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Preface

This book was developed to provide a “one-stop” resource for many 
common analyses that an applied researcher might complete when 

working with various instruments to measure educational and psychologi-
cal traits. We have developed examples, collected our favorite examples and 
resources, and provided explanations of analyses in one easily digestible 
text. Many of the analyses presented assist in providing the recommended 
evidence to support the inferences drawn from scores from such instru-
ments. That is, the results from applying these techniques assist providing 
score reliability and validity evidence.

Through our years as graduate students and the first segment of our 
academic lives, we have explored the use of various programs for scale de-
velopment and the study of the psychometric properties of the scores to 
provide such evidence. We have had the experience, as I am sure many of 
you have had, of turning to multiple books for instructions and examples 
to complete analyses in the scale development and validation process. For 
those readers just beginning on the psychometric ride, you too will soon ex-
perience this. By no means will this book stop the need for multiple sourc-
es, in fact, that is always encouraged. However, this book should allow the 
reader to use this as a main guide and supplement to experience analyses 
described in major text books. Our examples are intended to be clear and 
concise with SPSS examples that can be easily adapted to fit many situa-
tions, as the reader learns and uses various techniques.
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The anticipated audience for this book includes researchers, practi-
tioners, and graduate students searching for a guide to perform common 
psychometric analyses on various types of assessment data. We assume a 
basic level of statistical knowledge but review concepts throughout. We en-
vision that this text will (a) patiently wait on some office shelves begging 
to be handed to a student as a resource, (b) have a permanent home on 
desks where it continually rises to the top of the stacks for daily use of the 
applied researcher, (c) be happily carried in bags to and from work and 
class by the graduate student learning techniques, (d) be listed proudly as a 
reference text on syllabi, and finally (e) as an occasional drink coaster while 
deep thoughts are pondered about how to solve measurement problems. 
We hope that through such uses, particularly the latter, that we have pro-
vided some insight and assistance to the user in appropriately applying the 
techniques and concepts discussed.

We cover major topics such as item analysis, score reliability and valid-
ity, generalizability theory, differential item functioning, equating, and so 
on. Under each topic we present foundational ideas and give examples of 
how to apply these ideas immediately in ones work. Chapter 7, for instance, 
contains information on differential item functioning (DIF). We discuss 
DIF, its importance in the score validation process, and provide three tech-
niques using SPSS to detect DIF, including how to handle clustered data 
in such analyses. The caveat is we do not provide a detailed discussion of 
each topic but rather the essence of each topic and several resources for 
additional reading. Again, we remind you that this is just one resource to 
promote your psychometric knowledge and practice.

We do assume the user has some basic knowledge and skill level in 
operating SPSS. At the same time, we do attempt to present material in a 
very understandable language avoiding or explaining jargon as we go. You 
may find the occasional joke thrown in from time to time to spice it up. But 
remember we are researchers, not comedians, even though students and 
family seem to laugh often at us for the things we think about!

We do ask that if you have feedback, efficiency techniques, improve-
ments, or just plain find mistakes to please notify us. We welcome user feed-
back and will incorporate this into a revision, if demanded by the reader!

So with that, let us get started on our SPSS adventure in applying psy-
chometric techniques. In the words of Dr. Seuss, “Take it slowly. This book 
is dangerous.”

Enjoy.

—W. Holmes Finch, Brian F. French,  
 and Jason C. Immekus,
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1
Introduction to Psychometric Concepts

Measurement Basics

Measurement is a mainstay of educational and psychological practice. 
Teachers and schools measure student performance through tests, psy-
chologists measure client mood through scales such as the Beck Depres-
sion Inventory, and colleges and universities use measurements of scholas-
tic aptitude in making admissions decisions. In all of these cases, obtained 
scores on the measurements plays a critical role in decision making about 
individuals and groups. Therefore, these scores must be well understood 
and carefully studied to ensure that they provide the best information pos-
sible. Over the last roughly 100 years, a subspecialty combining statistics 
and educational psychology has developed in order to study such measures. 
This field, known as psychometrics, focuses on the development, and vet-
ting of educational and psychological assessments using a wide variety of 
tools. Together, these tools represent a wide array of statistical analyses that 
can provide the researcher with a great deal of information regarding the 
performance of a particular measure. We will cover many of these tools to-
gether in this book, focusing on how the SPSS software system can be used 
to obtain information about individual items as well as the scale as a whole.
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In the course of reading this book, you will become familiar with 
methods for analyzing data involving an entire scale (i.e., the collection of 
items), as well as the individual items themselves. In addition, you will learn 
about differences and similarities in studying both dichotomous items, 
which have two possible outcomes, and polytomous items, which have more 
than two potential outcomes. We will discuss methods for understanding 
performance of an instrument at the scale level, including assessment of 
reliability and validity. We will also learn about item analysis, which will pro-
vide information regarding the difficulty of individual items (i.e., how likely 
an individual is to endorse the item), as well as its ability to differentiate 
among examinees with different standings on the measured trait, known 
as discrimination. Throughout the text we will refer to the individuals com-
pleting the items as examinees, for convenience sake. Similarly, we may re-
fer to the instruments as tests, though in fact they may not always be tests in 
the sense that we often think about them. It is important to note that virtu-
ally all of the topics that we study together in this text are equally applicable 
to traditional tests of achievement or aptitude, as well as to affective assess-
ments of mood, and other non-cognitive constructs. Finally, throughout 
the text we will discuss the notion of the latent trait being measured. This 
simply refers to the thing that we believe our instrument is assessing, be that 
intelligence, depression, or political outlook. The score obtained from the 
instrument will typically serve as the manifest indication of this unobserved, 
or latent variable. Prior to getting into the nuts and bolts of how to analyze 
data using SPSS, let us first discuss the two primary paradigms that underlie 
nearly all of these analyses, classical test theory and item response theory.

Classical Test Theory

In many ways, classical test theory (CTT) serves as the basis for much of 
what we think of as psychometrics and measurement. Developed over the 
last 100 years or so, it underlies the notion of instrument reliability, and 
much of validity assessment. In addition, although the form of the CTT 
model differs substantially from that of the later developed item response 
theory (IRT) model, which we will discuss shortly, they share many of the 
same basic concepts. At its heart, CTT is simply a way to link an observed 
score on an instrument to the unobserved entity that we are hopefully mea-
suring. Thus, for example, if we give a class of 5th graders a math exam, we 
rely on individual scores to tell us how much math the students know. Ideal-
ly we would directly assess this knowledge, but for reasons that will soon be-
come clear, this isn’t possible. However, if our test is well designed, the score 
should be a reasonably accurate and reliable estimate of that knowledge. 
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In this section, we will discuss the ideas underlying CTT, and their implica-
tions for educational and psychological measurement.

The basic equation in CTT is simply X = T + E, where X is the observed 
score on the measure for some individual, T is the individual’s true score 
on the construct of interest, and E is random error. Put into words, this 
equation states that the observed score an individual receives on a test is a 
function of their true knowledge of the subject (assuming we’re discussing 
some type of cognitive or achievement measure) and a set of other factors 
that are random in nature. In a general sense, we can think of T as a stable 
characteristic inherent to the individual that would remain unchanged 
over repeated administrations of the instrument, if that could be done so 
that after each test examinees forgot that they had taken it (Haertel, 2006). 
Error, on the other hand, is generally conceptualized as ephemeral and 
unstable factors influencing examinee performance on the measure. One 
way to consider error is by classifying it into four distinct types or categories, 
including (a) natural variation in an individual’s performance due to fac-
tors specific to them on the day of testing (e.g., fatigue, hunger, mood); (b) 
environmental factors present during test administration (e.g., room tem-
perature, ambient noise); (c) scoring variation (e.g., ratings by evaluators); 
and (d) test items selected (Feldt & Brennan, 1989).

The random nature of error leads to a number of interesting proper-
ties of the CTT model. First of all, if a particular examinee could be given 
the test repeatedly over a very large number of times, and each time forget 
that (s)he had taken it, the mean of the errors across those test adminis-
trations would be 0 (i.e., the population mean, mE = 0). Furthermore, the 
random nature of error leads to the conclusion that it is completely uncor-
related with T. In other words, if we had a group of students taking our test 
a large number of times, and calculated Pearson’s r between the true score 
and error, it would come out to be 0 (i.e., rT,E = 0). In addition, if we had 
multiple forms of the same exam, the errors across those forms would also 
be uncorrelated, again because their errors are random. Thus, rE 1,E 2 = 0.

While these results are interesting in and of themselves, they lead to a re-
lationship that is key in CTT. In general, whenever we have one variable that 
is the composite of two other variables, like X = T + E, we express the variance 
of the composite as 2cov( , )2 2 2 T EX T Eσ = σ + σ + . Given that we know T and E 
are uncorrelated, we also know that the covariance between them (cov) is 
also 0. Therefore, we can rewrite the composite variance of X as 2 2 2

X T Eσ = σ + σ  . 
This relationship is central to the idea of test reliability, which we discuss in 
some detail in Chapter 3. For the moment, we can simply define the concept 
of reliability as the ratio of variance in T to the variance in X, or 
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2 2xx
T

T E

r = σ
σ + σ

. (1.1)

In Chapter 3, we will discuss in detail how to estimate reliability for a scale 
using a set of data.

Often in practice, consumers of test information are interested in learn-
ing something about the likely value of an examinee’s true score on the trait 
being measured. Though T can never be known exactly, using some of the 
basic elements of CTT it is possible to construct a confidence interval within 
which we have a certain level of confidence (e.g., 95%) that T exists. In order 
to construct such an interval, we first need to understand the standard error 
of measurement (SEM). Theoretically, if we could give the same individual 
a measure many times, and each time they would forget they had taken the 
measure, we would obtain a distribution for X. With such a distribution, we 
could then calculate the standard deviation, and if there were multiple such 
examinees who each had taken the test many times, then we could get stan-
dard deviations ( 2

Eiσ ) for each of them as well. For a given examinee, this 
standard deviation would be a reflection of the variability in his/her scores. 
Given that we assume T is stable for an individual, these standard deviations 
would actually reflect the error variation for each individual. If we were to 
average these standard deviations across all of the individual examinees in a 
given sample, we would obtain the SEM. In other words,

 SEM 1
2

N
i
N

Ei= Σ σ= . (1.2)

Of course, in practice we will not be able to have individual examinees take 
a test many times while forgetting that they’ve done so before, so conse-
quently we will not have access to 2

Eiσ . However, using a bit of algebra, it 
is possible to obtain a method for estimating SEM that is based on easily 
obtained statistics such as a reliability estimate (ρXX) and the standard devia-
tion of the observed test scores (σX). In this formulation,

 = 1 XXσ −r . (1.3)

As we will see in Chapter 3, the SEM can be used to construct a confidence 
interval around T for examinees in the sample.

Prior to completing our discussion of CTT, it is important to consider the 
issue of parallel forms of a measure. The idea of parallel forms is important in 
CTT, particularly with regard to the estimation of reliability. Multiple forms 
of an instrument are said to be strictly parallel when they are developed using 
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identical test specifications, produce the same distributions of X (same mean 
and standard deviation), have equal covariances between any pairs of forms, 
and covary equally with other measures. In addition, individual examinees 
will have the same value for T for strictly parallel forms. Finally, given the 
random nature of E, the covariance between error terms for two strictly paral-
lel forms will be 0. We will revisit the concept of parallel forms in Chapter 3, 
when we discuss the estimation of scale reliability.

Item Response Theory

Another approach to thinking about psychometrics and measurement comes 
in the form of a series of statistical models known collectively as item response 
theory (IRT) (van der Linden & Hambleton, 1997; Yen & Fitzpatrick, 2006). 
Whereas the focus of CTT is typically (though by no means exclusively) at the 
scale level with issues such as reliability and validity, the focus of IRT is at the 
item level. Indeed, the set of models that make up the suite of IRT tools all have 
in common a focus on the relationship among characteristics of the items, the 
examinees and the probability of the examinee providing a particular response 
to the item (e.g., correct or incorrect). As we will see, IRT models are available 
for both dichotomous and polytomous item responses. In this section, we will 
first focus on models for dichotomous data, such as is common for items scored 
as correct/incorrect, and then on models for polytomous data that might be 
seen with rating scales and graded responses.

Dichotomous Items

Probably the single most common family of models in IRT is based in 
the logistic framework. For dichotomous items there are three such models 
that are commonly used, each differing from the others in terms of how 
much information they contain about the items. The simplest such model, 
which is known as the 1-parameter logistic (1PL) model, will serve as our 
general (and hopefully gentle) introduction to IRT. The 1PL model can be 
expressed mathematically as:

 ( 1 , , )
1

( )

( )P x a b
e

e
j i j

a b

a b

i j

i j
= θ =

+

θ −

θ −  (1.4)

where xj is the response to item j, where we code correct as 1 and incorrect 
as 0. The variable θi is the value of the latent trait being measured by the test 
(e.g., reading aptitude) for examinee i. The 1PL model also contains two item 
parameter values: aj , item discrimination; and bj , item difficulty. For this model 
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it is assumed that aj is constant across items, while bj is allowed to vary across 
items. In terms of their meaning, we can view bj as an indicator of how likely an 
individual with low proficiency is to answer the item correctly, when discussing 
proficiency exams. It is important to note that item difficulty and examinee 
level on the latent trait are on the same scale, which is centered at 0 and theo-
retically ranges from –∞ to ∞, though in practice it typically lies between –3 and 
3 (de Ayala, 2009). An item with a lower difficulty is relatively easier than those 
with higher difficulty values, such that examinees with lower levels of θi are 
more likely to answer it correctly. Item discrimination, aj , reflects how well the 
item can differentiate among those with greater or lesser amounts of θi , with 
larger values indicating greater such discriminatory power.

For the 1PL model, all items are assumed to have equal values for item 
discrimination, which is what differentiates it from other IRT models as we 
will see. In some cases, researchers want to assume that the value of aj = 1, thus 
defining a special case of the 1PL known as the Rasch model. Therefore, we 
can think of the Rasch model as a special case of the 1PL. However, it should 
be noted that in the broader measurement community the two models carry 
with them very different implications for practice. We will not discuss the issues 
surrounding the Rasch model further in this book, but do encourage the inter-
ested reader to investigate them. Interesting and brief summaries can be found 
in Embretson and Reise (2000) and de Ayala (2009), among others.

The item characteristic curve (ICC) is a common tool used in examin-
ing the qualities of individual items. It relates the latent trait being mea-
sured (on the X axis), with the probability of a correct response (in the 
case of dichotomous items) based on the particular model selected on the 
Y axis. As an example, consider two items based on the 1PL model where 
b1 = –0.4, b2 = 0.7, and a = 1.2. The ICC’s for these two items appear in Fig-
ure 1.1. We can see that while the shape of the items is the same, Item 2 is 
shifted to the right of Item 1, because it has a higher difficulty parameter 
value. In addition, we could use the ICC to determine the probability of 
a correct response for an individual with a given value of θ by drawing a 
straight line up from the X axis until it reaches the curve, at which point 
we would draw a second line from that point on the curve to the Y axis to 
obtain the probability of a correct item response.

When we cannot assume that item discrimination values are equal 
across the items, we can use the 2-parameter logistic (2PL) model, which 
has very similar form to the 1PL:

 ( 1 , , )
1

( )

( )P x a b
e

e
j i j j

a b

a b

j i j

j i j
= θ =

+

θ −

θ − . (1.5)
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The difference is that now aj is specific to item j. By allowing item discrimi-
nation to vary, it is possible to identify those items that are best able to 
differentiate among individuals based on the level of the latent trait be-
ing measured, with higher values indicating an item that is more discrimi-
nating. The ICC’s for a pair of 2PL items with item parameters a1 = 1.2, 
b1 = –0.4, a2 = 0.8, and b2 = 0.7, respectively, appear in Figure 1.2. As with the 
1PL model, the more difficult item (2) is shifted to the right of the easier 
item (1). In addition, the higher discrimination value of Item 1 is reflected 
in its steeper ICC as compared to that of Item 2.

A third variation on the logistic framework for dichotomous items is the 
3-parameter logistic model (3PL), which incorporates the probability that 
an examinee will provide a correct item response simply due to chance, 
perhaps by guessing. The 3PL model is expressed as

 P x a b c c
e

e
j i j j j j

a b

a b

j i j

j i j
= θ = + −

+

θ −

θ −( 1 , , ) (1 )
1

( )

( ) , (1.6)

where cj is the pseudo-chance (or pseudo-guessing) parameter, represent-
ing the probability of a correct response for an examinee whose value of θi 

Figure 1.1 Item characteristic curves for two hypothetic items based on 1PL Model.
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approaches –∞. As an example, imagine a multiple choice test item with 
five options to select from. An individual with an extremely low value of 
θi  would also have an extremely low probability of answering the item cor-
rectly, based on their knowledge of the subject being tested. However, for 
a multiple choice type item, there is the possibility that such an examinee 
could randomly select the correct answer. This possibility is captured in the 
item parameter cj . It is important to note that cj is referred to as a pseudo-
chance or pseudo-guessing parameter (rather than simply the guessing pa-
rameter) because it reflects not merely the probability of totally random 
selection of the correct answer, but also differences in how well the options 
in a multiple choice exam might be worded (making them relatively more 
or less attractive), and the propensities of different examinees to guess 
and guess well. Figure 1.3 includes ICC’s for two 3PL items, which have 
identical difficulty and discrimination parameter values to those in the 2PL 
example, and where c1 = 0.2, while c2 = 0.1. The difference between these 
ICC’s and those in Figure 1.2 is the lower asymptote for each item. Whereas 
in the 2PL case, the probability of a correct response converges to 0 as θi 
approaches –∞, for the 3PL models, the probability of a correct response 
converges to the value of c.

Figure 1.2 Item characteristic curves for two hypothetic items based on 2PL Model.
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There are three common assumptions that underlie these logistic mod-
els. The first of these, unidimensionality, is that only a single latent trait is 
being measured by a set of items. Thus, a test designed to measure reading 
fluency in young children should only measure the construct of reading flu-
ency, and not other, additional constructs. A second, related assumption is 
that of local independence, which states that responses to any pair of items 
should be completely uncorrelated if we hold θi constant. Another way to 
view this assumption is that the only factor that should influence an exam-
inee’s item response is her/his proficiency on the trait being measured. 
The third assumption underlying IRT models is that the model form is cor-
rect for the data being analyzed. In other words, if we select the 2PL model 
for a set of item responses, we are assuming that this functional form is cor-
rect, such that the probability of a correct response increases concomitantly 
with increases in θi , that items have different values of aj , and that there is 
no possibility of obtaining a correct answer due to chance.

Figure 1.3 Item characteristic curves for two hypothetic items based on 3PL Model.
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Polytomous Items

In many contexts, items on an instrument are not scored dichotomous-
ly, but rather can take one of several values. Examples in achievement test-
ing include graded responses where scores may include categories such as 
poor, fair, good, and excellent. For many affective measures in psychology, 
such as personality assessments, the item responses are on a Likert Scale 
taking the values 1, 2, 3, 4, or 5, for example. In all of these cases, the IRT 
models described previously would not be appropriate for modeling item 
responses because they only account for dichotomous outcomes. A number 
of more general models have been developed, however, which do accom-
modate such polytomous items. One such model, the generalized partial 
credit model (GPCM), is analogous to the 2PL model in that it models 
item responses using item discrimination and location parameters, and an 
individual’s propensity on the measured latent trait (Muraki, 1992). The 
GPCM takes the form:

 P X a b
e

e
jk i j jk

a b

c
m a b

h
k j

j i jh

j h
c

j i jh
θ =

Σ

Σ θ −

=
Σ θ −

=

=
( , , )

( )

1
( )

1

1
, (1.7)

where θi and aj are the latent trait and discrimination parameters, as de-
fined previously. The parameter bjh is a threshold that reflects the level of 
the latent trait necessary for an individual to go to item response h from 
response h – 1. The value of mj represents the number of categories (e.g., 5) 
possible for item j. As an aside, this suggests that the items can have dif-
ferent numbers of categories. If we assume that the values of aj = 1 for all 
items, then we have the partial credit model, which is simply the Rasch ver-
sion of the GPCM.

As an example of how the GPCM works, imagine for a specific item that 
we have four categories (0, 1, 2, 3) from which an individual can endorse. 
Further, assume that for Item 1, the threshold values are –1, 0, and 1. This 
would mean that individual respondents with θi values below –1 are most 
likely to provide an answer of 1 to the item. Similarly, those with –1 ≤ θi < 0 
have the highest probability of yielding a response of 2, while those with 
0 ≤ θi < 1 have the highest probability of a 3 response. Finally, individuals 
with θi ≥ 1 have the greatest probability of producing a value of 3 on the 
item. The ICC for this item appears below in Figure 1.4. While for dichoto-
mous items there was only one curve linking θi and the item response prob-
abilities, for polytomous items there are separate curves associated with 
each of the response options. Using these curves, we can discern the prob-
ability that an individual with a given level of the latent trait will produce a 
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particular response to the item. For example, respondents with θi < –2 are 
most likely to respond with a 0, while those with θi = –0.5 will most likely 
respond with a 1. It is also clear from viewing these curves that individuals 
with, for example, high values of θi could still provide a response of 0 or 1, 
but the probability for such is quite low.

An alternative to the GPCM for polytomous data is the graded response 
model (GRM) developed by Samejima (1969). Whereas the GPCM com-
pares the likelihood of an individual responding in two adjacent categories 
(h versus h – 1), the GRM focuses on the probability of responding in cat-
egory h or higher versus categories less than h. In other words, rather than 
focusing as the GPCM on a series of dichotomous choices between adjacent 
categories, the GRM instead compares the probability of one category or 
higher versus all lower categories. The GRM is expressed as 

 P X
e

e
jk

a b

a b

j i X j

j i X j
=

+

θ −

θ −( or higher)
1

( )

( ) . (1.8)

Once again, aj and θi are as defined previously. In this case, bX j  is the boundary 
point between a value on the item of h or higher, versus all responses below h.

Figure 1.4 ICC for item based on Graded Partial Credit Model.
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To illustrate the GRM, let’s consider the example described above for 
the GPCM. We have an item with four possible response options to select 
from, with thresholds of –1, 0, and 1. The meaning of these threshold values 
is slightly different in the GRM than for the GPCM. In the latter case, the 
first threshold marked the border between a response of 1 versus 2, whereas 
for the GRM it marks the border between a response of 0 versus 1, 2, or 3. 
Thus, a respondent with a θi value of 0.5 is more likely to produce a response 
of 3 or 4 versus 1 or 2. In order to obtain probabilities for a specific item 
response, we would use the following equation: Pix(θ) = Pix(θ) – Pix+1(θ). 
Therefore, to obtain the probability of an individual providing a response 
of 2, we would simply calculate Pi 2(θ) = Pi 2(θ) – Pi 3(θ). Figure 1.5 contains 
an ICC for the GRM of this item. Its general form is very similar to that of 
the GPCM, with a separate curve for each response option. However, no-
tice that the curves are shifted somewhat on the X axis, and the maximum 
probabilities associated with specific item responses are somewhat lower 
for the GRM. For example, while the maximum probability of producing a 
response of 2 is approximately 0.52 in the GPCM, it is only 0.4 for the GRM. 
This difference in probabilities is reflective of the different model forms.

In addition to the GPCM and GRM, a third general approach for deal-
ing with ordinal item responses is the rating scale model (RSM). While 

Figure 1.5 ICC for item based on Graded Response Model.
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conceptually similar to both the GPCM and GRM, the RSM has somewhat 
different properties, which can be highlighted by looking at the model 
formulation:

 P X
e

e
j i j

x

h
m x

h
x j

h j i j

j h
x j

h j i j
θ δ τ =

Σ

−Σ τ + θ −δ

=
−Σ τ + θ −δ

=

=
( , , )

( )

0
( )

0

0

. (1.9)

In this model, τh represents the threshold for item response h, and is on the 
scale of the latent variable being measured. Thus, for an ordinal item with 1, 
2, 3, 4, and 5 as response options, there would be 4 thresholds (number of 
categories minus 1), where τ1 separates a response of 1 from 2, τ2 separates 
2 from 3, τ3 separates 3 from 4, and τ4 separates 4 from 5. The value xj cor-
responds to the number of parameters that an individual has passed, based 
on their value on the latent trait being measured. The δj parameter indicates 
an item’s location, or central point, on the latent trait, around which the 
thresholds gather. To see how the RSM works, let’s consider an item that 
has 5 response options, where δj = 0.5, and the thresholds are as follows: 
τ1 = –0.6, τ2 = –0.1, τ3 = 0.7, and τ4 = 1.2. An individual completing the in-
strument who has θi = 0.54 would pass thresholds 1 and 2, but not 3, leading 
them to provide a response of 3 on the item. Now that we are familiar with 
CTT and IRT models, let us move to item analysis in Chapter 2 with these 
ideas in mind. We also want you to be aware that many of our datasets and 
code are available to download at the website for this book (https://labs.
wsu.edu/psychometric/resources/).
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2
Item Analysis

Introduction

This chapter introduces statistical procedures to conduct item analyses 
based on classical test theory (CTT). These analyses typically serve as a first 
step in the investigation of the psychometric properties of scale scores. 
Analyses described in this chapter provide ways to estimate the difficulty 
and discrimination of dichotomously (e.g., correct/incorrect) and poly-
tomously (e.g., Disagree, Neutral, Agree) scored questionnaire and test 
items. Understanding the characteristics of scale items is a necessary step 
for deciding which items will remain, be revised, or excluded from the final 
version of an educational or psychological measure (e.g., motivation, math-
ematics achievement).

Classical Test Theory Item Difficulty

CTT Item Difficulty for Dichotomous Items

Item difficulty is an index of how examinees answered an item. For di-
chotomously scored items, CTT defines item difficulty as the proportion of 
persons who obtained a correct item response (i.e., proportion passing), or 
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the proportion of those agreeing with items measuring agreement to a state-
ment. In this case, item difficulty can range from 0.00 to 1.00, with values ap-
proaching 0.00 indicating more difficult items and those close to 1.00 con-
sidered somewhat easier items. Within applied testing contexts, it has been 
argued that values between 0.30 and 0.70, with a mean of 0.50, provide the 
most useful information about examinees’ knowledge or skill level (Allen & 
Yen, 1979), if the purpose of the test is to produce a normal distribution of 
score estimates of ability levels. For criterion assessments, a more restricted 
range is generally desired with a mean difficulty value of 0.80.

SPSS provides two approaches for estimating CTT item difficulty. The 
first approach involves calculating the item means, which represents the 
proportion of examinees obtaining a correct response. The following exam-
ple estimates the CTT item difficulty of a 20-item measure based on the re-
sponses of 2,000 examinees, using the ex2.sav data. To conduct this analysis, 
in the menu bar, select Analyze, followed by Descriptive Statistics and then 
Descriptives. We will then obtain the SPSS dialogue box shown in Figure 2.1.

Figure 2.1 SPSS Descriptives dialogue box without items assigned to Variable(s) 
window.

As shown in Figure 2.1, the items in the dataset appear in the left-hand 
side of the dialogue box. To estimate item difficulty, we simply highlight 
the items and click the arrow pointing to the Variable(s) window. Figure 2.2 
shows what the dialogue box would look like.
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Figure 2.2 Descriptives dialogue with variables assigned to Variable(s) window.

By default, SPSS will provide us with the following information for each 
selected item: Minimum, maximum, standard deviation, and the mean. If 
we don’t want to change any of these values, we would simply click OK to 
obtain the output reported in Figure 2.3.

Descriptive Statistics
N Minimum Maximum Mean Std. Deviation

i1 2000 0 1 .91 .290

i2 2000 0 1 .61 .489

i3 2000 0 1 .51 .500

i4 2000 0 1 .32 .466

i5 2000 0 1 .36 .479

i6 2000 0 1 .67 .469

i7 2000 0 1 .59 .492

i8 2000 0 1 .51 .500

i9 2000 0 1 .79 .405

i10 2000 0 1 .81 .392

i11 2000 0 1 .54 .499

i12 2000 0 1 .48 .500

i13 2000 0 1 .21 .405

i14 2000 0 1 .84 .369

i15 2000 0 1 .78 .412

i16 2000 0 1 .59 .492

i17 2000 0 1 .59 .492

i18 2000 0 1 .36 .479

i19 2000 0 1 .36 .480

i20 2000 0 1 .35 .476

Valid N (listwise) 2000

Figure 2.3 SPSS Descriptive Statistics output window.
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The output in Figure 2.3 includes descriptive statistics for each of the 20 
items, including the item, sample size (N), minimum and maximum values 
for each item, the means (which are the item difficulties), and the standard 
deviations (Std. Deviation). The analyses were conducted on 20 items based 
on 2000 examinees. As shown, Item 1 was the easiest item, with the majority 
of the examinees (0.91) obtaining a correct response. That is, 91% of the 
examinees answered the item correctly. In contrast, a relatively small propor-
tion of the examinee group (0.21) obtained a correct response on Item 13. 
In general, there is a fairly broad range of item difficulty values across the 20 
items, between these two extremes. Such a pattern of item difficulty values 
is desired when testing a range of examinees (e.g., age) with varied stand-
ing on the measured trait (e.g., reading achievement). The standard devia-
tion column shows that the examinee distribution was most varied when 
an item’s proportion correct approximates 0.50 (Crocker & Algina, 1986). 
Finally, the Minimum column indicates that the lowest item score was 0 (in-
correct), whereas the Maximum column reports that the highest item score 
was 1 (correct) across the item set. This last information is quite useful when 
we first screen the items, as a way of detecting miskeyed entries. If the mini-
mum and maximum values for each item were not 0 and 1, respectively, we 
would know that there were one or more typos when the data were entered.

Referring to Figure 2.4, if we wish to change the statistics that are dis-
played in the output, we would simply click on the Options button in the 
dialogue box.

Figure 2.4 Using the Options button for selecting which descriptive statistics to 
display.

Clicking on Options yields the following window:
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Figure 2.5 Options window for descriptive statistics.

We can see that the SPSS default statistics of Mean, Std. Deviation, Minimum, 
and Maximum were all selected. If we only wanted to display the mean, we 
would simply unclick the boxes for the other statistics, so that the window 
appears as follows:

Figure 2.6 Options window for descriptive statistics with only the Mean selected.
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By clicking Continue in the options box, and then OK in the Descriptives 
box, we would obtain the following output.

Descriptive Statistics
N Mean

i1 2000 .91

i2 2000 .61

i3 2000 .51

i4 2000 .32

i5 2000 .36

i6 2000 .67

i7 2000 .59

i8 2000 .51

i9 2000 .79

i10 2000 .81

i11 2000 .54

i12 2000 .48

i13 2000 .21

i14 2000 .84

i15 2000 .78

i16 2000 .59

i17 2000 .59

i18 2000 .36

i19 2000 .36

i20 2000 .35

Valid N (listwise) 2000

Figure 2.7 Descriptive Statistics output window.

As an alternative to using the mean of dichotomous items, difficulty 
estimates can also be obtained using the Frequencies menu option under 
Analyze and Descriptive Statistics. This approach produces frequency ta-
bles for all variables specified. Specifically, using the previously mentioned 
menu sequence, we would obtain the following dialogue box:
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Figure 2.8 Frequencies dialogue box with no items selected.

As with the previous dialogue box examples, our first step is to move the 
desired items from the left hand box to the Variable(s) box on the right, 
using the arrow button in the middle.

Figure 2.9 Frequencies dialogue box with all items selected.

We will want to leave the Display frequency tables box checked so that the 
tables will appear in the output. We can click OK, and obtain the following 
individual tables for each item. In order to save space, only tables for the 
first 5 items appear below.
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i1
Frequency Percent Valid Percent Cumulative Percent

Valid 0 185 9.3 9.3 9.3

1 1815 90.8 90.8 100.0

Total 2000 100.0 100.0

i2
Frequency Percent Valid Percent Cumulative Percent

Valid 0 789 39.5 39.5 39.5

1 1211 60.6 60.6 100.0

Total 2000 100.0 100.0

i3
Frequency Percent Valid Percent Cumulative Percent

Valid 0 989 49.5 49.5 49.5

1 1011 50.6 50.6 100.0

Total 2000 100.0 100.0

i4
Frequency Percent Valid Percent Cumulative Percent

Valid 0 1362 68.1 68.1 68.1

1 638 31.9 31.9 100.0

Total 2000 100.0 100.0

i5
Frequency Percent Valid Percent Cumulative Percent

Valid 0 1289 64.5 64.5 64.5

1 711 35.6 35.6 100.0

Total 2000 100.0 100.0

Figure 2.10 Frequency tables for Items 1 through 5.

The output shows the Frequency (number of examinees in the given 
item category) and Percent (number of examinees in category/total sam-
ple size) of examinees obtaining correct and incorrect responses, Valid per-
cent (number of examinees in category with no missing data/total sample 
size), and the Cumulative Percent. As we can see, 185 of the 2000 examin-
ees (9.3%) answered Item 1 incorrectly, whereas 1815 (90.7%) provided a 
correct response, thereby making the item difficulty 0.908. Proportions can 
be obtained by dividing the values in the Percent column by 100.

The SPSS Frequencies menu selection offers two additional options that 
might be useful for the researcher examining item difficulties. First, it is 
possible to obtain the means (and other descriptive statistics) of the item 
responses through the Statistics button in the frequencies dialogue box.
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Figure 2.11 Frequencies dialogue box with Item 1 selected, and highlighting the 
Statistics button.

Doing so opens the dialogue box shown in Figure 2.12.

Figure 2.12 Statistics dialogue box under Frequencies menu option.

The user is presented with a number of options in terms of statistics that 
can be produced for each variable. In this case, we would like to obtain the 
mean (item difficulty), and the standard deviation, and therefore will click 
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the boxes next to them. For the sake of brevity, we will only present results 
for Item 1, shown in Figure 2.13.

Figure 2.13 Statistics dialogue box under Frequencies menu option with mean 
and standard deviation selected.

We then click Continue, followed by OK on the Frequencies dialogue box, 
and obtain the following output reported in Figure 2.14.

Frequencies
Statistics

i1 

N Valid 2000

Missing 0

Mean .91

Std. Deviation .290

i1
Frequency Percent Valid Percent Cumulative Percent

Valid 0 185 9.3 9.3 9.3

1 1815 90.8 90.8 100.0

Total 2000 100.0 100.0

Figure 2.14 Mean, Standard Deviation, and Frequency table for Item 1.

As shown, this mean matches that obtained using the Descriptives com-
mand, and is an estimate of the CTT item difficulty.
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In addition to the mean (and other descriptive statistics), it is also pos-
sible to obtain graphs representing the distribution of item responses. For 
the dichotomous items this will perhaps not be so interesting, but for the 
polytomous items to be discussed below, such graphs might prove to be 
quite helpful for characterizing the item response patterns. Figure 2.15 
shows how to obtain such graphs by again using the menu sequence to pull 
up the Frequencies dialogue box.

Figure 2.15 Frequencies dialogue box with Item 1 selected, and highlighting the 
Charts button.

When we click on this button, the dialogue shown in Figure 2.16 appears.

Figure 2.16 Charts dialogue box under Frequencies menu option.
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As shown, we have three choices in terms of the graph type. As an example, 
we will select the Bar charts, by clicking on the radio button next to that op-
tion, as demonstrated in Figure 2.17.

Figure 2.17 Charts dialogue box under Frequencies menu option with Bar charts 
selected.

Figure 2.18 shows the resulting bar chart reporting the response fre-
quencies for Item 1.
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Figure 2.18 Bar chart for Item 1 with Frequencies on the y-axis.

By default the frequency of item responses appears on the y-axis, with item 
responses appearing on the x-axis. By selecting Percentages under Chart 
Values (see Figure 2.17), we can place the percentages on the y-axis, shown 
in Figure 2.19.
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Figure 2.19 Bar chart for Item 1 with Percentages on the y-axis.

CTT Item Difficulty for Polytomous Items

Because item difficulty within CTT is defined as the average perfor-
mance of the examinee group on a particular item, means obtained through 
the Descriptive Statistics menu sequence described above can be used to 
estimate the item difficulty for polytomously scored items. The following 
example involves a scale consisting of 20 polytomous items that are scored 
on a 5 point Likert Scale, measuring the extent to which respondents dis-
agree/agree (e.g., 1 = Strongly Disagree, 2 = Disagree, 3 = Neutral, 4 = Agree, 
5 = Strongly Agree) with a series of survey statements. The instrument was 
administered to 1,533 respondents, and the resulting data are contained in 
a file called poly1.sav.

In order to obtain the means for the items, we can use the same se-
quence of menu options that appears in Figures 2.1 and 2.2. The resulting 
output appears in Figure 2.20.
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Descriptive Statistics
N Minimum Maximum Mean Std. Deviation

V1 1533 1 5 4.12 .550

V2 1533 1 5 3.75 .686

V3 1533 2 5 4.00 .573

V4 1533 1 5 3.99 .608

V5 1533 1 5 4.00 .579

V6 1533 1 5 4.06 .545

V7 1533 1 5 3.95 .665

V8 1533 1 5 3.89 .636

V9 1533 1 5 3.90 .622

V10 1533 1 5 3.80 .678

V11 1533 1 5 3.94 .616

V12 1533 2 5 4.06 .586

V13 1533 1 5 3.94 .675

V14 1533 1 5 3.80 .743

V15 1533 2 5 4.04 .593

V16 1533 1 5 3.79 .741

V17 1533 2 5 3.86 .696

V18 1533 1 5 3.60 .776

V19 1533 1 5 4.01 .603

V20 1533 1 5 3.85 .695

Valid N (listwise) 1533

Figure 2.20 Descriptive Statistics output window.

The previous output shows that overall, respondents generally agreed with 
each scale item. That is, all items had a mean value above 3.5. Item de-
scriptive statistics also suggest that respondents were most varied in their 
responses to Items 18 (SD =  .776), 14 (SD = 0.743), and 16 (SD = 0.741). 
Furthermore, the range of observed item responses was between Strongly 
Disagree (1) and Strongly Agree (5). Note that a few items (i.e., 3, 12, 15, 17) 
had a restriction of range. That is, no one selected option 1.

To gain insights into the distribution of all responses to each item, the 
Frequencies menu sequence outlined above can be used to obtain the fre-
quency of responses to each option for each item. Such output will help the 
researcher understand not only the relative difficulty of each item, but also 
the distribution of responses. For brevity, Figure 2.21 provides the output 
only for Item 1.
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V1
Frequency Percent Valid Percent Cumulative Percent

Valid 1 1 .1 .1 .1

2 9 .6 .6 .7

3 120 7.8 7.8 8.5

4 1084 70.7 70.7 79.2

5 319 20.8 20.8 100.0

Total 1533 100.0 100.0

Figure 2.21 Frequency of responses to Item 1.

Results in Figure 2.21 show that the majority of individuals in the sample 
responded to the item with a 4, and that 91.5% gave either a 4 or a 5, in-
dicating high agreement with the item. Only 10 individuals, or 0.7% indi-
cated that they disagreed or strongly disagreed with the item. We can also 
examine the bar chart for the responses to this (or any of the other) item 
using the command sequence in Figures 2.15 through 2.17. In this case, we 
elected to place the Percent on the y-axis (Figure 2.22).
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Figure 2.22 Bar chart for Polytomous Item 1 with Percentages on the y-axis.

Classical Test Theory Item Discrimination

Item discrimination refers to the degree to which an item functions to differ-
entiate respondents with relatively higher levels of the trait being measured 
by the scale from those with lower trait levels. Therefore, understanding the 
items’ discriminatory power is critical to developing a useful measure. The 
underlying notion of item discrimination is that a larger proportion of high 
scoring (high total score) persons should respond correctly or more highly 
endorse the item in comparison to persons with lower total scores on the 
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scale. There are several ways to estimate item discrimination and we discuss 
a few here including the extreme groups calculation method, biserial and 
point biserial correlations, and Cronbach’s coefficient alpha. We do not 
show how to calculate the biserial correlation in SPSS because it was not an 
option at the time of this printing. This section provides the SPSS steps to 
calculate item discrimination using several methods. A detailed discussion 
of coefficient alpha will appear in Chapter 3, including more discussion on 
item discrimination.

Extreme Groups Calculation Method

The extreme groups calculation method, or the index of discrimination 
(Crocker & Algina, 1986), is used with dichotomously scored items. It is 
calculated as the difference between the proportion of the highest scoring 
(upper) and lowest scoring (lower) groups of examinees obtaining a cor-
rect item response. Estimation thus requires first establishing the upper 
and lower examinee groups, typically based on the total test score. Discrimi-
nation values can range from –1.00 to 1.00, with positive values indicat-
ing items that favor the upper scoring group and negative values showing 
items that favored the lower scoring group. Items are considered to be per-
forming well when they have relatively large positive discrimination values, 
meaning a larger portion of the high scoring group responded correctly 
compared to the low scoring group.

In order to calculate the extreme groups discrimination index, we first 
need to calculate the total score on the instrument. We’ll go back to the 
20 dichotomous item test that was discussed earlier in this chapter. To cal-
culate the total score, we would use the Transform and Compute Variable 
menu options, shown in Figure 2.23.

Figure 2.23 SPSS menu bar.
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The dialogue box shown in Figure 2.24 will subsequently appear.

Figure 2.24 Compute Variable dialogue box.

