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Preface

This book is about foundational issues in risk and risk analysis; how risk should
be expressed; what the meaning of risk is; how to understand and use models;
how to understand and address uncertainty; and how parametric probability
models like the Poisson model should be understood and used. A unifying and
holistic approach to risk and uncertainty is presented, for different applications
and disciplines. Industry and business applications are highlighted, but aspects
related to other areas are included. Decision situations covered include concept
optimization and the need for measures to reduce risk for a production system,
the choice between alternative investment projects and the use of a type of
medical treatment.

My aim is to give recommendations and discuss how to approach risk and
uncertainty to support decision-making. We go one step back compared to what
is common in risk analysis books and papers, and ask how we should think at an
early phase of conceptualization and modelling. When the concepts and models
have been established, we can use the well-defined models covered thoroughly
by others.

Here are the key principles of the recommended approach. The focus is on so-
called observable quantities, that is, quantities expressing states of the ‘world’ or
nature that are unknown at the time of the analysis but will (or could) become
known in the future; these quantities are predicted in the risk analysis and
probability is used as a measure of uncertainty related to the true values of these
quantities. Examples of observable quantities are production volume, production
loss, the number of fatalities and the occurrence of an accident.

These are the main elements of the unifying approach. The emphasis on
these principles gives a framework that is easy to understand and use in a
decision-making context. But to see that these simple principles are in fact the
important ones, has been a long process for me. It started more than ten years
ago when I worked in an oil company where I carried out a lot of risk and
reliability analyses to support decision-making related to choice of platform
concepts and arrangements. I presented risk analysis results to management but,
I must admit, I had no proper probabilistic basis for the analyses. So when I was
asked to explain how to understand the probability and frequency estimates, I
had problems. Uncertainty in the estimates was a topic we did not like to speak
about as we could not deal with it properly. We could not assess or quantify
the uncertainty, although we had to admit that it was considerably large in most
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cases; a factor of 10 was often indicated, meaning that the true risk could be
either a factor 10 above or below the estimated value. I found this discussion of
uncertainty frustrating and disturbing. Risk analysis should be a tool for dealing
with uncertainty, but by the way we were thinking, I felt that the analysis in
a way created uncertainty that was not inherent in the system being analysed.
And that could not be right.

As a reliability and risk analyst, I also noted that the way we were dealing with
risk in this type of risk analysis was totally different from the one adopted when
predicting the future gas and oil volumes from production systems. Then focus
was not on estimating some true probability and risk numbers, but predicting
observable quantities such as production volumes and the number of failures.
Uncertainty was related to the ability to predict a correct value and it was
expressed by probability distributions of the observable quantities, which is in
fact in lines with the main principles of the recommended approach of this
book.

I began trying to clarify in my own mind what the basis of risk anal-
ysis should be. I looked for alternative ways of thinking, in particular the
Bayesian approach. But it was not easy to see from these how risk and uncer-
tainty should be dealt with. I found the presentation of the Bayesian approach
very technical and theoretical. A subjective probability linked to betting and
utilities was something I could not use as a cornerstone of my framework.
Probability and risk should be associated with uncertainty, not our attitude
to winning or losing money as in a utility-based definition. I studied the lit-
erature and established practice on economic risk, project management and
finance, and Bayesian decision analysis, and I was inspired by the use of sub-
jective probabilities expressing uncertainty, but I was somewhat disappointed
when I looked closer into the theories. References were made to some liter-
ature restricting the risk concept to situations where the probabilities related
to future outcomes are known, and uncertainty for the more common situ-
ations of unknown probabilities. I don’t think anyone uses this convention
and I certainly hope not. It violates the intuitive interpretation of risk, which
is closely related to situations of unpredictability and uncertainty. The eco-
nomic risk theory appreciates subjectivity but in practice it is difficult to dis-
cern the underlying philosophy. Classical statistical principles and methods are
used, as well as Bayesian principles and methods. Even more frustrating was
the strong link between uncertainty assessments, utilities and decision-making.
To me it is essential to distinguish between what I consider to be decision
support, for example the results from risk analyses, and the decision-making
itself.

The process I went through clearly demonstrated the need to rethink the
basis of risk analysis. I could not find a proper framework to work in. Such
a framework should be established. The framework should have a clear focus
and an understanding of what can be considered as technicalities. Some features
of the approach were evident to me. Attention should be placed on observable
quantities and the use of probability as a subjective measure of uncertainty.
First comes the world, the reality (observable quantities), then uncertainties and



PREFACE xi

finally probabilities. Much of the existing classical thinking on risk analysis puts
probabilities first, and in my opinion this gives the wrong focus. The approach
to be developed should make risk analysis a tool for dealing with uncertainties,
not create uncertainties and in that way disturb the message of the analysis. This
was the start of a very interesting and challenging task, writing this book.

The main aim of this book is to give risk analysts and others an authoritative
guide, with discussion, on how to approach risk and uncertainty when the basis
is subjective probabilities, expressing uncertainty, and the rules of probability.
How should a risk analyst think when he or she is planning and conducting a
risk analysis? And here are some more specific questions:

• How do we express risk and uncertainty?
• How do we understand a subjective probability?
• How do we understand and use models?
• How do we understand and use parametric distribution classes and para-

meters?
• How do we use historical data and expert opinions?

Chapters 3 to 6 present an approach or a framework that provides answers to
these questions, an approach that is based on some simple ideas or principles:

• Focus is placed on quantities expressing states of the ‘world’, i.e. quantities
of the physical reality or nature that are unknown at the time of the analysis
but will, if the system being analysed is actually implemented, take some
value in the future, and possibly become known. We refer to these quantities
as observable quantities.

• The observable quantities are predicted.
• Uncertainty related to what values the observable quantities will take is

expressed by means of probabilities. This uncertainty is epistemic, i.e. a
result of lack of knowledge.

• Models in a risk analysis context are deterministic functions linking observ-
able quantities on different levels of detail. The models are simplified repre-
sentations of the world.

The notion of an observable quantity is to be interpreted as a potentially observ-
able quantity; for example, we may not actually observe the number of injuries
(suitably defined) in a process plant although it is clearly expressing a state of
the world. The point is that a true number exists and if sufficient resources were
made available, that number could be found.

Placing attention on the above principles would give a unified structure to risk
analysis that is simple and in our view provides a good basis for decision-making.
Chapter 3 presents the principles and gives some examples of applications from
business and engineering. Chapter 4 is more technical and discusses in more
detail how to use probability to express uncertainty. What is a good probability
assignment? How do we use information when assigning our probabilities? How
should we use models? What is a good model? Is it meaningful to talk about
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model uncertainty? How should we update our probabilities when new infor-
mation becomes available? And how should we assess uncertainties of ‘similar
units’, for example pumps of the same type? A full Bayesian analysis could be
used, but in many cases a simplified approach for assessing the uncertainties is
needed, so that we can make the probability assignments without adopting the
somewhat sophisticated procedure of specifying prior distributions of parame-
ters. An example is the initiating event and the branch events in an event tree
where often direct probability assignments are preferred instead of using the full
Bayesian procedure with specification of priors of the branch probabilities and the
occurrence rate of the initiating event. Guidance is given on when to use such a
simple approach and when to run a complete Bayesian analysis. It has been essen-
tial for us to provide a simple assignment process that works in practice for the
number of probabilities and probability distributions in a risk analysis. We should
not introduce distribution classes with unknown parameters when not required.
Furthermore, meaningful interpretations must be given to the distribution classes
and the parameters whenever they are used. There is no point in speaking about
uncertainty of parameters unless they are observable, i.e. not fictional.

The literature in mathematics and philosophy discusses several approaches
for expressing uncertainty. Examples are possibility theory and fuzzy logic. This
book does not discuss the various approaches; it simply states that probability
and probability calculus are used as the sole means for expressing uncertainty.
We strongly believe that probability is the most suitable tool. The interpretation
of probability is subject to debate, but its calculus is largely universal.

Chapter 5 discusses how to use risk analysis to support decision-making. What
is a good decision? What information is required in different situations to sup-
port decision-making? Examples of decision-making challenges are discussed.
Cost-benefit analyses and Bayesian decision analyses can be useful tools in
decision-making, but in general we recommend a flexible approach to decision-
making, in which uncertainty and uncertainty assessments (risk) provide decision
support but there is no attempt to explicitly weight future outcomes or different
categories of risks related to safety, environmental issues and costs. The main
points of Chapters 3 to 5 are summarized in Chapter 6.

Reference is above given to the use of subjective probability. In applications
the word ‘subjective’, or related terms such as ‘personalistic’, is often difficult
as it seems to indicate that the results you present as an analyst are subjective
whereas adopting an alternative risk analysis approach can present objective
results. So why should we always focus on the subjective aspects when using our
approach? In fact, all risk analysis approaches produce subjective risk results; the
only reason for using the word ‘subjective’ is that this is its original, historical
name. We prefer to use ‘probability as a measure of uncertainty’ and make it
clear who is the assessor of the uncertainty, since this is the way we interpret a
subjective probability and we avoid the word ‘subjective’.

In our view, teaching the risk analyst how to approach risk and uncertainty
cannot be done without giving a context for the recommended thinking and
methods. What are the alternative views in dealing with risk and uncertainty?
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This book aims to review and discuss common thinking about risk and uncer-
tainty, and relate it to the presentation of Chapters 3 to 6. Chapter 2, which
covers this review and discussion, is therefore important in itself and an essen-
tial basis for the later chapters. It comes after Chapter 1, which discusses the
need for addressing risk and uncertainty and the need for developing a proper
risk analysis framework.

The book covers four main directions of thought:

• The classical approach with focus on best estimates. Risk is considered a
property of the system being analysed and the risk analysis provides estimates
of this risk.

• The classical approach with uncertainty analysis, also known as the proba-
bility of frequency framework. Subjective probability distributions are used
to express uncertainty of the underlying true risk numbers.

• The Bayesian approach as presented in the literature.
• Our predictive approach, which may be called a predictive Bayesian approach.

Chapter 2 presents the first two approaches (Sections 2.1 and 2.2), and relates
them to Bayesian thinking (Section 2.3), whereas Chapters 3 to 6 present our
predictive approach. The presentation in Chapters 4 and 5 also cover key aspects
of the Bayesian paradigm (Chapter 4) and Bayesian decision theory (Chapter 5),
as these are basic elements of our predictive approach. To obtain a complete
picture of how these different perspectives are related, Chapters 2 to 6 need to
be read carefully.

This book is written primarily for risk analysts and other specialists dealing
with risk and risk analysis, as well as academics and graduates. Conceptually
it is rather challenging. To quickly appreciate the book, the reader should be
familiar with basic probability theory. The key statistical concepts are introduced
and discussed thoroughly in the book, as well as some basic risk analysis tools
such as fault trees and event trees. Appendix A summarizes some basic proba-
bility theory and statistical analysis. This makes the book more self-contained,
gives it the required sharpness with respect to relevant concepts and tools, and
makes it accessible to readers outside the primary target group. The book is
based on and relates to the research literature in the field of risk and uncer-
tainty. References are kept to a minimum throughout, but bibliographic notes
at the end of each chapter give a brief review of the material plus relevant
references.

Most of the applications in the book are from industry and business, but there
are some examples from medicine and criminal law. However, the ideas, princi-
ples and methods are general and applicable to other areas. What is required is an
interest in studying phenomena that are uncertain at the time of decision-making,
and that covers quite a lot of disciplines.

This book is primarily about how to approach risk and uncertainty, and it pro-
vides clear recommendations and guidance. But it is not a recipe book telling you
how to plan, conduct and use risk analysis in different situations. For example,
how should a risk analysis of a large process plant be carried out? How should



xiv PREFACE

we analyse the development of a fire scenario? How should we analyse the
evacuation from the plant? These issues are not covered. What it does cover are
the general thinking process related to risk and uncertainty quantification, and
the probabilistic tools to achieve it. When referring to our approach as a unify-
ing framework, this relates only to these overall features. Within each discipline
and area of application there are several tailor-made risk analysis methods and
procedures.

The terminology used in this book is summarized in Appendix B. It is largely
in line with the ISO standard on risk management terminology (ISO 2002).

We believe this book is important as it provides a guide on how to approach
risk and uncertainty in a practical decision-making context and it is precise
on concepts and tools. The principles and methods presented should work in
practice. Consequently, we have put less emphasis on Bayesian updating proce-
dures and formal decision analysis than perhaps would have been expected when
presenting an approach to risk and uncertainty based on the use of subjective
probabilities. Technicalities are reduced to a minimum, ideas and principles are
highlighted.

Our approach means a humble attitude to risk and the possession of the truth,
and hopefully it will be more attractive to social scientists and others, who have
strongly criticized the prevailing thinking of risk analysis and evaluation in the
engineering environment. We agree that a sharp distinction between objective,
real risk and perceived risk cannot be made. Risk is primarily a judgement, not
a fact. To a large extent, our way of thinking integrates technical and economic
risk analyses and social science perspectives on risk. As risk expresses uncer-
tainty about the world, risk perception has a role to play in guiding decision-
makers. Professional risk analysts do not have the exclusive right to describe
risk.

Scientifically, our perspective on uncertainty and risk can be classified as
instrumental, in the sense that we see the risk analysis methods and models as
nothing more than useful instruments for getting insights about the world and to
support decision-making. Methods and models are not appropriately interpreted
as being true or false.
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Introduction

1.1 THE IMPORTANCE OF RISK
AND UNCERTAINTY ASSESSMENTS

The concept of risk and risk assessments has a long history. More than 2400
years ago the Athenians offered their capacity of assessing risks before making
decisions. From the Pericle’s Funeral Oration in Thurcydidas’ “History of the
Peloponnesian War” (started in 431 B.C.), we can read:

We Athenians in our persons, take our decisions on policy and submit
them to proper discussion. The worst thing is to rush into action before
consequences have been properly debated. And this is another point
where we differ from other people. We are capable at the same time
of taking risks and assessing them beforehand. Others are brave out
of ignorance; and when they stop to think, they begin to fear. But the
man who can most truly be accounted brave is he who best knows
the meaning of what is sweet in life, and what is terrible, and he then
goes out undeterred to meet what is to come.

But the Greeks did not develop a quantitative approach to risk. They had no
numbers, and without numbers there are no odds and probabilities. And with-
out odds and probabilities, the natural way of dealing with risk is to appeal
to the gods and the fates; risk is wholly a matter of gut. These are words
in the spirit of Peter Bernstein in Against the Gods (1996), who describes
in a fascinating way how our understanding of risk has developed over cen-
turies. Until the theory of probability was sufficiently developed, our ability
to define and manage risk was necessarily limited. Bernstein asks rhetorically,
What distinguishes the thousands of years of history from what we think of
as modern times? The past has been full of brilliant scientists, mathemati-
cians, investors, technologists, and political philosophers, whose achievements
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were astonishing; think of the early astronomers or the builders of the pyra-
mids. The answer Bernstein presents is the mastery of risk; the notion that
the future is more than a whim of the gods and that men and women are
not passive before nature. By understanding risk, measuring it and weigh-
ing its consequences, risk-taking has been converted into one of the prime
catalysts that drives modern Western society. The transformation in attitudes
towards risk management has channelled the human passion for games and
wagering into economic growth, improved quality of life, and technological
progress. The nature of risk and the art and science of choice lie at the core
of our modern market economy that nations around the world are hastening
to join.

Bernstein points to the dramatic change that has taken place in the last cen-
turies. In the old days, the tools of farming, manufacturing, business manage-
ment, and communication were simple. Breakdowns were frequent, but repairs
could be made without calling the plumber, the electrician, the computer scien-
tist – or the accountants and the investment advisers. Failure in one area seldom
had direct impact on another. Today the tools we use are complex, and break-
downs can be catastrophic, with far-reaching consequences. We must be con-
stantly aware of the likelihood of malfunctions and errors. Without some form
of risk management, engineers could never have designed the great bridges that
span the widest rivers, homes would still be heated by fireplaces or parlour
stoves, electric power utilities would not exist, polio would still be maiming
children, no airplanes would fly, and space travel would be just a dream.

Traditionally, hazardous activities were designed and operated by references to
codes, standards and hardware requirements. Now the trend is a more functional
orientation, in which the focus is on what to achieve, rather than the solution
required. The ability to address risk is a key element in such a functional system;
we need to identify and categorize risk to provide decision support concerning
choice of arrangements and measures.

The ability to define what may happen in the future, assess associated risks
and uncertainties, and to choose among alternatives lies at the heart of the risk
management system, which guides us over a vast range of decision-making, from
allocating wealth to safeguarding public health, from waging war to planning a
family, from paying insurance premiums to wearing a seat belt, from planting
corn to marketing cornflakes.

To be somewhat more detailed, suppose an oil company has to choose between
two types of concept, A and B, for the development of an oil and gas field. To
support the decision-making, the company evaluates the concepts with respect
to a number of factors:

• Investment costs: there are large uncertainties associated with the investment
costs for both alternatives. These uncertainties might relate to the optimiza-
tion potential associated with, among other things, reduction in management
and engineering man-hours, reduction in fabrication costs and process plant
optimization. The two alternatives are quite different with respect to cost
reduction potential.
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• Operational costs: there is greater uncertainty in the operational cost for B
than for A as there is less experience with the use of this type of concept.

• Schedules: the schedule for A is tighter than for B. For A there is a significant
uncertainty of not meeting the planned production start. The cost effect of
delayed income and back-up solutions is considerable.

• Market deliveries and regularity: the market has set a gas delivery (regular-
ity) requirement of 99%, i.e. deliveries being 99% relative to the demanded
volume. There are uncertainties related to whether the alternatives can meet
this requirement, or in other words, what the cost will be to obtain sufficient
deliveries.

• Technology development: alternative A is risk-exposed in connection with
subsea welding at deep water depth. A welding system has to be developed
to meet a requirement of approximately 100% robotic functionality as the
welding must be performed using unmanned operations.

• Reservoir recovery: there is no major difference between the alternatives on
reservoir recovery.

• Environmental aspects: alternative B has the greater potential for improve-
ment with respect to environmental gain. New technology is under develop-
ment to reduce emissions during loading and offloading. Further, the emis-
sions from power generation can be reduced by optimization. Otherwise the
two concepts are quite similar with respect to environmental aspects.

• Safety aspects: for both alternatives there are accident risks associated with
the activity. There seems to be a higher accident risk for A than for B.

• External factors: concept A is considered to be somewhat advantageous
relative to concept B as regards employment, as a large part of the deliveries
will be made by the national industry.

Based on evaluations of these factors, qualitative and quantitative, a concept
will be chosen. The best alternative is deemed to be the one giving highest
profitability, no fatal accidents and no environmental damage. But it is impos-
sible to know with certainty which alternative is the best as there are risks and
uncertainties involved. So the decision of choosing a specific alternative has
to be based on predictions of costs and other key performance measures, and
assessments of risk and uncertainties. Yet, we believe, and it is essentially what
Bernstein tells us, that such a process of decision-making and risk-taking pro-
vides us with positive outcomes when looking at the society as a whole, the
company as a whole, over a certain period of time. We cannot avoid ‘nega-
tive’ outcomes from time to time, but we should see ‘positive’ outcomes as the
overall picture.

As a second example, let us look at a stock market investor. At a particular
moment, the investor has x million dollars with which to buy stocks. To simplify,
say that he considers just three alternatives: A, B and C. What stocks should
he buy? The decision is not so simple because there are risks and uncertainties
involved. As support for his decision, he analyses the relevant companies. He
would like to know more about how they have performed so far, what their goals
and strategies are, what makes them able to meet these goals and strategies, how
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vulnerable the companies are with respect to key personnel, etc. He would also
analyse the industries the companies belong to. These analyses give insight into
the risks and uncertainties, and they provide a basis for the decision-making.
When the investor makes his choice, he believes he has made the right choice,
but only time will tell.

As a final example, let us consider a team of doctors that consider two possible
treatments, A and B, for a patient who has a specific disease. Treatment A
is a more comprehensive treatment, it is quite new and there are relatively
large uncertainties about how it will work. There are some indications that this
treatment can give very positive results. Treatment B is a more conventional
approach, it is well proven but gives rather poor results. Now, which treatment
should be chosen? Well, to make a decision, risks and uncertainties first have
to be addressed. The team of doctors have thoroughly analysed these risks and
uncertainties, and to some extent reduced them. For the patient it is important
to hear the doctors’ judgements about his chances of being cured and about the
possible side effects of the treatments. Then the patient makes his decision.

More examples will be presented in the coming chapters.

1.2 THE NEED TO DEVELOP A PROPER
RISK ANALYSIS FRAMEWORK

Bernstein’s concludes that the mastery of risk is a critical step in the development
of modern society. One can discuss the validity of his conclusion, but there
should be no doubt that risk and uncertainty are important concepts to address
for supporting decision-making in many situations. The challenge is to know
how do describe, measure and communicate risk and uncertainty. There is no
clear answer to this. We cannot find an authoritative way of approaching risk
and uncertainty. We do need one. We all have a feel of what risk means, but
if we were asked to measure it, there would be little consensus. The word
‘risk’ derives from the early Italian risicare, which means ‘to dare’. Webster’s
Dictionary (1989) has several definitions of ‘risk’; here are some of them:

• expose to the chance of injury or loss;
• a hazard or dangerous chance;
• the hazard or chance of loss;
• the degree of probability of such loss.

We are not yet ready to define what we mean by risk in this book, but the
definition in Chapter 3 is closely related to uncertainty, a concept that is equally
difficult to define as risk. Webster’s Dictionary refers among other things, to the
following definitions of ‘uncertainty’:

• not definitely ascertainable or fixed;
• not confident;
• not clearly or precisely defined;
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• vague, indistinct;
• subject to change, variable;
• lack of predictability.

The ambiguity surrounding the notions of risk and uncertainty is also reflected in
the way the different applications and disciplines approach risk and uncertainty.
This will become apparent in Chapter 2, which reviews some common thinking
about risk in different applications and disciplines.

The terminology and methods used for dealing with risk and uncertainty vary
a lot, making it difficult to communicate across different applications and disci-
plines. We also see a lot of confusion about what risk is and what should be the
basic thinking when analysing risk and uncertainty within the various applications.
This is not surprising when we look at the risk literature, and the review in the
next chapter will give some idea of the problems. Reference is made to so-called
classical methods and Bayesian methods, but most people find it difficult to dis-
tinguish between the alternative frameworks for analysing risk. There is a lack of
knowledge about what the analyses express and the meaning of uncertainty in the
results of the analyses, even among experienced risk analysts. The consequence
of this is that risks are often very poorly presented and communicated.

Nowadays there is an enormous public concern about many aspects of risk.
Scientific advances, the growth in communications and the availability of infor-
mation have led to stronger public awareness. Few risks are straightforward;
there are competing risks to balance, there are trade-offs to make and the impacts
may be felt across many sections of society and the environment. Science,
medicine and technology can help us to understand and manage the risks to
some extent, but in most cases the tasks belong to all of us, to our governments
and to public bodies. Therefore we need to understand the issues and facili-
tate communication among all parties concerned. The present nomenclature and
tools for dealing with risk and uncertainty are confusing and do not provide a
good framework for communication.

Furthermore, aspects of society with inherent risk and uncertainty have
changed in recent years. This applies, among other things, to complex tech-
nology with increased vulnerability, information and communication technol-
ogy, biotechnology and sabotage. People require higher safety and reliability,
and environmental groups have intensified their activities. The societal debate
related to these issues is characterized by people talking at cross purposes, by
mistrust as objective facts are mixed with judgements and values, and the cases
are often presented in a non-systematic way as far as risk and uncertainty are
concerned. More than ever there is a need for decision-support tools addressing
risk and uncertainty.

It is our view that the concepts of risk and risk analysis have not yet been
sufficiently developed to meet the many challenges. A common approach is
needed that can give a unifying set-up for dealing with risk and uncertainty
over the many applications. It is necessary to clarify what should be the basis
of risk analysis. We search for a common structure, and philosophy, not a strait-
jacket. Business needs a different set of methods, procedures and models than
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for example medicine. But there is no reason why these areas should have
completely different perspectives on how to think when approaching risk and
uncertainty, when the basic problem is the same – to reflect our knowledge and
lack of knowledge about the world.

This book presents such a unifying approach, which we believe will meet the
many challenges and help to clarify what should be the definition of risk and
the basis of risk analysis. To deal with risks related to the profit from one or
several investment projects or stocks, production loss and occurrence of acci-
dental events, it is essential that economists, finance analysts, project managers,
safety and production engineers are able to communicate. Currently this com-
munication is difficult. The typical approaches to risk and risk analysis adopted
in engineering and in business and project management represent completely
different views, making the exchange of ideas and results complicated and not
very effective. In traditional engineering applications, risk is a physical property
to be analysed and estimated in the risk analysis, the quantitative risk analy-
sis (QRA) and the probabilistic safety analysis (PSA); whereas in business and
project management, risk is seen more as a subjective measure of uncertainty.

We need to rewrite the rules of risk and risk analysis. And our starting point
is a review of the prevailing thinking about risk in different applications and
disciplines.

BIBLIOGRAPHIC NOTES

The literature covers a vast number of papers and books addressing risk and
uncertainty. Many provide interesting examples of real-life situations where
risk and uncertainty need to be analysed and managed. Out of this literature we
draw attention to Clemen (1996), Moore (1983), Hertz and Thomas (1983), and
Koller (1999a, 1999b), as these books are closely linked to the main applications
that we cover in this book.

The challenges related to description, measurement and communication of risk
and uncertainty have been addressed by many researchers. They will be further
discussed in Chapter 2, and more bibliographic notes can be found there.
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Common Thinking about
Risk and Risk Analysis

In this chapter we review some main lines of thinking about risk and risk anal-
ysis, focusing on industry and business. The purpose is not to give a complete
overview of the existing theory, but to introduce the reader to common concepts,
models and methods. The exposition highlights basic ideas and results, and it
provides a starting point for the theory presented in Chapters 3 to 5. First we
look into accident risk, mainly from an industry view point. We cover accident
statistics, risk analysis and reliability analysis. Then we consider economic risk,
focusing on business risk. Finally we discuss the ideas and methods we have
reviewed and draw some conclusions.

2.1 ACCIDENT RISK

2.1.1 Accident Statistics

To many people, risk is closely related to accident statistics. Numerous reports
and tables are produced showing the number of fatalities and injuries as a result
of accidents. The statistics may cover the total number of accidents associated
with an activity within different consequence categories (loss of life, personal
injuries, material losses, etc.) and they could be related to different types of
accident, such as industrial accidents and transport accidents. Often the statistics
are related to time periods, and then time trends can be identified. More detailed
information is also available in some cases, related to, for example, occupation,
sex, age, operations, type of injury, etc.

Do these data provide information about the future, about risk? Yes, although
the data are historical data, they would usually provide a good picture of what
to expect in the future. If the numbers of accidental deaths in traffic during the
previous five years are 1000, 800, 700, 800, 750, we know a lot about risk,

Foundations of Risk Analysis: A Knowledge and Decision-Oriented Perspective. Terje Aven
Copyright 2003 John Wiley & Sons, Ltd.
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even though we have not explicitly expressed it by formulating predictions and
uncertainties. This is risk related to the total activity, not to individuals. Depend-
ing on your driving habits, these records could be more or less representative
for you.

Accident statistics are used by industry. They are seen as an essential tool
for management to obtain regular updates on the number of injuries (suitably
defined) per hour of working, or any other relevant reference, for the total
company and divided into relevant organizational units. These numbers provide
useful information about the safety and risk level within the relevant units. The
data are historical data, but assuming a future performance of systems and human
beings along the same lines as this history, they give reasonable estimates and
predictions for the future.

According to the literature, accident statistics can be used in several ways:

• to monitor the risk and safety level;
• to give input to risk analyses;
• to identify hazards;
• to analyse accident causes;
• to evaluate the effect of risk reducing measures;
• to compare alternative area of efforts and measures.

Yes, we have seen accident statistics used effectively in all these ways, but
we have also seen many examples of poor use and misuse. There are many
pitfalls when dealing with accident statistics, and the ambitions for the statis-
tics are often higher than is achieved. In practice it is not so easy to obtain
an effective use of accident statistics. One main challenge is interpreting his-
torical data to estimate future risks. Changes may have occurred so that the
situation now being analysed is quite different from the situation the data
were based on, and the amount of data could be too small for making good
predictions.

Suppose that we have observed 2 and 4 accidents leading to injuries (suitably
defined) in a company in two consecutive years. These numbers give valuable
information about what has happened in these two years, but what do they
say about risk? What do the numbers say about the future? For the coming
year, should we expect 3 accidents leading to injuries, or should we interpret
the numbers such that it is likely that 4 or more accidents would occur. The
numbers alone do not provide us with one unique answer. If we assume, as a
thought experiment, that the performance during the coming years is as good
(bad) as in previous years, then we would see 3 accidents per year on the average.
If we see a negative trend, we would indicate 4 accidents per year, or even a
higher number. But what about randomness, i.e. variations that are not due to a
systematic worsening or improvement of the safety level? Even if we say that 3
events would occur on the average per year, we should expect that randomness
could give a higher or lower number next year. A common model to express
event streams such as accidents is the Poisson model. If we use this model and
assume 3 events to occur on the average, the probabilities of 0 events and 1
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event during one year are equal to 5% and 15%, respectively. The probability
of 5 or more events is 20%; for 6 and 7 the corresponding probabilities are 8%
and 3%. So even if 5 events occur, we should be careful in concluding that the
safety level has been significantly decreased – the increase in accidental events
could be a result of randomness. At a level of 7 events or more, we will be
reasonably sure if we assert that a worsening has occurred, because in this case
there is not more than a probability of 3% of concluding that the safety level
has decreased when this is not the case.

Our reasoning here is similar to classical statistical hypothesis testing, which is
commonly used for analysing accident data. The starting point is a null hypoth-
esis (3 events on the average per year) and we test this against a significant
worsening (improvement) of the accident rate. We require a small probabil-
ity (about 5–10%) for rejecting the null hypothesis when the null hypothe-
sis is true, i.e. make an erroneous rejection of the null hypothesis. This is
a basic principle of classical statistical thinking. The problem with this prin-
ciple is that the data must give a very strong message before we can con-
clude whether the safety level has worsened (improved). We need a substantial
amount of data to enable the tests to reveal changes in the safety level. Seven or
more events give support for the conclusion that the safety level has worsened,
and this will send a message to management about the need for risk-reducing
measures.

Note that the statistical analysis does not reveal the causes of the decrease in
safety level. More detailed analysis with categorized data is required to identify
possible causes. However, the number of events in each category would then be
small, and inference would not be very effective.

Trend analyses are seen as a key statistical tool for identifying possible wors-
ening or improvement in the safety level. The purpose of a trend analysis is to
investigate whether trends are present in the data, i.e. whether the data show an
increase or decrease over time that is not due to randomness. Suppose we have
the observations given in Table 2.1. We assume that the number of working
hours is constant for the time period considered. The question now is whether
the data show that a trend is present, i.e. a worsening in the safety level that
is not due to randomness. And if we can conclude there is a trend, what are
its causes? Answering these questions will provide a basis for identifying risk-
reducing measures that can reverse the trend.

Statistical theory contains a number of tests to reveal possible trends. The
null hypothesis in such tests is no trend. It requires a considerable amount of
data and a strong tendency in the data in order to give rejection of this null
hypothesis. In Table 2.1, we can observe that there is some tendency of an
increasing number of injuries as a function of time, but a statistical test would
not prove that we have a significant increase in injuries. The amount of data

Table 2.1 Number of injuries

Month 1 2 3 4 5 6
Number of injuries 1 2 1 3 3 5
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is too small – the tendency could be a result of randomness. To reject the null
hypothesis a large change in the number of injuries would be required, but
hopefully such a development would have been stopped long before the test
gives the alarm.

To increase the amount of data, we may include data of near misses and
deviations from established procedures. Such events can give a relatively good
picture of where accidents might occur, but they do not necessarily give a good
basis for quantifying risk. An increase in the number of near misses could be
a result of a worsening of the safety, but it could also be a result of increased
reporting.

We conclude that in an active safety management regime, classical statis-
tical methods cannot be used as an isolated instrument for analysing trends.
We must include other information and knowledge besides the historical data.
Based on their competence and position, someone must transform the data to a
view related to the possible losses and damages, where consideration is given
to uncertainties and randomness. Information from near-miss reporting is one
aspect, and another aspect is insight into the relevance of the data for describing
future activities.

When the data show a negative trend as in Table 2.1 above, we should con-
clude immediately that a trend is present – the number of events is increasing.
We can observe this without any test. Quick response is required as any injury
is unwanted. We should not explain the increase by randomness. And more
detailed statistical analysis is not required to conclude this. Then we need to
question why this trend is observed and what we can do to reduce the number of
injuries. We need some statistical competence, but equally as important, or per-
haps even more important, is the ability to find out what can cause injuries, how
hazardous situations occur and develop into accidents, how possible measures
can reduce risk, etc. After having analysed the different accidental events, seen
in relation to other relevant information and knowledge, we need to identify the
main factors causing this trend, to the best of our ability. This will imply more
or less strong statements depending on the confidence we have about the causes.
Uncertainty will always be present, and sometimes it will be difficult to identify
specific causes. But this does not mean that the accidental events are due to
randomness. We do not know. This would be the appropriate conclusion here.

Statistical testing should be seen more as a screening instrument for identify-
ing where to concentrate the follow-up when studying several types of acciden-
tal event. Suppose we have to look into data of more than 100 hazards. Then
some kind of identification of the most surprising results would be useful, and
statistical testing could be used for this purpose.

A basic requirement is that historical data are correct – they are reliable.
In our injuries example it would be difficult in many cases to make accurate
measurements. Psychological and organizational factors could result in under-
reporting. We may think of an organizational incentive structure where absence
of injuries is rewarded. Then we may find that some injuries are not reported
as the incentive structure is interpreted as ‘absence of reported injuries’. So
judgements are required – we cannot base our conclusions on the data alone.
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Another measurement problem is related to the specification of relevant ref-
erence or normalizing factors to obtain suitable accident or failure rates, for
example the number of working hours, opportunities of failure, and so on.

Historical data on a certain type of accident, for example an injury rate,
provide information about the safety level. But we cannot use just one indicator,
such as the injury rate, to draw conclusions about development in the safety level
as a whole. The safety level is more than the number of injuries. A statement
concerning the safety level based on observations of the injury rate only, would
mostly have low validity.

Most researchers and analysts seem to consider statistical testing as a strongly
scientific approach as it can make objective assessments on the probabilities of
making errors as well as the probability of correctly rejecting the null hypoth-
esis. Probability is defined according to the relative frequency interpretation,
meaning that probability is an objective quantity expressing the long-run frac-
tion of successes if the experiment were repeated for real or hypothetically an
infinite number of times. Furthermore it is assumed that the data (here the num-
ber of accidents) follow some known probability law, for example the Poisson
distribution or the normal (Gaussian) distribution. The problem is that these
probabilities and probability models cannot be observed or verified – they are
abstract theoretical quantities based on strong assumptions. Within its defined
framework the tool is precise, but precision is not interesting if the framework
conditions are inappropriate.

In the case of accidents with severe damage and losses, the amount of data
would normally be quite limited, and the data would give a rather poor basis for
predicting the future. For example, in a company there would normally be few
fatal accidents, so a report on fatalities would not be so useful for expressing
risk, and it would be difficult to identify critical risk factors and study the effect
of risk-reducing measures. Even with large amounts of accident data it is not
clear that fatality reports are useful for expressing risk. What we need is a risk
analysis.

2.1.2 Risk Analysis

We consider an offshore installation producing oil and gas. As part of a risk
analysis on the installation, a separate study is to investigate the risk associated
with the operation of the control room that is placed in a compressor module.
Two persons operate the control room. The purpose of the study is to assess
risk to the operators as a result of possible fires and explosions in the module
and to evaluate the effect of implementing risk-reducing measures. Based on
the study a decision will be made on whether to move the control out of the
module or to implement some other risk-reducing measures. The risk is currently
considered to be too high, but the management is not sure what is the overall
best arrangement taking into account both safety and economy.

We will examine this control room study by focusing on the following questions:

• How is risk expressed?
• What is the meaning of probability and risk?
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Figure 2.1 Event tree example

• How is uncertainty understood and addressed?
• What is the meaning of a model?
• How do we use and understand parametric probability models like the Poisson

model?

We will assume that the study is simply based on one event tree as shown
in Figure 2.1. The tree models the possible occurrence of gas leakages in the
compression module during a period of time, say one year. A gas leakage is
referred to as an initiating event. The number of gas leakages is denoted by X.
If an initiating event I occurs, it leads to Y fatalities, where Y = 2 if the events
A and B occur, Y = 1 if the events A and not B occur, and Y = 0 if the event
A does not occur. We may think of the event A as representing ignition of the
gas and B as explosion.

Now, what would a risk analyst do, following today’s typical industry prac-
tice? There are many different answers; we will look at two, a fairly simple
approach and a more sophisticated approach.

Best-estimate approach

The simple approach, here called the best-estimate approach, goes like this. First
the frequency of leakages and of the probabilities of ignition and explosion
are estimated. Then the frequency of events resulting in 2 and 1 fatalities are
calculated by multiplying these estimates. The probability of having two or more
accidents with fatalities during one year is ignored. If for example a frequency
of 1 leakage per year is estimated, and an ignition probability of 0.005 and an
explosion probability of 0.1, then an estimate of 0.0005 events resulting in 2
fatalities per year is derived, and an estimate of 0.0045 events resulting in 1
fatality per year. Combining these numbers, the PLL (potential loss of lives) and
FAR (fatal accident rate) values can be calculated. The PLL value represents the
average number of fatalities per year and is equal to 0.0045 × 1 + 0.0005 × 2 =
0.0055, and the FAR value represents the average number of fatalities per 100
million exposed hours and is equal to [0.0055/2 × 8760] × 108 = 31, assuming
there are two persons at risk at any time, so that the total hours of risk exposure
is equal to 2 × 8760 per year.
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To estimate the leakage frequency, ignition probability and explosion proba-
bility, observations from similar activities (often known as hard data) and judge-
ments are used. Detailed modelling of the ignition probability may be carried out
in some cases. This modelling covers the probability of exposure to flammable
mixtures accounting for release characteristics (e.g. duration, flow) and the dis-
persion or spreading of the gas (e.g. geometry, ventilation) in the module, as well
as characteristics of potential ignition sources, for example electrical equipment
and hot work. The modelling makes it possible to study the influence on risk
of mitigation measures (e.g. shutdown, working procedures) and is expected to
give more accurate estimates of the ignition probability.

These risk numbers are presented to management along with typical FAR
values for other activities. Changes in the risk estimates are also presented to
show what happens when possible risk-reducing measures are incorporated.

In practice, analysts also focus on other risk indices, for example the prob-
ability of a safety function impairment during a specific year. An example of
a safety function is: People outside the immediate vicinity of an accident shall
not be cut of from all escape routes to a safe area.

Now, what do these estimates express and what about uncertainties? If these
questions are put forward, we will receive a variety of answers. Here is a typical
answer:

The results of any risk analysis are inevitably uncertain to some degree.
The results are intended to be ‘cautious best estimates’. This means
that they attempt to estimate the risks as accurately as possible, but are
deliberately conservative (i.e. tending to overestimate the risks) where
the uncertainties are largest. Because of the inevitable limitations of
the risk analysis approach, it must be acknowledged that the true risks
could be higher or lower than estimated.

These uncertainties are often considered to amount to as much as a
factor of 10 in either direction. A detailed analysis of the confidence
limits on the results would be prohibitively complex, and in itself
extremely uncertain.

We do not find this satisfactory. The approach is in fact not complete, as it
does not seriously deal with uncertainty. To explain our view in more detail, we
will formalize the above presentation of the ‘best-estimate’ approach.

In this framework, risk is supposed to be an objective characteristic or prop-
erty of the activity being analysed, expressed by probabilities and statistically
expected values of random variables such as the number of fatalities Y . To be
more specific, in the above example we draw attention to P (Y = 2) and EY.
We may think of this probability as the long-run proportion of observations
having events with two fatalities when considering (hypothetically) an infinite
number of similar installations, and the expected value as the mean number of
fatalities when considering (hypothetically) an infinite number of similar instal-
lations. This true risk is estimated in the risk analysis, as demonstrated in the
above example. Note that the risk analyst above has estimated P (Y = 2) by
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estimating the expected number of leakages leading to two fatalities. These
underlying probabilistic quantities are approximately equal in this case as the
expected number of leakages resulting in two fatalities during a period of one
year is about the same as the probability of having one leakage resulting in
two fatalities during one year. The probability of having two or more leakage
scenarios with fatalities is negligible compared to having one.

So the risk analyst is providing estimates of the true risk, i.e. the probabilities
and expected values. The PLL value is defined as the expected number of
fatalities per year, and 0.0055 is an estimate of this value. The interpretation is
mentioned above; it is the average number of fatalities per year when considering
an infinite number of similar installations. The FAR value is defined as the
expected number of fatalities per 100 million exposed hours.

We refer to this framework as the classical approach to risk analysis. Assum-
ing that all input data to the event tree model are observed data (hard data),
the approach is consistent with traditional statistical modeling and analysis as
described in most textbooks in statistics. Risk is a function of unknown param-
eters to be estimated. Using statistical principles and methods, estimates are
derived for the parameters, and this gives the estimates of the relevant risk
indices. Let r represent such a risk index, and let f be a model linking r and
some parameters q = (q1, q2, . . . , qv) on a more detailed level. Thus we can
write

r = f (q). (2.1)

In the above example, r may be equal to P (Y = 2) or EY, q = (EX , P (A),

P (B|A)) and f equals the event tree model based on the assumption that the
probability of having two or more events leading to fatalities during one year
is ignored. This model expresses, for example, that

P (Y = 2) = EX · P (A) · P (B|A). (2.2)

In the classical approach, we estimate the parameters q, and through the model
f we obtain an estimate of r . Replacing q by estimates q̂, we can write

r̂ = f ( q̂).

In this set-up there exist true values of q and r , but as f is a model, i.e. a
simplification of the real world, equation (2.1) is not necessarily correct for the
true values of q and r . Thus there are two main contributors to uncertainty in
r̂’s ability to estimate r: the estimates q̂ and the choice of model f . There is,
however, no formal treatment of uncertainty in the best-estimate approach.

The main features of the classical approach, focusing on best estimates, are
summarized in Figure 2.2. Note that in a classical setting the probabilities
are considered elements of the world (the reality), properties of the physical
world like height and weight. A drawing pin, for example, has a weight and
a probability, p, of landing with its point in the air. To determine or estimate
the weight and the probability, we perform measurements. For probabilities,
repeated experiments are required. Throwing the drawing pin over and over
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Risk description

Best estimates of the risk r

Calculus

Model r = f (q) Best estimates of q

Risk analyst's understanding of the world

Background information, including phenomenological
knowledge, experience data and operation experience

The world

Risk and probabilities r, q = (q1,q2,...qv)

Figure 2.2 Basic elements of a risk analysis. Classical approach based on best
estimates

again, we are able to accurately estimate p by observing the proportion of times
the pin lands with its points in the air. This is the classical view; we will discuss
this way of thinking in Section 2.3.1.

Here are the main steps of the risk analysis when this approach is adopted:

1. Identify suitable risk indices.
2. Develop a model of the activity or system being analysed, linking more

detailed elements of the system and the overall risk indices.
3. Estimate unknown parameters of the model.
4. Use the model to generate an estimate of the risk indices.

Risk estimates obtained by models are sometimes known as notional risk, in
contrast to actuarial risk, which is based on hard data only (Vinnem 1999).
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Classical approach including uncertainty analysis

In the classical approach presented above, we identified the two main contribu-
tors to uncertainty as the parameter estimates q̂ and the choice of model f . The
model uncertainty could be a result of:

• Faulty or insufficient system or activity definition. This is mainly a problem
in the earliest phases of a project when there will be limited information
about technical solutions, operation and maintenance philosophies, logistic
conditions, etc.

• Limitations and errors in the model itself. The analyst could have omitted
some important risk contributors, the model could be extremely inaccurate,
etc. This item also includes simplifications to reduce computing time, e.g.
using only four wind directions and strengths to represent an infinite number
of combinations in the gas dispersion calculations.

The uncertainty related to the input parameters q̂ could be a result of:

• Data are used which are not representative for the actual equipment or event,
the data are collected from non-representative operating and environmental
conditions, etc.

• The data analysis methods producing the estimates are not adequate.
• Wrong information, perhaps concerning the description of the equipment.
• Insufficient information, perhaps concerning how to use the equipment.
• Statistical variation, the data basis is small.

By using quantities like variance, standard deviation and confidence inter-
val, it is possible to express the statistical variation based on observed data.
For many risk analysts this is seen as the proper way of dealing with uncer-
tainty, and confidence intervals are quite often presented for some of the ini-
tiating events, for example related to leakages. Suppose we have observed
2, 1, 0, 1, 0, 1, 0, 0, 0, 2, 3, 2 leakages from similar activities. Based on this we
find a mean of 1 per year, which we use as the estimate for the future leakage
occurrence rate, λ = EX. Assuming that the number of leakages follows a Pois-
son process with rate λ (see Appendix A, p. 165), we can compute a confidence
interval for λ. A 90% confidence interval is given by (0.58, 1.62). The details
are presented in Appendix A, p. 168. Note that a confidence interval is based
on hard data and the classical relative frequency interpretation of probability.
When the interval is calculated, it will either include the true value of λ or it
will not. If the experiment were repeated many times, the interval would cover
the true value of λ 90% of the time. Thus we would have a strong confidence
that λ is covered by (0.58, 1.62), but it is wrong to say that there is a 90%
probability that λ is included in this interval. The parameter λ is not stochastic.
It has a true but unknown value.

It is, however, difficult to quantify other sources of uncertainty than the sta-
tistical variation. Consequently, the uncertainty treatment is rather incomplete.
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A possible emphasis on statistical variation leads to a rather inadequate picture
of the overall uncertainty of estimates.

Other approaches for dealing with uncertainty of the risk and its estimate are
therefore needed. The simplest approach seen in practice normally gives very
wide intervals, but it is not so difficult to carry out. The idea is to identify the
extreme values of the parameters of the model. The greatest possible variations
(most conservative and most optimistic) in the input data are determined. For
practical reasons, not all uncertainties attached to every input are included. The
main areas of uncertainty included in the analysis are identified using experience
and judgement. The effects of the modelled variations on the risks are then
calculated for two cases: a most pessimistic case, where all model variations
which tend to increase the risk are assumed to act together, and a most optimistic
case, where all modelled variations which tend to decrease the risk are assumed
to act together. The range between the two cases indicates the uncertainty of
the risk and the best estimate of the risk. Analysts using this approach link it
to confidence intervals, but acknowledge that they are not really the same. We
know that they are in fact not related at all. A confidence interval expresses
statistical variation, whereas the extreme values approach produces intervals
reflecting all types of uncertainties associated with the parameters of the model,
and these intervals are based on subjective evaluations.

