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Foreword

I take immense pleasure in writing the foreword for this very well-written book on
“Reliability and Safety Engineering” that connects the bridge between the quin-
tessential first principles of reliability with subsequent theoretical development of
conceptual frameworks, and their relevance to practical realization of complex
engineering systems. Interspersed with ample demonstrative examples and practical
case studies, this is a self-contained exposition, written in a commendably lucid
style.

Successful realization of sustainable and dependable products, systems, and
services involves an extensive adoption of Reliability, Quality, Safety, and
Risk-related procedures for achieving high assurance levels of performance; also
pivotal are the management issues related to risk and uncertainty that govern the
practical constraints encountered in their deployment. A need for a book that
addresses these issues in comprehensive rigor without compromising on the
underlying goal of succinct precision and simplicity has been long felt. And, I am
sure this book has succeeded in achieving this fine balance.

This book is aimed at giving a conceptually sound introduction to reliability
engineering and its allied interdisciplinary applications, especially for students at
the graduate level. Building upon the first principles, this gradually evolves into a
knowledge bank that can be relied on for gaining insights into the performance
analysis of complex systems. With its equally precise explanations both in breadth
and scope, researchers and practicing engineers alike will find this a valuable
authority as a ready reference and a handbook. After a detailed introduction and
models of reliability, risk, and uncertainty analysis, this elaborates on the appli-
cations through sufficient exposure to the varied fields of nuclear engineering,
electronics engineering, mechanical engineering, software engineering, and power
systems engineering.
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viii Foreword

I strongly recommend this book for its elegant discourse on the fundamentals of
reliability and the much needed practical outlook it succeeds in constructing.

Hoang Pham

Distinguished Professor

Department of Industrial

and Systems Engineering

Rutgers, the State University of New Jersey
Piscataway, New Jersey

USA



Preface

Nothing lasts forever and so is the life of engineering systems. The consequence of
failures of engineering system ranges from minor inconvenience to significant
economic loss and deaths. Designers, manufacturers, and end users strive to min-
imize the occurrence and recurrence of failures. In order to minimize failures in
engineering systems, it is essential to understand ‘why’ and ‘how’ failures occur. It
is also important to know how often such failures may occur. If failures occur,
inherent safety systems/measures must ensure the consequences of failures are
minimal. Reliability deals with the failure concept, whereas safety deals with the
consequences of failure. Reliability and Safety Engineering explores failures and
consequences of failures to improve the performance of engineering systems. It
plays a vital role in sectors such as chemical and process plants, nuclear facilities,
and aerospace which can impose potential hazards. The main benefit of its appli-
cation is to provide insights into design, performance, and environmental impacts,
including the identification of dominant risk contributors and the comparison of
options for reducing risk. In addition, it provides inputs to decisions on design and
back fitting, system operation and maintenance, safety analysis and on regulatory
issues.

Reliability and safety are the core issues to be addressed during the design,
operation, and maintenance of engineering systems. LCC and sustainability are key
to the understanding of risk and environmental impact of operation and mainte-
nance of systems over the designed life leading to what one may call the ‘Green
Reliability’. This book aims to present basic concepts and applications along with
latest state of art methods in Reliability and Safety engineering. The book is
organized as follows:

Chapter 1 introduces reliability and safety concepts and discusses basic termi-
nology, resources, past, present challenges, and future needs. Chapter 2 provides a
detailed review of probability and statistics essential for understanding the reli-
ability and safety analysis methods discussed in the remaining chapters.

Chapter 3 discusses various system reliability modeling techniques such as
Reliability Block Diagram, Fault Tree Analysis, and Markov modeling. Component
(or basic event) reliability values are assumed to be available in analyzing system
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X Preface

level reliability. Repairable systems are also addressed and several practical
examples are given. In Chap. 4, methods that focus on reliability analysis of
complex systems, Monte Carlo simulation, and dynamic fault tree analysis are
explained.

Conventional engineering fields, viz., Electronics Engineering, Software
Engineering, Mechanical Engineering, and Structural Engineering, have their own
terminology and methodologies in applying the reliability concepts. Though the
basic objective is to improve the system effectiveness, approach in adopting reli-
ability concepts is slightly case specific to each area. Chapters 5-8 present reli-
ability terminology in the various above-mentioned conventional engineering fields.
The current practices, resources, and areas of research are highlighted with respect
to each field.

Chapter 9 focuses on maintenance of large engineering systems. Essentially this
chapter covers two areas of maintenance, i.e., prioritizing of equipment and opti-
mization in maintenance decision making.

Methodology for Probabilistic Safety Assessment (PSA) in general is addressed
in Chap. 10. Various elements of PSA including common cause failure analysis,
human reliability analysis, and importance measures are presented. Chapter 11
introduces dynamic methods in safety analysis with special emphasis on dynamic
event tree analysis; the elements involved in the method and comparison among its
implementation are also discussed. Practical applications of PSA in operation and
maintenance activities of complex systems like nuclear power plants are discussed
in Chap. 12.

Uncertainty is present in any reliability and safety calculation due to limitations
in exactly assessing the parameters of the model. Creditability and practical
usability of reliability and risk analysis results is enhanced by appropriate treatment
of uncertainties. Various uncertainty propagation and analyzing methods including
Monte Carlo simulation, Fuzzy arithmetic, Probability Bounds, and
Dempster-Shafer theory are explained in Chaps. 13 and 14.

This book is useful for advanced undergraduate and postgraduate students in
Nuclear Engineering, Aerospace Engineering, Industrial Engineering, Reliability
and Safety Engineering, Systems Engineering, Applied Probability and Statistics,
and Operations Research. The book is also suitable for one semester graduate
course on Reliability and Safety Engineering in all conventional engineering
branches like Civil, Mechanical, Chemical, Electrical, Electronics, and Computer
Science. It will also be a valuable reference for practicing engineers, managers, and
researchers involved in reliability and safety activities of complex engineering
systems.
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Chapter 1
Introduction

1.1 Need for Reliability and Safety Engineering

Failure is inevitable for everything in the real world, and engineering systems are no
exception. The impact of failures varies from minor inconvenience and costs to
personal injury, significant economic loss, environmental impact, and deaths.
Examples of major accidents are Fukushima-Daiichi nuclear disaster, Deepwater
Horizon oil spill, Chernobyl accident, Bhopal gas tragedy, and space shuttle
Columbia disaster. Causes of failure include bad engineering design, faulty man-
ufacturing, inadequate testing, human error, poor maintenance, improper use and
lack of protection against excessive stress. Designers, manufacturers and end users
strive to minimize the occurrence and recurrence of failures. In order to minimize
failures in engineering systems, it is essential to understand ‘why’ and ‘how’
failures occur. It is also important to know how often such failures may occur.
Reliability deals with the failure concept where as the safety deals with the con-
sequences after the failure. Inherent safety systems/measures ensure the conse-
quences of failures are minimal. Reliability and safety engineering provides a
quantitative measure of performance, identifies important contributors, gives
insights to improve system performance such as how to reduce likelihood of failures
and risky consequences, measures for recovery, and safety management.

Need for higher reliability and safety is further emphasized by the following
factors:

Increased product complexity

Accelerated growth of technology

Competition in the market

Public awareness or customer requirement

Modern safety and liability laws

Past system failures

Cost of failures, damages and warranty

Safety considerations with undesirable consequences
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Introduction

Reliability and safety engineering has a wide number of applications in all

engineering fields, and the following are worth mentioning:

Design evaluation;

Identification of critical components/events;
Determination of de-rating/factor of safety;
Environmental comparisons;

Redundancy requirements;

Regulatory requirements;
Burn-In/Accelerated life tests
Establishment of preventive maintenance programs;
Repair and spare part management;
Replacement and residual life estimations;
Safety management;

Emergency management;

Life cycle cost analysis.

1.2 Exploring Failures

One of the key elements of reliability and safety assessment is exploring failures,
which include study, characterize, measure, and analyze the failures. There are
many causes for failures of engineering systems, a few examples are:

design errors;

substandard components;

lack of protection against over stresses;
poor maintenance;

aging/wear out;

human errors.

poor manufacturing techniques and lack of quality control

Failure rate (or hazard rate) of a population of products/items are often repre-
sented with a life characteristic curve or bathtub curve. A typical bathtub curve is
shown in Fig. 1.1. Failure or Hazard rate is the instantaneous rate of failure for
survivals until time t. When the products are put into operation, some of them fail
quickly due to manufacturing defects or inherently weak elements. This means that
the early hazard rate is very high. But once the weak products are gone the hazard
rate falls and becomes fairly constant. Finally the hazard rate rises again due to
wear-out. As shown in Fig. 1.1, the hazard function over life time of product can be

divided into three distinct regions:

(1) Early failure region or infant mortality (decreasing hazard rate)

(2) Useful life region (constant hazard rate)
(3) Wear-out failure region (increasing hazard rate)
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Hazard rate

1 ’ 2 3

v

Operating time —_—

Fig. 1.1 Bath-tub curve

In the region (1), products/items should be monitored carefully before using as
hazard rate is high. Some manufactures use burn-in tests to screen out infant
mortalities before supplying them to end users. Although highly accelerated life
tests or highly accelerated stress tests are useful to identify and eliminate the root
causes economically, burn-in tests are still effective for products whose root causes
can’t be eliminated completely [1]. The region (2) is useful life period where hazard
rate is governed by chance/random failure and is fairly constant. The region
(3) indicates that the product should be replaced or scrapped as hazard rate starts
increasing.

1.3 Improving Reliability and Safety

Reliability is an important issue affecting each stage of life cycle ranging from birth
to death of a product or a system. Different stages in life cycle of a system are
shown in the Fig. 1.2. The first step in the improvement of reliability is to measure
and assess the present level of reliability. One has to identify the important
contributors/reasons for improving the reliability with given resources. It also
depends upon in what stage the system is, for example if the system is in the design
stage, only by simplifying the design, using de-rating/factor of safety and redun-
dancy, one can improve the reliability. By using good components and quality
control practices reliability can be improved at the production stage. Good main-
tenance practices are the only resort during the stage of usage of the system.
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Design Production Use
Needs & Conceptual Manufacture Operation Phase out
Require- |:> Preliminary |:> Assembly |:> Maintenance |:>
ments Detail Support
e  Simplity e Component Selection e Good Maintenance
e  De-rating e Quality Control Practices

e Redundancy

Fig. 1.2 Different stages in life cycle of a system

Safety is combination of reliability and consequences. Apart from increasing the
level of reliability for improving safety, consequences must be reduced by pro-
viding protection/safety systems which anticipates the failures and make sure that
consequences are in the acceptable level.

1.4 Definitions and Explanation of Some Relevant Terms

1.4.1 Quality

The International Organization for Standardization (ISO) defines quality as “The
totality of features and characteristics of a product or service that bear on its ability
to satisfy stated and implied needs.” In other words, quality is conformance to
specifications or requirements defined by customer. Quality is not binary rather a
continuous structure between good and bad.

Quality management uses quality assurance and control of processes as well as
products to achieve more consistent quality. ISO publishes standards that provide
guidance on how to ensure consistency and continuous improvement of quality in
products or services. For example, ISO 9001:2008 [2] sets out the requirements of a
quality management system. Companies or organizations can get certification that a
quality management is in place. This ISO standard has been implemented by over
one million organizations in over 170 countries [3].

Numerous techniques are available for improving quality. Examples for the
methods of quality management and techniques that incorporate and drive quality
improvement are ISO 9004:2008, Total Quality Management (TQM), statistical
process control, Six Sigma, Quality Function Deployment (QFD), Quality Circle,
Taguchi methods, etc.
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1.4.2 Reliability

As per IEEE standards [4], reliability is defined as the ability of a system or
component to perform its required functions under stated conditions for a specified
period of time. The key elements of the definition are ability, required function,
conditions, and specified period of time. Ability is expressed quantitatively with
probability. Required function relates to expected performance. Stated conditions
usually refer to environmental conditions of operation. Specified period of time is
also referred as mission time which provides expected duration of operation.
Mathematically, reliability is defined as the probability that the random variable
time to failure (T) is greater or equal to mission time (t), as shown below.

R(t) = P(T>1) (1.1)

Typical measures of reliability are failure rate/frequency, mean time to failure,
mean time between failure, etc. Although reliability provides quantitative measure
of performance, one should not look at the absolute values but rather on relative
basis. For example, comparison with a target value expected by regulators or
comparison among alternative design changes.

It is important to understand the difference between quality and reliability. As
mentioned before, quality is conformance to specifications, which is at time t = 0
before we start operation. Reliability can often be termed as projection of quality
over time, meeting customer’s expectations over its life time.

