

Software Engineering Best Practices

ABOUT THE AUTHOR

CAPERS JONES is currently the president and CEO of Capers Jones &
Associates LLC. He is also the founder and former chairman of
Software Productivity Research LLC (SPR). He holds the title of
Chief Scientist Emeritus at SPR. Capers Jones founded SPR in
1984. Before founding SPR, Capers was assistant director of pro-
gramming technology for the ITT Corporation at the Programming
Technology Center in Stratford, Connecticut. He was also a man-
ager and researcher at IBM in California.

Capers is a well-known author and international public speaker.
Some of his books have been translated into six languages. All of
his books are translated into Japanese, and his newest books are
available in Chinese editions as well. Among his book titles are
Patterns of Software Systems Failure and Success (International
Thomson Computer Press, 1995); Applied Software Measurement,
Third Edition (McGraw-Hill, 2008); Software Quality: Analysis and
Guidelines for Success (International Thomson, 1997); Estimating
Software Costs, Second Edition (McGraw-Hill, 2007); and Software
Assessments, Benchmarks, and Best Practices (Addison Wesley
Longman, 2000). The third edition of his book Applied Software
Measurement was published by McGraw-Hill in 2008.

Capers and his colleagues from SPR have collected historical data
from more than 600 corporations and more than 30 government
organizations. This historical data is a key resource for judging
the effectiveness of software process improvement methods. More
than 13,000 projects have been reviewed. This data is also widely
cited in software litigation in cases where quality, productivity, and
schedules are part of the proceedings. In addition to his technical
books, Mr. Jones has also received recognition as an historian after
the publication of The History and Future of Narragansett Bay in
2006 by Universal Publishers. Mr. Jones was the keynote speaker
at the annual Japanese Symposium on Software Testing in Tokyo
in 2008. He was also keynote speaker at the World Congress of
Quality, and the keynote speaker at the 2008 conference of the
International Function Point Users Group (IFPUG). His research
studies include quality estimating, quality measurement, software
cost and schedule estimation, and software metrics. He has been
awarded a life-time membership in IFPUG. He was also named
as a Distinguished Advisor to the Consortium for Information
Technology Software Quality (CISQ).

Software
Engineering

Best Practices
Lessons from Successful Projects

in the Top Companies

Capers Jones

New York Chicago San Francisco Lisbon London Madrid
Mexico City Milan New Delhi San Juan Seoul

Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under
the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written per-
mission of the publisher.

ISBN: 978-0-07-162162-5

MHID: 0-07-162162-8

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-162161-8,
MHID: 0-07-162161-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after
every occurrence of a trademarked name, we use names in an editorial fashion only, and to the
benefit of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative please e-mail us at
bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others,
McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is
not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUAR-
ANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF
OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guar-
antee that the functions contained in the work will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else
for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting
therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the
work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, inci-
dental, special, punitive, consequential or similar damages that result from the use of or inability to
use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause
arises in contract, tort or otherwise.

This book is dedicated to many colleagues who have studied and
advanced the field of software engineering. Some of these include
Allan Albrecht, Barry Boehm, Fred Brooks, Tom DeMarco, the
late Jim Frame, Peter Hill, Watts Humphrey, Steve Kan, Steve
McConnell, Roger Pressman, Tony Salvaggio, Paul Strassmann,
Jerry Weinberg, and Ed Yourdon.

This page intentionally left blank

vii

Contents at a Glance

Chapter 1. Introduction and Definitions of Software Best Practices 1

Chapter 2. Overview of 50 Software Best Practices 39

Chapter 3. A Preview of Software Development and
 Maintenance in 2049 177

Chapter 4. How Software Personnel Learn New Skills 227

Chapter 5. Software Team Organization and Specialization 275

Chapter 6. Project Management and Software Engineering 351

Chapter 7. Requirements, Business Analysis,
 Architecture, Enterprise Architecture, and Design 437

Chapter 8. Programming and Code Development 489

Chapter 9. Software Quality: The Key to Successful
 Software Engineering 555

Index 645

This page intentionally left blank

ix

Contents

Foreword xv
Acknowledgments xvii
Introduction xix

Chapter 1. Introduction and Definitions of Software Best Practices 1

 What Are “Best Practices” and How Can They Be Evaluated? 7
 Multiple Paths for Software Development, Deployment, and Maintenance 10
 Paths for Software Deployment 12
 Paths for Maintenance and Enhancements 14
 Quantifying Software Development, Deployment, and Maintenance 16
 Critical Topics in Software Engineering 19
 Overall Ranking of Methods, Practices, and Sociological Factors 23
 Summary and Conclusions 36
 Readings and References 36

Chapter 2. Overview of 50 Software Best Practices 39

 1. Best Practices for Minimizing Harm from Layoffs and Downsizing 41
 2. Best Practices for Motivation and Morale of Technical Staff 45

4. Best Practices for Selection and Hiring of Software Personnel 50
5. Best Practices for Appraisals and Career

 Planning for Software Personnel 50
6. Best Practices for Early Sizing and

 Scope Control of Software Applications 51
7. Best Practices for Outsourcing Software Applications 53
8. Best Practices for Using Contractors and Management Consultants 58
9. Best Practices for Selecting Software Methods, Tools, and Practices 59
10. Best Practices for Certifying Methods, Tools, and Practices 64
11. Best Practices for Requirements of Software Applications 70
12. Best Practices for User Involvement in Software Projects 72
13. Best Practices for Executive Management

 Support of Software Applications 74
14. Best Practices for Software Architecture and Design 75
15. Best Practices for Software Project Planning 77

3. Best Practices for Motivation and Morale of Managers and Executives 47

 16. Best Practices for Software Project Cost Estimating 79
 17. Best Practices for Software Project Risk Analysis 81
 18. Best Practices for Software Project Value Analysis 83
 19. Best Practices for Canceling or Turning Around Troubled Projects 84
 20. Best Practices for Software Project Organization Structures 87
 21. Best Practices for Training Managers of Software Projects 89
 22. Best Practices for Training Software Technical Personnel 91
 23. Best Practices for Use of Software Specialists 92
 24. Best Practices for Certifying Software

 Engineers, Specialists, and Managers 94
 25. Best Practices for Communication During Software Projects 97
 26. Best Practices for Software Reusability 99
 27. Best Practices for Certification of Reusable Materials 101
 28. Best Practices for Programming or Coding 107
 29. Best Practices for Software Project Governance 109
 30. Best Practices for Software Project Measurements and Metrics 110
 31. Best Practices for Software Benchmarks and Baselines 112
 32. Best Practices for Software Project Milestone and Cost Tracking 115
 33. Best Practices for Software Change Control Before Release 117
 34. Best Practices for Configuration Control 119
 35. Best Practices for Software Quality Assurance (SQA) 120
 36. Best Practices for Inspections and Static Analysis 124
 37. Best Practices for Testing and Test Library Control 128
 38. Best Practices for Software Security Analysis and Control 132
 39. Best Practices for Software Performance Analysis 134
 40. Best Practices for International Software Standards 136
 41. Best Practices for Protecting Intellectual Property in Software 136
 42. Best Practices for Protecting Against Viruses, Spyware, and Hacking 139
 43. Best Practices for Software Deployment and Customization 154
 44. Best Practices for Training Clients or Users of Software Applications 156
 45. Best Practices for Customer Support of Software Applications 157
 46. Best Practices for Software Warranties and Recalls 158
 47. Best Practices for Software Change Management After Release 160
 48. Best Practices for Software Maintenance and Enhancement 161
 49. Best Practices for Updates and Releases of Software Applications 164
 50. Best Practices for Terminating or Withdrawing Legacy Applications 166
 Summary and Conclusions 167
 Readings and References 167

Chapter 3. A Preview of Software Development
 and Maintenance in 2049 177

 Introduction 177
 Requirements Analysis Circa 2049 179
 Design Circa 2049 182
 Software Development Circa 2049 184
 User Documentation Circa 2049 186
 Customer Support in 2049 188
 Deployment and Customer Training in 2049 190

x Contents

 xi

 Maintenance and Enhancement in 2049 191
 Software Outsourcing in 2049 195
 Software Package Evaluation and Acquisition in 2049 204
 Technology Selection and Technology Transfer in 2049 207
 Enterprise Architecture and Portfolio Analysis in 2049 210
 A Preview of Software Learning in 2049 213
 Due Diligence in 2049 216
 Certification and Licensing in 2049 218
 Software Litigation in 2049 221
 Summary and Conclusions 225
 Readings and References 225

Chapter 4. How Software Personnel Learn New Skills 227

 Introduction 227
 The Evolution of Software Learning Channels 228
 What Topics Do Software Engineers Need to Learn Circa 2009? 230
 Software Engineering Specialists Circa 2009 233
 Varieties of Software Specialization Circa 2009 236
 Approximate Ratios of Specialists to General Software Personnel 241
 Evaluating Software Learning Channels Used by Software Engineers 243
 Software Areas Where Additional Education Is Needed 266
 New Directions in Software Learning 267
 Summary and Conclusions 268
 Curricula of Software Management and Technical Topics 268
 Readings and References 273

Chapter 5. Software Team Organization and Specialization 275

 Introduction 275
 Quantifying Organizational Results 276
 The Separate Worlds of Information Technology and Systems Software 277
 Colocation vs. Distributed Development 278
 The Challenge of Organizing Software Specialists 281
 Software Organization Structures from Small to Large 284
 One-Person Software Projects 284
 Pair programming for software development and maintenance 286
 Self-Organizing Agile Teams 289
 Team Software Process (TSP) Teams 293
 Conventional Departments with Hierarchical Organization Structures 298
 Conventional Departments with Matrix Organization Structures 304
 Specialist Organizations in Large Companies 308
 Software Maintenance Organizations 309
 Customer Support Organizations 322
 Software Test Organizations 328
 Software Quality Assurance (SQA) Organizations 342
 Summary and Conclusions 348
 Readings and References 349