For our numerical example, we determine a most pessimistic leakage fre-
quency of 2 per year and a most optimistic one as 0.5. For the ignition probability
the corresponding values are 0.01 and 0.001, and for the explosion probability
0.2 and 0.05. This gives an interval of [0.0005, 0.024] for the PLL and an inter-
val of [3, 137] for the FAR value. We see that the intervals produced are very
wide, as expected since the calculations are based on maximum and minimum
values for all parameters.

A more precise approach has been developed, and it is a common way of
dealing with uncertainty in risk analyses. When we speak about the classical
approach including uncertainty analysis, it is this more precise approach that we
have in mind.

The uncertainty problem of risk analysis is solved by dividing uncertainty
into two categories: the stochastic (aleatory) uncertainty and the knowledge-
based (epistemic) uncertainty. The aleatory uncertainty stems from variability
in known (or observable) populations and represents randomness in samples,
whereas the epistemic uncertainty comes from lack of basic knowledge about
fundamental phenomena. Probability is used as a measure of uncertainty in both
cases, but the interpretation is different. To make this difference more precise,
let us consider our offshore installation example. The stochastic uncertainties
are represented by the random variable X, the number of leakages; A, the event
that the gas is ignited; B, the event that explosion occurs; and the number of
fatalities Y . The random variable X is assumed to follow a Poisson distribution
with mean λ, meaning that the number of leakages has a variation according to
this distribution when considering an infinite population of similar installation
years. In practice, ‘infinite’ is interpreted as large or very large. Similarly, we
use a relative frequency to quantify the variations related to ignition or not
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ignition, and explosion or not explosion. For example, P (A) represents the
proportion of leakages resulting in ignition when considering an infinite number
of similar situations. Having introduced these measures of aleatory uncertainty,
it remains to describe the epistemic uncertainty related to the true values of
λ, P (A) and P (B|A). This is done by expressing subjective probabilities for
these quantities. Let us look at a simple numerical example. For λ the analyst
allows for three possible values: 0.5, 1 and 2. The analyst expresses his degree
of belief with respect to which value is the true one by using the corresponding
probabilities 0.25, 0.50 and 0.25. So the analyst has the strongest belief in λ

equalling 1, but he also has rather strong belief in λ equalling 0.5 or 2. For the
probabilities P (A) and P (B|A) he also considers three values, 0.001, 0.005,
0.01 and 0.05, 0.1, 0.2 respectively, with corresponding probabilities 0.25, 0.50
and 0.25 in both cases. These numbers are supposed to be based on all relevant
information, hard data and engineering judgements. From these probabilities we
can calculate an epistemic uncertainty distribution over P (Y = y), y = 0, 1, 2.
For notational convenience, let us write py for P (Y = y). To illustrate the
calculations, consider the highest value of p2, i.e. p2 = 2 × 0.01 × 0.2 = 0.004.

Then we obtain

P (p2 = 0.004) = 0.25 × 0.25 × 0.25 = 0.0156.

The complete uncertainty distributions are presented in Tables 2.2 and 2.3. From
the uncertainty distributions we can compute so-called credibility intervals. For
example, [4,120] is approximately a 90% credibility interval for the FAR value,
meaning that our probability is 90% that the true FAR value is included in the
interval.

It is common to establish uncertainty distributions by the use of Monte Carlo
simulation. The basic idea of Monte Carlo simulation is to use a computer ran-
dom number generator to generate realizations of the system performance by
drawing numbers from the input probability distributions. For our example the
computer draws numbers from the distributions for λ, and P (A) and P (B|A).

Table 2.2 Uncertainty distribution for p2, p1 + p2 and the PLL value

Risk Value of risk index
index

≤0.001 (0.001– (0.002– (0.004– (0.01– (0.02–
0.002] 0.004] 0.01] 0.02] 0.032]

p2 0.89 0.09 0.02 0.00 0.00 0.00
p1 + p2 0.19 0.06 0.13 0.56 0.00 0.06

PLL 0.06 0.13 0.19 0.31 0.25 0.06

Table 2.3 Uncertainty distribution for the true FAR value

FAR ≤10 (10–20] (20–30] (30–40] (40–50] (50–75] (75–100] (100–150]
Prob. 0.19 0.19 0.08 0.23 0.0 0.25 0.00 0.06
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For the numbers drawn for λ, and P (A) and P (B|A), we compute the corre-
sponding value of py using the event tree model, i.e. an equation like (2.1).
This procedure is repeated many times, and with a sufficient number of repeti-
tions we will be able to determine the same value of the uncertainty distribution
Hy(p) = P (py ≤ p), as done by the analytical calculations.

To represent the complete uncertainty distributions, we use summarizing mea-
sures such as the mean and the variance. The mean is of particular interest. In
our example it follows from the model structure (2.2) that the means of the
uncertainty distributions are equal to the risk measures with the mean values
used as parameters. To see this, note that the risk measure p2 is equal to q1q2q3,
where q1 = λ, q2 = P (A) and q3 = P (B|A). Then using independence in the
assessment of the uncertainties of the qi , and applying the rules for computing
expectations and probabilities by conditioning, we obtain

Ep2 = E[q1q2q3]

= E[q1]E[q2]E[q3]

= E[E(X|q1)]E[P (A|q2)]E[P (B|q3, A)]

= EX · P (A) · P (B|A).

In other words, the mean of the uncertainty distribution is equal to the related
risk measure with the mean values used as parameters. This result does not
hold in general. The mean of the uncertainty distribution is referred to as the
predictive distribution of Y . We have P (Y = i) = Epi , hence the predictive
distribution is a measure of both the aleatory and the epistemic uncertainty;
the aleatory uncertainty is expressed by pi and the epistemic uncertainty is
expressed by the uncertainty in the true value of pi . The predictive distribution
provides a tool for prediction of Y reflecting these uncertainties. Note that the
predictive distribution is not a total measure of uncertainty, as it does not reflect
uncertainty related to the choice of the model f . The predictive distribution can
be seen as an estimate of the true value of the risk index pi , as it is equal to the
mean of the uncertainty distribution. Of course, the mean could give a more or
less good picture of this distribution.

Using a more general set-up, the predictive distribution is given by

Er = Ef (q),

where the expectation is with respect to the epistemic uncertainty of the param-
eters q of the model f . In many applications, such as the one considered here,
the function f is linear in each argument, and we obtain Ef (q) = f (Eq),

where Eq = (Eq1, Eq2, . . . , Eqv). Thus

Er = f (Eq).

So if r is the true value of P (D) for some event D, a measure of uncertainty
of D covering stochastic and epistemic uncertainty is in this case given by
P (D) = f (Eq).
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The above classical approaches introduce two levels of uncertainty: the value
of the observable quantities and the correct value of the risk. The result is often
that both the analysis and the results of the analysis are considered uncertain.
This does not provide a good basis for communication and decision-making.
In the above example we derived a 90% credibility interval for the FAR value
of [4,120]. In larger and more complete analyses, we would obtain even wider
intervals. What is then the message from the analysis? We have a best estimate
of about FAR = 30, but we are not very confident about this number being the
correct number. The true FAR value could be 5, or it could be 50.

Quantification of model uncertainty is not normally covered by the risk
analysis. But some examples exist where model uncertainty is assessed, see
Section 2.1.3.

In practice it is difficult to perform a complete uncertainty analysis within this
setting. In theory an uncertainty distribution on the total model and parameter
space should be established, which is impossible to do. So in applications only a
few marginal distributions on some selected parameters are normally specified,
and therefore the uncertainty distributions on the output probabilities are just
reflecting some aspects of the uncertainty. This makes it difficult to interpret the
produced uncertainties.

Bayesian updating is a standard procedure for updating the uncertainty dis-
tribution when new information becomes available. See Appendix A.3 and
Section 4.3.4 for a description of this procedure.

Figure 2.3 summarizes the main features of the classical approach with uncer-
tainty quantification. It is also known as the probability of frequency framework,
see Apostolakis and Wu (1993) and Kaplan (1992). In this framework the con-
cept of probability is used for the subjective probability and the concept of fre-
quency is used for the objective probability based on relative frequency. When
the analyst assesses uncertainties related to q, he or she will often need to make
simplifications, such as using independence.

Here are the main steps of this approach:

1. Identify suitable risk indices.
2. Develop a model of the activity or system being analysed, linking more

detailed elements of the system and the overall risk indices.
3. Estimate unknown parameters of the model.
4. Establish uncertainty distributions for the parameters of the model.
5. Propagate them through the model to obtain uncertainty distributions for the

risk indices.
6. Establish predictive distributions and estimates of the risk indices.

In the rest of this section we look at the use of sensitivity and importance analy-
sis, and risk acceptance and tolerability. The starting point is a classical approach
using best estimates or a classical approach including uncertainty analysis.

Sensitivity and importance analysis

It is common to combine the above approaches with sensitivity analyses. A
sensitivity analysis is a study of how sensitive the risk is with respect to changes
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Risk description
Best estimates of the risk r
Uncertainty assessment of r, P (r  ≤  r ′)
Predictive distribution P(Y ≤ y)

Probability calculus

Model r = f (q)

Uncertainty
assessments

P (q  ≤ q ′)
Simplifications

Risk analyst's understanding of the world

Background information, including phenomenological 
knowledge, experience data and operational experience

The world

Observable quantities Y, X = (X1, X2,....,Xn)
Risk and probabilities r, q = (q1,q2,....,qv)

Figure 2.3 Basic elements of a risk analysis. Classical approach with uncertainty
assessments

in input parameters of the risk model. Let us return to the offshore installation
example. Then we can show how the FAR value estimate changes as a function
of varying the leakage frequency λ. One factor is changed at a time. A λ value
equal to 1 gives a FAR estimate of 32. If the λ value is reduced to 0.5, the
estimate of FAR is reduced to 16, and if the λ value is increased to 2, the estimate
of the FAR value becomes 64. We observe that the FAR estimate is proportional
to the value of λ. In most cases the parameters are varied over a broad range;
this is to identify the importance of the parameter and its improvement potential.
Probability estimates may be set to their extremes, 0 and 1. It is common to
use this way of thinking to rank the importance of the various elements of the
system, for example safety barriers. An alternative approach that is also used for
importance identification, is to look for the effect of small changes: How quickly
does the risk index change when the input parameter changes? The measure is
specified by taking the partial derivative of the risk index with respect to the
parameter.
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In this way we can derive two importance measures from a sensitivity analysis.
In applications we often see that sensitivity analyses are mixed with uncertainty
analyses. But a sensitivity analysis is not an uncertainty analysis as the analyst
does not express his or her uncertainty related to the possible values of the
parameters. A sensitivity analysis can be used as a basis for an uncertainty anal-
ysis. By presenting the result as a function of a parameter value, the analyst and
the decision-makers can evaluate the result in view of uncertainty in the param-
eter value, but the sensitivity analysis alone does not provide any information
about the uncertainties of the parameter value.

Risk acceptance and tolerability

Risk analysis is often used in combination with risk acceptance criteria, as inputs
to risk evaluation. The criteria state what is deemed as an unacceptable level
of risk. The need for risk-reducing measures is assessed with reference to these
criteria. In some industries and countries it is a requirement in regulations that
such criteria should be defined in advance of performing the analyses. Two main
categories of quantitative risk acceptance criteria are in use:

Absolute values

• The probability p of a certain accidental event should not exceed a certain
number p0. Examples: the individual probability that a worker shall be killed
in an accident during a specific year should be less than 10−3; the probability
of a safety function impairment during a specific year should not exceed
10−3.

• The statistical expected number of fatalities per 100 million exposed hours,
i.e. the FAR value, shall not exceed a certain number m0.

Three regions

• The risk is so low that it is considered negligible.
• The risk is so large that it is intolerable.
• An intermediate region where the risk shall be reduced to a level which is

as low as reasonably practicable (ALARP).

Consider absolute values. To avoid unnecessary repetitions, we will focus on
evaluating the FAR value.

In this case the risk is considered acceptable if and only if the FAR value is less
than or equal to m0. In practice an estimate FAR* is used since the true value
of FAR is unknown. Remember that the probabilistic framework is classical.
The normal procedure is to use this estimate to decide on the acceptability of
risk. Thus no considerations are given to the uncertainty of the estimate FAR*.
Consider the offshore installation example again and suppose the risk acceptance
criterion is equal to FAR = 50. The best estimate was FAR* = 32, meaning that
risk-reducing measures are not required. But the true risk could be much higher
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than 50, as demonstrated by the uncertainty analysis on page 18. According to
this analysis, the analysts have computed a subjective probability of 31% for
the true FAR value to be higher than 50. So just ignoring the uncertainties, as is
done when adopting the best-estimate approach, does provide an effective tool
in that it produces clear recommendations but these recommendations could
be rather poor, as demonstrated by this example. Nevertheless, this approach
is often seen in practice. To cope with the uncertainty problem, standardized
models and input data are sought. The acceptance criterion is considered to be a
function of the models and the input data. This means that we have to calibrate
the acceptance criteria with the models and the input data. The chosen model
and the estimates of the model parameters are assumed to be equal to the true
model and the true parameters. As long as we stick to these models and input
data, we can focus on the best estimates and we need not be concerned about
uncertainties. Apparently, this approach functions quite well as long as we are
not facing novel problems and situations, e.g. due to new technology. Then it is
difficult to apply this way of thinking. And, of course, the uncertainty problem
is not solved; it is just ignored to produce an efficient procedure for expressing
acceptable or unacceptable risk.

Risk acceptance criteria should therefore be used with care. They should be
regarded more as guidelines than as requirements. A limit for what is acceptable
risk related to human lives and environmental issues could prove there is a
strong commitment from management, but it may sometimes reduce flexibility to
achieve cost-effective arrangements and measures. When decisions that concern
risk are to be made, costs and benefits will always be considered. What is
acceptable risk has to be seen in relation to what we can achieve by accepting
the risk.

This type of reasoning is more in line with the ideas of the three-regions
approach. This approach is considered attractive by many since it allows con-
sideration of costs and benefits. Chapter 5 illustrates how the cost-benefit con-
siderations can be carried out. The three-regions approach is typically used in
relation to a best-estimate approach. The above discussion on absolute values
also applies here, as there are two defined limits against which to compare the
risk. Sometimes the ALARP region is called an uncertainty region. But it is not
clear how we should understand this uncertainty region. Here is one possible
interpretation, where we assume that risk is expressed by the estimate FAR* of
the true value of FAR. Simple numerical values are used to illustrate the ideas.

If FAR* is less than 1, we conclude that risk is negligible. If FAR∗ is larger
than 100, we conclude that risk is intolerable, and risk-reducing measures are
required. Now suppose we have indicated an uncertainty factor 10 for the esti-
mate FAR∗. Then if FAR∗ is larger than 100, we have strong evidence that the
true value FAR is larger than 100/10 = 10. Similarly, if the estimate FAR*
is less than 1, we have strong evidence that the true value FAR is less than
1 × 10 = 10. Thus 10 represents the real criterion for intolerance and negli-
gibility, respectively. The interval [1,100] is an uncertainty region where the
ALARP principle applies. Decision-makers can draw conclusions about intoler-
ability (above 100) or acceptance/negligibility (below 1), with the intermediate
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region interpreted as tolerable only if risk reduction is impracticable (which
means cost-benefit considerations).

Although such an interpretation seems natural, we have not seen it often
expressed in precise terms in applications.

2.1.3 Reliability Analysis

A reliability analysis can be viewed as a special type of risk analysis or as an
analysis which provides input to the risk analysis. In this section we briefly
review the standard approach for conducting reliability analysis. As this app-
roach is similar to the one described in the previous section, we will just intro-
duce the main features of reliability analysis and refer to Section 2.1.2 where
appropriate. We distinguish between a traditional reliability analysis and meth-
ods of structural reliability analysis, as they represent different traditions, the
former dominated by statisticians and the latter by civil engineers.

Traditional reliability analysis

To illustrate the ideas, we use a simple example. Figure 2.4 shows a so-called
fault tree and its associated block diagram for a system comprising three com-
ponents, where component 3 is in series with a parallel system comprising
components 1 and 2. We may think of this system as a safety system of two
components in parallel, meaning that both components (1 and 2) must be in a
failure state to obtain system failure. Component 3 represents a common-mode
failure, meaning that the occurrence of this event causes system failure. The
AND and OR symbols represent logic gates. In an OR gate the output event
occurs if one of the input events occurs. In an AND gate the output event occurs
if all of the input events occur.

Each component is either functioning or not functioning, and the state of
component i (i = 1, 2, 3) is expressed by a binary variable Xi :

Xi =
{

1 if component i is in the functioning state
0 if component i is in the failure state.

Similarly, the binary variable � indicates the state of the system:

� =
{

1 if the system is in the functioning state
0 if the system is in the failure state.

We have in this case

� = �(X) = [1 − (1 − X1)(1 − X2)]X3, (2.3)

where X = (X1, X2, X3), i.e. the state of the system is determined completely by
the states of the components. The function �(X) is called the structure function
of the system, or simply the structure. From this three-component system it is
straightforward to generalize to an n-component system.

Figure 2.4 is an example of a so-called monotone system, because its per-
formance is not reduced by improving the performance of a component. More
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Figure 2.4 Fault tree example and associated block diagram

precisely, a monotone system is a system having a structure function � that is
non-decreasing in each argument, and if all the components are in the failure
state then the system is in the failure state, and if all the components are in the
functioning state then the system is in the functioning state. All the systems we
consider are monotone.

Let

pi = P (Xi = 1), i = 1, 2, . . . , n,

h = h(p) = P (�(X) = 1), (2.4)

where p = (p1, p2, . . . , pn). It is assumed that all components are functioning
or not functioning independently of each other. The probability pi is called the
reliability of component i. The system reliability h is a function of the component
reliabilities p, and this function is called the reliability function. Parametric
lifetime models are often used to express pi , for example an exponential model
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1 − e−λi t , where λi is the failure rate of the component and t is the time of
interest. If Ti is a random variable having this distribution, we may think of Ti

as the time to failure of this component. So component i functioning at time t

is the same as having Ti > t , hence pi = e−λi t .
In a reliability analysis the system reliability h is calculated given the com-

ponent reliabilities pi . Let us look at the three-component example first. The
reliability of the parallel system of components 1 and 2, hp, is given by

hp = 1 − P (X1 = 0)P (X2 = 0) = 1 − (1 − p1)(1 − p2),

noting that both components must be in the failure state to ensure that the
system is in the failure state. This parallel system is in series with component 3,
meaning that both the parallel system and component 3 must function for the
system to function. It follows that the reliability of the system h is

h = [1 − (1 − p1)(1 − p2)]p3.

This could also have been seen directly from (2.3) as

h = P (�(X) = 1) = E�(X)

= E[1 − (1 − X1)(1 − X2)]X3

= [1 − (1 − p1)(1 − p2)]p3.

Now consider a practical case where a reliability analysis is to be conducted.
The questions we ask are similar to those in Section 2.1.2:

• How is reliability expressed?
• What is the meaning of probability and reliability?
• How is uncertainty understood and addressed?
• What is the meaning of a model?
• How are parametric probability models like the exponential model understood

and used?

The answers are analogous to those in Section 2.1.2. The situation is similar but
with h(p) in place of f (q). A classical approach is most common. The best-
estimate approach means providing best estimates p̂ of p and using the model
h(p) to generate best estimates of the system reliability, i.e. ĥ = h(̂p). The
classical approach with uncertainty analysis means that uncertainty distributions
are generated for the parameters p, and through the model h(p) this uncertainty
is propagated through the system to obtain an uncertainty distribution over the
system reliability h. Note that as h is a linear function in each pi , we have

Eh(p) = h(Ep),

where the integration is over the uncertainty distribution of p. We have assumed
independent uncertainty distributions for the pis. To avoid repetition, we omit
the details.
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The reliabilities, the probability distributions and associated parameters are
usually estimated by classical statistical methods but Bayesian methods are also
popular. Refer to Appendix A for a brief summary of these methods. See also
Chapter 4.

Methods of structural reliability analysis

Methods of structural reliability analysis (SRA) are used to analyse system
failures and compute associated probabilities. The performance of the system is
described by a so-called limit state function g, which is a function of a set of
quantities (random variables) X = (X1, X2, . . . , Xn). The event g(X) < 0 is
interpreted as system failure, meaning that the probability of system failure, the
unreliability, is given by the probability pg = P (g(X) < 0). As an example,
we can think of g(X) = X1 − X2, where X1 represents a strength variable of
the system and X2 represents a load variable. If the load variable exceeds the
strength variable, system failure occurs. The difference X1 − X2 is called the
safety margin.

Often a set of limit state functions is logically connected as unions and inter-
sections, leading to probabilities such as

P ([g1(X) < 0 ∪ g2(X) < 0] ∩ g3(X) < 0).

If X has distribution function F , we can write

pg =
∫

{x:g(x)<0}
dF(x).

If F has a density f , this integral takes the form∫
{x:g(x)<0}

f (x) dx.

Methods of SRA are used to calculate the probability pg , and to study the sen-
sitivity of the failure probability to variations of parameter values. Often Monte
Carlo simulation is used, but this is sometimes a rather time-consuming tech-
nique. An alternative approach to finding pg is to use an approximate analytical
method, for example FORM or SORM. These methods give sufficiently accurate
results in most cases. We refer to textbooks on SRA for further details; see also
Section 4.4.3. It is common to assume that the distribution F has a parametric
form, and often a multivariate normal distribution is used. Consider for example
the load strength model mentioned earlier. Assuming that the pair (X1, X2) is
a multivariate (bivariate) normal distribution with EXi = µi and VarXi = σ 2

i ,
i = 1, 2, and a correlation coefficient ρ, it follows that the limit state function
X1 − X2 also has a normal distribution; its mean is equal to µ1 − µ2 and its
variance is equal to σ 2

1 + σ 2
2 − 2ρσ1σ2.

As for the risk analysis community, the probabilistic basis for the analyses is
seldom precisely specified. The underlying thinking is, however, along the lines
of the classical approach, with best estimates, the use of confidence intervals,
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and uncertainty analyses of unknown parameters and calculation of the predic-
tive distribution of the failure event. Returning to the load strength model, the
classical approach with uncertainty analysis means that uncertainty distributions
for the parameters µi , σ 2

i and ρ are established. Let H denote the distribution
for all five parameters. Then if F(x|µ1, σ 2

1 , µ2, σ 2
2 , ρ) denotes the distribution

of X given the parameters, we can calculate the predictive distribution of the
failure event as follows:

P (X1 − X2 < 0) =
∫

pg(µ1, σ 2
1 , µ2, σ 2

2 , ρ) dH(µ1, µ2, σ 2
1 , σ 2

2 , ρ), (2.5)

where

pg(µ1, σ 2
1 , µ2, σ 2

2 , ρ) =
∫

{x:g(x)<0}
dF(x|µ1, σ 2

1 , µ2, σ 2
2 , ρ). (2.6)

In this way F reflects the stochastic (aleatory) uncertainty and H the state-of-
knowledge (epistemic) uncertainty.

Modelling uncertainty is an important issue in structural reliability analysis.
Starting from the limit state function model g, the uncertainty related to g could
be incorporated by introducing an error variable X such that the updated limit
state function can be written as Xg. Seeing X as a state variable, we are back to
the standard set-up presented above. We will return to this thinking in Section
4.4.3.

2.2 ECONOMIC RISK

2.2.1 General Definitions of Economic Risk in Business
and Project Management

In economic applications a distinction has traditionally been made between cer-
tainty, risk and uncertainty, based on the availability of information. Certainty
exists if the outcome of a performance measure is known in advance. Risk and
uncertainty relate to situations in which the performance measures have more
than one possible outcome, and the outcome is not known in advance. Under
risk the probability distribution of the performance measures can be assigned
objectively, whereas under uncertainty these probabilities must be assigned or
estimated on a subjective basis.

Reference is often made to two risk situations, one in which probability is
deduced objectively as in gambling situations where all the possible outcomes
are assigned the same probability, and one in which probability is accurately
estimated from relevant empirical data as in actuarial and insurance settings. For
the uncertainty situation we can interpret the probabilities as measures of uncer-
tainty, as subjective probabilities expressing degrees of belief. Alternatively, the
probabilities can be interpreted as subjective estimates of true, underlying, objec-
tive probabilities. In most cases the level of precision in the literature allows
both these interpretations.
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In the earlier literature on risk a distinction was often made between spec-
ulative risk and pure risk. Speculative risk refers to situations where the out-
comes of the performance measures of interest could be either favourable or
unfavourable. Petroleum prices and the production potential of a petroleum reser-
voir are examples. The pure risk concept refers to situations where the outcomes
of the performance measure are purely unfavourable. Examples include certain
types of accident events causing loss of life, damage to the environment, or loss
of assets or financial interests. However, in real life, damage to one party is
often followed by growth among others. For example, an accident occurring in
one company could create a more favourable market position for other compa-
nies, or accidents might create new business opportunities. Thus we cannot say
that uncertainty related to the occurrence of accidents is solely associated with
unfavourable outcomes, and the concept of pure risk cannot be used generally
for typical undesirable events.

Within the area of project management, the term ‘uncertainty’ expresses lack
of ability to predict the outcome of a performance measure. Probability is used
to express the uncertainty related to what will be the true outcome. By this defi-
nition, probability is a subjective probability. This is, however, not so clear when
reading the project management literature. When establishing probability distri-
butions, reference is made to subjective probabilities, empirical distributions or
theoretical distributions more or less ‘verified’ by use of empirical data.

A commonly used distribution for expressing uncertainty is the normal dis-
tribution N(µ, σ ), which is specified by the parameters µ and σ , the mean
and standard deviation of the distribution, respectively. Many analysts and
researchers in the field talk about estimates of µ and σ , and they discuss the
legitimacy of the assumptions related to the use of a particular distribution. Their
probabilistic basis is not clear. Is their starting point a relative frequency interpre-
tation of probability and their analysis a search for accurate estimates, or is the
probability distribution simply a subjective probability expressing uncertainty
about an unknown quantity?

The term ‘risk’ is often given the same definition as uncertainty – lack of
ability to accurately predict the outcome of a performance measure. More narrow
definitions are also applied, for example that risk is equal to the statistically
expected value of the performance measure when only the possible negative
outcomes are considered. To illustrate this definition, consider the case where
the performance measure C can take four values, either C = −5, C = −1,
C = 1, or C = 2, and the associated probabilities are 0.05, 0.20, 0.50, 0.25.
Then, according to this definition,

Risk = −E[min{0, C}] = 0.45.

The possible positive outcomes are reflected in the term ‘opportunity’, which
is defined as the statistically expected value of the performance measure when
only the possible positive outcomes are considered. For the above numerical
example, we obtain

Opportunity = E[max{0, C}] = 1.0.

The overall expected value of C, E[C], is equal to 0.55.
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Utilities and decision-making

In a decision-making context, risk is sometimes defined in relation to a util-
ity function reflecting the worth of various possible losses or consequences
(outcomes). Let X be a random variable representing the possible outcomes
associated with a decision or act, and let u(X) be the utility function. Then

Risk = −E[u(X)].

Now, starting from a ‘rational’ preference ordering on the outcomes, it can be
shown that this leads to the use of expected utility as the decision criterion; see
Savage (1962), von Neumann and Morgenstern (1944) and Bedford and Cooke
(2001). In practice the expected utility theory of decision-making is used as
follows. One assigns probabilities and a utility function on the set of outcomes,
and then uses the expected utility to define the preferences between actions.
These are the basic principles of what is known as rational decision-making.
In this paradigm, utility is as important as probability. It is the ruling paradigm
among economists and decision analysts.

The notion of utility is used to express the concept of risk aversion. We
call the decision-maker’s behaviour risk averse if E[u(X)] < u(E[X]). The
behaviour is called risk neutral if E[u(X)] = u(E[X]). Risk aversion is the
standard behavioural assumption, which implies that uncertainty is considered
to be an unfavourable phenomenon.

We refer to the final section of this chapter and Chapter 5 for further details
on the meaning and use of utilities, and a discussion of some of the above
conventions, and in particular the rational decision-making paradigm.

2.2.2 A Cost Risk Analysis

A cost risk analysis is a tool typically used in project risk management. The
purpose of the analysis is to estimate the project cost and provide an evaluation
of the uncertainties involved. To this end, a model is developed linking the total
cost of the project to a number of subcosts, expressing costs related to different
work packages. As an illustration we will consider a simple case where the total
cost C can written as the sum of two cost quantities C1 and C2, i.e.

C = C1 + C2. (2.7)

A cost estimate of C is obtained by summing cost estimates of C1 and C2. This
is straightforward. In addition to the cost estimate, an uncertainty interval is
normally produced. Assuming normal distributions, a 68% uncertainty interval is
established by the cost estimate ± the standard deviation σC ; a 95% uncertainty
interval by the cost estimate ±2σC . If the Ci are considered to be independent,
this standard deviation is obtained from the standard deviation of Ci , denoted
by σCi

, i = 1, 2, using the formula

σC =
√

σ 2
C1

+ σ 2
C2

,



COMMON THINKING ABOUT RISK AND RISK ANALYSIS 31

which is derived from the fact that the variance of a sum of independent random
variables is equal to the sum of variances of the random variables. If dependency
is to be incorporated, the standard deviation σC is adjusted so that

σC =
√

σ 2
C1

+ σ 2
C2

+ 2ρσC1σC2,

where ρ is the correlation coefficient between C1 and C2. Consider a case where
the cost estimate is 5.0 for both C1 and C2, the standard deviations for C1 and
C2 are 1.0 and 2.0 respectively, and the correlation coefficient is 0.5. Then a cost
estimate of 5.0±2.6 is reported, with confidence about 70%. The cost estimates
and standard deviations are established using experience data whenever they
exist. Expert judgements are also used.

Often these uncertainty intervals are referred to as confidence intervals, but
they are better described as uncertainty intervals or prediction intervals because
they provide statements about the observable costs, not the expected costs that
form the basis of confidence intervals.

In many applications the uncertainty is specified as relative values of the
costs. Suppose the Ci are judged to be independent and the cost estimates for
C1 and C2 are 2 and 3, respectively. Furthermore, suppose that the uncertainty
is ±50% relative to the costs, i.e. ±1 and ±1.5 respectively, with a confidence
of 3σCi

, which is about 0.999. Then the cost estimate of 5 is presented with a
reduced uncertainty of ±36%, as 3σC is given by√

(3σC1)
2 + (3σC2)

2 =
√

12 + 1.52 = 1.8,

which is 36% of 5.
In practice Monte Carlo simulation often is used. As mentioned in Section

2.1.2, this is a computer-based technique that is used to generate realizations of
the system or activity (here the cost quantities) being analysed, and based on
these realizations the desired probability distributions can be established. When
using Monte Carlo simulation, distributions other than the normal distribution
can easily be handled, such as triangle distributions, and complex dependency
structures can be incorporated.

2.2.3 Finance and Portfolio Theory

The research and development in economic risk theory has put much attention
on portfolio theory – the relationship between the risk related to a portfolio of
a number of securities (e.g. stocks or projects) and the individual risk of the
securities comprising that portfolio. This theory is closely linked to the capital
asset pricing model (CAPM).

The future values of the securities are unknown quantities, or random vari-
ables. The mean value of the portfolio is simply the sum of the mean values
of the individual securities in the portfolio. The variance, which is the most
common measure of risk in this setting, is the sum of the variances of the indi-
vidual securities plus a term reflecting the covariance between the values of the
securities. To see this more precisely, consider the value V of a portfolio of N
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securities, the ith having value Xi and weight 1/N . Then the relative value of
the portfolio, V , which can be written (X1+X2+· · ·+XN)/N , has a variance of

Var[V ] = 1

N
Var +

(
1 − 1

N

)
Cov, (2.8)

where Var is average variance of the individual securities, i.e.

Var = VarX1 + VarX2 + · · · + VarXN

N
,

and Cov is the average covariance between pairs of securities, i.e.

Cov = 2
∑

i<j Cov[Xi, Xj ]

N(N − 1)
.

The first term on the right-hand side of (2.8) expresses the non-systematic risk
and the second term the systematic risk. The non-systematic risk emerges from
marginal uncertainty embodied in the values of the single securities, for example
from the possible occurrence of accidental events. The investor can remove
this uncertainty by diversification, i.e. investments in securities from a number
of companies in various industries. Systematic risk is uncertainty in the value
of a security, which cannot be removed by diversification. It is generated by
general market forces, political events, etc., which affect a significant number
of companies in the market.

Now, when N is large, the variance (2.8) of the portfolio is approximately
equal to the average covariance. Thus the non-systematic risk is negligible when
N is sufficiently large, and the portfolio risk is ruled by the systematic risk. Often
the so-called β factor is used to express this risk. More precisely, the factor βi is
defined as the covariance between a market portfolio of value XM and security
i having value Xi , divided by the variance of the market portfolio, VarM , i.e.

βi = Cov[Xi, XM ]

VarM
= ρiMσi

σM

, (2.9)

where ρiM is the correlation coefficient between the security i and the market,
σi is the standard deviation of Xi , and σM is the standard deviation of XM . The
higher systematic the risk related to a security, the higher the expected return
required by the investors. The main conclusion of CAPM is that the price of
security i will adjust to reflect the risk, so its expected return is given by

E[ri] = rf + βi(E[rm] − rf ), (2.10)

where rf is the risk-free discount rate and rm is the return from the market as
a whole. The quantity ri is the sum of dividends received and capital gains.
Suppose we have these figures:

Price of security at beginning of period = 100
Price of security at the end of period = 110
Dividends received during period = 5
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Then we obtain a return ri given by

ri = (110 − 100) + 5

100
= 0.15.

Equation (2.10) shows how CAPM determines E[ri] as the sum of the risk-free
rate of return and βi multiplied by the so-called risk premium of the market,
E[rm] − rf . The β value can be interpreted as the number of systematic risk
units. Thus the risk cost contribution is expressed by the risk premium of the
market multiplied by the number of units of systematic risk.

In practice the risk measure β is determined based on historic stock prices
and market indices. It can be computed as the slope of a regression line between
periodic (usually yearly, quarterly or monthly) rates of returns for the market
portfolio (as measured by a market index) and the periodic rates of return for
security i as follows:

r∗
ij = α∗

i + β∗
i r∗

mj + εi, (2.11)

where εi is a random error term, r∗
ij is the periodic rate of return for security

i, r∗
mj is the periodic rate of return for the market index, α∗

i is a constant term
determined by the regression and β∗

i is the computed historical beta for security
i given by

β∗
i =

∑
j (r

∗
mj − r∗

m)(r∗
ij − r∗

i )∑
j (r

∗
mj − r∗

m)2
;

here r∗
m and r∗

i are the means of r∗
mj and r∗

ij , respectively. The terms α∗
i and β∗

i

are the values of αi and βi that minimize∑
j

(r∗
ij − αi − βir

∗
mj )

2.

Part of the basis for CAPM is the assumption of efficient markets, i.e. markets in
which all relevant information is reflected in the price of the security. However,
real stock markets are not completely efficient and other analysis tools, such as
fundamental and technical analysis are used to obtain information relevant for
the future development of the value of the stocks. Fundamental analysis focuses
on the economic forces behind supply and demand that cause stock prices to
increase, decrease or stay the same. Technical analysis studies market actions.
Movements in the market are used to predict future changes in stock price. In
short, fundamental analysis studies the cause of market movements and technical
analysis studies the effect of market movements.

A diversified investor is only concerned with systematic risk. Thus accident
risk as studied in Section 2.1 is of little concern from a portfolio risk viewpoint
as most accidents will only affect a few companies, or perhaps just one, not the
market as a whole. And the topic of economic accident risk has not been paid
much attention in business risk contexts. Exceptions are the methods used to
calculate insurance premiums in insurance companies.



34 FOUNDATIONS OF RISK ANALYSIS

2.2.4 Treatment of Risk in Project Discounted Cash
Flow Analysis

In selection and management of projects, the net present value (NPV) is the
most common performance measure. To measure the NPV of a project, the
relevant project cash flows are specified, and the time value of money is taken
into account by discounting future cash flows by the required rate of return. The
formula used to calculate NPV is

NPV =
T∑

t=1

Xt

(1 + r)t
, (2.12)

where Xt is equal to the cash flow at year t , T is the time period considered (in
years) and r is the required rate of return, or the discount rate. The terms ‘capital
cost’ and ‘alternative cost’ are also used for r . As these terms imply, r represents
the investor’s cost related to not employing the capital in alternative investments.
When considering projects where the cash flows are known in advance, the rate
of return associated with other risk-free investments, like bank deposits, forms
the basis for the discount rate to be used in the NPV calculations.

When the cash flows are uncertain, which is usually the case, various app-
roaches are taken. They can be summarized as follows:

• Represent the cash flows Xt by their mean values E[Xt ] and increase the
required rate of return to outweigh the possibilities for unfavourable out-
comes.

• Express uncertainty related to the cash flows and apply the risk-free discount
rate rf .

• combine the first two items by expressing uncertainty in the cash flows and
discounting with a risk-adjusted rate of return.

When dealing with uncertainty in project cash flows, we distinguish between sys-
tematic and non-systematic risk to the investor (see the previous section), who is
commonly assumed to be a shareholder in possession of a well-diversified port-
folio of securities. In projects, systematic risk (market risk or non-diversifiable
risk) refers to uncertainty in factors affecting the cash flow that are also related
to other activities in the market such as energy prices, raw material prices and
political situations. Non-systematic risk is uncertainty in cash flow factors solely
impacting the specific project, such as operational delays, accidental events,
dependency on critical personnel, production rate of a specific oil well and the
demand for a new niche product. It will not affect other investments made by the
investor. Since the impact of non-systematic risk to the value of the investor’s
portfolio can be more or less eliminated by diversification, the systematic risk
is the main focus in studies of project profitability, e.g. NPV analysis.

The first of the three approaches mentioned above is the standard procedure in
NPV calculations of uncertain projects. It applies a risk-adjusted rate of return,
usually determined on the basis of CAPM; see the previous section. Equation
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(2.10) shows how CAPM determines the expected return from a security, E[ri],
as the sum of the risk-free rate of return and βi multiplied by the risk premium
of the market, E[rm] − rf . The quantity βi is a measure of the systematic risk
associated with the activity of company i, and is determined by the covariance
between the value of the company and the market relative to the total variance
in the market; see equation (2.9). The β value is usually determined on basis
of historical data from similar projects or from the industry sector to which the
project belongs. Using this approach, the greater the systematic risk associated
with the company’s activities, the higher the discount rate. This corresponds to
the principle of risk aversion: when uncertainty (systematic risk) is large, this
must be compensated by a higher return requirement. High discount rates imply
a greater reducing effect on the value of cash flows, the more distant they are in
the future. This also takes into account that the cash flows which are the most
distant are often the most uncertain (risky). That all investors are risk averse, is
one of the assumptions underpinning CAPM.

The second approach, where the analysts express their uncertainty about the
cash flows and discount with the risk-free rate of interest, exists in numerous
variants. A common procedure is the scenario analysis, in which the cash flow of
the project is usually estimated in three cases: the pessimistic, the most probable
and the optimistic. Probabilities are assigned to reflect the uncertainty regard-
ing which scenario will occur, and this forms the basis for weighing the NPVs
derived in each case. Another widely used method, which requires more exten-
sive description of uncertainties by probabilities, is Monte Carlo simulation. The
profit of a project may depend on a vast number of different quantities, and in
such a simulation the uncertainties related to these quantities can be taken into
account.

The third approach uses the same methods as described for approach 2, but
the risk-adjusted discount rate, usually CAPM based is applied.

In most cases, under the three approaches, r is represented by a single number.
Some analysts, however, choose to express r by a probability distribution, in
order to reflect that a range of numbers might apply, depending on the relative
weighting of the various arguments involved in the assessment of a proper r .

For scenario analysis and simulations it is argued by many economists that the
risk-free discount rate should be used (the second approach), as the risk aspects
of the NPV are summarized in the generated distribution. The uncertainty should
not be accounted for a second time, by using a risk-adjusted discount rate. The
interpretation of the distribution of NPV is widely discussed in the literature;
see Myers (1976) and also Hull (1980).

If NPV is calculated using an appropriate risk adjusted discount rate,
any further adjustment for risk is double-counting. If a risk-free rate
of interest is used instead then one obtains a distribution of what the
project’s value would be tomorrow if all uncertainty about the project’s
cash flows were resolved between today and tomorrow. But since
uncertainty is not resolved in this way the meaning of the distribution
is unclear. Hull (1980), p. 33.
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Others claim, however, that the risk-adjusted rate of return should be used
(third approach), since the simulations in most cases only reflect some of the
uncertainty involved, or since most of the probabilities reflect unsystematic risk,
not covered by the β measure.

The choice of discount rate does not, however, seem to present major practical
problems under all applications. Some companies merely focus on questions
such as, What is the probability (uncertainty) for the project to provide more
than y% return? If y% is used as the discount rate, the answer to this question
is simply the probability of NPV being greater than zero.

A performance measure closely related to NPV is the internal rate of return
(IRR), which is defined at the rate of return i such that r is equal to i if NPV = 0.
In many respects, a distribution for IRR is more useful than a distribution for
NPV in answering questions such as the one above.

Instead of presenting the whole probability distribution of the NPV or IRR, it
is common to report only the mean, e.g. E[NPV], and one or more measures of
spread like the variance Var[NPV], the standard deviation SDV[NPV], the coef-
ficient of variation SDV[NPV]/E[NPV] or a specific quantile in the distribution.
These measures of spread are referred to as risk measures.

In the above setting, probability is used to express the uncertainty related
to what will be the true outcome, so probability is by definition a subjective
probability. But, as stated above, this is not so clear when reading the project
management literature. When establishing a probability distribution, reference
is made to subjective probabilities, empirical distributions or theoretical distri-
butions more or less ‘verified’ by use of empirical data.

2.3 DISCUSSION AND CONCLUSIONS

2.3.1 The Classical Approach

We are not very much attracted by the classical approach to risk and risk analysis
as seen in engineering applications. The problem is the introduction of and focus
on fictional probabilities. These probabilities exist only as mental constructions,
they do not exist in the real world. An infinite population of similar units need
to be defined to make the classical framework operational. This probability
concept means that a new element of uncertainty is introduced, the true value
of the probability, a value that does not exist in the real world. Thus we are
led to two levels of uncertainty and probability, which in our view reduces the
power of risk analysis. We are interested in the behaviour of the units under
consideration. What the classical approach can give is just some uncertainty
statements about averages over fictional populations. We feel that this approach
has the wrong focus. It does not give a good basis for supporting decisions.

For the populations introduced, it is supposed that they comprise similar units.
The meaning of the word ‘similar’ is rather intuitive, and in some cases it is
obvious what is meant. In other cases, the meaning is not clear at all. Let us
look at an example.
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Consider the probability of at least one fatality during one year in a produc-
tion facility. According to the classical relative frequency view, this probability
is interpreted as the proportion of facilities with at least one fatality when con-
sidering an infinite number of similar facilities. This is of course a thought
experiment – in real life we just have one such facility. Therefore, the proba-
bility is not a property of the unit itself, but the population it belongs to. How
should we then understand the meaning of similar facilities? Does it mean the
same type of buildings and equipment, the same operational procedures, the
same type of personnel positions, the same type of training programmes, the
same organizational philosophy, the same influence of exogenous factors, etc.
As long as we speak about similarities on a macro level, the answer is yes. But
something must be different, because otherwise we would get exactly the same
output result for each facility, either the occurrence of at least one fatality or no
such occurrence. There must be some variation on a micro level to produce the
variation of the output result. So we should allow for variations in the equipment
quality, human behaviour, etc. But the question is to what extent we should allow
for such variation. For example, in human behaviour, do we specify the safety
culture or the standard of the private lives of the personnel, or are these factors
to be regarded as factors creating the variations from one facility to another, i.e.
the stochastic (aleatory) uncertainty, using the terminology from Section 2.1?
We see that we will have a hard time specifying what should be the frame-
work conditions of the experiment and what should be stochastic uncertainty. In
practice we seldom see such a specification carried out, because the framework
conditions of the experiment are tacitly understood. As seen from the above
example, it is not obvious how to make a proper definition of the population.

We recognize that the concept ‘similar’ is intuitively appealing, although it
can be hard to define precisely. But the main problem with the classical approach
is not this concept, it is the fact that risk is a constructed quantity that puts focus
in the wrong place, on measuring fictional quantities.

2.3.2 The Bayesian Paradigm

Bayesian methods are often presented as an alternative to the classical approach.
But what is the Bayesian alternative in a risk analysis context? In practice and
in the literature we often see a mixture of classical and Bayesian analyses, see
Section 2.1.2. The starting point is classical in the sense that it is assumed there
exists an underlying true risk. This risk is unknown, and subjective probability
distributions are used to express uncertainty related to where the true value lies.
Starting by specifying probability distributions on the model parameter level,
procedures are developed to propagate these distributions through the model to
the risk of the system. Updating schemes for incorporating new information are
presented using Bayes’ formula. We have referred to this basis as the classical
approach with uncertainty analysis. As mentioned in Section 2.1.2, this approach
is also called the probability of frequency framework, in which the concept of
probability is used for the subjective probability and the concept of frequency
is used for the objective relative frequency based probability.
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This approach to risk analysis introduces two levels of uncertainty: the value
of the observable quantities such as the number of failures of a system, the
downtime, etc., and the correct value of the risk. The result is often that both
the analysis and the results of the analysis are considered uncertain. This does
not provide a good basis for communication and decision-making.

Now, how does this way of thinking relate to the Bayesian approach as pre-
sented in the literature, for example Barlow (1998), Bernardo and Smith (1994),
Lindley (2000), Singpurwalla (1988) and Singpurwalla and Wilson (1999)? As
we see from these references and others, and from Chapter 4 and Appendix
A, the Bayesian thinking is in fact not that different from the probability of
frequency approach described above. The point is that the Bayesian approach,
as presented in the literature, allows for fictional parameters, based on thought
experiments. These parameters are introduced and the uncertainty in them is
assessed. Thus, from a practical viewpoint, an analyst would probably not see
much difference between the Bayesian approach as presented in the literature and
the probability of frequency approach referred to above. Of course, Bayesians
would not speak about true, objective risks and probabilities, and the predic-
tive form is seen as the most important one. However, in practice, Bayesian
parametric analysis is often seen as an end-product of a statistical analysis. The
application and understanding of probability models focuses on limiting values
of quantities constructed through a thought experiment, which are very close
to the mental constructions of probability and risk used in the classical relative
frequency approach.

