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Praise for Site Reliability Engineering

Google’s SREs have done our industry an enormous service by writing up the principles,
practices and patterns—architectural and cultural—that enable their teams to combine
continuous delivery with world-class reliability at ludicrous scale. You owe it to yourself
and your organization to read this book and try out these ideas for yourself.

—Jez Humble, coauthor of Continuous Delivery and
Lean Enterprise

I remember when Google first started speaking at systems administration conferences.
It was like hearing a talk at a reptile show by a Gila monster expert. Sure, it was
entertaining to hear about a very different world, but in the end the audience

would go back to their geckos.

Now we live in a changed universe where the operational practices of Google are
not so removed from those who work on a smaller scale. All of a sudden, the best
practices of SRE that have been honed over the years are now of keen interest to
the rest of us. For those of us facing challenges around scale, reliability and
operations, this book comes none too soon.

—David N. Blank-Edelman, Director, USENIX Board of
Directors, and founding co-organizer of SREcon

I have been waiting for this book ever since I left Google’s enchanted castle.
It is the gospel I am preaching to my peers at work.

—Bjorn Rabenstein, Team Lead of Production Engineering at
SoundCloud, Prometheus developer, and Google SRE until 2013
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A thorough discussion of Site Reliability Engineering from the company that
invented the concept. Includes not only the technical details but also the
thought process, goals, principles, and lessons learned over time. If you want
to learn what SRE really means, start here.

—Russ Allbery, SRE and Security Engineer

With this book, Google employees have shared the processes they have taken,
including the missteps, that have allowed Google services to expand to both massive
scale and great reliability. I highly recommend that anyone who wants to create a

set of integrated services that they hope will scale to read this book. The book
provides an insider’s guide to building maintainable services.

—Rik Farrow, USENIX

Writing large-scale services like Gmail is hard. Running them with high reliability is
even harder, especially when you change them every day. This comprehensive
“recipe book” shows how Google does it, and you'll find it much cheaper to learn
from our mistakes than to make them yourself.

—Urs Holzle, SVP Technical Infrastructure, Google
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Foreword

Google’s story is a story of scaling up. It is one of the great success stories of the com-
puting industry, marking a shift towards IT-centric business. Google was one of the
first companies to define what business-IT alignment meant in practice, and went on
to inform the concept of DevOps for a wider IT community. This book has been writ-
ten by a broad cross-section of the very people who made that transition a reality.

Google grew at a time when the traditional role of the system administrator was being
transformed. It questioned system administration, as if to say: we can’t afford to hold
tradition as an authority, we have to think anew, and we don’t have time to wait for
everyone else to catch up. In the introduction to Principles of Network and System
Administration [Bur99], I claimed that system administration was a form of human-
computer engineering. This was strongly rejected by some reviewers, who said “we
are not yet at the stage where we can call it engineering” At the time, I felt that the
field had become lost, trapped in its own wizard culture, and could not see a way for-
ward. Then, Google drew a line in the silicon, forcing that fate into being. The revised
role was called SRE, or Site Reliability Engineer. Some of my friends were among the
first of this new generation of engineer; they formalized it using software and auto-
mation. Initially, they were fiercely secretive, and what happened inside and outside
of Google was very different: Google’s experience was unique. Over time, information
and methods have flowed in both directions. This book shows a willingness to let SRE
thinking come out of the shadows.

Here, we see not only how Google built its legendary infrastructure, but also how it
studied, learned, and changed its mind about the tools and the technologies along the
way. We, too, can face up to daunting challenges with an open spirit. The tribal nature
of IT culture often entrenches practitioners in dogmatic positions that hold the
industry back. If Google overcame this inertia, so can we.

This book is a collection of essays by one company, with a single common vision. The
fact that the contributions are aligned around a single company’s goal is what makes
it special. There are common themes, and common characters (software systems)

xXiii
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that reappear in several chapters. We see choices from different perspectives, and
know that they correlate to resolve competing interests. The articles are not rigorous,
academic pieces; they are personal accounts, written with pride, in a variety of per-
sonal styles, and from the perspective of individual skill sets. They are written bravely,
and with an intellectual honesty that is refreshing and uncommon in industry litera-
ture. Some claim “never do this, always do that,” others are more philosophical and
tentative, reflecting the variety of personalities within an IT culture, and how that too
plays a role in the story. We, in turn, read them with the humility of observers who
were not part of the journey, and do not have all the information about the myriad
conflicting challenges. Our many questions are the real legacy of the volume: Why
didn’t they do X? What if theyd done Y? How will we look back on this in years to
come? It is by comparing our own ideas to the reasoning here that we can measure
our own thoughts and experiences.

The most impressive thing of all about this book is its very existence. Today, we hear a
brazen culture of “just show me the code” A culture of “ask no questions” has grown
up around open source, where community rather than expertise is championed. Goo-
gle is a company that dared to think about the problems from first principles, and to
employ top talent with a high proportion of PhDs. Tools were only components in
processes, working alongside chains of software, people, and data. Nothing here tells
us how to solve problems universally, but that is the point. Stories like these are far
more valuable than the code or designs they resulted in. Implementations are ephem-
eral, but the documented reasoning is priceless. Rarely do we have access to this kind
of insight.

This, then, is the story of how one company did it. The fact that it is many overlap-
ping stories shows us that scaling is far more than just a photographic enlargement of
a textbook computer architecture. It is about scaling a business process, rather than
just the machinery. This lesson alone is worth its weight in electronic paper.

We do not engage much in self-critical review in the IT world; as such, there is much
reinvention and repetition. For many years, there was only the USENIX LISA confer-
ence community discussing IT infrastructure, plus a few conferences about operating
systems. It is very different today, yet this book still feels like a rare offering: a detailed
documentation of Google’s step through a watershed epoch. The tale is not for copy-
ing—though perhaps for emulating—but it can inspire the next step for all of us.
There is a unique intellectual honesty in these pages, expressing both leadership and
humility. These are stories of hopes, fears, successes, and failures. I salute the courage
of authors and editors in allowing such candor, so that we, who are not party to the
hands-on experiences, can also benefit from the lessons learned inside the cocoon.

— Mark Burgess
author of In Search of Certainty
Oslo, March 2016

xiv | Foreword
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Preface

Software engineering has this in common with having children: the labor before the
birth is painful and difficult, but the labor after the birth is where you actually spend
most of your effort. Yet software engineering as a discipline spends much more time
talking about the first period as opposed to the second, despite estimates that 40-90%
of the total costs of a system are incurred after birth.! The popular industry model
that conceives of deployed, operational software as being “stabilized” in production,
and therefore needing much less attention from software engineers, is wrong.
Through this lens, then, we see that if software engineering tends to focus on design-
ing and building software systems, there must be another discipline that focuses on
the whole lifecycle of software objects, from inception, through deployment and oper-
ation, refinement, and eventual peaceful decommissioning. This discipline uses—and
needs to use—a wide range of skills, but has separate concerns from other kinds of
engineers. Today, our answer is the discipline Google calls Site Reliability Engineer-
ing.

So what exactly is Site Reliability Engineering (SRE)? We admit that it’s not a particu-
larly clear name for what we do—pretty much every site reliability engineer at Google
gets asked what exactly that is, and what they actually do, on a regular basis.

Unpacking the term a little, first and foremost, SREs are engineers. We apply the prin-
ciples of computer science and engineering to the design and development of com-
puting systems: generally, large distributed ones. Sometimes, our task is writing the
software for those systems alongside our product development counterparts; some-
times, our task is building all the additional pieces those systems need, like backups
or load balancing, ideally so they can be reused across systems; and sometimes, our
task is figuring out how to apply existing solutions to new problems.

1 The very fact that there is such large variance in these estimates tells you something about software engineer-
ing as a discipline, but see, e.g., [Gla02] for more details.

XV
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Next, we focus on system reliability. Ben Treynor Sloss, Google’s VP for 24/7 Opera-
tions, originator of the term SRE, claims that reliability is the most fundamental fea-
ture of any product: a system isn’t very useful if nobody can use it! Because reliability”
is so critical, SREs are focused on finding ways to improve the design and operation
of systems to make them more scalable, more reliable, and more efficient. However,
we expend effort in this direction only up to a point: when systems are “reliable
enough,” we instead invest our efforts in adding features or building new products.?

Finally, SREs are focused on operating services built atop our distributed computing
systems, whether those services are planet-scale storage, email for hundreds of mil-
lions of users, or where Google began, web search. The “site” in our name originally
referred to SRE’s role in keeping the google.com website running, though we now run
many more services, many of which aren’t themselves websites—from internal infra-
structure such as Bigtable to products for external developers such as the Google
Cloud Platform.

Although we have represented SRE as a broad discipline, it is no surprise that it arose
in the fast-moving world of web services, and perhaps in origin owes something to
the peculiarities of our infrastructure. It is equally no surprise that of all the post-
deployment characteristics of software that we could choose to devote special atten-
tion to, reliability is the one we regard as primary.* The domain of web services, both
because the process of improving and changing server-side software is comparatively
contained, and because managing change itself is so tightly coupled with failures of all
kinds, is a natural platform from which our approach might emerge.

Despite arising at Google, and in the web community more generally, we think that
this discipline has lessons applicable to other communities and other organizations.
This book is an attempt to explain how we do things: both so that other organizations
might make use of what we've learned, and so that we can better define the role and
what the term means. To that end, we have organized the book so that general princi-
ples and more specific practices are separated where possible, and where it’s appropri-
ate to discuss a particular topic with Google-specific information, we trust that the
reader will indulge us in this and will not be afraid to draw useful conclusions about
their own environment.

S}

For our purposes, reliability is “The probability that [a system] will perform a required function without fail-
ure under stated conditions for a stated period of time,” following the definition in [Oco12].

w

The software systems were concerned with are largely websites and similar services; we do not discuss the
reliability concerns that face software intended for nuclear power plants, aircraft, medical equipment, or other
safety-critical systems. We do, however, compare our approaches with those used in other industries in Chap-
ter 33.

4 In this, we are distinct from the industry term DevOps, because although we definitely regard infrastructure
as code, we have reliability as our main focus. Additionally, we are strongly oriented toward removing the
necessity for operations—see Chapter 7 for more details.

xvi | Preface
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We have also provided some orienting material—a description of Google’s production
environment and a mapping between some of our internal software and publicly
available software—which should help to contextualize what we are saying and make
it more directly usable.

Ultimately, of course, more reliability-oriented software and systems engineering is
inherently good. However, we acknowledge that smaller organizations may be won-
dering how they can best use the experience represented here: much like security, the
earlier you care about reliability, the better. This implies that even though a small
organization has many pressing concerns and the software choices you make may dif-
fer from those Google made, it’s still worth putting lightweight reliability support in
place early on, because it’s less costly to expand a structure later on than it is to intro-
duce one that is not present. Part IV contains a number of best practices for training,
communication, and meetings that we've found to work well for us, many of which
should be immediately usable by your organization.

But for sizes between a startup and a multinational, there probably already is some-
one in your organization who is doing SRE work, without it necessarily being called
that name, or recognized as such. Another way to get started on the path to improv-
ing reliability for your organization is to formally recognize that work, or to find
these people and foster what they do—reward it. They are people who stand on the
cusp between one way of looking at the world and another one: like Newton, who is
sometimes called not the world’s first physicist, but the world’s last alchemist.

And taking the historical view, who, then, looking back, might be the first SRE?

We like to think that Margaret Hamilton, working on the Apollo program on loan
from MIT, had all of the significant traits of the first SRE.” In her own words, “part of
the culture was to learn from everyone and everything, including from that which
one would least expect”

A case in point was when her young daughter Lauren came to work with her one day,
while some of the team were running mission scenarios on the hybrid simulation
computer. As young children do, Lauren went exploring, and she caused a “mission”
to crash by selecting the DSKY keys in an unexpected way, alerting the team as to
what would happen if the prelaunch program, P01, were inadvertently selected by a
real astronaut during a real mission, during real midcourse. (Launching P01 inadver-
tently on a real mission would be a major problem, because it wipes out navigation
data, and the computer was not equipped to pilot the craft with no navigation data.)

5 In addition to this great story, she also has a substantial claim to popularizing the term “software engineering.”

Preface | xvii
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With an SRE’s instincts, Margaret submitted a program change request to add special
error checking code in the onboard flight software in case an astronaut should, by
accident, happen to select P01 during flight. But this move was considered unneces-
sary by the “higher-ups” at NASA: of course, that could never happen! So instead of
adding error checking code, Margaret updated the mission specifications documenta-
tion to say the equivalent of “Do not select PO1 during flight” (Apparently the update
was amusing to many on the project, who had been told many times that astronauts
would not make any mistakes—after all, they were trained to be perfect.)

Well, Margaret’s suggested safeguard was only considered unnecessary until the very
next mission, on Apollo 8, just days after the specifications update. During midcourse
on the fourth day of flight with the astronauts Jim Lovell, William Anders, and Frank
Borman on board, Jim Lovell selected PO1 by mistake—as it happens, on Christmas
Day—creating much havoc for all involved. This was a critical problem, because in
the absence of a workaround, no navigation data meant the astronauts were never
coming home. Thankfully, the documentation update had explicitly called this possi-
bility out, and was invaluable in figuring out how to upload usable data and recover
the mission, with not much time to spare.

As Margaret says, “a thorough understanding of how to operate the systems was not
enough to prevent human errors,” and the change request to add error detection and
recovery software to the prelaunch program P01 was approved shortly afterwards.

Although the Apollo 8 incident occurred decades ago, there is much in the preceding
paragraphs directly relevant to engineers’ lives today, and much that will continue to
be directly relevant in the future. Accordingly, for the systems you look after, for the
groups you work in, or for the organizations you're building, please bear the SRE Way
in mind: thoroughness and dedication, belief in the value of preparation and docu-
mentation, and an awareness of what could go wrong, coupled with a strong desire to
prevent it. Welcome to our emerging profession!
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How to Read This Book

This book is a series of essays written by members and alumni of Google’s Site Relia-
bility Engineering organization. It's much more like conference proceedings than it is
like a standard book by an author or a small number of authors. Each chapter is
intended to be read as a part of a coherent whole, but a good deal can be gained by
reading on whatever subject particularly interests you. (If there are other articles that
support or inform the text, we reference them so you can follow up accordingly.)

You don't need to read in any particular order, though wed suggest at least starting
with Chapters 2 and 3, which describe Google’s production environment and outline
how SRE approaches risk, respectively. (Risk is, in many ways, the key quality of our
profession.) Reading cover-to-cover is, of course, also useful and possible; our chap-
ters are grouped thematically, into Principles (Part II), Practices (Part III), and Man-
agement (Part IV). Each has a small introduction that highlights what the individual
pieces are about, and references other articles published by Google SREs, covering
specific topics in more detail. Additionally, the companion website to this book,
https://g.co/SREBook, has a number of helpful resources.

We hope this will be at least as useful and interesting to you as putting it together was
for us.

— The Editors

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.
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This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

Supplemental material is available at https://g.co/SREBook.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Site Reliability Engineering, edited by
Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy (O’Reilly). Copy-
right 2016 Google, Inc., 978-1-491-92912-4”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that deliv-
1 7 ers expert content in both book and video form from the
world’s leading authors in technology and business.
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Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf-
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/site-reliability-engineering.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
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PART |
Introduction

This section provides some high-level guidance on what SRE is and why it is different
from more conventional IT industry practices.

Ben Treynor Sloss, the senior VP overseeing technical operations at Google—and the
originator of the term “Site Reliability Engineering”—provides his view on what SRE
means, how it works, and how it compares to other ways of doing things in the indus-
try, in Chapter 1.

We provide a guide to the production environment at Google in Chapter 2 as a way to
help acquaint you with the wealth of new terms and systems you are about to meet in
the rest of the book.
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CHAPTER1
Introduction

Written by Benjamin Treynor Sloss'
Edited by Betsy Beyer

Hope is not a strategy.
—Traditional SRE saying

It is a truth universally acknowledged that systems do not run themselves. How, then,
should a system—particularly a complex computing system that operates at a large
scale—be run?

The Sysadmin Approach to Service Management

Historically, companies have employed systems administrators to run complex com-
puting systems.

This systems administrator, or sysadmin, approach involves assembling existing soft-
ware components and deploying them to work together to produce a service.
Sysadmins are then tasked with running the service and responding to events and
updates as they occur. As the system grows in complexity and traffic volume, generat-
ing a corresponding increase in events and updates, the sysadmin team grows to
absorb the additional work. Because the sysadmin role requires a markedly different
skill set than that required of a product’s developers, developers and sysadmins are
divided into discrete teams: “development” and “operations” or “ops.”

The sysadmin model of service management has several advantages. For companies
deciding how to run and staff a service, this approach is relatively easy to implement:
as a familiar industry paradigm, there are many examples from which to learn and

1 Vice President, Google Engineering, founder of Google SRE
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emulate. A relevant talent pool is already widely available. An array of existing tools,
software components (off the shelf or otherwise), and integration companies are
available to help run those assembled systems, so a novice sysadmin team doesn’t
have to reinvent the wheel and design a system from scratch.

The sysadmin approach and the accompanying development/ops split has a number
of disadvantages and pitfalls. These fall broadly into two categories: direct costs and
indirect costs.

Direct costs are neither subtle nor ambiguous. Running a service with a team that
relies on manual intervention for both change management and event handling
becomes expensive as the service and/or traffic to the service grows, because the size
of the team necessarily scales with the load generated by the system.

The indirect costs of the development/ops split can be subtle, but are often more
expensive to the organization than the direct costs. These costs arise from the fact
that the two teams are quite different in background, skill set, and incentives. They
use different vocabulary to describe situations; they carry different assumptions about
both risk and possibilities for technical solutions; they have different assumptions
about the target level of product stability. The split between the groups can easily
become one of not just incentives, but also communication, goals, and eventually,
trust and respect. This outcome is a pathology.

Traditional operations teams and their counterparts in product development thus
often end up in conflict, most visibly over how quickly software can be released to
production. At their core, the development teams want to launch new features and
see them adopted by users. At their core, the ops teams want to make sure the service
doesn't break while they are holding the pager. Because most outages are caused by
some kind of change—a new configuration, a new feature launch, or a new type of
user traffic—the two teams’ goals are fundamentally in tension.

Both groups understand that it is unacceptable to state their interests in the baldest
possible terms (“We want to launch anything, any time, without hindrance” versus
“We won't want to ever change anything in the system once it works”). And because
their vocabulary and risk assumptions differ, both groups often resort to a familiar
form of trench warfare to advance their interests. The ops team attempts to safeguard
the running system against the risk of change by introducing launch and change
gates. For example, launch reviews may contain an explicit check for every problem
that has ever caused an outage in the past—that could be an arbitrarily long list, with
not all elements providing equal value. The dev team quickly learns how to respond.
They have fewer “launches” and more “flag flips,” “incremental updates,” or “cherry-
picks” They adopt tactics such as sharding the product so that fewer features are sub-
ject to the launch review.

4 | Chapter 1: Introduction
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Google’s Approach to Service Management:
Site Reliability Engineering

Conflict isn't an inevitable part of offering a software service. Google has chosen to
run our systems with a different approach: our Site Reliability Engineering teams
focus on hiring software engineers to run our products and to create systems to
accomplish the work that would otherwise be performed, often manually, by
sysadmins.

What exactly is Site Reliability Engineering, as it has come to be defined at Google?
My explanation is simple: SRE is what happens when you ask a software engineer to
design an operations team. When I joined Google in 2003 and was tasked with run-
ning a “Production Team” of seven engineers, my entire life up to that point had been
software engineering. So I designed and managed the group the way I would want it
to work if I worked as an SRE myself. That group has since matured to become Goo-
gle’s present-day SRE team, which remains true to its origins as envisioned by a life-
long software engineer.

A primary building block of Google’s approach to service management is the compo-
sition of each SRE team. As a whole, SRE can be broken down two main categories.

50-60% are Google Software Engineers, or more precisely, people who have been
hired via the standard procedure for Google Software Engineers. The other 40-50%
are candidates who were very close to the Google Software Engineering qualifications
(i.e., 85-99% of the skill set required), and who in addition had a set of technical skills
that is useful to SRE but is rare for most software engineers. By far, UNIX system
internals and networking (Layer 1 to Layer 3) expertise are the two most common
types of alternate technical skills we seek.

Common to all SREs is the belief in and aptitude for developing software systems to
solve complex problems. Within SRE, we track the career progress of both groups
closely, and have to date found no practical difference in performance between engi-
neers from the two tracks. In fact, the somewhat diverse background of the SRE team
frequently results in clever, high-quality systems that are clearly the product of the
synthesis of several skill sets.

The result of our approach to hiring for SRE is that we end up with a team of people
who (a) will quickly become bored by performing tasks by hand, and (b) have the
skill set necessary to write software to replace their previously manual work, even
when the solution is complicated. SREs also end up sharing academic and intellectual
background with the rest of the development organization. Therefore, SRE is funda-
mentally doing work that has historically been done by an operations team, but using
engineers with software expertise, and banking on the fact that these engineers are

Google’s Approach to Service Management: | 5

www.it-ebooks.info


http://www.it-ebooks.info/

inherently both predisposed to, and have the ability to, design and implement auto-
mation with software to replace human labor.

By design, it is crucial that SRE teams are focused on engineering. Without constant
engineering, operations load increases and teams will need more people just to keep
pace with the workload. Eventually, a traditional ops-focused group scales linearly
with service size: if the products supported by the service succeed, the operational
load will grow with traffic. That means hiring more people to do the same tasks over
and over again.

To avoid this fate, the team tasked with managing a service needs to code or it will
drown. Therefore, Google places a 50% cap on the aggregate “ops” work for all SREs—
tickets, on-call, manual tasks, etc. This cap ensures that the SRE team has enough
time in their schedule to make the service stable and operable. This cap is an upper
bound; over time, left to their own devices, the SRE team should end up with very
little operational load and almost entirely engage in development tasks, because the
service basically runs and repairs itself: we want systems that are automatic, not just
automated. In practice, scale and new features keep SREs on their toes.

Google’s rule of thumb is that an SRE team must spend the remaining 50% of its time
actually doing development. So how do we enforce that threshold? In the first place,
we have to measure how SRE time is spent. With that measurement in hand, we
ensure that the teams consistently spending less than 50% of their time on develop-
ment work change their practices. Often this means shifting some of the operations
burden back to the development team, or adding staff to the team without assigning
that team additional operational responsibilities. Consciously maintaining this bal-
ance between ops and development work allows us to ensure that SREs have the
bandwidth to engage in creative, autonomous engineering, while still retaining the
wisdom gleaned from the operations side of running a service.

We've found that Google SRE’s approach to running large-scale systems has many
advantages. Because SREs are directly modifying code in their pursuit of making
Google’s systems run themselves, SRE teams are characterized by both rapid innova-
tion and a large acceptance of change. Such teams are relatively inexpensive—sup-
porting the same service with an ops-oriented team would require a significantly
larger number of people. Instead, the number of SREs needed to run, maintain, and
improve a system scales sublinearly with the size of the system. Finally, not only does
SRE circumvent the dysfunctionality of the dev/ops split, but this structure also
improves our product development teams: easy transfers between product develop-
ment and SRE teams cross-train the entire group, and improve skills of developers
who otherwise may have difficulty learning how to build a million-core distributed
system.

Despite these net gains, the SRE model is characterized by its own distinct set of chal-
lenges. One continual challenge Google faces is hiring SREs: not only does SRE
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compete for the same candidates as the product development hiring pipeline, but the
fact that we set the hiring bar so high in terms of both coding and system engineering
skills means that our hiring pool is necessarily small. As our discipline is relatively
new and unique, not much industry information exists on how to build and manage
an SRE team (although hopefully this book will make strides in that direction!). And
once an SRE team is in place, their potentially unorthodox approaches to service
management require strong management support. For example, the decision to stop
releases for the remainder of the quarter once an error budget is depleted might not
be embraced by a product development team unless mandated by their management.

DevOps or SRE?

The term “DevOps” emerged in industry in late 2008 and as of this writing (early
2016) is still in a state of flux. Its core principles—involvement of the IT function in
each phase of a system’s design and development, heavy reliance on automation ver-
sus human effort, the application of engineering practices and tools to operations
tasks—are consistent with many of SRE’s principles and practices. One could view
DevOps as a generalization of several core SRE principles to a wider range of organi-
zations, management structures, and personnel. One could equivalently view SRE as a
specific implementation of DevOps with some idiosyncratic extensions.

Tenets of SRE

While the nuances of workflows, priorities, and day-to-day operations vary from SRE
team to SRE team, all share a set of basic responsibilities for the service(s) they sup-
port, and adhere to the same core tenets. In general, an SRE team is responsible for
the availability, latency, performance, efficiency, change management, monitoring,
emergency response, and capacity planning of their service(s). We have codified rules
of engagement and principles for how SRE teams interact with their environment—
not only the production environment, but also the product development teams, the
testing teams, the users, and so on. Those rules and work practices help us to main-
tain our focus on engineering work, as opposed to operations work.

The following section discusses each of the core tenets of Google SRE.

Ensuring a Durable Focus on Engineering

As already discussed, Google caps operational work for SREs at 50% of their time.
Their remaining time should be spent using their coding skills on project work. In
practice, this is accomplished by monitoring the amount of operational work being
done by SREs, and redirecting excess operational work to the product development
teams: reassigning bugs and tickets to development managers, [re]integrating devel-
opers into on-call pager rotations, and so on. The redirection ends when the opera-
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tional load drops back to 50% or lower. This also provides an effective feedback
mechanism, guiding developers to build systems that don't need manual intervention.
This approach works well when the entire organization—SRE and development alike
—understands why the safety valve mechanism exists, and supports the goal of hav-
ing no overflow events because the product doesn’t generate enough operational load
to require it.

When they are focused on operations work, on average, SREs should receive a maxi-
mum of two events per 8—12-hour on-call shift. This target volume gives the on-call
engineer enough time to handle the event accurately and quickly, clean up and
restore normal service, and then conduct a postmortem. If more than two events
occur regularly per on-call shift, problems can't be investigated thoroughly and engi-
neers are sufficiently overwhelmed to prevent them from learning from these events.
A scenario of pager fatigue also won’t improve with scale. Conversely, if on-call SREs
consistently receive fewer than one event per shift, keeping them on point is a waste
of their time.

Postmortems should be written for all significant incidents, regardless of whether or
not they paged; postmortems that did not trigger a page are even more valuable, as
they likely point to clear monitoring gaps. This investigation should establish what
happened in detail, find all root causes of the event, and assign actions to correct the
problem or improve how it is addressed next time. Google operates under a blame-
free postmortem culture, with the goal of exposing faults and applying engineering to
fix these faults, rather than avoiding or minimizing them.

Pursuing Maximum Change Velocity Without Violating a Service’s SLO

Product development and SRE teams can enjoy a productive working relationship by
eliminating the structural conflict in their respective goals. The structural conflict is
between pace of innovation and product stability, and as described earlier, this con-
flict often is expressed indirectly. In SRE we bring this conflict to the fore, and then
resolve it with the introduction of an error budget.

The error budget stems from the observation that 100% is the wrong reliability target
for basically everything (pacemakers and anti-lock brakes being notable exceptions).
In general, for any software service or system, 100% is not the right reliability target
because no user can tell the difference between a system being 100% available and
99.999% available. There are many other systems in the path between user and ser-
vice (their laptop, their home WiFi, their ISP, the power grid...) and those systems
collectively are far less than 99.999% available. Thus, the marginal difference between
99.999% and 100% gets lost in the noise of other unavailability, and the user receives
no benefit from the enormous effort required to add that last 0.001% of availability.
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If 100% is the wrong reliability target for a system, what, then, is the right reliability
target for the system? This actually isn’t a technical question at all—it's a product
question, which should take the following considerations into account:

o What level of availability will the users be happy with, given how they use the
product?

o What alternatives are available to users who are dissatisfied with the product’s
availability?

« What happens to users’ usage of the product at different availability levels?

The business or the product must establish the system’s availability target. Once that
target is established, the error budget is one minus the availability target. A service
that’s 99.99% available is 0.01% unavailable. That permitted 0.01% unavailability is
the service’s error budget. We can spend the budget on anything we want, as long as
we don’t overspend it.

So how do we want to spend the error budget? The development team wants to
launch features and attract new users. Ideally, we would spend all of our error budget
taking risks with things we launch in order to launch them quickly. This basic prem-
ise describes the whole model of error budgets. As soon as SRE activities are concep-
tualized in this framework, freeing up the error budget through tactics such as phased
rollouts and 1% experiments can optimize for quicker launches.

The use of an error budget resolves the structural conflict of incentives between
development and SRE. SRE’s goal is no longer “zero outages”; rather, SREs and prod-
uct developers aim to spend the error budget getting maximum feature velocity. This
change makes all the difference. An outage is no longer a “bad” thing—it is an
expected part of the process of innovation, and an occurrence that both development
and SRE teams manage rather than fear.

Monitoring

Monitoring is one of the primary means by which service owners keep track of a sys-
tem’s health and availability. As such, monitoring strategy should be constructed
thoughtfully. A classic and common approach to monitoring is to watch for a specific
value or condition, and then to trigger an email alert when that value is exceeded or
that condition occurs. However, this type of email alerting is not an effective solution:
a system that requires a human to read an email and decide whether or not some type
of action needs to be taken in response is fundamentally flawed. Monitoring should
never require a human to interpret any part of the alerting domain. Instead, software
should do the interpreting, and humans should be notified only when they need to
take action.
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There are three kinds of valid monitoring output:

Alerts
Signify that a human needs to take action immediately in response to something
that is either happening or about to happen, in order to improve the situation.

Tickets
Signify that a human needs to take action, but not immediately. The system can-
not automatically handle the situation, but if a human takes action in a few days,
no damage will result.

Logging
No one needs to look at this information, but it is recorded for diagnostic or for-
ensic purposes. The expectation is that no one reads logs unless something else
prompts them to do so.

Emergency Response

Reliability is a function of mean time to failure (MTTF) and mean time to repair
(MTTR) [Sch15]. The most relevant metric in evaluating the effectiveness of emer-
gency response is how quickly the response team can bring the system back to health
—that is, the MTTR.

Humans add latency. Even if a given system experiences more actual failures, a sys-
tem that can avoid emergencies that require human intervention will have higher
availability than a system that requires hands-on intervention. When humans are
necessary, we have found that thinking through and recording the best practices
ahead of time in a “playbook” produces roughly a 3x improvement in MTTR as com-
pared to the strategy of “winging it” The hero jack-of-all-trades on-call engineer does
work, but the practiced on-call engineer armed with a playbook works much better.
While no playbook, no matter how comprehensive it may be, is a substitute for smart
engineers able to think on the fly, clear and thorough troubleshooting steps and tips
are valuable when responding to a high-stakes or time-sensitive page. Thus, Google
SRE relies on on-call playbooks, in addition to exercises such as the “Wheel of Mis-
fortune,” to prepare engineers to react to on-call events.

Change Management

SRE has found that roughly 70% of outages are due to changes in a live system. Best
practices in this domain use automation to accomplish the following:

2 See “Disaster Role Playing” on page 401.
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 Implementing progressive rollouts
o Quickly and accurately detecting problems

« Rolling back changes safely when problems arise

This trio of practices effectively minimizes the aggregate number of users and opera-
tions exposed to bad changes. By removing humans from the loop, these practices
avoid the normal problems of fatigue, familiarity/contempt, and inattention to highly
repetitive tasks. As a result, both release velocity and safety increase.

Demand Forecasting and Capacity Planning

Demand forecasting and capacity planning can be viewed as ensuring that there is
sufficient capacity and redundancy to serve projected future demand with the
required availability. There’s nothing particularly special about these concepts, except
that a surprising number of services and teams don't take the steps necessary to
ensure that the required capacity is in place by the time it is needed. Capacity plan-
ning should take both organic growth (which stems from natural product adoption
and usage by customers) and inorganic growth (which results from events like feature
launches, marketing campaigns, or other business-driven changes) into account.

Several steps are mandatory in capacity planning:

o An accurate organic demand forecast, which extends beyond the lead time
required for acquiring capacity

o An accurate incorporation of inorganic demand sources into the demand
forecast

« Regular load testing of the system to correlate raw capacity (servers, disks, and so
on) to service capacity

Because capacity is critical to availability, it naturally follows that the SRE team must
be in charge of capacity planning, which means they also must be in charge of provi-
sioning.

Provisioning

Provisioning combines both change management and capacity planning. In our
experience, provisioning must be conducted quickly and only when necessary, as
capacity is expensive. This exercise must also be done correctly or capacity doesn’t
work when needed. Adding new capacity often involves spinning up a new instance
or location, making significant modification to existing systems (configuration files,
load balancers, networking), and validating that the new capacity performs and deliv-
ers correct results. Thus, it is a riskier operation than load shifting, which is often
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done multiple times per hour, and must be treated with a corresponding degree of
extra caution.

Efficiency and Performance

Efficient use of resources is important any time a service cares about money. Because
SRE ultimately controls provisioning, it must also be involved in any work on utiliza-
tion, as utilization is a function of how a given service works and how it is provi-
sioned. It follows that paying close attention to the provisioning strategy for a service,
and therefore its utilization, provides a very, very big lever on the service’s total costs.

Resource use is a function of demand (load), capacity, and software efficiency. SREs
predict demand, provision capacity, and can modify the software. These three factors
are a large part (though not the entirety) of a service’s efficiency.

Software systems become slower as load is added to them. A slowdown in a service
equates to a loss of capacity. At some point, a slowing system stops serving, which
corresponds to infinite slowness. SREs provision to meet a capacity target at a specific
response speed, and thus are keenly interested in a service’s performance. SREs and
product developers will (and should) monitor and modify a service to improve its
performance, thus adding capacity and improving efficiency.?

The End of the Beginning

Site Reliability Engineering represents a significant break from existing industry best
practices for managing large, complicated services. Motivated originally by familiarity
—“as a software engineer, this is how I would want to invest my time to accomplish a
set of repetitive tasks”—it has become much more: a set of principles, a set of practi-
ces, a set of incentives, and a field of endeavor within the larger software engineering
discipline. The rest of the book explores the SRE Way in detail.

3 For further discussion of how this collaboration can work in practice, see “Communications: Production
Meetings” on page 426.
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CHAPTER 2

The Production Environment at Google,
from the Viewpoint of an SRE

Written by JC van Winkel
Edited by Betsy Beyer

Google datacenters are very different from most conventional datacenters and small-
scale server farms. These differences present both extra problems and opportunities.
This chapter discusses the challenges and opportunities that characterize Google
datacenters and introduces terminology that is used throughout the book.

Hardware

Most of Google’s compute resources are in Google-designed datacenters with propri-
etary power distribution, cooling, networking, and compute hardware (see [Bar13]).
Unlike “standard” colocation datacenters, the compute hardware in a Google-
designed datacenter is the same across the board.! To eliminate the confusion
between server hardware and server software, we use the following terminology
throughout the book:

Machine
A piece of hardware (or perhaps a VM)

Server
A piece of software that implements a service

1 Well, roughly the same. Mostly. Except for the stuff that is different. Some datacenters end up with multiple
generations of compute hardware, and sometimes we augment datacenters after they are built. But for the
most part, our datacenter hardware is homogeneous.

13
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Machines can run any server, so we don’t dedicate specific machines to specific server
programs. There’s no specific machine that runs our mail server, for example. Instead,
resource allocation is handled by our cluster operating system, Borg.

We realize this use of the word server is unusual. The common use of the word con-
flates “binary that accepts network connection” with machine, but differentiating
between the two is important when talking about computing at Google. Once you get
used to our usage of server, it becomes more apparent why it makes sense to use this
specialized terminology, not just within Google but also in the rest of this book.

Figure 2-1 illustrates the topology of a Google datacenter:

o Tens of machines are placed in a rack.

 Racks stand in a row.

« One or more rows form a cluster.

o Usually a datacenter building houses multiple clusters.

» Multiple datacenter buildings that are located close together form a campus.

Mount Hood

Datacenter

Cluster [ Cluster

Datacenter

w
@
=
5
T
£

Figure 2-1. Example Google datacenter campus topology

Machines within a given datacenter need to be able to talk with each other, so we cre-
ated a very fast virtual switch with tens of thousands of ports. We accomplished this
by connecting hundreds of Google-built switches in a Clos network fabric [Clos53]
named Jupiter [Sin15]. In its largest configuration, Jupiter supports 1.3 Pbps bisection
bandwidth among servers.
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Datacenters are connected to each other with our globe-spanning backbone network
B4 [Jail3]. B4 is a software-defined networking architecture (and uses the OpenFlow
open-standard communications protocol). It supplies massive bandwidth to a modest
number of sites, and uses elastic bandwidth allocation to maximize average band-
width [Kum15].

System Software That “Organizes” the Hardware

Our hardware must be controlled and administered by software that can handle mas-
sive scale. Hardware failures are one notable problem that we manage with software.
Given the large number of hardware components in a cluster, hardware failures occur
quite frequently. In a single cluster in a typical year, thousands of machines fail and
thousands of hard disks break; when multiplied by the number of clusters we operate
globally, these numbers become somewhat breathtaking. Therefore, we want to
abstract such problems away from users, and the teams running our services similarly
don’t want to be bothered by hardware failures. Each datacenter campus has teams
dedicated to maintaining the hardware and datacenter infrastructure.

Managing Machines

Boryg, illustrated in Figure 2-2, is a distributed cluster operating system [Ver15], simi-
lar to Apache Mesos.? Borg manages its jobs at the cluster level.
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Figure 2-2. High-level Borg cluster architecture

2 Some readers may be more familiar with Borg’s descendant, Kubernetes—an open source Container Cluster
orchestration framework started by Google in 2014; see http://kubernetes.io and [Bur16]. For more details on
the similarities between Borg and Apache Mesos, see [Ver15].
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Borg is responsible for running users’ jobs, which can either be indefinitely running
servers or batch processes like a MapReduce [Dea04]. Jobs can consist of more than
one (and sometimes thousands) of identical tasks, both for reasons of reliability and
because a single process can't usually handle all cluster traffic. When Borg starts a job,
it finds machines for the tasks and tells the machines to start the server program.
Borg then continually monitors these tasks. If a task malfunctions, it is killed and
restarted, possibly on a different machine.

Because tasks are fluidly allocated over machines, we can’t simply rely on IP addresses
and port numbers to refer to the tasks. We solve this problem with an extra level of
indirection: when starting a job, Borg allocates a name and index number to each task
using the Borg Naming Service (BNS). Rather than using the IP address and port
number, other processes connect to Borg tasks via the BNS name, which is translated
to an IP address and port number by BNS. For example, the BNS path might be a
string such as /bns/<cluster>/<user>/<job name>/<task number>, which would
resolve to <IP address>:<port>.

Borg is also responsible for the allocation of resources to jobs. Every job needs to
specify its required resources (e.g., 3 CPU cores, 2 GiB of RAM). Using the list of
requirements for all jobs, Borg can binpack the tasks over the machines in an optimal
way that also accounts for failure domains (for example: Borg won't run all of a job’s
tasks on the same rack, as doing so means that the top of rack switch is a single point
of failure for that job).

If a task tries to use more resources than it requested, Borg kills the task and restarts
it (as a slowly crashlooping task is usually preferable to a task that hasn’t been restar-
ted at all).

Storage

Tasks can use the local disk on machines as a scratch pad, but we have several cluster
storage options for permanent storage (and even scratch space will eventually move
to the cluster storage model). These are comparable to Lustre and the Hadoop Dis-
tributed File System (HDEFS), which are both open source cluster filesystems.

The storage layer is responsible for offering users easy and reliable access to the stor-
age available for a cluster. As shown in Figure 2-3, storage has many layers:

1. The lowest layer is called D (for disk, although D uses both spinning disks and
flash storage). D is a fileserver running on almost all machines in a cluster. How-
ever, users who want to access their data don't want to have to remember which
machine is storing their data, which is where the next layer comes into play.

2. A layer on top of D called Colossus creates a cluster-wide filesystem that offers
usual filesystem semantics, as well as replication and encryption. Colossus is the
successor to GFS, the Google File System [Ghe03].
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3. There are several database-like services built on top of Colossus:

a. Bigtable [Cha06] is a NoSQL database system that can handle databases that
are petabytes in size. A Bigtable is a sparse, distributed, persistent multidi-
mensional sorted map that is indexed by row key, column key, and timestamp;
each value in the map is an uninterpreted array of bytes. Bigtable supports
eventually consistent, cross-datacenter replication.

b. Spanner [Corl2] offers an SQL-like interface for users that require real con-
sistency across the world.

c. Several other database systems, such as Blobstore, are available. Each of these
options comes with its own set of trade-offs (see Chapter 26).

Blobstore
(small) ]

Spanner (big) Bigtable

LP Colossus <—J

Local HDD
or Flash

Figure 2-3. Portions of the Google storage stack

Networking

Google’s network hardware is controlled in several ways. As discussed earlier, we use
an OpenFlow-based software-defined network. Instead of using “smart” routing
hardware, we rely on less expensive “dumb” switching components in combination
with a central (duplicated) controller that precomputes best paths across the network.
Therefore, were able to move compute-expensive routing decisions away from the
routers and use simple switching hardware.

Network bandwidth needs to be allocated wisely. Just as Borg limits the compute
resources that a task can use, the Bandwidth Enforcer (BwE) manages the available
bandwidth to maximize the average available bandwidth. Optimizing bandwidth isn’t
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just about cost: centralized traffic engineering has been shown to solve a number of
problems that are traditionally extremely difficult to solve through a combination of
distributed routing and traffic engineering [Kum15].

Some services have jobs running in multiple clusters, which are distributed across the
world. In order to minimize latency for globally distributed services, we want to
direct users to the closest datacenter with available capacity. Our Global Software
Load Balancer (GSLB) performs load balancing on three levels:

« Geographic load balancing for DNS requests (for example, to www.google.com),
described in Chapter 19

« Load balancing at a user service level (for example, YouTube or Google Maps)

 Load balancing at the Remote Procedure Call (RPC) level, described in Chap-
ter 20

Service owners specify a symbolic name for a service, a list of BNS addresses of
servers, and the capacity available at each of the locations (typically measured in
queries per second). GSLB then directs traffic to the BNS addresses.

Other System Software

Several other components in a datacenter are also important.

Lock Service

The Chubby [Bur06] lock service provides a filesystem-like API for maintaining
locks. Chubby handles these locks across datacenter locations. It uses the Paxos pro-
tocol for asynchronous Consensus (see Chapter 23).

Chubby also plays an important role in master election. When a service has five repli-
cas of a job running for reliability purposes but only one replica may perform actual
work, Chubby is used to select which replica may proceed.

Data that must be consistent is well suited to storage in Chubby. For this reason, BNS
uses Chubby to store mapping between BNS paths and IP address:port pairs.

Monitoring and Alerting

We want to make sure that all services are running as required. Therefore, we run
many instances of our Borgmon monitoring program (see Chapter 10). Borgmon reg-
ularly “scrapes” metrics from monitored servers. These metrics can be used instanta-
neously for alerting and also stored for use in historic overviews (e.g., graphs). We
can use monitoring in several ways:
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o Set up alerting for acute problems.
o Compare behavior: did a software update make the server faster?

» Examine how resource consumption behavior evolves over time, which is essen-
tial for capacity planning.

Our Software Infrastructure

Our software architecture is designed to make the most efficient use of our hardware
infrastructure. Our code is heavily multithreaded, so one task can easily use many
cores. To facilitate dashboards, monitoring, and debugging, every server has an
HTTP server that provides diagnostics and statistics for a given task.

All of Google’s services communicate using a Remote Procedure Call (RPC) infra-
structure named Stubby; an open source version, gRPC, is available.> Often, an RPC
call is made even when a call to a subroutine in the local program needs to be per-
formed. This makes it easier to refactor the call into a different server if more modu-
larity is needed, or when a server’s codebase grows. GSLB can load balance RPCs in
the same way it load balances externally visible services.

A server receives RPC requests from its frontend and sends RPCs to its backend. In
traditional terms, the frontend is called the client and the backend is called the server.

Data is transferred to and from an RPC using protocol buffers,* often abbreviated to
“protobufs,” which are similar to Apache’s Thrift. Protocol buffers have many advan-
tages over XML for serializing structured data: they are simpler to use, 3 to 10 times
smaller, 20 to 100 times faster, and less ambiguous.

Our Development Environment

Development velocity is very important to Google, so we've built a complete develop-
ment environment to make use of our infrastructure [Mor12b].

Apart from a few groups that have their own open source repositories (e.g., Android
and Chrome), Google Software Engineers work from a single shared repository
[Pot16]. This has a few important practical implications for our workflows:

3 See http://grpc.io.

4 Protocol buffers are a language-neutral, platform-neutral extensible mechanism for serializing structured
data. For more details, see https://developers.google.com/protocol-buffers/.
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o If engineers encounter a problem in a component outside of their project, they
can fix the problem, send the proposed changes (“changelist,” or CL) to the
owner for review, and submit the CL to the mainline.

« Changes to source code in an engineer’s own project require a review. All soft-
ware is reviewed before being submitted.

When software is built, the build request is sent to build servers in a datacenter. Even
large builds are executed quickly, as many build servers can compile in parallel. This
infrastructure is also used for continuous testing. Each time a CL is submitted, tests
run on all software that may depend on that CL, either directly or indirectly. If the
framework determines that the change likely broke other parts in the system, it noti-
fies the owner of the submitted change. Some projects use a push-on-green system,
where a new version is automatically pushed to production after passing tests.

Shakespeare: A Sample Service

To provide a model of how a service would hypothetically be deployed in the Google
production environment, let’s look at an example service that interacts with multiple
Google technologies. Suppose we want to offer a service that lets you determine
where a given word is used throughout all of Shakespeare’s works.

We can divide this system into two parts:

o A batch component that reads all of Shakespeare’s texts, creates an index, and
writes the index into a Bigtable. This job need only run once, or perhaps very
infrequently (as you never know if a new text might be discovered!).

« An application frontend that handles end-user requests. This job is always up, as
users in all time zones will want to search in Shakespeare’s books.

The batch component is a MapReduce comprising three phases.

The mapping phase reads Shakespeare’s texts and splits them into individual words.
This is faster if performed in parallel by multiple workers.

The shuffle phase sorts the tuples by word.
In the reduce phase, a tuple of (word, list of locations) is created.

Each tuple is written to a row in a Bigtable, using the word as the key.
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Life of a Request

Figure 2-4 shows how a user’s request is serviced: first, the user points their browser
to shakespeare.google.com. To obtain the corresponding IP address, the user’s device
resolves the address with its DNS server (1). This request ultimately ends up at Goo-
gles DNS server, which talks to GSLB. As GSLB keeps track of traffic load among
frontend servers across regions, it picks which server IP address to send to this user.

Users Q y| GFE O >
(Reverse Proxy)
l

Application
Frontend

y
Google Load o
DNS 5| Balancer Application
Server GSLB Backend

Figure 2-4. The life of a request

The browser connects to the HTTP server on this IP. This server (named the Google
Frontend, or GFE) is a reverse proxy that terminates the TCP connection (2). The
GFE looks up which service is required (web search, maps, or—in this case—Shake-
speare). Again using GSLB, the server finds an available Shakespeare frontend server,
and sends that server an RPC containing the HTML request (3).

The Shakespeare server analyzes the HTML request and constructs a protobuf con-
taining the word to look up. The Shakespeare frontend server now needs to contact
the Shakespeare backend server: the frontend server contacts GSLB to obtain the BNS
address of a suitable and unloaded backend server (4). That Shakespeare backend
server now contacts a Bigtable server to obtain the requested data (5).

The answer is written to the reply protobuf and returned to the Shakespeare backend
server. The backend hands a protobuf containing the results to the Shakespeare
frontend server, which assembles the HTML and returns the answer to the user.

This entire chain of events is executed in the blink of an eye—just a few hundred mil-
liseconds! Because many moving parts are involved, there are many potential points
of failure; in particular, a failing GSLB would wreak havoc. However, Google’s policies
of rigorous testing and careful rollout, in addition to our proactive error recovery
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methods such as graceful degradation, allow us to deliver the reliable service that our
users have come to expect. After all, people regularly use www.google.com to check if
their Internet connection is set up correctly.

Job and Data Organization

Load testing determined that our backend server can handle about 100 queries per
second (QPS). Trials performed with a limited set of users lead us to expect a peak
load of about 3,470 QPS, so we need at least 35 tasks. However, the following consid-
erations mean that we need at least 37 tasks in the job, or N + 2:

 During updates, one task at a time will be unavailable, leaving 36 tasks.

+ A machine fajlure might occur during a task update, leaving only 35 tasks, just
enough to serve peak load.’

A closer examination of user traffic shows our peak usage is distributed globally:
1,430 QPS from North America, 290 from South America, 1,400 from Europe and
Africa, and 350 from Asia and Australia. Instead of locating all backends at one site,
we distribute them across the USA, South America, Europe, and Asia. Allowing for
N + 2 redundancy per region means that we end up with 17 tasks in the USA, 16 in
Europe, and 6 in Asia. However, we decide to use 4 tasks (instead of 5) in South
America, to lower the overhead of N + 2 to N + 1. In this case, we're willing to toler-
ate a small risk of higher latency in exchange for lower hardware costs: if GSLB redi-
rects traffic from one continent to another when our South American datacenter is
over capacity, we can save 20% of the resources wed spend on hardware. In the larger
regions, we'll spread tasks across two or three clusters for extra resiliency.

Because the backends need to contact the Bigtable holding the data, we need to also
design this storage element strategically. A backend in Asia contacting a Bigtable in
the USA adds a significant amount of latency, so we replicate the Bigtable in each
region. Bigtable replication helps us in two ways: it provides resilience should a
Bigtable server fail, and it lowers data-access latency. While Bigtable only offers even-
tual consistency, it isn’t a major problem because we don’t need to update the contents
often.

We've introduced a lot of terminology here; while you don’t need to remember it all,
it’s useful for framing many of the other systems we’ll refer to later.

5 We assume the probability of two simultaneous task failures in our environment is low enough to be negligi-
ble. Single points of failure, such as top-of-rack switches or power distribution, may make this assumption
invalid in other environments.

22 | Chapter2: The Production Environment at Google, from the Viewpoint of an SRE

www.it-ebooks.info


http://www.it-ebooks.info/

PART II
Principles

This section examines the principles underlying how SRE teams typically work—the
patterns, behaviors, and areas of concern that influence the general domain of SRE
operations.

The first chapter in this section, and the most important piece to read if you want to
attain the widest-angle picture of what exactly SRE does, and how we reason about it,
is Chapter 3, Embracing Risk. It looks at SRE through the lens of risk—its assessment,
management, and the use of error budgets to provide usefully neutral approaches to
service management.

Service level objectives are another foundational conceptual unit for SRE. The indus-
try commonly lumps disparate concepts under the general banner of service level
agreements, a tendency that makes it harder to think about these concepts clearly.
Chapter 4, Service Level Objectives, attempts to disentangle indicators from objectives
from agreements, examines how SRE uses each of these terms, and provides some
recommendations on how to find useful metrics for your own applications.

Eliminating toil is one of SRE’s most important tasks, and is the subject of Chapter 5,
Eliminating Toil. We define toil as mundane, repetitive operational work providing no
enduring value, which scales linearly with service growth.

Whether it is at Google or elsewhere, monitoring is an absolutely essential compo-
nent of doing the right thing in production. If you can’t monitor a service, you don’t
know what’s happening, and if you're blind to whats happening, you can’t be reliable.
Read Chapter 6, Monitoring Distributed Systems, for some recommendations for what
and how to monitor, and some implementation-agnostic best practices.
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In Chapter 7, The Evolution of Automation at Google, we examine SRE’s approach to
automation, and walk through some case studies of how SRE has implemented auto-
mation, both successfully and unsuccessfully.

Most companies treat release engineering as an afterthought. However, as you'll learn
in Chapter 8, Release Engineering, release engineering is not just critical to overall sys-
tem stability—as most outages result from pushing a change of some kind. It is also
the best way to ensure that releases are consistent.

A key principle of any effective software engineering, not only reliability-oriented
engineering, simplicity is a quality that, once lost, can be extraordinarily difficult to
recapture. Nevertheless, as the old adage goes, a complex system that works necessar-
ily evolved from a simple system that works. Chapter 9, Simplicity, goes into this topic
in detail.

Further Reading from Google SRE

Increasing product velocity safely is a core principle for any organization. In “Making
Push On Green a Reality” [Klel4], published in October 2014, we show that taking
humans out of the release process can paradoxically reduce SREs’ toil while increasing
system reliability.
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CHAPTER 3
Embracing Risk

Written by Marc Alvidrez
Edited by Kavita Guliani

You might expect Google to try to build 100% reliable services—ones that never fail.
It turns out that past a certain point, however, increasing reliability is worse for a ser-
vice (and its users) rather than better! Extreme reliability comes at a cost: maximizing
stability limits how fast new features can be developed and how quickly products can
be delivered to users, and dramatically increases their cost, which in turn reduces the
numbers of features a team can afford to offer. Further, users typically don’t notice the
difference between high reliability and extreme reliability in a service, because the
user experience is dominated by less reliable components like the cellular network or
the device they are working with. Put simply, a user on a 99% reliable smartphone
cannot tell the difference between 99.99% and 99.999% service reliability! With this
in mind, rather than simply maximizing uptime, Site Reliability Engineering seeks to
balance the risk of unavailability with the goals of rapid innovation and efficient ser-
vice operations, so that users’ overall happiness—with features, service, and perfor-
mance—is optimized.

Managing Risk

Unreliable systems can quickly erode users’ confidence, so we want to reduce the
chance of system failure. However, experience shows that as we build systems, cost
does not increase linearly as reliability increments—an incremental improvement in
reliability may cost 100x more than the previous increment. The costliness has two
dimensions:
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The cost of redundant machine/compute resources
The cost associated with redundant equipment that, for example, allows us to
take systems offline for routine or unforeseen maintenance, or provides space for
us to store parity code blocks that provide a minimum data durability guarantee.

The opportunity cost
The cost borne by an organization when it allocates engineering resources to
build systems or features that diminish risk instead of features that are directly
visible to or usable by end users. These engineers no longer work on new features
and products for end users.

In SRE, we manage service reliability largely by managing risk. We conceptualize risk
as a continuum. We give equal importance to figuring out how to engineer greater
reliability into Google systems and identifying the appropriate level of tolerance for
the services we run. Doing so allows us to perform a cost/benefit analysis to deter-
mine, for example, where on the (nonlinear) risk continuum we should place Search,
Ads, Gmail, or Photos. Our goal is to explicitly align the risk taken by a given service
with the risk the business is willing to bear. We strive to make a service reliable
enough, but no more reliable than it needs to be. That is, when we set an availability
target of 99.99%,we want to exceed it, but not by much: that would waste opportuni-
ties to add features to the system, clean up technical debt, or reduce its operational
costs. In a sense, we view the availability target as both a minimum and a maximum.
The key advantage of this framing is that it unlocks explicit, thoughtful risktaking.

Measuring Service Risk

As standard practice at Google, we are often best served by identifying an objective
metric to represent the property of a system we want to optimize. By setting a target,
we can assess our current performance and track improvements or degradations over
time. For service risk, it is not immediately clear how to reduce all of the potential
factors into a single metric. Service failures can have many potential effects, including
user dissatisfaction, harm, or loss of trust; direct or indirect revenue loss; brand or
reputational impact; and undesirable press coverage. Clearly, some of these factors
are very hard to measure. To make this problem tractable and consistent across many
types of systems we run, we focus on unplanned downtime.

For most services, the most straightforward way of representing risk tolerance is in
terms of the acceptable level of unplanned downtime. Unplanned downtime is cap-
tured by the desired level of service availability, usually expressed in terms of the
number of “nines” we would like to provide: 99.9%, 99.99%, or 99.999% availability.
Each additional nine corresponds to an order of magnitude improvement toward
100% availability. For serving systems, this metric is traditionally calculated based on
the proportion of system uptime (see Equation 3-1).
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Equation 3-1. Time-based availability

uptime
(uptime + downtime)

availability =
Using this formula over the period of a year, we can calculate the acceptable number
of minutes of downtime to reach a given number of nines of availability. For example,
a system with an availability target of 99.99% can be down for up to 52.56 minutes in
a year and stay within its availability target; see Appendix A for a table.

At Google, however, a time-based metric for availability is usually not meaningful
because we are looking across globally distributed services. Our approach to fault iso-
lation makes it very likely that we are serving at least a subset of traffic for a given
service somewhere in the world at any given time (i.e., we are at least partially “up” at
all times). Therefore, instead of using metrics around uptime, we define availability in
terms of the request success rate. Equation 3-2 shows how this yield-based metric is
calculated over a rolling window (i.e., proportion of successful requests over a one-
day window).

Equation 3-2. Aggregate availability

successful requests
total requests

availability =
For example, a system that serves 2.5M requests in a day with a daily availability tar-
get of 99.99% can serve up to 250 errors and still hit its target for that given day.

In a typical application, not all requests are equal: failing a new user sign-up request is
different from failing a request polling for new email in the background. In many
cases, however, availability calculated as the request success rate over all requests is a
reasonable approximation of unplanned downtime, as viewed from the end-user per-
spective.

Quantifying unplanned downtime as a request success rate also makes this availabil-
ity metric more amenable for use in systems that do not typically serve end users
directly. Most nonserving systems (e.g., batch, pipeline, storage, and transactional
systems) have a well-defined notion of successful and unsuccessful units of work.
Indeed, while the systems discussed in this chapter are primarily consumer and infra-
structure serving systems, many of the same principles also apply to nonserving sys-
tems with minimal modification.

For example, a batch process that extracts, transforms, and inserts the contents of one
of our customer databases into a data warehouse to enable further analysis may be set
to run periodically. Using a request success rate defined in terms of records success-
fully and unsuccessfully processed, we can calculate a useful availability metric
despite the fact that the batch system does not run constantly.
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Most often, we set quarterly availability targets for a service and track our perfor-
mance against those targets on a weekly, or even daily, basis. This strategy lets us
manage the service to a high-level availability objective by looking for, tracking down,
and fixing meaningful deviations as they inevitably arise. See Chapter 4 for more
details.

Risk Tolerance of Services

What does it mean to identify the risk tolerance of a service? In a formal environment
or in the case of safety-critical systems, the risk tolerance of services is typically built
directly into the basic product or service definition. At Google, services’ risk tolerance
tends to be less clearly defined.

To identify the risk tolerance of a service, SREs must work with the product owners
to turn a set of business goals into explicit objectives to which we can engineer. In this
case, the business goals were concerned about have a direct impact on the perfor-
mance and reliability of the service offered. In practice, this translation is easier said
than done. While consumer services often have clear product owners, it is unusual
for infrastructure services (e.g., storage systems or a general-purpose HTTP caching
layer) to have a similar structure of product ownership. We'll discuss the consumer
and infrastructure cases in turn.