Contents xi

Chapter 6. Project Management and Software Engineering 351

 Introduction 351
 Software Sizing 359
 Software Progress and Problem Tracking 403
 Software Benchmarking 408
 Summary and Conclusions 433
 Readings and References 434

Chapter 7. Requirements, Business Analysis, Architecture,
 Enterprise Architecture, and Design 437

 Introduction 437
 Software Requirements 439
 Statistical Analysis of Software Requirements 442
 Business Analysis 468
 Software Architecture 470
 Enterprise Architecture 475
 Software Design 479
 Summary and Conclusions 484
 Readings and References 485

Chapter 8. Programming and Code Development 489

 Introduction 489
 A Short History of Programming and Language Development 490
 Why Do We Have More than 2500 Programming Languages? 492
 Exploring the Popularity of Programming Languages 495
 How Many Programming Languages Are Really Needed? 499
 Creating a National Programming Language Translation Center 501
 Why Do Most Applications Use Between 2
 and 15 Programming Languages 504
 How Many Programmers Use Various Programming Languages? 506
 What Kinds of Bugs or Defects Occur in Source Code? 509
 Logistics of Software Code Defects 512
 Preventing and Removing Defects from Application Source Code 518
 Forms of Programming Defect Prevention 520
 Forms of Programming Defect Removal 529
 Economic Problems of the “Lines of Code” Metric 537
 Summary and Conclusions 552
 Readings and References 552

Chapter 9. Software Quality: The Key to Successful
 Software Engineering 555

 Introduction 555
 Defining Software Quality 558
 Measuring Software Quality 585
 Defect Prevention 600

xii Contents

 Software Defect Removal 613
 Software Quality Specialists 619
 Summary and Conclusions on Software Specialization 632
 The Economic Value of Software Quality 633
 Summary and Conclusions 642
 Readings and References 643

Index 645

Contents xiii

This page intentionally left blank

xv

Foreword

Software Engineering is about people—the people who have a need for
and use software, the people who build software, the people who test
software, the people who manage software projects, and the people who
support and maintain software. So why is it that the emphasis of soft-
ware engineering still concentrates on the technology?

How old is the business of software development? Let’s settle on
55 years. That means a full generation has moved through the industry.
These people were trained, spent their lives working on software, and
are now retired or close to retirement. In their time, they have seen
innumerable promises of “a better way”—silver bullets by the score.
There have been thousands of new programming languages, all manner
of methodologies, and a plethora of new tools. It sometimes seems as
if the software industry is as strongly driven by fads and fashion as
the garment industry. Many practitioners become apostolic in their
worship of a particular approach, practice, or tool—for a while at
least. But when the metrics are collected and analyzed, the sad truth
is revealed—as an industry we have not made a great deal of progress.
There have been no major breakthroughs that have led to the painless
production of quality software delivered on time and within a predicted
cost. And the skeptics ask, “Is software engineering an oxymoron?”

Our fixation on technology blinds us. We don’t want to, or can’t, see
the need to embrace basic, sound engineering practices. In this book,
Capers Jones contends that if the software industry wants to be rec-
ognized as an engineering discipline, rather than a craft, then it must
employ solid engineering practices to deliver an acceptable result, eco-
nomically. Technology is fascinating, but it is not the most important
factor when it comes to doing good work and delivering a good result.
The way people work, the choices they make, and the disciplines they
choose to apply, will have more impact on the success of a software
project than the choice of technology.

There must be times when Capers feels like a prophet alone in a desert.
He has been tirelessly providing the software industry with guidance

and instruction on how to become a profession and an engineering dis-
cipline. His efforts span 16 books over 28 years. There are times when I
wonder if he ever sleeps. Draft chapters of this book would arrive in my
inbox at all times of the night and day. When you read something and
think to yourself: Well, that makes sense; it’s obvious, really, you realize
the author has done a good job. Capers is such a writer. What he writes
is engaging, understandable, and practical. My copies of his books are
well thumbed, and festooned with Post-it notes. A sure sign of the books’
practical usefulness.

Capers has an ability to stand back and observe the essence of the
problems that still plague our industry. He is fearless in attacking prac-
tices that he sees as dangerous—in this book his targets are the use of
the measurements Cost per Defect and Lines of Code. His views will, no
doubt, be controversial, despite his well-reasoned dismantling of these
dangerous economic measures. Debate and discussion will rage—these
are long overdue. It takes a professional of Capers’ standing to light the
touch paper to ignite these debates.

Software quality also comes under the microscope in this book. He
describes software quality as the key factor to successful software engi-
neering—the driving factor that has more influence on software costs,
schedules, and success than any other. There will be controversy here
too as Capers challenges some common definitions of software quality.

Throughout the book, there is an emphasis on the need for measure-
ment and metrics. Capers is critical of the lack of measurement, and the
use of metrics that he describes as hazardous. The software industry
deserves to be critically questioned while it makes little use of measure-
ment and metrics. As Capers asserts, terms like “best practices” are an
embarrassment when we cannot present statistical evidence.

Software engineering is 55 years old; the time has come for it to
mature. In this book, Capers Jones’s emphasis on the people and man-
agement issues of software engineering point the way toward achieving
that maturity, and with it the prospect of the software industry being
recognized as an engineering discipline.

–Peter R. Hill
CEO

International Software Benchmarking Standards Group
(ISBSG) Limited

xvi Foreword

xvii

Acknowledgments

Thanks as always to my wife, Eileen, who has put up with the writing
of 16 books over 28 years.

Thanks also to the many colleagues who provided insights and help-
ful information for this book, and also for past books: Michael Bragen
and Doug Brindley, the CTO and president of my former company,
Software Productivity Research (SPR); Tom Cagley, the president of the
International Function Point Users Group (IFPUG); Bob Charrette, the
president of ITABHI; Ben Chelf, of Coverity Systems; Steven Cohen,
from Microsoft; Dr. Taz Doughtry, from James Madison University; Chas
Douglis, a former president of Software Productivity Research; Dr. Larry
Driben, the president of Pearl Street software; Gary Gack, president
of Process Fusion; Jonathan Glazer, the president of PowerBees; Scott
Goldfarb, the president of the Quality and Productivity Management
Group; Steve Heffner, CEO of Pennington Systems; Peter Hill, the CEO of
International Software Benchmarking Standards Group (ISBSG); Watts
Humphrey, from the Software Engineering Institute (SEI); Ken Hamer-
Hodges, the president of Sipantic; Dr. Steve Kan, from IBM Rochester; Dr.
Leon Kappleman, from the University of North Texas; Ravindra Karanam,
the CTO of Unisys software operations; Dov Levy, the president of Dovél
Systems; Dr. Tom Love, the president of Shoulders Corporation; Steve
McConnell, the president of Construx; Michael Milutis, the director of
the Information Technology Metrics and Productivity Institute (ITMPI);
Peter Mollins, the chief of marketing of Relativity Technology; Prasanna
Moses, from Unisys; Dr Walker Royce, the head of IBM’s Rational group;
Dr. Akira Sakakibara, a distinguished scientist from IBM Tokyo; Tony
Salvaggio, the president of Computer Aid Inc. (CAI); Paul Strassmann,
president of the Information Economics Press (and the former CIO of the
DoD); and Cem Tanyel, a vice president and general manager of Unisys
Application Development Services.

A special tribute should be given to two executives who did a great deal
to professionalize software. The late James H. Frame was director of IBM’s
Santa Teresa lab and then VP of the ITT Programming Development

Center at Stratford, Connecticut. The late Ted Climis was an IBM vice
president who recognized the critical role of software at IBM. Both men
clearly understood that software was vital to corporate business opera-
tions and that it needed to be designed and built to the highest standards
of excellence.

xviii Acknowledgments

xix

Introduction

Between the time this book was started and the time it was completed,
the global recession began. As a result, this book moved in a somewhat
different direction than older books dealing with software engineering.

Due to the recession, the book now includes material on dealing with
layoffs and downsizing; on the changing economic balance between the
United States and other countries; and on the economics of software
during a recessionary period.

Software engineering was not immediately affected by the financial
crisis and the recession when it started in 2008, but as time passed,
venture funds began to run out. Other forms of financing for software
companies became difficult, so by the middle of 2009, software engineer-
ing positions were starting to be affected by layoffs. Specialty positions
such as quality assurance and technical writing have been affected
even more severely, since such positions are often the first to go during
economic downturns.

One unexpected byproduct of the recession is that the availability of
software engineers combined with a reduction in compensation has made
the United States a candidate for becoming an outsource country.

As of 2009, the cost differentials between the United States, India,
and China are being lowered, and the convenience of domestic contracts
versus international contracts may prove to be beneficial for the soft-
ware engineering community of the United States.

As the recession continues, the high costs of software are being exam-
ined more seriously than in the past. The recession also highlights the
fact that software has always been insecure. Due to the recession, cyber-
crime such as the theft of valuable information, identity theft, and even
embezzlement are increasing rapidly. There are also sharp increases in
“phishing” or attempting to use false messages to gain access to personal
bank accounts.

From the author’s viewpoint, the recession is highlighting four critical
areas where software engineering needs to improve to become a solid
engineering discipline rather than a craft:

1. Software security needs to be improved organically by raising the
immunity levels of applications and including better security fea-
tures in programming languages themselves. Access control and
permissions are weak links in software engineering.