In our view, applying the standard Bayesian procedures, gives too much
focus on fictional parameters, established through thought experiments. The
focus should be on observable quantities. We believe there is a need for a
rethinking of how to present the Bayesian way of thinking, to obtain a success-
ful implementation in a practical setting. In a risk analysis comprising a large
number of observable quantities, a pragmatic view of the Bayesian approach is
required, in order to conduct the analysis. Direct probability assignments should
be seen as a useful supplement to establishing probability models where we
need to specify uncertainty distributions of parameters. A Bayesian updating
procedure may be used for incorporating new information, but its applicability
is in many cases rather limited. In most real-life cases we would not perform
a formal Bayesian updating to incorporate new observations – rethinking of the
whole information basis and approach to modeling is required when we con-
duct the analysis at a particular point in time, for example in the pre-study or
concept specification phases of a project. Furthermore, we should make a sharp
distinction between probability and utility. In our view it is unfortunate that
these two concepts are seen as inseparable as is often done in the Bayesian
literature.

The word ‘subjective’, or related terms such as ‘personalistic’, are well-
established terms in the literature. However, as noted in the preface, we find
such terms somewhat difficult to use in practice. We prefer to speak about prob-
ability as a measure of uncertainty, and make it clear who is the assessor of the
uncertainty.
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2.3.3 Economic Risk and Rational Decision-Making

As noted in Section 2.2.1, in economic risk theory, references are often made to
literature restricting the risk concept to situations where the probabilities related
to future outcomes are known, and uncertainty to the more common situations of
unknown probabilities. This convention is in our view a blind alley and should
not be used – it violates the intuitive interpretation of risk which is closely
related to situations of unpredictability and uncertainty. In a framework based
on subjective probabilities, known probabilities do not exist – all probabilities
are subjective assessments of uncertainty – different assessors could produce
different probabilities.

Economic risk is closely related to the use of utilities and rational decision-
making. The optimization of the expected utility is the ruling paradigm among
economists and decision analysts. We do recognize the importance of this
paradigm – it is a useful decision-making tool in many cases. But it is just
a tool, a normative theory saying how to make decisions strictly within a math-
ematical framework – it does not replace management review and judgement.
There are factors and issues which go beyond the framework of utilities and
rational decision-making, that management needs to consider. In practice there
will always be constraints and limitations restricting the direct application of
the expected utility thinking. Yet the theory is important as it provides a refer-
ence for discussing what good decisions are. The fact that people often violate
the basis (axioms) of the theory – they do not behave consistently and coher-
ently – is not an argument against this theory. The expected utility theory says
how people ought to make decisions, not how they are made today. We may
learn from the descriptive theory telling us how people actually behave, but this
theory cannot replace normative theory. We do need some reference, even if it
is to some extent theoretical, for the development of and for measurement of
the goodness of decisions. In our view the expected utility theory can be seen
as such a reference.

Cost-benefit analysis is another method for balancing costs and benefits. It
is often used to guide decision-making in the ALARP region. The idea of the
method is to assign monetary values to a list of burdens and benefits, and
summarize the ‘goodness’ of an alternative by the expected net present value.
The method is subject to strong criticism. The main problem is related to the
transformation of non-economic consequences, such as (expected) loss of life
and damage to the environment, to monetary values. What is the value of a
(statistical) life? What is the value of future generations? These are difficult
issues and have received much attention in the literature. There are no simple
answers. The result is often that the cost-benefit analyses just focus on cer-
tain consequences and ignore others. Nevertheless, we find that this type of
analysis provides useful insight and decision support in many applications. We
are, however, sceptical about a mechanical transformation of consequences to
monetary values, for in many cases it is more informative to put attention on
each consequence separately and leave the weighting to management and the
decision-maker, through a more informal review and judgment process. See
Section 5.1.
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As for risk analysis, the probabilistic basis for cost-benefit analysis is seldom
clarified, but the classical thinking with a search for correct probability values
seems to be dominant. It is common to question the validity of cost-benefit
analyses because of their unrealistic assumptions about the availability of the
data needed to complete the analyses. The underlying philosophy seems to be
that without objective, hard data the analyses break down.

How does cost-benefit analysis relate to expected utility theory? Could we jus-
tify using one method in one case and the other method in a different case? These
questions are important, but it is difficult to answer them using the standard deci-
sion theory. Either the utility theory is considered as the only meaningful tool, or
this theory is rejected – it does not work in practice – and cost-benefit analyses
are used.

2.3.4 Other Perspectives and Applications

The principles, methods and models presented in this chapter are related to
engineering and business. But they are also used in other areas such as informa-
tion and communication, biotechnology, agriculture, criminal law, food industry,
medicine and occupational health. Within each area we find special nomencla-
ture, conventions and procedures, but the same fundamental issues are being
discussed:

• How do we express risk and uncertainty?
• How do we understand probabilities?
• How do we understand and use models?
• How do we understand and use parametric distribution classes and para-

meters?
• How do we use historical data and expert opinions?

These issues have been discussed in this chapter from different perspectives.
Repeating the discussion for other application areas would be tedious and is
omitted. To extend the range of applications, we have included some examples
in Chapters 4 and 5 from areas outside engineering and business.

The classical approach to risk and risk analysis is dominating in many areas,
such as medicine and occupational health. This is perhaps not so surprising
as it is often possible in these areas to define large populations of ‘similar
units’, for examples human beings. And then the traditional statistical approach
seems to fit well. We can use the statistical techniques to ‘prove’ that a new
medicine, for example, is superior to the old. There is a drive for proofs, sci-
entific proofs, such that strong conclusions can be made. The lack of a humble
attitude to knowing the truth about risk is, in our view, not only a problem
in the engineering community; we also see it in for example medicine. We do
understand social scientists and others that are provoked by the somewhat arro-
gant attitude among many analysts and scientists telling the world in situations
involving large uncertainties that they know the truth and the non-experts are
biased – they proclaim that the non-experts do not have the proper informa-
tion and knowledge, and they are strongly influenced by perceptional factors
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such as dread. Yes, many people are strongly influenced by perceptional fac-
tors and lack proper information and knowledge about relevant topics. But they
are not necessarily biased. There are uncertainties, meaning that there would
be more than one possible direction. The issue is who we trust, who we listen
to. We would weigh different judgements and views differently depending on
the bases for holding them. Judgements having strong data and methodological
support, plus consensus about the critical assumptions, would be given more
weight than a layperson expressing his view without any reference to empir-
ical evidence or theoretical reasoning. Our way of thinking has a scientific
basis as far as we give reference to coherent and consistent judgements, but
the processes of assessing uncertainties and decision-making have to be rec-
ognized as lying outside the classical natural science paradigm of controlled
experiments.

When considering people’s evaluations of, and behaviour towards, hazards,
the term ‘risk perception research’ is often used as the generic label for this
field of social science. Not only does it involve psychologists, it also takes input
from a range of other disciplines, including sociology, anthropology, decision
theory and policy studies. In this research, different definitions of risk are being
used. We review two of the most common. The first, called the ‘economic
perspective’, views risk in terms of a judgement about uncertainty. This might be
an objective statistical probability but in most cases it is a subjective probability
expressing degree of belief, or an evaluation of uncertainties covering aspects
such as vagueness and ambiguity. Historically, in psychology there has been
a long tradition of work that adopts this economic perspective to risk, where
uncertainty can be represented as an objective probability. Here researchers
(often known as behavioural decision researchers) have sought to identify and
describe how people make decisions in the face of statistical and other types of
uncertainty, together with the ways in which actual behaviour departs (or does
not depart) from the formal predictions of normative economic theories such as
the expected utility theory.

The second way of defining risk in the social sciences is broader. Here risk
refers to the full range of beliefs and feelings that people have about the nature of
hazardous events, their qualitative characteristics and benefits, and most crucially
their acceptability. This definition is considered useful if lay conceptions of risk
are to be adequately described and investigated. The motivation is that there
are a wide range of multidimensional characteristics of hazards, rather than just
an abstract expression of uncertainty and loss, which people appear to evaluate
in performing perceptions, such that the risks are seen as fundamentally and
conceptually distinct. Furthermore, these evaluations may vary with the social
or cultural group to which a person belongs and the historical context in which
a particular hazard arises, and they may also reflect aspects of the physical and
human or organizational factors contributing to hazard, such as trustworthiness
of existing or proposed risk management.

We do see the problem of having a narrow definition of risk, for example
linked to the probability concept. Risk is obviously more than probabilities. On
the other hand, a wide definition like the second one is considered problematic
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as it does not distinguish between our judgement about how the world would
be in the future and how we value this future and our judgments about it.
Both aspects are covered by this broad risk concept. We find it useful to sep-
arate them. Our solution, as presented in the coming chapters, is to distinguish
between a broad qualitative definition of risk and more narrow quantitative
definitions of risk measures. The qualitative definition, which basically says
that risk is uncertainties about the performance of the system being studied
(the world), makes it meaningful to talk about description, analysis, evalua-
tion, perception and acceptance of risk, and these terms would together include
the whole range of aspects listed above for the broad social science definition
of risk.

Risk perception research has generated an impressive body of empirical data
showing that human judgements of hazards and their benefits involve multiple
qualitative dimensions related in quite subtle and complex ways. We briefly
touch on aspects of this research. This book focuses in Sections 4.1.2 and 5.2.2
more on how we should approach risk and uncertainty, whereas risk perception
research focuses more on describing how people actually think and behave. We
have learned a lot from this research, ideas that provide a basis for the direction
we recommend. Here are some of the important general lessons:

• Risk acceptance cannot be based on evaluations of expected values only. A
more comprehensive risk picture is required.

• People are poor assessors of uncertainties if the reference is an objective,
true statistical probability.

• Probability assignments (uncertainty assessments) are influenced by a number
of factors.

• Perception, acceptance and tolerability of risk are influenced by a number of
factors, such as dread and knowledge.

• There are significant individual and group differences in risk perception and
acceptance.

• Risk perception and acceptance may be fundamentally related to social judge-
ments of things such as responsibility, blame and trust in risk management
and managers.

The risk perception research is concentrated on laypersons’ perceptions. This
book discusses how decision-makers and analysts (experts) should approach
risk and uncertainty, and laypersons’ risk perception and acceptance is just one
of the many factors to be considered when making decisions, see Chapter 5.
The risk analyst’s assessment of uncertainty using subjective probabilities is
discussed in Chapter 4.

2.3.5 Conclusions

The alternative to the classical approach to risk analysis is the Bayesian app-
roach, where the concept of probability is used as the analyst’s measure of
uncertainty or degree of belief. But this alternative approach has not been com-
monly accepted; there is still a lot of scepticism among many risk analysts when
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speaking about subjective probabilities. Perhaps one reason for this is lack of
practical implementation guidelines. When studying the Bayesian paradigm, it is
not clear how we should implement the theory in practice. We find the Bayesian
literature very technical and theoretical. The literature is to a large extent con-
cerned about mathematical and statistical aspects of the Bayesian paradigm.
The more practical challenges of adopting the Bayesian approach are seldomly
addressed.

We see the need for a rethinking of how to present the Bayesian approach
to uncertainty and risk in a practical setting. The aim of the coming chapters is
to present a basis for this thinking and to give guidelines and recommendations
for an alternative presentation that addresses the criticisms we have raised.

BIBLIOGRAPHIC NOTES
Most textbooks on reliability and risk analysis are in line with the classical way
of thinking as described in this chapter. They focus on estimation of reliabil-
ity and risk, and if uncertainty is addressed, it means expressing confidence
interval or subjective uncertainty distributions for relative frequency interpreted
probabilities or expectations. Examples of books in this category are Henley
and Kumamoto (1981), Høyland and Rausand (1994) and Vose (2000). Most of
these books focus on methods of analysis and management. Foundational issues
are not a main topic. Most applied risk and reliability analysts have been trained
in such methods, but they have not spent very long reflecting on the founda-
tions, even though many papers address this topic. Examples of such papers are
Apostolakis (1990), Apostolakis and Wu (1993), Kaplan (1991, 1992), Kaplan
and Burmaster (1999), Singpurwalla (1988, 2002), Aven and Pörn (1998) and
Aven (2000a, 2000b). Several special issues of risk journals have been devoted
to foundation, and in particular, aspects of uncertainty. They include special
issues of the journal Reliability Engineering and System Safety; see Apostolakis
(1988) and Helton and Burmaster (1996). G. Apostolakis and S. Kaplan have
done pioneering work in establishing and discussing an appropriate basis for risk
analysis. Probability of frequency thinking was introduced more than 20 years
ago (Kaplan and Garrick 1981). Our presentation of the different categories of
classical thinking is based on more recent work, e.g. Aven and Pörn (1998)
and Aven and Rettedal (1998); it represents a rethinking of some of the basic
ideas of Kaplan and others. In his work, Apostolakis compared the probabil-
ity of frequency ideas and the more modern version of the Bayesian approach
(Apostolakis and Wu 1993), and he pointed to the problem of introducing true
but unknown frequencies. Our work in this area has been greatly inspired by
the work of Apostolakis.

For an overview of the literature on sensitivity analysis, see Tarantola and
Saltelli (2003) and Sandøy and Aven (2003).

The discussion on risk and tolerability is taken from Aven and Pitblado (1998).
The economic risk review is partly based on Aven et al. (2003). Some basic
references addressing economic risk, and in particular finance and portfolio
theory, are Levy and Sarnat (1990) and Moyer et al. (1995). Project risk is
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addressed by Kayaloff (1988) and Nevitt (1989) among others. The common
qualitative definition of risk in this context is lack of ability to predict the
outcome of a performance measure. The more narrow definition of risk – the
expected value of the performance measure when restricting attention to nega-
tive outcomes – is also popular; see Levy and Sarnat (1972), Levy (1998) and
Jordanger (1998). The traditional definition of risk and uncertainty in Section
2.2.1 is mentioned by a number of textbooks, e.g. Douglas (1983).

Our presentation of the traditional reliability analysis is based on Barlow and
Proschan (1975) and Aven and Jensen (1999). Methods for structural reliability
analysis are reviewed by Ang and Tang (1984), Madsen et al. (1986), Toft-
Christensen and Baker (1982) and Melchers (1987). Our presentation of the
SRA methods is partly based on Aven and Rettedal (1998).

A basic reference for cost risk analysis is Vose (2000). Statistical decision
theory and the use of utility theory are thoroughly discussed in Chapter 5 and
the relevant literature is listed there.

Many social scientists have criticized traditional engineering risk assessments.
We mention Beck (1992), Douglas and Wildavsky (1982), Perrow (1984) and
Shrader-Frechette (1991). The critical point seems to be that the idea of an
objective risk cannot be justified. According to Slovic (1998), risk does not
exist out there, independent of our minds and cultures. We must take the ‘naive
positivist’ view, to use the terminology of Shrader-Frechette (1991), that risk
exists objectively and can be measured, and replace it by a more balanced view.
The answer is not the other extreme – the relativist view saying that A’s risk
description is as good as B’s, regardless their bases – but a middle position,
expressing that formal risk assessments provide useful information to support
decision-making, by combining facts and judgements using scientific principles
and methods. Most people, we think, are in favour of such a middle position,
see (Shrader-Frechette 1991), but the challenge is to establish a proper platform
for it. The aim of this book is partly to provide one.

There is an enormous literature on risk perception research. We refer to Okrent
and Pidgeon (1998), Pidgeon and Beattie (1998) and the references therein. Our
review of risk perception research is based on Pidgeon and Beattie (1998).

The foundational literature on subjective probabilities links probability and
decisions; see Ramsey (1926) and de Finetti (1972, 1974). By observing the
bets people make or would make, one can derive their personal beliefs about
the outcome of the event under consideration, see Section 5.1.2. This view of
subjective probabilities was disputed by Koopman (1940); see also Good (1950),
who holds a more ‘intuitionist’ view on subjective probabilities. The intuitive
thesis says that probability derives directly from intuition and is prior to objective
experience. Intuitionists consider that the Ramsey–de Finetti ‘revealed belief’
approach is too dogmatic in its empiricism as, in effect, it implies that a belief
is not a belief unless it is expressed in choice behaviour. We agree with the
intuitionists on this point, and make a sharp distinction between probability
assignments and decision-making. This distinction seems also to be common
among many applied Bayesian risk analysts. Our view of probability is explained
in detail in the coming chapters.
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According to the Bayesian paradigm, there are no true objective probabili-
ties. However, a consistent subjectivist would act in certain respects as if such
probabilities do exist. The result is that many analysts just as easily assume that
the true objective probabilities exist as well as the subjective ones, see Good
(1983: 154). In our terminology, they shift from the Bayesian paradigm to the
probability of frequency approach.



3

How to Think about Risk
and Risk Analysis

This chapter presents a unifying approach to risk and risk analysis based on the
idea that risk is a way of expressing uncertainty related to future observable
quantities. Section 3.1 gives the main ideas. Sections 3.2 and 3.3 give examples
to illustrate these ideas.

3.1 BASIC IDEAS AND PRINCIPLES

This section presents the basic principles of the unifying approach to risk and
risk analysis. The starting point is an activity or a system that we would like to
analyse now to provide decision support for investment, design, operation, etc.
The interesting quantities in the future are the performance of the activity or
system (from now on referred to as the system), measured by profit, production,
production loss, number of fatalities, the occurrence of an accident, and so on.
These are the quantities that we should like to know the value of at the time of
the decisions since they provide information about the performance of the alter-
natives. Unfortunately, though, these quantities are unknown at the time of the
decision-making. Thus we are led to predictions of these quantities, reflecting
in some sense, what are to be expected. But these predictions would normally
not provide sufficient information; assessment of uncertainties is required. We
need to see beyond expectations. The expected value could give a prediction
of 1.5, but the actual outcome of the quantity could for example be 0, 5, 100.
Assessments of uncertainties related to each possible outcome would give addi-
tional and useful information compared to just reporting the expected value. To
express our uncertainties, we need a measure and probability is our answer. The
reference is a certain standard such as drawing a ball from an urn. If the pos-
sible outcomes are 0, 5 and 100, we may assign probability figures, say 0.89,
0.10 and 0.01, respectively, corresponding to the degree of belief we have in
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the different values. We may also use odds; if the probability of an event A

is 0.10, the odds against A are 9:1. The assignments are based on available
information and knowledge; if we had sufficient information, we would be able
to predict with certainty the value of the quantities of interest. The quantities
are unknown to us as we have lack of knowledge about how people would act,
how machines would work, etc. Systems analysis and modelling would increase
the knowledge and thus hopefully reduce uncertainties. In some cases, how-
ever, the analysis and modelling could in fact increase our uncertainty about the
future value of the unknown quantities. Think of a situation where the analyst
is confident that a certain type of machine is to be used for future operation. A
more detailed analysis may, however, reveal that also other types of machine
are being considered. And as a consequence, the analysts’s uncertainty about
the future performance of the system may increase. Normally we would be far
away from being able to see the future with certainty, but the principle is the
important issue here – uncertainties related to the future observable quantities
are epistemic, that is, they result from lack of knowledge.

These are the main principles of the unifying approach. They are summarized
in the following list and illustrated in Figure 3.1.

Basic principles

1. Focus is placed on quantities expressing states of the ‘world’, i.e. quantities
of the physical reality or the nature, that are unknown at the time of the
analysis but will, if the system being analysed is actually implemented, take
some value in the future, and possibly become known. We refer to these
quantities as observable quantities.

2. The observable quantities are predicted.
3. Uncertainty related to what values the observable quantities will take is

expressed by means of probabilities. This uncertainty is epistemic, i.e. a
result of lack of knowledge.

4. Models in a risk analysis context are deterministic functions linking observ-
able quantities on different levels of detail. The models are simplified rep-
resentations of the world.

Figure 3.1 is read as follows. A risk analyst (or a risk analyst team) conducts a
risk analysis. Focus is on the future performance of the system (the world), and in
particular some observable quantities reflecting the performance of the system, Y

and X = (X1, X2, . . . , Xn). Based on the analyst’s understanding of the world,
the analyst develop a model (several models) that relates the overall system
performance measure Y to X, which is a vector of quantities, on a more detailed
level. The analyst assesses uncertainties of X, and that could mean the need for
simplifications in the assessments, for example using independence between
the quantities Xi . Using probability calculus, the uncertainty assessments of X,
together with the model g, give the results of the analysis, i.e. the assigned
probability distribution of Y , and a prediction of Y . The uncertainty distribution
of Y and X are known as predictive distributions.
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Risk description

Prediction of Y
Uncertainty assessment of Y, P(Y ≤ y)

Probability calculus

Model Y = g(X)

Uncertainty
assessments

P (X ≤ x)
Simplications

Risk analyst's understanding of the world

Background information, including phenomenological
knowledge, experience data and operational experience

The world

Observable quantities
Y, X = (X1, X2,...., Xn)

Figure 3.1 Basic elements of a risk analysis

The above principles express the main features of our thinking. This think-
ing is primarily motivated by a pragmatic concern: how to make the analysis
functioning in practice, a search for structure and simplicity, and ease of commu-
nication. We recommend assigning probabilities only for observable quantities.

The typical steps of a risk analysis following these principles can be summa-
rized as follows:

1. Identify the overall system performance measures (observable quantities on
a high level).

2. Develop a deterministic model of the system linking the system performance
measures and observable quantities on a more detailed level.

3. Collect and systemize information about these low-level observable quanti-
ties.

4. Use probabilities to assess uncertainty of these observable quantities.
5. Calculate the uncertainty distributions of the performance measures and

determine suitable predictions from these distributions.
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Sometimes a model is not developed as the analysis is just a transformation
from historical data to an uncertainty distribution and predictions related to a
performance measure; steps 2 and 4 can then be ignored. Often the predic-
tions are derived directly from the historical data without using the uncertainty
distributions. Although we have the main focus on the high-level performance
measures, the uncertainty assessments of the low-level observable quantities are
also of interest, as they provide valuable insights about key elements of the
system.

In this approach, risk is qualitatively defined as uncertainty related to the
performance of the analysis object, the system. In other words, risk is uncer-
tainty about the world. In the quantitative analysis, uncertainty is expressed by
probabilities related to the observable quantities Y, X1, X2, . . . . Risk is asso-
ciated with the whole distribution of the observable quantities (performance
measures). Summarizing measures such as the mean, the variance and quantiles
are risk measures which can give more or less information about risk.

In the following we discuss in more detail some of the key elements of the
approach; see Figure 3.1. We normally use Y and Yi, i = 1, 2, . . . , to express
observable quantities on a high system level and Xi, i = 1, 2, . . . , to express
observable quantities on a more detailed system level. When not using this
nomenclature, it will be clear from the context what are high-level observable
quantities and what are low-level observable quantities.

3.1.1 Background Information

All probabilities are conditioned on the background information (and knowl-
edge) that we have at the time we quantify our uncertainty. This information
covers historical system performance data, system performance characteristics
(policies, goals and strategies of a company, types of equipment to be used,
etc.), knowledge about the phenomena in question (fire and explosions, human
behaviour, etc.), decisions made, as well as models used to describe the world.
Assumption is an important part of this information and knowledge. We may
assume for example in an accident risk analysis that no major changes in the
safety regulations will take place for the time period considered, the plant will
be built as planned, the capacity of an emergency preparedness system will be
so and so, an equipment of a certain type will be used, etc. These assumptions
can be viewed as frame conditions of the analysis and the produced probabilities
must always be seen in relation to these conditions. If one or more assumptions
are dropped, this would introduce new elements of uncertainty to be reflected
in the probabilities. Note, however, that this does not mean the probabilities
are uncertain. What are uncertain are the observable quantities. For example, if
we have established an uncertainty distribution p(c|d) over the investment cost
c for a project, given a certain oil price d, it is not meaningful to talk about
uncertainty of p(c|d) even though d is uncertain. A specific d gives one specific
probability assignment, a procedure for determining the desired probability. By
opening up for uncertainty assessments in the oil prize d, more uncertainty is
reflected in our uncertainty distribution for c, using the law of total probability.
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The point is that in our framework uncertainty is only related to observable
quantities, not assigned probabilities. See Section 4.2 for further comments on
this issue, in the context of model uncertainty.

For the sake of simplicity we normally omit the dependency on the back-
ground information when writing probabilities. This should not create any con-
fusion as long as the background information is not varying throughout the
discussion.

3.1.2 Models and Simplifications in Probability Considerations

In the above predictive approach, cost models linking the cost of various cost
elements and the total cost, and models like event trees, fault trees and limit state
functions, are developed to improve predictions of Y ; uncertainty is assessed
on a detailed level using relevant information, and this gives the uncertainty
distributions and predictions related to Y . So a model in this setting means
a deterministic model. See Sections 3.2 and 3.3 and Section 4.2 for further
discussion on the use of models in this setting. To conduct a risk analysis it is
often necessary to make some simplifications of the uncertainty assessments, i.e.
the probability considerations, for example by using independence for a number
of random quantities.

3.1.3 Observable Quantities

The quantities focused on are observable, meaning that they express states
of the world. The value of an observable quantity is well defined as con-
ventions and procedures exist expressing how to measure it. No ambiguity
can be present. Thus an observable quantity has a true, objective value. For
example, the number of fatalities in a company during a specified period of
time would clearly be an observable quantity. If we consider the number of
injuries, it is not so obvious. We need to define precisely what an injury means.
And according to such a definition, we would have one correct value. The
fact that there could be measurement problems in this case – some injuries are
not reported – does not change this. The point is that a true number exists
according to the definition and if sufficient resources were made available,
that number could be found. This example illustrates that observable quanti-
ties include cases where we could better describe the quantities as potential
observable quantities. Here is another example that makes this point clear. A
production company produces units, say mobile telephones, and suppose we
focus on the proportion of units that fail during a certain period of time and
according to a certain definition of failure, among all produced units in one
year for one particular type of mobile telephone. This proportion is potentially
observable, since it can be measured exactly if sufficient resources are made
available. In practice that would not normally be done. Yet we classify it as
observable.

Now, what about a relative frequency? Is such a quantity observable? Well,
the answer is both no and yes. Consider as an example a case where the system
is a production facility and we focus on the occurrence of an accidental event
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(suitably defined) for a one-year period. Then we can define a relative frequency
probability by the proportion of similar production facilities where this event
occurs. If this population of similar production facilities is just a thought exper-
iment, it is fictional, then this relative frequency is not observable. We will not
be able to observe the relative frequency in the future – it is not a state of the
world. If, however, such a population can be specified, the relative frequency
can be viewed as observable. Such a population is difficult to imagine in this
case unless we extend the meaning of similar to include every type of production
facility. Then we would be able to obtain a value of the proportion of facilities
where this event occurs, but that proportion would not be very relevant for the
system we study. What is a real population and what is a fictional population
need to be determined in each application. As a general rule we would say that
populations may exist when we deal with repeatable games, controlled experi-
ments, mass-produced units and large physical populations like human beings,
etc. For the mobile telephone example above, a population can be defined and
the relative frequency, i.e. the proportion of failed units, is an observable quan-
tity. However, this book concentrates on other types of application, where the
system is unique in the sense that we cannot find reasonably similar systems
without doing thought constructions.

Let p denote an observable relative frequency. We refer to it as a chance. It
is an objective property of the sequence or population considered – it is not a
probability for the assessor, though were p known to the assessor, it would be
the assessor’s probability for any event in the sequence or in the population.
Note that there is a fundamental distinction between uncertainty that involves
judgement by the assessor and is described by probabilities, and uncertainties,
or better, variations, that are properties of the world external to the assessor.
See Chapter 4, p. 79 for some further comments on the link between chances
and our predictive approach.

As a final remark related to a quantity being observable, consider the volume
produced in some units for a gas production system during a certain period of
time, say one year. For all practical purposes, stating that this volume is for
example 2.5 would be sufficiently accurate. If you go into the details, the exact
production volume could be somewhat difficult to define and measure, but think-
ing practically, and using the conventions made for this kind of measurement,
the correctness of the measurement, for example 2.5, is not an issue. If it were,
then more precise measurements would have been implemented.

3.2 ECONOMIC RISK

3.2.1 A Simple Cost Risk Example

A risk analyst in a company is to assess the investment cost Y for a devel-
opment project related to a production facility. First he would like to make
an assessment based on historical records from 20 rather similar development
projects, which show a mean cost of 100 and an empirical standard deviation of
30. Note that these numbers are not estimates of any underlying parameters in
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a probabilistic model – they are just summarizing measures found adequate for
describing the data. Now, how should he approach the problem? Well, according
to the predictive approach of Section 3.1, he should make a prediction Y and
assess uncertainties. The mean of the historical data, 100, would be the natural
candidate for the prediction of the project cost Y. He would present this number
as a prediction of Y stressing that this prediction is based on the figures seen for
the 20 other facilities. To express uncertainties the analyst may use a histogram
distribution as shown in Figure 3.2.

A parametric distribution class may also be used to express uncertainties, such
as the normal distribution or the lognormal distribution. Suppose in this case
we would like to use the normal distribution (below we comment on the use of
a lognormal distribution). To determine the distribution we need to specify the
mean µ and standard deviation σ . The natural candidates would be the empirical
quantities, i.e. 100 and 30, respectively. Thus a 95% prediction interval is given
by µ ± 2σ , i.e. [40,160]. Thus the analyst has assigned a 95% probability for
the future investment cost to be in the interval [40,160], based on the historical
data. There is no uncertainty related to this interval. There is no meaning in
speaking of uncertainty of the parameters µ and σ because such reasoning
would presuppose the existence of true probabilities which do not exist in this
setting. Consequently, the phrase ‘estimation of these parameters’ should be
avoided as it indicates that we aim at coming as close as possible to true,
underlying parameter values. What is uncertain is the future investment cost
Y , and it is meaningless to discuss the correctness of the use of a normal
distribution.

Suppose the company management is particularly interested in the event that
the cost Y exceeds 160. Based on the above analysis, the analyst would predict
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Figure 3.2 Uncertainty distribution for the investment cost
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no occurrence of this event, and express the uncertainty by a probability
of 2.5%.

To reflect the shape of Figure 3.2, it would have been more natural to use the
lognormal distribution in place of the normal distribution. However, the proce-
dure would have been analogous to the normal distribution case, replacing the
observed cost values with natural logarithms and then computing the empirical
mean and variance.

Mathematically, when using a parametric distribution class, this procedure is
identical to producing estimates of parameters in a classical statistical context.
But the way of thinking is different. We may produce the same normal distri-
bution, but the meaning of that distribution is not the same. Uncertainty in our
setting is related to the value of Y , whereas the classical approach would need
to address uncertainty of the estimators relative to underlying true values. If
we use the uncertainty distribution expressed by Figure 3.2, even a classically
oriented statistician would probably find it confusing and disturbing to discuss
uncertainty of this distribution relative to the underlying true distribution. But
as soon as a parametric distribution class is introduced, the question about accu-
racy of the estimates is addressed. A parametric distribution in this context is
just a mathematical class of functions that we consider suitable for expressing
our uncertainty about observable quantities. There is no difference in principle
between a histogram as shown in Figure 3.2 and the normal distribution with
fixed values of µ and σ .

Of course, if our starting point had been an infinite (or very large) population
of production facilities similar to the one analysed, we could speak about a
true distribution of investment costs, as this distribution is observable, and the
accuracy of the normal distribution as a model of this distribution. In the above
case with historical records of 20 projects, such a population is not introduced
as it means the introduction of a fictional population. If we were able to define
an infinite or very large population of similar projects, we would have to extend
the meaning of ‘similar’ to an extremely wide range of projects; the result is
that the population becomes rather irrelevant for the facility studied.

The above approach to assessing the investment cost is based on rather limited
information and knowledge, only the data for the 20 other facilities are taken into
account. Thus large uncertainties are present. One way of reducing uncertainties
and obtaining narrower prediction intervals, is to identify key factors related to
the production facilities that are important for determining the cost. Suppose
that the production volume is found to be a good indicator for the investment
cost. The analyst then plots the investment cost as a function of the production
volumes for the 20 facilities. To make this simple, suppose that the data fit well to
a straight line and let y = a+bx represent this line, where the constants a and b

have been determined for example by least square regression (Appendix A.2.4),
x is the input (independent) variable representing the production volume and y

is the output (response) variable representing the investment cost. Now, based
on a planned production volume x0, we can use this line to obtain a prediction of
the investment cost equal to a + bx0. To express uncertainties in the investment
cost given x0, we may for example use a histogram like Figure 3.2 or a normal
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distribution. In the latter case, we may use a standard regression analysis to
produce the empirical variance of the investment cost:

1

n − 2
[
∑

(y − a − bx)2,

where n = 20 and the sum is over the 20 observations of x and y.
These two approaches are very crude – the uncertainties and the prediction

intervals are large. There is rather limited information on what the main con-
tributors to the uncertainty are, what the effect of alternative arrangements are,
etc. If such information is required and more confidence in the predictions is to
be achieved, an analysis of the system needs to be conducted. Let us see how
this can be done following the main steps listed in Section 3.1.

The performance measure in this case is the investment cost Y , which is
defined according to standard economic conventions. Then a model is developed
linking this investment cost and more detailed cost elements Xi, i = 1, 2, . . . , k.

In this case the model is simply the sum of the cost elements, that is

Y =
k∑

i=1

Xi.

As a predictor for the cost Y we would normally use the mean, EY , which is
equal to the sum of the means (the predictors) of the various cost elements,
as EY = ∑k

i=1 EXi . This is straightforward; the challenge is to establish the
uncertainty related to the value of Y . The uncertainty distribution can be estab-
lished in different ways, as demonstrated in Section 2.2.2. The basic thinking
can be summarized as follows. For each cost element Ci a probability distri-
bution Fi is determined that expresses the analyst’s uncertainty related to the
value of Xi . This distribution is established based on historical data, if available,
and the use of expert judgements. If a triangular distribution is used, we need
to specify its minimum, its peak and its maximum. Then if the cost elements
Xi are judged independent, the uncertainty distribution of Y is generated by
the convolutions of the distributions of Xi . In practice the distribution of Y is
often found by Monte Carlo simulation, in which values of Xi are generated
according to its probability distribution. Often normal distributions are used to
reflect uncertainties. Then the means and the variances need to be specified.
If the cost elements are judged dependent, we also need to specify correlation
coefficients. See Section 4.4.1 for further discussion of this example.

3.2.2 Production Risk

An oil company evaluates several design options for a gas production system. As
a basis for the decision to be taken, it is of interest to obtain information about
certain performance measures, for example the number of times the production
is below demand in a certain period of time and the future production loss due to
equipment failures and maintenance. Let Y1 and Y2 denote this number and this
loss, respectively, for a given design alternative for the relevant period of time.
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The loss could be expressed in millions of cubic metres of gas or normalized
as a percentage in relation to the demanded volume. In the planning phase, Y1
and Y2 are unknown and we have to predict Y1 and Y2. The prediction can be
done in different ways. We could compare with similar systems if available, or
we could develop a more detailed model of the system reflecting the various
subsystems and equipment; we develop a ‘reliability model’ of the system.
Having established the model, uncertainties are restricted to the times to failure
and the downtime durations of subsystems and equipment. Regardless of the
approach taken, we will arrive at predictions of Y1 and Y2. The uncertainty
related to the value of Y1 and Y2 we express through probabilities.

To see the basic elements of this framework in more detail, here are the details
of such a reliability model. Assume that the system is a binary system of binary
components, so that Y1 is equal to the number of times the system fails and Y2
is equal to the downtime of the system. This simplification is made to avoid too
many technicalities. First we consider the case with one component only.

Let Xt represent the state of the component at time t ; Xt = 1 if component i

is functioning at time t and Xt = 0 if the component is not functioning at time
t . We assume that the component is functioning at time 0, i.e. X0 = 1. Let Tm,
m = 1, 2, . . . , represent the positive length of the mth operation period of the
component, and let Rm, m = 1, 2, . . . , represent the positive length of the mth
repair time for the component, see Figure 3.3.

The following performance measures are defined:

Y1t = the number of failures in [0, t]

Y2t = the downtime in [0, t] .

These quantities are both functions of the lifetimes and repair times. If S◦
k

denotes the time of completion of the kth repair, i.e. S◦
k = ∑k

m=1(Tm + Rm),
with S◦

0 = 0, we see that Y1t = k if S◦
k −Rk ≤ t and S◦

k +Tk+1 > t . Furthermore,
Y2t = ∫ t

0 (1 − Xs) ds, where Xs = 1 if S◦
k ≤ s and S◦

k + Tk+1 > s, and Xs = 0
otherwise.

This is modelling and it gives insight into the performance and the uncer-
tainties. The remaining uncertainty is related to the values of the component
lifetimes and repair times. The quantities Tm and Rm are unknown and we use

0

1

T1

Xt

T2 T3 tR1 R2

Figure 3.3 Time evolution of a failure and repair process for the component starting
at time t = 0 in the operating state
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probability distributions to express our uncertainty about what will be the true
values. We judge all quantities Tm, Rm, m = 1, 2, . . . , to be independent. This
is a rather strong simplification, as we ignore learning by observing some of the
lifetimes and repair times. But in some cases the background information is so
strong that we could justify the use of independence; see Section 4.4.2.

We use the same distribution F for all uptimes and the same distribution G

for all downtimes of the component. The finite means of these distributions are

µF = ETm µG = ERm.

The process Xt is a so-called alternating renewal process.
Now fix time t . Using the above models and the uncertainty distributions for

the lifetimes and downtimes, associated uncertainty distributions for Y1t and Y2t

can be computed, see Aven and Jensen (1999). Here we restrict attention to an
example as an illustration. Suppose that F(t) = 1 − e−λt , where λ = 1/19 is
the failure rate, and the repair time is a constant equal to 1. Further assume
that t = 100. Then the computation is not so difficult. Let Y ∗

1t be the Poisson
process with rate 1/19 generated by the uptimes of the component. Then we
see that P (Y1t > k) ≈ P (Y ∗

1t > k) and P (Y2t > k) ≈ P (Y ∗
1t > k) ignoring

the difference between calendar time and operational time. Exact formulas for
P (Y1t > k) and P (Y2t > k) are given by

P (Y1t > k) = P (S◦
k−1 + Tk < t) = P (T1 + · · · + Tk < t − (k − 1))

= P (Y ∗
1,t−(k−1) ≥ k),

P (Y2t > k) = P (S◦
k < t) = P (T1 + · · · + Tk + k < t) = P (Y ∗

1,t−k ≥ k).

In the general case it is difficult to compute the uncertainty distributions for
Y1t and Y2t and approximation formulas need to be used, see Aven and Jensen
(1999). It is also common to use Monte Carlo simulation. When performing
Monte Carlo simulations of Yt , either Y1t or Y2t , we generate a sequence of
independent, identically distributed random variables, say Y

(1)
t , Y

(2)
t , . . . , Y

(k)
t ,

based on the same uncertainty distributions on the component level and the
model linking Yt and the component uptimes and downtimes. The simulation is
performed in a classical statistical setting where the starting point is a proba-
bility that we wish to determine and we have repeated experiments generating
independent and identically distributed random variables Y

(1)
t , Y

(2)
t , . . . , Y

(k)
t .

From this sample we arrive at the uncertainty distribution of Yt , the mean and
the variance of this distribution.

3.2.3 Business and Project Management

The standard approach to risk and risk analysis in business and project man-
agement is closely linked to the one described in Section 3.1. Consider the
following simple example.

If you are going to invest a certain amount of money in a certain business,
you are concerned about what the cash flow will be. Let Y denote this cash
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flow for a given period of time. Based on an evaluation of the cash flows for
this business in previous years, you could make a prediction of Y . This is of
interest to you, but you would also like to see an assessment of the uncertainties
related to Y . This can be done in different ways, for example by expressing the
probability of having a cash flow of at least y. This is a probability expressing
uncertainty. Instead of considering the cash flow as such, we could investigate
the number of time periods where the cash flow has been of a certain amount.
This description could be useful to increase the information basis and make it
easier to produce good predictions.

This presentation is in line with the principles of our unifying approach. But
let us go one step further; suppose we express our uncertainty related to the
value of Y by a normal distribution with mean µ and variance σ 2. According to
our predictive approach, there is no meaning in speaking of uncertainty of these
parameters unless they can be defined as observable. The situation is similar
to the one discussed in Section 3.2.2. Consequently, the phrase ‘estimation of
these parameters’ should be used with care as it indicates that we aim at coming
as close as possible to true, underlying parameter values. What is uncertain
is Y and it is meaningless to discuss the correctness of the use of a normal
distribution if it is a subjective probability distribution and cannot be given a
physical interpretation.

3.2.4 Investing Money in a Stock Market

Person s would like to invest 2 million dollars in a stock market. He considers
two alternatives:

1. He buys stocks of type 1 only.
2. He buys stocks of type 1 and type 2, with 50% on each.

Before he decides what to do, he conducts a risk analysis according to the prin-
ciples of Section 3.1. His focus is on the value of the stocks next year. Let us
denote the next-year value of stocks of type 1 by X1 and the corresponding
next-year value for stocks of type 2 by X2; both have a value of 1 million dol-
lars today. Let Yi denote the total value of the stocks next year for alternative i,
i = 1, 2. Thus we have Y1 = 2X1 and Y2 = X1 +X2. Person s looks at the his-
torical records for the stocks, he analyses the corresponding companies’ policies,
strategies and plans for the future, and based on this information he predicts the
future values of the stocks and assesses uncertainties. Normal distributions are
used to express uncertainties. Hence it is sufficient to specify the means and the
variances. Suppose his assessments give the same means; EX1 = EX2 = 1.1
(million), he predicts the same value for the two alternatives. This means the
total value is the same; 2EX1 = EX1 + EX2 = 2.2. Furthermore, suppose that
the variances are the same; VarX1 = VarX2 = 0.04. From this we see that

VarY1 = 4VarX1 = 0.16

VarY2 = VarX1 + VarX2 + 2Cov(X1, X2)̇ = 0.08 + 2Cov(X1, X2)

= 0.08 + ρ0.08 = 0.08(1 + ρ),
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where ρ is the correlation coefficient between X1 and X2. We conclude that
the variance of Y2 is smaller than the variance of Y1, the difference depend-
ing on ρ. Thus if person s assigns a correlation coefficient ρ that is zero, the
variance of Y2 is just the half the variance of Y1. Uncertainties (risk) are conse-
quently smaller for alternative 2 than for alternative 1. But this does not lead to
a recommendation on which alternative to choose. The risk presentation, here
reported through the variance, is just an input to the decision-making. What is
the best alternative must be seen in relation to policies, preferences and attitudes
towards risk and uncertainty. Chapter 5 discusses the use of decision analyses
to guide the decision-maker in situations like this. The important point is that
uncertainty can be reduced by diversification, i.e. investments in stocks (securi-
ties) from a number of companies in various industries. This was discussed in
Section 2.2.3.

Note that the analysis in this example does not depend on the use of a normal
distribution, as long as we agree on using the variance as a way of representing
the spread of the distribution.

If the analysis in this example had given different means and variances, the
decision situation would have been more complex. Alternative 1 may have
the highest mean and also the highest variance. To decide, we would need to
take into account relevant policies, preferences and attitudes towards risk; see
Chapter 5.

For an investor holding a diversified portfolio of securities, the mean of the
uncertainty distribution related to the value of the securities is normally specified
as the return from the securities in the market as a whole. The uncertainty
distribution is then characterized by the spread of the distribution, and this
spread can be measured by the variance and certain quantiles, for example.

3.2.5 Discounted Cash Flow Analysis

Refer to the cash flow analysis of Section 2.2.4. Under the approach to risk
and risk analysis presented in Section 3.1, we see risk as uncertainty associ-
ated with observable quantities, and it is expressed in terms of probabilities
related to these quantities. In cash flow analysis the cash flow components Xt

are observable quantities, and probability distributions can be used to express
associated uncertainties. Such distributions give a full description of risk related
to a cash flow, according to our predictive approach. For a given discount rate r ,
the performance measure NPV is also an observable quantity, so the profitabil-
ity of a project may be expressed by a probability distribution over the NPV,
based on the distributions over the cash flows Xt . Thus risk in our setting means
expressing probability distributions, or alternatively summarizing measures such
as the mean and the standard deviation, over the NPV values for appropriate
values of r .

We make a sharp distinction between risk and risk measures on the one hand,
and decision rules based on risk and risk measures on the other hand. If we
fix the discount rate r , as a risk-adjusted rate, compute the expected NPV and
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select the project alternative having the highest NPV value, we have introduced
a decision rule based on a risk measure.

All the three procedures for NPV analysis discussed in Section 2.2.4 can be
included in our predictive approach. We are in favour of expressing risk as
uncertainty distributions over NPV for different values of r , to get insights, but
we see the need for a simple rule to guide the decision-making based on the
expected NPV value as explained above.

3.3 ACCIDENT RISK

Consider the offshore installation risk analysis example studied in Section 2.1.2,
p. 11. We will look at how this study is conducted when we adopt the principles
of Section 3.1.

The first task is to identify the overall system performance measures. From
a personnel safety point of view, the objectives would of course be to avoid
accidents, injuries and fatalities. From this we could formulate performance
measures related to the occurrence of an accidental event, the number of injuries
and the number of fatalities. Furthermore, performance measures related to the
ability of the safety barriers to prevent escalation and reduce the consequences
of a hazardous situation would be informative performance measures.

To simplify the analysis we focus on the possible occurrence of fatalities. Next
we develop a deterministic model of the system, which in this example is just
an event tree as shown in Figure 2.1. The tree models the possible occurrence of
gas leakages in the compression module during a period of time, say one year.
A gas leakage is referred to as an initiating event. The number of gas leakages
is denoted by X. If an initiating event I occurs, it leads to Y fatalities, where
Y = 2 if the events A and B occur, Y = 1 if the events A and not B occur,
and Y = 0 if the event A does not occur. We may think of the event A as
representing ignition of the gas and B as explosion. The model is very simple
and is just used as an illustration of the ideas and principles of our predictive
approach.

The model comprises some unknown, observable quantities which need to
be studied. Let us first look at the number of leakages. Based on a review
of relevant experience data we predict 4 leakages during one year. Uncertain-
ties are reflected by a Poisson distribution with mean 4. This choice of uncer-
tainty distribution is discussed in Chapter 4, p. 81. Given a leakage, only in rare
cases the gas would ignite. Most leakages are small. Again modelling may be
required. Such modelling would address the same type of aspect as mentioned in
Section 2.1.2, p. 13, but the modelling approach would be different. The mod-
els developed could be explicitly formulated as deterministic functions, or they
could be indirectly expressed by a procedure specifying our probability P (A).
A simple procedure would be to express P (A|X = x), where X is the initial
flow rate in kg/s, by the log-linear form

log(P (A|X = x)) = a log(x) + b,



HOW TO THINK ABOUT RISK AND RISK ANALYSIS 61

for suitable x values, where a and b are constants, see Vinnem (1999: 130). Then
by determining an uncertainty distribution for X, we arrive at our probability
P (A). More complex modelling would require development of models taking
into account release characteristics, dispersion and ignition sources. Suppose that
we arrive at a probability P (A) = 0.002, either using modelling or a direct argu-
ment using experience data and knowledge about the phenomena in question.

