LAMPIRAN

1) KARAKTERISTIK RESPONDEN

<table>
<thead>
<tr>
<th>JENIS KELAMIN</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laki-Laki</td>
<td>57</td>
<td>57.0</td>
<td>57.0</td>
<td>57.0</td>
</tr>
<tr>
<td>Perempuan</td>
<td>43</td>
<td>43.0</td>
<td>43.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>USIA</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30 tahun</td>
<td>63</td>
<td>63.0</td>
<td>63.0</td>
<td>63.0</td>
</tr>
<tr>
<td>31-40 tahun</td>
<td>30</td>
<td>30.0</td>
<td>30.0</td>
<td>93.0</td>
</tr>
<tr>
<td>41-50 tahun</td>
<td>7</td>
<td>7.0</td>
<td>7.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PEKERJAAN</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNS/BUMN</td>
<td>28</td>
<td>28.0</td>
<td>28.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Karyawan Swasta</td>
<td>30</td>
<td>30.0</td>
<td>30.0</td>
<td>58.0</td>
</tr>
<tr>
<td>Wiraswasta</td>
<td>31</td>
<td>31.0</td>
<td>31.0</td>
<td>89.0</td>
</tr>
<tr>
<td>Pelajar</td>
<td>11</td>
<td>11.0</td>
<td>11.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

2) JAWABAN RESPONDEN

a) Gaya Hidup (X1)

<table>
<thead>
<tr>
<th>GH1</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>29</td>
<td>29.0</td>
<td>29.0</td>
<td>32.0</td>
</tr>
<tr>
<td>Valid</td>
<td>55</td>
<td>55.0</td>
<td>55.0</td>
<td>87.0</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>13.0</td>
<td>13.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>GH2</td>
<td>Frequency</td>
<td>Percent</td>
<td>Valid Percent</td>
<td>Cumulative Percent</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>31</td>
<td>31.0</td>
<td>35.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>40</td>
<td>40.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>25</td>
<td>25.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GH3</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>7.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Valid</td>
<td>3</td>
<td>23</td>
<td>23.0</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>31</td>
<td>31.0</td>
<td>64.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>36</td>
<td>36.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GH4</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Valid</td>
<td>3</td>
<td>19</td>
<td>19.0</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>45</td>
<td>45.0</td>
<td>72.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>28</td>
<td>28.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GH5</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Valid</td>
<td>3</td>
<td>31</td>
<td>31.0</td>
<td>33.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>42</td>
<td>42.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>25</td>
<td>25.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
GH6

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>36.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>36.0</td>
<td>81.0</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>19.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

GH7

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>11.0</td>
<td>15.0</td>
</tr>
<tr>
<td>3</td>
<td>33</td>
<td>33.0</td>
<td>48.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>40.0</td>
<td>88.0</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>12.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

GH8

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>6.0</td>
<td>8.0</td>
</tr>
<tr>
<td>3</td>
<td>37</td>
<td>37.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>40.0</td>
<td>85.0</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>15.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

b) Kepribadian (X2)

K1

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>23.0</td>
<td>29.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>51.0</td>
<td>80.0</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>20.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
K2

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>26.0</td>
<td>26.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>45.0</td>
<td>45.0</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>28.0</td>
<td>28.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

K3

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>36.0</td>
<td>36.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>38.0</td>
<td>38.0</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

K4

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>17.0</td>
<td>17.0</td>
</tr>
<tr>
<td>Valid</td>
<td>3</td>
<td>31.0</td>
<td>31.0</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>36.0</td>
<td>36.0</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

K5

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Valid</td>
<td>3</td>
<td>35.0</td>
<td>35.0</td>
</tr>
<tr>
<td>4</td>
<td>29</td>
<td>29.0</td>
<td>29.0</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
K6

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>36.0</td>
<td>36.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>24</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>5</td>
<td>34</td>
<td>34.0</td>
<td>34.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

c) Keputusan pembelian (Y)

KP1

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>13.0</td>
<td>13.0</td>
<td>14.0</td>
</tr>
<tr>
<td>Valid</td>
<td>3</td>
<td>41</td>
<td>41.0</td>
<td>41.0</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>27.0</td>
<td>27.0</td>
<td>82.0</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>18.0</td>
<td>18.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

