	conditional	message
passing	by	showing	a	condition	after	the	message	sequence	number	are
4[x	<	n]	and	5[Normal].	In	each	case,	the	message	is	sent	only	if	the
condition	is	true.

·

Message	name.	The	message	name	is	specified.

Argument	list.	The	argument	list	of	the	message	is	optional	and
specifies	any	parameters	sent	as	part	of	the	message.



[first	optional	letter	sequence]	[numeric	sequence]	[second	optional	letter
sequence]

The	 first	 optional	 letter	 sequence	 is	 an	 optional	 use	 case	 ID	 and	 identifies	 a
specific	use	case.	The	first	letter	is	an	uppercase	letter	and	might	be	followed	by
one	 or	 more	 upper-or	 lowercase	 letters	 if	 a	 more	 descriptive	 use	 case	 ID	 is
desired.

The	 simplest	 form	 of	message	 sequencing	 is	 to	 use	 a	 sequence	 of	whole
numbers,	such	as	M1,	M2,	and	M3.	However,	in	a	real-time	system	with	several
external	 inputs	 from	 the	 actor(s),	 it	 is	 often	 helpful	 to	 include	 a	 numeric
sequence	that	includes	decimal	numbers	–	that	is,	to	number	the	external	events
as	whole	numbers	followed	by	decimal	numbers	for	the	ensuing	internal	events.
For	example,	 if	 the	actor's	 inputs	were	designated	as	A1,	A2,	 and	A3,	 the	 full
message	sequence	depicted	on	the	communication	diagram	would	be	A1,	A1.1,
A1.2,	A1.3,…,	A2,	A2.1,	A2.2,…,	and	A3,	A3.1,	A3.2,….

An	 example	 is	 V1,	 where	 the	 letter	 V	 identifies	 the	 use	 case,	 and	 the
number	 identifies	 the	 message	 sequence	 within	 the	 communication	 diagram
supporting	 the	 use	 case.	 The	 object	 sending	 the	 first	 message	 –	 V1	 –	 is	 the
initiator	 of	 the	 use	 case–based	 communication.	 Subsequent	 message	 numbers
following	 this	 input	message	 are	 V1.1,	 V1.2,	 and	V1.3.	 If	 the	 dialog	were	 to
continue,	the	next	input	from	the	actor	would	be	V2.

A.2.3	Concurrent	and	Alternative	Message	Sequences

The	second	optional	letter	sequence	is	used	to	depict	special	cases	of	branches	–
either	concurrent	or	alternative	–	in	the	message	sequence	numbering.

Concurrent	message	sequences	may	also	be	depicted	on	a	communication
diagram.	A	 lowercase	 letter	 represents	 a	 concurrent	 sequence;	 in	 other	words,
sequences	 designated	 as	 A3	 and	 A3a	 would	 be	 concurrent	 sequences.	 For



example,	the	arrival	of	message	A2	at	an	object	X	might	result	in	the	sending	of
two	messages	from	object	X	to	two	objects	Y	and	Z,	which	could	then	execute	in
parallel.	To	indicate	 the	concurrency	in	 this	case,	 the	message	sent	 to	object	Y
would	 be	 designated	 as	 A3,	 and	 the	 one	 to	 object	 Z	 as	 A3a.	 Subsequent
messages	in	the	A3	sequence	would	be	A4,	A5,	A6,…,	and	subsequent	messages
in	 the	 independent	 A3a	 sequence	 would	 be	 A3a.1,	 A3a.2,	 A3a.3,	 and	 so	 on.
Because	the	sequence	numbering	is	more	cumbersome	for	the	A3a	sequence,	use
A3	for	the	main	message	sequence	and	A3a	and	A3b	for	the	supporting	message
sequences.	An	alternative	way	to	show	two	concurrent	sequences	is	to	avoid	A3
altogether	and	use	the	sequence	numbers	A3a	and	A3b;	however,	this	can	lead	to
a	 more	 cumbersome	 numbering	 scheme	 if	 A3a	 initiates	 another	 concurrent
sequence,	so	the	former	approach	is	preferred.

Alternative	 message	 sequences	 are	 depicted	 with	 the	 condition	 indicated
after	the	message.	An	uppercase	letter	is	used	to	name	the	alternative	branch.	For
example,	 the	 main	 branch	 may	 be	 labeled	 1.4[Normal],	 and	 the	 other,	 less
frequently	 used	 branch	 could	 be	 named	 1.4A[Error].	 The	 message	 sequence
numbers	for	the	normal	branch	would	be	1.4[Normal],	1.5,	1.6,	and	so	on.	The
message	 sequence	 numbers	 for	 the	 alternative	 branch	 would	 be	 1.4A[Error],
1.4A.1,	1.4A.2,	and	so	on.



Appendix	B
Catalog	of	Software	Architectural

Patterns

The	architectural	structure	patterns	and	architectural	communication	patterns	are
documented	with	the	template	described	in	Chapter	11,	Section	11.8,	in	Sections
B.1	and	B.2,	respectively.	The	patterns	are	summarized	in	the	following	tables.

Table	B.1.	Software	Architectural	Structure	Patterns

Software	architectural	structure
patterns

Section	of	Chapter
11

Appendix
B

Centralized	Control Section	11.3.1 B.1.1

Distributed	Collaborative	Control Section	11.3.2 B.1.2

Distributed	Independent	Control Section	11.3.3 B.1.3

Hierarchical	Control Section	11.3.4 B.1.4

Layers	of	Abstraction Section	11.2.1 B.1.5

Kernel Section	11.2.2 B.1.6

Master/Slave Section	11.3.5 B.1.7

Multiple	Client/Multiple	Service Section	11.4.2 B.1.8



Multiple	Client/Single	Service Section	11.4.1 B.1.9

Table	B.2.	Software	Architectural	Communication	Patterns

Software	architectural	communication
patterns

Section	of
Chapter	11

Appendix
B

Asynchronous	Message	Communication Section	11.5.2 B.2.1

Asynchronous	Message	Communication
with	Callback

Section	11.5.5 B.2.2

Bidirectional	Asynchronous	Message
Communication

Section	11.5.3 B.2.3

Broadcast Section	11.7.1 B.2.4

Broker	Handle Section	11.6.2 B.2.5

Service	Discovery Section	11.6.3 B.2.6

Service	Registration Section	11.6.1 B.2.7

Subscription/Notification Section	11.7.2 B.2.8

Synchronized	Object	Access Section	11.5.1 B.2.9

Synchronous	Message	Communication	with
Reply

Section	11.5.4 B.2.10

Synchronous	Message	Communication
without	Reply

Section	11.5.6 B.2.11



B.1	Software	Architectural	Structure
Patterns

This	 section	 describes	 the	 architectural	 structure	 patterns,	 which	 address	 the
static	 structure	 of	 the	 architecture,	 in	 alphabetical	 order,	 using	 the	 standard
template.

B.1.1	Centralized	Control	Pattern

Pattern
name

Centralized	Control.

Aliases Centralized	Controller,	System	Controller.

Context Centralized	application	for	which	overall	control	is	needed.

Problem Several	actions	and	activities	are	state	dependent	and	need	to
be	controlled	and	sequenced.

Summary	of
solution

There	is	one	control	component,	which	conceptually	executes
a	state	machine	and	provides	the	overall	control	and
sequencing	of	the	system	or	subsystem.

Strengths	of
solution

Encapsulates	all	state	dependent	control	in	one	component.

Weaknesses
of	solution

Could	lead	to	overcentralized	control,	in	which	case
decentralized	control	should	be	considered.

Applicability Real-time	control	systems,	state	dependent	applications.

Related
patterns

Distributed	Collaborative	Control,	Distributed	Independent
Control,	Hierarchical	Control.



patterns Control,	Hierarchical	Control.

Reference Chapter	11,	Section	11.3.1.

Figure	B.1.	Centralized	Control	pattern:	Microwave	Oven	Control	System
example.

B.1.2	Distributed	Collaborative	Control	Pattern

Pattern
name

Distributed	Collaborative	Control.

Aliases Distributed	Control,	Decentralized	Collaborative	Control.

Context Distributed	application	with	real-time	control	requirement.

Problem Distributed	application	with	multiple	locations	for	which	real-
time	localized	control	is	needed	at	several	locations	and
control	components	communicate	with	each	other.

Summary	of
solution

There	are	several	control	components,	such	that	each
component	controls	a	given	part	of	the	system	by	conceptually
executing	a	state	machine.	Control	is	distributed	among	the



executing	a	state	machine.	Control	is	distributed	among	the
various	control	components,	which	communicate	with	each
other.	No	single	component	has	overall	control.

Strengths	of
solution

Overcomes	potential	problem	of	overcentralized	control.

Weaknesses
of	solution

Does	not	have	an	overall	coordinator.	If	this	is	needed,
consider	using	Hierarchical	Control	pattern.

Applicability Distributed	real-time	control	systems,	distributed	state
dependent	applications.

Related
patterns

Distributed	Independent	Control,	Hierarchical	Control,
Centralized	Control.

Reference Chapter	11,	Section	11.3.2.

Figure	B.2.	Distributed	Collaborative	Control	pattern:	example	of
collaboration	between	distributed	controllers.

B.1.3	Distributed	Independent	Control	Pattern

Pattern
name

Distributed	Independent	Control.

Aliases Distributed	Independent	Controller,	Decentralized
Independent	Control.



Context Distributed	application	with	real-time	control	requirement.

Problem Distributed	application	with	multiple	locations	for	which	real-
time	localized	control	is	needed	at	several	locations;	control
components	do	not	communicate	with	each	other.

Summary	of
solution

There	are	several	control	components,	such	that	each
component	controls	a	given	part	of	the	system	by	conceptually
executing	a	state	machine.	Control	is	distributed	among	the
various	control	components,	which	do	not	communicate	with
each	other	but	might	communicate	asynchronously	with	a
service	component.	No	single	component	has	overall	control.

Strengths	of
solution

Overcomes	potential	problem	of	overcentralized	control.

Weaknesses
of	solution

Does	not	have	an	overall	coordinator.	If	this	is	needed,
consider	using	Hierarchical	Control	pattern.

Applicability Distributed	real-time	control	systems,	distributed	state
dependent	applications.

Related
patterns

Distributed	Collaborative	Control,	Hierarchical	Control,
Centralized	Control,	Multiple	Client/Single	Service.

Reference Chapter	11,	Section	11.3.3.



Figure	B.3.	Distributed	Independent	Control	pattern:	example	with
asynchronous	communication	to	service.

B.1.4	Hierarchical	Control	Pattern

Pattern
name

Hierarchical	Control.

Aliases Multilevel	Control;	Hierarchical	Coordination.

Context Distributed	application	with	real-time	control	requirement.