Similarly, we determine a probability P (B|A). Let us suppose that we arrive
at P (B|A) = 0.2. Then we can calculate the uncertainty distributions for the
number of fatalities Y . We use approximation formulas like this:

P (Y = 2) = EX · P (A) · P (B|A). (3.1)

We can use this approximation because the event of two or more ignited leakages
in one year has a negligible probability compared to the event of one ignited
leakage. We obtain P (Y = 2) = 0.0016 and P (Y = 1) = 0.0064 and a FAR
value equal to

[0.0016 × 2 + 0.0064 × 1] / [2 × 8760] × 108 = 55,

assuming 8760 hours exposure per year. The FAR value is defined as the
expected number of fatalities per 100 million exposed hours.

The effect of proposed risk-reducing measures is in this case evaluated
by assessing the effect on the probabilities. Suppose for example that some
improved operational and maintenance procedures are implemented. A study of
the possible causes of leakages might then result in an updated prediction of 2
leakages for one year, which would reduce the calculated risk by a factor of 2.

The analysis group concludes that the risk as calculated is rather high. Con-
sidering a ten-year period, a probability of an accident leading to fatalities is
computed to be about 8%. Comparing this figure and the FAR value with risk
numbers for similar activities, both risk analysis results and historical numbers, it
is no doubt that the risk level as computed in this case is too high. Risk-reducing
measures should therefore be considered.

Several leakages per year are to be expected. But given a leakage we would
predict no loss of life. Most of the leakages represent no threat as they are
very small. But if a large leakage should occur, the situation would be much
more serious and fatalities could be the result. From this line of reasoning we
see that by making event tree models for sizes of leakage, we could obtain a
better understanding of what will happen given a leakage. Therefore this kind
of division into categories is normally performed in practice.

The analysis group also needs to address possible increase in risk as a result
of moving control out of the process area. The point is that, for certain types
of scenarios, the operators would be able to detect deviations and implement
corrective measures. We will not go further into this here.

Reliability analysis

Reliability analysis was introduced in Section 2.1.3. To see how the principles
of Section 3.1 apply to these analyses, have a look at Section 4.4.3.
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BIBLIOGRAPHIC NOTES

The presentation in this chapter is largely based on Apeland et al. (2001),
Aven (2000a, 2000b, 2001), Aven et al. (2003). Our way of presenting how
to approach risk and uncertainty is known as a predictive, Bayesian approach
to risk and risk analysis, or as a predictive, epistemic approach.

This way of thinking, emphasizing observable quantities and using the risk
analysis as a tool for prediction, is in line with the modern, predictive Bayesian
theory as described in Bernardo and Smith (1994), Barlow (1998), Barlow and
Clarotti (1993) and Spizzichino (2001). Our approach rewrites some established
Bayesian procedures to obtain a successful implementation in a practical setting.
Here are the essential points; they are further discussed in the next two chapters.

1. A sharp distinction is made between modelling to obtain better insights
and predictions and the use of probability distribution classes to express
uncertainty.

2. Fictional parameters are not introduced.
3. A rethinking of the whole information basis and approach to modelling is

seen as an alternative to Bayesian updating.
4. A sharp distinction is made between probability and utility.

The importance of focusing on observable quantities has also been emphasized
by others, such as Bedford and Cooke (2001), Morgan and Henrion (1990),
Barlow and Clarotti (1993) and Geisser (1993).

Our definition of probability is in line with the one used by Lindley (1985,
2000); probability is a subjective measure of uncertainty, and the reference is
a standard urn model. When referring to an observable relative frequency, we
use the term ‘chance’. A chance is closely linked to the concept of propensity,
which is used to describe an objective probability representing the disposition
or tendency of nature to yield a particular event on a single trial, see Popper
(1959). Thus a propensity is a characterization of the experimental arrangement
specified by nature, and this arrangement gives rise to certain frequencies when
the experiment is repeated.

Keynes (1921) and other logical relationists insisted that there was less ‘sub-
jectivity’ in epistemic probabilities than was commonly assumed. Keynes’ point
was that there is, in a sense, an ‘objective’ (albeit not necessarily measurable)
relation between knowledge and the probabilities that are deduced from it. For
Keynes, knowledge is disembodied and not personal. We disagree with this view
on probability. Knowledge may be ‘objective’ in some sense, but probabilities
cannot be separated from the person – probability reflects personal beliefs, it is
subjective.

We refer to Bernardo and Smith (1994) and Lad (1996) for other key refer-
ences on subjective probabilities and Bayesian theory.
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How to Assess Uncertainties
and Specify Probabilities

This chapter considers how to assess uncertainties and specify probabilities.
Chapter 3 gave a number of examples demonstrating the way uncertainty can
be assessed; now we go one step further and look in more detail into the assess-
ment process. The key issue is how we arrive at a particular probability or
probability distribution, using historical data, expert opinions and modelling. In
particular, we study the case of uncertainty assessments of several quantities,
for example some lifetimes of a component type or some cost elements in a
development project. If we want to assess the uncertainty of say two lifetimes
of units having the same type, how do we take into account the information
gained on one lifetime by observing the other? The lifetimes should not be con-
sidered independent, but specifying a multivariate distribution is difficult. The
question becomes when and how we can simplify the uncertainty assessments.
Is independence appropriate in some cases, nonetheless?

Let Y denote the unknown, future observable quantity when only one quan-
tity is of interest. We may think of the number of initiating events in an event
tree, a cost element, or an indicator function that is equal to 1 or 0 depending
on the outcome of a branching event of an event tree or an input event of a
fault tree. The problem is to specify a probability distribution expressing our
(the assessor’s) uncertainty concerning the value of this quantity. This problem
is the topic of Section 4.3. In Section 4.4 we address the multivariate case, i.e.
specifying the distribution of the observable quantities X1, X2, . . . , Xn, rep-
resenting for example the lifetimes of n units or n cost elements. In Section
4.2 we discuss modelling, i.e. establishing a function g such that we can write
Y = g(X1, X2, . . . , Xn) for some observable quantities X1, X2, . . . , Xn. First,
in Section 4.1 we will discuss what is a good probability assignment. Hopefully
this discussion can provide some help when searching for guidance on which
approach to use for specifying the distribution of Y .
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4.1 WHAT IS A GOOD PROBABILITY
ASSIGNMENT?

A probability in our context is a measure of uncertainty related to an observable
quantity Y , as seen from the assessor’s viewpoint, based on his state of knowl-
edge. There exists no true probability. In principle an observable quantity can
be measured, thus probability assignments can to some extent be compared to
observations. We write ‘in principle’ as there could be practical difficulties in
performing such measurements, see Section 3.1.3. Of course, one observation as
a basis for comparison with the assigned probability is not very informative in
general, but in some cases it is also possible to incorporate other relevant obser-
vations and thus give a stronger basis. Empirical control does not, however,
apply to the probability at the time of the assignment. When conducting a risk
analysis we cannot ‘verify’ an assigned probability, as it expresses the analyst’s
uncertainty prior to observation. What can be done is a review of the background
information used as the rationale for the assignment, but in most cases it would
not be possible to explicitly document all the transformation steps from this
background information to the assigned probability. We conclude that a tradi-
tional scientific methodology based on empirical control cannot and should not
be applied for evaluating such probabilities. We will elaborate on this later on.

It is impossible in general to obtain repeated independent measurements of
assigned probabilities from the same individual because he is likely to remember
his previous thoughts and responses. Consequently, there are no procedures for
the measurement of the probability assignments that permit the application of
the law of large numbers to reduce ‘measurement errors’.

The difficulties involved in applying standard measurement criteria of reli-
ability and validity to the measurement of probability assignment give rise to
the question of how to evaluate and improve such assignments. Three types of
criteria have been suggested: pragmatic, semantic (calibration) and syntactic.

4.1.1 Criteria for Evaluating Probabilities

The syntactic criterion is related to the probabilities obeying syntactic rules – the
relations between assignments should be governed by the laws of probability.
For example, if A and B are disjoint events, then the assigned probability of
the event, A or B, should be equal to the sum of the assigned probabilities for
A and B. A set of probability assignments is (internally) coherent only if it
is compatible with the probability axioms. Coherence is clearly essential if we
are to treat assignments of probabilities and manipulate them according to the
probabilistic laws.

The pragmatic criterion is based on comparison with ‘objective’ values, the
reality, and is applicable whenever the assigned probability of an event, e.g. the
royal flush in poker, or a disease, can be meaningfully compared to a value that is
computed in accordance with the probability calculus or derived from empirical
data. For example, if history shows that out of a population of a million people,
about two suffer from a certain disease, we can compare our probability to the
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rate 2/106. However, such tests cannot be applied in most cases of interest as
objective probabilities cannot be specified and sufficient relevant data are not
available. Thus the pragmatic criterion is only rarely relevant.

Calibration tests relate to the ability to obtain correct statements when consid-
ering a number of assignments. Formally, a person is said to be well-calibrated
if the proportion of correct statements, among those that were assigned the same
probability, matches the stated probability, i.e. his hit rate matches his confi-
dence. Clearly there is no way of validating, for example, a risk analyst’s single
judgement that the probability of a system to fail during a one-year period of
operation is 0.1. But if the analyst is assessing many systems with a failure
probability of 0.1, we would expect system failure to occur about 10% of the
time. If, say, 50% of the systems fail, the analyst is badly calibrated. Often
a scoring rule is used to reward a probability assessor on the basis of later
observed outcomes. A simple scoring rule is the quadratic rule. If you assign a
probability p for an event A, this rule gives the score (1 − p)2 if the event is
true and p2 if it is false.

Again, it is difficult to apply the criterion. The problem is that it does not
apply at the point of assessment. The probability assignments are supposed to
provide decision support, so the goodness of the probabilities needs to be eval-
uated before the observations. And the probabilities are assigned for alternative
contemplated cases, meaning that comparisons with observations would be pos-
sible for just some of the probabilities assigned. There could also be changes in
the background conditions of the probabilities from the assignment point to the
observations. In risk analysis applications it often takes a long time before obser-
vations are available. The probabilities are in many cases small (rare events),
which means that it is difficult to establish meaningful hit rates. Suppose we
categorize probabilities in groups of magnitude 0.1 and 0.01 only. And suppose
that we observe that for the two categories the risk analyst obtains 1 success
out of 20 cases, and 0 out of 50 cases, respectively. Is the risk analyst then
calibrated? Or to what extent is he calibrated? The hit rate for the first situation
is 0.05, just a factor of 2 below the analyst’s confidence; in the second situa-
tion, the hit rate is 0, which makes it difficult to compare with the probability
assignments.

We conclude that calibration in general is not very useful to evaluate the
goodness of the probability assignments in a risk analysis. Rather we see cal-
ibration as a tool for training risk analysts and experts providing input to the
risk analysis, in probability assignments. By considering situations of relevance
to the problems being analysed and where observations are available, we can
evaluate the performance of the analysts and the experts, and improve their
calibration in general. This training would increase the credibility of the risk
analyst and the experts providing input to the risk analysis.

In situations where a number of probabilities are assigned and observational
feedback is quick, such as in weather forecasting, comparisons with the observed
values provides a basis for evaluating the goodness of the assessors and the
probabilities assigned. In addition to calibration, several other characteristics of
prediction performance are useful, such as refinement or sharpness. Refinement



66 FOUNDATIONS OF RISK ANALYSIS

relates to a sample of probability assignments and is defined as the degree
to which the assignments are near zero or one (Murphy and Winkler 1992).
A well-calibrated assessor need not be a good predictor or forecaster. If the
relative rate of an event A is 30%, the assessor would be well calibrated if
he always assigned a probability of A equal to 30%. The refinement would,
however, be poor.

4.1.2 Heuristics and Biases

People tend to use rather primitive cognitive techniques when assigning prob-
abilities, i.e. so-called heuristics. Heuristics for assigning probabilities are easy
and intuitive ways to deal with uncertain situations. The result of using such
heuristics is often that the assessor unconsciously tends to put too much weight
on insignificant factors. Here are some of the most common heuristics:

• Availability heuristic: the assessor tends to base his probability assignment
on the ease with which similar events can be retrieved from memory. Events
where the assessor can easily retrieve similar events from memory are likely
to be given higher probabilities of occurrence than events that are less vivid
and/or completely unknown to the expert.

• Anchoring and adjusting heuristics: the assessor tends to choose an initial
anchor. Then extreme points are assessed by adjusting away from the anchor.
One of the consequences is often a low probability of extreme outcomes.

• Representativeness heuristic: the assessor assigns a probability by comparing
his knowledge about the phenomenon with the stereotypical member of a
specific category. The closer the similarity between the two, the higher the
judged probability of membership in the category.

The training of the risk analyst and the expert providing input to the risk ana-
lyst should make them aware of these heuristics, as well as other problems of
quantifying probabilities such as superficiality and imprecision which relates
to the assessor’s possible lack of feeling for numerical values. Lack of pre-
cision is particularly a problem when evaluating events on the lower part of
the probability scale, typically less than 1/100. Since many applications of risk
analysis deal with catastrophic events, it may be interesting to examine causal
factors that are considered only theoretically possible or unlikely. To some
extent the situation may be improved by applying assessment aids such as a
set of standardized reference events with commonly agreed probabilities that
may be compared with the event under consideration, or graphical tools like
the so-called probability wheel, see French and Insua (2000). Faced with rare
events, however, the expert simply has difficulties in relating his uncertainty
to low probability levels and in distinguishing between numbers such as 10−5

and 10−6.
Although all experts seem to have a probability level below which express-

ing uncertainty in numbers becomes difficult, this level can be improved by
training. Through repeatedly facing the problem of assigning probabilities to
rare but observed events (the result is not known to the analyst or expert a
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priori), discussing the causal factors and comparing their likelihood, the analyst
or expert familiarizes themself with this way of thinking. The analyst or expert
will gradually feel more comfortable with applying smaller numbers, but still
training alone will hardly solve this problem. It seems we must accept that the
application of probability judgement has a boundary at the lower and upper
ends of the probability scale beyond which probability assignments have low
confidence.

Given this fact, the challenge is to design models that minimize the number of
low (high) probability events to be specified. By using event trees, for example,
we can try to reduce the problem to one of specifying ‘reasonable’ probabilities.
We refer to Section 4.2.

4.1.3 Evaluation of the Assessors

The starting point for the discussion in this section is that the risk analyst
would like to specify the probability distribution P (Y ≤ y). This probability
is a measure of uncertainty; it is not an observable quantity. No true value
of P (Y ≤ y) exists. Consequently, we cannot draw conclusions about the
correctness of this probability distribution. If the pragmatic criterion applies,
i.e. the probabilities can be compared to ‘objective’ values, assessors can be
meaningfully evaluated. For example, if an analyst predicts two failures of a
system during a period of one year, and the associated uncertainty is con-
sidered negligible, this assessment and the assessor would be judged as poor
if there were strong evidence showing that such systems would fail at least
10 times a year. Unfortunately, the pragmatic criterion does not often apply
in a risk analysis context. Sufficient relevant data do not exist. The goodness
of the probability number is then more a question of who is expressing their
view, what competence they have, what methods and models they use and
their information basis in general, as well as what quality assurance procedures
have been adopted in planning and executing the assessment. Thus we make a
clear distinction between the probability number itself, which cannot be vali-
dated, and the evaluation of that probability number. Confidence in the prob-
ability assignment process is essential. This confidence is affected by several
factors:

• Gap judged by the evaluator of the probability (that could be the decision-
maker), between the assessor’s state of knowledge and the ‘best information
available’.

• The evaluator considers the best information available to be insufficient.
• Motivational aspects.
• The training of the assessor in probability assignments, and in particular how

to treat heuristics and biases, superficiality and imprecision, as discussed
above.

If the evaluator considers the assessor’s level of information (knowledge) to
be significantly lower than the best information available, he would find the
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results of the analysis not very informative. The evaluator will be sceptical of
the assessor as an expert. Trying to use the best expertise available does not
fully solve this problem since in practice there will always be time and cost
constraints. Even if the analyst or expert is considered to have the best informa-
tion available, there could be a confidence problem. The evaluator may judge
the best information available to be insufficient, and further studies are required
to give a better basis for the probability specification.

A risk analyst (an expert) may assign a probability that completely or par-
tially reflects inappropriate motives rather than their deeply felt belief regarding
a specific event’s outcome. As an example, it is hard to believe that a sales
representative on commission would make a completely unprejudiced judge-
ment of two safety valves where one of them belongs to a competitor firm.
Another example is an engineer that was involved in the design process and is
later asked to judge the probability of failure of an item he personally recom-
mended to be installed. The engineer claims that the item is absolutely safe and
assigns a very low failure probability. The management may reject the sales
representative’s judgement without much consideration since they believe that
inappropriate motives have influenced it. The engineer’s judgement might not be
rejected quite so easily since the engineer is a company expert in this area. On
the other hand, incentives are present that might affect the engineer’s probability
specification.

Motivational aspects will always be an important part of evaluating proba-
bilities and therefore the usefulness of analyses that include expert judgements.
In general, we should be aware of any incentives that in some cases could
significantly affect the assignments.

4.1.4 Standardization and Consensus

When conducting many risk analyses within for example a company, there
is a need for standardization of some of the probabilities to be used in the
analysis, perhaps related to the distribution of the time to failure of a unit, to
reduce the analysis work and ensure consistency. Such a standardization requires
consensus among the various assessors in the company. In general, consensus
on probabilities is usually what we desire. It is not always possible to obtain,
as analysts may have different views. But when consensus can be established,
it gives a stronger message.

4.2 MODELLING

This section looks at how to establish a deterministic function g such that we can
write Y = g(X1, X2, . . . , Xn) for some observable quantities X1, X2, . . . , Xn.
Chapter 3 presented several examples of such models and we will briefly review
some of them. Then we will reflect on the modelling process in general; what is
the purpose of the modelling and how do we think when developing a suitable
model.
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4.2.1 Examples of Models

In Section 3.2.1, p. 55, we studied a cost risk model where the total cost Y was
written as the sum of a number of cost elements Xi , i = 1, 2, . . . , k, i.e.

Y =
k∑

i=1

Xi.

Thus the function g is simply equal to the sum of its elements or components.
In this case we can quickly conclude that this is a good model as it reflects the
real world accurately, provided that we have been able to include the key cost
elements.

The models established in the production risk example of Section 3.2.2, p. 55,
are more complex. For example, the downtime in an interval [0, t], Yt , is
expressed by

Yt =
∫ t

0
(1 − Xs) ds,

where Xs is the state process of the system, which is 1 if the system is func-
tioning and 0 otherwise at time s. As shown in Section 3.2.2, we can write Xs

as a function of the lifetimes and downtimes of the system. Thus Yt is linked to
observable quantities on a more detailed level through a deterministic function.
Again we find that the model should be a good representation of the real-world
system, as the system we are modelling would necessarily alternate between
being up or down.

We will also make some comments on the event tree example in Section 3.3,
p. 60. The model is given by the event tree shown in Figure 2.1. Clearly this is
a rather rough model as it specifies for example two fatalities in the case of an
explosion scenario and one in the fire scenario. In real life we could obviously
have situations where these scenarios give a different number of fatalities, for
instance no fatalities in the fire scenario. A possible extension of the model
would be to allow the numbers of fatalities to be unknown (observable) quantities
and assess associated uncertainties. This extension would give a more precise
description of the real world, but the original model is simpler and it could be
judged sufficiently accurate for its purpose as long as the main features of the
phenomenon are reflected in the model.

Finally, we look at a case where the aim is to predict a distribution function
F(t) in a setting where we can define an appropriate population of similar
units. We may think of F(t) as the proportion of units with lifetimes less than
or equal to t . Therefore, in this setting, F(t) is an observable quantity and we
can apply the principles of Chapter 3. As a model of F(t) we introduce for
example the exponential distribution with parameter λ, such that we can write
F(t) = F(t |λ) = 1 − exp{−λt}. Note that in this case the parameter is an
observable quantity, representing a state of the world; it is the average number
of failures per unit of exposure time for the whole population of units. Letting
H denote an uncertainty distribution of λ, the distribution of F(t), for a fixed
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t , takes the form

P (F(t) ≤ x) =
∫

{λ:F(t |λ)≤x}
dH(λ).

Furthermore, we can calculate for example a 90% prediction interval curve for
the function F by

P (F(·|λ1) < F ≤ F(·|λ2)) =
∫ λ2

λ1

dH(λ) = 0.90,

where λ1 are λ2 are the 5% and 95% quantiles for H .

4.2.2 Discussion

A model is a simplified representation of a real-world system. The general
objective of developing and applying models in this context is to arrive at risk
measures based on information about related quantities and a simplified repre-
sentation of real-world phenomena. Detailed modelling is required to identify
critical factors contributing to risk and evaluate the effect of risk-reducing mea-
sures. The simplified form makes models suitable for analysis, and in model
construction this property is traded off against the need for complexity that
produces sufficiently detailed results. Typical factors governing the selection
of models are the form of the detailed system information and its level, the
resources available in the specific study and whether the focus is on the over-
all risk level or on comparing decision alternatives. In general the advances
seen within computer technology have improved the conditions for analysing
complex models.

Since models are used to reflect the real world, they only include descriptions
of relationships between observable quantities. Probabilistic expressions reflect
uncertainty or lack of knowledge related to the values of such quantities. Mod-
elling is a tool that allows us to express our uncertainty in the format found
most appropriate to fulfil the objectives of performing the analysis.

Experience data applied in risk analysis are often given in the form of the
number of occurrences of an outcome y out of a number of trials n, registered
during similar activity in the past. However, the ‘similar activity’ often com-
prises a mix of experiences resulting in data representing an average system.
This makes it hard to differentiate between the decision alternatives at hand. It
becomes especially hard to defend alternatives that involve new technology not
represented in the data.

In most cases the data do not reflect system-specific information, e.g. related
to local operating conditions, and technical and organizational measures already
implemented. Such additional system information usually exists as a mix of
detailed system specifications and expert knowledge. To be able to reflect such
information, further system modelling is required. Differentiation between the
decision alternatives is achieved through a more detailed system representation.
Referring to the set-up above, this implies identification of factors (quantities)
X to be included in the model Y = g(X).
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The problem of small probability numbers can often be avoided by mod-
elling. Assume that we are interested in quantifying our uncertainty related to
whether the event A will occur in a given period as input to a risk analysis.
If A is judged by the experts to be improbable and the experts have difficul-
ties in relating to it quantitatively, the problem may be handled by shifting
the focus to observable quantities on a lower causal level, associated with a
higher probability level. For example, if A is judged dependent on the occur-
rence of conditions B and C, the expert may express his uncertainty with
respect to these events instead, and a probability of A, P (A), may be assigned
by P (A) = P (B)P (C|B). Another alternative is to formulate A by a limit
state function, i.e. A occurs if g(X) < 0, where g is a limit state function
(Section 2.1.3). The probability P (A) can then be specified by expressing uncer-
tainty about the event through the probability distributions of the observable
quantities X.

In summary, we can say that under our predictive approach to risk and risk
analysis, modelling is a tool for identifying and expressing uncertainty, hence
it is also a means for potentially reducing uncertainty. The uncertainty can
be identified by including more system-specific information in the analyses, in
terms of an expanded information basis for uncertainty statements and in terms
of the model structure itself. Furthermore, modelling adds flexibility to the risk
analyses since it allows us to express uncertainty in the format found most
appropriate to obtain the objectives of the analysis.

A topic closely related to the use of models, and widely discussed in the litera-
ture, is model uncertainty. Several approaches to interpretation and quantification
of model uncertainty are proposed in the literature, see Section 2.1.3 and Bib-
liographic notes of the present chapter. In our setting, a model Y = g(X) is a
purely deterministic representation of factors judged essential by the analyst. It
provides a framework for mapping uncertainty about the observable quantity of
interest, Y , from expressions of epistemic uncertainty related to the observable
quantities, X, and does not in itself introduce additional uncertainty. In this set-
ting, the model is merely a tool judged useful for expressing knowledge about
the system. The model is part of the background information on the probability
distribution specified for Y . If we change the model, we change the background
information.

It is not relevant to talk about uncertainty of a model. What is interesting to
address is the goodness or appropriateness of a specific model to be used in a
specific risk analysis and decision context. Clearly, a model can be more or less
good in describing the world. No model reflects all aspects of the world, but it
should reflect key features. We return to this topic in Section 4.4.3.

4.3 ASSESSING UNCERTAINTY OF Y

The problem is to specify a probability distribution P (Y ≤ y) for y ≥ 0,
given a background information K represented as observational data (hard data)
y1, y2, . . . , yn and as expert knowledge. These hard data could be more or less
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relevant. Now, how should we proceed to specify P (Y ≤ y)? Several approaches
can be used:

• derivation of an assigned distribution based on classical statistics;
• analyst judgement using all sources of information;
• formal expert elicitation.

These approaches are discussed in more detail in Sections 4.3.1 to 4.3.3.
The Bayesian approach gives a unified approach to the specification of P (Y ≤

y). To apply this approach, the common procedure is to introduce a parameter,
say θ , representing a state of nature, such that we can write

P (Y ≤ y) =
∫

P (Y ≤ y|θ) dH(θ), (4.1)

where H is the prior distribution of θ and P (Y ≤ y|θ) is normally given
by a common parametric distribution function, for example the exponential.
Bayes’ theorem tells us how to update the prior distribution when new data
becomes available to obtain a posterior distribution. The Bayesian approach
will be presented in more detail in Section 4.3.4; see also Appendix A. Here we
consider when to use a full Bayesian approach with the specification of a prior
distribution and apply equation (4.1), instead of a more direct assignment process
for determining P (Y ≤ y), such as the three approaches referred to above. Note
that these three approaches may also be viewed as Bayesian, although they are
largely based on direct probability assignments without introducing a parameter;
see the discussion on page 79.

4.3.1 Assignments Based on Classical Statistical Methods

Consider first the problem of specifying the probability that Y = 1 in the case
that Y is a binary quantity (indicator function) taking the values 0 or 1. Then
direct use of classical statistics would lead to the probability assignment

P (Y = 1) = 1

n

n∑
i=1

yi, (4.2)

i.e. P (Y = 1) is given as the relative portion of ‘successes’ of the n observations
y1, y2, . . . , yn. So, for example, if we have 3 successes out of 10 observations,
we obtain P (Y = 1) = 0.3. This is our (i.e. the analyst’s) assessment of
uncertainty related to the value of Y .

In this framework P (Y = 1) is specified according to equation (4.2); it is not
an estimate of an underlying true probability P (Y = 1) as in the classical setting,
but an assessment of uncertainty related to the occurrence of Y = 1. Thus, for
the above example, P (Y = 1) = 0.3, whereas in the classical setting, P ∗ = 0.3,
where P ∗ is an estimate of P (Y = 1), i.e. P (Y = 1) ≈ 0.3, hopefully.

This method is appropriate when the analyst judges the observational data to
be relevant for the uncertainty assessment of Y , and the number of observations
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n is large. What is considered sufficiently large depends on the setting. As a
general guidance, we find that about 10 observations is enough in many cases to
specify the probabilities using this method, provided that not all observations are
either 1 or 0. In this case the classical statistical procedure gives a probability
equal to 1 or 0, which we would normally not find adequate for expressing our
uncertainty about Y . Other procedures then have to be used; see the next two
sections.

Now, suppose that Y takes values in the set of real numbers, and as above
we assume that the analyst judges the observational data to be relevant for the
uncertainty assessment of Y , and the number of observations n is large. Then
we can proceed along the same lines as for the binary case but we specify
P (Y ≤ y) by the equation

P (Y ≤ y) = 1

n

n∑
i=1

I (yi ≤ y), (4.3)

where I is the indicator function, which is 1 if the argument is true and 0
otherwise. Thus P (Y ≤ y) is given by the empirical distribution function in the
classical statistical set-up.

In most cases we would prefer to use a continuous function for P (Y ≤ y),
as it is mathematically convenient. Such a function is obtained by a fitting
procedure where the empirical distribution is approximated by a continuous
function, for example a normal distribution function. Classical statistical methods
for fitting a distribution function to observed data are the natural candidate for
this procedure, see Appendix A.2. As for the binary case, note that we use
classical inference merely as a tool for assessing our uncertainty distribution for
Y , not for estimating an underlying true distribution function for Y .

This procedure works with a large number of observations, but what if n is
not large, say 6, or what if most of the observations are zero, say, and we are
most concerned about a possible large value of Y , i.e. the tail of our uncertainty
distribution of Y ? Or what if the data are not considered sufficiently relevant?
Clearly, in these cases it is problematic to use the above procedure, as the
information given by the data is so limited. Other procedures should then be
adopted.

4.3.2 Analyst Judgements Using All Sources of Information

This is a method commonly adopted when data are absent or are only partially
relevant to the assessment endpoint. A number of uncertain exposure and risk
assessment situations are in this category. The responsibility for summarising the
state of knowledge, producing the written rationale, and specifying the probabil-
ity distribution rests with the analyst. It is very likely that two different analysts
will produce two different descriptions of the present state of knowledge and
probability distributions.

Now, how does the analyst derive one particular probability distribution?
Consider first the binary case, where the problem is to specify P (Y = 1). The
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starting point is that the analyst is experienced in assigning probabilities express-
ing uncertainty, so he has a number of references points; the analyst has a feeling
for what 0.5 means in contrast to 0.1, for example. A probability of 0.1 means
that the analyst’s uncertainty related to the occurrence of Y = 1 is the same as
when drawing a favourable ball from an urn with 10% favourable balls under
standard experimental conditions. To facilitate the specification, the analyst may
also think of some type of replication of similar events as generating Y = 1, and
think of the probability as corresponding to the proportion of ‘successes’ that
they would predict among these events. Suppose the analyst predicts 1 success
out of 10, then they would assign a probability 0.1 to P (Y = 1). Note that
this type of reasoning does not mean that the analyst presumes the existence
of a true probability, it is just a tool for simplifying the specification of the
probability.

Now consider the general case of assessing the distribution of Y when the
possible value of Y is on the real line. The simplest approach is to specify
probabilities as above for the events Y ≤ yi or Y > yi , for suitable numbers yi .
Often one starts with a percentage, say 90%, and then specifies the value y such
that P (Y > y) = 0.90. Combining such quantile assessments with a specified
distribution class, such as the normal distribution or a lognormal distribution,
only a few assessments are needed (typically two, corresponding to the number
of parameters of the distribution class).

An alternative approach for the specification of P (Y ≤ y) is to use the
maximum entropy principle, see p. 83.

To specify the probability distribution, the analyst may consult experts in
the subject of interest, but the uncertainty assessment is not a formal expert
elicitation as explained below.

4.3.3 Formal Expert Elicitation

This approach requires the analyst to identify and bring together individuals
acknowledged as experts in the subject of concern. Here is a typical procedure.
The analyst trains the experts in the assessment problem and disseminates among
the experts all relevant information and data. The experts are then required to
formalize and document their rationales. They are interviewed and asked to
defend their rationales before committing to any specific probability distribution.
The experts specify their own distribution by determining quantiles.

Sometimes weights are assigned to the experts to distinguish differences in
expertise. Some argue that the selection of high-quality experts at the outset is
mandatory and that all experts used for the final elicitation should be given the
same weight. Others argue that the experts should be given the opportunity to
assign weights to themselves.

Formal approaches to expert elicitation seemingly place all responsibility for
quantifying the state of knowledge on the panel of experts. The method is
extremely difficult to rebuke, except by conducting new experiments on the
uncertain quantity of interest or convening a separate independent panel of
experts.
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It is a basic principle of our approach to risk analysis that the analyst is
ultimately responsible for the assessment, and as such, the analyst is obliged
to make the final call on the probability distribution. Experts have advanced
knowledge in rather narrow disciplines and are unlikely to devote the time
necessary (even with training) to become as familiar as the analyst with the
unique demands of the assessment question. However changing the experts’
distributions should not be done if this possibility is not a part of an agreed
procedure for elicitation between the analyst and the experts.

We recommend that formal expert elicitation is undertaken when little relevant
data can be made available and when it is likely that the judgement of the analyst
will be subject to scrutiny, perhaps resulting in costly project delays. Formal
expert elicitation could be very expensive, so it requires adequate justification.

Experts may specify their own probability distributions, or they could provide
the analyst with information for him or her to process and finally transform to a
probability distribution. This latter approach has the advantage that the experts
can speak their own language and avoid the somewhat abstract formalism of
using probabilities. On the other hand, it may be difficult for the analyst to fully
understand the expert judgements if they are just reports of knowledge, with no
reference to the probability scale.

Building consensus, or rational consensus, is of major concern when using
expert opinions. Five principles are often highlighted (Cooke 1991);

• Reproducibility: it must be possible to reproduce all calculations.
• Accountability: the basis for the probabilities assigned must be identified.
• Empirical control: the probability assignments must in principle be suscep-

tible to empirical control.
• Neutrality: the methods for combining or evaluating expert opinion should

encourage experts to state their true opinions.
• Fairness: all experts are treated equally, prior to processing the results of

observations.

We find these principles appropriate, but a remark on empirical control as stated
in Section 4.1 is in place. Empirical control does not apply to the probability
at the time of assignment. When conducting a risk analysis we cannot ver-
ify an assigned probability, as it expresses the analyst’s uncertainty prior to
observation.

4.3.4 Bayesian Analysis

To illustrate the Bayesian thinking, here are three examples. Other examples are
presented in Section 4.4.

Health risk

Suppose we test a patient when there are indications that they have a blood
disease. Let X be 1 or 0 according to whether the test gives positive or negative
response. Furthermore, let θ be the true condition of the patient, the state of
nature, which is defined as 2 if the patient is seriously ill, 1 if the patient is
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moderately ill, and 0 if the patient is not ill at all. From general health statistics,
suppose that 2% of the relevant population is seriously ill, 10% is moderately
ill, and 88% is not ill at all from this disease.

From these health statistics and without using additional information about
the patient, we can specify a prior distribution

P (θ = 2) = 0.02, P (θ = 1) = 0.10, P (θ = 0) = 0.88. (4.4)

Now suppose we know from experience that the test will give a positive response
in 90% of the cases if it is being applied on a patient that is seriously ill. If the
patient is moderately ill, the test will give a positive response in 60% of the
cases, whereas if the patient is not ill, the test will give a false response in 10%
of the cases. From this information we can formulate the following conditional
probabilities:

P (X = 1|θ = 2) = 0.90,

P (X = 1|θ = 1) = 0.60,

P (X = 1|θ = 0) = 0.10.

We refer to this as the likelihood function L(θ). Combining these probabilities
and those given by (4.4), we can compute the posterior probability P (θ = 2|X =
1), i.e. the probability that the patient is serious ill given that the test gives a
positive response. Simple probability calculus gives

P (X = 1) = P (X = 1|θ = 2)P (θ = 2) + P (X = 1|θ = 1)P (θ = 1)

+ P (X = 1|θ = 0)P (θ = 0)

= 0.90 × 0.02 + 0.60 × 0.10 + 0.10 × 0.88

= 0.166,

and using Bayes’ theorem;

P (θ = 2|X = 1) = P (X = 1|θ = 2)P (θ = 2)

P (X = 1)

= 0.90 × 0.02

0.166
= 0.11.

More generally, we may write the conditional distribution of θ given X = x,
which is called the posterior distribution of θ , as

f (θ |x) = L(θ)f (θ)

f (x)
,

where f is used as a generic symbol to express a distribution. Thus the posterior
distribution f (θ |x) is proportional to L(θ)f (θ).

The calculations have produced a probability of 0.11 that the patient is seri-
ously ill given that the test has shown a positive response. This is a rather low
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number, which the doctor needs to take into consideration when communicating
with the patient. Some would say that the test should not be used at all as it is
simply too poor.

However, the situation can be improved by performing an additional test to
provide more information. This corresponds to an A test and a B test in a
doping context. We would like to compute the probability for the patient to be
seriously ill given that both tests have shown a positive response. Let Xi be 1 or
0 according to whether the test i gives positive or negative response, i = 1, 2.
The sought probability can then be written as P (θ = 2|X1 = 1, X2 = 1).

Consider first the situation after the first test has been performed and the test
has given a positive response. Instead of using the uncertainty distribution of θ

based on the health statistics, we now start with the updated probabilities (the
posterior distribution) P (θ = 2|X1 = 1), P (θ = 1|X1 = 1) and P (θ = 0|X1 =
1) based on the information that the first test showed a positive response. Using
Bayes’ theorem we established above that P (θ = 2|X1 = 1) = 0.11. Similarly,
we find that

P (θ = 1|X1 = 1) = 0.60 × 0.10

0.90 × 0.02 + 0.60 × 0.10 + 0.10 × 0.88
= 0.36,

P (θ = 0|X1 = 1) = 0.10 × 0.88

0.90 × 0.02 + 0.60 × 0.10 + 0.10 × 0.88
= 0.53.

In this example we view the tests as conditionally independent in the sense
that the probability that the second test gives a positive response given that the
patient is seriously ill (moderately ill, not ill), does not depend on the result of
the first test. Thus we have

P (X2 = 1|θ = 2, X1 = 1) = P (X2 = 1|θ = 2) = 0.90,

P (X2 = 1|θ = 1, X1 = 1) = P (X2 = 1|θ = 1) = 0.60,

P (X2 = 1|θ = 0, X1 = 1) = P (X2 = 1|θ = 0) = 0.10,

which are the same probabilities used for the calculations of P (θ = 2|X = 1)

above.
Hence we replace P (θ = i) by P (θ = i|X1 = 1) and apply Bayes’ theorem

to obtain

P (θ = 2|X1 = 1, X2 = 1) = 0.90 × 0.11

0.90 × 0.11 + 0.60 × 0.36 + 0.10 × 0.53
= 0.27.

This posterior probability is much better than 0.11, but still it is rather low.
The calculations demonstrate how Bayes’ theorem is used to update probabili-

ties when new information becomes available. Note that the probability calculus
above is general in the sense that it also applies to a classical interpretation of
probability as so far we have used relative frequencies as the basis for our prob-
ability numbers. Now we would like to go one step forward and include specific
information that the doctor has about the condition of the patient. Suppose that
the patient has shown some rather strong symptoms of being seriously ill. The
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doctor finds that the probability distribution (4.4) is not reflecting his view con-
cerning the state of the patient, given the present state of knowledge. Instead the
doctor assigns the following probabilities expressing his uncertainty about θ :

P (θ = 2) = 0.40, P (θ = 1) = 0.40, P (θ = 0) = 0.20. (4.5)

From this starting point, the probability calculations are similar to those shown
above and they lead to a probability of 0.58 that the patient is seriously ill,
given that the first test has shown a positive response. And if both tests show a
positive response, the sought probability is found to be 0.69.

This Bayesian analysis provides the probabilities of interest given the obser-
vations. This is in contrast to classical statistical hypothesis testing where the
probabilities of interest are computed prior observations, given the parameter θ .
To be more specific, we can formulate a null hypothesis H0 and an alternative
hypothesis H1 by

H0 : θ = 0 and H1 : θ > 0,

i.e. we test whether the patient is ill, starting from the null hypothesis that he
is not ill. We reject the null hypothesis and claim that the patient is ill if both
tests give positive results. The significance level of the test is 1% as

P (X1 = 1, X2 = 1|θ = 0) = 0.10 × 0.10 = 0.01,

given the above assumptions. In the Bayesian analysis we would compute P (θ >

0|X1 = 1, X2 = 1), i.e. the probability that the patient is ill given that both tests
give positive results. We find this probability is equal to 99.6%.

The Bayesian analysis provides a recipe to calculate the posterior distribution
P (θ = i|X1 = x1, X2 = x2), the probability of the parameter being a specific
value, given the observations and the background information. This distribution
is a complete description of our understanding of θ . There is nothing more to
be said. Summing over i = 1 and i = 2, this distribution provides our entire
understanding of whether H1 is true.

Criminal law

The defendant in a court of law is either truly guilty G or not guilty G. The
guilt is uncertain and we describe this uncertainty by a probability P (G). It is
convenient to work in terms of odds:

o(G) = P (G)/P (G).

If we have data available in the form of evidence B, we update probabilities
according to Bayes’ formula, yielding

o(G|B) = P (B|G)

P (B|G)
o(G),

involving multiplication of the original odds by a likelihood ratio expressing
our probabilities of the data given the state of the world G or G. As the trial
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proceeds, further evidence is introduced and successive multiplications by the
likelihood ratios determine the final odds.

This type of calculation could be used as a basis for a judgement of guilty or
not guilty. We may also think of the jury communicating the final odds o(G|B),
where B is the totality of all admitted evidence.

Accident risk

Let us return to the event tree example in Section 3.3, p. 60, and let us reconsider
the problem of specifying the probability of ignition, P (A), and the distribution
of the number of leakages, X, occurring in a one-year period.

Following the presentation of Section 3.3, the uncertainty assessment of the
ignition event is in accordance with the approach in Section 4.3.2. The question
now is how to perform a Bayesian analysis according to (4.1), p. 72. And what
are the possible benefits of adopting this analysis compared to the more direct
approach?

Adopting a full Bayesian analysis, the first step would be to introduce a
parameter. In this case it would be p, interpreted as the proportion of times
ignition will occur when considering an infinite or very large number of similar
situations to the one analysed. If we knew p, we would assign a probability of
A equal to p, i.e. P (A|p) = p. Hence from (4.1) we obtain

P (A) =
∫

p dH(p), (4.6)

where H is the prior distribution of p. Now how should we interpret (4.6)?
The standard Bayesian framework and its interpretation go as follows. To

specify the probabilities related to A, a direct assignment could be used, based
on everything we know. Since this knowledge is often complex, of high dimen-
sion, and much in the background information may be irrelevant to A, this
approach is often replaced by the use of probability models, which is a way
of abridging the background information so that it is manageable. Probability
models play a key role in the Bayesian approach. In this case the probabil-
ity model is simply P (A|p) = p, where p is the parameter of the probability
model. The parameter p is also known as a chance – it is an objective property
of the constructed sequence or population of situations. It is not a probability for
the assessor, though were p known to the assessor, it would be the assessor’s
probability of A, or any event of the sequence. The parameter p is unknown
and our uncertainty related to its value is specified through a prior distribution
H(p). Later we will return to the problem of specifying the prior distribution H .
We see from equation (4.6), that the unconditional distribution of A is simply
given by the mean in the prior distribution of p. Note that both P (A) and H are
specified given the background information. Thus the uncertainty distribution
of A is expressed via two probability distributions, p and H . The two distribu-
tions reflect what is commonly known as aleatory (stochastic) uncertainty and
epistemic (state of knowledge) uncertainty.

This framework is based on the idea that there exists, or there can be con-
structed through a thought experiment, a sequence of events Ai related to
‘similar’ situations to the one analysed. The precise mathematical term used to
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define what is similar is ‘exchangeability’. Random quantities X1, X2, . . . , Xn

are judged exchangeable if their joint probability distribution is invariant under
permutations of coordinates, i.e.

F(x1, x2, . . . , xn) = F(xr1, xr2, . . . , xrn),

where F is a generic joint cumulative distribution function for X1, X2, . . . , Xn

and equality holds for all permutation vectors (r1, r2, . . . , rn), obtained by
switching (permuting) the indices {1, 2, . . . , n}; see Appendix A, p. 156. Ex-
changeability means a judgement about indifference between the random quanti-
ties. It is a weaker requirement than independence because, in general, exchange-
able random quantities are dependent.

In our case we may view the random quantities as binary, i.e., they take
either the value 0 or 1, and if we consider an infinite number of such quantities,
judged exchangeable, then it is a well-known result from Bayesian theory that
the probability that k out of n are 1 is necessarily of the form

P

(
n∑

i=1

Xi = k

)
=

(
n

k

) ∫ 1

0
pk(1 − p)n−kdH(p), (4.7)

for some distribution H . This is a famous result and is known as de Finetti’s
representation theorem. Thus, we can think of the uncertainties (beliefs) about
observable quantities as being constructed from a parametric model, where the
random quantities can be viewed as independent, given the parameter, together
with a prior distribution for the parameter. The parameter p is interpreted as the
long-run frequency of 1s. Note that it is the assessor that judges the sequence
to be exchangeable, and only when that is done does the frequency limit exist
for the assessor.

Bayesian statistics is mainly concerned with inference about parameters of the
probability models. Starting from the prior distribution H , this distribution is
updated to a posterior distribution using Bayes’ theorem; see the health example
above and Appendix A.

We see that the Bayesian approach as presented above allows for fictional
parameters based on thought experiments. These parameters are introduced and
their uncertainty is assessed.

In our view, applying the standard Bayesian procedures gives too much focus
on fictional parameters, established through thought experiments, see the discus-
sion in Section 2.3.2. The focus should be on observable quantities. A rewriting
of the standard Bayesian presentation is thus required, to establish a theory
consistent with our predictive approach.

For this example we would use a simple direct approach as presented in
Section 4.3.2. Direct probability assignments should be seen as a useful sup-
plement to establishing probability models where we need to specify prior dis-
tributions of parameters. We may use parametric distribution classes, but we
should be careful about interpretation. We return to this topic below, following
the examination of a somewhat more complex case: assessing the uncertainty
of X, the number of leakages occurring in one year.

Suppose we have observations x1, x2, . . . , xn related to previous years, and
let us assume that these data are considered relevant for the year studied. We
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would like to predict X. How should we do this? The data allow a prediction
simply by using the mean x of the observations x1, x2, . . . , xn. But what about
uncertainties? How should we express the uncertainty? Suppose the observations
x1, x2, . . . , xn are 4, 2, 6, 3, 5, so that n = 5 and the observed mean is equal to 4.
In this case we have rather strong background information, and we suggest using
the Poisson distribution with mean 4 as our uncertainty distribution of X. For an
applied risk analyst, this would be the natural choice as the Poisson distribution
is commonly used for event type analysis and the historical mean is 4. Now, how
can this uncertainty distribution be justified? Well, if this distribution reflects our
uncertainty about X, it is justified, and there is nothing more to say. This is a
subjective probability distribution and there is no need for further justification.
But is a Poisson distribution with mean 4 reasonable, given the background
information? We note that this distribution has a variance not larger than 4. By
using this distribution, 99% of the mass is in values less than 10.