KP2

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>8.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>Valid</td>
<td>3</td>
<td>30</td>
<td>30.0</td>
<td>30.0</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>44.0</td>
<td>44.0</td>
<td>83.0</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>17.0</td>
<td>17.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

KP3

<table>
<thead>
<tr>
<th></th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>30.0</td>
<td>30.0</td>
<td>34.0</td>
</tr>
<tr>
<td>Valid</td>
<td>4</td>
<td>44</td>
<td>44.0</td>
<td>44.0</td>
</tr>
<tr>
<td>5</td>
<td>22</td>
<td>22.0</td>
<td>22.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>KP4</td>
<td>Frequency</td>
<td>Percent</td>
<td>Valid Percent</td>
<td>Cumulative Percent</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>3</td>
<td>32</td>
<td>32.0</td>
<td>32.0</td>
<td>39.0</td>
</tr>
<tr>
<td>Valid 4</td>
<td>52</td>
<td>52.0</td>
<td>52.0</td>
<td>91.0</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>9.0</td>
<td>9.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KP5</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>38.0</td>
<td>38.0</td>
<td>48.0</td>
</tr>
<tr>
<td>Valid 4</td>
<td>40</td>
<td>40.0</td>
<td>40.0</td>
<td>88.0</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>12.0</td>
<td>12.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KP6</th>
<th>Frequency</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4.0</td>
<td>4.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Valid 3</td>
<td>22</td>
<td>22.0</td>
<td>22.0</td>
<td>28.0</td>
</tr>
<tr>
<td>4</td>
<td>53</td>
<td>53.0</td>
<td>53.0</td>
<td>81.0</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
<td>19.0</td>
<td>19.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>
3) UJI VALIDITAS

a) Hasil uji validitas variabel Gaya Hidup (X1)

<table>
<thead>
<tr>
<th></th>
<th>GH1</th>
<th>GH2</th>
<th>GH3</th>
<th>GH4</th>
<th>GH5</th>
<th>GH6</th>
<th>GH7</th>
<th>GH8</th>
<th>GAYA HIDUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1.000</td>
<td>.470**</td>
<td>.475**</td>
<td>.054</td>
<td>.185</td>
<td>.390*</td>
<td>-.125</td>
<td>.891**</td>
<td>.700**</td>
</tr>
<tr>
<td>GH1</td>
<td>Sig. (1-tailed)</td>
<td>.004</td>
<td>.004</td>
<td>.389</td>
<td>.163</td>
<td>.017</td>
<td>.255</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.470**</td>
<td>1.000</td>
<td>.318</td>
<td>.206</td>
<td>.527**</td>
<td>.379*</td>
<td>.248</td>
<td>.446**</td>
<td>.725**</td>
</tr>
<tr>
<td>GH2</td>
<td>Sig. (1-tailed)</td>
<td>.004</td>
<td>.043</td>
<td>.138</td>
<td>.001</td>
<td>.019</td>
<td>.093</td>
<td>.007</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.475**</td>
<td>.318</td>
<td>1.000</td>
<td>.218</td>
<td>.083</td>
<td>.338*</td>
<td>.134</td>
<td>.287</td>
<td>.616**</td>
</tr>
<tr>
<td>GH3</td>
<td>Sig. (1-tailed)</td>
<td>.004</td>
<td>.043</td>
<td>.123</td>
<td>.332</td>
<td>.034</td>
<td>.241</td>
<td>.062</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.054</td>
<td>.206</td>
<td>.218</td>
<td>1.000</td>
<td>.298</td>
<td>.260</td>
<td>.481**</td>
<td>.046</td>
<td>.512**</td>
</tr>
<tr>
<td>GH4</td>
<td>Sig. (1-tailed)</td>
<td>.389</td>
<td>.138</td>
<td>.123</td>
<td>.055</td>
<td>.082</td>
<td>.004</td>
<td>.404</td>
<td>.002</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.185</td>
<td>.527**</td>
<td>.083</td>
<td>.298</td>
<td>1.000</td>
<td>.232</td>
<td>.364*</td>
<td>.270</td>
<td>.594**</td>
</tr>
<tr>
<td>GH5</td>
<td>Sig. (1-tailed)</td>
<td>.163</td>
<td>.001</td>
<td>.332</td>
<td>.055</td>
<td>.108</td>
<td>.024</td>
<td>.074</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.390*</td>
<td>.379*</td>
<td>.338*</td>
<td>.260</td>
<td>.232</td>
<td>1.000</td>
<td>.333*</td>
<td>.304</td>
<td>.658**</td>
</tr>
<tr>
<td>GH6</td>
<td>Sig. (1-tailed)</td>
<td>.017</td>
<td>.019</td>
<td>.034</td>
<td>.082</td>
<td>.108</td>
<td>.036</td>
<td>.051</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>-.125</td>
<td>.248</td>
<td>.134</td>
<td>.481**</td>
<td>.364*</td>
<td>.333*</td>
<td>1.000</td>
<td>.060</td>
<td>.440**</td>
</tr>
<tr>
<td>GH7</td>
<td>Sig. (1-tailed)</td>
<td>.255</td>
<td>.093</td>
<td>.241</td>
<td>.004</td>
<td>.024</td>
<td>.036</td>
<td>.377</td>
<td>.008</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.891**</td>
<td>.446**</td>
<td>.287</td>
<td>.046</td>
<td>.270</td>
<td>.304</td>
<td>-.060</td>
<td>1.000</td>
<td>.655**</td>
</tr>
<tr>
<td>GH8</td>
<td>Sig. (1-tailed)</td>
<td>.000</td>
<td>.007</td>
<td>.062</td>
<td>.404</td>
<td>.074</td>
<td>.051</td>
<td>.377</td>
<td>.000</td>
</tr>
</tbody>
</table>