Problem Distributed	application	with	multiple	locations	for	which	both
real-time	localized	control	and	overall	control	are	needed.



Summary	of
solution

There	are	several	control	components,	each	controlling	a
given	part	of	a	system	by	conceptually	executing	a	state
machine.	There	is	also	a	coordinator	component,	which
provides	high-level	control	by	deciding	the	next	job	for	each
control	component	and	communicating	that	information
directly	to	the	control	component.

Strengths	of
solution

Overcomes	potential	problem	with	Distributed	Control	pattern
by	providing	high-level	control	and	coordination.

Weaknesses
of	solution

Coordinator	may	become	a	bottleneck	when	the	load	is	high.

Applicability Distributed	real-time	control	systems,	distributed	state
dependent	applications.

Related
patterns

Distributed	Collaborative	Control,	Distributed	Independent
Control,	Centralized	Control.

Reference Chapter	11,	Section	11.3.4.

Figure	B.4.	Hierarchical	Control	pattern:	example	of	two	levels	of	control.



B.1.5	Layers	of	Abstraction	Pattern

Pattern
name

Layers	of	Abstraction.

Aliases Hierarchical	Layers,	Levels	of	Abstraction.

Context Software	architectural	design.

Problem A	software	architecture	that	encourages	design	for	ease	of
extension	and	contraction	is	needed.

Summary	of
solution

Components	at	lower	layers	provide	services	for	components
at	higher	layers.	Components	may	use	only	services	provided
by	components	at	lower	layers.

Strengths	of
solution

Promotes	extension	and	contraction	of	software	design.

Weaknesses
of	solution

Could	lead	to	inefficiency	if	too	many	layers	need	to	be
traversed.

Applicability Operating	systems,	communication	protocols,	real-time
systems,	software	product	lines.

Related
patterns

Kernel	can	be	lowest	layer	of	Layers	of	Abstraction
architecture.	Variations	of	this	pattern	include	Flexible	Layers
of	Abstraction.

Reference Chapter	11,	Section	11.2.1;	Hoffman	and	Weiss	2001;	Parnas
1979.



Figure	B.5.	Layers	of	Abstraction	pattern:	TCP/IP	example.

B.1.6	Kernel	Pattern

Pattern Kernel.



Pattern
name

Kernel.

Aliases Microkernel.

Context Software	architectural	design;	real-time	software	design.

Problem A	small	core	of	essential	functionality	that	can	be	used	by
other	components	is	needed.

Summary	of
solution

Kernel	provides	a	well-defined	interface	consisting	of
operations	(procedures	or	functions)	that	can	be	called	by
other	parts	of	the	software	system.

Strengths	of
solution

Kernel	can	be	designed	to	be	highly	efficient.

Weaknesses
of	solution

If	care	is	not	taken,	kernel	can	become	too	large	and	bloated.
Alternatively,	essential	functionality	could	be	left	out	in	error.

Applicability Operating	systems,	real-time	systems,	software	product	lines.

Related
patterns

Can	be	lowest	layer	of	Layers	of	Abstraction	architecture.

Reference Chapter	11,	Section	11.2.2;	Buschmann	et	al.	1996.



Figure	B.6.	Kernel	pattern:	operating	system	example.

B.1.7	Master/Slave	Pattern

Pattern
name

Master/Slave.

Aliases None.

Context Software	architectural	design;	real-time	applications.

Problem Several	computations	need	to	be	executed	in	parallel.



Summary	of
solution

Master	divides	up	the	work	to	be	performed	and	assigns	each
part	to	a	slave.	Each	slave	executes	its	assignment	and,	when
it	has	finished,	sends	a	response	to	the	master.	The	master
integrates	the	slave	responses.

Strengths	of
solution

Divides	up	work	to	be	done	so	that	it	can	be	done	in	parallel.

Weaknesses
of	solution

Could	have	situations	where	the	work	is	not	divided	evenly
between	slaves,	which	results	in	less	efficient	master/slave
operation.	A	slave	might	be	held	up	or	fail	and	hence	slow
down	the	entire	master/slave	operation.

Applicability Real-time	applications,	computationally	intensive
applications.

Related
patterns

Centralized	Control,	Hierarchical	Control.

Reference Chapter	11,	Section	11.3.5.

Figure	B.7.	Master/Slave	pattern:	Example	of	Master	assigning	work	to
slaves.

B.1.8	Multiple	Client/Multiple	Service	Pattern

Pattern Multiple	Client/Multiple	Service.



Pattern
name

Multiple	Client/Multiple	Service.

Aliases Client/Service,	Client/Server.

Context Software	architectural	design,	distributed	real-time	systems.

Problem Distributed	real-time	application	in	which	multiple	clients
require	services	from	multiple	services.

Summary	of
solution

Client	communicates	with	multiple	services,	usually
sequentially	but	could	also	be	in	parallel.	Each	service
responds	to	client	requests.	Each	service	handles	multiple
client	requests.	A	service	may	delegate	a	client	request	to	a
different	service.

Strengths	of
solution

Good	way	for	client	to	communicate	with	multiple	services
when	it	needs	different	information	from	each	service.

Weaknesses
of	solution

Client	can	be	held	up	indefinitely	if	there	is	a	heavy	load	at
any	server.

Applicability Distributed	processing:	client/service	and	distributed	real-time
applications	with	multiple	services.

Related
patterns

Multiple	Client/Single	Service.

Reference Chapter	11,	Section	11.4.2.



Figure	B.8.	Multiple	Client/Multiple	Service	Pattern:	Example	of	Emergency
Monitoring	System.

B.1.9	Multiple	Client/Single	Service	Pattern

Pattern
name

Multiple	Client/Single	Service.

Aliases Client/Service,	Client/Server.

Context Software	architectural	design,	distributed	real-time	systems.

Problem Distributed	real-time	application	in	which	multiple	clients
require	services	from	a	single	service.

Summary	of Client	requests	service.	Service	responds	to	client	requests	and



Summary	of
solution

Client	requests	service.	Service	responds	to	client	requests	and
does	not	initiate	requests.	Service	handles	multiple	client
requests.

Strengths	of
solution

Good	way	for	client	to	communicate	with	service	when	it
needs	a	reply	from	service.	Very	common	form	of
communication	in	client/service	applications.

Weaknesses
of	solution

Client	can	be	held	up	indefinitely	if	there	is	a	heavy	load	at	the
server.

Applicability Distributed	processing:	client/service	and	distributed	real-time
applications.

Related
patterns

Multiple	Client/Multiple	Service,	Distributed	Independent
Control.

Reference Chapter	11,	Section	11.4.1.



Figure	B.9.	Multiple	Client/Single	Service	Pattern:	Example	of	Banking
System.



B.2	Software	Architectural	Communication
Patterns

This	 section	describes	 the	architectural	communication	patterns,	which	address
the	dynamic	communication	among	distributed	components	of	 the	architecture,
in	alphabetical	order,	using	the	standard	template.

B.2.1	Asynchronous	Message	Communication	Pattern

Pattern
name

Asynchronous	Message	Communication.

Aliases Loosely	Coupled	Message	Communication.

Context Concurrent	or	distributed	real-time	systems.

Problem Concurrent	or	distributed	application	has	concurrent
components	that	need	to	communicate	with	each	other.
Producer	does	not	need	to	wait	for	consumer.	Producer	does
not	need	a	reply.

Summary	of
solution

Use	message	queue	between	producer	component(s)	and
consumer	component.	Producer	sends	message	to	consumer
and	continues.	Consumer	receives	message.	Messages	are
queued	FIFO	if	consumer	is	busy.	Consumer	is	suspended	if
no	message	is	available.	Producer	needs	timeout	notification	if
consumer	node	is	down.

Strengths	of
solution

Consumer	does	not	hold	up	producer.

Weaknesses
of	solution

If	producer(s)	produces	messages	more	quickly	than	consumer
can	process	them,	the	message	queue	will	eventually



of	solution can	process	them,	the	message	queue	will	eventually
overflow.

Applicability Centralized	and	distributed	environments:	real-time	systems,
client/service	and	distributed	real-time	applications.

Related
patterns

Bidirectional	Asynchronous	Message	Communication,
Asynchronous	Message	Communication	with	Callback.

Reference Chapter	11,	Section	11.5.2.

Figure	B.10.	Asynchronous	Message	Communication	pattern.

B.2.2	Asynchronous	Message	Communication	with	Callback	Pattern

Pattern
name

Asynchronous	Message	Communication	with	Callback.

Aliases Loosely	Coupled	Communication	with	Callback.

Context Concurrent	or	distributed	real-time	systems.

Problem Concurrent	or	distributed	application	in	which	concurrent
components	need	to	communicate	with	each	other.	Client	does
not	need	to	wait	for	service	but	does	need	to	receive	a	reply
later.

Summary	of
solution

Use	asynchronous	communication	between	client	components
and	service	component.	Client	sends	service	request	to
service,	which	includes	client	operation	(callback)	handle.
Client	does	not	wait	for	reply.	After	service	processes	the
client	request,	it	uses	the	handle	to	call	the	client	operation



client	request,	it	uses	the	handle	to	call	the	client	operation
remotely	(the	callback).

Strengths	of
solution

Good	way	for	client	to	communicate	with	service	when	it
needs	a	reply	but	can	continue	executing	and	receive	reply
later.

Weaknesses
of	solution

Suitable	only	if	the	client	does	not	need	to	send	multiple
requests	before	receiving	the	first	reply.

Applicability Distributed	environments:	client/service	and	distributed	real-
time	applications	with	multiple	services.

Related
patterns

Consider	Bidirectional	Asynchronous	Message
Communication	as	alternative	pattern.

Reference Chapter	11,	Section	11.5.5.

Figure	B.11.	Asynchronous	Message	Communication	with	Callback	pattern.

B.2.3	Bidirectional	Asynchronous	Message	Communication	Pattern

Pattern
name

Bidirectional	Asynchronous	Message	Communication.

Aliases Bidirectional	Loosely	Coupled	Message	Communication.

Context Concurrent	or	distributed	real-time	systems.

Problem Concurrent	or	distributed	application	in	which	concurrent
components	need	to	communicate	with	each	other.	Producer



components	need	to	communicate	with	each	other.	Producer
does	not	need	to	wait	for	consumer,	although	it	does	need	to
receive	replies	later.	Producer	can	send	several	requests	before
receiving	first	reply.

Summary	of
solution

Use	two	message	queues	between	producer	component	and
consumer	component:	one	for	messages	from	producer	to
consumer	and	one	for	messages	from	consumer	to	producer.
Producer	sends	message	to	consumer	on	P→C	queue	and
continues.	Consumer	receives	message.	Messages	are	queued
if	consumer	is	busy.	Consumer	sends	replies	on	C→P	queue.