Identifying the Risk Tolerance of Consumer Services

Our consumer services often have a product team that acts as the business owner for
an application. For example, Search, Google Maps, and Google Docs each have their
own product managers. These product managers are charged with understanding the
users and the business, and for shaping the product for success in the marketplace.
When a product team exists, that team is usually the best resource to discuss the reli-
ability requirements for a service. In the absence of a dedicated product team, the
engineers building the system often play this role either knowingly or unknowingly.

There are many factors to consider when assessing the risk tolerance of services, such
as the following:

o What level of availability is required?
« Do different types of failures have different effects on the service?
« How can we use the service cost to help locate a service on the risk continuum?

o What other service metrics are important to take into account?
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Target level of availability

The target level of availability for a given Google service usually depends on the func-
tion it provides and how the service is positioned in the marketplace. The following
list includes issues to consider:

o What level of service will the users expect?

 Does this service tie directly to revenue (either our revenue, or our customers’
revenue)?

o Is this a paid service, or is it free?

o If there are competitors in the marketplace, what level of service do those com-
petitors provide?

« Is this service targeted at consumers, or at enterprises?

Consider the requirements of Google Apps for Work. The majority of its users are
enterprise users, some large and some small. These enterprises depend on Google
Apps for Work services (e.g., Gmail, Calendar, Drive, Docs) to provide tools that
enable their employees to perform their daily work. Stated another way, an outage for
a Google Apps for Work service is an outage not only for Google, but also for all the
enterprises that critically depend on us. For a typical Google Apps for Work service,
we might set an external quarterly availability target of 99.9%, and back this target
with a stronger internal availability target and a contract that stipulates penalties if we
fail to deliver to the external target.

YouTube provides a contrasting set of considerations. When Google acquired You-
Tube, we had to decide on the appropriate availability target for the website. In 2006,
YouTube was focused on consumers and was in a very different phase of its business
lifecycle than Google was at the time. While YouTube already had a great product, it
was still changing and growing rapidly. We set a lower availability target for YouTube
than for our enterprise products because rapid feature development was correspond-
ingly more important.

Types of failures

The expected shape of failures for a given service is another important consideration.
How resilient is our business to service downtime? Which is worse for the service: a
constant low rate of failures, or an occasional full-site outage? Both types of failure
may result in the same absolute number of errors, but may have vastly different
impacts on the business.

An illustrative example of the difference between full and partial outages naturally
arises in systems that serve private information. Consider a contact management
application, and the difference between intermittent failures that cause profile pic-
tures to fail to render, versus a failure case that results in a user’s private contacts
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being shown to another user. The first case is clearly a poor user experience, and
SREs would work to remediate the problem quickly. In the second case, however, the
risk of exposing private data could easily undermine basic user trust in a significant
way. As a result, taking down the service entirely would be appropriate during the
debugging and potential clean-up phase for the second case.

At the other end of services offered by Google, it is sometimes acceptable to have reg-
ular outages during maintenance windows. A number of years ago, the Ads Frontend
used to be one such service. It is used by advertisers and website publishers to set up,
configure, run, and monitor their advertising campaigns. Because most of this work
takes place during normal business hours, we determined that occasional, regular,
scheduled outages in the form of maintenance windows would be acceptable, and we
counted these scheduled outages as planned downtime, not unplanned downtime.

Cost

Cost is often the key factor in determining the appropriate availability target for a ser-
vice. Ads is in a particularly good position to make this trade-off because request suc-
cesses and failures can be directly translated into revenue gained or lost. In
determining the availability target for each service, we ask questions such as:

o If we were to build and operate these systems at one more nine of availability,
what would our incremental increase in revenue be?

« Does this additional revenue offset the cost of reaching that level of reliability?

To make this trade-off equation more concrete, consider the following cost/benefit
for an example service where each request has equal value:

Proposed improvement in availability target: 99.9% — 99.99%
Proposed increase in availability: 0.09%

Service revenue: $1M

Value of improved availability: $1M * 0.0009 = $900

In this case, if the cost of improving availability by one nine is less than $900, it is
worth the investment. If the cost is greater than $900, the costs will exceed the projec-
ted increase in revenue.

It may be harder to set these targets when we do not have a simple translation func-
tion between reliability and revenue. One useful strategy may be to consider the back-
ground error rate of ISPs on the Internet. If failures are being measured from the
end-user perspective and it is possible to drive the error rate for the service below the
background error rate, those errors will fall within the noise for a given user’s Internet
connection. While there are significant differences between ISPs and protocols (e.g.,
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TCP versus UDP, IPv4 versus IPv6), we've measured the typical background error
rate for ISPs as falling between 0.01% and 1%.

Other service metrics

Examining the risk tolerance of services in relation to metrics besides availability is
often fruitful. Understanding which metrics are important and which metrics aren’t
important provides us with degrees of freedom when attempting to take thoughtful
risks.

Service latency for our Ads systems provides an illustrative example. When Google
first launched Web Search, one of the service’s key distinguishing features was speed.
When we introduced AdWords, which displays advertisements next to search results,
a key requirement of the system was that the ads should not slow down the search
experience. This requirement has driven the engineering goals in each generation of
AdWords systems and is treated as an invariant.

AdSense, Google’s ads system that serves contextual ads in response to requests from
JavaScript code that publishers insert into their websites, has a very different latency
goal. The latency goal for AdSense is to avoid slowing down the rendering of the
third-party page when inserting contextual ads. The specific latency target, then, is
dependent on the speed at which a given publisher’s page renders. This means that

AdSense ads can generally be served hundreds of milliseconds slower than AdWords
ads.

This looser serving latency requirement has allowed us to make many smart trade-
offs in provisioning (i.e., determining the quantity and locations of serving resources
we use), which save us substantial cost over naive provisioning. In other words, given
the relative insensitivity of the AdSense service to moderate changes in latency per-
formance, we are able to consolidate serving into fewer geographical locations, reduc-
ing our operational overhead.

Identifying the Risk Tolerance of Infrastructure Services

The requirements for building and running infrastructure components differ from
the requirements for consumer products in a number of ways. A fundamental differ-
ence is that, by definition, infrastructure components have multiple clients, often with
varying needs.

Target level of availability

Consider Bigtable [Cha06], a massive-scale distributed storage system for structured
data. Some consumer services serve data directly from Bigtable in the path of a user
request. Such services need low latency and high reliability. Other teams use Bigtable
as a repository for data that they use to perform offline analysis (e.g., MapReduce) on
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a regular basis. These teams tend to be more concerned about throughput than relia-
bility. Risk tolerance for these two use cases is quite distinct.

One approach to meeting the needs of both use cases is to engineer all infrastructure
services to be ultra-reliable. Given the fact that these infrastructure services also tend
to aggregate huge amounts of resources, such an approach is usually far too expensive
in practice. To understand the different needs of the different types of users, you can
look at the desired state of the request queue for each type of Bigtable user.

Types of failures

The low-latency user wants Bigtable’s request queues to be (almost always) empty so
that the system can process each outstanding request immediately upon arrival.
(Indeed, inefficient queuing is often a cause of high tail latency.) The user concerned
with offline analysis is more interested in system throughput, so that user wants
request queues to never be empty. To optimize for throughput, the Bigtable system
should never need to idle while waiting for its next request.

As you can see, success and failure are antithetical for these sets of users. Success for
the low-latency user is failure for the user concerned with offline analysis.

Cost

One way to satisfy these competing constraints in a cost-effective manner is to parti-
tion the infrastructure and offer it at multiple independent levels of service. In the
Bigtable example, we can build two types of clusters: low-latency clusters and
throughput clusters. The low-latency clusters are designed to be operated and used by
services that need low latency and high reliability. To ensure short queue lengths and
satisfy more stringent client isolation requirements, the Bigtable system can be provi-
sioned with a substantial amount of slack capacity for reduced contention and
increased redundancy. The throughput clusters, on the other hand, can be provi-
sioned to run very hot and with less redundancy, optimizing throughput over latency.
In practice, we are able to satisfy these relaxed needs at a much lower cost, perhaps as
little as 10-50% of the cost of a low-latency cluster. Given Bigtable’s massive scale, this
cost savings becomes significant very quickly.

The key strategy with regards to infrastructure is to deliver services with explicitly
delineated levels of service, thus enabling the clients to make the right risk and cost
trade-offs when building their systems. With explicitly delineated levels of service, the
infrastructure providers can effectively externalize the difference in the cost it takes to
provide service at a given level to clients. Exposing cost in this way motivates the cli-
ents to choose the level of service with the lowest cost that still meets their needs. For
example, Google+ can decide to put data critical to enforcing user privacy in a high-
availability, globally consistent datastore (e.g., a globally replicated SQL-like system
like Spanner [Corl2]), while putting optional data (data that isn’t critical, but that
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enhances the user experience) in a cheaper, less reliable, less fresh, and eventually
consistent datastore (e.g., a NoSQL store with best-effort replication like Bigtable).

Note that we can run multiple classes of services using identical hardware and soft-
ware. We can provide vastly different service guarantees by adjusting a variety of ser-
vice characteristics, such as the quantities of resources, the degree of redundancy, the
geographical provisioning constraints, and, critically, the infrastructure software
configuration.

Example: Frontend infrastructure

To demonstrate that these risk-tolerance assessment principles do not just apply to
storage infrastructure, let’s look at another large class of service: Google’s frontend
infrastructure. The frontend infrastructure consists of reverse proxy and load balanc-
ing systems running close to the edge of our network. These are the systems that,
among other things, serve as one endpoint of the connections from end users (e.g.,
terminate TCP from the user’s browser). Given their critical role, we engineer these
systems to deliver an extremely high level of reliability. While consumer services can
often limit the visibility of unreliability in backends, these infrastructure systems are
not so lucky. If a request never makes it to the application service frontend server, it is
lost.

We've explored the ways to identify the risk tolerance of both consumer and infra-
structure services. Now, we'll discuss using that tolerance level to manage unreliabil-
ity via error budgets.

Motivation for Error Budgets'

Written by Mark Roth
Edited by Carmela Quinito

Other chapters in this book discuss how tensions can arise between product develop-
ment teams and SRE teams, given that they are generally evaluated on different met-
rics. Product development performance is largely evaluated on product velocity,
which creates an incentive to push new code as quickly as possible. Meanwhile, SRE
performance is (unsurprisingly) evaluated based upon reliability of a service, which
implies an incentive to push back against a high rate of change. Information asymme-
try between the two teams further amplifies this inherent tension. The product devel-
opers have more visibility into the time and effort involved in writing and releasing
their code, while the SREs have more visibility into the service’s reliability (and the
state of production in general).

1 An early version of this section appeared as an article in ;login: (August 2015, vol. 40, no. 4).
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These tensions often reflect themselves in different opinions about the level of effort
that should be put into engineering practices. The following list presents some typical
tensions:

Software fault tolerance
How hardened do we make the software to unexpected events? Too little, and we
have a brittle, unusable product. Too much, and we have a product no one wants
to use (but that runs very stably).

Testing
Again, not enough testing and you have embarrassing outages, privacy data leaks,
or a number of other press-worthy events. Too much testing, and you might lose
your market.

Push frequency
Every push is risky. How much should we work on reducing that risk, versus
doing other work?

Canary duration and size
It’s a best practice to test a new release on some small subset of a typical work-
load, a practice often called canarying. How long do we wait, and how big is the
canary?

Usually, preexisting teams have worked out some kind of informal balance between
them as to where the risk/effort boundary lies. Unfortunately, one can rarely prove
that this balance is optimal, rather than just a function of the negotiating skills of the
engineers involved. Nor should such decisions be driven by politics, fear, or hope.
(Indeed, Google SRE’s unofficial motto is “Hope is not a strategy.”) Instead, our goal
is to define an objective metric, agreed upon by both sides, that can be used to guide
the negotiations in a reproducible way. The more data-based the decision can be, the
better.

Forming Your Error Budget

In order to base these decisions on objective data, the two teams jointly define a quar-
terly error budget based on the service’s service level objective, or SLO (see Chap-
ter 4). The error budget provides a clear, objective metric that determines how
unreliable the service is allowed to be within a single quarter. This metric removes the
politics from negotiations between the SREs and the product developers when decid-
ing how much risk to allow.

Our practice is then as follows:

o Product Management defines an SLO, which sets an expectation of how much
uptime the service should have per quarter.
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o The actual uptime is measured by a neutral third party: our monitoring system.

« The difference between these two numbers is the “budget” of how much “unreli-
ability” is remaining for the quarter.

+ As long as the uptime measured is above the SLO—in other words, as long as
there is error budget remaining—new releases can be pushed.

For example, imagine that a service’s SLO is to successfully serve 99.999% of all quer-
ies per quarter. This means that the service’s error budget is a failure rate of 0.001%
for a given quarter. If a problem causes us to fail 0.0002% of the expected queries for
the quarter, the problem spends 20% of the service’s quarterly error budget.

Benefits

The main benefit of an error budget is that it provides a common incentive that
allows both product development and SRE to focus on finding the right balance
between innovation and reliability.

Many products use this control loop to manage release velocity: as long as the sys-
tem’s SLOs are met, releases can continue. If SLO violations occur frequently enough
to expend the error budget, releases are temporarily halted while additional resources
are invested in system testing and development to make the system more resilient,
improve its performance, and so on. More subtle and effective approaches are avail-
able than this simple on/off technique:* for instance, slowing down releases or rolling
them back when the SLO-violation error budget is close to being used up.

For example, if product development wants to skimp on testing or increase push
velocity and SRE is resistant, the error budget guides the decision. When the budget
is large, the product developers can take more risks. When the budget is nearly
drained, the product developers themselves will push for more testing or slower push
velocity, as they don’t want to risk using up the budget and stall their launch. In effect,
the product development team becomes self-policing. They know the budget and can
manage their own risk. (Of course, this outcome relies on an SRE team having the
authority to actually stop launches if the SLO is broken.)

What happens if a network outage or datacenter failure reduces the measured SLO?
Such events also eat into the error budget. As a result, the number of new pushes may
be reduced for the remainder of the quarter. The entire team supports this reduction
because everyone shares the responsibility for uptime.

The budget also helps to highlight some of the costs of overly high reliability targets,
in terms of both inflexibility and slow innovation. If the team is having trouble

2 Known as “bang/bang” control—see https://en.wikipedia.org/wiki/Bang-bang_control.
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launching new features, they may elect to loosen the SLO (thus increasing the error
budget) in order to increase innovation.

Key Insights

» Managing service reliability is largely about managing risk, and managing risk
can be costly.

o 100% is probably never the right reliability target: not only is it impossible to
achieve, it’s typically more reliability than a service’s users want or notice. Match
the profile of the service to the risk the business is willing to take.

o An error budget aligns incentives and emphasizes joint ownership between SRE
and product development. Error budgets make it easier to decide the rate of
releases and to effectively defuse discussions about outages with stakeholders,
and allows multiple teams to reach the same conclusion about production risk
without rancor.
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CHAPTER 4
Service Level Objectives

Written by Chris Jones, John Wilkes, and Niall Murphy
with Cody Smith
Edited by Betsy Beyer

It's impossible to manage a service correctly, let alone well, without understanding
which behaviors really matter for that service and how to measure and evaluate those
behaviors. To this end, we would like to define and deliver a given level of service to
our users, whether they use an internal API or a public product.

We use intuition, experience, and an understanding of what users want to define ser-
vice level indicators (SLIs), objectives (SLOs), and agreements (SLAs). These measure-
ments describe basic properties of metrics that matter, what values we want those
metrics to have, and how we'll react if we can’t provide the expected service. Ulti-
mately, choosing appropriate metrics helps to drive the right action if something goes
wrong, and also gives an SRE team confidence that a service is healthy.

This chapter describes the framework we use to wrestle with the problems of metric
modeling, metric selection, and metric analysis. Much of this explanation would be
quite abstract without an example, so we'll use the Shakespeare service outlined in
“Shakespeare: A Sample Service” on page 20 to illustrate our main points.

Service Level Terminology

Many readers are likely familiar with the concept of an SLA, but the terms SLI and
SLO are also worth careful definition, because in common use, the term SLA is over-
loaded and has taken on a number of meanings depending on context. We prefer to
separate those meanings for clarity.
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Indicators

An SLI is a service level indicator—a carefully defined quantitative measure of some
aspect of the level of service that is provided.

Most services consider request latency—how long it takes to return a response to a
request—as a key SLI. Other common SLIs include the error rate, often expressed as a
fraction of all requests received, and system throughput, typically measured in
requests per second. The measurements are often aggregated: i.e., raw data is collec-
ted over a measurement window and then turned into a rate, average, or percentile.

Ideally, the SLI directly measures a service level of interest, but sometimes only a
proxy is available because the desired measure may be hard to obtain or interpret. For
example, client-side latency is often the more user-relevant metric, but it might only
be possible to measure latency at the server.

Another kind of SLI important to SREs is availability, or the fraction of the time that
a service is usable. It is often defined in terms of the fraction of well-formed requests
that succeed, sometimes called yield. (Durability—the likelihood that data will be
retained over a long period of time—is equally important for data storage systems.)
Although 100% availability is impossible, near-100% availability is often readily ach-
ievable, and the industry commonly expresses high-availability values in terms of the
number of “nines” in the availability percentage. For example, availabilities of 99%
and 99.999% can be referred to as “2 nines” and “5 nines” availability, respectively,
and the current published target for Google Compute Engine availability is “three and
a half nines”—99.95% availability.

Objectives

An SLO is a service level objective: a target value or range of values for a service level
that is measured by an SLI. A natural structure for SLOs is thus SLI < target or lower
bound < SLI < upper bound. For example, we might decide that we will return Shake-
speare search results “quickly;” adopting an SLO that our average search request
latency should be less than 100 milliseconds.

Choosing an appropriate SLO is complex. To begin with, you don’t always get to
choose its value! For incoming HTTP requests from the outside world to your ser-
vice, the queries per second (QPS) metric is essentially determined by the desires of
your users, and you can't really set an SLO for that.

On the other hand, you can say that you want the average latency per request to be
under 100 milliseconds, and setting such a goal could in turn motivate you to write
your frontend with low-latency behaviors of various kinds or to buy certain kinds of
low-latency equipment. (100 milliseconds is obviously an arbitrary value, but in gen-
eral lower latency numbers are good. There are excellent reasons to believe that fast is
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better than slow, and that user-experienced latency above certain values actually
drives people away— see “Speed Matters” [Bru09] for more details.)

Again, this is more subtle than it might at first appear, in that those two SLIs—QPS
and latency—might be connected behind the scenes: higher QPS often leads to larger
latencies, and it's common for services to have a performance cliff beyond some load
threshold.

Choosing and publishing SLOs to users sets expectations about how a service will
perform. This strategy can reduce unfounded complaints to service owners about, for
example, the service being slow. Without an explicit SLO, users often develop their
own beliefs about desired performance, which may be unrelated to the beliefs held by
the people designing and operating the service. This dynamic can lead to both over-
reliance on the service, when users incorrectly believe that a service will be more
available than it actually is (as happened with Chubby: see “The Global Chubby Plan-
ned Outage”), and under-reliance, when prospective users believe a system is flakier
and less reliable than it actually is.

The Global Chubby Planned Outage
Written by Marc Alvidrez

Chubby [Bur06] is Google’s lock service for loosely coupled distributed systems. In
the global case, we distribute Chubby instances such that each replica is in a different
geographical region. Over time, we found that the failures of the global instance of
Chubby consistently generated service outages, many of which were visible to end
users. As it turns out, true global Chubby outages are so infrequent that service own-
ers began to add dependencies to Chubby assuming that it would never go down. Its
high reliability provided a false sense of security because the services could not func-
tion appropriately when Chubby was unavailable, however rarely that occurred.

The solution to this Chubby scenario is interesting: SRE makes sure that global
Chubby meets, but does not significantly exceed, its service level objective. In any
given quarter, if a true failure has not dropped availability below the target, a con-
trolled outage will be synthesized by intentionally taking down the system. In this
way, we are able to flush out unreasonable dependencies on Chubby shortly after they
are added. Doing so forces service owners to reckon with the reality of distributed
systems sooner rather than later.

Agreements

Finally, SLAs are service level agreements: an explicit or implicit contract with your
users that includes consequences of meeting (or missing) the SLOs they contain. The
consequences are most easily recognized when they are financial—a rebate or a pen-
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alty—but they can take other forms. An easy way to tell the difference between an
SLO and an SLA is to ask “what happens if the SLOs aren’t met?”: if there is no
explicit consequence, then you are almost certainly looking at an SLO.!

SRE doesn't typically get involved in constructing SLAs, because SLAs are closely tied
to business and product decisions. SRE does, however, get involved in helping to
avoid triggering the consequences of missed SLOs. They can also help to define the
SLIs: there obviously needs to be an objective way to measure the SLOs in the agree-
ment, or disagreements will arise.

Google Search is an example of an important service that doesn’t have an SLA for the
public: we want everyone to use Search as fluidly and efficiently as possible, but we
haven’t signed a contract with the whole world. Even so, there are still consequences if
Search isn’t available—unavailability results in a hit to our reputation, as well as a
drop in advertising revenue. Many other Google services, such as Google for Work,
do have explicit SLAs with their users. Whether or not a particular service has an
SLA, it’s valuable to define SLIs and SLOs and use them to manage the service.

So much for the theory—now for the experience.

Indicators in Practice

Given that we've made the case for why choosing appropriate metrics to measure
your service is important, how do you go about identifying what metrics are mean-
ingful to your service or system?

What Do You and Your Users Care About?

You shouldn’t use every metric you can track in your monitoring system as an SLI; an
understanding of what your users want from the system will inform the judicious
selection of a few indicators. Choosing too many indicators makes it hard to pay the
right level of attention to the indicators that matter, while choosing too few may leave
significant behaviors of your system unexamined. We typically find that a handful of
representative indicators are enough to evaluate and reason about a system’s health.

1 Most people really mean SLO when they say “SLA” One giveaway: if somebody talks about an “SLA viola-
tion,” they are almost always talking about a missed SLO. A real SLA violation might trigger a court case for
breach of contract.
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Services tend to fall into a few broad categories in terms of the SLIs they find relevant:

o User-facing serving systems, such as the Shakespeare search frontends, generally
care about availability, latency, and throughput. In other words: Could we
respond to the request? How long did it take to respond? How many requests
could be handled?

o Storage systems often emphasize latency, availability, and durability. In other
words: How long does it take to read or write data? Can we access the data on
demand? Is the data still there when we need it? See Chapter 26 for an extended
discussion of these issues.

« Big data systems, such as data processing pipelines, tend to care about throughput
and end-to-end latency. In other words: How much data is being processed? How
long does it take the data to progress from ingestion to completion? (Some pipe-
lines may also have targets for latency on individual processing stages.)

« All systems should care about correctness: was the right answer returned, the
right data retrieved, the right analysis done? Correctness is important to track as
an indicator of system health, even though it’s often a property of the data in the
system rather than the infrastructure per se, and so usually not an SRE responsi-
bility to meet.

Collecting Indicators

Many indicator metrics are most naturally gathered on the server side, using a moni-
toring system such as Borgmon (see Chapter 10) or Prometheus, or with periodic log
analysis—for instance, HTTP 500 responses as a fraction of all requests. However,
some systems should be instrumented with client-side collection, because not meas-
uring behavior at the client can miss a range of problems that affect users but don’t
affect server-side metrics. For example, concentrating on the response latency of the
Shakespeare search backend might miss poor user latency due to problems with the
page’s JavaScript: in this case, measuring how long it takes for a page to become usa-
ble in the browser is a better proxy for what the user actually experiences.

Aggregation

For simplicity and usability, we often aggregate raw measurements. This needs to be
done carefully.

Some metrics are seemingly straightforward, like the number of requests per second
served, but even this apparently straightforward measurement implicitly aggregates
data over the measurement window. Is the measurement obtained once a second, or
by averaging requests over a minute? The latter may hide much higher instantaneous
request rates in bursts that last for only a few seconds. Consider a system that serves
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200 requests/s in even-numbered seconds, and 0 in the others. It has the same average
load as one that serves a constant 100 requests/s, but has an instantaneous load that is
twice as large as the average one. Similarly, averaging request latencies may seem
attractive, but obscures an important detail: it's entirely possible for most of the
requests to be fast, but for a long tail of requests to be much, much slower.

Most metrics are better thought of as distributions rather than averages. For example,
for a latency SLI, some requests will be serviced quickly, while others will invariably
take longer—sometimes much longer. A simple average can obscure these tail laten-
cies, as well as changes in them. Figure 4-1 provides an example: although a typical
request is served in about 50 ms, 5% of requests are 20 times slower! Monitoring and
alerting based only on the average latency would show no change in behavior over
the course of the day, when there are in fact significant changes in the tail latency (the
topmost line).

milliseconds

08:00 08:30 09:00 09:30 10:00 10:30 11:00 11:30

Figure 4-1. 50th, 85th, 95th, and 99th percentile latencies for a system. Note that the Y-
axis has a logarithmic scale.

Using percentiles for indicators allows you to consider the shape of the distribution
and its differing attributes: a high-order percentile, such as the 99th or 99.9th, shows
you a plausible worst-case value, while using the 50th percentile (also known as the
median) emphasizes the typical case. The higher the variance in response times, the
more the typical user experience is affected by long-tail behavior, an effect exacerba-
ted at high load by queuing effects. User studies have shown that people typically pre-
fer a slightly slower system to one with high variance in response time, so some SRE
teams focus only on high percentile values, on the grounds that if the 99.9th percen-
tile behavior is good, then the typical experience is certainly going to be.
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A Note on Statistical Fallacies

We generally prefer to work with percentiles rather than the mean (arithmetic aver-
age) of a set of values. Doing so makes it possible to consider the long tail of data
points, which often have significantly different (and more interesting) characteristics
than the average. Because of the artificial nature of computing systems, data points
are often skewed—for instance, no request can have a response in less than 0 ms, and
a timeout at 1,000 ms means that there can be no successful responses with values
greater than the timeout. As a result, we cannot assume that the mean and the median
are the same—or even close to each other!

We try not to assume that our data is normally distributed without verifying it first, in
case some standard intuitions and approximations don’t hold. For example, if the dis-
tribution is not what’s expected, a process that takes action when it sees outliers (e.g.,
restarting a server with high request latencies) may do this too often, or not often
enough.

Standardize Indicators

We recommend that you standardize on common definitions for SLIs so that you
don’t have to reason about them from first principles each time. Any feature that con-
forms to the standard definition templates can be omitted from the specification of
an individual SLI, e.g.:

« Aggregation intervals: “Averaged over 1 minute”

o Aggregation regions: “All the tasks in a cluster”

« How frequently measurements are made: “Every 10 seconds”

o Which requests are included: “HTTP GETs from black-box monitoring jobs”
» How the data is acquired: “Through our monitoring, measured at the server”

« Data-access latency: “Time to last byte”

To save effort, build a set of reusable SLI templates for each common metric; these
also make it simpler for everyone to understand what a specific SLI means.

Objectives in Practice

Start by thinking about (or finding out!) what your users care about, not what you
can measure. Often, what your users care about is difficult or impossible to measure,
so you'll end up approximating users’ needs in some way. However, if you simply start
with what’s easy to measure, you'll end up with less useful SLOs. As a result, we've
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sometimes found that working from desired objectives backward to specific indica-
tors works better than choosing indicators and then coming up with targets.

Defining Objectives

For maximum clarity, SLOs should specify how they’re measured and the conditions
under which they’re valid. For instance, we might say the following (the second line is
the same as the first, but relies on the SLI defaults of the previous section to remove
redundancy):

o 99% (averaged over 1 minute) of Get RPC calls will complete in less than 100 ms
(measured across all the backend servers).

» 99% of Get RPC calls will complete in less than 100 ms.

If the shape of the performance curves are important, then you can specify multiple
SLO targets:

e 90% of Get RPC calls will complete in less than 1 ms.
* 99% of Get RPC calls will complete in less than 10 ms.
e 99.9% of Get RPC calls will complete in less than 100 ms.

If you have users with heterogeneous workloads such as a bulk processing pipeline
that cares about throughput and an interactive client that cares about latency, it may
be appropriate to define separate objectives for each class of workload:

o 95% of throughput clients’ Set RPC calls will complete in < 1 s.

e 99% of latency clients’ Set RPC calls with payloads < 1 kB will complete in < 10
ms.

It’s both unrealistic and undesirable to insist that SLOs will be met 100% of the time:
doing so can reduce the rate of innovation and deployment, require expensive, overly
conservative solutions, or both. Instead, it is better to allow an error budget—a rate at
which the SLOs can be missed—and track that on a daily or weekly basis. Upper
management will probably want a monthly or quarterly assessment, too. (An error
budget is just an SLO for meeting other SLOs!)

The rate at which SLOs are missed is a useful indicator for the user-perceived health
of the service. It is helpful to track SLOs (and SLO violations) on a daily or weekly
basis to see trends and get early warning of potential problems before they happen.
Upper management will probably want a monthly or quarterly assessment, too.
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The SLO violation rate can be compared against the error budget (see “Motivation for
Error Budgets” on page 33), with the gap used as an input to the process that decides
when to roll out new releases.

Choosing Targets

Choosing targets (SLOs) is not a purely technical activity because of the product and
business implications, which should be reflected in both the SLIs and SLOs (and
maybe SLAs) that are selected. Similarly, it may be necessary to trade off certain prod-
uct attributes against others within the constraints posed by staffing, time to market,
hardware availability, and funding. While SRE should be part of this conversation,
and advise on the risks and viability of different options, we've learned a few lessons
that can help make this a more productive discussion:

Don't pick a target based on current performance
While understanding the merits and limits of a system is essential, adopting val-
ues without reflection may lock you into supporting a system that requires heroic
efforts to meet its targets, and that cannot be improved without significant
redesign.

Keep it simple
Complicated aggregations in SLIs can obscure changes to system performance,
and are also harder to reason about.

Avoid absolutes
While it’s tempting to ask for a system that can scale its load “infinitely” without
any latency increase and that is “always” available, this requirement is unrealistic.
Even a system that approaches such ideals will probably take a long time to
design and build, and will be expensive to operate—and probably turn out to be
unnecessarily better than what users would be happy (or even delighted) to have.

Have as few SLOs as possible
Choose just enough SLOs to provide good coverage of your system’s attributes.
Defend the SLOs you pick: if you can’t ever win a conversation about priorities by
quoting a particular SLO, it’s probably not worth having that SLO.? However, not
all product attributes are amenable to SLOs: it's hard to specify “user delight”
with an SLO.

Perfection can wait
You can always refine SLO definitions and targets over time as you learn about a
system’s behavior. It’s better to start with a loose target that you tighten than to

2 If you can’t ever win a conversation about SLOs, it’s probably not worth having an SRE team for the product.
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choose an overly strict target that has to be relaxed when you discover it’s unat-
tainable.

SLOs can—and should—be a major driver in prioritizing work for SREs and product
developers, because they reflect what users care about. A good SLO is a helpful, legiti-
mate forcing function for a development team. But a poorly thought-out SLO can
result in wasted work if a team uses heroic efforts to meet an overly aggressive SLO,
or a bad product if the SLO is too lax. SLOs are a massive lever: use them wisely.

Control Measures

SLIs and SLOs are crucial elements in the control loops used to manage systems:

1. Monitor and measure the system’s SLIs.
2. Compare the SLIs to the SLOs, and decide whether or not action is needed.
3. If action is needed, figure out what needs to happen in order to meet the target.

4. Take that action.

For example, if step 2 shows that request latency is increasing, and will miss the SLO
in a few hours unless something is done, step 3 might include testing the hypothesis
that the servers are CPU-bound, and deciding to add more of them to spread the
load. Without the SLO, you wouldn’t know whether (or when) to take action.

SLOs Set Expectations

Publishing SLOs sets expectations for system behavior. Users (and potential users)
often want to know what they can expect from a service in order to understand
whether it's appropriate for their use case. For instance, a team wanting to build a
photo-sharing website might want to avoid using a service that promises very strong
durability and low cost in exchange for slightly lower availability, though the same
service might be a perfect fit for an archival records management system.

In order to set realistic expectations for your users, you might consider using one or
both of the following tactics:

Keep a safety margin
Using a tighter internal SLO than the SLO advertised to users gives you room to
respond to chronic problems before they become visible externally. An SLO
buffer also makes it possible to accommodate reimplementations that trade per-
formance for other attributes, such as cost or ease of maintenance, without hav-
ing to disappoint users.
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Don’t overachieve

Users build on the reality of what you offer, rather than what you say you’ll sup-
ply, particularly for infrastructure services. If your service’s actual performance is
much better than its stated SLO, users will come to rely on its current perfor-
mance. You can avoid over-dependence by deliberately taking the system offline
occasionally (Google’s Chubby service introduced planned outages in response to
being overly available),’ throttling some requests, or designing the system so that
it isn't faster under light loads.

Understanding how well a system is meeting its expectations helps decide whether to
invest in making the system faster, more available, and more resilient. Alternatively, if
the service is doing fine, perhaps staff time should be spent on other priorities, such
as paying off technical debt, adding new features, or introducing other products.

Agreements in Practice

Crafting an SLA requires business and legal teams to pick appropriate consequences
and penalties for a breach. SRE’s role is to help them understand the likelihood and
difficulty of meeting the SLOs contained in the SLA. Much of the advice on SLO con-
struction is also applicable for SLAs. It is wise to be conservative in what you adver-
tise to users, as the broader the constituency, the harder it is to change or delete SLAs
that prove to be unwise or difficult to work with.

3 Failure injection [Ben12] serves a different purpose, but can also help set expectations.
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CHAPTER 5
Eliminating Toil

Written by Vivek Rau
Edited by Betsy Beyer

If a human operator needs to touch your system during normal operations, you have a bug.
The definition of normal changes as your systems grow.

—Carla Geisser, Google SRE

In SRE, we want to spend time on long-term engineering project work instead of
operational work. Because the term operational work may be misinterpreted, we use a
specific word: toil.

Toil Defined

Toil is not just “work I don’t like to do.” It’s also not simply equivalent to administra-
tive chores or grungy work. Preferences as to what types of work are satisfying and
enjoyable vary from person to person, and some people even enjoy manual, repetitive
work. There are also administrative chores that have to get done, but should not be
categorized as toil: this is overhead. Overhead is often work not directly tied to run-
ning a production service, and includes tasks like team meetings, setting and grading
goals,' snippets,> and HR paperwork. Grungy work can sometimes have long-term
value, and in that case, it’s not toil, either. Cleaning up the entire alerting configura-
tion for your service and removing clutter may be grungy, but it’s not toil.

So what is toil? Toil is the kind of work tied to running a production service that
tends to be manual, repetitive, automatable, tactical, devoid of enduring value, and

1 We use the Objectives and Key Results system, pioneered by Andy Grove at Intel; see [Klal2].

2 Googlers record short free-form summaries, or “snippets,” of what we've worked on each week.
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that scales linearly as a service grows. Not every task deemed toil has all these
attributes, but the more closely work matches one or more of the following descrip-
tions, the more likely it is to be toil:

Manual
This includes work such as manually running a script that automates some task.
Running a script may be quicker than manually executing each step in the script,
but the hands-on time a human spends running that script (not the elapsed time)
is still toil time.

Repetitive
If youre performing a task for the first time ever, or even the second time, this
work is not toil. Toil is work you do over and over. If you're solving a novel prob-
lem or inventing a new solution, this work is not toil.

Automatable
If a machine could accomplish the task just as well as a human, or the need for
the task could be designed away, that task is toil. If human judgment is essential
for the task, there’s a good chance it’s not toil.?

Tactical
Toil is interrupt-driven and reactive, rather than strategy-driven and proactive.
Handling pager alerts is toil. We may never be able to eliminate this type of work
completely, but we have to continually work toward minimizing it.

No enduring value
If your service remains in the same state after you have finished a task, the task
was probably toil. If the task produced a permanent improvement in your ser-
vice, it probably wasn’t toil, even if some amount of grunt work—such as digging
into legacy code and configurations and straightening them out—was involved.

O(n) with service growth
If the work involved in a task scales up linearly with service size, traffic volume,
or user count, that task is probably toil. An ideally managed and designed service
can grow by at least one order of magnitude with zero additional work, other
than some one-time efforts to add resources.

3 We have to be careful about saying a task is “not toil because it needs human judgment” We need to think
carefully about whether the nature of the task intrinsically requires human judgment and cannot be addressed
by better design. For example, one could build (and some have built) a service that alerts its SREs several
times a day, where each alert requires a complex response involving plenty of human judgment. Such a service
is poorly designed, with unnecessary complexity. The system needs to be simplified and rebuilt to either elim-
inate the underlying failure conditions or deal with these conditions automatically. Until the redesign and
reimplementation are finished, and the improved service is rolled out, the work of applying human judgment
to respond to each alert is definitely toil.
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Why Less Toil Is Better

Our SRE organization has an advertised goal of keeping operational work (i.e., toil)
below 50% of each SRE’s time. At least 50% of each SRE’s time should be spent on
engineering project work that will either reduce future toil or add service features.
Feature development typically focuses on improving reliability, performance, or uti-
lization, which often reduces toil as a second-order effect.

We share this 50% goal because toil tends to expand if left unchecked and can quickly
fill 100% of everyone’s time. The work of reducing toil and scaling up services is the
“Engineering” in Site Reliability Engineering. Engineering work is what enables the
SRE organization to scale up sublinearly with service size and to manage services
more efficiently than either a pure Dev team or a pure Ops team.

Furthermore, when we hire new SREs, we promise them that SRE is not a typical Ops
organization, quoting the 50% rule just mentioned. We need to keep that promise by
not allowing the SRE organization or any subteam within it to devolve into an Ops
team.

Calculating Toil

If we seek to cap the time an SRE spends on toil to 50%, how is that time spent?

There’s a floor on the amount of toil any SRE has to handle if they are on-call. A typi-
cal SRE has one week of primary on-call and one week of secondary on-call in each
cycle (for discussion of primary versus secondary on-call shifts, see Chapter 11). It
follows that in a 6-person rotation, at least 2 of every 6 weeks are dedicated to on-call
shifts and interrupt handling, which means the lower bound on potential toil is 2/6 =
33% of an SRE’s time. In an 8-person rotation, the lower bound is 2/8 = 25%.

Consistent with this data, SREs report that their top source of toil is interrupts (that
is, non-urgent service-related messages and emails). The next leading source is on-
call (urgent) response, followed by releases and pushes. Even though our release and
push processes are usually handled with a fair amount of automation, there’s still
plenty of room for improvement in this area.

Quarterly surveys of Google’s SREs show that the average time spent toiling is about
33%, so we do much better than our overall target of 50%. However, the average
doesn’t capture outliers: some SREs claim 0% toil (pure development projects with no
on-call work) and others claim 80% toil. When individual SREs report excessive toil,
it often indicates a need for managers to spread the toil load more evenly across the
team and to encourage those SREs to find satistying engineering projects.
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What Qualifies as Engineering?

Engineering work is novel and intrinsically requires human judgment. It produces a
permanent improvement in your service, and is guided by a strategy. It is frequently
creative and innovative, taking a design-driven approach to solving a problem—the
more generalized, the better. Engineering work helps your team or the SRE organiza-
tion handle a larger service, or more services, with the same level of staffing.

Typical SRE activities fall into the following approximate categories:

Software engineering
Involves writing or modifying code, in addition to any associated design and
documentation work. Examples include writing automation scripts, creating
tools or frameworks, adding service features for scalability and reliability, or
modifying infrastructure code to make it more robust.

Systems engineering
Involves configuring production systems, modifying configurations, or docu-
menting systems in a way that produces lasting improvements from a one-time
effort. Examples include monitoring setup and updates, load balancing configu-
ration, server configuration, tuning of OS parameters, and load balancer setup.
Systems engineering also includes consulting on architecture, design, and pro-
ductionization for developer teams.

Toil
Work directly tied to running a service that is repetitive, manual, etc.

Overhead
Administrative work not tied directly to running a service. Examples include hir-
ing, HR paperwork, team/company meetings, bug queue hygiene, snippets, peer
reviews and self-assessments, and training courses.

Every SRE needs to spend at least 50% of their time on engineering work, when aver-
aged over a few quarters or a year. Toil tends to be spiky, so a steady 50% of time
spent on engineering may not be realistic for some SRE teams, and they may dip
below that target in some quarters. But if the fraction of time spent on projects aver-
ages significantly below 50% over the long haul, the affected team needs to step back
and figure out what’s wrong.

Is Toil Always Bad?

Toil doesn’t make everyone unhappy all the time, especially in small amounts. Pre-
dictable and repetitive tasks can be quite calming. They produce a sense of accom-
plishment and quick wins. They can be low-risk and low-stress activities. Some
people gravitate toward tasks involving toil and may even enjoy that type of work.
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Toil isn’t always and invariably bad, and everyone needs to be absolutely clear that
some amount of toil is unavoidable in the SRE role, and indeed in almost any engi-
neering role. It’s fine in small doses, and if you're happy with those small doses, toil is
not a problem. Toil becomes toxic when experienced in large quantities. If youre bur-
dened with too much toil, you should be very concerned and complain loudly.
Among the many reasons why too much toil is bad, consider the following:

Career stagnation
Your career progress will slow down or grind to a halt if you spend too little time
on projects. Google rewards grungy work when it’s inevitable and has a big posi-
tive impact, but you can’t make a career out of grunge.

Low morale
People have different limits for how much toil they can tolerate, but everyone has
a limit. Too much toil leads to burnout, boredom, and discontent.

Additionally, spending too much time on toil at the expense of time spent engineer-
ing hurts an SRE organization in the following ways:

Creates confusion
We work hard to ensure that everyone who works in or with the SRE organiza-
tion understands that we are an engineering organization. Individuals or teams
within SRE that engage in too much toil undermine the clarity of that communi-
cation and confuse people about our role.

Slows progress
Excessive toil makes a team less productive. A product’s feature velocity will slow
if the SRE team is too busy with manual work and firefighting to roll out new
features promptly.

Sets precedent
If youre too willing to take on toil, your Dev counterparts will have incentives to
load you down with even more toil, sometimes shifting operational tasks that
should rightfully be performed by Devs to SRE. Other teams may also start
expecting SREs to take on such work, which is bad for obvious reasons.

Promotes attrition
Even if youre not personally unhappy with toil, your current or future team-
mates might like it much less. If you build too much toil into your team’s proce-
dures, you motivate the team’s best engineers to start looking elsewhere for a
more rewarding job.

Causes breach of faith
New hires or transfers who joined SRE with the promise of project work will feel
cheated, which is bad for morale.
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Conclusion

If we all commit to eliminate a bit of toil each week with some good engineering, we'll
steadily clean up our services, and we can shift our collective efforts to engineering
for scale, architecting the next generation of services, and building cross-SRE tool-
chains. Let’s invent more, and toil less.
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CHAPTER 6
Monitoring Distributed Systems

Written by Rob Ewaschuk
Edited by Betsy Beyer

Google’s SRE teams have some basic principles and best practices for building suc-
cessful monitoring and alerting systems. This chapter offers guidelines for what issues
should interrupt a human via a page, and how to deal with issues that aren’t serious
enough to trigger a page.

Definitions

There’s no uniformly shared vocabulary for discussing all topics related to monitor-
ing. Even within Google, usage of the following terms varies, but the most common
interpretations are listed here.

Monitoring
Collecting, processing, aggregating, and displaying real-time quantitative data
about a system, such as query counts and types, error counts and types, process-
ing times, and server lifetimes.

White-box monitoring
Monitoring based on metrics exposed by the internals of the system, including
logs, interfaces like the Java Virtual Machine Profiling Interface, or an HTTP
handler that emits internal statistics.

Black-box monitoring
Testing externally visible behavior as a user would see it.

Dashboard
An application (usually web-based) that provides a summary view of a service’s
core metrics. A dashboard may have filters, selectors, and so on, but is prebuilt to
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expose the metrics most important to its users. The dashboard might also display
team information such as ticket queue length, a list of high-priority bugs, the
current on-call engineer for a given area of responsibility, or recent pushes.

Alert
A notification intended to be read by a human and that is pushed to a system
such as a bug or ticket queue, an email alias, or a pager. Respectively, these alerts
are classified as tickets, email alerts,' and pages.

Root cause
A defect in a software or human system that, if repaired, instills confidence that
this event won’t happen again in the same way. A given incident might have mul-
tiple root causes: for example, perhaps it was caused by a combination of insuffi-
cient process automation, software that crashed on bogus input, and insufficient
testing of the script used to generate the configuration. Each of these factors
might stand alone as a root cause, and each should be repaired.

Node and machine
Used interchangeably to indicate a single instance of a running kernel in either a
physical server, virtual machine, or container. There might be multiple services
worth monitoring on a single machine. The services may either be:

« Related to each other: for example, a caching server and a web server
o Unrelated services sharing hardware: for example, a code repository and a
master for a configuration system like Puppet or Chef

Push
Any change to a service’s running software or its configuration.

Why Monitor?

There are many reasons to monitor a system, including:

Analyzing long-term trends
How big is my database and how fast is it growing? How quickly is my daily-
active user count growing?

Comparing over time or experiment groups
Are queries faster with Acme Bucket of Bytes 2.72 versus Ajax DB 3.14? How
much better is my memcache hit rate with an extra node? Is my site slower than
it was last week?

1 Sometimes known as “alert spam,” as they are rarely read or acted on.
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Alerting
Something is broken, and somebody needs to fix it right now! Or, something
might break soon, so somebody should look soon.

Building dashboards
Dashboards should answer basic questions about your service, and normally
include some form of the four golden signals (discussed in “The Four Golden
Signals” on page 60).

Conducting ad hoc retrospective analysis (i.e., debugging)
Our latency just shot up; what else happened around the same time?

System monitoring is also helpful in supplying raw input into business analytics and
in facilitating analysis of security breaches. Because this book focuses on the engi-
neering domains in which SRE has particular expertise, we won't discuss these appli-
cations of monitoring here.

Monitoring and alerting enables a system to tell us when it’s broken, or perhaps to tell
us whats about to break. When the system isn't able to automatically fix itself, we
want a human to investigate the alert, determine if there’s a real problem at hand, mit-
igate the problem, and determine the root cause of the problem. Unless you're per-
forming security auditing on very narrowly scoped components of a system, you
should never trigger an alert simply because “something seems a bit weird.”

Paging a human is a quite expensive use of an employee’s time. If an employee is at
work, a page interrupts their workflow. If the employee is at home, a page interrupts
their personal time, and perhaps even their sleep. When pages occur too frequently,
employees second-guess, skim, or even ignore incoming alerts, sometimes even
ignoring a “real” page that’s masked by the noise. Outages can be prolonged because
other noise interferes with a rapid diagnosis and fix. Effective alerting systems have
good signal and very low noise.

Setting Reasonable Expectations for Monitoring

Monitoring a complex application is a significant engineering endeavor in and of
itself. Even with substantial existing infrastructure for instrumentation, collection,
display, and alerting in place, a Google SRE team with 10-12 members typically has
one or sometimes two members whose primary assignment is to build and maintain
monitoring systems for their service. This number has decreased over time as we
generalize and centralize common monitoring infrastructure, but every SRE team
typically has at least one “monitoring person.” (That being said, while it can be fun to
have access to traffic graph dashboards and the like, SRE teams carefully avoid any
situation that requires someone to “stare at a screen to watch for problems.”)
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In general, Google has trended toward simpler and faster monitoring systems, with
better tools for post hoc analysis. We avoid “magic” systems that try to learn thresh-
olds or automatically detect causality. Rules that detect unexpected changes in end-
user request rates are one counterexample; while these rules are still kept as simple as
possible, they give a very quick detection of a very simple, specific, severe anomaly.
Other uses of monitoring data such as capacity planning and traffic prediction can
tolerate more fragility, and thus, more complexity. Observational experiments con-
ducted over a very long time horizon (months or years) with a low sampling rate
(hours or days) can also often tolerate more fragility because occasional missed sam-
ples won't hide a long-running trend.

Google SRE has experienced only limited success with complex dependency hierar-
chies. We seldom use rules such as, “If I know the database is slow, alert for a slow
database; otherwise, alert for the website being generally slow” Dependency-reliant
rules usually pertain to very stable parts of our system, such as our system for drain-
ing user traffic away from a datacenter. For example, “If a datacenter is drained, then
don’t alert me on its latency” is one common datacenter alerting rule. Few teams at
Google maintain complex dependency hierarchies because our infrastructure has a
steady rate of continuous refactoring.

Some of the ideas described in this chapter are still aspirational: there is always room
to move more rapidly from symptom to root cause(s), especially in ever-changing
systems. So while this chapter sets out some goals for monitoring systems, and some
ways to achieve these goals, it's important that monitoring systems—especially the
critical path from the onset of a production problem, through a page to a human,
through basic triage and deep debugging—be kept simple and comprehensible by
everyone on the team.

Similarly, to keep noise low and signal high, the elements of your monitoring system
that direct to a pager need to be very simple and robust. Rules that generate alerts for
humans should be simple to understand and represent a clear failure.

Symptoms Versus Causes

Your monitoring system should address two questions: what’s broken, and why?

The “what’s broken” indicates the symptom; the “why” indicates a (possibly inter-
mediate) cause. Table 6-1 lists some hypothetical symptoms and corresponding
causes.
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Table 6-1. Example symptoms and causes

Symptom Cause

I'm serving HTTP 500s or 404s Database servers are refusing connections

My responses are slow (PUs are overloaded by a bogosort, or an Ethernet cable is crimped under a rack,
visible as partial packet loss

Users in Antarctica aren’t receiving  Your Content Distribution Network hates scientists and felines, and thus
animated cat GIFs blacklisted some client IPs

Private content is world-readable A new software push caused ACLs to be forgotten and allowed all requests

“What” versus “why” is one of the most important distinctions in writing good moni-
toring with maximum signal and minimum noise.

Black-Box Versus White-Box

We combine heavy use of white-box monitoring with modest but critical uses of
black-box monitoring. The simplest way to think about black-box monitoring versus
white-box monitoring is that black-box monitoring is symptom-oriented and repre-
sents active—not predicted—problems: “The system isn't working correctly, right
now.” White-box monitoring depends on the ability to inspect the innards of the sys-
tem, such as logs or HTTP endpoints, with instrumentation. White-box monitoring
therefore allows detection of imminent problems, failures masked by retries, and so
forth.

Note that in a multilayered system, one person’s symptom is another person’s cause.
For example, suppose that a database’s performance is slow. Slow database reads are a
symptom for the database SRE who detects them. However, for the frontend SRE
observing a slow website, the same slow database reads are a cause. Therefore, white-
box monitoring is sometimes symptom-oriented, and sometimes cause-oriented,
depending on just how informative your white-box is.

When collecting telemetry for debugging, white-box monitoring is essential. If web
servers seem slow on database-heavy requests, you need to know both how fast the
web server perceives the database to be, and how fast the database believes itself to be.
Otherwise, you can’t distinguish an actually slow database server from a network
problem between your web server and your database.

For paging, black-box monitoring has the key benefit of forcing discipline to only nag
a human when a problem is both already ongoing and contributing to real symptoms.
On the other hand, for not-yet-occurring but imminent problems, black-box moni-
toring is fairly useless.
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The Four Golden Signals

The four golden signals of monitoring are latency, traffic, errors, and saturation. If
you can only measure four metrics of your user-facing system, focus on these four.

Latency

The time it takes to service a request. It's important to distinguish between the
latency of successful requests and the latency of failed requests. For example, an
HTTP 500 error triggered due to loss of connection to a database or other critical
backend might be served very quickly; however, as an HTTP 500 error indicates
a failed request, factoring 500s into your overall latency might result in mislead-
ing calculations. On the other hand, a slow error is even worse than a fast error!
Therefore, it’s important to track error latency, as opposed to just filtering out
errors.

Traffic

A measure of how much demand is being placed on your system, measured in a
high-level system-specific metric. For a web service, this measurement is usually
HTTP requests per second, perhaps broken out by the nature of the requests
(e.g., static versus dynamic content). For an audio streaming system, this meas-
urement might focus on network I/O rate or concurrent sessions. For a key-value
storage system, this measurement might be transactions and retrievals per
second.

Errors

The rate of requests that fail, either explicitly (e.g., HTTP 500s), implicitly (for
example, an HTTP 200 success response, but coupled with the wrong content),
or by policy (for example, “If you committed to one-second response times, any
request over one second is an error”). Where protocol response codes are insuffi-
cient to express all failure conditions, secondary (internal) protocols may be nec-
essary to track partial failure modes. Monitoring these cases can be drastically
different: catching HT'TP 500s at your load balancer can do a decent job of catch-
ing all completely failed requests, while only end-to-end system tests can detect
that you're serving the wrong content.

Saturation

How “full” your service is. A measure of your system fraction, emphasizing the
resources that are most constrained (e.g., in a memory-constrained system, show
memory; in an I/O-constrained system, show I/O). Note that many systems
degrade in performance before they achieve 100% utilization, so having a utiliza-
tion target is essential.

In complex systems, saturation can be supplemented with higher-level load
measurement: can your service properly handle double the traffic, handle only
10% more traffic, or handle even less traffic than it currently receives? For very
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simple services that have no parameters that alter the complexity of the request
(e.g., “Give me a nonce” or “I need a globally unique monotonic integer”) that
rarely change configuration, a static value from a load test might be adequate. As
discussed in the previous paragraph, however, most services need to use indirect
signals like CPU utilization or network bandwidth that have a known upper
bound. Latency increases are often a leading indicator of saturation. Measuring
your 99th percentile response time over some small window (e.g., one minute)
can give a very early signal of saturation.

Finally, saturation is also concerned with predictions of impending saturation,
such as “It looks like your database will fill its hard drive in 4 hours.”

If you measure all four golden signals and page a human when one signal is problem-
atic (or, in the case of saturation, nearly problematic), your service will be at least
decently covered by monitoring.

Worrying About Your Tail (or, Instrumentation and
Performance)

When building a monitoring system from scratch, it’s tempting to design a system
based upon the mean of some quantity: the mean latency, the mean CPU usage of
your nodes, or the mean fullness of your databases. The danger presented by the lat-
ter two cases is obvious: CPUs and databases can easily be utilized in a very imbal-
anced way. The same holds for latency. If you run a web service with an average
latency of 100 ms at 1,000 requests per second, 1% of requests might easily take 5 sec-
onds.? If your users depend on several such web services to render their page, the
99th percentile of one backend can easily become the median response of your
frontend.

The simplest way to differentiate between a slow average and a very slow “tail” of
requests is to collect request counts bucketed by latencies (suitable for rendering a
histogram), rather than actual latencies: how many requests did I serve that took
between 0 ms and 10 ms, between 10 ms and 30 ms, between 30 ms and 100 ms,
between 100 ms and 300 ms, and so on? Distributing the histogram boundaries
approximately exponentially (in this case by factors of roughly 3) is often an easy way
to visualize the distribution of your requests.

2 If 1% of your requests are 10x the average, it means that the rest of your requests are about twice as fast as the
average. But if you're not measuring your distribution, the idea that most of your requests are near the mean
is just hopeful thinking.
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Choosing an Appropriate Resolution for Measurements

Different aspects of a system should be measured with different levels of granularity.
For example:

+ Observing CPU load over the time span of a minute won't reveal even quite long-
lived spikes that drive high tail latencies.

 On the other hand, for a web service targeting no more than 9 hours aggregate
downtime per year (99.9% annual uptime), probing for a 200 (success) status
more than once or twice a minute is probably unnecessarily frequent.

o Similarly, checking hard drive fullness for a service targeting 99.9% availability
more than once every 1-2 minutes is probably unnecessary.

Take care in how you structure the granularity of your measurements. Collecting per-
second measurements of CPU load might yield interesting data, but such frequent
measurements may be very expensive to collect, store, and analyze. If your monitor-
ing goal calls for high resolution but doesn’t require extremely low latency, you can
reduce these costs by performing internal sampling on the server, then configuring an
external system to collect and aggregate that distribution over time or across servers.
You might:

1. Record the current CPU utilization each second.

2. Using buckets of 5% granularity, increment the appropriate CPU utilization
bucket each second.

3. Aggregate those values every minute.

This strategy allows you to observe brief CPU hotspots without incurring very high
cost due to collection and retention.

As Simple as Possible, No Simpler

Piling all these requirements on top of each other can add up to a very complex mon-
itoring system—your system might end up with the following levels of complexity:

o Alerts on different latency thresholds, at different percentiles, on all kinds of dif-
ferent metrics

« Extra code to detect and expose possible causes

o Associated dashboards for each of these possible causes

The sources of potential complexity are never-ending. Like all software systems,
monitoring can become so complex that it’s fragile, complicated to change, and a
maintenance burden.
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Therefore, design your monitoring system with an eye toward simplicity. In choosing
what to monitor, keep the following guidelines in mind:

o The rules that catch real incidents most often should be as simple, predictable,
and reliable as possible.

o Data collection, aggregation, and alerting configuration that is rarely exercised
(e.g., less than once a quarter for some SRE teams) should be up for removal.

o Signals that are collected, but not exposed in any prebaked dashboard nor used
by any alert, are candidates for removal.

In Google’s experience, basic collection and aggregation of metrics, paired with alert-
ing and dashboards, has worked well as a relatively standalone system. (In fact Goo-
gle’s monitoring system is broken up into several binaries, but typically people learn
about all aspects of these binaries.) It can be tempting to combine monitoring with
other aspects of inspecting complex systems, such as detailed system profiling, single-
process debugging, tracking details about exceptions or crashes, load testing, log col-
lection and analysis, or traffic inspection. While most of these subjects share
commonalities with basic monitoring, blending together too many results in overly
complex and fragile systems. As in many other aspects of software engineering, main-
taining distinct systems with clear, simple, loosely coupled points of integration is a
better strategy (for example, using web APIs for pulling summary data in a format
that can remain constant over an extended period of time).

Tying These Principles Together

The principles discussed in this chapter can be tied together into a philosophy on
monitoring and alerting thats widely endorsed and followed within Google SRE
teams. While this monitoring philosophy is a bit aspirational, it’s a good starting
point for writing or reviewing a new alert, and it can help your organization ask the
right questions, regardless of the size of your organization or the complexity of your
service or system.

When creating rules for monitoring and alerting, asking the following questions can
help you avoid false positives and pager burnout:*

o Does this rule detect an otherwise undetected condition that is urgent, actionable,
and actively or imminently user-visible?*

3 See Applying Cardiac Alarm Management Techniques to Your On-Call [Hol14] for an example of alert fatigue
in another context.

4 Zero-redundancy (N + 0) situations count as imminent, as do “nearly full” parts of your service! For more
details about the concept of redundancy, see https://en.wikipedia.org/wiki/N%2BI1_redundancy.

Tying These Principles Together | 63

www.it-ebooks.info


https://en.wikipedia.org/wiki/N%2B1_redundancy
http://www.it-ebooks.info/

« Will I ever be able to ignore this alert, knowing it’s benign? When and why will I
be able to ignore this alert, and how can I avoid this scenario?

o Does this alert definitely indicate that users are being negatively affected? Are
there detectable cases in which users aren’t being negatively impacted, such as
drained traffic or test deployments, that should be filtered out?