Note:
- "**" indicates significance at the 0.01 level (2-tailed).
- "*" indicates significance at the 0.05 level (2-tailed).
- "*" indicates significance at the 0.10 level (2-tailed).

Correlations table with appropriate significance levels and sample size (N=30) provided.
b) Hasil uji validitas variabel Kepribadian (X2)

<table>
<thead>
<tr>
<th></th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>KEPRIBADIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>GAYA HIDUP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.002</td>
<td>.000</td>
<td>.008</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Correlations

<table>
<thead>
<tr>
<th></th>
<th>K1</th>
<th>K2</th>
<th>K3</th>
<th>K4</th>
<th>K5</th>
<th>K6</th>
<th>KEPRIBADIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1</td>
<td>.199</td>
<td>.371</td>
<td>.320</td>
<td>.393</td>
<td>.225</td>
<td>.633**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td></td>
<td>.146</td>
<td>.022</td>
<td>.042</td>
<td>.016</td>
<td>.116</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.199</td>
<td>1</td>
<td>.215</td>
<td>.491</td>
<td>.056</td>
<td>.454</td>
<td>.545**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td></td>
<td>.146</td>
<td>.127</td>
<td>.003</td>
<td>.384</td>
<td>.006</td>
<td>.001</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.371**</td>
<td>.215</td>
<td>1</td>
<td>.475</td>
<td>.313</td>
<td>.341</td>
<td>.757**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td></td>
<td>.022</td>
<td>.127</td>
<td>.004</td>
<td>.046</td>
<td>.033</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.320</td>
<td>.491</td>
<td>.475</td>
<td>1</td>
<td>.213</td>
<td>.902</td>
<td>.824**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td></td>
<td>.042</td>
<td>.003</td>
<td>.004</td>
<td>.129</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.393</td>
<td>.056</td>
<td>.313</td>
<td>.213</td>
<td>1</td>
<td>.164</td>
<td>.509**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td></td>
<td>.016</td>
<td>.384</td>
<td>.046</td>
<td>.129</td>
<td>.193</td>
<td>.002</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.225</td>
<td>.454</td>
<td>.341</td>
<td>.902</td>
<td>.164</td>
<td>1</td>
<td>.732**</td>
</tr>
</tbody>
</table>
Hasil uji validitas variabel Keputusan Pembelian (Y)