Adopting the standard Bayesian thinking, as outlined above, using the Pois-
son distribution with mean 4, means that we have no uncertainty about the
parameter λ, which is interpreted as the long-run average number of failures
when considering an infinite number of exchangeable random quantities, repre-
senting similar systems as the one being analysed. According to the Bayesian
theory, ignoring the uncertainty about λ, gives misleading overprecise inference
statements about X, see Bernardo and Smith (1994: 483). This reasoning is
valid if we work within a setting where we are considering an infinite num-
ber of exchangeable random quantities. In our case, however, we just have
one X, so what do we gain by making a reference to limiting quantities of a
sequence of similar hypothetical Xs? The point is that given the observations
x1, x2, . . . , x5, the choice of the Poisson distribution with mean 4 is in fact rea-
sonable under certain conditions on the uncertainty assessments. Consider the
following argument. Suppose that we divide the year [0, T ] into time periods
of length T /k, where k is for example 1000. Then we may ignore the pos-
sibility of having two events occurring in one time period, and we assign an
event probability of 4/k for the first time period, as we predict 4 events in
the whole interval [0, T ]. Suppose that we have observations related to i − 1
time periods. Then for the next time period we should take these observa-
tions into account – using independence means ignoring available information.
A natural way of balancing the prior information and the observations is to
assign an event probability of (di + 4n)/((i − 1) + nk), where di is equal
to the total number of events that occurred in

[
0, T (i − 1)/k

]
, i.e. we assign

a probability equal to the total number of events occurred per unit of time.
It turns out that this assignment process gives an approximate Poisson distri-
bution for X. This can be shown for example by using Monte Carlo simu-
lation. The Poisson distribution is justified as long as the background infor-
mation dominates the uncertainty assessment of the number of events occur-
ring in a time period. Thus from a practical viewpoint, there is no problem in
using the Poisson distribution with mean 4. The above reasoning provides a
justification of the Poisson distribution, even with not more than one or two
years of observations.
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Now consider a case with no historical data. Then we will probably find the
direct use of the Poisson distribution as described above to have too small a
variance. The natural approach is then to implement a full parametric Bayesian
procedure. But how should we interpret the various elements of the set-up?
Consider the following interpretation.

The Poisson probability distribution p(x|λ) is a candidate for our subjective
probability for the event X = x, and H(λ) is a confidence measure, reflecting
for a given value of λ the confidence we have in p(x|λ) being able to predict X.
If we have several Xi , similar to X, and λ is our choice, we believe that about
p(x|λ) × 100% of the Xi will take a value equal to x, and H(λ) reflects for a
given value of λ, the confidence we have in p(x|λ) being able to predict the
number of Xi taking the value x. We refer to this as the confidence interpretation.

Following this interpretation, we avoid the reference to a hypothetical infinite
sequence of exchangeable random quantities. We do not refer to H(λ) as an
uncertainty distribution as λ is not an observable quantity.

If a suitable infinite (or large) population of ‘similar units’ can be defined, in
which X and the Xi belong, then the above standard Bayesian framework applies
as the parameter λ represents a state of the world, an observable quantity. Then
H(λ) is a measure of uncertainty and p(x|λ) is truly a model – a representation
of the proportion of units in the population having the property that the number
of failures is equal to x. We may refer to the variation in this population,
modelled by p(x|λ), as aleatory uncertainty, but still the uncertainty related to
the values of the Xi is seen as a result of lack of knowledge, i.e. the uncertainty
is epistemic.

The same type of thinking can be used for the uncertainty assessment of the
ignition event A. The confidence interpretation would in this case be as follows.
Our starting point is that we consider alternative values p for expressing our
uncertainty about A. The confidence we have in p being able to predict A is
reflected by the confidence distribution H . If we have several Ai , similar to A,
and p is our choice, we believe that about p × 100% of the Ai would occur,
and H(p) reflects for a given value of p, the confidence we have in p being
able to predict the number of Ai occurring.

The above analysis provides a tool for predicting the observable quantities and
assessing associated uncertainties. When we have little data available, modelling
is required to get insights and hopefully reduce our uncertainties, see Section 4.2.
The modelling also makes it possible to see the effects of changes in the system
and to identify risk contributors.

Specifying the prior distribution

Our starting point is the fundamental equation of Bayesian analysis:

P (Y ≤ y) =
∫

P (Y ≤ y|θ) dH(θ),

where H is the prior distribution of θ . Prior distributions should reflect the
knowledge possessed before the relevant data are at hand. This is the Bayesian
standpoint. However, in practice the specification of the prior is often difficult
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and certain classes of technique are being used. One of these is the use of
so-called non-informative priors. The idea is to specify a distribution reflecting
total lack of information about the parameter. For example, in the binomial
case a non-informative prior distribution for the parameter p is given by the
uniform distribution on the interval [0, 1]. But what about situations where the
parameter takes values on [0, ∞ )? Should we use a so-called improper prior
having a density equal to 1 for all parameter values?

No, such a distribution should be avoided, and even when the non-informative
distribution is proper, we should avoid it. We believe that in most practical
cases the analyst would have some knowledge, and that information should
be incorporated, to give a proper informative probability distribution. Consider
the Poisson distribution example above and the problem of specifying a prior
distribution for λ. We could ignore values of λ that are very large, so why should
we then use a prior that gives positive weight to such values?

Probably the choice of non-informative priors is more motivated from the need
of having an ‘objective’ prior, rather than reflecting total lack of knowledge.
Non-informative distributions may be a simple way of establishing consensus,
but it could mean ignoring significant information.

The use of so-called conjugate distributions is another principle frequently
adopted. When using such distributions, the prior and posterior distribution
belong to the same distribution class. For example, the Poisson and gamma
distributions are conjugate. Adopting this principle makes it relatively simple
to carry out Bayesian updating, i.e. to establish the posterior distribution. But if
the prior does not reflect your opinion, it should not be used.

An interesting approach for specifying the prior distribution is to use a max-
imum entropy prior. This approach means specification of some features of the
distribution, for example the mean and the variance, but not the whole distri-
bution. Then a mathematical procedure gives a distribution with these features
and in a certain sense, minimum information beyond that. Refer to Bedford and
Cooke (2001: 73) for the details.

If θ is an observable quantity, the specification of the uncertainty distribution
of θ is similar to the one discussed for Y above and in the following section.
Illustrations are given above for the health and accident risk examples.

4.4 UNCERTAINTY ASSESSMENTS
OF A VECTOR X

In this section several examples discuss how to assess uncertainties and specify
probability distributions for a set of observable quantities.

4.4.1 Cost Risk

We refer to the cost risk problem introduced in Section 3.2.1, p. 52. We have
established a model

Y =
k∑

i=1

Xi,
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where Y represents the investment cost related to a project and the Xi, i =
1, 2, . . . , k, represent more detailed cost elements. If we judge these cost ele-
ments to be independent, we can use the procedures of the previous section
to assess uncertainties and specify probability distributions for each Xi and by
probability calculus or Monte Carlo simulation establish the distribution for Y .

In practice the use of independence is often problematic. We may for example
think of a situation where the cost elements are all strongly influenced by the
oil price, and the question is then how to incorporate this in the assessments.
Alternative approaches can be used; the following one is based on remodelling
and is one of the simplest.

Let X be the value of an underlying factor, for example the oil price, influ-
encing the cost elements Xi . It is common to refer to X as a latent quantity
(variable). We write Xi(X) to show the dependency of X. Given X, we judge
the cost elements to be independent. Then by specifying an uncertainty distribu-
tion of X, and of Xi given X, we can compute the uncertainty distribution of Y .
By Monte Carlo simulation this is rather easy to do. We draw a number x from
the distribution of X, and then use this as a starting point for drawing values of
Xi(x). These data are then used to produce a Y value. The same procedure is
repeated until we obtain the resulting probability distribution of Y .

The challenge is to find a simple way of expressing the judged dependencies.
In the example above where the Xi are related to a quantity X, we may go one
step forward and express Xi for example by the equation

Xi = aiX + bi + X′
i , (4.8)

where the observable quantities X′
i and X are judged independent, and X′

i has
a distribution FX′

i
, with mean 0 and variance τ 2

i . By (4.8) the influence of the
factor X on Xi has been explicitly described through remodelling, such that
independence of the adjusted quantities Xi − aiX can be justified. It follows
that

Y =
(∑

i

ai

)
X +

∑
i

bi +
∑

i

X′
i ,

and this distribution can rather easily be found, for example by Monte Carlo
simulation, as all unknown quantities on the right-hand side of the equality
sign, are judged independent. The basis for using equation (4.8) would normally
be a regression analysis. The idea is to plot (using a so-called scatter plot)
observations (x, xi) of (X, Xi) in a two-dimensional diagram and fit the data to
a line adopting standard least squares linear regression; see Appendix A.2.4.

Another way of incorporating dependency is to specify correlation coeffi-
cients ρij between Xi and Xj . To interpret these coefficients, we consider
our uncertainty distribution of the pairs Xi, Xj . From these distributions vari-
ous summarizing measures can be derived, including the correlation coefficient
defined by

ρij = E(Xi − µi)(Xj − µj )/σiσj ,
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where µi and σi are the mean and standard deviation of Xi , respectively. In prac-
tice we assign values for ρij without specifying the simultaneous distribution of
Xi and Xj . If the simultaneous distribution of the cost elements is a multivariate
normal distribution with parameters µi, σi and ρij , see Appendix A.1.5, then Y

also has a normal distribution, with mean

EY =
k∑

i=1

µi

and variance

Var Y =
k∑

i=1

σ 2
i + 2

∑
i<j

ρij σiσj .

An example with n = 2 is presented in Section 2.2.2. Thus the task is to spec-
ify the expected values, the standard deviations and correlation coefficients. If
we have available a large amount of relevant data, we can use the empirical
counterparts as a basis for assigning values for these quantities. We see that by
using normal distributions, the mathematics become simple.

We may establish the expected value and the variance of Y by the above for-
mulas without specifying the uncertainty distributions of the observable quan-
tities Xi . Together the mean and variance provide measures of uncertainty and
risk. But this way of thinking does not produce an uncertainty distribution of Y ,
and that is our objective. Using normal distributions we have seen that for estab-
lishing the joint distribution of the Xi , it is sufficient to specify the marginal
distribution for each uncertain quantity Xi and the correlation coefficients of
each pair of the Xi . Using some transformations of the marginal distributions,
we can generalize this result. It is not straightforward as we need to specify
correlation coefficients of these transformations, not the correlation coefficients
of Xi and Xj . Refer to Bedford and Cooke (2001: 329) for the details.

An interesting alternative approach for specifying the joint distribution is
presented in Bedford and Cooke (1999); see also Bedford and Cooke (2001). It
is based on the specification of the marginal distributions, as well as probabilities
of the form P (X1 > x1|X2 > x2), where x1 and x2 are the 50% quantiles of
the distributions of X1 and X2, respectively. Using a mathematical procedure,
a minimal informative distribution is establish based on this input. A minimal
informative distribution is in a sense the most ‘independent’ joint distribution
with the required properties.

4.4.2 Production Risk

In the production risk example studied in Section 3.2.2, p. 55, we assigned distri-
butions for the uptimes and downtimes of components being repaired or replaced
at failure when considering observations in a time period [0, t]. The consecutive
component lifetimes and repair times are denoted Tim and Rim, respectively,
where i refers to the ith component. These quantities are unknown and we
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express our uncertainty related to what will be the true values by probability
distributions.

The question is now how to assess these uncertainties and specify the prob-
ability distributions. Ideally, a simultaneous distribution for all lifetimes and
repair times should be provided, but this is not feasible in practice. So we need
to simplify. Let time t be a fixed point in time. Suppose we have strong back-
ground information concerning the component lifetimes and the repair times.
Then as a simplification of the uncertainty assessments, we could judge all Tim

and Rim to be independent and use the same distribution Fi for all lifetimes
and the same distribution Gi for all repair times of component i. This was done
in Section 3.2.2. It is a rather strong simplification; we ignore learning when
conditioned on the values of some of the lifetimes and repair times. But as
discussed in the Poisson example, in some cases the background information is
such that we could justify the use of independence. Suppose for example that
we use exponentially distributed lifetimes and fixed repair times. Then we can
argue, along the same lines as for the Poisson example, p. 81, that the Poisson
process is reasonable to use when considering operational time (we ignore the
downtimes), with the parameter λ, the expected number of failures per unit time,
given by the observed mean. In the general case we would use a full Bayesian
analysis.

Now, how should we perform the full Bayesian analysis? We first establish a
class of probability distributions for the lifetimes and repair times. To simplify,
suppose that we use fixed repair times and exponentially distributed lifetimes
with parameter λi . Then if Y denotes the performance measure being studied,
we can write

P (Y ≤ y) =
∫

P (Y ≤ y|λ) dH(λ),

where λ is the vector of the λi and H is the prior distribution of λ. Given
λ, the distribution of Y is found by using that the lifetimes are independent
with exponential distributions having parameters λi ; we are back to the inde-
pendent case. So it remains to establish the prior distribution H . Refer to
Section 4.3.4, p. 82. If we include uncertainty related to repair times and use
for example a Weibull distribution to describe the lifetimes, the analysis will be
similar, but more complicated when it comes to the specification of the prior
distribution.

4.4.3 Reliability Analysis

Traditional reliability analysis

We use the standard reliability nomenclature introduced in Section 2.1.3. As
a simple example, let us consider a parallel system of two components. The
state of the system, the model of the world, is given by the monotone structure
function

� = �(X) = 1 − (1 − X1)(1 − X2),
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where X = (X1, X2), is the vector of binary component states. The task is to
determine our unreliability P (X1 = 0, X2 = 0).

Now, probability calculus gives in general

P (X1 = 0, X2 = 0) = P (X2 = 0|X1 = 0)P (X1 = 0),

and if we judge X1 and X2 to be independent, we have

P (X1 = 0, X2 = 0) = P (X2 = 0)P (X1 = 0).

Thus, by specifying the probabilities P (X1 = 0) and P (X2 = 0|X1 = 0), we
arrive at the unreliability. The marginal probability P (X1 = 0) is often rather
easy to specify as we have performance data for the components, but it is more
difficult to specify the conditional probability P (X2 = 0|X1 = 0) as we seldom
have available data for this conditional situation. So what do we do then? Well,
we can make a direct assignment of the probability expressing uncertainty about
X2 = 0 given X1 = 0, but in most cases it would be more attractive to model
the dependency. One way of doing this is to identify the source causing the
dependency – the common cause – and specify the proportion of failures due to
this common cause. Let X = 0 denote the event that this common cause occurs.
Then we obtain

P (X1 = 0, X2 = 0) = P (X1 = 0, X2 = 0|X = 0)P (X = 0)

+ P (X1 = 0, X2 = 0|X �= 0)P (X �= 0)

≈ 1 × P (X = 0) + P (X2 = 0)P (X1 = 0)P (X �= 0),

and we are back to the independent case. Note that when assigning P (Xi =
0) in the above equation we should reflect that these probabilities are in fact
conditional on the non-occurrence of the common cause. We notice that this
example is analogous to the introduction of the X in the cost risk analysis
example.

Now, suppose that the components are of the same type, for example two
similar machines. We have sampled these two machines from a huge stock of
similar machines. If we have strong background information, we would put
P (X2 = 0|X1 = 0) = P (X2 = 0), i.e. judge X1 = 0 and X2 = 0 independent,
as the information that X1 = 0 would not add much information relative to the
information already available.

Next, suppose that we have no information whatsoever about the performance
of this type of machine and would like to assign a probability for the system to
be functioning at a specific point in time. What would then be our unreliability
P (X1 = 0, X2 = 0)?

As we have no knowledge about the performance of this type of machine,
we would assign a failure probability of 0.5 for a machine, i.e. P (X1 = 0) =
P (X2 = 0) = 0.5. There should be no discussion about this. If we judge X1 and
X2 independent, we are through, as that would give a system unreliability of
0.5×0.5 = 0.25. But given X1 = 0, we should change (increase) our probability
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of X2 = 0 as we have received information about the performance of this type
of machine. How should we incorporate this in our analysis?

Let p be the proportion of machines that are not functioning, out of the large
population of similar machines. We note that p is an observable quantity. If
we have no information about the performance of this type of machine, we
could specify a uniform prior distribution over the interval [0, 1] to express
our uncertainty about the value of p. If we knew the value of p, we would
assign a probability of component i not functioning equal to p, and judge the
components independent. Thus we have

P (X1 = 0, X2 = 0) =
∫ 1

0
(p2 × 1) dp = 1

3
. (4.9)

We see that the unreliability of the system is 1/3, which is higher than 1/4
obtained by judging X1 and X2 to be independent.

Although this is a rather theoretical case – we are seldom in a situation with no
information – it is illustrative, showing the importance of precise understanding
of information, observable quantities, uncertainties and probabilities.

Now, suppose that the machines we are studying are in a specific operational
and maintenance environment, such that we cannot refer to a population of
similar machines. We just have a few relevant observable quantities, including
X1 and X2. How should we then proceed?

With no information, we would use equation (4.9). But the interpretation is
different, as we have no population of similar machines to refer to. We do not
introduce fictional populations and quantities (parameters). We consider different
values of p for describing our uncertainty about the occurrence of Xi = 0. The
confidence we have in p for being able to predict the Xi is reflected by a uniform
distribution. For example, specifying p = 0.1 means that we would be fairly
sure that no machine failures occur. If p = 0.6, we would predict one machine
failure out of the two. The confidence we have in the various p being able to
predict the number of Xi is reflected by the uniform distribution.

Using a beta prior distribution with parameters α and β, the resulting predic-
tive distribution of Y , the number of components functioning, i.e. Y = X1 +X2,
has a beta-binomial distribution with parameters (2, α, β). Thus we may specify
a prior beta distribution and then derive the predictive distribution, or we could
make a direct assignment of the parameters of the beta-binomial distribution.
This latter approach means a stronger focus on the observable quantities Xi and
Y , but would probably be more difficult to carry out in practice.

To determine Xi it may in some cases be appropriate to relate the functioning
or not functioning to a lifetime Ti , such that Xi = 1 if Ti > t , where t is the
time of interest. Then we may specify our uncertainty related to the value of
Xi by specifying a probability distribution for Ti , for example an exponential
distribution 1 − e−λi t , where λi is the failure rate of the component, given by
λi = 1/ETi . This distribution expresses our uncertainty about the value of Ti .
See Section 4.4.2 for a discussion of how to use and interpret such a class of
distribution functions.
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A sensitivity analysis can be used in this setting by changing the input prob-
abilities, in most cases to the extremes, meaning that we compute system reli-
ability given that component i has zero reliability. In this way we identify the
importance of the component reliability and the improvement potential related
to improvement of this component. An alternative approach that is also used for
importance identification is to look for the effect of small changes: How quickly
does the system reliability index change when the input probability changes?
The measure is specified by taking the partial derivative of the probability index
with respect to the probability; it is known as Birnbaum’s measure.

Structural reliability analysis

Let us reconsider the load strength example in Section 2.1.3, where the limit
state function is given by Y = g(X) = X1 − X2. Here X1 represents a strength
measurement of the system and X2 represents a load measurement. Thus g is
the model and by expressing uncertainties of (X1, X2) using a density function
f , system reliability can be expressed as

P (Y < 0) =
∫

{x : g(x)<0}
f (x) dx.

One such distribution f could be the multivariate (bivariate) normal distribution
with parameters µi, σ 2

i and ρ. Suppose we have strong background information
about the values of Xi , for example corresponding to 20 observations xij that are
all considered relevant for Xi . Then we may use fixed values of the parameters
µi, σ 2

i and ρ.
Now suppose that we do not have such background information and we

would like to update our predictions and uncertainty assessments when new
data become available. Then we would adopt the full Bayesian procedure with
specification of a prior distribution on the parameters µi, σ 2

i and ρ. Mathe-
matically this leads to the same formulas as used in the classical approach with
uncertainty analysis; see equations (2.5) and (2.6). But there are some important
differences.

There exist no true values of the parameters, unless they are observable
quantities. In that case the prior (and posterior) distribution is an uncertainty
distribution. In the general case, the prior (and posterior) distribution expresses
our confidence in the parameter values being able to predict the Xi ; see the
discussion above on page 82.

It is not relevant to speak about modelling uncertainty, but the ‘goodness’
of the models to represent the world. The model is a part of the background
information, and is reported along with the assigned probabilities. Let us discuss
this a little further using the load strength model as an illustration. Let Y be
the true rest capacity of the system at the time of interest, when taking into
account the load. Using the model g(X) = X1 − X2, we have put Y = g(X).
This means a simplification, and in SRA it is common to introduce an error
term X0, say, such that we can write Y = X0(X1 − X2). This gives a better
model, a more accurate description of the world. As a simplification, we judge
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X0 and X1 − X2 to be independent; our uncertainty about the ratio between the
true capacity and the measured capacity X0 = Y/(X1 − X2) is not influenced
by the value of the capacity indicator X1 − X2. This simplification should be
supported by observations of the true capacity and the measured capacity for
comparable situations. Thus by specifying uncertainty distributions for X0 and
X1 − X2, we arrive at an uncertainty distribution of Y . If we use the means as
predictors, the true capacity is predicted by EX0 ·(EX1 −EX2). By introducing
X0, the uncertainty in Y increases. In SRA applications the explanation of this
is model uncertainty. In our setting, there is no such thing as model uncertainty.
If we use the model X1 − X2 to express uncertainty about the true capacity
Y , this means that we have conditioned on the use of this model. If we find
that the model X1 − X2 is not sufficiently accurate for its purpose, we should
improve the model. Using the equation Y = X0(X1 − X2) gives an accurate
model, but to express uncertainties in this case, we need to simplify and use
independence, which is a rather strong simplification. In this particular situation
it may be acceptable, but in other cases it would not be acceptable. Furthermore,
often it may be difficult to find relevant data to support the uncertainty analysis
of X0. We perform the analysis as we have little information about Y . If we had
a strong database for Y , we could make a direct assignment of the distribution
of Y , and there would be no need for the modelling.

4.5 DISCUSSION AND CONCLUSIONS

Reliability of probabilities has been thoroughly discussed in the literature. Many
researchers link probability assessment and utility; they find it hard to devise a
reliable form of measurement for uncertainty assessments that is separate from
utility considerations. We disagree. We have to acknowledge that the standard
measurement criteria cannot be met. Coherence applies, that is all. Linking
probability with utility does not solve the problem, it just disturbs and confuses
the assessor. In most cases we prefer to see the uncertainty assessments as
a separate process providing a basis for the decision-making, see Chapter 5.
Scoring rules and empirical control in general aim to train assessors and compare
them if it is possible to obtain relevant feedback, as in meteorology where one
is concerned about repetitions of a single type of event, like ‘rain tomorrow’.
In most other areas, however, this feedback is not available.

Scoring rules are also motivated by the desire to provide incentives for the
predictors to honestly report their probabilities; see Cooke (1991), de Finetti
(1962: 359) and Winkler (1996b).

If two persons have the same background information, would that mean that
they have the same uncertainties, and therefore the same probabilities? No, in
our setting ‘the probability’ does not exist – probability is an expression by a
person based on some knowledge about an observable quantity. Often we would
experience similar numbers if the knowledge is about the same, but there are no
formal constraints on the framework implying that my judgement should be the
same as yours if we have the same knowledge. A probability is a judgement,
and there is no strict mechanical procedure producing one correct value.
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Assessing a probability P (Y ≤ y) (given the background information) directly
can be viewed as a basic procedure of the Bayesian paradigm, see Lindley (2000:
304). According to the standard Bayesian thinking, there is however a better way
to proceed, to study the mechanisms that operate, linking Y and other states of
the world. This means the introduction of a probability model with parameters,
say θ , such that we have

P (Y ≤ y) =
∫

P (Y ≤ y|θ) dH(θ);

see equation (4.1) p. 72. Yes, this is a fundamental approach of the Bayesian think-
ing, and of ours, but care should be taken when introducing these type of models,
as discussed in this chapter, over when to introduce them and how to interpret
the various elements. Basically, there are two ways of applying this type of mod-
elling: by restricting θ to observable quantities, or allowing fictional parameters
related to thought-constructed long-run behaviour, expressed as parameters of
probability distribution classes. In our framework we have highlighted the former
way of thinking; see the examples in this chapter and Chapter 3. In the health risk
example we introduced the state of the world θ expressing the health condition of
the patient, and in the accident risk example we introduced an event tree model
with states of the world given by the number of leakages X, and the events A and
B. Using such modelling is often a better way to proceed than direct assignments of
P (Y ≤ y) – it is easier to perform coherent judgements and hopefully we obtain
better predictions. But we have avoided the introduction of the latter category
of modelling, based on fictional parameters. We do not introduce an uncertainty
distribution over the limiting proportion of events of type A, for example, and
assess uncertainties of such fictional quantities. It does not contribute to a better
understanding of the processes generating the data – rather it means the creation
of uncertainty, which we need not consider.

We have tried to advise on the modelling process; the theory is available, but
how should we use it in a practical context? Simplifications and approximations
are needed.

Our basic idea that there is only one type of uncertainty is sometimes ques-
tioned. It is felt that some probabilities are easy to assign and feel sure about,
others are vague and it is doubtful that the single number means anything.
Should not the vagueness be specified? To provide a basis for the reply, let us
look at an example. A coin is thrown and the event A denotes that it shows
heads. In another example, we test a drug and the event B denotes that the drug
is better than the old with a particular pair of patients (the meaning of ‘better’
is well defined and is not an issue here). In the absence of any information
about the type of coin, we would assign a probability of A equal to 1/2, and this
probability is firm in that we would almost all be happy with it. With the drug
test we would have an open mind about its effectiveness and similarly ascribe a
probability of B equal to 1/2. This latter value of 1/2 is vague and one does not
feel so sure about it as with the coin. It seems that we have a firm, objective
probability of 1/2 and one vague, subjective probability of 1/2.

The reply puts focus on the background information of the probabilities and
the available knowledge to be used as a basis for assessing the uncertainties.
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We know more about the process leading to a head in coin tossing than in the
drug example. If we consider 1000 throws, we would be quite sure that the
proportion of heads, which we denote p, would be close to 1/2. Most people
would assign very low probabilities for observing say less than 100 heads. In
the drug example we would, when considering 1000 pairs of patients, have
less information about the result, i.e. q, representing the portion of the 1000
pairs of patients benefiting more from the new drug than the old. The new drug
could be a complete flop and the old cure is vastly to be preferred, meaning
that we would assign a rather high probability also to low values of q. Both
low and high values of q are much more probable than low and high val-
ues of p, simply because we know that coins could not easily be that biased,
whereas drugs could well be quite different. These different probabilities reflect
vagueness and firmness that are respectively associated in our minds with the
original probabilities. In the coin example, the background information is so
strong that observations would not easily change our assessment, whereas in the
drug example, medical evidence would probably lead us to believe in the effec-
tiveness of the new drug. This can be shown formally using Bayes’ theorem for
updating probabilities.

This example demonstrates the importance of paying attention to appropri-
ate performance measures. In the above example it is not A and B, but p

and q. When evaluating probabilities in a decision-making context, we always
need to address the background information, as it provides a basis for the
evaluation.

Many people are alarmed, in particular in scientific matters, by using proba-
bilities as a subjective measure of uncertainty as we do. The approach is seen to
be in conflict with science, which searches for objective statements. Our view
is that complete knowledge about the world does not exist in most cases, and
we provide a tool for dealing with these uncertainties based on coherence. If
sufficient data become available, consensus may be achieved, but not necessarily
as there are always subjective elements involved in the assessment process. The
objective truth when facing future performance does not exist.

BIBLIOGRAPHIC NOTES

The three types of criteria considered in Section 4.1 – pragmatic, semantic (cal-
ibration) and syntactic – are discussed in Lindley et al. (1979). Calibration and
the use of scoring rules are reviewed and discussed by Cooke (1991), Winkler
(1996b), Lindley (1982), among others. Some key references to the theory on
heuristics are Cooke (1991), Kahneman et al. (1982), Otway and Winterfeldt
(1992), Tversky and Kahnemann (1974) and Kahneman et al. (1982).

For other papers on the ‘goodness’ of probability assignments, see Berg
Andersen et al. (1997) and Winkler (1968, 1986).

Section 4.2 is based on the ideas of the predictive paradigm presented in
Chapter 3, and we refer to Apeland et al. (2002) and Nilsen and Aven (2003).
Modelling uncertainty is discussed by Dewooght (1998), Draper (1995), Zio and
Apostolakis (1996) and Nilsen and Aven (2003).
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The discussion of probability assignments in Sections 4.3.1 to 4.3.3 is based
on Hoffman and Kaplan (1999). We also refer to Apeland et al. (2002). Much
literature exists on the Bayesian approach. Good reference books and papers
are Lindley (1978, 1985, 2000), Bedford and Cooke (2001), Barlow (1998),
Bernardo and Smith (1994), Singpurwalla (1988, 2002) and Singpurwalla and
Wilson (1999). The health risk example of Section 4.3.4 is taken from Natvig
(1997). The accident risk example is based on Aven (2001).

As an alternative to the presented approach for establishing the Poisson
approximation, we could study the predictive distribution of X in a full Bayesian
analysis, assuming that x1, x2, . . . , x5 are observations coming from a Poisson
distribution, given the mean λ and using a suitable (e.g. non-informative) prior
distribution on λ. Restricting attention to observable quantities only, a proce-
dure specified in Barlow (1998: Ch. 3) can be used. This procedure, in which the
multinomial distribution is used to establish the Poisson distribution, is based
on exact calculation of the conditional probability distribution of the number
of events in sub-intervals, given the observed number of events for the whole
interval.

Note that for our direct assignment procedure using the k time periods, the
observations x1, x2, . . . , x5 are considered a part of the background information,
meaning that this procedure does not involve any modelling of these data. In con-
trast, the more standard Bayesian approach requires that we model x1, x2, . . . , x5
as observations coming from a Poisson distribution, given the mean λ.

Overviews of the problem of specifying prior distributions are given by
Singpurwalla and Wilson (1999) and Bedford and Cooke (2001). See also Lind-
ley (1978, 2000), Bernardo and Smith (1994) and Vose (2000).

The reliability analysis of two components in a Bayesian setting is a classical
illustration of the importance of information when specifying probabilities. It is
discussed by Bedford and Cooke (2001), among others.

The question of whether two persons with the same background information
would assign the same probabilities, is discussed in Lindley (2000: 302). The
discussion on the vagueness and firmness of probabilities is based on Lindley
(1985: 112).

The importance of making a sharp distinction between uncertainty assessment
and utility has been emphasized by many researchers; see for example Good
(1950, 1983). The point they are making is that subjective probability assign-
ments need not necessarily always reveal themselves through choice. Probability
expresses uncertainty, and usually through intervals of upper and lower prob-
abilities rather than single numerical values. Intervals may be useful in some
situations for expressing subjective probabilities. For example, when the prob-
abilities are very low, or during an early stage of an assignment process, we
consider a set of probabilities to express our uncertainty. But as a general prin-
ciple we search for single numerical values. That means a drive for information
and knowledge, and the right focus, namely our uncertainty about the observable
quantities, and not the lack of ability to express this uncertainty.
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How to Use Risk Analysis
to Support Decision-Making

This chapter considers how to use risk analysis in a decision-making context
when adopting the predictive approach to risk and uncertainty presented in
Chapters 3 and 4. The purpose of risk analysis is to support decision-making, not
to produce numbers. It is from this starting point we have established our predic-
tive approach to risk and uncertainty, and in this chapter we will see how we can
fit this framework into a more general decision-making setting. If the purpose of
risk analysis is to support decision-making, that is, help the decision-maker to
make decisions, we need some idea of what a good decision is. Decision-making
is of course not about making decisions, but about making good decisions. There-
fore, we first, in Section 5.1 address the fundamental issue of what is a good
decision. There is no simple answer and there are several different views. In
this chapter we review the issue and give some guidelines on how we should
plan for obtaining good decisions. It discusses the link between risk analyses
and formal decision analyses, such as cost-benefit analyses and Bayesian deci-
sion analyses. We see the need for a structure for how to apply risk analysis in
a decision-making context and we establish some principles that may be use-
ful in practice. Several examples in Section 5.2 discuss the implementation of
these principles. Two classification schemes for risk problems are presented in
Section 5.3. These schemes are used to discuss the need for risk and uncertainty
analyses, formal decision analyses as well as risk management policies.

The presentation is prescriptive in that it aims to describe good principles
and methods that should be used to select a course of action in practice. It is
closely linked to normative approaches, such as the expected utility paradigm,
which is a norm or a standard on how a person ought to behave based on a
logical study of choice between decisions within a mathematical framework.
The exposition is not descriptive in the sense of describing how people actually
make decisions. However, when establishing the principles and methods, we
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have of course examined descriptive theory and results reported in the literature
and used our experience from real life. The aim is to establish a structure for
decision-making that produces good decisions, or improved decisions, defined
in a suitable way, based on a realistic view of how people can act in practice.

This book discusses the use of risk analysis as a tool for decision-making, and
it touches on aspects of risk treatment, risk acceptance and risk communication.
Risk treatment is the process and implementation of measures to modify risk,
including measures to avoid, reduce (optimize), transfer or retain risk. Risk
transfer means sharing with another party the benefit or loss associated with
a risk. It is typically effected through insurance. It is, however, beyond the
scope of this book to discuss in detail all aspects of risk management, i.e. all
coordinated activities to direct and control an organization with regard to risk.
The many challenges for an organization related to defining objectives, to avoid,
reduce, transfer and retain risks we just briefly look into. The various disciplines
and application areas need to define their own risk management system, tailored
to the specific situations of interest.

5.1 WHAT IS A GOOD DECISION?

Consider someone contemplating an investment in a stock of 1 million dollars
for a period of one year. At the end of that period, the stock may be worth more
or less than the original sum spent on purchasing it. If the person does not invest
in this stock, he will leave the money in the bank. So the decision alternatives
are invest or leave in the bank. Suppose that at the end of the one-year period
the stock has a value of (1 + X) million dollars, and in the case the person
leaves the money in the bank, 1 + Y . Now what would be a good decision?

Well, the immediate, natural answer would be the alternative that gives the
best outcome. In this case we compare the bank interest rate Y and the increase
(decrease) in the stock value, X. At the end of the one-year period we can
observe which decision is the best by simply looking at the outcomes, and
money provides the obvious scale of preference.

In most decision-making situations, however, we do not have a simple scale
of preference, and we are not able to observe the outcomes. If we compare
alternative concepts for the development of an offshore oil and gas field, how
do we measure the goodness of the outcomes? A number of factors are relevant,
including costs, environmental and safety issues, reputation, and political issues
such as employment. We refer to these factors as the attributes of the problem.
We would not be able to make observations for more than one of the alternatives,
as the decision will exclude all but one. For the chosen alternative we can see
how it performs, but changes may have been implemented so that the alternative
in operation is significantly different from the one defined at the decision point.

We see that using the outcomes as a basis for judging the goodness of a deci-
sion is problematic; it cannot be done at all in most cases. Yet this outcome-
centred thinking is important, in our view, as it makes us have a clear focus
on what the objectives and preferences are. The problem is, however, that this
thinking does not help us very much in making good decisions. The decisions are
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made prior to observing the outcomes. What is a good decision when contem-
plating various alternatives? Factors such as costs, safety, reputation, politics,
etc., are still relevant, but we do not know for sure the possible outcomes. We
need to make decisions under uncertainty, and the challenge is to establish some
guidelines on how to do this such that we make a good decision.

5.1.1 Features of a Decision-Making Model

There are two basic ways of thinking to reach a good decision:

(i) Establish an optimization model of the decision-making process and choose
the alternative which maximizes (minimizes) some specified criteria.

(ii) See decision-making as a process with formal risk and decision analyses to
provide decision support, followed by an informal managerial judgement
and review process resulting in a decision.

This book adopts approach (ii) as an overall structure, meaning that we see
decision analysis strictly as an aid for decisions. This does not mean that we
cannot see examples where approach (i) is appropriate, but considering varying
degrees of the managerial judgement and review process, we may think of
approach (i) as a special case of approach (ii). Regardless of the approach,
we will not be able to avoid the fact that some decisions will be followed by
negative outcomes. But by following a decision-making process in line with the
principles in (ii), we would expect that a collective of decisions will produce
overall positive outcomes in relation to the objectives, when seen together.

Figure 5.1 shows the main features of this way of thinking about decision-
making. The starting point is a decision problem and often this is formulated
as a task of choosing among a set of decision alternatives. Let us use the alter-
native concepts for the development of a gas and oil field as an example. At
this stage of the development project, the management has at hand a number of
possible alternatives. The problem is to identify one or two for further detailing
and optimization. Much has already been decided when a set of alternatives to
be further evaluated has been defined. Suppose we decided at an early stage
to adopt a well-proven technology. Then we would exclude cases that require
new technology. In a practical setting, the number of alternatives to be evalu-
ated needs to be manageable, therefore many alternatives could be excluded at
an early stage when uncertainties are large. Further studies might have shown
that these alternatives are favourable compared to those being evaluated. The
set of alternatives is typically defined through an integrated process involv-
ing experts and managers. The experts would often specify an initial list as a
basis for discussion. The development of alternatives would largely be driven
by the boundary conditions of the decision problem, as judged by the experts
and management. The boundary conditions include stakeholders’ values, for
example formulated as organizational goals, criteria, standards and preferences,
as well as views expressed by politicians, environmentalists and others. Experts
and managers have a background, values, preferences, etc., that could signif-
icantly influence the selection process of alternatives. We have to appreciate
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Figure 5.1 Basic structure of the decision-making process

the subjective element in this creative part of decision-making, establishing an
appropriate set of alternatives. We know that people have personal agendas, but
by ensuring that the process involves a sufficiently broad group of personnel,
the generated alternatives should provide the necessary basis for identifying a
good alternative.

5.1.2 Decision-Support Tools

Now, suppose we have given a set of decision alternatives. Before manage-
ment makes a decision, it needs some support as a basis for its decision. It
needs to know more about the consequences of choosing one alternative instead
of another. Risk analysis provides such decision support. It gives predictions of
the performance of the various alternatives with related uncertainty assessments.
This information is then linked to other attribute assessments. Consider again
the oil and gas development project presented earlier. The idea is to analyse
and evaluate factors such as investment costs, operational costs, market deliv-
eries and regularity, technology, safety and environmental issues, and political
aspects. For costs, market deliveries, safety and environmental issues, quanti-
tative analyses are conducted in line with our predictive framework. For other
important aspects such as the political, only qualitative analyses and evaluations
would normally be performed. The total of these analyses and evaluations is
used as a decision basis. We refer to this as a multi-attribute analysis. Such
an analysis provides structuring and overview of the problem – it provides use-
ful insights. Before a decision is made, management reviews and evaluates the
decision-support information, and relates it to values formulated as goals, criteria
and preferences. There is no strict procedure on how to perform this managerial
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process. It is an individual process based on the constraints of the structure in
Figure 5.1. This structure gives a prescription of how to conduct the managerial
process in practice, and in this sense the process is documented and traceable.
It is a prescription, but it is not very detailed and specific. Note that the struc-
ture model given by Figure 5.1 does not show all the feedback processes, for
example the managerial review and judgement may result in modified analyses.

The managerial process means trade-offs of a number of attributes. These
trade-offs could be made more or less explicit. Let us look at a simple example.

Two alternatives are compared, A and B. Associated with alternative A there
is a gain of 0.2 (i.e. a cost −0.2) and associated with alternative B there is a
gain of 0.1 (i.e. a cost −0.1). We may think of one cost unit as 1 million dollars.
The assigned probabilities of a fatality for the two alternatives are 2/100 and
1/100, respectively. These probabilities are associated with a time period of 10
years, say. We assume for the sake of simplicity that there are no other factors to
consider. What alternative should be chosen? How should we balance cost and
safety? In general it is not possible to answer this question. Balancing cost and
safety is a management task, which is based on goals, criteria and preferences,
but in most cases there is no direct line from these to a specific decision.
Alternative A means a reduced cost compared to B, but a higher probability of
a fatality. What is the value of a probability of a fatality of 1/100 compared to
2/100? Again we cannot give a general answer, but we could compute an index,
a cost-effectiveness index, expressing cost per expected life saved, which gives
a reference and a link between the two dimensions cost and safety. We see that
the index in this case is 0.1/[(2/100) − (1/100)], which is equal to 10. The
reasoning is as follows. To go from alternative A to alternative B it would cost
0.1, and the expected number of saved lives would be 2/100 − 1/100. Then if
we find an index of 10 (million dollars) as too high to be justified, the analysis
would rank alternative A before alternative B.

A number of studies have been conducted to measure implicit values of a
statistical life. The costs differ dramatically, from net savings to costs of nearly
100 billion dollars. In industry it is common to use a reference value in the area
1 − 20 million dollars.

Another way of performing this type of analysis is to express a cost value for
a statistical life, that is, the expected cost per expected saved life. Suppose that
we assign a value of 2 to such a cost. Then the total statistical expected ‘gain’
associated with alternative A would be

0.2 − 2 × 2/100 = 0.16,

whereas for alternative B, the corresponding value would be

0.1 − 2 × 1/100 = 0.08.

The conclusion would thus be that alternative A is preferable as the expected
gain is 0.16 compared to a gain of 0.08 for alternative B. In practice we need
to take into account time and the discounting of cash flow, but the above cal-
culations show the main principles of this way of balancing cost and benefit. It
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is common to refer to this type of analysis as a cost-benefit analysis. Note that
we use a decision aid interpretation of the cost-benefit analysis, which means
that the analysis is just a tool for providing insight before making the decision.
There are no objective values of the analysis. This is in contrast to one com-
mon interpretation of cost-benefit analysis, searching for objective prices and
probabilities; see the discussion below and the bibliographic notes.

Figure 5.2 shows the structure of the decision-making process when we use
a cost-benefit analysis as described above. The starting point is the world and
observable quantities Y , representing for example costs or number of fatalities.
Risk and uncertainty analyses are conducted producing probabilities, denoted
P (Y ). In our example the P values for the number of fatalities are given by
1/100 and 1/200. Based on these analyses, a cost-benefit analysis is carried
out resulting in performance measures v(P ), for example expected cost per
expected saved life, or expected NPV. These measures, which are based on the
probabilistic quantities established in the uncertainty assessments, are reviewed
and a decision is made.

In this book we focus on tools for decision-making, and cost-benefit analysis
as described above is just an example of such a tool. It provides input to the
decision-maker, not the decision. By presenting the results of the analysis as
a function of the value of a statistical life, we can demonstrate the sensitiv-
ity of the analysis conclusions. We should acknowledge that decisions need to
be based on managerial review and judgement. The decision-support analyses
need to be evaluated in light of the premises, assumptions and limitations of
these analyses. The analyses are based on background information that must be
reviewed together with the results of the analyses. Considerations need to be
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given to factors such as:

• the decision alternatives being analysed;
• the performance measures analysed;
• the fact that the results of the analyses represent judgements;
• the difficulty of assessing values for costs and benefit, and uncertainties;
• the fact that the analysis results apply to models, i.e. simplifications of the

world, and not the world itself.

The weight that the decision-maker will put on the results of the analyses
depends on the confidence he has in the analyses and the analysts. Here are
some important issues: Who are the analysts? What competence do they have?
What methods and models do they use? What is their information basis in gen-
eral? What quality assurance procedures have they adopted in the planning and
execution of the analyses? Are the analysts influenced by some motivational
aspects? These are the same types of issue as we discussed when evaluating the
goodness of probability assignments, see Section 4.1.3.

In our setting the analysis provides decision support, not hard recommen-
dations. Thus we may for example consider different values of a statistical
life, to get insight into the decision. Searching for a correct objective num-
ber is meaningless, as no such number exists; the statistical life used in the
analysis is a value that represents an attitude to risk and uncertainties and that
attitude may vary and depend on the context. When using a one-dimensional
scale, uncertainties of observable quantities are mixed with value statements
about how to weigh the different assessed uncertainties. Then we cannot expect
to obtain consensus about the recommendations provided by the cost-benefit
analysis as there are always different opinions about how to look at risk in a
society. Adopting a traditional cost-benefit analysis, an alternative with a low
expected cost is preferred to an alternative with a rather high value, even if
the latter alternative would mean that we can ignore a probability of a serious
hazard, whereas this cannot be done in the former case. In traditional cost-
benefit analysis it is also common to discount the values of statistical lives,
and often this means that negligible weight is put on consequences affecting
future generations. It is of paramount importance that the cost-benefit analyses
are reviewed and evaluated, as we cannot replace difficult ethical and political
deliberations with a mathematical one-dimensional formula, integrating complex
value judgements.

Another approach for performing the trade-offs between the attributes is to
carry out a Bayesian decision analysis.

Formal Bayesian decision analysis: maximization of expected utility

The cost-benefit analysis approach requires balancing various assessed uncer-
tainties – costs and accident risk in our example – not costs and number of
fatalities, as required when using a Bayesian utility approach. In our example
the possible consequences for the two alternatives are (2, X) and (1, X), where
the first component of (·, ·) represents the benefit and X represents the number
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of fatalities, which is either 1 or 0. Now, what is the utility value of each of
these consequences? Well, the best alternative would obviously be (2, 0), so let
us give this consequence the utility value 1. The worst consequence would be
(1, 1), so let us give this consequence the utility value 0. It remains to assign
utility values to the consequences (2, 1) and (1, 0). Consider balls in an urn with
u being the proportion of balls that are white. Let a ball be drawn at random;
if the ball is white, the consequence (2, 0) results, otherwise the consequence
is (1, 1). We refer to this lottery as ‘(2, 0) with a chance of u’. How does
‘(2, 0) with a chance of u’ compare to achieving the consequences (1, 0) with
certainty? If u = 1 it is clearly better than (1, 0), if u = 0 it is worse. If u

increases, the gamble gets better. Hence there must be a value of u such that
you are indifferent between ‘(2, 0) with a chance of u’ and a certain (1, 0),
call this number u0. Were u > u0 the urn gamble would improve and be better
than (1, 0); with u < u0 it would be worse. This value u0 is the utility value
of the consequence (1, 0). Similarly, we assign a value to (2, 1), say u1. As a
numerical example we may think of u0 = 90/100 and u1 = 1/10, reflecting
that we consider a life to have a high value relative to the gain difference. Now,
according to the utility-based approach, a decision maximizing the expected
utility should be chosen.

For this simple example, we see that the expected utility for alternative A is
equal to

1 × P (X = 0) + u1 × P (X = 1) = 1.0
98

100
+ 0.1

2

100
= 0.982,

whereas for alternative B we have

u0 × P (X = 0) + 0 × P (X = 1) = 0.9
99

100
+ 0

1

100
= 0.891.

The conclusion is that alternative A is to be preferred. Observe that the expected
values computed above are in fact equal to the probability of obtaining the best
consequence, namely a gain of two and no fatalities. To see this, note that for
alternative A, the consequence (2, 0) can be obtained in two ways, either if
X = 0, or if X = 1 and we draw a white ball in the lottery. Thus by the law
of total probability, the desired results follow for alternative A. Analogously we
establish the result for alternative B.

We conclude that maximizing the expected gain would produce the highest
probability of the consequence (2, 0) and as the alternative is the worst, (1, 1),
we have established that maximizing the expected utility value gives the best
decision. This is an important result. Based on requirements of consistent (coher-
ent) comparisons for events and for consequences, we are led to the inevitability
of using the expected utility as a criterion for choosing decisions among a set
of alternatives.