In the Target Variable slot, we assign a name for the new variable that will ap-
pear in our dataset. In this example, we call the new variable “score.” Next, 
in the numeric expression box, we will sum the items using the statements 
provided in Figure 2.25. When we are done, the window will look as follows.
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Figure 2.25 Compute Variable dialogue box for computing score variable.

When we click OK, a new column containing the score will be added at the 
end of our data set.

In order to calculate the extreme groups discrimination values for each 
item, we will need to identify the upper and lower scoring groups. In this 
case, we will use the top 25% and the bottom 25% of examinees, based on 
the total test score. First, we need to identify the 25th and 75th percentile 
values. We can do this going through Analyze ► Descriptive Statistics ► Ex-
plore menu sequence, which yields the dialogue box in Figure 2.26.



Item Analysis    33

Figure 2.26 Explore dialogue box.

As shown in Figure 2.27, we will need to move the score variable to the De-
pendent List window.

Figure 2.27 Explore dialogue box for the score variable.

We then click Statistics and get the window shown in Figure 2.28, in which 
we will click Percentiles.
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Figure 2.28 Explore: Statistics dialogue box for selecting percentiles.

This will give us the percentiles that we need in order to identify the 25th 
and 75th percentile values. By clicking Continue and then OK in the previ-
ous window, we obtain the output reported in Figure 2.29. Of particular 
interest to us in the current example is the following table.

Percentiles
Percentiles

5 10 25 50 75 90 95

Weighted Average 
(Definition 1)

score 5.0000 6.0000 9.0000 11.0000 14.0000 16.0000 18.0000

Tukey’s Hinges score 9.0000 11.0000 14.0000

Figure 2.29 Percentiles output from the explore command.

From this output, we can see that the score at the 25th percentile is 9, and 
the score at the 75th percentile is 14. Thus, the bottom 25% group consists 
of those with scores of 9 or less, and the upper 25% group includes those 
with scores of 14 or more.

We now will use these percentiles to create a new variable that catego-
rizes examinees into one of the three groups. This is done using the Trans-
form ► Recode Into Different Variables menu sequence, in order to obtain 
the following window (Figure 2.30).
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Figure 2.30 Recode Into Different Variables dialogue box.

We can then recode the variable score into a variable consisting of 3 sepa-
rate groups, those with scores of 9 or below, those with scores between 10 
and 13, and those with scores of 14 or more. First, as shown in Figure 2.31, 
we move the score variable into the Numeric Variable -> Output Variable 
box, and provide the name of the new variable, along with any variable 
label that we would like.

Figure 2.31 Recode Into Different Variables dialogue box for score.
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By clicking the Change button, we will then obtain the window in Figure 2.32.

Figure 2.32 Recode Into Different Variables dialogue box for score with group 
variable.

Next, we click the Old and New Values button, which yields the window 
shown in Figure 2.33.

Figure 2.33 Recode Into Different Variables: Old and New Values dialogue box.
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In this window, we will want to indicate which values on the score corre-
spond to the grouping category. For instance, we will label the lowest 25% 
group with a 1. To do this, we will click the button next to Range, LOWEST 
through value. In the box associated with this button, we will put the 25th 
percentile value of 9. In the upper right hand corner of the box (identified 
by the red arrow) we will put the group identifier value of 1. We will then 
click the Add button (Indicated by the blue button) next to the Old –> New 
box in order to create the recoded variable. The window in Figure 2.34 will 
then appear.

Figure 2.34 Recode Into Different Variables: Old and New Values dialogue box 
featuring the Range button.

We will repeat this sequence by clicking the button next to Range, placing 
10 and 13 in the accompanying boxes, typing a 2 in the Value box, under 
New Value, and clicking Add. Finally, we will follow the same sequence for 
the upper group by clicking on the Range, value through HIGHEST button, 
typing 14 in the accompanying box, putting 3 in the box next to Value un-
der New Value, and clicking Add. The window in Figure 2.35 should then 
appear as follows.
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Figure 2.35 Recode Into Different Variables: Old and New Values dialogue box 
with all group categories included.

When we click Continue, followed by OK, a new variable will be added at the 
end of the dataset.

We are now ready to obtain the proportions that we need to calculate 
the extreme groups item discrimination values for each item. This can be 
done by splitting the file using Data ► Split File menu sequence. The win-
dow in Figure 2.36 will then appear.

Figure 2.36 Split File dialogue box
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We will then click on the Organize output by groups button, and place the 
grouping variable in the Groups Based on window, as shown in Figure 2.37.

Figure 2.37 Split File dialogue box with Grouping Variable selected.

We then click OK, after which we will rerun the analysis described in Figures 
2.6 and 2.7. The resulting output in Figure 2.38 will appear.

Descriptives
Grouping variable = 1.00 Grouping variable = 2.00 Grouping variable = 3.00

Descriptive Statistics Descriptive Statistics Descriptive Statistics
N Mean N Mean N Mean

i1 677 .76 i1 804 .97 i1 519 1.00
i2 677 .38 i2 804 .64 i2 519 .86
i3 677 .22 i3 804 .53 i3 519 .83
i4 677 .21 i4 804 .29 i4 519 .51
i5 677 .20 i5 804 .27 i5 519 .69
i6 677 .39 i6 804 .75 i6 519 .93
i7 677 .31 i7 804 .64 i7 519 .89
i8 677 .25 i8 804 .52 i8 519 .85
i9 677 .62 i9 804 .85 i9 519 .94

i10 677 .59 i10 804 .89 i10 519 .98
i11 677 .37 i11 804 .52 i11 519 .78
i12 677 .27 i12 804 .45 i12 519 .78
i13 677 .11 i13 804 .16 i13 519 .40
i14 677 .68 i14 804 .88 i14 519 .98
i15 677 .55 i15 804 .86 i15 519 .97
i16 677 .36 i16 804 .62 i16 519 .85
i17 677 .37 i17 804 .61 i17 519 .84
i18 677 .21 i18 804 .34 i18 519 .57
i19 677 .17 i19 804 .32 i19 519 .67
i20 677 .18 i20 804 .32 i20 519 .62

Valid N (listwise) 677 Valid N (listwise) 804 Valid N (listwise) 519

Figure 2.38 Proportion of correct responses for items, organized by group.
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The item discrimination values will then need to be calculated by hand. 
For example, for Item 1 the extreme groups item discrimination value is 
the difference in the proportion correct for Group 3 (the high group) 
and Group 1 (the low group), or 1.00 – 0.76 = 0.24. Likewise, for Item 17, 
the item discrimination is 0.84 – 0.37 = 0.47. Similar calculation would be 
made for each of the items. Ebel (1965) provides statistical criterion levels 
to identify items’ discriminatory power based on their discrimination val-
ues. These values and corresponding labels appear in Table 2.1. One final 
note here is that the user will need to remember to turn off the split file 
command when she is done obtaining the proportions by group, otherwise 
all subsequent analyses will be divided by groups, creating quite a lot of 
unwanted output.

Biserial/Point Biserial Correlations

In addition to the extreme groups discrimination method described 
above, an alternative approach for estimating item discrimination is the 
correlation between the item and a measure of the level on the construct of 
interest. Typically, the total score on the instrument (e.g., number correct 
in the dichotomous case) is used to estimate this trait (Crocker & Algina, 
1986). Two commonly used methods for estimating the relationship be-
tween a dichotomous variable, such as an item response, and a continu-
ous variable are the biserial and point-biserial correlations. Conceptually, 
the two correlations differ in that the biserial is calculated under the as-
sumption that there is a normally distributed latent variable underlying 
each item response, while the point-biserial treats the item response as a 
true dichotomy with no such latent continuous variable. Thus, the bise-
rial correlation estimates the relationship between the underlying latent 
variable and total scale score, while the point-biserial correlation is simply 
the standard product-moment value between the score and the dichoto-
mous item. It should be noted that when this total score includes the target 
item, the resulting correlation will be positively biased. For this reason, it 

TABLE 2.1 Ebel’s (1965) Guidelines for Interpreting 
Extreme Groups Item Discrimination Values

Item Discrimination Values Label

0.40–1.00 Satisfactory

0.30–0.39 Minimal to no revision

0.20–0.29 Revision necessary

–1.00–0.19 Delete
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is recommended that the score be calculated so as to exclude the target 
item (Crocker & Algina, 1986). Unfortunately, SPSS does not calculate the 
biserial correlation with ease. Thus, we focus on the point-biserial for this 
example. This is also the one used by most practitioners and should lead to 
the same conclusion about the items.

The point-biserial correlation for dichotomous items, as well as other 
item level statistics, can be obtained using the Analyze ► Scale ► Reliability 
menu sequence. Figure 2.39 displays the Reliability Analysis dialogue box, 
discussed in more detail in Chapter 3. As shown below in Figure 2.39, to 
obtain the point-biserial correlations for each item, we simply move the 
20 items from the left hand box to the Items box on the right, as has been 
done in this example.

Figure 2.39 Reliability Analysis dialogue box with items selected.

In order to request the calculation of the point-biserial correlation coef-
ficients, click the Statistics button.
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Figure 2.40 Reliability Analysis: Statistics dialogue box.

To obtain the descriptive statistics for each item and the scale, as well as the 
point-biserial correlation coefficients, we will check the three boxes under 
Descriptives for section of the dialogue box, as is the case in Figure 2.40. We 
can then click Continue in this box, and OK in the Reliability Analysis dia-
logue box in order to obtain the following output reported in Figure 2.41.
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Item Statistics
Mean Std. Deviation N

i1 .91 .290 2000
i2 .61 .489 2000
i3 .51 .500 2000
i4 .32 .466 2000
i5 .36 .479 2000
i6 .67 .469 2000
i7 .59 .492 2000
i8 .51 .500 2000
i9 .79 .405 2000

i10 .81 .392 2000
i11 .54 .499 2000
i12 .48 .500 2000
i13 .21 .405 2000
i14 .84 .369 2000
i15 .78 .412 2000
i16 .59 .492 2000
i17 .59 .492 2000
i18 .36 .479 2000
i19 .36 .480 2000
i20 .35 .476 2000

Item-Total Statistics
Scale Mean 

if Item Deleted
Scale Variance 
if Item Deleted

Corrected Item-
Total Correlation

Cronbach’s Alpha 
if Item Deleted

i1 10.25 12.777 .312 .716
i2 10.55 12.239 .301 .715
i3 10.65 11.985 .367 .709
i4 10.84 12.783 .152 .728
i5 10.80 12.302 .291 .716
i6 10.48 12.091 .367 .709
i7 10.57 11.956 .385 .707
i8 10.64 11.957 .376 .708
i9 10.36 12.606 .256 .719

i10 10.35 12.376 .354 .711
i11 10.62 12.457 .227 .722
i12 10.68 12.198 .304 .715
i13 10.95 12.800 .187 .724
i14 10.32 12.627 .283 .717
i15 10.37 12.355 .339 .712
i16 10.57 12.247 .296 .715
i17 10.57 12.300 .280 .717
i18 10.80 12.638 .188 .725
i19 10.80 12.250 .305 .714
i20 10.81 12.368 .272 .717

Scale Statistics
Mean Variance Std. Deviation N of Items
11.16 13.507 3.675 20

Figure 2.41 Point-biserial correlation coefficients, and item and scale descriptive 
statistics for Dichotomous Items scale.
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The resulting output includes the point-biserial correlation between 
each item and the corrected total with the target item excluded, as well as 
descriptive statistics for the individual items and the scale as a whole, an 
estimate of the Cronbach’s Alpha reliability coefficient for the total scale, 
and an estimate of alpha with each item deleted. The issue of reliability and 
Cronbach’s alpha will be discussed in much greater detail in Chapter 3. 
Note that in Figure 2.41 only the item and scale descriptive statistics, along 
with the point-biserial correlation tables are included. From this output, 
we can ascertain the proportion of correct responses to each item (item 
difficulty) by referring to the Mean column in the Item Statistics table. This 
table also includes the item standard deviation (Std. Deviation), and the 
number of respondents to each item (N). The item discrimination esti-
mates in the form of point-biserial correlations appear in the Item-Total 
Statistics table (Corrected Item-Total Correlation). This latter table also in-
cludes the mean, variance, and Cronbach’s Alpha of the total scale if the 
item were to be deleted.

To judge the quality of individual items, we can examine the reliability 
estimate for the scale scores when each of the items is deleted. If these item 
specific Alpha values are lower than the total scale value of 0.73, we can 
conclude that the item contributes positively to the overall consistency of 
the scale. On the other hand, when the Alpha value for the item deleted 
is higher than for the total scale (or, 0.73 in this case), we would conclude 
that the item might actually be detracting from the overall consistency of 
the scale. In such cases, these items also have lower item discrimination 
(point-biserial correlation) values.

In this example, Item 1 (among others) appears to contribute posi-
tively toward the overall reliability, because the item level value of 0.716 is 
lower than the total of 0.726. Only for Item 4 did the reliability improve 
(albeit very slightly) when the item was deleted from the scale. However, it 
would be unwise of the scale developer to delete an item solely based on the 
information obtained from an empirical item analysis. Both content and 
numerical information should be considered when adding and deleting 
items. References exist (e.g., Haladyna, 1999) for discussion on developing 
quality items using multiple sources of information.

The previously described Reliability command sequence can also be 
used with ordinal data, such as the Likert Scale responses described above 
and seen below with sample results.
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Item Statistics
Mean Std. Deviation N

V1 4.12 .550 1533
V2 3.75 .686 1533
V3 4.00 .573 1533
V4 3.99 .608 1533
V5 4.00 .579 1533
V6 4.06 .545 1533
V7 3.95 .665 1533
V8 3.89 .636 1533
V9 3.90 .622 1533

V10 3.80 .678 1533
V11 3.94 .616 1533
V12 4.06 .586 1533
V13 3.94 .675 1533
V14 3.80 .743 1533
V15 4.04 .593 1533
V16 3.79 .741 1533
V17 3.86 .696 1533
V18 3.60 .776 1533
V19 4.01 .603 1533
V20 3.85 .695 1533

Item-Total Statistics
Scale Mean if 
Item Deleted

Scale Variance if 
Item Deleted

Corrected Item-
Total Correlation

Cronbach’s Alpha 
if Item Deleted

V1 74.21 60.893 .589 .916
V2 74.58 59.671 .577 .916
V3 74.33 60.273 .635 .915
V4 74.34 60.113 .612 .915
V5 74.33 60.158 .641 .915
V6 74.27 60.839 .601 .916
V7 74.38 59.377 .628 .915
V8 74.44 59.520 .645 .914
V9 74.43 60.238 .583 .916

V10 74.53 59.722 .579 .916
V11 74.39 59.498 .671 .914
V12 74.27 60.090 .641 .915
V13 74.39 60.480 .507 .918
V14 74.54 60.037 .492 .918
V15 74.29 59.917 .652 .914
V16 74.54 59.792 .516 .918
V17 74.47 60.350 .502 .918
V18 74.73 60.337 .441 .920
V19 74.32 59.935 .638 .915
V20 74.48 59.692 .566 .916

Scale Statistics
Mean Variance Std. Deviation N of Items
78.33 66.254 8.140 20

Figure 2.42 Point-biserial correlation coefficients, and item and scale descriptive 
statistics for Polytomous Items scale.
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Interpretation of the resulting output is comparable to that for the dichoto-
mous items. Thus we do not add information on this interpretation.

Chapter Summary

This chapter introduced some statistical procedures to conduct item analy-
ses based on CTT. These analyses serve as a first step in the examination of 
the psychometric properties of scale scores. The analyses represent an easy 
manner in which to estimate the difficulty and discrimination parameters 
of items and overall reliability for internal consistency. As you have learned, 
the calculation of the indices is efficient and easy. We have discussed some 
suggested guidelines, as well, for determining item quality. This allows you, 
as a scale developer or user, to understand additional information about 
which items will remain, be revised, or excluded from the final version of 
an educational or psychological measure (e.g., motivation, mathematics 
achievement). Of course, the numeric indices are the easy part in the scale 
development process. Understanding what is required to revise or replace 
items must include discussion about content and representativeness of the 
skills or knowledge measured by the items and how such changes will influ-
ence the measurement of the underlying trait or ability. This is where the 
fun mental space that psychometricians have the opportunity to interact 
with the experts if various domains. We hope you enjoy playing in these 
spaces as well with your new knowledge of empirical item analysis. Now that 
we are familiar with CTT and IRT models, let us move to item analysis in 
Chapter 2 with these ideas in mind. We also want you to be aware that many 
of our datasets and code are available to download at the website for this 
book (https://labs.wsu.edu/psychometric/resources/).
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3
Reliability

Introduction

In Chapter 1 we reviewed the basic ideas underlying classical test theory 
(CTT). The fundamental equation underlying CTT is

 X = T + E,  (3.1)

where X is the observed score on a test or measure for an individual, T is the 
individual’s true score (i.e., true ability) on the construct of interest, and E 
is random error. This random error encompasses all factors that might in-
fluence the observed score, other than an examinee’s true ability. In Chap-
ter 1 we also provided examples of what might encompass error, including 
examinee fatigue and mood, as well as environmental variation such as the 
temperature and noise in the room where the test is administered, and fi-
nally factors specific to the test such as the items selected for inclusion. The 
random nature of error leads to a number of truisms about the relation-
ships among X, T, and E, concluding in the definition of reliability as the 
ratio of true score to observed score variance, or
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While this definition of reliability has proven quite useful theoretically, 
in practice it is not possible to obtain either T

2σ  or E
2σ  . Therefore, research-

ers have had to develop methods for estimating reliability using informa-
tion that is available from an actual test administration. This chapter will 
focus on a variety of these methods, describing their theoretical underpin-
nings and demonstrating how to use them in actual practice with SPSS soft-
ware. In addition, the reader will be provided with examples using both 
dichotomous and polytomous data.

Prior to describing methods for estimating reliability, we first need to 
consider what such estimates actually tell us. A classic definition of reliabil-
ity states that it is the consistency of scores on an instrument that is given 
repeatedly to the same individual many times (Crocker & Algina, 1986). 
Of course in practice this is rarely if ever possible because (a) there would 
be learning effects such that one test administration would influence the 
next, thus changing the construct being measured, and (b) the construct 
itself might change naturally over time. For these reasons we must estimate 
reliability most often with a single or perhaps two administrations. A ques-
tion of some interest is regarding what these reliability estimates actually 
mean. Quite often, researchers reporting reliability estimates will describe 
the reliability of the instrument as if it is a static value independent of the 
particular sample from which the data were collected. However, a more 
recent discussion of this issue, as well as recommendations for reporting 
reliability estimates, have suggested that reliability estimates (as opposed 
to the theoretical construct described above) must be described as being 
data specific (Thompson, 2003). In other words, for each sample that is 
given the instrument of interest, an estimate of reliability should be cal-
culated and this estimate should be explicitly linked to that sample only, 
rather than reported as applying to the instrument across samples (Eason, 
1991). Throughout the remainder of this chapter, we will strive to describe 
example results in this way.

Measures of Internal Consistency

One very common set of reliability estimates is based on relationships 
among individual items. More specifically, covariances among the items are 
used to construct a statistic that reflects consistency of measurement for the 
entire scale. If we consider each item, Xj to be a kind of miniature test of a 
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common construct of interest (e.g., math achievement), then the degree to 
which these items are related to one another reflects the consistency of the 
scale as a whole (i.e., stronger inter-item correlations indicate greater over-
all consistency of the instrument). This logic has been used by researchers 
to suggest a number of such coefficients.

KR-20

Perhaps the most popular estimate of internal consistency is Cronbach’s 
a and its dichotomous item response version, the Kuder Richardson-20 
(KR-20). We will first present the special case of the KR-20 with dichoto-
mous data and then generalize to Cronbach’s a. The equation for KR-20 is:

 K
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=  (3.3)

where

 K = Total number of items on the instrument
 pk = Proportion of individuals with correct response to item k
 qk = Proportion of individuals with incorrect response to item k
 STotal

2  = Variance of the scores on the test

Thus, each item’s variance (pk qk) is calculated and then compared to the 
variance of the total test score. As mentioned above, KR-20 is really just a 
special case of Cronbach’s a, and as such we can obtain it using the SPSS 
functions for computing the latter.

As an example, let’s consider again the 20-item test for which we ob-
tained item difficulty and discrimination values in Chapter 2. Remember 
that each item was coded as either 1 (correct) or 0 (incorrect). While in 
those examples we used only 10 examinees for pedagogical purposes, in 
this case we will estimate KR-20 for the entire sample of 2,000 examinees 
using SPSS. In order to obtain the estimate of total scale reliability, as well 
as descriptive statistics for the individual items, and an estimate of the scale 
reliability when a particular item is deleted, we would use the following 
sequence of windows in SPSS. We would first select Analyze from the SPSS 
menu bar, and then select Scale and Reliability Analysis. We will then be 
presented with the following window:
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The variables in the dataset appear in the left side window. In this case, all 
20 variables correspond to the 20 items of interest. In order to obtain a 
reliability estimate for the entire scale, we will need to move the items into 
the right side window, labeled Items. To do this, we simply highlight the 20 
variables and then click on the arrow pointing to the Items window so that 
our dialogue box now looks like:

By default Cronbach’s α will be calculated for us. We may wish to change 
the reliability estimate to be calculated, in which case we would simply click 
on the button indicated by the red arrow above. Among the choices are 
Split-half, Guttman (which provides several additional estimates of inter-
nal consistency), parallel, and strictly parallel. We will not investigate all of 
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these in the book, but do encourage the interested reader to delve more 
deeply into this topic.

Once we have selected the items constituting the scale, we will then 
want to select the statistics of interest by clicking the Statistics box indicated 
by the green arrow. The result will be the following dialogue box.

We can simply click the boxes next to each statistic that we would like to 
see. In general, we may want to see descriptive statistics for each item (mean 
and standard deviation), along with descriptive statistics for the scale, and 
for the scale if each item is deleted. Should we want any other statistics, we 
simply need to click the appropriate boxes.
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We then click Continue and return to the original dialogue box. If we would 
like a title for the scale to display in the output, we can type it in the Scale 
label window. We then click OK, and the following output will appear in the 
SPSS Output window.

First we should note that SPSS will paste the syntax that we could use 
to run the analysis, rather than the menu sequence. This syntax can be 
very helpful if we want to replicate the analysis at some point in the future, 
either with this sample or with a new set of data.

RELIABILITY
  /VARIABLES=i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 
i16 i17 i18 i19 i20
  /SCALE('20 Item Test') ALL
  /MODEL=ALPHA
  /STATISTICS=DESCRIPTIVE SCALE

  /SUMMARY=TOTAL.

Reliability
Scale: 20 Item Test

Case Processing Summary
N %

Cases Valid 2000 100.0
Excludeda 0 .0
Total 2000 100.0

a Listwise deletion based on all variables in the procedure.
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Reliability Statistics
Cronbach’s Alpha N of Items

.726 20
Item Statistics

Mean Std. Deviation N
i1 .91 .290 2000
i2 .61 .489 2000
i3 .51 .500 2000
i4 .32 .466 2000
i5 .36 .479 2000
i6 .67 .469 2000
i7 .59 .492 2000
i8 .51 .500 2000
i9 .79 .405 2000

i10 .81 .392 2000
i11 .54 .499 2000
i12 .48 .500 2000
i13 .21 .405 2000
i14 .84 .369 2000
i15 .78 .412 2000
i16 .59 .492 2000
i17 .59 .492 2000
i18 .36 .479 2000
i19 .36 .480 2000
i20 .35 .476 2000

Item-Total Statistics
Scale Mean if 
Item Deleted

Scale Variance if 
Item Deleted

Corrected Item-
Total Correlation

Cronbach’s Alpha 
if Item Deleted

i1 10.25 12.777 .312 .716
i2 10.55 12.239 .301 .715
i3 10.65 11.985 .367 .709
i4 10.84 12.783 .152 .728
i5 10.80 12.302 .291 .716
i6 10.48 12.091 .367 .709
i7 10.57 11.956 .385 .707
i8 10.64 11.957 .376 .708
i9 10.36 12.606 .256 .719

i10 10.35 12.376 .354 .711
i11 10.62 12.457 .227 .722
i12 10.68 12.198 .304 .715
i13 10.95 12.800 .187 .724
i14 10.32 12.627 .283 .717
i15 10.37 12.355 .339 .712
i16 10.57 12.247 .296 .715
i17 10.57 12.300 .280 .717
i18 10.80 12.638 .188 .725
i19 10.80 12.250 .305 .714
i20 10.81 12.368 .272 .717
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Scale Statistics
Mean Variance Std. Deviation N of Items

11.16 13.507 3.675 20

Based on these results we would conclude that for this sample, the KR-
20 reliability estimate (labeled as Cronbach Coefficient Alpha) of the test 
is approximately 0.73. In addition to providing the KR-20 value, SPSS also 
produces descriptive statistics for each of the items, including the number 
of examinees (N), the proportion of 1’s (Mean), and the standard deviation 
for each item (Std. Deviation). In the table labeled “Item-Total Statistics,” 
we see information about how the scale mean, the scale variance, and KR-
20 (alpha) would change were each item to be removed from the scale. 
In addition, this table also provides the Corrected Item-Total Correlation, 
which is simply the correlation between the total test score (sum of the 
items) with the item removed, and the item response itself. As a side note, 
this sum of the other items answered correctly is frequently referred to as 
the “rest score,” meaning it is the score obtained from the rest of the items. 
The higher this correlation, the more strongly associated the individual 
item is with the construct being measured by the other items. In addition, 
the value of alpha is calculated including the other items. For example, 
were Item 1 to be excluded from the scale, the value of KR-20 (Alpha col-
umn) would be 0.72. We can use this table to ascertain whether any of the 
items have a markedly deleterious impact on the overall reliability of the 
scale with this sample. If KR-20 increases substantially when a single item is 
removed, as compared to when all items are included, we might conclude 
that this item is potentially problematic and should be investigated further 
to determine if it exhibits any anomalies with regard to difficulty or discrim-
ination, or if it seems to have any wording problems. In this example, none 
of the items appear to be problematic in this regard. In general, with a large 
number of items, it will be unlikely that we will find removal of a single item 
to have a dramatic impact on the estimate of KR-20. The final table in this 
set of output includes descriptive statistics for the total scale score.

In addition to obtaining a point estimate for KR-20, it is also possible to 
construct a confidence interval for this value, thus providing us with greater 
information about the population parameter itself. In other words, much 
as with a confidence interval for the mean, we will be able to say that we 
are 95% certain the actual reliability in the population from which the sam-
ple was drawn is between the upper and lower bounds of the confidence 
interval. There are a number of proposed methods for calculating these 
intervals, including approaches based on transforming a so that it is ap-
proximately normally distributed in which case standard critical values can 
be used to construct the interval (Bonett, 2002; Hakstain & Whalen, 1976). 
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Other researchers have developed methods that avoid the transformation 
of a, including an approach by Feldt (1965) based on the F statistical dis-
tribution, two variants of this F approach (Koning & Franses, 2003), and a 
method developed by Iacobucci and Duchanchek (2003) that uses item co-
variances. Maydeu-Olivares, Coffman, and Hartmann (2007) developed a 
method that does not require any assumptions about the distribution of a. 
Using a simulation study, they found that their asymptotically distribution 
free (ADF) approach might be optimal in many situations. We can obtain 
Feldt’s confidence interval for a based upon the F statistic by first accessing 
the Reliability window under Analyze ► Scale, and moving the items to the 
right hand box, as usual.

We will then click on the Statistics box to obtain the following window.
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We will select the Intraclass correlation coefficient box, with the Two-Way 
Mixed model, and the Consistency type, as shown here. The default confi-
dence interval for the coefficient is 95%, but can easily be changed in the 
Confidence interval box in the window. We then click Continue, and then 
OK on the preceding window. The resulting output appears below.

RELIABILITY
  /VARIABLES=i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 
i16 i17 i18 i19 i20
  /SCALE('ALL VARIABLES') ALL
  /MODEL=ALPHA
  /ICC=MODEL(MIXED) TYPE(CONSISTENCY) CIN=95 TESTVAL=0.

Reliability

Notes
Output Created 28-AUG-2014 12:32:01

Comments

Input Data C:\research\SPSS psychometric book\data\
ex2.sav

Active Dataset DataSet7

Filter <none>

Weight <none>

Split File <none>

N of Rows in Working Data File 2000

Matrix Input
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Missing Value 
Handling

Definition of Missing User-defined missing values are treated as 
missing.

Cases Used Statistics are based on all cases with valid data 
for all variables in the procedure.

Syntax RELIABILITY
/VARIABLES=i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 

i12 i13 i14 i15 i16 i17 i18 i19 i20
/SCALE(‘ALL VARIABLES’) ALL
/MODEL=ALPHA
/ICC=MODEL(MIXED) 

TYPE(CONSISTENCY) CIN=95 
TESTVAL=0.

Resources Processor Time 00:00:00.00

Elapsed Time 00:00:00.03

Scale: ALL VARIABLES

Case Processing Summary
N %

Cases Valid 2000 100.0

Excludeda 0 .0

Total 2000 100.0
a Listwise deletion based on all variables in the procedure.

Reliability Statistics
Cronbach’s Alpha N of Items

.726 20

Intraclass Correlation Coefficient

Intraclass 
Correlationb

95% Confidence 
Interval F Test With True Value 0

Lower 
Bound

Upper 
Bound Value df1 df2 Sig

Single Measures .117a .108 .126 3.652 1999 37981 .000

Average Measures .726c .708 .743 3.652 1999 37981 .000

Two-way mixed effects model where people effects are random and measures effects are fixed.
a The estimator is the same, whether the interaction effect is present or not.
b Type C intraclass correlation coefficients using a consistency definition. The between-measure 

variance is excluded from the denominator variance.
c This estimate is computed assuming the interaction effect is absent, because it is not estimable 

otherwise.

Based on these results, we are 95% confident that the actual KR-20 value 
for the population from which our sample was drawn lies between approxi-
mately 0.71 and 0.74. The interested reader is encouraged to learn more 
about the various methods for calculating these confidence intervals, as 
well as the various comparisons of these approaches in order to make a 
decision regarding which seems optimal for a given application.

If we do not wish to make any assumptions about the distribution of 
Cronbach’s a, rather than Feldt’s method demonstrated above, we can use 
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the bootstrap approach instead. In general, the bootstrap methodology in-
volves the resampling of individuals from our actual sample, with replace-
ment in order to create B samples of size N, where B is typically a large 
number (e.g., 1,000 or more). For each of the B samples, the statistic of in-
terest (e.g., a) is calculated, thereby creating a sampling distribution for the 
statistic. In this case, the standard deviation is then calculated as an estimate 
of the standard error for the statistic, which can then be used in construct-
ing the confidence interval. The following SPSS macro was written by David 
Marso for calculating the bootstrap confidence interval for Cronbach’s a.

*Author:David Marso.
/*************************************************************/
/* SPSS Macro:                                               */
/* Bootstrapped Confidence Interval for Cronbach’s Alpha     */
/* Requires three arguments:                                 */
/* NSAMP: the number of boootstrap samples                   */
/* VARLIST:The set of variables comprising the scale         */
/* INTWID : The confidence interval (95 = 95% CI )           */
/* Example : !CA_BOOT NSAMP 2000                             */
/* / VARLIST V1 TO V10                                       */
/* / INTWID 95                                               */
/*                                                           */
/* NOTE: This macro creates and deletes two files in the     */
/* current working directory: ‘c:\research\SPSS psychometric 
   book\’ and                                                */
/* You will need to change this directory to match the  
   directory on your                                         */
/* computer where you keep the data. Note that it appears in 
   several                                                   */
/* locations in the macro                                    */
/* ‘BOOTSAMP.SAV’. The working data file is saved            */
/* as ‘RAWDATA.SAV’ and then retrieved so it becomes         */
/* the active file after the macro has completed.            */
/*************************************************************/

DEFINE !CA_BOOT (NSAMP !CHAREND(‘/’)
/VARLIST !CHAREND(‘/’)
/ INTWID !CMDEND ).

*0 Save original data after tagging ID *.
COMPUTE BOOTID=$CASENUM.
SAVE OUTFILE ‘c:\research\SPSS psychometric book\RAWDATA.SAV’.

*1 Find the sample size and create a MACRO for it *.
COMPUTE NOBREAK=1.
AGGREGATE OUTFILE * / PRESORTED / BREAK=NOBREAK / N=N.
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WRITE OUTFILE ‘c:\research\SPSS psychometric book\outfile.out’
/ ‘DEFINE !NCASE ( ) ‘,N,’ !ENDDEFINE ‘.
EXECUTE.
SET ERRORS OFF.
INCLUDE ‘c:\research\SPSS psychometric book\outfile.out’.
SET ERRORS ON.

*2 Build bootstrap samples *.
VECTOR #SUBJ( !NCASE).
LOOP SAMPLE=1 TO !NSAMP.
* Initialize a vector of case indicators *.
+ LOOP #I=1 TO !NCASE.
+ COMPUTE #SUBJ(#I)=0.
+ END LOOP.

*3 Mark each case the number of times it must be sampled *.
+ LOOP #ITER=1 TO !NCASE.
+ COMPUTE INDEX=TRUNC(UNIFORM(!NCASE))+1.
+ COMPUTE #SUBJ(INDEX)=#SUBJ(INDEX)+1.
+ END LOOP.

*4 Write out the cases for each bootstrap sample and a weight *.
+ LOOP BOOTID=1 TO !NCASE.
+ DO IF #SUBJ(BOOTID) > 0.
+ COMPUTE BOOTWGT=#SUBJ(BOOTID) .
+ XSAVE OUTFILE ‘c:\research\SPSS psychometric book\BOOTSAMP 
.SAV’ / KEEP SAMPLE BOOTID BOOTWGT.
+ END IF.
+ END LOOP.
END LOOP.
EXECUTE.

*5 Attach the original data using a TABLE lookup *.
GET FILE ‘c:\research\SPSS psychometric book\BOOTSAMP.SAV’.
SORT CASES BY BOOTID.
MATCH FILES FILE * / TABLE ‘c:\research\SPSS psychometric book\
RAWDATA.SAV’ / BY BOOTID.

*6 Weight by the number of times cases is in each sample *.
WEIGHT BY BOOTWGT.

*7 Compute Coefficient Alpha for each sample *.
COMPUTE SCALE = SUM(!VARLIST).
AGGREGATE OUTFILE *
/ BREAK SAMPLE
/ !VARLIST SCALE=SD(!VARLIST SCALE).
DO REPEAT V=!VARLIST SCALE.
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COMPUTE V=V**2.
END REPEAT.

COMPUTE NV=NVALID(!VARLIST).
COMPUTE C_ALPHA =(NV/(NV-1))*(1-(SUM(!VARLIST)/SCALE)).

* 8 Extract the lower and upper confidence limits for Alpha *.
SORT CASES BY C_ALPHA.
COMPUTE #=#+1.
COMPUTE CPCT=#/!NSAMP.
COMPUTE #IW=!INTWID/100.
SELECT IF (CPCT <=(1-#IW)/2) OR (CPCT >= 1-(1-#IW)/2 ).
COMPUTE TAG=CPCT > (1-#IW)/2.
MATCH FILES FILE *
/ FIRST=TOP / LAST=BOT
/ BY TAG
/ KEEP C_ALPHA CPCT TAG.
SELECT IF (NOT (TAG) AND BOT) OR (TAG AND TOP).
DO IF TAG.
COMPUTE LCL=LAG(C_ALPHA).
COMPUTE UCL=C_ALPHA.
PRINT /!QUOTE(!CONCAT(!INTWID,”% CI for Cronbach’s Alpha”)) 
/!QUOTE(!CONCAT(“Based on “,!NSAMP,” Samples”)) /”LCL=”,LCL,’ 
UCL=’,UCL .
END IF.
EXECUTE.
SELECT IF TOP.
EXECUTE.
ERASE FILE ‘c:\research\SPSS psychometric book\BOOTSAMP.SAV’.
ERASE FILE ‘c:\research\SPSS psychometric book\outfile.out’.
GET FILE ‘c:\research\SPSS psychometric book\RAWDATA.SAV’.
!ENDDEFINE.

In order to run the macro, we first need to type it into an SPSS syntax 
window, which we can open under File ► New ► Syntax. We then highlight 
the macro, and click Run ► All from the syntax window menu bar. Once the 
macro has been compiled, we would then type the following line at the bot-
tom of the syntax window, below the macro itself.

!CA_BOOT NSAMP=1000 / VARLIST i1 TO i20 / INTWID 95 .

We then highlight this line, and select Run ► Selection in the menu bar. 
The following output will appear.

95% CI for Cronbach’s Alpha
Based on 1000 Samples
LCL= .71 UCL= .74
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This final result is extremely close to the interval provided using the Feldt 
method, and presented above, suggesting that the data do conform to the 
assumption underlying the parametric method.

Cronbach’s α for Ordinal Data

As mentioned previously, KR-20 is a special case of Cronbach’s a when 
the item responses are dichotomous. When the items are polytomous in 
nature, we can express a in a more general way as
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where

 K = Total number of items on the instrument
 Sk

2 = Variance of item k

Note that this equation is really no different than for the KR-20. In that 
case, the variance estimate for an item was simply pq. Using SPSS, we can 
obtain a for polytomous data in much the same way that we did for the 
dichotomous items. In order to demonstrate the estimation of a in this con-
text, we will use the polytomous data that was first introduced in Chapter 2. 
In this example, we had data for 20 items from respondents who were asked 
to rate the current President of the United States on a variety of job tasks, 
with ratings being as follows: Strongly Disagree (1), Disagree (2), Neutral (3), 
Agree (4), and Strongly Agree (5).

In using such ordinal polytomous items, we must ensure that the na-
ture of the questions is unidirectional. The reader is encouraged to refer to 
Chapter 6 to learn about this issue, and the need to recode items to ensure 
that they all have response patterns in the same direction. Assuming that 
the items are indeed unidirectional, we can use the reliability function in 
SPSS once again to obtain an estimate of a. The command sequence in 
SPSS will be identical to what we saw with the dichotomous data. The result-
ing output appears below:

RELIABILITY
  /VARIABLES=V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 
V16 V17 V18 V19 V20
  /SCALE('Presidential items') ALL
  /MODEL=ALPHA
  /STATISTICS=DESCRIPTIVE SCALE
  /SUMMARY=TOTAL.
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Reliability

Notes
Output Created 26-AUG-2014 09:05:34

Comments

Input Data C:\research\SPSS psychometric book\data\
poly1.sav

Active Dataset DataSet3

Filter <none>

Weight <none>

Split File <none>

N of Rows in Working Data File 1533

Matrix Input

Missing Value 
Handling

Definition of Missing User-defined missing values are treated as 
missing.

Cases Used Statistics are based on all cases with valid data 
for all variables in the procedure.

Syntax RELIABILITY
/VARIABLES=V1 V2 V3 V4 V5 V6 V7 V8 V9 

V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 
V20

/SCALE(‘Presidential items’) ALL
/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE
/SUMMARY=TOTAL.

Resources Processor Time 00:00:00.03

Elapsed Time 00:00:00.04

Scale: Presidential items

Case Processing Summary
N %

Cases Valid 1533 100.0

Excludeda 0 .0

Total 1533 100.0
a Listwise deletion based on all variables in the procedure.

Reliability Statistics
Cronbach’s Alpha N of Items

.920 20
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Item Statistics
Mean Std. Deviation N

V1 4.12 .550 1533

V2 3.75 .686 1533

V3 4.00 .573 1533

V4 3.99 .608 1533

V5 4.00 .579 1533

V6 4.06 .545 1533

V7 3.95 .665 1533

V8 3.89 .636 1533

V9 3.90 .622 1533

V10 3.80 .678 1533

V11 3.94 .616 1533

V12 4.06 .586 1533

V13 3.94 .675 1533

V14 3.80 .743 1533

V15 4.04 .593 1533

V16 3.79 .741 1533

V17 3.86 .696 1533

V18 3.60 .776 1533

V19 4.01 .603 1533

V20 3.85 .695 1533

Item-Total Statistics
Scale Mean  

if Item Deleted
Scale Variance 
if Item Deleted

Corrected Item-
Total Correlation

Cronbach’s Alpha 
if Item Deleted

V1 74.21 60.893 .589 .916

V2 74.58 59.671 .577 .916

V3 74.33 60.273 .635 .915

V4 74.34 60.113 .612 .915

V5 74.33 60.158 .641 .915

V6 74.27 60.839 .601 .916

V7 74.38 59.377 .628 .915

V8 74.44 59.520 .645 .914

V9 74.43 60.238 .583 .916

V10 74.53 59.722 .579 .916

V11 74.39 59.498 .671 .914

V12 74.27 60.090 .641 .915

V13 74.39 60.480 .507 .918

V14 74.54 60.037 .492 .918

V15 74.29 59.917 .652 .914

V16 74.54 59.792 .516 .918

V17 74.47 60.350 .502 .918

V18 74.73 60.337 .441 .920

V19 74.32 59.935 .638 .915

V20 74.48 59.692 .566 .916
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Scale Statistics
Mean Variance Std. Deviation N of Items

78.33 66.254 8.140 20

We can see that the reliability estimate of this measure for the sample 
is quite high, at 0.92. In addition, there are not any items which, when re-
moved, yield a markedly higher or lower value of a. We might also find it 
helpful to obtain the 95% confidence interval for a, using the menu com-
mand sequence previously described. The results appear below.