Strengths	of
solution

Producer	does	not	get	held	up	by	consumer.	Producer	receives
replies	later,	when	it	needs	them.

Weaknesses
of	solution

If	producer	produces	messages	more	quickly	than	consumer
can	process	them,	the	message	(P→C)	queue	will	eventually
overflow.	If	producer	does	not	service	replies	quickly	enough,
the	reply	(C→P)	queue	will	overflow.

Applicability Centralized	and	distributed	environments:	real-time	systems,
client/service	and	distributed	applications.

Related
patterns

Asynchronous	Message	Communication	with	Callback.

Reference Chapter	11,	Section	11.5.3.

Figure	B.12.	Bidirectional	Asynchronous	Message	Communication	pattern.

B.2.4	Broadcast	Pattern



Pattern
name

Broadcast.

Aliases Broadcast	Communication.

Context Distributed	real-time	systems.

Problem Distributed	application	with	multiple	clients	and	services.	At
times,	a	service	needs	to	send	the	same	message	to	several
clients.

Summary	of
solution

Crude	form	of	group	communication	in	which	a	service	sends
a	message	to	all	clients,	regardless	of	whether	clients	want	the
message	or	not.	Client	decides	whether	it	wants	to	process	or
discard	the	message.

Strengths	of
solution

Simple	form	of	group	communication.

Weaknesses
of	solution

Places	an	additional	load	on	the	client	because	the	client	may
not	want	the	message.

Applicability Distributed	environments:	client/service	and	distributed	real-
time	applications	with	multiple	services.

Related
patterns

Similar	to	Subscription/Notification,	except	that	it	is	not
selective.

Reference Chapter	11,	Section	11.7.1.



Figure	B.13.	Broadcast	pattern:	alarm	broadcast	example.

B.2.5	Broker	Handle	Pattern

Pattern
name

Broker	Handle.

Aliases White	Pages	Broker	Handle,	Broker	with	Handle-Driven
Design.

Context Distributed	real-time	systems.

Problem Distributed	application	in	which	multiple	clients	communicate
with	multiple	services.	Clients	do	not	know	locations	of
services.

Summary	of
solution

Use	broker.	Services	register	with	broker.	Client	sends	service
request	to	broker.	Broker	returns	service	handle	to	client.
Client	uses	service	handle	to	make	request	to	service.	Service



Client	uses	service	handle	to	make	request	to	service.	Service
processes	request	and	sends	reply	directly	to	client.	Client	can
make	multiple	requests	to	service	without	broker	involvement.

Strengths	of
solution

Location	transparency:	services	may	relocate	easily.	Clients
do	not	need	to	know	locations	of	services.

Weaknesses
of	solution

Additional	overhead	because	broker	is	involved	in	initial
message	communication.	Broker	can	become	a	bottleneck	if
there	is	a	heavy	load	at	the	broker.	Client	may	keep	outdated
service	handle	instead	of	discarding.

Applicability Distributed	environments:	client/service	and	distributed	real-
time	applications	with	multiple	services.

Related
patterns

Similar	to	Broker	Forwarding	but	with	better	performance.

Reference Chapter	11,	Section	11.6.2.

Figure	B.14.	Broker	Handle	pattern.



B.2.6	Service	Discovery	Pattern

Pattern
name

Service	Discovery.

Aliases Yellow	Pages	Broker,	Broker	Trader,	Discovery.

Context Distributed	real-time	systems.

Problem Distributed	application	in	which	multiple	clients	communicate
with	multiple	services.	Client	knows	the	type	of	service
required	but	not	the	specific	service.

Summary	of
solution

Use	broker's	discovery	service.	Services	register	with	broker.
Client	sends	discovery	service	request	to	broker.	Broker
returns	names	of	all	services	that	match	discovery	service
request.	Client	selects	a	service	and	uses	broker	handle	service
to	communicate	with	service.

Strengths	of
solution

Location	transparency:	Services	may	relocate	easily.	Clients
do	not	need	to	know	specific	service,	only	the	service	type.

Weaknesses
of	solution

Additional	overhead	because	broker	is	involved	in	initial
message	communication.	Broker	can	become	a	bottleneck	if
there	is	a	heavy	load	at	the	broker.

Applicability Distributed	environments:	client/service	and	distributed	real-
time	applications	with	multiple	services.

Related
patterns

Broker	Handle,	Service	Registration.

Reference Chapter	11,	Section	11.6.3.



Figure	B.15.	Service	Discovery	pattern.

B.2.7	Service	Registration	Pattern

Pattern
name

Service	Registration.

Aliases Broker	Registration.

Context Distributed	real-time	systems.

Problem Distributed	application	in	which	multiple	clients	communicate
with	multiple	services.	Clients	do	not	know	locations	of
services.

Summary	of
solution

Service	registers	service	information	with	broker,	including
service	name,	service	description,	and	location.	Clients	send
service	requests	to	broker.	Broker	acts	as	intermediary
between	clients	and	services.	If	service	relocates,	it	needs	to
re-register	with	the	broker.

Strengths	of
solution

Location	transparency:	services	may	relocate	easily.	Clients
do	not	need	to	know	locations	of	services.



solution do	not	need	to	know	locations	of	services.

Weaknesses
of	solution

Additional	overhead	because	broker	is	involved	in	message
communication.	Broker	can	become	a	bottleneck	if	there	is	a
heavy	load	at	the	broker.

Applicability Distributed	environments:	client/service	and	distributed	real-
time	applications	with	multiple	services.

Related
patterns

Broker	Handle,	Service	Registration.

Reference Chapter	11,	Section	11.6.1.



Figure	B.16.	Service	Registration	pattern.

B.2.8	Subscription/Notification	Pattern

Pattern
name

Subscription/Notification.

Aliases Multicast.

Context Distributed	real-time	systems.

Problem Distributed	application	with	multiple	clients	and	services.



Problem Distributed	application	with	multiple	clients	and	services.
Clients	want	to	receive	messages	of	a	given	type.

Summary	of
solution

Selective	form	of	group	communication.	Clients	subscribe	to
receive	messages	of	a	given	type.	When	service	receives
message	of	this	type,	it	notifies	all	clients	who	have
subscribed	to	it.

Strengths	of
solution

Selective	form	of	group	communication.	Widely	used	on	the
Internet	and	in	World	Wide	Web	applications.

Weaknesses
of	solution

If	client	subscribes	to	too	many	services,	it	may	unexpectedly
receive	a	large	number	of	messages.

Applicability Distributed	environments:	client/service	and	distributed	real-
time	applications	with	multiple	services.

Related
patterns

Similar	to	Broadcast,	except	that	it	is	more	selective.	Variation
on	this	pattern	is	Multicast	Notification,	in	which	connections
between	components	are	established	at	initialization	time
without	explicit	component	subscription.

Reference Chapter	11,	Section	11.7.2.



Figure	B.17.	Subscription/Notification	pattern:	alarm	notification	example.

B.2.9	Synchronized	Object	Access	Pattern

Pattern
name

Synchronized	Object	Access.

Aliases Synchronized	Operation	Invocation,	Synchronized	Method
Invocation;	Synchronized	Class	Access.

Context Object-oriented	and	real-time	systems.

Problem Concurrent	components	or	tasks	need	to	access	shared	data,
which	is	encapsulated	in	a	passive	object.

Summary	of
solution

Two	or	more	concurrent	components	(tasks)	on	the	same	node
communicate	with	each	through	a	passive	information-hiding
object	to	access	(read	and	write)	shared	data.	A	task	calls	an
operation	provided	by	the	passive	object.	The	operations	of



operation	provided	by	the	passive	object.	The	operations	of
the	object	provide	synchronized	access,	such	as	mutually
exclusive,	to	the	data.

Strengths	of
solution

This	pattern	allows	concurrent	components	or	tasks	to	access
shared	data	on	the	same	node.

Weaknesses
of	solution

This	pattern	cannot	be	used	if	the	tasks	need	to	execute	on
separate	nodes.

Applicability Real-time	systems	with	tasks	that	access	shared	data.

Related
patterns

Software	Architectural	Communication	patterns	in	which
message	passing	is	used	instead	of	operation	invocation.

Reference Chapter	11,	Section	11.5.1.

Figure	B.18.	Synchronized	Object	Access	pattern:	example	of	multiple
readers	and	multiple	writers.



B.2.10	Synchronous	Message	Communication	with	Reply	Pattern

Pattern
name

Synchronous	Message	Communication	with	Reply.

Aliases Tightly	Coupled	Message	Communication	with	Reply.

Context Concurrent	or	distributed	real-time	systems.

Problem Concurrent	or	distributed	application	in	which	multiple	clients
communicate	with	a	single	service	or	a	producer
communicates	with	a	consumer.	Client	(or	producer)	needs	to
wait	for	reply	from	service	(or	consumer).

Summary	of
solution

Use	synchronous	communication	between	client	(producer)
component	and	service	(consumer)	component.	Client
(producer)	sends	message	to	service	(consumer)	and	waits	for
reply.	Use	message	queue	at	service	when	there	are	many
clients.	Service	processes	message	FIFO.	Service	(consumer)
sends	reply	to	client.	Client	(producer)	is	activated	when	it
receives	reply	from	service	(consumer).

Strengths	of
solution

Good	way	for	client	(producer)	to	communicate	with	service
(consumer)	when	it	needs	a	reply.	Very	common	form	of
communication	in	client/service	and	producer/consumer
applications.

Weaknesses
of	solution

Client	(producer)	can	be	held	up	indefinitely	if	there	is	a
heavy	load	at	the	service	(consumer).

Applicability Concurrent	or	distributed	environments,	client/service	and
distributed	real-time	applications	with	multiple	services.

Related
patterns

Asynchronous	Message	Communication	with	Callback.



Reference Chapter	11,	Section	11.5.4.

Figure	B.19.	Synchronous	Message	Communication	with	Reply	pattern.

B.2.11	Synchronous	Message	Communication	without	Reply	Pattern

Pattern
name

Synchronous	Message	Communication	without	Reply.

Aliases Tightly	Coupled	Message	Communication	without	Reply.

Context Concurrent	or	distributed	real-time	systems.

Problem Concurrent	or	distributed	application	in	which	concurrent
components	need	to	communicate	with	each	other.	Producer
needs	to	wait	for	consumer	to	accept	message.	Producer	does
not	want	to	get	ahead	of	consumer.	There	is	no	queue	between
producer	and	consumer.

Summary	of
solution

Use	synchronous	communication	between	producer	and
consumer.	Producer	sends	message	to	consumer	and	waits	for
consumer	to	accept	message.	Consumer	receives	message.
Consumer	is	suspended	if	no	message	is	available.	Consumer
accepts	message,	thereby	releasing	producer.