1.4.3 Maintainability

BS 4778 defines maintainability as “The ability of an item, under stated conditions
of use, to be retained in, or restored to, a state in which it can perform its required
functions, when maintenance is performed under stated conditions and using pre-
scribed procedures and resources” [5]. The measure of maintainability is the
probability that the maintenance action can be carried out within a stated interval.
Corrective maintenance is done after the occurrence of failure. However, in order to
reduce the chance of failures and associated inconvenience, maintenance can also
be preventive or predictive.

Corrective Maintenance
The maintenance carried out after fault recognition to put an entity into a state in
which it can perform a required function.

Preventive Maintenance
The maintenance carried out at predetermined intervals or according to prescribed
criteria and intended to reduce the probability of failure or the degradation of the
functioning of an entity.
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Predictive Maintenance
Form of preventive maintenance performed continuously or at intervals governed
by observed condition to monitor, diagnose or trend a structure, system or com-
ponents’ condition indicators; results indicate current and future functional ability
or the nature of and schedule for planned maintenance. It is also known as condition
based maintenance.

Typical measures of maintainability are repair rate, mean time to repair, etc. The
technical specifications such as surveillance test interval and inspection interval are
often determined using the reliability and maintainability studies.

1.4.4 Availability

As introduced by Barlow and Proschan [6], availability is the probability that a
product or system is in operation at a specified time. This definition can be termed
as instantaneous availability. There are several forms of availability. For example,
average availability is defined on an interval of the real line and steady state
availability is the limit of instantaneous availability function as time approaches
infinity.

Availability is same as reliability for a non-repairable system. For a repairable
system, it can be returned to service with repair when failure occurs, thus the effect
of failure can be minimized. By allowing repair, reliability does not change but
availability changes.

The simplest representation of availability (A) is:

Uptime of system (12)

- Uptime of system + Downtime of system

Uptime depends on reliability of the system where as downtime depends on
maintainability of the system. Thus availability is function of both reliability and
maintainability.

1.4.5 Risk and Safety

Several definitions of risk exist in the literature. The most popular definition of risk
is the one proposed by Kaplan and Garrick [7]. They defined risk as function of
answers to three questions: “what can go wrong?”’; “how likely is it to go wrong?”;
“if it does go wrong, what are the consequences?”” Quantitatively, risk is defined as
a set of triplets as shown in equation:
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Risk = <S,~P,~x,~> (13)

Where ‘i’ is a scenario number, i = 1, 2...N and S; is an accident scenario which
has probability of P; and a consequence of x;. For example, an accident scenario in a
chemical plant has a probability of le-2 and its associated consequences results in a
financial loss of $10,000. Consequences of different scenarios may have similar or
same consequences, which results in probability/frequency of scenario as the vital
element. Popular measures of risk for nuclear industry are core damage frequency
and large early release frequency.

Aven’s definition of risk includes uncertainty as an essential element of risk. As
per his definition [8], risk is function of accident scenario (A), consequence (C), and
uncertainty (U) about A and C, Risk = (A, C, U).

Risk and safety are related to each other: the higher the risk, the lower the safety.
Risk assessment is also referred as safety assessment with practically no difference
in engineering applications.

1.4.6 Probabilistic Risk Assessment/Probabilistic
Safety Assessment

Probabilistic risk assessment/probabilistic safety assessment (PRA/PSA) is aimed at
evaluating the risks of a system using a probabilistic method. IAEA safety standards
[9, 10] define PSA as a comprehensive, structured approach to identifying failure
scenarios, constituting a conceptual and a mathematical tool for deriving numerical
estimates of risk. PSA/PRA essentially aims at identifying the events and their
combination(s) that can lead to severe accidents, assessing the probability of
occurrence of each combination and evaluating the consequences. The term PRA
and PSA are interchangeably used.

PSA/PRAs are performed for practically all nuclear power plants (NPPs), and
also applied in aerospace, chemical and process industries. In NPPs, it is performed
at three levels: Level-1 PSA to estimate core damage frequency, Level-2 PSA to
estimate radioactive release frequency, and Level-3 PSA to estimated public health
and societal risk.

1.5 Resources

Tables 1.1, 1.2, 1.3, and 1.4 lists some important journals, international confer-
ences, failure data banks and commercial software in the reliability and safety field.



Table 1.1 International journals

Introduction

Name of journal Publisher Published
since

IEEE Transactions on Reliability IEEE Reliability Society, USA 1952

Microelectronics Reliability Elsevier, UK 1962

Reliability Engineering and System Safety Elsevier, UK 1980

Risk Analysis Society for Risk Analysis, USA 1981

Journal of System Safety The International System 1983

Safety Society, USA

Structural Safety Elsevier, UK 1983

International Journal of Quality and Emerald Publishers, UK 1984

Reliability Management

Quality and Reliability Engineering John Wiley & Sons, USA 1985

Safety Science Elsevier, UK 1991

International Journal of Reliability, Quality World Scientific Publishing Co. 1994

and Safety Engineering Pvt. Ltd., Singapore

Process Safety and Environmental Elsevier, UK 1996

Protection

Journal of Risk Research Taylor & Francis Group 1998

Communications in Dependability and DQM Research Centre, Serbia 1998

Quality Management

International Journal of Performability RAMS Consultants, Jaipur, 2005

Engineering India

International Journal of Reliability and Inderscience Publishers, 2006

Safety Switzerland

Journal of Risk and Reliability Professional Engineering, UK 2006

Journal of Quality and Reliability Hindawi Pub. Co., USA 2008

Engineering

International Journal of System Assurance Springer 2009

Engineering and Management

Journal of Life Cycle Reliability and Safety Society for Reliability and 2010

Engineering

Safety, India

1.6 History

A historical overview of reliability and safety engineering in the form of important

milestones is briefly described below.

The concept of reliability and safety started relatively later than other engi-
neering branches. As Dr. W.A. Shewart inspired the rise of statistical quality control
at Bell labsin 1920s, W. Weibull conceived the Weibull distribution to represent
fatigue of materials. Pierce in 1926 introduced the concept ‘the axiom that a chain is
no stronger than its weakest link is one with essential mathematical implications’.
In the 1930s, aircraft accidents were recorded in the form of statistical reports by
collecting failure data of various aircraft components [11]. Designers and manu-
facturers made use of this feedback for improvement of future designs. The first risk
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Table 1.2 International conferences

Name of the conference Organizer/sponsor Frequency

Probabilistic Safety Assessment and International Association for 2 years

Management (PSAM) Probabilistic Safety Assessment and
Management

Probabilistic Safety Assessment American Nuclear Society 2 years

Society for Risk Analysis Annual Society for Risk Analysis Annual

Meeting (SRA)

ESREL Conference European Safety and Reliability Annual
Association

International System Safety Conference The International System Safety Annual

(ISSC) Society

The Annual Reliability and IEEE/ASQ Annual

Maintainability Symposium (RAMS)

The International Applied Reliability Reliasoft Annual

Symposium

International Conference on Quality, IIT Bombay and Delhi Univ., India |3 years

Reliability, and Information Technology

(ICQRIT)

International Conference on Reliability, Bhabha Atomic Research Centre, 5 years

Safety and Hazard (ICRESH) India

Table 1.3 Failure data banks

Name of database Developed by

Information

IAEA International Atomic Energy For use in nuclear systems
TECDOC-478 Agency, Austria
TIAEA International Atomic Energy Human reliability data

TECDOC-1048 Agency, Austria

MIL-HDBK-217F

Department of Defense, USA

Electronic equipment

Telcordia Telcordia Technologies, USA For electronic, electrical,
electro-mechanical components
IEC 62380 International Electrotechnical Electronics components, PCBs
Commission, Switzerland and equipment
NPRD-95 Reliability Analysis Centre For use in mechanical systems
PSID Centre for Chemical Process For use in process and chemical

Safety, USA

industry

objective for aircraft safety was defined by Pugsley in 1939. He asked for the
accident rate of an aircraft should not exceed 10/h.

The first predictive reliability models appeared while Wernher von Braun, one of
the most famous rocket scientists, was working on the V1 missile in Germany. The
rockets were found to be having poor reliability. The team worked based on the
principle that a chain is no stronger than its weakest link. But failures were
observed with not only the weakest part but also with remaining components. The
team later consulted a mathematician, Eric Pernchka, who came up with a concept
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Table 1.4 Commercial software

Software Developed by Available important tools

RELEX Relex Software RBD, fault tree, event tree, Life Cycle cost,
Corporation, USA optimization, Markov

ISOGRAPH Isograph Ltd, UK Fault trees, event trees, Markov

RELIASOFT ReliaSoft Accelerated life testing, reliability prediction,
Corporation, USA Weibull analysis

RISKSPECTRUM RelconScandpower, PSA, Bayesian updating, risk monitor
Sweden

ITEM Item Software, UK Fault trees, event trees, Markov, FMECA,

Electronics (MIL-HDBK-217, IEC 62380)

The EPRI HRA Electric Power Human reliability analysis

calculator Research Institute,
USA

which says ‘if the survival probability of an element is 1/x, survival probability of
system of n such similar components will be 1/x", which forms the basis for the
reliability of series system [11]. Subsequently, Wern Von Braun introduced the
concept of redundancy to improve the reliability of systems.

The concepts of reliability developed slowly until World War II. During the
War, over 50 % of the defense equipment was found to be failed state in storage; it
was due to electronic system failure and in particular because of vacuum tube
failures. The unreliability of vacuum tube acted as a catalyst to the rise of reliability
engineering. Reliability was born as a branch of engineering in USA in 1950s. In
1952 the Department of Defense (DOD) and the American electronic industry
created the Advisory Group on Reliability of Electronic Equipment (AGREE).
AGREE report suggested modularity in design, reliability growth and demonstra-
tion tests to improve reliability and also a classical definition of reliability. This
study triggered several applications in electronic industry and also spread to
aerospace industry. This period witnessed the first conference on ‘quality control
and reliability’ and the first journal in the area ‘IEEE Transaction on Reliability’ by
the Institute of Electrical and Electronics Engineers.

In 1961 H.A. Watson introduced ‘Fault Tree Analysis (FTA)’ concept to eval-
uate control system of Minuteman I Intercontinental Ballistic Missile (ICBM)
launching system at Bell telephone laboratories. The FTA is one of the pillars for
safety and risk assessment even today, which is extensively used in aerospace and
nuclear industries. The failure mode effect analysis (FMEA) method was also
introduced in the early 1960s by aerospace industry. FMEA technique also became
popular in automotive industry. Following Apollo 1 disaster in 1967, aerospace
industry began to use a systematic approach to evaluate risk called ‘Probabilistic
Risk Assessment (PRA)’. In 1960s, specializations of reliability engineering
emerged, for instance structural reliability as a branch was born to investigate
structural integrity of buildings, bridges, vessels, pipes, etc. [12]. Distinguished
mathematicians Birnbaum, Barlow, Proschan, Esary and Weibull extensively
contributed to the development of mathematics of reliability [11].
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In the early 1970s, nuclear industry had adapted PRA concepts from aerospace
industry, but subsequently PRA methods developed in nuclear industry were
adapted by aerospace industry [13]. Undoubtedly the ground breaking study for risk
assessment of nuclear power plants is the Reactor Safety Study initiated by US
Atomic Energy Commission and led by the pioneer Prof. Rasmuseen. This land-
mark study resulted in a comprehensive WASH-1400 report [14]. This study
investigated a large number of accident scenarios, quantified risk, and identified
important risk contributors. Event tree analysis took birth during this study, which
is an essential element of today’s PRA/PSAs. Although the study had been criti-
cized for underestimating uncertainties, dependencies, and operator actions, three
mile island (TMI) accident which took place in USA in 1979 resembled one of the
accident scenario identified in WASH-1400. PRA methodology received a major
boost after TMI accident. US Nuclear Regulatory Commission made extensive
efforts to develop and promote PRA methods. For example, NUREG-1150 [15]
study assessed risk of five US nuclear power plants, which demonstrated the
potential PRA applications. Today practically nuclear power plants all over the
world perform PRA/PSAs and regulators use PRA/PSAs in the risk informed
regulation of plants. Risk assessments have also been performed in other industry
sectors, for instance, aeronautical, chemical, power, railways for complying with
regulations and also for design improvements. In 1970s, another branch of reli-
ability engineering emerged, software reliability which was concerned about soft-
ware development, testing and improvement [16].

In 1980s, methods to capture dependencies and to model operator actions were
extensively developed. For example, common cause failure models proposed by
Fleming [17] and Mosleh [18] and human reliability analysis methods introduced
by Swann [19]. Techniques such as Bayesian analysis to update failure models with
field date and also use of accelerated life testing to investigate failure causes became
popular during this time [20].

Traditionally basic event or component failure models were obtained from sta-
tistical analysis of field or life tests data, Bayesian updating, or expert elicitation
techniques. To overcome the criticism about uncertainties in such models, 1990s
witnessed the rise of physics of failure or mechanist models, especially in elec-
tronic, electronic, and mechanical components. This approach used knowledge of
degradation process and operating stresses/loads to characterize failure mecha-
nisms. The recent trend is the hybrid methods that combine different types of data
including failure data banks, expert judgment, physical of failures information, and
life test data using Bayesian updating technique [20].