Intraclass Correlation Coefficient

Intraclass 
Correlationb

95% Confidence 
Interval F Test With True Value 0

Lower 
Bound

Upper 
Bound Value df1 df2 Sig

Single Measures .364a .347 .383 12.470 1532 29108 .000
Average Measures .920c .914 .926 12.470 1532 29108 .000
Two-way mixed effects model where people effects are random and measures effects are 

fixed.
a The estimator is the same, whether the interaction effect is present or not.
b Type C intraclass correlation coefficients using a consistency definition. The between-

measure variance is excluded from the denominator variance.
c This estimate is computed assuming the interaction effect is absent, because it is not 

estimable otherwise.

The resultant output shows that for all methods of calculating the intervals, 
the population value of α lies roughly between 0.914 and 0.926. We can 
also obtain the bootstrap confidence interval for a using the syntax demon-
strated previously.

95% CI for Cronbach’s Alpha
Based on 1000 Samples
LCL= .91 UCL= .93

Once again, the bootstrap confidence interval is very similar to that based 
on the F statistic.

Split-Half Reliability

Split-half reliability estimation is unlike the internal consistency approach 
just described in that it focuses on larger units of analysis than the individ-
ual item. To use this method, one administers the instrument to a sample 
and then takes the completed items and divides them into two equally sized 
halves. The intent is to make the two halves equivalent in terms of factors 
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that might influence item response, such as item difficulty, content, and 
location in the instrument itself (i.e., near the front, in the middle, or near 
the end). These two halves are then scored individually, and the correla-
tion between the scores is calculated. This correlation can be viewed as an 
estimate of the reliability of the two halves in that we assume they represent 
parallel forms of the same measure. However, this correlation reflects the 
reliability estimate for an instrument that is half as long as the actual one 
to be used, because we have split it in half. Therefore, we need to make a 
correction to this value to reflect reliability for the full instrument with our 
sample. The correction, which is known as the Spearman–Brown correc-
tion is calculated as:

 SB
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where rH 1,H 2 is the correlation coefficient between the two halves.

Before examining how to calculate the split-half reliability estimate 
using the Spearman–Brown formula in SPSS, we need to consider strate-
gies for creating the two halves. One very commonly used approach is to 
divide the instrument into odd and even components. A variation of this 
approach requires the researcher to first order the items based on their dif-
ficulty value and then assign them into odd and even halves, working down 
the list of item difficulty values. A final method is to simply randomly assign 
items to one half or the other without regard to their position in the test. 
No one approach has been shown to be optimal, and the odd–even split 
tends to be very popular, perhaps in part because it is easy to carry out, is 
likely to be random with respect to item difficulty, and ensures that items 
from all parts of the test (beginning, middle, and end) are included in 
both halves. This last issue would be particularly important for longer times 
assessments where fatigue and speededness may have very real impacts on 
test performance.

In the following example with SPSS, we will use the 20 dichotomous item 
measure discussed above, splitting the items into odd and even halves. SPSS 
has a built in function for estimating the split-half reliability coefficient, using 
the Spearman–Brown correction. This function can be found in the reliabil-
ity window where we began this chapter, with Cronbach’s Alpha.
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We must move the items from the left window to the right in the dialogue 
box. We can then change the model to Split-half using the pull down menu, 
as in the example dialogue box below.

By default, the SPSS command will divide the instrument into the first half 
and second half when calculating the scores to be correlated. Below, we will 
see how this can be changed using SPSS syntax. To begin, however, we will 
use the default settings. Once we have selected the Split-half model, we can 
click OK to produce the following output.

DATASET ACTIVATE DataSet1.
GET
  FILE=’C:\research\SPSS psychometric book\data\ex2.sav’.
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DATASET NAME DataSet5 WINDOW=FRONT.
RELIABILITY
  /VARIABLES=i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 
i16 i17 i18 i19 i20
  /SCALE(‘Split half reliability for dichotomous data’) ALL
  /MODEL=SPLIT.

Reliability

Notes
Output Created 26-AUG-2014 12:18:27

Comments

Input Data C:\research\SPSS psychometric book\data\ex2.sav

Active Dataset DataSet5

Filter <none>

Weight <none>

Split File <none>

N of Rows in Working Data File 2000

Matrix Input C:\research\SPSS psychometric book\data\ex2.sav

Missing Value 
Handling

Definition of Missing User-defined missing values are treated as 
missing.

Cases Used Statistics are based on all cases with valid data for 
all variables in the procedure.

Syntax RELIABILITY
/VARIABLES=i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 

i13 i14 i15 i16 i17 i18 i19 i20
/SCALE(‘Split half reliability for dichotomous 

data’) ALL
/MODEL=SPLIT.

Resources Processor Time 00:00:00.02

Elapsed Time 00:00:00.01

[DataSet5] C:\research\SPSS psychometric book\data\ex2.sav

Scale: Split half reliability for dichotomous data

Case Processing Summary
N %

Cases Valid 2000 100.0

Excludeda 0 .0

Total 2000 100.0
a Listwise deletion based on all variables in the procedure.
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Reliability Statistics
Cronbach’s Alpha Part 1 Value .624

N of Items 10a

Part 2 Value .536

N of Items 10b

Total N of Items 20

Correlation Between Forms .535

Spearman–Brown Coefficient Equal Length .697

Unequal Length .697

Guttman Split-Half Coefficient .697
a The items are: i1, i2, i3, i4, i5, i6, i7, i8, i9, i10.
b The items are: i11, i12, i13, i14, i15, i16, i17, i18, i19, i20.

From these results, we see that the Spearman–Brown Split-half reliabil-
ity coefficient is 0.697, with a correlation between the two halves of 0.535. 
Within each half, the Cronbach’s Alpha values were 0.624 and 0.536, re-
spectively. As can be seen in the footnotes at the bottom of the table, “form” 
A of the test consisted of items 1–10, and “form” B consisted of items 11–20. 
Dividing the test in this manner is not typically optimal, because in some 
cases items are ordered from easy to difficult (e.g., intelligence tests), and 
for longer tests later items may not receive the full attention of the exam-
inees, or may even not be completed by all examinees. The odd–even split-
ting strategy is much more often used, for reasons cited above. In order 
to divide the test in this fashion and then calculate the Split-half reliability 
coefficient, we can take the syntax provided by SPSS and appearing above 
for the default approach, and edit it to the following.

DATASET ACTIVATE DataSet1.
GET
FILE=’C:\research\SPSS psychometric book\data\ex2.sav’.
DATASET NAME DataSet5 WINDOW=FRONT.
RELIABILITY
/VARIABLES=i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 
i16 i17 i18 i19 i20
/SCALE(‘Split half reliability for dichotomous data’) ALL
/MODEL=SPLIT.

The difference in this syntax and the default is that we manually list the 
odd items first, followed by the even ones. Thus, when SPSS uses the first 
half of the items in the list to create the first half scale, it is actually using 
the odd items.
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Reliability
Notes
Output Created 26-AUG-2014 12:47:07
Comments
Input Data C:\research\SPSS psychometric book\data\ex2.sav

Active Dataset DataSet5
Filter <none>
Weight <none>
Split File <none>
N of Rows in Working Data File 2000
Matrix Input C:\research\SPSS psychometric book\data\ex2.sav

Missing Value 
Handling

Definition of Missing User-defined missing values are treated as 
missing.

Cases Used Statistics are based on all cases with valid data for 
all variables in the procedure.

Syntax RELIABILITY
/VARIABLES=i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 

i13 i14 i15 i16 i17 i18 i19 i20
/SCALE(‘Split half reliability for dichotomous 

data’) i1 i3 i5 i7 i9 i11 i13 i15 i17 i19 i2 i4 i6 i8 
i10 i12 i14 i16 i18 i20/

/MODEL=SPLIT.
Resources Processor Time 00:00:00.00

Elapsed Time 00:00:00.01

Scale: Split half reliability for dichotomous data
Case Processing Summary

N %
Cases Valid 2000 100.0

Excludeda 0 .0
Total 2000 100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics
Cronbach’s Alpha Part 1 Value .566

N of Items 10a

Part 2 Value .555
N of Items 10b

Total N of Items 20
Correlation Between Forms .599
Spearman–Brown Coefficient Equal Length .749

Unequal Length .749
Guttman Split-Half Coefficient .749
a The items are: i1, i2, i3, i4, i5, i6, i7, i8, i9, i10.
b The items are: i11, i12, i13, i14, i15, i16, i17, i18, i19, i20.

We can see from these results that adjusting the correlation using the 
Spearman–Brown equation made quite a difference in our estimate of reli-
ability as compared to a test that is only half as long. The SB value of 0.75 is 
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slightly larger than the Cronbach’s a of 0.72 that we discussed earlier, and 
higher than the default Split-half value as well.

Test–Retest Reliability

In some applications, a researcher is particularly interested in the temporal 
stability of scores from an instrument. In other words, they would like to 
know whether individuals administered a measure at one point in time will 
tend to produce similar scores at a later point in time. An index measuring 
this relationship over time is often referred to as a coefficient of stability, 
as well as test–retest reliability (Raykov & Marcoulides, 2011). The estimate 
itself is simply the correlation coefficient between the scores at times 1 and 
2. Therefore, a major difference between test–retest reliability and the mea-
sures of internal consistency and split-half reliability discussed previously is 
that the former focused on relationships among individual items or sets of 
items from one test administration, while the latter focuses on the relation-
ship between total scores on the instrument from two points in time.

As an example, a researcher is interested in the stability of a measure of 
coping competence for adolescents. She administers a coping competence 
measure to a sample of 312 children aged 14 to 16 years at two points in 
time, separated by 3 weeks. Of these 312 individuals, 274 provided both 
scores and thus will provide data for the calculation of the correlation coef-
ficient. To obtain the correlation coefficient between scores at time 1 and 
time 2 using SPSS, we would first click on the following menu sequence: 
Analyze ► Correlate ► Bivariate, which yields the following window.
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The coping competence scores for Kindergarten (cck) and First Grade 
(cc1) must then be moved to the variables box.

By default, Pearson’s correlation coefficient is calculated. We also have the 
option to get nonparametric estimates of the correlation, including Kend-
all’s tau and Spearman’s Rho. However, for the current application with a 
large sample and continuous data, we can comfortably use Pearson’s r. We 
click OK and obtain the following output.

GET
  FILE=’C:\research\SPSS psychometric book\coping.sav’.
DATASET NAME DataSet6 WINDOW=FRONT.
CORRELATIONS
  /VARIABLES=cck cc1
  /PRINT=TWOTAIL NOSIG
  /MISSING=PAIRWISE.
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Correlations

Notes
Output Created 26-AUG-2014 13:07:17

Comments

Input Data C:\research\spss psychometric book\coping.sav

Active Dataset DataSet6

Filter <none>

Weight <none>

Split File <none>

N of Rows in Working Data File 312

Missing Value 
Handling

Definition of Missing User-defined missing values are treated as 
missing.

Cases Used Statistics for each pair of variables are based on 
all the cases with valid data for that pair.

Syntax CORRELATIONS
/VARIABLES=cck cc1
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

Resources Processor Time 00:00:00.02

Elapsed Time 00:00:00.05

Correlations
cck cc1

cck Pearson Correlation 1 .755**

Sig. (2-tailed) .000

N 304 274

cc1 Pearson Correlation .755** 1

Sig. (2-tailed) .000

N 274 281
** Correlation is significant at the 0.01 level (2-tailed).

The correlation between the two measures is 0.755, indicating a posi-
tive relationship such that individuals who had higher scores at time 1 
(i.e., those with greater coping competence) also had higher scores at 
time 2. This correlation is statistically significant, as the p-value is less than 
0.0001, and as mentioned above the total sample involved in the calculation 
of the correlation coefficient was 274.

When using test–retest reliability, the researcher must consider how 
long to allow between administrations of the instrument. There are not 
agreed upon guidelines for how long this should be, and indeed authors 
generally suggest that this time period must depend to a large extent on 
the perceived stability of the trait being measured. The interested reader is 
encouraged to refer to excellent discussion on this issue that appear in both 
Raykov and Marcoulides (2011) and Crocker and Algina (1986). In gen-
eral, the researcher must allow sufficient time so that the subjects do not 
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remember specific item responses and thus simply mimic their previous be-
havior on the instrument, but not so much time that the trait itself changes. 
Therefore, use of this technique for estimating reliability requires that the 
researcher be able to justify its use by demonstrating that the trait should 
not have changed during the interval, and that there are not memory or 
other related effects.

Chapter Summary

The issue of reliability is central to educational and psychological measure-
ment. Whether viewed through the prism of CTT as a measure of error, 
or more generally as the degree of score consistency, reliability of a scale 
score is one of the pillars upon which psychometrics is built. In nearly every 
instance where a researcher makes use of a measure, (s)he will need to 
estimate and report its reliability for the sample at hand. This value, along 
with validity evidence (Chapter 5) will serve as the primary means by which 
the quality of the scale for the current sample is judged. As we have seen 
in Chapter 3, there are multiple ways in which reliability can be estimated. 
Certainly the most common approach is based on internal consistency, par-
ticularly using Cronbach’s a. However, other methods may be more appro-
priate for a given situation, such as test–retest when the temporal stability 
of the scale is at issue. In addition, there are a number of methods for 
estimating reliability that were not discussed in this chapter, either because 
they are somewhat outdated or useful in very specialized conditions. None-
theless, the interested reader is encouraged to further investigate these al-
ternative methods for estimating reliability. Finally, as with many statistical 
analyses, the use of confidence intervals, where possible, is highly recom-
mended. Such intervals provide greater information regarding the popula-
tion parameter value than does a simple point estimate. In Chapter 4, we 
consider an alternative method for estimating reliability using information 
from analysis of variance (ANOVA) models, in an approach known as gen-
eralizability theory. This methodology can be applied to items on a scale, or 
to scores provided by raters or judges. As we shall see, while the end goal of 
generalizability theory is the same as that of the statistics discussed here, the 
statistical theory underlying the two approaches is quite different.
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4
Generalizability Theory

Introduction

In Chapter 3, we discussed the estimation of reliability indices in terms of 
internal consistency (e.g., Cronbach’s alpha) and correlations between 
scores on parts (e.g., split-halves reliability) or the entire (e.g., test–retest 
reliability) instrument (e.g., survey). In this chapter, we describe evaluating 
reliability from a very different perspective, and one that is linked more 
closely to the fundamental equation in CTT than were the other estimates 
of reliability described previously. This alternative approach to estimating 
reliability is known as generalizability theory (GT), and as we will see be-
low, it is based upon a framework embedded in a commonly used statistical 
model, the analysis of variance (ANOVA).

Recall, that the fundamental CTT equation is

 X = T + E, (4.1)
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where reliability was defined as the ratio of true score variance ( T
2σ ) to ob-

served score variance ( x
2σ ). When using traditional methods for estimating 

reliability, error (E) was dealt with only implicitly. It was known to have an 
impact on the scores, and could be seen in the relative magnitude of reliabil-
ity estimates, such that greater measurement error would be associated with 
lower reliability. However, no attempt was made in this paradigm to quantify 
error. On the other hand, GT seeks to address measurement error directly by 
estimating its magnitude and using this estimate in conjunction with infor-
mation about the observed score to calculate an estimate of reliability. The 
GT framework also provides a basis to quantify different sources of error, thus 
providing more information regarding the nature of the observed scores. 
Therefore, for example, error associated with the items on a test will be dis-
tinguishable from error associated with different test administrations (pre-
suming the instrument is administered to subjects on multiple occasions). As 
will be shown, GT also proves useful for assessing inter-rater reliability.

G-Studies/D-Studies

Before examining the details of GT, we must first learn some of the nomen-
clature specific to its practice. In this context, a score on some instrument is 
thought of as coming from a universe of all possible scores for this same indi-
vidual on this particular test. In other words, we consider the current instru-
ment to be only one of an infinite number of possible such instruments that 
could be used to measure the trait(s) of interest (e.g., argumentative writ-
ing). The entire measurement scenario is made up of multiple facets, such 
as the examinee(s) being assessed and the items comprising the instrument. 
Depending on the instrument and administrative conditions, among oth-
ers, facets can include: raters (e.g., teachers, judges), measurement occasion 
(or time), and the instrument type (e.g., portfolio, writing sample). Within 
this framework, each facet is assumed to uniquely contribute to the observed 
score, and an aim of a GT study is to estimate what portion of the score is as-
sociated with each facet. This estimation of the relative contribution of each 
facet to the total score is done in what is known as a G-study. The goal of a 
GT study, then, is to isolate the unique contribution of each facet to the total 
score, in the form of explained variance. Thus, the researcher will identify 
the facets that are hypothesized to contribute to the scores and then use a 
variance components analysis to quantify the unique contribution of each.

Once the score variances associated with the facets are estimated, the 
researcher will then use these in a D-study. The purpose of the D-study is 
to generalize the results to the universe of interest. More specifically, the 
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researcher will identify all facets to which they would like to generalize 
the instrument. This universe of generalization will include the number 
of individuals being measured, the number of items, raters, measurement 
occasions, for example. The purpose of the measurement will also be con-
sidered in the D-study. Thus, the goal of rank ordering individuals based on 
their scores (i.e., norm referenced assessment) will be treated differently at 
this stage than will the goal of identifying individuals whose score is above 
(or below) some cut value (i.e., criterion-referenced assessment). In addi-
tion, in the D-study the information obtained from the G-study can be used 
to compare the relative reliability of the measure under different condi-
tions with respect to the facets.

Variance Components

The actual estimation of the unique error contributed by each facet is done 
using variance components analysis, which is drawn from the ANOVA statis-
tical paradigm. Using variance components analysis, it is possible to decom-
pose an observed score into its constituent parts (e.g., items, individuals). 
For didactic purposes, let us consider a situation in which 100 students were 
asked to create portfolios reflecting their work in a class over the course 
of an academic semester. Say the portfolios included a collection of stu-
dent work samples, including: homework assignments, journal reflections, 
in-class assignments, tests, and a final project (e.g., paper). Each portfolio 
received scores from four individual raters (e.g., trained university faculty) 
who evaluated each student portfolio. Based on a four-point holistic scor-
ing scale (i.e., 1–4), each rater assigned a score to each student’s portfolio, 
where: 1 = Below basic, 2 = Basic, 3 = Proficient, and 4 = Excellent. In addition 
to a holistic rating, analytic scores were provided across individual aspects of 
the portfolios, including the quality of the design and the professionalism 
of the presentation, among others. For programmatic purposes (e.g., train-
ing raters), the researcher collecting the data would like to estimate the 
reliability of the ratings.

To begin, let us consider only the holistic ratings (we will examine 
analytic scores later). The facets involved in this rating are the students 
(i.e., persons) and the raters (e.g., university faculty). In addition, we will 
assume that there remains some left over variation in scores that is not as-
sociated with either the student creating the portfolio or the rater assigning 
the score, which we will refer to as the residual. We can then think of the 
score (xpi 

) for a given person from a given rater as

 x p r prpi = m + + + . (4.2)
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We can further define these terms so that μ is the overall mean score across 
all persons and raters, which we can think of as the “typical” score for any 
student/rater combination. The term p refers to the person effect on the 
score (i.e., proficiency of student creating the portfolio), r is the rater effect 
(i.e., how easy or difficult an individual rater is in scoring portfolios), and pr 
is the residual. We will have more to say about the residual later. These indi-
vidual effects can be described in terms of the actual scores, as we see below.

 p = μp – μ; (4.3) 
Mean score of person p across raters.

 r = μr – μ; (4.4) 
Mean score given by rater r across persons.

 pr = xpi – μp – μr + μ; (4.5) 
Remainder of score after the effects of person and rater are removed.

The residual in this model, which is actually the interaction between rater 
and person, can be viewed as unsystematic error associated with the holistic 
score. It represents remaining error in the scores that is not accounted for 
by the two systematic components: person and rater. From this equation, it 
is clear why proper identification of all relevant and measureable facets is so 
important. If such a facet is not explicitly included in the model, it will be 
implicitly accounted for in the residual. As we will see, a large residual term 
is associated with lower reliability.

Each of the terms described above has associated with it a mean and 
variance. For example, the mean of p is 0 with a variance of

 Ep p( )2 2σ = m −m , (4.6)

and the mean of r is also 0 with a variance of

 Er r( )2 2σ = m −m . (4.7)

The mean of the residual is 0 as well, with a variance of

 E xpr pi p r( )2 2σ = −m −m +m . (4.8)

It is possible, in turn, to express the variance of the observed score as
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 x p r pr
2 2 2 2σ = σ + σ + σ . (4.9)

Thus, we can now think of variation in the observed ratings for our sample 
as a function of variation due to persons, raters, and residual (or unsystem-
atic variability).

We can estimate each of these variances using a statistical modeling 
method known as variance components analysis, which is based in ANOVA. 
In considering Equation 4.9, we can see how closely aligned it is to the 
fundamental equation in CTT, where the observed score was viewed as a 
function of true score and error, and reliability was the ratio of true score 
variance to observed score variance. Our next step will be to determine 
which components in Equation 4.9 correspond to true score and which 
correspond to error.

Equation 4.9 refers to the population parameter values associated with 
GT. However, researchers never actually have access to the population, and 
thus must use samples drawn from the population to estimate population 
parameters. This is where ANOVA proves to be useful in the context of GT. 
Specifically, we can use variance components analysis to derive estimates for 
each of the terms in Equation 4.9, which in turn can be used to estimate 
reliability of the measure. For example, the variance component for p

2σ  , the 
portion of variance in observed scores due to the persons being measured is

 
MS MS

n
p pr

r

−
. (4.10)

Here, MSp is the mean square for persons, which is the sum of the squared 
differences between the mean for each individual across the four raters, 
and the overall mean rating, divided by the number of persons in the sam-
ple minus 1. MSpr is the mean square of the residual, often referred to as the 
mean square error, and nr is the number of raters. Similarly, the variance 
component for the rater is

 
MS MS

n
r pr

p

−
, (4.11)

where MSr is the mean square for the rater and np is the number of persons 
that were rated. The variance component for pr

2σ  is simply MSpr . We will not 
delve into the subject of variance components estimation in more detail, how-
ever, the interested reader is encouraged to pursue such detail in references 
including Brennan (2001) and Shavelson and Webb (1991), among others.
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Generalizability Coefficient/Phi Coefficient

In the previous chapter, we described several statistics that could be used 
to estimate test score reliability. These differed both in terms of how they 
were calculated (e.g., split half versus internal consistency) as well as how 
they might be used. In the latter case, for instance, we saw that researchers 
interested in the temporal stability of a measure (e.g., Time 1 to Time 2) 
might be particularly interested in estimating a test–retest reliability coef-
ficient. On the other hand, when an instrument may be administered only 
once for a given group of individuals (e.g., students), measures of internal 
consistency might be more appropriate.

In the case GT, there also exist multiple estimates of reliability, which 
differ in terms of how the researcher might expect to use the instrument 
vis-à-vis the individuals being measured. For instance, if the purpose of the 
instrument is to make relative decisions about the individuals being assessed, 
such as which portfolios to use to make programmatic decisions as compared 
to other measures (e.g., norm-referenced assessments), then the researcher 
will use the generalizability coefficient (G-coefficient). G is defined as

 

=
σ

σ +
σ

G

n

p

p
pr

r

2

2
2 , (4.12)

where all terms are as described above. This statistic is directly analogous to 
reliability as described in Chapter 3

(i.e., = σ
σ + σ

T

T E

2

2 2
).

Thus, in GT, true score variance is equivalent to the variance in observed 
score due to the persons being measured, while error is equivalent to the 
residual variance adjusted for the number of raters. We can see that if the 
number of raters increases, the estimate of error decreases and G becomes 
larger. Of course, this would presume that the quality of the new raters is 
the same as that of the raters used to estimate the variance components.

A second estimate of reliability in the context of GT is useful when the 
instrument is used for absolute decisions about the individuals. This statis-
tic is calculated as

 f =
σ

σ +
σ

+ σ
n n

p

p
pr

r

r

r

2

2
2 2 . (4.13)
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Note that the difference between Equations 4.12 and 4.13 is the inclusion 
of the variance due to the raters in the denominator. In other words, when 
we are interested in using an instrument to make absolute decisions about 
individuals, error includes both the interaction of persons and raters, as 
well as the raters themselves. The inclusion of raters is logical in this context 
because we are no longer only interested in ranking individuals based on 
their performance, in which case the effect of raters is not important since 
it will impact each individual to the same extent. However, when we need 
to determine whether, for example, an individual’s portfolio meets a cut-
score value so that they pass the assignment, the impact of raters becomes 
very important. The presence of relatively low scoring (harder) raters will 
lead to fewer individuals meeting the cut-value, while relatively high scoring 
(easier) raters will lead to more individuals meeting the standard. It is also 
clear from Equations 4.12 and 4.13 that ϕ will nearly always be lower than G.

Example 1: One Facet Crossed Design

Let us now consider the analysis of this one-facet crossed design using 
SPSS. In order to do so, we make use of SPSS syntax written by Mushquash 
and O’Connor (2006) that allows for a wide variety of GT designs. The mac-
ro is available to download at the website for this book. In this example, we 
consider the simplest GT design, in which each portfolio is rated on a single 
element (quality of the design) by each judge. Because each judge rates 
each portfolio, we call this a fully crossed design, in contrast to a nested de-
sign in which each judge rates only some of the portfolios. The data for this 
analysis are organized into 100 rows representing the individual portfolios 
(or persons) and 4 columns representing the raters (i.e., each rater’s scores 
provided in column for each student). As noted above, scores are given on 
a 1 to 4 scale. Data for the first 5 subjects appear in Figure 4.1.

Figure 4.1 First five observations of the design.sav file.
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These data were first saved as a SPSS dataset and then read in using the 
following command sequence. The following lines appear at the top of the 
SPSS script file entitled G1design.sps, in which the GT program is written. 
The remainder of the syntax appears below these lines, and the entire pro-
gram can be found on the website for the book. These specific lines are all 
well explained at the beginning of the macro provided by Mushquash and 
O’Connor, and appear below. The syntax file itself can be opened through 
the File ► Open ► Syntax menu sequence. Note that the lines set behind 
* are comments designed for the syntax user. In order to run the program, 
after making the appropriate changes to the commands below, we simply 
use the command sequence Run ► All.

* G1.sps for Generalizability Theory analyses

set printback = off.
matrix.

* There are two main ways of entering data into this program.

* Method 1: You can specify the data to be analyzed on a
  GET statement, as in the example below. On the GET statement,
  the data matrix must be named SCORES (as in the example);
  “FILE = *” will use the currently active SPSS data set;
  “FILE = C:\filename” will use the specified SPSS data file on  
  your computer. The * beside the GET command below converts the
  command into a comment. To use the GET command, remove
  the * that appears before GET; specify the data for analysis
  on FILE =; and specify the variables for analysis on VARIABLES =.

GET scores / file = * /variables = all / missing = omit.

* Enter the number of levels/conditions of Facet 1 (e.g., # of 
  items).
compute nfacet1 = 4.

* Enter the number of levels/conditions of Facet 2 (e.g., # of 
  occasions);
  You can ignore this step for single-facet designs.
compute nfacet2 = 1.

* For two-facet designs, Facet 1 is the facet with the fastest-
  changing conditions in the columns of your data matrix. For 
  example, if the first 10 columns/variables contained the data for 
  10 different items measured on occasion 1, and if the next 10 
  columns/variables contained the data for the same 10 items 
  measured on occasion 2, then items would be the fastest-changing 
  facet. As you slide from one column to the next across the data 
  matrix, it is the item levels that change most quickly. You would 
  therefore enter a value of “10” for NFACET1 and a value of “2” 
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  for NFACET2 on the above statements.

* Enter the design of your data on the “COMPUTE TYPE =” statement 
  below:
  enter “1” for a single-facet fully-crossed design, as in P * F1
  enter “2” for a single-facet nested nested design, as in F1 : P
  enter “3” for a two-facet fully-crossed design, as in P * F1 * F2
  enter “4” for a two-facet nested design, as in P * (F1 : F2)
  enter “5” for a two-facet nested design, as in (F1 : P) * F2
  enter “6” for a two-facet nested design, as in F1 : (P * F2)
  enter “7” for a two-facet nested design, as in (F1 * F2) : P
  enter “8” for a two-facet nested design, as in F1 : F2 : P.
compute type = 1.

* Enter D-study values for Facet 1; enter the values inside curly
  brackets, and place a comma between the values.
  compute dfacet1 = {1,2,3,4}.

* Enter D-study values for Facet 2; enter the values inside curly
  brackets, and place a comma between the values. You can ignore 
  this step for single-facet designs.
  compute dfacet2 = {1,2,3,4,5}.

* At the very bottom of this file, after the END MATRIX statement, 
  is a GRAPH command that can be used to plot the results for the 
  D-study values that you specified above. Specify the data that 
  you would like to plot by entering the appropriate number on the 
  COMPUTE GRAPHDAT statement:
  enter “1” for relative error variances;
  enter “2” for absolute error variances;
  enter “3” for G-coefficients;
  enter “4” for phi coefficients.
compute graphdat = 3.

* End of user specifications. Now just run this whole file.
******************************************************************

The GET scores / file = * /variables = all / missing = omit. 
line indicates that the open file will be used, through the file=* statement. 
If we wanted to use a file that is not open, we would simply put its path 
here. When using the open data option, it is easiest if the target file is the 
only one open. All of the variables in the dataset will also be included in 
the analysis. If we wanted to use only a subset of the variables in a file, they 
would be listed in this line after the variables= subcommand. As shown, 
the code indicates that there are 4 levels to facet 1 (the only facet of interest 
in this analysis), which correspond to the 4 raters. The 2 in the next line of 
code is not meaningful as we do not have a second facet, thus we can leave it 
as is. The next command tells SPSS that we have a single facet fully-crossed 
design, which is why the second facet command is ignored. Next, we must 
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indicate what values of facet 1 we would like to explore in the D-study por-
tion of our analysis. This is tantamount to indicating for how many raters we 
would like to obtain estimates of reliability. In this case, we are requesting 
D-study results for 1, 2, 3, 4, and 5 raters. Again, there is a command for 
requesting similar information for a D-study involving facet 2, which is not 
meaningful here. Finally, we indicate what type of graph we would like to 
see for our D-study. Specifically, we can obtain a scatter plot of one of four 
different values on the y-axis against the number of raters on x. Option 1 
plots the relative error variance, which is the denominator of the G coef-
ficient value, or error when we are interested in comparing individuals with 
one another. Option 2 plots the absolute error variance, the denominator 
of f while options 3 and 4 plot each of the reliability estimates, respectively. 
Thus, if our primary interest is in ordering the portfolios based on their 
scores, we may be most interested in option 1 or 3, while if we are primarily 
interested in determining whether the portfolios have met a given standard 
of performance, we would select either option 2 or 4. For this example, 
we elected to obtain a plot of the G coefficient values, as our interest is in 
comparing the relative quality of the portfolios with one another. Following 
is the output from running this syntax for design.sav.

Run MATRIX procedure:

GENERALIZABILITY THEORY ANALYSES:

Design Type 1: single-facet fully-crossed design, as in P * F1

Number of persons/objects (‘P’):
  100

Number of levels for Facet 1 (‘F1’):
  4

ANOVA Table:
           df        SS       MS   Variance   Proport.
P      99.000    91.610     .925       .173      .232
F1      3.000   101.970   33.990       .338      .453
P*F1  297.000    69.530     .234       .234      .314

Error Variances:

   Relative   Absolute
       .059       .143

G-coefficients:
          G        Phi
       .747       .547

D-Study:
Entered D-Study values for Facet 1:
  1  2  3  4  5
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Entered D-Study values for Facet 2:
  1  2  3  4  5

In the D-study results below, the levels of Facet 1 appear in the 
first column, and the levels of Facet 2 appear in the first row.

D-Study Absolute Error Variances
    .000   1.000
   1.000    .572
   2.000    .286
   3.000    .191
   4.000    .143
   5.000    .114

D-Study Relative Error Variances
    .000   1.000
   1.000    .234
   2.000    .117
   3.000    .078
   4.000    .059
   5.000    .047

D-Study G Coefficients
    .000   1.000
   1.000    .425
   2.000    .596
   3.000    .689
   4.000    .747
   5.000    .787

D-Study Phi Coefficients
    .000   1.000
   1.000    .232
   2.000    .377
   3.000    .476
   4.000    .547
   5.000    .602
----- END MATRIX -----
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Let us inspect the output to determine what we have learned about the 
portfolio ratings. First, we see that the number of persons and number of 
raters (levels for facet 1) are correct, indicating that the data were read in 
properly. We then see the ANOVA Table, which contains the variance com-
ponents estimates for each term in the analysis. The first column includes 
the name of the variable for which estimates were obtained, persons (P), 
raters (F1), and the interaction of persons by raters (P*F1). Next, we see 
the degrees of freedom for each of these terms. This value is the number 
of persons 100 – 1 = 99 (P), the number of raters 4 – 1 = 3 (F1), and the 
number of persons × the number of raters 300 – 3 = 297 (P * F1). The sum 
of squares (SS) are sample estimates of the quantities in Equations 4.6, 4.7, 
and 4.8, while the mean squares (MS) are the SS

df . The variance components 
values are as defined in Equations 4.10 and 4.11, above. We can calculate 
these by hand very simply using the information from the table: 

−
= − =

MS MS
n

p pr

r

0.92 0.23
4

0.17  and 
−

= − =
MS MS

n
r pr

p

33.99 0.23
100

0.34 .
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Remember that the variance component for the interaction is simply equal 
to the MS. Finally, this table reports the proportion of total variance in the 
ratings accounted for by each of the terms. Thus, the proportion of vari-
ance in the ratings due to differences in scores among the 100 individual 
portfolios is

+ +
=0.17

0.17 0.34 0.23
0.23.

We can obtain the proportion of rating variance accounted for by raters 
and the interaction in the same fashion. The next table includes the rela-
tive and absolute error variances, which correspond to the denominators 
of the G and f values, respectively. Following this, we see the estimates for 
G and f for the 4 raters included in this sample. These correspond to the 
estimates of reliability for relative and absolute decisions for the current 
sample of raters and persons.

Taken together, these results indicate that the largest segment of vari-
ability in ratings is due to differences among the raters themselves, while 
the least amount of variation is attributed to differences among the per-
sons. In general, this would not be a positive outcome because it indicates 
that the measurement mechanism (raters) and unexplained variance (in-
teraction) account for more variation in the design scores than do differ-
ences among the individual portfolios themselves. In general, we would 
prefer to see most of the variation being due to the portfolios, as it is an 
estimate of T in the context of CTT. In addition, the error variance for the 
absolute case is much greater than for the relative case, leading to the great 
difference in G and f. This difference in error variances is reflective of the 
large variability in the scores provided by the raters (e.g., faculty) towards 
students’ portfolios.

The output for the D-study begins by showing the values for the fac-
ets that we are interested in examining. Remember that we asked to see 
reliability estimates for 1, 2, 3, 4, and 5 raters, a fact which is reflected in 
the Entered D-Study values for Facet 1: table. The next two tables include the 
absolute and error variances for different numbers of raters, from 0 to 5, 
which is what we requested. We can see that in each case, as we increase the 
number of raters, the amount of error decreases. Remember that these er-
ror variances correspond to the denominators in Equations 4.12 and 4.13, 
respectively. Similarly, the final two tables in the D-study output reflect the 
G and f values for different numbers of raters. For both statistics the esti-
mate of reliability increases with more raters, and that in the case of G hav-
ing 4 or more raters results in reliability estimates greater than 0.7. On the 
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other hand, in the case of f, the reliability estimate does not approach 0.7 
even for as many as 5 raters. The graph provides a graphical representation 
of how G changes when the number of raters is increased.

One issue that is important to note is that we work under an assump-
tion that the quality of the additional raters is the same as those in the cur-
rent sample. If they are not as well trained or are drawn from a different 
population, then we cannot be sure that they will produce similar quality 
ratings to those in the sample. In turn, we cannot be sure that the scores will 
be similar, and thus the variance accounted for due to raters may change. 
Test developers face a similar issue when they add items to an instrument. 
In order for the estimates of variance obtained from the original sample to 
be applicable, they must ensure that the quality of the additional items is 
equivalent to that of the current set of items. Consequently, when this is not 
the case, the results of the D-study are not meaningful.

Example 2: Two Facet Crossed Design

Let us now consider a somewhat more complex research design, in-
cluding more than one facet. When data were collected on the portfolios 
described above, raters provided scores for 7 different dimensions, includ-
ing student reflection on their own work, the rationale for the elements 
included: the design, environmental factors, the mechanics of the portfo-
lio, the professionalism of the product, and quality of the artifacts. In this 
case, the researcher is interested in estimating the reliability of the entire 
scale, rather than a single rated aspect. Therefore, we will need to include 
a second facet to our design, which includes information about the differ-
ent tasks. The dataset that we use now includes 28 columns and 100 rows, 
reflecting the 4 raters’ scores on the seven tasks for 100 students. The first 
five observations appear as:

4 3 4 3 4 3 3 2 4 3 4 3 4 4 4 3 4 3 3 3 4 3 3 3 4 3 3 2
3 2 2 3 2 1 3 1 2 3 4 2 2 2 4 2 3 3 2 3 3 3 3 3 1 1 1 1
3 2 3 3 2 2 3 2 2 2 4 2 3 3 4 3 2 3 2 3 3 2 3 3 3 3 4 2
3 2 3 2 3 1 3 1 3 3 4 2 2 4 3 2 3 3 3 2 3 3 3 2 3 2 4 2
3 2 2 2 3 2 2 2 4 3 4 3 4 3 4 3 3 3 3 3 4 3 3 3 3 3 4 3

Our interest here is in estimating the reliability of the entire set of mea-
sures, rather than a single component, as we did previously with design.

In order to conduct this analysis, we will use the GT syntax file once 
again, the header commands of which appear below.
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* G1.sps for Generalizability Theory analyses

set printback = off.
matrix.

* There are two main ways of entering data into this program.

* Method 1: You can specify the data to be analyzed on a
  GET statement, as in the example below. On the GET statement,
  the data matrix must be named SCORES (as in the example);
  “FILE = *” will use the currently active SPSS data set;
  “FILE = C:\filename” will use the specified SPSS data file on your
  computer. The * beside the GET command below converts the
  command into a comment. To use the GET command, remove
  the * that appears before GET; specify the data for analysis
  on FILE =; and specify the variables for analysis on VARIABLES =.
  GET scores / file = * /variables = all / missing = omit.

* Enter the number of levels/conditions of Facet 1 (e.g., # of items).
compute nfacet1 = 4.

* Enter the number of levels/conditions of Facet 2 (e.g., # of 
  occasions); You can ignore this step for single-facet designs.
compute nfacet2 = 7.

* For two-facet designs, Facet 1 is the facet with the fastest-
  changing conditions in the columns of your data matrix. For 
  example, if the first 10 columns/variables contained the data for 
  10 different items measured on occasion 1, and if the next 10 
  columns/variables contained the data for the same 10 items 
  measured on occasion 2, then items would be the fastest-changing 
  facet. As you slide from one column to the next across the data 
  matrix, it is the item levels that change most quickly. You would 
  therefore enter a value of “10” for NFACET1 and a value of “2” 
  for NFACET2 on the above statements.

* Enter the design of your data on the “COMPUTE TYPE =” statement 
  below:
  enter “1” for a single-facet fully-crossed design, as in P * F1
  enter “2” for a single-facet nested nested design, as in F1 : P
  enter “3” for a two-facet fully-crossed design, as in P * F1 * F2
  enter “4” for a two-facet nested design, as in P * (F1 : F2)
  enter “5” for a two-facet nested design, as in (F1 : P) * F2
  enter “6” for a two-facet nested design, as in F1 : (P * F2)
  enter “7” for a two-facet nested design, as in (F1 * F2) : P
  enter “8” for a two-facet nested design, as in F1 : F2 : P.
compute type = 3.

* Enter D-study values for Facet 1; enter the values inside curly
  brackets, and place a comma between the values.
compute dfacet1 = {1,2,3,4,5}.
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* Enter D-study values for Facet 2; enter the values inside curly
  brackets, and place a comma between the values. You can ignore
  this step for single-facet designs.
compute dfacet2 = {1,2,3,4,5,6,7}.

* At the very bottom of this file, after the END MATRIX statement, 
  is a GRAPH command that can be used to plot the results for the 
  D-study values that you specified above. Specify the data that 
  you would like to plot by entering the appropriate number on the 
  COMPUTE GRAPHDAT statement:
  enter “1” for relative error variances;
  enter “2” for absolute error variances;
  enter “3” for G-coefficients;
  enter “4” for phi coefficients.
compute graphdat = 3.

* End of user specifications. Now just run this whole file. 
*******************************************************************

Once again, we indicate that the first facet consists of 4 levels correspond-
ing to the raters, while we now have a second facet with the 7 portfolio com-
ponents that were rated. We indicate that we have a two-facet fully crossed 
design (type = 3), and that we would like to see reliability estimates for rat-
ers 1 through 5, and for each of the seven components to be measured. 
We also request the scatter plot of the G-coefficient values associated with 
different numbers of raters and components to rate.