Strengths	of
solution

Good	way	for	producer	to	communicate	with	consumer	when
it	wants	confirmation	that	consumer	received	the	message	and
producer	does	not	want	to	get	ahead	of	consumer.

Weaknesses
of	solution

Producer	can	be	held	up	indefinitely	if	consumer	is	busy	doing
something	else.



of	solution something	else.

Applicability Concurrent	and	distributed	environments,	client/service	and
distributed	real-time	applications	with	multiple	services.

Related
patterns

Consider	Synchronous	Message	Communication	with	Reply
as	alternative	pattern.

Reference Chapter	11,	Section	11.5.6.

Figure	B.20.	Synchronous	Message	Communication	without	Reply	pattern.



Appendix	C
Pseudocode	Templates	for	Concurrent

Tasks

This	appendix	provides	pseudocode	templates	of	the	event	sequencing	logic	for
the	different	kinds	of	concurrent	tasks	described	in	Chapter	13	of	this	textbook.
These	 templates	 include	event	driven	 input	 tasks;	periodic	 input	and	algorithm
tasks;	and	demand	driven	general	purpose,	coordinator,	output,	user	interaction,
and	state	dependent	control	tasks.



C.1	Pseudocode	for	Event	Driven	Input	Task
An	 event	 driven	 input	 task	 is	 needed	 when	 there	 is	 an	 event	 driven	 (also
referred	to	as	interrupt-driven)	input	device	to	which	the	system	has	to	interface
(Section	 13.3.2).	 The	 event	 driven	 I/O	 task	 is	 activated	 by	 an	 external	 event
(such	as	an	interrupt)	from	the	device,	reads	the	input	data,	does	any	necessary
processing	of	the	data,	including	sending	a	message	to	a	consumer	or	updating	a
passive	entity	object,	and	then	waits	for	the	next	external	event.

Initialize	input	device,	if	needed;

loop

––	Wait	for	external	event	from	input	device;

wait	(inputEvent);

read	input	data;

if	data	is	recognized

then	––	Process	data;

	convert	data	to	internal	format	if	needed,

	e.g.,	convert	analog	data	to	engineering	units;

	process	data,	if	needed;

	prepare	message	containing	message	name	and	optional	parameters

	––	send	message	to	consumer	task	via	connector;

	aConnector.send	(message);

else	––	input	was	not	recognized;

	Handle	error	case;

end	if;

end	loop;



C.2	Pseudocode	for	Periodic	Input	Task
A	periodic	input	task	interfaces	with	a	passive	input	device,	where	the	device	is
polled	on	a	regular	basis	(Section	13.3.3).	The	periodic	input	task	is	activated	by
a	timer	event,	reads	the	sampled	input	data,	does	any	necessary	processing	of	the
data,	 and	 then	 waits	 for	 the	 next	 timer	 event.	 The	 task's	 period	 is	 the	 time
between	successive	activations.

Initialize	input	device,	if	needed;

loop

––	Wait	for	timer	event;

wait	(timerEvent);

read	input	data	sample;

if	data	is	recognized

then	––	Process	input	data;

	convert	data	to	internal	format	if	needed,

	e.g.,	convert	analog	data	to	engineering	units;

	If	Boolean	data,	check	if	data	has	changed	from	previous	reading;

	process	data,	if	needed;

	prepare	message	containing	message	name	and	optional	parameters

	––	send	message	to	consumer	or	write	to	data	repository;

	dataRepository.update(newData);

else	––	input	was	not	recognized;

	Handle	error	case;

end	if;

end	loop;



C.3	Pseudocode	for	Demand	Driven	Output
Task

A	demand	driven	output	 task	 is	 used	 to	 interface	 to	 a	passive	output	 device
that	does	not	need	to	be	polled	and	hence	does	not	need	a	periodic	output	 task
(Section	 13.3.4).	 In	 particular,	 it	 is	 used	 when	 it	 is	 desirable	 to	 overlap
computation	with	output.	The	demand	driven	output	task	is	activated	on	demand
by	the	arrival	of	a	message	from	a	producer	task,	reads	the	message,	prepares	the
data	for	output,	outputs	the	data,	and	then	waits	for	the	next	message.

Initialize	output	device,	if	needed;

loop

––	wait	for	message	from	producer	task	arriving	via	connector;

aConnector.receive	(message);

extract	message	name	and	any	message	parameters	from	message;

––	process	message;

convert	data	to	output	format	if	needed,

output	data	to	output	device;

if	output	device	error;

	Handle	error	case;

end	if;

end	loop;



C.4	Pseudocode	for	Demand	Driven
Coordinator	Task

A	demand	driven	coordinator	task	is	a	control	task	that	is	not	state	dependent;
that	is,	the	action	it	takes	is	based	entirely	on	the	contents	of	the	input	message	it
receives	 (Section	 13.4.4).	 The	 coordinator	 task	 is	 activated	 on	 demand	 by	 the
arrival	 of	 a	 message	 from	 a	 producer	 task,	 reads	 the	 message,	 executes	 the
appropriate	 action	 (such	 as	 sending	 a	 message	 to	 a	 consumer	 task),	 and	 then
waits	for	the	next	message.

loop

––	Wait	for	message	from	another	task	arriving	via	message	connector;

aConnector.receive	(message);

extract	message	name	and	any	message	parameters	from	message;

––	perform	coordination	action	(assumed	to	be	not	state	dependent)

case	message	of

	message	type	1:

	objectA.methodX	(optional	parameters);

	….

	message	type	2:

	objectB.methodY	(optional	parameters);

	…..

endcase;

prepare	output	message	containing	message	name	and	parameters

––	send	output	message;

aConnector.send	(message);

end	if;

end	loop;



C.5	Pseudocode	for	Periodic	Algorithm	Task
A	periodic	algorithm	task	is	a	task	that	executes	an	algorithm	periodically,	that
is,	 at	 regular,	 equally	 spaced	 intervals	 of	 time	 (Section	 13.4.1).	 The	 task	 is
activated	by	a	 timer	 event,	 executes	 the	periodic	 algorithm,	 and	 then	waits	 for
the	 next	 timer	 event.	 The	 task's	 period	 is	 the	 time	 between	 successive
activations.

loop

––	Wait	for	timer	event;

wait	(timerEvent);

execute	periodic	algorithm;

prepare	output	message	containing	message	name	and	parameters

––	send	output	message;

aConnector.send	(message);

end	if;

end	loop;



C.6	Pseudocode	for	Demand	Driven	Task
A	demand	driven	task	is	a	task	that	is	activated	on	demand	by	the	arrival	of	a
message	 or	 event	 sent	 by	 a	 producer	 task	 (Section	 13.4.2).	 The	 action	 the
demand	driven	task	takes	is	based	entirely	on	the	contents	of	the	input	message	it
receives.	The	task	reads	 the	 incoming	message,	performs	the	demanded	action,
and	then	communicates	the	result,	such	as	by	sending	a	message	to	a	consumer
task,	 by	 sending	 a	 response	 to	 the	 original	 producer	 task,	 or	 by	 updating	 a
passive	entity	object.	The	task	then	loops	back	and	waits	for	the	next	message.

loop

	––	wait	for	message	or	event	from	producer	task	arriving	via	message

	connector;

	aConnector.receive	(message);

	extract	message	name	and	any	message	parameters	from	message;

	perform	requested	action	on	demand

	–	Read	data	from	passive	entity	object(s)	if	needed

	–	Execute	action

	–	Update	data	in	passive	entity	object(s)	if	needed

	prepare	output	message	or	response	containing	message	name	and	parameters

	––	send	output	message	or	event;

	aConnector.send	(message);

	end	loop;



C.7	Pseudocode	for	User	Interaction	Task
A	user	 interaction	 task	 is	 a	 demand	 driven	 task	 that	 interacts	with	 a	 human
user.	It	typically	outputs	a	prompt	to	a	user	(either	on	initialization	or	on	arrival
of	 a	 message	 from	 another	 task)	 and	 then	 waits	 for	 the	 input	 from	 the	 user
(Section	13.4.5).	 It	will	 read	 the	 input,	 possibly	 following	 this	 up	with	 further
prompts	and	user	inputs,	determine	the	desired	user	action,	and	send	a	message
to	 a	 consumer	 object	 (which	 could	 be	 a	 passive	 entity	 object,	 service	 task	 or
control	task).	It	typically	receives	a	response	from	the	consumer.	It	then	formats
the	 response	 in	 textual	 and/or	 graphical	 form,	 and	outputs	 this	 response	 to	 the
user.	The	task	then	loops	back	and	waits	for	the	next	user	interaction.

loop

output	menu	or	prompt	to	user;

wait	(user	response);

read	user	input;

process	user	input	and	have	further	interactions	with	user	if	necessary;

––	send	message	with	user	request	to	consumer	task

aConnector.send	(user	request);

––	wait	for	response	from	consumer	task	arriving	via	message	connector;

aConnector.receive	(consumer	response);

extract	and	process	consumer	response;

prepare	textual	and/or	graphical	output	for	user;

output	response	to	user

end	loop;



C.8	Pseudocode	for	Demand	Driven	State
Dependent	Control	Task

A	 state	dependent	control	 task	 is	 a	demand	driven	 task	 (Section	13.4.3)	 that
executes	 a	 sequential	 state	 machine.	 The	 task	 receives	 messages	 from	 its
producers	 on	 a	message	 queue.	 Given	 the	 next	message,	 the	 task	 extracts	 the
event	from	the	message	and	uses	this	event	as	an	input	parameter	to	invoke	the
processEvent	 method	 of	 a	 passive	 STM	 (Section	 14.1.3)	 object,	 which
encapsulates	a	state	 transition	 table.	Given	the	new	event	and	current	state,	 the
method	 looks	 up	 the	 state	 transition	 table	 entry	 for	 Table	 (new	 event,	 current
state)	 and	 reads	 the	 next	 state	 and	 action(s)	 to	 be	 performed.	 It	 then	 sets	 the
current	state	to	the	next	state	and	returns	the	action(s)	to	be	performed.	The	task
then	 executes	 each	 action,	 such	 as	 by	 sending	 a	message	 to	 another	 task,	 and
then	loops	back	to	receive	the	next	message.

loop

––	messages	from	all	senders	are	received	on	Message	Queue

Receive	(messageQ,	message);

––	extract	the	event	name	and	any	message	parameters

newEvent	=	message.event

––	assume	state	machine	is	encapsulated	in	object	aSTM;

––	given	the	incoming	event,	lookup	state	transition	table;

––	change	state	if	required;	return	action	to	be	performed;

aSTM.processEvent	(in	newEvent,	out	action);

––	execute	statedependent	action(s)	as	given	on	state	machine;

	case	state_dependent_action	of

	action_1:

	execute	state_dependent_action	1;

	exit;

	action_2

	execute	state_dependent_action	1;

	exit;

	…

	action_n

	execute	state_dependent_action	n;



	exit;

	end	case;

end	loop;



Appendix	D
Teaching	Considerations

D.1	Overview
The	material	in	this	book	may	be	taught	in	different	ways	depending	on	the	time
available	 and	 the	 knowledge	 level	 of	 the	 students.	 This	 appendix	 describes
possible	academic	and	industrial	courses	that	could	be	based	on	this	book.