Complexity of systems and technological developments is ever increasing. To
cope with these challenges, simulation based safety/reliability analysis methods
have been receiving increased attention. The availability of high performance
computing infrastructure at unprecedented levels helps in such simulations.
Integrating deterministic models with probabilistic models are being explored to
improve reliability/risk modeling taking advantage of computational power.
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Table 1.5 Evolution of reliability and risk assessment methods

Method/Milestone

Developed/Inspired by

Reliability predictive models

Eric Pernchka in 1940s

Birth of reliability engineering as a branch

AGREE study in 1950s

Fault tree analysis

Watson at Bell telephone laboratories in 1961

Markov models in reliability/risk studies

Andrei A. Markov invented the method

FMEA

Aeronautics industry in 1960s

Probabilistic risk/safety assessment-Event
tree analysis

Rasmussen’s Reactor safety study
(WASH-1400) in 1975

Bayesian approach in reliability/risk studies

Nuclear/Electronics industry

Importance measures

W.E. Vesely in 1983

Dependency models

A. Mosleh in 1980s

Human reliability

A.D. Swain in 1980s

Physical of failure models

Electronic industry in 1990s

Simulation based safety/reliability methods

Nuclear industry in 2000s

Table 1.5 summarizes important milestones discussed earlier. Detailed expla-
nation on evolution of reliability and safety engineering can be found in Villemeur
[11], Elsayed [21], Misra [22], Modarres [13, 20].

1.7 Present Challenges and Future Needs for the Practice
of Reliability and Safety Engineering

Reliability/Safety Assessments are very useful to manage reliability/risk and sup-
port decision making for safe, economical and efficient design and operation of
complex engineering systems like nuclear power plants, chemical and process
plants, aeronautical systems and defense equipment. Specific applications include
design evaluations for comparison with standards, identification of critical parts for
reliability and safety management, evaluation of inspection and maintenance
intervals and residual life estimation.

In spite of several potential applications of reliability/safety studies, there are a
few limitations. Accuracy of these studies is greatly influenced by models, uncer-
tainties in data and models, unjustified assumptions and incompleteness in the
analysis. In representing complex behavior of system swith the mathematical
models, there could be simplifying assumptions and idealizations of rather complex
processes and phenomena. These simplifications and idealizations lead to inappro-
priate reliability/risk estimates, the impact of which must be appropriately addressed
if the assessment is to serve as a tool in the decision making process [9, 23].

The end use of any reliability/risk studies is to assist in decision making such as
design/plant evaluation, identification of critical components, and operation and
maintenance activities. When reliability/risk evaluation of design/plant is carried
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out for comparison with the standards or required targets (set by the regulatory
bodies), the decision maker’s dilemma involves whether comparison of the stan-
dard should be done with the mean value or the bounds. The issue becomes sig-
nificant if bounds are of the same order or of lower orders. The standard value
(probability of failure) ought to be higher than the upper bound specified in the
uncertainty bounds of the design. Similarly, while evaluating operation and
maintenance intervals, uncertainty in data and models can make the final decision
different. Proper treatment of uncertainty is essential for such practical usability of
reliability analysis results. Ignoring uncertainties in reliability analysis may mislead
decision making. Consideration of uncertainty in the analysis gives insights into
decision making by giving optimistic and pessimistic sets of solutions. Acceptable
degree of confidence in the results can only be achieved by proper management of
uncertainty.

Many researchers, academicians and practicing engineers in various fields
worked extensively to develop methods for carrying out uncertainty analysis and
applied them in their respective fields [24-28]. In particular, distinguishing different
types of parameter uncertainty, characterizing the elementary uncertainty, treatment
of model uncertainty, uncertainty in dependency modeling, and considering
uncertainty in decision making are still under active research. Some of these issues
have been addressed in Chaps. 13 and 14 of this book.

The regulators play a vital role in the application of reliability and risk studies.
This is clearly visible in industries such as nuclear, chemical and aerospace where
reliability and safety studies are enforced by regulators. For example, US NRC has
been instrumental in developing PSA technology and promoting its applications.
Industries which are not enforced by regulators to meet quantitative risk require-
ments are relatively less inclined to perform rather expensive reliability and risk
studies; for example, automobile, railways, communication networks and building
sector. Zio [29] advocates the need for a cultural breakthrough convincing
plant/system managers about benefits obtained from resource intensive reliability
and risk studies. This can be realized by standardization of methods and providing
resources guiding the practitioners. For instance, there is scope for improvement in
standards for structural reliability and power system reliability analysis. Availability
of advanced software tools and comprehensive data banks will rapidly improve
applications in various industries [30].

Most of the present reliability and risk studies focus on assessing the level of
safety and compare it with explicit or implicit standards. In addition, reliability
studies shall be increasingly used in operation and maintenance activities of engi-
neering systems. For example in nuclear power plants, determination of surveil-
lance test interval during operation and determination of in-service inspection
interval during maintenance are some of the practical applications of reliability and
risk studies during the phase of use. Finally, the gap between theory and practice
can be reduced by developing and implementing practically feasible solutions to
industrial scale problems.
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Table 1.6 Potential improvements in PSA methodology

S. Potential area Specific tasks
no.
1. Increasing the search space and | a. Impact of screening criteria
the scope of the analysis b. External events and their correlations

c. Dependencies among multi units

d. Emergency preparedness

2. Improving the accident a. Examine assumptions, approximations, time
modeling dependent complex interactions, and associated
conservatism

b. Modeling external events, passive systems, digital
systems, and severe accidents

c. Simulation based risk analysis

3. Uncertainty analysis a. Risk estimate: mean versus its uncertainties

b. Physical phenomena and uncertainties from its
simulation codes

Potential Improvements in Risk Assessment as Revealed by Fukushima

PSA standards provide detailed methodology and guidelines to carry out risk/safety
assessment; for example, IAEA [31] and ASME/ANS standards [32, 33] for nuclear
installations. Practically all nuclear power plants perform level-1 PSA studies, while
most of which perform level-2 PSA to severe accident progression. Full scope PSA
that includes level-3 PSA should be performed to assess the off-site consequences.
Although the full scope PSA is resource intensive, it provides vital safety insights in
safety management.

The Fukushima accident (caused by a tsunami triggered by an earthquake) at
three units in 2011 revealed some of the potential areas for improving PSA
methodology. Siu et al. [34] and Lyubarskiy et al. [35] highlighted a number of
issues and lessons learnt from the accident. Some of the important issues are
organized into the following three groups. Table 1.6 summarizes three potential
areas and their specific tasks to improve PSA methodology.

1. Increasing the search space and the scope of the analysis
The quantitative screening criteria to focus analysis on most risk-significant
hazards would likely lead to the screening of events such as Fukushima, which
poses a question as to what we might do to avoid such a situation. The events
such as earthquake, tsunami, fire, and floods and the correlation between such
hazards should be considered. Also, dependencies among multi units on the same
site should be appropriately treated in PSAs. The emergency response centers
and its associated effect on the consequences should be included in the analysis.
2. Improving accident modeling
It is worthwhile to highlight a point mentioned by Siu et al. [34]:
“well-intentioned conservatism in different PSA technical elements can suffi-
ciently skew the analysis results that truly risk-significant scenarios may be
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masked”. A MLOCA study in [36, 37], where PSA results were compared with
Dynamic PSA results including the risk contributors, reported inappropriate
importance measures besides conservative results from PSA. The conservative
bounding assumptions, approximations, and treating time dependent complex
interactions should be appropriately examined before introducing them into PSA
studies; simulation based risk analysis methods such as dynamic event trees
(DET) can support PSA studies in such conditions. For example, Karanki et al.
[38, 39], reported DET informed approach to study the impact of dynamics on
success criteria definitions used in PSA. Chapter 11 focuses on the dynamic PSA.

One of the most challenging elements in PSA is accounting human errors and
human failure events. In particular the errors of commission, for example the
intentional isolation of a safety system at Fukushima unit-1 [34], there are human
reliability analysis methods capable of treating such events [40-42]. The meth-
ods and applications should be extended to full scope PSA and also address new
complexities arising from the severe accident scenarios.

Modeling external events such as seismic, tsunami, flood, fire, etc. pose another
important challenge, especially their combinations. Treatment of passive sys-
tems and digital systems should be appropriately done in PSA studies.

. Understanding the uncertainties

It is essential to treat uncertainties in models and model parameters. In current
PSA practice, the uncertainties in stochastic PSA model parameters such as
basic event probabilities are only propagated to risk. Plant simulations are
usually performed to simulate accident scenarios with thermal hydraulic codes.
Although physical process is deterministic in nature, the mathematical models
representing the physics is subjected to uncertainty, which arises from modeling
the phenomena accurately and their associated model parameters. Uncertainty in
model parameters of physical phenomena should also be considered to deter-
mine sequence outcomes, to define success criteria in building accident
sequence models, and should be propagated to risk.
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Chapter 2
Basic Reliability Mathematics

The basics of mathematical theory that are relevant to the study of reliability and
safety engineering are discussed in this chapter. The basic concepts of set theory
and probability theory are explained first. Then the elements of component reli-
ability are presented. Different distributions used in reliability and safety studies
with suitable examples are explained. The treatment of failure data is given in the
last section of the Chapter.

2.1 Classical Set Theory and Boolean Algebra

A set is a collection of elements having certain specific characteristics. A set that
contains all elements of interest is known as universal set, denoted by ‘U’. A sub set
refers to a collection of elements that belong to a universal set. For example, if
universal set ‘U’ represents employees in a company, then female employees is a
sub set A of ‘U’. For graphical representation of sets within the frame of reference
of universal set, Venn diagrams are widely used. They can be very conveniently
used to describe various set operations.

The Venn diagram in Fig. 2.1 shows the universal set with a rectangle and subset
A with a circle. The complement of a set A (denoted by A) is a set which consists of
the elements of ‘U’ that do not belong to A.

2.1.1 Operations on Sets

Let A and B be any sub-sets of the universal set U, the union of two sets A and B is
a set of all the elements that belong to at least one of the two sets A and B. The
union is denoted by ‘U’ and read as ‘OR’. Thus A U B is a set that contains all the
elements that are in A, B or both A and B. The Venn diagram of A U B is shown in
Fig. 2.2.
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Fig. 2.1 Venn diagram for subset A

Fig. 2.2 Venn diagram for A U B

Fig. 2.3 Venn diagram for A N B

Fig. 2.4 Venn diagram for mutually exclusive events

The intersection of A and B is the set of elements which belong to both sets. The
intersection is denoted by ‘N’ and read as ‘AND’. The Venn diagram of A N B is
shown in Fig. 2.3.

Two sets of A and B are termed mutually exclusive or disjoint sets when A and
B have no elements in common i.e., A N B = . This can be represented by Venn
diagram as shown in Fig. 2.4.
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Table 2.1 Laws of set theory  Name of the law Description
Identity law AUgd=A;AUU=U
ANG=;AnU=A
Idempotency law AUA=A
ANA=A
Commutative law AUB=BUA
ANB=BNA
Associative law AUBUC=(AUB)UC
ANBNC=ANBNC
Distributive law ANBUCO=ANBUWALNCQC)
AUBNO=AUBNAUC
Complementation AUA=U
law ANA=0
A=A
De Morgan’s laws (AUB)=ANB
(AN B)=AUB

2.1.2 Laws of Set Theory

Some important laws of set theory are enumerated in the Table 2.1.

2.1.3 Boolean Algebra

Boolean algebra finds its extensive use in evaluation of reliability and safety pro-
cedures due to consideration that components and system can present in either
success or failure state. Consider a variable ‘X’ denotes the state of a component and
assuming 1 represents success and O represents failure state. Then, probability that X
is equal to 1 P(X = 1) is called reliability of that particular component. Depending
upon the configuration of the system, it will also have success or failure state. Based
on this binary state assumption, Boolean algebra can be conveniently used.

In Boolean algebra all the variables must have one of two values, either 1 or 0.
There are three Boolean operations, namely, OR, AND and NOT. These operations
are denoted by +, . (dot) and - (super bar over the variable) respectively. A set of
postulates and useful theorems are listed in Table 2.2. X denotes a set and x;, X5, X3
denote variables of X.