2. Software quality needs to be improved in terms of both defect preven-
tion methods and defect removal methods. Poor quality has damaged
the economics of software for 50 years, and this situation cannot con-
tinue. Every major application needs to use effective combinations of
inspections, static analysis, and testing. Testing alone is inadequate
to achieve high quality levels.

3. Software measurements need to be improved in order to gain better
understanding of the true economic picture of software development
and software maintenance. This implies moving to activity-based
costs. Better measurement also implies analyzing the flaws of tra-
ditional metrics such as “cost per defect” and “lines of code,” which
violate the rules of standard economics.

4. Due to the recession, new development is slowing down, so the eco-
nomics of software maintenance and renovation need to be better
understood. Methods of preserving and renovating legacy applica-
tions are increasingly important, as are methods of mining legacy
applications for “lost” requirements and business rules.

As of 2009, the great majority of companies and the great majority of
software engineers have no effective measurements of either productiv-
ity or quality. This is not a suitable situation for a true engineering dis-
cipline. Lack of measurements combined with hazardous metrics mean
that evaluating the effectiveness of methods such as Agile, Rational
Unified Process (RUP), and the Team Software Process (TSP) is harder
than it should be.

While the lack of measurements and the ability to judge the effective-
ness of software engineering methods and practices was inconvenient
when the economy was growing, it is a serious problem during a reces-
sion. Poor measurements have made phrases such as “best practices”
embarrassing for software, because a majority of the best-practice claims
have not been based on solid measurements using valid metrics.

This book attempts to show a combination of metrics and measure-
ments that can demonstrate effectiveness and hopefully place software
engineering on a sound economic basis. The “best practices” described

xx Introduction

herein are those where quantitative data provides at least a provisional
ability to judge effectiveness.

The book is divided into nine chapters, each of which deals with a set
of technical and social issues.

Chapter 1: Introduction and Definitions of Software Best Practices Because
many software applications may last for 25 years or more after they are
first delivered, software engineering is not just concerned with develop-
ment. Software engineering needs to consider the many years of main-
tenance and enhancement after delivery. Software engineering also
needs to include effective methods for extracting or “mining” legacy
applications to recover lost business rules and requirements.

There are more software engineers working on maintenance than
on new development. Many of the maintenance software engineers are
tasked with maintaining applications they did not develop, which may
be coded in “dead” languages, and where there are neither specifications
nor effective comments in the code itself.

Software engineering “best practices” are not a “one size fits all” tech-
nology. Evaluating best practices requires that the practices be under-
stood for small applications of 100 function points or below, medium
applications of 1000 function points, and large systems that may top
100,000 function points in size.

Further, the best practices that are effective for web applications
and information technology are not necessarily the same as those with
good results on embedded applications, systems software, and weapons
systems.

As a result of these two wide sets of variations, this book evaluates
best practices in terms of both application size and application type.

Chapter 2: Overview of 50 Software Best Practices This chapter discusses
50 software engineering best practices. Not all of the practices are
purely technical. For example, during recessionary periods, companies
have layoffs that if done poorly will damage operational effectiveness
for many years.

This chapter deals with development best practices, maintenance
best practices, management best practices, and sociological best prac-
tices such as those dealing with layoffs, which are often handled poorly
and eliminate too few managers and executives and too many software
engineers and specialists.

Methods other than layoffs such as reducing the work periods and
compensation of all employees are usually preferable to actual staff
reductions.

Introduction xxi

Other best-practice areas include security control, quality control,
risk analysis, governance, development, maintenance, and renovation
of legacy applications.

Portions of this chapter have served in software litigation where fail-
ure to conform to software engineering best practices were part of the
plaintiff ’s claims.

Chapter 3: A Preview of Software Development and Maintenance in 2049
When software engineering is viewed up close as it is practiced in 2009,
it is difficult to envision changes and improvements. Chapter 3 skips
ahead to 2049 and explores what software engineering might be like in a
world where all of us are connected via social networks, where the work
of software engineering can be divided easily among software engineers
who may live in many different countries.

The chapter also looks ahead to specific technical topics such as the
role of data mining in gathering requirements and the possible avail-
ability of substantial libraries of certified reusable material. Also pos-
sible are intelligent agents and search-bots that will accumulate and
even analyze information on critical topics.

Given the rapid rate of technological progress, it can be anticipated
that computing devices, networks, and communication channels will be
extremely sophisticated by 2049. But software engineering tends to lag
hardware. Significant improvements are needed in security, quality, and
reusability to keep pace with hardware and network evolution.

Chapter 4: How Software Personnel Learn New Skills Due in part to the
recession, publishers of paper books and also software journals are expe-
riencing severe economic problems and many are reducing staffs. Online
publishing and electronic books such as the Amazon Kindle and the
Sony PR-505 are rapidly expanding. Web publication, blogs, and Twitter
are also expanding in terms of both providers and users.

Chapter 4 evaluates 17 channels that are available for transmitting
and learning new software engineering information. Each channel is
ranked in terms of learning effectiveness and cost-effectiveness. Long-
range predictions are made as to the future of each channel.

Some of the learning channels evaluated include conventional paper
books, electronic books, software journals, electronic journals and blogs,
wiki sites, commercial education, in-house education, academic educa-
tion, live conferences, and webinars, or online conferences. Electronic
media have surpassed print media in terms of cost-effectiveness and are
challenging older media in terms of learning effectiveness.

Chapter 4 also suggests curricula for software engineers, software
quality assurance personnel, software test personnel, software project
office personnel, and software managers. While today’s academic curricula

xxii Introduction

are sufficient for mainstream software engineering, there is a shortage
of solid education on topics such as sizing, estimating, planning, secu-
rity, quality control, maintenance, renovation, and software engineering
economic analysis.

Software metrics are poorly served by the academic community, with
very little critical analysis of the flaws of common metrics such as cost
per defect and lines of code.

While functional metrics are taught in a number of universities, there
is little in the way of critical economic analysis of older metrics that
behave erratically or that violate the canons of manufacturing econom-
ics. In particular, the impact of fixed costs on productivity is not dealt
with, and this is the main reason why both lines of code and cost per
defect are invalid for economic analysis.

Chapter 5: Software Team Organization and Specialization Software engi-
neering organizations range from one person independent companies
that produce small applications up through massive organizations with
more than 1000 personnel who are part of companies that may employ
more than 50,000 software personnel.

Large software engineering organizations employ more than 90 kinds
of specialists in addition to software engineers themselves: quality
assurance, technical writers, database administration, security special-
ists, webmasters, and metrics specialists are a few examples.

Chapter 5 shows the results of many different kinds of organization
structures, including pair programming, small Agile teams, hierarchical
organizations, matrix organizations, and virtual organizations that are
geographically dispersed. It also shows the most effective ways of orga-
nizing specialists such as software quality assurance, testing, technical
documentation, and project offices.

For example, for large projects in large companies, separate mainte-
nance teams and separate test groups tend to be more effective than
having maintenance and testing performed by the development team
itself. Specialists and generalists must work together, and organization
structures have a strong impact on overall results.

Chapter 6: Project Management and Software Engineering It is common
knowledge that many software projects are sized incorrectly, estimated
incorrectly, and have schedules committed that are too short for the
capabilities of the development team. These lapses in project manage-
ment can cause the affected software projects to either fail completely
or to have serious cost and schedule overruns.

Chapter 6 deals with the critical management functions that can
cause software engineering failures if they are not done well: sizing,

Introduction xxiii

planning, estimating, progress tracking, resource tracking, benchmarks,
and change management.

Chapter 6 suggests that every software project larger than trivial
should collect both quality and productivity data that can be used for
baselines and benchmarks. Collecting data on productivity and quality
should be universal and not rare exceptions.

Careful measurement of methods utilized and results achieved is
a sign of professionalism. Failure to measure is a sign that “software
engineering” is not yet a true engineering discipline.

Chapter 7: Requirements, Business Analysis, Architecture, Enterprise
Architecture, and Design Long before any code can be written, it is nec-
essary to understand user requirements. These requirements need to
be mapped onto effective software architectures and then translated
into detailed designs. In addition, new applications need to be placed
in the context of the overall enterprise portfolio of applications. With
more than 20 forms of requirements methods and 40 kinds of design
methods, software engineers have a great many choices.

This chapter discusses the most widely used methods of dealing with
requirements and design issues and shows the classes and types of
applications for which they are best suited. Agile methods, the unified
modeling language (UML), and many other techniques are discussed.

The full portfolio for a large corporation circa 2009 can include more
than 5000 applications totaling more than 10 million function points.
The portfolio can include in-house applications, outsourced applications,
commercial applications, and open-source applications.

The portfolio can include web applications, information technology
applications, embedded software, and systems software. Due to the
recession, it is increasingly important for corporate executives to know
the size, contents, value, security levels, and quality levels of corporate
portfolios.

Portfolio analysis has been hampered in the past by the difficulty of
quantifying the sizes of various applications. New high-speed sizing
methods that operate on commercial applications and on open-source
applications as well as on in-house applications are beginning to elimi-
nate these historical problems. It is now possible to size thousands of
applications in a matter of a few days to a few weeks.

Chapter 8: Programming and Code Development This chapter deals with
programming and code development from an unusual viewpoint. As of
2009, there are about 2500 programming languages and dialects. This
chapter asks questions about why software engineering has so many
languages.

xxiv Introduction

Chapter 8 also asks whether the plethora of languages is helpful or
harmful to the software engineering profession. In addition, it discusses
the reasons many applications use between 2 and 15 different program-
ming languages. The general conclusion is that while some program-
ming languages do benefit software development, the existence of 2500
languages is a maintenance nightmare.