A	 prerequisite	 of	 these	 courses	 is	 an	 introductory	 course	 on	 software
engineering	 covering	 the	 software	 life	 cycle,	 and	 the	 main	 activities	 in	 each
phase	 of	 the	 life	 cycle.	 This	 prerequisite	 course	 would	 cover	 the	 material
described	 in	 introductory	 books	 on	 Software	 Engineering	 such	 as	 Pressman
(2009)	or	Sommerville	(2010).

In	 each	 of	 these	 courses,	 there	 are	 three	 components:	 description	 of	 the
method,	presentation	of	at	least	one	case	study	using	the	method,	and	hands-on
design	exercise	for	students	to	apply	the	method	to	a	real	world	problem.



D.2	Suggested	Academic	Courses
The	 following	 academic	 courses	 could	 be	 could	 be	 taught	 in	 graduate	 and
advanced	 undergraduate	 courses	 in	 Computer	 Science,	 Software	 Engineering,
Systems	Engineering,	and	Computer	Engineering	programs,	and	are	based	on	the
material	covered	in	this	textbook.

1.	A	senior	undergraduate	or	graduate	level	course	on	real-time	software
modeling	and	design.

2.	A	Design	Lab	course	is	held	as	a	follow-up	course	or	as	an	alternative	to
the	real-time	software	modeling	and	design	course	(course	1)	in	which	the
students	work	in	teams	to	develop	a	solution	to	a	substantial	real-time
software	problem.	In	this	case,	students	could	also	implement	all	or	part	of
the	system.



D.3	Suggested	Industrial	Courses
The	following	industrial	courses	could	be	based	on	the	material	covered	in	this
book:

1.	A	course	on	real-time	software	modeling	and	design.	Concepts	are
presented	briefly	from	Part	I,	and	then	the	course	would	concentrate	on	Part
II	and,	depending	on	the	length	of	the	course,	performance	analysis	from
Part	III,	together	with	a	case	study	from	Part	IV.	The	design	lab	would
concentrate	on	working	on	a	real-time	software	problem.	This	course	could
be	run	at	any	length	from	two	to	five	days,	depending	on	the	level	of	detail
covered.

2.	A	practical	hands-on	course	in	which	each	stage	of	the	real-time	software
design	method	is	followed	by	a	hands-on	design	lab.	The	design	lab	could
be	on	a	problem	of	the	company's	choice,	assuming	an	in-house	course.



D4.	Design	Exercises
The	following	discussion	applies	to	both	academic	and	industrial	courses:

As	part	of	the	course,	students	should	also	work	on	one	or	more	real-time
problems,	 either	 individually	 or	 in	 teams.	Whether	 one	 or	more	 problems	 are
tackled	 depends	 on	 the	 size	 of	 the	 problem	 and	 the	 length	 of	 the	 course.
However	 sufficient	 time	 should	 be	 allocated	 for	 students	 to	 work	 on	 the
problems	 since	 this	 is	 the	 best	 way	 for	 the	 students	 to	 really	 understand	 the
method.

Software	problems	that	may	be	used	are:

a.	Consumer	product	such	as	a	dishwasher	system,

b.	Space	Flight	System,

c.	Factory	automation	system,

d.	House-cleaning	robot,

e.	Driverless	car,

f.	Air	traffic	control	system.

Possible	teaching	approaches	are:

1.	Work	on	one	problem	throughout	the	course	using	COMET/RTE.	This
has	the	advantage	that	students	get	an	in-depth	appreciation	of	the	method.

2.	Divide	the	class	up	into	teams.	Each	group	solves	a	different	problem
using	COMET/RTE.	Time	is	allocated	at	the	end	of	the	course	for	each
group	to	present	their	solution.	A	class	discussion	is	held	on	the	strengths
and	weaknesses	of	each	solution.



3.	A	Design	Lab	course	is	held	as	a	follow-up	course	to	the	course	on	real-
time	software	modeling	and	design,	in	which	the	students	work	in	teams	to
develop	a	substantial	real-time	software	architecture.	In	this	case,	students
could	also	implement	all	or	part	of	the	system.



Glossary

abstract	class
A	class	that	cannot	be	directly	instantiated	(Booch,	Rumbaugh,	and	Jacobson
2005).	Compare	concrete	class.

abstract	data	type
A	data	type	that	is	defined	by	the	operations	that	manipulate	it	and	thus	has	its
representation	details	hidden.

abstract	interface	specification
A	specification	that	defines	the	external	view	of	the	information	hiding	class	–
that	is,	all	the	information	required	by	the	user	of	the	class.

abstract	operation
An	operation	that	is	declared	in	an	abstract	class	but	not	implemented.

action
A	computation	that	executes	as	a	result	of	a	state	transition.

active	object
See	concurrent	object.

activity
A	computation	that	executes	for	the	duration	of	a	state.

actor



actor
An	outside	user	or	related	set	of	users	who	interact	with	the	system
(Rumbaugh,	Booch,	and	Jacobson	2005).

actuator
The	means	by	which	a	real-time	computer	system	can	control	an	external
device	or	mechanism

aggregate	class
A	class	that	represents	the	whole	in	an	aggregation	relationship	(Booch,
Rumbaugh,	and	Jacobson	2005).

aggregation
A	weak	form	of	whole/part	relationship.	Compare	composition.

algorithm	object
An	object	that	encapsulates	an	algorithm	used	in	the	problem	domain.

analog	data
Continuous	data	that	can,	in	principle,	have	an	infinite	number	of	values.

analysis	modeling
A	phase	of	the	COMET/RTE	system	and	software	life	cycle	in	which	static
modeling	and	dynamic	modeling	are	performed.	Compare	design	modeling
and	requirements	modeling.

aperiodic	task
A	task	that	is	activated	on	demand.	See	event	driven	or	demand	driven	task.

application	deployment



A	process	for	deciding	which	component	instances	are	required,	how
component	instances	should	be	allocated	to	physical	nodes	in	a	distributed
environment,	and	how	component	instances	should	be	interconnected.

application	logic	object
An	object	that	hides	the	details	of	the	application	logic	separately	from	the
data	being	manipulated.

architectural	pattern
See	software	architectural	pattern.

association
A	relationship	between	two	or	more	classes.

asynchronous	message	communication
A	form	of	communication	in	which	a	concurrent	producer	component	(or
task)	sends	a	message	to	a	concurrent	consumer	component	(or	task)	and	does
not	wait	for	a	response;	a	message	queue	could	potentially	build	up	between
the	concurrent	components	(or	tasks).	Compare	synchronous	message
communication.

availability
The	extent	to	which	the	system	is	available	for	operational	usage.

behavioral	model
A	model	that	describes	the	responses	of	the	system	to	the	inputs	that	the
system	receives	from	the	external	environment.	Also	referred	to	as	dynamic
model.

binary	semaphore



A	Boolean	variable	used	to	enforce	mutual	exclusion.	Also	referred	to	simply
as	semaphore.

black	box	specification
A	specification	that	describes	the	externally	visible	characteristics	of	the
system.

block
A	class	that	has	the	stereotype	«block».

block	definition	diagram
A	SysML	diagram	that	is	a	class	diagram	in	which	each	class	has	the
stereotype	«block».

boundary	object
A	software	object	that	interfaces	to	and	communicates	with	the	external
environment.

broadcast	communication
A	form	of	group	communication	in	which	unsolicited	messages	are	sent	to	all
recipients.

broker
An	intermediary	in	interactions	between	clients	and	services.	Also	referred	to
as	object	broker	or	object	request	broker.

brokered	communication
Message	communication	in	a	distributed	object	environment	in	which	clients
and	services	interact	via	a	broker.

callback



An	operation	handle	sent	by	a	client	in	an	asynchronous	request	to	a	service
and	used	by	the	service	to	respond	to	the	client	request.

CASE
See	Computer-Aided	Software	Engineering.

category
A	specifically	defined	division	in	a	system	of	classification.

class
An	object	type;	hence,	a	template	for	objects.	An	implementation	of	an
abstract	data	type.

class	diagram
A	UML	diagram	that	depicts	a	static	view	of	a	system	in	terms	of	classes	and
the	relationships	between	classes.	Compare	interaction	diagram.

class	interface	specification
A	specification	that	defines	the	externally	visible	view	of	a	class,	including
the	specification	of	the	operations	provided	by	the	class.

class	structuring	criteria
See	object	structuring	criteria.

client
A	requester	of	services	in	a	client/server	system.	Compare	server.

client/server	system
A	system	that	consists	of	clients	that	request	services	and	one	or	more	servers
that	provide	services.



Collaborative	Object	Modeling	and	Architectural	Design	Method
(COMET)
An	iterative	use	case-driven	and	object-oriented	method	that	addresses	the
requirements,	analysis,	and	design	modeling	phases	of	the	software
development	life	cycle.

COMET
See	Collaborative	Object	Modeling	and	Architectural	Design	Method.

COMET/RTE
See	Concurrent	Object	Modeling	and	architectural	design	mEThodfor	Real-
Time	Embedded	Systems.

Concurrent	Object	Modeling	and	architectural	design	mEThod	for	Real-
Time	Em-
bedded	SystemsA	software	design	method	for	real-time	embedded	systems.
See	COMET/RTE.

commonality
The	functionality	that	is	common	to	all	members	of	a	software	product	line.
Compare	variability.

commonality/variability	analysis
An	approach	for	examining	the	functionality	of	a	software	product	line	to
determine	which	functionality	is	common	to	all	product	line	members	and
which	is	not.

communication	diagram
A	UML	2	interaction	diagram	that	depicts	a	dynamic	view	of	a	system	in
which	objects	interact	by	using	messages.



complex	port
A	port	that	supports	both	a	provided	interface	and	a	required	interface.