Consider a function of f(xy, X5, X3, ..., X,) of n variables, which are combined by
Boolean operations. Depending upon the values of constituent variables x;, X, ...,
Xp, function f will be 1 or 0. As these are n variables and each can have two possible
values 1 or 0, 2" combinations of variables will have to be considered for deter-
mination of the value of function f. Truth tables are used represent the value of f for
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Table 2.2 Boolean algebra

Postulate/Theorem Remarks
theorems -

x+0=x Identity
x-1=x

X+x=x Idempotence
X x=x

0=1and1=0

X=x Involution
X1+ x1x0 = x1 Absorption

x1(x1 +x) =x

X1+ (4 x3) = (0 +x2) +x3 Associative

X (0 x3) = (X1 x) a3
m =X X% De Morgan’s theorem

(X1 %) =X + X

Table 2.3 Truth table

X1 Xo X3 F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

all these combinations. A truth table is given for a Boolean expression f(x;, X»,
X3) = X1X» + X5X3 + XX3 in the following Table 2.3.

In reliability calculations, it is necessary to minimize the Boolean expression in
order to eliminate repetition of the same elements. The premise of all minimization
techniques is the set of Boolean algebra theorems mentioned in the Table 2.2. The
amount of labor involved in minimization increases as the number of variable
increase. Geometric methods and famous Karnaugh’s map is applicable only up to
six number of variables. Nowadays, sophisticated computerized algorithms are
available for calculation with large number of variables.

2.2 Concepts of Probability Theory

The word ‘experiment’ is used in probability and statistics to describe any process
of observation that generates raw data. An experiment becomes ‘random experi-
ment’ if it satisfies the following conditions: it can be repeatable, outcome is
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random (though it is possible to describe all the possible outcomes) and pattern of
occurrence is definite if the experiment is repeated large number of times. Examples
of random experiment are tossing of coin, rolling die, and failure times of engi-
neering equipment from its life testing. The set of all possible outcomes of a
random experiment is known as ‘sample space’ and is denoted by ‘S’. The sample
space for random experiment of rolling a die is {1, 2, 3, 4, 5, and 6}. In case of life
testing of engineering equipment, sample space is from O to ©0. Any subset of
sample space is known as an event ‘E’. If the outcome of the random experiment is
contained in E then once can say that E has occurred. Probability is used to quantify
the likelihood, or chance, that an outcome of a random experiment will occur.
Probability is associated with any event E of a sample space S depending upon its
chance of occurrence which is obtained from available data or information.

The concept of the probability of a particular event is subject to various
meanings or interpretations. There are mainly three interpretations of probability:
classical, frequency, and subjective interpretations.

The classical interpretation of probability is based on the notion of equally likely
outcomes and was originally developed in the context of games of chance in the
early days of probability theory. Here the probability of an event E is equal to the
number of outcomes comprising that event (n) divided by the total number of
possible outcomes (N). This interpretation is simple, intuitively appealing, and easy
to implement, but its applicability is, of course, limited by its restriction to equally
likely outcomes. Mathematically, it is expressed as follows:

P(E) =" (2.1)

The relative-frequency interpretation of probability defines the probability of an
event in terms of the proportion of times the event occurs in a long series of
identical trials. In principle, this interpretation seems quite sensible. In practice, its
use requires extensive data, which in many cases are simply not available and in
other cases may be questionable in terms of what can be viewed as ‘identical trials.
Mathematically, it is expressed as follows;

P(E) = Linmy_..o (2.2)
N
The subjective interpretation of probability views probability as a degree of
belief, and this notion can be defined operationally by having an individual make
certain comparisons among lotteries. By its very nature, a subjective probability is
the probability of a particular person. This implies, of course, that different people
can have different probabilities for the same event. The fact that subjective prob-
abilities can be manipulated according to the usual mathematical rules of proba-
bility is not transparent but can be shown to follow from an underlying axiomatic
framework.
Regardless of which interpretation one gives to probability, there is general
consensus that the mathematics of probability is the same in all cases.
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2.2.1 Axioms of Probability

Probability is a number that is assigned to each member of a collection of events
from a random experiment that satisfies the following properties:
If S is the sample space and E is any event in a random experiment,

1. PS) =1
2.0<PE)<1
3. For two events E; and E, with E; N E, = &, P(E, U E,) = P(E)) + P(E,)

The property that 0 < P(E) < 1 is equivalent to the requirement that a relative
frequency must be between 0 and 1. The property that P(S) = 1 is a consequence of
the fact that an outcome from the sample space occurs on every trial of an
experiment. Consequently, the relative frequency of S is 1. Property 3 implies that if
the events E1 and E2 have no outcomes in common, the relative frequency of
outcomes in is the sum of the relative frequencies of the outcomes in E1 and E2.

2.2.2 Calculus of Probability Theory

Independent Events and Mutually Exclusive Events

Two events are said to be ‘independent’ if the occurrence of one does not affect
the probability of occurrence of other event. Let us say A and B are two events, if
the occurrence of A does not provide any information about occurrence of B then A
and B are statistically independent. For example in a process plant, the failure of a
pump does not affect the failure of a valve.

Two events are said to be ‘mutually exclusive’ if the occurrence of one event
makes the non-occurrence of other event. If the occurrence of A ensures that B will
not happen then A and B are mutually exclusive. If two events are mutually
exclusive then they are dependent events. Success and failure events of any com-
ponent are mutually exclusive. In a given time, if pump is successfully operating
implies failure has not taken place.

Conditional Probability

The concept of conditional probability is the most important in all of probability
theory. It is often interest to calculate probabilities when some partial information
concerning the result of the experiment is available, or in recalculating them in the
light of additional information. Let there be two event A and B, the probability of A
given that B has occurred is referred as conditional probability and is denoted by P
(A|B) = P(A N B)/P(B).

If the event B occurs then in order for A to occur it is necessary that the actual
occurrence be a point in both A and B, i.e. it must be in A N B (Fig. 2.5). Now,
since we know that B has occurred, it follows that B becomes our new sample space
and hence the probability that the event A N B occurs will equal the probability of
A N B relative to the probability of B. It is mathematical expressed as,
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Fig. 2.5 Venn diagram for
ANB

paB) =~ (;} (2)3) (2.3)
Similarly one can write
P =" (2)3) (2.4)
Probability for Intersection of Events
From Eq. 2.4, one can write
P(AN B)=P(A) x P(BJA) (2.5)

If A and B are independent events then the conditional probability P(B|A) is
equal to P(B) only. Now Eq. 2.5 becomes, simply the product of probability of A
and probability of B.

P(A N B) = P(A) x P(B) (2.6)

Thus when A and B are independent, the probability that A and B occur together
is simply the product of the probabilities that A and B occur individually.

In general the probability of occurrence of n dependent events Eq, E,, ..., E, is
calculated by the following expression,

P(E] ﬁEz n--- ﬁEn) :P(El) XP(E2|E1)
X P(E3|E1 n Ez)P(En|E1 N E2 n---nN En—l)

If all the events are independent then probability of joint occurrence is simply the
product of individual probabilities of events.

PE\NE N - NE)=PE) x P(E) x P(E;) x - x P(E,) (2.7)

Probability for Union of Events
Let A and B are two events. From the Venn diagram (Fig. 2.6), as the three
regions 1, 2 and 3 are mutually exclusive, it follows that
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Fig. 2.6 Venn diagram for A and B

P(A U B) = P(1) + P(2) + P(3)

P(A) = P(1) 4+ P(2)
P(B) = P(2) 4+ P(3)
which shows that (2.8)

P(A U B) = P(A) + P(B) — P(2)
AsP(2) = P(A N B),
P(A U B) = P(A) + P(B) — P(A N B)

The above expression can be extended to n events E;, E,, ..., E, by the fol-
lowing equation

PELUE,U -+ UE,) =P(E\) +P(E2) + -+ + P(E)
— [P(El n Ez) +P(E2 n E3) + - —Q—P(E,,,l N En)]+
+ [P(El NE N E3)+P(E2 NE;sN E4)+'~~+P(En,2 NE,_1 N En)],

(-1)"™P(E,NE; N --- NE,)
(2.9)
Total Probability Theorem
Let Ay, A, ... A, be n mutually exclusive events forming a sample space S and P

(A) >0,i=1,2 ... n (Fig. 2.7). For an arbitrary event B one has

BZBQS:BQ(Al UA U -+ UA,,)
=(BNA)U(BNA)U --- U(BNA,)

where the events B N A, B N A,,..., BN A, are mutually exclusive.

P(B)=> P(BNA;) =Y P(A)P(B|A) (2.10)

This is called total probability theorem.
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S
A3 A4 AS
B Ao
A, 5
A
An

Fig. 2.7 Sample space containing n mutually exclusive events

Bayes Theorem
From the definitions of conditional probability,

PalB) = ¢ ggf)

P(ANB) = P(B) x P(A|B) — (a)
pBlA) = ﬁgf)
P(ANB) = P(A) x P(BIA) — (b)

Equating both (a) and (b) we have: P(B) x P(A|B) = P(A) x P(B|A).
We can obtain P(A|B) as follows

P(A) x P(B|A)

PAIB) = =20

(2.11)

This is a useful result that enables us to solve for P(A|B) in terms of P(B|A).
In general, if P(B) is written using the Total Probability theorem, we obtain the
following general result, which is known as Bayes’ Theorem.

P(A|B) = % (2.12)

Bayes® theorem presents a way to evaluate posterior probabilities P(A;[B) in
terms of prior probabilities P(A;) and conditional probabilities P(B|A;). This is very
useful in updating failure data as more evidence is available from operating
experience.

The basic concepts of probability and statistics are explained in detail in the
Refs. [1, 2].
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2.2.3 Random Variables and Probability Distributions

It is important to represent the outcome from a random experiment by a simple
number. In some cases, descriptions of outcomes are sufficient, but in other cases, it
is useful to associate a number with each outcome in the sample space. Because the
particular outcome of the experiment is not known in advance, the resulting value
of our variable is not known in advance. For this reason, random variables are used
to associate a number with the outcome of a random experiment. A random variable
is defined as a function that assigns a real number to each outcome in the sample
space of a random experiment. A random variable is denoted by a capital letter and
numerical value that it can take is represented by a small letter. For example, if X is
a random variable representing number of power outages in a plant, then x shows
the actual number of outages it can take say O, 1, 2...n.

Random variable can be classified into two categories, namely, discrete and
continuous random variables. A random variable is said to be discrete if its sample
space is countable. The number of power outages in a plant in a specified time is
discrete random variable. If the elements of the sample space are infinite in number
and sample space is continuous, the random variable defined over such a sample
space is known as continuous random variable. If the data is countable then it is
represented with discrete random variable and if the data is measurable quantity
then it is represented with continuous random variable.

Discrete Probability Distribution

The probability distribution of a random variable X is a description of the proba-
bilities associated with the possible values of X. For a discrete random variable, the
distribution is often specified by just a list of the possible values along with the
probability of each. In some cases, it is convenient to express the probability in
terms of a formula.

Let X be a discrete random variable defined over a sample space S = {X{, X5 ... X, }-
Probability can be assigned to each value of sample space S. It is usually denoted
by f(x). For a discrete random variable X, a probability distribution is a function such
that

(@ f(x)>0

n

(b) ;f(xi) =1

© flx)=P(X =x)

Probability distribution is also known as probability mass function. Some
examples are Binomial, Poisson, Geometric distributions. The graph of a discrete
probability distribution looks like a bar chart or histogram. For example, in five flips
of a coin, where X represents the number of heads obtained, the probability mass
function is shown in Fig. 2.8.
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Fig. 2.8 A discrete probability mass function

The cumulative distribution function of a discrete random variable X, denoted as
F(x), is

F(x) =P(X<x) =) f(x)

X <x

F(x) satisfies the following properties for a discrete random variable X.

@ F(x)=PX<x)= 3 fx)

X <x
(b) 0<F(x)<1
(©) if x<y then F(x) <F(y)

The cumulative distribution for the coin flipping example is given in Fig. 2.9.

Continuous Probability Distributions

As the elements of sample space for a continuous random variable X are infinite in
number, probability of assuming exactly any of its possible values is zero. Density
functions are commonly used in engineering to describe physical systems. Similarly,
a probability density function f(x) can be used to describe the probability distribution
of a continuous random variable X. If an interval is likely to contain a value for X, its
probability is large and it corresponds to large values for f(x). The probability that
X is between a and b is determined as the integral of f{x) from a to b. For a continuous
random variable X, a probability density function is a function such that

(@ f(x)>0
+o00
b [ fx)=1
b

(¢) P(a<X<b)= [f(x)dx

a
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11 — p—
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Fig. 2.9 A discrete cumulative distribution function

The cumulative distribution function of a continuous random variable X is
F(x) = P(X <x) / £(0)d0 (2.13)

The probability density function of a continuous random variable can be
determined from the cumulative distribution function by differentiating. Recall that
the fundamental theorem of calculus states that

d X
& [ 1d0 =

Now differentiating F(x) with respect to x and rearranging for f(x)

fx) = (2.14)

Characteristics of Random Variables

In order to represent probability distribution function of a random variable, some
characteristic values such as expectation (mean) and variance are widely used.
Expectation or mean value represents the central tendency of a distribution func-
tion. It is mathematically expressed as
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Mean = E(x) = inf (x;) for discrete
+00

— / xf (x)dx for continuous

—00

A measure of dispersion or variation of probability distribution is represented by
variance. It is also known as central moment or second moment about the mean. It
is mathematically expressed as

Variance = E((x — mean)*) = Z (x — mean)*f(x) for discrete
+o00

/ (x — mean)*f(x)dx for continuous

—0Q

2.3 Reliability and Hazard Functions

Let ‘T’ be a random variable representing time to failure of a component or system.
Reliability is probability that the system will perform it expected job under specified
conditions of environment over a specified period of time. Mathematically, reli-
ability can be expressed as the probability that time to failure of the component or
system is greater than or equal to a specified period of time (t).