+ Can I take action in response to this alert? Is that action urgent, or could it wait
until morning? Could the action be safely automated? Will that action be a long-
term fix, or just a short-term workaround?

o Are other people getting paged for this issue, therefore rendering at least one of
the pages unnecessary?

These questions reflect a fundamental philosophy on pages and pagers:

« Every time the pager goes off, I should be able to react with a sense of urgency. I
can only react with a sense of urgency a few times a day before I become fatigued.

o Every page should be actionable.

o Every page response should require intelligence. If a page merely merits a robotic
response, it shouldn't be a page.

o Pages should be about a novel problem or an event that hasn't been seen before.

Such a perspective dissipates certain distinctions: if a page satisfies the preceding four
bullets, it’s irrelevant whether the page is triggered by white-box or black-box moni-
toring. This perspective also amplifies certain distinctions: it’s better to spend much
more effort on catching symptoms than causes; when it comes to causes, only worry
about very definite, very imminent causes.

Monitoring for the Long Term

In modern production systems, monitoring systems track an ever-evolving system
with changing software architecture, load characteristics, and performance targets.
An alert that’s currently exceptionally rare and hard to automate might become fre-
quent, perhaps even meriting a hacked-together script to resolve it. At this point,
someone should find and eliminate the root causes of the problem,; if such resolution
isn't possible, the alert response deserves to be fully automated.

It’s important that decisions about monitoring be made with long-term goals in mind.
Every page that happens today distracts a human from improving the system for
tomorrow, so there is often a case for taking a short-term hit to availability or perfor-
mance in order to improve the long-term outlook for the system. Let’s take a look at
two case studies that illustrate this trade-off.
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Bigtable SRE: A Tale of Over-Alerting

Google’s internal infrastructure is typically offered and measured against a service
level objective (SLO; see Chapter 4). Many years ago, the Bigtable service’s SLO was
based on a synthetic well-behaved client’s mean performance. Because of problems in
Bigtable and lower layers of the storage stack, the mean performance was driven by a
“large” tail: the worst 5% of requests were often significantly slower than the rest.

Email alerts were triggered as the SLO approached, and paging alerts were triggered
when the SLO was exceeded. Both types of alerts were firing voluminously, consum-
ing unacceptable amounts of engineering time: the team spent significant amounts of
time triaging the alerts to find the few that were really actionable, and we often
missed the problems that actually affected users, because so few of them did. Many of
the pages were non-urgent, due to well-understood problems in the infrastructure,
and had either rote responses or received no response.

To remedy the situation, the team used a three-pronged approach: while making
great efforts to improve the performance of Bigtable, we also temporarily dialed back
our SLO target, using the 75th percentile request latency. We also disabled email
alerts, as there were so many that spending time diagnosing them was infeasible.

This strategy gave us enough breathing room to actually fix the longer-term problems
in Bigtable and the lower layers of the storage stack, rather than constantly fixing tac-
tical problems. On-call engineers could actually accomplish work when they weren't
being kept up by pages at all hours. Ultimately, temporarily backing off on our alerts
allowed us to make faster progress toward a better service.

Gmail: Predictable, Scriptable Responses from Humans

In the very early days of Gmail, the service was built on a retrofitted distributed pro-
cess management system called Workqueue, which was originally created for batch
processing of pieces of the search index. Workqueue was “adapted” to long-lived pro-
cesses and subsequently applied to Gmail, but certain bugs in the relatively opaque
codebase in the scheduler proved hard to beat.

At that time, the Gmail monitoring was structured such that alerts fired when indi-
vidual tasks were “de-scheduled” by Workqueue. This setup was less than ideal
because even at that time, Gmail had many, many thousands of tasks, each task repre-
senting a fraction of a percent of our users. We cared deeply about providing a good
user experience for Gmail users, but such an alerting setup was unmaintainable.

To address this problem, Gmail SRE built a tool that helped “poke” the scheduler in
just the right way to minimize impact to users. The team had several discussions
about whether or not we should simply automate the entire loop from detecting the
problem to nudging the rescheduler, until a better long-term solution was achieved,
but some worried this kind of workaround would delay a real fix.
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This kind of tension is common within a team, and often reflects an underlying mis-
trust of the team’s self-discipline: while some team members want to implement a
“hack” to allow time for a proper fix, others worry that a hack will be forgotten or
that the proper fix will be deprioritized indefinitely. This concern is credible, as its
easy to build layers of unmaintainable technical debt by patching over problems
instead of making real fixes. Managers and technical leaders play a key role in imple-
menting true, long-term fixes by supporting and prioritizing potentially time-
consuming long-term fixes even when the initial “pain” of paging subsides.

Pages with rote, algorithmic responses should be a red flag. Unwillingness on the part
of your team to automate such pages implies that the team lacks confidence that they
can clean up their technical debt. This is a major problem worth escalating.

The Long Run

A common theme connects the previous examples of Bigtable and Gmail: a tension
between short-term and long-term availability. Often, sheer force of effort can help a
rickety system achieve high availability, but this path is usually short-lived and
fraught with burnout and dependence on a small number of heroic team members.
Taking a controlled, short-term decrease in availability is often a painful, but strategic
trade for the long-run stability of the system. It's important not to think of every page
as an event in isolation, but to consider whether the overall level of paging leads
toward a healthy, appropriately available system with a healthy, viable team and long-
term outlook. We review statistics about page frequency (usually expressed as inci-
dents per shift, where an incident might be composed of a few related pages) in
quarterly reports with management, ensuring that decision makers are kept up to
date on the pager load and overall health of their teams.

Conclusion

A healthy monitoring and alerting pipeline is simple and easy to reason about. It
focuses primarily on symptoms for paging, reserving cause-oriented heuristics to
serve as aids to debugging problems. Monitoring symptoms is easier the further “up”
your stack you monitor, though monitoring saturation and performance of subsys-
tems such as databases often must be performed directly on the subsystem itself.
Email alerts are of very limited value and tend to easily become overrun with noise;
instead, you should favor a dashboard that monitors all ongoing subcritical problems
for the sort of information that typically ends up in email alerts. A dashboard might
also be paired with a log, in order to analyze historical correlations.

Over the long haul, achieving a successful on-call rotation and product includes
choosing to alert on symptoms or imminent real problems, adapting your targets to
goals that are actually achievable, and making sure that your monitoring supports
rapid diagnosis.
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CHAPTER 7
The Evolution of Automation at Google

Written by Niall Murphy with John Looney and Michael Kacirek
Edited by Betsy Beyer

Besides black art, there is only automation and mechanization.
—Federico Garcia Lorca (1898-1936), Spanish poet and playwright

For SRE, automation is a force multiplier, not a panacea. Of course, just multiplying
force does not naturally change the accuracy of where that force is applied: doing
automation thoughtlessly can create as many problems as it solves. Therefore, while
we believe that software-based automation is superior to manual operation in most
circumstances, better than either option is a higher-level system design requiring nei-
ther of them—an autonomous system. Or to put it another way, the value of automa-
tion comes from both what it does and its judicious application. We'll discuss both
the value of automation and how our attitude has evolved over time.

The Value of Automation

What exactly is the value of automation?"

Consistency

Although scale is an obvious motivation for automation, there are many other rea-
sons to use it. Take the example of university computing systems, where many sys-
tems engineering folks started their careers. Systems administrators of that
background were generally charged with running a collection of machines or some

1 For readers who already feel they precisely understand the value of automation, skip ahead to “The Value for
Google SRE” on page 70. However, note that our description contains some nuances that might be useful to
keep in mind while reading the rest of the chapter.
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software, and were accustomed to manually performing various actions in the dis-
charge of that duty. One common example is creating user accounts; others include
purely operational duties like making sure backups happen, managing server failover,
and small data manipulations like changing the upstream DNS servers’ resolv.conf,
DNS server zone data, and similar activities. Ultimately, however, this prevalence of
manual tasks is unsatisfactory for both the organizations and indeed the people
maintaining systems in this way. For a start, any action performed by a human or
humans hundreds of times won’t be performed the same way each time: even with the
best will in the world, very few of us will ever be as consistent as a machine. This
inevitable lack of consistency leads to mistakes, oversights, issues with data quality,
and, yes, reliability problems. In this domain—the execution of well-scoped, known
procedures—the value of consistency is in many ways the primary value of automa-
tion.

A Platform

Automation doesn’t just provide consistency. Designed and done properly, automatic
systems also provide a platform that can be extended, applied to more systems, or
perhaps even spun out for profit.> (The alternative, no automation, is neither cost
effective nor extensible: it is instead a tax levied on the operation of a system.)

A platform also centralizes mistakes. In other words, a bug fixed in the code will be
fixed there once and forever, unlike a sufficiently large set of humans performing the
same procedure, as discussed previously. A platform can be extended to perform
additional tasks more easily than humans can be instructed to perform them (or
sometimes even realize that they have to be done). Depending on the nature of the
task, it can run either continuously or much more frequently than humans could
appropriately accomplish the task, or at times that are inconvenient for humans. Fur-
thermore, a platform can export metrics about its performance, or otherwise allow
you to discover details about your process you didn't know previously, because these
details are more easily measurable within the context of a platform.

Faster Repairs

There’s an additional benefit for systems where automation is used to resolve com-
mon faults in a system (a frequent situation for SRE-created automation). If automa-
tion runs regularly and successfully enough, the result is a reduced mean time to
repair (MTTR) for those common faults. You can then spend your time on other
tasks instead, thereby achieving increased developer velocity because you don't have
to spend time either preventing a problem or (more commonly) cleaning up after it.

2 The expertise acquired in building such automation is also valuable in itself; engineers both deeply under-
stand the existing processes they have automated and can later automate novel processes more quickly.
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As is well understood in the industry, the later in the product lifecycle a problem is
discovered, the more expensive it is to fix; see Chapter 17. Generally, problems that
occur in actual production are most expensive to fix, both in terms of time and
money, which means that an automated system looking for problems as soon as they
arise has a good chance of lowering the total cost of the system, given that the system
is sufficiently large.

Faster Action

In the infrastructural situations where SRE automation tends to be deployed, humans
don’t usually react as fast as machines. In most common cases, where, for example,
failover or traffic switching can be well defined for a particular application, it makes
no sense to effectively require a human to intermittently press a button called “Allow
system to continue to run.” (Yes, it is true that sometimes automatic procedures can
end up making a bad situation worse, but that is why such procedures should be
scoped over well-defined domains.) Google has a large amount of automation; in
many cases, the services we support could not long survive without this automation
because they crossed the threshold of manageable manual operation long ago.

Time Saving

Finally, time saving is an oft-quoted rationale for automation. Although people cite
this rationale for automation more than the others, in many ways the benefit is often
less immediately calculable. Engineers often waver over whether a particular piece of
automation or code is worth writing, in terms of effort saved in not requiring a task
to be performed manually versus the effort required to write it.> It’s easy to overlook
the fact that once you have encapsulated some task in automation, anyone can exe-
cute the task. Therefore, the time savings apply across anyone who would plausibly
use the automation. Decoupling operator from operation is very powerful.

Joseph Bironas, an SRE who led Google’s datacenter turnup efforts
for a time, forcefully argued:

\ “If we are engineering processes and solutions that are not auto-
matable, we continue having to staff humans to maintain the sys-
tem. If we have to staff humans to do the work, we are feeding the
machines with the blood, sweat, and tears of human beings. Think
The Matrix with less special effects and more pissed off System
Administrators”

3 See the following XKCD cartoon: http://xkcd.com/1205/.
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The Value for Google SRE

All of these benefits and trade-offs apply to us just as much as anyone else, and Goo-
gle does have a strong bias toward automation. Part of our preference for automation
springs from our particular business challenges: the products and services we look
after are planet-spanning in scale, and we don't typically have time to engage in the
same kind of machine or service hand-holding common in other organizations.* For
truly large services, the factors of consistency, quickness, and reliability dominate
most conversations about the trade-offs of performing automation.

Another argument in favor of automation, particularly in the case of Google, is our
complicated yet surprisingly uniform production environment, described in Chap-
ter 2. While other organizations might have an important piece of equipment without
a readily accessible API, software for which no source code is available, or another
impediment to complete control over production operations, Google generally avoids
such scenarios. We have built APIs for systems when no API was available from the
vendor. Even though purchasing software for a particular task would have been much
cheaper in the short term, we chose to write our own solutions, because doing so pro-
duced APIs with the potential for much greater long-term benefits. We spent a lot of
time overcoming obstacles to automatic system management, and then resolutely
developed that automatic system management itself. Given how Google manages its
source code [Pot16], the availability of that code for more or less any system that SRE
touches also means that our mission to “own the product in production” is much eas-
ier because we control the entirety of the stack.

Of course, although Google is ideologically bent upon using machines to manage
machines where possible, reality requires some modification of our approach. It isn't
appropriate to automate every component of every system, and not everyone has the
ability or inclination to develop automation at a particular time. Some essential sys-
tems started out as quick prototypes, not designed to last or to interface with automa-
tion. The previous paragraphs state a maximalist view of our position, but one that
we have been broadly successful at putting into action within the Google context. In
general, we have chosen to create platforms where we could, or to position ourselves
so that we could create platforms over time. We view this platform-based approach as
necessary for manageability and scalability.

The Use Cases for Automation

In the industry, automation is the term generally used for writing code to solve a wide
variety of problems, although the motivations for writing this code, and the solutions

4 See, for example, http://blog.engineyard.com/2014/pets-vs-cattle.
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themselves, are often quite different. More broadly, in this view, automation is “meta-
software”—software to act on software.

As we implied earlier, there are a number of use cases for automation. Here is a non-
exhaustive list of examples:

« User account creation

o Cluster turnup and turndown for services

« Software or hardware installation preparation and decommissioning
« Rollouts of new software versions

« Runtime configuration changes

o A special case of runtime config changes: changes to your dependencies

This list could continue essentially ad infinitum.

Google SRE’s Use Cases for Automation
In Google, we have all of the use cases just listed, and more.

However, within Google SRE, our primary affinity has typically been for running
infrastructure, as opposed to managing the quality of the data that passes over that
infrastructure. This line isn’t totally clear—for example, we care deeply if half of a
dataset vanishes after a push, and therefore we alert on coarse-grain differences like
this, but it’s rare for us to write the equivalent of changing the properties of some
arbitrary subset of accounts on a system. Therefore, the context for our automation is
often automation to manage the lifecycle of systems, not their data: for example,
deployments of a service in a new cluster.

To this extent, SRE’s automation efforts are not far off what many other people and
organizations do, except that we use different tools to manage it and have a different
focus (as we'll discuss).

Widely available tools like Puppet, Chef, cfengine, and even Perl, which all provide
ways to automate particular tasks, differ mostly in terms of the level of abstraction of
the components provided to help the act of automating. A full language like Perl pro-
vides POSIX-level affordances, which in theory provide an essentially unlimited
scope of automation across the APIs accessible to the system,” whereas Chef and Pup-
pet provide out-of-the-box abstractions with which services or other higher-level
entities can be manipulated. The trade-off here is classic: higher-level abstractions are
easier to manage and reason about, but when you encounter a “leaky abstraction,”

5 Of course, not every system that needs to be managed actually provides callable APIs for management—forc-
ing some tooling to use, e.g., CLI invocations or automated website clicks.
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you fail systemically, repeatedly, and potentially inconsistently. For example, we often
assume that pushing a new binary to a cluster is atomic; the cluster will either end up
with the old version, or the new version. However, real-world behavior is more com-
plicated: that cluster’s network can fail halfway through; machines can fail; communi-
cation to the cluster management layer can fail, leaving the system in an inconsistent
state; depending on the situation, new binaries could be staged but not pushed, or
pushed but not restarted, or restarted but not verifiable. Very few abstractions model
these kinds of outcomes successfully, and most generally end up halting themselves
and calling for intervention. Truly bad automation systems don’t even do that.

SRE has a number of philosophies and products in the domain of automation, some
of which look more like generic rollout tools without particularly detailed modeling
of higher-level entities, and some of which look more like languages for describing
service deployment (and so on) at a very abstract level. Work done in the latter tends
to be more reusable and be more of a common platform than the former, but the
complexity of our production environment sometimes means that the former
approach is the most immediately tractable option.

A Hierarchy of Automation Classes

Although all of these automation steps are valuable, and indeed an automation plat-
form is valuable in and of itself, in an ideal world, we wouldn't need externalized
automation. In fact, instead of having a system that has to have external glue logic, it
would be even better to have a system that needs no glue logic at all, not just because
internalization is more efficient (although such efficiency is useful), but because it has
been designed to not need glue logic in the first place. Accomplishing that involves
taking the use cases for glue logic—generally “first order” manipulations of a system,
such as adding accounts or performing system turnup—and finding a way to handle
those use cases directly within the application.

As a more detailed example, most turnup automation at Google is problematic
because it ends up being maintained separately from the core system and therefore
suffers from “bit rot,” i.e., not changing when the underlying systems change. Despite
the best of intentions, attempting to more tightly couple the two (turnup automation
and the core system) often fails due to unaligned priorities, as product developers
will, not unreasonably, resist a test deployment requirement for every change. Sec-
ondly, automation that is crucial but only executed at infrequent intervals and there-
fore difficult to test is often particularly fragile because of the extended feedback
cycle. Cluster failover is one classic example of infrequently executed automation:
failovers might only occur every few months, or infrequently enough that inconsis-
tencies between instances are introduced. The evolution of automation follows a
path:
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1) No automation
Database master is failed over manually between locations.

2) Externally maintained system-specific automation
An SRE has a failover script in his or her home directory.

3) Externally maintained generic automation
The SRE adds database support to a “generic failover” script that everyone uses.

4) Internally maintained system-specific automation
The database ships with its own failover script.

5) Systems that don’t need any automation
The database notices problems, and automatically fails over without human
intervention.

SRE hates manual operations, so we obviously try to create systems that don’t require
them. However, sometimes manual operations are unavoidable.

There is additionally a subvariety of automation that applies changes not across the
domain of specific system-related configuration, but across the domain of production
as a whole. In a highly centralized proprietary production environment like Google’s,
there are a large number of changes that have a non-service-specific scope—e.g.,
changing upstream Chubby servers, a flag change to the Bigtable client library to
make access more reliable, and so on—which nonetheless need to be safely managed
and rolled back if necessary. Beyond a certain volume of changes, it is infeasible for
production-wide changes to be accomplished manually, and at some time before that
point, it’s a waste to have manual oversight for a process where a large proportion of
the changes are either trivial or accomplished successfully by basic relaunch-and-
check strategies.

Let’s use internal case studies to illustrate some of the preceding points in detail. The
first case study is about how, due to some diligent, far-sighted work, we managed to
achieve the self-professed nirvana of SRE: to automate ourselves out of a job.

Automate Yourself Out of a Job: Automate ALL the Things!

For a long while, the Ads products at Google stored their data in a MySQL database.
Because Ads data obviously has high reliability requirements, an SRE team was
charged with looking after that infrastructure. From 2005 to 2008, the Ads Database
mostly ran in what we considered to be a mature and managed state. For example, we
had automated away the worst, but not all, of the routine work for standard replica
replacements. We believed the Ads Database was well managed and that we had har-
vested most of the low-hanging fruit in terms of optimization and scale. However, as
daily operations became comfortable, team members began to look at the next level
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of system development: migrating MySQL onto Google’s cluster scheduling system,
Borg.

We hoped this migration would provide two main benefits:

o Completely eliminate machine/replica maintenance: Borg would automatically
handle the setup/restart of new and broken tasks.

« Enable bin-packing of multiple MySQL instances on the same physical machine:
Borg would enable more efficient use of machine resources via Containers.

In late 2008, we successfully deployed a proof of concept MySQL instance on Borg.
Unfortunately, this was accompanied by a significant new difficulty. A core operating
characteristic of Borg is that its tasks move around automatically. Tasks commonly
move within Borg as frequently as once or twice per week. This frequency was tolera-
ble for our database replicas, but unacceptable for our masters.

At that time, the process for master failover took 30-90 minutes per instance. Simply
because we ran on shared machines and were subject to reboots for kernel upgrades,
in addition to the normal rate of machine failure, we had to expect a number of
otherwise unrelated failovers every week. This factor, in combination with the num-
ber of shards on which our system was hosted, meant that:

o Manual failovers would consume a substantial amount of human hours and
would give us best-case availability of 99% uptime, which fell short of the actual
business requirements of the product.

« In order to meet our error budgets, each failover would have to take less than 30
seconds of downtime. There was no way to optimize a human-dependent proce-
dure to make downtime shorter than 30 seconds.

Therefore, our only choice was to automate failover. Actually, we needed to automate
more than just failover.

In 2009 Ads SRE completed our automated failover daemon, which we dubbed
“Decider” Decider could complete MySQL failovers for both planned and unplanned
failovers in less than 30 seconds 95% of the time. With the creation of Decider,
MySQL on Borg (MoB) finally became a reality. We graduated from optimizing our
infrastructure for a lack of failover to embracing the idea that failure is inevitable, and
therefore optimizing to recover quickly through automation.

While automation let us achieve highly available MySQL in a world that forced up to
two restarts per week, it did come with its own set of costs. All of our applications had
to be changed to include significantly more failure-handling logic than before. Given
that the norm in the MySQL development world is to assume that the MySQL
instance will be the most stable component in the stack, this switch meant customiz-
ing software like JDBC to be more tolerant of our failure-prone environment. How-
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ever, the benefits of migrating to MoB with Decider were well worth these costs. Once
on MoB, the time our team spent on mundane operational tasks dropped by 95%.
Our failovers were automated, so an outage of a single database task no longer paged
a human.

The main upshot of this new automation was that we had a lot more free time to
spend on improving other parts of the infrastructure. Such improvements had a cas-
cading effect: the more time we saved, the more time we were able to spend on opti-
mizing and automating other tedious work. Eventually, we were able to automate
schema changes, causing the cost of total operational maintenance of the Ads Data-
base to drop by nearly 95%. Some might say that we had successfully automated our-
selves out of this job. The hardware side of our domain also saw improvement.
Migrating to MoB freed up considerable resources because we could schedule multi-
ple MySQL instances on the same machines, which improved utilization of our hard-
ware. In total, we were able to free up about 60% of our hardware. Our team was now
flush with hardware and engineering resources.

This example demonstrates the wisdom of going the extra mile to deliver a platform
rather than replacing existing manual procedures. The next example comes from the
cluster infrastructure group, and illustrates some of the more difficult trade-offs you
might encounter on your way to automating all the things.

Soothing the Pain: Applying Automation to Cluster
Turnups

Ten years ago, the Cluster Infrastructure SRE team seemed to get a new hire every
few months. As it turned out, that was approximately the same frequency at which we
turned up a new cluster. Because turning up a service in a new cluster gives new hires

exposure to a service’s internals, this task seemed like a natural and useful training
tool.

The steps taken to get a cluster ready for use were something like the following:

1. Fit out a datacenter building for power and cooling.

2. Install and configure core switches and connections to the backbone.
3. Install a few initial racks of servers.
4

. Configure basic services such as DNS and installers, then configure a lock ser-
vice, storage, and computing.

ul

. Deploy the remaining racks of machines.

6. Assign user-facing services resources, so their teams can set up the services.
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Steps 4 and 6 were extremely complex. While basic services like DNS are relatively
simple, the storage and compute subsystems at that time were still in heavy develop-
ment, so new flags, components, and optimizations were added weekly.

Some services had more than a hundred different component subsystems, each with a
complex web of dependencies. Failing to configure one subsystem, or configuring a
system or component differently than other deployments, is a customer-impacting
outage waiting to happen.

In one case, a multi-petabyte Bigtable cluster was configured to not use the first (log-
ging) disk on 12-disk systems, for latency reasons. A year later, some automation
assumed that if a machine’s first disk wasn’t being used, that machine didn’t have any
storage configured; therefore, it was safe to wipe the machine and set it up from
scratch. All of the Bigtable data was wiped, instantly. Thankfully we had multiple real-
time replicas of the dataset, but such surprises are unwelcome. Automation needs to
be careful about relying on implicit “safety” signals.

Early automation focused on accelerating cluster delivery. This approach tended to
rely upon creative use of SSH for tedious package distribution and service initializa-
tion problems. This strategy was an initial win, but those free-form scripts became a
cholesterol of technical debt.

Detecting Inconsistencies with Prodtest

As the numbers of clusters grew, some clusters required hand-tuned flags and set-
tings. As a result, teams wasted more and more time chasing down difficult-to-spot
misconfigurations. If a flag that made GFS more responsive to log processing leaked
into the default templates, cells with many files could run out of memory under load.
Infuriating and time-consuming misconfigurations crept in with nearly every large
configuration change.

The creative—though brittle—shell scripts we used to configure clusters were neither
scaling to the number of people who wanted to make changes nor to the sheer num-
ber of cluster permutations that needed to be built. These shell scripts also failed to
resolve more significant concerns before declaring that a service was good to take
customer-facing traffic, such as:

o Were all of the service’s dependencies available and correctly configured?
o Were all configurations and packages consistent with other deployments?

 Could the team confirm that every configuration exception was desired?

Prodtest (Production Test) was an ingenious solution to these unwelcome surprises.
We extended the Python unit test framework to allow for unit testing of real-world
services. These unit tests have dependencies, allowing a chain of tests, and a failure in
one test would quickly abort. Take the test shown in Figure 7-1 as an example.
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ClusterExistsinMachineDatabase

DNSTeamHasBeenAssignedMachines

DNSmachinesAreOfSameSpec

DNSMachinesHaveDNSPackages

{_

DNSServiceConfigExists DNSMonitoringConfigExists
[: DNSServiceConfigisSane DNSMonitoringConfigPushed
C DNSServiceConfigPushed DNSMonitoringServiceStarted
C DNSServiceStarted DNSMonitoringNoAlertsFiring
C DNSResolvesSuccessfully

Lb DNSServiceReady

Figure 7-1. ProdTest for DNS Service, showing how one failed test aborts the subsequent
chain of tests

A given team’s Prodtest was given the cluster name, and it could validate that team’s
services in that cluster. Later additions allowed us to generate a graph of the unit tests
and their states. This functionality allowed an engineer to see quickly if their service
was correctly configured in all clusters, and if not, why. The graph highlighted the
failed step, and the failing Python unit test output a more verbose error message.

Any time a team encountered a delay due to another team’s unexpected misconfigura-
tion, a bug could be filed to extend their Prodtest. This ensured that a similar prob-
lem would be discovered earlier in the future. SREs were proud to be able to assure
their customers that all services—both newly turned up services and existing services
with new configuration—would reliably serve production traffic.

For the first time, our project managers could predict when a cluster could “go live,”
and had a complete understanding of why each clusters took six or more weeks to go
from “network-ready” to “serving live traffic” Out of the blue, SRE received a mission
from senior management: In three months, five new clusters will reach network-ready
on the same day. Please turn them up in one week.

Soothing the Pain: Applying Automation to Cluster Turnups | 77

www.it-ebooks.info



http://www.it-ebooks.info/

Resolving Inconsistencies Idempotently

A “One Week Turnup” was a terrifying mission. We had tens of thousands of lines of
shell script owned by dozens of teams. We could quickly tell how unprepared any
given cluster was, but fixing it meant that the dozens of teams would have to file hun-
dreds of bugs, and then we had to hope that these bugs would be promptly fixed.

We realized that evolving from “Python unit tests finding misconfigurations” to
“Python code fixing misconfigurations” could enable us to fix these issues faster.

The unit test already knew which cluster we were examining and the specific test that
was failing, so we paired each test with a fix. If each fix was written to be idempotent,
and could assume that all dependencies were met, resolving the problem should have
been easy—and safe—to resolve. Requiring idempotent fixes meant teams could run
their “fix script” every 15 minutes without fearing damage to the cluster’s configura-
tion. If the DNS team’s test was blocked on the Machine Database team’s configura-
tion of a new cluster, as soon as the cluster appeared in the database, the DNS team’s
tests and fixes would start working.

Take the test shown in Figure 7-2 as an example. If TestDnsMonitoringConfigExists
fails, as shown, we can call FixDnsMonitoringCreateConfig, which scrapes configu-
ration from a database, then checks a skeleton configuration file into our revision
control system. Then TestDnsMonitoringConfigExists passes on retry, and
the TestDnsMonitoringConfigPushed test can be attempted. If the test fails, the
FixDnsMonitoringPushConfig step runs. If a fix fails multiple times, the automation
assumes that the fix failed and stops, notifying the user.

Armed with these scripts, a small group of engineers could ensure that we could go
from “The network works, and machines are listed in the database” to “Serving 1% of
websearch and ads traffic” in a matter of a week or two. At the time, this seemed to be
the apex of automation technology.

Looking back, this approach was deeply flawed; the latency between the test, the fix,
and then a second test introduced flaky tests that sometimes worked and sometimes
failed. Not all fixes were naturally idempotent, so a flaky test that was followed by a
fix might render the system in an inconsistent state.
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TestClusterExistsinMachineDatabase FixAddClusterToMachineDatabase
TestDNSTeamHasBeenAssignedMachines FixDNSTeamRequestMachines
TestDNSMachinesAre0fSameSpec FISDNSMachinesHomogenize
TestDNSMachinesHaveDNSPackages FixDNSMachineslnstallDNSPackages
TestDNSMonitoringConfigExists »| FixDNSMonitoringCreateConfig
TestDNSMonitoringConfigPushed FixDNSMonitoringPushConfig
TestDNSMonitoringServiceStarted FixDNSMonitoringStartService
TestDNSMonitoringNoAlertsFiring FixFail

v
TestDNSServiceReady

Figure 7-2. ProdTest for DNS Service, showing that one failed test resulted in only run-
ning one fix

The Inclination to Specialize

Automation processes can vary in three respects:

o Competence, i.e., their accuracy
o Latency, how quickly all steps are executed when initiated

o Relevance, or proportion of real-world process covered by automation

We began with a process that was highly competent (maintained and run by the ser-
vice owners), high-latency (the service owners performed the process in their spare
time or assigned it to new engineers), and very relevant (the service owners knew
when the real world changed, and could fix the automation).

To reduce turnup latency, many service owning teams instructed a single “turnup
team” what automation to run. The turnup team used tickets to start each stage in the
turnup so that we could track the remaining tasks, and who those tasks were assigned
to. If the human interactions regarding automation modules occurred between peo-
ple in the same room, cluster turnups could happen in a much shorter time. Finally,
we had our competent, accurate, and timely automation process!
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But this state didn’t last long. The real world is chaotic: software, configuration, data,
etc. changed, resulting in over a thousand separate changes a day to affected systems.
The people most affected by automation bugs were no longer domain experts, so the
automation became less relevant (meaning that new steps were missed) and less com-
petent (new flags might have caused automation to fail). However, it took a while for
this drop in quality to impact velocity.

Automation code, like unit test code, dies when the maintaining team isn't obsessive
about keeping the code in sync with the codebase it covers. The world changes
around the code: the DNS team adds new configuration options, the storage team
changes their package names, and the networking team needs to support new devices.

By relieving teams who ran services of the responsibility to maintain and run their
automation code, we created ugly organizational incentives:

o A team whose primary task is to speed up the current turnup has no incentive to
reduce the technical debt of the service-owning team running the service in pro-
duction later.

A team not running automation has no incentive to build systems that are easy to
automate.

o A product manager whose schedule is not affected by low-quality automation
will always prioritize new features over simplicity and automation.

The most functional tools are usually written by those who use them. A similar argu-
ment applies to why product development teams benefit from keeping at least some
operational awareness of their systems in production.

Turnups were again high-latency, inaccurate, and incompetent—the worst of all
worlds. However, an unrelated security mandate allowed us out of this trap. Much of
distributed automation relied at that time on SSH. This is clumsy from a security per-
spective, because people must have root on many machines to run most commands.
A growing awareness of advanced, persistent security threats drove us to reduce the
privileges SREs enjoyed to the absolute minimum they needed to do their jobs. We
had to replace our use of sshd with an authenticated, ACL-driven, RPC-based Local
Admin Daemon, also known as Admin Servers, which had permissions to perform
those local changes. As a result, no one could install or modify a server without an
audit trail. Changes to the Local Admin Daemon and the Package Repo were gated on
code reviews, making it very difficult for someone to exceed their authority; giving
someone the access to install packages would not let them view colocated logs. The
Admin Server logged the RPC requestor, any parameters, and the results of all RPCs
to enhance debugging and security audits.
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Service-Oriented Cluster-Turnup

In the next iteration, Admin Servers became part of service teams” workflows, both as
related to the machine-specific Admin Servers (for installing packages and rebooting)
and cluster-level Admin Servers (for actions like draining or turning up a service).
SREs moved from writing shell scripts in their home directories to building peer-
reviewed RPC servers with fine-grained ACLs.

Later on, after the realization that turnup processes had to be owned by the teams
that owned the services fully sank in, we saw this as a way to approach cluster turnup
as a Service-Oriented Architecture (SOA) problem: service owners would be respon-
sible for creating an Admin Server to handle cluster turnup/turndown RPCs, sent by
the system that knew when clusters were ready. In turn, each team would provide the
contract (API) that the turnup automation needed, while still being free to change the
underlying implementation. As a cluster reached “network-ready,” automation sent
an RPC to each Admin Server that played a part in turning up the cluster.

We now have a low-latency, competent, and accurate process; most importantly, this
process has stayed strong as the rate of change, the number of teams, and the number
of services seem to double each year.

As mentioned earlier, our evolution of turnup automation followed a path:

Operator-triggered manual action (no automation)
Operator-written, system-specific automation
Externally maintained generic automation

Internally maintained, system-specific automation

A

Autonomous systems that need no human intervention

While this evolution has, broadly speaking, been a success, the Borg case study illus-
trates another way we have come to think of the problem of automation.

Borg: Birth of the Warehouse-Scale Computer

Another way to understand the development of our attitude toward automation, and
when and where that automation is best deployed, is to consider the history of the
development of our cluster management systems.® Like MySQL on Borg, which
demonstrated the success of converting manual operations to automatic ones, and the
cluster turnup process, which demonstrated the downside of not thinking carefully
enough about where and how automation was implemented, developing cluster man-

6 We have compressed and simplified this history to aid understanding.
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agement also ended up demonstrating another lesson about how automation should
be done. Like our previous two examples, something quite sophisticated was created
as the eventual result of continuous evolution from simpler beginnings.

Google’s clusters were initially deployed much like everyone else’s small networks of
the time: racks of machines with specific purposes and heterogeneous configurations.
Engineers would log in to some well-known “master” machine to perform adminis-
trative tasks; “golden” binaries and configuration lived on these masters. As we had
only one colo provider, most naming logic implicitly assumed that location. As pro-
duction grew, and we began to use multiple clusters, different domains (cluster
names) entered the picture. It became necessary to have a file describing what each
machine did, which grouped machines under some loose naming strategy. This
descriptor file, in combination with the equivalent of a parallel SSH, allowed us to
reboot (for example) all the search machines in one go. Around this time, it was com-
mon to get tickets like “search is done with machine x1, crawl can have the machine

»

now.

Automation development began. Initially automation consisted of simple Python
scripts for operations such as the following:

« Service management: keeping services running (e.g., restarts after segfaults)
o Tracking what services were supposed to run on which machines

+ Log message parsing: SSHing into each machine and looking for regexps

Automation eventually mutated into a proper database that tracked machine state,
and also incorporated more sophisticated monitoring tools. With the union set of the
automation available, we could now automatically manage much of the lifecycle of
machines: noticing when machines were broken, removing the services, sending
them to repair, and restoring the configuration when they came back from repair.

But to take a step back, this automation was useful yet profoundly limited, due to the
fact that abstractions of the system were relentlessly tied to physical machines. We
needed a new approach, hence Borg [Verl5] was born: a system that moved away
from the relatively static host/port/job assignments of the previous world, toward
treating a collection of machines as a managed sea of resources. Central to its success
—and its conception—was the notion of turning cluster management into an entity
for which API calls could be issued, to some central coordinator. This liberated extra
dimensions of efficiency, flexibility, and reliability: unlike the previous model of
machine “ownership,” Borg could allow machines to schedule, for example, batch and
user-facing tasks on the same machine.
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This functionality ultimately resulted in continuous and automatic operating system
upgrades with a very small amount of constant’ effort—effort that does not scale with
the total size of production deployments. Slight deviations in machine state are now
automatically fixed; brokenness and lifecycle management are essentially no-ops for
SRE at this point. Thousands of machines are born, die, and go into repairs daily with
no SRE effort. To echo the words of Ben Treynor Sloss: by taking the approach that
this was a software problem, the initial automation bought us enough time to turn
cluster management into something autonomous, as opposed to automated. We
achieved this goal by bringing ideas related to data distribution, APIs, hub-and-spoke
architectures, and classic distributed system software development to bear upon the
domain of infrastructure management.

An interesting analogy is possible here: we can make a direct mapping between the
single machine case and the development of cluster management abstractions. In this
view, rescheduling on another machine looks a lot like a process moving from one
CPU to another: of course, those compute resources happen to be at the other end of
a network link, but to what extent does that actually matter? Thinking in these terms,
rescheduling looks like an intrinsic feature of the system rather than something one
would “automate”—humans couldn’t react fast enough anyway. Similarly in the case
of cluster turnup: in this metaphor, cluster turnup is simply additional schedulable
capacity, a bit like adding disk or RAM to a single computer. However, a single-node
computer is not, in general, expected to continue operating when a large number of
components fail. The global computer is—it must be self-repairing to operate once it
grows past a certain size, due to the essentially statistically guaranteed large number
of fajlures taking place every second. This implies that as we move systems up the
hierarchy from manually triggered, to automatically triggered, to autonomous, some
capacity for self-introspection is necessary to survive.

Reliability Is the Fundamental Feature

Of course, for effective troubleshooting, the details of internal operation that the
introspection relies upon should also be exposed to the humans managing the overall
system. Analogous discussions about the impact of automation in the noncomputer
domain—for example, in airplane flight® or industrial applications—often point out
the downside of highly effective automation:” human operators are progressively
more relieved of useful direct contact with the system as the automation covers more
and more daily activities over time. Inevitably, then, a situation arises in which the
automation fails, and the humans are now unable to successfully operate the system.

7 As in a small, unchanging number.
8 See, e.g., https://en.wikipedia.org/wiki/Air_France_Flight_447.
9 See, e.g., [Bai83] and [Sar97].
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The fluidity of their reactions has been lost due to lack of practice, and their mental
models of what the system should be doing no longer reflect the reality of what it is
doing."” This situation arises more when the system is nonautonomous—i.e., where
automation replaces manual actions, and the manual actions are presumed to be
always performable and available just as they were before. Sadly, over time, this ulti-
mately becomes false: those manual actions are not always performable because the
functionality to permit them no longer exists.

We, too, have experienced situations where automation has been actively harmful on
a number of occasions—see “Automation: Enabling Failure at Scale” on page 85—but
in Google’s experience, there are more systems for which automation or autonomous
behavior are no longer optional extras. As you scale, this is of course the case, but
there are still strong arguments for more autonomous behavior of systems irrespec-
tive of size. Reliability is the fundamental feature, and autonomous, resilient behavior
is one useful way to get that.

Recommendations

You might read the examples in this chapter and decide that you need to be Google-
scale before you have anything to do with automation whatsoever. This is untrue, for
two reasons: automation provides more than just time saving, so it's worth imple-
menting in more cases than a simple time-expended versus time-saved calculation
might suggest. But the approach with the highest leverage actually occurs in the
design phase: shipping and iterating rapidly might allow you to implement function-
ality faster, yet rarely makes for a resilient system. Autonomous operation is difficult
to convincingly retrofit to sufficiently large systems, but standard good practices in
software engineering will help considerably: having decoupled subsystems, introduc-
ing APIs, minimizing side effects, and so on.

10 This is yet another good reason for regular practice drills; see “Disaster Role Playing” on page 401.
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Automation: Enabling Failure at Scale

Google runs over a dozen of its own large datacenters, but we also depend on
machines in many third-party colocation facilities (or “colos”). Our machines in these
colos are used to terminate most incoming connections, or as a cache for our own
Content Delivery Network, in order to lower end-user latency. At any point in time, a
number of these racks are being installed or decommissioned; both of these processes
are largely automated. One step during decommission involves overwriting the full
content of the disk of all the machines in the rack, after which point an independent
system verifies the successful erase. We call this process “Diskerase”

Once upon a time, the automation in charge of decommissioning a particular rack
failed, but only after the Diskerase step had completed successfully. Later, the decom-
mission process was restarted from the beginning, to debug the failure. On that itera-
tion, when trying to send the set of machines in the rack to Diskerase, the automation
determined that the set of machines that still needed to be Diskerased was (correctly)
empty. Unfortunately, the empty set was used as a special value, interpreted to mean
“everything” This means the automation sent almost all the machines we have in all
colos to Diskerase.

Within minutes, the highly efficient Diskerase wiped the disks on all machines in our
CDN, and the machines were no longer able to terminate connections from users (or
do anything else useful). We were still able to serve all the users from our own data-
centers, and after a few minutes the only effect visible externally was a slight increase
in latency. As far as we could tell, very few users noticed the problem at all, thanks to
good capacity planning (at least we got that right!). Meanwhile, we spent the better
part of two days reinstalling the machines in the affected colo racks; then we spent the
following weeks auditing and adding more sanity checks—including rate limiting—
into our automation, and making our decommission workflow idempotent.
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CHAPTER 8
Release Engineering

Written by Dinah McNutt
Edited by Betsy Beyer and Tim Harvey

Release engineering is a relatively new and fast-growing discipline of software engi-
neering that can be concisely described as building and delivering software
[McN14a]. Release engineers have a solid (if not expert) understanding of source
code management, compilers, build configuration languages, automated build tools,
package managers, and installers. Their skill set includes deep knowledge of multiple
domains: development, configuration management, test integration, system adminis-
tration, and customer support.

Running reliable services requires reliable release processes. Site Reliability Engineers
(SREs) need to know that the binaries and configurations they use are built in a
reproducible, automated way so that releases are repeatable and aren’t “unique snow-
flakes.” Changes to any aspect of the release process should be intentional, rather than
accidental. SREs care about this process from source code to deployment.

Release engineering is a specific job function at Google. Release engineers work with
software engineers (SWEs) in product development and SREs to define all the steps
required to release software—from how the software is stored in the source code
repository, to build rules for compilation, to how testing, packaging, and deployment
are conducted.

The Role of a Release Engineer

Google is a data-driven company and release engineering follows suit. We have tools
that report on a host of metrics, such as how much time it takes for a code change to
be deployed into production (in other words, release velocity) and statistics on what
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features are being used in build configuration files [Adal5]. Most of these tools were
envisioned and developed by release engineers.

Release engineers define best practices for using our tools in order to make sure
projects are released using consistent and repeatable methodologies. Our best practi-
ces cover all elements of the release process. Examples include compiler flags, formats
for build identification tags, and required steps during a build. Making sure that our
tools behave correctly by default and are adequately documented makes it easy for
teams to stay focused on features and users, rather than spending time reinventing
the wheel (poorly) when it comes to releasing software.

Google has a large number of SREs who are charged with safely deploying products
and keeping Google services up and running. In order to make sure our release pro-
cesses meet business requirements, release engineers and SREs work together to
develop strategies for canarying changes, pushing out new releases without interrupt-
ing services, and rolling back features that demonstrate problems.

Philosophy

Release engineering is guided by an engineering and service philosophy that’s
expressed through four major principles, detailed in the following sections.

Self-Service Model

In order to work at scale, teams must be self-sufficient. Release engineering has devel-
oped best practices and tools that allow our product development teams to control
and run their own release processes. Although we have thousands of engineers and
products, we can achieve a high release velocity because individual teams can decide
how often and when to release new versions of their products. Release processes can
be automated to the point that they require minimal involvement by the engineers,
and many projects are automatically built and released using a combination of our
automated build system and our deployment tools. Releases are truly automatic, and
only require engineer involvement if and when problems arise.

High Velocity

User-facing software (such as many components of Google Search) is rebuilt fre-
quently, as we aim to roll out customer-facing features as quickly as possible. We have
embraced the philosophy that frequent releases result in fewer changes between ver-
sions. This approach makes testing and troubleshooting easier. Some teams perform
hourly builds and then select the version to actually deploy to production from the
resulting pool of builds. Selection is based upon the test results and the features con-
tained in a given build. Other teams have adopted a “Push on Green” release model
and deploy every build that passes all tests [Kle14].
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Hermetic Builds

Build tools must allow us to ensure consistency and repeatability. If two people
attempt to build the same product at the same revision number in the source code
repository on different machines, we expect identical results.! Our builds are her-
metic, meaning that they are insensitive to the libraries and other software installed
on the build machine. Instead, builds depend on known versions of build tools, such
as compilers, and dependencies, such as libraries. The build process is self-contained
and must not rely on services that are external to the build environment.

Rebuilding older releases when we need to fix a bug in software that’s running in pro-
duction can be a challenge. We accomplish this task by rebuilding at the same revi-
sion as the original build and including specific changes that were submitted after
that point in time. We call this tactic cherry picking. Our build tools are themselves
versioned based on the revision in the source code repository for the project being
built. Therefore, a project built last month won’t use this month’s version of the com-
piler if a cherry pick is required, because that version may contain incompatible or
undesired features.

Enforcement of Policies and Procedures

Several layers of security and access control determine who can perform specific
operations when releasing a project. Gated operations include:

« Approving source code changes—this operation is managed through configura-
tion files scattered throughout the codebase

« Specifying the actions to be performed during the release process
« Creating a new release

« Approving the initial integration proposal (which is a request to perform a build
at a specific revision number in the source code repository) and subsequent
cherry picks

+ Deploying a new release

» Making changes to a project’s build configuration

Almost all changes to the codebase require a code review, which is a streamlined
action integrated into our normal developer workflow. Our automated release system
produces a report of all changes contained in a release, which is archived with other
build artifacts. By allowing SREs to understand what changes are included in a new

1 Google uses a monolithic unified source code repository; see [Pot16].
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release of a project, this report can expedite troubleshooting when there are problems
with a release.

Continuous Build and Deployment

Google has developed an automated release system called Rapid. Rapid is a system
that leverages a number of Google technologies to provide a framework that delivers
scalable, hermetic, and reliable releases. The following sections describe the software
lifecycle at Google and how it is managed using Rapid and other associated tools.

Building

Blaze? is Google’s build tool of choice. It supports building binaries from a range of
languages, including our standard languages of C++, Java, Python, Go, and Java-
Script. Engineers use Blaze to define build targets (e.g., the output of a build, such as a
JAR file), and to specify the dependencies for each target. When performing a build,
Blaze automatically builds the dependency targets.

Build targets for binaries and unit tests are defined in Rapid’s project configuration
files. Project-specific flags, such as a unique build identifier, are passed by Rapid to
Blaze. All binaries support a flag that displays the build date, the revision number,
and the build identifier, which allow us to easily associate a binary to a record of how
it was built.

Branching

All code is checked into the main branch of the source code tree (mainline). How-
ever, most major projects don’t release directly from the mainline. Instead, we branch
from the mainline at a specific revision and never merge changes from the branch
back into the mainline. Bug fixes are submitted to the mainline and then cherry
picked into the branch for inclusion in the release. This practice avoids inadvertently
picking up unrelated changes submitted to the mainline since the original build
occurred. Using this branch and cherry pick method, we know the exact contents of
each release.

Testing

A continuous test system runs unit tests against the code in the mainline each time a
change is submitted, allowing us to detect build and test failures quickly. Release
engineering recommends that the continuous build test targets correspond to the
same test targets that gate the project release. We also recommend creating releases at

2 Blaze has been open sourced as Bazel. See “Bazel FAQ” on the Bazel website, http://bazel.io/faq.html.
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the revision number (version) of the last continuous test build that successfully com-
pleted all tests. These measures decrease the chance that subsequent changes made to
the mainline will cause failures during the build performed at release time.

During the release process, we re-run the unit tests using the release branch and cre-
ate an audit trail showing that all the tests passed. This step is important because if a
release involves cherry picks, the release branch may contain a version of the code
that doesn’t exist anywhere on the mainline. We want to guarantee that the tests pass
in the context of what’s actually being released.

To complement the continuous test system, we use an independent testing environ-
ment that runs system-level tests on packaged build artifacts. These tests can be
launched manually or from Rapid.

Packaging

Software is distributed to our production machines via the Midas Package Manager
(MPM) [McN14c]. MPM assembles packages based on Blaze rules that list the build
artifacts to include, along with their owners and permissions. Packages are named
(e.g., search/shakespeare/frontend), versioned with a unique hash, and signed to
ensure authenticity. MPM supports applying labels to a particular version of a pack-
age. Rapid applies a label containing the build ID, which guarantees that a package
can be uniquely referenced using the name of the package and this label.

Labels can be applied to an MPM package to indicate a package’s location in the
release process (e.g., dev, canary, or production). If you apply an existing label to a
new package, the label is automatically moved from the old package to the new pack-
age. For example: if a package is labeled as canary, someone subsequently installing
the canary version of that package will automatically receive the newest version of the
package with the label canary.

Rapid

Figure 8-1 shows the main components of the Rapid system. Rapid is configured with
files called blueprints. Blueprints are written in an internal configuration language
and are used to define build and test targets, rules for deployment, and administrative
information (like project owners). Role-based access control lists determine who can
perform specific actions on a Rapid project.
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Figure 8-1. Simplified view of Rapid architecture showing the main components of the
system

Each Rapid project has workflows that define the actions to perform during the
release process. Workflow actions can be performed serially or in parallel, and a
workflow can launch other workflows. Rapid dispatches work requests to tasks run-
ning as a Borg job on our production servers. Because Rapid uses our production
infrastructure, it can handle thousands of release requests simultaneously.

A typical release process proceeds as follows:

1.

Rapid uses the requested integration revision number (often obtained automati-
cally from our continuous test system) to create a release branch.

. Rapid uses Blaze to compile all the binaries and execute the unit tests, often per-

forming these two steps in parallel. Compilation and testing occur in environ-
ments dedicated to those specific tasks, as opposed to taking place in the Borg job
where the Rapid workflow is executing. This separation allows us to parallelize
work easily.

. Build artifacts are then available for system testing and canary deployments. A

typical canary deployment involves starting a few jobs in our production envi-
ronment after the completion of system tests.

. The results of each step of the process are logged. A report of all changes since

the last release is created.

Rapid allows us to manage our release branches and cherry picks; individual cherry
pick requests can be approved or rejected for inclusion in a release.
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Deployment

Rapid is often used to drive simple deployments directly. It updates the Borg jobs to
use newly built MPM packages based on deployment definitions in the blueprint files
and specialized task executors.

For more complicated deployments, we use Sisyphus, which is a general-purpose roll-
out automation framework developed by SRE. A rollout is a logical unit of work that
is composed of one or more individual tasks. Sisyphus provides a set of Python
classes that can be extended to support any deployment process. It has a dashboard
that allows for finer control on how the rollout is performed and provides a way to
monitor the rollout’s progress.

In a typical integration, Rapid creates a rollout in a long-running Sisyphus job. Rapid
knows the build label associated with the MPM package it created, and can specify
that build label when creating the rollout in Sisyphus. Sisyphus uses the build label to
specify which version of the MPM packages should be deployed.

With Sisyphus, the rollout process can be as simple or complicated as necessary. For
example, it can update all the associated jobs immediately or it can roll out a new
binary to successive clusters over a period of several hours.

Our goal is to fit the deployment process to the risk profile of a given service. In
development or pre-production environments, we may build hourly and push relea-
ses automatically when all tests pass. For large user-facing services, we may push by
starting in one cluster and expand exponentially until all clusters are updated. For
sensitive pieces of infrastructure, we may extend the rollout over several days, inter-
leaving them across instances in different geographic regions.

Configuration Management

Configuration management is one area of particularly close collaboration between
release engineers and SREs. Although configuration management may initially seem
a deceptively simple problem, configuration changes are a potential source of insta-
bility. As a result, our approach to releasing and managing system and service config-
urations has evolved substantially over time. Today we use several models for
distributing configuration files, as described in the following paragraphs. All schemes
involve storing configuration in our primary source code repository and enforcing a
strict code review requirement.

Use the mainline for configuration. This was the first method used to configure serv-
ices in Borg (and the systems that pre-dated Borg). Using this scheme, developers and
SREs modify configuration files at the head of the main branch. The changes are
reviewed and then applied to the running system. As a result, binary releases and
configuration changes are decoupled. While conceptually and procedurally simple,
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this technique often leads to skew between the checked-in version of the configura-
tion files and the running version of the configuration file because jobs must be upda-
ted in order to pick up the changes.

Include configuration files and binaries in the same MPM package. For projects with
few configuration files or projects where the files (or a subset of files) change with
each release cycle, the configuration files can be included in the MPM package with
the binaries. While this strategy limits flexibility by binding the binary and configura-
tion files tightly, it simplifies deployment, because it only requires installing one
package.

Package configuration files into MPM “configuration packages.” We can apply the her-
metic principle to configuration management. Binary configurations tend to be
tightly bound to particular versions of binaries, so we leverage the build and packag-
ing systems to snapshot and release configuration files alongside their binaries. Simi-
lar to our treatment of binaries, we can use the build ID to reconstruct the
configuration at a specific point in time.

For example, a change that implements a new feature can be released with a flag set-
ting that configures that feature. By generating two MPM packages, one for the
binary and one for the configuration, we retain the ability to change each package
independently. That is, if the feature was released with a flag setting of first_folio
but we realize it should instead be bad_quarto, we can cherry pick that change onto
the release branch, rebuild the configuration package, and deploy it. This approach
has the advantage of not requiring a new binary build.

We can leverage MPM’s labeling feature to indicate which versions of MPM packages
should be installed together. A label of much_ado can be applied to the MPM packages
described in the previous paragraph, which allows us to fetch both packages using
this label. When a new version of the project is built, the much_ado label will be
applied to the new packages. Because these tags are unique within the namespace for
an MPM package, only the latest package with that tag will be used.

Read configuration files from an external store. Some projects have configuration files
that need to change frequently or dynamically (i.e., while the binary is running).
These files can be stored in Chubby, Bigtable, or our source-based filesystem
[Kem11].

In summary, project owners consider the different options for distributing and man-
aging configuration files and decide which works best on a case-by-case basis.
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Conclusions

While this chapter has specifically discussed Google’s approach to release engineering
and the ways in which release engineers work and collaborate with SREs, these practi-
ces can also be applied more widely.

It's Not Just for Googlers

When equipped with the right tools, proper automation, and well-defined policies,
developers and SREs shouldn't have to worry about releasing software. Releases can
be as painless as simply pressing a button.

Most companies deal with the same set of release engineering problems regardless of
their size or the tools they use: How should you handle versioning of your packages?
Should you use a continuous build and deploy model, or perform periodic builds?
How often should you release? What configuration management policies should you
use? What release metrics are of interest?

Google Release Engineers have developed our own tools out of necessity because
open sourced or vendor-supplied tools don’t work at the scale we require. Custom
tools allow us to include functionality to support (and even enforce) release process
policies. However, these policies must first be defined in order to add appropriate fea-
tures to our tools, and all companies should take the effort to define their release pro-
cesses whether or not the processes can be automated and/or enforced.

Start Release Engineering at the Beginning

Release engineering has often been an afterthought, and this way of thinking must
change as platforms and services continue to grow in size and complexity.

Teams should budget for release engineering resources at the beginning of the prod-
uct development cycle. It's cheaper to put good practices and process in place early,
rather than have to retrofit your system later.

It is essential that the developers, SREs, and release engineers work together. The
release engineer needs to understand the intention of how the code should be built
and deployed. The developers shouldn't build and “throw the results over the fence”
to be handled by the release engineers.

Individual project teams decide when release engineering becomes involved in a
project. Because release engineering is still a relatively young discipline, managers
don’t always plan and budget for release engineering in the early stages of a project.
Therefore, when considering how to incorporate release engineering practices, be
sure that you consider its role as applied to the entire lifecycle of your product or ser-
vice—particularly the early stages.
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More Information

For more information on release engineering, see the following presentations, each of
which has video available online:

o How Embracing Continuous Release Reduced Change Complexity, USENIX
Release Engineering Summit West 2014, [Dic14]

o Maintaining Consistency in a Massively Parallel Environment, USENIX Configura-
tion Management Summit 2013, [McN13]

o The 10 Commandments of Release Engineering, 2nd International Workshop on
Release Engineering 2014, [McN14b]

o Distributing Software in a Massively Parallel Environment, LISA 2014, [McN14c]
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CHAPTER9
Simplicity

Written by Max Luebbe
Edited by Tim Harvey

The price of reliability is the pursuit of the utmost simplicity.
—C.A.R. Hoare, Turing Award lecture

Software systems are inherently dynamic and unstable.! A software system can only
be perfectly stable if it exists in a vacuum. If we stop changing the codebase, we stop
introducing bugs. If the underlying hardware or libraries never change, neither of
these components will introduce bugs. If we freeze the current user base, we'll never
have to scale the system. In fact, a good summary of the SRE approach to managing
systems is: “At the end of the day, our job is to keep agility and stability in balance in
the system.”

System Stability Versus Agility

It sometimes makes sense to sacrifice stability for the sake of agility. I've often
approached an unfamiliar problem domain by conducting what I call exploratory
coding—setting an explicit shelf life for whatever code I write with the understanding
that I'll need to try and fail once in order to really understand the task I need to
accomplish. Code that comes with an expiration date can be much more liberal with
test coverage and release management because it will never be shipped to production
or be seen by users.

1 This is often true of complex systems in general; see [Per99] and [Co000].

2 Coined by my former manager, Johan Anderson, around the time I became an SRE.
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For the majority of production software systems, we want a balanced mix of stability
and agility. SREs work to create procedures, practices, and tools that render software
more reliable. At the same time, SREs ensure that this work has as little impact on
developer agility as possible. In fact, SRE’s experience has found that reliable pro-
cesses tend to actually increase developer agility: rapid, reliable production rollouts
make changes in production easier to see. As a result, once a bug surfaces, it takes less
time to find and fix that bug. Building reliability into development allows developers
to focus their attention on what we really do care about—the functionality and per-
formance of their software and systems.

The Virtue of Boring

Unlike just about everything else in life, “boring” is actually a positive attribute when
it comes to software! We don’t want our programs to be spontaneous and interesting;
we want them to stick to the script and predictably accomplish their business goals.
In the words of Google engineer Robert Muth, “Unlike a detective story, the lack of
excitement, suspense, and puzzles is actually a desirable property of source code”
Surprises in production are the nemeses of SRE.

As Fred Brooks suggests in his “No Silver Bullet” essay [Bro95], it is very important to
consider the difference between essential complexity and accidental complexity.
Essential complexity is the complexity inherent in a given situation that cannot be
removed from a problem definition, whereas accidental complexity is more fluid and
can be resolved with engineering effort. For example, writing a web server entails
dealing with the essential complexity of serving web pages quickly. However, if we
write a web server in Java, we may introduce accidental complexity when trying to
minimize the performance impact of garbage collection.