Completion	Time	Theorem
A	real-time	scheduling	theorem	that	states	that	for	a	set	of	independent
periodic	tasks,	if	each	task	meets	its	first	deadline,	when	all	tasks	are	started	at
the	same	time,	then	the	deadlines	will	be	met	for	any	combination	of	start
times.

component
A	concurrent	self-contained	object	with	a	well-defined	interface,	capable	of
being	used	in	different	applications	from	that	for	which	it	was	originally
designed.	Also	referred	to	as	distributed	component.

component-based	software	architecture
A	software	architecture	in	which	an	infrastructure	is	provided	that	is
specifically	intended	to	accommodate	preexisting	components.

component-based	system
A	system	in	which	an	infrastructure	is	provided	that	is	specifically	intended	to
accommodate	preexisting	components.

component	structuring	criteria
A	set	of	heuristics	for	assisting	a	designer	in	structuring	a	system	into
components.

composite	component
A	component	that	contains	nested	components.	Compare	simple	component.

composite	state



A	state	on	a	statechart	that	is	decomposed	into	two	or	more	substates.	Also
referred	to	as	a	superstate.

composite	structure	diagram
A	UML	2	diagram	that	depicts	the	structure	and	interconnections	of	composite
classes;	specifically	used	to	depict	components,	ports,	and	connectors.

composite	subsystem
A	subsystem	designed	as	a	composite	component.

composite	task
A	task	that	contains	nested	objects.

composition
A	form	of	whole/part	relationship	that	is	stronger	than	an	aggregation;	the
part	objects	are	created,	live,	and	die	together	with	the	composite	(whole)
object.

Computer-Aided	Software	Engineering	(CASE)	tool
A	software	tool	that	supports	a	software	engineering	method	or	notation.

concrete	class
A	class	that	can	be	directly	instantiated	(Booch,	Rumbaugh,	and	Jacobson
2005).	Compare	abstract	class.

concurrent
Referring	to	a	problem,	process,	system,	or	application	in	which	many
activities	happen	in	parallel,	where	the	order	of	incoming	events	is	not	usually
predictable	and	is	often	overlapping.	A	concurrent	system	or	application	has
many	threads	of	control.	Compare	sequential.



concurrent	communication	diagram
A	communication	diagram	that	depicts	concurrent	objects	and	their
interactions	in	the	form	of	asynchronous	and	synchronous	message
communication.

concurrent	object
An	autonomous	object	that	has	its	own	thread	of	control.	Also	referred	to	as
an	active	object,	process,	task,	thread,	concurrent	process,	or	concurrent	task.

concurrent	process
See	concurrent	object.

concurrent	sequence	diagram
A	sequence	diagram	that	depicts	concurrent	objects	and	their	interactions	in
the	form	of	asynchronous	and	synchronous	message	communication.

concurrent	service
A	service	that	services	multiple	client	requests	in	parallel.	Compare	sequential
service.

concurrent	task
See	concurrent	object.

condition
The	value	of	a	Boolean	variable	that	can	be	true	or	false	over	a	finite	interval
of	time.

connector
An	object	that	encapsulates	the	interconnection	protocol	between	two	or	more
components.



constraint
A	condition	that	must	be	true.

continuous	data
Data	that	flows	without	interruption.

control	clustering
A	task	structuring	criterion	by	which	a	control	object	is	combined	into	a	task
with	the	objects	it	controls.

control	object
An	object	that	provides	overall	coordination	for	other	objects.

coordinator	object
An	overall	decision-making	object	that	determines	the	overall	sequencing	for
a	collection	of	objects	and	is	not	state	dependent.

critical	section
The	section	of	a	concurrent	task's	internal	logic	that	is	mutually	exclusive.

data	abstraction
An	approach	for	defining	a	data	structure	or	data	type	by	the	set	of	operations
that	manipulate	it,	thus	separating	and	hiding	the	representation	details.

data	abstraction	class
A	class	that	encapsulates	a	data	structure	or	data	type,	thereby	hiding	the
representation	details;	operations	provided	by	the	class	manipulate	the	hidden
data.

data	replication



Duplication	of	data	in	more	than	one	location	in	a	distributed	application	to
speed	up	access	to	the	data.

database	wrapper	class
A	class	that	hides	how	to	access	data	stored	in	a	database.

deadlock
A	situation	in	which	two	or	more	concurrent	tasks	are	suspended	indefinitely
because	each	task	is	waiting	for	a	resource	acquired	by	another	task.

delegation	connector
A	connector	that	joins	the	outer	port	of	a	composite	component	to	the	inner
port	of	a	part	component	such	that	messages	arriving	at	the	outer	port	are
forwarded	to	the	inner	port.

demand	driven	task
A	task	that	is	activated	on	demand	by	the	arrival	of	a	message	or	internal
event	from	another	task.

deployment	diagram
A	UML	diagram	that	shows	the	physical	configuration	of	the	system	in	terms
of	physical	nodes	and	physical	connections	between	the	nodes,	such	as
network	connections.

design	concept
A	fundamental	idea	that	can	be	applied	to	designing	a	system.

design	method
A	systematic	approach	for	creating	a	design.	The	design	method	helps	identify
the	design	decisions	to	be	made,	the	order	in	which	to	make	them,	and	the



criteria	used	in	making	them.

design	modeling
A	phase	of	the	COMET/RTE	system	and	software	life	cycle	in	which	the
software	architecture	of	the	system	is	designed.	Compare	analysis	modeling
and	requirements	modeling.

design	notation
A	graphical,	symbolic,	or	textual	means	of	describing	a	design.

design	pattern
A	description	of	a	recurring	design	problem	to	be	solved,	a	solution	to	the
problem,	and	the	context	in	which	that	solution	works.

design	strategy
An	overall	plan	and	direction	for	developing	a	design.

device	interface	object
An	information	hiding	object	that	hides	the	characteristics	of	an	I/O	device
and	presents	a	virtual	device	interface	to	its	users.

device	I/O	boundary	object
A	software	object	that	receives	input	from	and/or	outputs	to	a	hardware	I/O
device.

discrete	data
Data	that	arrive	at	specific	time	intervals.

distributed



A	system	or	application	that	is	concurrent	in	nature	and	executes	in	an
environment	consisting	of	multiple	nodes,	which	are	in	geographically
different	locations.

distributed	application
An	application	that	executes	in	a	distributed	environment.

distributed	component
See	component.

distributed	processing	environment
A	system	configuration	in	which	several	geographically	dispersed	nodes	are
interconnected	by	means	of	a	local	area	or	wide	area	network.

distributed	service
A	service	with	functionality	that	is	spread	over	several	server	nodes.

domain-specific	pattern
A	software	pattern	that	is	specific	to	a	given	application	domain.

duration
An	interval	of	time	between	two	events.

dynamic	interaction	model
A	view	of	a	problem	or	system	in	which	control	and	sequencing	are
considered	by	the	sequence	of	interaction	among	objects.

dynamic	interaction	modeling
The	process	of	developing	the	dynamic	interaction	model.

dynamic	model



A	view	of	a	problem	or	system	in	which	control	and	sequencing	are
considered,	either	within	an	object	by	means	of	a	finite	state	machine	or	by
consideration	of	the	sequence	of	interaction	among	objects.	Also	referred	to	as
behavioral	model.

dynamic	state	machine	model
A	view	of	a	problem	or	system	in	which	control	and	sequencing	are
considered	by	means	of	a	finite	state	machine.

encapsulation
See	information	hiding.

entity	class
A	class,	in	many	cases	persistent,	whose	instances	are	objects	that	encapsulate
information.

entity	object
A	software	object,	in	many	cases	persistent,	which	encapsulates	information.

entry	action
An	action	that	is	performed	on	entry	into	a	state.	Compare	exit	action.

environment	simulator
A	tool	that	models	the	inputs	arriving	from	the	external	entities	that	interface
to	the	system,	and	feeds	them	to	the	systems	being	tested.

event
(1)	In	concurrent	processing,	an	external	or	internal	stimulus	used	for
synchronization	purposes;	it	can	be	an	external	interrupt,	a	timer	expiration,
an	internal	signal,	or	an	internal	message.	(2)	On	an	interaction	diagram,	a



stimulus	that	arrives	at	an	object	at	a	point	in	time.	(3)	On	a	state	machine,	the
occurrence	of	a	stimulus	that	can	cause	a	state	transition	on	a	state	machine.

event	driven	I/O	device
An	input/output	device	that	generates	an	interrupt	when	it	has	produced	some
input	or	when	it	has	finished	processing	an	output	operation.

event	driven	task
A	task	that	is	activated	by	an	external	event,	such	as	an	interrupt.

event	sequence
A	time-ordered	description	of	events	and/or	messages	sent	between	objects.

event	sequence	analysis
Performance	analysis	of	the	sequence	of	tasks	that	need	to	be	executed	to
service	a	given	external	event.

event	sequencing	logic
A	description	of	how	a	task	responds	to	each	of	its	message	or	event	inputs	–
in	particular,	what	output	is	generated	as	a	result	of	each	input.

event	synchronization
Control	of	concurrent	task	activation	by	means	of	signals.	Three	types	of
event	synchronization	are	possible:	external	interrupts,	timer	expiration,	and
internal	signals	from	other	concurrent	tasks.

event	trace
A	time-ordered	description	of	each	external	input	and	the	time	at	which	it
occurred.

exit	action



An	action	that	is	performed	on	exit	from	a	state.	Compare	entry	action.

external	block
A	block	that	is	outside	the	system	and	part	of	the	external	environment.

external	event
An	event	from	an	external	object,	typically	an	interrupt	from	an	external	I/O
device.	Compare	internal	event.

family	of	systems
See	software	product	line.

feature
A	functional	requirement;	a	reusable	product	line	requirement	or
characteristic.	A	requirement	or	characteristic	that	is	provided	by	one	or	more
members	of	the	software	product	line.

feature/class	dependency
The	relationship	in	which	one	or	more	classes	support	a	feature	of	a	software
product	line	(i.e.,	realize	the	functionality	defined	by	the	feature).

feature	group
A	group	of	features	with	a	particular	constraint	on	their	usage	in	a	software
product	line	member.

feature	modeling
The	process	of	analyzing	and	specifying	the	features	and	feature	groups	of	a
software	product	line.

finite	state	machine



A	conceptual	machine	with	a	finite	number	of	states	and	state	transitions	that
are	caused	by	input	events.	The	notation	used	to	represent	a	finite	state
machine	is	a	state	transition	diagram,	statechart,	or	state	transition	table.
Also	referred	to	simply	as	state	machine.

formal	method
A	software	engineering	method	that	uses	a	formal	specification	language	–
that	is,	a	language	with	mathematically	defined	syntax	and	semantics.

generalization/specialization
A	relationship	in	which	common	attributes	and	operations	are	abstracted	into
a	superclass	(generalized	class)	and	are	then	inherited	by	subclasses
(specialized	classes).

idiom
A	low-level	pattern	that	describes	an	implementation	solution	specific	to	a
given	programming	language.

incremental	software	development
See	iterative	software	development.

information	hiding
The	concept	of	encapsulating	software	design	decisions	in	objects	in	such	a
way	that	the	object's	interface	reveals	only	what	its	users	need	to	know.	Also
referred	to	as	encapsulation.

information	hiding	class
A	class	that	is	structured	according	to	the	information	hiding	concept.	The
class	hides	a	design	decision	and	is	accessed	by	means	of	operations.



information	hiding	class	specification
A	specification	of	the	external	view	of	an	information	hiding	class,	including
its	operations.