R(t) = P(T >1) (2.15)

As reliability denotes failure free operation, it can be termed as success proba-
bility. Conversely, probability that failure occurs before the time t is called failure
probability or unreliability. Failure probability can be mathematically expressed as
the probability that time to failure occurs before a specified period of time t.

R(t) = P(T<1) (2.16)

As per the probability terminology, R(7) is same as the cumulative distributive
function of the random variable T.

F(1) =R(t) = P(T<1) (2.17)

Going by the first axiom of probability, probability of sample space is unity. The
sample space for the continuous random variable T is from 0 to ©0. Mathematically,
it is expressed as
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P(S)=1
P0<T<o0) =1

The sample space can be made two mutually exclusive intervals: one is T < t and
the second is 7' > ¢. Using third axiom of probability, we can write

P0<T<o0) =1
P(T<tUT>1 =1
P(T<t)+P(T>1)=1

Substituting Egs. 2.15 and 2.17, we have
F(t)+R(@) =1 (2.18)
As the time to failure is a continuous random variable, the probability of T

having exactly a precise t will be approximately zero. In this situation, it is

appropriate to introduce the probability associated with a small range of values that
the random variable can take on.

P(r<T<t+ At) =F(t+ Ar) — F(2)

Probability density function f(t) for continuous random variables is defined as

Fl) = AleO [P(t< TA<tt + At)}
F(t+ At) — F(r)
- Ago{ At ]
0
Tt
dR(1)
= (from Eq. 2.18)

From the above derivation we have an important relation between R(t), F(t)
and f(t):

iy =0 (2.19)
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Given the Probability Density Function (PDF), f(t) (Fig. 2.10), then

F(t) = /f(t)dt
0 (2.20)

R(t) :/f(t)dt

The conditional probability of a failure in the time interval from t to (t + At)
given that the system has survived to time t is

R(t) —R(t+A
PU<T<t+MT>1) _R@) - Rt + A1)

R(7)
Then W is the conditional probability of failure per unit of time (failure
rate).
R(t) — R(t + At —[R(t+ At) —R(1)] 1
20— tim RO RUHAY R+ A) R 1
Ai—0 R(t)At A0 At R(z) (221)
_ TR0 1 1) '
~dt R(t) R()

At) is known as the instantaneous hazard rate or failure rate function.
Reliability as a function of hazard rate function can be derived as follows:We
have the following relation from the above expression

0.12 -

0.1 —

0.08

 0.06 -

0.04 /
0.02

F(t)

Time

Fig. 2.10 Probability distribution function
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~ —dR(t) 1
At) = i RO
At)dr = _;ligt)

R(t) = exp —//l(@)d@ (2.22)

2.4 Distributions Used in Reliability and Safety Studies

This section provides the most important probability distributions used in reliability
and safety studies. They are grouped into two categories, namely, discrete proba-
bility distributions and continuous probability distributions.

2.4.1 Discrete Probability Distributions

2.4.1.1 Binomial Distribution

Consider a trial in which the only outcome is either success or failure. A random
variable X with this trail can have success (X = 1) or failure (X = 0). The random
variable X is said to be Bernoulli random variable if the probability mass function
of X is given by

PX=1)=p
P(X=0)=1-p

where p is the probability that the trial is success. Suppose now that n independent
trials, each of which results in a ‘success’ with probability ‘p’ and in a ‘failure’ with
probability 1 — p, are to be performed. If X represents the number of success that
occur in the n trials, then X is said to be a binomial random variable with
parameters n, p. The probability mass function of binomial random variable is given
by

PX=i)="ep'(1—p)"" i=0,1,2,....n (2.23)
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Fig. 2.11 Binomial probability mass function

The probability mass function of a binomial random variable with parameter
(10, 0.2) is presented in Fig. 2.11.
The cumulative distributive function is given by

PIX<i) = 3 "epi(1 — p) (224)
=0

Mean of the binomial distribution is calculated as follows

E(x) = 54 ()

n

= Zi x"eip'(1—p)"™

i=0

n
np Z n_lCiflpi_l (1 _ p)n—z
i=1

m
w3 op (1)
j=0
= n[)
Similarly variance can also be derived as

Variance = npq
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Example 1 It has been known from the experience that 4 % of hard disks produced
by a computer manufacture are defective. Find the probability that out of 50 disks
tested, what is the probability of having (i) Zero Defects and (ii) All are defective.

Solution: q = 4 % of hard disks produced by a computer manufacture are defective.
We know,

ptq=1
p=1-g¢q
=1-0.04
p=0.96

According to Binomial Distribution,
P(X =x) =nCy-p*-¢"™

Now,

(1) In case of ‘zero defects’, i.e. p(X = 0)

P(X = 0) = nCy p*q" = Cy-(0.04)°-(0.96)*°"Y = 0.1299
(ii) In case of ‘all are defective’, i.e. p(X = 50)

P(X = 50) = nCy p*-q"* =" C50(0.04)*(0.96)" " = 0.8701
Or in other way,

PX=50)=1-P(X=0)=1-0.1299 = 0.8701

Example 2 To ensure high reliability, triple modular' redundancy is adopted in
instrumentation systems of Nuclear Power Plant (NPP). It is known that failure
probability of each instrumentation channel from operating experience is 0.01.
What is the probability of success of the whole instrumentation system?

Solution: q = failure probability from operation experience is 0.01.
We know, p=1—-—q=1-0.01 =0.99
According to Binomial Distribution,

"Triple modular redundancy denotes at least 2 instruments should be success out of 3 instruments.
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Table 2.4 Calculations

Formula Numerical solutions Value
@ PX=0)=nC, p" - q"" | P(0) =3, (0.99)°-(0.01) P(0) = le-6
(i) |PX=1=nCc p" g |P0) =3¢ (0.99)"(0.01)% "V P(1) = 2.9¢-4
(i) |PX=2)=nCp - q"" |P0) =3 (0.99)%(0.01)? P(2) = 2.9¢-2
(v) |PX=3)=nC p" q"" |P0)=3(099)° - (0.01)*F | PG)=097

P(X =x)=nCyp*"q"™*

The sample space is then developed as in Table 2.4.
Now the failure probability is sum of (i) and (ii), which is obtained as 2.98e-4
and the success probability is sum of (iii) and (iv), which is obtained as 0.999702.

2.4.1.2 Poisson Distribution

Poisson distribution is useful to model when the event occurrences are discrete and
the interval is continuous. For a trial to be a Poisson process, it has to satisfy the
following conditions:

1. The probability of occurrence of one event in time At is AAt where A is constant
2. The probability of more than one occurrence is negligible in interval At
3. Each occurrence is independent of all other occurrences

A random variable X is said to have Poisson distribution if the probability
distribution is given by

e ()"
f(x):T x=0,1,2,... (2.25)
A is known as average occurrence rate and x is number of occurrences of Poisson
events.
The cumulative distribution function is given by

X) = Z (X =) (2.26)
=0

The probability mass function and CDF for A = 1.5/year and t = 1 year are shown
in Fig. 2.12. Both the mean and variance of Poisson distribution is At.
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If the probability of occurrence is near zero and sample size very large, the
Poisson distribution may be used to approximate Binomial distribution.

Example 3 If the rate of failure for an item is twice a year, what is the probability
that no failure will happen over a period of 2 years?

Solution: Rate of failure, denoted as A = 2/year

Time t = 2 years

The Poisson probability mass function is expressed as

f()

e ()
x!
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In a case of no failures, x = 0, which leads to

22 x 2)°

ol =0.0183

1 =0) =

2.4.1.3 Hyper Geometric Distribution

The hyper geometric distribution is closely related with binomial distribution .In
hyper geometric distribution, a random sample of ‘n’ items is chosen from a finite
population of N items. If N is very large with respect to n, the binomial distribution
is good approximation of the hyper geometric distribution. The random variable ‘X’
denote x number of successes in the random sample of size ‘n’ from population N
containing k number of items labeled success. The hyper geometric distribution
probability mass function is

f(x) =p(x,N,n,k) =%,V *C,_ /Nc,, x=0,1,2,3,4,...,n.  (2.27)
The mean of hyper geometric distribution is

_ n-K

B ="

(2.28)

The variance of hyper geometric distribution is
n-K K\ (N—n
V) =|—)(1——= 2.29

2.4.1.4 Geometric Distribution

In case of binomial and hyper geometric distribution, the number of trails ‘n’ is

fixed and number of successes is random variable. Geometric distribution is used if

one is interested in number of trails required to obtain the first success. The random

variable in geometric distribution is number of trails required to get the first success.
The geometric distribution probability mass function is

f(x) =P(x;p) =p(1 —p)"", x=1,2,3,...... M. (2.30)

where ‘p’ is the probability of success on a style trails.
The mean of geometric distribution is

amzé



40 2 Basic Reliability Mathematics

=05
- - A=
—3=3

~
~ean
.....

Fig. 2.13 Exponential probability density functions

The variable of geometric distribution is

The geometric distribution is the only discrete distribution which exhibits the
memory less property, as does the exponential distribution is the continuous case.

2.4.2 Continuous Probability Distributions

2.4.2.1 Exponential Distribution

The exponential distribution is most widely used distribution in reliability and risk
assessment. It is the only distribution having constant hazard rate and is used to
model ‘useful life’ of many engineering systems. The exponential distribution is
closely related with the Poisson distribution which is discrete. If the number of
failure per unit time is Poisson distribution then the time between failures follows
exponential distribution. The probability density function (PDF) of exponential
distribution is

f(t) =ie™ for0<r<oo

(2.31)
0 for t<0

The exponential probability density functions are shown in Fig. 2.13 for different
values of A.
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Fig. 2.14 Exponential reliability functions

The exponential cumulative distribution function can be derived from its PDF as
follows,

| f ! it
F(t) = / f(0)dr = / Jedt = 1[67]02 i[e—i—%} =1’ (232)
0 0

Reliability function is complement of cumulative distribution function
R)=1-F(t)y=e" (2.33)

The exponential reliability functions are shown in Fig. 2.14 for different values
of A.
Hazard function is ratio of PDF and its reliability function, for exponential
distribution it is
fl)  Je

h(r) = R~ e F = A (2.34)

The exponential hazard function is constant A. This is reason for memory less
property for exponential distribution. Memory less property means the probability
of failure in a specific time interval is the same regardless of the starting point of
that time interval.
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Mean and Variance of Exponential Distribution

- [0
0
o0
= / the Mdt
0
Using integration by parts formula ( ['udv = uv — [ vdu)
e*}f
- / jdt
0
-p3(5,)] =B 6]
i\ 7, AV

Thus mean time to failure of exponential distribution is reciprocal of failure rate.
Variance(t) = E(Tz) - (mean)2

yPaies)
e Vs

E(t)=A|r =7,

o0

E(T?) = | 2f(t)dt = | Pire " dt
[ Froa= |

0

Using integration by parts formula

—/l

E(T?) =

0
) 00
= /1 —2/ _/h‘dt
0

But the integral term in the above expression is E(T) which is equal to 1/A,
substituting the same,

2 1 2
2
Now variance is

, 2 1\ 1
Vanance:?— - == (2.35)
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Example 4 The failure time (T) of an electronic circuit board follows exponentially
distribution with failure rate A = 10*/h. What is the probability that (i) it will fail
before 1000 h (ii) it will survive at least 10,000 h (iii) it will fail between 1000 and
10,000 h. Determine the (iv) mean time to failure and (v) median time failure also.

Solution:
(i) P(T<1000) = F(T = 1000)
For exponential distribution F(T) = 1 — e~* and substituting A = 10"*/h

P(T<1000) =1 — e ' =0.09516

(i) P(T > 10,000) = R(T = 10, 000)
For exponential distribution R(T) = ¢~ and substituting A = 10~*/h

P(T > 10,000) = ¢~* = 0.3678

(iii) P(1000<T < 10,000) = F(10,000) — F(1000) = [1 — R(10,000)] — F(1000)
From (i), we have F(1000) = 0.09516 and from (ii) we have R
(10,000) = 0.3678,

P(1000 <T <10,000) = [1 — 0.3678] — 0.09516 = 0.537

(iv) Mean time to failure = 1/A = 1/10™* = 10,000 h
(v) Median time to failure denote the point where 50 % failures have already
occurred, mathematically it is

R(T) =05

e =05
Applying logarithm on both sides and solving for t,

~1
t=—In(0.5) = 693147 h.