Run MATRIX procedure:

GENERALIZABILITY THEORY ANALYSES:

Design Type 3: two-facet fully-crossed design, as in P * F1 * F2

Number of persons/objects (‘P’):
  100

Number of levels for Facet 1 (‘F1’):
  4

Number of levels for Facet 2 (‘F2’):
  7

ANOVA Table:
                df        SS        MS   Variance   Proport.
P           99.000   638.741     6.452       .197      .243
F1           3.000   371.053   123.684       .165      .203
F2           6.000   147.700    24.617       .042      .052
P*F1       297.000   217.912      .734       .075      .092
P*F2       594.000   240.871      .406       .049      .060
F1*F2       18.000   135.960     7.553       .073      .090
P*F1*F2   1782.000   374.326      .210       .210      .259
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Error Variances:
   Relative   Absolute
       .033       .083

G-coefficients:
          G        Phi
       .856       .704

D-Study:

Entered D-Study values for Facet 1:
  1  2  3  4  5

Entered D-Study values for Facet 2:
  1  2  3  4  5  6  7

In the D-study results below, the levels of Facet 1 appear in the 
first column, and the levels of Facet 2 appear in the first row.

D-Study Absolute Error Variances
    .000   1.000   2.000   3.000   4.000   5.000   6.000   7.000
   1.000    .614    .427    .365    .334    .315    .302    .293
   2.000    .353    .236    .198    .178    .167    .159    .153
   3.000    .266    .173    .142    .126    .117    .111    .106
   4.000    .222    .141    .114    .100    .092    .087    .083
   5.000    .196    .122    .097    .085    .078    .073    .069

D-Study Relative Error Variances
    .000   1.000   2.000   3.000   4.000   5.000   6.000   7.000
   1.000    .334    .204    .161    .140    .127    .118    .112
   2.000    .191    .114    .089    .076    .068    .063    .059
   3.000    .144    .084    .065    .055    .049    .045    .042
   4.000    .120    .069    .052    .044    .039    .036    .033
   5.000    .106    .060    .045    .038    .033    .030    .028

D-Study G Coefficients
    .000   1.000   2.000   3.000   4.000   5.000   6.000   7.000
   1.000    .371    .491    .550    .586    .609    .626    .638
   2.000    .508    .633    .690    .722    .743    .758    .769
   3.000    .578    .700    .753    .783    .802    .815    .825
   4.000    .622    .740    .790    .817    .835    .847    .856
   5.000    .651    .766    .813    .840    .856    .868    .876

D-Study Phi Coefficients
    .000   1.000   2.000   3.000   4.000   5.000   6.000   7.000
   1.000    .243    .316    .351    .372    .385    .395    .402
   2.000    .359    .455    .500    .525    .542    .554    .563
   3.000    .426    .533    .582    .610    .627    .640    .649
   4.000    .471    .583    .634    .663    .681    .694    .704
   5.000    .502    .618    .670    .699    .718    .731    .741

----- END MATRIX -----
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As before, we see that the first three aspects of the output simply restate 
the structure of our data, with 100 persons, 4 raters, and 7 rated components. 
Next, we see the ANOVA table, which includes the variance component val-
ues along with the proportion of variance for which each term accounts. In 
this case, Persons accounted for approximately a quarter of the variance in 
ratings, as did the interaction of person by rater by component. Only rater 
accounts for nearly as much, at 20%. None of the other model terms explain 
even 10% of the variation in ratings. This result is very different from the 
findings for design alone, where together the rater and interaction of rater 
and person accounted for over 75% of score variance. In contrast, in this situ-
ation they account for approximately 40%. In addition, we can see that both 
the relative and absolute error variances are much smaller in this two-facet 
analysis than they were when we only examined design scores, particularly in 
the absolute case. As a result, the G and f values are both higher for this more 
complex design. For this design, these coefficients are calculated as follows:
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and
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All terms in these models are as defined previously, with the addition of σc
2 , 

which is the variance due to the component being rated, nc the number of 
components being rated, and interactions of the number of components 
being rated with the raters (nc ), and with the persons and raters (σ prc

2 ).

When considering the D-study, again we see familiar output with regard 
to the number of levels that we requested for each of the facets under con-
sideration. Following this, SPSS produces a table containing the absolute 
error variance values for each combination of number of raters and com-
ponents to be rated. For example, if we were to have only a single rater and 
one component, the absolute error variance would be 0.61. On the other 
hand, if we had 5 raters scoring 7 components, the absolute error variance 
would drop to 0.07. Similarly, in the next table we have information on the 
relative error variance values. The pattern is quite similar, with decreases in 
error variance concomitant with increases in either the number of raters or 
the number of scored components. Finally, the macro provides us with both 
G and f values for varying combinations of the levels that we requested for 
the two facets of interest. If, therefore, we would like to ensure a G value 
of 0.8 or higher, we should have at minimum 3 components to score and 
5 raters, but would be better off with no fewer than 3 raters and at least 5 
components. The graph relating the number of facet levels with G provides 
similar results. Note that facet 1 (raters) appears along the x-axis and facet 2 
(components) is represented by separate lines in the plot.

Chapter Summary

Generalizability theory allows a researcher to address measurement error 
directly, estimate its magnitude, and use this estimate in conjunction with 
information about the observed score to calculate an estimate of reliabil-
ity. A clear advantage it has over other reliability estimates (e.g., alpha) is 
that the GT framework provides a basis to quantify different sources of er-
ror. This, in turn, provides more information regarding the nature of the 
observed scores. Our simple examples demonstrate that GT is useful for 
assessing inter-rater reliability and is a common use. The reader is encour-
aged to think broadly how such a method could be used to separate error in 
various situations to enhance the accuracy of the measurement of human 
capabilities. And with that, we will move away from reliability to validity.
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Validity

Introduction

Validity assessment is both at the core of measurement theory and perhaps 
the most difficult aspect of applied measurement and psychometrics to in-
vestigate. Quite simply, the validation of an instrument involves determin-
ing the extent to which obtained scores represent the intended measured 
trait (e.g., academic achievement, motivation) to build an argument based 
on theory and empirical evidence to support score-based inferences and 
actions. Early in the development of measurement theory, validation was 
treated as primarily a statistical problem involving the correlation of a target 
measurement to be validated with a criterion that was known, or believed 
strongly, to be associated with the construct. Later, this statistical method-
ology extended to the use of factor analysis to investigate whether an in-
strument’s internal structure, based on obtained data, corresponded to its 
theoretical model. For example, empirical questions pertaining to whether 
a measure of reading aptitude was as three dimensional as the theory said it 
should be, could be investigated. Therefore, within this paradigm, validity 
assessment was primarily the discussion of statistical methodology.
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More recently, the notion of instrument validation has changed direc-
tion rather dramatically, perhaps most clearly embodied in the work of Mes-
sick (1989), who described the importance of theory in the examination of 
test score validity. Perhaps the key feature of this change in how validity is 
considered, is the change in focus from the instrument itself to the inter-
pretations and uses of scores from that instrument. As outlined by Kane 
(2006), scale validation can be characterized by three key principles:

1. The theory underlying the instrument and what it measures must 
precede any assessment of test score validity.

2. Validation involves a directed program of research and not a single 
study.

3. Competing theories as to the behavior of the measure must be 
considered when validity is assessed.

Key throughout the validation process is what Kane terms the interpretive 
argument, or the theory of how and what is being measured by the scale. 
This argument is quite separate from the statistical evidence for or against 
the validity argument of an instrument and, thus, it must be steeped in the 
relevant literature.

According to these considerations, the issue of validity is now centered 
on test score use and inferences rather than on the instrument itself. Thus, 
we might say that using scores obtained from a college entrance exam to 
predict freshman year academic performance is valid, but we cannot say 
that the college entrance exam itself is valid. Indeed, taking this idea a 
step further, use of the college entrance exam score can be valid in some 
contexts (e.g., predicting cumulative freshman GPA), but not in others 
(e.g., determining remedial course placement). While the score itself may 
be valid for predicting how well a student will perform in her first year of 
college, it may be quite meaningless as a tool for predicting how well the 
same person will do in their first job four years later. Thus, the validity of 
a particular score is conditional on its purpose, which takes us back to the 
interpretive argument that should be developed before and during scale 
development. The theory underlying the instrument, which is based in the 
relevant literature, must inform how we use and interpret scores from it.

There are two important concepts to consider when addressing issues 
of test score validity. The first is the extent to which a selected set of scale or 
test, items or measured behaviors (e.g., classroom engagement) adequately 
measure the intended construct (e.g., achievement motivation). Any partic-
ular instrument can only include a sample of items from the universe of all 
possible items that could be used to operationalize the construct domain. 
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Construct coverage occurs when the items comprising an instrument rep-
resent the universe of all possible items. Problems with validity emerge 
when the coverage is seriously incomplete or biased away from key domains 
(e.g., phonological awareness, comprehension) of the construct (e.g., lit-
eracy). For example, construct underrepresentation occurs when a set of 
scale items provide an incomplete assessment of the intended measured 
trait. This could occur when a Grade 6 mathematics assessment includes 
only three items, thus limiting the potential of the measure to adequately 
measure students’ mathematical problem-solving ability.

The second important concept in validation is what Kane (2006) 
termed nomothetic span, which is the relationship of scores on the instru-
ment to scores on other measures, or to other manifestations of the con-
struct. For example, the nomothetic span of scores on the college entrance 
exam would include their relationship to performance in the freshman 
year of college. Validation, then, involves combining theory and descrip-
tive (often though not always statistical) evidence to examine both the con-
struct coverage of the instrument, and the nomothetic span of the scores to 
answer the following questions:

1. To what extent do the items actually measure the construct?
2. Are scores on the instrument useful for their intended purpose?

Perhaps the final words in this section should be left to Zumbo (2007), who 
said that validity has evolved from simply analyzing data with discrete sta-
tistical procedures, to integrating such statistical evidence with theoretical 
arguments to develop a complete picture of how well the instrument does 
what it is purported to do.

Types or Sources of Validity Evidence

Traditionally, the investigation of validity evidence has been divided into 
several discrete types, such as: content, criterion, and construct. As previ-
ously stated, though they are discrete in terms of their application, these 
types should not be viewed as separate, but rather employed together with 
theory in order to demonstrate to what extent scores from a measure are 
useful for their intended purpose. In this chapter, we provide general de-
scriptions of these validity types and demonstrate the use of statistical pro-
cedures to gather relevant empirical evidence to substantiate the interpre-
tation and use of scores for their designated purposes (e.g., predictive).

Initial investigations of validity typically begin with an examination 
of the degree to which scale items adequately represent the intended 
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measured construct. Indeed, this assessment of content validity begins dur-
ing the phase of instrument development. It continues through the admin-
istration of the instrument to individuals (e.g., students) from the target 
population. Content validation is focused on ensuring that the items select-
ed to comprise an instrument provide acceptable content coverage of the 
measured trait. Content validity is generally investigated by subject matter 
experts (e.g., teachers) familiar with the content domain (e.g., mathemat-
ics) being assessed, as well as the target population (e.g., 3rd  grade stu-
dents, college students). The primary responsibility of the content experts 
is to review and assess item quality to ensure that the items provided ac-
ceptable coverage of the content domain (e.g., Grade 6 mathematics). We 
will not discuss this aspect of validation further in this book as it does not 
usually involve much, if any, in the way of statistical analysis. However, this 
lack of coverage in the text should not be interpreted as our demeaning the 
importance of content validation. To the contrary, it is, in many ways, the 
key component of validity assessment.

A second source of instrument validation is criterion-related validity, 
which falls with the broad category of evidence of associations with other 
variables. Criterion validity involves examination of the relationship between 
scores obtained from the target measure (the one for which we want to 
assess validity) to those gathered from one or more instruments theorized 
to measure the same or a similar construct. Most often, criterion-related va-
lidity is measured with a correlation coefficient (e.g., Pearson product mo-
ment) between scores obtained from the target and criterion measures. An 
example would be the correlation between scores obtained from a newly 
developed measure of literacy achievement to an existing measure of stu-
dents’ literacy outcomes. The direction and magnitude of the correlation 
provides statistical evidence on the relationship between the scores, which 
can be used for developing and testing theories.

Depending on the use(s) of obtained scores, gathering criterion-related 
validity evidence typically falls into two categories: concurrent and predictive. 
First, concurrent validity seeks to investigate the degree to which two measures 
designed to measure a similar trait yield similar scores. It is the condition that 
the target and criterion measures are designed to assess a similar construct 
(e.g., academic achievement, psychological distress). Gathering concurrent 
validity evidence is based on the administration of the target and criterion 
measure simultaneously to judge correspondence between resultant scores. 
It would be expected that two measures designed to measure the same trait 
would yield scores that report a strong, positive correlation. Predictive validity 
is the second type of criterion-related validity. As suggested by the name, it is 
concerned with the degree to which scores obtained from a target measure 
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(e.g., college aptitude test) can be used to predict examinees’ performance 
on some future criterion, such as college freshman GPA or employee job 
performance. Like concurrent validity, predictive validity is generally evalu-
ated using correlational techniques. Both concurrent and predictive validity 
seek to gather empirical evidence on the degree to which scores obtained 
from a target measure relate to those obtained from a criterion measure. 
The primary difference is the time in which scores on the criterion measure 
have been obtained, either at the same time as the target measure or at a 
designated time in the future.

Although criterion validity is often assessed through the use of correla-
tions, it can also take the form of expected differences between qualitative-
ly distinct groups (e.g., low and high risk readers) on the target measure, 
such as a literacy assessment. Discriminant groups validity is used to judge 
the degree to which an instrument yields scores that differentiate between 
two or more groups hypothesized to have differential performance, such as 
the ability of a depression inventory to distinguish between individuals with 
and without clinical depression. This type of test score validity evidence is 
typically assessed through the use of group mean comparisons using a t-test 
or analysis of variance (ANOVA). For example, the overall average scores 
of a clinical sample would be expected to be statistically greater than those 
obtained on a non-clinical sample on a diagnostic measure (e.g., depres-
sion), indicative of the presence of higher clinical symptoms (e.g., anxiety, 
loss of interest).

The third common type of validity, and the type that has grown in im-
portance over the last 20 years, is construct validity. Put simply, construct 
validation focuses on the extent to which obtained scores correspond with 
the theory used to guide scale development. Given the increased primacy 
of theory in scale validation, it is easy to see why construct validity, which 
heavily emphasizes contextualizing statistical evidence into existing theory, 
is central to substantiating the interpretation and use of scores for deci-
sion-making purposes (e.g., diagnostic, placement). Indeed, some authors 
(e.g., Messick, 1989) have argued that all other types of validity evidence 
can be thought of as a part of construct validity. Statistical approaches to 
assessing construct validity are many and varied, because the concept itself 
is highly varied. For example, factor analytic procedures can be used to 
investigate the correspondence between an instrument’s dimensionality to 
the theoretical structure of the measured construct used during the initial 
stages of scale development. In addition, relationships between the latent 
(or unobserved) scores on the measure and some criterion (i.e., criterion 
validity) may also be used in construct validation.
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However, often with construct validity we must go further than simply 
showing that our measure is correlated with another measure purportedly 
of the same (or a similar construct). Rather, we must also show that the tar-
get measure behaves in theoretically sound ways when it comes to gauging 
its relationships with variables to which it should not be related. This con-
cept is referred to as discriminant validity and has traditionally not been part 
of criterion-related validity. Nonetheless, inspecting the degree to which 
scores obtained from a target measure relate to dissimilar measures can be 
very important. For example, it would be expected that scores on a measure 
of college students’ achievement motivation would be negatively correlated 
with scores on a measure of academic dishonesty. In summary, construct 
validity evidence is truly all encompassing, taking into account a myriad of 
evidence on the functioning of obtained scores, and thereby potentially 
providing the most compelling evidence for scale validation.

Finally, it is important to comment on the relationship between test 
score validity and reliability. To recall Chapter 3, test score reliability refers 
to test score consistency, or the degree to which scores are absent of error. 
Thus, reliability seeks to determine the magnitude of measurement error in 
obtained scores, with lower reliability estimates associated with greater mea-
surement error. This relationship is particularly evident in generalizability 
theory, where measurement error can be directly quantified. As such, low 
reliability estimates indicate greater measurement error and will, conse-
quently, be associated with lower estimates of validity. This is true regardless 
of the type of validity evidence we seek to gather. The reason perhaps can 
be most clearly seen in the assessment of criterion validity, which often takes 
the form of a correlation coefficient between a target and criterion mea-
sure. Raykov and Marcoulides (2011) show that the correlation between 
the target and criterion measures cannot be as large as the correlation be-
tween the observed and true scores on the target, which is the reliability of 
the score obtained on the target measure. Alternatively, if the target instru-
ment score contains a great deal of random error, its correlation with any 
other measure, including the criterion, will be lower. Thus, high reliability 
is a prerequisite condition to achieving high validity, though not sufficient 
towards this end. As such, low test score reliability will ensure low test score 
validity, while high test score reliability will not necessarily result in high test 
score validity. While perhaps not as intuitively obvious, a similar relationship 
exists between the amount of random error present in the data and factor 
analytic results. Given the relationship between reliability and validity, they 
cannot be considered disjointed ideas. Instead, they should be viewed as 
separate but related aspects of the statistical properties of scores obtained 
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on measuring instruments that must be considered together when evaluat-
ing the interpretation and use of scores.

In the next section, we demonstrate the correction for attenuation, 
which provides an estimate of the correlation between true scores on the 
target and criterion measures, after accounting for the reliability of each 
measure. This adjustment may prove particularly useful when variation in 
the target or criterion measure lead to low validity coefficient estimates.

Concurrent Validity

To contextualize our discussion of concurrent validity, let’s consider an ex-
ample in which a new measure of extraversion has been developed based 
on emerging research findings. Say the resultant scale consists of 30 items 
instead of the 50 items that comprise the widely used existing scale. An at-
tractive feature of the new instrument is less administration time than the 
previously used instrument due to a reduced number of items. Through 
scale development, content validity was based on input from a panel of 
experts regarding the scale’s theoretical underpinnings, item quality, and 
the alignment of items to the extraversion construct. At this stage, the re-
searcher is prepared to gather empirical evidence on the utility of obtained 
scores from the new extraversion measure. One piece of validity evidence 
that might be particularly useful is the correlation of scores from the new 
scale with those obtained from the existing 50-item measure of extraver-
sion. If the correlation, or validity coefficient (Crocker & Algina, 1986), is 
relatively large and positive, then it can be concluded that the new, shorter 
measure does appear to measure the same construct as the existing (crite-
rion) measure of extraversion.

Typically, in a criterion validity study, a sample of individuals from the 
target population is administered both the target and criterion measures 
simultaneously. Subsequently, obtained scores across the measures are 
correlated to inspect the magnitude and direction of their relationship 
(e.g., moderate and positive). For this example, a sample of 411 college 
students was administered both instruments. Of these individuals, 383 com-
pleted all of the items for both scales, allowing for calculation of scores 
on each measure. The data are contained in the SPSS file, concurrent_ 
validity.sav. To obtain the Pearson correlation (validity coefficient) us-
ing SPSS, we would select Analyze from the menu bar, and then Correlate 
and Bivariate to obtain the following window:
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All of the variables in the dataset appear in the left side window, and 
Pearson’s r correlation coefficient is the default. First, we will highlight the 
variables of interest, and move them into the Variables window.

We can click the Options button to obtain the following window.
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Note that by default missing data are excluded pairwise, meaning that for 
each pair of variables for which correlations are requested, individuals with 
missing data on one or both are excluded from the calculation of Pearson’s 
r. In contrast, listwise deletion would result in the exclusion from calcula-
tion of all Pearson’s r values of individuals with missing data on any of the 
variables to be included in a calculation of a correlation coefficient. In this 
case, because only two variables are involved, pairwise and listwise deletion 
will yield the same results. In addition, we can request the calculation of 
means and standard deviations, as well as the cross-product deviations and 
covariances matrix for the variables. In this case, we will check the Means 
and standard deviations box. The resulting output appears below.

Correlations

Descriptive Statistics
Mean Std. Deviation N

ATS_EXT 4.3723 .77343 389

FFM_EXT 25.57 6.609 411

Correlations
ATS_EXT FFM_EXT

ATS_EXT Pearson Correlation 1 .568**

Sig. (2-tailed) .000

N 389 383

FFM_EXT Pearson Correlation .568** 1

Sig. (2-tailed) .000

N 383 411
** Correlation is significant at the 0.01 level (2-tailed).

As shown, the output includes descriptive statistics for each variable, 
followed by the correlation matrix. Note that 411 individuals completed all 
items on the new instrument (ats_ext), and 383 completed all items on the 
criterion (ffm_ext). Pearson’s r for the two variables is then based on the 
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383 individuals for whom we have complete scores on both instruments, 
yielding a value of 0.568. The null hypothesis being tested is that in the 
population, the correlation between the measures (r) is 0, indicating that 
the scores are unrelated. The p-value for the z statistic testing this hypoth-
esis is less than 0.0001, which is well below the typical a threshold of 0.05.

In addition to obtaining hypothesis test for the null hypothesis of no 
correlation between the variables, we might also be interested in obtaining 
a confidence interval for the correlation coefficient in the population. As 
with confidence intervals for other statistics, such an interval provides us 
with information regarding the range of values within which the popula-
tion correlation value is likely to be. There are a few technical issues that 
should be dealt with when discussing confidence interval results for r. The 
p-value for Pearson’s r is obtained using the equation
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The resulting value is then compared to the t distribution with n – 2 degrees 
of freedom. To construct the confidence interval for the correlation coeffi-
cient, Fisher (1915) developed a transformation of r to the standard normal 
distribution, leading to what is commonly known as Fisher’s z transforma-
tion. It takes the following form
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The distribution of zr tends toward the normal as the sample size increas-
es. The upper and lower bounds of the confidence interval of ρ can then 
be obtained through the use of zr  . Once Fisher’s transformation has been 
conducted, lower and upper bounds of the 95% confidence interval in the 
standard normal scale are obtained as follows:
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Here, n is the total sample size, and z0.975 is the value of the standard nor-
mal distribution at the 97.5th percentile. If the researcher was interested in 
obtaining a 90% confidence interval she would use z0.95 . After these values 
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are obtained on the standard normal distribution scale, they are then con-
verted back to the standard normal as such:
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One issue with the sample estimate of the population correlation is that 
it is somewhat negatively biased as a result of its slightly negative skewed dis-
tribution. The previous equations do not take into account this bias, which 
is most pronounced for smaller sample sizes. In an effort to counter the ef-
fects of this negative bias, Keeping (1962) developed an adjustment to the 
correlation that can also be applied to the estimates of the upper and lower 
bounds of the confidence interval. This correction takes the form
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The bias correction term is then used in calculating the confidence interval 
as follows:
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The bias corrected correlation estimate is then calculated as:

 = −
+

−

−r
e
e

adj

Z bias r

Z bias r

r

r

1
1

2 ( )

2 ( ) . (5.7)

To obtain the Z transformation confidence interval for r, we can use 
the !rhoCI SPSS macro developed by Weaver and Koopman (2014). The 
macro can be obtained at the website for this book, along with the example 
data file used here. Prior to using the macro, the user will first need to run 
the following syntax in the SPSS syntax window, much as we did in Chap-
ter 3 for the confidence interval of Cronbach’s a.

FILE HANDLE MacroDefinition /NAME=”C:\research\SPSS 
psychometric book\rhoCI.SPS”.
FILE HANDLE TheDataFile /NAME=”C:\research\SPSS psychometric 
book\data\concurrent_validity.sav”.
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This code tells SPSS where the macro and the data file can be found, and 
assigns them the names MacroDefinition and TheDataFile, respectively.

The Insert File command in SPSS then needs to be used in order to 
compile the macro. This only needs to be done once in each SPSS session.

INSERT FILE ="C:\research\SPSS psychometric book\rhoCI.SPS".

The next lines to be run are designed to keep the macro code itself from 
appearing in the output window.

SET PRINTBACK = OFF. /* Suppress output.
INSERT FILE = “MacroDefinition”.
SET PRINTBACK = ON. /* Turn output back on.

We are now ready to call the macro, for which we will use the following lines 
in the SPSS syntax window:

NEW FILE.
DATASET CLOSE all.
GET FILE = “TheDataFile”.
DATASET NAME raw.
!rhoCI DataSetName = raw
 /Vars = ats_ext ffm_ext
/ConfidenceLevel = 95.

First, note that the name we assigned the file earlier, TheDataFile, appears 
in the GET FILE command. This data file is then called raw, which SPSS will 
use in the actual macro call. We don’t need to change any of the first four 
lines of syntax. In the actual macro call, we will need to indicate the names 
of the variables to include in the analysis on the /Vars line, and we can in-
dicate the level of confidence that we would like (95% in this example) on 
the final line. If we do not include the /ConfidenceLevel line, the default 
of 95% will be used. Taken together, the syntax for running the !rhoCI 
macro appears below:

FILE HANDLE MacroDefinition /NAME=”C:\research\SPSS 
psychometric book\rhoCI.SPS”.
FILE HANDLE TheDataFile /NAME=”C:\research\SPSS psychometric 
book\data\concurrent_validity.sav”.
INSERT FILE =”C:\research\SPSS psychometric book\rhoCI.SPS”.

SET PRINTBACK = OFF. /* Suppress output.
INSERT FILE = “MacroDefinition”.
SET PRINTBACK = ON. /* Turn output back on.
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NEW FILE.
DATASET CLOSE all.
GET FILE = “TheDataFile”.
DATASET NAME raw.
!rhoCI DataSetName = raw
 /Vars = ats_ext ffm_ext
/ConfidenceLevel = 95.

After their initial use, the commands through the SET PRINTBACK line do 
not need to be run again.

From the output, we see that the 95% confidence interval for the popu-
lation correlation between the two variables is 0.496 to 0.632, meaning that 
we are 95% confident that the population correlation between ATS_EXT 
and FFM_EXT lies between 0.496 and 0.632. Thus, based on both the sig-
nificant hypothesis test and on the fact that the confidence interval does 
not include 0, we can conclude that there is a significant positive correla-
tion between the new measure of extraversion and the criterion, and the 
best sample estimate we have of this value is 0.568.

Pearson Correlations With 95% Confidence Intervals*

X Y r Lower Upper p n Notes

1 ATS_EXT ATS_EXT 1.000 . . . 389

2 ATS_EXT FFM_EXT .568 .496 .632 .000 383

3 FFM_EXT ATS_EXT .568 .496 .632 .000 383

4 FFM_EXT FFM_EXT 1.000 . . . 411
* With PAIRWISE deletion.

SPSS affords us with an alternative for calculating the confidence inter-
val of the correlation coefficient through the use of the bootstrap. Recall 
from Chapter 3 that the bootstrap methodology involves the repeated ran-
dom resampling of individuals from the original sample and the calculation 
of the target statistic (the correlation in this case) for each of these boot-
strap samples. From this distribution, a confidence interval can be created 
either by identifying the appropriate percentiles in the bootstrap distribu-
tion of correlation values (e.g., the 2.5th and 97.5th for the 95% confidence 
interval), or through the bias corrected and accelerated (BCa) bootstrap, 
which corrects biases known to exist with the bootstrap in some cases (Wil-
cox, 2009). The bootstrap option is available through the standard menu 
that we used to obtain the confidence interval as described above.
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The bootstrap window itself appears below. Here we must indicate that we 
would like for the bootstrap to be performed by clicking on the Perform 
bootstrapping box. We then must indicate how many bootstrap samples we 
would like, with the default being 1,000. We can leave the seed for the Mer-
senne Twiser random number generator alone, and set our desired level of 
confidence, with the default being 95%. Finally, we must determine which 
of the two bootstrap methods to use for obtaining the confidence interval, 
with the default being the bootstrap. We will use both and compare the re-
sults with one another, and with the Z transformation confidence interval.
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Output for the percentile bootstrap confidence interval appears below.

Correlations
ATS_EXT FFM_EXT

ATS_EXT Pearson Correlation 1 .568**

Sig. (2-tailed) .000

N 383 383

Bootstrapa Bias 0 .000

Std. Error 0 .039

95% Confidence Interval Lower 1 .489

Upper 1 .639

FFM_EXT Pearson Correlation .568** 1

Sig. (2-tailed) .000

N 383 383

Bootstrapb Bias .000 0

Std. Error .039 0

95% Confidence Interval Lower .489 1

Upper .639 1
** Correlation is significant at the 0.01 level (2-tailed).
a Unless otherwise noted, bootstrap results are based on 1,000 bootstrap samples.
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The 95% percentile bootstrap confidence interval is between 0.489 and 
0.639, as compared to the Z transformation interval of 0.496 and 0.632. 
The BCa confidence interval output appears below, with values of 0.480 to 
0.638. The results for these various confidence interval methods are all very 
similar to one another, indicating that the population correlation is likely 
to fall between 0.48 and 0.64.

Correlations
ATS_EXT FFM_EXT

ATS_EXT Pearson Correlation 1 .568**

Sig. (2-tailed) .000

N 383 383

Bootstrapa Bias 0 –.001

Std. Error 0 .039

BCa 95% Confidence Interval Lower . .480

Upper . .638

FFM_EXT Pearson Correlation .568** 1

Sig. (2-tailed) .000

N 383 383

Bootstrapa Bias –.001 0

Std. Error .039 0

BCa 95% Confidence Interval Lower .480 .

Upper .638 .
** Correlation is significant at the 0.01 level (2-tailed).
a Unless otherwise noted, bootstrap results are based on 1,000 bootstrap samples.

Once the validity coefficient has been obtained, a natural question is, 
“What does this value mean?” In this case, we know that it is significantly 
different from 0, but beyond this is there anything else that we can say 
about the magnitude of this value? One approach to interpreting correla-
tion coefficients in general is to refer to the guidelines for interpretation 
provided by Cohen (1988), who created the following heuristic to be used 
in the absence of guidance in the literature:

≤ <

≤ <

≥

r

r

r

Small effect: 0.1 0.3

Medium effect: 0.3 0.5

Large effect: 0.5

Thus, based on Cohen’s guidelines, the relationship between the new ex-
traversion measure and the criterion measure of extraversion is of a large 
magnitude. In other words, there appears to be fairly strong evidence as 
to the criterion validity of the score on the new extraversion measure. Of 
course, it is preferable to ground the interpretation within the literature 
when available, as Cohen suggests.
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In addition to obtaining the correlation value, it is often desirable to 
calculate the coefficient of determination (r 2) when considering the va-
lidity coefficient. This value expresses the proportion of variation in the 
criterion that is accounted for by the new (target) measure. For the current 
problem, if we use the bias corrected correlation value, r 2 is 0.5682 = 0.323. 
This indicates that the new measure accounts for approximately 32% of the 
variability in the old measure. It is a decision for the researcher as to how 
important or large is the relative magnitude of this value, and the informa-
tion it yields on the quality of the newly created instrument.

Concurrent validity can also focus on relationships between the instru-
ment of interest and a criterion to which it should not be theoretically relat-
ed. In this instance, a finding of a relatively large relationship would be in-
dicative of measurement problems. In our example, the researcher knows 
that theoretically speaking extraversion is conceptually different from a 
desire to be popular among a social group. However, the researcher also 
knows that if items on the extraversion scale are not written accurately, they 
could inadvertently assess subjects’ desire to be popular with others, rather 
than the intended construct of extraversion. For this reason, the researcher 
is interested in determining whether the new measure also exhibits evi-
dence of divergent validity with regard to popularity. As noted earlier in the 
chapter, divergent validity refers to the relative lack of relationship between 
the target instrument and a criterion with which it should not be related 
theoretically. In this example, the subjects were administered a measure of 
their desire for popularity in addition to the two extraversion scales. Using 
the command window as described above, in conjunction with the follow-
ing call to the !rhoCI macro, we obtain the following output.

!rhoCI DataSetName = raw
 /Vars = ats_ext ffm_ext
/ConfidenceLevel = 95.

Correlations
ATS_EXT SCQ_POP

ATS_EXT Pearson Correlation 1 –.001

Sig. (2-tailed) .977

N 389 386

SCQ_POP Pearson Correlation –.001 1

Sig. (2-tailed) .977

N 386 418
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Pearson Correlations With 95% Confidence Intervals*

X Y r Lower Upper p n Notes

1 ATS_EXT ATS_EXT 1.000 . . . 389

2 ATS_EXT SCQ_POP –.001 –.101 .098 .977 386

3 SCQ_POP ATS_EXT –.001 –.101 .098 .977 386

4 SCQ_POP SCQ_POP 1.000 . . . 418
* With PAIRWISE deletion.

One would expect that with divergent validity the correlation between 
the target (new extraversion) measure and the divergent construct (popu-
larity) to be lower than the correlation between the target measure and the 
convergent criterion, or existing, measure of extraversion. Indeed, in this 
example we see that this is the case. The correlation between the new extra-
version measure and popularity seeking is –0.001, which is lower than the 
correlation between new and old extraversion measures. Furthermore, in-
spection of results indicates that the correlation of –0.001 is not statistically 
significant from 0, based on the hypothesis test and confidence interval. 
Thus, we have some evidence of divergent validity and can be reasonably 
sure that the new measure is not mistakenly assessing a desire for popularity.

Considerations in Concurrent Validity Assessment

There are several issues to consider when investigating concurrent va-
lidity. These are important considerations because they can impact both 
the magnitude and interpretation of the validity coefficient (see Crocker 
and Algina, 1986, and Raykov and Marcoulides, 2011, for further discussion 
of these). First, and perhaps most important, the selection of the criterion 
is critical. In general, the criterion must be well-established as being directly 
associated with the construct of interest (referred to as the “ultimate” by 
Raykov and Marcoulides, 2011), or at the very least, as a very reasonable 
measure of the construct. The selection and argument in favor of the crite-
ria is based upon a thorough review of the literature in the area of interest, 
and consideration of existing evidence of the reliability and validity of the 
criterion measure scores. In the case of divergent validity, selection of the 
criterion is perhaps even more difficult than for the convergent situation, 
because it may not be completely clear what a related but different con-
struct should be. In the current example, the researcher was able to cite 
literature indicating that extraversion and a desire for popularity can be 
confused, but are different. Therefore, information that the new extraver-
sion scale is unrelated to the desire for popularity provides validity evidence 
for the new scale by dissociating it from this nuisance construct. However, 
evidence that the new extraversion measure is unrelated to intelligence 
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would not be valuable in an argument for validity. This is because there 
is no theoretical basis to suggest that extraversion and intelligence can be 
confused with one another on theoretical grounds.

A second important issue is the sample size used to estimate the validity 
coefficient. Specifically, smaller samples can lead to more unstable correla-
tion estimates, and potentially more influenced by outliers present in the 
data. Therefore, researchers must carefully examine the characteristics of 
the sample when conducting concurrent validity studies, including, among 
others: sample size, distribution of values on variable, and skewness/kurto-
sis. The distributions of the variables of interest represent a third concern in 
conducting concurrent validity studies. In particular, if the variables are both 
categorical in nature, such as ordinal ratings, then Spearman’s rank–order 
correlation (by selecting the Spearman check box in the main correlation 
coefficient menu box) would be more appropriate than Pearson’s r. If both 
variables are dichotomous, then the phi coefficient (found in the Crosstabs 
menu box under the Statistics button) would be preferred, whereas if one 
variable is dichotomous and the other continuous, we would use the biserial 
or point biserial correlations, previously described in Chapter 2.

The reliability of scores from the target and criterion measures will also 
have an impact on the magnitude of the validity coefficient. In particular, as 
previously discussed, scores with relatively low reliability will yield lower cor-
relation coefficients. Indeed, Raykov and Marcoulides (2011) demonstrate 
analytically that the correlation between the target and criterion is a lower 
bound for the correlation between their true scores. The lower the reliabil-
ity, the further the correlation between the observed measures will be from 
the correlation between the true scores, which represents the actual validity 
coefficient. In response, researchers may employ the correction for attenu-
ation using the observed correlation coefficient as well as the reliability esti-
mates for each of the measures. This correction provides an estimate of the 
correlation coefficient between the true scores, as opposed to the observed 
score correlation value. The correction for attenuation is calculated as

 
r r
rx y

x y

,  (5.8)

where ρx is the reliability estimate for measure x, ρy  is the reliability estimate 
for measure y, and rx,y is the correlation between the two observed scores, 
x and y. For the current example, Cronbach’s α was 0.79 and 0.87, respec-
tively, for the new and old extraversion scales. Taking the bias corrected 
correlation of 0.62, we calculate the correlation between the measures, cor-
rected for attenuation to be
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= = =0.568
0.79(0.87)

0.568
0.69

0.568
0.83

0.684 .

Raykov and Marcoulides recommend considering both the observed and 
corrected correlation estimates when assessing criterion validity evidence.

Predictive Validity

Predictive validity is similar to concurrent validity with the difference being 
with the timing in which the criterion score is obtained relative to the score 
from the target measure. For concurrent validity studies, both the target and 
criterion measures are typically administered simultaneously; for predictive 
validity studies, the criterion measure score is obtained at some point in time 
after the target measure has been administered. For example, the target of 
a predictive validity study could be the score on a college entrance exam, 
with the criterion being academic performance after completion of the 
freshmen year. In that case, the validity coefficient would be the correlation 
between the exam score and the freshman year GPA. In other respects, the 
interpretation and treatment of this correlation coefficient would be similar 
to what we saw with the concurrent validity coefficient described above.

Using SPSS to conduct a predictive validity study, consider an instance 
in which data were being collected on a coping competence measure for 
a sample of children at the beginning of Kindergarten and again for the 
same children at the beginning of first grade. The initial measure was com-
pleted by parents and was designed to measure a child’s general ability to 
cope with everyday stressors. In this context, the score should represent this 
coping competence construct prior to the beginning of formal schooling. 
The second measure was completed by each child’s first grade teacher in 
the beginning of the school year. In this study, the goal is to measure chil-
dren’s ability to cope with everyday stressors after a year of formal school-
ing. For the predictive validity study, the focus is whether scores on the 
measure obtained prior to Kindergarten can be used to predict childrens’ 
coping competence in the school setting (first grade).

To obtain the predictive validity coefficient, we will use the standard 
approach for obtaining a Pearson correlation coefficient for a pair of vari-
ables, including the menu box and the !rhoCI macro. As shown, the SPSS 
command sequence and the calling of the macro are essentially identical to 
that used in the previous concurrent validity example. In this case, the two 
variables of interest are CcK (coping competence at the beginning of Kin-
dergarten) and Cc1 (coping competence at the beginning of first grade).



Validity    115

FILE HANDLE MacroDefinition /NAME=”C:\research\SPSS 
psychometric book\rhoCI.SPS”.
FILE HANDLE TheDataFile /NAME=”C:\research\SPSS psychometric 
book\data\predictive_validity.sav”.

* Use INSERT FILES to run the macro definition syntax.
* Note that this only needs to be done once per SPSS session.

INSERT FILE =
“C:\research\SPSS psychometric book\rhoCI.SPS”.

* The SET PRINTBACK OFF line prevents the macro definition from 
* being echoed in the user’s output window.

SET PRINTBACK = OFF. /* Suppress output.
INSERT FILE = “MacroDefinition”.
SET PRINTBACK = ON. /* Turn output back on.

NEW FILE.
DATASET CLOSE all.
GET FILE = “TheDataFile”.
DATASET NAME raw.

!rhoCI DataSetName = raw
 /Vars = cck cc1
/ConfidenceLevel = 95.
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Correlations
cck cc1

cck Pearson Correlation 1 .755**

Sig. (2-tailed) .000

N 304 274

cc1 Pearson Correlation .755** 1

Sig. (2-tailed) .000

N 274 281
** Correlation is significant at the 0.01 level (2-tailed).

Pearson Correlations With 95% Confidence Intervals*

X Y r Lower Upper p n Notes

1 cck cck 1.000 . . . 304

2 cck cc1 .755 .699 .802 .000 274

3 cc1 cck .755 .699 .802 .000 274

4 cc1 cc1 1.000 . . . 281
* With PAIRWISE deletion.

Of the original 304 children who were assessed in Kindergarten, 274 
also participated in first grade. There were also an additional 7 children 
who were measured in first grade, but who did not have scores in Kinder-
garten. The Pearson’s correlation coefficient for the two measures is 0.755. 
The 95% confidence interval is approximately 0.70 to 0.80, meaning that 
we are 95% confident that the actual correlation between the measures 
lies between those two values. Finally, the coefficient of determination is 
0.7552 = 0.570, indicating that scores obtained prior to Kindergarten ac-
count for 57% of the variation in the first grade coping competence score. 
More precisely, 57% of the variance in Grade 1 scores is associated with the 
variance in Kindergarten scores.

Discriminant Groups Validity

As mentioned in the above description of the various types of validity evi-
dence, discriminant groups validity can be thought of as a type of criterion 
validity evidence or associations with other variables validity evidence. In 
this case, the criterion of interest is a known group (e.g., diagnosis), rather 
than another continuous measure, but in most other respects the concept 
underlying this approach is similar to that in concurrent validity. As an ex-
ample, consider two reading assessments developed for use among 2nd 
grade students. These tests are designed to be used together, with one as-
sessing more mechanical aspects of reading (e.g., phonological awareness), 
whereas the other seeks to assess comprehension and understanding of pas-
sages. Higher scores on each instrument are indicative of stronger reading 
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performance. In addition to administering these two measures to the Grade 
2 students, we also seek to know whether the students successfully passed 
a separate norm-referenced, standardized achievement test or not. Theory 
would suggest that those who passed the standardized reading assessment 
should have higher mean scores on both of the reading assessments. To 
assess this hypothesis, we have at least two possibilities for statistical analy-
sis. Given that we have two groups, and the test scores are continuous in 
nature, we could conduct separate t-tests comparing group means. The two 
groups include those students who passed the standardized reading assess-
ment, and those who did not. However, because the two scores are part 
of the same assessment, measuring distinct but related aspects of reading 
aptitude, we may be better served relying on a multivariate comparison of 
means (i.e., comparing the groups’ means on both scores simultaneously) 
in the form of a multivariate analysis of variance (MANOVA). There is a 
large literature on the decision of when to apply a univariate (single de-
pendent variable) approach such as a t-test or ANOVA versus a multivariate 
procedure such as MANOVA (e.g., Huberty & Olejnik, 2006; Tabachnick & 
Fidell, 2007). We will, therefore, not devote time to that issue, other than 
to say that in the current situation the fact that both scores are theoreti-
cally measuring different aspects of the same construct (reading aptitude), 
coupled with the relatively high correlation between them (0.87) would 
suggest the use of multivariate analyses rather than a univariate approach.