<table>
<thead>
<tr>
<th>Correlations</th>
<th>KP1</th>
<th>KP2</th>
<th>KP3</th>
<th>KP4</th>
<th>KP5</th>
<th>KP6</th>
<th>KEPUTUSAN PEMBELIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>KEPRIBADIAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.633**</td>
<td>.545**</td>
<td>.757**</td>
<td>.824**</td>
<td>.509**</td>
<td>.732**</td>
<td>1</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>.116</td>
<td>.006</td>
<td>.033</td>
<td>.000</td>
<td>.193</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

*, Correlation is significant at the 0.05 level (1-tailed).

**, Correlation is significant at the 0.01 level (1-tailed).

<table>
<thead>
<tr>
<th>KP1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>1</td>
<td>.266</td>
<td>.093</td>
<td>.313*</td>
<td>.267</td>
<td>.472**</td>
<td>.615**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>.078</td>
<td></td>
<td>.312</td>
<td>.046</td>
<td>.077</td>
<td>.004</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>KP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.266</td>
<td>1</td>
<td>.191</td>
<td>.152</td>
<td>.331*</td>
<td>.174</td>
<td>.537**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>.078</td>
<td>.156</td>
<td>.211</td>
<td>.037</td>
<td>.178</td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>KP3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.093</td>
<td>.191</td>
<td>1</td>
<td>.231</td>
<td>.324</td>
<td>.526**</td>
<td>.610**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>.312</td>
<td>.156</td>
<td>.110</td>
<td>.040</td>
<td>.001</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>KP4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.313*</td>
<td>.152</td>
<td>.231</td>
<td>1</td>
<td>.573**</td>
<td>.317*</td>
<td>.665**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>.046</td>
<td>.211</td>
<td>.110</td>
<td>.000</td>
<td>.044</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>KP5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.267</td>
<td>.331*</td>
<td>.324</td>
<td>.573**</td>
<td>1</td>
<td>.400*</td>
<td>.743**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>.077</td>
<td>.037</td>
<td>.040</td>
<td>.000</td>
<td>.014</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.472*</td>
<td>.174</td>
<td>.526**</td>
<td>.317*</td>
<td>.400*</td>
<td>1</td>
<td>.738**</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>.004</td>
<td>.178</td>
<td>.001</td>
<td>.044</td>
<td>.014</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>KEPUTUSAN</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Pearson Correlation</td>
<td>.615**</td>
<td>.537**</td>
<td>.610**</td>
<td>.665**</td>
<td>.743**</td>
<td>.738**</td>
<td>1</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>.000</td>
<td>.001</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>PEMBELIAN</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

* Correlation is significant at the 0.05 level (1-tailed).
** Correlation is significant at the 0.01 level (1-tailed).
4) Reliabilitas

Scale: Gaya Hidup

<table>
<thead>
<tr>
<th>Case Processing Summary</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>30</td>
<td>100.0</td>
</tr>
<tr>
<td>Cases Excluded<sup>a</sup></td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.761</td>
<td>8</td>
</tr>
</tbody>
</table>

Scale: KEPRIBADIAN

<table>
<thead>
<tr>
<th>Case Processing Summary</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>30</td>
<td>100.0</td>
</tr>
<tr>
<td>Cases Excluded<sup>a</sup></td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.741</td>
<td>6</td>
</tr>
</tbody>
</table>

Scale: KEPUTUSAN PEMBELIAN

<table>
<thead>
<tr>
<th>Case Processing Summary</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>30</td>
<td>100.0</td>
</tr>
<tr>
<td>Cases Excluded<sup>a</sup></td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

<table>
<thead>
<tr>
<th>Cronbach's Alpha</th>
<th>N of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>.728</td>
<td>6</td>
</tr>
</tbody>
</table>
5) **UJI NORMALITAS**