With an eye towards minimizing accidental complexity, SRE teams should:

o Push back when accidental complexity is introduced into the systems for which
they are responsible

« Constantly strive to eliminate complexity in systems they onboard and for which
they assume operational responsibility

| Won't Give Up My Code!

Because engineers are human beings who often form an emotional attachment to
their creations, confrontations over large-scale purges of the source tree are not
uncommon. Some might protest, “What if we need that code later?” “Why don’t we
just comment the code out so we can easily add it again later?” or “Why don't we gate
the code with a flag instead of deleting it?” These are all terrible suggestions. Source
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control systems make it easy to reverse changes, whereas hundreds of lines of com-
mented code create distractions and confusion (especially as the source files continue
to evolve), and code that is never executed, gated by a flag that is always disabled, is a
metaphorical time bomb waiting to explode, as painfully experienced by Knight Cap-
ital, for example (see “Order In the Matter of Knight Capital Americas LLC” [Sec13]).

At the risk of sounding extreme, when you consider a web service that’s expected to
be available 24/7, to some extent, every new line of code written is a liability. SRE pro-
motes practices that make it more likely that all code has an essential purpose, such as
scrutinizing code to make sure that it actually drives business goals, routinely remov-
ing dead code, and building bloat detection into all levels of testing.

The “Negative Lines of Code” Metric

The term “software bloat” was coined to describe the tendency of software to become
slower and bigger over time as a result of a constant stream of additional features.
While bloated software seems intuitively undesirable, its negative aspects become
even more clear when considered from the SRE perspective: every line of code
changed or added to a project creates the potential for introducing new defects and
bugs. A smaller project is easier to understand, easier to test, and frequently has fewer
defects. Bearing this perspective in mind, we should perhaps entertain reservations
when we have the urge to add new features to a project. Some of the most satisfying
coding I've ever done was deleting thousands of lines of code at a time when it was no
longer useful.

Minimal APls

French poet Antoine de Saint Exupery wrote, “perfection is finally attained not when
there is no longer more to add, but when there is no longer anything to take away”
[Sai39]. This principle is also applicable to the design and construction of software.
APIs are a particularly clear expression of why this rule should be followed.

Writing clear, minimal APIs is an essential aspect of managing simplicity in a soft-
ware system. The fewer methods and arguments we provide to consumers of the AP]I,
the easier that API will be to understand, and the more effort we can devote to mak-
ing those methods as good as they can possibly be. Again, a recurring theme appears:
the conscious decision to not take on certain problems allows us to focus on our core
problem and make the solutions we explicitly set out to create substantially better. In
software, less is more! A small, simple API is usually also a hallmark of a well-
understood problem.
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Modularity

Expanding outward from APIs and single binaries, many of the rules of thumb that
apply to object-oriented programming also apply to the design of distributed systems.
The ability to make changes to parts of the system in isolation is essential to creating
a supportable system. Specifically, loose coupling between binaries, or between binar-
ies and configuration, is a simplicity pattern that simultaneously promotes developer
agility and system stability. If a bug is discovered in one program that is a component
of a larger system, that bug can be fixed and pushed to production independent of the
rest of the system.

While the modularity that APIs offer may seem straightforward, it is not so apparent
that the notion of modularity also extends to how changes to APIs are introduced.
Just a single change to an API can force developers to rebuild their entire system and
run the risk of introducing new bugs. Versioning APIs allows developers to continue
to use the version that their system depends upon while they upgrade to a newer ver-
sion in a safe and considered way. The release cadence can vary throughout a system,
instead of requiring a full production push of the entire system every time a feature is
added or improved.

As a system grows more complex, the separation of responsibility between APIs and
between binaries becomes increasingly important. This is a direct analogy to object-
oriented class design: just as it is understood that it is poor practice to write a “grab
bag” class that contains unrelated functions, it is also poor practice to create and put
into production a “util” or “misc” binary. A well-designed distributed system consists
of collaborators, each of which has a clear and well-scoped purpose.

The concept of modularity also applies to data formats. One of the central strengths
and design goals of Googles protocol buffers’ was to create a wire format that was
backward and forward compatible.

Release Simplicity

Simple releases are generally better than complicated releases. It is much easier to
measure and understand the impact of a single change rather than a batch of changes
released simultaneously. If we release 100 unrelated changes to a system at the same
time and performance gets worse, understanding which changes impacted perfor-
mance, and how they did so, will take considerable effort or additional instrumenta-
tion. If the release is performed in smaller batches, we can move faster with more

3 Protocol buffers, also referred to as “protobufs,” are a language-neutral, platform-neutral extensible mecha-
nism for serializing structured data. For more details, see https://developers.google.com/protocol-buffers/docs/
overview#a-bit-of-history.
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confidence because each code change can be understood in isolation in the larger sys-
tem. This approach to releases can be compared to gradient descent in machine
learning, in which we find an optimum solution by taking small steps at a time, and
considering if each change results in an improvement or degradation.

A Simple Conclusion

This chapter has repeated one theme over and over: software simplicity is a prerequi-
site to reliability. We are not being lazy when we consider how we might simplify each
step of a given task. Instead, we are clarifying what it is we actually want to accom-
plish and how we might most easily do so. Every time we say “no” to a feature, we are
not restricting innovation; we are keeping the environment uncluttered of distrac-
tions so that focus remains squarely on innovation, and real engineering can proceed.
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PART Il
Practices

Put simply, SREs run services—a set of related systems, operated for users, who may
be internal or external—and are ultimately responsible for the health of these serv-
ices. Successtully operating a service entails a wide range of activities: developing
monitoring systems, planning capacity, responding to incidents, ensuring the root
causes of outages are addressed, and so on. This section addresses the theory and
practice of an SRE’s day-to-day activity: building and operating large distributed
computing systems.

We can characterize the health of a service—in much the same way that Abraham
Maslow categorized human needs [Mas43]—from the most basic requirements
needed for a system to function as a service at all to the higher levels of function—
permitting self-actualization and taking active control of the direction of the service
rather than reactively fighting fires. This understanding is so fundamental to how we
evaluate services at Google that it wasn't explicitly developed until a number of Goo-
gle SREs, including our former colleague Mikey Dickerson,' temporarily joined the
radically different culture of the United States government to help with the launch of
healthcare.gov in late 2013 and early 2014: they needed a way to explain how to
increase systems’ reliability.

We'll use this hierarchy, illustrated in Figure III-1, to look at the elements that go into
making a service reliable, from most basic to most advanced.

1 Mikey left Google in summer 2014 to become the first administrator of the US Digital Service (https://
www.whitehouse.gov/digital/united-states-digital-service), an agency intended (in part) to bring SRE principles
and practices to the US government’s IT systems.
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Development

/ (apacity Planning \
/ Testing + Release procedures \
/ Postmortem / Root Cause Analysis \
/ Incident Response \
/ Monitoring \

Figure III-1. Service Reliability Hierarchy

Monitoring

Without monitoring, you have no way to tell whether the service is even working;
absent a thoughtfully designed monitoring infrastructure, you're flying blind. Maybe
everyone who tries to use the website gets an error, maybe not—but you want to be
aware of problems before your users notice them. We discuss tools and philosophy in
Chapter 10, Practical Alerting from Time-Series Data.

Incident Response

SREs don’t go on-call merely for the sake of it: rather, on-call support is a tool we use
to achieve our larger mission and remain in touch with how distributed computing
systems actually work (and fail!). If we could find a way to relieve ourselves of carry-
ing a pager, we would. In Chapter 11, Being On-Call, we explain how we balance on-
call duties with our other responsibilities.

Once you're aware that there is a problem, how do you make it go away? That doesn’t
necessarily mean fixing it once and for all—maybe you can stop the bleeding by
reducing the system’s precision or turning off some features temporarily, allowing it
to gracefully degrade, or maybe you can direct traffic to another instance of the ser-
vice that’s working properly. The details of the solution you choose to implement are
necessarily specific to your service and your organization. Responding effectively to
incidents, however, is something applicable to all teams.
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Figuring out what’s wrong is the first step; we offer a structured approach in Chap-
ter 12, Effective Troubleshooting.

During an incident, it’s often tempting to give in to adrenalin and start responding ad
hoc. We advise against this temptation in Chapter 13, Emergency Response, and coun-
sel in Chapter 14, Managing Incidents, that managing incidents effectively should
reduce their impact and limit outage-induced anxiety.

Postmortem and Root-Cause Analysis

We aim to be alerted on and manually solve only new and exciting problems presen-
ted by our service; it's woefully boring to “fix” the same issue over and over. In fact,
this mindset is one of the key differentiators between the SRE philosophy and some
more traditional operations-focused environments. This theme is explored in two
chapters.

Building a blameless postmortem culture is the first step in understanding what went
wrong (and what went right!), as described in Chapter 15, Postmortem Culture:
Learning from Failure.

Related to that discussion, in Chapter 16, Tracking Outages, we briefly describe an
internal tool, the outage tracker, that allows SRE teams to keep track of recent pro-
duction incidents, their causes, and actions taken in response to them.

Testing

Once we understand what tends to go wrong, our next step is attempting to prevent
it, because an ounce of prevention is worth a pound of cure. Test suites offer some
assurance that our software isn’t making certain classes of errors before it’s released to
production; we talk about how best to use these in Chapter 17, Testing for Reliability.

Capacity Planning

In Chapter 18, Software Engineering in SRE, we offer a case study of software engi-
neering in SRE with Auxon, a tool for automating capacity planning.

Naturally following capacity planning, load balancing ensures were properly using
the capacity we've built. We discuss how requests to our services get sent to datacen-
ters in Chapter 19, Load Balancing at the Frontend. Then we continue the discussion
in Chapter 20, Load Balancing in the Datacenter and Chapter 21, Handling Overload,
both of which are essential for ensuring service reliability.

Finally, in Chapter 22, Addressing Cascading Failures, we offer advice for addressing
cascading failures, both in system design and should your service be caught in a cas-
cading failure.
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Development

One of the key aspects of Google’s approach to Site Reliability Engineering is that we
do significant large-scale system design and software engineering work within the
organization.

In Chapter 23, Managing Critical State: Distributed Consensus for Reliability, we
explain distributed consensus, which (in the guise of Paxos) is at the core of many of
Google’s distributed systems, including our globally distributed Cron system. In
Chapter 24, Distributed Periodic Scheduling with Cron, we outline a system that scales
to whole datacenters and beyond, which is no easy task.

Chapter 25, Data Processing Pipelines, discusses the various forms that data process-
ing pipelines can take: from one-shot MapReduce jobs running periodically to sys-
tems that operate in near real-time. Different architectures can lead to surprising and
counterintuitive challenges.

Making sure that the data you stored is still there when you want to read it is the
heart of data integrity; in Chapter 26, Data Integrity: What You Read Is What You
Wrote, we explain how to keep data safe.

Product

Finally, having made our way up the reliability pyramid, we find ourselves at the
point of having a workable product. In Chapter 27, Reliable Product Launches at Scale,
we write about how Google does reliable product launches at scale to try to give users
the best possible experience starting from Day Zero.

Further Reading from Google SRE

As discussed previously, testing is subtle, and its improper execution can have large
effects on overall stability. In an ACM article [Kril2], we explain how Google per-
forms company-wide resilience testing to ensure were capable of weathering the
unexpected should a zombie apocalypse or other disaster strike.

While it’s often thought of as a dark art, full of mystifying spreadsheets divining the
future, capacity planning is nonetheless vital, and as [Hix15a] shows, you don't
actually need a crystal ball to do it right.

Finally, an interesting and new approach to corporate network security is detailed in
[Warl4], an initiative to replace privileged intranets with device and user credentials.
Driven by SREs at the infrastructure level, this is definitely an approach to keep in
mind when you're creating your next network.
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CHAPTER 10
Practical Alerting from Time-Series Data

Written by Jamie Wilkinson
Edited by Kavita Guliani

May the queries flow, and the pager stay silent.
—Traditional SRE blessing

Monitoring, the bottom layer of the Hierarchy of Production Needs, is fundamental to
running a stable service. Monitoring enables service owners to make rational deci-
sions about the impact of changes to the service, apply the scientific method to inci-
dent response, and of course ensure their reason for existence: to measure the
service’s alignment with business goals (see Chapter 6).

Regardless of whether or not a service enjoys SRE support, it should be run in a sym-
biotic relationship with its monitoring. But having been tasked with ultimate respon-
sibility for Google Production, SREs develop a particularly intimate knowledge of the
monitoring infrastructure that supports their service.

Monitoring a very large system is challenging for a couple of reasons:

o The sheer number of components being analyzed

o The need to maintain a reasonably low maintenance burden on the engineers
responsible for the system

Google’s monitoring systems don't just measure simple metrics, such as the average
response time of an unladen European web server; we also need to understand the
distribution of those response times across all web servers in that region. This knowl-
edge enables us to identify the factors contributing to the latency tail.
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At the scale our systems operate, being alerted for single-machine failures is unac-
ceptable because such data is too noisy to be actionable. Instead we try to build sys-
tems that are robust against failures in the systems they depend on. Rather than
requiring management of many individual components, a large system should be
designed to aggregate signals and prune outliers. We need monitoring systems that
allow us to alert for high-level service objectives, but retain the granularity to inspect
individual components as needed.

Google’s monitoring systems evolved over the course of 10 years from the traditional
model of custom scripts that check responses and alert, wholly separated from visual
display of trends, to a new paradigm. This new model made the collection of time-
series a first-class role of the monitoring system, and replaced those check scripts
with a rich language for manipulating time-series into charts and alerts.

The Rise of Borgmon

Shortly after the job scheduling infrastructure Borg [Verl5] was created in 2003, a
new monitoring system—Borgmon—was built to complement it.

Time-Series Monitoring Outside of Google

This chapter describes the architecture and programming interface of an internal
monitoring tool that was foundational for the growth and reliability of Google for
almost 10 years...but how does that help you, our dear reader?

In recent years, monitoring has undergone a Cambrian Explosion: Riemann, Heka,
Bosun, and Prometheus have emerged as open source tools that are very similar to
Borgmon’s time-series-based alerting. In particular, Prometheus' shares many simi-
larities with Borgmon, especially when you compare the two rule languages. The
principles of variable collection and rule evaluation remain the same across all these
tools and provide an environment with which you can experiment, and hopefully
launch into production, the ideas inspired by this chapter.

Instead of executing custom scripts to detect system failures, Borgmon relies on a
common data exposition format; this enables mass data collection with low over-
heads and avoids the costs of subprocess execution and network connection setup.
We call this white-box monitoring (see Chapter 6 for a comparison of white-box and
black-box monitoring).

1 Prometheus is an open source monitoring and time-series database system available at http://prometheus.io.
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The data is used both for rendering charts and creating alerts, which are accom-
plished using simple arithmetic. Because collection is no longer in a short-lived pro-
cess, the history of the collected data can be used for that alert computation as well.

These features help to meet the goal of simplicity described in Chapter 6. They allow
the system overhead to be kept low so that the people running the services can
remain agile and respond to continuous change in the system as it grows.

To facilitate mass collection, the metrics format had to be standardized. An older
method of exporting the internal state (known as varz)? was formalized to allow the
collection of all metrics from a single target in one HTTP fetch. For example, to view
a page of metrics manually, you could use the following command:

% curl http://webserver:80/varz
http_requests 37
errors_total 12

A Borgmon can collect from other Borgmon,’ so we can build hierarchies that follow
the topology of the service, aggregating and summarizing information and discarding
some strategically at each level. Typically, a team runs a single Borgmon per cluster,
and a pair at the global level. Some very large services shard below the cluster level
into many scraper Borgmon, which in turn feed to the cluster-level Borgmon.

Instrumentation of Applications

The /varz HTTP handler simply lists all the exported variables in plain text, as space-
separated keys and values, one per line. A later extension added a mapped variable,
which allows the exporter to define several labels on a variable name, and then export
a table of values or a histogram. An example map-valued variable looks like the fol-
lowing, showing 25 HTTP 200 responses and 12 HT'TP 500s:

http_responses map:code 200:25 404:0 500:12

Adding a metric to a program only requires a single declaration in the code where the
metric is needed.

In hindsight, it’s apparent that this schemaless textual interface makes the barrier to
adding new instrumentation very low, which is a positive for both the software engi-
neering and SRE teams. However, this has a trade-off against ongoing maintenance;
the decoupling of the variable definition from its use in Borgmon rules requires care-

2 Google was born in the USA, so we pronounce this “var-zee.”

3 The plural of Borgmon is Borgmon, like sheep.
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ful change management. In practice, this trade-off has been satisfactory because tools
to validate and generate rules have been written as well.*

Exporting Variables

Google’s web roots run deep: each of the major languages used at Google has an
implementation of the exported variable interface that automagically registers with
the HTTP server built into every Google binary by default.” The instances of the vari-
able to be exported allow the server author to perform obvious operations like adding
an amount to the current value, setting a key to a specific value, and so forth. The Go
expvar library® and its JSON output form have a variant of this API

Collection of Exported Data

To find its targets, a Borgmon instance is configured with a list of targets using one of
many name resolution methods.” The target list is often dynamic, so using service
discovery reduces the cost of maintaining it and allows the monitoring to scale.

At predefined intervals, Borgmon fetches the /varz URI on each target, decodes the
results, and stores the values in memory. Borgmon also spreads the collection from
each instance in the target list over the whole interval, so that collection from each
target is not in lockstep with its peers.

Borgmon also records “synthetic” variables for each target in order to identify:

o If the name was resolved to a host and port
o If the target responded to a collection

o If the target responded to a health check

o What time the collection finished

These synthetic variables make it easy to write rules to detect if the monitored tasks
are unavailable.

4 Many non-SRE teams use a generator to stamp out the initial boilerplate and ongoing updates, and find the
generator much easier to use (though less powerful) than directly editing the rules.

5 Many other applications use their service protocol to export their internal state, as well. OpenLDAP exports it
through the cn=Montitor subtree; MySQL can report state with a SHOW VARIABLES query; Apache has its
mod_status handler.

6 https://golang.org/pkg/expvar/

7 The Borg Name System (BNS) is described in Chapter 2.

110 | Chapter 10: Practical Alerting from Time-Series Data

www.it-ebooks.info


https://golang.org/pkg/expvar/
http://www.it-ebooks.info/

It’s interesting that varz is quite dissimilar to SNMP (Simple Networking Monitoring
Protocol), which “is designed [...] to have minimal transport requirements and to
continue working when most other network applications fail” [Mic03]. Scraping tar-
gets over HTTP seems to be at odds with this design principle; however, experience
shows that this is rarely an issue.® The system itself is already designed to be robust
against network and machine failures, and Borgmon allows engineers to write
smarter alerting rules by using the collection failure itself as a signal.

Storage in the Time-Series Arena

A service is typically made up of many binaries running as many tasks, on many
machines, in many clusters. Borgmon needs to keep all that data organized, while
allowing flexible querying and slicing of that data.

Borgmon stores all the data in an in-memory database, regularly checkpointed to
disk. The data points have the form (timestamp, value), and are stored in chrono-
logical lists called time-series, and each time-series is named by a unique set of labels,
of the form name=value.

As presented in Figure 10-1, a time-series is conceptually a one-dimensional matrix
of numbers, progressing through time. As you add permutations of labels to this
time-series, the matrix becomes multidimensional.

“http_requests”

ofofofofofojojojojo
ofofofofofojojoyjojo

now-20t [ O fO|[O|O|JOJO)JO)JO]JO]O
now-At [O]JOfO]JOfO]JO[O]O]JO]O
now | 0|00 00 00000

host1 host2 host3 host4 host5 ***

Figure 10-1. A time-series for errors labeled by the original host each was collected from

In practice, the structure is a fixed-sized block of memory, known as the time-series
arena, with a garbage collector that expires the oldest entries once the arena is full.
The time interval between the most recent and oldest entries in the arena is the hori-
zon, which indicates how much queryable data is kept in RAM. Typically, datacenter

8 Recall in Chapter 6 the distinction between alerting on symptoms and on causes.

Storage in the Time-Series Arena | 111

www.it-ebooks.info


http://www.it-ebooks.info/

and global Borgmon are sized to hold about 12 hours of data’® for rendering consoles,
and much less time if they are the lowest-level collector shards. The memory require-
ment for a single data point is about 24 bytes, so we can fit 1 million unique time-
series for 12 hours at 1-minute intervals in under 17 GB of RAM.

Periodically, the in-memory state is archived to an external system known as the
Time-Series Database (TSDB). Borgmon can query TSDB for older data and, while
slower, TSDB is cheaper and larger than a Borgmons RAM.

Labels and Vectors

As shown in the example time-series in Figure 10-2, time-series are stored as sequen-
ces of numbers and timestamps, which are referred to as vectors. Like vectors in linear
algebra, these vectors are slices and cross-sections of the multidimensional matrix of
data points in the arena. Conceptually the timestamps can be ignored, because the
values are inserted in the vector at regular intervals in time—for example, 1 or 10 sec-
onds or 1 minute apart.

Lofolofofnfn]ofafolafofsfslsfafele]s]s]s]
1 1

oldest most recent

Figure 10-2. An example time-series

The name of a time-series is a labelset, because it's implemented as a set of labels
expressed as key=value pairs. One of these labels is the variable name itself, the key
that appears on the varz page.

A few label names are declared as important. For the time-series in the time-series
database to be identifiable, it must at minimum have the following labels:

var
The name of the variable

job
The name given to the type of server being monitored
service

A loosely defined collection of jobs that provide a service to users, either internal
or external

9 This 12-hour horizon is a magic number that aims to have enough information for debugging an incident in
RAM for fast queries without costing foo much RAM.
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zone
A Google convention that refers to the location (typically the datacenter) of the
Borgmon that performed the collection of this variable

Together, these variables appear something like the following, called the variable
expression:

{var=http_requests, job=webserver,instance=host0:80,service=web,zone=us-west}

A query for a time-series does not require specification of all these labels, and a
search for a labelset returns all matching time-series in a vector. So we could return a
vector of results by removing the instance label in the preceding query, if there were
more than one instance in the cluster. For example:

{var=http_requests, job=webserver,service=web,zone=us-west}

might have a result of five rows in a vector, with the most recent value in the time-
series like so:

{var=http_requests, job=webserver,instance=host0:80,service=web,zone=us-west} 10
{var=http_requests, job=webserver,instance=host1:80,service=web,zone=us-west} 9
{var=http_requests, job=webserver,instance=host2:80,service=web,zone=us-west} 11
{var=http_requests, job=webserver,instance=host3:80,service=web,zone=us-west} 0
{var=http_requests, job=webserver,instance=host4:80,service=web,zone=us-west} 10

Labels can be added to a time-series from:

o The targets name, e.g., the job and instance
o The target itself, e.g., via map-valued variables
» The Borgmon configuration, e.g., annotations about location or relabeling

o The Borgmon rules being evaluated

We can also query time-series in time, by specifying a duration to the variable expres-
sion:

{var=http_requests, job=webserver,service=web, zone=us-west}[10m]

This returns the last 10 minutes of history of the time-series that matched the expres-
sion. If we were collecting data points once per minute, we would expect to return 10
data points in a 10-minute window, like so:*

{var=http_requests, job=webserver,instance=host0:80, ...} 0 1234567 8 9 10
{var=http_requests, job=webserver,instance=host1:80, ...} 01234456789
{var=http_requests, job=webserver,instance=host2:80, ...} 0123567 8 9 9 11
{var=http_requests, job=webserver,instance=host3:80, ...} 0000 0000000
{var=http_requests, job=webserver,instance=host4:80, ...} 0 1234567 8 9 10
10 The service and zone labels are elided here for space, but are present in the returned expression.
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Rule Evaluation

Borgmon is really just a programmable calculator, with some syntactic sugar that ena-
bles it to generate alerts. The data collection and storage components already
described are just necessary evils to make that programmable calculator ultimately fit
for purpose here as a monitoring system. :)

Centralizing the rule evaluation in a monitoring system, rather
than delegating it to forked subprocesses, means that computations
can run in parallel against many similar targets. This practice keeps
the configuration relatively small in size (for example, by removing
duplication of code) yet more powerful through its expressiveness.

The Borgmon program code, also known as Borgmon rules, consists of simple alge-
braic expressions that compute time-series from other time-series. These rules can be
quite powerful because they can query the history of a single time-series (i.e., the time
axis), query different subsets of labels from many time-series at once (i.e., the space
axis), and apply many mathematical operations.

Rules run in a parallel threadpool where possible, but are dependent on ordering
when using previously defined rules as input. The size of the vectors returned by their
query expressions also determines the overall runtime of a rule. Thus, it is typically
the case that one can add CPU resources to a Borgmon task in response to it running
slow. To assist more detailed analysis, internal metrics on the runtime of rules are
exported for performance debugging and for monitoring the monitoring.

Aggregation is the cornerstone of rule evaluation in a distributed environment.
Aggregation entails taking the sum of a set of time-series from the tasks in a job in
order to treat the job as a whole. From those sums, overall rates can be computed. For
example, the total queries-per-second rate of a job in a datacenter is the sum of all the
rates of change" of all the query counters.'

11 Computing the sum of rates instead of the rate of sums defends the result against counter resets or missing
data, perhaps due to a task restart or failed collection of data.

12 Despite being untyped, the majority of varz are simple counters. Borgmon’s rate function handles all the cor-
ner cases of counter resets.
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A counter is any nonmonotonically decreasing variable—which is
to say, counters only increase in value. Gauges, on the other hand,
may take any value they like. Counters measure increasing values,
such as the total number of kilometers driven, while gauges show
current state, such as the amount of fuel remaining or current
speed. When collecting Borgmon-style data, it’s better to use coun-
ters, because they don’t lose meaning when events occur between
sampling intervals. Should any activity or changes occur between
sampling intervals, a gauge collection is likely to miss that activity.

For an example web server, we might want to alert when our web server cluster starts
to serve more errors as a percent of requests than we think is normal—or more tech-
nically, when the sum of the rates of non-HTTP-200 return codes on all tasks in the
cluster, divided by the sum of the rates of requests to all tasks in that cluster, is greater
than some value.

This is accomplished by:

1. Aggregating the rates of response codes across all tasks, outputting a vector of
rates at that point in time, one for each code.

2. Computing the total error rate as the sum of that vector, outputting a single value
for the cluster at that point in time. This total error rate excludes the 200 code
from the sum, because it is not an error.

3. Computing the cluster-wide ratio of errors to requests, dividing the total error
rate by the rate of requests that arrived, and again outputting a single value for
the cluster at that point in time.

Each of these outputs at a point in time gets appended to its named variable expres-
sion, which creates the new time-series. As a result, we will be able to inspect the his-
tory of error rates and error ratios some other time.

The rate of requests rules would be written in Borgmon’s rule language as the
following:

rules <<<
# Compute the rate of requests for each task from the count of requests
{var=task:http_requests:ratel0m, job=webserver} =
rate({var=http_requests, job=webserver}[10m]);

# Sum the rates to get the aggregate rate of queries for the cluster;
# ‘without instance’ instructs Borgmon to remove the instance label
# from the right hand side.
{var=dc:http_requests:rate10m, job=webserver} =
sum without instance({var=task:http_requests:ratel0m,job=webserver})
>>>
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The rate() function takes the enclosed expression and returns the total delta divided
by the total time between the earliest and latest values.

With the example time-series data from the query before, the results for the
task:http_requests:rate10m rule would look like:!?

{var=task:http_requests:ratel0m, job=webserver,instance=host0:80, ...
{var=task:http_requests:ratel0m, job=webserver,instance=host2:80, ...
{var=task:http_requests:ratel0m, job=webserver,instance=host3:80, ...
{var=task:http_requests:rate10m, job=webserver,instance=host4:80, ...
{var=task:http_requests:ratel0m, job=webserver,instance=host5:80, ...

L R e )
B, O R O R
= 0

and the results for the dc:http_requests:rate10m rule would be:
{var=dc:http_requests:ratel0m, job=webserver,service=web,zone=us-west} 4

because the second rule uses the first one as input.

The instance label is missing in the output now, discarded by the
aggregation rule. If it had remained in the rule, then Borgmon
would not have been able to sum the five rows together.

In these examples, we use a time window because we're dealing with discrete points in
the time-series, as opposed to continuous functions. Doing so makes the rate calcula-
tion easier than performing calculus, but means that to compute a rate, we need to
select a sufficient number of data points. We also have to deal with the possibility that
some recent collections have failed. Recall that the historical variable expression nota-
tion uses the range [10m] to avoid missing data points caused by collection errors.

The example also uses a Google convention that helps readability. Each computed
variable name contains a colon-separated triplet indicating the aggregation level,
the variable name, and the operation that created that name. In this example, the left-
hand variables are “task HTTP requests 10-minute rate” and “datacenter HTTP
requests 10-minute rate”

Now that we know how to create a rate of queries, we can build on that to also com-
pute a rate of errors, and then we can calculate the ratio of responses to requests to
understand how much useful work the service is doing. We can compare the ratio
rate of errors to our service level objective (see Chapter 4) and alert if this objective is
missed or in danger of being missed:

13 The service and zone labels are elided for space.
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rules <<<
# Compute a rate pertask and per ‘code’ label
{var=task:http_responses:ratel0m, job=webserver} =
rate by code({var=http_responses, job=webserver}[10m]);

# Compute a cluster level response rate per ‘code’ label
{var=dc:http_responses:ratel0m, job=webserver} =
sum without instance({var=task:http_responses:rate10m,job=webserver});

# Compute a new cluster level rate summing all non 200 codes
{var=dc:http_errors:rate10m, job=webserver} = sum without code(
{var=dc:http_responses:rate10m, jobwebserver,code=!/200/};

# Compute the ratio of the rate of errors to the rate of requests
{var=dc:http_errors:ratio_rate10m,job=webserver} =
{var=dc:http_errors:rate10m, job=webserver}
/
{var=dc:http_requests:ratel10m, job=webserver};
>>>

Again, this calculation demonstrates the convention of suffixing the new time-series
variable name with the operation that created it. This result is read as “datacenter
HTTP errors 10 minute ratio of rates.”

The output of these rules might look like:'*
{var=task:http_responses:ratel0m, job=webserver}

{var=task:http_responses:ratel0m, job=webserver,code=200,instance=host0:80,
{var=task:http_responses:rate10m,job=webserver,code=500,instance=host0:80,
{var=task:http_responses:ratel0m, job=webserver,code=200,instance=host1:80,
{var=task:http_responses:ratel10m,job=webserver,code=500,instance=host1:80,
{var=task:http_responses:ratel0m, job=webserver,code=200,instance=host2:80,
{var=task:http_responses:ratel10m, job=webserver,code=500,instance=host2:80,
{var=task:http_responses:ratel0m, job=webserver,code=200,instance=host3:80,
{var=task:http_responses:ratel10m, job=webserver,code=500,instance=host3:80,
{var=task:http_responses:ratel0m, job=webserver,code=200,instance=host4:80,
{var=task:http_responses:ratel10m, job=webserver,code=500,instance=host4:80,

A P S P S P
cPooo0oOor O©O oK

{var=dc:http_responses:ratel0m, job=webserver}

{var=dc:http_responses:ratel0m, job=webserver,code=200, ...} 3.4
{var=dc:http_responses:ratel0m, job=webserver,code=500, ...} 0.6

{var=dc:http_responses:ratel0m, jobwebserver,code=!/200/}
{var=dc:http_responses:ratel0m, job=webserver,code=500, ...} 0.6
{var=dc:http_errors:rate10m, job=webserver}

{var=dc:http_errors:rate10m, job=webserver, ...} 0.6

14 The service and zone labels are elided for space.
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{var=dc:http_errors:ratio_rate10m, job=webserver}

{var=dc:http_errors:ratio_ratel0m, job=webserver} 0.15

The preceding output shows the intermediate query in the
dc:http_errors:rate10m rule that filters the non-200 error codes.
Though the value of the expressions are the same, observe that the
code label is retained in one but removed from the other.

As mentioned previously, Borgmon rules create new time-series, so the results of the
computations are kept in the time-series arena and can be inspected just as the source
time-series are. The ability to do so allows for ad hoc querying, evaluation, and explo-
ration as tables or charts. This is a useful feature for debugging while on-call, and if
these ad hoc queries prove useful, they can be made permanent visualizations on a
service console.

Alerting

When an alerting rule is evaluated by a Borgmon, the result is either true, in which
case the alert is triggered, or false. Experience shows that alerts can “flap” (toggle their
state quickly); therefore, the rules allow a minimum duration for which the alerting
rule must be true before the alert is sent. Typically, this duration is set to at least two
rule evaluation cycles to ensure no missed collections cause a false alert.

The following example creates an alert when the error ratio over 10 minutes exceeds
1% and the total number of errors exceeds 1:

rules <<<
{var=dc:http_errors:ratio_ratel0m,job=webserver} > 0.01
and by job, error
{var=dc:http_errors:rate10m, job=webserver} > 1
for 2m
=> ErrorRatioTooHigh
details "webserver error ratio at [[trigger_value]]"
labels {severity=page};
>>>

Our example holds the ratio rate at 0.15, which is well over the threshold of 0.01 in
the alerting rule. However, the number of errors is not greater than 1 at this moment,

so the alert won't be active. Once the number of errors exceeds 1, the alert will go
pending for two minutes to ensure it isn’t a transient state, and only then will it fire.

The alert rule contains a small template for filling out a message containing contex-
tual information: which job the alert is for, the name of the alert, the numerical value
of the triggering rule, and so on. The contextual information is filled out by Borgmon
when the alert fires and is sent in the Alert RPC.
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Borgmon is connected to a centrally run service, known as the Alertmanager, which
receives Alert RPCs when the rule first triggers, and then again when the alert is con-
sidered to be “firing” The Alertmanager is responsible for routing the alert notifica-
tion to the correct destination. Alertmanager can be configured to do the following:

o Inhibit certain alerts when others are active
 Deduplicate alerts from multiple Borgmon that have the same labelsets

o Fan-in or fan-out alerts based on their labelsets when multiple alerts with similar
labelsets fire

As described in Chapter 6, teams send their page-worthy alerts to their on-call rota-
tion and their important but subcritical alerts to their ticket queues. All other alerts
should be retained as informational data for status dashboards.

A more comprehensive guide to alert design can be found in Chapter 4.

Sharding the Monitoring Topology

A Borgmon can import time-series data from other Borgmon, as well. While one
could attempt to collect from all tasks in a service globally, doing so quickly becomes
a scaling bottleneck and introduces a single point of failure into the design. Instead, a
streaming protocol is used to transmit time-series data between Borgmon, saving
CPU time and network bytes compared to the text-based varz format. A typical such
deployment uses two or more global Borgmon for top-level aggregation and one
Borgmon in each datacenter to monitor all the jobs running at that location. (Google
divides the production network into zones for production changes, so having two or
more global replicas provides diversity in the face of maintenance and outages for
this otherwise single point of failure.)

As shown in Figure 10-3, more complicated deployments shard the datacenter Borg-
mon further into a purely scraping-only layer (often due to RAM and CPU con-
straints in a single Borgmon for very large services) and a DC aggregation layer that
performs mostly rule evaluation for aggregation. Sometimes the global layer is split
between rule evaluation and dashboarding. Upper-tier Borgmon can filter the data
they want to stream from the lower-tier Borgmon, so that the global Borgmon does
not fill its arena with all the per-task time-series from the lower tiers. Thus, the aggre-
gation hierarchy builds local caches of relevant time-series that can be drilled down
into when required.
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Figure 10-3. A data flow model of a hierarchy of Borgmon in three clusters

Black-Box Monitoring

Borgmon is a white-box monitoring system—it inspects the internal state of the tar-
get service, and the rules are written with knowledge of the internals in mind. The
transparent nature of this model provides great power to identify quickly what com-
ponents are failing, which queues are full, and where bottlenecks occur, both when
responding to an incident and when testing a new feature deployment.

However, white-box monitoring does not provide a full picture of the system being
monitored; relying solely upon white-box monitoring means that you aren’t aware of
what the users see. You only see the queries that arrive at the target; the queries that
never make it due to a DNS error are invisible, while queries lost due to a server crash
never make a sound. You can only alert on the failures that you expected.

Teams at Google solve this coverage issue with Prober, which runs a protocol check
against a target and reports success or failure. The prober can send alerts directly to
Alertmanager, or its own varz can be collected by a Borgmon. Prober can validate the
response payload of the protocol (e.g., the HTML contents of an HT'TP response) and
validate that the contents are expected, and even extract and export values as time-
series. Teams often use Prober to export histograms of response times by operation
type and payload size so that they can slice and dice the user-visible performance.
Prober is a hybrid of the check-and-test model with some richer variable extraction
to create time-series.
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Prober can be pointed at either the frontend domain or behind the load balancer. By
using both targets, we can detect localized failures and suppress alerts. For example,
we might monitor both the load balanced www.google.com and the web servers in
each datacenter behind the load balancer. This setup allows us to either know that
traffic is still served when a datacenter fails, or to quickly isolate an edge in the traffic
flow graph where a failure has occurred.

Maintaining the Configuration

Borgmon configuration separates the definition of the rules from the targets being
monitored. This means the same sets of rules can be applied to many targets at once,
instead of writing nearly identical configuration over and over. This separation of
concerns might seem incidental, but it greatly reduces the cost of maintaining the
monitoring by avoiding lots of repetition in describing the target systems.

Borgmon also supports language templates. This macro-like system enables engineers
to construct libraries of rules that can be reused. This functionality again reduces rep-
etition, thus reducing the likelihood of bugs in the configuration.

Of course, any high-level programming environment creates the opportunity for
complexity, so Borgmon provides a way to build extensive unit and regression tests
by synthesizing time-series data, in order to ensure that the rules behave as the author
thinks they do. The Production Monitoring team runs a continuous integration ser-
vice that executes a suite of these tests, packages the configuration, and ships the con-
figuration to all the Borgmon in production, which then validate the configuration
before accepting it.

In the vast library of common templates that have been created, two classes of moni-
toring configuration have emerged. The first class simply codifies the emergent
schema of variables exported from a given library of code, such that any user of the
library can reuse the template of its varz. Such templates exist for the HTTP server
library, memory allocation, the storage client library, and generic RPC services,
among others. (While the varz interface declares no schema, the rule library associ-
ated with the code library ends up declaring a schema.)

The second class of library emerged as we built templates to manage the aggregation
of data from a single-server task to the global service footprint. These libraries con-
tain generic aggregation rules for exported variables that engineers can use to model
the topology of their service.
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For example, a service may provide a single global API, but be homed in many data-
centers. Within each datacenter, the service is composed of several shards, and each
shard is composed of several jobs with various numbers of tasks. An engineer can
model this breakdown with Borgmon rules so that when debugging, subcomponents
can be isolated from the rest of the system. These groupings typically follow the
shared fate of components; e.g., individual tasks share fate due to configuration files,
jobs in a shard share fate because they’re homed in the same datacenter, and physical
sites share fate due to networking.

Labeling conventions make such division possible: a Borgmon adds labels indicating
the target’s instance name and the shard and datacenter it occupies, which can be
used to group and aggregate those time-series together.

Thus, we have multiple uses for labels on a time-series, though all are interchangea-

ble:

o Labels that define breakdowns of the data itself (e.g., our HT'TP response code on
the http_responses variable)

o Labels that define the source of the data (e.g., the instance or job name)

o Labels that indicate the locality or aggregation of the data within the service as a
whole (e.g., the zone label describing a physical location, a shard label describing
a logical grouping of tasks)

The templated nature of these libraries allows flexibility in their use. The same tem-
plate can be used to aggregate from each tier.

TenYearsOn...

Borgmon transposed the model of check-and-alert per target into mass variable col-
lection and a centralized rule evaluation across the time-series for alerting and
diagnostics.

This decoupling allows the size of the system being monitored to scale independently
of the size of alerting rules. These rules cost less to maintain because they’re abstrac-
ted over a common time-series format. New applications come ready with metric
exports in all components and libraries to which they link, and well-traveled aggrega-
tion and console templates, which further reduces the burden of implementation.

Ensuring that the cost of maintenance scales sublinearly with the size of the service is
key to making monitoring (and all sustaining operations work) maintainable. This
theme recurs in all SRE work, as SREs work to scale all aspects of their work to the
global scale.
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Ten years is a long time, though, and of course today the shape of the monitoring
landscape within Google has evolved with experiments and changes, striving for con-
tinual improvement as the company grows.

Even though Borgmon remains internal to Google, the idea of treating time-series
data as a data source for generating alerts is now accessible to everyone through those
open source tools like Prometheus, Riemann, Heka, and Bosun, and probably others
by the time you read this.
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CHAPTER 11

Being On-Call

Written by Andrea Spadaccini’
Edited by Kavita Guliani

Being on-call is a critical duty that many operations and engineering teams must
undertake in order to keep their services reliable and available. However, there are
several pitfalls in the organization of on-call rotations and responsibilities that can
lead to serious consequences for the services and for the teams if not avoided. This
chapter describes the primary tenets of the approach to on-call that Google’s Site Reli-
ability Engineers (SREs) have developed over years, and explains how that approach
has led to reliable services and sustainable workload over time.

Introduction

Several professions require employees to perform some sort of on-call duty, which
entails being available for calls during both working and nonworking hours. In the IT
context, on-call activities have historically been performed by dedicated Ops teams
tasked with the primary responsibility of keeping the service(s) for which they are
responsible in good health.

Many important services in Google, e.g., Search, Ads, and Gmail, have dedicated
teams of SREs responsible for the performance and reliability of these services. Thus,
SREs are on-call for the services they support. The SRE teams are quite different from
purely operational teams in that they place heavy emphasis on the use of engineering
to approach problems. These problems, which typically fall in the operational
domain, exist at a scale that would be intractable without software engineering
solutions.

1 An earlier version of this chapter appeared as an article in ;login: (October 2015, vol. 40, no. 5).
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To enforce this type of problem solving, Google hires people with a diverse back-
ground in systems and software engineering into SRE teams. We cap the amount of
time SREs spend on purely operational work at 50%; at minimum, 50% of an SRE’s
time should be allocated to engineering projects that further scale the impact of the
team through automation, in addition to improving the service.

Life of an On-Call Engineer

This section describes the typical activities of an on-call engineer and provides some
background for the rest of the chapter.

As the guardians of production systems, on-call engineers take care of their assigned
operations by managing outages that affect the team and performing and/or vetting
production changes.

When on-call, an engineer is available to perform operations on production systems
within minutes, according to the paging response times agreed to by the team and the
business system owners. Typical values are 5 minutes for user-facing or otherwise
highly time-critical services, and 30 minutes for less time-sensitive systems. The com-
pany provides the page-receiving device, which is typically a phone. Google has flexi-
ble alert delivery systems that can dispatch pages via multiple mechanisms (email,
SMS, robot call, app) across multiple devices.

Response times are related to desired service availability, as demonstrated by the fol-
lowing simplistic example: if a user-facing system must obtain 4 nines of availability
in a given quarter (99.99%), the allowed quarterly downtime is around 13 minutes
(Appendix A). This constraint implies that the reaction time of on-call engineers has
to be in the order of minutes (strictly speaking, 13 minutes). For systems with more
relaxed SLOs, the reaction time can be on the order of tens of minutes.

As soon as a page is received and acknowledged, the on-call engineer is expected to
triage the problem and work toward its resolution, possibly involving other team
members and escalating as needed.

Nonpaging production events, such as lower priority alerts or software releases, can
also be handled and/or vetted by the on-call engineer during business hours. These
activities are less urgent than paging events, which take priority over almost every
other task, including project work. For more insight on interrupts and other non-
paging events that contribute to operational load, see Chapter 29.

Many teams have both a primary and a secondary on-call rotation. The distribution
of duties between the primary and the secondary varies from team to team. One team
might employ the secondary as a fall-through for the pages the primary on-call
misses. Another team might specify that the primary on-call handles only pages,
while the secondary handles all other non-urgent production activities.
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In teams for which a secondary rotation is not strictly required for duty distribution,
it is common for two related teams to serve as secondary on-call for each other, with
fall-through handling duties. This setup eliminates the need for an exclusive secon-
dary on-call rotation.

There are many ways to organize on-call rotations; for detailed analysis, refer to the
“Oncall” chapter of [Lim14].

Balanced On-Call

SRE teams have specific constraints on the quantity and quality of on-call shifts. The
quantity of on-call can be calculated by the percent of time spent by engineers on on-
call duties. The quality of on-call can be calculated by the number of incidents that
occur during an on-call shift.

SRE managers have the responsibility of keeping the on-call workload balanced and
sustainable across these two axes.

Balance in Quantity

We strongly believe that the “E” in “SRE” is a defining characteristic of our organiza-
tion, so we strive to invest at least 50% of SRE time into engineering: of the remain-
der, no more than 25% can be spent on-call, leaving up to another 25% on other types
of operational, nonproject work.

Using the 25% on-call rule, we can derive the minimum number of SREs required to
sustain a 24/7 on-call rotation. Assuming that there are always two people on-call
(primary and secondary, with different duties), the minimum number of engineers
needed for on-call duty from a single-site team is eight: assuming week-long shifts,
each engineer is on-call (primary or secondary) for one week every month. For dual-
site teams, a reasonable minimum size of each team is six, both to honor the 25% rule
and to ensure a substantial and critical mass of engineers for the team.

If a service entails enough work to justify growing a single-site team, we prefer to cre-
ate a multi-site team. A multi-site team is advantageous for two reasons:

o Night shifts have detrimental effects on people’s health [Dur05], and a multi-site
“follow the sun” rotation allows teams to avoid night shifts altogether.

« Limiting the number of engineers in the on-call rotation ensures that engineers
do not lose touch with the production systems (see “A Treacherous Enemy:
Operational Underload” on page 132).

However, multi-site teams incur communication and coordination overhead. There-
fore, the decision to go multi-site or single-site should be based upon the trade-offs
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each option entails, the importance of the system, and the workload each system
generates.

Balance in Quality

For each on-call shift, an engineer should have sufficient time to deal with any inci-
dents and follow-up activities such as writing postmortems [Loo10]. Let’s define an
incident as a sequence of events and alerts that are related to the same root cause and
would be discussed as part of the same postmortem. We've found that on average,
dealing with the tasks involved in an on-call incident—root-cause analysis, remedia-
tion, and follow-up activities like writing a postmortem and fixing bugs—takes 6
hours. It follows that the maximum number of incidents per day is 2 per 12-hour on-
call shift. In order to stay within this upper bound, the distribution of paging events
should be very flat over time, with a likely median value of 0: if a given component or
issue causes pages every day (median incidents/day > 1), it is likely that something
else will break at some point, thus causing more incidents than should be permitted.

If this limit is temporarily exceeded, e.g., for a quarter, corrective measures should be
put in place to make sure that the operational load returns to a sustainable state (see
“Operational Overload” on page 130 and Chapter 30).

Compensation

Adequate compensation needs to be considered for out-of-hours support. Different
organizations handle on-call compensation in different ways; Google offers time-oft-
in-lieu or straight cash compensation, capped at some proportion of overall salary.
The compensation cap represents, in practice, a limit on the amount of on-call work
that will be taken on by any individual. This compensation structure ensures incen-
tivization to be involved in on-call duties as required by the team, but also promotes a
balanced on-call work distribution and limits potential drawbacks of excessive on-call
work, such as burnout or inadequate time for project work.

Feeling Safe

As mentioned earlier, SRE teams support Google’s most critical systems. Being an
SRE on-call typically means assuming responsibility for user-facing, revenue-critical
systems or for the infrastructure required to keep these systems up and running. SRE
methodology for thinking about and tackling problems is vital for the appropriate
operation of services.

Modern research identifies two distinct ways of thinking that an individual may, con-
sciously or subconsciously, choose when faced with challenges [Kah11]:
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« Intuitive, automatic, and rapid action

« Rational, focused, and deliberate cognitive functions

When one is dealing with the outages related to complex systems, the second of these
options is more likely to produce better results and lead to well-planned incident
handling.

To make sure that the engineers are in the appropriate frame of mind to leverage the
latter mindset, it’s important to reduce the stress related to being on-call. The impor-
tance and the impact of the services and the consequences of potential outages can
create significant pressure on the on-call engineers, damaging the well-being of indi-
vidual team members and possibly prompting SREs to make incorrect choices that
can endanger the availability of the service. Stress hormones like cortisol and
corticotropin-releasing hormone (CRH) are known to cause behavioral consequences
—including fear—that can impair cognitive functions and cause suboptimal decision
making [Chr09].

Under the influence of these stress hormones, the more deliberate cognitive approach
is typically subsumed by unreflective and unconsidered (but immediate) action, lead-
ing to potential abuse of heuristics. Heuristics are very tempting behaviors when one
is on-call. For example, when the same alert pages for the fourth time in the week,
and the previous three pages were initiated by an external infrastructure system, it is
extremely tempting to exercise confirmation bias by automatically associating this
fourth occurrence of the problem with the previous cause.

While intuition and quick reactions can seem like desirable traits in the middle of
incident management, they have downsides. Intuition can be wrong and is often less
supportable by obvious data. Thus, following intuition can lead an engineer to waste
time pursuing a line of reasoning that is incorrect from the start. Quick reactions are
deep-rooted in habit, and habitual responses are unconsidered, which means they
can be disastrous. The ideal methodology in incident management strikes the perfect
balance of taking steps at the desired pace when enough data is available to make a
reasonable decision while simultaneously critically examining your assumptions.

It's important that on-call SREs understand that they can rely on several resources
that make the experience of being on-call less daunting than it may seem. The most
important on-call resources are:

o Clear escalation paths
» Well-defined incident-management procedures
o A blameless postmortem culture ([Loo10], [All12])

The developer teams of SRE-supported systems usually participate in a 24/7 on-call
rotation, and it is always possible to escalate to these partner teams when necessary.
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The appropriate escalation of outages is generally a principled way to react to serious
outages with significant unknown dimensions.

When one is handling incidents, if the issue is complex enough to involve multiple
teams or if, after some investigation, it is not yet possible to estimate an upper bound
for the incident’s time span, it can be useful to adopt a formal incident-management
protocol. Google SRE uses the protocol described in Chapter 14, which offers an
easy-to-follow and well-defined set of steps that aid an on-call engineer to rationally
pursue a satisfactory incident resolution with all the required help. This protocol is
internally supported by a web-based tool that automates most of the incident man-
agement actions, such as handing off roles and recording and communicating status
updates. This tool allows incident managers to focus on dealing with the incident,
rather than spending time and cognitive effort on mundane actions such as format-
ting emails or updating several communication channels at once.

Finally, when an incident occurs, it’s important to evaluate what went wrong, recog-
nize what went well, and take action to prevent the same errors from recurring in the
future. SRE teams must write postmortems after significant incidents and detail a full
timeline of the events that occurred. By focusing on events rather than the people,
these postmortems provide significant value. Rather than placing blame on individu-
als, they derive value from the systematic analysis of production incidents. Mistakes
happen, and software should make sure that we make as few mistakes as possible.
Recognizing automation opportunities is one of the best ways to prevent human
errors [Lool0].

Avoiding Inappropriate Operational Load

As mentioned in “Balanced On-Call” on page 127, SREs spend at most 50% of their
time on operational work. What happens if operational activities exceed this limit?

Operational Overload

The SRE team and leadership are responsible for including concrete objectives in
quarterly work planning in order to make sure that the workload returns to sustaina-
ble levels. Temporarily loaning an experienced SRE to an overloaded team, discussed
in Chapter 30, can provide enough breathing room so that the team can make head-
way in addressing issues.

Ideally, symptoms of operational overload should be measurable, so that the goals can
be quantified (e.g., number of daily tickets < 5, paging events per shift < 2).

Misconfigured monitoring is a common cause of operational overload. Paging alerts
should be aligned with the symptoms that threaten a service’s SLOs. All paging alerts
should also be actionable. Low-priority alerts that bother the on-call engineer every
hour (or more frequently) disrupt productivity, and the fatigue such alerts induce can
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also cause serious alerts to be treated with less attention than necessary. See Chap-
ter 29 for further discussion.

It is also important to control the number of alerts that the on-call engineers receive
for a single incident. Sometimes a single abnormal condition can generate several
alerts, so it's important to regulate the alert fan-out by ensuring that related alerts are
grouped together by the monitoring or alerting system. If, for any reason, duplicate
or uninformative alerts are generated during an incident, silencing those alerts can
provide the necessary quiet for the on-call engineer to focus on the incident itself.
Noisy alerts that systematically generate more than one alert per incident should be
tweaked to approach a 1:1 alert/incident ratio. Doing so allows the on-call engineer to
focus on the incident instead of triaging duplicate alerts.

Sometimes the changes that cause operational overload are not under the control of
the SRE teams. For example, the application developers might introduce changes that
cause the system to be more noisy, less reliable, or both. In this case, it is appropriate
to work together with the application developers to set common goals to improve the
system.

In extreme cases, SRE teams may have the option to “give back the pager”—SRE can
ask the developer team to be exclusively on-call for the system until it meets the
standards of the SRE team in question. Giving back the pager doesn't happen very
frequently, because it's almost always possible to work with the developer team to
reduce the operational load and make a given system more reliable. In some cases,
though, complex or architectural changes spanning multiple quarters might be
required to make a system sustainable from an operational point of view. In such
cases, the SRE team should not be subject to an excessive operational load. Instead, it
is appropriate to negotiate the reorganization of on-call responsibilities with the
development team, possibly routing some or all paging alerts to the developer on-call.
Such a solution is typically a temporary measure, during which time the SRE and
developer teams work together to get the service in shape to be on-boarded by the
SRE team again.

The possibility of renegotiating on-call responsibilities between SRE and product
development teams attests to the balance of powers between the teams.” This working
relationship also exemplifies how the healthy tension between these two teams and
the values that they represent—reliability versus feature velocity—is typically resolved
by greatly benefiting the service and, by extension, the company as a whole.

2 For more discussion on the natural tension between SRE and product development teams, see Chapter 1.
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A Treacherous Enemy: Operational Underload

Being on-call for a quiet system is blissful, but what happens if the system is too quiet
or when SREs are not on-call often enough? An operational underload is undesirable
for an SRE team. Being out of touch with production for long periods of time can
lead to confidence issues, both in terms of overconfidence and underconfidence,
while knowledge gaps are discovered only when an incident occurs.

To counteract this eventuality, SRE teams should be sized to allow every engineer to
be on-call at least once or twice a quarter, thus ensuring that each team member is
sufficiently exposed to production. “Wheel of Misfortune” exercises (discussed in
Chapter 28) are also useful team activities that can help to hone and improve trouble-
shooting skills and knowledge of the service. Google also has a company-wide annual
disaster recovery event called DiRT (Disaster Recovery Training) that combines theo-
retical and practical drills to perform multiday testing of infrastructure systems and
individual services; see [Kril2].

Conclusions

The approach to on-call described in this chapter serves as a guideline for all SRE
teams in Google and is key to fostering a sustainable and manageable work environ-
ment. Google’s approach to on-call has enabled us to use engineering work as the pri-
mary means to scale production responsibilities and maintain high reliability and
availability despite the increasing complexity and number of systems and services for
which SREs are responsible.

While this approach might not be immediately applicable to all contexts in which
engineers need to be on-call for IT services, we believe it represents a solid model that
organizations can adopt in scaling to meet a growing volume of on-call work.
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CHAPTER 12
Effective Troubleshooting

Written by Chris Jones

Be warned that being an expert is more than understanding how a system is supposed to
work. Expertise is gained by investigating why a system doesn’t work.

—Brian Redman

Ways in which things go right are special cases of the ways in which things go wrong.
—John Allspaw

Troubleshooting is a critical skill for anyone who operates distributed computing sys-
tems—especially SREs—but it’s often viewed as an innate skill that some people have
and others don’t. One reason for this assumption is that, for those who troubleshoot
often, it’s an ingrained process; explaining how to troubleshoot is difficult, much like
explaining how to ride a bike. However, we believe that troubleshooting is both learn-
able and teachable.

Novices are often tripped up when troubleshooting because the exercise ideally
depends upon two factors: an understanding of how to troubleshoot generically (i.e.,
without any particular system knowledge) and a solid knowledge of the system.
While you can investigate a problem using only the generic process and derivation
from first principles,' we usually find this approach to be less efficient and less effec-
tive than understanding how things are supposed to work. Knowledge of the system
typically limits the effectiveness of an SRE new to a system; there’s little substitute to
learning how the system is designed and built.

1 Indeed, using only first principles and troubleshooting skills is often an effective way to learn how a system
works; see Chapter 28.
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Let’s look at a general model of the troubleshooting process. Readers with expertise in
troubleshooting may quibble with our definitions and process; if your method is
effective for you, there’s no reason not to stick with it.

Theory

Formally, we can think of the troubleshooting process as an application of the
hypothetico-deductive method:? given a set of observations about a system and a the-
oretical basis for understanding system behavior, we iteratively hypothesize potential
causes for the failure and try to test those hypotheses.

In an idealized model such as that in Figure 12-1, wed start with a problem report
telling us that something is wrong with the system. Then we can look at the system’s
telemetry® and logs to understand its current state. This information, combined with
our knowledge of how the system is built, how it should operate, and its failure
modes, enables us to identify some possible causes.

Problem ] > : -
(Report Triage < \

i | Consider re-triaging
1 if situation changes
|

Examine ﬁ'
v

Diagnose
v

( Cure )4— Test /Treat —/

Figure 12-1. A process for troubleshooting

2 See https://en.wikipedia.org/wiki/Hypothetico-deductive_model.

3 For instance, exported variables as described in Chapter 10.
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We can then test our hypotheses in one of two ways. We can compare the observed
state of the system against our theories to find confirming or disconfirming evidence.
Or, in some cases, we can actively “treat” the system—that is, change the system in a
controlled way—and observe the results. This second approach refines our under-
standing of the system’s state and possible cause(s) of the reported problems. Using
either of these strategies, we repeatedly test until a root cause is identified, at which
point we can then take corrective action to prevent a recurrence and write a postmor-
tem. Of course, fixing the proximate cause(s) needn't always wait for root-causing or
postmortem writing.

Common Pitfalls

Ineffective troubleshooting sessions are plagued by problems at the Triage, Examine,
and Diagnose steps, often because of a lack of deep system understanding. The fol-
lowing are common pitfalls to avoid:

+ Looking at symptoms that aren’t relevant or misunderstanding the meaning of
system metrics. Wild goose chases often result.

« Misunderstanding how to change the system, its inputs, or its environment, so as
to safely and effectively test hypotheses.

o Coming up with wildly improbable theories about what's wrong, or latching on
to causes of past problems, reasoning that since it happened once, it must be hap-
pening again.

« Hunting down spurious correlations that are actually coincidences or are correla-
ted with shared causes.

Fixing the first and second common pitfalls is a matter of learning the system in ques-
tion and becoming experienced with the common patterns used in distributed sys-
tems. The third trap is a set of logical fallacies that can be avoided by remembering
that not all failures are equally probable—as doctors are taught, “when you hear hoof-
beats, think of horses not zebras™ Also remember that, all things being equal, we
should prefer simpler explanations.’