We will leave the technical details underlying MANOVA and the gen-
erally accepted post hoc investigation using discriminant analysis to other 
texts (see authors noted above). Rather, our focus here will be on carrying 
out the analysis using SPSS. The dataset for this example is called validity.
sav, and the SPSS menu commands for conducting the MANOVA and the 
follow-up discriminant analysis are Analysis ► General Linear Model ► Mul-
tivariate, which produces the following window:
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In the Fixed Factors window, we will place the grouping variable, in this 
case Success, which is coded as 1 (Yes) or 0 (No) to indicate whether the 
students passed the standardized reading exam. In the Dependent Variables 
box we place the two reading aptitude test scores, score1 and score2.

We need to request the means of score1 and score2 for each of the success 
groups by clicking on the Options button.
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We move the variable success to the Display Means for box, in order to ob-
tain the means for both scores for both success groups. In addition, we can 
request the effect size for the mean differences by checking the Estimates 
of effect size box.
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The output for this analysis appears below.

Between-Subjects Factors
Value Label N

success .00 No 46

1.00 Yes 328
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The first table in the SPSS output simply informs us of the sample size 
(374), that there were two groups in the Success variable, taking the values of 
Yes and No, and that 328 students comprised the Yes group, and 46 students 
in the No group. Next, the focus of our attention in this example are the 
MANOVA test results, which appear in the Multivariate Tests box. The test 
statistics appears in the Value column, where we see results for each of 4 mul-
tivariate test statistics, including: Pillai’s Trace, Wilks’ Lambda, Hotelling’s 
Trace, and Roy’s Largest Root. Each of these is converted to an F statistic with, 
in this case, 2 and 371 degrees of freedom. The p-value for each F is 0.019, 
which is less than the a of 0.05, leading us to reject the null hypothesis. A key 
question is: What is the null hypothesis in this case? In the case of MANOVA, 
the null hypothesis is that the multivariate mean does not differ between the 
groups in the population. Thus, if the groups do, in fact, differ in the popula-
tion on one mean and not the other, or on both, the null hypothesis should 
be rejected. And, in fact, in this example we would reject the multivariate null 
hypothesis, based on the p-value (0.019) presented above.

The second table in the output includes the univariate ANOVA results 
for each score separately. Because we are focusing on the multivariate results 
because the scores are believed to measure two aspects of a common con-
struct, the univariate results are not of real interest. However, we will briefly 
review the tables for pedagogical purposes. In particular, we will concen-
trate on the section of the table associated with the Success variable. There 
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is a separate row for both score1 and score2, and these results include the 
Type III sum of squares, the degrees of freedom (df), the mean square (sum 
of squares divided by degrees of freedom), the F statistic, the p-value associ-
ated with the F, and the Partial Eta Squared effect size. From these results, 
we can see that there was a statistically significant difference between the 
success groups for score1 (p = 0.05) but not for score2 (p = 0.457). Howev-
er, we would like to emphasize that in this case, we are primarily interested 
in the MANOVA results, rather than the univariate ANOVA analyses.

The third table that we obtain from SPSS includes the score means for the 
two success groups, along with the standard error for each, and the 95% con-
fidence interval for the mean. An examination of these results shows that for 
the sample, the means of both scores were larger for the Yes group. In other 
words, we see that the means on both scores were larger for those who passed 
the aptitude test than for those who did not. Therefore, we can conclude 
based on the univariate results that those who pass the standardized exam 
have statistically significantly higher means on the first target test, which mea-
sures the mechanical aspects of reading. However, the groups’ means do not 
differ on reading comprehension and understanding, measured by score2.

Once the decision regarding the null hypothesis is made, the next 
question to be addressed is, for which of the variables do the groups differ? 
The significant MANOVA result does not provide an answer as for which 
variables the means differ, only that they differ in some respect. Discrimi-
nant analysis serves as the standard post hoc investigative analysis for a sig-
nificant MANOVA. Discriminant analysis can be conducted easily in SPSS 
using the following menu commands: Analyze ► Classify ► Discriminant, 
with which we obtain the following window.
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We must define the grouping variable (success), as well as what SPSS calls 
the independents, which are the outcome variables from the MANOVA, 
score1 and score2.

We now need to define the range for the success variable by highlighting 
it, and clicking on Define Range…. We obtain the following window, into 
which we type the minimum and maximum values of the grouping variable, 
in this case 0 (No) and 1 (Yes), respectively.

We then click Continue.

Under the Statistics button in the main Discriminant Analysis window, 
we can request a number of additional statistics, although for our purposes 
probably only the Means will be useful.
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The output from running the Discriminant Analysis appears below.

Discriminant

Analysis Case Processing Summary
Unweighted Cases N Percent

Valid 374 86.6

Excluded Missing or out-of-range group codes 8 1.9

At least one missing discriminating variable 47 10.9

Both missing or out-of-range group codes and 
at least one missing discriminating variable

3 .7

Total 58 13.4

Total 432 100.0

Group Statistics

success Mean Std. Deviation

Valid N (listwise)

Unweighted Weighted

No score1 119.8261 13.96552 46 46.000

score2 360.8261 44.19166 46 46.000

Yes score1 124.4024 14.86318 328 328.000

score2 365.9360 43.46251 328 328.000

Total score1 123.8396 14.81434 374 374.000

score2 365.3075 43.52540 374 374.000

Analysis 1

Summary of Canonical Discriminant Functions

Eigenvalues

Function Eigenvalue % of Variance Cumulative %
Canonical 

Correlation

1 .022a 100.0 100.0 .146

a First 1 canonical discriminant functions were used in the analysis.
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Wilks’ Lambda
Test of Function(s) Wilks’ Lambda Chi-square df Sig.

1 .979 7.965 2 .019

Standardized Canonical Discriminant 
Function Coefficients

Function

1

score1 2.011

score2 –1.502

Structure Matrix
Function

1

score1 .693

score2 .262

Pooled within-groups correlations 
between discriminating variables 
and standardized canonical 
discriminant functions

Variables ordered by absolute size of 
correlation within function.

Functions at Group Centroids
success Function

1

No –.392

Yes .055

Unstandardized canonical 
discriminant functions evaluated at 
group means

In particular, we are interested in the table labeled Structure Matrix. This 
table contains what are commonly referred to as structure coefficients, 
which are the correlations between the individual dependent variables and 
a linear combination of these variables that maximizes the differences be-
tween the two groups. Alternatively, discriminant analysis reports a weight 
for each dependent variable that when multiplied by the variable and then 
added to the product of the other dependent variable and its weight, the 
means of the combination are as different as possible for the two groups 
(standard canonical discriminant function coefficients). Then, to obtain 
the structure coefficients, the correlation between each dependent variable 
and this weighted linear combination is calculated. Large absolute values of 
these coefficients are indicative of a variable that is strongly related to the 
significant group difference. While there are no universally agreed upon 
standards for what constitutes a large value, Tabachnick and Fidell (2007) 
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recommend using 0.32, because its squared value is approximately 0.1, 
meaning that the linear combination accounts for at least 10% of the vari-
ance in the dependent variable. While there are other possibilities for this 
purpose, we will use 0.32 here. Also, note that the sign of the coefficient is 
not germane to its relative importance. A negative value simply means that 
the first group (No in this case) had a smaller mean for that variable than 
did the second group (Yes). Here we see that score1 has a structure coef-
ficient of 0.693, which is well beyond the threshold of 0.32, while score2 
has a value of 0.262. Therefore, we can say that the significant multivariate 
hypothesis testing result is primarily due to group differences on score1, 
the measure of mechanical reading skills, and not score2, comprehension 
and understanding.

What is the final conclusion to be drawn from this analysis? Recall that 
the goal was to determine whether the reading aptitude measure as a whole, 
which is made up of the two components represented in score1 and score2, 
exhibits discriminant groups validity. Theory would suggest that those who 
passed the standardized reading assessment are better readers than those 
who did not pass, and thus should perform better on this new measure of 
reading aptitude. This, of course, is based on the premise that the measure 
is an appropriate measure of reading. However, these results reveal a some-
what mixed message. That is, the groups did differ on the aptitude measure 
taken as a whole, and the means for both variables were in the expected 
direction. However, the discriminant analysis showed that the groups re-
ally differed on only score1 and not score2. Does this mean that scores on 
score1 are valid for interpretation as a student’s reading aptitude but those 
on score2 are not? Consequently, we cannot answer this question defini-
tively. It is possible, for instance, that the standardized reading assessment 
focuses primarily on lower level reading skills that match more closely those 
included in score1. In that case, we may have a problem of inadequate 
construct coverage in the criterion measure. On the other hand, it is also 
possible that our definition of reading aptitude is too broad, so that there 
is not a single criterion that is adequate for validation assessment of both 
instruments. Finally, it is certainly possible that score2 is problematic as an 
assessment of reading aptitude. However, a single study using one criterion 
is not sufficient to reach such a conclusion. Perhaps the best we can do with 
the current results is to consider performance on score1 to be a poten-
tially useful indication of some aspect of reading aptitude, particularly that 
component that is associated with the standardized test. Similarly, we may 
tentatively conclude that performance on score2 is not an adequate indica-
tor of reading aptitude as represented in the standardized reading assessment. 
But, we should plan future studies with different criteria and different foci 
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(e.g., construct validity, content validity, predictive validity) to more fully 
understand this measure.

Construct Validity

Construct validity has become an increasingly important focus of validation 
researchers over the last two decades. Indeed, the very notion of construct 
validity as a separate entity came into question as researchers began to view 
it as a unified theory of validity (Anastasi, 1986; Messick, 1989; Nunnally & 
Bernstain, 1994). Thus, we can think of concurrent or discriminant groups 
evidence as facets of the broader construct validity of test scores. This said, 
there remains a distinct element that is commonly referred to as construct 
validity evidence, and for which specific statistical tools are employed. In 
our initial definition of construct validity, we indicated that such evidence is 
demonstrated when the measure behaves in a theoretically consistent fash-
ion. For example, if theory suggests that an instrument is unidimensional, 
then a construct validity study using factor analysis could be conducted to 
empirically examine this claim. Further, if theory also states that this uni-
dimensional construct should be positively correlated with another con-
struct for which measures exist, then the correlation between the two latent 
variables could be estimated in a structural equation modeling context. Fi-
nally, if theory also suggests that the construct is positively associated with 
observed academic performance, a multitrait multiple indicator (MIMIC) 
model can be used to empirically test this relationship.

In short, while it is true that the notion of construct validation has ex-
panded to encompass a wide variety of analyses and evidence, there does 
also remain an aspect of it that is frequently investigated using latent vari-
able modeling, such as factor analysis and structural equation modeling. 
We will devote much of the remainder of the chapter to demonstrating how 
these complex latent variable modeling techniques can be utilized in SPSS 
to investigate construct validity evidence.

Exploratory Factor Analysis as a Tool for Investigating 
Construct Validity

Our first example of investigating construct validity using latent vari-
able modeling techniques will involve exploratory factor analysis (EFA). 
EFA is an extremely common tool in the social sciences to examine an in-
strument’s dimensionality. Specifically, it is a data reduction technique that 
takes a set of observed variables (e.g., scale items) and uses the covariances 
among them to identify a smaller set of unobserved (latent) variables to 
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explain their interdependency. In the context of construct validation, these 
latent variables would represent the unobserved constructs (e.g., mathe-
matics ability, achievement motivation) that have been referenced through-
out this chapter.

Before going into further detail regarding the technical aspects of EFA 
and conducting it using SPSS, it is very important to reiterate the crucial 
role of theory in these analyses. The data reduction that occurs with EFA is 
completely based upon statistical relationships among the observed data. 
At the risk of over simplification, the computer has no knowledge of the 
theory underlying a scale, nor does it know which items should be grouped 
together based on the scale development principles laid out by those who 
created the instrument. Thus, the items will be grouped based solely on 
the covariances among them. The researcher brings theory to bear to these 
results so that they make sense conceptually. To the extent that this can be 
done, there is evidence of construct validity. As with all scientific endeavors, 
there is no guarantee of success a priori, and the researcher must be pre-
pared to acknowledge that the statistical evidence does not match the the-
ory. This lack of agreement may be due to a faulty theory about the nature 
of the construct, or to statistical issues such as biased sample selection, poor 
item wording, or problems in instrument administration, among others. In-
deed, whether the EFA results buttress the theory or not, it is important to 
remember that a single study is not definitive, and that construct validation 
is carried out over many years of research (Kane, 2006).

We emphasize the importance of theory so much because EFA is by def-
inition an exploratory procedure. When we examine confirmatory factor 
analysis (CFA), we will have the opportunity to explicitly state our theory in 
statistical terms in the form of a factor model. But with EFA, we essentially 
take the items and let the statistical algorithm indicate to us how many, 
and what form the factors will take. Therefore, we need to have a predeter-
mined idea for what this latent variable structure should look like, if theory 
does in fact hold true. Without such a theory, we may have difficulty coher-
ently explaining the EFA results, or perhaps worse may develop a theoreti-
cal explanation based upon our data.

To serve as an example of using EFA for construct validation, let’s con-
sider the Scale for Creative Attributes and Behaviors (SCAB), a 20-item in-
strument designed to assess an individual’s propensity for creativity. Each 
item is measured on a seven-point scale from 1 (Strongly Disagree) to 7 
(Strongly Agree), with statements arranged so that greater agreement cor-
responds to a more creative outlook. Research has identified 5 separate 
components (or, dimensions) of creativity: Creative Engagement, Creative 
Cognition, Spontaneity, Tolerance, and Fantasy. Items on the SCAB are 
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organized so each subscale consists of four items. Whereas theory supports 
the existence of these 5 dimensions of creativity, empirical evidence is also 
needed to substantiate these claims. To investigate the latent structure of 
the SCAB as a way for gathering construct validity evidence, a sample of 413 
college students (75.54% females) were asked to complete the instrument 
(contained in the SPSS dataset scab.sav). Subsequently, an EFA was con-
ducted to ascertain whether the 20 SCAB items grouped together in factors 
in a manner consistent with the theory described above.

Because factor analysis is a complex statistical procedure with many pos-
sible variations, the goal of this discussion is to present only the most com-
monly used of these variants, while encouraging the interested reader to 
further investigate the topic. There are a number of excellent books avail-
able on the topic (e.g., Brown, 2015; Gorsuch, 1983; Thompson, 2004), and 
it is our intention that the current description of EFA and SPSS serve as a 
starting point. EFA involves a series of analyses beginning with initial factor 
extraction, followed by factor rotation, and concluding with an investigation 
into the appropriate number of factors for a given sample. While each of 
these steps represents a distinct analytic thrust, in practice they are conduct-
ed more or less simultaneously by the researcher. As a catalyst for discussion 
of these, we will use the following SPSS commands to access the appropriate 
window for conducting an EFA on the 20 SCAB items: Analyze ► Dimension 
Reduction ► Factor.

First, we must move all of the variables that we would like to include in the 
factor analysis to the Variables window.
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We must then select the type of factor extraction that we would like to use. 
Factor extraction refers to the initial identification of relationships between 
the individual indicator variables (items) and the factors, or latent con-
structs that are believed to underlie the data. The correlation coefficients 
between the indicators and the factors are known as factor loadings. They 
serve as perhaps the primary piece of statistical evidence in an EFA because 
they reveal which indicators are associated with which factors. The initial 
extraction takes the covariances among the indicators and uses them to es-
timate factor loadings. We indicate to SPSS which of the methods we would 
like to use by selecting Extraction….
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We select the method of extraction using the pull down menu highlighted 
by the green arrow above. Perhaps the most robust and popular approach 
is principal axis factoring, which is the one that we will use in this example. 
Other extraction algorithms available in SPSS are Alpha, Harris, Image, 
Maximum Likelihood, Generalized Least Squares, and Unweighted Least 
Squares. Principal components analysis is not strictly speaking factor analy-
sis, and will typically not be the method of choice in such cases. Costello 
and Osborne (2005) provide a very user-friendly discussion of the utility of 
these methods for conducting EFA.

In addition to specifying the extraction algorithm, the user can also 
indicate how the number of factors to extract is to be determined. This 
can be done using the number of Eigenvalues greater than a specific value 
(e.g., eigenvalues > 1.00), or the user can indicate how many factors would 
be preferred to extract. We would recommend this latter approach in near-
ly all situations. Based on theory, the user can indicate how many factors 
are expected. In the current case, therefore, we expect 5 factors and would 
specify this in the Fixed number of factors Factors to extract window, as 
shown below. Note that we have also checked the Scree plot box, which will 
provide us with a visual representation of the eigenvalues corresponding 
to each of the extracted factors. The scree plot provides the data analyst 
another source of information to judge the number of empirical factors 
underlying a set of scale items.
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In addition to factor extraction, we must also concern ourselves with 
the rotation of the factor loadings after their initial extraction. Rotation 
simply refers to the transformation of the initial loadings using one of sev-
eral possible methods. But why would we need to transform these initial 
loadings? The reason for rotation is that the initial factor loading matrix 
is unlikely to produce a solution that is easily interpretable, in which each 
indicator is clearly associated with only one factor, a situation known as ap-
proximate simple structure. Rather, in practice, we most often find that a 
given indicator (or, items) will have relatively large loadings with multiple 
factors, making it difficult to determine with which latent variable the indi-
cator belongs. Rotation is used, therefore, to more clearly associate the in-
dicators with the factors to achieve approximate simple structure. Instead, 
rotation methodologies all retain the proportion of variation explained in 
the indicators, even as they alter the individual loadings. In other words, 
the mathematical quality of the solution, as measured by proportion of vari-
ance explained, is not changed, but rather only how that explained vari-
ance is apportioned among the various factors. Clearly, much more could 
be said in this regard, but there is simply not sufficient space. Thus, the 
interested reader is encouraged to more deeply investigate the notion of 
rotation using one of the excellent resources that we have previously listed.

There are a number of factor rotation methods available to use to assist 
with the interpretation of results. The selection of rotation methods can be 
specified in SPSS by clicking Rotation….

The rotation alternatives can be divided into two broad categories: orthogo-
nal or oblique. Orthogonal factors are forced to be uncorrelated, whereas 
oblique factors are allowed to be correlated. Within each of these broad 
families there are multiple options available in SPSS. Within the orthogonal 
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family the most popular rotations that are available in SPSS include: Vari-
max, Equamax, and Quartimax. Among the oblique rotations, the methods 
available in SPSS include: Promax and Direct Oblimin. As with extraction 
methods, there is no universally agreed upon rotation method within the 
two broad families, or between the families themselves. The decision as to 
whether one should rely on an orthogonal or oblique rotation is best made 
through an examination of the inter-factor correlations. Thus, one might 
begin by using an orthogonal rotation such as Promax, and examine the 
correlations among the factors. If these are all near 0, then an orthogonal 
solution might be best, whereas if at least some of them depart from 0, the 
researcher may elect to use an oblique approach. Within the rotation fami-
lies, no one method is always best. Perhaps the most popular approaches 
are Varimax in the orthogonal family, and Promax in the oblique. Perhaps 
the best advice that we can offer the researcher is to try a few rotation meth-
ods and compare the factor loading results. We generally start with Promax 
as our models have correlated factors. The method that produces the clean-
est results, in terms of a simple structure, may be thought of as the best for 
that particular problem.

The final stage of an EFA is the determination of the number of fac-
tors underlying the collective item set. Unfortunately, there is not a single 
approach for deciding on the optimal number of factors. Rather, much 
like validity assessment itself, empirical evidence must be evaluated from a 
variety of sources, most (but not all) statistical in nature. Perhaps one of the 
oldest and most familiar such approaches (but not one of the best) is the so 
called eigenvalue greater than 1.00 rule, or Kaiser’s little jiffy (e.g., Thomp-
son, 2004). Each factor in the analysis has associated with it an eigenvalue, 
which is simply a measure of the amount of variation in the indicators as-
sociated with it. Kaiser (1958, 1962, 1970) proposed that factors accounting 
for more variation than was accounted for by a single indicator variable (a 
value that is always 1 when the data are standardized) should be retained. 
To use this method, the researcher would simply review the table of eigen-
values and define the optimal number of factors as that for which the last 
eigenvalue is greater than 1. However, this is not a highly recommended 
method and should never be used in isolation.

Another option is to visually inspect a scree plot that reports the ei-
genvalues (on the y-axis) by the factor number (on the x-axis). The opti-
mal number of factors is then associated with the point where the graph 
flattens out, which corresponds to a relative lack of explanatory power by 
the remaining factors. The scree plot is obtained by checking the Scree 
Plot button in the Extraction window, as demonstrated above. Yet another 
potential approach is to determine what proportion of the variance in the 
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observed indicators as a whole is explained by each factor, and then stop in-
cluding factors when the explained variance does not appreciably increase. 
Another source of information is through the inspection of the residual 
correlation matrix. Recall that initial factor extraction is based upon covari-
ances among the observed indicators. A byproduct of EFA is the prediction 
of correlations (standardized covariances) among the indicators. Thus, a 
factor solution can be termed good when it accurately predicts these cor-
relations. The difference between the actual and predicted correlation ma-
trices is the residual correlation matrix. Thus, for each pair of correlations 
there exists a residual value. While there is no absolute standard for what 
is a good residual, general practice has suggested values less than 0.05 or 
0.10 (Thompson, 2004). Thus, we would review the residual correlation 
matrix and if the vast majority of correlations are less than 0.05 (or 0.10), 
we would conclude that the solution was good. We can obtain the residual 
correlations in SPSS by first clicking on Descriptives…. We then check the 
Reproduced box in the following window.

One point to note about each of the methods for determining the op-
timal number of factors that we described above is that they are descriptive 
in nature, and thus allow for subjectivity regarding the best solution. For ex-
ample, how do we decide on what is a sufficiently small number of residual 
correlations over 0.05, or where the scree plot levels off, or what proportion 
of variance in the indicators is sufficiently large? To reduce the subjectivity 
associated with determining the number of factors, statisticians have worked 
on developing more inferential and/or objective methods. One of these, the 
chi-square goodness of fit test, is associated with the maximum likelihood 
method of factor extraction described above. This statistic tests the null hy-
pothesis that the EFA predicted covariances among the indicators is equal to 
the observed covariances. In one sense, it is similar in spirit to an examination 
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of the residual correlation matrix. However, it goes further by providing an 
actual significance test. If the null hypothesis is rejected, we would conclude 
that the EFA solution is not good because the actual and predicted covari-
ances differ beyond chance. While this test holds much promise, it is limited 
due to its sensitivity to both sample size and the distribution of the indicators. 
Thus, if the data are not distributed multivariate normal, or the sample is very 
small (or very large), the chi-square test is not dependable.

A second inferential approach is the use of a parallel analysis (PA) to 
determine the number of empirical factors (Horn, 1965; O’Connor, 2000). 
PA is based upon the logic of randomization tests, which are very common 
in nonparametric statistics. PA requires multiple steps, beginning with the 
estimation of the EFA solution for the observed data and retaining the ei-
genvalues. Then, in Step 2 a set of many (e.g., 1,000) random data sets 
are created based on the same distributional properties as the observed 
indicators, including: the mean, standard deviation, skewness, and kurtosis. 
However, within the randomly generated data sets, the indicators are not 
correlated with one another. The creation of these datasets can be done 
either through the generation of random values or by randomly mixing 
indicator values among the observations. As an example of the latter case, 
the computer would give Subject 1 the indicator 2 value for Subject 103, the 
indicator 3 value for Subject 15, and so on. In either case, the resultant ran-
dom dataset shares the distributional characteristics of the observed data 
with the exception that the indicators are uncorrelated, or orthogonal. For 
each of the 1,000 randomly generated datasets created an EFA is conduct-
ed, the eigenvalues are saved to create a distribution of eigenvalues for the 
case in which there are no factors underlying the data due to no consistent 
patterns among the correlations. In Step 3, each eigenvalue from Step 1 is 
compared with the distribution of eigenvalues based on the random datas-
ets from Step 2. For example, the first eigenvalue obtained from the EFA of 
the observed data is compared to the distribution of first eigenvalues from 
Step 2. If the eigenvalues based on the observed data are greater than those 
based on the random datasets, then the factors are retained. Based on a PA, 
the number of factors retained is equal to the number of eigenvalues from 
the actual data greater than those from the randomly generated datasets. 
While different standards for what is large have been used, perhaps most 
commonly large refers to the values greater than or equal to the 95th per-
centile of the parallel distribution, which would correspond to setting an 
a of 0.05. An example of the use of PA to identify the number of factors is 
provided later in this chapter. Notably, PA is not available in the SPSS drop-
down menu options for conducting EFA. Instead, it must be specified using 
the SPSS syntax, as demonstrated.
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Prior to demonstrating the use of these methods in SPSS, we should 
discuss just briefly their relative merits. Much research has been conducted 
comparing the relative accuracy of these various methods with one another. 
In general, this work has shown that Kaiser’s little jiffy, the scree plot, and the 
proportion of variance explained all perform relatively poorly in terms of ac-
curately identifying the number of factors present (e.g., Thompson, 2004). 
On the other hand, PA, minimum average partial (MAP), and the residual 
correlation matrix are generally more effective tools in this regard (Costello 
& Osborne, 2005; Henson & Roberts, 2006). In addition, particularly for PA, 
there continues to be revisions and updates to the methodology so that the 
researcher should check in with the quantitative methods literature on oc-
casion to be sure that he is using the most recent version of this approach.

Based on this overview of EFA, we can now consider applying it to the 
SCAB data. To recall, theory postulates the presence of 5 factors underly-
ing the 20-item measure, with each factor represented by four items. The 
following output is based upon the combination of extraction and rotation 
that we described applying above, namely principal axis factoring with Pro-
max rotation. The first table reports the initial communality estimates, or R2 
values for each indicator, along with the Extraction communalities. These 
final communality (also represented as h2) values represent the proportion 
of variance in the items that are accounted for by the 5 factors. As shown, 
final communality estimates ranged from .171 (SCAB20) to .836 (SCAB1). 
These estimates indicate that the variance of several of the indicators are 
quite well explained by the 5 factor solution (e.g., SCAB1, SCAB4, SCAB7), 
whereas the solution is not particularly effective for SCAB17 or SCAB20.

Communalities
Initial Extraction

SCAB1 .744 .836

SCAB2 .476 .489

SCAB3 .624 .675

SCAB4 .679 .683

SCAB5 .366 .420

SCAB6 .461 .487

SCAB7 .585 .727

SCAB8 .482 .515

SCAB9 .383 .375

SCAB10 .602 .722

SCAB11 .569 .660

SCAB12 .500 .535

SCAB13 .473 .441

SCAB14 .499 .499

SCAB15 .546 .611
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SCAB16 .556 .692

SCAB17 .330 .272

SCAB18 .589 .821

SCAB19 .580 .664

SCAB20 .211 .171

Extraction Method: Principal Axis Factoring.

Next, the eigenvalues and proportion of variance explained by each fac-
tor, along with the difference in eigenvalues between each adjacent factors, 
and the cumulative proportion of variance explained are reported. Based on 
Kaiser’s criterion, 5 factors does appear to be appropriate for this problem, 
and retaining 5 factors explains essentially all of the variance in the indica-
tors. Thus, we have two pieces of evidence supporting the theoretical 5 factor 
solution. However, Kaiser’s rule is not typically the best rule to follow.

Total Variance Explained

Factor

Initial Eigenvalues Extraction Sums of Squared Loadings

Rotation 
Sums of 
Squared 

Loadingsa

Total % of Variance Cumulative % Total % of Variance Cumulative % Total

1 5.363 26.817 26.817 4.936 24.680 24.680 3.973

2 2.360 11.802 38.619 1.961 9.805 34.485 3.001

3 2.089 10.445 49.064 1.715 8.575 43.061 3.550

4 1.814 9.069 58.133 1.522 7.612 50.672 2.631

5 1.544 7.719 65.852 1.160 5.800 56.473 1.669

6 .979 4.893 70.745

7 .790 3.949 74.694

8 .649 3.246 77.940

9 .626 3.132 81.073

10 .534 2.670 83.742

11 .509 2.547 86.290

12 .435 2.173 88.463

13 .376 1.878 90.341

14 .371 1.857 92.198

15 .360 1.801 93.999

16 .291 1.455 95.454

17 .285 1.423 96.878

18 .242 1.211 98.089

19 .219 1.094 99.184

20 .163 .816 100.000

Extraction Method: Principal Axis Factoring.
a When factors are correlated, sums of squared loadings cannot be added to obtain a total 

variance.

The figure below shows the scree plot that graphically shows the eigen-
values for each of the factors reported in the above table. Again, we are 
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looking for the number of factors for which this plot clearly levels out. It 
would appear that such a point is reached between 5 and 6 factors, again 
supporting a 5-factor solution.

The tables below are provided in the SPSS output and report the unrotated 
initial factor loadings, the eigenvalues for each of the 5 factors we requested 
be retained.
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Factor Matrixa

Factor

1 2 3 4 5

SCAB1 .719 .008 –.372 .148 –.399

SCAB2 .619 –.089 –.241 .057 –.193

SCAB3 .685 –.029 –.280 .142 –.325

SCAB4 .687 .057 –.355 .122 –.261

SCAB5 .432 .149 –.239 –.074 .385

SCAB6 .575 .118 –.072 –.093 .358

SCAB7 .637 .136 –.221 –.093 .495

SCAB8 .591 .084 –.135 –.113 .356

SCAB9 .418 –.401 .131 –.040 .146

SCAB10 .498 –.546 .367 –.201 –.010

SCAB11 .379 –.591 .385 –.115 –.073

SCAB12 .417 –.499 .317 –.110 –.020

SCAB13 .471 .285 .343 –.143 –.012

SCAB14 .548 .293 .324 –.086 –.016

SCAB15 .279 .559 .424 –.133 –.149

SCAB16 .251 .588 .459 –.181 –.198

SCAB17 .481 .061 .085 .171 –.022

SCAB18 .069 .040 .305 .836 .149

SCAB19 .164 –.001 .259 .739 .157

SCAB20 .394 .005 .063 .082 –.074

Extraction Method: Principal Axis Factoring.
a Attempted to extract 5 factors. More than 25 iterations required. (Convergence = .002). 

Extraction was terminated.

We typically do not use the unrotated factor loadings and, therefore, will 
not discuss them here. Indeed, we can indicate to SPSS that we so not want 
this table to be printed if we do not want them reported in the output. 
Instead, we will examine the rotated factor loadings below to determine if 
these low communalities are harbingers of poor factor loadings. The below 
table reports the residual correlation matrix (discrepancy between the ac-
tual and reproduced matrices).
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The preceding tables report the estimation and residual correlation 
values. These values can be used as an overall indicator of residual correla-
tion magnitude for each indicator. Specifically, when examining the indi-
vidual residuals, the goal is to identify the number in the off-diagonal with 
absolute value greater than our cut-off (e.g., 0.05). In addition, in a foot-
note to the table, SPSS indicates for us how many, and what percent of the 
residuals are greater than 0.05. From these results we see that 15 (or, 7%) 
of the indicators had average residuals greater than the cut-value of 0.05. 
Thus, we can conclude that these results indicate good fit of the 5 factor 
model to the data.

Recall that we requested the Promax rotation, which is oblique. The 
factor loadings and the inter-factor correlation matrix appear below.

Pattern Matrixa

Factor

1 2 3 4 5

SCAB1 .980 –.058 –.081 –.018 –.034

SCAB2 .644 .093 .062 –.053 –.038

SCAB3 .842 .018 –.049 –.008 .003

SCAB4 .824 –.092 .065 –.013 –.021

SCAB5 –.003 –.127 .695 –.058 –.027

SCAB6 –.014 .041 .662 .077 .004

SCAB7 –.015 –.044 .884 –.038 –.005

SCAB8 .028 .042 .683 .021 –.033

SCAB9 –.007 .536 .198 –.130 .048

SCAB10 –.017 .858 –.015 .034 –.069

SCAB11 –.006 .852 –.158 –.014 –.004

SCAB12 .008 .744 –.048 –.006 –.003

SCAB13 –.004 .130 .134 .571 –.007

SCAB14 .066 .119 .155 .566 .043

SCAB15 –.027 –.107 –.058 .812 –.010

SCAB16 –.034 –.106 –.117 .877 –.057

SCAB17 .259 .089 .104 .164 .204

SCAB18 –.035 –.049 –.059 –.015 .916

SCAB19 .005 .010 .009 –.031 .816

SCAB20 .249 .122 .028 .130 .096

Extraction Method: Principal Axis Factoring.
Rotation Method: Promax with Kaiser Normalization.
a Rotation converged in 5 iterations.
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Structure Matrix
Factor

1 2 3 4 5

SCAB1 .908 .246 .410 .202 .079

SCAB2 .690 .320 .413 .148 .056

SCAB3 .820 .290 .400 .202 .110

SCAB4 .821 .208 .466 .208 .081

SCAB5 .302 .080 .632 .133 .013

SCAB6 .371 .260 .692 .288 .075

SCAB7 .427 .224 .850 .227 .062

SCAB8 .405 .268 .715 .245 .039

SCAB9 .253 .579 .328 .026 .107

SCAB10 .270 .846 .253 .161 .025

SCAB11 .199 .797 .105 .077 .073

SCAB12 .236 .730 .190 .106 .074

SCAB13 .261 .266 .351 .633 .087

SCAB14 .344 .290 .408 .657 .146

SCAB15 .118 .000 .146 .768 .068

SCAB16 .091 –.015 .100 .806 .022

SCAB17 .414 .261 .338 .304 .277

SCAB18 .032 .017 –.017 .059 .899

SCAB19 .111 .098 .077 .073 .814

SCAB20 .353 .249 .248 .236 .160

Extraction Method: Principal Axis Factoring.
Rotation Method: Promax with Kaiser Normalization.

Factor Correlation Matrix
Factor 1 2 3 4 5

1 1.000 .343 .529 .264 .130

2 .343 1.000 .317 .168 .109

3 .529 .317 1.000 .313 .088

4 .264 .168 .313 1.000 .120

5 .130 .109 .088 .120 1.000

Extraction Method: Principal Axis Factoring.
Rotation Method: Promax with Kaiser Normalization.

In general, the first step involves an examination of the inter-factor cor-
relation matrix. As shown, the factors reported low to high (> 0.50) correla-
tions. Therefore, it is not reasonable to consider an orthogonal rotation. 
We will return to these correlations shortly when we use these results to 
assess the construct validity of the SCAB.

There are two loading matrices associated with oblique rotations. The 
first is referred to by SPSS as the Pattern matrix (semipartial correlations), 
which represents the correlation between each indicator and factor, with 
the association of the other factors removed. For example, the loading 
value of 0.980 for SCAB1 on Factor 1 is the correlation between the item 
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and the factor with the impact of Factors 2 through 5 removed (or, par-
tialed out). On the other hand, the structure matrix (correlations) reports 
the correlations between the indicators and factors without partialing out 
the other factors. In this sense, it can be interpreted as a Pearson product 
moment correlation. Each of these matrices convey important information 
pertaining to the factor solution. In practice, however, the pattern matrix 
might be slightly more commonly used because it represents the unique 
relationships between factors and indicators. For this reason, we will focus 
on these loadings, rather than on the structure matrix.

Interpretation of factor loading matrices is perhaps the most important 
aspect of using EFA in construct validation because it provides a measure of 
the relationship between items and factors. Importantly, a favorable factor 
solution does not definitively “prove” that the construct(s) exists as hypoth-
esized, but it does provide some evidence that this may be the case. Recall 
earlier in the chapter we mentioned that a variable loads onto a factor if 
the absolute value of its loading is greater than 0.32 (Tabachnick & Fidell, 
2007). A cross-loading occurs when an indicator (e.g., item) loads on more 
than one factor. In the instances in which an indicate reports a cross-load-
ing or does not load on any factor are problematic. This is because these 
indicators represent potential problems in terms of the number of factors 
and/or qualities of the indicators themselves (e.g., item wording). An item 
that reports a cross-loading or does not load on any factor should be con-
sidered for removal from the instrument with content considerations be-
ing of primary concern. In the event that this occurs with many items, the 
researcher will need to reconsider the factor solution.

The pattern matrix provides the information used to proceed with in-
terpreting the meaning of the empirical factors. As shown, SCAB1 is most 
strongly related with Factor 1, with almost no association with the other 
factors. Thus, we would say that SCAB1 loads onto Factor 1 in addition to 
the following items: SCAB2, SCAB3, and SCAB4. No other indicator loads 
onto Factor 1, and none of the first four indicators load onto any of the 
other factors. This result is supportive of the theory underlying the SCAB, 
which proposed that items 1–4 together constitute the engagement sub-
scale. Similarly, Items 5–8 all load on Factor 3, whereas Items 9–12 (spon-
taneity) load together on Factor 2. Upon further inspection of the pattern 
coefficients, Items 13–16 (tolerance) load on Factor 4, and Items 18 and 19 
(fantasy) load on Factor 5. Notably, Items 17 and 20, which should measure 
fantasy, do not load on any factors. We might remember that these items 
both exhibited low communality estimates, suggesting that they are not well 
explained by the 5 factor solution.
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Taken together, the results suggest that the theory underlying the 
SCAB was largely supported. This is due to the observation that four of the 
five factors were clearly identified by the EFA, and the fifth factor was par-
tially supported. Items 17 and 20 warrant further inspection to determine 
why they did not conform to the hypothesized theoretical structure of the 
instrument. It is possible that they are not well written and, thus, confusing 
to respondents. It is also possible that for the particular sample used in the 
study they are not appropriate, but that they might be appropriate for an-
other sample. Finally, while perhaps not likely, it is also possible that some 
aspect of the instrument’s administration to this sample led to problems on 
these items. What the researcher should not do is remove these items from 
the scale altogether, based on this single study. While these results point 
out potential problems with the items, even while generally supporting the 
construct validity of the SCAB, they cannot be taken as definitive proof that 
the items are fatally flawed.

Before leaving EFA, we would like to examine SPSS syntax for one 
method of determining the number of factors, PA. The following syntax, 
developed by O’Connor (2000), was used to carry out PA for the SCAB 
data.

* Parallel Analysis Program For Raw Data and Data Permutations.
* This program conducts parallel analyses on data files in which
  the rows of the data matrix are cases/individuals and the
  columns are variables; Data are read/entered into the program
  using the GET command (see the GET command below); The GET
  command reads an SPSS systemfile, which can be either the
  current, active SPSS data file or a previously saved systemfile;
  A valid filename/location must be specified on the GET command;
  A subset of variables for the analyses can be specified by using
  the “/ VAR =” subcommand with the GET statement; There can be
  no missing values.
* You must also specify:
  -- the # of parallel data sets for the analyses;
  -- the desired percentile of the distribution and random
     data eigenvalues;
  -- whether principal components analyses or principal axis/common
     factor analysis are to be conducted, and
  -- whether normally distributed random data generation or
     permutations of the raw data set are to be used in the
     parallel analyses.
* WARNING: Permutations of the raw data set are time consuming;
  Each parallel data set is based on column-wise random shufflings
  of the values in the raw data matrix using Castellan’s (1992,
  BRMIC, 24, 72-77) algorithm; The distributions of the original
  raw variables are exactly preserved in the shuffled versions used
  in the parallel analyses; Permutations of the raw data set are
  thus highly accurate and most relevant, especially in cases where
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  the raw data are not normally distributed or when they do not meet
  the assumption of multivariate normality (see Longman & Holden,
  1992, BRMIC, 24, 493, for a Fortran version); If you would
  like to go this route, it is perhaps best to (1) first run a
  normally distributed random data generation parallel analysis to
  familiarize yourself with the program and to get a ballpark
  reference point for the number of factors/components;
  (2) then run a permutations of the raw data parallel analysis
  using a small number of datasets (e.g., 10), just to see how long
  the program takes to run; then (3) run a permutations of the raw
  data parallel analysis using the number of parallel data sets that
  you would like use for your final analyses; 1000 datasets are
  usually sufficient, although more datasets should be used if
  there are close calls.

* These next commands generate artificial raw data
  (50 cases) that can be used for a trial-run of
  the program, instead of using your own raw data;
  Just select and run this whole file; However, make sure to
  delete these commands before attempting to run your own data.

* Start of artificial data commands.
* End of artificial data commands.

set mxloops=9000 printback=off width=80 seed = 1953125.
matrix.

* Enter the name/location of the data file for analyses after 
  “FILE =”; If you specify “FILE = *”, then the program will read 
  the current, active SPSS data file; You can alternatively enter 
  the name/location of a previously saved SPSS systemfile instead 
  of “*”;
  you can use the “/ VAR =” subcommand after “/ missing=omit”
  subcommand to select variables for the analyses.
GET raw / FILE = * / missing=omit / VAR = V1 to V20.

* Enter the desired number of parallel data sets here.
compute ndatsets = 1000.