The chapter suggests the need for a National Programming
Translation Center that would record the syntax of all known lan-
guages and assist in converting applications written in dead languages
into modern languages.

The chapter also includes information on the kinds of bugs found in
source code, and the most effective “personal” methods of defect preven-
tion and defect removal that are carried out by software engineers prior
to public activities such as function and regression testing.

Personal software methods such as desk checking and unit testing
are normally not measured. However, volunteers do record information
on defects found via “private” defect removal activities, so some data is
available.

This chapter also discusses methods of measuring programming pro-
ductivity and quality levels. The chapter is controversial due to challeng-
ing the traditional “lines of code” (LOC) metric as being economically
invalid. The LOC metric penalizes high-level languages and distorts
economic analysis.

Already in 2009, the lines of code metric cannot deal with require-
ments, design, screens, or documentations. Collectively, the costs of these
noncode activities constitute more than 60 percent of total development
expenses.

The alternative is functional metrics, which can handle all known soft-
ware engineering activities. However, software functional metrics have
been slow and expensive. New high-speed functional metrics are starting
to appear circa 2009 that promise to expand the usage of such metrics.

Chapter 9: Software Quality: The Key to Successful Software Engineering
Quality has long been one of the weakest links in the chain of technologies
associated with software engineering. This chapter attempts to cover all
major factors that influence software quality, including both defect preven-
tion methods and defect removal methods.

The chapter discusses the strengths and weaknesses of formal inspec-
tions, static analysis, and 17 different kinds of testing. In addition, the
chapter deals with various troublesome metrics that degrade under-
standing software quality. For example, the popular “cost per defect”
metric actually penalizes quality and achieves the lowest cost for the
buggiest applications! In addition, quality has economic value far in

Introduction xxv

excess of the mere cost of removing defects, and this value cannot be
shown using cost per defect metrics.

The main theme of the chapter is that quality is the driving factor
that has more influence on software costs, schedules, and success than
any other. But poor measurement practices have made it difficult to
carry out valid software engineering economic studies.

This chapter is controversial because it challenges two common defi-
nitions of quality. The definition that quality means “conformance to
requirements” is challenged on the grounds that many requirements are
harmful or “toxic” and should not be implemented. The definition that
quality means conformance to a list of words ending in “ility,” such as
“portability,” is also challenged on the grounds that some of these terms
can be neither predicted nor measured. Quality needs a definition that
can be predicted before applications begin and measured when they
are complete.

Quality is the key to successful software engineering. But before the
key can unlock a door to real professionalism, it is necessary to know
how to measure software quality and also software economics. The chap-
ter concludes that an activity that cannot measure its own results is
not a true engineering discipline. It is time for software engineering
to study critical topics such as defect potentials and defect removal
efficiency levels.

As of 2009, most projects have far too many bugs or defects, and remove
less than 85 percent of these prior to delivery. Every software engineer
and every software project manager should know what combination of
inspections, static analysis, and test stages is needed to achieve defect
removal efficiency levels that approach 99 percent. Without such knowl-
edge based on measurements, software engineering is a misnomer, and
software development is only a craft and not a true profession.

Overall Goals of Software Engineering Best Practices One of the inspira-
tions for this book was an older book from 1982. The older book was Paul
Starr’s Pulitzer Prize winner, The Social Transformation of American
Medicine.

Until I read Paul Starr’s book, I did not realize that 150 years ago,
medical degrees were granted after two years of study, without any
internships or residency requirements. In fact, most physicians-in-
training never entered a hospital while in medical school. Even more
surprising, medical schools did not require either a college degree or a
high-school diploma for admission. More than 50 percent of U.S. physi-
cians never went to college.

Paul Starr’s book detailed the attempts of the American Medical
Association to improve academic training of physicians, establish a
canon of professional malpractice to weed out quacks, and to improve

xxvi Introduction

the professional status of physicians. There are many lessons in Paul
Starr’s book that would be valuable for software engineering.

The primary goal of this book on software engineering best practices is
to provide incentive for putting software engineering on a solid basis of
facts derived from accurate measurement of quality and productivity.

As the recession continues, there is an increasing need to minimize
software failures, speed up software delivery, and reduce software main-
tenance expenses. These needs cannot be accomplished without careful
measurements of the effectiveness of tools, methods, languages, and
software organization structures.

Accurate measurement is the key that will unlock better software
quality and security. Better software quality and security are the keys
that will allow software engineering to become a true profession that is
equal to older engineering fields in achieving successful results.

Measurement of software engineering results will also lead to more
and better benchmarks, which in turn will provide solid proofs of soft-
ware engineering methods that have proven to be effective. The over-
all themes of the book are the need for better measurements, better
benchmarks, better quality control, and better security as precursors
to successful software engineering.

Introduction xxvii

This page intentionally left blank

1

Chapter

 1
Introduction and Definitions

of Software Best Practices

As this book was being written, the worst recession of the 21st century
abruptly started on September 15, 2008, with the bankruptcy filing of
Lehman Brothers. All evidence to date indicates a deep and prolonged reces-
sion that may last for more than a year. In spite of signs of partial recovery
in mid 2009, job losses continue to rise as do foreclosures and bankruptcies.
Even the most optimistic projections of recovery are pointing to late 2010,
while pessimistic projections are pointing towards 2011 or 2012. Indeed,
this recession may cause permanent changes in the financial industry, and
it is unclear when lost jobs will return. So long as unemployment rates top
10 percent in many states, the economy cannot be healthy.

Software is not immune to the failing economy. Many software compa-
nies will close, and thousands of layoffs will occur as companies contract
and try to save money.

Historically, software costs have been a major component of corporate
expense. Software costs have also been difficult to control, and have been
heavily impacted by poor quality, marginal security, and other chronic
problems.

Poor software engineering, which gave rise to seriously flawed eco-
nomic models, helped cause the recession. As the recession deepens, it
is urgent that those concerned with software engineering take a hard
look at fundamental issues: quality, security, measurement of results,
and development best practices. This book will discuss the following
topics that are critical during a major recession:

■ Minimizing harm from layoffs and downsizing
■ Optimizing software quality control
■ Optimizing software security control

1

2 Chapter One

■ Migration from custom development to certified reusable components
■ Substituting legacy renovation for new development
■ Measuring software economic value and risk
■ Planning and estimating to reduce unplanned overruns

This book does not offer panaceas, but it does discuss a number of
important technical areas that need improvement if software engineering
is to become a legitimate term for an occupation that has been a craft or
art form rather than a true engineering field.

So long as software applications are hand-coded on a line-by-line basis,
“software engineering” will be a misnomer. Switching from custom-
development to construction from certified reusable components has
the best prospect of making really significant improvements in both
software engineering disciplines and in software cost structures.

More than a dozen excellent books are in print in 2009 on the topic
of software engineering. Readers might well ask why another book on
software engineering is needed. The main reason can be seen by consid-
ering the major cost drivers of large software applications. As of 2009,
the results are distressing.

From working as an expert witness in software litigation, and from
examining the software engineering results of more than 600 companies
and government organizations, the author has found that the software
industry spends more money on finding bugs and on cancelled projects
than on anything else! As of 2009, the 15 major cost drivers of the soft-
ware industry in descending order are shown in Table 1-1.

(Note that topic #3, “Producing English words,” refers to the 90 docu-
ments associated with large software projects. Many large software
applications spend more time and money creating text documents than
they do creating source code.)

These 15 major cost drivers are not what they should be for a true
engineering field. Ideally, we in the field should be spending much more

 1. Finding and fixing bugs 9. Project management

 2. Cancelled projects 10. Renovation and migration

 3. Producing English words 11. Innovation (new kinds of software)

 4. Security flaws and attacks 12. Litigation for failures and disasters

 5. Requirements changes 13. Training and learning software

 6. Programming or coding 14. Avoiding security flaws

 7. Customer support 15. Assembling reusable components

 8. Meetings and communication

TABLE 1-1 Major Cost Drivers for Software Applications Circa 2009

Introduction and Definitions of Software Best Practices 3

money on innovation and programming, and much less money on fixing
bugs, cancelled projects, and problems of various kinds, such as combat-
ing security flaws. In a true engineering field, we should also be able
to use far greater quantities of zero-defect reusable components than
today’s norms.

One goal of this book is to place software engineering excellence and
best practices on a sound quantitative basis. If software engineering
can become a true engineering discipline in which successful projects
outnumber failures, cost drivers will be transformed. A goal of this book
is to help transform software cost drivers, hopefully within ten years, so
that they follow a pattern illustrated by Table 1-2.

Under this revised set of cost drivers, defect repairs, failures, and
cancelled projects drop from the top of the list to the bottom. Recovery
from security attacks would also shift toward the bottom due to better
security controls during development.

Heading up the revised list would be innovation and the creation
of new forms of software. Programming is only in 11th place, because
a true engineering discipline would be able to utilize far more zero-
defect reusable components than is possible in 2009. The revised list
of cost drivers shows what expenditure patterns might look like if
software engineering becomes a true profession instead of a craft that
uses only marginal methods that frequently lead to failure instead of
to success.

Since the software industry is now more than 60 years old, renovation,
migration, and maintenance of legacy applications would still remain
near the top of the list of cost drivers, even if software engineering were
to become a true engineering discipline instead of a craft as it is today.
In every industry older than 50 years, maintenance and enhancement
work are major cost elements.