4 Attributed to Theodore Woodward, of the University of Maryland School of Medicine, in the 1940s. See
https://en.wikipedia.org/wiki/Zebra_(medicine). This works in some domains, but in some systems, entire
classes of failures may be eliminable: for instance, using a well-designed cluster filesystem means that a
latency problem is unlikely to be due to a single dead disk.

w

Occam’s Razor; see https://en.wikipedia.org/wiki/Occam%27s_razor. But remember that it may still be the case
that there are multiple problems; in particular, it may be more likely that a system has a number of common
low-grade problems that, taken together, explain all the symptoms rather than a single rare problem that
causes them all. Cf https://en.wikipedia.org/wiki/Hickam%27s_dictum.
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Finally, we should remember that correlation is not causation:® some correlated
events, say packet loss within a cluster and failed hard drives in the cluster, share
common causes—in this case, a power outage, though network failure clearly doesn’t
cause the hard drive failures nor vice versa. Even worse, as systems grow in size and
complexity and as more metrics are monitored, it’s inevitable that there will be events
that happen to correlate well with other events, purely by coincidence.”

Understanding failures in our reasoning process is the first step to avoiding them and
becoming more effective in solving problems. A methodical approach to knowing
what we do know, what we don’t know, and what we need to know, makes it simpler
and more straightforward to figure out what’s gone wrong and how to fix it.

In Practice

In practice, of course, troubleshooting is never as clean as our idealized model sug-
gests it should be. There are some steps that can make the process less painful and
more productive for both those experiencing system problems and those responding
to them.

Problem Report

Every problem starts with a problem report, which might be an automated alert or
one of your colleagues saying, “The system is slow” An effective report should tell
you the expected behavior, the actual behavior, and, if possible, how to reproduce the
behavior.® Ideally, the reports should have a consistent form and be stored in a search-
able location, such as a bug tracking system. Here, our teams often have customized
forms or small web apps that ask for information thats relevant to diagnosing the
particular systems they support, which then automatically generate and route a bug.
This may also be a good point at which to provide tools for problem reporters to try
self-diagnosing or self-repairing common issues on their own.

It's common practice at Google to open a bug for every issue, even those received via
email or instant messaging. Doing so creates a log of investigation and remediation
activities that can be referenced in the future. Many teams discourage reporting prob-
lems directly to a person for several reasons: this practice introduces an additional
step of transcribing the report into a bug, produces lower-quality reports that aren’t

6 Of course, see https://xkcd.com/552.
7 At least, we have no plausible theory to explain why the number of PhDs awarded in Computer Science in the

US should be extremely well correlated (r? = 0.9416) with the per capita consumption of cheese, between 2000
and 2009: http://tylervigen.com/view_correlation?id=1099.

8 It may be useful to refer prospective bug reporters to [Tat99] to help them provide high-quality problem
reports.
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visible to other members of the team, and tends to concentrate the problem-solving
load on a handful of team members that the reporters happen to know, rather than
the person currently on duty (see also Chapter 29).

Shakespeare Has a Problem

You're on-call for the Shakespeare search service and receive an alert, Shakespeare-
BlackboxProbe_SearchFailure: your black-box monitoring hasn’t been able to find
search results for “the forms of things unknown” for the past five minutes. The alert-
ing system has filed a bug—with links to the black-box prober’s recent results and to
the playbook entry for this alert—and assigned it to you. Time to spring into action!

Triage

Once you receive a problem report, the next step is to figure out what to do about it.
Problems can vary in severity: an issue might affect only one user under very specific
circumstances (and might have a workaround), or it might entail a complete global
outage for a service. Your response should be appropriate for the problem’s impact:
it's appropriate to declare an all-hands-on-deck emergency for the latter (see Chap-
ter 14), but doing so for the former is overkill. Assessing an issue’s severity requires
an exercise of good engineering judgment and, often, a degree of calm under
pressure.

Your first response in a major outage may be to start troubleshooting and try to find a
root cause as quickly as possible. Ignore that instinct!

Instead, your course of action should be to make the system work as well as it can
under the circumstances. This may entail emergency options, such as diverting traffic
from a broken cluster to others that are still working, dropping traffic wholesale to
prevent a cascading failure, or disabling subsystems to lighten the load. Stopping the
bleeding should be your first priority; you aren’t helping your users if the system dies
while you're root-causing. Of course, an emphasis on rapid triage doesn’t preclude
taking steps to preserve evidence of whats going wrong, such as logs, to help with
subsequent root-cause analysis.

Novice pilots are taught that their first responsibility in an emergency is to fly the air-
plane [Gaw09]; troubleshooting is secondary to getting the plane and everyone on it
safely onto the ground. This approach is also applicable to computer systems: for
example, if a bug is leading to possibly unrecoverable data corruption, freezing the
system to prevent further failure may be better than letting this behavior continue.

This realization is often quite unsettling and counterintuitive for new SREs, particu-
larly those whose prior experience was in product development organizations.
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Examine

We need to be able to examine what each component in the system is doing in order
to understand whether or not it’s behaving correctly.

Ideally, a monitoring system is recording metrics for your system as discussed in
Chapter 10. These metrics are a good place to start figuring out what’s wrong. Graph-
ing time-series and operations on time-series can be an effective way to understand
the behavior of specific pieces of a system and find correlations that might suggest
where problems began.’

Logging is another invaluable tool. Exporting information about each operation and
about system state makes it possible to understand exactly what a process was doing
at a given point in time. You may need to analyze system logs across one or many
processes. Tracing requests through the whole stack using tools such as Dapper
[Sigl0] provides a very powerful way to understand how a distributed system is
working, though varying use cases imply significantly different tracing designs
[Sam14].

Logging

Text logs are very helpful for reactive debugging in real time, while storing logs in a
structured binary format can make it possible to build tools to conduct retrospective
analysis with much more information.

It's really useful to have multiple verbosity levels available, along with a way to
increase these levels on the fly. This functionality enables you to examine any or all
operations in incredible detail without having to restart your process, while still
allowing you to dial back the verbosity levels when your service is operating normally.
Depending of the volume of traffic your service receives, it might be better to use stat-
istical sampling; for example, you might show one out of every 1,000 operations.

A next step is to include a selection language so that you can say “show me operations
that match X,” for a wide range of X—e.g., Set RPCs with a payload size below 1,024
bytes, or operations that took longer than 10 ms to return, or which called doSome
thingInteresting() in rpc_handler.py. You might even want to design your logging
infrastructure so that you can turn it on as needed, quickly and selectively.

Exposing current state is the third trick in our toolbox. For example, Google servers
have endpoints that show a sample of RPCs recently sent or received, so it’s possible
to understand how any one server is communicating with others without referencing

9 But beware false correlations that can lead you down wrong paths!
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an architecture diagram. These endpoints also show histograms of error rates and
latency for each type of RPC, so that it’s possible to quickly tell what’s unhealthy.
Some systems have endpoints that show their current configuration or allow exami-
nation of their data; for instance, Google’s Borgmon servers (Chapter 10) can show
the monitoring rules they’re using, and even allow tracing a particular computation
step-by-step to the source metrics from which a value is derived.

Finally, you may even need to instrument a client to experiment with, in order to dis-
cover what a component is returning in response to requests.

Debugging Shakespeare

Using the link to the black-box monitoring results in the bug, you discover that the
prober sends an HTTP GET request to the /api/search endpoint:

{

‘search_text’: ‘the forms of things unknown’

}

It expects to receive a response with an HTTP 200 response code and a JSON payload
exactly matching:

[{
"work": "A Midsummer Night's Dream",
"act": 5,
"scene": 1,
"line": 2526,
"speaker": "Theseus"
1

The system is set up to send a probe once a minute; over the past 10 minutes, about
half the probes have succeeded, though with no discernible pattern. Unfortunately,
the prober doesn’t show you what was returned when it failed; you make a note to fix
that for the future.

Using curl, you manually send requests to the search endpoint and get a failed
response with HTTP response code 502 (Bad Gateway) and no payload. It has an
HTTP header, X-Request-Trace, which lists the addresses of the backend servers
responsible for responding to that request. With this information, you can now exam-
ine those backends to test whether they’re responding appropriately.

Diagnose

A thorough understanding of the system’s design is decidedly helpful for coming up
with plausible hypotheses about what’s gone wrong, but there are also some generic
practices that will help even without domain knowledge.
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Simplify and reduce

Ideally, components in a system have well-defined interfaces and perform known
transformations from their input to their output (in our example, given an input
search text, a component might return output containing possible matches). It’s then
possible to look at the connections between components—or, equivalently, at the data
flowing between them—to determine whether a given component is working prop-
erly. Injecting known test data in order to check that the resulting output is expected
(a form of black-box testing) at each step can be especially effective, as can injecting
data intended to probe possible causes of errors. Having a solid reproducible test case
makes debugging much faster, and it may be possible to use the case in a non-
production environment where more invasive or riskier techniques are available than
would be possible in production.

Dividing and conquering is a very useful general-purpose solution technique. In a
multilayer system where work happens throughout a stack of components, it’s often
best to start systematically from one end of the stack and work toward the other end,
examining each component in turn. This strategy is also well-suited for use with data
processing pipelines. In exceptionally large systems, proceeding linearly may be too
slow; an alternative, bisection, splits the system in half and examines the communica-
tion paths between components on one side and the other. After determining
whether one half seems to be working properly, repeat the process until youre left
with a possibly faulty component.

Ask “what,” “where,” and “why”

A malfunctioning system is often still trying to do something—just not the thing you
want it to be doing. Finding out what it’s doing, then asking why it’s doing that and
where its resources are being used or where its output is going can help you under-
stand how things have gone wrong."

10 In many respects, this is similar to the “Five Whys” technique [Ohn88] introduced by Taiichi Ohno to under-
stand the root causes of manufacturing errors.
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Unpacking the Causes of a Symptom

Symptom: A Spanner cluster has high latency and RPCs to its servers are timing out.

Why? The Spanner server tasks are using all their CPU time and can’t make progress
on all the requests the clients send.

Where in the server is the CPU time being used? Profiling the server shows it’s sort-
ing entries in logs checkpointed to disk.

Where in the log-sorting code is it being used? When evaluating a regular expression
against paths to log files.

Solutions: Rewrite the regular expression to avoid backtracking. Look in the code-
base for similar patterns. Consider using RE2, which does not backtrack and guaran-
tees linear runtime growth with input size."

What touched it last

Systems have inertia: we've found that a working computer system tends to remain in
motion until acted upon by an external force, such as a configuration change or a
shift in the type of load served. Recent changes to a system can be a productive place
to start identifying what’s going wrong.'

Well-designed systems should have extensive production logging to track new ver-
sion deployments and configuration changes at all layers of the stack, from the server
binaries handling user traffic down to the packages installed on individual nodes in
the cluster. Correlating changes in a system’s performance and behavior with other
events in the system and environment can also be helpful in constructing monitoring
dashboards; for example, you might annotate a graph showing the system’s error rates
with the start and end times of a deployment of a new version, as seen in Figure 12-2.

11 In contrast to RE2, PCRE can require exponential time to evaluate some regular expressions. RE2 is available
at https://github.com/google/re2.

12 [All15] observes this is a frequently used heuristic in resolving outages.
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Figure 12-2. Error rates graphed against deployment start and end times

Manually sending a request to the /api/search endpoint (see “Debugging Shake-
speare” on page 139) and seeing the failure listing backend servers that handled the
response lets you discount the likelihood that the problem is with the API frontend
server and with the load balancers: the response probably wouldn’t have included that
information if the request hadn’t at least made it to the search backends and failed
there. Now you can focus your efforts on the backends—analyzing their logs, sending
test queries to see what responses they return, and examining their exported metrics.

Specific diagnoses

While the generic tools described previously are helpful across a broad range of prob-
lem domains, you will likely find it helpful to build tools and systems to help with
diagnosing your particular services. Google SREs spend much of their time building
such tools. While many of these tools are necessarily specific to a given system, be
sure to look for commonalities between services and teams to avoid duplicating
effort.

Test and Treat

Once you've come up with a short list of possible causes, it’s time to try to find which
factor is at the root of the actual problem. Using the experimental method, we can try
to rule in or rule out our hypotheses. For instance, suppose we think a problem is
caused by either a network failure between an application logic server and a database
server, or by the database refusing connections. Trying to connect to the database
with the same credentials the application logic server uses can refute the second
hypothesis, while pinging the database server may be able to refute the first, depend-
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ing on network topology, firewall rules, and other factors. Following the code and
trying to imitate the code flow, step-by-step, may point to exactly what's going wrong.

There are a number of considerations to keep in mind when designing tests (which
may be as simple as sending a ping or as complicated as removing traffic from a clus-
ter and injecting specially formed requests to find a race condition):

« An ideal test should have mutually exclusive alternatives, so that it can rule one
group of hypotheses in and rule another set out. In practice, this may be difficult
to achieve.

« Consider the obvious first: perform the tests in decreasing order of likelihood,
considering possible risks to the system from the test. It probably makes more
sense to test for network connectivity problems between two machines before
looking into whether a recent configuration change removed a user’s access to
the second machine.

o An experiment may provide misleading results due to confounding factors. For
example, a firewall rule might permit access only from a specific IP address,
which might make pinging the database from your workstation fail, even if ping-
ing from the application logic server’s machine would have succeeded.

« Active tests may have side effects that change future test results. For instance,
allowing a process to use more CPUs may make operations faster, but might
increase the likelihood of encountering data races. Similarly, turning on verbose
logging might make a latency problem even worse and confuse your results: is
the problem getting worse on its own, or because of the logging?

« Some tests may not be definitive, only suggestive. It can be very difficult to make
race conditions or deadlocks happen in a timely and reproducible manner, so
you may have to settle for less certain evidence that these are the causes.

Take clear notes of what ideas you had, which tests you ran, and the results you saw."
Particularly when you are dealing with more complicated and drawn-out cases, this
documentation may be crucial in helping you remember exactly what happened and
prevent having to repeat these steps.'* If you performed active testing by changing a
system—for instance by giving more resources to a process—making changes in a
systematic and documented fashion will help you return the system to its pre-test
setup, rather than running in an unknown hodge-podge configuration.

13 Using a shared document or real-time chat for notes provides a timestamp of when you did something, which
is helpful for postmortems. It also shares that information with others, so they’re up to speed with the current
state of the world and don’t need to interrupt your troubleshooting.

14 See also “Negative Results Are Magic” on page 144 for more on this point.
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Negative Results Are Magic

Written by Randall Bosetti
Edited by Joan Wendt

A “negative” result is an experimental outcome in which the expected effect is absent
—that is, any experiment that doesnt work out as planned. This includes new
designs, heuristics, or human processes that fail to improve upon the systems they
replace.

Negative results should not be ignored or discounted. Realizing youre wrong has
much value: a clear negative result can resolve some of the hardest design questions.
Often a team has two seemingly reasonable designs but progress in one direction has
to address vague and speculative questions about whether the other direction might
be better.

Experiments with negative results are conclusive. They tell us something certain
about production, or the design space, or the performance limits of an existing sys-
tem. They can help others determine whether their own experiments or designs are
worthwhile. For example, a given development team might decide against using a
particular web server because it can handle only ~800 connections out of the needed
8,000 connections before failing due to lock contention. When a subsequent develop-
ment team decides to evaluate web servers, instead of starting from scratch, they can
use this already well-documented negative result as a starting point to decide quickly
whether (a) they need fewer than 800 connections or (b) the lock contention prob-
lems have been resolved.

Even when negative results do not apply directly to someone else’s experiment, the
supplementary data gathered can help others choose new experiments or avoid pit-
falls in previous designs. Microbenchmarks, documented antipatterns, and project
postmortems all fit this category. You should consider the scope of the negative result
when designing an experiment, because a broad or especially robust negative result
will help your peers even more.

Tools and methods can outlive the experiment and inform future work. As an
example, benchmarking tools and load generators can result just as easily from a dis-
confirming experiment as a supporting one. Many webmasters have benefited from
the difficult, detail-oriented work that produced Apache Bench, a web server loadtest,
even though its first results were likely disappointing.

Building tools for repeatable experiments can have indirect benefits as well: although
one application you build may not benefit from having its database on SSDs or from
creating indices for dense keys, the next one just might. Writing a script that allows
you to easily try out these configuration changes ensures you don’t forget or miss
optimizations in your next project.
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Publishing negative results improves our industry’s data-driven culture. Account-
ing for negative results and statistical insignificance reduces the bias in our metrics
and provides an example to others of how to maturely accept uncertainty. By publish-
ing everything, you encourage others to do the same, and everyone in the industry
collectively learns much more quickly. SRE has already learned this lesson with high-
quality postmortems, which have had a large positive effect on production stability.

Publish your results. If you are interested in an experiment’s results, there’s a good
chance that other people are as well. When you publish the results, those people do
not have to design and run a similar experiment themselves. It’s tempting and com-
mon to avoid reporting negative results because it’s easy to perceive that the experi-
ment “failed” Some experiments are doomed, and they tend to be caught by review.
Many more experiments are simply unreported because people mistakenly believe
that negative results are not progress.

Do your part by telling everyone about the designs, algorithms, and team workflows
you've ruled out. Encourage your peers by recognizing that negative results are part
of thoughtful risk taking and that every well-designed experiment has merit. Be skep-
tical of any design document, performance review, or essay that doesn’t mention fail-
ure. Such a document is potentially either too heavily filtered, or the author was not
rigorous in his or her methods.

Above all, publish the results you find surprising so that others—including your
future self—aren’t surprised.

Cure

Ideally, you've now narrowed the set of possible causes to one. Next, wed like to prove
that it’s the actual cause. Definitively proving that a given factor caused a problem—
by reproducing it at will—can be difficult to do in production systems; often, we can
only find probable causal factors, for the following reasons:

o Systems are complex. It’s quite likely that there are multiple factors, each of which
individually is not the cause, but which taken jointly are causes.”” Real systems
are also often path-dependent, so that they must be in a specific state before a
failure occurs.

o Reproducing the problem in a live production system may not be an option, either
because of the complexity of getting the system into a state where the failure can
be triggered, or because further downtime may be unacceptable. Having a non-

15 See [Mea08] on how to think about systems, and also [Co000] and [Dek14] on the limitations of finding a
single root cause instead of examining the system and its environment for causative factors.
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production environment can mitigate these challenges, though at the cost of hav-
ing another copy of the system to run.

Once you've found the factors that caused the problem, it’s time to write up notes on
what went wrong with the system, how you tracked down the problem, how you fixed
the problem, and how to prevent it from happening again. In other words, you need
to write a postmortem (although ideally, the system is alive at this point!).

Case Study

App Engine,'® part of Google’s Cloud Platform, is a platform-as-a-service product that
allows developers to build services atop Google’s infrastructure. One of our internal
customers filed a problem report indicating that theyd recently seen a dramatic
increase in latency, CPU usage, and number of running processes needed to serve
traffic for their app, a content-management system used to build documentation for
developers.”” The customer couldn’t find any recent changes to their code that corre-
lated with the increase in resources, and there hadn’t been an increase in traffic to
their app (see Figure 12-3), so they were wondering if a change in the App Engine
service was responsible.

Our investigation discovered that latency had indeed increased by nearly an order of
magnitude (as shown in Figure 12-4). Simultaneously, the amount of CPU time
(Figure 12-5) and number of serving processes (Figure 12-6) had nearly quadrupled.
Clearly something was wrong. It was time to start troubleshooting.

QPs
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Figure 12-3. Application’s requests received per second, showing a brief spike and return
to normal

16 See https://cloud.google.com/appengine.

17 We have compressed and simplified this case study to aid understanding.
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Figure 12-4. Application’s latency, showing 50th, 95th, and 99th percentiles (lines) with a
heatmap showing how many requests fell into a given latency bucket at any point in time
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Figure 12-5. Aggregate CPU usage for the application
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Figure 12-6. Number of instances for the application

Typically a sudden increase in latency and resource usage indicates either an increase
in traffic sent to the system or a change in system configuration. However, we could
easily rule out both of these possible causes: while a spike in traffic to the app around
20:45 could explain a brief surge in resource usage, wed expect traffic to return to
baseline fairly soon after request volume normalized. This spike certainly shouldnt
have continued for multiple days, beginning when the app’s developers filed the
report and we started looking into the problem. Second, the change in performance
happened on Saturday, when neither changes to the app nor the production environ-
ment were in flight. The service’s most recent code pushes and configuration pushes
had completed days before. Furthermore, if the problem originated with the service,
wed expect to see similar effects on other apps using the same infrastructure. How-
ever, no other apps were experiencing similar effects.
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We referred the problem report to our counterparts, App Engine’s developers, to
investigate whether the customer was encountering any idiosyncrasies in the serving
infrastructure. The developers weren't able to find any oddities, either. However, a
developer did notice a correlation between the latency increase and the increase of a
specific data storage API call, merge_join, which often indicates suboptimal indexing
when reading from the datastore. Adding a composite index on the properties the
app uses to select objects from the datastore would speed those requests, and in prin-
ciple, speed the application as a whole—but wed need to figure out which properties
needed indexing. A quick look at the applications code didn't reveal any obvious sus-
pects.

It was time to pull out the heavy machinery in our toolkit: using Dapper [Sigl0], we
traced the steps individual HTTP requests took—from their receipt by a frontend
reverse proxy through to the point where the apps code returned a response—and
looked at the RPCs issued by each server involved in handling that request. Doing so
would allow us to see which properties were included in requests to the datastore,
then create the appropriate indices.

While investigating, we discovered that requests for static content such as images,
which weren’t served from the datastore, were also much slower than expected. Look-
ing at graphs with file-level granularity, we saw their responses had been much faster
only a few days before. This implied that the observed correlation between
merge_join and the latency increase was spurious and that our suboptimal-indexing
theory was fatally flawed.

Examining the unexpectedly slow requests for static content, most of the RPCs sent
from the application were to a memcache service, so the requests should have been
very fast—on the order of a few milliseconds. These requests did turn out to be very
fast, so the problem didn't seem to originate there. However, between the time the
app started working on a request and when it made the first RPCs, there was about a
250 ms period where the app was doing...well, something. Because App Engine runs
code provided by users, its SRE team does not profile or inspect app code, so we
couldn’t tell what the app was doing in that interval; similarly, Dapper couldn't help
track down what was going on since it can only trace RPC calls, and none were made
during that period.

Faced with what was, by this point, quite a mystery, we decided not to solve it...yet.
The customer had a public launch scheduled for the following week, and we weren't
sure how soon wed be able to identify the problem and fix it. Instead, we recom-
mended that the customer increase the resources allocated to their app to the most
CPU-rich instance type available. Doing so reduced the app’s latency to acceptable
levels, though not as low as we'd prefer. We concluded that the latency mitigation was
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good enough that the team could conduct their launch successfully, then investigate
at leisure."®

At this point, we suspected that the app was a victim of yet another common cause of
sudden increases in latency and resource usage: a change in the type of work. Wed
seen an increase in writes to the datastore from the app, just before its latency
increased, but because this increase wasn't very large—nor was it sustained—wed
written it off as coincidental. However, this behavior did resemble a common pattern:
an instance of the app is initialized by reading objects from the datastore, then storing
them in the instance’s memory. By doing so, the instance avoids reading rarely chang-
ing configuration from the datastore on each request, and instead checks the in-
memory objects. Then, the time it takes to handle requests will often scale with the
amount of configuration data.’” We couldn’t prove that this behavior was the root of
the problem, but it's a common antipattern.

The app developers added instrumentation to understand where the app was spend-
ing its time. They identified a method that was called on every request, that checked
whether a user had whitelisted access to a given path. The method used a caching
layer that sought to minimize accesses to both the datastore and the memcache ser-
vice, by holding whitelist objects in instances’ memory. As one of the app’s developers
noted in the investigation, “I don’t know where the fire is yet, but ’'m blinded by
smoke coming from this whitelist cache.”

Some time later, the root cause was found: due to a long-standing bug in the app’s
access control system, whenever one specific path was accessed, a whitelist object
would be created and stored in the datastore. In the run-up to launch, an automated
security scanner had been testing the app for vulnerabilities, and as a side effect, its
scan produced thousands of whitelist objects over the course of half an hour. These
superfluous whitelist objects then had to be checked on every request to the app,
which led to pathologically slow responses—without causing any RPC calls from the
app to other services. Fixing the bug and removing those objects returned the app’s
performance to expected levels.

18 While launching with an unidentified bug isn’t ideal, it's often impractical to eliminate all known bugs.
Instead, sometimes we have make do with second-best measures and mitigate risk as best we can, using good
engineering judgment.

19 The datastore lookup can use an index to speed the comparison, but a frequent in-memory implementation is
a simple for loop comparison across all the cached objects. If there are only a few objects, it won't matter that
this takes linear time—but this can cause a significant increase in latency and resource usage as the number of
cached objects grows.
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Making Troubleshooting Easier

There are many ways to simplify and speed troubleshooting. Perhaps the most funda-
mental are:

o Building observability—with both white-box metrics and structured logs—into
each component from the ground up.

o Designing systems with well-understood and observable interfaces between
components.

Ensuring that information is available in a consistent way throughout a system—for
instance, using a unique request identifier throughout the span of RPCs generated by
various components—reduces the need to figure out which log entry on an upstream
component matches a log entry on a downstream component, speeding the time to
diagnosis and recovery.

Problems in correctly representing the state of reality in a code change or an environ-
ment change often lead to a need to troubleshoot. Simplifying, controlling, and log-
ging such changes can reduce the need for troubleshooting, and make it easier when
it happens.

Conclusion

We've looked at some steps you can take to make the troubleshooting process clear
and understandable to novices, so that they, too, can become effective at solving prob-
lems. Adopting a systematic approach to troubleshooting—as opposed to relying on
luck or experience—can help bound your services’ time to recovery, leading to a bet-
ter experience for your users.

150 | Chapter 12: Effective Troubleshooting

www.it-ebooks.info


http://www.it-ebooks.info/

CHAPTER 13
Emergency Response

Written by Corey Adam Baye
Edited by Diane Bates

Things break; that’s life.

Regardless of the stakes involved or the size of an organization, one trait that’s vital to
the long-term health of an organization, and that consequently sets that organization
apart from others, is how the people involved respond to an emergency. Few of us
naturally respond well during an emergency. A proper response takes preparation
and periodic, pertinent, hands-on training. Establishing and maintaining thorough
training and testing processes requires the support of the board and management, in
addition to the careful attention of staff. All of these elements are essential in foster-
ing an environment in which teams can spend money, time, energy, and possibly even
uptime to ensure that systems, processes, and people respond efficiently during an
emergency.

Note that the chapter on postmortem culture discusses the specifics of how to write
postmortems in order to make sure that incidents that require emergency response
also become a learning opportunity (see Chapter 15). This chapter provides more
concrete examples of such incidents.

What to Do When Systems Break

First of all, don’t panic! You aren’t alone, and the sky isn’t falling. Youre a professional
and trained to handle this sort of situation. Typically, no one is in physical danger—
only those poor electrons are in peril. At the very worst, half of the Internet is down.
So take a deep breath...and carry on.
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If you feel overwhelmed, pull in more people. Sometimes it may even be necessary to
page the entire company. If your company has an incident response process (see
Chapter 14), make sure that youre familiar with it and follow that process.

Test-Induced Emergency

Google has adopted a proactive approach to disaster and emergency testing (see
[Kri12]). SREs break our systems, watch how they fail, and make changes to improve
reliability and prevent the failures from recurring. Most of the time, these controlled
failures go as planned, and the target system and dependent systems behave in
roughly the manner we expect. We identify some weaknesses or hidden dependencies
and document follow-up actions to rectify the flaws we uncover. However, sometimes
our assumptions and the actual results are worlds apart.

Here’s one example of a test that unearthed a number of unexpected dependencies.

Details

We wanted to flush out hidden dependencies on a test database within one of our
larger distributed MySQL databases. The plan was to block all access to just one data-
base out of a hundred. No one foresaw the results that would unfold.

Response

Within minutes of commencing the test, numerous dependent services reported that
both external and internal users were unable to access key systems. Some systems
were intermittently or only partially accessible.

Assuming that the test was responsible, SRE immediately aborted the exercise. We
attempted to roll back the permissions change, but were unsuccessful. Instead of pan-
icking, we immediately brainstormed how to restore proper access. Using an already
tested approach, we restored permissions to the replicas and failovers. In a parallel
effort, we reached out to key developers to correct the flaw in the database application
layer library.

Within an hour of the original decision, all access was fully restored, and all services
were able to connect once again. The broad impact of this test motivated a rapid and
thorough fix to the libraries and a plan for periodic retesting to prevent such a major
flaw from recurring.

152 | Chapter 13: Emergency Response

www.it-ebooks.info


http://www.it-ebooks.info/

Findings

What went well

Dependent services that were affected by the incident immediately escalated the
issues within the company. We assumed, correctly, that our controlled experiment
had gotten out of hand and immediately aborted the test.

We were able to fully restore permissions within an hour of the first report, at which
time systems started behaving properly. Some teams took a different approach and
reconfigured their systems to avoid the test database. These parallel efforts helped to
restore service as quickly as possible.

Follow-up action items were resolved quickly and thoroughly to avoid a similar out-
age, and we instituted periodic testing to ensure that similar flaws do not recur.

What we learned

Although this test was thoroughly reviewed and thought to be well scoped, reality
revealed we had an insufficient understanding of this particular interaction among
the dependent systems.

We failed to follow the incident response process, which had been put in place only a
few weeks before and hadn’t been thoroughly disseminated. This process would have
ensured that all services and customers were aware of the outage. To avoid similar
scenarios in the future, SRE continually refines and tests our incident response tools
and processes, in addition to making sure that updates to our incident management
procedures are clearly communicated to all relevant parties.

Because we hadn’t tested our rollback procedures in a test environment, these proce-
dures were flawed, which lengthened the outage. We now require thorough testing of
rollback procedures before such large-scale tests.

Change-Induced Emergency

As you can imagine, Google has a lot of configuration—complex configuration—and
we constantly make changes to that configuration. To prevent breaking our systems
outright, we perform numerous tests on configuration changes to make sure they
don’t result in unexpected and undesired behavior. However, the scale and complexity
of Google’s infrastructure make it impossible to anticipate every dependency or inter-
action; sometimes configuration changes don’t go entirely according to plan.

The following is one such example.
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Details

A configuration change to the infrastructure that helps protect our services from
abuse was pushed globally on a Friday. This infrastructure interacts with essentially
all of our externally facing systems, and the change triggered a crash-loop bug in
those systems, which caused the entire fleet to begin to crash-loop almost simultane-
ously. Because Google’s internal infrastructure also depends upon our own services,
many internal applications suddenly became unavailable as well.

Response

Within seconds, monitoring alerts started firing, indicating that certain sites were
down. Some on-call engineers simultaneously experienced what they believed to be a
failure of the corporate network and relocated to dedicated secure rooms (panic
rooms) with backup access to the production environment. They were joined by
additional engineers who were struggling with their corporate access.

Within five minutes of that first configuration push, the engineer responsible for the
push, having become aware of the corporate outage but still unaware of the broader
outage, pushed another configuration change to roll back the first change. At this
point, services began to recover.

Within 10 minutes of the first push, on-call engineers declared an incident and pro-
ceeded to follow internal procedures for incident response. They began notifying the
rest of the company about the situation. The push engineer informed the on-call
engineers that the outage was likely due to the change that had been pushed and later
rolled back. Nevertheless, some services experienced unrelated bugs or misconfigura-
tions triggered by the original event and didn’t fully recover for up to an hour.

Findings

What went well

There were several factors at play that prevented this incident from resulting in a
longer-term outage of many of Google’s internal systems.

To begin with, monitoring almost immediately detected and alerted us to the prob-
lem. However, it should be noted that in this case, our monitoring was less than ideal:
alerts fired repeatedly and constantly, overwhelming the on-calls and spamming reg-
ular and emergency communication channels.

Once the problem was detected, incident management generally went well and
updates were communicated often and clearly. Our out-of-band communications sys-
tems kept everyone connected even while some of the more complicated software
stacks were unusable. This experience reminded us why SRE retains highly reliable,
low overhead backup systems, which we use regularly.
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In addition to these out-of-band communications systems, Google has command-
line tools and alternative access methods that enable us to perform updates and roll
back changes even when other interfaces are inaccessible. These tools and access
methods worked well during the outage, with the caveat that engineers needed to be
more familiar with the tools and to test them more routinely.

Google’s infrastructure provided yet another layer of protection in that the affected
system rate-limited how quickly it provided full updates to new clients. This behavior
may have throttled the crash-loop and prevented a complete outage, allowing jobs to
remain up long enough to service a few requests in between crashes.

Finally, we should not overlook the element of luck in the quick resolution of this
incident: the push engineer happened to be following real-time communication chan-
nels—an additional level of diligence that’s not a normal part of the release process.
The push engineer noticed a large number of complaints about corporate access
directly following the push and rolled back the change almost immediately. Had this
swift rollback not occurred, the outage could have lasted considerably longer, becom-
ing immensely more difficult to troubleshoot.

What we learned

An earlier push of the new feature had involved a thorough canary but didn’t trigger
the same bug, as it had not exercised a very rare and specific configuration keyword
in combination with the new feature. The specific change that triggered this bug
wasn’t considered risky, and therefore followed a less stringent canary process. When
the change was pushed globally, it used the untested keyword/feature combination
that triggered the failure.

Ironically, improvements to canarying and automation were slated to become higher
priority in the following quarter. This incident immediately raised their priority and
reinforced the need for thorough canarying, regardless of the perceived risk.

As one would expect, alerting was vocal during this incident because every location
was essentially offline for a few minutes. This disrupted the real work being per-
formed by the on-call engineers and made communication among those involved in
the incident more difficult.

Google relies upon our own tools. Much of the software stack that we use for trouble-
shooting and communicating lies behind jobs that were crash-looping. Had this out-
age lasted any longer, debugging would have been severely hindered.

Process-Induced Emergency

We have poured a considerable amount of time and energy into the automation that
manages our machine fleet. It's amazing how many jobs one can start, stop, or retool
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across the fleet with very little effort. Sometimes, the efficiency of our automation can
be a bit frightening when things do not go quite according to plan.

This is one example where moving fast was not such a good thing.

Details

As part of routine automation testing, two consecutive turndown requests for the
same soon-to-be-decommissioned server installation were submitted. In the case of
the second turndown request, a subtle bug in the automation sent all of the machines
in all of these installations globally to the Diskerase queue, where their hard drives
were destined to be wiped; see “Automation: Enabling Failure at Scale” on page 85 for
more details.

Response

Soon after the second turndown request was issued, the on-call engineers received a
page as the first small server installation was taken offline to be decommissioned.
Their investigation determined that the machines had been transferred to the Disker-
ase queue, so following normal procedure, the on-call engineers drained traffic from
the location. Because the machines in that location had been wiped, they were unable
to respond to requests. To avoid failing those requests outright, on-call engineers
drained traffic away from that location. Traffic was redirected to locations that could
properly respond to the requests.

Before long, pagers everywhere were firing for all such server installations around the
world. In response, the on-call engineers disabled all team automation in order to
prevent further damage. They stopped or froze additional automation and produc-
tion maintenance shortly thereafter.

Within an hour, all traffic had been diverted to other locations. Although users may
have experienced elevated latencies, their requests were fulfilled. The outage was offi-
cially over.

Now the hard part began: recovery. Some network links were reporting heavy conges-
tion, so network engineers implemented mitigations as choke points surfaced. A
server installation in one such location was chosen to be the first of many to rise from
the ashes. Within three hours of the initial outage, and thanks to the tenacity of sev-
eral engineers, the installation was rebuilt and brought back online, happily accepting
user requests once again.

US teams handed off to their European counterparts, and SRE hatched a plan to pri-
oritize reinstallations using a streamlined but manual process. The team was divided
into three parts, with each part responsible for one step in the manual reinstall pro-
cess. Within three days, the vast majority of capacity was back online, while any strag-
glers would be recovered over the next month or two.

156 | Chapter 13: Emergency Response

www.it-ebooks.info


http://www.it-ebooks.info/

Findings

What went well

Reverse proxies in large server installations are managed very differently than reverse
proxies in these small installations, so large installations were not impacted. On-call
engineers were able to quickly move traffic from smaller installations to large installa-
tions. By design, these large installations can handle a full load without difficulty.
However, some network links became congested, and therefore required network
engineers to develop workarounds. In order to reduce the impact on end users, on-
call engineers targeted congested networks as their highest priority.

The turndown process for the small installations worked efficiently and well. From
start to finish, it took less than an hour to successfully turn down and securely wipe a
large number of these installations.

Although turndown automation quickly tore down monitoring for the small installa-
tions, on-call engineers were able to promptly revert those monitoring changes.
Doing so helped them to assess the extent of the damage.

The engineers quickly followed incident response protocols, which had matured con-
siderably in the year since the first outage described in this chapter. Communication
and collaboration throughout the company and across teams was superb—a real tes-
tament to the incident management program and training. All hands within the
respective teams chipped in, bringing their vast experience to bear.

What we learned

The root cause was that the turndown automation server lacked the appropriate san-
ity checks on the commands it sent. When the server ran again in response to the
initial failed turndown, it received an empty response for the machine rack. Instead
of filtering the response, it passed the empty filter to the machine database, telling the
machine database to Diskerase all machines involved. Yes, sometimes zero does mean
all. The machine database complied, so the turndown workflow started churning
through the machines as quickly as possible.

Reinstallations of machines were slow and unreliable. This behavior was due in large
part to the use of the Trivial File Transfer Protocol (TFTP) at the lowest network
Quality of Service (QoS) from the distant locations. The BIOS for each machine in
the system dealt poorly with the failures.! Depending on the network cards involved,
the BIOS either halted or went into a constant reboot cycle. They were failing to
transfer the boot files on each cycle and were further taxing the installers. On-call

1 BIOS: Basic Input/Output System. BIOS is the software built into a computer to send simple instructions to
the hardware, allowing input and output before the operating system has been loaded.
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engineers were able to fix these reinstall problems by reclassifying installation traffic
at slightly higher priority and using automation to restart any machines that were
stuck.

The machine reinstallation infrastructure was unable to handle the simultaneous
setup of thousands of machines. This inability was partly due to a regression that pre-
vented the infrastructure from running more than two setup tasks per worker
machine. The regression also used improper QoS settings to transfer files and had
poorly tuned timeouts. It forced kernel reinstallation, even on machines that still had
the proper kernel and on which Diskerase had yet to occur. To remedy this situation,
on-call engineers escalated to parties responsible for this infrastructure who were able
to quickly retune it to support this unusual load.

All Problems Have Solutions

Time and experience have shown that systems will not only break, but will break in
ways that one could never previously imagine. One of the greatest lessons Google has
learned is that a solution exists, even if it may not be obvious, especially to the person
whose pager is screaming. If you can’t think of a solution, cast your net farther.
Involve more of your teammates, seek help, do whatever you have to do, but do it
quickly. The highest priority is to resolve the issue at hand quickly. Oftentimes, the
person with the most state is the one whose actions somehow triggered the event.
Utilize that person.

Very importantly, once the emergency has been mitigated, do not forget to set aside
time to clean up, write up the incident, and to...

Learn from the Past. Don’t Repeat It.
Keep a History of Qutages

There is no better way to learn than to document what has broken in the past. His-
tory is about learning from everyone’s mistakes. Be thorough, be honest, but most of
all, ask hard questions. Look for specific actions that might prevent such an outage
from recurring, not just tactically, but also strategically. Ensure that everyone within
the company can learn what you have learned by publishing and organizing
postmortems.

Hold yourself and others accountable to following up on the specific actions detailed
in these postmortems. Doing so will prevent a future outage that’s nearly identical to,
and caused by nearly the same triggers as, an outage that has already been docu-
mented. Once you have a solid track record for learning from past outages, see what
you can do to prevent future ones.
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Ask the Big, Even Improbable, Questions: What If...?

There is no greater test than reality. Ask yourself some big, open-ended questions.
What if the building power fails...? What if the network equipment racks are stand-
ing in two feet of water...? What if the primary datacenter suddenly goes dark...?
What if someone compromises your web server...? What do you do? Who do you
call? Who will write the check? Do you have a plan? Do you know how to react? Do
you know how your systems will react? Could you minimize the impact if it were to
happen now? Could the person sitting next to you do the same?

Encourage Proactive Testing

When it comes to failures, theory and reality are two very different realms. Until your
system has actually failed, you don’t truly know how that system, its dependent sys-
tems, or your users will react. Don’t rely on assumptions or what you can’t or haven’t
tested. Would you prefer that a failure happen at 2 a.m. Saturday morning when most
of the company is still away on a team-building offsite in the Black Forest—or when
you have your best and brightest close at hand, monitoring the test that they
painstakingly reviewed in the previous weeks?

Conclusion

We've reviewed three different cases where parts of our systems broke. Although all
three emergencies were triggered differently—one by a proactive test, another by a
configuration change, and yet another by turndown automation—the responses
shared many characteristics. The responders didn’t panic. They pulled in others when
they thought it necessary. The responders studied and learned from earlier outages.
Subsequently, they built their systems to better respond to those types of outages.
Each time new failure modes presented themselves, responders documented those
failure modes. This follow-up helped other teams learn how to better troubleshoot
and fortify their systems against similar outages. Responders proactively tested their
systems. Such testing ensured that the changes fixed the underlying problems, and
identified other weaknesses before they became outages.

And as our systems evolve the cycle continues, with each outage or test resulting in
incremental improvements to both processes and systems. While the case studies in
this chapter are specific to Google, this approach to emergency response can be
applied over time to any organization of any size.
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CHAPTER 14
Managing Incidents

Written by Andrew Stribblehill’
Edited by Kavita Guliani

Effective incident management is key to limiting the disruption caused by an incident
and restoring normal business operations as quickly as possible. If you haven't gamed
out your response to potential incidents in advance, principled incident management
can go out the window in real-life situations.

This chapter walks through a portrait of an incident that spirals out of control due to
ad hoc incident management practices, outlines a well-managed approach to the inci-
dent, and reviews how the same incident might have played out if handled with well-
functioning incident management.

Unmanaged Incidents

Put yourself in the shoes of Mary, the on-call engineer for The Firm. It's 2 p.m. on a
Friday afternoon and your pager has just exploded. Black-box monitoring tells you
that your service has stopped serving any traffic in an entire datacenter. With a sigh,
you put down your coffee and set about the job of fixing it. A few minutes into the
task, another alert tells you that a second datacenter has stopped serving. Then the
third out of your five datacenters fails. To exacerbate the situation, there is more traf-
fic than the remaining datacenters can handle, so they start to overload. Before you
know it, the service is overloaded and unable to serve any requests.

You stare at the logs for what seems like an eternity. Thousands of lines of logging
suggest there’s an error in one of the recently updated modules, so you decide to

1 An earlier version of this chapter appeared as an article in ;login: (April 2015, vol. 40, no. 2).
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revert the servers to the previous release. When you see that the rollback hasn’t hel-
ped, you call Josephine, who wrote most of the code for the now-hemorrhaging ser-
vice. Reminding you that it’s 3:30 a.m. in her time zone, she blearily agrees to log in
and take a look. Your colleagues Sabrina and Robin start poking around from their
own terminals. “Just looking,” they tell you.

Now one of the suits has phoned your boss and is angrily demanding to know why he
wasn't informed about the “total meltdown of this business-critical service” Inde-
pendently, the vice presidents are nagging you for an ETA, repeatedly asking you,
“How could this possibly have happened?” You would sympathize, but doing so
would require cognitive effort that you are holding in reserve for your job. The VPs
call on their prior engineering experience and make irrelevant but hard-to-refute
comments like, “Increase the page size!”

Time passes; the two remaining datacenters fail completely. Unbeknown to you,
sleep-addled Josephine called Malcolm. He had a brainwave: something about CPU
affinity. He felt certain that he could optimize the remaining server processes if he
could just deploy this one simple change to the production environment, so he did so.
Within seconds, the servers restarted, picking up the change. And then died.

The Anatomy of an Unmanaged Incident

Note that everybody in the preceding scenario was doing their job, as they saw it.
How could things go so wrong? A few common hazards caused this incident to spiral
out of control.

Sharp Focus on the Technical Problem

We tend to hire people like Mary for their technical prowess. So it's not surprising
that she was busy making operational changes to the system, trying valiantly to solve
the problem. She wasn’t in a position to think about the bigger picture of how to miti-
gate the problem because the technical task at hand was overwhelming.

Poor Communication

For the same reason, Mary was far too busy to communicate clearly. Nobody knew
what actions their coworkers were taking. Business leaders were angry, customers
were frustrated, and other engineers who could have lent a hand in debugging or fix-
ing the issue weren’t used effectively.

Freelancing

Malcolm was making changes to the system with the best of intentions. However, he
didn’t coordinate with his coworkers—not even Mary, who was technically in charge
of troubleshooting. His changes made a bad situation far worse.
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Elements of Incident Management Process

Incident management skills and practices exist to channel the energies of enthusiastic
individuals. Google’s incident management system is based on the Incident Com-
mand System,? which is known for its clarity and scalability.

A well-designed incident management process has the following features.

Recursive Separation of Responsibilities

It's important to make sure that everybody involved in the incident knows their role
and doesn’t stray onto someone else’s turf. Somewhat counterintuitively, a clear sepa-
ration of responsibilities allows individuals more autonomy than they might other-
wise have, since they need not second-guess their colleagues.

If the load on a given member becomes excessive, that person needs to ask the plan-
ning lead for more staff. They should then delegate work to others, a task that might
entail creating subincidents. Alternatively, a role leader might delegate system compo-
nents to colleagues, who report high-level information back up to the leaders.

Several distinct roles should be delegated to particular individuals:

Incident Command
The incident commander holds the high-level state about the incident. They
structure the incident response task force, assigning responsibilities according to
need and priority. De facto, the commander holds all positions that they have not
delegated. If appropriate, they can remove roadblocks that prevent Ops from
working most effectively.

Operational Work
The Ops lead works with the incident commander to respond to the incident by
applying operational tools to the task at hand. The operations team should be the
only group modifying the system during an incident.

Communication
This person is the public face of the incident response task force. Their duties
most definitely include issuing periodic updates to the incident response team
and stakeholders (usually via email), and may extend to tasks such as keeping the
incident document accurate and up to date.

2 See http://www.fema.gov/national-incident-management-system for further details.
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Planning
The planning role supports Ops by dealing with longer-term issues, such as filing
bugs, ordering dinner, arranging handoffs, and tracking how the system has
diverged from the norm so it can be reverted once the incident is resolved.

A Recognized Command Post

Interested parties need to understand where they can interact with the incident
commander. In many situations, locating the incident task force members into a cen-
tral designated “War Room” is appropriate. Others teams may prefer to work at their
desks, keeping alert to incident updates via email and IRC.

Google has found IRC to be a huge boon in incident response. IRC is very reliable
and can be used as a log of communications about this event, and such a record is
invaluable in keeping detailed state changes in mind. We've also written bots that log
incident-related traffic (which is helpful for postmortem analysis), and other bots that
log events such as alerts to the channel. IRC is also a convenient medium over which
geographically distributed teams can coordinate.

Live Incident State Document

The incident commander’s most important responsibility is to keep a living incident
document. This can live in a wiki, but should ideally be editable by several people
concurrently. Most of our teams use Google Docs, though Google Docs SRE use Goo-
gle Sites: after all, depending on the software you are trying to fix as part of your inci-
dent management system is unlikely to end well.

See Appendix C for a sample incident document. This living doc can be messy, but
must be functional. Using a template makes generating this documentation easier,
and keeping the most important information at the top makes it more usable.Retain
this documentation for postmortem analysis and, if necessary, meta analysis.

(lear, Live Handoff

It’s essential that the post of incident commander be clearly handed off at the end of
the working day. If youre handing off command to someone at another location, you
can simply and safely update the new incident commander over the phone or a video
call. Once the new incident commander is fully apprised, the outgoing commander
should be explicit in their handoff, specifically stating, “Youre now the incident
commander, okay?”, and should not leave the call until receiving firm acknowledg-
ment of handoff. The handoff should be communicated to others working on the
incident so that it’s clear who is leading the incident management efforts at all times.
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A Managed Incident

Now let’s examine how this incident might have played out if it were handled using
principles of incident management.

It's 2 p.m., and Mary is into her third coffee of the day. The pager’s harsh tone sur-
prises her, and she gulps the drink down. Problem: a datacenter has stopped serving
traffic. She starts to investigate. Shortly another alert fires, and the second datacenter
out of five is out of order. Because this is a rapidly growing issue, she knows that she’ll
benefit from the structure of her incident management framework.

Mary snags Sabrina. “Can you take command?” Nodding her agreement, Sabrina
quickly gets a rundown of what’s occurred thus far from Mary. She captures these
details in an email that she sends to a prearranged mailing list. Sabrina recognizes
that she can't yet scope the impact of the incident, so she asks for Mary’s assessment.
Mary responds, “Users have yet to be impacted; let’s just hope we don’t lose a third
datacenter.” Sabrina records Mary’s response in a live incident document.

When the third alert fires, Sabrina sees the alert among the debugging chatter on IRC
and quickly follows up to the email thread with an update. The thread keeps VPs
abreast of the high-level status without bogging them down in minutiae. Sabrina asks
an external communications representative to start drafting user messaging. She then
follows up with Mary to see if they should contact the developer on-call (currently
Josephine). Receiving Mary’s approval, Sabrina loops in Josephine.

By the time Josephine logs in, Robin has already volunteered to help out. Sabrina
reminds both Robin and Josephine that they are to prioritize any tasks delegated to
them by Mary, and that they must keep Mary informed of any additional actions they
take. Robin and Josephine quickly familiarize themselves with the current situation
by reading the incident document.

By now, Mary has tried the old binary release and found it wanting: she mutters this
to Robin, who updates IRC to say that this attempted fix didn't work. Sabrina pastes
this update into the live incident management document.

At 5 p.m., Sabrina starts finding replacement staff to take on the incident, as she and
her colleagues are about to go home. She updates the incident document. A brief
phone conference takes place at 5:45 so everyone is aware of the current situation. At
6 p.m., they hand off their responsibilities to their colleagues in the sister office.

Mary returns to work the following morning to find that her transatlantic colleagues
have assumed responsibility for the bug, mitigated the problem, closed the incident,
and started work on the postmortem. Problem solved, she brews some fresh coffee
and settles down to plan structural improvements so problems of this category don’t
afflict the team again.
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When to Declare an Incident

It is better to declare an incident early and then find a simple fix and close out the
incident than to have to spin up the incident management framework hours into a
burgeoning problem. Set clear conditions for declaring an incident. My team follows
these broad guidelines—if any of the following is true, the event is an incident:

» Do you need to involve a second team in fixing the problem?
o Is the outage visible to customers?

o Is the issue unsolved even after an hour’s concentrated analysis?

Incident management proficiency atrophies quickly when it’s not in constant use. So
how can engineers keep their incident management skills up to date—handle more
incidents? Fortunately, the incident management framework can apply to other
operational changes that need to span time zones and/or teams. If you use the frame-
work frequently as a regular part of your change management procedures, you can
easily follow this framework when an actual incident occurs. If your organization
performs disaster-recovery testing (you should, it’s fun: see [Kril2]), incident man-
agement should be part of that testing process. We often role-play the response to an
on-call issue that has already been solved, perhaps by colleagues in another location,
to further familiarize ourselves with incident management.

In Summary

We've found that by formulating an incident management strategy in advance, struc-
turing this plan to scale smoothly, and regularly putting the plan to use, we were able
to reduce our mean time to recovery and provide staff a less stressful way to work on
emergent problems. Any organization concerned with reliability would benefit from
pursuing a similar strategy.
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Best Practices for Incident Management

Prioritize. Stop the bleeding, restore service, and preserve the evidence for root-
causing.

Prepare. Develop and document your incident management procedures in advance,
in consultation with incident participants.

Trust. Give full autonomy within the assigned role to all incident participants.

Introspect. Pay attention to your emotional state while responding to an incident. If
you start to feel panicky or overwhelmed, solicit more support.

Consider alternatives. Periodically consider your options and re-evaluate whether it
still makes sense to continue what youre doing or whether you should be taking
another tack in incident response.

Practice. Use the process routinely so it becomes second nature.

Change it around. Were you incident commander last time? Take on a different role
this time. Encourage every team member to acquire familiarity with each role.
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CHAPTER 15
Postmortem Culture: Learning from Failure

Written by John Lunney and Sue Lueder
Edited by Gary O’ Connor

The cost of failure is education.
—Devin Carraway

As SREs, we work with large-scale, complex, distributed systems. We constantly
enhance our services with new features and add new systems. Incidents and outages
are inevitable given our scale and velocity of change. When an incident occurs, we fix
the underlying issue, and services return to their normal operating conditions. Unless
we have some formalized process of learning from these incidents in place, they may
recur ad infinitum. Left unchecked, incidents can multiply in complexity or even cas-
cade, overwhelming a system and its operators and ultimately impacting our users.
Therefore, postmortems are an essential tool for SRE.

The postmortem concept is well known in the technology industry [All12]. A post-
mortem is a written record of an incident, its impact, the actions taken to mitigate or
resolve it, the root cause(s), and the follow-up actions to prevent the incident from
recurring. This chapter describes criteria for deciding when to conduct postmortems,
some best practices around postmortems, and advice on how to cultivate a postmor-
tem culture based on the experience we've gained over the years.

Google’s Postmortem Philosophy

The primary goals of writing a postmortem are to ensure that the incident is docu-
mented, that all contributing root cause(s) are well understood, and, especially, that
effective preventive actions are put in place to reduce the likelihood and/or impact of
recurrence. A detailed survey of root-cause analysis techniques is beyond the scope of
this chapter (instead, see [Ro004]); however, articles, best practices, and tools abound
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in the system quality domain. Our teams use a variety of techniques for root-cause
analysis and choose the technique best suited to their services. Postmortems are
expected after any significant undesirable event. Writing a postmortem is not punish-
ment—it is a learning opportunity for the entire company. The postmortem process
does present an inherent cost in terms of time or effort, so we are deliberate in choos-
ing when to write one. Teams have some internal flexibility, but common postmor-
tem triggers include:

o User-visible downtime or degradation beyond a certain threshold

« Data loss of any kind

o On-call engineer intervention (release rollback, rerouting of traffic, etc.)
« A resolution time above some threshold

+ A monitoring failure (which usually implies manual incident discovery)

It is important to define postmortem criteria before an incident occurs so that every-
one knows when a postmortem is necessary. In addition to these objective triggers,
any stakeholder may request a postmortem for an event.

Blameless postmortems are a tenet of SRE culture. For a postmortem to be truly
blameless, it must focus on identifying the contributing causes of the incident without
indicting any individual or team for bad or inappropriate behavior. A blamelessly
written postmortem assumes that everyone involved in an incident had good inten-
tions and did the right thing with the information they had. If a culture of finger
pointing and shaming individuals or teams for doing the “wrong” thing prevails, peo-
ple will not bring issues to light for fear of punishment.

Blameless culture originated in the healthcare and avionics industries where mistakes
can be fatal. These industries nurture an environment where every “mistake” is seen
as an opportunity to strengthen the system. When postmortems shift from allocating
blame to investigating the systematic reasons why an individual or team had incom-
plete or incorrect information, effective prevention plans can be put in place. You
can't “fix” people, but you can fix systems and processes to better support people
making the right choices when designing and maintaining complex systems.

When an outage does occur, a postmortem is not written as a formality to be forgot-
ten. Instead the postmortem is seen by engineers as an opportunity not only to fix a
weakness, but to make Google more resilient as a whole. While a blameless postmor-
tem doesn’t simply vent frustration by pointing fingers, it should call out where and
how services can be improved. Here are two examples:

170 | Chapter 15: Postmortem Culture: Learning from Failure

www.it-ebooks.info


http://www.it-ebooks.info/

Pointing fingers
“We need to rewrite the entire complicated backend system! It’s been breaking
weekly for the last three quarters and I'm sure were all tired of fixing things
onesy-twosy. Seriously, if I get paged one more time I'll rewrite it myself...”

Blameless
“An action item to rewrite the entire backend system might actually prevent these
annoying pages from continuing to happen, and the maintenance manual for this
version is quite long and really difficult to be fully trained up on. I'm sure our
future on-callers will thank us!”

Best Practice: Avoid Blame and Keep It Constructive

Blameless postmortems can be challenging to write, because the postmortem format
clearly identifies the actions that led to the incident. Removing blame from a post-
mortem gives people the confidence to escalate issues without fear. It is also impor-
tant not to stigmatize frequent production of postmortems by a person or team. An
atmosphere of blame risks creating a culture in which incidents and issues are swept
under the rug, leading to greater risk for the organization [Boy13].

Collaborate and Share Knowledge

We value collaboration, and the postmortem process is no exception. The postmor-
tem workflow includes collaboration and knowledge-sharing at every stage.

Our postmortem documents are Google Docs, with an in-house template (see Appen-
dix D). Regardless of the specific tool you use, look for the following key features:

Real-time collaboration
Enables the rapid collection of data and ideas. Essential during the early creation
of a postmortem.

An open commenting/annotation system
Makes crowdsourcing solutions easy and improves coverage.

Email notifications
Can be directed at collaborators within the document or used to loop in others to
provide input.

Writing a postmortem also involves formal review and publication. In practice, teams
share the first postmortem draft internally and solicit a group of senior engineers to
assess the draft for completeness. Review criteria might include:
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o Was key incident data collected for posterity?

o Are the impact assessments complete?

o Was the root cause sufficiently deep?

o Is the action plan appropriate and are resulting bug fixes at appropriate priority?

o Did we share the outcome with relevant stakeholders?

Once the initial review is complete, the postmortem is shared more broadly, typically
with the larger engineering team or on an internal mailing list. Qur goal is to share
postmortems to the widest possible audience that would benefit from the knowledge
or lessons imparted. Google has stringent rules around access to any piece of infor-
mation that might identify a user,' and even internal documents like postmortems
never include such information.

Best Practice: No Postmortem Left Unreviewed

An unreviewed postmortem might as well never have existed. To ensure that each
completed draft is reviewed, we encourage regular review sessions for postmortems.
In these meetings, it is important to close out any ongoing discussions and com-
ments, to capture ideas, and to finalize the state.

Once those involved are satisfied with the document and its action items, the post-
mortem is added to a team or organization repository of past incidents.? Transparent
sharing makes it easier for others to find and learn from the postmortem.

Introducing a Postmortem Culture

Introducing a postmortem culture to your organization is easier said than done; such
an effort requires continuous cultivation and reinforcement. We reinforce a collabo-
rative postmortem culture through senior management’s active participation in the
review and collaboration process. Management can encourage this culture, but
blameless postmortems are ideally the product of engineer self-motivation. In the spi-
rit of nurturing the postmortem culture, SREs proactively create activities that dis-
seminate what we learn about system infrastructure. Some example activities include:

Postmortem of the month
In a monthly newsletter, an interesting and well-written postmortem is shared
with the entire organization.

1 See http://www.google.com/policies/privacy/.

2 If youd like to start your own repository, Etsy has released Morgue, a tool for managing postmortems.
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Google+ postmortem group
This group shares and discusses internal and external postmortems, best practi-
ces, and commentary about postmortems.