* Enter the desired percentile here.
compute percent = 95.

* Enter either
  1 for principal components analysis, or
  2 for principal axis/common factor analysis.
compute kind = 2 .

* Enter either
  1 for normally distributed random data generation parallel 
  analysis, or
  2 for permutations of the raw data set.
compute randtype = 2.

* End of required user specifications.
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compute ncases = nrow(raw).
compute nvars = ncol(raw).

* principal components analysis & random normal data generation.
do if (kind = 1 and randtype = 1).
compute nm1 = 1 / (ncases-1).
compute vcv = nm1 * (sscp(raw)–((t(csum(raw))*csum(raw))/ncases)).
compute d = inv(mdiag(sqrt(diag(vcv)))).
compute realeval = eval(d * vcv * d).
compute evals = make(nvars,ndatsets,-9999).
loop #nds = 1 to ndatsets.
compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*
        cos(6.283185 * uniform(ncases,nvars) ).
compute vcv = nm1 * (sscp(x)–((t(csum(x))*csum(x))/ncases)).
compute d = inv(mdiag(sqrt(diag(vcv)))).
compute evals(:,#nds) = eval(d * vcv * d).
end loop.
end if.

* principal components analysis & raw data permutation.
do if (kind = 1 and randtype = 2).
compute nm1 = 1 / (ncases-1).
compute vcv = nm1 * (sscp(raw)–((t(csum(raw))*csum(raw))/ncases)).
compute d = inv(mdiag(sqrt(diag(vcv)))).
compute realeval = eval(d * vcv * d).
compute evals = make(nvars,ndatsets,-9999).
loop #nds = 1 to ndatsets.
compute x = raw.
loop #c = 1 to nvars.
loop #r = 1 to (ncases -1).
compute k = trunc( (ncases–#r + 1) * uniform(1,1) + 1 ) + #r–1.
compute d = x(#r,#c).
compute x(#r,#c) = x(k,#c).
compute x(k,#c) = d.
end loop.
end loop.
compute vcv = nm1 * (sscp(x)–((t(csum(x))*csum(x))/ncases)).
compute d = inv(mdiag(sqrt(diag(vcv)))).
compute evals(:,#nds) = eval(d * vcv * d).
end loop.
end if.

* PAF/common factor analysis & random normal data generation.
do if (kind = 2 and randtype = 1).
compute nm1 = 1 / (ncases-1).
compute vcv = nm1 * (sscp(raw)–((t(csum(raw))*csum(raw))/ncases)).
compute d = inv(mdiag(sqrt(diag(vcv)))).
compute cr = (d * vcv * d).
compute smc = 1–(1 &/ diag(inv(cr)) ).
call setdiag(cr,smc).
compute realeval = eval(cr).
compute evals = make(nvars,ndatsets,-9999).
compute nm1 = 1 / (ncases-1).
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loop #nds = 1 to ndatsets.
compute x = sqrt(2 * (ln(uniform(ncases,nvars)) * -1) ) &*
        cos(6.283185 * uniform(ncases,nvars) ).
compute vcv = nm1 * (sscp(x)–((t(csum(x))*csum(x))/ncases)).
compute d = inv(mdiag(sqrt(diag(vcv)))).
compute r = d * vcv * d.
compute smc = 1–(1 &/ diag(inv(r)) ).
call setdiag(r,smc).
compute evals(:,#nds) = eval(r).
end loop.
end if.

* PAF/common factor analysis & raw data permutation.
do if (kind = 2 and randtype = 2).
compute nm1 = 1 / (ncases-1).
compute vcv = nm1 * (sscp(raw)–((t(csum(raw))*csum(raw))/ncases)).
compute d = inv(mdiag(sqrt(diag(vcv)))).
compute cr = (d * vcv * d).
compute smc = 1–(1 &/ diag(inv(cr)) ).
call setdiag(cr,smc).
compute realeval = eval(cr).
compute evals = make(nvars,ndatsets,-9999).
compute nm1 = 1 / (ncases-1).
loop #nds = 1 to ndatsets.
compute x = raw.
loop #c = 1 to nvars.
loop #r = 1 to (ncases -1).
compute k = trunc( (ncases–#r + 1) * uniform(1,1) + 1 ) + #r–1.
compute d = x(#r,#c).
compute x(#r,#c) = x(k,#c).
compute x(k,#c) = d.
end loop.
end loop.
compute vcv = nm1 * (sscp(x)–((t(csum(x))*csum(x))/ncases)).
compute d = inv(mdiag(sqrt(diag(vcv)))).
compute r = d * vcv * d.
compute smc = 1–(1 &/ diag(inv(r)) ).
call setdiag(r,smc).
compute evals(:,#nds) = eval(r).
end loop.
end if.

* identifying the eigenvalues corresponding to the desired percentile.
compute num = rnd((percent*ndatsets)/100).
compute results = { t(1:nvars), realeval, t(1:nvars), t(1:nvars) }.
loop #root = 1 to nvars.
compute ranks = rnkorder(evals(#root,:)).
loop #col = 1 to ndatsets.
do if (ranks(1,#col) = num).
compute results(#root,4) = evals(#root,#col).
break.
end if.
end loop.
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end loop.
compute results(:,3) = rsum(evals) / ndatsets.

print /title=”PARALLEL ANALYSIS:”.
do if (kind = 1 and randtype = 1).
print /title=”Principal Components & Random Normal Data Genera-
tion”.
else if (kind = 1 and randtype = 2).
print /title=”Principal Components & Raw Data Permutation”.
else if (kind = 2 and randtype = 1).
print /title=”PAF/Common Factor Analysis & Random Normal Data Gen-
eration”.
else if (kind = 2 and randtype = 2).
print /title=”PAF/Common Factor Analysis & Raw Data Permutation”.
end if.
compute specifs = {ncases; nvars; ndatsets; percent}.
print specifs /title=”Specifications for this Run:”
/rlabels=”Ncases” “Nvars” “Ndatsets” “Percent”.
print results
/title=”Raw Data Eigenvalues, & Mean & Percentile Random Data Ei-
genvalues”
/clabels=”Root” “Raw Data” “Means” “Prcntyle” /format “f12.6”.

compute root = results(:,1).
compute rawdata = results(:,2).
compute percntyl = results(:,4).

save results /outfile=* / var=root rawdata means percntyl .

end matrix.

To run the syntax, we must have the data set containing the items open, 
and indicate the variables to be included in the analysis (SCAB1–SCAB20). 
We indicate the number of random datasets that we would like to gener-
ate (1,000 in this case), and the percentile of interest (95th). In addition, 
we indicate the type of factor extraction (1 = principal components and 
2 = principal axis), and the way in which the random data is to be generated 
(from the normal distribution or from permutations. The resulting output 
and graph appear below.

Run MATRIX procedure:

PARALLEL ANALYSIS:

PAF/Common Factor Analysis & Raw Data Permutation

Specifications for this Run:
Ncases     413
Nvars       20
Ndatsets  1000
Percent     95
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Raw Data Eigenvalues, & Mean & Percentile Random Data Eigenvalues
         Root   Raw Data      Means   Prcntyle
     1.000000   4.895387    .463447    .547782
     2.000000   1.888954    .385400    .440388
     3.000000   1.646993    .328461    .379595
     4.000000   1.379350    .278644    .322080
     5.000000   1.087381    .232669    .270863
     6.000000    .381248    .191289    .228211
     7.000000    .201128    .152434    .187896
     8.000000    .118100    .114925    .149626
     9.000000    .078835    .078688    .109695
    10.000000   –.026073    .044526    .074070
    11.000000   –.049555    .010904    .039660
    12.000000   –.069573   –.021539    .007586
    13.000000   –.091872   –.053090   –.025036
    14.000000   –.107669   –.084192   –.057068
    15.000000   –.137411   –.115853   –.089293
    16.000000   –.146233   –.147299   –.121721
    17.000000   –.162005   –.179159   –.150825
    18.000000   –.179658   –.213217   –.186561
    19.000000   –.212114   –.250149   –.220550
    20.000000   –.237911   –.295439   –.261071
----- END MATRIX -----
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An examination of the output containing the eigenvalues reveals that the 
real eigenvalues are larger than the random ones through Factor 7, but for 
Factor 8 the 95th percentile of random eigenvalues (.149626) is larger than 
the real Factor 8 eigenvalue (0. 118100), thus supporting a 7-factor solu-
tion. Taking all of the results together, including the factor loading matrix, 
it appears that the 5-factor solution is very reasonable, thereby supporting 
the construct validity of the creativity scale.

Confirmatory Factor Analysis as a Tool for Investigating 
Construct Validity

Confirmatory factor analysis (CFA) is the preferred factor analytic ap-
proach to formally test a scale’s dimensionality when existing theory and 
empirical evidence supports a particular latent structure of the data. For 
example, researchers in the area of achievement motivation have created 
a well-developed body of literature supporting the existence of two broad 
orientations to motivation: mastery and performance. Individuals favoring 
the mastery approach are primarily motivated by a desire to become more 
proficient in an area, whereas those favoring the performance approach 
are primarily motivated by a desire to manage their reputation with others. 
Within these two broad categories of motivation, it has been hypothesized 
that there are both approach and avoidance goals. Approach goals focus 
on a desire to succeed, while avoidance goals focus on a desire not to fail. 
Within this theoretical framework, an individual can be motivated by a mas-
tery oriented, mastery avoidant, performance approach, or performance 
avoidance outlook.

To assess an individual’s achievement goal orientation, say a 12-item in-
strument was used in which rating were provided on a 7-point Likert-scale. 
The items present statements about goal orientation and respondents are 
asked to rate whether the statement is Not at all Like Them = 1 to Very Much 
Like Them = 7. Each of the 12 items is theoretically associated with one of 
four types of achievement goal orientation. For this example, a researcher 
in achievement motivation would seek to use CFA to test the latent struc-
ture of this achievement goal scale. In particular, the research question is 
whether the scale data support the theoretical 4-factor structure. There-
fore, unlike with EFA, CFA is used to test a well-defined hypothesis because 
it relies on the researcher indicating which items relate to which latent fac-
tors, as well as the inter-correlations among factors. As such, CFA represents 
a model-based approach to examining whether obtained data support the 
scale’s theoretical factor structure. A unique feature of CFA results is that 
they can be used to judge the extent to which the theoretical model “fits” 
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the actual data. To further clarify this, we can refer to Figure 5.1, which 
shows the hypothesized 4 factor model for achievement goal orientation 
that we outlined above.

Figure 5.1 Proposed achievement goal orientation model.

This figure is referred to as a path diagram and provides a visual repre-
sentation of the theoretical relationships between the observed and latent 
variables. Within path diagrams, squares are used to represent the observed 
variables (e.g., items), whereas circles represent the latent (or unobserved) 
variables. Single headed arrows from factors to observed variables are factor 
loadings, much as we saw in the context of EFA, and double-headed lines 
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represent the covariances (or, correlations) between the latent traits. Each 
observed variable (e.g., item) is associated with both a factor and random 
error, represented by the circles, labeled e1, e2, e3, and so on. Finally, each 
factor must have a referent indicator whose loading is set to 1. The referent 
provides the latent variable with a measurable scale. Such scaling can also 
be established by setting the factor variance to 1.

Figure 5.1 provides an illustration of the path diagram displaying the 
instrument’s hypothesized four-factor structure. Alternatively, Figure 5.2 
shows another postulated theoretical model explaining the relationships 
between the items and two latent achievement motivation sub-domains, 

Figure 5.2 Alternative achievement goal orientation model.
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namely: mastery and performance. This example serves to point out one 
of the primary goals of CFA: comparing competing models of the instru-
ment’s factor structure to see which provides a more parsimonious descrip-
tion of the data. The ability of CFA to compare the fit of alternative models 
of the data is one of its strengths versus EFA. Bollen (1989) identifies sev-
eral advantages of the model-based approach of CFA compared to the data-
driven approach associated with EFA (e.g., fixing factor loadings). It should 
also be noted, however, that use of CFA requires a great deal more in the 
way of pre-existing theory and empirical evidence to warrant its use. This is 
clearly evident in Figures 5.1 and 5.2 because there are a number of ways 
in which the relationships between the observed and latent variables could 
be described. Without consideration of theory, a CFA model may be fit to 
the data and be deemed acceptable due to chance alone, instead of based 
on theory. Indeed, while some theory plays an important role in EFA, it is at 
the heart of gathering construct validity evidence using CFA.

Fitting a CFA Model Using AMOS

Within SPSS, CFA can be conducted using AMOS, which is a separate 
software package that is frequently bundled with SPSS. CFA models are ex-
pressed in a purely graphical fashion, with rectangles used to identify ob-
served variables and circles for latent variables. In order to create a latent 
variable with observed indicators, we will first click on the following icon in 
AMOS:  and draw a circle. We then left click the mouse on , place the 
mouse over the circle that we created, and click once for each of the observed 
indicators and associated error terms. As an example, we see below the result 
of following these instructions for a single factor with three indicators.

Using this approach, we created the diagrams that appear in Figures 5.1 
and 5.2. Note that AMOS automatically sets the first observed variable to 
be the referent indicator by fixing its factor loading to 1.00. We can change 
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this by right clicking on the line connecting the first indicator to the fac-
tor, and selecting Object Properties. Within this box we can delete the 1 
from the Regression Weights box, and then click on another of the paths 
(e.g., the one linking the second indicator to the factor) and place a 1 in 
the Regression Weights box.

In order to name the latent variables (factors and errors), we right click 
the mouse over each in order to obtain a window from which we select the 
Object Properties window.

We can then type the name for the latent variable in the Variable name 
box. In order to name the observed variables, we use the following menu 
sequence View ► Variables In Dataset to obtain a window listing all of the 
observed variables available to us.

We can then drag each of the variable names to one of the rectangles, 
thereby specifying which variables are associated with each factor.

When we have finished creating the diagram for our CFA model, we 
are ready to specify how it will be fit, and what output we would like to 
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see. To make these decisions, we use the menu command View ► Analysis 
Properties.

By default, Maximum likelihood estimation is selected, which is generally 
most appropriate, although other options are available and may prove most 
useful when the data are not multivariate normal (see Finney & DeStefano, 
2013 for an excellent discussion of this issue). If we have any missing data 
then we will want to check the box titled Estimate means and intercepts. In 
order to control the output, we click on the Output tab.
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Generally speaking, we will probably want to request Standardized esti-
mates, and the Squared multiple correlations for the observed indicator 
variables. When we have specified the analysis and output to our satisfac-
tion, we can simply close the Analysis Properties window. At this point, we 
are ready to run the analysis, which we do using the menu command se-
quence: Analyze ► Calculate Estimates.

In order to view the output resulting from our analysis, we use the 
menu sequence View ► Text Output and obtain the following window.
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We will be particularly interested in some of the windows, and not in others.

The SPSS output begins by providing a table reporting the basic de-
scriptive information about the model. Among others, this information in-
cludes the number of parameters in the model, degrees of freedom, and 
the results of the Chi-square goodness of fit test. As shown, the model has 
78 variances and covariances (called sample moments) and 30 model pa-
rameters that we need to estimate, which results in 48 degrees of freedom 
(78 – 30 = 48). The fact that we have more moments than parameters means 
that our model is over-identified (i.e., we have more available information 
than we need). It is usually good for the model to be over-identified. An 
under-identified model will not yield estimates, and a just-identified model 
(equal number of informations and parameters) will provide estimates but 
not useful estimates of model fit. From this window we also see that the 
estimator converged, based on the message Minimum was achieved. A lack 
of convergence would mean that parameter estimates are suspect and can-
not be trusted. We would then need to investigate the reason for a lack of 
convergence, which could include anything from a poorly defined model, 
to a small sample size, to variables that are highly skewed.

Next, we would click on the Notes for Group button to be sure that all 
432 individuals in our sample were used in the analysis, which was the case. 
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The Variable Summary and Parmaeter Summary windows simply list the 
observed and latent variables, and the estimated parameters, respectively. 
The next table of primary interest is labeled Model Fit, and contains the 
indices of model-data fit.
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As evident, there are many statistics to which we can refer when mak-
ing judgments about the degree to which a theorized model describes the 
actual data. Similar to determining the number of empirical factors using 
EFA, common practice is to use several indices to determine whether a CFA 
model provides acceptable fit. Notably, there is not a single fit statistic that 
is universally optimal for every analysis. We will highlight those that have 
been suggested as most useful in the literature (Brown, 2015; Kline, 2016). 
Perhaps first among these to examine is the chi-square statistic (CMIN), 
which tests model goodness of fit by comparing the model predicted and 
observed covariance matrices. The null hypothesis of this test is that the 
two covariance matrices are identical (i.e., the model predicted covariances 
are equal to those observed in the data itself). Thus, if we reject the null, 
we would conclude that the model does not fit well. This test must be used 
with some care however, as it has been shown to be both sensitive to sample 
size and not robust to departures from multivariate normality by the data 
(Kline, 2016). For this model, the chi-square is 255.160, with 48 degrees 
of freedom (the difference between informations and parameters), and a 
p-value<0.001. We would, therefore, reject the null hypothesis that the pre-
dicted and observed covariance matrices are identical, and conclude that 
model fit may be questionable.

A second fit index that we may consider in building the case for or 
against the performance of our model is the root means square error of 
approximation (RMSEA). This value is calculated as
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where N is the sample size, df is the degrees of freedom, and χ2 is the good-
ness of fit statistic described above. Under the null hypothesis, χ2 = df, in 
which case the RMSEA would be 0. Of course, in practice such is rarely the 
case, so that a variety of cut-off values have been suggested for interpreta-
tion of RMSEA, with perhaps the most popular being 0.01 (Excellent fit), 
0.05 (Good fit), and 0.08 (Mediocre fit), with values greater than 0.08 indi-
cating poor fit (MacCallum, Browne, & Sugawara, 1996). Kenny, Kaniskan, 
and McCoach (2011) recommend that researchers use care when interpret-
ing RMSEA for models with few degrees of freedom. AMOS also provides 
a confidence interval for RMSEA. In this example, the value of RMSEA 
itself is 0.100, with a 90% confidence interval of 0.088 to 0.112. Based on 
the standards suggested above, the RMSEA appears to be suggesting poor 
model fit as well.

Two other goodness of fit indices that are commonly used in assessing 
CFA solutions are the comparative fit index (CFI) and the Tucker Lew-
is index (TLI), which is also sometimes called the non-normed fit index 
(NNFI). These indices are part of a common family referred to as incre-
mental fit indices, which compare the fit of the proposed model with that 
of the null model, which provides the worst possible fit. The logic of these 
indices, then, is that fit for the proposed model should be much better than 
that of the null model. Equations for the CFI and TLI appear below.
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In Equations 5.10 and 5.11, χ0
2 and χ2

P  are the chi-square goodness of fit sta-
tistics for the null and proposed models, respectively. Similarly, df0 and dfP 
are the degrees of freedom for these models. A wide variety of recommen-
dations for assessing model fit with these indices have been recommended 
with no absolute agreement. However, there is some consensus that at mini-
mum, values greater than 0.90 and preferably greater than 0.95 be used to 
identify models exhibiting good fit (Kline, 2016). Based on these guide-
lines, it appears that the CFI (0.923) and TLI (0.895) indicate questionable 
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fit. While the CFI does have a value greater than 0.90, TLI is below this cut-
off, so collectively they do not support adequate model-data fit.

A final set of indices that we will examine are used not to assess whether 
a single model fits or not, but rather to compare the fit of two competing 
models with the same data. These relative fit indices include the Akaike 
Information Criterion (AIC; Akaike, 1987) and Schwarz’s Bayesian Infor-
mation Criterion (BIC; Schwarz, 1978). Both statistics are based on the 
chi-square goodness of fit statistic described above, with a penalty built in 
for model complexity. The notion here is that the goodness of fit statistic 
will always improve as more parameters are included in the model, even if 
these additional parameters are not substantively meaningful. Therefore, 
in order to ensure that the selected model provides the best fit and is as 
parsimonious as possible, model complexity is penalized. In practice this 
means that in order for additional parameters to be “helpful” to a model, 
they must meaningfully contribute to fit. The AIC, BIC, and CAIC are cal-
culated as follows.

 = χ +AIC 22 pP  (5.12)

 = χ +BIC ln( )2 N pP  (5.13)

 = χ + +CAIC ln( 1)2 N pP  (5.14)

The terms are as defined above, with the addition that p is the number of 
parameters to be estimated. These indices will be used when we compare 
the relative fit of the proposed model (Figure 5.1) with the alternative (Fig-
ure 5.2), where smaller index values indicate better model fit. For the pro-
posed model, AIC = 315.160, BIC = 427.213, and CAIC = 467.213.

To this point, we have devoted our discussion of CFA to the assess-
ment of model-data fit based on the inspection of various fit statistics. Of 
equal importance are the factor loadings (also referred to as pattern coef-
ficients) that report the relationships among the latent and observed vari-
ables. There are two types of factor loadings: unstandardized and standard-
ized. Unstandardized pattern coefficients are expressed in the scale of the 
original observed data, while standardized coefficients are expressed in the 
standardized scale. AMOS first presents the unstandardized loadings along 
with the standard errors and a t-value (C.R.) that can be used to ascertain 
the relative significance of the loadings (P). P-values less than 0.001 are 
denoted by ***.
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As discussed previously, items AGS1–AGS4 are indicators for the latent 
factors, and thus their loadings are not estimated. As an example of reading 
the output, let’s consider item AGS5. The estimated loading value is 0.703, 
with a standard error of 0.060, and a t-value of 11.812 (p < 0.001). The fact 
that the t-value exceeds 2 indicates that the loading is significantly different 
from 0 (i.e., there is a relationship between factor f1 and AGS5). Indeed, we 
see that the t-values for each of the items are well in excess of 2, suggesting 
that the items are significantly related to the factors that we hypothesized 
they would be.

The standardized loadings appear next in the output. These values are 
comparable to the EFA loadings we discussed earlier in the chapter, and 
are in some ways more easily interpreted than these undstandardized val-
ues. Using the rule that we applied in the EFA case, stating that a variable 
was associated with a factor if the absolute value of the loading was greater 
than 0.32, we see that all of the items are clearly associated with their hy-
pothesized factor. If we square the loadings, we obtain the R 2 value for 
the item, representing the total proportion of variance for the item that is 
explained by the factor. As an example, we can consider AGS1. The loading 
squared is .7232 = 0.523, indicating that approximately 52% of the variation 
in Item 1 is explained by the Mastery_Orientation latent trait. The results 
in this table, then, can provide insights into which items are best explained 
by the factor model, and which are not. Specifically, in this example, items 
AGS7 and AGS10 have the highest proportion of their variance explained 
by the factor model, while AGS4 and AGS5 have the lowest proportions 
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of explained variance. This information can be used by the researcher to 
determine which items should be most closely investigated as being poten-
tially problematic in terms of the quality of their measurement of the latent 
traits. It must be noted that there are not guidelines for what proportion of 
variance would warrant the need for attention, but rather such decision are 
based on the relative performance of the items.

The next two tables produced by AMOS include the covariances and 
correlations of the latent variables. As shown, all of the covariances (and 
correlations) are positive and statistically significant at a = 0.05. However, 
the correlations between Mastery_Avoidance and Performance_Approach, 
Mastery_Orientation and Performance_Avoidance, and Mastery_Orienta-
tion and Performance_Avoidance are all relatively small, with values less 
than 0.2 suggesting relatively weak relationships. The final table contains 
factor and error variances. In general, larger error variances indicate rela-
tively lower reliability for an individual item. For this example, AGS12 had 
the largest error variance, suggesting that it was the least consistent, while 
AGS7 with the lowest error variance may be viewed as the most consistent.

This last result brings us to the alternative model displayed in Fig-
ure 5.2. Recall that here the 4 factor model has been reduced to 2 factors 
based on the mastery and performance domains. We can fit this model with 
the same sequence of commands in AMOS that we used for the model in 
Figure 5.1. The resultant goodness of fit indices appear below.
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When comparing two models, we can rely on the relative fit indices that we 
discussed previously, namely: AIC, BIC, and CAIC. Recall that they are model 
complexity penalized measures of unexplained variance so that larger values 
indicate worse fitting models. For the alternative model, AIC = 349.426 and 
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BIC = 451.137, while for the original model AIC = 315.160, BIC = 427.213, 
and CAIC = 467.213. Thus, the original four-factor model provides better 
model-data fit to the data than the alternative two-factor model. In addition, 
because the alternative model is a nested version of the primary model, we 
can compare their relative fit using a difference in the model chi-square 
values. The null hypothesis of this test is that the model fit provided by the 
two models is equivalent, so that a significant result means one model fits 
the data better than the other. The difference in chi-square values is itself 
distributed as a chi-square with degrees of freedom equal to the difference 
in model degrees of freedom. We calculate these values below, using results 
from the model fit statistics taken from the output for the two models.

χ = χ − χ = − =

= − = − =

D

D

299.426 255.160 44.266

53 48 5

2
2

2
1

2

2 1df df df

Model Model

Model Model

We can obtain the p-value for this test using any reputable online p-value 
calculator for the chi-square distribution. In this case, p < 0.00001, mean-
ing that models do not likely provide equivalent model-data fit. Therefore, 
given the AIC and BIC results discussed previously, as well as this chi-square 
result, we must conclude that the original four-factor model provides better 
fit compared to the alternative two-factor model. This said, given the not-
so-excellent fit for either model, the researcher may want to dive into theo-
retical considerations about additional models that may be justified based 
on the consideration of modification indices and model parameter values.

Chapter Summary

It is not hyperbole to state that the topic of validity is truly a central com-
ponent in educational and psychological measurement. Indeed, without 
evidence of validity, scores from an instrument cannot be deemed to be 
fully trustworthy. At the same time, the business of validation is extremely 
complex and not always easily defined. As we have seen, there are a number 
of ways that we can think about validity, and even more ways to investigate 
it. Indeed, the very notion of validity for a scale is probably nonexistent. 
Rather, we must think in terms of how the scale will be used, and whether 
that use can be thought of as valid, given the extant evidence. Thus, a col-
lege entrance exam score might be quite valid for an admissions officer 
determining who to let into the next freshman class, but totally not valid 
for an employer seeking to vet job applicants. Furthermore, the same exam 
might exhibit predictive validity for the purpose of admitting students to 
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college, but not exhibit construct validity based on a CFA. In short, validity 
is a multifaceted construct that can be assessed in a number of ways.

Our goal in this chapter was to introduce you to the concept of valid-
ity and to methods by which it can be assessed using SPSS software. Given 
our emphasis on the computer, we focused on validation methods that are 
quantitative in nature. However, as we noted in the introduction, there are 
also extremely important approaches to validity assessment that do not rely 
on statistics at all, such as content validation (e.g., review of item content). 
The researcher truly interested in understanding when an instrument can 
be used with high validity and when it cannot will want to investigate as 
many of these pieces of evidence as possible. In addition to the type of 
use, researchers must also concern themselves with which populations the 
instrument might be validly used. A Physics graduate entrance exam is a 
potentially valid tool for advanced undergraduates who have taken a num-
ber of Physics courses, but not for students in their first year of the major.

Given both its central position in measurement, and the great com-
plexity in understanding it, we strongly encourage the reader to use this 
chapter as a jumping off point for their own reading and investigation into 
the issue of validity. While it can certainly be difficult at times, the field is 
also immensely rewarding, both in terms of the intellectual challenge it 
presents and the potential for conducting truly meaningful work. We hope 
that the discussion and examples presented here will be helpful as you be-
gin your own journey to understanding the meaning and importance of 
validity assessment.
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6
Issues in Scoring

Introduction

The scoring of an instrument (e.g., survey, interim test) is central to the 
practice of psychometrics and assessment. It is the score that is typically of 
most interest to users of educational and psychological measures. Scores 
are used to aid in the determination of students’ academic achievement; 
severity of client symptomology (e.g., depression, anxiety); program place-
ment (e.g., designated program for gifted students); and, in the identifica-
tion of students who may benefit from special education services. In short, 
scores are often the final destination of the assessment process. For this rea-
son, it is crucial that they be calculated appropriately, and that their mean-
ing be clearly understood by test users (e.g., researchers, clinicians) and 
examinees (e.g., students, patients). There are various types of scores, and 
careful consideration needs to be given to each to ensure that the optimal 
test score is being used for its intended purpose. With these issues in mind, 
the goals of this chapter include (a) introducing the most commonly used 
score types, and (b) describing how to estimate these scores using SPSS. 
Upon chapter completion, the reader will be familiar with using and in-
terpreting different score types and how to derive these scores using SPSS.
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This chapter is divided into four sections aligned with different score 
types that can be created using SPSS to guide decisions. The chapter begins 
with a brief description of the major types of scores available to character-
ize test performance. This is followed with a presentation on the mechan-
ics of how these scores are calculated, including examples with SPSS. The 
chapter concludes with a brief review of scoring and a summary designed 
to promote the reader’s ability to determine which score type(s) might be 
optimal for a given research scenario.

Types of Scores

Oftentimes when we think of a test score the total number of correct items or 
the proportion correct might come to mind. While these are routinely used 
score types, we will see that there are many other ways in which performance 
on an instrument can be reported, with some being more appropriate for 
certain instances. Therefore, it is important to match the intended use of 
the assessment with the most optimal score type so that the information we 
obtain is appropriate for our intended use. For example, the type of score we 
would use to compare individuals with one another might be very different 
from the score we would use to determine whether a student has met a par-
ticular performance standard (e.g., 80% correct an across item set aligned 
to a content standard). In the following section, we describe and contrast a 
number of the most common scores available to test users. This is followed by 
step-by-step instructions on how to calculate these scores using SPSS.

Raw Scores

Perhaps the most familiar score to test users is the simple summation 
of responses across an item set. As an example, let us focus on a 4th grade 
mathematics assessment comprised of 32 multiple-choice items scored as 
either correct (1) or incorrect (0). A raw score would be obtained by simply 
summing the number of correct responses across the entire set of items for 
each examinee, yielding the total number correct. We can also express this 
score as the proportion correct by dividing the total number correct by 32. 
Thus, if Student A answered 18 items correct, the raw sum score would be 
18, and the proportion correct raw score would be 0.56 (or, 56% of items 
correctly answered). While the raw score has a primary advantage of being 
both easy to calculate and understand, there are potential problems with its 
use. Primarily, it is assessment specific meaning that it only communicates 
how many items a student answered correctly (or, 18 in the previous ex-
ample) on a particular measure. However, in many instances, we may want 
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to know how a student (or patient) performs relative to similar age/grade 
peers on an assessment. Alternatively, we may want to compare an individ-
ual’s standing on a measure to the “typical” performance of all examinees. 
In short, raw scores provide no context against to compare individual test 
performance beyond the number correct, or the sum of responses. Anoth-
er limitation of the raw score is that regardless of item complexity or the 
cognitive load required to answer the item, the raw score provides equal 
weight to all items used to report test performance.

Weighted Scores

A noted limitation of the simple raw score is that it assigns equal weights 
to each of the items used to report test performance. Thus, there is an as-
sumption that the total score is equally impacted by each of the individual 
items and the trait or behavior that they are measuring. While this would 
certainly be a plausible assumption in some instances, it is not so in others. 
When we are unsure whether a simple sum score is appropriate, we may 
elect to use a weighted scoring system. Weighted scores are calculated as

 = ΣY w xi i , (6.1)

where xi is the response to item i, and wi is the weight for item i. Thus, items 
with larger weights will contribute more to the total score, Y.

The primary issue with using weighted scores is the determination of 
the weights to apply to the items. In some cases, instrument developers will 
have determined the weights through some combination of expert judg-
ment and statistical analysis (e.g., factor analysis). We examine an example 
shortly demonstrating the use of factor analysis to obtain weights to assign 
to items for scoring various instruments.

Percentile Scores

One commonly used alternative to the raw score is the percentile score. 
A loose definition of the percentile is that it is the proportion of all exam-
inees whose score is equal to or less than that of a given examinee. More 
specifically, the percentile score is calculated as

 ( )= + ×.5( )
100p

n n
n

b e

t

 (6.2)

where nb is equal to the number of scores below the individual score of in-
terest, ne is the number of scores equal to the score of interest, and nt is the 
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total number of students taking the exam. Continuing with our mathematics 
test example, say 100 students took the exam, 38 of whom scored lower than 
Student A (nb = 38), while 2 students obtained the same score as Student A 
(ne = 2). Applying Equation 6.2, the percentile for Student A would be

( )= + × = × = × =38 .5(2)
100

100
(39)
100

100 0.39 100 39p .

Therefore, our student’s score is in the 39th percentile of scores for all stu-
dents who have completed the exam.

Percentiles are very frequently used with standardized assessments in 
which an individual’s score is compared with similar age/grade peers. They 
are also routinely used on norm-referenced tests to report individual test 
performance relative to a norming (or, standardization) sample obtained 
to represent a cross-section of the larger population (e.g., United States 
college student population). For example, everyone who takes the Gradu-
ate Records Exam (GRE) receives both a standard score (to be discussed 
shortly) and a percentile score. The percentile is derived using the equa-
tion above, based on data obtained from a norm sample that was system-
atically selected to be representative of college students across the United 
States. A benefit of the percentile is that it is easy to interpret and provides 
test users key information regarding an individual’s test performance rela-
tive to other test takers from the target population.

Despite its clear utility, the percentile score is not without its shortcom-
ings. Perhaps first and foremost is the fact that equivalent differences in the 
percentile at different points in the score distribution do not correspond 
to equivalent differences in the raw or standard scores across the distribu-
tion. Take, for instance, a difference of 10 percentile points at the low end 
(e.g., 10th versus 20th percentile) and in the middle of the distribution 
(e.g., 40th versus 50th percentile). At the low end of the scale, there will 
typically be fewer examinees, meaning that a difference of 10 percentile 
points will likely suggest a fairly big difference in raw scores. On the other 
hand, in the middle of the distribution there will be many more examinees, 
such that a difference of 10 percentile points would be associated with a 
much smaller difference in raw scores than was true in the tails of the dis-
tribution. We can see an example of this in Figure 6.1. The difference in 
raw scores between the 10th and 20th percentiles is much smaller than that 
between the 40th and 50th percentiles.
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Figure 6.1 Percentile score distribution.

In addition, percentiles are not as amenable to further statistical analysis 
(e.g., regression) as are raw and standard scores. Nonetheless, these scores 
do represent an important way to communicate relative performance for 
individuals, and therefore should be used particularly when the relative 
position of individuals is of prime importance.

Standard Scores

As discussed previously, a problem with raw scores is that they are dif-
ficult to interpret outside the context of the assessment and sample with 
which they were obtained. Without knowing something about the number 
of items on the math test, and the average performance of the sample, our 
student’s raw score of 18 doesn’t tell us very much about the examinee’s test 
performance. Knowing the proportion of items correct helps somewhat, 
but we still don’t know how the student’s score compares to others in the 
sample, nor can we easily compare it with performance on another assess-
ment with a different number of items. The percentile score is helpful with 
the first part of this conundrum, in that it reflects student performance 
relative vis-à-vis to the rest of the test takers. However, as we noted, the per-
centile is limited in terms of comparisons across the distribution and with 
its inability to be used with other statistical analyses.

Standard scores are an alternative approach to estimating and report-
ing examinees’ performance on an educational and/or psychological in-
strument. Standard scores involve the transformation of the raw scores to 
a scale with a set mean (e.g., 0, 50) and standard deviation (e.g., 1, 10). 
For example, intelligence (IQ) test scores are typically scaled to have a 
mean of 100 and a standard deviation of 15. Thus, an individual with an 
IQ score of 110 was measured at 2/3 of a standard deviation above the 
mean for the population. Similarly, if the individual is measured on two 
aspects of intelligence, such as verbal and spatial, and obtains scores of 
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115 and 105, respectively, we know that his/her verbal intelligence is 2/3 
of a standard deviation higher than his spatial intelligence. Having known 
units and direct comparability of scores across assessments are the two 
primary advantages of standard scores. In addition, as with raw scores (but 
unlike percentiles), standard scores can be used in other statistical analy-
ses, such as for comparing group means or calculating correlations among 
scores. Given their universality and flexibility, standard scores are very 
widely used throughout educational and psychological assessment. Stan-
dard scores considered in this chapter include: z-scores, IQ scores, and 
T scores. Although each of these types of standard scores have a unique 
mean and standard deviation, they can be interpreted the same way.

The use of standard scores requires a linear transformation of the raw 
score. The first step begins with the calculation of a z score:

 = −
z

x x
s

. (6.3)

In this equation, x is the raw score, x  is the mean raw score for the sample, 
and s is the sample standard deviation. With a mean of 0 and standard devia-
tion of 1, the z score transforms the raw score into a measure of the number 
of standard deviations the raw score is above or below the mean. So, a z 
of –2 indicates that the person’s raw score is 2 standard deviations below 
the mean, while a value of 1 means that the raw score is 1 standard devia-
tion above the mean. This transformation solves two problems with the raw 
score. First, it puts all raw scores on the same scale so that we can directly 
compare performance on one measure (e.g., verbal IQ) with that of another 
(e.g., spatial IQ). Second, it provides information about how an individual’s 
performance compares to that of the entire sample of examinees. Specifi-
cally, we know that a z of 1 indicates that the examinee’s raw score was 1 
standard deviation above the average score for the entire sample of test tak-
ers, and we also know that a verbal IQ score of 1.5 is higher than a spatial 
IQ score of 0.5. Finally, the units of z are constant so that the difference in 
scores between –2.5 and –2.0 is exactly the same as the difference in scores 
between 0 and 0.5. In short, the z score overcomes a number of problems 
that were present with both raw and percentile scores. Nonetheless, the z is 
virtually never used in actual score reporting because of its scale. The fact 
that average performance is 0 and roughly half of the scores are negative 
renders z less than optimal for score reporting; that is, in practical educa-
tional assessment settings, a parent may have difficulty understanding what 
a z score of –1.5 means in terms of their child’s mathematics performance, 
for example. Therefore, we routinely convert z itself into another standard 
scale that might be more useful for score reporting purposes. It should be 
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noted, however, that these other scores are all based on first estimating the 
examinee’s z-score, and are preferred due to their ease of communicating 
test performance to broad audiences (e.g., teachers, parents).

Collectively, standard scores are based on z and are all calculated in 
the same manner. Specifically, this is done by multiplying the z score by the 
standard deviation of the standard score, and then adding the mean:

 = ∗σ +mStandard score z . (6.4)

Here σ is the desired standard deviation for the score, and μ is the desired 
mean. As an example for IQ scores, which have a standard deviation of 15 
and a mean of 100, we would first convert the raw score to z and then apply 
Equation 6.5:

 = ∗ +IQ 15 100z . (6.5)

To demonstrate a complete example, let’s consider a raw score of 19 from a 
sample with a standard deviation of 7 and a mean of 14. If we want to con-
vert this raw score to the IQ scale, we would first need to calculate: 

= − =19 14
7

0.43z .

Thus, the raw score is 0.43 standard deviations above the sample’s mean. 
Next, we transform this value into an IQ scale using the following Equa-
tion 6.5: = ∗ + =IQ 0.43 15 100 106.45. Thus the IQ score for this individual 
is 106.45, which anyone familiar with this scale knows would be above the 
average, but within 1 standard deviation of the overall mean (or, 100).

Another commonly used standard scale is the T score, not to be con-
fused with the t distribution commonly used in statistics. T scores have 
a mean of 50 and a standard deviation of 10. Thus, converting the z ob-
tained above to a T score would simply involve the following equation: 

= ∗ + = ∗ + =T 10 50 0.43 10 50 54.3z . As with the IQ scale, the T is used very 
frequently, so that many users will already be familiar with it. Indeed, many 
standard scores that are used in practice are obtained in precisely this man-
ner, and it is easy to see that one could develop a unique standard score 
with a desired mean and standard deviation, simply using the equations 
described above. The key, of course, is to first calculate the z score and then 
apply it to the desired scale equation (e.g., T score, IQ scale score).
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Calculation of Raw Scores Using SPSS

In the previous section, the three major types of scores commonly used in 
educational and psychological assessment were presented. First, raw scores 
were described as the least optimal in many instances because of their lack 
of context. Nonetheless, raw scores do have a place in measurement as they 
are easy to calculate, and within the context in which the assessment is 
given (e.g., a classroom), raw scores do connote useful information. There-
fore, we will first discuss the ways in which raw scores can be calculated us-
ing SPSS. Certainly the most common approach is the summation of item 
responses, typically referred to as the sum score or equal weighted score. 
Going back to our math test example, if correct responses are recorded as a 
value of 1 and incorrect responses a value of 0, then the following sequence 
of SPSS menu commands can be used to calculate the score on the 32-item 
exam, provided in the SPSS file math4.sav. To begin, we start by selecting 
Transform in the menu bar, and then clicking Compute Variable to obtain 
the following window:

We must first put the name of the raw score in the Target Variable box, indi-
cated by the red arrow. Subsequently, we have to select the items to be used in 
calculating the raw score, separated by +, in the Numeric Expression box. We 
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do this by clicking on each variable individually, and then clicking on , and 
then clicking on . When we are done, the window will appear as below.

It is also possible to calculate the sum score for a set of ordinal (or 
Likert-type) items that may comprise an attitudinal survey in much the 
same way. For this example, we will use the sociability scale from a measure 
of adult temperament administered to 432 college students. The sociabil-
ity scale consists of the following 5 items measured on the 7-point scale: 
1 = Extremely untrue of you; 2 = Quite untrue of you; 3 = Slightly untrue of you; 
4 = Neither true nor false of you; 5 = Slightly true of you; 6 = Quite true of you; and, 
7 = Extremely true of you.