That brings up another purpose of this book. This book examines
best practices for the entire life cycle of software applications, from
early requirements through deployment and then through maintenance.
Since some large applications are used for 30 years or more, this book

 1. Innovation (new kinds of software) 9. Requirements changes

 2. Renovation and migration 10. Producing English words

 3. Customer support 11. Programming or coding

 4. Assembling reusable components 12. Finding and fixing bugs

 5. Meetings and communications 13. Security flaws and attacks

 6. Avoiding security flaws 14. Cancelled projects

 7. Training and learning software 15. Litigation for failures and disasters

 8. Project management

TABLE 1-2 Revised Sequence of Cost Drivers Circa 2019

4 Chapter One

covers a very wide range of topics. It deals not only with development
best practices, but also with deployment best practices, maintenance
and renovation best practices, and, eventually, best practices for with-
drawal of applications when they finally end their useful lives.

Since many large projects fail and are never completed or delivered
at all, this book also deals with best practices for attempting to turn
around and salvage projects that are in trouble. If the project’s value has
turned negative so that salvage is not a viable option, this book will also
consider best practices for termination of flawed applications.

For software, the software personnel in 2009 working on maintenance
and enhancements of legacy applications outnumber the workers on
new applications, yet the topics of maintenance and enhancement are
underreported in the software engineering literature.

In spite of many excellent books on software engineering, we still
need to improve quality control and security control in order to free
up resources for innovation and for improved forms of software appli-
cations. We also need to pay more attention to maintenance and to
enhancements of legacy applications.

As of 2009, the software industry spends more than 50 cents out of
every dollar expended on software to fix bugs and deal with security
flaws or disasters such as cancelled projects. Actual innovation and new
forms of software get less than 10 cents out of every dollar.

If we can professionalize our development practices, quality practices,
and security practices, it is hoped that disasters, bug repairs, and secu-
rity repairs can drop below 15 cents out of every dollar. If this occurs,
then the freed-up funds should allow as much as 40 cents out of every
dollar to go to innovative new kinds of software.

Software applications of 10,000 function points (unit of measure of
the business functionality an information system provides) cost around
$2,000 per function point from the start of requirements until delivery.
Of this cost, more than $800 per function point will be spent on finding
and fixing bugs that probably should not be there in the first place. Such
large applications, if delivered at all, take between 48 and 60 months.
The overall costs are far too high, and the distribution of those costs
indicates very poor engineering practices.

By means of better defect prevention methods and utilization of zero-
defect reusable material, we would greatly improve the economic posi-
tion of software engineering if we could develop 10,000–function point
applications for less than $500 per function point, and could spend less
than $100 per function point on finding and fixing bugs. Development
schedules of between 12 and 18 months for 10,000 function points would
also be valuable, since shorter schedules allow quicker responses to
changing market conditions. These goals are theoretically possible
using state-of-the-art software methods and practices. But moving from

Introduction and Definitions of Software Best Practices 5

theory to practical reality will require major transformation in quality
control and also migration from line-by-line coding to construction of
applications from zero-defect standard components. An open question is
whether this transformation can be accomplished in ten years. It is not
certain if ten years are sufficient, but it is certain that such profound
changes won’t occur in less than ten years.

As of 2009, large software projects are almost always over budget,
usually delivered late, and are filled with bugs when they’re finally
delivered. Even worse, as many as 35 percent of large applications in
the 10,000–function point or more size range will be cancelled and never
delivered at all.

Since cancelled projects are more expensive than successfully com-
pleted projects, the waste associated with large software applications
is enormous. Completed software applications in the range of 10,000
function points cost about $2,000 per function point to build. But can-
celled projects in the 10,000–function point range cost about $2,300
per function point since they are usually late and over budget at the
point of cancellation!

The software industry has the highest failure rate of any so-called
engineering field. An occupation that runs late on more than 75 percent
of projects and cancels as many as 35 percent of large projects is not a
true engineering discipline.

Once deployed and delivered to users, software applications in the
10,000–function point range have annual maintenance and enhance-
ment costs of between $200 and $400 per function point per calendar
year. Of these costs, about 50 percent goes to fixing bugs, and the other
50 percent goes to enhancements or adding new features.

Here, too, cost improvements are needed. Ideally, defect repair costs
should come down to less than $25 per function point per year. Use of
maintenance workbenches and renovation tools should drop enhance-
ment costs down below $75 per function point per year. A weak link
in maintenance and enhancement is that of customer support, which
remains highly labor intensive and generally unsatisfactory.

Testimony and depositions noted during litigation in which the author
worked as an expert witness revealed that many software projects that
end up in court due to cancellation or excessive overruns did not follow
sound engineering practices. Five common problems occurred with can-
celled or disastrous projects:

■ Estimates prior to starting the project were inaccurate and exces-
sively optimistic.

■ Quality control during the project was inadequate.
■ Change control during the project was inadequate.

6 Chapter One

■ Tracking of progress during development was severely inadequate or
even misleading.

■ Problems were ignored or concealed rather than dealt with rapidly
and effectively when they first were noted.

When successful projects are examined after completion and delivery,
the differences between success and failure become clear. Successful soft-
ware projects are good at planning and estimating, good at quality control,
good at change management, good at tracking progress, and good at resolv-
ing problems rather than ignoring them. Successful software projects tend
to follow sound engineering practices, but failing projects don’t.

Depositions and court testimony reveal more subtle and deeper issues.
As of 2009, an increasing amount of quantitative data can provide con-
vincing proof that certain methods and activities are valuable and that
others are harmful. For example, when schedules start to slip or run
late, managers often try to recover by taking unwise actions such as
bypassing inspections or trying to shorten testing. Such actions always
backfire and make the problems worse. Why don’t software project man-
agers know that effective quality control shortens schedules and that
careless quality control lengthens them?

One reason for making such mistakes is that although many books on
software engineering and quality tell how to go about effective quality
control, they don’t provide quantitative results. In other words, what
the software engineering community needs is not more “how to do it”
information, but rather information on “what will be the results of using
this method?” For example, information such as the following would be
very useful:

“A sample of 50 projects of 10,000 function points was examined. Those
using design and code inspections averaged 36 months in development
schedules and achieved 96 percent defect removal efficiency levels.”

“A sample of 125 similar projects of 10,000 function points that did not use
design and code inspections was examined. Of this sample, 50 were cancelled
without completion, and the average schedule for the 75 completed applica-
tions was 60 months. Defect removal efficiency averaged only 83 percent.”

There is a major need to quantify the results of software development
methods and approaches such as Agile development, waterfall develop-
ment, Six Sigma for software, the Capability Maturity Model Integrated
(CMMI), inspections, the Rational Unified Process (RUP), Team Software
Process (TSP), and many more. This book will attempt to provide quanti-
tative information for many common development methods. Note, how-
ever, that hybrid approaches are also common, such as using the Team
Software Process (TSP) in conjunction with the Capability Maturity

Introduction and Definitions of Software Best Practices 7

Model Integrated (CMMI). Common hybrid forms will be discussed, but
there are too many variations to deal with all of them.

What Are “Best Practices” and How
Can They Be Evaluated?

A book entitled Software Engineering Best Practices should start by
defining exactly what is meant by the phrase “best practice” and then
explain where the data came from in order to include each practice in
the set. A book on best practices should also provide quantitative data
that demonstrates the results of best practices.

Because practices vary by application size and type, evaluating them
is difficult. For example, the Agile methods are quite effective for proj-
ects below about 2,500 function points, but they lose effectiveness rap-
idly above 10,000 function points. Agile has not yet even been attempted
for applications in the 100,000–function point range and may even be
harmful at that size.

To deal with this situation, an approximate scoring method has been
developed that includes both size and type. Methods are scored using a
scale that runs from +10 to –10 using the criteria shown in Table 1-3.
Both the approximate impact on productivity and the approximate
impact on quality are included. The scoring method can be applied to
specific ranges such as 1000 function points or 10,000 function points.
It can also be applied to specific types of software such as information
technology, web application, commercial software, military software, and
several others. The scoring method runs from a maximum of +10 to a
minimum of –10, as shown in Table 1-3.

The midpoint or “average” against which improvements are measured
are traditional methods such as waterfall development performed by
organizations either that don’t use the Software Engineering Institute’s
Capability Maturity Model or that are at level 1. This fairly primitive
combination remains more or less the most widely used development
method even in 2009.

One important topic needs to be understood. Quality needs to be
improved faster and to a higher level than productivity in order for
productivity to improve at all. The reason for this is that finding and
fixing bugs is overall the most expensive activity in software develop-
ment. Quality leads and productivity follows. Attempts to improve pro-
ductivity without improving quality first are ineffective.

For software engineering, a historically serious problem has been that
measurement practices are so poor that quantified results are scarce.
There are many claims for tools, languages, and methodologies that assert
each should be viewed as a best practice. But empirical data on their
actual effectiveness in terms of quality or productivity has been scarce.

8 Chapter One

This book attempts a different approach. To be described as a best
practice, a language, tool, or method needs to be associated with soft-
ware projects in the top 15 percent of the applications measured and
studied by the author and his colleagues. To be included in the set of best
practices, a specific method or tool has to demonstrate by using quan-
titative data that it improves schedules, effort, costs, quality, customer
satisfaction, or some combination of these factors. Furthermore, enough
data needs to exist to apply the scoring method shown in Table 1-3.

This criterion brings up three important points:

Point 1: Software applications vary in size by many orders of magni-
tude. Methods that might be ranked as best practices for small programs
of 1000 function points may not be equally effective for large systems
of 100,000 function points. Therefore this book and the scoring method
use size as a criterion for judging “best in class” status.