2.4.2.2 Normal Distribution

The normal distribution is the most important and widely used distribution in the
entire field of statistics and probability. It is also known as Gaussian distribution
and it is the very first distribution introduced in 1733. The normal distribution often
occurs in practical applications because the sum of large number of statistically
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Fig. 2.15 Normal probability density functions

independent random variables converges to a normal distribution (known as central
limit theorem). Normal distribution can be used to represent wear-out region of
bath-tub curve where fatigue and aging can be modeled. It is also used in
stress-strength interference models in reliability studies. The PDF of normal dis-
tributions is

Ly
f() = e2\v) —oo<t<oo (2.36)
oV2n

where p and o are parameter of the distribution. The distribution is bell shaped and
symmetrical about its mean with the spread of distribution determined by o. It is
shown in Fig. 2.15.

The normal distribution is not a true reliability distribution since the random
variable ranges from —00 to +00. But if the mean p is positive and is larger than ¢
by several folds, the probability that random variable T takes negative values can be
negligible and the normal can therefore be a reasonable approximation to a failure
process.

The normal reliability function and CDF are

R(t) = / LA (2.37)

F(t) = / L (2.38)
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Fig. 2.16 Normal cumulative distribution functions

As there is no closed form solution to these integrals, the reliability and CDF are
often expressed as a function of standard normal distribution (u = 0 and ¢ = 1)
(Fig. 2.16). Transformation to the standard normal distribution is achieved with the
expression

The CDF of z is given by

P(z) = / B S (2.39)

Table A.1 (see appendix) provides cumulative probability of the standard normal
distribution. This can be used to find cumulative probability of any normal distri-
bution. However, these tables are becoming unnecessary, as electronic spread
sheets for example Microsoft Excel, have built in statistic functions.

The hazard function can expressed as

h(t) = % - 1f(7ct1>)(z) (2.40)
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Fig. 2.17 Normal hazard rate functions

Hazard function is an increasing function as shown in Fig. 2.17. This feature
makes it suitable to model aging components.

Example 5 Failure times are recorded from the life testing of an engineering
component as 850, 890, 921, 955, 980, 1025, 1036, 1047, 1065, and 1120.
Assuming a normal distribution, calculate the instantaneous failure rate at 1000 h?

Solution: Given data, n = 10, N = 1000; using the calculations from Table 2.5,

S xi 9889
= =-——=0988.9
n 10 ?

Mean = X

Now, the sample S.D. is ()

n 2 n /)?
n ZiZI Xl (lel xl) = 84.8455
n(n—1)

The instantaneous failure rate is given by the hazard function, and is established
by

f(2) _ £(1000) $(z)  0.0046619
R

") =Ra) (1000)  1-®() 1-0.552

=0.0104
R() 0.010
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Table 2.5 Calculations i xi2
850 722,500
890 792,100
921 848,241
955 912,025
980 960,400
1025 1,050,625
1036 1,073,296
1047 1,096,209
1065 1,134,225
1120 1,254,400
> xi = 9889 S xi? = 9,844,021

2.4.2.3 Lognormal Distribution

A continuous positive random variable T is lognormal distribution if its natural
logarithm is normally distributed. The lognormal distribution can be used to model
the cycles to failure for metals, the life of transistors and bearings and modeling
repair times. It appears often in accelerated life testing as well as when a large
number of statistically independent random variables are multiplied. The lognormal
PDF is

1.40E-01 ~

1.20E-01 - W=1;0=025

—p=1;0=1
1.00E-01 -

=-p=1;0=3

(t)

8.00E-02 : |
6.00E-02 ' |

4.00E-02 -

2.00E-02 -

0.00E+00

!

Fig. 2.18 Lognormal probability density functions
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Fig. 2.19 Lognormal cumulative distribution functions
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Fig. 2.20 Lognormal hazard functions

1 ni—p\2
£ = ) >0 (2.41)
otV2r

where p and o are known as the location parameter and shape parameters respec-
tively. The shape of distribution changes with different values of ¢ as shown in
Fig. 2.18.

The lognormal reliability function and CDF are
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Rf)=1- [m ta_ “} (2.42)

F() = F“ - “} (2.43)

Lognormal failure distribution functions and lognormal hazard functions are
shown in Figs. 2.19 and 2.20.
The mean of lognormal distribution is

o2
E(t)=e""7 (2.44)
The variance of lognormal distribution is

V(t) = e (e 1) (2.45)

Example 6 Determine the mean and variance of time to failure for a system having
lognormally distributed failure time with p = 5 years. And ¢ = 0.8.

Solution: The mean of lognormal distribution is,

E(t) = (%)
E(1) = %) — 2043839

The variance of lognormal distribution is,

2.00E-01

1.50E-01 -

£ 1.00E-01

5.00E-02 4

0.00E+00

Fig. 2.21 Weibull PDF
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Table 2.6 Distributions with B Remarks

different values of f - -
1 Identical to exponential
2 Identical to Rayleigh
2.5 Approximates lognormal
3.6 Approximates normal

V() = @7 x (7 — 1)
V() = e(10+(oA8)2) % (60.82 —1)
V() = 37,448.49

2.4.2.4 Weibull Distribution

Weibull distribution was introduced in 1933 by Rosin and Rammler [3]. Weibull
distribution has wide range of applications in reliability calculation due to its flex-
ibility in modeling different distribution shapes. It can be used to model time to
failure of lamps, relays, capacitors, germanium transistors, ball bearings, automobile
tyres and certain motors. In addition to being the most useful distribution function in
reliability analysis, it is also useful in classifying failure types, trouble shooting,
scheduling preventive maintenance and inspection activities. The Weibull PDF is

fioy =" (f)ﬁfle*(é)”, t>0 (2.46)

o

1.00E+00

8.00E-01 - SO\ |
6.00E-01
£
o
4.00E-01 -
2.00E-01 -
0.00E+00 T T T 1
0 5 10 15 20
t

Fig. 2.22 Weibull reliability functions
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Fig. 2.23 Weibull hazard functions

where o and B are known as scale parameter (or characteristic life) and shape
parameter respectively. An important property of Weibull distribution is as 3
increases, mean of the distribution approaches a and variance approaches zero. Its
effect on the shape of distribution can be seen in Fig. 2.21 with different values of 8
(oo = 10 is assumed in all the cases).

It is interesting to see from Fig. 2.21, all are equal to or approximately matching
with several other distributions. Due to this flexibility, Weibull distribution provides
a good model for much of the failure data found in practice. Table 2.6 summarizes
this behavior.

Weibull reliability and CDF functions are

R(t)=e @' (2.47)

Ft)=10—e () (2.48)

Reliability functions with different values of f are shown in Fig. 2.22.
The Weibull hazard function is

pi!
o

H(t) = (2.49)
The effects of f on the hazard function are demonstrated in Fig. 2.23. All three
regions of bath-tub curve can be represented by varying 3 value.

B < 1 results in decreasing failure rate (burn-in period)
B = 1 results in constant failure rate (useful life period)
B > 1 results in increasing failure rate (Wear-out period)
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The mean value of Weibull distribution can be derived as follows:

Meanzo/ocg‘(t)dtzo/wt- (g) (é)ﬁile‘(ﬁ)ﬁdt

o0
Now mean = [ 7 e dy
0

. 1
Since t = o xF

N 1
Mean =o | (x)Pe " dx=ua F(l + —). (2.50)
] |

where I'(x) is known as gamma function.

I'(x) :/yvfhe*ydy
0

Similarly variance can be derived as

azzaz{r(l—l—%) —r2(1+%ﬂ (2.51)

Example 7 The failure time of a component follows Weibull distribution with
shape parameter f = 1.5 and scale parameter = 10,000 h. When should the com-
ponent be replaced if the minimum recurred reliability for the component is 0.95?

Solution: Substituting into the Weibull reliability function gives,

R() = e’

1 B 1 I
095 = @ = — ,lwbw
0.95

)1.5
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Taking natural logarithm on both sides

1 t

In _ ( )1.5
0.95 ‘10,000
Taking log on both sides,
t —1.2899 t
I .051293 =1.51 =1
0g0.051293 = 1.5 log 15556 = — 5 270,000
= —0.85996 = logr — log 10,000 = log 10,000 — 0.85996 = log ¢

=1t =1380.38 h

2.4.2.5 Gamma Distribution

As the name suggests, gamma distribution derives its name from the well known
gamma function. It is similar to Weibull distribution where by varying the
parameter of the distribution wide range of other distribution can be derived. The
gamma distribution is often used to model life time of systems. If an event takes
place after ‘n’ exponentially distributed events take place sequentially, the resulting
random variable follows a gamma distribution. Examples of its application include
the time to failure for a system consisting of n independent components, with n — 1
components being stand by comp; time between maintenance actions for a system
that requires maintenance after a fixed number of uses; time to failure of system
which fails after n shocks. The gamma PDF is

Fig. 2.24 Gamma probability density functions
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Table 2.7 Distribution with o Distribution

different values of « CRPT
=1 Exponential distribution
o = integer Erlangian distribution
o=2 Chi square distribution
o> 2 Normal distribution

o
1) =Tl p) = oo et 120

() ’

o0 (2.52)
where I'(a) = /x“’l e " dx.
0

where o and [ are parameters of distribution. The PDF with parameter f = 1 known
as standardized gamma density function. By changing the parameter «, different well
known distributions can be generated as shown in Fig. 2.24 and Table 2.7.

The CDF of random variable T having gamma distribution with parameter
o and f is given by,

F(1) = P(T<1) = /%t“leﬁldt (2.53)
0

The gamma CDF in general does not have closed form solution. However, tables
are available given the values of CDF having standard gamma distribution function.
The mean of gamma distribution is

E(T) =2 (2.54)
B
The variable of gamma distribution is
o
V(T) = F (2.55)

For integer values of o, the gamma PDF is known as Erlangian probability
density function.

2.4.2.6 Erlangian Distribution

Erlangian distribution is special case of gamma distribution where o is an integer. In
this case PDF is express as,
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h(t)

Fig. 2.25 Erlangian hazard functions

o—1
f(r) = m 1) (2.56)

The Erlangian reliability function is

(7;)"@—0—»

R(1) = ZT (2.57)
k=0
The hazard function is
tocfl
h(t) = - (2.58)
o oa—1 (t/ﬁ)
BT() D o~

By changing the value of «, all three phases of bath-tub curves can be selected
(Fig. 2.25). If a <1, failure rate is decreasing, o = 1, failure rate is constant and
o > 1, failure rate is increasing.

2.4.2.77 Chi-Square Distribution

A special case of the gamma distribution with o = 2 and # = 2/v, a chi-square (x°)
distribution is used to determinant of goodness of fit and confidence limits.
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Fig. 2.26 PDF of Chi-Square

The chi-square probability density function is

1

= X022 x50 2.59
2»Prvj2)~ ¢ 7 (2:59)

Xz(xv V) = f(x)

The shape of chi-square distribution is shown in Fig. 2.26.

The mean of chi-square distribution is E(x) = v.

The variance of chi-square distribution is V(x) = 2v.

If x4, X5,..., X, are independent, standard normally distributed variables, then
the sum of squares of random variable, i.e., (X? + X3 +--- + X?) is chi-square
distribution with v degree of freedom.

It is interesting to note that the sum of two or more independent chi-square
variables is also a chi-square variable with degree-of-freedom equal to the sum of
degree-of-freedom for the individual variable. As v become large, the chi-square
distribution approaches normal with mean v and variance 2v.

2.4.2.8 F-Distribution

If ¥} and y3 are independent chi-square random variable with v, and v, degrees of
freedom, then the random variable F defined by

2
F = Xl/vl
2
XZ/VZ

is said to have an F-distribution with v; and v, degrees of freedom.