ATS14 = I would not enjoy a job that involves socializing with the public.
ATS19 = I usually like to talk a lot.
ATS37 = I like conversations that include several people.
ATS46 = I rarely enjoy socializing with large groups of people.
ATS67 = I usually like to spend my free time with people.

We would like for higher scores on the sociability scale to indicate that an 
individual enjoys interacting with other people on a regular basis.
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We can use the same basic SPSS command sequence for these Likert 
scale items as we did for the dichotomously scored math test items. How-
ever, before doing this we first need to consider the issue of reverse scoring 
of certain item responses. Remember that we want the sociability score to 
be constructed so that higher scores indicate greater sociability (i.e., the in-
dividual enjoys being with other people). An examination of the five items 
above reveals that ATS14 and ATS46 describe behaviors that are counter 
to those in the other three items. Thus, if a person responds with a 7 to 
ATS14, they are indicating a general lack of enjoyment in a sociable situ-
ation, whereas a response of 7 on ATS19 is indicative of enjoyment in so-
ciable situations. Inspection of the item content indicates that these item 
responses are in reverse order and, consequently, if we sum across the item 
set the responses on items ATS14 and ATS46 will tend to cancel out re-
sponses on other items for most respondents. As such, these items need to 
be reverse coded so that responses of 7 on ATS14/ATS46 are recoded as 1, 
responses of 6 are recoded as 2, and so on. This reverse scoring ensures that 
all of the items provide response patterns in the same general direction on 
sociability, so that a value of 7 for the recoded item response corresponds 
to a very positive attitude toward sociability for ATS14/ATS46, just as it does 
for the other items. If a response of 7 on ATS19 suggests that an individual 
who likes to talk a lot are likely to report a 1 for ATS46 (i.e., not at all 
positive about spending time socializing with large groups of people), then 
reverse coding will change the response for ATS46 to match that of ATS19 
(i.e., very sociable people will now respond with a 7 for both items). This 
shows the importance of being familiar with the items and response options 
to assign accurate scores.

Recoding data in SPSS is a straight-forward process that facilitates the 
process of scoring instruments. One approach to reverse coding involves 
use of the recoding functions under the menu heading Transform. We have 
the choice of recoding the values into the same or different variables. If 
we choose the former, the original data will be overwritten by our reverse 
coded values. This is probably not usually desirable because we may want 
to use the original values at some point. Further, we typically want to retain 
original coding of the data to check our data manipulations for accuracy. 
For these reasons, we will use the Recode into Different Variables option. 
To do this, we use the menu sequence Transform ► Recode Into Different 
Variables to obtain the following window.
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First, we move the two variables we seek to reverse code into the right-hand 
box, which includes variables ATS14 and ATS46.

We then must name the new variable associated with each of the original 
variables. Notably, these are the variable names that will appear in the col-
umns for these new variables in the SPSS dataset. We do this by clicking 
on the original variable (e.g., ATS14) and then type the name of the new 
variable (e.g., ATS14r) in the box under Name. We then click Change. The 
window will then appear as:
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Next, we click Old and New Values… and the following window will appear.

This box is where we specify the recoded values that will fall under the new 
variables in our dataset. We begin by identifying the original data value in 
the box under Value (located on the left-side of the window) and the new 
value in the box next to Value (right-hand side of the window). Once the 
old and new values have been identified, we then click Add, which places 
the values in the Old –> New box. As an example, to transform a 1 to a 7 in 
the recoded variable, the window would look like:
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When all of the recoded values are entered, the table appears as below.

Because we are recoding both variables in the same fashion, we only need 
to go through this set of steps once. If we were recoding the variables dif-
ferently, we would do this work separately for each of the variables. Once 
done, we click Continue and then OK. The data for the first 10 subjects 
appears below, with the recoded variables in the last 2 columns, labeled 
ATS14r and ATS6r.
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To create the raw scores for the sociability scale, we will use the recoded 
variables. Creation of the raw score proceeds in exactly the same fashion as de-
scribed above for the math test, using Transform ► Compute from the menu 
bar, and then summing up the item responses. The window appears below.

The data for the first 10 individuals in the sample appear below, including 
the sociability score in the last column of the dataset.
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Perhaps the first thing we notice about these results is that for observa-
tions 1 and 10, the value of sociability is a “.” (indicating that it is missing 
responses). The reason for this is that these individuals did not respond to 
one or more of the items that comprise the scale. If a respondent leaves 
an item missing, a score on the total scale will not be calculated for that 
individual.

Calculation of Weighted Scores Using SPSS

As discussed, the primary issue when considering the use of weighted scores 
is the source of the weights themselves. In some instances, scale developers 
will have already determined the weights, leaving us merely to apply them 
to our data. For example, imagine that the developer of the sociability scale 
assigned the following weights to the items:

ATS14 = 1.5
ATS19 = 1
ATS37 = 1.5
ATS46 = 0.5
ATS67 = 2

We can apply these weights and create the sociability scale using Trans-
form ► Compute as below:
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In many cases, however, we do not have the weights provided for us. 
Therefore, the question becomes, how do we determine what the weights 
should be if we do not have them predetermined? Perhaps the most com-
mon approach to addressing this issue is with the use of factor analysis. We 
discussed factor analysis in Chapter 5 in the context of scale validity, where 
we used factor analysis to assess the construct validity of a scale. Namely, do 
the items group together in a way that is consistent with what the theory 
underlying the measure would predict? Thus, we were primarily interested 
in determining the number of factors underlying the scale data. Another 
use of factor analysis, however, is in the determination of the relative rela-
tionship of the individual items to the factors. This relative importance is 
expressed in the form of weights that can be applied to the items to create 
a weighted sum score to report test performance.

An in-depth discussion of the theory underlying the estimation of factor 
analysis based weights is beyond the scope of this book. Rather, we will focus 
on using SPSS to obtain these weights, which can then be applied to a set of 
items. The general equation for obtaining these weights using factor analysis is

 = λ−1W Rij  (6.6)
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where

 R = the correlation matrix for the items
	 λ = the factor loading matrix.

It is easiest to consider the use of factor analysis to obtain weights when we 
have only one trait being measured, though it is entirely possible to use it 
for multiple factors at once. In the case of a single factor, Equation 6.6 es-
sentially says that the weights for the individual items are calculated as the 
factor loadings vector divided by the inter-item correlation matrix.

In order to demonstrate the use of factor scores, let’s consider the so-
ciability data. We can obtain the factor scores using the same command 
sequence that we described in Chapter 5 for fitting an exploratory factor 
analysis model to the data. Thus, from the menu we would use the follow-
ing sequence: Analyze ► Dimension Reduction ► Factor, in order to get the 
following window.

We will first move the variables belonging to the scale into the Variables 
window.
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Next, we must select the method of extraction by clicking on Extraction….

In this instance, we will use principal components analysis and request 1 
factor. Next, we will click on Scores…. In this window, we will click the box 
next to Save as variables, so that SPSS will create the factor scores for us 
and include them in the active dataset. If we would like to see the weights 
from Equation 6.6, we can do so by clicking on the box next to Display fac-
tor score coefficient matrix.
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We then click Continue, and then OK. We are not concerned about the rota-
tion in this case, as our primary interest is in the estimation of the weighted 
factor scores.

The factor analysis output will look much as it did in the example in 
Chapter 5. Again, because our primary interest here is in the estimation of 
scores, we will only focus on the weights and the scores themselves. We re-
quested the weights from Equation 6.6, which appear in the following table.

Component Score Coefficient Matrix
Component

1

ATS14r –.306

ATS19 .276

ATS37 .292

ATS46r –.309

ATS67 .338

Extraction Method: Principal 
Component Analysis.

Component Scores.

Notice that the largest weight was associated with ATS67, and the smallest 
weight with ATS19. However, in all cases, the weights are very close to one 
another in value. The scores themselves are placed in the dataset, the first 
10 observations of which appear below.



188  Applied Psychometrics Using SPSS and AMOS

The weighted score from the factor analysis is called FAC1_1.

It is worth taking a moment to examine in more detail precisely what 
SPSS did to obtain the weighted scores contained in FAC1_1. Prior to ap-
plying the weights, each item was converted to a z score using Equation 6.3. 
Then, the weights obtained using principal components analysis, and dis-
played in the table above, were applied to the individual z scores as follows:

= − ∗ + ∗ + ∗ + − ∗

+ ∗

Factor1 0.306 0.276 0.292 0.309

0.338

14 19 37 46

67

z z z z

z

ats r ats ats ats r

ats

Given that the data were first standardized prior to the application of the 
weights, the scale is obviously very different from that of either the raw sum 
scores or the weighted scores based on the raw data. Indeed, the score is 
put on the z scale so that a score of 0 is indicative of average performance. 
In addition, given that the data are standardized, it would be possible to 
turn these weighted values into standard scores such as the T or IQ.

Calculation of Percentiles Using SPSS

Using SPSS, it is possible to directly determine the percentile for each score 
in a sample, using the rank cases function under Transform. As noted in 
Equation 6.2, the percentile is essentially the percent of observations in the 
sample at or below a particular score in the distribution. To demonstrate 
calculating percentile scores in SPSS, let’s return to the 4th grade math test 
data. Prior to obtaining percentile scores, we first need to calculate the raw 
test score, which we then submit to the following SPSS command sequence.
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Transform ► Rank Cases. We will then see the following window.

First, we put the variable (score in this case) for which we want percentiles 
in the Variable(s) box.

We must then click Rank Types… in order to obtain the following window.
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We will unclick the Rank box, and click the Fractional rank as % box.

We then click Continue. The percentiles will be added to the final column 
of our dataset under the name Pscore. Below are the first 5 of these percen-
tiles, along with the raw score.

From these results, we see that an individual with a total score of 9 (out of 
32) is in the 5th percentile, while someone with a score of 23 is in the 64th 
percentile.
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Calculation of Standardized Scores Using SPSS

The standard score is the final type of score that we will consider in this 
chapter. There are a number of commonly used standard scores, as we dis-
cussed above, each characterized by a unique mean and standard deviation. 
Recall that all of these standard scores are based upon first converting the 
raw score to a z, and then applying Equation 6.4. SPSS will provide us with 
the z values that serve as the basis for the standardized scores described 
above. We can then create whichever standardized score we would like us-
ing the Transform ► Compute Variable sequence described above. As an ex-
ample, let’s calculate the T score values for the 4th grade testing data which, 
to recall, have a mean of 50 and a standard deviation of 10. First, we will 
obtain the z score using the following command sequence Analyze ► De-
scriptive Statistics ► Descriptives in order to obtain the following window.

We would place the variable(s) that we would like to be standardized 
(score) into the Variable(s) box, and then click the Save standardized val-
ues as variables box.
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The z value for the raw score is saved under the name Zscore in the data file. 
In order to create the T score, we would then use the Transform ► Compute 
Variable menu sequence, which we used earlier to calculate the raw score. 
We will call the new variable T_score, and create it as in the window below:

We then click OK and the T values will appear in the last column in the 
dataset.
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The resulting standardized scores, along with the raw score, the per-
centile, and z appear below for the first 10 observations.

Given that the mean of the T score is 50, we can see that examinees 1, 3, 5, 
7, and 9 all had scores below average, while examinees 2, 4, 6, 8, and 10 had 
scores above the mean.

Chapter Summary

In this chapter, we have learned about a number of different methods for 
scoring performance on psychological and educational assessments, and 
how to obtain these scores using SPSS. The range of possible scores can be 
quite daunting, and each has its own particular strengths and weaknesses. 
For example, while raw scores are easy to calculate and familiar, they can 
be difficult to interpret out of the particular context in which the measure-
ment was taken. Percentiles provide a more useful interpretation, particularly 
when primary interest is in determining how an individual score compares 
to those of the entire sample. On the other hand, percentiles are not easy 
to use with other statistical methods, and they do not have an equidistant 
scale. Standard scores have proven to be very useful and popular in a vari-
ety of contexts. In particular, they provide a ready context for interpretation 
because they have a known mean and standard deviation, which allows for 
comparison across time and instruments (as long as the mean and standard 
deviation are the same). Several standard scores (e.g., IQ, T), are routinely 
used in testing and assessment so that users are generally familiar with them. 
Finally, standard scores have the advantage of being useful in conjunction 
with other statistical analyses, unlike percentiles. In the final analysis, the de-
cision regarding which type of score(s) are to be used depends in large part 
on the purpose behind the assessment. The test user must carefully consider 
how the scores will be used and then make a decision regarding which will 



194  Applied Psychometrics Using SPSS and AMOS

provide the information that is called for in their application. If a response 
of 7 on ATS19 suggests that an individual who likes to talk a lot are likely to 
report a 1 for ATS46 (i.e., not at all positive about spending time socializing 
with large groups of people), then reverse coding will change the response 
for ATS46 to match that of ATS19 (i.e., very sociable people will now respond 
with a 7 for both items).
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7
Differential Item Functioning

Introduction

The focus of this chapter is on the detection of differential item function-
ing (DIF), a key component in the process of instrument development and 
validation. Based on the implications of test score use across diverse settings 
(e.g., educational, vocational) and populations (e.g., students, patients), 
it is vital that the intended trait is measured correctly, and that the scale 
scores are not contaminated with undue bias (e.g., systematic error). Test 
scores, for example, are used in large-scale standardized testing programs 
to make decisions about individual students, as well as schools and school 
districts. For such scores to be appropriate and meaningful, they must be 
valid for the use in which they were designed (Linn, 2009). In turn, for such 
validity to exist, the employed assessment tools must produce comparable 
scores for individuals regardless of subgroup membership (e.g., sex, lan-
guage spoken in the home). If this equivalence of measurement does not 
exist, the scores resulting from the instruments may carry different mean-
ing for individuals from different groups, thereby compromising their va-
lidity, and introducing potential unfairness into decisions in which these 
scores play a role.
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To ensure the equivalent meaning of test scores across diverse groups, 
researchers and instrument developers are encouraged to investigate the 
potential presence of DIF in scale items (Wu, Li, & Zumbo, 2007). DIF 
refers to the case where individuals from different population subgroups, 
who are matched on the trait being measured by the scale, have different 
probabilities of obtaining a particular item response (Camilli & Shepard, 
1994). In the context of a mathematics achievement test, for example, DIF 
would occur if males and females who are matched on mathematics abil-
ity have different probabilities of getting a dichotomously scored (i.e., cor-
rect/incorrect) item correct. For an anxiety assessment comprised of items 
rated on a Likert Scale (e.g., 1 = Strongly Disagree to 5 = Strongly Agree), DIF 
would be present if males and females matched on anxiety had differing 
probabilities of providing a particular response category (e.g., 4 = Agree). 
While these two examples involve gender, DIF can result from such item 
response differences for any subgroups that exist in the population, in-
cluding, among others: language spoken in the home, race/ethnicity, and 
opportunity to learn. Further, while such subgroups are often defined in 
terms of examinee demographics for DIF analysis, comparisons can be 
made across any salient features of a particular population, such as across 
teacher groups that differ in terms of students in their classroom, or treat-
ment groups exposed to different interventions. Our presentation of DIF 
analysis will begin with the application of procedures to detect differential 
item performance on dichotomously scored items (e.g., multiple-choice). 
Subsequently, we present DIF detection procedures for polytomous, or 
Likert type, items, such as those designed to measure psychological traits 
(e.g., personality).

Traditionally, an item has been characterized as displaying two types 
of DIF: uniform and nonuniform. In the context of academic achievement 
testing, uniform DIF refers to the case where the probability of a correct 
item response between two matched groups differs consistently across the 
entire range of ability (e.g., reading ability). Figure 7.1 provides a visual 
representation of uniform DIF using the item characteristic curves (ICC) 
that report the probability of a correct item response on a dichotomously 
scored item across two distinct groups.
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Figure 7.1 ICCs for uniform DIF between two groups.

As introduced in a previous chapter, the ICC serves to provide a graphi-
cal representation of the probability of an item endorsement (e.g., a correct 
response) as a function of the measured latent trait. This figure provides 
the ICCs reporting the probability of a correct response for two groups: 
Group 1 and Group 2. As shown, at any point along the latent trait axis (x), 
Group 1 has a higher probability of a correct item response than Group 2. 
Furthermore, this difference is consistent across the ability axis (i.e., Group 
1 always has the higher likelihood of a correct response). Thus, we can con-
clude that this item displays uniform DIF.

Figure 7.2 illustrates the ICCs for an item displaying nonuniform DIF. 
As shown, the difference in the ICCs for two groups is not consistent across 
the latent trait continuum. Instead, as is the case of nonuniform DIF, the 
probability of a correct item response differs according to the groups’ 
standing on the latent trait. Specifically, in this example, Group 1 has a 
lower probability of answering the item correctly for ability values below 
–1.0 and, alternatively, a higher probability of a correct item response than 
Group 2 when their trait standings is above –1.0.
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Figure 7.2 ICCs for nonuniform DIF between two groups.

While DIF is often described in terms of differences in item response 
probabilities, it can also be thought of as a difference in IRT model parame-
ters between the groups (Raju, 1988). Recall from the previous chapter that 
we can represent the probability of a particular item response as a function 
of the latent trait of the individual being measured, in conjunction with the 
item properties of difficulty (b) and discrimination (a). In some cases, we 
can also consider the pseudo-chance (c) parameter when it is likely that a 
correct item response can be attributed to guessing, such as with multiple-
choice items. Uniform DIF, then, can be thought of as a difference in item 
difficulty or b-DIF. In other words, if separate IRT models were estimated 
for each group, b-DIF would be present if there was a significant differ-
ence in the b parameter estimates between the groups. Similarly, nonuni-
form (a-DIF) occurs when the item discrimination parameter values (a) are 
significantly different between the groups. Although there has been some 
investigation of DIF with respect to the pseudo-chance parameter (c-DIF), 
results have heretofore not identified an effective tool for the identifying 
such. However, research has demonstrated that the presence of such DIF 
does create problems in terms of estimation of other item parameter values 
(Finch & French, 2011). Because there are not currently effective means 
for identifying the presence of c-DIF, it will not be discussed here further.
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DIF Versus Impact

Prior to describing a number of the available statistical tools for DIF assess-
ment and their realization using SPSS, we need to take just a moment to de-
scribe the concept of impact and its distinction from DIF in educational and 
psychological assessment. Impact refers to differences in item performance 
between two groups that can be attributed to a disparity in the amount 
of the latent trait being measured (Clauser & Mazor, 1998). For example, 
if we were interested in comparing performance on items measuring ex-
aminees’ ability to correctly multiply fractions, we would expect different 
performances between a group of students who have received instruction 
in fraction multiplication to students who have received no instruction. In 
this instance, differential performance on items assessing fraction multi-
plication would be expected due to group differences on instructional ex-
posure to multiplication of fractions. Thus, a difference in the probability 
of a correct response between the groups would be indicative of impact, 
not DIF. On the other hand, we would not expect to see any differences in 
the performance on the fraction multiplication item between members of 
different race/ethnic groups (matched on ability) who received instruc-
tion on fraction multiplication in the same classroom. If differential item 
performance was observed, after matching compared racial/ethnic groups 
on ability, we would say that the item displayed DIF. As such, the differen-
tiating factor between item impact and DIF is the matching of individuals 
on the latent trait of interest. To state with some confidence that an item 
exhibits DIF, individuals in the sample must be matched on the latent trait 
(e.g., self-efficacy, mathematics ability). However, as shown, this matching 
of individuals is not a trivial matter.

Mantel–Haenszel Test

One of the more popular and enduring methods for DIF detection is the 
Mantel–Haenszel chi-square test (MH; Mantel & Haenszel, 1959). MH was 
first applied to the problem of investigating the presence of uniform DIF 
by Holland and Thayer (1988), and has subsequently been used in a wide 
variety of applications for DIF detection. When the MH procedure is ap-
plied to the case where there are two groups of interest, they are commonly 
referred to as the reference and focal groups. These designations are ar-
bitrary, though quite often the focal group is taken to be the one of most 
interest, while the reference group represents the majority group (Camilli 
& Sheperd, 1994). Again, however, these group designations are arbitrary. 
The MHχ2 is calculated as
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The value Aj is the number of individuals in the reference group with a test 
score of j who answer the item correctly. E(Aj ) is the expected number at 
score j who answer the item correctly, and is calculated as
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where m1j is the number of examinees answering the item correctly with 
test score j, nRj is the number of reference group examinees with test score 
j, and n++j is the number of all examinees with test score j. The variance of 
Aj is calculated as
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where terms are as defined for Equation 7.2, nF j is the number of focal 
group examinees at score j, and m0j represent the number of incorrect re-
sponses at score j. The score on the test, S, serves as the proxy for the latent 
trait being measured. The null hypothesis tested by the MHχ2 is 
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(i.e., the odds that a member of the reference group at score j will get the 
item correct is equal to the odds of a member of the focal group at score j 
also getting the item correct).

In addition to the hypothesis test for DIF, the MH procedure also yields 
a very useful measure of effect size, in the form of the odds ratio:
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The term Aj has already been defined as the number of reference group 
examinees answering the item correctly. In addition, Dj is the number in 
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the reference group answering the item incorrectly, Bj is the number of fo-
cal group examinees answering the item incorrectly, and Cj is the number 
of focal group examinees answering the item correctly. Values of αMH be-
tween 0 and 1 indicate that the item favors the focal group, whereas values 
exceeding 1 indicate that the item favors the reference group. While statis-
tically this odds ratio is perfectly reasonable, Holland and Thayer (1988) 
suggested that the log of αMH might be a more interpretable measure of the 
DIF effect, as it is symmetric about 0 so that negative values mean that the 
item favors the focal group and positive values mean that the item favors 
the reference group.

The Educational Testing Service (ETS) subsequently recommended an 
adjustment to this statistic that they referred to as D, or delta. This DETS is cal-
culated as –2.35lnαMH. Rescaling the odds ratio ensures that values between 
negative infinity and 0 indicate that the item favors the reference group, 
while values from 0 to positive infinity indicate the item favors the focal 
group. Furthermore, this statistic is on the ETS delta item difficulty scale. 
Thus, a DETS value of –0.5 means that the item is 0.5 delta scale units more 
difficult for the focal group than for the reference. ETS uses the DETS as an 
effect size measure which, in conjunction with hypothesis test results for 
MHχ2, serves to define when an item exhibits DIF, as well as the magnitude 
of DIF. Using this rubric, DIF is divided into 3 categories: A, B, and C. A DIF 
is defined as occurring when MHχ2 is not statistically significant (a = 0.05), 
or when DETS is less than 1 in absolute value. An item has B DIF if MHχ2 is 
statistically significant, and DETS is greater than or equal to 1.0, but less than 
1.5. Finally, an item exhibits C DIF when MHχ2 is statistically significant, 
and DETS is greater than 1.5. A more detailed discussion of these rules and 
their origination can be found in Zwick (2012).

The MH method can also be used to test for the presence of DIF with 
polytomous items using the Generalized MHχ2, which takes the form:
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Here, index J represents the score on the matching subtest, while T rep-
resents the response to the polytomous item, and R refers to the refer-
ence group. As with the MH procedure for dichotomous items, an effect 
size measure for the polytomous case, the standardized mean difference 
(SMD), has also been recommended for use when determining whether 
DIF is present. The SMD is calculated as
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where all terms are as defined above, and F refers to the focal group. The 
MH effect size for polytomous items is the SMD divided by the pooled 
within-group standard deviation of the studied item. The National Center 
for Educational Statistics (NCES) has developed a heuristic for interpret-
ing the degree of DIF present in a polytomous items that is analogous to 
the system used for dichotomous data (NCES, 2001). A polytomous item is 
classified as having the lowest level, or A DIF when MHχ2 is not statistically 
significant, and/or the absolute value of SMD is less than or equal to 0.17. 
The item exhibits BB DIF if MHχ2 is statistically significant, and SMD lies 
between 0.17 and 0.25. A designation of CC DIF corresponds to a statisti-
cally significant MHχ2 and SMD greater than 0.25 (Michaelides, 2008).

Clearly, a key component of correctly applying the MHχ2 to DIF detec-
tion is the calculation of the matching test score, S. As mentioned above, 
this score is used as the proxy for the latent trait being measured and serves 
as the metric upon which examinees in the reference and focal groups are 
matched with one another on ability. As such, the determination of what 
exactly constitutes the matching score is extremely important. There are 
two primary issues in this regard that the researcher must take into consid-
eration when calculating S. First, the matching score should be free of the 
influences of DIF. Such a purified scale should consist only of items that are 
known not to contain DIF. Second is the issue of thick versus thin matching, 
or said another way, how wide should the score categories be? We address 
both concerns in this chapter.

Much research has been conducted investigating the impact of using 
a matching subtest score that includes items with DIF (Clauser, Mazor, & 
Hambleton, 1993; Colvin & Randall, 2011; French & Maller, 2007). In gen-
eral, these studies all recommend the need to purify the scale by identifying 
items with DIF and removing them prior to calculating the final version of 
S to be used in calculating MHχ2. Some other results (Zwick, 2012) suggest 
that if, across items, there is equivalent DIF between the reference and focal 
groups (balanced DIF), then item purification may lead to slightly worse 
performance than would using the purified scale. On the other hand, if 
DIF consistently favors one group over the other (unbalanced DIF), item 
purification is necessary. In the final analysis, Zwick recommended that re-
searchers use item purification in most instances, as it will not be known a 
priori whether DIF is balanced or unbalanced, and purification does not 
lead to serious degradation in performance, even in the balanced case. 
Item purification is a straightforward process in which the total test score, 
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S, is used as the matching criterion in the initial step. Each item is tested for 
DIF in turn, and those items identified as containing DIF are removed from 
calculation of S. This purified matching score is then used in a reanalysis of 
DIF using MHχ2.

In addition to purification, a second important issue in the calculation 
of the matching score is whether it should be based on the total score of the 
instrument (i.e., thin matching, or whether it should involve the combina-
tion of several of these scores in a type of thick matching). Donoghue and 
Allen (1993) conducted a study comparing the performance of thin and 
several thick matching methods, and found that particularly for very short 
instruments (10 or fewer items), thick matching of some type provides 
more accurate DIF detection results compared to thin matching. On the 
other hand, with tests of 40 items thin matching provided more accurate 
results, particularly as sample size increased. With respect to the optimal 
type of thick matching to be used, overall the results of their study dem-
onstrated that no one approach was uniformly best. However, they showed 
that an equal interval method, in which pairs of adjacent test scores are 
combined (e.g., 0 and 1, 2 and 3, etc.) often performed well. Therefore, 
given its relatively positive performance, coupled with its ease of use, it is 
the method that we would recommend. A final caveat regarding the use of 
thick matching must be made, however. Clauser, Mazor, and Hambleton 
(1993) reported that when the reference and focal groups have differing 
levels of the trait being measured, the use of thick matching will exacerbate 
an already problematic tendency of the MH procedure to identify the pres-
ence of DIF too often when it is not in fact present. It is therefore very im-
portant for researchers to first examine the data for the possibility of such 
group differences prior to conducting any DIF analysis.

Logistic Regression

While the MH technique for investigating DIF has been shown to be useful, 
particularly with small sample sizes (Roussos & Stout, 1996), its effectiveness 
is largely limited to the case of uniform DIF assessment (Rogers & Swam-
inathan, 1993). An alternative approach for assessing both uniform and 
nonuniform DIF involves the logistic regression (LR) model. Swaminathan 
and Rogers (1990) demonstrated the utility of LR for assessing uniform 
DIF, and Narayanan and Swaminathan (1996) showed that it was also an 
effective tool for nonuniform DIF testing. Zumbo (1999) expanded upon 
the discussion of employing LR for DIF assessment, and introduced the 
use of effect sizes in conjunction with significance testing in order to better 
describe the magnitude of DIF (Thomas & Zumbo, 1996). Finally, Jodoin 
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and Gierl (2001) refined the effect size guidelines described by Zumbo and 
Thomas. Following is a summary of this methodology, combining the find-
ings and recommendations provided by these authors.

The LR model for DIF detection as given by Swaminathan and Rogers 
is generally expressed as
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1

0 1 2 3

0 1 2 3
p y g

e
e

i

g g

g g . (7.7)

The probability of an individual correctly responding to the item, given 
the group (g) to which they belong (e.g., reference), and their ability (θ), 
is a function of the logistic equation where β1 is the coefficient measuring 
the impact of ability level, β2 is the coefficient associated with group mem-
bership, and β3 is the coefficient associated with the interaction of group 
and ability. More specifically in the context of DIF, β2 assesses uniform DIF, 
and β3 assesses nonuniform DIF. Typically, as with MH, ability on the mea-
sured trait is represented by the total test score (excluding the target item). 
Group membership is usually identified as 0/1 or 1/2. If there are more 
than 2 groups, then rules for dummy coding these would need to be fol-
lowed (see Agresti, 2002).

The examination of items for DIF with LR is a process of comparing 
three models for each item and testing the improvement in fit for these 
models as terms are eliminated in a stepwise fashion. The full model (Equa-
tion 7.7) is compared to a reduced model (R1) that lacks β3θg. The second 
reduced model (R 2) only contains  β0 + β1θ. These three models are com-
pared through a loglikelihood ratio difference test, using the –2 (loglikeli-
hood) statistics. For example, R 1 is compared to the full model resulting 
in a 1 degree of freedom test of the interaction of group membership and 
ability, which is equivalent to testing for nonuniform DIF. Therefore, a sig-
nificant difference in fit between the two models means that nonuniform 
DIF is present (i.e., the item discrimination parameters of the two groups 
are different from one another). To test for uniform DIF, R 1 is compared 
to R 2, also resulting in a 1 degree of freedom test. If this test is statistically 
significant, then we would conclude that there is uniform DIF, or that the 
item difficulty parameters of the two groups differ. If the researcher is in-
terested only in determining whether DIF is present, and not in the type of 
DIF, the full model can be compared to R 2 with a 2 degree of freedom test. 
The single degree-of-freedom change statistic evaluates the significance 
of the difference in two models, where the only difference in parameter-
ization is the inclusion or exclusion of the term of interest. Thus, the hy-
pothesis tests outlined above serve to test the significance of the excluded 



Differential Item Functioning    205

parameters (Camilli & Shepard, 1994; Zumbo, 1999). Collectively, the null 
hypotheses of these tests are that there are no significant differences in 
the fit of the compared statistical models with and without the term in the 
model. A significant result means that we reject the null, and conclude that 
inclusion of the term is important, thereby indicating the presence of DIF.

The effect size most commonly associated with LR is the D
2R  statistic, 

which is calculated as

 = −D
2

1
2

2
2R R R . (7.8)

As in ordinary least squares (OLS) regression, R 2 in LR is a measure of the 
variation in the outcome variable (item response in this case) associated 
with the model. Thus, 2RF  is the variance in an item response associated 
with the full model containing the estimate of the ability being measured, 
the group membership, and the interaction of the two variables. Similarly, 

1
2R  measures the variance explained by the model containing only the trait 

being measured and the group membership. The difference in these two 
values is a measure of the improvement in model fit when the interaction 
of group and ability is included in the model.

Zumbo and Thomas (1996) recommend the following guidelines for 
interpreting D

2R  in the context of DIF: values less than 0.13 constitute neg-
ligible DIF, values between 0.13 and 0.26 (with statistically significant hy-
pothesis test) constitute moderate DIF, and values greater than 0.26 (with 
statistically significant hypothesis test) constitute large DIF. These values 
were based on earlier work by Cohen (1992) in the development of effect 
size interpretation guidelines. Subsequently, Jodoin and Gierl (2001) de-
veloped a separate set of recommendations for interpreting D

2R  based upon 
an equating study, comparing it to the well-known SIBTEST effect size, β̂U  . 
Their recommendations were: values less than 0.035 for negligible DIF, 
0.035 to 0.07 for moderate DIF, and larger than 0.07 for large DIF. In addi-
tion, in order for moderate or large DIF to be present, the hypothesis test 
comparing the models must also be statistically significant. In the examples 
below, we will utilize both sets of effect size guidelines.

As was true with MH, LR can also be used with polytomous item re-
sponse data. The most common approach for working with ordinal data 
in LR is the cumulative logits model, which appears in Equation 7.9. The 
cumulative logit is expressed as:

 [ ]≤ = ≤
− ≤









logit ( ) ln
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P Y j
P Y j

P Y j
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More specifically, there are J – 1 logits where J is the number of item re-
sponse categories, and Y is the actual item response. Essentially this mod-
el compares the likelihood of the outcome variable taking a value of j or 
lower, versus outcomes larger than j. For example, if an item has 5 possible 
categories of response there would be 4 separate logits.
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In the cumulative logits model, there is a single slope relating the indepen-
dent variable to the ordinal response, and each logit has a unique intercept. 
For a single slope to hold across all logits we must make the proportional 
odds assumption, which essentially states that this slope is identical across 
the logits. In other respects, using LR for DIF detection with ordinal items 
is essentially the same as LR for dichotomous DIF detection.

Examples

To demonstrate DIF analysis using SPSS, we will consider two examples, one 
focusing on DIF detection for dichotomous item responses (e.g., correct/
incorrect), and the other on DIF detection for polytomous item responses 
(e.g., Likert Scale). The first example is based on the responses of Grade 5 
students to 28 items on a language assessment. All of the items were scored 
as either correct (1) or incorrect (0), and gender was coded as 1 (Male) or 
2 (Female). For this analysis, males will serve as the reference group. Prior 
to actually running the Mantel–Haenszel analysis, we will need to calculate 
a total test score. To do this, we will use the Compute window, which we 
have seen previously, and which can be obtained with the following menu 
command sequence: Transform ► Compute Variable.
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We will name the sum of item responses score, and then simply add the 
item responses, so that our window appears as below.
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After clicking OK, the score variable will appear in the final column of our 
dataset.

We are now ready to conduct the Mantel–Haenszel test. We will need to 
do so for each of the items individually. The menu command sequence for 
this analysis is Analyze ► Descriptive Statistics ► Crosstabs.
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We can place the item of interest (V1 to begin) in the Row(s) box, and gen-
der in the Column(s) box. This choice is arbitrary, so that we could just as 
easily put gender in Row(s) and the item in Column(s). Score goes in the 
box under Layer 1 of 1. The window then appears as follows:
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Next, we must click Statistics…, in order to obtain the window in which 
we request the Mantel–Haenszel test. We check this box, as in the example 
below, and leave the value 1 in the box indicating what our null hypothesis 
for the test will be.

We can now click Continue and then OK, in order to run the analysis.

SPSS produces several tables when running the Mantel–Haenszel test, 
but we will only focus on those that are pertinent to the determination of 
whether uniform DIF is present. First, we examine the test of the null hy-
pothesis of no DIF.

The Mantel–Haenszel test statistic is 4.241 (p = 0.039), resulting in the deci-
sion to reject the null hypothesis that the odds ratio is 1. Thus, we conclude 
that there is a relationship between gender and the item response, after 
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matching on the total test score. Next, we will refer to the odds ratio and 
the log of the odds ratio.

Here the odds ratio is 1.152, with a 95% confidence interval of 1.009 to 
1.314. The log odds ratio is 0.141, with a 95% confidence interval of 0.009 
to 0.273. We can calculate the ETS Δ as –2.35*0.141 = –0.331. Recall from 
our earlier discussion of Δ that a negative value indicates an item that is 
more difficult for the focal group (females in this case). In addition, based 
on the ETS guidelines for interpreting the value of Δ we would conclude 
that there is a DIF present, because although we have a statistically signifi-
cant test, the value of ETS Δ is less than 1. In other words, we can conclude 
that DIF is not a problem for Item 1. Finally, we can calculate the 95% con-
fidence interval for ETS Δ as –2.35 * 0.009 and –2.35 * 0.273, which yields 
an interval between –0.021 and –0.745.

It is important to consider two issues more closely before we move on 
to DIF assessment with logistic regression. First, the results presented above 
are based on the unpurified scale score. As noted above, there has been a 
great deal of research conducted to examine the impact and effectiveness of 
scale purification. In this case, the researcher would need to conduct a DIF 
analysis for each of the items initially using the total score, as we did here for 
Item 1. Then, a new total score would need to be calculated, removing items 
that were identified as containing DIF in this initial analysis. The Mantel–
Haenszel would then be used again for all of the items, using this new match-
ing score, and once again items that were identified as exhibiting DIF would 
be identified, and removed from yet another scale score value. This iterative 
process would continue until the matching score contained only items that 
were not identified with DIF. Items identified with DIF using this final match-
ing score would then be those that are officially flagged.

The second issue to consider with respect to Mantel–Haenszel is the 
use of the thin or thick matching criterion. In this case, we used the thin 
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criterion in the form of the original total test score containing 29 possible 
values (0 to 28). We could fairly easily create a thick matching score us-
ing the Recode command in SPSS. To do this, we would use the menu se-
quence Transform ► Recode Into Different Variables. We would then recode 
the original variables Score into a new one that we could name thickscore.

We would then click Old and New Values… and obtain the following window.

We can then use the Range option to combine adjacent scores (e.g., 0 and 1) 
and give them a new value (e.g., 1). For the first pair of adjacent scores, we 



Differential Item Functioning    213

would click the radio button next to Range, place 0 in the upper box and 1 
in the lower box, and then type 1 in the box next to Value under New Value.

We would then click Add. And obtain the following:

These steps would be repeated for all adjacent pairs of scores in order to 
obtain the following:
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We then click Continue and OK, and the new variable will appear in the last 
column of our dataset. The Mantel–Haenszel results for Item 1 using the 
thick matching score appear below.
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The results are very similar to those obtained using the original total score. 
As pointed out earlier, however, this may not always be the case.

Logistic Regression Example

If we are interested in investigating both uniform and nonuniform DIF, 
we might consider using LR, which can be done with the following SPSS syn-
tax. This syntax, which was provided in Zumbo (1999), provides all of the 
information that is required for testing both uniform and nonuniform DIF, 
as well as the 2 degree of freedom (df) test of overall DIF. In addition, it also 
provides the information needed to calculate the D

2R  effect size. The syntax 
for dichotomous data appears below. This would be typed directly into a 
SPSS syntax window, which can be obtained through File ► New ► Syntax.

* SPSS SYNTAX written by: .
* Bruno D. Zumbo, PhD .
* Professor of Psychology and Mathematics, .
* University of Northern British Columbia .
* e-mail: zumbob@unbc.ca .
* Instructions .
* Change the filename, currently ‘binary.sav’ to your file name .
* Change ‘item’, ‘total’, and ‘grp’, to the corresponding variables 
* in your file.
* Run this entire syntax command file.

GET
FILE=’lang5dif.sav’.
EXECUTE .
compute item= V1.
compute total= score.
compute grp= gender.
* 2 df Chi-squared test and R-squared for the DIF (note that this
* is a simultaneous test .
* of uniform and non-uniform DIF).
LOGISTIC REGRESSION VAR=item
/METHOD=ENTER total /METHOD=ENTER grp grp*total
/CONTRAST (grp)=Indicator
/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5) .
execute.

* 1 df Chi-squared test and R-squared for uniform DIF.
* This is particularly useful if one wants to determine the 
* incremental R-squared .
* attributed to the uniform DIF.
LOGISTIC REGRESSION VAR=item
/METHOD=ENTER total /METHOD=ENTER grp
/CONTRAST (grp)=Indicator
/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5) .
execute.
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Dr. Zumbo provides excellent comments embedded in the syntax re-
garding its use, so we will not repeat those here. We would note that we 
did include the name of the target item of interest (V1), the scale score 
(score), and the grouping variable (gender), along with the name of the 
data file containing these (lang5dif.sav), in the first 6 lines of the actual 
syntax. Lines beginning with * are commented out, and will not be run by 
SPSS, but instead are for the users of the code. In order to actually run this 
analysis, we simply select Run ► All from the top of the syntax window. The 
resulting output appears in the SPSS output window, and we will only refer 
to the portions of this output that are relevant for DIF assessment.

We first need to examine the Chi-square value for the model contain-
ing only the total score, which is contained in the first set of output to ap-
pear. The Chi-square value for the model with only score as a predictor of 
the item response is 1447.492.

In order to test for any DIF at all, we would calculate the difference in Chi-
square values for this model, with the model containing both the main ef-
fect for gender and the interaction of gender and score.

This test is actually provided to us by SPSS in the line labeled Block, for 
which the 2 df Chi-square is 4.683. This is equivalent to the difference 
between the Chi-square for the full model, 1452.175, and the score only 
model. The p-value (0.096) is also provided here, and is not statistically 
significant at α = 0.05. Thus, we would conclude that the model containing 
score, group, and the interaction of score by group does not yield statisti-
cally significantly better fit than the model containing only score. In other 
words, it would appear that no DIF is present for this item. We can also ex-
amine the effect size for DIF by calculating = −D

2
Full Model
2

Score Model
2R R R . These 

values appear in the tables displayed below.
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In this case, = − = − =D 0.292 0.291 0.0012
Full Model
2

Score Model
2R R R . This value in-

dicates negligible overall DIF, based on the commonly used guidelines dis-
cussed previously.

The set of LR results presented above tested for the presence of overall 
DIF. It is also possible to assess whether only uniform DIF is present. This 
was done using the second set of SPSS syntax in the code presented above. 
In that instance, the initial model contained only the total test score as an 
independent variable, whereas the second model included both score and 
group, but not the interaction. The resulting Chi-square tables produced 
by SPSS appear below.