Figure 5.3 shows the structure of the decision-making process when utilities
are used. As in the cost-benefit case, the starting point is the world, repre-
sented by Y . Uncertainty assessments are conducted, i.e. risk analysis resulting
in probabilities P (Y ), and utilities u(Y ) are elicited. It is a key element of this
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Decision
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and judgement

Optimization
Probability calculus

The World 
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Eu(Y )

u(Y ) P(Y )

Y

Figure 5.3 Basic structure of the decision-making process when utilities are used

approach that there is a sharp separation between uncertainty assessments and
value judgements expressed by the utilities. Combining P (Y ) and u(Y ), we
arrive at the expected value, Eu(Y ), and maximization of this measure gives
the optimal decision alternative within the given framework. The decision is
then made based on managerial review and judgement.

Again, the analysis would give decision support, not the decision. Manage-
rial review and judgement are needed to produce the decision. The analysis
needs to be evaluated in light of the premises, assumptions and limitations
discussed earlier for the cost-benefit analyses. The expected utility approach
provides knowledge and insight into the decision-making process, through the
assessment process and by the use of sensitivity analyses, but it would be a
management failure not to see beyond the mathematical optimization.

Furthermore, in practice, decisions need to be taken by a group of people with
their own array of probabilities and utilities, but the expected utility approach
is only valid for a single decision-maker. No coherent approach exists for the
multiple problem; see the bibliographic notes. If the group can reach consensus
on the judgements, probabilities and utilities, we are back to the single decision-
maker situation. Unfortunately, life is not that simple in many cases – people
have different views and preferences. Reaching a decision, then, is more about
discourse and negotiations than mathematical optimization.

5.1.3 Discussion

We have looked at two approaches for aiding decision-making to balance costs
and benefits: cost-benefit analysis and maximization of expected utility. Now,
which approach should be taken?



104 FOUNDATIONS OF RISK ANALYSIS

The expected utility approach is attractive as it provides recommendations
based on a logical basis. If a person is coherent in his preferences among con-
sequences and his opinions about uncertainty quantities, it can be proved that
the only sensible way for him to proceed is by maximizing expected utility. For
a person to be coherent when speaking about the assessment of uncertainties
of events, the requirement is that he follows the rules of probability. When it
comes to consequences, coherence means that if c1 is preferred to c2, which is
in turn preferred to c3, then c1 is preferred to c3. What we are doing is making
an inference according to a principle of logic, namely that implication should
be transitive. Given the framework in which such maximization is conducted,
this approach provides a strong tool for guiding decision-makers.

Some of the problems with this approach have been discussed already. An
important point when comparing it with cost-benefit analyses as a decision aid,
is that preferences have to be specified for all consequences, which is a difficult
task in practice, and more important, not necessarily something that management
would like to do. Refer to the example above where utilities were established
for cost and loss of life. Specifying a value of a life is required. This value is
related to an arbitrary person in the population, not a specific individual. Note
that in a cost-benefit analysis the value of a statistical life is of interest, which
is defined here as the expected cost relative to the expected saved lives, which
is conceptually not the same as the number in the utility approach. In practice,
however, these numbers could be the same. The point is that the utility approach
requires values (utilities) to be assessed for all consequences Y , whereas for
the cost-benefit approach, the value judgements to be made by the decision-
makers relate to P (Y ), the probability assignments, and not Y . Thus in the
cost-benefit case we assess values in a world constructed by the analysts, not
the real world as in the utility-based approach. Usually it is much easier to
relate to this constructed world, as we can employ appropriate summarizing
performance measures. The simple example in Section 5.1.2 demonstrates this.

A cost-benefit analysis requires us to specify the value of a statistical life, not
the value of a life. And that is not the same. We should acknowledge that a life
has in principle an infinite value; there should be no amount of money that a
person would find sufficient to compensate the loss of his son or daughter, and
society (or a company) should not accept a loss of a life with certainty to gain a
certain amount of money. On the other hand, a statistical life has a finite value,
reflecting that decisions need to be taken that balance benefits and risks for loss
of life. The value of a statistical life is a decision-support tool. Now we are to
take a decision influencing the future; then by assigning a value to a statistical
life, it is possible to obtain an appropriate balance between benefits and risks.
When the future arrives, we would focus on the value of life and not the value
of a statistical life. For example, if a person becomes ill, the money used to help
this person would not be determined by reference to the value of a statistical
life, but to the value of the person’s life. For this person and his or her closest
family it is infinite, but for someone else, it is bounded. What we refer to here is
the value of loss that we are willing to accept, given that this benefit is present.
What we are willing to pay, to obtain a benefit, is something else. How much
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should society be willing to pay to save a (statistical) life? In a cost-benefit
analysis, focus is usually on this willingness to pay, rather than willingness to
accept. But this is not an obvious approach as it means a standpoint with respect
to what is the starting point. For example, do the public have a right to a risk-
free life, or does industry have a right to cause a certain amount of risk? In
the former case, the public should be compensated (using willingness to accept
values) by a company wanting to generate risk. In the latter case, the public
should compensate (using willingness to pay values) a company keeping its risk
level below the maximum limit (Bedford and Cooke 2001: 282).

The use of lotteries to produce the utilities is the adequate tool for performing
trade-offs and reflecting risk aversion, but is hard to carry out in practice, in
particular when there are many relevant factors, or attributes, measuring the
goodness of an alternative. However, tools exist to simplify the assessment of
utilities, and one important category is known as multi-attribute utility theory.
We refer to Section 5.2.9.

As we discussed in the previous section, we may alternatively perform a
multi-attribute analysis without any explicit trade-offs. We assess the various
attributes, costs, safety, political aspects, etc., separately and it is a management
task to make a decision balancing the costs and benefits. Would that mean lack
of coherence in decision-making? Yes, it could in some cases. The ideal is not
always attainable. We acknowledge that such a multi-attribute analysis is rather
easy to conduct – it works in practice – but the price may be some loss of
coherency and traceability in the decision-making process. However, we gain
flexibility and in many cases this is of great importance, in particular when the
decision situation involves many parties.

There is also multi-attribute analysis with explicit trade-offs that are not based
on utilities, see Section 5.2.9.

Bayesian decision theory uses the term ‘rationality’ in a technical sense, linked
to a behaviour satisfying certain preference axioms, including the transitive
axiom mentioned above, see Bedford and Cooke (2001); and French and Insua
(2000). We use the concept of rationality in a wider sense, in line with Wat-
son and Buede (1987). If we adopt some rules which our statements or actions
should conform to, we act in a way that is consistent with them – we act ratio-
nally. As there are many ways of defining rules, this means that whether a
behaviour is rational will depend on the rules adopted. We find that the rules of
Bayesian decision theory constitute a sensible set of rules, but it follows from
our definition of rationality that people who do not abide by the percepts of
decision theory are irrational; they may have perfectly sensible rules of their
own which they are following most rationally. Consequently, if you were to
adopt the structure for decision-making presented in this chapter, you would
behave rationally, according to the rules set by that structure.

Again we emphasize that we work in a normative setting, saying how people
should structure their decisions. We know from research that people are not
always rational in the above sense. A decision-maker would in many cases not
seek to optimize and maximize his utility, but he would look for a course of
action that is satisfactory. This idea, often known as bounded rationality, is
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just one of many ways to characterize how people make decisions in practice.
See the bibliographic notes for some relevant literature.

Despite the fact that managers often behave in conflict with goals, criteria and
preferences, we believe that decisions can be improved by a proper structuring
of the decision-making process. Our way of thinking provides some guidance
on this process, it does not describe a detailed procedure, but balances the need
for consistency and flexibility.

A decision, and a decision-making process, may be regarded as good by some
parties, and bad by others. Return to the development of an offshore oil and gas
field. One particular development concept could be considered good for the oil
company, but not so attractive for society as a whole as it could mean a rather
high environmental risk and less activity onshore compared to another devel-
opment alternative. But decisions need to be taken, and proper consideration
needs to be given to all relevant parties. Yet such considerations are not easily
transformed into a mathematical formula and explicit trade-offs. In many cases,
especially when dealing with societal risk problems, we believe that more can
be gained by deliberation, where people exchange views, consider evidence,
negotiate, and attempt to persuade each other. Deliberation that captures part
of the meaning of democracy and contributes to making decisions more legit-
imate, is also a part of our decision framework, although not explicitly shown
in Figure 5.1.

The tools we have discussed for structuring the decision-making process and
providing decision support can also be used for decisions made by a group.
Individuals still have to decide how they will act, even if the context is orga-
nizational politics. Decision analyses, which reflect personal preferences, would
give insights to be used as a basis for further discussion within the group.
Formulating the problem as a decision problem and applying formal decision
analysis as a vehicle for discussion between the interested parties, provides the
participants with a clearer understanding of the issues involved and why differ-
ent members of the group prefer different actions. Instead of trying to establish
consensus on the trade-off weights, the decision implications of different weights
could be traced through. Usually, then, a shared view emerges of what to do
(rather than what the weights ought to be).

There is much more to be said about the decision-making process, but instead
of a general discussion we prefer to illustrate our points through some examples.

5.2 SOME EXAMPLES

5.2.1 Accident Risk

We return to the event tree example in Sections 3.3 and 4.3.4. The analysis group
concluded that risk-reducing measures should be considered as the calculated
risk is rather high. For a ten-year period, a probability of an accident leading to
fatalities is computed to be about 8%. Comparing this figure and the FAR value
of 55 with risk numbers for similar activities, risk analysis results and historical
numbers, the analysis group has a solid basis for its conclusion.
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The next step would be to consider possible risk-reducing measures, including
the relocation of the control room. This measure would be the best option when
it comes to safety for the operators, but it would also be the most expensive
one for the company. An analysis of the cost of relocating the control room
was then undertaken. This analysis predicted a cost of 0.4 million dollars, and
the uncertainties in this prediction were rather small. Thus the cost per expected
saved life is 0.4/0.08 = 5 million dollars. Other risk-reducing measures were
also considered, but their effect was not found to be very good relative to the
cost of implementing them.

Sensitivity analyses were conducted to see the effects of some of the model
assumptions, for example the number of fatalities in each scenario.

Management used the risk analysis as decision support. The safety level for
the operators of the control room had been an issue for a long time, and there
had been strong pressure from labour organizations to implement some risk-
reducing measures. This, together with the clear message from the risk analysis,
convinced management that relocation of the control room was required, despite
the fact that the cost per statistical saved life was quite high.

No risk acceptance (risk tolerability) criterion was used in this analysis. The
principle adopted was that risk should be reduced to a level as low as reasonably
practical (ALARP). That means a type of cost-benefit analysis. If an acceptance
criterion is defined, risk is considered unacceptable if the calculated risk exceeds
a certain level, and risk-reducing measures should be implemented. For most
people that are not experts in risk analysis, the use of risk acceptance criteria
seems adequate. One specifies certain criteria and draws conclusions based on
the calculated risk exceeding these criteria or not. The use of risk acceptance
criteria shows commitment – the company would under normal circumstances
implement risk-reducing measures if the criteria were not met. If the ALARP
principle applies, the lack of absolute criteria could result in inconsistencies and
the acceptance of higher risk levels as too high costs is always a convenient
argument to use. The problem is that risk acceptance criteria gives a strong form
of mechanical thinking when dealing with difficult decision situations involving
various aspects of cost and benefit. When decisions are to be taken on the need
for risk-reducing measures, it is not sufficient to look just at the calculated risk;
other aspects also need to be considered, such as the cost of the measures and
the perception of risk. In addition, using risk acceptance criteria could give the
wrong focus – the main issue would be to achieve risk acceptance instead of a
drive for improvement. If the calculated risk is extremely high – it is considered
intolerable – measures would always be implemented, as in the three-region
approach of Section 2.1.2, p. 22.

The results of the analysis should be presented in a form that is suitable for the
target group. In this case there are two such groups: the company management
and the workers being exposed to the risk. The workers also include the labour
organization. The presentation so far has been directed at the management; now
let us consider the problem of communicating the results to the workers. We
cannot expect these people to be familiar with risk analysis.
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It is necessary to give the result a form that is easy to understand and which
gives confidence and trust. We believe that the following principles should be
adopted:

• Focus on observable quantities. Probabilities and expected values should be
presented with care.

• Highlight measures that are taken to prevent accidents from occurring and
which reduce their consequences if they should occur.

• Use comparisons with familiar activities to illustrate the calculated risk level.

Here is an example presentation based on these principles:

We cannot ignore the risk of an ignited leakage scenario resulting
in fatalities. The company acknowledges this – operating an offshore
production installation means some exposure to risk. Substantial work
has been done to prevent such a scenario from occurring, including a
comprehensive inspection system for pipes and tanks, and a training
programme for operation and maintenance personnel.

During a ten-year period it is not likely that such a scenario would
occur, but there are uncertainties. And we consider these uncertainties
to be so significant that measures need to be implemented. The most
effective way turns out to be removing the control room from the
process area.

The risk analysis has calculated a probability of about 10% for an
ignited leakage scenario resulting in fatalities during a ten-year period.
Compared to what is normally considered a reasonable safety level for
workers, this is a rather high risk. The cost of removal is about 0.4 mil-
lion dollars, but the company finds that the cost is not grossly dispro-
portionate relative to the safety improvement obtained. The company
will therefore remove the control room from the process area.

If the conclusion had been not to implement risk-reducing measures (given
a different risk picture), the arguments would have been similar, but now it
would be emphasized that we are confident such a scenario would not occur.
Reference could also be made to the cost per statistical saved life, as well as to
the measures implemented to avoid the occurrence of the scenario and to other
activities where such confidence exists.

Whether that would convince the workers and the labour organizations, is
another question. As there is no true risk, the company would need to acknowl-
edge that there could be different views and perceptions. The next example
examines this further.

5.2.2 Scrap in Place or Complete Removal of Plant

A chemical process plant is to be decommissioned. The plant is old, and the
company that owns the plant would like to scrap and cover the plant in place.
People that live close to the plant, environmentalists and some of the political
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parties are sceptical about this plan. They fear pollution and damage to the
environment. Large amounts of chemicals have been used in the plant process.
The company therefore looks into other alternatives besides scrapping in place.
One alternative is immediately considered to be the most interesting:

All materials are removed from the plant area and to the extent pos-
sible reused, recycled and disposed. A major operation is conducted
related to lifting and transport of a huge plant component. The lift-
ing and transport is difficult and there is concern about the operation
resulting in a failure with loss of lives and injuries. There are large
uncertainties related to the strength of the component materials; if the
lifting operation is commenced, it could be stopped at an early stage
because it cannot be completed successfully. A considerable cost is
associated with this initial phase of the operation. The cost associated
with full removal is very large. We refer to this as the removal and
disposal alternative.

The company is large and multinational. Due to the tax regime, the state will pay
a major part of the removal and disposal costs. Nevertheless, the company makes
the final decision on how the plant will be decommissioned. The authorities,
through the supervisory bodies, see to that laws and regulations are met. The
company seeks a dialogue with these bodies to ensure the parties have a common
understanding of the regulations’ requirements.

The question is now what principles, what perspective, should be adopted to
choose the ‘best’ alternative, and in particular how risk and uncertainty should
be approached. Here are some more specific questions:

• How formalized should the decision-making be?
• Should risk and uncertainty analyses be carried out?
• If such analyses are being undertaken, how should the analysis results be

presented, and how should the results be used in the decision-making process?
• Should risk acceptance criteria be defined?
• Should the ALARP principle and cost/benefit analyses be adopted?
• Should one attempt to use utility functions to weight values and preferences?

Furthermore, how should the environmental organizations present their view on
risk and uncertainty associated with possible pollution for the scrapping in place
alternative? How should the politicians express their view; and the supervisory
bodies?

Within the company, a group of competent personnel were asked to provide
an advice to the top management on how to approach the problem.

The company decides that its decision is to be based on an overall con-
sideration of technical feasibility, costs, accident risk, environmental aspects,
and effects on public opinion. A more formal decision-making process with
a one-dimensional cost-benefit parameter was discussed, but it was not con-
sidered appropriate as one would expect great differences in value judgements
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related to the environment, accident risk, etc. A utility-based approach was also
considered, but it was soon found to be inadequate. The company would not
be willing to use time and resources to establish preferences and utility values
over consequences with attributes related to costs, lives, long-term exposures,
environmental damage, etc. Any attempt to explicitly compare the possible dam-
ages and losses with costs would be extremely difficult to communicate. Risk
acceptance criteria were not used, as the situation requires full flexibility with
respect to weighting the different costs and benefit dimensions. Before the anal-
yses are conducted, why introduce constraints beyond the legal and regulatory
requirements? Studies and evaluations of the different alternatives were carried
out addressing aspects such as technical feasibility, costs and safety. The studies
were carried out by recognized consultants. Of the results obtained, we briefly
look into the cost and accident risk analyses.

The predicted cost of the scrapping in place alternative is 10 million
dollars, with a 90% uncertainty interval given by ±5 million dollars.
This means the analyst who has done the assessment is 90% confident
that the cost would be within the interval [5,15] million dollars. For
the removal and disposal alternative the corresponding numbers are
100 and [50,150], thus substantially larger costs.

When it comes to accident risk, most concern is related to the removal
and disposal alternative. The focus is on successful operation. And if
the operation is not successful, what will be the consequences, loss
of lives and injuries? Risk analyses have been conducted and they
conclude there are large uncertainties related to whether the lifting
operation can be executed without losing the component. Unproven
techniques have to be used for the operation, and there are large uncer-
tainties in the quality of the component materials. These uncertain-
ties can be reduced by detailed analysis and planned measures. The
remaining uncertainties in relation to the event ‘the lifting operation
is successful’ are expressed by a probability of 1/20. When ensuring
technical feasibility of industrial projects, an unreliability of 1/20 is
considerably higher what is normally accepted. But this is a unique
type of operation and it is difficult to make good comparisons. The
operation does place personnel at risk, but the risk level is in line
with typical values for industrial projects. Transportation of the com-
ponent is not seen as a safety problem if the planned measures are
implemented.

Following the plans for scrapping the plant, there will be no environ-
mental problem; all chemicals will be removed. Measurements will be
carried out to ensure no pollution is present.

Several environmental organizations and the people that live in the neigh-
bourhood of the plant are sceptical about the company’s conclusions on the
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environmental impacts. How can one be sure that all chemicals are removed?
They refer to the bad reputation this company has from similar activities inter-
nationally, and the fact that it could be technically difficult to ensure that no
surprises occur in the future if the company implements its plans.

The political parties have different views on this issue. All parties say that
the company must remove all chemicals so that people can feel they are safe,
but there are different opinions on whether this means the removal and disposal
alternative should be chosen.

The company makes an overall evaluation of all inputs, studies and statements
from a number of groups, and the dialogue with the supervisory bodies, and con-
cludes that the best alternative is scrapping in place. As there are no safety and
environmental problems with this alternative, the additional cost of the removal
and disposal alternative cannot be justified. The company is convinced that its
procedures for removing all chemicals would work efficiently – measurements
will be carried out to ensure there is no pollution – but it respects that others
are concerned, especially the people that live close to the plant. The company
recognizes the importance of this problem, but cannot see that it justifies the
rather extreme cost increases implied by the removal and disposal alternative. If
this alternative is chosen, one could use a substantial amount of money (10–30
million dollars) and risk not succeeding at all. The company is not concerned
that its reputation will be damaged by the decision on scrapping in place as it
has been open about all facts and judgements made.

Whether the chosen alternative would satisfy the requirements set by the
authorities would depend on the documentation the company can provide. It
turned out in this case that the supervisory bodies required more studies to
reduce the uncertainty related to the environmental impacts of scrapping in place.
The final outcome would then largely be determined by the supervisory bodies’
consideration of this uncertainty, and that consideration could be influenced by
environmentalists. Seldom do sharp limits exist that say what is acceptable and
what is not, and then the issue and the discussion will give an impression there
is significant uncertainty over the environmental impacts.

Given the new documentation, and some additional measures to reduce uncer-
tainty, the supervisory bodies found the chosen alternative to satisfy the require-
ments set by the authorities.

Not all environmentalist and not all people living close to the facility were
happy about this conclusion, but they could not reverse it. They tried physically
to stop the operations, but after a short delay, the facility was scrapped and
covered in place. So far, no pollution has been notified.

In this case the company, through the consultants, presented risk according
to the principles of Chapters 3 and 4. This approach represents a more humble
attitude to risk than is often seen in similar situations, as the risk picture estab-
lished covers predictions and uncertainty judgements. Traditionally, the company
would have presented the results from the analysis as representing the truth, the
risk associated with the activity, and claimed that laypersons, including the peo-
ple in the neighborhood of the facility, were influenced by perceptional factors.
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It is well known that risk perception and acceptance are influenced (negatively)
by factors such as:

• involuntary exposure to risk;
• lack of personal control over outcomes;
• lack of personal experience with the risk (fear of unknown);
• effects of exposure delayed in time;
• large uncertainties related to what will be the consequences;
• genetic effects of exposure (threatens future generations);
• benefits not highly visible.

In our case, many of these factors are relevant, perhaps all. When a person draws
conclusions about acceptable safety or risk, he will take into account his own
judgement of risk, i.e. his probabilities of observable quantities, the results from
risk analyses that provide the analysts’ judgements about observable quantities,
as well as perceptional factors as listed above. In many cases, including the one
presented here, the third point is the most important. If the risk analysis shows
a small risk, it does not matter if you feel fear.

It is typical that many experts judge nuclear power as relatively safe, whereas
the layperson ranks nuclear power as very dangerous. Who is right? If our
starting point is that there exists a true underlying risk, as in the classical frame-
work, we could in theory compare with this risk. The problem is that this risk is
unknown and has to be estimated, and the estimate is subjective and very uncer-
tain. Accident statistics give some information about the risk, but here we are
dealing with rare events that have not all occurred yet, therefore a risk analysis
has to be conducted to estimate risk. The risk analysis is based on experience
data and risk analysis methods, but we cannot avoid subjective elements in the
analysis process.

The traditional thinking has been that there is a sharp distinction between
real risk and risk perception. The company gives the impression that it knows
the truth, i.e. the correct risk, and it argues that with increased knowledge and
proper communication others would also see the truth. Many see this attitude as
provocative, because risk analysis expresses opinions as well as facts, and this
is also true for the classical approach to risk analysis.

Adopting our principles of risk analysis, none can say that they have found
the true risk numbers, since risk is a judgement about uncertainties. In this
way risk analysis is a tool for argument and debate more than a tool for pre-
senting the truth. We have to accept that different persons and parties could
have different views. But even if we can agree on the probability assignments,
this does not mean that we agree on saying that risk is high or low. Judging
the danger as high is a result of finding the occurrence probability of certain
events as large relative to the associated consequences. We cannot therefore
argue that it is wrong to say the risk associated with nuclear power is consid-
ered very high even though the probability that a serious accident will occur is
judged very low on an absolute scale. There is a possibility of extreme conse-
quences, and even a small probability may then be sufficient for saying that the
risk is high.
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The environmentalists, the politicians and the supervisory bodies express
their views on risk by discussing uncertainties, and that is consistent with our
approach. In quantitative risk analysis this discussion is based on predictions and
assigned probabilities, but any judgement of uncertainty is a way of describing
risk according to our principles. The weight of such judgements and discus-
sions is strongly affected by the way they are supported by knowledge and
facts.

The above example illustrates what is sometimes called an acceptable risk
problem. It typically involves experts, public, politicians and other interested
parties such as environmentalists. There are several reasons why it is difficult
to make decisions in such a context:

• The benefits of the activities could be unclear or disputed or not shared.
• The potential hazards are large and the uncertainties are large.
• The advantages and disadvantages do not fall in the same group or in the

same time frame.
• Decisions are seen to be forced upon smaller groups by a higher or faraway

authority.
• There is argument between experts and others about hazards and risks.

Extensive political conflict, complexity of a problem and media coverage may
strengthen the effects of these factors. Under these circumstances, decisions may
not be accepted by society and the position of authorities and the experts who
advise them are called into dispute.

Often the experts are seen as acting on behalf and under control of an inter-
ested party, producing results and advice that this party wants to hear and see.
In some cases the same experts are seen to be in the camp of the other party by
all other parties, no matter how objectively they try to establish the facts and
formulate their findings.

Risk communication was seen as an instrument to overcome the difference
between perceptions of the experts and the public. It was believed that more
information and teaching would make society understand. But it is not surpris-
ing that society was rarely convinced by this form of communication. What is
required is trust and developing confidence in a bidirectional process. If one
party tells the other how things are, what the true risks are, they will destroy
the trust they are seeking to build.

5.2.3 Production System

The starting point is the production risk example of Section 3.2.2. An oil com-
pany evaluates several design options for a gas production system. Let us say
that the question is about two or three compressor trains. The production risk
analysis produces for each of these alternatives a prediction of the production
volume (loss), with associated uncertainties. A histogram representing the uncer-
tainty distribution of the production for each alternative is presented; Figure 5.4
shows a typical example. Other performance measures are also studied. Based
on these studies an economic analysis is carried out, including a cash flow



114 FOUNDATIONS OF RISK ANALYSIS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

94–95 95–96 96–97 97–98 99–100

Production volume
relative to demand

Probability

Figure 5.4 Uncertainty distribution of the production volume for a specific alternative

analysis producing expected net present values (NPVs). These analyses provide
decision support, they give valuable insight into the uncertainties related to
future production volumes.

The analyses are based on a number of assumptions, models, simplifications
and judgements. When making its decision, management needs to take these
into account. For example, the analysis does not incorporate losses due to loss
of reputation by poor performance, nor options for increased production sale.
Such factors would be evaluated in parallel to the production risk analysis but
not integrated with this analysis.

5.2.4 Reliability Target

Production safety (deliverability) management by using acceptance criteria (tar-
gets) has been applied, or at least attempted, in several petroleum develop-
ment projects. The proposed approaches differ somewhat but the following three
approaches are typical of the general philosophy that seems to prevail:

• Approach 1: define a system production safety target and allocate subtargets
to the items of the system.

• Approach 2: define a system production safety target and use system design
optimization to obtain an acceptable solution.

• Approach 3: define a feasible concept of the system, calculate its production
safety and call it the target.
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All these management approaches have fundamental shortcomings when it comes
to solving the actual problem at hand. These shortcomings will be demonstrated
by a specific example and a discussion of the general nature of planning complex
production systems.

The purpose of the project in this example was to produce natural gas from
an offshore gas field and bring it ashore for delivery to purchasers. After some
initial studies had been carried out, a decision was made to develop the field
with a production platform and subsea pipelines for gas transportation. It was
further agreed that a systematic treatment of production safety (risk) would be
of benefit to the project. A study was therefore commissioned, with a concep-
tual description of a proposed design as input, to define a production safety
acceptance criterion (target) for the platform.

The first obstacle the study team ran into was related to the definition of
the overall system boundary. Their task was to define a target for the platform;
however, it turned out that the performance of the production system as expe-
rienced by the gas purchasers would be very different from the performance of
the platform when viewed in isolation. This was due to the large internal vol-
ume of the pipeline transportation system and the compressibility of gas, which
enabled the system to be used as a buffer storage. The inherent overcapacity of
the overall system thereby enabled production outages below certain volumes
to be recovered by the system at the point of delivery. Hence the study team
recognized that the transportation system had to be considered in the definition
of an overall production safety target.

But what should be the target for the production safety of the total system?
This question resulted in considerable discussion, because no one was immedi-
ately able to assess the consequences of choosing a specific figure. Nor was it
possible to determine a corresponding requirement for the platform’s production
safety.

The following main conclusion was accordingly drawn by the study team:

It would be impossible to know which level of production safety
should be preferred as a target without knowing what it would require
and what it would yield in return to achieve all the possible levels.

As a result, the possibility of using approach 1 and approach 2 was abandoned
by the study team. An attempt was subsequently made with approach 3, but it
was soon realized that it would lead to little more than an adoption of a coarsely
sketched concept as an optimal solution. Any subsequent action to optimize the
design would require the targets to be changed, and a moving target would lose
its intended meaning. Consequently, the whole concept of production targets
was abandoned for this project.

Shortcomings of the production safety target approach

We conclude that any attempt to apply a production safety target approach to
the problem of planning a complex oil/gas production system is a failure to
recognize the primary objectives of the activity as well as the basic properties
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of the planning problem itself. To substantiate this statement, let us first consider
what the objectives of a project might be.

To begin with, we should acknowledge that the categories ‘correct’ and ‘false’
do not apply to a given design of a production system; we can only say that it
is a good or a bad solution and this to varying degrees and maybe in different
ways for different people. Likewise, there will be different conceptions with
regard to the objectives of an enterprise, but the bottom line of any oil and
gas project is still profit. Profit is the main objective and driving force of the
industry. Other conditions, such as production safety, may have to be fulfilled to
some extent, but these are only a means of reaching the primary goal. From this
line of argument, we can conclude that production safety should not be treated
as an objective in its own right.

One might still ask whether production safety targets could not be used merely
as a guideline to attain the objectives. It is often said about stated production
safety targets that they are not intended as absolute levels, but only as a means
of communicating a certain policy. Unfortunately, the relationship between the
production safety target and the policy is seldom very well defined. Furthermore,
a lot of good managers and engineers have a tendency to interpret a figure
called a target as something one is supposed to attain. Specifying an absolute
level without really meaning it could therefore prove a dangerous practice. It
may restrain innovation and sound judgement, and result in an unnecessarily
expensive design. But what about giving a production safety target as a range or
a distribution? Or why not go all the way and use a qualitative statement only:
Our target is to achieve normal production safety. As we can see, the whole
thing is starting to get rather vague. Consequently, a production safety figure is
not suitable as a policy guideline.

We conclude that, as a general rule, production safety targets should not be
used at all. Instead a more cost-effective approach should be adopted, where
attention is focused on finding the most economic (profitable) solution, rather
than on attaining unfounded targets.

5.2.5 Health Risk

In this section we study a decision problem related to the health risk example
studied in Section 4.3.4. We test a patient when there are indications that he has
a certain disease. Let X be 1 or 0 according to whether the test gives positive
or negative response. Furthermore, let θ be the true condition of the patient,
the state of nature, which is defined as 2 if the patient is seriously ill, 1 if the
patient is moderately ill, and 0 if the patient is not ill at all.

Now let us go one step further and follow our patient after both tests have
shown a positive response. The doctor then needs to make a decision based on
the updated probabilities. We have P (θ = 2|X1 = 1, X2 = 1) = 0.27. Similarly,
we find that

P (θ =1|X1 =1, X2 =1) = 0.60 × 0.36

0.90 × 0.11 + 0.60 × 0.36 + 0.10 × 0.53
= 0.59,
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Table 5.1 Expected portion of normal life
expectancy

Decision Health state

θ = 2 θ = 1

d1 10% 80%
d2 50% 50%

P (θ =0|X1 =1, X2 =1) = 0.10 × 0.53

0.90 × 0.11 + 0.60 × 0.36 + 0.10 × 0.53
= 0.14.

We have established the posterior distribution of θ . Thus the highest probability
is related to the patient being moderately ill, but there is quite a large probability
of the patient being seriously ill, which means he has have to be immediately
sent to hospital. If the patient is seriously ill, immediate treatment is necessary
to avoid disablement or death. The doctor is facing a decision problem under
uncertainty. Should the patient be hospitalized or not? Well, this is a rather
simple decision problem, clearly the patient should be immediately hospitalized
as the probability that he is ill is so large and the possible consequences so
severe if he is not treated. We need no further optimization and evaluation. The
risk or uncertainty picture provides a clear message about what to do.

Now, suppose further analysis and testing of this patient at the hospital gives
updated posterior probabilities of θ = 2, 1 and 0 equal to 0.3, 0.7 and 0.0,
respectively. Two possible medical treatments are considered: d1, which would
be favourable if θ = 1, and d2, which would be favourable if θ = 2. The
expected portion of normal life expectancy given θ and di is shown in Table 5.1.
We see that if θ = 2, then treatment d1 would give a life expectancy of 10%
relative to normal life expectancy. From these expectations, a utility function
can be established, reflecting the preferences of the patient, or alternatively the
physician.

Let us look at how we can elicit the utility function for the patient. The starting
point for establishing the utility values is 0 and 1, corresponding to immedi-
ate death and normal life, respectively. We then ask the patient to compare an
expected life length without operation of say 15 years with a thought-constructed
operation having a mortality of x%; however, if the operation were successful,
the patient would enjoy a normal life with expectancy of 30 years. This exercise
is not directly linked to the medical treatment the patient is going to undertake.
The patient is asked what is the minimum probability of success from the oper-
ation needed to undergo the operation. Say it is 90%. Then this number is the
utility value related to a proportion of life expectancy of 50%. Obviously, this
probability would be higher than 50% as the patient is ‘guaranteed’ 15 years of
life with no operation, whereas the operation could lead to death. Other utility
values are established in a similar way and we arrive at the utility function
shown in Table 5.2. Using the expected life expectancy to establish the utility
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Table 5.2 Utility function for the two
decision alternatives

Decision Health state

θ = 2 θ = 1

d1 0.40 0.95
d2 0.90 0.90

0.7
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Figure 5.5 Decision tree for the decision problem summarized in Table 5.2

function is a simplified approach as it ignores the quality of life, for example.
But it is not viewed as too gross a simplification.

Figure 5.5 shows a decision tree for the decision problem. The tree grows
horizontally from left to right. Beginning from the left, there are two decision
alternatives represented by two branches of the tree. This describes the decision
structure, but at the end of the present terminal branches (each of which is either
d1 or d2) we add two others, labelled θ1 and θ2, corresponding to the health state
of the patient. The points where the branches split into other branches are called
decision nodes or random nodes, depending on whether the branches refer to
possible decision choice alternatives or uncertainties (of observable quantities).
These two types of nodes are represented by a square and a circle, respectively.
According to the utility paradigm, the decision maximizing expected utility
should be chosen.

We find that the expected utilities for the two decisions, u1 and u2, are
given by

Eu1 = 0.40 × 0.3 + 0.95 × 0.7 = 0.785,

Eu2 = 0.90 × 0.3 + 0.90 × 0.7 = 0.900.

Thus decision d2 should be chosen. Of course, this is what the mathematics says.
The analysis is based on simplifications of the real world, and it is based on the
preferences of the patient only. The costs involved are not reflected. The physi-
cian must also take this into account, if relevant, when he establishes his utility
function. In most cases the patients and physicians agree on which treatment
to undertake, but conflicts could occur. Utilities are a tool for communicating
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values, but they do not solve the difficult problem of dealing with different
preferences between patients and physicians.

It is possible to use the same type of reasoning when dealing with reduced
quality of life. The person specifying the utility function then needs to compare
a number of years of reduced quality of life with a normal life.

A utility-based approach ensures coherency in medical decision-making. View-
ing the total of activities in medicine, there is a strong need for using resources
effectively and obtaining optimal results. The introduction of utility functions
could be somewhat standardized to ease the assessment, as a number of examples
can be generated.

Could we not have used a multi-attribute analysis or a type of cost-benefit
analysis instead? Why not produce predictions and assessed uncertainties related
to the result of the treatment, costs, etc.? Is it really necessary to specify a utility
function? The figures in Table 5.1 are very informative as such. They provide
valuable insights and a good decision basis. If we chose not to introduce a utility
function, we would evaluate the predictions and assessed uncertainties, but we
would give no numerical utility value on the possible outcomes. This could be
satisfactory for patients as they do not need to think about coherency. For the
hospital and the society, however, coherency is an issue.

5.2.6 Warranties

We consider the exchange of items from a large collection of similar items N

between a manufacturer (seller) and a consumer (buyer). A warranty contract
pertaining to the item reliability is sought. The following is a typical warranty
contract in many transactions.

Let n be the number of items that the buyer (B) would like to purchase.
These items are supposed to be identical. Each item is required to last for τ

units of time. We suppose that the buyer is willing to pay x dollars per item,
and is prepared to tolerate at most z failures in the time interval [0, τ ]. For each
failure in excess of z, the buyer B needs to be compensated at the rate of y

dollars per item. In effect, the quantity τ can be viewed as the duration of a
warranty.

Below we sketch how the seller A can proceed to specify initial values of
z and y.

Suppose that it costs c dollars to produce a single unit of the item sold. Then if
the buyer B experiences z or fewer failures in [0, τ ], A’s profit would be n(x−c).
However, if B experiences i failures in [0, τ ] with i > z, then A’s liability will
be (i − z)y. Let p be the proportion of failed units in the large population of
items. We refer to p as a chance – it is an observable quantity. Then if P (i)

denotes the chance of exactly i failures in the time interval [0, τ ], we have

P (i) =
(

n

i

)
pi(1 − p)n−i ,

i.e. the number of failures is binomially distributed with parameters n and p,
were we to know p. Furthermore, A’s expected liability is
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n∑
i=z+1

yP (i).

From these formulas the expected profit, given p, would be

n(x − c) −
n∑

i=z+1

yP (i).

If the seller has strong background information concerning the failure frequency
of the items, p could be considered known. If that were not the case, the seller
would need to assign an uncertainty distribution (a prior distribution) H on p,
and compute the unconditional expected value:

∫ 
n(x − c) −

n∑
i=z+1

yP (i)


 dH(p).

This analysis can be used by the seller as a basis for identifying values of z

and y that they would find acceptable. A similar analysis can be carried out for
the buyer, and we can discuss what should be a fair contract; see Singpurwalla
(2000).

5.2.7 Offshore Development Project

Let us reconsider the decision problem discussed in Chapter 1, where two con-
cepts, A and B, for the development of an oil and gas field are assessed. To
provide a basis for choosing an alternative, a multi-attribute analysis is carried
out based on separate assessments of relevant factors such as technology devel-
opment, market deliveries and regularity, investment costs, operational costs and
safety and environmental issues. Let us look at some of the assessments without
going heavily into the details.

Technological development

This expresses the value created by the alternative with regard to meeting future
technology needs for the company. Alternative A is risk-exposed in connection
with subsea welding at deep water depth. A welding system has to be devel-
oped to meet a requirement of approximately 100% robotic functionality as the
welding must be performed using unmanned operations. The alternative is risk-
exposed, meaning that the welding system development could cause delay and
consequently increased costs, and it could be more costly than expected. But the
risk exposure is considered moderate, as there is a fallback based on manned
operations as an emergency option. This will prevent major schedule effects on
the production start date.

Schedules

The schedule for offshore tow-out is tighter for alternative B than for alternative
A. For alternative B a probability of 0.15 is assigned for a delay in production
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start. The assigned probability distribution for the number of days delay is
0.10, 0.05 and 0.01 associated with delay periods of 15 days, 45 days and 75
days, respectively. Assuming a cost of 50 million dollars per month delay, an
expected loss of 7.5 million dollars is computed. The costs associated with delay
for alternative A are considered negligible compared to B.

Regularity to market

The gas regularity requirement set by the market is 99%. The predicted (ex-
pected) market deliveries are about 99.0% for alternative B and 99.5% for alter-
native A, but there are significant uncertainties involved. These uncertainties
are expressed by probability distributions of the market deliveries, similar to
Figure 5.4. If the deliveries cannot be met, other sources will be used, including
gas from an onshore gas storage. The expected yearly costs of the back-up gas
are calculated and these costs are transformed to expected NPV values.

Investment

The expected investment costs for the two alternatives are found to be about
the same, 3 billion dollars. Uncertainties in the investment costs are presented
using simple histograms, analogous to Figure 5.4. An advantage of alternative
A is more time for plant and layout optimization. The main potential includes
reduction in management and engineering man-hours, reduction in fabrication
costs, and optimization of the process plant (arrangement of plant, use of com-
pact technology, number and size of compressors and generator drivers). The
difference in expected upside potential between the two alternatives is 0.4 billion
dollars, in favour of alternative A.

Operating and maintenance costs

The expected operating and maintenance costs are approximately the same for
the two alternatives, but the uncertainties are larger for B than for A as there
is less experience of using concept B. The uncertainties are quantified by prob-
ability distributions similar to Figure 5.4. For both alternatives there are some
upside potentials and downside risks. These are presented as expected reduced
costs and expected increased costs.

Reservoir recovery

There is no major difference between the alternatives on reservoir recovery.

Environmental aspects

For each alternative, predictions are presented showing emissions (in tonnes
per year) to air from turbines, diesel engines, flare, and loading of oil and
condensate. Alternative B has the greatest potential for improvement with respect
to environmental gain. New technology is under development in order to reduce
emissions during loading and offloading. Further, the emissions from power
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generation can be reduced by optimization. Otherwise, the two concepts are
quite similar with respect to environmental aspects.

Safety aspects

For both alternatives there are accident risks associated with the activity. The
analysis shows a slightly higher accident risk for alternative A than for alterna-
tive B. Both alternatives would be able to comply with the overall safety require-
ments. Risk-reducing measures need to be identified, evaluated and implemented
on the basis of evaluations of cost and benefit.

External factors

Concept A is considered to be somewhat advantageous relative to concept B
as regards employment, as a large part of the deliveries will be made by the
national industry.

Summary of the analyses

The NPV values for schedules, regularity, investment, and operating and main-
tenance costs are presented in a table and integrated. In addition the various
other factors are given a + or − depending on which alternative is found to be
favourable, and together this provides a summary of the analyses and a basis
for making a decision on which alternative to choose.

Many details have been omitted from this analysis report, but it does give an
impression of the main line of thinking.

5.2.8 Risk Assessment: National Sector

The task is to develop an approach, a methodology, for assessing the safety level
and to identify trends in a national branch or sector, for example an industry.
The purpose of the methodology is to improve safety by creating a common
understanding and appreciation of the safety level and thus provide a basis
for decision-making on risk-reducing measures. The aim is to build consensus
through assessments, participation and commitment. Furthermore, by having an
increased focus on occurrences that may result in accidents, it is hoped that the
number of such occurrences will be reduced.

Now, how should we do this assessment? We restrict attention to large-scale
accidents leading to fatalities.

We interpret the safety level as uncertainties about the world and the occur-
rence of accidents and losses. To assess these uncertainties, some basic principles
need to be established. The starting point for the assessment should be the mea-
surement of some historical accidents. As far as possible, these data should be
objective data. Secondly, we need evaluations, based on these data and other
sources. We acknowledge that assessing the safety level cannot be based on hard
data only. Safety is more than observations. We need to see behind the data and
incorporate aspects related to risk perception.
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There are three basic categories of data that can be used:

• loss data, in this case expressed by the number of fatalities;
• risk indicators (hazards) such as major leaks and fires;
• risk indicators on a more detailed level, reflecting technical, organizational

and operational factors leading to hazards.

We should collect and analyse data from all three categories. They provide dif-
ferent types of information. Each shows just one aspect of the total safety picture,
and if viewed in isolation, data from one category could give a rather unbalanced
view of the safety level. We face uncertainties related to a vast number of large-
scale accident scenarios, but fortunately we have not observed many of these
accidents. Using the historical, observed losses as a basis for the uncertainty
assessments could therefore produce rather misleading results. On the other
hand, using the risk indicators on a detailed level, as a basis, would also be dif-
ficult as they could be of poor quality. Do the indicators reflect what we would
like to address? Is an increased number of observations a result of the collection
regime or the underlying changes in technical, organizational and operational
factors? We regard measurements of the hazards as providing the most informa-
tive source for assessing the safety level. There is not a serious measurement
problem and the number of observations is sufficiently large to merit an analysis.

Let xij be the number of hazards observed of type i in year j , i = 1, 2, . . . , k,
j = 1, 2, . . . , r . As an example suppose that the data for i = 1 is given by
6, 9, 9, 12, 13. To analyse these data, we should adopt the ideas outlined in
Section 2.1. Here are the main points:

• Any observed trend in the number of hazards, such as in the example above,
should be examined to identify what caused this trend.

• As a screening method for use of resources, a procedure should be defined
to identify the hazards having strong trends.

A simple procedure is based on the use of a Poisson distribution to assess
uncertainties. Again consider the numerical example for i = 1. Suppose we
have the observations 6, 9, 9 and 12, and we would like to assess the uncertainty
related to the number of hazards for the coming year based on these observations.
For simplicity, suppose that the number of exposed hours does not vary from
year to year. Then, following an argument as in Section 4.3.4, we use a Poisson
distribution with mean 9 and obtain a 90% prediction interval [5, 14]. As the
year 5 observation is included in this interval there is no alarm. But an alarm
would be given when assessing the uncertainties of year 4 and 5 based on the
three previous years. The prediction interval is [14, 24] and the observation is
12 + 13 = 25.

An integrated yearly risk indicator R can be developed based on the data xij .
It is given by the formula

Rj =
k∑

i=1

vjxij ,
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where vj is a weight, reflecting the expected number of fatalities given the
occurrence of the hazard j . This expectation is derived from risk analyses.

A group of recognized people with strong competence in the field of risk
and safety, are established to evaluate the data observed. These data include the
event data and indicators mentioned above as well as other data, reflecting for
example the performance of the safety barriers and the emergency preparedness
systems. Also attention is given to safety management reviews and results from
analysis of people’s risk perception. Based on all this input, the group draws
conclusions about the safety level, status and trends.

In addition, a group of representatives from the various interested parties
discuss and review important safety issues, supporting documentation and views
of the status and trends in general, as well as the conclusions and findings of
the expert group. The combined message from these two groups provides a
representative view on the safety level for the total activity considered. And if
consensus can be achieved, this message becomes very strong.

5.2.9 Multi-Attribute Utility Example

We return to the event tree example in Sections 3.3 and 4.3.4. In Section 5.2.1
we used a cost-benefit (cost-effectiveness) analysis to support decision-making.
This is our recommended approach for this example. But other tools are also
applicable, for example multi-attribute utility theory. In this section we will show
how we can use this theory for the event tree example. The decision alternatives
considered are relocation of the control room and not relocation. At the end of
the section we compare this tool with the cost-benefit analysis of Section 5.2.1.

First we have to identify the relevant objectives. In this case we can summarize
the objectives in two main categories:

• minimize costs (maximise profit);
• avoid accidents.

These objectives can be further divided into categories, giving a hierarchy of
objectives. For example, ‘avoid accidents’ could be replaced by ‘avoid fatal-
ities’ and ‘avoid injuries’. Of course, this is a simplification as accidents are
more than fatalities and injuries. We base our analysis on minimize costs and
avoid fatalities. These objectives are measured on the attribute scales money
(x1) and number of fatalities (x2), respectively. The challenge is now to elicit a
utility function u(x1, x2). Suppose we have established individual utility func-
tions u(x1) and u(x2) for the attributes x1 and x2. The natural candidate for
u(x1, x2) is to use a weighted average of these different utility functions, i.e.

u(x1, x2) = k1u(x1) + k2u(x2),

where the weights are k1 and k2. The sum of these weights is 1. We will discuss
the suitability of this additive utility function later; now we will look at how to
proceed when this form is being used.

Let us start by establishing the utility function for attribute x2, the number of
fatalities. Following the procedure illustrated in Section 5.1.2, we give the best
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consequence, i.e. zero fatalities, a utility value of 1, and the worst consequence,
i.e. two fatalities, a utility value of 0. It remains to specify a utility value for
one fatality. Using the lottery approach explained in Section 5.1.2, we arrive
at a value 0.4, say. We find that one fatality is worse than a lottery having a
50% chance of zero fatalities and a 50% chance of two fatalities. The point
is that going from zero to one fatality is worse than going from one to two
fatalities.