(2.60)
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Fig. 2.27 F PDFs with different v; and v,

The PDF of random variable F is given by

f(F) = F>0 (2.61)

res) ()| e
T | (120 e)|

Figure 2.27 shows F PDF with different v, and v,.
The values of F-distribution are available from tables. If f,(v,v,) represent area
under the F pdf, with degree of freedom v, and v, to the right of o, then

1

Fl—a(Vlsz) = m
o )

(2.62)

It is interesting to observe that if si and s3 are the variance of independent
random samples of size n; and n, drawn from normal population with variance of
o7 and o} respectively then the statistic

_s1/o1 _ a5st

— — 2.63
Ry PRR (2.63)

has an F distribution with vi{ = n; — 1 and v, = n, — 1 degree of freedom.
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2.4.2.9 t-Distribution

If Z is normally distributed random variable and the independent random variable
x* follows a chi square distribution with v degree of freedom then the random
variable t defined by

PR (2.64)
/v
is said to be have t-distribution with v degree of freedom.
PDF of t is given by

—(v+1)

I e
t) =———"— |1 +— , 00 =<1t=<o00. 2.65
f) I(v/2)y/TIv v (2:65)

Table 2.8 Summary of application areas

Distribution Areas of application in reliability studies
Poisson To model occurrence rates such as failures per hour or defects per item
distribution (defects per computer chip or defects per automobile)
Binomial To model K out of M or voting redundancy such as triple modular
distribution redundancies in control and instrumentation
Exponential To model useful life of many items
distribution Life distribution of complex non-repairable systems
Weibull > 1 often occurs in applications as failure time of components subjected
distribution to wear out and/or fatigue (lamps, relays, mechanical components)
Scheduling inspection and preventive maintenance activities
Lognormal To model the cycles to failure for metals, the life of transistors, the life of
distribution bearings. Size distribution of pipe breaks
To model repair time
Prior parameter distribution in Bayesian analysis
Normal Modeling buildup of tolerances
distribution Load-resistance analysis (stress-strength interference)
Life distribution of high stress components
Gamma To model time to failure of system with standby units
distribution To model time between maintenance actions
Prior parameter distribution in Bayesian analysis
Chi-square Count the number of failures in an interval
distribution

Applications involving goodness of fit and confidence limits

F distribution

To make inferences about variances and to construct confidence limits

t distribution

To draw inferences concerning means and to construct confidence
intervals for means when the variances is unknown
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Like the standard normal density, the t-density is symmetrical about zero. In
addition, as v become larger, it becomes more and more like standard normal
density.

Further,

E(t)=0
and v(t)=v/(v—2) forv>2.

2.4.3 Summary

The summary of applications of the various distributions is described in the
Table 2.8.

2.5 Failure Data Analysis

The credibility of any reliability/safety studies depend upon the quality of the data
used. This section deals with the treatment of failure data and subsequent usage in
reliability/safety studies. The derivation of system reliability models and various
reliability measures is an application of probability theory, where as the analysis of
failure data is primarily an application of statistics.

The objective of failure data analysis is to obtain reliability and hazard rate
functions. This is achieved by two general approaches. The first is deriving
empirical reliability and hazard functions directly from failure data. These methods
are known as non parametric methods or empirical methods. The second approach
is to identify an approximate theoretical distribution, estimate the parameter(s) of
distribution, and perform a goodness of fit test. This approach is known as para-
metric method. Both the methods are explained in this section.

2.5.1 Nonparametric Methods

In this method empirical reliability distributions are directly derived from the failure
data. The sources of failure data are generally from (1) Operational or field expe-
rience and/or (2) Failures generated from reliability testing. Nonparametric method
is useful for preliminary data analysis to select appropriate theoretical distribution.
This method is also finds application when no parametric distribution adequately
fits the failure data.
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Consider life tests on a certain unit under exactly same environment conditions
with N number of units ensuring that failures of the individual units are independent
and do not affect each other. At some predetermined intervals of time, the number
of failed units is observed. It is assumed that test is carried out till all the units have
failed. Now let us analyze the information collected through this test.

From the classical definition of probability, the probability of occurrence of an
event A can be expressed as follows

(2.66)

where

ng is the number of favorable outcomes
ng is number of unfavorable outcomes
N is total number of trials = ng + ny

When N number of units are tested, let us assume that ny(t) units survive the life
test after time t and that ng(t) units have failed over the time t. Using the above
equation, the reliability of such a unit can be expressed as:

Cong(t)  ng(2)

N ml) ) (267

This definition of reliability assumes that the test is conducted over a large
number of identical units.

The unreliability Q(t) of unit is the probability of failure over time t, equivalent
to Cumulative Distribution Function (CDF) and is given by F(t),

ne(t
(1) =F(1) = % (2.68)
We know that the derivative of the CDF of a continuous random variable gives
the PDF. In reliability studies, failure density function f(t) associated with failure
time of a unit can be defined as follows:

dF () _ do(r)  ldn lLim{nf(H-At) —nf(t)}
At

f(@) (2.69)

dt dt ~ Ndt NAa—o

Hazard rate can be derived from Eq. 2.21 by substituting f(t) and R(t) as
expressed below
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h(t) = — Lim{”f'(“LA’)_“f(’)} (2.70)

ng(t) A—0 At

Equations 2.67, 2.69 and 2.70 can be used for computing reliability, failure
density and hazard functions from the given failure data.

The preliminary information on the underlying failure model can be obtained if
we plot the failure density, hazard rate and reliability functions against time. We can
define piece wise continuous functions for these three characteristics by selecting
some small time interval At. This discretization eventually in the limiting conditions
i.e., At — 0 or when the data is large would approach to the continuous function
analysis. The number of interval can be decided based on the range of data and
accuracy desired. But higher is the number of intervals, better would be the
accuracy of results. However the computational effort increases considerably if we
choose a large number of intervals. However, there exist an optimum number of
intervals given by Sturges [4], which can be used to analyze the data. If n is the
optimum number of intervals and N is the total number of failures, then

n=1+3.3Log;,(N) (2.71)

Example 8 To ensure proper illumination in control rooms, higher reliability of
electric-lamps is necessary. Let us consider that the failure times (in hours) of a
population of 30 electric-lamps from a control room are given in the following
Table 2.9. Calculate failure density, reliability and hazard functions?

Solution:
The optimum number of intervals as per Sturge’s formula (Eq. 2.71) with N=301s

n =1+ 3.3log(30) = 5.87

Table 2.9 Failure data Lamp | Failure Lamp | Failure Lamp | Failure
time time time
1 5495.05 11 3511.42 21 4037.11
2 8817.71 12 6893.81 22 933.79
3 539.66 13 1853.83 23 1485.66
4 2253.02 14 3458.4 24 4158.11
5 18,887 15 7710.78 25 6513.43
6 2435.62 16 324.61 26 8367.92
7 99.33 17 866.69 27 1912.24
8 3716.24 18 6311.47 28 13,576.97
9 12,155.56 |19 3095.62 29 1843.38
10 552.75 20 927.41 30 4653.99
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Table 2.10 Data in

Bulb Failure Bulb Failure Bulb Failure
ascending order time time time

1 99.33 11 191224 |21 5495.05
2 324.61 12 2253.02 22 6311.47
3 539.66 13 2435.62 23 6513.43
4 552.75 14 3095.62 24 6893.81
5 866.69 15 3458.4 25 7710.78
6 927.41 16 3511.42 26 8367.92
7 933.79 17 3716.24 |27 8817.71
8 1485.66 18 4037.11 28 12,155.56
9 1843.38 19 4158.11 29 13,576.97
10 1853.83 20 4653.99 30 18,887

In order to group the failure times under various intervals, the data is arranged in
increasing order. Table 2.10 is the data with ascending order of failure times. The
minimum and maximum of failure time is 99.33 and 18,887 respectively.

18,887 — 99.33

3 =3131.27 = 3150

Interval size = At; =

We can now develop a table showing the intervals and corresponding values of
R(t), F(t), f(t) and h(t) respectively. The following notation is used. The summary of
calculations is shown in Table 2.11.
ng(tj) number of survivors at the beginning of the interval
ndt;) number of failures during ith interval

The plots of f(t) and h(t) are shown in Figs. 2.28 and 2.29 where as the plots of R
(t) and F(t) are given in Fig. 2.30.

Table 2.11 Calculations

Interval ng(t;) ng(t;) R(t;) F(t) ft,) = IIG(ALL) h(t) = n?(ftf?gti
0-3150 30 14 1 0 1.48e-4 1.48e-4
3151-6300 16 7 0.53 0.47 7.4e-5 1.38¢-4
6301-9450 9 6 0.3 0.7 6.35e-5 2.11e4
9451-12,600 3 1 0.1 0.9 1.06e-5 1.05e-4
12,601-15,750 2 1 0.066 0.934 1.06e-5 1.58e-4
15,751-18,900 1 1 0.033 0.967 1.06e-5 3.17e-4
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2.5.2 Parametric Methods

Preceding section discussed methods for deriving empirical distributions directly
from failure data. The second, and usually preferred, method is to fit a theoretical
distribution, such as the exponential, Weibull, or normal distributions. As theoretical
distributions are characterized with parameters, these methods are known as para-
metric method. Nonparametric methods have certain practical limitations compared
with parametric methods.
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Fig. 2.30 Reliability function/CDF

1. As nonparametric methods are based on sample data, information beyond the
range of data cannot be provided. Extrapolation beyond the censored data is
possible with a theoretical distribution. This is significant in reliability/safety
studies as the tails of the distribution attract more attention.

2. The main concern is determining the probabilistic nature of the underlying
failure process. The available failure data may be simple a subset of the popu-
lation of failure times. Establishing the distribution the sample came from and
not sample itself is the focus.

3. The failure process is often a result of some physical phenomena that can be
associated with a particular distribution.

4. Handling a theoretical model is easy in performing complex analysis.

In parametric approach, fitting of a theoretical distribution, consists of the fol-
lowing three steps:

1. Identifying candidate distribution
2. Estimating the parameters of distributions
3. Performing goodness-of-fit test

All these steps are explained in the following sections.

2.5.2.1 Identifying Candidate Distributions

In the earlier section on nonparametric methods, we have seen how one can obtain
empirical distributions or histograms from the basic failure data. This exercise helps
one to guess a failure distribution that can be possibly employed to model the failure
data. But nothing has been said about an appropriate choice of the distribution.
Probability plots provide a method of evaluating the fit of a set of data to a distribution.
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A probability plot is a graph in which the scales have been changed in such a
manner that the CDF associated with a given family of distributions, when repre-
sented graphically on that plot, becomes a straight line. Since straight lines are
easily identifiable, a probability plot provided a better visual test of a distribution
than comparison of a histogram with a PDF. Probability plots provide a quick
method to analyze, interpret and estimate the parameters associated with a model.
Probability plots may also be used when the sample size is too small to construct
histograms and may be used with incomplete data.

The approach to probability plots is to fit a linear regression line of the form
mentioned below to a set of transformed data:

=mx+c 2.72
y

The nature of transform will depend on the distribution under consideration. If
the data of failure times fit the assumed distribution, the transformed data will graph
as a straight line.

Consider exponential distribution whose CDF is F(f) = 1 — e~*, rearranging
1-F() = e~ ", taking the natural logarithm of both sides,

In(1 — F(1)) = In(e™*)
—In(1 —=F(r)) =Xt
1

=

) =it

Comparing it with Eq. 2.72: y = mx + ¢, we have

1
1- F(t))

m=Ax=tc=0;

y = In(

Now if y is plotted on the ordinate, the plot would be a straight line with a slope
of A.

The failure data is generally available in terms of the failure times of n items that
have failed during a test conducted on the original population of N items. Since F(t)
is not available, we can make use of E[F(t;)]

n

EW@H:§:N11 (2.73)
i=1

Example 9 Table 2.12 gives chronological sequence of the grid supply outages at a
process plant. Using probability plotting method, identify the possible distributions.
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Table 2.12 Class IV power failure occurrence time since 01.01.1998

Failure Date/time Time to failure Time between
number (in days) failure (in days)
1 11.04.1998/14:35 101 101

2 17.06.1998/12:30 168 67

3 24.07.1998/09:19 205 37

4 13.08.1999/10:30 590 385

5 27.08.1999 604 14

6 21.11.1999 721 117

7 02.01.2000 763 42

8 01.05.2000/15:38 882 119

9 27.10.2000/05:56 1061 179

10 14.05.2001 1251 190

11 03.07.2001/09:45 1301 50

12 12.07.2002/18:50 1674 374

13 09.05.2003/08:43 1976 301

14 28.12.2005 2940 964

15 02.05.2006/11:02 3065 125

16 17.05.2007/11:10 3445 380

17 02.06.2007/16:30 3461 16

Table 2.13 Time between failure (TBF) values for outage of Class IV (for Weibull plotting)

1 Failure TBF F(t) = (i — 0.3)/ y = In(In(1/R(t)) x = In(t)
number (in days) (t) (n+04)

1 5 14 0.04023 —3.19268 2.639057
2 17 16 0.097701 —2.27488 2.772589
3 3 37 0.155172 —1.78009 3.610918
4 7 42 0.212644 —1.43098 3.73767

5 11 50 0.270115 —1.1556 3.912023
6 2 67 0.327586 —0.92412 4.204693
7 1 101 0.385057 —0.72108 4.615121
8 6 117 0.442529 —0.53726 4762174
9 8 119 0.5 —0.36651 4.779123
10 15 125 0.557471 —0.20426 4.828314
11 9 179 0.614943 —0.04671 5.187386
12 10 190 0.672414 0.109754 5.247024
13 13 301 0.729885 0.269193 5.70711

14 12 374 0.787356 0.437053 5.924256
15 16 380 0.844828 0.622305 5.940171
16 4 385 0.902299 0.844082 5.953243
17 14 964 0.95977 1.16725 6.871091
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Fig. 2.31 Weibull plotting for the data

Int

Table 2.14 Coordinates of distributions for probability plotting

67

Distribution

(X, y)

Exponential F(f) = 1 — e #

1 m=2A
<[’ ln[lfﬁ(t)D c=0

Weibull F(r) = 1 — e @’

1 =
(ln t, Inln [l—ﬁ(;)]) m
c

Normal F(t) = ®[=4]

a

(r, @' F(1)]) m=

Solution:

Table 2.13 gives the summary of calculations for x and y coordinates. The same

are plotted in Fig. 2.31.