Postmortem reading clubs
Teams host regular postmortem reading clubs, in which an interesting or impact-
ful postmortem is brought to the table (along with some tasty refreshments) for
an open dialogue with participants, nonparticipants, and new Googlers about
what happened, what lessons the incident imparted, and the aftermath of the
incident. Often, the postmortem being reviewed is months or years old!

Wheel of Misfortune
New SREs are often treated to the Wheel of Misfortune exercise (see “Disaster
Role Playing” on page 401), in which a previous postmortem is reenacted with a
cast of engineers playing roles as laid out in the postmortem. The original inci-
dent commander attends to help make the experience as “real” as possible.

One of the biggest challenges of introducing postmortems to an organization is that
some may question their value given the cost of their preparation. The following
strategies can help in facing this challenge:

o Ease postmortems into the workflow. A trial period with several complete and
successful postmortems may help prove their value, in addition to helping to
identify what criteria should initiate a postmortem.

o Make sure that writing effective postmortems is a rewarded and celebrated prac-
tice, both publicly through the social methods mentioned earlier, and through
individual and team performance management.

o Encourage senior leadership’s acknowledgment and participation. Even Larry
Page talks about the high value of postmortems!
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Best Practice: Visibly Reward People for Doing the Right Thing

Google’s founders Larry Page and Sergey Brin host TGIF, a weekly all-hands held live
at our headquarters in Mountain View, California, and broadcast to Google offices
around the world. A 2014 TGIF focused on “The Art of the Postmortem,” which fea-
tured SRE discussion of high-impact incidents. One SRE discussed a release he had
recently pushed; despite thorough testing, an unexpected interaction inadvertently
took down a critical service for four minutes. The incident only lasted four minutes
because the SRE had the presence of mind to roll back the change immediately, avert-
ing a much longer and larger-scale outage. Not only did this engineer receive two
peer bonuses® immediately afterward in recognition of his quick and level-headed
handling of the incident, but he also received a huge round of applause from the
TGIF audience, which included the company’s founders and an audience of Googlers
numbering in the thousands. In addition to such a visible forum, Google has an array
of internal social networks that drive peer praise toward well-written postmortems
and exceptional incident handling. This is one example of many where recognition of
these contributions comes from peers, CEOs, and everyone in between.*

Best Practice: Ask for Feedback on Postmortem Effectiveness

At Google, we strive to address problems as they arise and share innovations inter-
nally. We regularly survey our teams on how the postmortem process is supporting
their goals and how the process might be improved. We ask questions such as: Is the
culture supporting your work? Does writing a postmortem entail too much toil (see
Chapter 5)? What best practices does your team recommend for other teams? What
kinds of tools would you like to see developed? The survey results give the SREs in
the trenches the opportunity to ask for improvements that will increase the effective-
ness of the postmortem culture.

Beyond the operational aspects of incident management and follow-up, postmortem
practice has been woven into the culture at Google: it’s now a cultural norm that any
significant incident is followed by a comprehensive postmortem.

3 Google’s Peer Bonus program is a way for fellow Googlers to recognize colleagues for exceptional efforts and
involves a token cash reward.

4 For further discussion of this particular incident, see Chapter 13.
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Conclusion and Ongoing Improvements

We can say with confidence that thanks to our continuous investment in cultivating a
postmortem culture, Google weathers fewer outages and fosters a better user experi-
ence. Our “Postmortems at Google” working group is one example of our commit-
ment to the culture of blameless postmortems. This group coordinates postmortem
efforts across the company: pulling together postmortem templates, automating post-
mortem creation with data from tools used during an incident, and helping automate
data extraction from postmortems so we can perform trend analysis. We've been able
to collaborate on best practices from products as disparate as YouTube, Google Fiber,
Gmail, Google Cloud, AdWords, and Google Maps. While these products are quite
diverse, they all conduct postmortems with the universal goal of learning from our
darkest hours.

With a large number of postmortems produced each month across Google, tools to
aggregate postmortems are becoming more and more useful. These tools help us
identify common themes and areas for improvement across product boundaries. To
facilitate comprehension and automated analysis, we have recently enhanced our
postmortem template (see Appendix D) with additional metadata fields. Future work
in this domain includes machine learning to help predict our weaknesses, facilitate
real-time incident investigation, and reduce duplicate incidents.
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CHAPTER 16
Tracking Outages

Written by Gabe Krabbe
Edited by Lisa Carey

Improving reliability over time is only possible if you start from a known baseline
and can track progress. “Outalator;” our outage tracker, is one of the tools we use to
do just that. Outalator is a system that passively receives all alerts sent by our moni-
toring systems and allows us to annotate, group, and analyze this data.

Systematically learning from past problems is essential to effective service manage-
ment. Postmortems (see Chapter 15) provide detailed information for individual out-
ages, but they are only part of the answer. They are only written for incidents with a
large impact, so issues that have individually small impact but are frequent and wide-
spread don't fall within their scope. Similarly, postmortems tend to provide useful
insights for improving a single service or set of services, but may miss opportunities
that would have a small effect in individual cases, or opportunities that have a poor
cost/benefit ratio, but that would have large horizontal impact.!

We can also get useful information from questions such as, “How many alerts per on-
call shift does this team get?”, “What’s the ratio of actionable/nonactionable alerts
over the last quarter?”, or even simply “Which of the services this team manages cre-
ates the most toil?”

1 For example, it might take significant engineering effort to make a particular change to Bigtable that only has
a small mitigating effect for one outage. However, if that same mitigation were available across many events,
the engineering effort may well be worthwhile.
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Escalator

At Google, all alert notifications for SRE share a central replicated system that tracks
whether a human has acknowledged receipt of the notification. If no acknowledg-
ment is received after a configured interval, the system escalates to the next config-
ured destination(s)—e.g., from primary on-call to secondary. This system, called
“The Escalator,” was initially designed as a largely transparent tool that received
copies of emails sent to on-call aliases. This functionality allowed Escalator to easily
integrate with existing workflows without requiring any change in user behavior (or,
at the time, monitoring system behavior).

Outalator

Following Escalator’s example, where we added useful features to existing infrastruc-
ture, we created a system that would deal not just with the individual escalating noti-
fications, but with the next layer of abstraction: outages.

Outalator lets users view a time-interleaved list of notifications for multiple queues at
once, instead of requiring a user to switch between queues manually. Figure 16-1
shows multiple queues as they appear in Outalator’s queue view. This functionality is
handy because frequently a single SRE team is the primary point of contact for serv-
ices with distinct secondary escalation targets, usually the developer teams.

GUTA- 47"0,{\ .%. Hit 2 to see keyboard shortcuts. See help, and what could be better. agoogler | Settings | About | Feedback | Sign out
‘
* Search | e.g. has:bug tag:cause:human-error -summary:"global*
Teams/Alert queues: .
dood,e_senﬁng Tickets / Outages Refresh  Combine/Create Outage | Report Mode || Statistics | Create Handoff Email <Newer Older>
shakespeare Team, From Summary Date
» shakespeare (3), agoogler (7) prober ShakespeareBlackboxProbe_SearchFailure bug:94043 2015-07-24 11:32:59 PDT
shakespeare, agoogler frontend TaskFlapping bug:90210  Clss  2015-07-22 13:15:09 PDT
shakespeare, jrandom frontend ManyHttp500s cl:8675309 bug:89191 2015-07-22 04:19:44 PDT
shakespeare, agoogler (2) storage AnnotationConsistencyTooEventual 2015-07-21 19:31:12 PDT
shakespeare, jrandom frontend Hig atency ;i tuning bug:89109 ion:sil 2015-07-20 03:35:43 PDT
5 Outalations

Figure 16-1. Outalator queue view

Outalator stores a copy of the original notification and allows annotating incidents.
For convenience, it silently receives and saves a copy of any email replies as well.
Because some follow-ups are less helpful than others (for example, a reply-all sent
with the sole purpose of adding more recipients to the cc list), annotations can be
marked as “important” If an annotation is important, other parts of the message are
collapsed into the interface to cut down on clutter. Together, this provides more con-
text when referring to an incident than a possibly fragmented email thread.
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Multiple escalating notifications (“alerts”) can be combined into a single entity (“inci-
dent”) in the Outalator. These notifications may be related to the same single inci-
dent, may be otherwise unrelated and uninteresting auditable events such as
privileged database access, or may be spurious monitoring failures. This grouping
functionality, shown in Figure 16-2, unclutters the overview displays and allows for
separate analysis of “incidents per day” versus “alerts per day”

OUTA'LATOR‘ k Hit 2 to see keyboard shortcuts. See help, and what could be better. agoogler | Setings | About | Feedback | Sign out
N
‘ «Backtoticketlist Ticket m23bca7d408000005
Teams/Alert queues: ?:;n"r'r_mrv: :ﬁ:&:’;"gfg"”“""’cos File as Bug
doodle-serving - tion Level: 1 P

State: " closed Declare Incident

Parent Outage: None

Short Link: http://o/e/m23bca7d408000005

Escalator Link: _http:/escalator/2575117616058204165

Tags: bug:89191 ¢l:8675309

Add  Suggestions: ( cause,?) [impact,?) (action?] [ service”) [ effect,?)

Content:
Condition 'ManyHttp500s’ was triggered.
Job: shakespeare. frontend
Zone: europe
Dashboard: http://console/shakespeare/frontend
Playbook: http://pl shakespeare// frontend

[ click to show the rest of the message ]

Similar Tickets

frontend ManyHttp500s 2015-08-10 22:56:56 PDT
mobile_frontend ManyHttp500s 2015-08-10 22:56:05 PDT
frontend HighSearchLatency 2015-07-20 03:36:00 PDT
frontend ManyHttp500s 2015-07-17 00:33:06 PDT
Followups
Time From

2015-07-22 04:
Y¢_2015-07-22 05:

01 PDT agoogler
52 PDT _jrandom

Frontend task dropping requests into the bit bucket, Fixed by cl/8675309. Will file a bug to deploy new build to production.

Ticket Events

Time Event Type Creator Source Client Team Level
2015-07-22 04:19:46 PDT CREATE shakespeare-alerts borgmon mail shakespeare 1
2015-07-22 04:20:01 PDT ACK jrandom-pager 16505551212 telebot shakespeare 1
Add a Note

Annotate

Q¢J

Figure 16-2. Outalator view of an incident

Building Your Own QOutalator

Many organizations use messaging systems like Slack, Hipchat, or even IRC for inter-
nal communication and/or updating status dashboards. These systems are great
places to hook into with a system like Outalator.
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Aggregation

A single event may, and often will, trigger multiple alerts. For example, network fail-
ures cause timeouts and unreachable backend services for everyone, so all affected
teams receive their own alerts, including the owners of backend services; meanwhile,
the network operations center will have its own klaxons ringing. However, even
smaller issues affecting a single service may trigger multiple alerts due to multiple
error conditions being diagnosed. While it is worthwhile to attempt to minimize the
number of alerts triggered by a single event, triggering multiple alerts is unavoidable
in most trade-off calculations between false positives and false negatives.

The ability to group multiple alerts together into a single incident is critical in dealing
with this duplication. Sending an email saying “this is the same thing as that other
thing; they are symptoms of the same incident” works for a given alert: it can prevent
duplication of debugging or panic. But sending an email for each alert is not a practi-
cal or scalable solution for handling duplicate alerts within a team, let alone between
teams or over longer periods of time.

Tagging

Of course, not every alerting event is an incident. False-positive alerts occur, as well as
test events or mistargeted emails from humans. The Outalator itself does not distin-
guish between these events, but it allows general-purpose tagging to add metadata to
notifications, at any level. Tags are mostly free-form, single “words.” Colons, however,
are interpreted as semantic separators, which subtly promotes the use of hierarchical
namespaces and allows some automatic treatment. This namespacing is supported by
suggested tag prefixes, primarily “cause” and “action,” but the list is team-specific and
generated based on historical usage. For example, “cause:network” might be sufficient
information for some teams, whereas another team might opt for more specific tags,
such as “cause:network:switch” versus “cause:network:cable” Some teams may fre-
quently use “customer:132456”-style tags, so “customer” would be suggested for those
teams, but not for others.

Tags can be parsed and turned into a convenient link (“bug:76543” links to the bug
tracking system). Other tags are just a single word (“bogus” is widely used for false
positives). Of course, some tags are typos (“cause:netwrok”) and some tags aren't par-
ticularly helpful (“problem-went-away”), but avoiding a predetermined list and
allowing teams to find their own preferences and standards will result in a more use-
ful tool and better data. Overall, tags have been a remarkably powerful tool for teams
to obtain and provide an overview of a given service’s pain points, even without
much, or even any, formal analysis. As trivial as tagging appears, it is probably one of
the Outalator’s most useful unique features.
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Analysis

Of course, SRE does much more than just react to incidents. Historical data is useful
when one is responding to an incident—the question “what did we do last time?” is
always a good starting point. But historical information is far more useful when it
concerns systemic, periodic, or other wider problems that may exist. Enabling such
analysis is one of the most important functions of an outage tracking tool.

The bottom layer of analysis encompasses counting and basic aggregate statistics for
reporting. The details depend on the team, but include information such as incidents
per week/month/quarter and alerts per incident. The next layer is more important,
and easy to provide: comparison between teams/services and over time to identify
first patterns and trends. This layer allows teams to determine whether a given alert
load is “normal” relative to their own track record and that of other services. “That’s
the third time this week” can be good or bad, but knowing whether “it” used to hap-
pen five times per day or five times per month allows interpretation.

The next step in data analysis is finding wider issues, which are not just raw counts
but require some semantic analysis. For example, identifying the infrastructure com-
ponent causing most incidents, and therefore the potential benefit from increasing
the stability or performance of this component,? assumes that there is a straightfor-
ward way to provide this information alongside the incident records. As a simple
example: different teams have service-specific alert conditions such as “stale data” or
“high latency” Both conditions may be caused by network congestion leading to data-
base replication delays and need intervention. Or, they could be within the nominal
service level objective, but are failing to meet the higher expectations of users. Exam-
ining this information across multiple teams allows us to identify systemic problems
and choose the correct solution, especially if the solution may be the introduction of
more artificial failures to stop over-performing.

Reporting and communication

Of more immediate use to frontline SREs is the ability to select zero or more outala-
tions and include their subjects, tags, and “important” annotations in an email to the
next on-call engineer (and an arbitrary cc list) in order to pass on recent state
between shifts. For periodic reviews of the production services (which occur weekly
for most teams), the Outalator also supports a “report mode,” in which the important

2 On the one hand, “most incidents caused” is a good starting point for reducing the number of alerts triggered
and improving the overall system. On the other hand, this metric may simply be an artifact of over-sensitive
monitoring or a small set of client systems misbehaving or themselves running outside the agreed service
level. And on the gripping hand, the number of incidents alone gives no indication as to the difficulty to fix or
severity of impact.
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annotations are expanded inline with the main list in order to provide a quick over-
view of lowlights.

Unexpected Benefits

Being able to identify that an alert, or a flood of alerts, coincides with a given other
outage has obvious benefits: it increases the speed of diagnosis and reduces load on
other teams by acknowledging that there is indeed an incident. There are additional
nonobvious benefits. To use Bigtable as an example, if a service has a disruption due
to an apparent Bigtable incident, but you can see that the Bigtable SRE team has not
been alerted, manually alerting the team is probably a good idea. Improved cross-
team visibility can and does make a big difference in incident resolution, or at least in
incident mitigation.

Some teams across the company have gone so far as to set up dummy escalator con-
figurations: no human receives the notifications sent there, but the notifications
appear in the Outalator and can be tagged, annotated, and reviewed. One example for
this “system of record” use is to log and audit the use of privileged or role accounts
(though it must be noted that this functionality is basic, and used for technical, rather
than legal, audits). Another use is to record and automatically annotate runs of peri-
odic jobs that may not be idempotent—for example, automatic application of schema
changes from version control to database systems.
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CHAPTER 17
Testing for Reliability

Written by Alex Perry and Max Luebbe
Edited by Diane Bates

If you haven't tried it, assume it’s broken.
—Unknown

One key responsibility of Site Reliability Engineers is to quantify confidence in the
systems they maintain. SREs perform this task by adapting classical software testing
techniques to systems at scale.! Confidence can be measured both by past reliability
and future reliability. The former is captured by analyzing data provided by monitor-
ing historic system behavior, while the latter is quantified by making predictions from
data about past system behavior. In order for these predictions to be strong enough to
be useful, one of the following conditions must hold:

o The site remains completely unchanged over time with no software releases or
changes in the server fleet, which means that future behavior will be similar to
past behavior.

 You can confidently describe all changes to the site, in order for analysis to allow
for the uncertainty incurred by each of these changes.

1 This chapter explains how to maximize the value derived from investing engineering effort into testing. Once
an engineer defines suitable tests (for a given system) in a generalized way, the remaining work is common
across all SRE teams and thus may be considered shared infrastructure. That infrastructure consists of a
scheduler (to share budgeted resources across otherwise unrelated projects) and executors (that sandbox test
binaries to prevent them from being considered trusted). These two infrastructure components can each be
considered an ordinary SRE-supported service (much like cluster scale storage), and therefore won't be dis-
cussed further here.
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Testing is the mechanism you use to demonstrate specific areas of equivalence when
changes occur.? Each test that passes both before and after a change reduces the
uncertainty for which the analysis needs to allow. Thorough testing helps us predict
the future reliability of a given site with enough detail to be practically useful.

The amount of testing you need to conduct depends on the reliability requirements
for your system. As the percentage of your codebase covered by tests increases, you
reduce uncertainty and the potential decrease in reliability from each change. Ade-
quate testing coverage means that you can make more changes before reliability falls
below an acceptable level. If you make too many changes too quickly, the predicted
reliability approaches the acceptability limit. At this point, you may want to stop
making changes while new monitoring data accumulates. The accumulating data sup-
plements the tested coverage, which validates the reliability being asserted for revised
execution paths. Assuming the served clients are randomly distributed [Wo096],
sampling statistics can extrapolate from monitored metrics whether the aggregate
behavior is making use of new paths. These statistics identify the areas that need bet-
ter testing or other retrofitting.

Relationships Between Testing and Mean Time to Repair

Passing a test or a series of tests doesn't necessarily prove reliability. However, tests
that are failing generally prove the absence of reliability.

A monitoring system can uncover bugs, but only as quickly as the reporting pipeline
can react. The Mean Time to Repair (MTTR) measures how long it takes the opera-
tions team to fix the bug, either through a rollback or another action.

It's possible for a testing system to identify a bug with zero MTTR. Zero MTTR
occurs when a system-level test is applied to a subsystem, and that test detects the
exact same problem that monitoring would detect. Such a test enables the push to be
blocked so the bug never reaches production (though it still needs to be repaired in
the source code). Repairing zero MTTR bugs by blocking a push is both quick and
convenient. The more bugs you can find with zero MTTR, the higher the Mean Time
Between Failures (MTBF) experienced by your users.

As MTBF increases in response to better testing, developers are encouraged to release
features faster. Some of these features will, of course, have bugs. New bugs result in an
opposite adjustment to release velocity as these bugs are found and fixed.

[

For further reading on equivalence, see http://stackoverflow.com/questions/1909280/equivalence-class-testing-
vs-boundary-value-testing.
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Authors writing about software testing largely agree on what coverage is needed.
Most conflicts of opinion stem from conflicting terminology, differing emphasis on
the impact of testing in each of the software lifecycle phases, or the particularities of
the systems on which they've conducted testing. For a discussion about testing at
Google in general, see [Whil2]. The following sections specify how software testing—
related terminology is used in this chapter.

Types of Software Testing

Software tests broadly fall into two categories: traditional and production. Traditional
tests are more common in software development to evaluate the correctness of soft-
ware offline, during development. Production tests are performed on a live web ser-
vice to evaluate whether a deployed software system is working correctly.

Traditional Tests

As shown in Figure 17-1, traditional software testing begins with unit tests. Testing of
more complex functionality is layered atop unit tests.

System Tests

Integration Tests

Unit Tests

Figure 17-1. The hierarchy of traditional tests

Unit tests

A unit test is the smallest and simplest form of software testing. These tests are
employed to assess a separable unit of software, such as a class or function, for cor-
rectness independent of the larger software system that contains the unit. Unit tests
are also employed as a form of specification to ensure that a function or module
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exactly performs the behavior required by the system. Unit tests are commonly used
to introduce test-driven development concepts.

Integration tests

Software components that pass individual unit tests are assembled into larger compo-
nents. Engineers then run an integration test on an assembled component to verify
that it functions correctly. Dependency injection, which is performed with tools such
as Dagger,’ is an extremely powerful technique for creating mocks of complex depen-
dencies so that an engineer can cleanly test a component. A common example of a
dependency injection is to replace a stateful database with a lightweight mock that has
precisely specified behavior.

System tests

A system test is the largest scale test that engineers run for an undeployed system. All
modules belonging to a specific component, such as a server that passed integration
tests, are assembled into the system. Then the engineer tests the end-to-end function-
ality of the system. System tests come in many different flavors:

Smoke tests
Smoke tests, in which engineers test very simple but critical behavior, are among
the simplest type of system tests. Smoke tests are also known as sanity testing, and
serve to short-circuit additional and more expensive testing.

Performance tests

Once basic correctness is established via a smoke test, a common next step is to
write another variant of a system test to ensure that the performance of the sys-
tem stays acceptable over the duration of its lifecycle. Because response times for
dependencies or resource requirements may change dramatically during the
course of development, a system needs to be tested to make sure that it doesn’t
become incrementally slower without anyone noticing (before it gets released to
users). For example, a given program may evolve to need 32 GB of memory when
it formerly only needed 8 GB, or a 10 ms response time might turn into 50 ms,
and then into 100 ms. A performance test ensures that over time, a system
doesn’'t degrade or become too expensive.

Regression tests
Another type of system test involves preventing bugs from sneaking back into the
codebase. Regression tests can be analogized to a gallery of rogue bugs that his-
torically caused the system to fail or produce incorrect results. By documenting
these bugs as tests at the system or integration level, engineers refactoring the

3 See https://google.github.io/dagger/.
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codebase can be sure that they dont accidentally introduce bugs that they've
already invested time and effort to eliminate.

It's important to note that tests have a cost, both in terms of time and computa-
tional resources. At one extreme, unit tests are very cheap in both dimensions, as
they can usually be completed in milliseconds on the resources available on a lap-
top. At the other end of the spectrum, bringing up a complete server with
required dependencies (or mock equivalents) to run related tests can take signifi-
cantly more time—from several minutes to multiple hours—and possibly require
dedicated computing resources. Mindfulness of these costs is essential to devel-
oper productivity, and also encourages more efficient use of testing resources.

Production Tests

Production tests interact with a live production system, as opposed to a system in a
hermetic testing environment. These tests are in many ways similar to black-box
monitoring (see Chapter 6), and are therefore sometimes called black-box testing.
Production tests are essential to running a reliable production service.

Rollouts Entangle Tests

It’s often said that testing is (or should be) performed in a hermetic environment
[Nar12]. This statement implies that production is not hermetic. Of course, produc-
tion usually isn’t hermetic, because rollout cadences make live changes to the produc-
tion environment in small and well-understood chunks.

To manage uncertainty and hide risk from users, changes might not be pushed live in
the same order that they were added to source control. Rollouts often happen in
stages, using mechanisms that gradually shuffle users around, in addition to monitor-
ing at each stage to ensure that the new environment isn’'t hitting anticipated yet
unexpected problems. As a result, the entire production environment is intentionally
not representative of any given version of a binary thats checked into source control.

It’s possible for source control to have more than one version of a binary and its asso-
ciated configuration file waiting to be made live. This scenario can cause problems
when tests are conducted against the live environment. For example, the test might
use the latest version of a configuration file located in source control along with an
older version of the binary that’s live. Or it might test an older version of the configu-
ration file and find a bug that’s been fixed in a newer version of the file.

Similarly, a system test can use the configuration files to assemble its modules before
running the test. If the test passes, but its version is one in which the configuration
test (discussed in the following section) fails, the result of the test is valid hermetically,
but not operationally. Such an outcome is inconvenient.
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Configuration test

At Google, web service configurations are described in files that are stored in our ver-
sion control system. For each configuration file, a separate configuration test exam-
ines production to see how a particular binary is actually configured and reports
discrepancies against that file. Such tests are inherently not hermetic, as they operate
outside the test infrastructure sandbox.

Configuration tests are built and tested for a specific version of the checked-in con-
figuration file. Comparing which version of the test is passing in relation to the goal
version for automation implicitly indicates how far actual production currently lags
behind ongoing engineering work.

These nonhermetic configuration tests tend to be especially valuable as part of a dis-
tributed monitoring solution since the pattern of passes/fails across production can
identify paths through the service stack that don’t have sensible combinations of the
local configurations. The monitoring solution’s rules try to match paths of actual user
requests (from the trace logs) against that set of undesirable paths. Any matches
found by the rules become alerts that ongoing releases and/or pushes are not pro-
ceeding safely and remedial action is needed.

Configuration tests can be very simple when the production deployment uses the
actual file content and offers a real-time query to retrieve a copy of the content. In
this case, the test code simply issues that query and diffs the response against the file.
The tests become more complex when the configuration does one of the following:

o Implicitly incorporates defaults that are built into the binary (meaning that the
tests are separately versioned as a result)

o Passes through a preprocessor such as bash into command-line flags (rendering
the tests subject to expansion rules)

o Specifies behavioral context for a shared runtime (making the tests depend on
that runtime’s release schedule)

Stress test

In order to safely operate a system, SREs need to understand the limits of both the
system and its components. In many cases, individual components don’t gracefully
degrade beyond a certain point—instead, they catastrophically fail. Engineers use
stress tests to find the limits on a web service. Stress tests answer questions such as:

« How full can a database get before writes start to fail?

« How many queries a second can be sent to an application server before it
becomes overloaded, causing requests to fail?
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Canary test

The canary test is conspicuously absent from this list of production tests. The term
canary comes from the phrase “canary in a coal mine,” and refers to the practice of
using a live bird to detect toxic gases before humans were poisoned.

To conduct a canary test, a subset of servers is upgraded to a new version or configu-
ration and then left in an incubation period. Should no unexpected variances
occur, the release continues and the rest of the servers are upgraded in a progressive
fashion.” Should anything go awry, the single modified server can be quickly reverted
to a known good state. We commonly refer to the incubation period for the upgraded
server as “baking the binary”

A canary test isn't really a test; rather, it’s structured user acceptance. Whereas config-
uration and stress tests confirm the existence of a specific condition over determinis-
tic software, a canary test is more ad hoc. It only exposes the code under test to less
predictable live production traffic, and thus, it isn't perfect and doesn’t always catch
newly introduced faults.

To provide a concrete example of how a canary might proceed: consider a given
underlying fault that relatively rarely impacts user traffic and is being deployed with
an upgrade rollout that is exponential. We expect a growing cumulative number of
reported variances CU = RK where R is the rate of those reports, U is the order of the
fault (defined later), and K is the period over which the traffic grows by a factor of e,
or 172%.°

In order to avoid user impact, a rollout that triggers undesirable variances needs to be
quickly rolled back to the prior configuration. In the short time it takes automation to
observe the variances and respond, it is likely that several additional reports will be
generated. Once the dust has settled, these reports can estimate both the cumulative
number C and rate R.

Dividing and correcting for K gives an estimate of U, the order of the underlying
fault.° Some examples:

« U=1: The user’s request encountered code that is simply broken.

4 A standard rule of thumb is to start by having the release impact 0.1% of user traffic, and then scaling by
orders of magnitude every 24 hours while varying the geographic location of servers being upgraded (then on
day 2: 1%, day 3: 10%, day 4: 100%).

5 For instance, assuming a 24 hour interval of continuous exponential growth between 1% and 10%,

K= 86400
0.1
0.01

6 We're using order here in the sense of “big O notation” order of complexity. For more context, see https://
en.wikipedia.org/wiki/Big_O_notation.

= 37523 seconds, or about 10 hours and 25 minutes.
1
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o U=2: This user’s request randomly damages data that a future user’s request may
see.

o U=3: The randomly damaged data is also a valid identifier to a previous request.

Most bugs are of order one: they scale linearly with the amount of user traffic [Per07].
You can generally track down these bugs by converting logs of all requests with
unusual responses into new regression tests. This strategy doesn’t work for higher-
order bugs; a request that repeatedly fails if all the preceding requests are attempted
in order will suddenly pass if some requests are omitted. It is important to catch these
higher-order bugs during release, because otherwise, operational workload can
increase very quickly.

Keeping the dynamics of higher- versus lower-order bugs in mind, when you are
using an exponential rollout strategy, it isn’t necessary to attempt to achieve fairness
among fractions of user traffic. As long as each method for establishing a fraction
uses the same K interval, the estimate of U will be valid even though you can’t yet
determine which method was instrumental in illuminating the fault. Using many
methods sequentially while permitting some overlap keeps the value of K small. This
strategy minimizes the total number of user-visible variances C while still allowing an
early estimate of U (hoping for 1, of course).

Creating a Test and Build Environment

While it's wonderful to think about these types of tests and failure scenarios on day
one of a project, frequently SREs join a developer team when a project is already well
underway—once the team’s project validates its research model, its library proves that
the project’s underlying algorithm is scalable, or perhaps when all of the user interface
mocks are finally acceptable. The team’s codebase is still a prototype and comprehen-
sive testing hasn’t yet been designed or deployed. In such situations, where should
your testing efforts begin? Conducting unit tests for every key function and class is a
completely overwhelming prospect if the current test coverage is low or nonexistent.
Instead, start with testing that delivers the most impact with the least effort.

You can start your approach by asking the following questions:

« Can you prioritize the codebase in any way? To borrow a technique from feature
development and project management, if every task is high priority, none of the
tasks are high priority. Can you stack-rank the components of the system you’re
testing by any measure of importance?

o Are there particular functions or classes that are absolutely mission-critical or
business-critical? For example, code that involves billing is a commonly business-
critical. Billing code is also frequently cleanly separable from other parts of the
system.
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o Which APIs are other teams integrating against? Even the kind of breakage that
never makes it past release testing to a user can be extremely harmful if it confu-
ses another developer team, causing them to write wrong (or even just subopti-
mal) clients for your API.

Shipping software that is obviously broken is among the most cardinal sins of a
developer. It takes little effort to create a series of smoke tests to run for every release.
This type of low-effort, high-impact first step can lead to highly tested, reliable
software.

One way to establish a strong testing culture’ is to start documenting all reported
bugs as test cases. If every bug is converted into a test, each test is supposed to ini-
tially fail because the bug hasn’t yet been fixed. As engineers fix the bugs, the software
passes testing and you’re on the road to developing a comprehensive regression test
suite.

Another key task for creating well-tested software is to set up a testing infrastructure.
The foundation for a strong testing infrastructure is a versioned source control sys-
tem that tracks every change to the codebase.

Once source control is in place, you can add a continuous build system that builds the
software and runs tests every time code is submitted. We've found it optimal if the
build system notifies engineers the moment a change breaks a software project. At the
risk of sounding obvious, it’s essential that the latest version of a software project in
source control is working completely. When the build system notifies engineers about
broken code, they should drop all of their other tasks and prioritize fixing the prob-
lem. It is appropriate to treat defects this seriously for a few reasons:

o It’s usually harder to fix whats broken if there are changes to the codebase after
the defect is introduced.

o Broken software slows down the team because they must work around the
breakage.

« Release cadences, such as nightly and weekly builds, lose their value.

o The ability of the team to respond to a request for an emergency release (for
example, in response to a security vulnerability disclosure) becomes much more
complex and difficult.

The concepts of stability and agility are traditionally in tension in the world of SRE.
The last bullet point provides an interesting case where stability actually drives agility.
When the build is predictably solid and reliable, developers can iterate faster!

7 For more on this topic, we highly reccommend [Blal4] by our former coworker and ex-Googler, Mike Bland.
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Some build systems like Bazel® have valuable features that afford more precise control
over testing. For example, Bazel creates dependency graphs for software projects.
When a change is made to a file, Bazel only rebuilds the part of the software that
depends on that file. Such systems provide reproducible builds. Instead of running all
tests at every submit, tests only run for changed code. As a result, tests execute
cheaper and faster.

There are a variety of tools to help you quantify and visualize the level of test cover-
age you need [Cral0]. Use these tools to shape the focus of your testing: approach the
prospect of creating highly tested code as an engineering project rather than a philo-
sophical mental exercise. Instead of repeating the ambiguous refrain “We need more
tests,” set explicit goals and deadlines.

Remember that not all software is created equal. Life-critical or revenue-critical sys-
tems demand substantially higher levels of test quality and coverage than a non-
production script with a short shelf life.

Testing at Scale

Now that we've covered the fundamentals of testing, let’s examine how SRE takes a
systems perspective to testing in order to drive reliability at scale.

A small unit test might have a short list of dependencies: one source file, the testing
library, the runtime libraries, the compiler, and the local hardware running the tests.
A robust testing environment dictates that those dependencies each have their own
test coverage, with tests that specifically address use cases that other parts of the envi-
ronment expect. If the implementation of that unit test depends on a code path inside
a runtime library that doesn’t have test coverage, an unrelated change in the environ-
ment® can lead the unit test to consistently pass testing, regardless of faults in the code
under test.

In contrast, a release test might depend on so many parts that it has a transitive
dependency on every object in the code repository. If the test depends on a clean
copy of the production environment, in principle, every small patch requires per-
forming a full disaster recovery iteration. Practical testing environments try to select
branch points among the versions and merges. Doing so resolves the maximum
amount of dependent uncertainty for the minimum number of iterations. Of course,

8 See https://github.com/google/bazel.

9 For example, code under test that wraps a nontrivial API to provide a simpler and backward-compatible
abstraction. The API that used to be synchronous instead returns a future. Calling argument errors still
deliver an exception, but not until the future is evaluated. The code under test passes the API result directly
back to the caller. Many cases of argument misuse may not be caught.
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when an area of uncertainty resolves into a fault, you need to select additional branch
points.

Testing Scalable Tools

As pieces of software, SRE tools also need testing.'” SRE-developed tools might per-
form tasks such as the following:

« Retrieving and propagating database performance metrics
o Predicting usage metrics to plan for capacity risks

+ Refactoring data within a service replica that isn’t user accessible

+ Changing files on a server
SRE tools share two characteristics:

« Their side effects remain within the tested mainstream API

o Theyre isolated from user-facing production by an existing validation and
release barrier

Barrier Defenses Against Risky Software

Software that bypasses the usual heavily tested API (even if it does so for a good
cause) could wreak havoc on a live service. For example, a database engine implemen-
tation might allow administrators to temporarily turn off transactions in order to
shorten maintenance windows. If the implementation is used by batch update soft-
ware, user-facing isolation may be lost if that utility is ever accidentally launched
against a user-facing replica. Avoid this risk of havoc with design:

1. Use a separate tool to place a barrier in the replication configuration so that the
replica cannot pass its health check. As a result, the replica isn't released to users.

2. Configure the risky software to check for the barrier upon startup. Allow the
risky software to only access unhealthy replicas.

3. Use the replica health validating tool you use for black-box monitoring to
remove the barrier.

10 This section talks specifically about tools used by SRE that need to be scalable. However, SRE also develops
and uses tools that don’t necessarily need to be scalable. The tools that don't need to be scalable also need to be
tested, but these tools are out of scope for this section, and therefore won't be discussed here. Because their
risk footprint is similar to user-facing applications, similar testing strategies are applicable on such SRE-
developed tools.
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Automation tools are also software. Because their risk footprint appears out-of-band
for a different layer of the service, their testing needs are more subtle. Automation
tools perform tasks like the following:

« Database index selection
« Load balancing between datacenters

o Shuffling relay logs for fast remastering
Automation tools share two characteristics:

 The actual operation performed is against a robust, predictable, and well-tested
API

« The purpose of the operation is the side effect that is an invisible discontinuity to
another API client

Testing can demonstrate the desired behavior of the other service layer, both before
and after the change. It’s often possible to test whether internal state, as seen through
the API, is constant across the operation. For example, databases pursue correct
answers, even if a suitable index isn’t available for the query. On the other hand, some
documented API invariants (such as a DNS cache holding until the TTL) may not
hold across the operation. For example, if a runlevel change replaces a local name-
server with a caching proxy, both choices can promise to retain completed lookups
for many seconds. It’s unlikely that the cache state is handed over from one to the
other.

Given that automation tools imply additional release tests for other binaries to handle
environmental transients, how do you define the environment in which those auto-
mation tools run? After all, the automation for shuffling containers to improve usage
is likely to try to shuffle itself at some point if it also runs in a container. It would be
embarrassing if a new release of its internal algorithm yielded dirty memory pages so
quickly that the network bandwidth of the associated mirroring ended up preventing
the code from finalizing the live migration. Even if there’s an integration test for
which the binary intentionally shuffles itself around, the test likely doesn’t use a
production-sized model of the container fleet. It almost certainly isn’'t allowed to use
scarce high-latency intercontinental bandwidth for testing such races.
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Even more amusingly, one automation tool might be changing the environment in
which another automation tool runs. Or both tools might be changing the environ-
ment of the other automation tool simultaneously! For example, a fleet upgrading
tool likely consumes the most resources when it’s pushing upgrades. As a result, the
container rebalancing would be tempted to move the tool. In turn, the container
rebalancing tool occasionally needs upgrading. This circular dependency is fine if the
associated APIs have restart semantics, someone remembered to implement test cov-
erage for those semantics, and checkpoint health is assured independently.

Testing Disaster

Many disaster recovery tools can be carefully designed to operate offline. Such tools
do the following:

« Compute a checkpoint state that is equivalent to cleanly stopping the service
o Push the checkpoint state to be loadable by existing nondisaster validation tools

o Support the usual release barrier tools, which trigger the clean start procedure

In many cases, you can implement these phases so that the associated tests are easy to
write and offer excellent coverage. If any of the constraints (offline, checkpoint, load-
able, barrier, or clean start) must be broken, it's much harder to show confidence that
the associated tool implementation will work at any time on short notice.

Online repair tools inherently operate outside the mainstream API and therefore
become more interesting to test. One challenge you face in a distributed system is
determining if normal behavior, which may be eventually consistent by nature, will
interact badly with the repair. For example, consider a race condition that you can
attempt to analyze using the offline tools. An offline tool is generally written to expect
instant consistency, as opposed to eventual consistency, because instant consistency is
less challenging to test. This situation becomes complicated because the repair binary
is generally built separately from the serving production binary that its racing
against. Consequently, you might need to build a unified instrumented binary to run
within these tests so that the tools can observe transactions.
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Using Statistical Tests

Statistical techniques, such as Lemon [Ana07] for fuzzing, and Chaos Monkey" and
Jepsen'? for distributed state, aren’t necessarily repeatable tests. Simply rerunning
such tests after a code change doesn’t definitively prove that the observed fault is
fixed.!* However, these techniques can be useful:

o They can provide a log of all the randomly selected actions that are taken in a
given run—sometimes simply by logging the random number generator seed.

« If this log is immediately refactored as a release test, running it a few times before
starting on the bug report is often helpful. The rate of nonfailure on replay tells
you how hard it will be to later assert that the fault is fixed.

o Varijations in how the fault is expressed help you pinpoint suspicious areas in the
code.

« Some of those later runs may demonstrate failure situations that are more severe
than those in the original run. In response, you may want to escalate the bug’s
severity and impact.

The Need for Speed

For every version (patch) in the code repository, every defined test provides a pass or
fail indication. That indication may change for repeated and seemingly identical runs.
You can estimate the actual likelihood of a test passing or failing by averaging over
those many runs and computing the statistical uncertainty of that likelihood. How-
ever, performing this calculation for every test at every version point is computation-
ally infeasible.

Instead, you must form hypotheses about the many scenarios of interest and run the
appropriate number of repeats of each test and version to allow a reasonable infer-
ence. Some of these scenarios are benign (in a code quality sense), while others are
actionable. These scenarios affect all the test attempts to varying extents and, because
they are coupled, reliably and quickly obtaining a list of actionable hypotheses (i.e.,
components that are actually broken) means estimating all scenarios at the same
time.

11 See https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey.
12 See https://github.com/aphyr/jepsen.

13 Even if the test run is repeated with the same random seed so that the task kills are in the same order, there is
no serialization between the kills and the fake user traffic. Therefore, there’s no guarantee that the actual pre-
viously observed code path will now be exercised again.
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Engineers who use the testing infrastructure want to know if their code—usually a
tiny fraction of all the source behind a given test run—is broken. Often, not being
broken implies that any observed failures can be blamed on someone else’s code. In
other words, the engineer wants to know if their code has an unanticipated race con-
dition that makes the test flaky (or more flaky than the test already was due to other
factors).

Testing Deadlines

Most tests are simple, in the sense that they run as a self-contained hermetic binary
that fits in a small compute container for a few seconds. These tests give engineers
interactive feedback about mistakes before the engineer switches context to the next
bug or task.

Tests that require orchestration across many binaries and/or across a fleet that has
many containers tend to have startup times measured in seconds. Such tests are usu-
ally unable to offer interactive feedback, so they can be classified as batch tests.
Instead of saying “don’t close the editor tab” to the engineer, these test failures are say-
ing “this code is not ready for review” to the code reviewer.

The informal deadline for the test is the point at which the engineer makes the next
context switch. Test results are best given to the engineer before he or she switches
context, because otherwise the next context may involve XKCD compiling.**

Suppose an engineer is working on a service with over 21,000 simple tests and occa-
sionally proposes a patch against the service’s codebase. To test the patch, you want to
compare the vector of pass/fail results from the codebase before the patch with the
vector of results from the codebase after the patch. A favorable comparison of those
two vectors provisionally qualifies the codebase as releasable. This qualification cre-
ates an incentive to run the many release and integration tests, as well as other dis-
tributed binary tests that examine scaling of the system (in case the patch uses
significantly more local compute resources) and complexity (in case the patch creates
a superlinear workload elsewhere).

At what rate can you incorrectly flag a user’s patch as damaging by miscalculating
environmental flakiness? It seems likely that users would vehemently complain if 1 in
10 patches is rejected. But a rejection of 1 patch among 100 perfect patches might go
without comment.

14 See http://xkcd.com/303/.
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This means you're interested in the 42,000th root (one for each defined test before the
patch, and one for each defined test after the patch) of 0.99 (the fraction of patches
that can be rejected). This calculation:

1
0. 992 x 21000

suggests that those individual tests must run correctly over 99.9999% of the time.
Hmm.

Pushing to Production

While production configuration management is commonly kept in a source control
repository, configuration is often separate from the developer source code. Similarly,
the software testing infrastructure often can't see production configuration. Even if
the two are located in the same repository, changes for configuration management
are made in branches and/or a segregated directory tree that test automation has his-
torically ignored.

In a legacy corporate environment where software engineers develop binaries and
throw them over the wall to the administrators who update the servers, segregation of
testing infrastructure and production configuration is at best annoying, and at worst
can damage reliability and agility. Such segregation might also lead to tool duplica-
tion. In a nominally integrated Ops environment, this segregation degrades resiliency
because it creates subtle inconsistencies between the behavior for the two sets of tools.
This segregation also limits project velocity because of commit races between the ver-
sioning systems.

In the SRE model, the impact of segregating testing infrastructure from production
configuration is appreciably worse, as it prevents relating the model describing pro-
duction to the model describing the application behavior. This discrepancy impacts
engineers who want to find statistical inconsistencies in expectations at development
time. However, this segregation doesn’t slow down development so much as prevent
the system architecture from changing, because there is no way to eliminate migra-
tion risk.

Consider a scenario of unified versioning and unified testing, so that the SRE meth-
odology is applicable. What impact would the failure of a distributed architecture
migration have? A fair amount of testing will probably occur. So far, it’s assumed that
a software engineer would likely accept the test system giving the wrong answer 1
time in 10 or so. What risk are you willing to take with the migration if you know that
testing may return a false negative and the situation could become really exciting,
really quickly? Clearly, some areas of test coverage need a higher level of paranoia
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than others. This distinction can be generalized: some test failures are indicative of a
larger impact risk than other test failures.

Expect Testing Fail

Not too long ago, a software product might have released once per year. Its binaries
were generated by a compiler toolchain over many hours or days, and most of the
testing was performed by humans against manually written instructions. This release
process was inefficient, but there was little need to automate it. The release effort was
dominated by documentation, data migration, user retraining, and other factors.
Mean Time Between Failure (MTBF) for those releases was one year, no matter how
much testing took place. So many changes happened per release that some user-
visible breakage was bound to be hiding in the software. Effectively, the reliability
data from the previous release was irrelevant for the next release.

Effective API/ABI management tools and interpreted languages that scale to large
amounts of code now support building and executing a new software version every
few minutes. In principle, a sufficiently large army of humans® could complete test-
ing on each new version using the methods described earlier and achieve the same
quality bar for each incremental version. Even though ultimately only the same tests
are applied to the same code, that final software version has higher quality in the
resulting release that ships annually. This is because in addition to the annual ver-
sions, the intermediate versions of the code are also being tested. Using intermediates,
you can unambiguously map problems found during testing back to their underlying
causes and be confident that the whole issue, and not just the limited symptom that
was exposed, is fixed. This principle of a shorter feedback cycle is equally effective
when applied to automated test coverage.

If you let users try more versions of the software during the year, the MTBF suffers
because there are more opportunities for user-visible breakage. However, you can
also discover areas that would benefit from additional test coverage. If these tests are
implemented, each improvement protects against some future failure. Careful relia-
bility management combines the limits on uncertainty due to test coverage with the
limits on user-visible faults in order to adjust the release cadence. This combination
maximizes the knowledge that you gain from operations and end users. These gains
drive test coverage and, in turn, product release velocity.

If an SRE modifies a configuration file or adjusts an automation tool’s strategy (as
opposed to implementing a user feature), the engineering work matches the same
conceptual model. When you are defining a release cadence based on reliability, it
often makes sense to segment the reliability budget by functionality, or (more con-

15 Perhaps acquired through Mechanical Turk or similar services.
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veniently) by team. In such a scenario, the feature engineering team aims to achieve a
given uncertainty limit that affects their goal release cadence. The SRE team has a
separate budget with its own associated uncertainty, and thus an upper limit on their
release rate.

In order to remain reliable and to avoid scaling the number of SREs supporting a ser-
vice linearly, the production environment has to run mostly unattended. To remain
unattended, the environment must be resilient against minor faults. When a major
event that demands manual SRE intervention occurs, the tools used by SRE must be
suitably tested. Otherwise, that intervention decreases confidence that historical data
is applicable to the near future. The reduction in confidence requires waiting for an
analysis of monitoring data in order to eliminate the uncertainty incurred. Whereas
the previous discussion in “Testing Scalable Tools” on page 193 focused on how to
meet the opportunity of test coverage for an SRE tool, here you see that testing deter-
mines how often it is appropriate to use that tool against production.

Configuration files generally exist because changing the configuration is faster than
rebuilding a tool. This low latency is often a factor in keeping MTTR low. However,
these same files are also changed frequently for reasons that don't need that reduced
latency. When viewed from the point of view of reliability:

o A configuration file that exists to keep MTTR low, and is only modified when
there’s a failure, has a release cadence slower than the MTBE. There can be a fair
amount of uncertainty as to whether a given manual edit is actually truly optimal
without the edit impacting the overall site reliability.

« A configuration file that changes more than once per user-facing application
release (for example, because it holds release state) can be a major risk if these
changes are not treated the same as application releases. If testing and monitor-
ing coverage of that configuration file is not considerably better than that of the
user application, that file will dominate site reliability in a negative way.

One method of handling configuration files is to make sure that every configuration
file is categorized under only one of the options in the preceding bulleted list, and to
somehow enforce that rule. Should you take the latter strategy, make sure of the
following:

« Each configuration file has enough test coverage to support regular routine
editing.
o Before releases, file edits are somewhat delayed while waiting for release testing.

o Provide a break-glass mechanism to push the file live before completing the test-
ing. Since breaking the glass impairs reliability, it's generally a good idea to make
the break noisy by (for example) filing a bug requesting a more robust resolution
for next time.
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Break-Glass and Testing

You can implement a break-glass mechanism to disable release testing. Doing so
means that whoever makes a hurried manual edit isn’t told about any mistakes until
the real user impact is reported by monitoring. It’s better to leave the tests running,
associate the early push event with the pending testing event, and (as soon as possi-
ble) back-annotate the push with any broken tests. This way, a flawed manual push
can be quickly followed by another (hopefully less flawed) manual push. Ideally, that
break-glass mechanism automatically boosts the priority of those release tests so that
they can preempt the routine incremental validation and coverage workload that the
test infrastructure is already processing.

Integration

In addition to unit testing a configuration file to mitigate its risk to reliability, it’s also
important to consider integration testing configuration files. The contents of the con-
figuration file are (for testing purposes) potentially hostile content to the interpreter
reading the configuration. Interpreted languages such as Python are commonly used
for configuration files because their interpreters can be embedded, and some simple
sandboxing is available to protect against nonmalicious coding errors.

Writing your configuration files in an interpreted language is risky, as this approach is
fraught with latent failures that are hard to definitively address. Because loading con-
tent actually consists of executing a program, there’s no inherent upper limit on how
inefficient loading can be. In addition to any other testing, you should pair this type
of integration testing with careful deadline checking on all integration test methods in
order to label tests that do not run to completion in a reasonable amount of time as
failed.

If the configuration is instead written as text in a custom syntax, every category of
test needs separate coverage from scratch. Using an existing syntax such as YAML in
combination with a heavily tested parser like Python’s safe_load removes some of
the toil incurred by the configuration file. Careful choice of syntax and parser can
ensure theres a hard upper limit on how long the loading operation can take. How-
ever, the implementer needs to address schema faults, and most simple strategies for
doing so don’'t have an upper bound on runtime. Even worse, these strategies tend not
to be robustly unit tested.
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The benefit of using protocol buffers'® is that the schema is defined in advance and
automatically checked at load time, removing even more of the toil, yet still offering
the bounded runtime.

The role of SRE generally includes writing systems engineering tools" (if no one else
is already writing them) and adding robust validation with test coverage. All tools can
behave unexpectedly due to bugs not caught by testing, so defense in depth is advisa-
ble. When one tool behaves unexpectedly, engineers need to be as confident as possi-
ble that most of their other tools are working correctly and can therefore mitigate or
resolve the side effects of that misbehavior. A key element of delivering site reliability
is finding each anticipated form of misbehavior and making sure that some test (or
another tool’s tested input validator) reports that misbehavior. The tool that finds the
problem might not be able to fix or even stop it, but should at least report the prob-
lem before a catastrophic outage occurs.

For example, consider the configured list of all users (such as /etc/passwd on a non-
networked Unix-style machine) and imagine an edit that unintentionally causes the
parser to stop after parsing only half of the file. Because recently created users haven’t
loaded, the machine will most likely continue to run without problem, and many
users may not notice the fault. The tool that maintains home directories can easily
notice the mismatch between the actual directories present and those implied by the
(partial) user list and urgently report the discrepancy. This tool’s value lies in report-
ing the problem, and it should avoid attempting to remediate on its own (by deleting
lots of user data).

Production Probes

Given that testing specifies acceptable behavior in the face of known data, while mon-
itoring confirms acceptable behavior in the face of unknown user data, it would seem
that major sources of risk—both the known and the unknown—are covered by the
combination of testing and monitoring. Unfortunately, actual risk is more
complicated.

Known good requests should work, while known bad requests should error. Imple-
menting both kinds of coverage as an integration test is generally a good idea. You
can replay the same bank of test requests as a release test. Splitting the known good
requests into those that can be replayed against production and those that can't yields
three sets of requests:

16 See https://github.com/google/protobuf.

17 Not because software engineers shouldn’t write them. Tools that cross between technology verticals and span
abstraction layers tend to have weak associations with many software teams and a slightly stronger association
with systems teams.
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« Known bad requests
» Known good requests that can be replayed against production

+ Known good requests that can’t be replayed against production

You can use each set as both integration and release tests. Most of these tests can also
be used as monitoring probes.

It would seem to be superfluous and, in principle, pointless to deploy such monitor-
ing because these exact same requests have already been tried two other ways. How-
ever, those two ways were different for a few reasons:

o The release test probably wrapped the integrated server with a frontend and a
fake backend.

o The probe test probably wrapped the release binary with a load balancing
frontend and a separate scalable persistent backend.

o Frontends and backends probably have independent release cycles. It’s likely that
the schedules for those cycles occur at different rates (due to their adaptive
release cadences).

Therefore, the monitoring probe running in production is a configuration that wasn’t
previously tested.

Those probes should never fail, but what does it mean if they do fail? Either the
frontend API (from the load balancer) or the backend API (to the persistent store) is
not equivalent between the production and release environments. Unless you already
know why the production and release environments aren’t equivalent, the site is likely
broken.

The same production updater that gradually replaces the application also gradually
replaces the probes so that all four combinations of old-or-new probes sending
requests to old-or-new applications are being continuously generated. That updater
can detect when one of the four combinations is generating errors and roll back to
the last known good state. Usually, the updater expects each newly started application
instance to be unhealthy for a short time as it prepares to start receiving lots of user
traffic. If the probes are already inspected as part of the readiness check, the update
safely fails indefinitely, and no user traffic is ever routed to the new version. The
update remains paused until engineers have time and inclination to diagnose the fault
condition and then encourage the production updater to cleanly roll back.

This production test by probe does indeed offer protection to the site, plus clear feed-
back to the engineers. The earlier that feedback is given to engineers, the more useful
it is. It’s also preferable that the test is automated so that the delivery of warnings to
engineers is scalable.
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Assume that each component has the older software version that’s being replaced and
the newer version that’s rolling out (now or very soon). The newer version might be
talking to the old version’s peer, which forces it to use the deprecated API. Or the
older version might be talking to a peer’s newer version, using the API which (at the
time the older version was released) didn’t work properly yet. But it works now, hon-
est! Youd better hope those tests for future compatibility (which are running as moni-
toring probes) had good API coverage.

Fake Backend Versions

When implementing release tests, the fake backend is often maintained by the peer
service’s engineering team and merely referenced as a build dependency. The her-
metic test that is executed by the testing infrastructure always combines the fake
backend and the test frontend at the same build point in the revision control history.

That build dependency may be providing a runnable hermetic binary and, ideally, the
engineering team maintaining it cuts a release of that fake backend binary at the same
time they cut their main backend application and their probes. If that backend release
is available, it might be worthwhile to include hermetic frontend release tests (without
the fake backend binary) in the frontend release package.

Your monitoring should be aware of all release versions on both sides of a given ser-
vice interface between two peers. This setup ensures that retrieving every combina-
tion of the two releases and determining whether the test still passes doesn’t take
much extra configuration. This monitoring doesn’t have to happen continuously—
you only need to run new combinations that are the result of either team cutting a
new release. Such problems don’t have to block that new release itself.

On the other hand, rollout automation should ideally block the associated production
rollout until the problematic combinations are no longer possible. Similarly, the peer
team’s automation may consider draining (and upgrading) the replicas that haven't yet
moved from a problematic combination.

Conclusion

Testing is one of the most profitable investments engineers can make to improve the
reliability of their product. Testing isn't an activity that happens once or twice in the
lifecycle of a project; it's continuous. The amount of effort required to write good tests
is substantial, as is the effort to build and maintain infrastructure that promotes a
strong testing culture. You can't fix a problem until you understand it, and in engi-
neering, you can only understand a problem by measuring it. The methodologies and
techniques in this chapter provide a solid foundation for measuring faults and uncer-
tainty in a software system, and help engineers reason about the reliability of software
as it’s written and released to users.
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CHAPTER 18
Software Engineering in SRE

Written by Dave Helstroom and Trisha Weir
with Evan Leonard and Kurt Delimon
Edited by Kavita Guliani

Ask someone to name a Google software engineering effort and they’ll likely list a
consumer-facing product like Gmail or Maps; some might even mention underlying
infrastructure such as Bigtable or Colossus. But in truth, there is a massive amount of
behind-the-scenes software engineering that consumers never see. A number of those
products are developed within SRE.

Google’s production environment is—by some measures—one of the most complex
machines humanity has ever built. SREs have firsthand experience with the intrica-
cies of production, making them uniquely well suited to develop the appropriate tools
to solve internal problems and use cases related to keeping production running. The
majority of these tools are related to the overall directive of maintaining uptime and
keeping latency low, but take many forms: examples include binary rollout mecha-
nisms, monitoring, or a development environment built on dynamic server composi-
tion. Overall, these SRE-developed tools are full-fledged software engineering
projects, distinct from one-off solutions and quick hacks, and the SREs who develop
them have adopted a product-based mindset that takes both internal customers and a
roadmap for future plans into account.

Why Is Software Engineering Within SRE Important?

In many ways, the vast scale of Google production has necessitated internal software
development, because few third-party tools are designed at sufficient scale for Goo-
gle’s needs. The company’s history of successful software projects has led us to appre-
ciate the benefits of developing directly within SRE.
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SREs are in a unique position to effectively develop internal software for a number of
reasons:

o The breadth and depth of Google-specific production knowledge within the SRE
organization allows its engineers to design and create software with the appropri-
ate considerations for dimensions such as scalability, graceful degradation during
failure, and the ability to easily interface with other infrastructure or tools.

o+ Because SREs are embedded in the subject matter, they easily understand the
needs and requirements of the tool being developed.

o A direct relationship with the intended user—fellow SREs—results in frank and
high-signal user feedback. Releasing a tool to an internal audience with high
familiarity with the problem space means that a development team can launch
and iterate more quickly. Internal users are typically more understanding when it
comes to minimal UI and other alpha product issues.

From a purely pragmatic standpoint, Google clearly benefits from having engineers
with SRE experience developing software. By deliberate design, the growth rate of
SRE-supported services exceeds the growth rate of the SRE organization; one of SRE’s
guiding principles is that “team size should not scale directly with service growth”
Achieving linear team growth in the face of exponential service growth requires per-
petual automation work and efforts to streamline tools, processes, and other aspects
of a service that introduce inefficiency into the day-to-day operation of production.
Having the people with direct experience running production systems developing the
tools that will ultimately contribute to uptime and latency goals makes a lot of sense.

On the flip side, individual SREs, as well as the broader SRE organization, also benefit
from SRE-driven software development.

Fully fledged software development projects within SRE provide career development
opportunities for SREs, as well as an outlet for engineers who don't want their coding
skills to get rusty. Long-term project work provides much-needed balance to inter-
rupts and on-call work, and can provide job satisfaction for engineers who want their
careers to maintain a balance between software engineering and systems engineering.