Next we establish the utility function for the costs. The best consequence is
a cost zero, so we give this cost a utility value of 1. The worst consequence
we define as 10 million dollars, which is given a utility value of 0. Between
these values we use a linear function, as the company’s attitude to costs and
risk within the interval [0, 10] are expressed by the expected value. Thus the
cost 0.4 million dollars of removing the control room has a utility value of
u(0.4) = (10 − 0.4)/10 = 0.96.

Finally, we need to specify the constants k1 and k2. Suppose we think that the
values placed on the lives of the two control room operators should be 2 million
dollars. Then k1 = 5/6 and k2 = 1/6, as u(10, 0) = k2 and u(0, 2) = k1, and
thus k2/k1 should be equal to 2/10. Then we can compute the expected utility
value for the two alternatives, the relocation alternative and the not relocation
alternative. We denote these expectations ERu and ENu, respectively. From
Section 3.3 the distribution of the number of fatalities, Y , related to a one-year
period, is given by P (Y = 2) = 0.0016, P (Y = 1) = 0.0064 and P (Y = 0) =
0.992. We consider a ten-year period, which gives the approximate probabilities
P (Y = 2) = 0.016, P (Y = 1) = 0.064 and P (Y = 0) = 0.920.

We find that

ERu = k1 × u(0.4) + k2 × 1

= 0.833 × 0.96 + 0.167 × 1

= 0.967,

whereas for the not relocation alternative we find

ENu = k1 × 1 + k2{u(2)P (Y = 2) + u(1)P (Y = 1) + u(0)P (Y = 0)}
= 0.833 + 0.167(0 × 0.016 + 0.4 × 0.064 + 1 × 0.920)

= 0.991.

Thus the not relocation alternative has the highest expected value and is there-
fore the favourable alternative in this decision analysis context. To change this
conclusion, the value of the two control room operators must exceed about 7
million dollars, corresponding to k1 = 0.6 and k2 = 0.4.

This analysis is based on costs and the number of fatalities only. Other
factors (objectives, attributes) would also be considered, such as risk percep-
tion. Following multi-attribute utility theory, or utility theory in general, we
should include all such factors – the set of objectives should be complete. Our
thinking is, however, more pragmatic as decision analysis is just a tool for
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aiding decision-making. We acknowledge that other factors would be taken into
account, but we find it difficult and inadequate to incorporate them as attributes
in the analysis. Restricting attention to costs and number of fatalities, the analysis
is just slightly more complex than the cost-benefit analysis of Section 5.2.1. We
remember that the cost per expected saved life was equal to 5 million dollars.
The utility approach is more complex in the way that it needs the establish-
ment of the utility function, which means stronger management involvement.
To some extent, it is possible to standardize the utility functions, thus reducing
the work to be done in specific cases. The cost-benefit analysis is based on a
predefined performance measure; cost per expected saved life, which is rather
straightforward to calculate.

In this example the cost-benefit analysis and the utility approach give basically
the same message; if the cost of a (statistical) life is of order 3–5 million dollars,
the removal of the control room is favourable. This conclusion is based on an
analysis of cost and number of fatalities only. Management performs a review
and judgement of the analysis and other relevant factors, then makes a decision.

Now we return to the problem of specifying the utility function u(x1, x2).
Above we used an additive form u(x1, x2) = k1u(x1) + k2u(x2). This form
simplifies the analysis, but the question is whether it can be justified. The additive
form means that our attitude to risk on each of the attributes does not depend on
the other attribute. In this case it is a reasonable approximation as the burdens
associated with loss of life should not be influenced by the cost of relocation.

In practice it is often difficult to assess a utility function over several attributes,
so a number of alternative approaches have been established to perform the trade-
offs. We have already looked at the cost-benefit analyses. Another category
of approaches are related to the use of value functions, using some form of
preferential independence (Bedford and Cooke 2001: 271). It is common to
start by specifying a value function, for example by using a multi-attribute
value function of the form

v(x1, x2, . . . , xr) =
r∑

i=1

wixi,

where wi is a weighting factor of the ith attribute. The wi encode the trade-
offs that the decision-maker is prepared to make between the attributes. Special
techniques are developed to determine the weights wi ; see Keeney and Raiffa
(1976), Keeney (1991) and French et al. (2001). The value function is then
transformed to a utility function, u, for example by the exponential transform
of v:

u(x1, x2, . . . , xr) = 1 − exp{−v(x1, x2, . . . , xr)}

= 1 − exp

{
−

r∑
i=1

wixi/ρ

}
,

where the parameter ρ directly encodes risk aversion. Such an approach would
simplify the specification of the utility function, but care is needed to avoid
arbitrariness in the specification of the utility function.
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In addition we like to mention the analytical hierarchy process (AHP), which
is a common approach among practitioners; see Bedford and Cooke (2001: 271)
and Saaty and Vargas (2001). The AHP does not have the same strong foundation
as the utility-based approach, but it is quite simple to use in practice.

5.3 RISK PROBLEM CLASSIFICATION
SCHEMES

Sections 5.1 and 5.2 discussed a number of decision situations where risk and
uncertainty need to be addressed. Now we will look at some structures, or clas-
sification schemes, for these decision situations that are consistent with our pre-
dictive approach. Based on these classification schemes, we will discuss the use
of risk and uncertainty analyses, formal decision analyses, and risk management
policies.

Section 5.3.1 presents a classification scheme based on the two main factors:
potential consequences (outcomes, losses, damages) and uncertainties about the
consequences. Section 5.3.2 examines a classification specifically directed at
accident risk with the dimensions closeness to hazard and level of authority.

The classification systems provide a knowledge base for structuring risk prob-
lems, risk policies and class-specific management strategies. Three major man-
agement categories have been applied: risk-based, precautionary and discursive
strategies. The risk-based policy means treatment of risk – avoidance, reduc-
tion, transfer and retention – using risk and decision analyses. The precaution-
ary strategy means a policy of containment, constant monitoring, continuous
research and the development of substitutes. Increasing resilience, i.e. resistance
and robustness to surprises, is covered by the risk-based strategy and the pre-
cautionary strategy. The discursive strategy means measures to build confidence
and trustworthiness, through reduction of uncertainties, clarifications of facts,
involvement of affected people, deliberation and accountability. In most cases
the appropriate strategy is a mixture of these three strategies.

5.3.1 A Scheme Based on Potential Consequences
and Uncertainties

This classification scheme is based on two main factors: potential consequences
(outcomes, losses, damages) and our uncertainties about the consequences; in
other words, the key factors related to our qualitative, broad definition of risk.
From these two factors we establish the seven categories in Table 5.3. These
seven categories show a tendency of increased risk, level of authority involved,
stakeholder implications, and treatment of societal values. The arrows should be
read as tendencies, not as strictly increasing values.

To further characterize the consequence potential, beyond straightforward
summarizing measures related to losses and damages (such as economic loss
and number of fatalities), we relate it to these factors:
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Table 5.3 Risk context classification scheme: read the arrows as tendencies, not as
strictly increasing values; S = small, M = moderate, L = large

Category Level of Level of Stakeholder Treatment
risk authority implications of societal

Potential Uncertainties involved values
consequences of consequences

1 S S/M/L Low Low Low Low
2 M S
3 M M
4 M L ↓ ↓ ↓ ↓
5 L S
6 L M
7 L L High High High High

• Ubiquity is the geographic dispersion of potential damages.
• Persistency is the temporal extension of potential damage.
• Reversibility is the possibility of restoring the situation to the state before the

damage occurred.
• Delay effect characterizes a long time of latency between the initial event and

the actual impact of damage.
• Potential of mobilization means violation of individual, social or cultural

interests and values generating social conflicts and psychological reactions
by individuals and groups who feel afflicted by the risk consequences.

And to further characterize the uncertainties we relate them to these factors:

• the degree of predictability of consequences;
• the difficulty in establishing appropriate (representative) performance mea-

sures (observable quantities on a high system level);
• persons or groups that assess or perceive the uncertainties.

Depending on how the problem relates to these factors, different risk policies
and management strategies would be required. Thus there is more than one risk
policy and more than one management strategy associated with each of the seven
categories. However, for some of the categories, there is a typical candidate.

Now we describe and discuss the categories of this classification scheme using
the headings in Table 5.3.

(1) Small + small/moderate/large

This category is characterized by situations where the potential for loss or dam-
age is small and the uncertainties related to the consequences are small, moderate
or large. Examples are driving a car and work activities at a job. There is typi-
cally an established practice for the activities. Note that the term ‘small’ is a rela-
tive concept – an injury or a fatality is not a small consequence as such. In these
situations we would pay attention to risks and uncertainties, perhaps perform
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some simple qualitative risk analyses, buy a safe car to increase robustness in
the case of an accident, and look for substitutes. But a formal risk management
system for the specific situation, the driver or worker, would in most cases not
be introduced. If we consider a large population of such cases, for example the
car traffic, a risk management system would be required, but that would be a
problem within another category.

(2) Moderate + small

This category is characterized by a moderately large potential for loss or damage
and small uncertainties related to the consequences. An example is an investment
project for a production system where the future income is strongly influenced
by production sales contracts. Risk, uncertainty and decision analyses could be
used as part of a risk management system that operates within the framework
set by the contracts. Other examples are the anthropogenic effect of climate
change and the loss of biological diversity. The risks may not be taken seriously
because of the long delay between the initial event and the damage impact. This
category needs strategies to build awareness or initiate efforts by institutions
to take responsibility. A continuous reduction of risk potential is necessary by
introducing substitutes. Risk potentials that cannot be substituted should at least
be contained by setting quantities and limitations of exposure.

(3) Moderate + moderate

This category is characterized by a moderately large potential for loss or damage
and moderately large uncertainties related to the consequences. Many techno-
logical risks belong to this category, such as chemical process facilities. The
examples in Section 5.2.3, 5.2.4, 5.2.6, 5.2.7 and 5.2.8 may all be viewed as
special cases of this category. The consequences are classified as moderate, not
large, as they are bounded, with rather low scores on ubiquity, persistency, etc.
The maximum loss or damage can be determined. Uncertainties are considered
moderate by risk analysts and others as the phenomena leading to the con-
sequences are largely understood. Risk, uncertainty and decision analyses are
used as part of a risk management system. Another example is electromagnetic
fields generated by the high-voltage overhead power lines, as judged by many
laypersons. Although experts are confident that the possible consequences are
small, and thus classify the situation into category 1, laypersons may judge the
uncertainties to be rather high. The main principle of risk management in this
case should be discursive, which means placing emphasis on strategies to build
confidence, reduction of uncertainties, and clarifications of facts.

(4) Moderate + large

This category is characterized by a moderately large potential for loss or damage
and large uncertainties related to the consequences. An example belonging to
this category is a process plant based on a new type of technology. The example
discussed in Section 5.2.2 belongs to this category. Uncertainties are considered
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large as the phenomena leading to the consequences are not well understood.
Risk, uncertainty and decision analyses are used as part of a risk management
system. Key elements of such a system would be to improve knowledge, to pre-
vent surprises and to plan for emergency management. Compared to category 3,
this category has a stronger element of precaution as the uncertainties are larger.

(5) Large + small

This category is characterized by a large potential for loss or damage and small
uncertainties related to the consequences. Smoking belongs to this class. The
consequences for society are large, whereas our uncertainties related to possi-
ble consequences of smoking are rather small. Risk, uncertainty and decision
analyses are used as part of a risk management system.

(6) Large + moderate

This category is characterized by a large potential for loss or damage and moder-
ately large uncertainties related to the consequences. The consequences are large,
meaning that the losses and damages are difficult to bound, and high scores are
given to one or more of ubiquity, persistency, etc. An example belonging to
this category is nuclear energy. Uncertainties are considered moderate by risk
analysts as the phenomena leading to the consequences are largely understood.
Risk, uncertainty and decision analyses are used as part of a risk management
system. A layperson’s perception of uncertainty may be in conflict with the
experts, and they may classify this situation as belonging to category 7. As
the consequences are large, a precautionary principle should be implemented,
addressing policies on containment, monitoring, research and development of
substitutes. The discursive strategy is also important, to build confidence and
reduce uncertainties.

(7) Large + large

This category is characterized by a large potential for loss or damage and large
uncertainties related to the consequences. Examples belonging to this category
are the greenhouse effect, human intervention in ecosystems, technical invention
in biotechnology, and persistent ecosphere pollutants. The consequences are
large, meaning that it is difficult to bound the losses and damages, and high
scores are given to one or more of ubiquity, persistency, etc. Uncertainties
are considered large as the phenomena leading to the consequences are not
well understood. It is difficult to establish appropriate performance measures
(observable quantities on a high level) describing the possible consequences.
Some researchers would refer to the uncertainties as unknown uncertainties or
ignorance. Risk and uncertainty analyses can be used to study aspects related to
specific performance measures. Decision analyses are not seen as an adequate
tool. A precautionary principle should be implemented, addressing policies on
containment, monitoring, research and development of substitutes. Key elements
of the risk management system would be to improve knowledge and emergency
management.
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How to use this classification system

Risk and uncertainty analyses, and multi-attribute analyses (with no explicit
trade-offs between attributes), are conducted for all categories except category
1. Formal decision analyses are restricted to categories 2 to 6, when found
appropriate.

This classification system provides a structure for categorizing situations or
problems according to potential consequences and uncertainty. These dimensions
characterize the situation or problem to some extent, but the definition of a
policy and a management strategy needs to take account of other factors, as
discussed above. This is an essential point. Risk management is more than
expert assessments of uncertainty and risks. We cannot base our decisions on
the results of risk and decision analyses alone. In practice we need to find
a proper balance between risk-based strategies, and precaution and discursive
strategies.

The above classification structure, with adjusted characterizations of potential
consequences and uncertainty, can also be applied in a project risk context to
identify a list of critical activities and issues that need to be followed up during
the project. The scheme then becomes a tool in the uncertainty management of
the project.

5.3.2 A Scheme Based on Closeness to Hazard and Level
of Authority

Many actors inside and outside an organization are in one way or another
involved in dealing with risks. Decisions involving uncertainty and risk are
made at different organizational levels and in a number of settings. Process
plant managers encounter situations which force them to make decisions that
will seriously affect production goals and accident risk in a conflicting man-
ner. To make satisfactory decisions, they are dependent on decisions by senior
management, e.g. in the form of policy statements, about priorities of accident
risk versus production goals. Regulatory agencies can be seen to make decisions
when imposing new requirements, e.g. to perform risk analysis and deal with
risk in specified ways. It is obvious that the context and nature of these decision
processes varies significantly. Often decision-makers are constrained in a way
that does not allow them to assess risk in detail.

The time and resources available for the decision normally restrict the degree
of modelling and refinement in the analysis. Even more important, formal risk
analysis is associated with procedures and a work environment setting, which
do not conform to all kinds of decision settings. It is obvious that senior man-
agers, with a high and diversified workload, in many cases may not be able
to perform structured risk analyses over environmental releases for a number
of decision alternatives. The same can be said for flight line engineers encoun-
tering shaft wear, with a half-hour time window to complete their inspections
and maintenance. Such constraints in the real world have implications for nor-
mative frameworks for application of risk analysis and management, such as
guidelines, standards and regulations. When should risk analysis be carried out
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before a decision is made, what form should it take and how should it be doc-
umented? With regard to the decision, additional questions arise: How should
alternative attributes be valued? How should uncertainty be valued? Obviously,
different actors have different roles in risk management.

The roles and the character of risk handling are closely linked to the decision
settings. We present a typology of decision settings, paying special attention to
constraints and the potential for risk analysis and management. The classification
is based on two dimensions: closeness to hazard and level of authority. It identi-
fies decision settings that are typical for certain groups of actors and it discusses
the appropriate constraints. It considers the implications of these constraints for
decision-makers or actors with respect to risk analysis and management, and it
shows the need for interaction among actors in different decision settings. There
is a brief discussion on some normative ideas about groups of actors, their roles,
responsibilities and interactions. Although the discussion is based on categories
of quite stereotypical actors, we believe the classifications provide some insight
into the limitations and the potential for risk management in different decision
contexts.

Characterizations of decision settings

Figure 5.6 presents the two-dimensional taxonomy for categorizing decision set-
tings. We think of proximity to hazard primarily in terms of physical distance
and time. This implies that pilots, offshore platform superintendents or aircraft
line maintenance personnel usually find themselves at the sharp end, i.e. close
to the hazard source. Designers, planners, analysts and regulatory institutions
typically operate at the blunt end. Some actors may be operationally close to
the hazard source, even though they are physically remote, for instance air traffic
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control operators or centralized train control operators. We will consider these
actors as belonging to the sharp end, even though they are less vulnerable in
the case of an accident. Actors at the sharp end are mostly event driven and
thus operate within a shorter time horizon for most of the time. We also expect
actors at the sharp end to have more updated and detailed hands-on knowledge
of the system they operate than actors at the blunt end.

Level of authority is conceived primarily in formal terms. Actor A has a higher
level of authority than actor B if actor A is entitled to give directives, orders
or instructions to actor B but not vice versa. This does not necessarily imply
that actor B is unable to exert power over actor A. Company executives may,
for instance, work through political channels to exert pressure on a regulatory
institution and influence standards and regulations.

The conditions under which actors make decisions strongly influence the deci-
sion processes which lead up to the decisions or to the way action is taken. We
thus expect decision criteria, procedures and outcomes to be related to (1) how
close an actor or decision forum is to the hazard and (2) the level of authority of
the actor or forum. These relationships are complex, since decision-makers also
adapt to circumstances not covered by these two dimensions. But even a grossly
simplified model of these relationships may be helpful in sensitizing us to the
way decision-makers adapt to their setting. Figure 5.7 shows a classification
scheme based on five distinct decision settings.

The decision settings are characterized by typical contingencies and con-
straints, influencing the manner in which decisions are taken, including decision
criteria, processes and limitations. We will consider the decision classes one
by one. The constraints governing actors in a decision setting obviously impact
their ability to analyse the outcome of alternative actions and/or to assess or deal
individually with risk for each decision. When reviewing the various decision
classes, we will also discuss the implications for risk analysis and management,
and how risk can be dealt with in an appropriate manner, acknowledging that not
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all actors can collect information and model the world in detail before making
a decision.

Routine operations

Let us first view decision-making in an operational environment, characterized
by the sharp end and low to medium authority. In this setting (and possibly
also in the others), action is not always the result of decisions, in the sense of
conscious deliberations or analysis and choice of action. More detailed under-
standing of how information is processed by humans to produce courses of action
in such settings can be found in the literature about human–machine interaction.
The most common such setting is the three modes of activity generation from
received information: skill based, rule based and knowledge based.

Skill-based behaviour is characterized by direct interaction between humans
and their environment in an automated, feedforward control mode. It differs from
rule-based or knowledge-based behaviour in that it does not relate to a ‘problem’,
but translates information or cues through a mental model (e.g. experience of
successful responses to inputs) into actions. Skill-based behaviour, in this sense,
precedes a potential problem.

Rule-based behaviour relates to a problem in a standard ‘if X takes a cer-
tain value x, then apply action d’, rule-type manner. It relies on a repertoire
of rules embedded in the decision-maker or the actor. In this sense it is a
problem-solving activity; information is related to the presence of a problem.
For successful application of a rule-based strategy, it is characteristic that the
problem encountered is matched by an adequate rule. Otherwise the output of
applying a rule will not be appropriate and it will lead to a hazard. Both skill
and rules are generated through induction from specific experience and mental
modelling to generalizations about appropriate reactions. Skills and rules can
be conceptualized as pre-programmed solutions and contingency plans. Both
cases generate a more or less automated response to changes in an observed
world.

Knowledge-based behaviour in operational decision settings occurs when a
problem is not addressed by the rule inventory, or when rules are broadly
defined. It is a different form of problem solving than rule-based action as
it involves analytic processes and prediction. Contrary to rule-based problem
solving, knowledge-based problem solving is characteristic for situations where
the problem is not well defined beforehand. In this categorization of behaviour,
knowledge-based behaviour most closely resembles the classical picture of deci-
sion-making as problem solving.

The relative frequency of erroneous behaviour observed using rules or skills
is low, whereas for knowledge-based decisions it is high.

Rules can be implicit and systems can have implicit reliance on rules. If safety
relies on application of skills and rules, they often need to be formalized. In
heavily regulated environments, e.g. aviation, reliance on explicit rules is strong.
As a result, such operations tend to have competence requirements, rules and
instructions that are more stringent and elaborate than those for less critical
operations. For example, aircraft mechanics are subject to detailed personal
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competence and training requirements. Their work is performed in accordance
with strict plans and detailed work instructions. Many potentially hazardous
observations are listed in the documentation and accompanied by clear rules to
follow.

Generally speaking, the operator will not refer to a model to make predictions
about the effect on higher-level attributes; they will not be uncertain about these.
The operator has observed a value x, which is certain. As long as there exists a
rule – which is deterministic – uncertainty is not an issue for the decision-maker
at the sharp end. Formalized, knowledge-based action in risk-sensitive environ-
ments will involve risk analysis. There exist examples of such formalisms, such
as Safe Job Analysis, practised in the offshore industry, but even if such a
formalism is adopted, important safety issues are often missed.

This does not imply that risk is not an issue at the sharp end. It is only
a recognition of the fact that sharp-end behaviour is governed by responses to
sensory inputs, which are predetermined and assume determinism in the relation
between action and response. From the viewpoint of organizational risk man-
agement, it identifies the need for risk and uncertainty assessment elsewhere.
Consequences of alternative decisions in response system behaviour need to
be assessed beforehand, and strategies or detailed rules for behaviour need to
be ‘pre-programmed’. The ‘elsewhere’ can be viewed as a design assessment
context. This is a typical blunt-end setting, where the available timescales and
resources allow data collection and analysis.

The ideas presented here do not imply that such analyses have to be performed
by a completely different category of people. The process of designing or pre-
programming appropriate responses or decisions, depend on experience transfer
from the sharp-end operational knowledge base. It appears quite sensible, even
mandatory, that personnel from operations are involved in the risk analysis and
pre-programming of decisions.

There are, however, practical limits to pre-programming of responses in com-
plex and dynamic work environments. It may not be feasible to foresee all
contingencies, and sharp-end personnel may not accept being pre-programmed
by outsiders. In these situations a more sensible approach may be to provide
operators with information on the boundaries of safe performance. The point is
not to specify how the operator is to perform the job, but rather to show the
boundary between safe and unsafe ways to do the job, see Rasmussen (1997).

Management

Management decisions, in the sense of unprogrammed decisions, can be asso-
ciated with actors and decision settings at a high level of organizational author-
ity and at the same time be somewhat removed from the sources of hazard.
Examples are company boards, executives and senior managers or directors.
Managers at this level could have typically up to 50 active problems to deal
with at any given time. Studies of decision behaviour show that these actors,
constrained by their information processing capacity, will often apply a sat-
isficing strategy when making decisions. This implies that they will look for
a decision option, which is good enough according to some aspiration level,
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see Section 5.1.3. Managers make many decisions without reference to antici-
pated consequences, but in accordance with rules and codes of conduct. This is
seen as a simplification of decision-making based on successful previous appli-
cations. However, decisions involving major risks cannot be dealt with on the
basis of prior experience. Rules of conduct for such decisions must therefore
refer to uncertainty about future events, i.e. risk, which cannot be deduced solely
from historical experience, as often that experience does not exist or is rather
limited. For problems which involve large risks, managers will often choose
to delegate all responsibility for the design phase to analytical functions; here
‘design phase’ means development of alternatives, analysis of consequence and
risk, and development of a recommendation for a decision. Analytical functions
can be interpreted as actors in a less exposed decision setting and at lower levels
of authority. This coincides with an analytical, bureaucratic decision setting, see
Figure 5.7. Decision-makers will retain the authority to approve a decision.

When risk analysis is carried out, the management decision-maker’s risk
assessment involves a more or less detailed assessment of the results of the
risk and uncertainty analysis prepared by the experts and analysts. In our ter-
minology this would coincide with a review of the predictions, the associated
uncertainty assessments and relevant background information. Also if a formal
decision analysis, for example a cost-benefit analysis, is performed, there is a
need for a review and judgement process to choose the best decision alternative;
see Section 5.1 for a more detailed discussion. Although many managers would
apply a satisficing regime and use off-the-shelf standards in many situations,
there is now wide acceptance for using a risk-based (informed) approach in
situations involving high consequences and large uncertainties. Have a look at
the classification system described in Section 5.3.1.

Political

Governmental and governmental agency decision-making is reflected in laws and
regulations. Such decision actors or forums deal at high levels of authority and
are far removed from safety hazard sources. The dominating decision-making
processes in these settings are political or negotiative, supported by bureau-
cratic processing. The dominating constraint on these processes is conflicts of
interest among stakeholders. The dominant decision criterion is thus to obtain
the degree of consensus necessary to conclude the decision process. Such deci-
sions should be seen less as solutions to well-defined problems and more as
results of compromise, conflict and confusion through bargaining among actors
with diverse interests. Many major decisions in national and international stan-
dardization forums (e.g. the International Organization for Standardization) and
industrial organizations (e.g. the International Civil Aviation Organization and
the International Maritime Organization) are made in this decision mode, in
a discursive manner, similar to political decisions. With consensus as a major,
albeit implicit, decision criterion, it is not meaningful to talk about optimal deci-
sions in a conventional sense. The ‘consensus’ is part of the ‘optimality’ crite-
rion. Moreover, changing coalitions may lead to inconsistencies of preferences
with time.
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We have assigned highly structured bureaucratic and political processes as
well as open-ended or even chaotic political processes to a single class because
bureaucratic and political decision processes are often tightly interwoven in prac-
tice. Political decisions are usually prepared and implemented by bureaucracies,
and bureaucratic decisions may be appealed to political forums or deflected by
actors working through political channels.

Due to the difficulties in achieving consensus on major changes from an exist-
ing platform, many political and bureaucratic decision processes come close to
the so-called incremental muddling through paradigm (or successive limited
comparisons) in which the actors build policy gradually through minor deci-
sions based on limited analysis. In many cases such a process is not possible.
Politicians need to make a number of far-reaching decisions, locally, regionally
and globally. And looking at our parliaments, we see that politicians do in fact
make a number of these decisions every year.

Uncertainty and risk analyses are requisite instruments in political decision-
making. They are designed to support the political decisions by assessing con-
sequences for alternative decision options and evaluation of consequences and
risk against presumptive values and preferences.

Uncertainty and risk assessment should have an important place in inform-
ing public policy-makers (decision-makers). As for managerial decisions, the
decision-makers should be informed about predicted consequences and the risk
and uncertainty assessments. Considering the common lack of agreement by
the political actors regarding the importance put on issues and objectives, care
should be shown when using formal decision analysis. Such analyses should be
used as decision aids, stressing that the value judgements adopted are used to
produce insights and not hard recommendations.

Analytical or bureaucratic

In blunt-end settings, remote from immediate hazard and with no direct execu-
tive authority, we find functions like design, engineering and planning, as well
as controlling and analytical functions. Actors in such functions are usually not
forced to make decisions at the pace of executives. Their resources for informa-
tion processing (e.g. time, calculation tools, data) tend to be relatively abundant.
This often allows them to seek decision options, analyse and evaluate them and
find the alternative that optimizes some criterion (e.g. NPV in a cost-benefit
analysis) under the given constraints. The groups of actors and organizational
functions falling into this setting are large and heterogeneous with respect to
the nature of work and decisions. For some, the focus will be to make routine
decisions, very similar to those described under operations, but more detached
from hazards. Other functions are more supporting functions for decisions at
higher levels.

We see three areas of involvement in risk management and decision-making
for actors in this decision setting: (1) decisions made on the actors’ own account,
(2) provision of decision aid to decision-makers at higher authority levels or
other actors inside the same category (e.g. analysts to designers) and (3) risk
analysis and pre-programming of decision rules for sharp-end functions.
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(1) Although actors in the bureaucratic domain tend to have more time, infor-
mation and information processing resources than actors in other domains, this
does not imply that optimization will be the dominant decision mode. Deci-
sions belonging to category (1) will on many occasions be made by following
rules of code, or through satisficing against predetermined criteria. A designer
has to relate to constraints of cost, weight, functionality, production limita-
tions, reliable operation, etc. The designer and his or her manager, normally
a middle manager with limited overall authority, can be expected to analyse
and judge one alternative against the local requirements. Seldom will an over-
all optimization take place. For certain types of equipment, such as critical
aircraft components, a risk (reliability) analysis will be performed for the com-
ponent and its function, which feeds into a global safety assessment for an
aircraft as a whole. In these cases we find close resemblance to an idealized
risk analysis. In terms of a decision analysis, the setting is more of a satisfic-
ing regime than an optimization regime. Optimization requires parallel analysis
and evaluation of relevant alternatives, i.e. more than one alternative. Often all
but one alternative would have been eliminated before performing a detailed
assessment.

(2) Risk and decision analysis as an aid to executive decision-making can take
various forms of detail and completeness. The analyst receives an assignment
from a manager with higher authority. The task is to recommend the best possible
solution to a problem. This is a setting typical of more strategic decision analysis.
The executive has defined the problem. The process of identifying alternatives,
analysing them with respect to their consequences and risk, evaluating them
and recommending a choice on this basis resembles the classical structure of
decision analysis. The tasks of the analyst are (a) with more or less involvement
from the decision maker, define relevant affected objectives; (b) establish a set of
alternative decisions or options to be assessed; (c) with assistance from databases
and experts, for each decision alternative collect data and information to be
used; (d) establish some form of model (fault tree, cause-consequence tree, etc.)
relating knowledge at a lower level to expressions of consequences and risk at
a higher level. Now a recommendation for a decision could be made on a direct
evaluation and heuristic choice, based on predictions and risk statements, or
more formal methods could be employed. Some standards for decision-making
involving risk encourage cost-benefit analysis in the ALARP region. In this
case, explicit value trade-offs and/or expected monetary values of consequences
would be required.

(3) Personnel dealing with sharp-end situations tend to apply pre-programmed
skills and rules in dealing with system feedback and problems. This implies that
a set of contingent decision rules to deal with possible system states needs to
be developed. This can be achieved after a prior risk analysis. On the basis of
undesirable outcomes, one needs to assess which observations could produce
these outcomes. This can be done by using fault tree techniques, for example.
Once a set of limiting values for the observations has been defined, rules can
be assessed to reduce the risk of a negative outcome. In addition to the spec-
ification of rules, the product of these exercises should be documentation of
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the assumptions used in the analysis and the criteria used in determining the
rule set. An important element of the blunt-end pre-programming, then, is the
continued experience feedback and updating of knowledge, risk and uncertainty
and, accordingly, the rules. Experience can then be compared to the predicted
consequences and the risk statements.

Crises and emergency management

Crisis and emergency are given many meanings in the literature, ranging from
a situation which is not manageable inside normal planning and processing
routines, via presence of serious threats that require prompt action, to extremely
dynamic situations with major consequences, such as fires. These situations have
in common that they relate to an environment evolving dynamically with serious,
but uncertain consequences. Here we focus on situations with a high degree
of seriousness. Decision-making is mainly concerned with limiting negative
consequences. During crises different patterns of decision-making are observed
and are required. The rate of information is often high, the time constraints are
narrow, the options may not be obvious and the consequences of an action will
be uncertain. Decision-makers who normally perform in a blunt-end manner,
perform under extreme hazard exposure. A decision-maker faced with a crisis
needs not only to find a way to avoid adverse outcomes. He also needs to
limit anxiety and stress to a level that is tolerable and compatible with efficient
coping. Unaided, the likelihood of inadequate decisions is high.

Appropriate behaviour in emergency and crisis settings obviously depends
on contingency planning and emergency training. Because we are dealing with
situations for which there usually exists little or no direct experience and which
develop highly dynamically, this type of planning requires prior risk analysis.
The purpose of the risk analysis in these cases is not to support a specific
decision, because the problem is not current or known in detail. The purpose is
rather to identify generic decisions and tie them to certain classes of situation. An
example could be a procedure to perform an emergency landing of a helicopter
in the event of sudden, heavy vibrations. No specific causal analysis is used to
support such a decision; no specific analysis of the direct effect of the vibration
supports this decision. The procedure is deduced from the knowledge that a
number of critical failures could produce heavy vibration (the class of failures
producing vibrations), and an effective decision to mitigate this risk is to perform
an emergency landing. Crisis management cannot be strongly linked to a specific
level of authority. In a crisis the roles and authority of an individual can change.
Depending on the severity of the crisis, functions at practically all levels of
authority can become involved in decision-making.

Emergencies are associated with high consequence contingencies and low
probabilities. One could consider them a form of residue of the risk assessment.
Because they are not dealt with in the normal risk decision-making and manage-
ment processes, they require a different approach. The purpose of risk analysis
and decision analysis in the case of crisis and emergency management is (a) to
identify critical situations to a degree possible, (b) to devise generic strategies
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as a planning basis, (c) to predetermine roles and responsibilities in the case of
emergency and (d) to allocate resources for emergencies. Planners and analysts
should convince the manager and provide them with a plan for an immedi-
ately available course of action worked out under calmer circumstances. This
is similar to the pre-programming of rules in support of operator environments.
Professional analysts should have a role in crisis situations as providers of real-
time analysis, to offload the managers’ need for information processing. Such
work sharing is advocated even if the analysis would have to be quick and dirty.

Interaction between classes of decision setting: roles and responsibilities

It is clear that risk management requires close interactions among classes of deci-
sion settings. Sometimes these can overlap with specific organizational functions
but they are not always identified as such. For example, a senior manager can
be seen in a strategic management function, but under certain circumstances
he can also perform as a crisis manager. The two cases would represent radi-
cally different constraints and, accordingly, the mode of decision-making would
be expected to vary. Constraints of many settings in which decisions affect-
ing risk are taken do not allow for formal analysis. Distribution of roles and
responsibilities between analytical functions, operational functions and execu-
tive management functions can be understood by keeping in mind the decision
settings and modes.

Figure 5.8 sketches a framework for the different roles, responsibilities and
relations. Higher-authority and sharp-end actors provide a knowledge base and
a frame of legal, moral and commercial values.

Political institutions and standardization agencies process public norms and
values through different forms of discourse and decisions on laws, regulation
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Figure 5.8 Influences from high-authority and sharp-end decision settings on
analytical processes
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Figure 5.9 Analytical support of high-authority and sharp-end decision settings

or standards. These form part of the background and influence organizational
assessment of risk. Executive management positions of companies express val-
ues and strategic priorities through strategy documents, budget guidelines and a
variety of formal and informal instructions and messages. These form references
for analysis and evaluations by analytical functions. Operational environments
provide updated process knowledge and experience data, which serve as input
to analytical processes through reporting systems, database records and informal
communication. The analytical function processes these inputs and information
through model building, drawing inferences about prediction and risk and, possi-
bly, some form of optimization. The product or output of the analytical function
is largely support and pre-programming of decisions for decision settings that
do not favour formal analysis. These principles are stylized in Figure 5.9.

For the political setting and the managerial setting, the output would consist
of predicted consequences and risk, and in some cases it would include rec-
ommendations for decision. For operational environments the analysis would
provide skill or competence requirements and standard operating procedures
(e.g. operation manuals, maintenance manuals, troubleshooting manuals). Con-
tingency planning requirements should be identified for all settings, including
emergency procedures, contingency measures and resources, and requirements
for emergency practices. In order to have an impact, risk analysts need to under-
stand the constraints facing decision-makers in other settings, and the strategies
used by decision-makers to cope with these constraints.

From the discussions here it seems apparent that risk and uncertainty are dealt
with, managed, through interaction and communication among a large number
of actors. The rather rudimentary and static picture drawn here is limited by
its generality. More detailed networks of interactions could be shown for more
specific societal areas, industries, life-cycle phases and organizations. But we
will not go further into this here. What appears clear is that for the formal
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interactions and processing of risk, we require a common understanding and a
common terminology.
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6

Summary and Conclusions

This chapter summarizes the main conclusions made in this book, with reference
to the relevant pages for the detailed presentation and discussion. When planning,
conducting and using risk analysis, we believe that the following points should
be adopted as a general guide:

1. Focus on quantities expressing states of the ‘world’, i.e. quantities of the
physical reality or nature that are unknown at the time of the analysis but
will, if the system being analysed is actually implemented, take some value
in the future, and possibly become known. We refer to these quantities as
observable quantities. (p. 48)

2. The observable quantities are predicted. Uncertainty related to the observ-
able quantities is expressed by means of probabilities. This uncertainty is
epistemic, i.e. a result of lack of knowledge. We cannot recommend the
common procedure of always thinking of underlying physical phenomena
producing some ‘true’ distributions. The starting point is that we lack knowl-
edge about the observable quantities and we use probabilities to express this
lack of knowledge. (p. 48)

3. Probabilities are based on a comparison with an urn model (or a probability
wheel) – when the analyst assigns a probability of 10%, say, it means that
his uncertainty is the same as drawing a favourable ball from an urn with
10% favourable balls under standard experimental conditions. In principle it
is meaningless to speak about the correctness of an assigned probability, as
a probability in our setting is a subjective measure. However, in some cases,
comparisons can be made with observations of the observable quantities,
but at the point of analysis the probabilities cannot be fully ‘verified’ as a
probability expresses uncertainty about an observable quantity viewed by
the analyst. What can be done is to review the background information
used as the rationale for the assignment, but in most cases it would not
be possible to explicitly document all the transformation steps from this
background information to the assigned probability. (p. 64)
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4. Training of risk analysts and experts should make them aware of factors,
including heuristics, that influence probability assignments.

5. To avoid unwanted variability, standardization of some probability assign-
ments are required when using risk analysis in a company, for example. In
general, consensus on probabilities is desirable. (p. 68)

6. Probabilities are always conditioned on background information, and this
information should be reported with the specified probabilities. (p. 50)

7. Models in a risk analysis context are deterministic functions linking observ-
able quantities on different levels of detail. The models are simplified rep-
resentations of the world. It is essential to discuss the goodness or appro-
priateness of the models to be used in a risk analysis, but the term ‘model
uncertainty’ has no meaning in our framework. The models used are part
of the background information. (pp. 48, 68)

8. A chance defined by the proportion of an infinite or very large population
of units having a certain property, is an observable quantity. (p. 79)

9. Different techniques exist to assess uncertainty and specify a probability for
an observable quantity:

• Modelling expresses the observable quantity as a function of a number
of other observable quantities. It is often easier to assess uncertainties of
observable quantities on this more detailed level. Modelling is used to
get insight into the system performance, to identify the risk contributors
and see the effect of changes. (p. 68)

• If historical data are available, classical statistical methods can be used as
a basis for assigning the probabilities. To use this approach, the observa-
tional data must be judged relevant and the number of observation must
be quite large. (p. 72)

• Analyst judgment using all sources of information is commonly adopted
when data are absent or are only partially relevant to the assessment
endpoint. (p. 73)

• Formal expert elicitation should be used when few data are available and
the assignments are likely to be scrutinized. (p. 74)

• Use a probability distribution class, e.g. the Poisson distribution, with
fixed parameter values, when the background information is fairly strong.
(p. 81)

• A full Bayesian analysis with specification of a prior distribution should
be used when seeking a mechanical and coherent updating procedure
for incorporating new information. Informative prior distributions should
preferably be used. (p. 72)

• A full Bayesian analysis with specification of a prior distribution could
also be used when little information is available. Meaningful interpreta-
tions of the parameters and the prior (posterior) distribution should be
given. (p. 82)

10. The risk analyses present predictions and uncertainty assessments of observ-
able quantities. They provide decision support. (p. 98)
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11. Formal decision analyses, such as multi-attribute analyses, cost-benefit anal-
yses and utility-based analyses, also provide decision support but not hard
decisions. The analyses need to be put into a wider decision-making con-
text, which we call a managerial review and judgment process, and this
process results in a decision. (p. 97)

12. Explicit trade-offs between the various attributes need not always be per-
formed to provide a good basis for decision. (p. 105)

13. In a cost-benefit analysis there exist no objective reference values for the
statistical cost of a life. (p. 101)

14. In most cases, multi-attribute analyses and versions of cost-benefit analyses
are rather easy to conduct compared with utility-based analyses. (p. 104)



Appendix A

Basic Theory of Probability
and Statistics

This appendix gives a brief summary of basic probability theory and statistical
inference. See the bibliographic notes for an overview of some key textbooks
and papers in the field.

A.1 PROBABILITY THEORY

Probabilities are used when considering future events with more than one pos-
sible outcome. In a given situation only one of these outcomes will occur; in
advance we cannot say which. Such situations are often called stochastic, or
random, as opposed to deterministic situations where the outcome is determined
in advance.

In the following we will give a precise definition of what we mean by a
probability and the rules that apply for dealing with probabilities.

A.1.1 Types of Probabilities

The probability of an event A, P (A), can be defined in different ways. It is
common to distinguish between three types of probabilities, or more precisely,
three conceptual interpretations:

• classical;
• relative frequency;
• subjective.

The classical interpretation applies only in situations with a finite number of out-
comes that are equally likely to occur. According to the classical interpretation,
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we have

P (A) = Number of outcomes resulting in A

Total number of outcomes
.

As an example consider the tossing of a die. Here P (the dice shows 2) = 1/6
since there are six possible outcomes which are equally likely to appear.

Following the relative frequency interpretation, probability is defined as the
fraction of times the event A occurs if the situation considered were repeated
(in real life or hypothetically) an infinite number of times. If an experiment is
performed n times and the event A occurs nA times, then

P (A) = lim
n→∞

nA

n
,

i.e. the probability of the event A is the limit of the fraction of the number of
times event A occurs when the number of experiments increases to infinity. Note
that a classical interpreted probability is equal to a relative frequency interpreted
probability. In our die example the proportion of dies showing 2 is 1/6 in the
long run, hence the relative frequency interpreted probability is 1/6.

It is common also to refer to the relative frequency interpretation as the
classical interpretation, and we adopt that convention in this book.

In most real-life situations, the relative frequency interpreted probability is
unknown and has to be estimated from experience data. Here is an example.

Example A.1 We consider a fire detector of a certain type K . The function of
the detector is to raise the alarm at a fire. Let A denote the event ‘the detector
does not raise the alarm at a fire’. To find P (A), assume that tests of n detectors
of type K have been carried out and the number of detectors that are not func-
tioning, nA, is registered. As n increases, the fraction nA/n will be approximately
constant and approach a certain value (this fact is called the strong law of large
numbers). This limiting value is called the probability of A, P (A). If n = 10 000
and we have observed nA = 50, then P (A) ≈ 50/10 000 = 5/1000 = 0.005
(0.5%). Note that a probability is by definition a number between 0 and 1, but
the quantity is also often expressed as a percentage.

The relative frequency interpretation is discussed in more depth in Chapter 2.
In the subjective interpretation, P (A) is a subjective measure of uncertainty.

This means that we (who assign the probability) compare the uncertainty of event
A occurring with drawing a favourable ball from an urn having P (A) × 100%
favourable balls under standard experimental conditions. This means that we
have the same degree of belief in the event A occurring as drawing a favourable
ball from an urn with P (A) × 100% favourable balls. Subjective probabilities
are thoroughly discussed in Chapter 4.

All probabilities are conditioned on some background information K , say.
Thus a more precise way of writing the probability P (A) is P (A|K), which
is the common way of expressing a conditional probability. To simplify the
notation, we normally omit the K . This should not cause any problem as long
as the background information is fixed throughout the argument.
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A.1.2 Probability Rules

Before we summarize some basic rules for probabilities, here is an overview of
some definitions from set theory. (The probability interpretations are given in
parentheses).

Definitions

The empty set ∅ A set with no elements (outcomes) (impossi-
ble event)

Basic set
(sample space)

S A set comprising all the elements we are con-
sidering (a certain event)

Subsets A ⊂ B A is a subset of B, i.e. each element of A is
also an element of B (if the event A occurs,
then the event B will also occur)

Equality A = B A has the same elements as B (if the event A

occurs, then also the event B occurs, and vice
versa)

Union A ∪ B A ∪ B includes all the elements of A and B

(A ∪ B occurs if either A or B occurs (or
both), i.e. at least one of the events occur)

Intersection A ∩ B A∩B includes only elements which are com-
mon for A and B (A∩B occurs if both A and
B occur)

Disjoint sets A ∩ B = ∅ The sets have no common elements (A and B

cannot both occur)

Difference A − B A − B includes all elements of A that are not
elements in B (A − B occurs if A occurs but
B does not occur)

Complement A A includes all elements of S that are not ele-
ments of A (A occurs if A does not occur)

Some of these definitions are illustrated by Venn diagrams in Figure A.1. The
following fundamental rules apply:

A ∪ B = B ∪ A,

A ∩ B = B ∩ A,

(A ∪ B) ∪ C = A ∪ (B ∪ C) = A ∪ B ∪ C,

(A ∩ B) ∩ C = A ∩ (B ∩ C) = A ∩ B ∩ C,
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Figure A.1 Venn diagrams

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

A ∪ B = A ∩ B,

A ∩ B = A ∪ B,

A ∪ A = S.

Modern probability theory is not based on any particular interpretation of
probability, although its standard language is best suited to the classical and
relative frequency interpretations. Throughout the presentation we highlight dif-
ferences between the relative frequency interpretation and the subjective inter-
pretation. The starting point is a set of rules, known as Kolmogorov’s axioms,
that have to be satisfied. Let A, A1, A2, . . . denote events in the sample space
S. For Example A.1 the sample space comprises the events ‘the detector raises
the alarm at a fire’ and ‘the detector does not raise the alarm at a fire’.

The following probability axioms are assumed to hold:

• 0 ≤ P (A),
• P (S) = 1,
• P (A1 ∪ A2 ∪ · · · ) = P (A1) + P (A2) + · · ·+,

if Ai ∩ Aj = ∅ for all i and j, i 
= j.
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Based on these axioms it is possible to deduce the following probability rules:

P (A) = 1 − P (A),

P (A1 ∪ A2) = P (A1) + P (A2) − P (A1 ∩ A2),

A1 ⊂ A2 ⇒ P (A1) ≤ P (A2).

Conditional probabilities

The conditional probability of the event B given the event A is denoted P (B|A).
As an example, consider two components and let A denote the event ‘component
1 is not functioning’ and let B denote the event ‘component 2 is not functioning’.
The conditional probability P (B|A) expresses the probability that component 2
is not functioning when it is known that component 1 is not functioning.

The conditional probability P (B|A) is defined by

P (B|A) = P (B ∩ A)

P (A)
, (A.1)

whenever P (A) > 0. Calculation rules for standard unconditional probabilities
also apply to conditional probabilities. From (A.1) we see that

P (A ∩ B) = P (B | A) P (A).