Score Productivity Improvement Quality Improvement

 10 25% 35%

 9 20% 30%

 8 17% 25%

 7 15% 20%

 6 12% 17%

 5 10% 15%

 4 7% 10%

 3 3% 5%

 2 1% 2%

 1 0% 0%

 0 0% 0%

 –1 0% 0%

 –2 –1% –2%

 –3 –3% –5%

 –4 –7% –10%

 –5 –10% –15%

 –6 –12% –17%

 –7 –15% –20%

 –8 –17% –25%

 –9 –20% –30%

–10 –25% –35%

TABLE 1-3 Scoring Ranges for Software Methodologies and Practices

Introduction and Definitions of Software Best Practices 9

Point 2: Software engineering is not a “one size fits all” kind of occu-
pation. There are many different forms of software, such as embedded
applications, commercial software packages, information technology
projects, games, military applications, outsourced applications, open
source applications, and several others. These various kinds of software
applications do not necessarily use the same languages, tools, or devel-
opment methods. Therefore this book considers the approaches that
yield the best results for each type of software application.

Point 3: Tools, languages, and methods are not equally effective or
important for all activities. For example, a powerful programming lan-
guage such as Objective C will obviously have beneficial effects on
coding speed and code quality. But which programming language is
used has no effect on requirements creep, user documentation, or proj-
ect management. Therefore the phrase “best practice” also has to iden-
tify which specific activities are improved. This is complicated because
activities include development, deployment, and post-deployment
maintenance and enhancements. Indeed, for large applications, devel-
opment can take up to five years, installation can take up to one year,
and usage can last as long as 25 years before the application is finally
retired. Over the course of more than 30 years, hundreds of activities
will occur.

The result of the preceding factors is that selecting a set of best prac-
tices for software engineering is a fairly complicated undertaking. Each
method, tool, or language needs to be evaluated in terms of its effective-
ness by size, by application type, and by activity. This book will discuss
best practices in a variety of contexts:

■ Best practices by size of the application

■ Best practices by type of software (embedded, web, military, etc.)

■ Best practices by activity (development, deployment, and mainte-
nance)

In 2009, software engineering is not yet a true profession with state
certification, licensing, board examinations, formal specialties, and a
solid body of empirical facts about technologies and methods that have
proven to be effective. There are, of course, many international stan-
dards. Also, various kinds of certification are possible on a voluntary
basis. Currently, neither standards nor certification have demonstrated
much in the way of tangible improvements in software success rates.

This is not to say that certification or standards have no value, but
rather that proving their value by quantification of quality and productiv-
ity is a difficult task. Several forms of test certification seem to result in
higher levels of defect removal efficiency than observed when uncertified

10 Chapter One

testers work on similar applications. Certified function-point counters
have been shown experimentally to produce more accurate results than
uncertified counters when counting trial examples. However, much better
data is needed to make a convincing case that would prove the value of
certification.

As to standards, the results are very ambiguous. No solid empiri-
cal data indicates, for example, that following ISO quality standards
results in either lower levels of potential defects or higher levels of
defect removal efficiency. Some of the security standards seem to show
improvements in reduced numbers of security flaws, but the data is
sparse and unverified by controlled studies.

Multiple Paths for Software Development,
Deployment, and Maintenance

One purpose of this book is to illustrate a set of “paths” that can be fol-
lowed from the very beginning of a software project all the way through
development and that lead to a successful delivery. After delivery, the
paths will continue to lead through many years of maintenance and
enhancements.

Because many paths are based on application size and type, a network
of possible paths exists. The key to successful software engineering is to
find the specific path that will yield the best results for a specific project.
Some of the paths will include Agile development, and some will include
the Team Software Process (TSP). Some paths will include the Rational
Unified Process (RUP), and a few might even include traditional water-
fall development methods.

No matter which specific path is used, the destination must include
fundamental goals for the application to reach a successful conclusion:

■ Project planning and estimating must be excellent and accurate.
■ Quality control must be excellent.
■ Change control must be excellent.
■ Progress and cost tracking must be excellent.
■ Measurement of results must be excellent and accurate.

Examples of typical development paths are shown in Figure 1-1. This
figure illustrates the development methods and quality practices used
for three different size ranges of software applications.

To interpret the paths illustrated by Figure 1-1, the Methods boxes
near the top indicate the methods that have the best success rates. For
example, at fewer than 1000 function points, Agile has the most suc-
cess. But for larger applications, the Team Software Process (TSP) and

Introduction and Definitions of Software Best Practices 11

Personal Software Process (PSP) have the greatest success. However,
all of the methods in the boxes have been used for applications of the
sizes shown, with reasonable success.

Moving down, the Defect Prevention and Defect Removal boxes show
the best combinations of reviews, inspections, and tests. As you can see,
larger applications require much more sophistication and many more
kinds of defect removal than small applications of fewer than 1000
function points.

Figure 1-1 Development practices by size of application

Size

Start

Small (< 1000 FP) Large (> 10,000 FP)

Medium (1000–10,000 FP)

EndEndEnd

Methods

1) Agile
2) TSP/PSP
3) Waterfall
4) CMM 1, 2

Methods

1) TSP/PSP
2) Agile
3) CMM 3
4) RUP

Methods

1) TSP/PSP
2) CMM 3, 4, 5
3) RUP
4) Hybrid

Defect Prevention

1) Embedded user
2) Scrum
3) JAD
4) Reuse

Defect Prevention

1) Six Sigma
2) QFD
3) JAD
4) Reuse
5) Embedded user

Defect Prevention

1) Six Sigma
2) QFD
3) JAD
4) Data mining
5) Reuse (certified)

Defect Removal

1) Peer review
2) Unit test
3) Function test
4) Beta test

Defect Removal

1) Code inspection
2) Automated static analysis
3) Unit test
4) Function test
5) Regression test
6) Performance test
7) System test
8) Beta test

Defect Removal

1) Requirements inspection
2) Design inspection
3) Code inspection
4) Test plan inspection
5) SQA review
6) Automated static analysis
7) Unit test
8) Function test
9) Regression test
10) Performance test
11) Security test
12) Usability test
13) SQA test
14) System test
15) Beta test

12 Chapter One

Continuing with the analogy of paths, there are hundreds of paths
that can lead to delays and disasters, while only a few paths lead to
successful outcomes that combine high quality, short schedules, and low
costs. In fact, traversing the paths of a major software project resembles
going through a maze. Most of the paths will be dead ends. But examin-
ing measurement and quantitative data is like looking at a maze from
a tall ladder: they reveal the paths that lead to success and show the
paths that should be avoided.

Paths for Software Deployment

Best practices are not limited to development. A major gap in the lit-
erature is that of best practices for installing or deploying large appli-
cations. Readers who use only personal computer software such as
Windows Vista, Microsoft Office, Apple OS X, Intuit Quicken, and the
like may wonder why deployment even matters. For many applications,
installation via download, CD, or DVD may require only a few minutes.
In fact, for Software as a Service (SaaS) applications such as the Google
word processing and spreadsheet applications, downloads do not even
occur. These applications are run on the Google servers and are not in
the users’ computers at all.

However, for large mainframe applications such as telephone switch-
ing systems, large mainframe operating systems, and enterprise resource
planning (ERP) packages, deployment or installation can take a year
or more. This is because the applications are not just installed, but
require substantial customization to match local business and techni-
cal needs.

Also, training of the users of large applications is an important and
time-consuming activity that might take several courses and several
weeks of class time. In addition, substantial customized documentation
may be created for users, maintenance personnel, customer support
personnel, and other ancillary users. Best practices for installation of
large applications are seldom covered in the literature, but they need
to be considered, too.

Not only are paths through software development important, but also
paths for delivery of software to customers, and then paths for main-
tenance and enhancements during the active life of software applica-
tions. Figure 1-2 shows typical installation paths for three very different
situations: Software as a Service, self-installed applications, and those
requiring consultants and installation specialists.

Software as a Service (SaaS) requires no installation. For self-installed
applications, either downloads from the Web or physical installation via
CD or DVD are common and usually accomplished with moderate ease.
However, occasionally there can be problems, such as the release of a

Introduction and Definitions of Software Best Practices 13

Norton AntiVirus package that could not be installed until the previous
version was uninstalled. However, the previous version was so convo-
luted that the normal Windows uninstall procedure could not remove
it. Eventually, Symantec had to provide a special uninstall tool (which
should have been done in the first place).

However, the really complex installation procedures are those associ-
ated with large mainframe applications that need customization as well
as installation. Some large applications such as ERP packages are so
complicated that sometimes it takes install teams of 25 consultants and
25 in-house personnel a year to complete installation.

Because usage of these large applications spans dozens of different
kinds of users in various organizations (accounting, marketing, customer

Start

Install
Method

SaaS Vendor Install

Learn online
or

from vendor

Download
or install

from CD or DVD

Select
Deployment

Team

Begin to use
software

Self install

Customize and
install

application

Begin to use
software

Select classes
for users

and support
teams

Learn online
or from

vendor or books

Begin to use
software

EndEndEnd

Figure 1-2 Deployment practices by form of deployment

14 Chapter One

support, manufacturing, etc.), a wide variety of custom user manuals
and custom classes need to be created.

From the day large software packages are delivered until they are
cut-over and begin large-scale usage by all classes of users, as long as a
year can go by. Make no mistake: installation, deployment, and training
users of large software applications is not a trivial undertaking.

Paths for Maintenance and Enhancements

Once software applications are installed and start being used, several
kinds of changes will occur over time:

■ All software applications have bugs or defects, and as these are found,
they will need to be repaired.