Information	hiding	object
An	instance	of	an	information	hiding	class.

inheritance
A	mechanism	for	sharing	and	reusing	code	between	classes.

input	object
A	software	device	I/O	boundary	object	that	receives	input	from	an	external
input	device.

input/output	(I/O)	object
A	software	device	I/O	boundary	object	that	receives	input	from	and	sends
output	to	an	external	I/O	device.

integrated	communication	diagram
A	synthesis	of	several	communication	diagrams	depicting	all	the	objects	and
interactions	shown	on	the	individual	diagrams.

interaction	diagram
A	UML	diagram	that	depicts	a	dynamic	view	of	a	system	in	terms	of	objects
and	the	sequence	of	messages	passed	between	them.	Communication
diagrams	and	sequence	diagrams	are	the	two	main	types	of	interaction
diagrams.	Compare	class	diagram.

interface



Specifies	the	externally	visible	operations	of	a	class,	service,	or	component
without	revealing	the	internal	structure	(implementation)	of	the	operations.

internal	event
A	means	of	synchronization	between	two	concurrent	objects.	Compare
external	event.

I/O	task	structuring	criteria
A	category	of	the	task	structuring	criteria	that	addresses	how	device	I/O
objects	are	mapped	to	I/O	tasks	and	when	an	I/O	task	is	activated.

iterative	software	development
An	incremental	approach	to	developing	software	in	stages.	Also	referred	to	as
incremental	software	development.

maintainability
The	extent	to	which	software	is	capable	of	being	changed	after	deployment.

MARTE
(Modeling	and	Analysis	of	Real-Time	Embedded	Systems)	A	UML	profile
developed	explicitly	for	real-time	embedded	systems.

mathematical	model
A	mathematical	representation	of	a	system.

message	buffer	and	response	connector
A	connector	object	that	encapsulates	the	communication	mechanism	for
synchronous	message	communication	with	reply.	See	Connector.

message	buffer	connector



A	connector	object	that	encapsulates	the	communication	mechanism	for
synchronous	message	communication	without	reply.	See	Connector.

message	dictionary
A	collection	of	definitions	of	all	aggregate	messages	depicted	on	interaction
diagrams	that	consist	of	several	individual	messages.

message	queue	connector
A	connector	object	that	encapsulates	the	communication	mechanism	for
asynchronous	message	communication.	See	Connector.

message	sequence	description
A	narrative	description	of	the	sequence	of	messages	sent	from	source	objects
to	destination	objects,	as	depicted	on	a	communication	diagram	or	sequence
diagram,	describing	what	happens	when	each	message	arrives	at	a	destination
object.

middleware
A	layer	of	software	that	sits	above	the	heterogeneous	operating	system	to
provide	a	uniform	platform	above	which	distributed	applications	can	run
(Bacon	2003).

modifiability
The	extent	to	which	software	is	capable	of	being	modified	during	and	after
initial	development.

monitor
A	data	object	that	encapsulates	data	and	has	operations	that	are	executed
mutually	exclusively.

multicast	communication



multicast	communication
See	subscription/notification.

multiple	instance	task	inversion
A	task	clustering	technique	where	all	identical	tasks	of	the	same	type	are
replaced	by	one	task	that	performs	the	same	functionality.

multiple	readers	and	writers
An	algorithm	that	allows	multiple	readers	to	access	a	shared	data	repository
concurrently;	however,	writers	must	have	mutually	exclusive	access	to	update
the	data	repository.	Compare	mutual	exclusion.

mutual	exclusion
An	algorithm	that	allows	only	one	concurrent	task	to	have	access	to	shared
data	at	a	time,	which	can	be	enforced	by	means	of	binary	semaphores	or
through	the	use	of	monitors.	Compare	multiple	readers	and	writers.

node
In	a	distributed	environment,	a	unit	of	deployment,	usually	consisting	of	one
or	more	processors	with	shared	memory.

non-time-critical	computationally	intensive	task
A	low-priority	compute-bound	task	that	consumes	spare	CPU	cycles.

object
An	instance	of	a	class	that	contains	both	hidden	data	and	operations	on	that
data.

object	broker
See	broker.

object-oriented	analysis



object-oriented	analysis
An	analysis	method	that	emphasizes	identifying	real-world	objects	in	the
problem	domain	and	mapping	them	to	software	objects.

object-oriented	design
A	software	design	method	based	on	the	concept	of	objects,	classes,	and
inheritance.

object	request	broker
See	broker.

object	structuring	criteria
A	set	of	heuristics	for	assisting	a	designer	in	structuring	a	system	into	objects.
Also	referred	to	as	class	structuring	criteria.

operation
A	specification	of	a	function	performed	by	a	class.	An	access	procedure	or
function	provided	by	a	class.

output	object
A	software	device	I/O	boundary	object	that	sends	output	to	an	external	output
device.

package
A	grouping	of	UML	model	elements.

part	component
A	component	within	a	composite	component.

passive	I/O	device



A	device	that	does	not	generate	an	interrupt	on	completion	of	an	input	or
output	operation.	The	input	from	a	passive	input	device	needs	to	be	read	either
on	a	polled	basis	or	on	demand.

passive	object
An	object	that	has	no	thread	of	control;	an	object	with	operations	that	are
invoked	directly	or	indirectly	by	concurrent	objects.

performance	analysis
A	quantitative	analysis	of	a	real-time	software	design	conceptually	executing
on	a	given	hardware	configuration	with	a	given	external	workload	applied	to
it.

performance	model
An	abstraction	of	the	real	computer	system	behavior,	developed	for	the
purpose	of	gaining	greater	insight	into	the	performance	of	the	system,	whether
or	not	the	system	actually	exists.

period
A	measurement	of	recurring	intervals	of	the	same	duration.

periodic	task
A	concurrent	task	that	is	activated	periodically	(i.e.,	at	regular,	equally	spaced
intervals	of	time)	by	a	timer	event.

Petri	net
A	dynamic	mathematical	model	with	a	graphical	notation	consisting	of	places
and	transitions,	used	for	modeling	concurrent	systems.

port



A	connection	point	through	which	a	component	communicates	with	other
components.

primary	actor
An	actor	that	initiates	a	use	case.	Compare	secondary	actor.

priority	ceiling	protocol
An	algorithm	that	provides	bounded	priority	inversion;	that	is,	at	most	one
lower-priority	task	can	block	a	higher	priority	task.	See	Priority	inversion.

priority	inversion
A	case	where	a	task	cannot	execute	because	it	is	blocked	by	a	lower-priority
task.

priority	message	queue
A	queue	in	which	each	message	has	an	associated	priority.	The	consumer
always	accepts	higher-priority	messages	before	lower-priority	messages.

process
See	concurrent	object.

Product	Line	UML-Based	Software	Engineering	(PLUS)
A	design	method	for	software	product	lines	that	describes	how	to	conduct
requirements	modeling,	analysis	modeling,	and	design	modeling	for	software
product	lines	in	UML.

profile
In	UML,	a	“coherent	set	of	extensions	applicable	to	a	given	domain	or
purpose”	(Rumbaugh	et	al.	2005).

provided	interface



Specifies	the	operations	that	a	component	(or	class)	must	fulfill.	Compare
required	interface.

provided	port
A	port	that	supports	a	provided	interface.	Compare	required	port.

proxy	object
A	software	object	that	interfaces	to	and	communicates	with	an	external	system
or	subsystem.

pseudocode
A	form	of	structured	English	used	to	describe	the	algorithmic	details	of	an
object.

queuing	model
A	mathematical	representation	of	a	computer	system	that	analyzes	contention
for	limited	resources.

rate	monotonic	algorithm
A	real-time	scheduling	algorithm	that	assigns	higher	priorities	to	tasks	with
shorter	periods.

rate	monotonic	analysis
A	performance	analysis	using	rate	monotonic	algorithm.

real-time
Referring	to	a	problem,	system,	or	application	that	is	concurrent	in	nature	and
has	timing	constraints	whereby	incoming	events	must	be	processed	within	a
given	time	frame.

real-time	scheduling	theory



real-time	scheduling	theory
A	theory	for	priority-based	scheduling	of	concurrent	tasks	with	hard
deadlines.	It	addresses	how	to	determine	whether	a	group	of	tasks,	whose
individual	CPU	utilization	is	known,	will	meet	their	deadlines.

remote	method	invocation	(RMI)
A	middleware	technology	that	allows	distributed	Java	objects	to	communicate
with	each	other.

required	interface
The	operations	that	another	component	(or	class)	provides	for	a	given
component	(or	class)	to	operate	properly	in	a	particular	environment.
Compare	provided	interface.

required	port
A	port	that	supports	a	required	interface.	Compare	provided	port.

requirements	modeling
A	phase	of	the	COMET/RTE	system	and	software	software	life	cycle	in	which
the	functional	requirements	of	the	system	are	determined	through	the
development	of	use	case	models.	Compare	analysis	modeling	and	design
modeling.

reuse	category
A	classification	of	a	modeling	element	(use	case,	feature,	class,	etc.)	in	a
software	product	line	by	its	reuse	properties,	such	as	kernel	or	optional.
Compare	role	category.

reuse	stereotype
A	UML	notation	for	depicting	the	reuse	category	of	a	modeling	element.