<table>
<thead>
<tr>
<th></th>
<th>GAYA HIDUP</th>
<th>KEPRIBADIAN</th>
<th>KEPUTUSAN PEMBELIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Normal Parametersa,b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>30.04</td>
<td>22.44</td>
<td>22.00</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>3.490</td>
<td>2.938</td>
<td>2.995</td>
</tr>
<tr>
<td>Absolute</td>
<td>.108</td>
<td>.097</td>
<td>.100</td>
</tr>
<tr>
<td>Most Extreme Differences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>.058</td>
<td>.097</td>
<td>.072</td>
</tr>
<tr>
<td>Negative</td>
<td>-.108</td>
<td>-.066</td>
<td>-.100</td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>1.084</td>
<td>.969</td>
<td>1.000</td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.191</td>
<td>.305</td>
<td>.270</td>
</tr>
</tbody>
</table>

a. Test distribution is Normal.
b. Calculated from data.

6) **UJI HOMOGENITAS**

<table>
<thead>
<tr>
<th></th>
<th>GAYA HIDUP</th>
<th>KEPRIBADIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levene Statistic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>df1</td>
<td>12</td>
<td>86</td>
</tr>
<tr>
<td>df2</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>Sig.</td>
<td>.323</td>
<td>.584</td>
</tr>
</tbody>
</table>

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>GAYA HIDUP</th>
<th>KEPRIBADIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum of Squares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>282.747</td>
<td>709.802</td>
</tr>
<tr>
<td>Within Groups</td>
<td>923.093</td>
<td>144.838</td>
</tr>
<tr>
<td>Total</td>
<td>1205.840</td>
<td>854.640</td>
</tr>
<tr>
<td>Mean Square</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between Groups</td>
<td>21.750</td>
<td>11.141</td>
</tr>
<tr>
<td>Within Groups</td>
<td>10.734</td>
<td>8.254</td>
</tr>
<tr>
<td>Total</td>
<td>11.141</td>
<td>8.254</td>
</tr>
<tr>
<td>F</td>
<td>2.026</td>
<td>1.350</td>
</tr>
<tr>
<td>Sig.</td>
<td>.028</td>
<td>.201</td>
</tr>
</tbody>
</table>

7) **UJI LINEARITAS**

<table>
<thead>
<tr>
<th></th>
<th>GAYA HIDUP</th>
<th>KEPUTUSAN PEMBELIAN</th>
<th>* GAYA HIDUP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Combined)</td>
<td></td>
<td>326.522</td>
<td>15</td>
</tr>
<tr>
<td>Sum of Squares</td>
<td></td>
<td>Mean Square</td>
<td>F</td>
</tr>
<tr>
<td>Between Linearity</td>
<td>160.552</td>
<td>160.552</td>
<td>24.019</td>
</tr>
<tr>
<td>Group Deviation from Linearity</td>
<td>165.970</td>
<td>14</td>
<td>11.855</td>
</tr>
<tr>
<td>Within Groups</td>
<td>561.478</td>
<td>84</td>
<td>6.684</td>
</tr>
<tr>
<td>Total</td>
<td>888.000</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>
8) **ANALISIS REGRESI**

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.425</td>
<td>.181</td>
<td>.164</td>
<td>2.738</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), KEPRIBADIAN, GAYA HIDUP

ANOVA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>160.561</td>
<td>2</td>
<td>80.281</td>
<td>10.705</td>
<td>.000p</td>
</tr>
<tr>
<td>Residual</td>
<td>727.439</td>
<td>97</td>
<td>7.499</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>888.000</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: KEPUTUSAN PEMBELIAN

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>(Constant)</td>
<td>11.039</td>
<td>2.373</td>
<td>4.653</td>
<td>.000</td>
</tr>
<tr>
<td>1</td>
<td>GAYA HIDUP</td>
<td>.365</td>
<td>.078</td>
<td>.425</td>
</tr>
</tbody>
</table>

a. Dependent Variable: KEPUTUSAN PEMBELIAN

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>(Constant)</td>
<td>16.145</td>
<td>2.252</td>
<td>7.168</td>
<td>.000</td>
</tr>
<tr>
<td>1</td>
<td>KEPRIBADIAN</td>
<td>.261</td>
<td>.100</td>
<td>.256</td>
</tr>
</tbody>
</table>

a. Dependent Variable: KEPUTUSAN PEMBELIAN