■ As businesses evolve, new features and new requirements will sur-
face, so existing applications must be updated to keep them current
with user needs.

■ Government mandates or new laws such as changes in tax structures
must be implemented as they occur, sometimes on very short notice.

■ As software ages, structural decay always occurs, which may slow
down performance or cause an increase in bugs or defects. Therefore
if the software continues to have business value, it may be necessary
to “renovate” legacy applications. Renovation consists of topics such
as restructuring or refactoring to lower complexity, identification and
removal of error-prone modules, and perhaps adding features at the
same time. Renovation is a special form of maintenance that needs
to be better covered in the literature.

■ After some years of usage, aging legacy applications may outlive
their utility and need replacement. However, redeveloping an exist-
ing application is not the same as starting a brand-new application.
Existing business rules can be extracted from the code using data-
mining techniques, since the original requirements and specifications
usually lag and are not kept current.

Therefore, this book will attempt to show the optimal paths not only
for development, but also for deployment, maintenance, and enhance-
ments. Figure 1-3 illustrates three of the more common and important
paths that are followed during the maintenance period.

As can be seen from Figure 1-3, maintenance is not a “one size fits
all” form of modification. Unfortunately, the literature on software
maintenance is very sparse compared with the literature on software
development. Defect repairs, enhancements, and renovations are very
different kinds of activities and need different skill sets and sometimes
different tools.

Introduction and Definitions of Software Best Practices 15

Start

Form of
changes

Defect repair Renovation

Enhancement

Customer
support

Data mining
for embedded
requirements

Change
team

New user
requirements

New user
requirements

New mandates
and laws

Competitive
requirements

New mandates
and laws

Competitive
requirements

Change
team

Change
team

Release

1) Refactoring
2) Restructuring
3) Inspection
4) Static analysis
5) Regression test
6) Function test
7) System test

Figure 1-3 Major forms of maintenance and enhancement

16 Chapter One

Developing a major application in the 10,000 to 100,000 function-point
size range is a multiyear undertaking that can easily last five years.
Deploying such an application can take from 6 months to 12 months.
Once installed, large software applications can continue to be used for
25 years or more. During usage, enhancements and defect repairs will
be continuous. At some point, renovation or restoring the application
to reduce complexity and perhaps migrate to new file structures or
new programming languages might occur. Therefore, analysis of best
practices needs to span at least a 30-year period. Development alone is
only a fraction of the total cost of ownership of major software applica-
tions. This book will take a long view and attempt to encompass all best
practices from the first day a project starts until the last user signs off,
perhaps 30 years later.

Quantifying Software Development,
Deployment, and Maintenance

This book will include productivity benchmarks, quality benchmarks,
and data on the effectiveness of a number of tools, methodologies, and
programming practices. It will also include quantitative data on the
costs of training and deployment of methodologies. The data itself comes
from several sources. The largest amount of data comes from the author’s
own studies with hundreds of clients between 1973 and 2009.

Other key sources of data include benchmarks gathered by Software
Productivity Research LLC (SPR) and data collected by the nonprofit
International Software Benchmarking Standards Group (ISBSG). In
addition, selected data will be brought in from other sources. Among
these other sources are the David Consulting Group, the Quality/
Productivity (Q/P) consulting group, and David Longstreet of Longstreet
consulting. Other information sources on best practices will include
the current literature on software engineering and various portals into
the software engineering domain such as the excellent portal provided
by the Information Technology Metrics and Productivity Institute
(ITMPI). Information from the Software Engineering Institute (SEI)
will also be included. Other professional associations such as the Project
Management Institute (PMI) and the American Society for Quality
(ASQ) will be cited, although they do not publish very much quantita-
tive data.

All of these sources provide benchmark data primarily using func-
tion points as defined by the International Function Point Users Group
(IFPUG). This book uses IFPUG function points for all quantitative data
dealing with quality and productivity.

There are several other forms of function point, including COSMIC
(Common Software Measurement International Consortium) function

Introduction and Definitions of Software Best Practices 17

points and Finnish function points. While data in these alternative met-
rics will not be discussed at length in this book, citations to sources of
benchmark data will be included. Other metrics such as use case points,
story points, and goal-question metrics will be mentioned and references
provided.

(It is not possible to provide accurate benchmarks using either lines of
code metrics or cost per defect metrics. As will be illustrated later, both
of these common metrics violate the assumptions of standard econom-
ics, and both distort historical data so that real trends are concealed
rather than revealed.)

On the opposite end of the spectrum from best practices are worst
practices. The author has been an expert witness in a number of breach-
of-contract lawsuits where depositions and trial documents revealed the
major failings that constitute worst practices. These will be discussed
from time to time, to demonstrate the differences between the best and
worst practices.

In between the sets of best practices and worst practices are many
methods and practices that might be called neutral practices. These may
provide some benefits for certain kinds of applications, or they may be
slightly harmful for others. But in neither case does use of the method
cause much variation in productivity or quality.

This book attempts to replace unsupported claims with empirical data
derived from careful measurement of results. When the software indus-
try can measure performance consistently and accurately, can estimate
the results of projects with good accuracy, can build large applications
without excessive schedule and cost overruns, and can achieve excel-
lence in quality and customer satisfaction, then we can call ourselves
“software engineers” without that phrase being a misnomer. Until our
successes far outnumber our failures, software engineering really cannot
be considered to be a serious and legitimate engineering profession.

Yet another major weakness of software engineering is a widespread
lack of measurements. Many software projects measure neither produc-
tivity nor quality. When measurements are attempted, many projects
use metrics and measurement approaches that have serious flaws. For
example, the most common metric in the software world for more than
50 years has been lines of code (LOC). As will be discussed in Chapter 6
later in this book, LOC metrics penalize high-level languages and can’t
measure noncode activities at all. In the author’s view, usage of lines of
code for economic studies constitutes professional malpractice.

Another flawed metric is that of cost per defect for measuring quality.
This metric actually penalizes quality and achieves its lowest values
for the buggiest applications. Cost per defect cannot be used to measure
zero-defect applications. Here, too, the author views cost per defect as
professional malpractice if used for economic study.

18 Chapter One

Mathematical problems with the cost per defect metric have led to the
urban legend that “it costs 100 times as much to fix a bug after delivery
as during development.” This claim is not based on time and motion
studies, but is merely due to the fact that cost per defect goes up as
numbers of defects go down. Defect repairs before and after deployment
take about the same amount of time. Bug repairs at both times range
from 15 minutes to more than eight hours. Fixing a few subtle bugs can
take much longer, but they occur both before and after deployment.

Neither lines of code nor cost per defect can be used for economic
analysis or to demonstrate software best practices. Therefore this book
will use function point metrics for economic study and best-practice
analysis. As mentioned, the specific form of function point used is that
defined by the International Function Point Users Group (IFPUG).

There are other metrics in use such as COSMIC function points, use
case points, story points, web object points, Mark II function points,
Finnish function points, feature points, and perhaps 35 other function
point variants. However, as of 2008, only IFPUG function points have
enough measured historical data to be useful for economic and best-
practice analysis on a global basis. Finnish function points have sev-
eral thousand projects, but most of these are from Finland where the
work practices are somewhat different from the United States. COSMIC
function points are used in many countries, but still lack substantial
quantities of benchmark data as of 2009 although this situation is
improving.

This book will offer some suggested conversion rules between other
metrics and IFPUG function points, but the actual data will be expressed
in terms of IFPUG function points using the 4.2 version of the counting
rules.

As of this writing (late 2008 and early 2009), the function point com-
munity has discussed segmenting function points and using a separate
metric for the technical work of putting software onto various platforms,
or getting it to work on various operating systems. There is also discus-
sion of using a separate metric for the work associated with quality, such
as inspections, testing, portability, reliability, and so on. In the author’s
view, both of these possible changes in counting practices are likely to
conceal useful information rather than reveal it. These measurement
issues will be discussed at length later in this book in Chapter 6.

IFPUG function point metrics are far from perfect, but they offer a
number of advantages for economic analysis and identification of best
practices. Function points match the assumptions of standard economics.
They can measure information technology, embedded applications, com-
mercial software, and all other types of software. IFPUG function points
can be used to measure noncode activities as well as to measure coding
work. Function points can be used to measure defects in requirements

Introduction and Definitions of Software Best Practices 19

and design as well as to measure code defects. Function points can handle
every activity during both development and maintenance. In addition,
benchmark data from more than 20,000 projects is available using IFPUG
function points. No other metric is as stable and versatile as function point
metrics.

One key fact should be obvious, but unfortunately it is not. To demon-
strate high quality levels, high productivity levels, and to identify best
practices, it is necessary to have accurate measurements in place. For
more than 50 years, the software engineering domain has utilized mea-
surement practices and metrics that are seriously flawed. An occupation
that cannot measure its own performance with accuracy is not qualified
to be called an engineering discipline. Therefore another purpose of this
book is to demonstrate how economic analysis can be applied to software
engineering projects. This book will demonstrate methods for measuring
productivity and quality with high precision.