RMI



RMI
See	remote	method	invocation.

role	category
A	classification	of	a	modeling	element	(class,	object,	component)	by	the	role
it	plays	in	an	application,	such	as	control	or	entity.	Compare	reuse	category.

role	stereotype
A	UML	notation	for	depicting	the	role	category	of	a	modeling	element.

scalability
The	extent	to	which	the	system	is	capable	of	growing	after	its	initial
deployment.

scenario
A	specific	path	through	a	use	case	or	object	interaction	diagram.

secondary	actor
An	actor	that	participates	in	(but	does	not	initiate)	a	use	case.	Compare
primary	actor.

semaphore
See	binary	semaphore.

sequence	diagram
A	UML	interaction	diagram	that	depicts	a	dynamic	view	of	a	system	in	which
the	objects	participating	in	the	interaction	are	depicted	horizontally,	time	is
represented	by	the	vertical	dimension,	and	the	sequence	of	message
interactions	is	depicted	from	top	to	bottom.

sequential



Referring	to	a	problem,	process,	system,	or	application	in	which	activities
happen	in	strict	sequence;	a	sequential	system	or	application	has	only	one
thread	of	control.	Compare	concurrent.

sequential	clustering
A	task	structuring	criterion	in	which	objects	that	are	constrained	to	execute
sequentially	are	mapped	to	a	task.

sequential	service
A	service	that	completes	one	client	request	before	it	starts	servicing	the	next.
Compare	concurrent	service.

sensor
A	device	that	detects	events	or	changes	in	a	physical	property	or	entity	and
converts	the	measurement	or	event	into	an	electrical	signal.

server
A	system	node	that	executes	one	or	more	services.

service
Software	functionality	that	is	distributed,	autonomous,	heterogeneous,	loosely
coupled,	discoverable,	and	reusable.

service	object
A	software	object	that	provides	a	service	for	other	objects.

service-oriented	architecture	(SOA)
A	software	architecture	composed	of	services	that	are	distributed,
autonomous,	heterogeneous,	loosely	coupled,	discoverable,	and	reusable.

simple	component



A	component	that	has	no	components	within	it.	Compare	composite
component.

simulation	model
An	algorithmic	representation	of	a	system,	reflecting	system	structure	and
behavior,	that	explicitly	recognizes	the	passage	of	time,	hence	providing	a
means	of	analyzing	the	behavior	of	the	system	over	time.

software	application	engineering
A	process	within	software	product	line	engineering	in	which	the	software
product	line	architecture	is	adapted	and	configured	to	produce	a	given
software	application,	which	is	a	member	of	the	software	product	line.	Also
referred	to	as	application	engineering.

software	architectural	communication	pattern
A	software	architectural	pattern	that	addresses	the	dynamic	communication
among	distributed	components	of	the	software	architecture.

software	architectural	structure	pattern
A	software	architectural	pattern	that	addresses	the	static	structure	of	the
software	architecture.

software	architectural	pattern
A	recurring	architecture	used	in	a	variety	of	software	applications.	Also
referred	to	simply	as	architectural	pattern.

software	architecture
A	high-level	design	that	describes	the	overall	structure	of	a	system	in	terms	of
components	and	their	interconnections,	separately	from	the	internal	details	of
the	individual	components.



software	product	family
See	software	product	line.

software	product	family	engineering
See	software	product	line	engineering.

software	product	line
A	family	of	software	systems	that	have	some	common	functionality	and	some
variable	functionality.	Also	referred	to	as	family	of	systems,	software	product
family,	product	family,	or	product	line.

software	product	line	architecture
The	architecture	for	a	family	of	products,	which	describes	the	kernel,	optional,
and	variable	components	in	the	software	product	line,	and	their
interconnections.

software	product	line	engineering
A	process	for	analyzing	the	commonality	and	variability	in	a	software	product
line	and	developing	a	product	line	use	case	model,	product	line	analysis
model,	software	product	line	architecture,	and	reusable	components.	Also
referred	to	as	software	product	family	engineering,	product	family
engineering,	or	product	line	engineering.

software	system	context	diagram
A	block	definition	diagram	that	depicts	the	relationships	between	the	software
system	and	the	external	blocks	outside	the	software	system.	Compare	system
context	diagram.

software	system	context	model



A	model	of	a	software	system	boundary	that	is	depicted	on	a	software	system
context	diagram.	Compare	system	context	model.

spiral	model
A	risk-driven	software	process	model.

state
A	recognizable	situation	that	exists	over	an	interval	of	time.

statechart
A	UML	hierarchical	state	transition	diagram	in	which	the	nodes	represent
states	and	the	arcs	represent	state	transitions.

state	dependent	control	object
An	object	that	hides	the	details	of	a	finite	state	machine;	that	is,	the	object
encapsulates	a	statechart,	a	state	transition	diagram,	or	the	contents	of	a	state
transition	table.

state	machine
See	finite	state	machine.

state	machine	diagram
See	statechart.

state	transition
A	change	in	state	that	is	caused	by	an	input	event.

state	transition	diagram
A	graphical	representation	of	a	finite	state	machine	in	which	the	nodes
represent	states	and	the	arcs	represent	transitions	between	states.

state	transition	table



state	transition	table
A	tabular	representation	of	a	finite	state	machine.

static	modeling
The	process	of	developing	a	static,	structural	view	of	a	problem	or	system.

stereotype
A	classification	that	defines	a	new	building	block	that	is	derived	from	an
existing	UML	modeling	element	but	is	tailored	to	the	modeler's	problem
(Booch,	Rumbaugh,	and	Jacobson	2005).

structural	modeling
See	static	modeling.

subscription/notification
A	form	of	group	communication	in	which	subscribers	receive	event
notifications.	Also	referred	to	as	multicast	communication.

substate
A	state	that	is	part	of	a	composite	state.

subsystem
A	significant	part	of	the	whole	system;	a	subsystem	provides	a	subset	of	the
overall	system	functionality.

subsystem	communication	diagram
A	high-level	communication	diagram	depicting	the	subsystems	and	their
interactions.

superstate
A	composite	state.



synchronous	message	communication
A	form	of	communication	in	which	a	producer	component	(or	concurrent
task)	sends	a	message	to	a	consumer	component	(or	concurrent	task)	and	then
immediately	waits	for	an	acknowledgment.	Compare	asynchronous	message
communication.

synchronous	message	communication	with	reply
A	form	of	communication	in	which	a	client	component	(or	producer	task)
sends	a	message	to	a	service	component	(or	consumer	task)	and	then	waits	for
a	reply.

synchronous	message	communication	without	reply
A	form	of	communication	in	which	a	producer	component	(or	task)	sends	a
message	to	a	consumer	component	(or	task)	and	then	waits	for	acceptance	of
the	message	by	the	consumer.

SysML	(Systems	Modeling	Language)
A	visual	modeling	language	based	on	UML	2	for	modeling	systems
requirements	and	designs.

system	context	diagram
A	block	definition	diagram	that	depicts	the	relationships	between	the	system
and	the	external	blocks	outside	the	system.	Compare	software	system	context
diagram.

system	context	model
A	model	of	a	system	(hardware	and	software)	boundary	that	is	depicted	on	a
system	context	diagram.	Compare	software	system	context	model.

task



task
A	task	represents	the	execution	of	a	sequential	program	or	a	sequential
component	of	a	concurrent	program.	Each	task	deals	with	a	sequential	thread
of	execution;	there	is	no	concurrency	within	a	task.	See	concurrent	object.

task	architecture
A	description	of	the	concurrent	tasks	in	a	system	or	subsystem	in	terms	of
their	interfaces	and	interconnections.

task	behavior	specification	(TBS)
A	specification	that	describes	the	concurrent	task	event	sequencing	logic.

task	clustering	criteria
A	category	of	the	task	structuring	criteria	that	addresses	whether	and	how
objects	should	be	grouped	into	concurrent	tasks.

task	event	sequencing	logic
A	description	of	how	a	task	responds	to	each	of	its	message	or	event	inputs;	in
particular,	what	output	is	generated	as	a	result	of	each	input.

task	interface	specification	(TIS)
A	specification	that	describes	a	concurrent	task's	interface,	structure,	timing
characteristics,	relative	priority,	and	errors	detected.

task	inversion
A	task	clustering	concept	that	originated	in	Jackson	Structured	Programming
and	Jackson	System	Development,	whereby	the	tasks	in	a	system	can	be
merged	in	a	systematic	way.

task	priority	criteria



A	category	of	the	task	structuring	criteria	that	addresses	the	importance	of
executing	a	given	task	relative	to	others.

task	structuring
A	stage	in	software	design	where	the	objective	is	to	structure	a	concurrent
application	into	concurrent	tasks	and	define	the	task	interfaces.

task	structuring	criteria
A	set	of	heuristics	for	assisting	a	designer	in	structuring	a	system	into
concurrent	tasks.

temporal	clustering
A	task	structuring	criterion	by	which	activities	that	are	not	sequentially
dependent	but	are	activated	by	the	same	event	are	grouped	into	a	task.

testability
The	extent	to	which	software	is	capable	of	being	tested	during	and	after	its
initial	development.

thread
Seeconcurrent	object,	task.

time-critical	task
A	task	that	needs	to	meet	a	hard	deadline.

timed	Petri	net
A	Petri	net	that	allows	finite	times	to	be	associated	with	the	firing	of
transitions.

timer	event



A	stimulus	used	for	the	periodic	activation	of	a	concurrent	task.

timer	object
A	control	object	that	is	activated	by	an	external	timer.

timing	diagram
A	sequence	diagram	that	shows	the	time-ordered	execution	sequence	of	a
group	of	concurrent	tasks.

traceability
The	extent	to	which	products	of	each	phase	can	be	traced	back	to	products	of
previous	phases.

UML
See	Unified	Modeling	Language.

Unified	Modeling	Language	(UML)
A	language	for	visualizing,	specifying,	constructing,	and	documenting	the
artifacts	of	a	software-intensive	system	(Booch,	Rumbaugh,	and	Jacobson
2005).

Unified	Software	Development	Process	(USDP)
An	iterative	use	case-driven	software	process	that	uses	the	UML	notation.

use	case
A	description	of	a	sequence	of	interactions	between	one	or	more	actors	and
the	system.

use	case	diagram



A	UML	diagram	that	shows	a	set	of	use	cases	and	actors	and	their
relationships	(Booch,	Rumbaugh,	and	Jacobson	2005).

use	case	model
A	description	of	the	functional	requirements	of	the	system	in	terms	of	actors
and	use	cases.

use	case	modeling
The	process	of	developing	the	use	cases	of	a	system	or	software	product	line.

use	case	package
A	group	of	related	use	cases.

user	interaction	object
A	software	object	that	interacts	with	and	interfaces	to	a	human	user.

user	interaction	task
A	task	that	interacts	sequentially	with	a	human	user.

utilization	bound	theorem
A	real-time	scheduling	theorem	that	states	the	conditions	under	which	a	set	of
n	independent	periodic	tasks	scheduled	by	the	rate	monotonic	algorithm	will
always	meet	their	deadlines.

variability
The	functionality	that	is	provided	by	some,	but	not	all,	members	of	the
software	product	line.	Compare	commonality.

variation	point



A	location	at	which	change	can	occur	in	a	software	product	line	artifact	(e.g.,
in	a	use	case	or	class).

visibility
The	characteristic	that	defines	whether	an	element	of	a	class	is	visible	from
outside	the	class.

white	page	brokering
A	pattern	of	communication	between	a	client	and	a	broker	in	which	the	client
knows	the	service	required	but	not	the	location.	Compare	yellow	page
brokering.

whole/part	relationship
A	composition	or	aggregation	relationship	in	which	a	whole	class	is
composed	of	part	classes.

yellow	page	brokering
A	pattern	of	communication	between	a	client	and	a	broker	in	which	the	client
knows	the	type	of	service	required	but	not	the	specific	service.	Compare	white
page	brokering.
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