Beyond the design of automation tools and other efforts to reduce the workload for
engineers in SRE, software development projects can further benefit the SRE organi-
zation by attracting and helping to retain engineers with a broad variety of skills. The
desirability of team diversity is doubly true for SRE, where a variety of backgrounds
and problem-solving approaches can help prevent blind spots. To this end, Google
always strives to staff its SRE teams with a mix of engineers with traditional software
development experience and engineers with systems engineering experience.
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Auxon Case Study: Project Background and Problem Space

This case study examines Auxon, a powerful tool developed within SRE to automate
capacity planning for services running in Google production. To best understand
how Auxon was conceived and the problems it addresses, we'll first examine the
problem space associated with capacity planning, and the difficulties that traditional
approaches to this task present for services at Google and across the industry as a
whole. For more context on how Google uses the terms service and cluster, see Chap-
ter 2.

Traditional Capacity Planning

There are myriad tactics for capacity planning of compute resources (see [Hix15a]),
but the majority of these approaches boil down to a cycle that can be approximated as
follows:

1) Collect demand forecasts.
How many resources are needed? When and where are these resources needed?

o Uses the best data we have available today to plan into the future

o Typically covers anywhere from several quarters to years

2) Devise build and allocation plans.
Given this forecasted outlook, what’s the best way to meet this demand with
additional supply of resources? How much supply, and in what locations?

3) Review and sign off on plan.
Is the forecast reasonable? Does the plan line up with budgetary, product-level,
and technical considerations?

4) Deploy and configure resources.
Once resources eventually arrive (potentially in phases over the course of some
defined period of time), which services get to use the resources? How do I make
typically lower-level resources (CPU, disk, etc.) useful for services?

It bears stressing that capacity planning is a neverending cycle: assumptions change,
deployments slip, and budgets are cut, resulting in revision upon revision of The
Plan. And each revision has trickle-down effects that must propagate throughout the
plans of all subsequent quarters. For example, a shortfall this quarter must be made
up in future quarters. Traditional capacity planning uses demand as a key driver, and
manually shapes supply to fit demand in response to each change.
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Brittle by nature

Traditional capacity planning produces a resource allocation plan that can be disrup-
ted by any seemingly minor change. For example:

o A service undergoes a decrease in efficiency, and needs more resources than
expected to serve the same demand.

« Customer adoption rates increase, resulting in an increase in projected demand.
o The delivery date for a new cluster of compute resources slips.

o A product decision about a performance goal changes the shape of the required
service deployment (the service’s footprint) and the amount of required
resources.

Minor changes require cross-checking the entire allocation plan to make sure that the
plan is still feasible; larger changes (such as delayed resource delivery or product
strategy changes) potentially require re-creating the plan from scratch. A delivery
slippage in a single cluster might impact the redundancy or latency requirements of
multiple services: resource allocations in other clusters must be increased to make up
for the slippage, and these and any other changes would have to propagate through-
out the plan.

Also, consider that the capacity plan for any given quarter (or other time frame) is
based on the expected outcome of the capacity plans of previous quarters, meaning
that a change in any one quarter results in work to update subsequent quarters.

Laborious and imprecise

For many teams, the process of collecting the data necessary to generate demand
forecasts is slow and error-prone. And when it is time to find capacity to meet this
future demand, not all resources are equally suitable. For example, if latency require-
ments mean that a service must commit to serve user demand on the same continent
as the user, obtaining additional resources in North America won't alleviate a capacity
shortfall in Asia. Every forecast has constraints, or parameters around how it can be
fulfilled; constraints are fundamentally related to intent, which is discussed in the
next section.

Mapping constrained resource requests into allocations of actual resources from the
available capacity is equally slow: it’s both complex and tedious to bin pack requests
into limited space by hand, or to find solutions that fit a limited budget.

This process may already paint a grim picture, but to make matters worse, the tools it
requires are typically unreliable or cumbersome. Spreadsheets suffer severely from
scalability problems and have limited error-checking abilities. Data becomes stale,
and tracking changes becomes difficult. Teams often are forced to make simplifying

208 | Chapter 18: Software Engineering in SRE

www.it-ebooks.info


http://www.it-ebooks.info/

assumptions and reduce the complexity of their requirements, simply to render
maintaining adequate capacity a tractable problem.

When service owners face the challenges of fitting a series of requests for capacity
from various services into the resources available to them, in a manner that meets the
various constraints a service may have, additional imprecision ensues. Bin packing is
an NP-hard problem that is difficult for human beings to compute by hand. Further-
more, the capacity request from a service is generally an inflexible set of demand
requirements: X cores in cluster Y. The reasons why X cores or Y cluster are needed,
and any degrees of freedom around those parameters, are long lost by the time the
request reaches a human trying to fit a list of demands into available supply.

The net result is a massive expenditure of human effort to come up with a bin pack-
ing that is approximate, at best. The process is brittle to change, and there are no
known bounds on an optimal solution.

Our Solution: Intent-Based Capacity Planning
Specify the requirements, not the implementation.

At Google, many teams have moved to an approach we call Intent-based Capacity
Planning. The basic premise of this approach is to programmatically encode the
dependencies and parameters (intent) of a service’s needs, and use that encoding to
autogenerate an allocation plan that details which resources go to which service, in
which cluster. If demand, supply, or service requirements change, we can simply
autogenerate a new plan in response to the changed parameters, which is now the
new best distribution of resources.

With a service’s true requirements and flexibility captured, the capacity plan is now
dramatically more nimble in the face of change, and we can reach an optimal solution
that meets as many parameters as possible. With bin packing delegated to computers,
human toil is drastically reduced, and service owners can focus on high-order priori-
ties like SLOs, production dependencies, and service infrastructure requirements, as
opposed to low-level scrounging for resources.

As an added benefit, using computational optimization to map from intent to imple-
mentation achieves much greater precision, ultimately resulting in cost savings to the
organization. Bin packing is still far from a solved problem, because certain types are
still considered NP-hard; however, today’s algorithms can solve to a known optimal
solution.

Intent-Based Capacity Planning

Intent is the rationale for how a service owner wants to run their service. Moving
from concrete resource demands to motivating reasons in order to arrive at the true
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capacity planning intent often requires several layers of abstraction. Consider the fol-
lowing chain of abstraction:

1) “I want 50 cores in clusters X, Y, and Z for service Foo.”
This is an explicit resource request. But...why do we need this many resources
specifically in these particular clusters?

2) “I want a 50-core footprint in any 3 clusters in geographic region YYY for service Foo.”
This request introduces more degrees of freedom and is potentially easier to ful-
fill, although it doesn’t explain the reasoning behind its requirements. But...why
do we need this quantity of resources, and why 3 footprints?

3) “I want to meet service Foos demand in each geographic region, and have N + 2
redundancy.”
Suddenly greater flexibility is introduced and we can understand at a more
“human” level what happens if service Foo does not receive these resources.
But...why do we need N + 2 for service Foo?

4) “I want to run service Foo at 5 nines of reliability.”
This is a more abstract requirement, and the ramification if the requirement isn’t
met becomes clear: reliability will suffer. And we have even greater flexibility
here: perhaps running at N + 2 is not actually sufficient or optimal for this ser-
vice, and some other deployment plan would be more suitable.

So what level of intent should be used by intent-driven capacity planning? Ideally, all
levels of intent should be supported together, with services benefiting the more they
shift to specifying intent versus implementation. In Google’s experience, services tend
to achieve the best wins as they cross to step 3: good degrees of flexibility are avail-
able, and the ramifications of this request are in higher-level and understandable
terms. Particularly sophisticated services may aim for step 4.

Precursors to Intent

What information do we need in order to capture a service’s intent? Enter dependen-
cies, performance metrics, and prioritization.

Dependencies

Services at Google depend on many other infrastructure and user-facing services, and
these dependencies heavily influence where a service can be placed. For example,
imagine user-facing service Foo, which depends upon Bar, an infrastructure storage
service. Foo expresses a requirement that Bar must be located within 30 milliseconds
of network latency of Foo. This requirement has important repercussions for where
we place both Foo and Bar, and intent-driven capacity planning must take these con-
straints into account.
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Furthermore, production dependencies are nested: to build upon the preceding
example, imagine service Bar has its own dependencies on Baz, a lower-level dis-
tributed storage service, and Qux, an application management service. Therefore,
where we can now place Foo depends on where we can place Bar, Baz, and Qux. A
given set of production dependencies can be shared, possibly with different stipula-
tions around intent.

Performance metrics

Demand for one service trickles down to result in demand for one or more other
services. Understanding the chain of dependencies helps formulate the general scope
of the bin packing problem, but we still need more information about expected
resource usage. How many compute resources does service Foo need to serve N user
queries? For every N queries of service Foo, how many Mbps of data do we expect for
service Bar?

Performance metrics are the glue between dependencies. They convert from one or
more higher-level resource type(s) to one or more lower-level resource type(s).
Deriving appropriate performance metrics for a service can involve load testing and
resource usage monitoring.

Prioritization

Inevitably, resource constraints result in trade-offs and hard decisions: of the many
requirements that all services have, which requirements should be sacrificed in the
face of insufficient capacity?

Perhaps N + 2 redundancy for service Foo is more important than N + 1 redundancy
for service Bar. Or perhaps the feature launch of X is less important than N + 0
redundancy for service Baz.

Intent-driven planning forces these decisions to be made transparently, openly, and
consistently. Resource constraints entail the same trade-ofts, but all too often, the pri-
oritization can be ad hoc and opaque to service owners. Intent-based planning allows
prioritization to be as granular or coarse as needed.

Introduction to Auxon

Auxon is Google’s implementation of an intent-based capacity planning and resource
allocation solution, and a prime example of an SRE-designed and developed software
engineering product: it was built by a small group of software engineers and a techni-
cal program manager within SRE over the course of two years. Auxon is a perfect case
study to demonstrate how software development can be fostered within SRE.
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Auxon is actively used to plan the use of many millions of dollars of machine resour-
ces at Google. It has become a critical component of capacity planning for several
major divisions within Google.

As a product, Auxon provides the means to collect intent-based descriptions of a
service’s resource requirements and dependencies. These user intents are expressed as
requirements for how the owner would like the service to be provisioned. Require-
ments might be specified as a request like, “My service must be N + 2 per continent”
or “The frontend servers must be no more than 50 ms away from the backend
servers” Auxon collects this information either via a user configuration language or
via a programmatic API, thus translating human intent into machine-parseable con-
straints. Requirements can be prioritized, a feature that’s useful if resources are insuf-
ficient to meet all requirements, and therefore trade-offs must be made. These
requirements—the intent—are ultimately represented internally as a giant mixed-
integer or linear program. Auxon solves the linear program, and uses the resultant
bin packing solution to formulate an allocation plan for resources.

Figure 18-1 and the explanations that follow it outline Auxon’s major components.

Per-Service Demand
{ Forecast Data ] [ SRS ]

\ 4 v
- Serl\rl]itcsrliteggr??e%cies e Auxon
- Service constraints LaConﬁgurEth!l Solver Allocation
- Budget priorities EER e Plan

[ Performance Data ] [ Resource Pricing ]

Figure 18-1. The major components of Auxon

Performance Data describes how a service scales: for every unit of demand X in clus-
ter Y, how many units of dependency Z are used? This scaling data may be derived in
a number of ways depending on the maturity of the service in question. Some serv-
ices are load tested, while others infer their scaling based upon past performance.

Per-Service Demand Forecast Data describes the usage trend for forecasted demand
signals. Some services derive their future usage from demand forecasts—a forecast of
queries per second broken down by continent. Not all services have a demand fore-
cast: some services (e.g., a storage service like Colossus) derive their demand purely
from services that depend upon them.
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Resource Supply provides data about the availability of base-level, fundamental
resources: for example, the number of machines expected to be available for use at a
particular point in the future. In linear program terminology, the resource supply acts
as an upper bound that limits how services can grow and where services can be
placed. Ultimately, we want to make the best use of this resource supply as the intent-
based description of the combined group of services allows.

Resource Pricing provides data about how much base-level, fundamental resources
cost. For instance, the cost of machines may vary globally based upon the space/
power charges of a given facility. In linear program terminology, the prices inform
the overall calculated costs, which act as the objective that we want to minimize.

Intent Config is the key to how intent-based information is fed to Auxon. It defines
what constitutes a service, and how services relate to one another. The config ulti-
mately acts as a configuration layer that allows all the other components to be wired
together. It’s designed to be human-readable and configurable.

Auxon Configuration Language Engine acts based upon the information it receives
from the Intent Config. This component formulates a machine-readable request (a
protocol buffer that can be understood by the Auxon Solver. It applies light sanity
checking to the configuration, and is designed to act as the gateway between the
human-configurable intent definition and the machine-parseable optimization
request.

Auxon Solver is the brain of the tool. It formulates the giant mixed-integer or linear
program based upon the optimization request received from the Configuration Lan-
guage Engine. It is designed to be very scalable, which allows the solver to run in par-
allel upon hundreds or even thousands of machines running within Google’s clusters.
In addition to mixed-integer linear programming toolkits, there are also components
within the Auxon Solver that handle tasks such as scheduling, managing a pool of
workers, and descending decision trees.

Allocation Plan is the output of the Auxon Solver. It prescribes which resources
should be allocated to which services in what locations. It is the computed implemen-
tation details of the intent-based definition of the capacity planning problem’s
requirements. The Allocation Plan also includes information about any requirements
that could not be satisfied—for example, if a requirement couldn’t be met due to a
lack of resources, or competing requirements that were otherwise too strict.

Requirements and Implementation: Successes and Lessons Learned

Auxon was first imagined by an SRE and a technical program manager who had sepa-
rately been tasked by their respective teams with capacity planning large portions of
Google’s infrastructure. Having performed manual capacity planning in spreadsheets,
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they were well positioned to understand the inefficiencies and opportunities for
improvement through automation, and the features such a tool might require.

Throughout Auxon’s development, the SRE team behind the product continued to be
deeply involved in the production world. The team maintained a role in on-call rota-
tions for several of Google’s services, and participated in design discussions and tech-
nical leadership of these services. Through these ongoing interactions, the team was
able to stay grounded in the production world: they acted as both the consumer and
developer of their own product. When the product failed, the team was directly
impacted. Feature requests were informed through the team’s own firsthand experi-
ences. Not only did firsthand experience of the problem space buy a huge sense of
ownership in the product’s success, but it also helped give the product credibility and
legitimacy within SRE.

Approximation

Don't focus on perfection and purity of solution, especially if the bounds of the prob-
lem aren’t well known. Launch and iterate.

Any sufficiently complex software engineering effort is bound to encounter uncer-
tainty as to how a component should be designed or how a problem should be tack-
led. Auxon met with such uncertainty early in its development because the linear
programming world was uncharted territory for the team members. The limitations
of linear programming, which seemed to be a central part of how the product would
likely function, were not well understood. To address the team’s consternation over
this insufficiently understood dependency, we opted to initially build a simplified
solver engine (the so-called “Stupid Solver”) that applied some simple heuristics as to
how services should be arranged based upon the user’s specified requirements. While
the Stupid Solver would never yield a truly optimal solution, it gave the team a sense
that our vision for Auxon was achievable even if we didn’t build something perfect
from day one.

When deploying approximation to help speed development, it's important to under-
take the work in a way that allows the team to make future enhancements and revisit
approximation. In the case of the Stupid Solver, the entire solver interface was
abstracted away within Auxon such that the solver internals could be swapped out at
a later date. Eventually, as we built confidence in a unified linear programming
model, it was a simple operation to switch out the Stupid Solver for something, well,
smarter.

Auxon’s product requirements also had some unknowns. Building software with
fuzzy requirements can be a frustrating challenge, but some degree of uncertainty
need not be a showstopper. Use this fuzziness as an incentive to ensure that the soft-
ware is designed to be both general and modular. For instance, one of the aims of the
Auxon project was to integrate with automation systems within Google to allow an
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Allocation Plan to be directly enacted on production (assigning resources and turn-
ing up/turning down/resizing services as appropriate). However, at the time, the
world of automation systems was in a great deal of flux, as a huge variety of
approaches were in use. Rather than try to design unique solutions to allow Auxon to
work with each individual tool, we instead shaped the Allocation Plan to be univer-
sally useful such that these automation systems could work on their own integration
points. This “agnostic” approach became key to Auxon’s process for onboarding new
customers, because it allowed customers to begin using Auxon without switching to a
particular turnup automation tool, forecasting tool, or performance data tool.

We also leveraged modular designs to deal with fuzzy requirements when building a
model of machine performance within Auxon. Data on future machine platform per-
formance (e.g., CPU) was scarce, but our users wanted a way to model various sce-
narios of machine power. We abstracted away the machine data behind a single
interface, allowing the user to swap in different models of future machine perfor-
mance. We later extended this modularity further, based on increasingly defined
requirements, to provide a simple machine performance modeling library that
worked within this interface.

If there’s one theme to draw from our Auxon case study, it’s that the old motto of
“launch and iterate” is particularly relevant in SRE software development projects.
Don’t wait for the perfect design; rather, keep the overall vision in mind while moving
ahead with design and development. When you encounter areas of uncertainty,
design the software to be flexible enough so that if process or strategy changes at a
higher level, you don’t incur a huge rework cost. But at the same time, stay grounded
by making sure that general solutions have a real-world-specific implementation that
demonstrates the utility of the design.

Raising Awareness and Driving Adoption

As with any product, SRE-developed software must be designed with knowledge of its
users and requirements. It needs to drive adoption through utility, performance, and
demonstrated ability to both benefit Google’s production reliability goals and to bet-
ter the lives of SREs. The process of socializing a product and achieving buy-in across
an organization is key to the project’s success.

Don't underestimate the effort required to raise awareness and interest in your soft-
ware product—a single presentation or email announcement isn't enough. Socializing
internal software tools to a large audience demands all of the following:

o A consistent and coherent approach

o User advocacy
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« The sponsorship of senior engineers and management, to whom you will have to
demonstrate the utility of your product

It's important to consider the perspective of the customer in making your product
usable. An engineer might not have the time or the inclination to dig into the source
code to figure out how to use a tool. Although internal customers are generally more
tolerant of rough edges and early alphas than external customers, it’s still necessary to
provide documentation. SREs are busy, and if your solution is too difficult or confus-
ing, they will write their own solution.

Set expectations

When an engineer with years of familiarity in a problem space begins designing a
product, it’s easy to imagine a utopian end-state for the work. However, it’s important
to differentiate aspirational goals of the product from minimum success criteria (or
Minimum Viable Product). Projects can lose credibility and fail by promising too
much, too soon; at the same time, if a product doesn’t promise a sufficiently reward-
ing outcome, it can be difficult to overcome the necessary activation energy to con-
vince internal teams to try something new. Demonstrating steady, incremental
progress via small releases raises user confidence in your teamss ability to deliver use-
ful software.

In the case of Auxon, we struck a balance by planning a long-term roadmap alongside
short-term fixes. Teams were promised that:

« Any onboarding and configuration efforts would provide the immediate benefit
of alleviating the pain of manually bin packing short-term resource requests.

« As additional features were developed for Auxon, the same configuration files
would carry over and provide new, and much broader, long-term cost savings
and other benefits. The project road map enabled services to quickly determine if
their use cases or required features weren't implemented in the early versions.
Meanwhile, Auxonss iterative development approach fed into development priori-
ties and new milestones for the road map.

Identify appropriate customers

The team developing Auxon realized that a one-size solution might not fit all; many
larger teams already had home-grown solutions for capacity planning that worked
passably well. While their custom tools weren’t perfect, these teams didn’t experience
sufficient pain in the capacity planning process to try a new tool, especially an alpha
release with rough edges.

The initial versions of Auxon intentionally targeted teams that had no existing
capacity planning processes in place. Because these teams would have to invest con-
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figuration effort whether they adopted an existing tool or our new approach, they
were interested in adopting the newest tool. The early successes Auxon achieved with
these teams demonstrated the utility of the project, and turned the customers them-
selves into advocates for the tool. Quantifying the usefulness of the product proved
further beneficial; when we onboarded one of Google’s Business Areas, the team
authored a case study detailing the process and comparing the before and after
results. The time savings and reduction of human toil alone presented a huge incen-
tive for other teams to give Auxon a try.

Customer service

Even though software developed within SRE targets an audience of TPMs and engi-
neers with high technical proficiency, any sufficiently innovative software still
presents a learning curve to new users. Don't be afraid to provide white glove cus-
tomer support for early adopters to help them through the onboarding process.
Sometimes automation also entails a host of emotional concerns, such as fear that
someone’s job will be replaced by a shell script. By working one-on-one with early
users, you can address those fears personally, and demonstrate that rather than own-
ing the toil of performing a tedious task manually, the team instead owns the configu-
rations, processes, and ultimate results of their technical work. Later adopters are
convinced by the happy examples of early adopters.

Furthermore, because Google’s SRE teams are distributed across the globe, early-
adopter advocates for a project are particularly beneficial, because they can serve as
local experts for other teams interested in trying out the project.

Designing at the right level

An idea that we've termed agnosticism—writing the software to be generalized to
allow myriad data sources as input—was a key principle of Auxon’s design. Agnosti-
cism meant that customers weren’t required to commit to any one tool in order to use
the Auxon framework. This approach allowed Auxon to remain of sufficient general
utility even as teams with divergent use cases began to use it. We approached poten-
tial users with the message, “come as you are; we'll work with what you've got” By
avoiding over-customizing for one or two big users, we achieved broader adoption
across the organization and lowered the barrier to entry for new services.

We've also consciously endeavored to avoid the pitfall of defining success as 100%
adoption across the organization. In many cases, there are diminishing returns on
closing the last mile to enable a feature set that is sufficient for every service in the
long tail at Google.
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Team Dynamics

In selecting engineers to work on an SRE software development product, we've found
great benefit from creating a seed team that combines generalists who are able to get
up to speed quickly on a new topic with engineers possessing a breadth of knowledge
and experience. A diversity of experiences covers blind spots as well as the pitfalls of
assuming that every team’s use case is the same as yours.

It’s essential for your team to establish a working relationship with necessary special-
ists, and for your engineers to be comfortable working in a new problem space. For
SRE teams at most companies, venturing into this new problem space requires out-
sourcing tasks or working with consultants, but SRE teams at larger organizations
may be able to partner with in-house experts. During the initial phases of conceptual-
izing and designing Auxon, we presented our design document to Google’s in-house
teams that specialize in Operations Research and Quantitative Analysis in order to
draw upon their expertise in the field and to bootstrap the Auxon team’s knowledge
about capacity planning.

As project development continued and Auxon’s feature set grew more broad and
complex, the team acquired members with backgrounds in statistics and mathemati-
cal optimization, which at a smaller company might be akin to bringing an outside
consultant in-house. These new team members were able to identify areas for
improvement when the project’s basic functionality was complete and adding finesse
had become our top priority.

The right time to engage specialists will, of course, vary from project to project. As a
rough guideline, the project should be successfully off the ground and demonstrably
successful, such that the skills of the current team would be significantly bolstered by
the additional expertise.

Fostering Software Engineering in SRE

What makes a project a good candidate to take the leap from one-off tool to fully
fledged software engineering effort? Strong positive signals include engineers with
firsthand experience in the relative domain who are interested in working on the
project, and a target user base that is highly technical (and therefore able to provide
high-signal bug reports during the early phases of development). The project should
provide noticeable benefits, such as reducing toil for SREs, improving an existing
piece of infrastructure, or streamlining a complex process.

It’s important for the project to fit into the overall set of objectives for the organiza-
tion, so that engineering leaders can weigh its potential impact and subsequently
advocate for your project, both with their reporting teams and with other teams that
might interface with their teams. Cross-organizational socialization and review help
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prevent disjoint or overlapping efforts, and a product that can easily be established as
furthering a department-wide objective is easier to staff and support.

What makes a poor candidate project? Many of the same red flags you might instinc-
tively identify in any software project, such as software that touches many moving
parts at once, or software design that requires an all-or-nothing approach that pre-
vents iterative development. Because Google SRE teams are currently organized
around the services they run, SRE-developed projects are particularly at risk of being
overly specific work that only benefits a small percentage of the organization. Because
team incentives are aligned primarily to provide a great experience for the users of
one particular service, projects often fail to generalize to a broader use case as stand-
ardization across SRE teams comes in second place. At the opposite end of the spec-
trum, overly generic frameworks can be equally problematic; if a tool strives to be too
flexible and too universal, it runs the risk of not quite fitting any use case, and there-
fore having insufficient value in and of itself. Projects with grand scope and abstract
goals often require significant development effort, but lack the concrete use cases
required to deliver end-user benefit on a reasonable time frame.

As an example of a broad use case: a layer-3 load balancer developed by Google SREs
proved so successful over the years that it was repurposed as a customer-facing prod-
uct offering via Google Cloud Load Balancer [Eis16].

Successfully Building a Software Engineering Culture in SRE: Staffing
and Development Time

SREs are often generalists, as the desire to learn breadth-first instead of depth-first
lends itself well to understanding the bigger picture (and there are few pictures bigger
than the intricate inner workings of modern technical infrastructure). These engi-
neers often have strong coding and software development skills, but may not have the
traditional SWE experience of being part of a product team or having to think about
customer feature requests. A quote from an engineer on an early SRE software devel-
opment project sums up the conventional SRE approach to software: “I have a design
doc; why do we need requirements?” Partnering with engineers, TPMs, or PMs who
are familiar with user-facing software development can help build a team software
development culture that brings together the best of both software product develop-
ment and hands-on production experience.

Dedicated, noninterrupted, project work time is essential to any software develop-
ment effort. Dedicated project time is necessary to enable progress on a project,
because it’s nearly impossible to write code—much less to concentrate on larger, more
impactful projects—when you're thrashing between several tasks in the course of an
hour. Therefore, the ability to work on a software project without interrupts is often
an attractive reason for engineers to begin working on a development project. Such
time must be aggressively defended.
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The majority of software products developed within SRE begin as side projects whose
utility leads them to grow and become formalized. At this point, a product may
branch off into one of several possible directions:

« Remain a grassroots effort developed in engineers’ spare time

+ Become established as a formal project through structured processes (see “Get-
ting There”)

« Gain executive sponsorship from within SRE leadership to expand into a fully
staffed software development effort

However, in any of these scenarios—and this is a point worth stressing—it’s essential
that the SREs involved in any development effort continue working as SREs instead of
becoming full-time developers embedded in the SRE organization. Immersion in the
world of production gives SREs performing development work an invaluable per-
spective, as they are both the creator and the customer for any product.

Getting There

If you like the idea of organized software development in SRE, you're probably won-
dering how to introduce a software development model to an SRE organization
focused on production support.

First, recognize that this goal is as much an organizational change as it is a technical
challenge. SREs are used to working closely with their teammates, quickly analyzing
and reacting to problems. Therefore, you're working against the natural instinct of an
SRE to quickly write some code to meet their immediate needs. If your SRE team is
small, this approach may not be problematic. However, as your organization grows,
this ad hoc approach won't scale, instead resulting in largely functional, yet narrow or
single-purpose, software solutions that can’t be shared, which inevitably lead to dupli-
cated efforts and wasted time.

Next, think about what you want to achieve by developing software in SRE. Do you
just want to foster better software development practices within your team, or are you
interested in software development that produces results that can be used across
teams, possibly as a standard for the organization? In larger established organiza-
tions, the latter change will take time, possibly spanning multiple years. Such a
change needs to be tackled on multiple fronts, but has a higher payback. The follow-
ing are some guidelines from Google’s experience:

Create and communicate a clear message
It's important to define and communicate your strategy, plans, and—most impor-
tantly—the benefits SRE gains from this effort. SREs are a skeptical lot (in fact,
skepticism is a trait for which we specifically hire); an SRE’s initial response to
such an effort will likely be, “that sounds like too much overhead” or “it will
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never work” Start by making a compelling case of how this strategy will help
SRE; for example:

« Consistent and supported software solutions speed ramp-up for new SREs.

+ Reducing the number of ways to perform the same task allows the entire
department to benefit from the skills any single team has developed, thus
making knowledge and effort portable across teams.

When SRE:s start to ask questions about how your strategy will work, rather than
if the strategy should be pursued, you know you've passed the first hurdle.

Evaluate your organization’s capabilities

SREs have many skills, but it’s relatively common for an SRE to lack experience as
part of a team that built and shipped a product to a set of users. In order to
develop useful software, youre effectively creating a product team. That team
includes required roles and skills that your SRE organization may not have for-
merly demanded. Will someone play the role of product manager, acting as the
customer advocate? Does your tech lead or project manager have the skills
and/or experience to run an agile development process?

Begin filling these gaps by taking advantage of the skills already present in your
company. Ask your product development team to help you establish agile practi-
ces via training or coaching. Solicit consulting time from a product manager to
help you define product requirements and prioritize feature work. Given a large
enough software-development opportunity, there may be a case to hire dedicated
people for these roles. Making the case to hire for these roles is easier once you
have some positive experiment results.

Launch and iterate

As you initiate an SRE software development program, your efforts will be fol-
lowed by many watchful eyes. It's important to establish credibility by delivering
some product of value in a reasonable amount of time. Your first round of prod-
ucts should aim for relatively straightforward and achievable targets—ones
without controversy or existing solutions. We also found success in pairing this
approach with a six-month rhythm of product update releases that provided
additional useful features. This release cycle allowed teams to focus on identify-
ing the right set of features to build, and then building those features while simul-
taneously learning how to be a productive software development team. After the
initial launch, some Google teams moved to a push-on-green model for even
faster delivery and feedback.

Don't lower your standards
As you start to develop software, you may be tempted to cut corners. Resist this
urge by holding yourself to the same standards to which your product develop-
ment teams are held. For example:
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o Ask yourself: if this product were created by a separate dev team, would you
onboard the product?

« If your solution enjoys broad adoption, it may become critical to SREs in
order to successfully perform their jobs. Therefore, reliability is of utmost
importance. Do you have proper code review practices in place? Do you have
end-to-end or integration testing? Have another SRE team review the prod-
uct for production readiness as they would if onboarding any other service.

It takes a long time to build credibility for your software development efforts, but
only a short time to lose credibility due to a misstep.

Conclusions

Software engineering projects within Google SRE have flourished as the organization
has grown, and in many cases the lessons learned from and successful execution of
earlier software development projects have paved the way for subsequent endeavors.
The unique hands-on production experience that SREs bring to developing tools can
lead to innovative approaches to age-old problems, as seen with the development of
Auxon to address the complex problem of capacity planning. SRE-driven software
projects are also noticeably beneficial to the company in developing a sustainable
model for supporting services at scale. Because SREs often develop software to
streamline inefficient processes or automate common tasks, these projects mean that
the SRE team doesn’t have to scale linearly with the size of the services they support.
Ultimately, the benefits of having SREs devoting some of their time to software devel-
opment are reaped by the company, the SRE organization, and the SREs themselves.
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CHAPTER 19
Load Balancing at the Frontend

Written by Piotr Lewandowski
Edited by Sarah Chavis

We serve many millions of requests every second and, as you may have already
guessed, we use more than a single computer to handle this demand. But even if we
did have a supercomputer that was somehow able to handle all these requests (imag-
ine the network connectivity such a configuration would require!), we still wouldn’t
employ a strategy that relied upon a single point of failure; when you're dealing with
large-scale systems, putting all your eggs in one basket is a recipe for disaster.

This chapter focuses on high-level load balancing—how we balance user traffic
between datacenters. The following chapter zooms in to explore how we implement
load balancing inside a datacenter.

Power Isn’t the Answer

For the sake of argument, let’s assume we have an unbelievably powerful machine and
a network that never fails. Would that configuration be sufficient to meet Google’s
needs? No. Even this configuration would still be limited by the physical constraints
associated with our networking infrastructure. For example, the speed of light is a
limiting factor on the communication speeds for fiber optic cable, which creates an
upper bound on how quickly we can serve data based upon the distance it has to
travel. Even in an ideal world, relying on an infrastructure with a single point of fail-
ure is a bad idea.

In reality, Google has thousands of machines and even more users, many of whom
issue multiple requests at a time. Traffic load balancing is how we decide which of the
many, many machines in our datacenters will serve a particular request. Ideally, traffic
is distributed across multiple network links, datacenters, and machines in an “opti-
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mal” fashion. But what does “optimal” mean in this context? There’s actually no single
answer, because the optimal solution depends heavily on a variety of factors:

o The hierarchical level at which we evaluate the problem (global versus local)
o The technical level at which we evaluate the problem (hardware versus software)

o The nature of the traffic we're dealing with

Let’s start by reviewing two common traffic scenarios: a basic search request and a
video upload request. Users want to get their query results quickly, so the most
important variable for the search request is latency. On the other hand, users expect
video uploads to take a non-negligible amount of time, but also want such requests to
succeed the first time, so the most important variable for the video upload is through-
put. The differing needs of the two requests play a role in how we determine the opti-
mal distribution for each request at the global level:

o The search request is sent to the nearest available datacenter—as measured in
round-trip time (RTT)—because we want to minimize the latency on the request.

o The video upload stream is routed via a different path—perhaps to a link that is
currently underutilized—to maximize the throughput at the expense of latency.

But on the local level, inside a given datacenter, we often assume that all machines
within the building are equally distant to the user and connected to the same net-
work. Therefore, optimal distribution of load focuses on optimal resource utilization
and protecting a single server from overloading.

Of course, this example presents a vastly simplified picture. In reality, many more
considerations factor into optimal load distribution: some requests may be directed
to a datacenter that is slightly farther away in order to keep caches warm, or non-
interactive traffic may be routed to a completely different region to avoid network
congestion. Load balancing, especially for large systems, is anything but straightfor-
ward and static. At Google, we've approached the problem by load balancing at multi-
ple levels, two of which are described in the following sections. For the sake of
presenting a concrete discussion, we'll consider HTTP requests sent over TCP. Load
balancing of stateless services (like DNS over UDP) differs slightly, but most of the
mechanisms described here should be applicable to stateless services as well.

Load Balancing Using DNS

Before a client can even send an HTTP request, it often has to look up an IP address
using DNS. This provides the perfect opportunity to introduce our first layer of load
balancing: DNS load balancing. The simplest solution is to return multiple A or AAAA
records in the DNS reply and let the client pick an IP address arbitrarily. While con-
ceptually simple and trivial to implement, this solution poses multiple challenges.
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The first problem is that it provides very little control over the client behavior:
records are selected randomly, and each will attract a roughly equal amount of traffic.
Can we mitigate this problem? In theory, we could use SRV records to specify record
weights and priorities, but SRV records have not yet been adopted for HTTP.

Another potential problem stems from the fact that usually the client cannot deter-
mine the closest address. We can mitigate this scenario by using an anycast address
for authoritative nameservers and leverage the fact that DNS queries will flow to the
closest address. In its reply, the server can return addresses routed to the closest data-
center. A further improvement builds a map of all networks and their approximate
physical locations, and serves DNS replies based on that mapping. However, this sol-
ution comes at the cost of having a much more complex DNS server implementation
and maintaining a pipeline that will keep the location mapping up to date.

Of course, none of these solutions are trivial, due to a fundamental characteristic of
DNS: end users rarely talk to authoritative nameservers directly. Instead, a recursive
DNS server usually lies somewhere between end users and nameservers. This server
proxies queries between a user and a server and often provides a caching layer. The
DNS middleman has three very important implications on traffic management:

« Recursive resolution of IP addresses
 Nondeterministic reply paths

« Additional caching complications

Recursive resolution of IP addresses is problematic, as the IP address seen by the
authoritative nameserver does not belong to a user; instead, it’s the recursive resolv-
er’s. This is a serious limitation, because it only allows reply optimization for the
shortest distance between resolver and the nameserver. A possible solution is to use
the EDNSO extension proposed in [Conl5], which includes information about the
client’s subnet in the DNS query sent by a recursive resolver. This way, an authorita-
tive nameserver returns a response that is optimal from the user’s perspective, rather
than the resolver’s perspective. While this is not yet the official standard, its obvious
advantages have led the biggest DNS resolvers (such as OpenDNS and Google') to
support it already.

Not only is it difficult to find the optimal IP address to return to the nameserver for a
given user’s request, but that nameserver may be responsible for serving thousands or
millions of users, across regions varying from a single office to an entire continent.
For instance, a large national ISP might run nameservers for its entire network from
one datacenter, yet have network interconnects in each metropolitan area. The ISP’s

1 See https://groups.google.com/forum/#!topic/public-dns-announce/670xFiSLeUM.

Load Balancing Using DNS | 225

www.it-ebooks.info


https://groups.google.com/forum/#!topic/public-dns-announce/67oxFjSLeUM
http://www.it-ebooks.info/

nameservers would then return a response with the IP address best suited for their
datacenter, despite there being better network paths for all users!

Finally, recursive resolvers typically cache responses and forward those responses
within limits indicated by the time-to-live (TTL) field in the DNS record. The end
result is that estimating the impact of a given reply is difficult: a single authoritative
reply may reach a single user or multiple thousands of users. We solve this problem in
two ways:

o We analyze traffic changes and continuously update our list of known DNS
resolvers with the approximate size of the user base behind a given resolver,
which allows us to track the potential impact of any given resolver.

o We estimate the geographical distribution of the users behind each tracked
resolver to increase the chance that we direct those users to the best location.

Estimating geographic distribution is particularly tricky if the user base is distributed
across large regions. In such cases, we make trade-offs to select the best location and
optimize the experience for the majority of users.

But what does “best location” really mean in the context of DNS load balancing? The
most obvious answer is the location closest to the user. However (as if determining
users’ locations isn’t difficult in and of itself), there are additional criteria. The DNS
load balancer needs to make sure that the datacenter it selects has enough capacity to
serve requests from users that are likely to receive its reply. It also needs to know that
the selected datacenter and its network connectivity are in good shape, because
directing user requests to a datacenter that’s experiencing power or networking prob-
lems isn’t ideal. Fortunately, we can integrate the authoritative DNS server with our
global control systems that track traffic, capacity, and the state of our infrastructure.

The third implication of the DNS middleman is related to caching. Given that author-
itative nameservers cannot flush resolvers’ caches, DNS records need a relatively low
TTL. This effectively sets a lower bound on how quickly DNS changes can be propa-
gated to users.” Unfortunately, there is little we can do other than to keep this in mind
as we make load balancing decisions.

Despite all of these problems, DNS is still the simplest and most effective way to bal-
ance load before the user’s connection even starts. On the other hand, it should be
clear that load balancing with DNS on its own is not sufficient. Keep in mind that all
DNS replies served should fit within the 512-byte limit® set by RFC 1035 [Moc87].

2 Sadly, not all DNS resolvers respect the TTL value set by authoritative nameservers.

3 Otherwise, users must establish a TCP connection just to get a list of IP addresses.
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This limit sets an upper bound on the number of addresses we can squeeze into a sin-
gle DNS reply, and that number is almost certainly less than our number of servers.

To really solve the problem of frontend load balancing, this initial level of DNS load
balancing should be followed by a level that takes advantage of virtual IP addresses.

Load Balancing at the Virtual IP Address

Virtual IP addresses (VIPs) are not assigned to any particular network interface.
Instead, they are usually shared across many devices. However, from the user’s per-
spective, the VIP remains a single, regular IP address. In theory, this practice allows
us to hide implementation details (such as the number of machines behind a particu-
lar VIP) and facilitates maintenance, because we can schedule upgrades or add more
machines to the pool without the user knowing.

In practice, the most important part of VIP implementation is a device called the net-
work load balancer. The balancer receives packets and forwards them to one of the
machines behind the VIP. These backends can then further process the request.

There are several possible approaches the balancer can take in deciding which back-
end should receive the request. The first (and perhaps most intuitive) approach is to
always prefer the least loaded backend. In theory, this approach should result in the
best end-user experience because requests are always routed to the least busy
machine. Unfortunately, this logic breaks down quickly in the case of stateful proto-
cols, which must use the same backend for the duration of a request. This require-
ment means that the balancer must keep track of all connections sent through it in
order to make sure that all subsequent packets are sent to the correct backend. The
alternative is to use some parts of a packet to create a connection ID (possibly using a
hash function and some information from the packet), and to use the connection ID
to select a backend. For example, the connection ID could be expressed as:

id(packet) mod N

where 1d is a function that takes packet as an input and produces a connection ID,
and N is the number of configured backends.

This avoids storing state, and all packets belonging to a single connection are always
forwarded to the same backend. Success? Not quite yet. What happens if one backend
fails and needs to be removed from the backend list? Suddenly N becomes N-1 and
then, id(packet) mod N becomes id(packet) mod N-1. Almost every packet sud-
denly maps to a different backend! If backends don’t share any state between them-
selves, this remapping forces a reset of almost all of the existing connections. This
scenario is definitely not the best user experience, even if such events are infrequent.

Fortunately, there is an alternate solution that doesn’t require keeping the state of
every connection in memory, but won’t force all connections to reset when a single
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machine goes down: consistent hashing. Proposed in 1997, consistent hashing [Kar97]
describes a way to provide a mapping algorithm that remains relatively stable even
when new backends are added to or removed from the list. This approach minimizes
the disruption to existing connections when the pool of backends changes. As a
result, we can usually use simple connection tracking, but fall back to consistent
hashing when the system is under pressure (e.g., during an ongoing denial of service
attack).

Returning to the larger question: how exactly should a network load balancer forward
packets to a selected VIP backend? One solution is to perform a Network Address
Translation. However, this requires keeping an entry of every single connection in the
tracking table, which precludes having a completely stateless fallback mechanism.

Another solution is to modify information on the data link layer (layer 2 of the OSI
networking model). By changing the destination MAC address of a forwarded packet,
the balancer can leave all the information in upper layers intact, so the backend
receives the original source and destination IP addresses. The backend can then send
a reply directly to the original sender—a technique known as Direct Server Response
(DSR). If user requests are small and replies are large (e.g., most HTTP requests),
DSR provides tremendous savings, because only a small fraction of traffic need tra-
verse the load balancer. Even better, DSR does not require us to keep state on the load
balancer device. Unfortunately, using layer 2 for internal load balancing does incur
serious disadvantages when deployed at scale: all machines (i.e., all load balancers and
all their backends) must be able to reach each other at the data link layer. This isn't an
issue if this connectivity can be supported by the network and the number of
machines doesn’'t grow excessively, because all the machines need to reside in a single
broadcast domain. As you may imagine, Google outgrew this solution quite some
time ago, and had to find an alternate approach.

Our current VIP load balancing solution [Eis16] uses packet encapsulation. A net-
work load balancer puts the forwarded packet into another IP packet with Generic
Routing Encapsulation (GRE) [Han94], and uses a backend’s address as the destina-
tion. A backend receiving the packet strips off the outer IP+GRE layer and processes
the inner IP packet as if it were delivered directly to its network interface. The net-
work load balancer and the backend no longer need to exist in the same broadcast
domain; they can even be on separate continents as long as a route between the two
exists.

Packet encapsulation is a powerful mechanism that provides great flexibility in the
way our networks are designed and evolve. Unfortunately, encapsulation also comes
with a price: inflated packet size. Encapsulation introduces overhead (24 bytes in the
case of IPv4+GRE, to be precise), which can cause the packet to exceed the available
Maximum Transmission Unit (MTU) size and require fragmentation.
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Once the packet reaches the datacenter, fragmentation can be avoided by using a
larger MTU within the datacenter; however, this approach requires a network that
supports large Protocol Data Units. As with many things at scale, load balancing
sounds simple on the surface—load balance early and load balance often—but the
difficulty is in the details, both for frontend load balancing and for handling packets
once they reach the datacenter.
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CHAPTER 20
Load Balancing in the Datacenter

Written by Alejandro Forero Cuervo
Edited by Sarah Chavis

This chapter focuses on load balancing within the datacenter. Specifically, it discusses
algorithms for distributing work within a given datacenter for a stream of queries. We
cover application-level policies for routing requests to individual servers that can
process them. Lower-level networking principles (e.g., switches, packet routing) and
datacenter selection are outside of the scope of this chapter.

Assume there is a stream of queries arriving to the datacenter—these could be com-
ing from the datacenter itself, remote datacenters, or a mix of both—at a rate that
doesn’t exceed the resources that the datacenter has to process them (or only exceeds
it for very short amounts of time). Also assume that there are services within the data-
center, against which these queries operate. These services are implemented as many
homogeneous, interchangeable server processes mostly running on different
machines. The smallest services typically have at least three such processes (using
fewer processes means losing 50% or more of your capacity if you lose a single
machine) and the largest may have more than 10,000 processes (depending on data-
center size). In the typical case, services are composed of between 100 and 1,000 pro-
cesses. We call these processes backend tasks (or just backends). Other tasks, known as
client tasks, hold connections to the backend tasks. For each incoming query, a client
task must decide which backend task should handle the query. Clients communicate
with backends using a protocol implemented on top of a combination of TCP and
UDP.

We should note that Google datacenters house a vastly diverse set of services that
implement different combinations of the policies discussed in this chapter. Our work-
ing example, as just described, doesn’t fit any one service directly. It’s a generalized
scenario that allows us to discuss the various techniques we've found useful for vari-
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ous services. Some of these techniques may be more (or less) applicable to specific
use cases, but these techniques were designed and implemented by several Google
engineers over a span of many years.

These techniques are applied at many parts of our stack. For example, most external
HTTP requests reach the GFE (Google Frontend), our HTTP reverse proxying sys-
tem. The GFE uses these algorithms, along with the algorithms described in Chap-
ter 19, to route the request payloads and metadata to the individual processes
running the applications that can process this information. This is based on a config-
uration that maps various URL patterns to individual applications under the control
of different teams. In order to produce the response payloads (which they return to
the GFE, to be returned back to browsers), these applications often use these same
algorithms in turn, to communicate with the infrastructure or complementary serv-
ices they depend on. Sometimes the stack of dependencies can get relatively deep,
where a single incoming HTTP request can trigger a long transitive chain of depen-
dent requests to several systems, potentially with high fan-out at various points.

The Ideal Case

In an ideal case, the load for a given service is spread perfectly over all its backend
tasks and, at any given point in time, the least and most loaded backend tasks con-
sume exactly the same amount of CPU.

We can only send traffic to a datacenter until the point at which the most loaded task
reaches its capacity limit; this is depicted in Figure 20-1 for two scenarios over the
same time interval. During that time, the cross-datacenter load balancing algorithm
must avoid sending any additional traffic to the datacenter, because doing so risks
overloading some tasks.

Per-task Load Distribution

(apacity Limit
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Figure 20-1. Two scenarios of per-task load distribution over time
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As shown in the lefthand graph in Figure 20-2, a significant amount of capacity is
wasted: the idle capacity of every task except the most loaded task.

CPU Usage by Task at a Given Time
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Figure 20-2. Histogram of CPU used and wasted in two scenarios

More formally, let CPU[i] be the CPU rate consumed by task i at a given point of
time, and suppose that task 0 is the most loaded task. Then, in the case of a large
spread, we are wasting the sum of the differences in the CPU from any task to
CPU/[0]: that is, the sum over all tasks i of (CPU[0] - CPU[i]) will be wasted. In this
case “wasted” means reserved, but unused.

This example illustrates how poor in-datacenter load balancing practices artificially
limit resource availability: you may be reserving 1,000 CPUs for your service in a
given datacenter, but be unable to actually use more than, say, 700 CPUs.

|dentifying Bad Tasks: Flow Control and Lame Ducks

Before we can decide which backend task should receive a client request, we need to
identify—and avoid—unhealthy tasks in our pool of backends.

A Simple Approach to Unhealthy Tasks: Flow Control

Assume our client tasks track the number of active requests they have sent on each
connection to a backend task. When this active-request count reaches a configured
limit, the client treats the backend as unhealthy and no longer sends it requests. For
most backends, 100 is a reasonable limit; in the average case, requests tend to finish
fast enough that it is very rare for the number of active requests from a given client to
reach this limit under normal operating conditions. This (very basic!) form of flow
control also serves as a simplistic form of load balancing: if a given backend task
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becomes overloaded and requests start piling up, clients will avoid that backend, and
the workload spreads organically among the other backend tasks.

Unfortunately, this very simplistic approach only protects backend tasks against very
extreme forms of overload and it’s very easy for backends to become overloaded well
before this limit is ever reached. The converse is also true: in some cases, clients may
reach this limit when their backends still have plenty of spare resources. For example,
some backends may have very long-lived requests that prohibit quick responses.
We've seen cases in which this default limit has backfired, causing all backend tasks to
become unreachable, with requests blocked in the clients until they time out and fail.
Raising the active-request limit can avoid this situation, but doesn’t solve the underly-
ing problem of knowing if a task is truly unhealthy or simply slow to respond.

A Robust Approach to Unhealthy Tasks: Lame Duck State

From a client perspective, a given backend task can be in any of the following states:

Healthy
The backend task has initialized correctly and is processing requests.

Refusing connections
The backend task is unresponsive. This can happen because the task is starting
up or shutting down, or because the backend is in an abnormal state (though it
would be rare for a backend to stop listening on its port if it is not shutting
down).

Lame duck
The backend task is listening on its port and can serve, but is explicitly asking
clients to stop sending requests.

When a task enters lame duck state, it broadcasts that fact to all its active clients. But
what about inactive clients? With Google’s RPC implementation, inactive clients (i.e.,
clients with no active TCP connections) still send periodic UDP health checks. The
result is that lame duck information is propagated quickly to all clients—typically in 1
or 2 RTT—regardless of their current state.

The main advantage of allowing a task to exist in a quasi-operational lame duck state
is that it simplifies clean shutdown, which avoids serving errors to all the unlucky
requests that happened to be active on backend tasks that are shutting down. Bring-
ing down a backend task that has active requests without serving any errors facilitates
code pushes, maintenance activities, or machine failures that may require restarting
all related tasks. Such a shutdown would follow these general steps:
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1. The job scheduler sends a SIGTERM signal to the backend task.

2. The backend task enters lame duck state and asks its clients to send new requests
to other backend tasks. This is done through an API call in the RPC implementa-
tion that is explicitly called in the SIGTERM handler.

3. Any ongoing request started before the backend task entered lame duck state (or
after it entered lame duck state but before a client detected it) executes normally.

4. As responses flow back to the clients, the number of active requests against the
backend gradually decreases to zero.

5. After a configured interval, the backend task either exits cleanly or the job sched-
uler kills it. The interval should be set to a large enough value that all typical
requests have sufficient time to finish. This value is service dependent, but a good
rule of thumb is between 10s and 150s depending on client complexity.

This strategy also allows a client to establish connections to backend tasks while per-
forming potentially long-lived initialization procedures (and thus are not yet ready to
start serving). The backend tasks could otherwise start listening for connections only
when they’re ready to serve, but doing so would delay the negotiation of the connec-
tions unnecessarily. As soon as the backend task is ready to start serving, it signals
this explicitly to the clients.

Limiting the Connections Pool with Subsetting

In addition to health management, another consideration for load balancing is subset-
ting: limiting the pool of potential backend tasks with which a client task interacts.

Each client in our RPC system maintains a pool of long-lived connections to its back-
ends that it uses to send new requests. These connections are typically established
early on as the client is starting and usually remain open, with requests flowing
through them, until the client’s death. An alternative model would be to establish and
tear down a connection for each request, but this model has significant resource and
latency costs. In the corner case of a connection that remains idle for a long time, our
RPC implementation has an optimization that switches the connection to a cheap
“inactive” mode where, for example, the frequency of health checks is reduced and
the underlying TCP connection is dropped in favor of UDP.

Every connection requires some memory and CPU (due to periodic health checking)
at both ends. While this overhead is small in theory, it can quickly become significant
when it occurs across many machines. Subsetting avoids the situation in which a sin-
gle client connects to a very large number of backend tasks or a single backend task
receives connections from a very large number of client tasks. In both cases, you
potentially waste a very large amount of resources for very little gain.
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Picking the Right Subset

Picking the right subset comes down to choosing how many backend tasks each client
connects to—the subset size—and the selection algorithm. We typically use a subset
size of 20 to 100 backend tasks, but the “right” subset size for a system depends heav-
ily on the typical behavior of your service. For example, you may want to use a larger
subset size if:

o The number of clients is significantly smaller than the number of backends. In
this case, you want the number of backends per client to be large enough that you
don’t end up with backend tasks that will never receive any traffic.

o There are frequent load imbalances within the client jobs (i.e., one client task
sends more requests than others). This scenario is typical in situations where cli-
ents occasionally send bursts of requests. In this case, the clients themselves
receive requests from other clients that occasionally have a large fan-out (e.g.,
“read all the information of all the followers of a given user”). Because a burst of
requests will be concentrated in the client’s assigned subset, you need a larger
subset size to ensure the load is spread evenly across the larger set of available
backend tasks.

Once the subset size is determined, we need an algorithm to define the subset of
backend tasks each client task will use. This may seem like a simple task, but it
becomes complex quickly when working with large-scale systems where efficient pro-
visioning is crucial and system restarts are guaranteed.

The selection algorithm for clients should assign backends uniformly to optimize
resource provisioning. For example, if subsetting overloads one backend by 10%, the
whole set of backends needs to be overprovisioned by 10%. The algorithm should
also handle restarts and failures gracefully and robustly by continuing to load back-
ends as uniformly as possible while minimizing churn. In this case, “churn” relates
to backend replacement selection. For example, when a backend task becomes
unavailable, its clients may need to temporarily pick a replacement backend. When a
replacement backend is selected, clients must create new TCP connections (and likely
perform application-level negotiation), which creates additional overhead. Similarly,
when a client task restarts, it needs to reopen the connections to all its backends.

The algorithm should also handle resizes in the number of clients and/or number of
backends, with minimal connection churn and without knowing these numbers in
advance. This functionality is particularly important (and tricky) when the entire set
of client or backend tasks are restarted one at a time (e.g., to push a new version). As
backends are pushed, we want clients to continue serving, transparently, with as little
connection churn as possible.
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A Subset Selection Algorithm: Random Subsetting

A naive implementation of a subset selection algorithm might have each client ran-
domly shuffle the list of backends once and fill its subset by selecting resolvable/
healthy backends from the list. Shuffling once and then picking backends from the
start of the list handles restarts and failures robustly (e.g., with relatively little churn)
because it explicitly limits them from consideration. However, we've found that this
strategy actually works very poorly in most practical scenarios because it spreads load
very unevenly.

During initial work on load balancing, we implemented random subsetting and cal-
culated the expected load for various cases. As an example, consider:

o 300 clients
« 300 backends

« A subset size of 30% (each client connects to 90 backends)

As Figure 20-3 shows, the least loaded backend has just 63% of the average load (57
connections, where the average is 90 connections) and the most loaded has 121%
(109 connections). In most cases, a subset size of 30% is already larger than we would
want to use in practice. The calculated load distribution changes every time we run
the simulation while the general pattern remains.
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Figure 20-3. Connection distribution with 300 clients, 300 backends, and a subset size of
30%
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Unfortunately, smaller subset sizes lead to even worse imbalances. For example,
Figure 20-4 depicts the results if the subset size is reduced to 10% (30 backends per
client). In this case, the least loaded backend receives 50% of the average load (15
connections) and the most loaded receives 150% (45 connections).
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Figure 20-4. Connection distribution with 300 clients, 300 backends, and a subset size of
10%

We concluded that for random subsetting to spread the load relatively evenly across
all available tasks, we would need subset sizes as large as 75%. A subset that large is
simply impractical; the variance in the number of clients connecting to a task is just
too large to consider random subsetting a good subset selection policy at scale.

A Subset Selection Algorithm: Deterministic Subsetting

Google’s solution to the limitations of random subsetting is deterministic subsetting.
The following code implements this algorithm, described in detail next:

def Subset(backends, client_id, subset_size):
subset_count = len(backends) / subset_size

# Group clients into rounds; each round uses the same shuffled list:
round = client_id / subset_count

random.seed(round)

random. shuffle(backends)

# The subset id corresponding to the current client:
subset_id = client_id % subset_count

start = subset_id * subset_size
return backends[start:start + subset_size]
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We divide client tasks into “rounds,” where round i consists of subset_count consec-
utive client tasks, starting at task subset_count x 1, and subset_count is the num-
ber of subsets (i.e., the number of backend tasks divided by the desired subset size).
Within each round, each backend is assigned to exactly one client (except possibly the
last round, which may not contain enough clients, so some backends may not be
assigned).

For example, if we have 12 backend tasks [0, 11] and a desired subset size of 3, we will
have rounds containing 4 clients each (subset_count = 12/3). If we had 10 clients,
the preceding algorithm could yield the following rounds:

« Round0: [0,6,3,5,1,7,11,9,2,4, 8,10]
« Round 1: [8,11,4,0,5,6,10,3,2,7,9, 1]
e Round 2: [8,3,7,2,1,4,9,10,6,5,0, 11]

The key point to notice is that each round only assigns each backend in the entire list
to one client (except the last, where we run out of clients). In this example, every
backend gets assigned to exactly two or three clients.

The list should be shuffled; otherwise, clients are assigned a group of consecutive
backend tasks that may all become temporarily unavailable (for example, because the
backend job is being updated gradually in order, from the first task to the last). Dif-
ferent rounds use a different seed for shuffling. If they don’t, when a backend fails, the
load it was receiving is only spread among the remaining backends in its subset. If
additional backends in the subset fail, the effect compounds and the situation can
quickly worsen significantly: if N backends in a subset are down, their corresponding
load is spread over the remaining (subset_size - N) backends. A much better
approach is to spread this load over all remaining backends by using a different shuf-
fle for each round.

When we use a different shuffle for each round, clients in the same round will start
with the same shuffled list, but clients across rounds will have different shuffled lists.
From here, the algorithm builds subset definitions based upon the shuffled list of
backends and the desired subset size. For example:

o Subset[0] = shuffled_backends[0] through shuffled_backends[2]

o Subset[1] = shuffled_backends[3] through shuffled_backends[5]

o Subset[2] = shuffled_backends[6] through shuffled_backends[8]

o Subset[3] = shuffled_backends[9] through shuffled_backends[11]
where shuffled_backend is the shuffled list created by each client. To assign a subset

to a client task, we just take the subset that corresponds to its position within its
round (e.g., (1 % 4) for client[1] with four subsets):
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e client[0], client[4], client[8] will use subset[0]
o client[1], client[5], client[9] will use subset[1]
o client[2], client[6], client[10] will use subset[2]
e client[3], client[7], client[11] will use subset[3]

Because clients across rounds will use a different value for shuffled_backends (and
thus for subset) and clients within rounds use different subsets, the connection load
is spread uniformly. In cases where the total number of backends is not divisible by
the desired subset size, we allow a few subsets to be slightly larger than others, but in
most cases the number of clients assigned to a backend will differ by at most 1.

As Figure 20-5 shows, the distribution for the former example of 300 clients each
connecting to 10 of 300 backends yields very good results: each backend receives
exactly the same number of connections.
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Figure 20-5. Connection distribution with 300 clients and deterministic subsetting to 10
of 300 backends

Load Balancing Policies

Now that we've established the groundwork for how a given client task maintains a
set of connections that are known to be healthy, let’s examine load balancing policies.
These are the mechanisms used by client tasks to select which backend task in its sub-
set receives a client request. Many of the complexities in load balancing policies stem
from the distributed nature of the decision-making process in which clients need to

240 | Chapter20: Load Balancing in the Datacenter

www.it-ebooks.info


http://www.it-ebooks.info/

decide, in real time (and with only partial and/or stale backend state information),
which backend should be used for each request.