The 1 df test comparing the models appears in the second table, with a value 
of 4.656, and p = 0.031. This result is statistically significant, indicating that 
after conditioning on the total score there was a significant relationship be-
tween gender and performance on the item. This result might seem counter-
intuitive given the non-significant result for the test of overall DIF. However, 
it is important to recall that this overall test has 2 df, and is assessing the 
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combined effect of group and the interaction. Thus, if one of the model 
terms (e.g., the interaction) is not at all associated with performance on the 
item, then the reduction in model error obtained by including it may not 
outweigh the additional degree of freedom imposed when adding a second 
model term. That certainly seems to be the case here. Finally, we can calcu-
late the D

2R  value as before, using information from the following tables.

Thus, = − = − =D 0.292 0.291 0.0012
Full Model
2

Score Model
2R R R , indicating that though 

statistically significant, the actual effect size associated with uniform DIF was 
negligible, based on the previously described interpretive guidelines.

Finally, it is possible to directly test for uniform and nonuniform DIF 
separately using the SPSS code that appears below.

LOGISTIC REGRESSION VAR=item
/METHOD=ENTER total /METHOD=ENTER grp /METHOD=ENTER grp*total
/CONTRAST (grp)=Indicator
/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5) .
execute.

In this case, we have three METHOD=ENTER statements, one including only 
the (matching) score (total), the second including group (grp), and the 
third including the interaction (grp*total). The second METHOD=ENTER 
statement tests for uniform DIF only, and the third provides a test of non-
uniform DIF. This is an alternative approach to the initial approach for as-
sessing DIF that was presented above. In this instance, rather than assessing 
both types of DIF simultaneously, we test for each separately. The relevant 
tables from SPSS appear below.



Differential Item Functioning    219

Based on these tables, we would conclude that there is a statistically sig-
nificant test for uniform DIF (p = 0.031), but not for nonuniform DIF 
(p = 0.869). Using the following tables, we can calculate the D

2R  values for 
each type of DIF.

As we determined before, D
2R  for uniform DIF was (0.292 – 0.291 = 0.001), and 

for nonuniform DIF it was (0.292 – 0.292 = 0.000). Thus, in both instances, we 
would conclude that the item displays only negligible uniform DIF. To assess 
DIF for the other items, we would simply repeat these steps. In addition, scale 
purification would be conducted just as was the case with Mantel–Haenszel, in 
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which items would be tested and the matching scale score would be recalcu-
lated iteratively until it contained no items that exhibited DIF.

As discussed above, the MH and LR approaches can also be used to 
investigate the presence of DIF for polytomous items. At the time of this 
writing, SPSS does not allow for the calculation of the Mantel–Haenszel 
test statistic for variables that have more than two categories, except for 
the matching score. Therefore, we would recommend that the researcher 
interested in conducting DIF for an item with more than 2 categories (or 
a grouping variable with more than 2 groups), consider using an alterna-
tive to SPSS, such as SAS or R. It is possible, however, to investigate DIF 
for polytomous items in SPSS using LR. To demonstrate how this is done 
with SPSS, we will use a set of data including twelve items that constitute a 
scale measuring academic motivation (i.e., the motivation to succeed in ac-
ademic endeavors). The items are coded as 1, 2, and 3, where lower values 
indicate lower motivation to succeed. For this example, we are interested 
in determining whether there exists any uniform DIF based on gender for 
any of the items, from a sample of 432 university students who completed 
the instrument. Prior to conducting LR, we will need to create a total score, 
which is the sum of the 12 motivation items, using Transform ► Compute, 
just as we did for the dichotomous items.
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In order to use LR for identifying DIF with ordinal items, we can use the 
following SPSS macro, named DIFLRT, by opening it in the SPSS syntax 
editor. We can then run the macro by highlighting it and then selecting 
Run ► Selection from the menu.

DEFINE DIFLRT (!POSITIONAL !TOKENS(1)
/!POSITIONAL !TOKENS(1)
/!POSITIONAL !TOKENS(1)).
DATASET NAME original.
DATASET DECLARE temp.
OMS
/SELECT TABLES
/IF COMMANDS=[‘PLUM’] SUBTYPES=[‘Model Fitting Information’]
/DESTINATION FORMAT=SAV NUMBERED=TableNumber_
OUTFILE=’temp’.
OMS
/SELECT ALL
/IF COMMANDS=[‘PLUM’]
/DESTINATION VIEWER=NO.
PLUM !1 BY !2 WITH !3
/LINK=LOGIT
/LOCATION=!3 
/PRINT=FIT PARAMETER SUMMARY.
PLUM !1 BY !2 WITH !3
/LINK=LOGIT
/LOCATION=!3 !2 
/PRINT=FIT PARAMETER SUMMARY.
PLUM !1 BY !2 WITH !3
/LINK=LOGIT
/LOCATION=!3 !2 !2*!3 
/PRINT=FIT PARAMETER SUMMARY.
OMSEND.
DATASET ACTIVATE temp.
SELECT IF Var1=’Final’.
COMPUTE LRT=ChiSquare-LAG(ChiSquare).
COMPUTE dof=df-LAG(df).
AGGREGATE
/OUTFILE=* MODE=ADDVARIABLES
/LRT_sum=SUM(LRT) 
/dof_sum=SUM(dof).
COMPUTE ChiSquare=MIN(LRT,LRT_sum).
COMPUTE df=MIN(dof,dof_sum).
COMPUTE Sig=SIG.CHISQ(ChiSquare,df).
IF $CASENUM=1 Label_=’Omnibus Test for Any DIF’.
IF $CASENUM=2 Label_=’Test for Uniform DIF’.
IF $CASENUM=3 Label_=’Test for Non-Uniform DIF’.
VARIABLE LABELS Label_ ‘Effect’.
OMS
/SELECT TABLES TEXTS HEADINGS
/IF COMMANDS=[‘Summarize’] SUBTYPES=[‘Case Processing Summary’]
/DESTINATION VIEWER=NO.
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SUMMARIZE
/TABLES=Label_ ChiSquare df Sig
/FORMAT=LIST NOCASENUM NOTOTAL
/TITLE=’Likelihood-Ratio Tests for Differential Item Functioning’
/MISSING=VARIABLE
/CELLS=NONE.
OMSEND.
DATASET ACTIVATE original WINDOW=ASIS. 
DATASET CLOSE temp.
!ENDDEFINE.

We would then type the following line at the bottom of the syntax window, 
highlight it, and then choose Run ► Selection from the menu.

DIFLRT ags1 gender2 score.

Notice that we must provide the name of the item for which we want to 
assess DIF (ags1), the name of the grouping variable (gender2), and the 
name of the matching test (score).

The output produced by the DIFLRT macro appears below.

We are provided with three tests, one for either uniform or nonuni-
form DIF, one for uniform DIF only, and one for nonuniform DIF only. For 
this item, there was no type of DIF found to be present. As with the other 
examples in this chapter, we may want to engage in scale purification by 
iteratively testing items one at a time, and recalculating the matching test 
score until it includes only items that do not exhibit DIF.

Chapter Summary

The purpose of this chapter was to describe DIF, and to present two of 
the most common procedures approaches to DIF detection in the psycho-
metric literature using SPSS: MH and LR. The aim of DIF detection is to 
identify items that show statistical evidence of functioning differently across 
diverse groups (e.g., sex, language spoken in the home) when individuals 
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are matched on the latent trait being measured by the scale. DIF is an unde-
sirable property of scale items that threatens test score validity. As described 
in this chapter and elsewhere (Camilli & Shepard, 1994; Holland & Wainer, 
1993), there are two types of DIF to consider when considering the psy-
chometric properties of items: uniform and nonuniform. Whereas the MH 
detection method is effective for screening items for uniform DIF, it is not 
so for identifying nonuniform DIF. Nonetheless, MH is widely used in large-
scale testing programs to identify potentially biased items. On the other 
hand, LR has been found to be effective in the detection of both types of 
DIF and is widely used in practice. As shown, the methods can be used for 
DIF detection of dichotomous and polytomously scored items.

Importantly, these and other methods only provide statistical evidence 
of the presence of DIF in an item. Thus, they serve as a first step in the 
identification of potentially problematic items. Effect sizes further facilitate 
these statistics in identifying potentially biased items, which can be used to 
quantify the magnitude of DIF in the item parameter under investigation 
(i.e., difficulty, discrimination). Therefore, to aid in the identification of 
DIF, researchers and test developers are encouraged to consider the sta-
tistical significance of the test statistic (e.g., MH) and the corresponding 
effect size. Based on this information, the subsequent step is for the flagged 
item(s) to undergo content review by subject matter experts to determine 
the reasoning for DIF (e.g., language) to guide decisions regarding the 
elimination or modification of the item for applied assessment use. Thus, 
screening an item set for DIF is an important and multilayered process in-
tended to promote an instrument’s test score validity across diverse groups 
(e.g., sex, language spoken in the home). The desired method to use will 
depend on many factors (e.g., item type, sample size) and thus one should 
consult with the extant literature on DIF detection methods and inspection 
of the dataset.
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8
Equating

Introduction

This chapter addresses test equating and demonstrates its application using 
SPSS. The aim of this chapter is to introduce the practice of equating and 
present procedures to conduct an equating study. Upon chapter comple-
tion, the reader should understand the purposes of equating, be familiar 
with common sampling designs, and apply basic statistical techniques to 
equate test scores. Notably, while a powerful and viable option for test score 
equating, we do not describe equating procedures using IRT, due to the 
fact that it is best carried out using specialized software (Du Toit, 2003). 
However, as we will see, SPSS affords a powerful and convenient platform 
for other types of equating. The chapter begins with an overview of the 
tenets of equating, followed by descriptions of commonly used sampling 
designs. Subsequently, three methods of equating that can be conducted 
using SPSS are presented with examples.

Equating is the process of establishing equivalent scores on differ-
ent forms of instruments measuring the same construct (e.g., mathemat-
ics). For example, students taking the Graduate Records Exam (GRE) 
are not administered the same set of test items. Rather, each individual is 
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administered a different sample of items selected from a large pool of items 
maintained in a test bank. Despite taking what is essentially a different test, 
GRE scores for any two individuals are compared with one another by grad-
uate programs making admissions decisions. A natural question is: How can 
these scores be compared when they are based on different sets of items? 
More specifically, despite attempts to ensure that test items are comparable 
in terms of content and difficulty, how can test developers be sure of com-
parable scores? The answer is that equating is used by test developers to 
place the scores from different tests on a common scale so that examinees’ 
test performance on different tests can be compared. Simple raw scores on 
the tests are not comparable due to potential differences in item difficulty, 
including differences in the overall abilities of the test takers. This lack of 
equivalence is the reason that test equating is necessary. Indeed, in virtually 
every large-scale assessment program, some type of equating must occur 
to ensure the comparability of test scores obtained from diverse test forms 
and examinees.

In conducting an equating study there are two major considerations. 
First, the sampling design used for data collection must be determined; sec-
ond, the statistical method used conduct the equating must be selected. We 
address these considerations by first describing the sampling methods com-
monly used in equating studies, and then discuss some of the more common 
statistical equating methods. For each method, we provide the relevant SPSS 
code for reading the data, equating, and producing usable results.

Equating Sampling Designs

When conducting an equating study, the first issue that must be decided is 
how the data will be sampled from examinees. To illustrate, let us assume 
that there are two test forms to be equated: Form 1 and Form 2. Perhaps 
the simplest approach to sampling would be to administer both forms to 
a single group of examinees. To mitigate the impact of fatigue and ensure 
that there is not an interaction between test placement and test perfor-
mance, we could counterbalance the administration of the two test forms so 
that a random half of examinees receives Form 1 followed by Form 2, while 
the other half receives Form 2 followed by Form 1. This counterbalanced 
test administration should ensure that neither examinee fatigue nor in-
creasing familiarity with the exam played a role in the relative performance 
of the sample on the forms. In practice, when exams are administered in 
hard copy format (as opposed to computer administration) examinees are 
administered the exam in a spiraled format, meaning that Examinee 1 re-
ceives the test booklet containing Form 1 followed by Form 2, Examinee 2 
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receives the test booklet containing Form 2 followed by Form 1, Examin-
ee 3 receives the booklet containing Form 1 followed by Form 2, and so on.

This single group sampling method has several notable advantages. 
First, it is a simple and feasible approach to data collection because only 
a single examinee group is required. Second, there is no confounding of 
the examinee group and the test form. Third, it requires a smaller sample 
when compared to equating procedures based on the use of multiple ex-
aminee groups. As to the second point, when a single group of examinees 
completes both test forms in a counterbalanced fashion, any differences in 
performance on the two forms can be attributed to real differences in the 
difficulty of the test, not due to examinee differences.

Despite these advantages, this sampling approach has its own short-
comings. First, the time required to administer the two tests requires twice 
as much time as administering a single test. Correspondingly, it would be 
expected that examinees will experience fatigue, particularly in the pres-
ence of a long test (e.g., 75 items). While counterbalancing should amelio-
rate the impact of overall test fatigue, it may not be sufficient to overcome 
differential order effects that might be inherent in the two forms. Differ-
ential order effects essentially means that the impact of completing Form 2 
after Form 1 is not the same as the impact of taking Form 1 after Form 2. 
In other words, there is an interaction between form and time so that the 
impact of fatigue or practice effects (or both) is different for different test 
forms. Thus, differential order effects can result in unstable equating re-
sults due to the fact that performance on the second test reflects factors 
beyond just abilities that the test seeks to measure.

A second popular sampling approach in equating studies is the ran-
dom groups design. In this approach, a random sample of examinees from 
the population is selected and randomly divided evenly into two groups: 
Group 1, Group 2. Group 1 completes Form 1 and Group 2 completes 
Form 2. This design was suggested to solve the problems of testing fatigue 
and time associated with the single groups approach. Because the examin-
ees are randomly selected from the population and assigned to take one of 
the test forms at random, any differences in test performance is inferred 
to reflect differential form difficulty and not due to group ability differ-
ences on the measured construct (e.g., intelligence, mathematics). While 
this approach has the advantage of not requiring as much time as the single 
group design, the trade-off is the need for a larger sample. Indeed, if the 
researcher has as a goal an examinee sample of 500 for each form, then 
in the random groups design would require a total sample size of 1,000 
examinees. Contrary, only 500 examinees would be required for the single 
groups design described previously.
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The third commonly used approach to sampling in equating studies 
is the common item nonequivalent groups design. In this approach, two 
groups are administered different test forms, with each form containing a 
set of common items. If these items count toward the total score obtained 
on the form, they are called internal items, and are generally interspersed 
throughout the test. On the other hand, when the items do not count to-
ward the total score they are referred to as external items, and are typically 
administered as a separately timed section of the exam. Unlike with the 
random groups design, there is no assumption that the groups in this last 
sampling approach are equivalent in terms of ability. Most often, the groups 
are simply gathered based upon convenience. Therefore, differential per-
formance of the groups on the forms cannot be attributed solely to differ-
ences in examinee ability or to differences in test difficulty. Thus, a prime 
goal of equating with this design is to use the common items to infer how 
much of any difference is due to the examinees and how much to the test it-
self. When using the nonequivalent group common items method, we must 
ensure that the common items cover the same content and have the same 
statistical properties (e.g., difficulty) as the items making up the entire test. 
The number of common items is recommended to be as large as possible in 
order to ensure accuracy of equating (e.g., 20% of total test), and that the 
common items be placed at the same location in both test forms (for the 
internal case), to ensure comparability.

The nonequivalent groups approach has some advantages over the 
previously described methods. First, it allows for the administration of only 
a single test form at any given time. This is most typical of testing programs. 
Contrary, the other approaches require that the two forms be adminis-
tered at the same time to either one or two examinee groups. Second, the 
nonequivalent groups design allows for the items used in equating to be 
treated separately from those used in actually assigning examinees’ scores. 
This issue is important when test developers need to make the actual items 
available to examinees or other stakeholders following the administration 
of the exam.

Despite these advantages, this approach also presents challenges to 
equating studies. First, as shown below, successfully using this sampling ap-
proach in conjunction with the statistical tools for equating requires that 
several assumptions about the data be tenable. When these do not hold, 
equating with this method may not be feasible. Second, when groups dif-
fer substantially in their ability, untangling performance differences due to 
examinee and due to form difficulty differences becomes a great challenge. 
Finally, the use of statistical equating methods with this approach can be 
difficult in some cases for a variety of reasons.
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Each equating design offers its own practical advantages and disadvan-
tages when used with these sampling approaches. In consideration of the 
interaction with the statistical equating methods, the single group design is 
probably the simplest to use. However, as noted above, it has some poten-
tially severe drawbacks that are not shared by the other two methods. The 
random groups method may be the most straight-forward design approach 
to use when it is feasible to obtain two random samples of examinees, be-
cause it is not markedly more different to deal with analytically than the 
single group design (in some instances analysis of the two approaches is 
identical), and it overcomes some of the problems in the latter. However, 
from a practical perspective, this approach can sometimes be problematic 
to conduct in practice. In contrast, while generally the most difficult to 
use statistically, the nonequivalent groups common item design is the most 
practical in many situations. Specifically, relatively fewer examinees are re-
quired compared to the random group’s design, testing at different times is 
allowed, and lengthy test administration is not required.

In the remaining chapter, we describe three statistical methods for equat-
ing scores from two test forms. These include: mean equating, linear equat-
ing, and equipercentile equating. As noted earlier in the chapter, there are 
other equating approaches such as those associated with IRT procedures. 
However, the techniques demonstrated in this chapter are proven to be effec-
tive (see Kolen & Brennan, 2004) and can be conducted using SPSS. We will 
begin with mean equating, the simplest of the designs. Subsequently, linear 
equating is presented, which is slightly more complex, followed by equiper-
centile equating. Each method is demonstrated to show how it can be em-
ployed with each of the previously described sampling designs.

Mean Equating

Mean equating represents perhaps the most straightforward approach to 
equating scores derived from two test forms. To use this approach, we must 
assume that the difficulty in the two test forms, Form A and Form B, is con-
stant (or the same) across the entire score scale. For example, if Form B is 
more difficult than Form A by 3 points at a score of 15, it is also more dif-
ficult by 3 points at a score of 40. For both the single and random groups 
designs, mean equating starts with the equation:

 − = −x x x xA A B B  (8.1)

In Equation 8.1, xA and xB are scores on Forms A and B, respectively, and 
xA  and xB  are means of test Form A and Form B. If we use the single group 
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design, then one set of examinees takes both forms, while in the random 
groups case one group takes Form A and the other Form B. However, the sta-
tistical method is identical for both approaches. To carry out mean equating, 
we solve Equation 8.1 for the score for which we want to equate, in this case xA :

 = − +x x x xA B B A  (8.2)

As a simple numerical example of mean equating, let us assume that two 
random groups of examinees are administered a reading test with a maxi-
mum score of 50. Say that the mean, or average, score on Form A (xA) is 42, 
and on Form B it is (xB ) 44. To obtain the mean equated score for Form A 
given a specific score on Form B, we would simply apply these means to Equa-
tion 8.2, and obtain: = − + = −44 42 2x x xA B B . Thus, for any score on Form B, 
we subtract 2 points to get the equated score on Form A.

To demonstrate mean equating with SPSS, we will refer to an example 
involving the random groups design, and a hypothetical mathematics test 
comprised of 20 items. Say two groups were created by randomly assigning 
1,000 examinees to take test Form A and another 1,000 individuals to take 
test Form B. We are interested in using mean equating to obtain scores 
on Form A for those examinees who took Form B. Data are in a file called 
equating.sav, where each examinee appears on a single line, with their iden-
tification number (id), the form of the test that they were administered, 
and responses to the 20 items (i.e., 0 = Incorrect; 1 = Correct).

Within the dataset forms were coded as 1 (Form A) or 2 (Form B), 
and the total score on the instrument is the sum of these scores. We can 
calculate scores for each of these two test forms (e.g., Form A) using the 
menu sequence Transform ► Compute Variable. Next, we would click If… 
and then see the following window.
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We would then click the radio button next to Include if case satisfies condi-
tion. We would then move the form variable into the window and indicate 
that it should equal 1 (the code for Form A) to be included in the calculation.
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We then click Continue, and move each item, separated by +, into the Nu-
meric Expression window in order to create the formA score. After clicking 
OK, the formA score will be created only for those examinees who were 
actually given that form.

We repeat these steps to create a raw score on Form B, labeled: formB. To 
do so, we will change the if statement to include those for whom form = 2 
(Form B), and change the name of the variable label to formB. If we have 
done this correctly, the first 1,000 examinees should only have scores for 
formA, and missing values for formB. Similarly, the second 1,000 examinees 
should have missing values for formA, and actual scores for formB. Below, we 
see the formA and formB columns for the first 10 individuals in the sample.
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Now that we have the scores calculated for each individual in the sam-
ple, we will next request means for the two forms using the menu sequence: 
Analyze ► Descriptive Statistics ► Descriptives. We will then move the new 
variables formA and formB into the Variable(s) box, as below.

After clicking OK, we obtain the following output. As shown, Form B was 
slightly easier than Form A, given its higher mean score value. Variation in 
the scores was very comparable for the two forms.

Next, we will assign the mean values for each form to each examine, using 
Transform ► Compute. As an example, we see how this window will look for 
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the assignment of formA_mean. Note that we have turned off the If option 
by clicking If…, and then clicking the radio button next to Include all cases.

We will follow the same set of steps for formB, assigning it a value of 8.614. 
The new variables will then appear as follows for the first 10 examinees in 
the dataset.

The actual mean equating of form B to form A is carried out by creating the 
equated FormA for examinees who were administered FormB. This is done 
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by first using the menu sequence Transform ► Compute. We then need to 
click If… and indicate that we will only conduct the calculation for those 
who were given Form 2 (Form B).

After clicking Continue, we compute the equated version of Form A for ex-
aminees administered Form B using Equation 8.2.
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Results for the first 10 examinees who were given Form B appear below.

From these results, we can see that the two examinees obtaining a score of 6 
on Form B have an equated score of 5.66 on Form A, whereas the examinee 
obtaining a score of 4 on Form B had an equated score of 3.66 on Form A. 
These lower results for the equated Form A as compared to Form B reflect 
that the former test is slightly more difficult than the latter.
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Linear Equating

Linear equating is an alternative to mean equating that does not assume the 
differences between forms is constant. In the previous example, we found 
that the mean score for Form A was 0.342 points lower than the mean for 
Form B. As such, when using mean equating, we must implicitly assume 
that this difference holds across all scores. However, this assumption may 
not be tenable. For example, it is possible that Form A is more difficult for 
low and middle achieving examinees but not for high achievers. In that 
case, mean equating would not be optimal because it would not take ac-
count of this differential level of form difficulty. Linear equating solves this 
problem by including not only form means but also form standard devia-
tions in calculating an equated score. In this case, we set the deviations of 
individual scores and means on the two forms, divided by their standard 
deviations equal to one another. The reader will notice that in reality, we 
are simply setting equal the standard (z) scores of the two forms equal to 
one another in Equation 8.3:

 
− = −x x
s
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where all terms are as defined for Equation 8.2, with the addition that sA 
and sB are the sample standard deviations for the two forms. Once again, we 
proceed under the framework of the random groups equating design. To 
conduct linear equating, we must solve Equation 8.3 for the score for which 
we would like to obtain an equated value, in this case xA in terms of xB :
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We will need to include the standard deviations of the forms, along 
with the means. To do this, we simply use the Transform ► Compute menu 
sequence and then input the standard deviations for each form, as we do 
for Form A below. Be sure that you have turned off the selection condition 
in the If… button.
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The final several columns for the first 10 subjects, including the standard 
deviations for the forms, appear below.

The SPSS steps needed to conduct linear equating in the random groups 
design is very similar to that used for the mean equating that was demon-
strated above, and appears below for equating Form B to Form A. Much of 
the method is identical to that for conducting mean equating. The primary 
difference is that we now use the standard deviations of the forms, as well 
as their means.
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Equated results for the first 10 individual cases appears below.

Inspection of these results shows that the equated values for Form A (fA) 
are very similar to those obtained previously using mean equating proce-
dures. The reason for the very similar results is that the standard deviations 
of the two forms are nearly identical. Indeed, when the standard deviations 
are identical, the results from mean equating will exactly equal those from 
linear equating.
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The methodology described above for linear equating applies to the 
random and single groups designs as well. However, in some instances, 
neither of these sampling designs presents a viable approach for the re-
searcher interested in equating. In such cases, it is necessary to rely on the 
nonequivalent groups common items design, in which two non-randomly 
selected groups are included in the study, and each group provides respons-
es to a set of common items that can be used in the equating process. We 
can apply the linear equating methodology to the nonequivalent groups 
design in order to obtain scores on Form A for those examinees who were 
administered Form B.

As an example of linear equating with the nonequivalent groups com-
mon items design, let us consider the dataset that we were working with 
previously. Now, however, we will consider the first 5 items to represent 
the individual forms, and Items 6 through 20 are the common items. Each 
form was administered to independent samples of 1,000 individuals and 
all respondents were also administered the 15 common items. For the pur-
poses of this example, we will assume that Group 1 received Form A and 
Group 2 received Form B. The equation to conduct linear equating to ob-
tain a Form A score for individuals who took Form B for this design is:

 ( )= − +( )x a x c dA B  (8.5)

where

 a = 
+ −
+ −
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( )
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 c = + −( )2 2x b x xB BZ z z

 d = + −( )1 1x b x xA AZ z z

 2sA  = variance of form A
 2sB  = variance of form B
 2sz  = variance of common items score for both groups combined
 1

2sz  = variance of common items for group 1
 2

2sz  = variance of common items for group 2
 xA  = mean of form A
 xB  = mean of form B
 xz  = mean of common items score for both groups combined
 1xz  = mean of common items score for group 1
 2xz  = mean of common items score for group 2
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 1bAZ  = regression slope relating form A score to common items score 
for group 1

 2bAZ  = regression slope relating form A score to common items score 
for group 2

The steps using SPSS to conduct the equating demonstrated in Equa-
tion 8.5 appear below. First, we must calculate the common items (Items 6 
through 20) sum score.

Next, we must calculate scores for Forms A and B (the first 5 items), which 
is done just as in the examples above. Below, we see the computation for 
Form A.
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We will follow the same steps to create the variable FormB.
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Make sure to change the If statement so that it includes only those who were 
given Form B. We will now need to create common items sum scores for 
those who were administered Form A. Note that we use the same commands 
as we did for the overall common score, but that we only include those who 
were administered Form A (form = 1 in the If… section of the window).

We will also calculate a common score for those given Form B.
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Next, we need to obtain descriptive statistics for each of the forms, and the 
common scores for each of the groups. We do this as was demonstrated 
above, Analyze ► Descriptive Statistics ► Descriptives. We then put all of 
the variables of interest in the Variable(s) window, as below.
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The resulting output appears below.

Next, we must conduct regression analyses relating each form score (as 
the dependent variable) to the common item score for individuals who 
were administered that form. Thus, we will first conduct a regression analy-
sis for Form A. This is done using the menu sequence Analyze ► Regres-
sion ► Linear to obtain the following window.

We will then move the FormA score into the Dependent window, and com-
monA score into the Independent(s) window.



246  Applied Psychometrics Using SPSS and AMOS

The results of interest, containing the slope estimates, appear below.

We will follow the same command sequence to obtain the following regres-
sion window and output.
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Next, we will need to add the descriptive statistics and slope estimates to 
the dataset, much as we did above in the random groups equating example. 
Following is an example for including the mean for FormA. The same steps 
will be followed for the other means, standard deviations, and regression 
slopes, which appear in the calculations of the terms in Equation 8.5.
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Next, we need to calculate the terms a, c, and d from Equation 8.5 above. 
The computation for a appears below.
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Similarly, c is calculated as:

The quantity d is calculated as:
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Finally, the equated value of Form A for those who were administered 
Form B is calculated as below.

We will only obtain equated Form A values for individuals who received 
Form B. Below are the values for the first 10 individuals who received 
Form B, along with the values of a, c, and d.

Examinees 1001 and 1002 both scored a 1 on Form B, which would equate 
to a score of 4.05 on Form A.
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Equipercentile Equating

Equipercentile equating is the most complex method of equating consid-
ered in this chapter and requires the fewest assumptions about the data. 
Whereas mean equating assumes that only the mean performance on two 
forms differ, and linear equating assumes that only the mean and standard 
deviation of performance differ, equipercentile equating allows for both of 
these population parameters to differ, as well as the skewness and kurtosis 
of the two forms. In other words, using equipercentile equating, we are im-
plicitly allowing the distributions of two forms to differ from one another. 
This added flexibility does come at a cost, however, as equipercentile equat-
ing is not only more complex than the other two methods, but also typically 
requires a larger sample size in order to work properly (Kolen & Brennan, 
2004). If a sufficiently large sample is available, though, this third approach 
to equating may provide the most accurate results.

Conceptually, equipercentile equating involves finding the percentile 
that a particular score is on one form and equating that score to the score 
on the other form that is at the same percentile. For example, if a score of 
18 on Form B is at the 80th percentile, then to equate this to Form A, we 
simply find the score on this latter form that is also at the 80th percentile. If 
the Form A 80th percentile score is 16, then we conclude that the equated 
value for a Form B score of 18 is 16 on Form A. Equipercentile equating 
can be done in two ways: graphically and analytically. We will first examine 
the graphical approach, and then move to the analytic.

To conduct equipercentile equating graphically, we must first define 
the percentile rank (PR) for each score on each instrument. The PR is the 
percentage of examinees below a particular score, plus ½ of the percentage 
of examinees at that score, which is given in Equation 8.5:

 = − +






( ) 100 ( 1)
( )
2

PR x F x
f x

 . (8.6)

Here, F(x – 1) is the cumulative proportion of the test score 1 point below 
the score of interest. Thus, if our score of interest is 5, then F(x – 1) is the cu-
mulative proportion for a test score of 4 (i.e., the proportion of individuals 
scoring at or below 4). The term f (x) is the proportion of examinees with a 
score of x, our target, so that in the current example f (x) would be the pro-
portion of examinees with a score of 5. To conduct equipercentile equating 
using the graphical approach, we would create a scatterplot with PR on the 
y-axis, test score on the x-axis, and a separate line for each test form.
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An example of the SPSS commands necessary to conduct graphical 
equipercentile equating appears below for the 20 item data that we have 
been working with, heretofore. Note that we first must calculate total scores 
for the forms, as has been the case previously. In this example, we will use 
all 20 items, and calculate the Form A scores as below. Form B scores are 
calculated in exactly the same manner. Be sure that you have selected the 
appropriate group (form = 1 for Form A and form = 2 for Form B) using 
the If button in the Compute Variable window.

Next, we must calculate the percentile ranks for each of the forms. This can 
be done easily in SPSS using the menu command sequence Transform ► 
Rank Cases, which yields the following window.
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We will want to include Form A in the Variable(s) window, and then click 
Rank Types…. Within this window, we will unclick the box next to Rank, and 
click the box next to Fractional rank as % in order to obtain the percentiles.

Next, we click Continue and then OK. This will yield percentiles as in Equa-
tion 8.6. The first 10 lines of the data will now appear as below.
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We will need to follow the same set of steps for Form B. The first 10 observa-
tions for those who were given this form appear below.

Next, we need to summarize the data in terms of how the scores corre-
spond to the percentile values. This can be accomplished using the menu 
sequence Data ► Aggregate. Using this window, we need to calculate the 
mean percentile for each score on Form A. Of course, the same scores on 
Form A will have the same percentile values, so that what we are really do-
ing in this step is to reduce the data to include only the scores and their 
corresponding percentile values. We will save the results in a data set called 
formA_percentiles.
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The results are opened in a new SPSS data file, which appears as below.



256  Applied Psychometrics Using SPSS and AMOS

We will follow the same set of steps in order to create the results for Form B, 
as below.
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Finally, we will need to merge these two files together, which can be done sim-
ply using the menu sequence Data ► Merge Files ► Add Variables. We will do 
this from the formA_percentiles data set. The following window will appear:

We will select the file called Untitled9[formB_percentiles] and click 
Continue. When the following window appears, we can simply click OK.
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The resulting dataset appears below.
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The form scores and percentile ranks can then be plotted on the same scat-
ter plot using the menu sequence Graphs ► Legacy Dialogs ► Line.

We will select Multiple given that we want to plot both sets of percentiles in 
the same graph. We will also click the radio button next to Summaries of 
separate variables (marked with the red arrow) because the two variables to 
be plotted appear in different columns. We then click Define.
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The separate lines are represented by the percentile scores for Forms A 
(PformA_mean) and B (PformB_mean). The category axis should contain 
the scores for the test. Thus, either formA or formB can be placed there. 
Once we have made our selections, we can click OK.
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The resulting graph appears below.
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Form A is represented by the blue line and Form B is represented by 
the green line. To conduct equipercentile equating graphically, we first se-
lect a point on the x-axis, which represents the raw scores on Form A. Let’s 
equate a Form B score of 13 to Form A. We go up from 13 on x to the 
Form B line, which corresponds to a PR of approximately 0.90. We then 
move horizontally left to the Form A line, and then move vertically back 
down to the x-axis, landing on a score of approximately 12. Thus, we would 
conclude that a Form B score of 13 corresponds to a Form A score of ap-
proximately 12. Using the graphical approach to equate a Form B score of 
9, we see that the corresponding Form A score is also 9.

In addition to using the graphical approach to equipercentile equat-
ing, we can also simply examine the percentile values in the data along with 
their corresponding scores for Forms A and B.
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From this table, we can see that there are many percentile values for which 
there are no corresponding raw scores for either test form. How, then, do 
we determine the equated Form A score for an individual who obtained 
a Form B score of 6? A Form B score of 6 corresponds to a PR of 0.25, for 
which there is not a corresponding score on Form A. The most common 
approach to solving this problem is through interpolation (Livingston, 
2004). In examining the table, we see that for Form A a score of 5 has a PR 
of 0.1715, and a score of 6 has a PR of 0.2890. Thus, given that the Form B 
percentile for the target score of 6 (0.25) is between the Form A percen-
tile values of 0.1715 and 0.2890, the equated score on form A for a form B 
score of 6 should lie between 5 and 6. The interpolation equation in this 
case would be

+ −
−

− = + =5
0.25 0.1715
0.289 0.1715

(6 5) 5 0.361(1) 5.361.

Livingston notes that while the interpolation solution to the problem of 
scores not all having corresponding PR values for the two forms is not per-
fect, it does provide useful and very accurate equated values.

With regard to equipercentile equating in the nonequivalent groups 
common items design, there are multiple approaches available. These differ 
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in their relative complexity and in terms of the type of information that is 
required to use them. We have elected to focus on only one of these methods, 
known as chained equating, in large part because it is relatively straight for-
ward to carry out, and is commonly used by professionals in the testing field 
(e.g., Livingston, 2004). However, we do recognize that there are other ap-
proaches available, and that while chained equating has been shown effective 
in many instances, it is not universally the optimal approach for this design. 
Nonetheless, we feel that the approach’s very general utility, coupled with its 
relative ease of use make it a viable equating strategy for most instances in 
which the nonequivalent groups common items equating method is used.

In general, chained equipercentile equating is a relatively simple pro-
cedure. Let’s assume that we want to take a score on Form B and equate it 
to a Form A score. With chained equating, this is attained through a three 
step process.

1. Use the equipercentile method described above to equate scores 
on Form B to scores on the common items scale.

2. Use the equipercentile method to equate scores on the common 
items scale to Form A.

3. Equate Form B to Form A by first converting Form B score to the 
common items scale, and then converting the common items scale 
to Form A.

To demonstrate the use of equipercentile chain equating, let’s consider 
an example in which each of two nonequivalent groups of examinees (800 in 
Group 1 and 838 in Group 2) were administered separate math forms each 
comprised of 15 items. In addition, both groups were administered an ad-
ditional 15 common items that were external to the main forms. We will use 
the chained equipercentile equating methodology to equate Form B scores 
to Form A. As noted above, this occurs in three distinct steps, each of which is 
carried out using the SPSS commands below. First, the data appears as:
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The count variables (count1, count2, and countcommon) provide the 
number of examinees in the sample with each score. In other words, there 
were 10 individuals in Group 1 who had a score of 0 on Form A, as com-
pared to 13 in Group 2 who had a score of 0 on Form B. In addition, there 
were 25 individuals across the two samples who had a score of 0 on the 
common items.

To create the percentile ranks for each of the three scores (Form A, 
Form B, and the common form), we will need to use the weight function 
in SPSS. Let’s consider the example of creating percentiles for Form A. 
To weight the scores by the number of individuals who were administered 
Form A that produced each, we use the menu sequence Data ► Weight 
Cases, and get the following window.
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To weight cases by Form A performance, we click the radio button next to 
Weight cases by, and then move the variable count1 to the Frequency Vari-
able box.

We click OK, and the weighting is turned on. We can now create the percen-
tile scores for Form A just as we did in the examples above with the Trans-
form ► Rank Cases menu commands.

We would follow the same sequence of weighting cases by the appropriate 
form and creating the percentile scores for Form B and the common form. 
The resulting dataset will appear as:
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Note that we changed the names of the percentiles to Pscore1, Pscore2, and 
Pscorecommon to make them easier for us to distinguish.

We can graph the results, much as we did in the previous percentile equat-
ing example, using the menu sequence Graphs ► Legacy Dialogs ► Line.
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The resulting graph appears below.

To demonstrate the actual practice of equipercentile chain equating, 
let’s consider the table of percentile and score values. Assume that we would 
like to obtain the equated Form A score for a score of 3 on Form B. First, 
we must determine the percentile for the Form B score of 3, which is 0.125. 
We then must find the common items score corresponding to a percentile 
of 0.125, which in this case also happens to be 3. Finally, we must equate 
the common items score of 3 to Form A. The common items 3 score cor-
responds to the percentile value of 0.125, for which there is not a Form A 
score. Therefore, we will need to use interpolation, as demonstrated above. 
Note that in this example, the closest Form A score below a percentile of 
0.125 is 2 at a percentile = 0.074, while the next highest score is 3, at percen-
tile = 0.133. The interpolated Form A score would then be calculated as:

+ −
−

− = + =3
0.125 0.074
0.133 0.074

(3 2) 2 0.864(1) 2.864 .

Using chained equating, we see that a Form B score of 3 equates to a Form A 
score of 2.864.



Equating    271

With SPSS we can also create the scatterplot linking scores to percen-
tiles. Thus, if we want to equate a Form B score of 6 to Form A graphically, 
we would simply find 6 on the x-axis, go directly vertical until we reach the 
line for Form C (common items score). We would then move directly hori-
zontal until we again reach the line for Form B, and then move vertically 
down to the x-axis. This will take us to approximately 6.75. We would then 
move up vertically from this point until we reach the line for Form A, after 
which we move horizontally until we again reach the line for Form C, and 
then move down vertically to the x-axis. Although the lines are very close 
together in this example, we do move slightly down the x-axis to approxi-
mately 6.85, which is our equated Form A score for a Form B score of 6.

Chapter Summary

As provided in this chapter, there are a number of equating designs avail-
able to convert scores across multiple test forms assessing the same con-
struct that differ slightly in difficulty. Each approach has distinct advan-
tages and disadvantages. For example, mean equating is by far the simplest 
technique, but also provides the least flexibility. By assuming that any dif-
ferences in form difficulty between the groups are constant across score 
levels, it offers the least in terms of flexibility. Linear equating relaxes the 
assumption of constant form difficulty difference through its inclusion of a 
measure of score variation. In this way, it may be a more accurate reflection 
of most realities in educational and psychological assessment. However, lin-
ear equating does assume that outside of variation, the shape of the score 
distributions is the same for the forms. In addition, using the linear meth-
odology it is possible to obtain equated scores that are not in bounds of the 
actual data, as we have seen in our examples. The third alternative, equiper-
centile equating, solves both of these problems, even while bringing its own 
challenges to the table. Equipercentile equating typically does not produce 
scores outside of the possible range of values, nor does it force the skewness 
and kurtosis of the score distributions to be held constant. In these ways, it 
represents an advancement over linear equating. However, equipercentile 
equating presents its own set of challenges to equating research. As we have 
seen, this method tends to be more complex to use compared to either 
linear or mean equating. Often there are not scores for both forms at corre-
sponding PR values, necessitating the use of interpolation. And, while inter-
polation typically provides very close approximations of the actual equated 
scores, it is not an exact method. In addition, the equipercentile approach 
is particularly sensitive to small sample size, and to imbalances in the score 
distributions. For scores that are uncommon, a small number of examinees 
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can have an outsized impact on the equating results. In addition, if there 
are no individuals at a particular score, equating using the equipercentile 
approach is not possible. Finally, when applied to the nonequivalent groups 
common items design, equipercentile equating becomes particularly com-
plex, whether with the chain equating approach demonstrated here, or 
some other method.

In the final analysis, recommendations from those heavily involved in 
equating seem to suggest that using multiple methods for the same prob-
lem may be a useful approach. This practice would allow the researcher to 
gain a deeper understanding of the variety of possible equated scores that 
might be obtained (Livingston, 2004). In addition, researchers are encour-
aged not to surrender blindly to the results of any statistical analysis, includ-
ing equating. If the equated results for a particular method do not seem to 
agree with reality, the researcher is encouraged to reconsider the method 
and compare its results to those of other approaches with the same data. Re-
sults that do not make sense in the “real world” should be thought through 
very carefully, regardless of what the statistical analyses might conclude.
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