More generally we have

P (A1 ∩ A2 ∩ · · · ∩ An) = P (A1) P (A2 |A1) · · ·P (An |A1 ∩ A2 ∩ · · · ∩ An−1).

Some other important rules including conditional probabilities are:

P (B | A) = P (A | B) P (B)

P (A)
; (A.2)

if ∪r
i=1Ai = S and Ai ∩ Aj = ∅, i 
= j , then

P (B) =
r∑

i=1

P (B ∩ Ai) =
r∑

i=1

P (B | Ai) P (Ai). (A.3)

Equation (A.2) is known as Bayes’ theorem and equation (A.3) as the law of
total probability.

Independence

Two events, A and B, are said to be independent if the occurrence or non-
occurrence of one does not change the occurrence probability of the other.
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Mathematically, this means that

P (B | A) = P (B),

or equivalently
P (A | B) = P (A),

P (A ∩ B) = P (A) P (B).

If A and B are independent, then A and B are also independent, as well as A

and B, and A and B. If the subjective probability interpretation is adopted, we
say that A and B are judged independent.

The events A1, A2, . . . , An are (judged) independent if

P (Ai1 ∩ Ai2 ∩ · · · ∩ Air ) =
r∏

j=1

P (Aij )

for any set of different indices {i1, i2, . . . , ir}, r = 1, 2, . . . , n, taken from the
set {1, 2, . . . , n}.

Example A.2 Refer back to Example A.1. Assume we have established that
P (A) = 0.005, where A denotes the event ‘the detector does not raise the alarm
at a fire’. To reduce the probability of no alarm at a fire, we install two detectors.
The problem is now to compute the probability of the following events:

B = ‘No detectors are functioning at a fire’,

C = ‘At least one of the detectors is functioning at a fire’.

To compute these probabilities, let Ai , i = 1, 2, denote the event ‘detector i does
not function at a fire’. Then B = A1 ∩ A2 and C = A1 ∪ A2. We know that
P (A1) = P (A2) = 0.005, but this information is not sufficient for calculating
P (B) and P (C). Assuming A1 and A2 are independent, we find that

P (B) = P (A1 ∩ A2) = P (A1)P (A2) = 0.0052 = 0.25 × 10−4,

P (C) = P (A1 ∪ A2) = 1 − P (A1)P (A2) = 0.999975.

Alternatively, we could have found P (C) by

P (C) = P (A1) + P (A2) − P (A1)P (A2)

= 0.995 + 0.995 − 0.9952 = 0.999975.

Given that at least one of the detectors does not function, what is the proba-
bility that detector 1 is not functioning? Intuitively, it is clear that this condi-
tional probability will be approximately 50%. To show this formally, note that
this probability can be expressed as P (A1|A1 ∪ A2). Use of various probability
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rules gives

P (A1 | A1 ∪ A2) = P [A1 ∩ (A1 ∪ A2)]

P (A1 ∪ A2)
= P (A1)

P (A1) + P (A2) − P (A1)P (A2)

= 0.005

0.005 + 0.005 − 0.0052
≈ 1

2
,

as expected.

A.1.3 Random Quantities (Random Variables)

In applications we often focus on one or more summarizing performance mea-
sures, in contrast to all possible outcomes. Let us return to the detector example.
Assume that we are considering k detectors. We are primarily interested in the
number of detectors that are not functioning, i.e. not raising the alarm. Let X

denote this number. The value of X is uniquely given when the outcome of the
‘experiment’ is registered. If, for example, k = 2 and it is observed that detector
1 is functioning but not detector 2, then X = 1. Thus we may view X as a func-
tion from the sample space to the real numbers. We call such variables random
variables or stochastic variables. If the subjective probability interpretation is
adopted, it is common to refer to X as a random quantity. The word ‘variable’
is usually avoided as it gives the wrong impression that X varies. We will use
the term ‘random quantity’ as the generic term and refer to random variables
only when interpreting probability in a classical or relative frequency way.

Let in general X denote a random quantity and assume that X is discrete,
i.e. it can only take a finite number of values or a countably infinite number of
values. Let P (X = x) denote the probability of the event ‘X = x’, where x

is one of the values X can take. We call the function f (x) = P (X = x) the
probability distribution of X, or simply the distribution of X.

In many applications we prefer to work with random quantities having contin-
uous distributions, i.e. distributions characterized by a probability density f (x)

such that

P (a < X ≤ b) =
∫ b

a

f (x) dx.

Thus if b − a is small,

P (a < X ≤ b) ≈ f (x) (b − a).

Mean and variance of X

The mean or the expected value of X, EX, is defined as

EX =
∑
x

x P (X = x).

From the definition we see that EX can be interpreted as the centre of mass
of the distribution. Consider again the fire detector example. It follows from
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the strong law of large numbers that EX is approximately equal to the average
number of detectors that are not functioning among the k, if we look at a large
number of identical collections of k detectors. Hence the mean can also be
interpreted as an average value.

The variance of X, Var X, is a measure of the spread or variability of the
values of X around EX, and is defined by

Var X =
∑
x

(x − EX)2 P (X = x).

The standard deviation of X is given by
√

Var X.
The mean and variance in the continuous case are defined by

EX =
∫ ∞

−∞
xf (x) dx,

Var X =
∫ ∞

−∞
(x − EX)2f (x) dx.

Independence

Let X1, X2, . . . , Xn denote n arbitrary random quantities. We say that these
quantities are independent if

P (X1 ≤ x1 ∩ X2 ≤ x2 ∩ · · · ∩ Xn ≤ xn) =
n∏

i=1

P (Xi ≤ xi)

for all choice of x1, x2, . . . , xn. In a subjective probability context, independence
means judged independence.

Exchangeability

Next we introduce the notion of exchangeability. Consider two discrete random
quantities, X1 and X2. Then X1 and X2 are said to be exchangeable if for all
values x1 and x2 that X1 and X2 can take, we have

P (X1 = x1 and X2 = x2) = P (X1 = x2 and X2 = x1);

that is, the assessed probabilities are unchanged (invariant) by switching (per-
muting) the indices.

More generally, random quantities X1, X2, . . . , Xn are exchangeable if their
joint distribution is invariant under permutations of coordinates, i.e.

F(x1, x2, . . . , xn) = F(xr1, xr2, . . . , xrn),

where F is a generic joint cumulative distribution for X1, X2, . . . , Xn and equal-
ity holds for all permutation vectors (r1, r2, . . . , rn).

Exchangeability is weaker than independence because, in general, exchange-
able random quantities are dependent. Independent random quantities having
identical probability distributions are exchangeable, but not vice versa. In a
subjective probability context, exchangeability means judged exchangeability.
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Some rules for random quantities

Here are some important rules for the mean and variance (a and b are constants)

E(aX + b) = aEX + b,

EX ≤ EY if X ≤ Y ,

E(X1 + X2 + · · · + Xn) = EX1 + EX2 + · · · + EXn,

Var(aX + b) = a2 Var X,

Eh(X) =
{ ∑

x h(x)P (X = x) if X is discrete,∫ ∞
−∞ h(x)f (x) dx if X is continuous.

If the Xi are independent, then

Var(X1 + X2 + · · · + Xn) = Var X1 + Var X2 + · · · + Var Xn.

In the general case

Var(X1 + X2 + · · · + Xn) =
n∑

i=1

Var Xi + 2
∑
j<l

Cov(Xj , Xl),

where Cov(Xj , Xl) = E(Xj −EXj)(Xl −EXl) is the covariance of Xj and Xl .
The covariance is closely related to the correlation coefficient, ρ, defined by

ρ(Xj , Xl) = Cov(Xj , Xl)/(σXj
σXl

),

where σX is the standard deviation of X. The correlation coefficient ρ satisfies
ρ ∈ [−1, 1].

Conditional probability and expectation

One of the most useful concepts in probability theory is that of conditional
probability and expectation. Let X and Y be two discrete random quantities.
Then the conditional probability distribution of Y given that X = x is

f (y|x) = P (Y = y|X = x) = P (Y = y, X = x)

P (X = x)

for all values such that P (X = x) > 0. The conditional expectation of Y given
X = x is defined by

E(Y |X = x) =
∑
y

y f (y|x).

Similarly, we can define a conditional probability distribution of X and a con-
ditional expectation for continuously distributed random quantities:

f (y|x) = f (y, x)/g(x),

E(Y |X = x) =
∫ ∞

−∞
y f (y|x) dy,
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where f (y, x) is the joint density function for the random quantities Y and X,
given by

P (a < Y ≤ b, c < X ≤ d) =
∫ b

a

∫ d

c

f (y, x) dx dy,

and g(x) is the probability density of X. Let E(Y |X) denote the function of the
random quantity X whose value at X = x is E(Y |X = x). Note that E(Y |X)

is itself a random quantity. Then it can be shown that

EY = EE(Y |X). (A.4)

If Y is a discrete random quantity, then this equation states that

EY =
∑
x

E(Y |X = x)P (X = x),

while if X is a continuous random quantity with density g(x), then it states that

EY =
∫ ∞

−∞
E(Y |X = x)g(x) dx.

If X1 and X2 are independent random quantities, having continuous distri-
butions F1 and F2, respectively, the distribution of the sum, Y = X1 + X2, is
given as

P (Y ≤ y) =
∫ ∞

−∞
F1(y − x)f2(x) dx,

where f2 is the density of X2. The analogous formula in the discrete case is

P (Y ≤ y) =
∑
x

F1(y − x)P (X2 = x).

These formulas follow by applying the rule (A.4) with Y replaced by the indi-
cator, function, which is one if Y ≤ y and zero otherwise. The distribution of
Y is known as the convolution of the distributions F1 and F2.

The strong law of large numbers

The following theorem, known as the strong law of large numbers, is one of
the most well-known results in probability theory. It states that the average of
a sequence of independent random quantities having the same distribution will,
with probability one, converge to the mean of that distribution.

Theorem A.1 Let X1, X2, . . . be a sequence of independent random quantities
having a common distribution, and let EXi = µ. Then with probability one

X1 + X2 + · · · + Xn

n
→ µ as n → ∞.



BASIC THEORY OF PROBABILITY AND STATISTICS 159

A.1.4 Some Common Discrete Probability Distributions (Models)

Here are some common discrete distributions, often known as probability mod-
els, following a standard presentation in the classical setting. Section A.1.6
contains some comments on how to interpret and use these distributions in
a framework based on subjective probabilities.

Binomial distribution

The binomial distribution is used in situations where a series of independent
trials are performed, where each trial results in either success or failure. These
trials are called Bernoulli trials. If p is the constant probability of success in a
trial and if k is the number of trials, then the total number of successes, which
we denote by X, is binomially distributed with parameters k and p, i.e.

P (X = x) =
(

k

x

)
px(1 − p)k−x,

where the binomial coefficient

(
k

x

)
is defined by

(
k

x

)
= k!/x!(k − x)!.

Here k! = 1 × 2 × 3 × · · · × k, etc. For a binomial distribution it can be shown
that

EX = kp and Var X = kp(1 − p).

In the fire detector example, X is binomially distributed with parameters k and
p = 0.995. Note that if X is binomially distributed with parameters k and p,
then k − X, which represents the number of failures, is binomially distributed
with parameters k and 1 − p.

Geometric distribution

The geometric distribution is closely related to the binomial distribution. Con-
sider a series of independent Bernoulli trials with p denoting the probability of
success. Then X, defined by the number of trials required until the first success,
is geometrically distributed with parameter p, i.e.

P (X = x) = p(1 − p)x−1 , x = 1, 2, . . . .

For this distribution we have

EX = 1

p
and Var X = 1 − p

p2
.
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Poisson distribution

A random quantity X is said to be Poisson distributed with parameter λ if

P (X = x) = λxe−λ

x!
, x = 1, 2, . . . .

This distribution is often used for describing the number of events occurring
during a specified period of time. The mean and variance of X are both equal
to λ.

If X has a binomial distribution with parameters n and p, with n large and p

small, the binomial distribution can be accurately approximated by the Poisson
distribution with mean np. Consider the occurrence of events X in a time interval
[0, t], and divide the interval into a number of small subintervals. Then we may
ignore the probability of two or more events occurring in each sub-interval,
and the total number of events in [0, t] can be written as a sum of “successes’
in a number of Bernoulli trials. It follows that X has a binomial distribution
with large n and small p, and can consequently be approximated by a Poisson
distribution.

A.1.5 Some Common Continuous Distributions (Models)

Here are some common continuous distributions, again following a standard
presentation in the classical setting. Section A.1.6 contains some comments on
how to interpret and use these distributions in a framework based on subjective
probabilities.

Uniform distribution

A random quantity X is uniformly distributed on the interval (a, b) if it has a
probability density given by

f (x) =



1

b − a
if a < x < b,

0 otherwise.

The mean and variance of X are equal to (b−a)/2 and (b−a)2/12, respectively.

Exponential distribution

A random quantity X is said to be exponentially distributed with parameter λ

(> 0) if

P (X ≤ x) = 1 − e−λx, x ≥ 0.

Often an exponential lifetime distribution is used for describing the lifetime of
a unit, and assume in the following that X represents such a lifetime. For this
distribution we have P (X > u+v | X > u) = P (X > v), which means that the
probability of the unit surviving an additional amount of time v does not depend
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on how long the unit has functioned. The exponential distribution is the only
distribution with this property. This lack of memory simplifies the mathematical
modelling.

An important quantity in studying lifetime distributions is the so-called failure
rate, z(x), defined by

z(x) = f (x)

1 − F(x)
, (A.5)

where F(x) = P (X ≤ x). For the exponential distribution, the failure rate is
equal to λ, i.e. independent of time. To see the physical interpretation of the
failure rate, consider a small time interval (x, x + h) and assume that the unit
has survived x. Then we find that

1

h
P (X ≤ x + h | X > x) = 1

h

P (x < X ≤ x + h)

P (X > x)

= F(x + h) − F(x)

h

1

1 − F(x)
→ f (x)

1 − F(x)
= z(x) when h → 0.

Thus

P (X ≤ x + h | X > x) ≈ z(x) h

for small values of h. We see that the failure rate expresses the proneness of the
unit to fail at time (age) x. A high failure rate means there is a high probability
that the unit will fail soon, whereas a small failure rate means that there is a
small probability that the unit will fail in a short time. The cumulative failure
rate

∫ x

0 z(t) dt is known as the hazard and is denoted by Z(x).

The mean and variance in the exponential distribution are given by:

EX = 1

λ
and Var X = 1

λ2
.

Weibull distribution

A random quantity X is said to be Weibull distributed with parameters λ (> 0)

and β (> 0) if the distribution is given by

P (X ≤ x) = 1 − e−(λx)β , x ≥ 0.

We call λ the scale parameter and β the form parameter. If β = 1 the failure
rate becomes a constant. Hence the exponential distribution is a special case of
the Weibull distribution. When β > 1 the failure rate is increasing, and when
β < 1 it is decreasing. Note that

1 − F(λ−1) = e−1 = 0.3679 for all β > 0.

The quantity λ−1 is often called the characteristic lifetime.
The mean (expected) lifetime of the Weibull distribution is given by

EX = 1

λ
�

(
1 + 1

β

)
,
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where �(·) is the gamma function defined by

�(x) =
∫ ∞

0
tx−1 e−t dt, x > 0.

In particular, we have

�(n + 1) = n! , n = 0, 1, 2, . . . .

The variance of X becomes

Var X = 1

λ2

[
�

(
1 + 2

β

)
− �2

(
1 + 1

β

)]
.

Gamma distribution

If X1, X2, . . . , Xn are independent and exponentially distributed random quan-
tities with parameter λ, then X = X1 + X2 + · · · + Xn is gamma distributed
with parameters λ and n, i.e.

f (x) = λ

�(n)
(λx)n−1 e−λx, x ≥ 0. (A.6)

Assume that n units of a certain type have exponentially distributed lifetimes
X1, X2, . . . , Xn with failure rate λ and that the units are put into operation one
by one as a unit fails. Then the total lifetime equals the sum of the Xi .

The parameter n in (A.6) does not need to be restricted to the positive integers.
If it is a positive integer, we can write the survivor function in the following
form:

1 − F(x) =
n−1∑
i=0

(λx)i

i!
e−λx.

The mean and variance of the gamma distribution are given by

EX = n

λ
,

Var X = n

λ2
.

Chi-square distribution

A random quantity X is chi-square distributed with parameter ν if it has a
density given by

f (x) = x(ν/2)−1e−x/2

2ν/2�(ν/2)
, x ≥ 0.

The mean of the distribution equals ν and the variance 2ν. The chi-square distri-
bution is closely linked to the gamma distribution. If X has a gamma distribution
with parameters (n, λ), then 2λX is chi-square distributed with parameter 2n.



BASIC THEORY OF PROBABILITY AND STATISTICS 163

Beta distribution

A random quantity X is said to be beta distributed with parameters a and b if
it has a density given by

f (x) = �(a + b)

�(a)�(b)
xa−1(1 − x)b−1,

for x ≥ 0, and a > 0, b > 0. The mean and variance are equal to a/(a + b) and
ab/

[
(a + b)2(a + b + 1)

]
, respectively.

Beta-binomial distribution

A random quantity X is said to be beta-binomial distributed with parameters
(n, a, b) if it has a density given by

f (x) =
(

n

x

)
�(a + x)�(n + b − x)�(a + b)

�(n + a + b)�(a)�(b)
,

for x = 0, 1, 2, . . . , n, a > 0, b > 0 and n = 0, 1, 2, . . . . The mean and
variance are equal to na/(a + b) and nb(n + a + b)/

[
(a + b)2(a + b + 1)

]
,

respectively.

Triangular distribution

A random quantity X is triangle distributed with parameters a, b and c if it has
a density given by

f (x) =




2(x − a)

(b − a)(c − a)
if a ≤ x ≤ b,

2(c − x)

(c − a)(c − b)
b < x ≤ c.

The density increases linearly from a to b, and then decreases linearly from b

to c. The mean and variance are equal to (a + b + c)/3 and (a2 + b2 + c2 −
ab − ac − bc)/18, respectively.

Normal distribution

The random quantity X is said to be normally distributed with parameters µ

and σ 2 if it has a density given by

f (x) = 1√
2π

exp

{
−

(
x − µ

σ

)2
}

, −∞ < x < ∞.

It can be shown that EX = µ and Var X = σ 2. If µ = 1 and σ = 1, the
distribution is called a standard normal distribution. The normal distribution
is probably the most widely used distribution in the entire field of statistics
and probability. It turns out that the means of a number of populations exhibit
a bell-shaped (i.e. normal) curve. The central limit theorem gives a precise
mathematical formulation of this fact.
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Theorem A.2 Let X1, X2, . . . , be a sequence of independent random quanti-
ties having a common distribution, and let EXi = µ and Var Xi = σ 2. Then,

X1 + X2 + · · · + Xn − nµ

σ
√

n

tends to the standard normal distribution with mean 0 and variance 1, i.e.

P

(
X1 + X2 + · · · + Xn − nµ

σ
√

n
≤ a

)
→ 1√

2π

∫ a

−∞
e−x2/2 dx,

as n → ∞.

Lognormal distribution

A random quantity X is said to be lognormally distributed with parameters µ

and σ 2 if ln X has a normal distribution with parameters µ and σ 2.

Multivariate normal distribution

Let Z1, Z2, . . . , Zn be a set of n independent standard normally distributed
random quantities. If for some constants aij and µi , we can write

Xi = µi +
n∑

j=1

aijZj ,

for i = 1, 2, . . . , m, then the random quantities X1, X2, . . . , Xm have a mul-
tivariate normal distribution. This distribution is completely specified by the
knowledge of the values of all EXi and Cov(Xi, Xj ). It can be shown that any
linear combination of the Xi is a normally distributed random quantity.

If n is equal to 2, the multivariate normal distribution is known as the bivariate
normal distribution.

A.1.6 Some Remarks on Probability Models
and Their Parameters

The above review of commonly used distribution classes is in accordance with
a classical view of probability. The random quantities (variables) have a true,
underlying distribution and the distribution class is a model of this distribution;
that is, it is a representation of the real world. By statistical inference we seek
to identify the best parameter value, in the sense that it gives the most accurate
representation of the world.

In a framework based on subjective probabilities, called the Bayesian frame-
work or the Bayesian approach, it is not obvious how to interpret and use
probability distribution classes or models. Can we speak about models in this
case? Well, according to the Bayesian approach, all probabilities are subjective
probabilities, based on judgements, reflecting our uncertainty about something.
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Probabilities are always conditioned on the background information, K say.
To specify the probabilities related to a random quantity X, a direct assign-
ment could be used, based on everything we know. Since this knowledge is
often complex, of high dimension, and much in K may be irrelevant to X, this
approach is often replaced by probability models, which is a way of abridging K

to make it manageable. Such probability models play a key role in the Bayesian
approach. A probability model, p(x|θ), expresses the probability distribution of
the unknown quantity X given a parameter θ . This parameter θ is unknown, it
is a random quantity and our uncertainty related to its value is specified through
a prior distribution P (θ). According to the law of total probability,

P (X ≤ x) =
∫

p(x|θ) dP (θ). (A.7)

More precisely, showing the dependence on the background information K ,

P (X ≤ x|K) =
∫

P (X ≤ x|θ, K) dP (θ |K). (A.8)

If we knew θ , we would judge X independent of K , so that for all θ , P (X ≤
x|θ, K) = P (X ≤ x|θ), then equation (A.8) is equal to (A.7). Thus the uncer-
tainty distribution of X is expressed via two probability distributions, p(x|θ)

and P (θ |K). The latter distribution is the prior distribution of θ . The two distri-
butions reflect what is commonly known as aleatory (stochastic) uncertainty and
epistemic (state of knowledge) uncertainty. If more data become available, the
prior distribution is updated to the posterior distribution using Bayes theorem.
See Section 2.3.4 page 37 and Section 4.3.4 page 79 for a discussion of this
interpretation.

A.1.7 Random Processes

A random process (stochastic process) X(t), t ∈ T , is a collection of random
quantities. That is, for each t ∈ T , X(t) is a random quantity. The index t is
often interpreted as time and, as a result, we refer to X(t) as the state of the
process at time t. The set T is called the index set of the process. In this book T

is usually [0, ∞ ) or {0, 1, 2, . . . }. We shall look at just one example of random
processes, the Poisson process.

The Poisson process

Consider a sequence of events occurring at times S1, S2, . . . , and let Ti denote
the interarrival times given by Ti = Si − Si−1, i = 1, 2, . . . , where S0 = 0.
Furthermore let N(t) denote the number of events that have occurred before or
at time t , i.e.

N(t) = max{i : Si ≤ t}.
The random process N(t) is called a counting process. If the random quantities
Ti are independent and identically distributed, the process is called a renewal
process and if in addition the lifetime distribution is exponential with parameter
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λ, N(t) is a Poisson process with parameter λ. It can be shown that if N(t)

is a Poisson process with parameter λ, then N(t) is Poisson distributed with
parameter λt , i.e.

P (N(t) = i) = (λt)i

i!
e−λt , i = 0, 1, 2, . . . .

Thus

EN(t) = λt.

For a counting process we define the associated intensity process λ(t) by

lim
h→0

E [N(t + h) − N(t)|N(u), u ≤ t]

h
= λ(t). (A.9)

In the Poisson process case λ(t) is equal to the constant λ, i.e. the intensity
does not depend on the history of the process up to time t. Thus, if the expected
number of failures per unit of time is independent of the history and is equal to
a constant λ, the process is a Poisson process with rate λ.

A.2 CLASSICAL STATISTICAL INFERENCE

This section reviews some elementary statistical inference in a classical context.
The emphasis is on estimation.

A.2.1 Non-Parametric Estimation

Consider a random variable X, having probability distribution F(x) = P (X ≤
x). The task is to estimate this distribution given observations X1, X2, . . . , Xn.
The random variable X has a distribution function F . All the random variables
are assumed independent.

Often the data are censored, i.e. we do not observe Xi , but min{Xi, Ci}, where
Ci is the censoring time. We will, however, not discuss this case any further
here.

As an estimator for F(x) we may use the empirical distribution function,
F̂ (x), defined by

F̂ (x) = 1

n

∑
i

I (Xi ≤ x),

where I is the indicator function, which equals 1 if the argument is true and 0
otherwise. If n → ∞, then F̂ (x) → F(x) with probability one.

For non-negative observations the Nelson–Aalen estimator is often used. This
is an estimator of the cumulative failure rate Z(x) = ∫ x

0 z(t) dt , cf. (A.5), and
is given by

Z∗(t) =
∑

{i:,Xi≤t}

1

n − i + 1
.
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Based on estimators as above we can make plots and fit the distribution to a
parametric class of distributions, like the exponential distribution. If we compute
the Nelson–Aalen estimator and the plot is close to a straight line starting at the
origin, this would indicate that an exponential distribution may be appropriate
as the hazard of this distribution is such a straight line.

In this framework a particular probability model can be formally evaluated
via so-called ‘goodness-of-fit’ tests. The idea is to use a measure of distance
between the empirical distribution and the underlying theoretical distribution.
Consult textbooks in statistics for the details.

A.2.2 Estimation of Distribution Parameters

We assume that the distribution F(x) belongs to a known parametric class of
distributions, for example the exponential class or the normal class. The problem
is to estimate the parameters of the distribution. As above we assume that we
have observations X1, X2, . . . , Xn.

Maximum likelihood estimation

We begin with the Poisson distribution. Let

f (x|λ) = λxe−λ

x!
.

The probability distribution related to the observed data Xi = xi then becomes

n∏
i=1

f (xi |λ) = λx1+x2+···+xne−nλ

n∏
i=1

1

xi!
.

As a function of the parameter λ, this probability is called the likelihood function
and is denoted L(λ). The likelihood function is a measure of the likelihood of
the observed result as a function of the unknown parameter. The maximum
likelihood estimate (MLE) of λ is denoted λ∗ and it maximizes L(λ). In other
words, MLE is the value of λ that makes the observed result most likely. In
practice the MLE is determined by differentiating the likelihood function and
setting the derivative equal to zero. By doing this, we obtain

λ∗ =x1 + x2 + · · · + xn

n
,

i.e. the average number of the observations.
Now consider any distribution and let θ = (θ1, θ2, . . . , θp) be the parameter

of the distribution. Furthermore, let f (t |θ) denote the probability density in the
continuous case and the distribution P (X = x) in the discrete case. For the
exponential distribution θ = λ, and for the normal distribution θ = (µ, σ 2). In
this set-up the likelihood function is given by

L(θ) =
n∏

i=1

f (xi |θ).
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For the exponential distribution with θ = λ, we find that

λ∗ = n

x1 + x2 + · · · + xn

,

and for the normal distribution we find that

µ∗ = x1 + x2 + · · · + xn

n
,

(σ 2)∗ = 1

n − 1

n∑
i=1

(xi − µ∗)2
.

In general it is not possible to find an explicit expression for the MLE. Numer-
ical methods must then be used.

Confidence interval

As a measure of data variation, a confidence interval (region) for θ is often
presented in addition to the estimate of the parameter.

An interval (θL, θH ) is said to be a (1 − α)100% confidence interval if there
is a probability of 1 − α that the interval contains θ , that is

P (θL < θ < θH ) = 1 − α.

The level 1−α is a measures of our confidence that the interval contains θ . The
most common values of α are 0.10 and 0.05. Notice that θL and θH are random
variables. When the confidence interval is calculated, i.e. we observe specific
values of θL and θH , the resulting interval either contains the true value of θ

or it does not, but in the long run if the experiment were repeated many times,
then θ would be included in the confidence interval (1 − α)100% of the times.
The level of confidence 1 − α therefore expresses a property of the method that
we are using to determine the interval.

In the exponential model a (1 − α)100% confidence interval is given by

(λL, λH ) =
(

zα/2,2n

2(X1 + X2 + · · · + Xn)
,

z1−α/2,2n

2(X1 + X2 + · · · + Xn)

)

where zα,v equals the α quantile in the chi-square distribution with v degrees of
freedom. The α quantile of the distribution of a random variable X is the value
xα such that P (X ≤ xα) = α. For the Poisson process model with rate λ and
observed in an interval [0, t], we can use the following interval:

(λL, λH ) =
(zα/2,2N

2t
,
z1−α/2,2(N+1)

2t

)
,

where N is the number of events observed in [0, t]. Consider the following
example.

Example A.3 We consider the problem of specifying a 90% confidence interval
for the rate λ in a Poisson process, based on the data given in Section 2.1.2. Dur-
ing 12 years of observation, 12 leakages are registered. This gives an estimated
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rate of 1 per year. A 90% confidence interval, given these data, is

λL = 13.85

2 × 12
= 0.58

λH = 38.89

2 × 12
= 1.62.

A.2.3 Testing Hypotheses

The set-up is as above. We assume that the distribution F(x) belongs to a
known parametric class of distributions and that we have available observations
X1, X2, . . . , Xn. We use the binomial model with parameters n and p to illus-
trate ideas. The observation Xi here refers to ‘success’ in the ith experiment,
such that the sum of the Xis is the total number of observed ‘successes’. This
sum is prior observation seen as a random variable, and we denote it by Y .

The problem is now to formulate a statistical test. We do this by formulating
statements about the parameter of the probability model; in this case the success
probability p. The starting point is the null hypothesis, H0, which we may
think of as ‘p = 0.25’, say. The test questions the truth of this statement in
relation to an alternative hypothesis H1, say ‘p > 0.25’. If the data provide
sufficient support, we assert that H0 is false and H1 is correct. We conclude in
this way if we have a high confidence about the correctness of H1. As a concrete
example, consider a medical treatment that is known to have a ‘success’ rate of
25%. An adjustment of this treatment is considered, and the question is whether
this adjustment would increase the ‘success’ rate. It is reasonable to assert that
p > 0.25 if the number of successes is large, i.e. Y ≥ k, for a suitable choice of
k. We see that if k is specified, the test is specified. Let α be the probability that
Y ≥ k if H0 is true, i.e. p = 0.25. These probabilities for various k are found
from statistical tables for the binomial distribution, or use of approximations to
the normal distribution.

We search for a k such that α becomes rather small, say 0.05 or 0.10. For
example, if n = 20 and α = 0.10, we find that k = 8, which corresponds to a
fraction of successes of 40%. If we observe 8 or more successes, the result is
so ‘extreme’ relative to H0, that we reject H0. We refer to α as the significance
level of the test. It is the probability of an error of type I, i.e. of rejecting H0
when in fact it is true. It should be rather low as it represents a probability
of making a wrong conclusion–asserting H1 if H0 is true. On the other hand,
specifying a very low value of α means that the probability of not concluding
that H1 is true if it is in fact true, becomes high. So a balance has to be achieved.
The probability of this latter type of error is denoted β, and it is a function of
the parameter value. This type of error is called an error of type II. In our
example, if p = 0.30, the probability that we do not reject H0, the type II error
probability P (Y < 8|p = 0.3) is about 77%. We see that to reject H0 a rather
extreme observation is required using the above principles. The point is that
type I errors are considered more serious than type II errors. In the medical
treatment example, the starting point is that there is no improvement. Only if
the data give very strong support for the alternative hypothesis, should we reject
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H0; the probability of a failure of type I should be small. Note that when not
rejecting H0, we do not say that H0 is true; the conclusion is that we do not
have statistical evidence to reject the null hypothesis.

A.2.4 Regression

Regression analysis is mainly used for prediction. By developing a statistical
model, the values of a dependent or response variable Y is predicted based on
the values of an independent variable X. As an example, an economist might
want to develop a statistical model that predicts how much money a popula-
tion of people would spend (Y ) based on how much money they earn (X).
The simplest type of regression analysis is based on a linear regression model.
To develop the model, we assume that a sample of n independent observa-
tions (X1, Y1), (X2, Y2), . . . , (Xn, Yn) is obtained, where Xi represents the ith
value of the independent variable X and where Yi represents the corresponding
response; that is, the ith value of the dependent variable Y . The linear regres-
sion model specifies that there is an underlying true relationship between EY

and EX, expressed by a linear function. In practice this linear function is not
realized because of randomness. Mathematically, these ideas are formulated as

Yi = β0 + β1Xi + εi,

where εi is the random error in Y for observation i, and β0 and β1 are constants
to be estimated. We see that β1 represents the slope of the line Y = β0 + β1X

and β0 represents the intercept of the line with the Y -axis. We may think of
this underlying straight line as a model of the true relationship between EY

and EX for a large (infinite) population of which the sample of n belongs to.
The random variables εi represent the error terms. A common model for these
error terms is the normal distribution with mean zero and variance σ 2. This
distribution reflects the variations of the observations Y around their expected
values.

To estimate the parameters βi , the standard technique is to apply the method
of least squares, i.e. to identify the values that minimize the sum of squared
errors in the sample. We denote the estimators β∗

i and they are given by

β∗
0 = Y − β∗

1 X,

β∗
1 =

∑n
i=1(Xi − X)Yi∑n
i=1(Xi − X)2,

where X = ∑n
i=1 Xi/n and Y = ∑n

i=1 Yi/n. To predict Y based on X we use
the line Y = β∗

0 + β∗
1 X.

To estimate the variance σ 2, the common estimator is

S2 = 1

n − 2

n∑
i=1

(Yi − β∗
0 + β∗

1 Xi)
2.

Confidence intervals and statistical tests can now be derived for the parameters
βi and σ 2. We refer to textbooks in statistics.
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A.3 BAYESIAN INFERENCE

To illustrate the Bayesian approach to statistical inference, we first consider the
Poisson distribution. Suppose we are interested in the number X of failures of
a system in operation during a specific period of time in the future. We assume
that X is Poisson distributed with parameter λ = 1 or λ = 2. We may think of
these two parameter values as corresponding to two alternative types of system,
type 1 and 2. Now, suppose that we have just one observation, x1. The MLE
of λ is then equal to x1. Following the Bayesian approach, we also include the
analysts’ knowledge (uncertainty) related to the value of λ, before observing
x1. This knowledge is expressed by subjective probabilities P1 and P2, with
P1 + P2 = 1. We call Pi the prior distribution of λ. Given the observation
X1 = x1, we obtain the posterior distribution P D

i reflecting our knowledge
(uncertainty) about the value of λ given the data:

P D
i = cf (x1|i)Pi, i = 1, 2, (A.10)

where c is a constant such that P D
1 + P D

2 = 1 and f (x|λ) = λxe−λ/x!. To
establish this posterior distribution we have used Bayes’ formula, which gives

P D
λ = P (λ|X1 = x1) = P (X1 = x1|λ)Pλ

P (X1 = x1)
= cf (x1|λ)Pλ, λ = 1, 2.

Suppose that Pi = 0.5 and that we have observed X1 = 1. Then (A.10) gives
a posterior distribution P D

1 = 0.58 and P D
2 = 0.42. It is natural to estimate

λ by 1 as P D
1 > P D

2 . In this situation we can divide the uncertainty into the
stochastic (aleatory) uncertainty given by the Poisson distribution and the state-
of-knowledge (epistemic) uncertainty related to the true value of λ expressed
by the posterior distribution. As long as we stick to the Poisson distribution,
additional information will change only the state-of-knowledge uncertainty dis-
tribution.

Using the law of total probability, we can establish the so-called predictive
distribution of X:

P (X = x) = f (x|1)P D
1 + f (x|2)P D

2 . (A.11)

This distribution reflects both the stochastic and the state-of-knowledge uncer-
tainty. Inserting the numerical values in (A.11), we find that P (X = 0) = 0.27.

Now let us return to the general setting in Section A.2.2, with θ as the
unknown parameter. If p(θ) expresses the a prior probability density, then the
posterior density p(θ | Data), is given by

p(θ | Data) = c L(θ) p(θ), (A.12)

where c is a constant such that the integral over p(θ | Data) is 1. The posterior
density expresses our uncertainty with respect to the true value of θ when the
data are observed, and includes all the available information about θ . Based on
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the posterior distribution, we can establish estimators and credibility intervals.
This will be illustrated below for the exponential distribution.

Assume in the rest of this section that the underlying lifetime distribution is
exponential with failure rate λ. If the a priori density p(λ) takes the form

p(λ) = baλa−1e−bλ/�(a),

i.e. p is a gamma density with parameters a and b, then we find that the
posterior density is also a gamma density, with parameters a + n and b + y,

where y = x1 + x2 + · · · + xn. This means that the exponential and the gamma
distributions are conjugate—the distribution classes of the prior and the posterior
are the same. Writing F(x|λ) = 1−e−λx, the predictive distribution is given by

P (Xi ≤ x) = E [F(x|λ)] =
∫

(1 − e−λx)pD(λ) dλ, (A.13)

where pD(λ) is the posterior density function of λ. A natural estimator for λ is
the mean of the posterior distribution

λ̂ = a + n

b + y
. (A.14)

A (1−α)100% credibility interval for λ, (λL, λH ), is determined by the posterior
probability

P (λL < λ < λH | Data) = 1 − α.

With a gamma a priori density it can be shown that the interval(
zα/2,2(a+n)

2(b + y)
,

z1−α/2,2(a+n)

2(b + y)

)

is a (1−α)100% credibility interval, where zα,v equals the α quantile in the chi-
square distribution with v degrees of freedom. Note that a credibility interval is
interpreted given that the data are observed, in contrast to the classic confidence
interval, which is interpreted before the data are observed.

A critical part of the Bayesian analysis is to establish the a priori distribution.
The choice of a gamma a priori density gives simple mathematics. In addition
it can be shown that if the a priori distribution is non-informative, i.e.

p(λ) =



1

M
for 0 ≤ λ ≤ M (M large),

0 otherwise,

then the resulting posterior distribution is an approximate gamma distribution.
We can think of a situation where we started with a non-informative a pri-
ori distribution and this distribution was updated to a gamma distribution. The
parameter a − 1 in the gamma distribution can be interpreted as the number of
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observations in an earlier experiment (real or fictional) and b as the correspond-
ing test time. See Section 4.3.4 page 82 for a more detailed discussion on the
specification of prior distributions.

In the Bayesian theory, it is often referred to as the likelihood principle. It
states that the only contribution the data make to inference is through the like-
lihood function for the observed data. This principle renders significance tests
not acceptable. The likelihood therefore plays a more important role in Bayesian
statistics than it does in the frequentist form, yet the likelihood alone is not ade-
quate for inference but needs to be tempered by the parameter distribution,
see (A.12).

If data are available to compare with the predictive distributions, we can
obtain an assessment of the predictive ability of a proposed model. The purpose
of this type of assessment is to evaluate the ‘goodness’ of the models as a
basis for selecting a proper model. In the Bayesian paradigm, model selection
is formally done via Bayes factors and prequential prediction; see Singpurwalla
and Wilson (1999).

A.3.1 Statistical (Bayesian) Decision Analysis

We briefly review the basic formalism of statistical decision analysis. A decision-
maker has to choose a single action a from a space of possible actions A.
Features of the world are modelled by an unknown state of nature θ , which is
known to lie in a set of possible states of nature �. If the decision-maker chooses
action a and θ is the state of nature, the consequence equals c(a, θ), which
is possibly multidimensional or multi-attributed. Before choosing the action,
the decision-maker may observe an outcome X = x of an experiment, which
depends on the unknown state θ . The distribution of X is denoted by p(x|θ). The
decision-maker’s objectives are encoded in a real-valued loss function l(a, θ),
which measures the loss or negative utility of the consequence c(a, θ), i.e.
in everyday terms, it measures the value or worth of the consequence to the
decision-maker. The problem for the decision-maker is to choose an action
d(x) to minimize in some sense l(d(x), θ). The notation d(x) emphasizes we
are seeking to identify a decision rule that suggests which action to take when
X = x has been observed. Since θ is unknown, this is not straightforward and
several approaches have been suggested. Two of them are the minimax approach
and the Bayesian approach.

The minimax solution is to define d(·) by minimizing over the set of all
possible decision rules the maximum expected loss with respect to θ , where the
expectation is taken with respect to p(x|θ), i.e. choose d(·) such that

max
θ

E [l(d(X), θ)|θ ]

is minimized.
The Bayesian solution is to encode the decision-maker’s prior knowledge of

θ through the prior distribution p(·). The knowledge is updated through the
use of Bayes’ theorem to obtain the posterior distribution p(θ |x). Then the
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decision-maker should choose the action d(x) = a to minimize their posterior
expected loss, i.e. choose a such that

E[l(a, θ)|x]

is minimized, where expectation is with respect to θ .
This decision framework can also be used for classical statistical inference.

BIBLIOGRAPHIC NOTES

Some references providing more comprehensive and detailed overviews of prob-
ability theory and statistical inference are Bedford and Cooke (2001), Lindley
(2000), Ross (1993), Singpurwalla and Wilson (1999) and Vose (2000). Confi-
dence intervals for the exponential and Poisson distributions are given in Bain
and Engelhardt (1991). The review of statistical decision theory is based on
French and Insua (2000).



Appendix B

Terminology

This appendix summarizes some risk analysis and management terminology used
in the book. Unless stated otherwise, the terminology is in line with the standard
developed by the ISO TMB Working Group on risk management terminology
(ISO 2002). ISO is the International Organization for Standardization.

The relationships between the terms and definitions for risk management are
shown following the definitions. Risk management is part of the broader man-
agement processes of organizations.

1. aleatory uncertainty
variation of quantities in a population
This definition is not given in the ISO standard.

2. consequence
outcome of an event
There may be one or more consequences from an event. Consequences may
range from positive to negative. Consequences may be expressed qualita-
tively or quantitatively.

3. epistemic uncertainty
lack of knowledge about the ‘world’ (i.e. the system performance), and
observable quantities in particular
In our framework, uncertainty is the same as epistemic uncertainty. In a
classical approach to risk analysis, epistemic uncertainty means uncertainty
about the (true) value of a parameter of a probability model.
This definition is not given in the ISO standard.

4. event
occurrence of a particular set of circumstances

5. interested party
person or group having an interest in the performance of an organization
Examples are customers, owners, employees, suppliers, bankers, unions,
partners or society.

Foundations of Risk Analysis: A Knowledge and Decision-Oriented Perspective. Terje Aven
Copyright 2003 John Wiley & Sons, Ltd.

ISBN: 0-471-49548-4



176 APPENDIX B

A group may be an organization, part of an organization, or more than one
organization.

6. mitigation
limitation of any negative consequence of a particular event

7. observable quantity
quantity expressing a state of the ‘world’, i.e. a quantity of the physical
reality or nature, that is unknown at the time of the analysis but will, if
the system being analysed is actually implemented, take some value in the
future, and possibly become known
This definition is not given in the ISO standard.

8. probability
a measure of uncertainty of an event
This definition can be seen as a special case of the definition given by the
ISO standard: ‘extent to which an event is likely to occur’.

9. residual risk
the risk remaining after risk treatment

10. risk
uncertainty of the performance of a system (the world), quantified by prob-
abilities of observable quantities
When risk is quantified in a risk analysis, this definition is in line with the
ISO standard definition: ‘combination of the probability of an event and
its consequence’.

11. risk acceptance
a decision to accept a risk
Risk acceptance depends on risk criteria

12. risk acceptance criterion
a reference by which risk is assessed to be acceptable or unacceptable
This definition is not included in the ISO standard. It is an example of a
risk criterion.

13. risk analysis
systematic use of information to identify sources and assign risk values
Risk analysis provides a basis for risk evaluation, risk treatment and risk
acceptance. Information can include historical data, theoretical analysis,
informed opinions, and concerns of stakeholders.

14. risk assessment
overall process of risk analysis and risk evaluation

15. risk avoidance
decision not to become involved in, or action to withdraw from a risk situa-
tion
The decision may be taken based on the result of risk evaluation.

16. risk communication
exchange or sharing of information about risk between the decision-maker
and other stakeholders
The information may relate to the existence, nature, form, probability,
severity, acceptability, treatment or other aspects of risk.

17. risk control
actions implementing risk management decisions
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Risk control may involve monitoring, re-evaluation, and compliance with
decisions.

18. risk criteria
terms of reference by which the significance of risk is assessed
Risk criteria may include associated cost and benefits, legal and statu-
tory requirements, socio-economic and environmental aspects, concerns of
stakeholders, priorities and other inputs to the assessment.

19. risk evaluation
process of comparing risk against given risk criteria to determine the sig-
nificance of the risk
Risk evaluation may be used to assist the decision-making process.

20. risk financing
provision of funds to meet the cost of implementing risk treatment and
related costs

21. risk identification
process to find, list and characterize elements of risk
Elements may include source, event, consequence, probability. Risk iden-
tification may also identify stakeholder concerns.

22. risk management
coordinated activities to direct and control an organization with regard to
risk
Risk management typically includes risk assessment, risk treatment, risk
acceptance and risk communication.

23. risk management system
set of elements of an organization’s management system concerned with
managing risk
Management system elements may include strategic planning, decision-
making, and other processes for dealing with risk

24. risk optimization
process, related to a risk, to minimize the negative and to maximize the
positive consequences and their respective probabilities
In a safety context risk optimization is focused on reducing the risk.

25. risk perception
set of values or concerns with which a stakeholder views risk
Risk perception depends on the stakeholder’s needs, issues and knowl-
edge.

26. risk quantification
process used to assign values to risk
In the ISO standard on risk management terminology, the term ‘risk esti-
mation’ is used, with the definition ‘process used to assign values to the
probability and consequence of a risk’.

27. risk reduction
actions taken to reduce risk
This definition extends the ISO standard definition: ‘actions taken to lessen
the probability, negative consequences, or both, associated with a risk’.

28. risk retention
acceptance of the burden of loss or benefit of gain from a risk
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Risk retention includes the acceptance of risks that have not been iden-
tified. Risk retention does not include treatments involving insurance, or
transfer by other means.

29. risk transfer
share with another party the benefit of gain or burden of loss for a risk
Risk transfer may be effected through insurance or other agreements. Risk
transfer may create new risks or modify existing risk. Legal or statutory
requirements may limit, prohibit or mandate the transfer of certain risk.

30. risk treatment
process of selection and implementation of measures to modify risk
The term ‘risk treatment’ is sometimes used for the measures themselves.
Risk treatment measures may include avoiding, optimizing, transferring or
retaining risk.

31. source
thing or activity with a potential for consequence
Source in a safety context is a hazard.

32. source identification
process to find, list and characterize sources
In the safety literature, source identification is called hazard identification.

33. stakeholder
any individual, group or organization that may affect, be affected by, or
perceive itself to be affected by the risk
The decision-maker is also a stakeholder. The term ‘stakeholder’ includes,
but has a broader meaning than ‘interested party’.

34. uncertainty
lack of knowledge about the performance of a system (the ‘world’), and
observable quantities in particular
This definition is not given in the ISO standard.

RISK MANAGEMENT: RELATIONSHIPS
BETWEEN KEY TERMS
• Risk assessment

• Risk analysis

• Source identification
• Risk quantification

• Risk evaluation

• Risk treatment

• Risk avoidance
• Risk optimization
• Risk transfer
• Risk retention

• Risk acceptance
• Risk communication
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