Load balancing policies can be very simple and not take into account any information
about the state of the backends (e.g., Round Robin) or can act with more information
about the backends (e.g., Least-Loaded Round Robin or Weighted Round Robin).

Simple Round Robin

One very simple approach to load balancing has each client send requests in round-
robin fashion to each backend task in its subset to which it can successfully connect
and which isn’t in lame duck state. For many years, this was our most common
approach, and it’s still used by many services.

Unfortunately, while Round Robin has the advantage of being very simple and per-
forming significantly better than just selecting backend tasks randomly, the results of
this policy can be very poor. While actual numbers depend on many factors, such as
varying query cost and machine diversity, we've found that Round Robin can result in
a spread of up to 2x in CPU consumption from the least to the most loaded task.
Such a spread is extremely wasteful and occurs for a number of reasons, including:

o Small subsetting
» Varying query costs
« Machine diversity

« Unpredictable performance factors

Small subsetting

One of the simplest reasons Round Robin distributes load poorly is that all of its cli-
ents may not issue requests at the same rate. Different rates of requests among clients
are especially likely when vastly different processes share the same backends. In this
case, and especially if youre using relatively small subset sizes, backends in the sub-
sets of the clients generating the most traffic will naturally tend to be more loaded.

Varying query costs

Many services handle requests that require vastly different amounts of resources for
processing. In practice, we've found that the semantics of many services in Google are
such that the most expensive requests consume 1000x (or more) CPU than the
cheapest requests. Load balancing using Round Robin is even more difficult when
query cost can’t be predicted in advance. For example, a query such as “return all
emails received by user XYZ in the last day” could be very cheap (if the user has
received little email over the course of the day) or extremely expensive.
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Load balancing in a system with large discrepancies in potential query cost is very
problematic. It can become necessary to adjust the service interfaces to functionally
cap the amount of work done per request. For example, in the case of the email query
described previously, you could introduce a pagination interface and change the
semantics of the request to “return the most recent 100 emails (or fewer) received by
user XYZ in the last day” Unfortunately, it’s often difficult to introduce such semantic
changes. Not only does this require changes in all the client code, but it also entails
additional consistency considerations. For example, the user may be receiving new
emails or deleting emails as the client fetches emails page-by-page. For this use case, a
client that naively iterates through the results and concatenates the responses (rather
than paginating based on a fixed view of the data) will likely produce an inconsistent
view, repeating some messages and/or skipping others.

To keep interfaces (and their implementations) simple, services are often defined to
allow the most expensive requests to consume 100, 1,000, or even 10,000 times more
resources than the cheapest requests. However, varying resource requirements per-
request naturally mean that some backend tasks will be unlucky and occasionally
receive more expensive requests than others. The extent to which this situation affects
load balancing depends on how expensive the most expensive requests are. For exam-
ple, for one of our Java backends, queries consume around 15 ms of CPU on average
but some queries can easily require up to 10 seconds. Each task in this backend
reserves multiple CPU cores, which reduces latency by allowing some of the compu-
tations to happen in parallel. But despite these reserved cores, when a backend
receives one of these large queries, its load increases significantly for a few seconds. A
poorly behaved task may run out of memory or even stop responding entirely (e.g.,
due to memory thrashing), but even in the normal case (i.e., the backend has suffi-
cient resources and its load normalizes once the large query completes), the latency of
other requests suffers due to resource competition with the expensive request.

Machine diversity

Another challenge to Simple Round Robin is the fact that not all machines in the
same datacenter are necessarily the same. A given datacenter may have machines with
CPUs of varying performance, and therefore, the same request may represent a sig-
nificantly different amount of work for different machines.

Dealing with machine diversity—without requiring strict homogeneity—was a chal-
lenge for many years at Google. In theory, the solution to working with heterogene-
ous resource capacity in a fleet is simple: scale the CPU reservations depending on
the processor/machine type. However, in practice, rolling out this solution required
significant effort because it required our job scheduler to account for resource equiv-
alencies based on average machine performance across a sampling of services. For
example, 2 CPU units in machine X (a “slow” machine) is equivalent to 0.8 CPU units
in machine Y (a “fast” machine). With this information, the job scheduler is then
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required to adjust CPU reservations for a process based upon the equivalence factor
and the type of machine on which the process was scheduled. In an attempt to miti-
gate this complexity, we created a virtual unit for CPU rate called “GCU” (Google
Compute Units). GCUs became the standard for modeling CPU rates, and were used
to maintain a mapping from each CPU architecture in our datacenters to its corre-
sponding GCU based upon its performance.

Unpredictable performance factors

Perhaps the largest complicating factor for Simple Round Robin is that machines—or,
more accurately, the performance of backend tasks—may differ vastly due to several
unpredictable aspects that cannot be accounted for statically.

Two of the many unpredictable factors that contribute to performance include:

Antagonistic neighbors

Other processes (often completely unrelated and run by different teams) can
have a significant impact on the performance of your processes. We've seen dif-
ferences in performance of this nature of up to 20%. This difference mostly stems
from competition for shared resources, such as space in memory caches or band-
width, in ways that may not be directly obvious. For example, if the latency of
outgoing requests from a backend task grows (because of competition for net-
work resources with an antagonistic neighbor), the number of active requests will
also grow, which may trigger increased garbage collection.

Task restarts

When a task gets restarted, it often requires significantly more resources for a few
minutes. As just one example, we've seen this condition affect platforms such as
Java that optimize code dynamically more than others. In response, weve
actually added to the logic of some server code—we keep servers in lame duck
state and prewarm them (triggering these optimizations) for a period of time
after they start, until their performance is nominal. The effect of task restarts can
become a sizable problem when you consider we update many servers (e.g., push
new builds, which requires restarting these tasks) every day.

If your load balancing policy can’t adapt to unforeseen performance limitations, you
will inherently end up with a suboptimal load distribution when working at scale.

Least-Loaded Round Robin

An alternative approach to Simple Round Robin is to have each client task keep track
of the number of active requests it has to each backend task in its subset and use
Round Robin among the set of tasks with a minimal number of active requests.
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For example, suppose a client uses a subset of backend tasks 0 to t9, and currently
has the following number of active requests against each backend:

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

2106 61 06 2 0 0 1

For a new request, the client would filter the list of potential backend tasks to just
those tasks with the least number of connections (t2, t3, t5, t7, and t8) and choose a
backend from that list. Let’s assume it picks f2. The client’s connection state table
would now look like the following:

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

2 1106 1 06 2 0 0 1

Assuming none of the current requests have completed, on the next request, the
backend candidate pool becomes t3, t5, t7, and 8.

Let’s fast-forward until we've issued four new requests. Still assuming that no request
finishes in the meantime, the connection state table would look like the following:

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

2111 11 2 1 11

At this point the set of backend candidates is all tasks except t0 and 6. However, if the
request against task #4 finishes, its current state becomes “0 active requests” and a
new request will be assigned to 4.

This implementation actually uses Round Robin, but it’s applied across the set of
tasks with minimal active requests. Without such filtering, the policy might not be
able to spread the requests well enough to avoid a situation in which some portion of
the available backend tasks goes unused. The idea behind the least-loaded policy is
that loaded tasks will tend to have higher latency than those with spare capacity, and
this strategy will naturally take load away from these loaded tasks.

All that said, we've learned (the hard way!) about one very dangerous pitfall of the
Least-Loaded Round Robin approach: if a task is seriously unhealthy, it might start
serving 100% errors. Depending on the nature of those errors, they may have very
low latency; it’s frequently significantly faster to just return an “I'm unhealthy!” error
than to actually process a request. As a result, clients might start sending a very large
amount of traffic to the unhealthy task, erroneously thinking that the task is available,
as opposed to fast-failing them! We say that the unhealthy task is now sinkholing traf-
fic. Fortunately, this pitfall can be solved relatively easily by modifying the policy to
count recent errors as if they were active requests. This way, if a backend task
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becomes unhealthy, the load balancing policy begins to divert load from it the same
way it would divert load from an overburdened task.

Least-Loaded Round Robin has two important limitations:

The count of active requests may not be a very good proxy for the capability of a given

backend
Many requests spend a significant portion of their life just waiting for a response
from the network (i.e., waiting for responses to requests they initiate to other
backends) and very little time on actual processing. For example, one backend
task may be able to process twice as many requests as another (e.g., because it’s
running in a machine with a CPU that’s twice as fast as the rest), but the latency
of its requests may still be roughly the same as the latency of requests in the other
task (because requests spend most of their life just waiting for the network to
respond). In this case, because blocking on I/O often consumes zero CPU, very
little RAM, and no bandwidth, wed still want to send twice as many requests to
the faster backend. However, Least-Loaded Round Robin will consider both
backend tasks equally loaded.

The count of active requests in each client doesn’t include requests from other clients to
the same backends
That is, each client task has only a very limited view into the state of its backend
tasks: the view of its own requests.

In practice, we've found that large services using Least-Loaded Round Robin will see
their most loaded backend task using twice as much CPU as the least loaded, per-
forming about as poorly as Round Robin.

Weighted Round Robin

Weighted Round Robin is an important load balancing policy that improves on Sim-
ple and Least-Loaded Round Robin by incorporating backend-provided information
into the decision process.

Weighted Round Robin is fairly simple in principle: each client task keeps a “capabil-
ity” score for each backend in its subset. Requests are distributed in Round-Robin
fashion, but clients weigh the distributions of requests to backends proportionally. In
each response (including responses to health checks), backends include the current
observed rates of queries and errors per second, in addition to the utilization (typi-
cally, CPU usage). Clients adjust the capability scores periodically to pick backend
tasks based upon their current number of successful requests handled and at what
utilization cost; failed requests result in a penalty that affects future decisions.

In practice, Weighted Round Robin has worked very well and significantly reduced
the difference between the most and the least utilized tasks. Figure 20-6 shows the
CPU rates for a random subset of backend tasks around the time its clients switched
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from Least-Loaded to Weighted Round Robin. The spread from the least to the most
loaded tasks decreased drastically.
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Figure 20-6. CPU distribution before and after enabling Weighted Round Robin
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CHAPTER 21

Handling Overload

Written by Alejandro Forero Cuervo
Edited by Sarah Chavis

Avoiding overload is a goal of load balancing policies. But no matter how efficient
your load balancing policy, eventually some part of your system will become overloa-
ded. Gracefully handling overload conditions is fundamental to running a reliable
serving system.

One option for handling overload is to serve degraded responses: responses that are
not as accurate as or that contain less data than normal responses, but that are easier
to compute. For example:

o Instead of searching an entire corpus to provide the best available results to a
search query, search only a small percentage of the candidate set.

« Rely on a local copy of results that may not be fully up to date but that will be
cheaper to use than going against the canonical storage.

However, under extreme overload, the service might not even be able to compute and
serve degraded responses. At this point it may have no immediate option but to serve
errors. One way to mitigate this scenario is to balance traffic across datacenters such
that no datacenter receives more traffic than it has the capacity to process. For exam-
ple, if a datacenter runs 100 backend tasks and each task can process up to 500
requests per second, the load balancing algorithm will not allow more than 50,000
queries per second to be sent to that datacenter. However, even this constraint can
prove insufficient to avoid overload when you’re operating at scale. At the end of the
day, it’s best to build clients and backends to handle resource restrictions gracefully:
redirect when possible, serve degraded results when necessary, and handle resource
errors transparently when all else fails.
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The Pitfalls of “Queries per Second”

Different queries can have vastly different resource requirements. A query’s cost can
vary based on arbitrary factors such as the code in the client that issues them (for
services that have many different clients) or even the time of the day (e.g., home users
versus work users; or interactive end-user traffic versus batch traffic).

We learned this lesson the hard way: modeling capacity as “queries per second” or
using static features of the requests that are believed to be a proxy for the resources
they consume (e.g., “how many keys are the requests reading”) often makes for a
poor metric. Even if these metrics perform adequately at one point in time, the ratios
can change. Sometimes the change is gradual, but sometimes the change is drastic
(e.g., a new version of the software suddenly made some features of some requests
require significantly fewer resources). A moving target makes a poor metric for
designing and implementing load balancing.

A better solution is to measure capacity directly in available resources. For example,
you may have a total of 500 CPU cores and 1 TB of memory reserved for a given ser-
vice in a given datacenter. Naturally, it works much better to use those numbers
directly to model a datacenter’s capacity. We often speak about the cost of a request to
refer to a normalized measure of how much CPU time it has consumed (over differ-
ent CPU architectures, with consideration of performance differences).

In a majority of cases (although certainly not in all), we've found that simply using
CPU consumption as the signal for provisioning works well, for the following rea-
sons:

« In platforms with garbage collection, memory pressure naturally translates into
increased CPU consumption.

« In other platforms, it’s possible to provision the remaining resources in such a
way that they’re very unlikely to run out before CPU runs out.

In cases where over-provisioning the non-CPU resources is prohibitively expensive,
we take each system resource into account separately when considering resource con-
sumption.

Per-Customer Limits

One component of dealing with overload is deciding what to do in the case of global
overload. In a perfect world, where teams coordinate their launches carefully with the
owners of their backend dependencies, global overload never happens and backend
services always have enough capacity to serve their customers. Unfortunately, we
don’t live in a perfect world. Here in reality, global overload occurs quite frequently
(especially for internal services that tend to have many clients run by many teams).
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When global overload does occur, it’s vital that the service only delivers error respon-
ses to misbehaving customers, while other customers remain unaffected. To achieve
this outcome, service owners provision their capacity based on the negotiated usage
with their customers and define per-customer quotas according to these agreements.

For example, if a backend service has 10,000 CPUs allocated worldwide (over various
datacenters), their per-customer limits might look something like the following:

o Gmail is allowed to consume up to 4,000 CPU seconds per second.

« Calendar is allowed to consume up to 4,000 CPU seconds per second.
 Android is allowed to consume up to 3,000 CPU seconds per second.
» Google+ is allowed to consume up to 2,000 CPU seconds per second.

« Every other user is allowed to consume up to 500 CPU seconds per second.

Note that these numbers may add up to more than the 10,000 CPUs allocated to the
backend service. The service owner is relying on the fact that it’s unlikely for all of
their customers to hit their resource limits simultaneously.

We aggregate global usage information in real time from all backend tasks, and use
that data to push effective limits to individual backend tasks. A closer look at the sys-
tem that implements this logic is outside of the scope of this discussion, but we've
written significant code to implement this in our backend tasks. An interesting part
of the puzzle is computing in real time the amount of resources—specifically CPU—
consumed by each individual request. This computation is particularly tricky for
servers that don’t implement a thread-per-request model, where a pool of threads just
executes different parts of all requests as they come in, using nonblocking APIs.

Client-Side Throttling

When a customer is out of quota, a backend task should reject requests quickly with
the expectation that returning a “customer is out of quota” error consumes signifi-
cantly fewer resources than actually processing the request and serving back a correct
response. However, this logic doesn’t hold true for all services. For example, it’s
almost equally expensive to reject a request that requires a simple RAM lookup
(where the overhead of the request/response protocol handling is significantly larger
than the overhead of producing the response) as it is to accept and run that request.
And even in the case where rejecting requests saves significant resources, those
requests still consume some resources. If the amount of rejected requests is signifi-
cant, these numbers add up quickly. In such cases, the backend can become overloa-
ded even though the vast majority of its CPU is spent just rejecting requests!
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Client-side throttling addresses this problem." When a client detects that a significant
portion of its recent requests have been rejected due to “out of quota” errors, it starts
self-regulating and caps the amount of outgoing traffic it generates. Requests above
the cap fail locally without even reaching the network.

We implemented client-side throttling through a technique we call adaptive throttling.
Specifically, each client task keeps the following information for the last two minutes
of its history:

requests
The number of requests attempted by the application layer (at the client, on top
of the adaptive throttling system)

accepts
The number of requests accepted by the backend

Under normal conditions, the two values are equal. As the backend starts rejecting
traffic, the number of accepts becomes smaller than the number of requests. Clients
can continue to issue requests to the backend until requests is K times as large as
accepts. Once that cutoff is reached, the client begins to self-regulate and new
requests are rejected locally (i.e., at the client) with the probability calculated in Equa-
tion 21-1.

Equation 21-1. Client request rejection probability

requests—K X accepts
requests+1

max (O,
As the client itself starts rejecting requests, requests will continue to exceed accepts.
While it may seem counterintuitive, given that locally rejected requests aren’t actually
propagated to the backend, this is the preferred behavior. As the rate at which the
application attempts requests to the client grows (relative to the rate at which the
backend accepts them), we want to increase the probability of dropping new requests.

We've found adaptive throttling to work well in practice, leading to stable rates of
requests overall. Even in large overload situations, backends end up rejecting one
request for each request they actually process. One large advantage of this approach is
that the decision is made by the client task based entirely on local information and
using a relatively simple implementation: there are no additional dependencies or
latency penalties.

For services where the cost of processing a request is very close to the cost of rejecting
that request, allowing roughly half of the backend resources to be consumed by rejec-

1 For example, see Doorman, which provides a cooperative distributed client-side throttling system.
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ted requests can be unacceptable. In this case, the solution is simple: modify the
accepts multiplier K (e.g., 2) in the client request rejection probability (Equation
21-1). In this way:

« Reducing the multiplier will make adaptive throttling behave more aggressively

« Increasing the multiplier will make adaptive throttling behave less aggressively

For example, instead of having the client self-regulate when requests = 2 *
accepts, have it self-regulate when requests = 1.1 * accepts. Reducing the modi-
fier to 1.1 means only one request will be rejected by the backend for every 10
requests accepted.

We generally prefer the 2x multiplier. By allowing more requests to reach the backend
than are expected to actually be allowed, we waste more resources at the backend, but
we also speed up the propagation of state from the backend to the clients. For exam-
ple, if the backend decides to stop rejecting traffic from the client tasks, the delay
until all client tasks have detected this change in state is shorter.

One additional consideration is that client-side throttling may not work well with cli-
ents that only very sporadically send requests to their backends. In this case, the view
that each client has of the state of the backend is reduced drastically, and approaches
to increment this visibility tend to be expensive.

Criticality

Criticality is another notion that we've found very useful in the context of global quo-
tas and throttling. A request made to a backend is associated with one of four possible
criticality values, depending on how critical we consider that request:

CRITICAL_PLUS
Reserved for the most critical requests, those that will result in serious user-
visible impact if they fail.

CRITICAL
The default value for requests sent from production jobs. These requests will
result in user-visible impact, but the impact may be less severe than those of CRIT
ICAL_PLUS. Services are expected to provision enough capacity for all expected
CRITICAL and CRITICAL_PLUS traffic.

SHEDDABLE_PLUS
Traffic for which partial unavailability is expected. This is the default for batch
jobs, which can retry requests minutes or even hours later.
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SHEDDABLE
Traftic for which frequent partial unavailability and occasional full unavailability
is expected.

We found that four values were sufficiently robust to model almost every service.
We've had various discussions on proposals to add more values, because doing so
would allow us to classify requests more finely. However, defining additional values
would require more resources to operate various criticality-aware systems.

We've made criticality a first-class notion of our RPC system and we've worked hard
to integrate it into many of our control mechanisms so it can be taken into account
when reacting to overload situations. For example:

o When a customer runs out of global quota, a backend task will only reject
requests of a given criticality if it's already rejecting all requests of all lower criti-
calities (in fact, the per-customer limits that our system supports, described ear-
lier, can be set per criticality).

o When a task is itself overloaded, it will reject requests of lower criticalities sooner.

o The adaptive throttling system also keeps separate stats for each criticality.

The criticality of a request is orthogonal to its latency requirements and thus to the
underlying network quality of service (QoS) used. For example, when a system dis-
plays search results or suggestions while the user is typing a search query, the under-
lying requests are highly sheddable (if the system is overloaded, it’s acceptable to not
display these results), but tend to have stringent latency requirements.

We've also significantly extended our RPC system to propagate criticality automati-
cally. If a backend receives request A and, as part of executing that request, issues out-
going request B and request C to other backends, request B and request C will use the
same criticality as request A by default.

In the past, many systems at Google had evolved their own ad hoc notions of critical-
ity that were often incompatible across services. By standardizing and propagating
criticality as a part of our RPC system, we are now able to consistently set the critical-
ity at specific points. This means we can be confident that overloaded dependencies
will abide by the desired high-level criticality as they reject traffic, regardless of how
deep down the RPC stack they are. Our practice is thus to set the criticality as close as
possible to the browsers or mobile clients—typically in the HTTP frontends that pro-
duce the HTML to be returned—and only override the criticality in specific cases
where it makes sense at specific points in the stack.
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Utilization Signals

Our implementation of task-level overload protection is based on the notion of uti-
lization. In many cases, the utilization is just a measurement of the CPU rate (i.e., the
current CPU rate divided by the total CPUs reserved for the task), but in some cases
we also factor in measurements such as the portion of the memory reserved that is
currently being used. As utilization approaches configured thresholds, we start reject-
ing requests based on their criticality (higher thresholds for higher criticalities).

The utilization signals we use are based on the state local to the task (since the goal of
the signals is to protect the task) and we have implementations for various signals.
The most generally useful signal is based on the “load” in the process, which is deter-
mined using a system we call executor load average.

To find the executor load average, we count the number of active threads in the pro-
cess. In this case, “active” refers to threads that are currently running or ready to run
and waiting for a free processor. We smooth this value with exponential decay and
begin rejecting requests as the number of active threads grows beyond the number of
processors available to the task. That means that an incoming request that has a very
large fan-out (i.e., one that schedules a burst of a very large number of short-lived
operations) will cause the load to spike very briefly, but the smoothing will mostly
swallow that spike. However, if the operations are not short-lived (i.e., the load
increases and remains high for a significant amount of time), the task will start reject-
ing requests.

While the executor load average has proven to be a very useful signal, our system can
plug in any utilization signal that a particular backend may need. For example, we
might use memory pressure—which indicates whether the memory usage in a back-
end task has grown beyond normal operational parameters—as another possible uti-
lization signal. The system can also be configured to combine multiple signals and
reject requests that would surpass the combined (or individual) target utilization
thresholds.

Handling Overload Errors

In addition to handling load gracefully, we've put a significant amount of thought into
how clients should react when they receive a load-related error response. In the case
of overload errors, we distinguish between two possible situations.

A large subset of backend tasks in the datacenter are overloaded.
If the cross-datacenter load balancing system is working perfectly (i.e., it can
propagate state and react instantaneously to shifts in traffic), this condition will
not occur.
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A small subset of backend tasks in the datacenter are overloaded.
This situation is typically caused by imperfections in the load balancing inside
the datacenter. For example, a task may have very recently received a very expen-
sive request. In this case, it is very likely that the datacenter has remaining
capacity in other tasks to handle the request.

If a large subset of backend tasks in the datacenter are overloaded, requests should
not be retried and errors should bubble up all the way to the caller (e.g., returning an
error to the end user). It's much more typical that only a small portion of tasks
become overloaded, in which case the preferred response is to retry the request
immediately. In general, our cross-datacenter load balancing system tries to direct
traffic from clients to their nearest available backend datacenters. In a few cases, the
nearest datacenter is far away (e.g., a client may have its nearest available backend in a
different continent), but we usually manage to situate clients close to their backends.
That way, the additional latency of retrying a request—just a few network round trips
—tends to be negligible.

From the point of view of our load balancing policies, retries of requests are indistin-
guishable from new requests. That is, we don’'t use any explicit logic to ensure that a
retry actually goes to a different backend task; we just rely on the likely probability
that the retry will land on a different backend task simply by virtue of the number of
participating backends in the subset. Ensuring that all retries actually go to a different
task would incur more complexity in our APIs than is worthwhile.

Even if a backend is only slightly overloaded, a client request is often better served if
the backend rejects retry and new requests equally and quickly. These requests can
then be retried immediately on a different backend task that may have spare resour-
ces. The consequence of treating retries and new requests identically at the backend is
that retrying requests in different tasks becomes a form of organic load balancing: it
redirects load to tasks that may be better suited for those requests.

Deciding to Retry

When a client receives a “task overloaded” error response, it needs to decide whether
to retry the request. We have a few mechanisms in place to avoid retries when a sig-
nificant portion of the tasks in a cluster are overloaded.

First, we implement a per-request retry budget of up to three attempts. If a request has
already failed three times, we let the faijlure bubble up to the caller. The rationale is
that if a request has already landed on overloaded tasks three times, it’s relatively
unlikely that attempting it again will help because the whole datacenter is likely over-
loaded.

Secondly, we implement a per-client retry budget. Each client keeps track of the ratio
of requests that correspond to retries. A request will only be retried as long as this
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ratio is below 10%. The rationale is that if only a small subset of tasks are overloaded,
there will be relatively little need to retry.

As a concrete example (of the worst-case scenario), let’s assume a datacenter is
accepting a small amount of requests and rejecting a large portion of requests. Let X
be the total rate of requests attempted against the datacenter according to the client-
side logic. Due to the number of retries that will occur, the number of requests will
grow significantly, to somewhere just below 3X. Although we've effectively capped
the growth caused by retries, a threefold increase in requests is significant, especially
if the cost of rejecting versus processing a request is considerable. However, layering
on the per-client retry budget (a 10% retry ratio) reduces the growth to just 1.1x in
the general case—a significant improvement.

A third approach has clients include a counter of how many times the request has
already been tried in the request metadata. For instance, the counter starts at 0 in the
first attempt and is incremented on every retry until it reaches 2, at which point the
per-request budget causes it to stop being retried. Backends keep histograms of these
values in recent history. When a backend needs to reject a request, it consults these
histograms to determine the likelihood that other backend tasks are also overloaded.
If these histograms reveal a significant amount of retries (indicating that other back-
end tasks are likely also overloaded), they return an “overloaded; don't retry” error
response instead of the standard “task overloaded” error that triggers retries.

Figure 21-1 shows the number of attempts in each request received by a given back-
end task in various example situations, over a sliding window (corresponding to
1,000 initial requests, not counting retries). For simplicity, the per-client retry budget
is ignored (i.e., these numbers assume that the only limit to retries is the retry budget
of three attempts per request), and subsetting could alter these numbers somewhat.

No Overload Light Overload Medium Overload | Heavy Overload
1000 1000 1000 1000
180
25 32
S0 -0 - ||
012 012 012 012
All trafficis 1% of tasks are 5% of tasks are 20% of tasks are
accepted rejecting 10% rejecting 50% rejecting 90%
of their traffic of their traffic of their traffic

Figure 21-1. Histograms of attempts in various conditions
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Our larger services tend to be deep stacks of systems, which may in turn have depen-
dencies on each other. In this architecture, requests should only be retried at the layer
immediately above the layer that is rejecting them. When we decide that a given
request can't be served and shouldn't be retried, we use an “overloaded; don't retry”
error and thus avoid a combinatorial retry explosion.

Consider the example from Figure 21-2 (in practice, our stacks are often significantly
more complex). Imagine that the DB Frontend is currently overloaded and rejects a
request. In that case:

 Backend B will then retry the request according to the preceding guidelines.

« However, once Backend B determines that the request to the DB Frontend can’t
be served (for example, because the request has already been attempted and
rejected three times), Backend B has to return to Backend A either an “overloa-
ded; don't retry” error or a degraded response (assuming that it can produce
some moderately useful response even when its request to the DB Frontend
failed).

o Backend A has exactly the same options for the request it received from the
Frontend, and proceeds accordingly.

Frontend

v

— BackendA F—

Backend B Backend C

v

DB Frontend

v

DB Storage

Figure 21-2. A stack of dependencies

The key point is that a failed request from the DB Frontend should only be retried by
Backend B, the layer immediately above it. If multiple layers retried, wedd have a com-
binatorial explosion.
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Load from Connections

The load associated with connections is one last factor worth mentioning. We some-
times only take into account load at the backends that is caused directly by the
requests they receive (which is one of the problems with approaches that model load
based upon queries per second). However, doing so overlooks the CPU and memory
costs of maintaining a large pool of connections or the cost of a fast rate of churn of
connections. Such issues are negligible in small systems, but quickly become prob-
lematic when running very large-scale RPC systems.

As mentioned previously, our RPC protocol requires inactive clients to perform peri-
odic health checks. After a connection has been idle for a configurable amount of
time, the client drops its TCP connection and switches to UDP for health checking.
Unfortunately, this behavior is problematic when you have a very large number of cli-
ent tasks that issue a very low rate of requests: health checking on the connections
can require more resources than actually serving the requests. Approaches such as
carefully tuning the connection parameters (e.g., significantly decreasing the fre-
quency of health checks) or even creating and destroying the connections dynami-
cally can significantly improve this situation.

Handling bursts of new connection requests is a second (but related) problem. We've
seen bursts of this type happen in the case of very large batch jobs that create a very
large number of worker client tasks all at once. The need to negotiate and maintain
an excessive number of new connections simultaneously can easily overload a group

of backends. In our experience, there are a couple strategies that can help mitigate
this load:

» Expose the load to the cross-datacenter load balancing algorithm (e.g., base load
balancing on the utilization of the cluster, rather than just on the number of
requests). In this case, load from requests is effectively rebalanced away to other
datacenters that have spare capacity.

« Mandate that batch client jobs use a separate set of batch proxy backend tasks that
do nothing but forward requests to the underlying backends and hand their
responses back to the clients in a controlled way. Therefore, instead of “batch cli-
ent - backend,” you have “batch client - batch proxy — backend” In this case,
when the very large job starts, only the batch proxy job suffers, shielding the
actual backends (and higher-priority clients). Effectively, the batch proxy acts like
a fuse. Another advantage of using the proxy is that it typically reduces the num-
ber of connections against the backend, which can improve the load balancing
against the backend (e.g., the proxy tasks can use bigger subsets and probably
have a better view of the state of the backend tasks).
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Conclusions

This chapter and Chapter 20 have discussed how various techniques (deterministic
subsetting, Weighted Round Robin, client-side throttling, customer quotas, etc.) can
help to spread load over tasks in a datacenter relatively evenly. However, these mecha-
nisms depend on the propagation of state over a distributed system. While they per-
form reasonably well in the general case, real-world application has resulted in a
small number of situations where they work imperfectly.

As a result, we consider it critical to ensure that individual tasks are protected against
overload. To state this simply: a backend task provisioned to serve a certain traffic
rate should continue to serve traffic at that rate without any significant impact on
latency, regardless of how much excess traffic is thrown at the task. As a corollary, the
backend task should not fall over and crash under the load. These statements should
hold true up to a certain rate of traffic—somewhere above 2x or even 10x what the
task is provisioned to process. We accept that there might be a certain point at which
a system begins to break down, and raising the threshold at which this breakdown
occurs becomes relatively difficult to achieve.

The key is to take these degradation conditions seriously. When these degradation
conditions are ignored, many systems will exhibit terrible behavior. And as work piles
up and tasks eventually run out of memory and crash (or end up burning almost all
their CPU in memory thrashing), latency suffers as traffic is dropped and tasks com-
pete for resources. Left unchecked, the failure in a subset of a system (such as an indi-
vidual backend task) might trigger the failure of other system components,
potentially causing the entire system (or a considerable subset) to fail. The impact
from this kind of cascading failure can be so severe that it’s critical for any system
operating at scale to protect against it; see Chapter 22.

It's a common mistake to assume that an overloaded backend should turn down and
stop accepting all traffic. However, this assumption actually goes counter to the goal
of robust load balancing. We actually want the backend to continue accepting as
much traffic as possible, but to only accept that load as capacity frees up. A well-
behaved backend, supported by robust load balancing policies, should accept only the
requests that it can process and reject the rest gracefully.

While we have a vast array of tools to implement good load balancing and overload
protections, there is no magic bullet: load balancing often requires deep understand-
ing of a system and the semantics of its requests. The techniques described in this
chapter have evolved along with the needs of many systems at Google, and will likely
continue to evolve as the nature of our systems continues to change.
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CHAPTER 22
Addressing Cascading Failures

Written by Mike Ulrich

If at first you don’t succeed, back off exponentially.
—Dan Sandler, Google Software Engineer

Why do people always forget that you need to add a little jitter?
—Ade Oshineye, Google Developer Advocate

A cascading failure is a failure that grows over time as a result of positive feedback." It
can occur when a portion of an overall system fails, increasing the probability that
other portions of the system fail. For example, a single replica for a service can fail
due to overload, increasing load on remaining replicas and increasing their probabil-
ity of failing, causing a domino effect that takes down all the replicas for a service.

We'll use the Shakespeare search service discussed in “Shakespeare: A Sample Service”
on page 20 as an example throughout this chapter. Its production configuration
might look something like Figure 22-1.

1 See Wikipedia, “Positive feedback,” https://en.wikipedia.org/wiki/Positive_feedback.
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Figure 22-1. Example production configuration for the Shakespeare search service

Causes of Cascading Failures and Designing to Avoid Them

Well-thought-out system design should take into account a few typical scenarios that
account for the majority of cascading failures.

Server Overload

The most common cause of cascading failures is overload. Most cascading failures
described here are either directly due to server overload, or due to extensions or var-

iations of this scenario.

Suppose the frontend in cluster A is handling 1,000 requests per second (QPS), as in

Figure 22-2.

GFE

GFE

500

100 500,

100

Figure 22-2. Normal server load distribution between clusters A and B
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If cluster B fails (Figure 22-3), requests to cluster A increase to 1,200 QPS. The
frontends in A are not able to handle requests at 1,200 QPS, and therefore start run-
ning out of resources, which causes them to crash, miss deadlines, or otherwise mis-
behave. As a result, the rate of successfully handled requests in A dips well below
1,000 QPS.

—>»| GFE GFE [&——

600,
600

Figure 22-3. Cluster B fails, sending all traffic to cluster A

This reduction in the rate of useful work being done can spread into other failure
domains, potentially spreading globally. For example, local overload in one cluster
may lead to its servers crashing; in response, the load balancing controller sends
requests to other clusters, overloading their servers, leading to a service-wide over-
load failure. It may not take long for these events to transpire (e.g., on the order of a
couple minutes), because the load balancer and task scheduling systems involved may
act very quickly.

Resource Exhaustion

Running out of a resource can result in higher latency, elevated error rates, or the
substitution of lower-quality results. These are in fact desired effects of running out
of resources: something eventually needs to give as the load increases beyond what a
server can handle.

Depending on what resource becomes exhausted in a server and how the server is
built, resource exhaustion can render the server less efficient or cause the server to
crash, prompting the load balancer to distribute the resource problems to other
servers. When this happens, the rate of successfully handled requests can drop and
possibly send the cluster or an entire service into a cascade failure.

Different types of resources can be exhausted, resulting in varying effects on servers.
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(PU

If there is insufficient CPU to handle the request load, typically all requests become
slower. This scenario can result in various secondary effects, including the following:

Increased number of in-flight requests
Because requests take longer to handle, more requests are handled concurrently
(up to a possible maximum capacity at which queuing may occur). This affects
almost all resources, including memory, number of active threads (in a thread-
per-request server model), number of file descriptors, and backend resources
(which in turn can have other effects).

Excessively long queue lengths
If there is insufficient capacity to handle all the requests at steady state, the server
will saturate its queues. This means that latency increases (the requests are
queued for longer amounts of time) and the queue uses more memory. See
“Queue Management” on page 266 for a discussion of mitigation strategies.

Thread starvation
When a thread can’t make progress because it’s waiting for a lock, health checks
may fail if the health check endpoint can’t be served in time.

CPU or request starvation
Internal watchdogs® in the server detect that the server ismt making progress,
causing the servers to crash due to CPU starvation, or due to request starvation if
watchdog events are triggered remotely and processed as part of the request
queue.

Missed RPC deadlines
As a server becomes overloaded, its responses to RPCs from its clients arrive
later, which may exceed any deadlines those clients set. The work the server did
to respond is then wasted, and clients may retry the RPCs, leading to even more
overload.

Reduced CPU caching benefits
As more CPU is used, the chance of spilling on to more cores increases, resulting
in decreased usage of local caches and decreased CPU efficiency.

2 A watchdog is often implemented as a thread that wakes up periodically to see whether work has been done
since the last time it checked. If not, it assumes that the server is stuck and kills it. For instance, requests of a
known type can be sent to the server at regular intervals; if one hasn’t been received or processed when
expected, this may indicate failure—of the server, the system sending requests, or the intermediate network.
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Memory

If nothing else, more in-flight requests consume more RAM from allocating the
request, response, and RPC objects. Memory exhaustion can cause the following
effects:

Dying tasks
For example, a task might be evicted by the container manager (VM or other-
wise) for exceeding available resource limits, or application-specific crashes may
cause tasks to die.

Increased rate of garbage collection (GC) in Java, resulting in increased CPU usage
A vicious cycle can occur in this scenario: less CPU is available, resulting in
slower requests, resulting in increased RAM usage, resulting in more GC, result-
ing in even lower availability of CPU. This is known colloquially as the “GC death
spiral”

Reduction in cache hit rates
Reduction in available RAM can reduce application-level cache hit rates, result-
ing in more RPCs to the backends, which can possibly cause the backends to
become overloaded.

Threads

Thread starvation can directly cause errors or lead to health check failures. If the
server adds threads as needed, thread overhead can use too much RAM. In extreme
cases, thread starvation can also cause you to run out of process IDs.

File descriptors

Running out of file descriptors can lead to the inability to initialize network connec-
tions, which in turn can cause health checks to fail.

Dependencies among resources

Note that many of these resource exhaustion scenarios feed from one another—a ser-
vice experiencing overload often has a host of secondary symptoms that can look like
the root cause, making debugging difficult.

For example, imagine the following scenario:

1. A Java frontend has poorly tuned garbage collection (GC) parameters.

2. Under high (but expected) load, the frontend runs out of CPU due to GC.
3. CPU exhaustion slows down completion of requests.
4.

The increased number of in-progress requests causes more RAM to be used to
process the requests.
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5. Memory pressure due to requests, in combination with a fixed memory alloca-
tion for the frontend process as a whole, leaves less RAM available for caching.

6. The reduced cache size means fewer entries in the cache, in addition to a lower
hit rate.

7. The increase in cache misses means that more requests fall through to the back-
end for servicing.

8. The backend, in turn, runs out of CPU or threads.

9. Finally, the lack of CPU causes basic health checks to fail, starting a cascading
failure.

In situations as complex as the preceding scenario, it's unlikely that the causal chain
will be fully diagnosed during an outage. It might be very hard to determine that the
backend crash was caused by a decrease in the cache rate in the frontend, particularly
if the frontend and backend components have different owners.

Service Unavailability

Resource exhaustion can lead to servers crashing; for example, servers might crash
when too much RAM is allocated to a container. Once a couple of servers crash on
overload, the load on the remaining servers can increase, causing them to crash as
well. The problem tends to snowball and soon all servers begin to crash-loop. It’s
often difficult to escape this scenario because as soon as servers come back online
they’re bombarded with an extremely high rate of requests and fail almost immedi-
ately.

For example, if a service was healthy at 10,000 QPS, but started a cascading failure
due to crashes at 11,000 QPS, dropping the load to 9,000 QPS will almost certainly
not stop the crashes. This is because the service will be handling increased demand
with reduced capacity; only a small fraction of servers will usually be healthy enough
to handle requests. The fraction of servers that will be healthy depends on a few fac-
tors: how quickly the system is able to start the tasks, how quickly the binary can start
serving at full capacity, and how long a freshly started task is able to survive the load.
In this example, if 10% of the servers are healthy enough to handle requests, the
request rate would need to drop to about 1,000 QPS in order for the system to stabi-
lize and recover.

Similarly, servers can appear unhealthy to the load balancing layer, resulting in
reduced load balancing capacity: servers may go into “lame duck” state (see “A Robust
Approach to Unhealthy Tasks: Lame Duck State” on page 234) or fail health checks
without crashing. The effect can be very similar to crashing: more servers appear
unhealthy, the healthy servers tend to accept requests for a very brief period of time
before becoming unhealthy, and fewer servers participate in handling requests.
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Load balancing policies that avoid servers that have served errors can exacerbate
problems further—a few backends serve some errors, so they don't contribute to the
available capacity for the service. This increases the load on the remaining servers,
starting the snowball effect.

Preventing Server Overload

The following list presents strategies for avoiding server overload in rough priority
order:

Load test the server’s capacity limits, and test the failure mode for overload
This is the most important important exercise you should conduct in order to
prevent server overload. Unless you test in a realistic environment, it’s very hard
to predict exactly which resource will be exhausted and how that resource
exhaustion will manifest. For details, see “Testing for Cascading Failures” on page
278.

Serve degraded results
Serve lower-quality, cheaper-to-compute results to the user. Your strategy here
will be service-specific. See “Load Shedding and Graceful Degradation” on page
267.

Instrument the server to reject requests when overloaded
Servers should protect themselves from becoming overloaded and crashing.
When overloaded at either the frontend or backend layers, fail early and cheaply.
For details, see “Load Shedding and Graceful Degradation” on page 267.

Instrument higher-level systems to reject requests, rather than overloading servers
Note that because rate limiting often doesn’t take overall service health into
account, it may not be able to stop a failure that has already begun. Simple rate-
limiting implementations are also likely to leave capacity unused. Rate limiting
can be implemented in a number of places:

o At the reverse proxies, by limiting the volume of requests by criteria such as
IP address to mitigate attempted denial-of-service attacks and abusive
clients.

o At the load balancers, by dropping requests when the service enters global
overload. Depending on the nature and complexity of the service, this rate
limiting can be indiscriminate (“drop all traffic above X requests per sec-
ond”) or more selective (“drop requests that aren’t from users who have
recently interacted with the service” or “drop requests for low-priority opera-
tions like background synchronization, but keep serving interactive user
sessions”).
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o At individual tasks, to prevent random fluctuations in load balancing from
overwhelming the server.

Perform capacity planning
Good capacity planning can reduce the probability that a cascading failure will
occur. Capacity planning should be coupled with performance testing to deter-
mine the load at which the service will fail. For instance, if every cluster’s break-
ing point is 5,000 QPS, the load is evenly spread across clusters,® and the service’s
peak load is 19,000 QPS, then approximately six clusters are needed to run the
service at N + 2.

Capacity planning reduces the probability of triggering a cascading failure, but it is
not sufficient to protect the service from cascading failures. When you lose major
parts of your infrastructure during a planned or unplanned event, no amount of
capacity planning may be sufficient to prevent cascading failures. Load balancing
problems, network partitions, or unexpected traffic increases can create pockets of
high load beyond what was planned. Some systems can grow the number of tasks for
your service on demand, which may prevent overload; however, proper capacity
planning is still needed.

Queue Management

Most thread-per-request servers use a queue in front of a thread pool to handle
requests. Requests come in, they sit on a queue, and then threads pick requests off the
queue and perform the actual work (whatever actions are required by the server).
Usually, if the queue is full, the server will reject new requests.

If the request rate and latency of a given task is constant, there is no reason to queue
requests: a constant number of threads should be occupied. Under this idealized sce-
nario, requests will only be queued if the steady state rate of incoming requests
exceeds the rate at which the server can process requests, which results in saturation
of both the thread pool and the queue.

Queued requests consume memory and increase latency. For example, if the queue
size is 10x the number of threads, the time to handle the request on a thread is 100
milliseconds. If the queue is full, then a request will take 1.1 seconds to handle, most
of which time is spent on the queue.

For a system with fairly steady traffic over time, it is usually better to have small
queue lengths relative to the thread pool size (e.g., 50% or less), which results in the
server rejecting requests early when it can’t sustain the rate of incoming requests. For
example, Gmail often uses queueless servers, relying instead on failover to other

3 This is often not a good assumption due to geography; see also “Job and Data Organization” on page 22.
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server tasks when the threads are full. On the other end of the spectrum, systems with
“bursty” load for which traffic patterns fluctuate drastically may do better with a
queue size based on the current number of threads in use, processing time for each
request, and the size and frequency of bursts.

Load Shedding and Graceful Degradation

Load shedding drops some proportion of load by dropping traffic as the server
approaches overload conditions. The goal is to keep the server from running out of
RAM, failing health checks, serving with extremely high latency, or any of the other
symptoms associated with overload, while still doing as much useful work as it can.

One straightforward way to shed load is to do per-task throttling based on CPU,
memory, or queue length; limiting queue length as discussed in “Queue Manage-
ment” on page 266 is a form of this strategy. For example, one effective approach is to
return an HTTP 503 (service unavailable) to any incoming request when there are
more than a given number of client requests in flight.

Changing the queuing method from the standard first-in, first-out (FIFO) to last-in,
first-out (LIFO) or using the controlled delay (CoDel) algorithm [Nicl12] or similar
approaches can reduce load by removing requests that are unlikely to be worth pro-
cessing [Maul5]. If a user’s web search is slow because an RPC has been queued for
10 seconds, there’s a good chance the user has given up and refreshed their browser,
issuing another request: there’s no point in responding to the first one, since it will be
ignored! This strategy works well when combined with propagating RPC deadlines
throughout the stack, described in “Latency and Deadlines” on page 271.

More sophisticated approaches include identifying clients to be more selective about
what work is dropped, or picking requests that are more important and prioritizing.
Such strategies are more likely to be needed for shared services.

Graceful degradation takes the concept of load shedding one step further by reducing
the amount of work that needs to be performed. In some applications, it’s possible to
significantly decrease the amount of work or time needed by decreasing the quality of
responses. For instance, a search application might only search a subset of data stored
in an in-memory cache rather than the full on-disk database or use a less-accurate
(but faster) ranking algorithm when overloaded.

When evaluating load shedding or graceful degradation options for your service,
consider the following:

o Which metrics should you use to determine when load shedding or graceful deg-
radation should kick in (e.g,, CPU usage, latency, queue length, number of
threads used, whether your service enters degraded mode automatically or if
manual intervention is necessary)?
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o What actions should be taken when the server is in degraded mode?

« At what layer should load shedding and graceful degradation be implemented?

Does it make sense to implement these strategies at every layer in the stack, or is
it sufficient to have a high-level choke-point?

As you evaluate options and deploy, keep the following in mind:

Graceful degradation shouldn't trigger very often—usually in cases of a capacity
planning failure or unexpected load shift. Keep the system simple and under-
standable, particularly if it isn't used often.

Remember that the code path you never use is the code path that (often) doesn’t
work. In steady-state operation, graceful degradation mode won’t be used, imply-
ing that you’ll have much less operational experience with this mode and any of
its quirks, which increases the level of risk. You can make sure that graceful deg-
radation stays working by regularly running a small subset of servers near over-
load in order to exercise this code path.

Monitor and alert when too many servers enter these modes.

Complex load shedding and graceful degradation can cause problems themselves
—excessive complexity may cause the server to trip into a degraded mode when
it is not desired, or enter feedback cycles at undesired times. Design a way to
quickly turn off complex graceful degradation or tune parameters if needed.
Storing this configuration in a consistent system that each server can watch for
changes, such as Chubby, can increase deployment speed, but also introduces its
own risks of synchronized failure.

Retries

Suppose the code in the frontend that talks to the backend implements retries naively.
It retries after encountering a failure and caps the number of backend RPCs per logi-
cal request to 10. Consider this code in the frontend, using gRPC in Go:

func exampleRpcCall(client pb.ExampleClient, request pb.Request) *pb.Response {

// Set RPC timeout to 5 seconds.
opts := grpc.WithTimeout(5 * time.Second)

// Try up to 20 times to make the RPC call.
attempts := 20
for attempts > 0 {
conn, err := grpc.Dial(*serverAddr, opts...)
if err != nil {
// Something went wrong in setting up the connection. Try again.
attempts- -
continue
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3

defer conn.Close()

// Create a client stub and make the RPC call.
client := pb.NewBackendClient(conn)
response, err := client.MakeRequest(context.Background, request)
if err != nil {
// Something went wrong in making the call. Try again.
attempts--
continue

3

return response

}

grpclog.Fatalf("ran out of attempts")
}

This system can cascade in the following way:

1.

Assume our backend has a known limit of 10,000 QPS per task, after which point
all further requests are rejected in an attempt at graceful degradation.

. The frontend calls MakeRequest at a constant rate of 10,100 QPS and overloads

the backend by 100 QPS, which the backend rejects.

. Those 100 failed QPS are retried in MakeRequest every 1,000 ms, and probably

succeed. But the retries are themselves adding to the requests sent to the back-
end, which now receives 10,200 QPS—200 QPS of which are failing due to
overload.

The volume of retries grows: 100 QPS of retries in the first second leads to 200
QPS, then to 300 QPS, and so on. Fewer and fewer requests are able to succeed
on their first attempt, so less useful work is being performed as a fraction of
requests to the backend.

. If the backend task is unable to handle the increase in load—which is consuming

file descriptors, memory, and CPU time on the backend—it can melt down and
crash under the sheer load of requests and retries. This crash then redistributes
the requests it was receiving across the remaining backend tasks, in turn further
overloading those tasks.

Some simplifying assumptions were made here to illustrate this scenario,* but the
point remains that retries can destabilize a system. Note that both temporary load
spikes and slow increases in usage can cause this effect.

4 An instructive exercise, left for the reader: write a simple simulator and see how the amount of useful work
the backend can do varies with how much it’s overloaded and how many retries are permitted.
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Even if the rate of calls to MakeRequest decreases to pre-meltdown levels (9,000 QPS,
for example), depending on how much returning a failure costs the backend, the
problem might not go away. Two factors are at play here:

o If the backend spends a significant amount of resources processing requests that
will ultimately fail due to overload, then the retries themselves may be keeping
the backend in an overloaded mode.

o The backend servers themselves may not be stable. Retries can amplify the effects
seen in “Server Overload” on page 260.

If either of these conditions is true, in order to dig out of this outage, you must dra-
matically reduce or eliminate the load on the frontends until the retries stop and the
backends stabilize.

This pattern has contributed to several cascading failures, whether the frontends and
backends communicate via RPC messages, the “frontend” is client JavaScript code
issuing XmlHttpRequest calls to an endpoint and retries on failure, or the retries orig-
inate from an offline sync protocol that retries aggressively when it encounters a fail-
ure.

When issuing automatic retries, keep in mind the following considerations:

« Most of the backend protection strategies described in “Preventing Server Over-
load” on page 265 apply. In particular, testing the system can highlight problems,
and graceful degradation can reduce the effect of the retries on the backend.

 Always use randomized exponential backoff when scheduling retries. See also
“Exponential Backoff and Jitter” in the AWS Architecture Blog [Brol5]. If retries
aren’t randomly distributed over the retry window, a small perturbation (e.g., a
network blip) can cause retry ripples to schedule at the same time, which can
then amplify themselves [Flo94].

o Limit retries per request. Don’t retry a given request indefinitely.

» Consider having a server-wide retry budget. For example, only allow 60 retries
per minute in a process, and if the retry budget is exceeded, dont retry; just fail
the request. This strategy can contain the retry effect and be the difference
between a capacity planning failure that leads to some dropped queries and a
global cascading failure.

o Think about the service holistically and decide if you really need to perform
retries at a given level. In particular, avoid amplifying retries by issuing retries at
multiple levels: a single request at the highest layer may produce a number of
attempts as large as the product of the number of attempts at each layer to the
lowest layer. If the database can’t service requests because it’s overloaded, and the
backend, frontend, and JavaScript layers all issue 3 retries (4 attempts), then a
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single user action may create 64 attempts (4) on the database. This behavior is
undesirable when the database is returning those errors because it’s overloaded.

o Use clear response codes and consider how different failure modes should be
handled. For example, separate retriable and nonretriable error conditions. Don’t
retry permanent errors or malformed requests in a client, because neither will
ever succeed. Return a specific status when overloaded so that clients and other
layers back off and do not retry.

In an emergency, it may not be obvious that an outage is due to bad retry behavior.
Graphs of retry rates can be an indication of bad retry behavior, but may be confused
as a symptom instead of a compounding cause. In terms of mitigation, this is a special
case of the insufficient capacity problem, with the additional caveat that you must
either fix the retry behavior (usually requiring a code push), reduce load significantly,
or cut requests off entirely.

Latency and Deadlines

When a frontend sends an RPC to a backend server, the frontend consumes resources
waiting for a reply. RPC deadlines define how long a request can wait before the
frontend gives up, limiting the time that the backend may consume the frontend’s
resources.

Picking a deadline

It's usually wise to set a deadline. Setting either no deadline or an extremely high
deadline may cause short-term problems that have long since passed to continue to
consume server resources until the server restarts.

High deadlines can result in resource consumption in higher levels of the stack when
lower levels of the stack are having problems. Short deadlines can cause some more
expensive requests to fail consistently. Balancing these constraints to pick a good
deadline can be something of an art.

Missing deadlines

A common theme in many cascading outages is that servers spend resources han-
dling requests that will exceed their deadlines on the client. As a result, resources are
spent while no progress is made: you don’t get credit for late assignments with RPCs.

Suppose an RPC has a 10-second deadline, as set by the client. The server is very
overloaded, and as a result, it takes 11 seconds to move from a queue to a thread pool.
At this point, the client has already given up on the request. Under most circumstan-
ces, it would be unwise for the server to attempt to handle this request, because it
would be doing work for which no credit will be granted—the client doesn’t care what
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work the server does after the deadline has passed, because its given up on the
request already.

If handling a request is performed over multiple stages (e.g., there are a few callbacks
and RPC calls), the server should check the deadline left at each stage before attempt-
ing to perform any more work on the request. For example, if a request is split into
parsing, backend request, and processing stages, it may make sense to check that
there is enough time left to handle the request before each stage.

Deadline propagation

Rather than inventing a deadline when sending RPCs to backends, servers should
employ deadline propagation and cancellation propagation.

With deadline propagation, a deadline is set high in the stack (e.g., in the frontend).
The tree of RPCs emanating from an initial request will all have the same absolute
deadline. For example, if server A selects a 30-second deadline, and processes the
request for 7 seconds before sending an RPC to server B, the RPC from A to B will
have a 23-second deadline. If server B takes 4 seconds to handle the request and sends
an RPC to server C, the RPC from B to C will have a 19-second deadline, and so on.
Ideally, each server in the request tree implements deadline propagation.

Without deadline propagation, the following scenario may occur:

1. Server A sends an RPC to server B with a 10-second deadline.

2. Server B takes 8 seconds to start processing the request and then sends an RPC to
server C.

3. If server B uses deadline propagation, it should set a 2-second deadline, but sup-
pose it instead uses a hardcoded 20-second deadline for the RPC to server C.

4. Server C pulls the request off its queue after 5 seconds.

Had server B used deadline propagation, server C could immediately give up on the
request because the 2-second deadline was exceeded. However, in this scenario,
server C processes the request thinking it has 15 seconds to spare, but is not doing
useful work, since the request from server A to server B has already exceeded its
deadline.

You may want to reduce the outgoing deadline a bit (e.g., a few hundred millisec-
onds) to account for network transit times and post-processing in the client.

Also consider setting an upper bound for outgoing deadlines. You may want to limit
how long the server waits for outgoing RPCs to noncritical backends, or for RPCs to
backends that typically complete in a short duration. However, be sure to understand
your traffic mix, because you might otherwise inadvertently make particular types of
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requests fail all the time (e.g., requests with large payloads, or requests that require
responding to a lot of computation).

There are some exceptions for which servers may wish to continue processing a
request after the deadline has elapsed. For example, if a server receives a request that
involves performing some expensive catchup operation and periodically checkpoints
the progress of the catchup, it would be a good idea to check the deadline only after
writing the checkpoint, instead of after the expensive operation.

Propagating cancellations avoids the potential RPC leakage that occurs if an initial
RPC has a long deadline, but RPCs between deeper layers of the stack have short
deadlines and time out. Using simple deadline propagation, the initial RPC continues
to use server resources until it eventually times out, despite being unable to make
progress.

Bimodal latency

Suppose that the frontend from the preceding example consists of 10 servers, each
with 100 worker threads. This means that the frontend has a total of 1,000 threads of
capacity. During usual operation, the frontends perform 1,000 QPS and requests
complete in 100 ms. This means that the frontends usually have 100 worker threads
occupied out of the 1,000 configured worker threads (1,000 QPS * 0.1 seconds).

Suppose an event causes 5% of the requests to never complete. This could be the
result of the unavailability of some Bigtable row ranges, which renders the requests
corresponding to that Bigtable keyspace unservable. As a result, 5% of the requests hit
the deadline, while the remaining 95% of the requests take the usual 100 ms.

With a 100-second deadline, 5% of requests would consume 5,000 threads (50 QPS *
100 seconds), but the frontend doesn’t have that many threads available. Assuming no
other secondary effects, the frontend will only be able to handle 19.6% of the requests
(1,000 threads available / (5,000 + 95) threads’ worth of work), resulting in an 80.4%
error rate.

Therefore, instead of only 5% of requests receiving an error (those that didn’t com-
plete due to keyspace unavailability), most requests receive an error.

The following guidelines can help address this class of problems:

o Detecting this problem can be very hard. In particular, it may not be clear that
bimodal latency is the cause of an outage when you are looking at mean latency.
When you see a latency increase, try to look at the distribution of latencies in
addition to the averages.

o This problem can be avoided if the requests that don’t complete return with an
error early, rather than waiting the full deadline. For example, if a backend is
unavailable, it's usually best to immediately return an error for that backend,
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rather than consuming resources until it the backend available. If your RPC layer
supports a fail-fast option, use it.

» Having deadlines several orders of magnitude longer than the mean request
latency is usually bad. In the preceding example, a small number of requests ini-
tially hit the deadline, but the deadline was three orders of magnitude larger than
the normal mean latency, leading to thread exhaustion.

o When using shared resources that can be exhausted by some keyspace, consider
either limiting in-flight requests by that keyspace or using other kinds of abuse
tracking. Suppose your backend processes requests for different clients that have
wildly different performance and request characteristics. You might consider
only allowing 25% of your threads to be occupied by any one client in order to
provide fairness in the face of heavy load by any single client misbehaving.

Slow Startup and Cold Caching

Processes are often slower at responding to requests immediately after starting than
they will be in steady state. This slowness can be caused by either or both of the fol-
lowing:

Required initialization
Setting up connections upon receiving the first request that needs a given
backend

Runtime performance improvements in some languages, particularly Java
Just-In-Time compilation, hotspot optimization, and deferred class loading

Similarly, some binaries are less efficient when caches aren't filled. For example, in the
case of some of Google’s services, most requests are served out of caches, so requests
that miss the cache are significantly more expensive. In steady-state operation with a
warm cache, only a few cache misses occur, but when the cache is completely empty,
100% of requests are costly. Other services might employ caches to keep a user’s state
in RAM. This might be accomplished through hard or soft stickiness between reverse
proxies and service frontends.

If the service is not provisioned to handle requests under a cold cache, it’s at greater
risk of outages and should take steps to avoid them.

The following scenarios can lead to a cold cache:

Turning up a new cluster
A recently added cluster will have an empty cache.

Returning a cluster to service after maintenance
The cache may be stale.
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Restarts
If a task with a cache has recently restarted, filling its cache will take some time. It
may be worthwhile to move caching from a server to a separate binary like
memcache, which also allows cache sharing between many servers, albeit at the
cost of introducing another RPC and slight additional latency.

If caching has a significant effect on the service,” you may want to use one or some of
the following strategies:

« Overprovision the service. It's important to note the distinction between a latency
cach