The plot is approximated to a straight line as mentioned below

The shape parameter a = 0.996

Scale parameter, p = ¢>2"*® = 194.4 days
As shape parameter is close to unity, the data fits exponential distribution.

y = 0.996x — 5.2748

Table 2.14 summarizes (X, y) coordinates of various distributions used in

probability plotting.
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2.5.2.2 Estimating the Parameters of Distribution

The preceding section on probability plotting focused on the identification of dis-
tribution for a set of data. Specification of parameters for the identified distribution
is the next step. The estimation of parameters of the distribution by probability
plotting is not considered to be best estimates. This is especially true in certain
goodness of fit tests that are based on Maximum Likelihood Estimator (MLE) for
the distribution parameters. There are many criteria based on which an estimator
can be computed, viz., least square estimation and MLE. MLE provides maximum
flexibility and is widely used.

Maximum Likelihood Estimates

Let the failure times, t;, t,,..., t, represent observed data from a population dis-
tribution, whose PDF is f (|6, . . ., 6) where 6, is the parameter of the distribution.
Then the problem is to find likelihood function given by

L(Oy...0¢) = [ [ £ (5161 .00) (2.74)

i=1
The objective is to find the values of the estimators of 6, ..., 0, that render the
likelihood function as large as possible for given values of t, t,, ..., t,. As the

likelihood function is in the multiplicative form, it is to maximize log(L) instead of
L but these two identical since maximizing L is equivalent to maximizing log(L).

By taking partial derivates of the equation with respect to 6,..., 8, and setting
these partial equal to zero, the necessary conditions for finding MLEs can be
obtained.

dInL(0y...0,)

=0 i=1,2...,k 2.75
801 1 bl i ( )

Exponential MLE
The likelihood function for a single parameter exponential distribution whose PDF

is f(t) = Je™* is given by

. *izn:'j
L(ty...,]A) = (ie‘”‘)(ie_m). . .(/le_it") ="e ! (2.76)

Taking logarithm, we have

n

InL(ty, 1z, . . ., 1| 2) :nlni—iz;:l f (2.77)
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Partially differentiating the Eq. 2.77 with respect to A and equating to zero, we
have

(2.78)

where J is the MLE of L.

Interval Estimation
The point estimates would provide the best estimate of the parameter where as the
interval estimation would offer the bounds with in which the parameter would lie. In
other words, it provides the confidence interval for the parameter. A confidence
interval gives a range of values among which we have a high degree of confidence
that the distribution parameter is included.

Since there is always an uncertainty associated in this parameter estimation, it is
essential to find upper confidence and lower confidence limit of these two
parameters.

Upper and Lower Confidence of the Failure Rate
The Chi square distribution is used to find out upper and lower confidence limits of
Mean Time To Failure. The Chi square equation is given as follow

2T
0LC = ) (279)
L2r.a)2
2T
Ovc = 5—— (2.80)
L2r1-0/2
where
O.c and Oyc Lower and Upper Confidence limits of mean time to failure
r Observed number of failures
T Operating Time
a Level of significance

The mean time represents the Mean Time Between Failure (MTBF) or Mean
Time To Failure (MTTF). When failure model follows an exponential distribution,
the failure rate can be expressed as
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Thus, the inverse of 0; ¢ and Oyc will be the maximum and minimum possible
value of the failure rate, i.e. the upper and lower confidence limit of the failure rate.

Upper and Lower Confidence Limit of the Demand Failure Probability:

In case of demand failure probability, F-Distribution is used to derive the upper
and the lower confidence limit.

r
r+ (D —r—+ 1)F0'95(2D —2r+ 2,2}’)

Pic = (2.81)

(r+ 1)F0_95(2I’+2,2D — 2)‘)
D—r+ (7’+ 1)F0‘95(2V+ 2,2D2}’)

Pyc = (2.82)

where,

P c and Pyc Lower and Upper Confidence limits for demand failure probabilities
r number of failures

D number of demands

Fo.05 95 % confidence limit for variables from F-distribution Table A.4.

Example 10 Estimate the point and 90 % confidence interval for the data given in
the previous example on grid outage in a process plant.
Solution: Total Number of Outages: 17

Total Period: 10 year.
Mean failure rate = 17/10 = 1.7/year = 1.94 x 10™*h.

The representation of Lower (5 %) and Upper (95 %) limits of (Chi-square) Xz
distribution is as follows for failure terminated tests is as follows;

Xz/ X2 /
a/2;2y 1—0/2;2y
<A< — 2.83
2T — — 2T ( )
For the case under consideration
o 100 — 90 = 10 %;
n 17,
Degree of freedom y =n = 17;
T 10 year.
X(2)A05;2-17 << X(Q).9s;+2A17
2-10 — — 2-10

Obtaining the respective values from the Xz Table A.3, 1.077 < L £ 2.55.
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The mean value of grid outage frequency is 1.7/year (1.94 x 10~%/h) with lower
and upper limit of 1.077/year (1.23 x 10%h) and 2.55/year (2.91 x 10™*/h)
respectively.

2.5.2.3 Goodness-of-Fit Tests

The last step in the selection of a parametric distribution is to perform a statistical

test for goodness of fit. Goodness-of-fit tests have the purpose to verify agreement

of observed data with a postulated model. A typical example is as follows:
Given ty, t5, ..., t, as n independent observations of a random variable (failure

time) t, a rule is asked to test the null hypothesis

Hy The distribution function of t is the specified distribution

H; The distribution function of t is not the specified distribution

The test consists of calculating a statistic based on the sample of failure times.
This statistic is then compared with a critical value obtained from a table of such
values. Generally, if the test statistic is less than the critical value, the null
hypothesis (Hp) is accepted, otherwise the alternative hypothesis (H;) is accepted.
The critical value depends on the level of significance of the test and the sample
size. The level of significance is the probability of erroneously rejecting the null
hypothesis in favor of the alternative hypothesis.

A number of methods are available to test how closely a set of data fits an
assumed distribution. For some distribution functions used in reliability theory,
particular procedures have been developed, often with different alternative
hypotheses H; and investigation of the corresponding test power. Among the dis-
tribution free procedures, chi-square (y%) is frequently used in practical applications
to solve the goodness-of-fit problems.

The chi-square (x°) goodness-of-fit test

The * test is applicable to any assumed distribution provided that a reasonably
large number of data points are available. The assumption for the y* goodness-of-fit
tests is that, if a sample is divided into n cells (i.e. we have v degrees of freedom
where v = n—1), then the values within each cell would be normally distributed
about the expected value, if the assumed distribution is correct, i.e., if x; and E; are
the observed and expected values for cell i:

n

= Zw (2.84)

i=1 E;

If we obtain a very low y* (e.g. less than the 10th percentile), it suggests that the
data corresponds more closely to the proposed distribution. Higher values of x> cast
doubt on the null hypothesis. The null hypothesis is usually rejected when the value of
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x* falls outside the 90th percentile. If ¥ is below this value, there is insufficient
information to reject the hypothesis that the data come from the supposed distribution.

For further reading on treatment of statistical data for reliability analysis,
interested readers may refer Ebeling [5] and Misra [6].

Exercise Problems

1. A continuous random variable T is said to have an exponential distribution with
parameter A, if PDF is given by f(f) = Ze~*, calculate the mean and variance of
T?

2. Given the following PDF for the random variable time to failure of a circuit
breaker, what is the reliability for a 1500 h operating life?

£ = g (é)ﬁfle(?)ﬂ with & = 1200h and f = 1.5.

3. Given the hazard rate function A(f) =2 x 107z, determine R(t) and f(t) at
t =500 h?

4. The diameter of bearing manufactured by a company under the specified supply
conditions has a normal distribution with a mean of 10 mm and standard
deviation of 0.2 mm

(i) Find the probability that a bearing has a diameter between 10.2 and 9.8 mm?
(i) Find the diameters, such that 10 % of the bearings have diameters below the
value?

5. While testing ICs manufactured by a company, it was found that 5 % are
defective. (i) What is the probability that out of 50 ICs tested more than 10 are
defective? (ii) what is the probability that exactly 10 are defective?

6. If the rate of failure for a power supply occurs at a rate of once a year, what is the
probability that 5 failures will happen over a period of 1 year?

7. Given the following 20 failure times, estimate R(t), F(t), f(t), and A(t): 100.84,
580.24, 1210.14, 1630.24, 2410.89, 6310.56, 3832.12, 3340.34, 1420.76,
830.24, 680.35, 195.68, 130.72, 298.76, 756.86, 270.39, 130.0, 30.12, 270.38,
720.12.

8. Using the data given in problem 7, identify possible distribution with the help of
probability plotting method?
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Chapter 3
System Reliability Modeling

This chapter presents basic system reliability modeling techniques such as reli-
ability block diagram, Markov models, and fault tree analysis. System reliability is
evaluated as a function of constituting components’ reliabilities.

3.1 Reliability Block Diagram (RBD)

Reliability Block Diagram is a graphical representation of system’s success logic
using modular or block structures. It is easy to understand and system success paths
can be visually verified. RBD approach integrates various components using
sub-models/blocks. RBD can be evaluated using analytical methods to obtain
system reliability.

Reliability modeling by RBD is primarily intended for non-repairable systems
only, for example Space Systems (Space Shuttle etc.) adopt RBD techniques for
reliability prediction. In most of electronic systems, though repair is possible
replacement is the practical resort, hence RBD is widely used.

Nevertheless, RBD approach has limitations in considering different failure
modes, external events (like human error) and priority of events. In such scenarios
fault tree analysis and Markov models are recommended for modeling.

3.1.1 Procedure for System Reliability Prediction Using
RBD

The procedure for constructing RBD is shown in Fig. 3.1 [1]. System familiar-
ization is the prerequisite for doing reliability modeling. After system familiariza-
tion, one has to select a system success definition. If more than one definition is
possible a separate reliability block diagram may be required for each. The next step
is to divide the system into blocks of equipment to reflect its logical behaviors of
the system so that each block is statistically independent and as large as possible. At
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Fig. 3.1 Procedure for

constructing RBD System Familiarization

A 4

System Success / Failure definition

4

Divide the Systems into blocks

\ 4

A

Construct a diagram that connects
blocks to from success paths

Review of
RBD with
Designer

A

Quantitative Evaluation of RBD.

the same time each block should contain (where possible) no redundancy. For some
of numerical evaluation, each block should contain only those items which follow
the same statistical distributions for times to failure.

In practice it may be necessary to make repeated attempts at constructing the
block diagram (each time bearing in mind the steps referred to above) before a
suitable block diagram is finalized.

The next step is to refer to the system fault definition and construct a diagram
that connects the blocks to form a ‘success path’. As indicated in the diagrams that
follow, various paths, between the input and output ports of blocks which must
function in order that the system functions. If all the blocks are required to function
for the system to function then the corresponding block diagram will be one to
which all the blocks are joined in series as illustrated in Fig. 3.2.

In this diagram “I” is the input port, “O” the output port and R1, R2, R3...Rn are
the blocks which together constitute the system. Diagram of the type are known as
‘series reliability block diagrams’.

A different type of block diagram is needed when failure of one component or
‘block’ does not affect system performance as far as the system fault definition is
concerned. If in the above instances the entire link is duplicated (made redundant),
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RI R2 R3 f-------- Rn ——
I O

Fig. 3.2 Series model

RI11 R12 R13 t------- Rin
— o
R21 R22 R23 t------- R2n
Fig. 3.3 Series—parallel model
RI1 +— RI12 r R13 — —| Rln —
(6]
R21 +— l—5 R22 R23 [ | L—| R2n [—-

Fig. 3.4 Parallel—series model

then the block diagram is as illustrated by Fig. 3.3. If, however, each block within
the link is duplicated the block diagram is as illustrated by Fig. 3.4.

Diagrams of this type are known as parallel reliability block diagrams. Block
diagrams used for modeling system reliability are often mixtures of series and
parallel diagrams.

Important Points to be Considered while Constructing RBDs

¢ Sound understanding of the system to be modeled is prerequisite for developing
RBD.

e Failure criteria shall be explicitly defined.

e Environmental and operating considerations

The description of the environment conditions under which the system is
designed to operate should be obtained. This may include a description of all the
conditions to which the system