Critical Topics in Software Engineering

As of 2009, several important points about software engineering have
been proven beyond a doubt. Successful software projects use state-of-
the-art quality control methods, change control methods, and project
management methods. Without excellence in quality control, there is
almost no chance of a successful outcome. Without excellence in change
control, creeping requirements will lead to unexpected delays and cost
overruns. Without excellent project management, estimates will be inac-
curate, plans will be defective, and tracking will miss serious problems
that can cause either outright failure or significant overruns. Quality
control, change control, and project management are the three critical
topics that can lead to either success or failure. The major forms of best
practices that will be discussed in this book include the following:

 1. Introduction, Definitions, and Ranking of Software Practices

 Definitions and rankings of:

 ■ Best practices

 ■ Very good practices

 ■ Good practices

 ■ Fair practices

 ■ Neutral practices

 ■ Harmful practices

 ■ Worst practices

 Definitions of professional malpractice

20 Chapter One

 2. Overview of 50 Best Practices

 Overview of social and morale best practices

 Overview of best practices for:

 ■ Organization

 ■ Development

 ■ Quality and security

 ■ Deployment

 ■ Maintenance

 3. A Preview of Software Development and Maintenance
in 2049

 Requirements analysis circa 2049

 Design in 2049

 Software development in 2049

 User documentation circa 2049

 Customer support in 2049

 Maintenance and enhancement in 2049

 Deployment and training in 2049

 Software outsourcing in 2049

 Technology selection and technology transfer in 2049

 Software package evaluation and acquisition in 2049

 Enterprise architecture and portfolio analysis in 2049

 Due diligence in 2049

 Software litigation in 2049

 4. How Software Personnel Learn New Skills

 Evolution of software learning channels

 Varieties of software specialization

 Evaluation of software learning channels in descending order:

 Number 1: Web browsing

 Number 2: Webinars, podcasts, and e-learning

 Number 3: Electronic books (e-books)

 Number 4: In-house education

 Number 5: Self-study using CDs and DVDs

 Number 6: Commercial education

 Number 7: Vendor education

Introduction and Definitions of Software Best Practices 21

 Number 8: Live conferences

 Number 9: Wiki sites

 Number 10: Simulation web sites

 Number 11: Software journals

 Number 12: Self-study using books and training materials

 Number 13: On-the-job training

 Number 14: Mentoring

 Number 15: Professional books, monographs, and technical reports

 Number 16: Undergraduate university education

 Number 17: Graduate university education

 5. Team Organization and Specialization

 Large teams and small teams

 Finding optimal organization structures

 Matrix versus hierarchical organizations

 Using project offices

 Specialists and generalists

 Pair programming

 Use of Scrum sessions for local development

 Communications for distributed development

 In-house development, outsource development, or both

 6. Project Management

 Measurement and metrics

 Sizing applications

 Risk analysis of applications

 Planning and estimating

 Governance of applications

 Tracking costs and progress

 Benchmarks for comparison against industry norms

 Baselines to determine process improvements

 Cancelled projects and disaster recovery

 Minimizing the odds of litigation in outsource agreements

 7. Architecture, Business Analysis, Requirements, and Design

 Alignment of software and business needs

 Gathering requirements for new applications

22 Chapter One

 Mining legacy applications for requirements

 Requirements change or “creeping requirements”

 Requirements churn or subtle changes

 The role of architecture in software

 Design methods for software

 Requirements change and multiple releases

 8. Code Development

 Development methodology selection

 Choice of programming languages

 Multiple languages in the same application

 Coding techniques

 Reusable code

 Code change control

 9. Quality Control, Inspections, and Testing

 Six Sigma for software

 Defect estimation

 Defect and quality measurements

 Design and code inspections

 Static analysis

 Manual testing

 Automated testing

 Configuration control

10. Security, Virus Protection, Spyware, and Hacking

 Prevention methods for security threats

 Defenses against active security threats

 Recovery from security attacks

11. Deployment and Customization of Large Applications

 Selecting deployment teams

 Customizing large and complex applications

 Developing customized training materials

 Cut-over and parallel runs of new and old applications

12. Maintenance and Enhancements

 Maintenance (defect repairs)

Introduction and Definitions of Software Best Practices 23

 Enhancements (new features)

 Mandatory changes (government regulations)

 Customer support

 Renovation of legacy applications

 Maintenance outsourcing

13. Companies That Utilize Best Practices

 Advanced Bionics

 Aetna Insurance

 Amazon

 Apple Computers

 Computer Aid Inc.

 Coverity

 Dovel Technologies

 Google

 IBM

 Microsoft

 Relativity Technologies

 Shoulders Corporation

 Unisys

These topics are of course not the only factors that need to be excel-
lent or where best practices are beneficial. But these topics are the
core issues that can eventually change the term “software engineering”
from an oxymoron into a valid description of an occupation that has at
last matured enough to be taken seriously by other and older forms of
engineering.

Overall Ranking of Methods, Practices,
and Sociological Factors

To be considered a best practice, a method or tool has to have some
quantitative proof that it actually provides value in terms of quality
improvement, productivity improvement, maintainability improvement,
or some other tangible factors.

Although more than about 200 topics can have an impact on software,
only 200 are shown here. Solid empirical data exists for about 50 out of
the 200. For the rest, the data is anecdotal or inconsistent. The data has
been gathered from observations of about 13,000 projects in 600 companies.

24 Chapter One

However, that data spans more than 20 years of observation, so the data
is of inconsistent ages. It is easily possible that some of the practices
are out of place on the list, or will change places as more data becomes
available. Even so, methods and practices in the top 50 have proven to
be beneficial in scores or hundreds of projects. Those in the bottom 50
have proven to be harmful.

Between the “good” and “bad” ends of this spectrum are a significant
number of practices that range from intermittently helpful to occasion-
ally harmful. These are termed neutral. They are sometimes marginally
helpful and sometimes not. But in neither case do they seem to have
much impact.

Although this book will deal with methods and practices by size and
by type, it might be of interest to show the complete range of factors
ranked in descending order, with the ones having the widest and most
convincing proof of usefulness at the top of the list. Table 1-4 lists a total
of 200 methodologies, practices, and social issues that have an impact
on software applications and projects.

Recall that the scores are the aggregated results of specific scores for
applications of fewer than 1000 function points to more than 10,000
function points. In the full table, systems and embedded applications,
commercial applications, information technology, web applications,
and other types are also scored separately. Table 1-4 shows the overall
average scores.

Methodology, Practice, Result Average

Best Practices

 1. Reusability (> 85% zero-defect materials) 9.65

 2. Defect potentials < 3.00 per function point 9.35

 3. Defect removal efficiency > 95% 9.32

 4. Personal Software Process (PSP) 9.25

 5. Team Software Process (TSP) 9.18

 6. Automated static analysis 9.17

 7. Inspections (code) 9.15

 8. Measurement of defect removal efficiency 9.08

 9. Hybrid (CMM + TSP/PSP + others) 9.06

 10. Reusable feature certification 9.00

 11. Reusable feature change controls 9.00

 12. Reusable feature recall method 9.00

 13. Reusable feature warranties 9.00

 14. Reusable source code (zero defect) 9.00

TABLE 1-4 Evaluation of Software Methods, Practices, and Results

Introduction and Definitions of Software Best Practices 25

Methodology, Practice, Result Average

Very Good Practices

 15. Early estimates of defect potentials 8.83

 16. Object-oriented (OO) development 8.83

 17. Automated security testing 8.58

 18. Measurement of bad-fix injections 8.50

 19. Reusable test cases (zero defect) 8.50

 20. Formal security analysis 8.43

 21. Agile development 8.41

 22. Inspections (requirements) 8.40

 23. Time boxing 8.38

 24. Activity-based productivity measures 8.33

 25. Reusable designs (scalable) 8.33

 26. Formal risk management 8.27

 27. Automated defect tracking tools 8.17

 28. Measurement of defect origins 8.17

 29. Benchmarks against industry data 8.15

 30. Function point analysis (high speed) 8.15

 31. Formal progress reports (weekly) 8.06

 32. Formal measurement programs 8.00

 33. Reusable architecture (scalable) 8.00

 34. Inspections (design) 7.94

 35. Lean Six Sigma 7.94

 36. Six Sigma for software 7.94

 37. Automated cost-estimating tools 7.92

 38. Automated maintenance workbenches 7.90

 39. Formal cost-tracking reports 7.89

 40. Formal test plans 7.81

 41. Automated unit testing 7.75

 42. Automated sizing tools (function points) 7.73

 43. Scrum session (daily) 7.70

 44. Automated configuration control 7.69

 45. Reusable requirements (scalable) 7.67

 46. Automated project management tools 7.63

 47. Formal requirements analysis 7.63

 48. Data mining for business rule extraction 7.60

 49. Function point analysis (pattern matches) 7.58

 50. High-level languages (current) 7.53

 51. Automated quality and risk prediction 7.53

 52. Reusable tutorial materials 7.50

TABLE 1-4 Evaluation of Software Methods, Practices, and Results (continued)

(Continued)

26 Chapter One

Methodology, Practice, Result Average

Very Good Practices

 53. Function point analysis (IFPUG) 7.37

 54. Measurement of requirements changes 7.37

 55. Formal architecture for large applications 7.36

 56. Best-practice analysis before start 7.33

 57. Reusable feature catalog 7.33

 58. Quality function deployment (QFD) 7.32

 59. Specialists for key skills 7.29

 60. Joint application design (JAD) 7.27

 61. Automated test coverage analysis 7.23

 62. Re-estimating for requirements changes 7.17

 63. Measurement of defect severity levels 7.13

 64. Formal SQA team 7.10

 65. Inspections (test materials) 7.04

 66. Automated requirements analysis 7.00

 67. DMAIC (design, measure, analyze, improve, control) 7.00

 68. Reusable construction plans 7.00

 69. Reusable HELP information 7.00

 70. Reusable test scripts 7.00

Good Practices

 71. Rational Unified Process (RUP) 6.98

 72. Automated deployment support 6.87

 73. Automated cyclomatic complexity analysis 6.83

 74. Forensic analysis of cancelled projects 6.83

 75. Reusable reference manuals 6.83

 76. Automated documentation tools 6.79

 77. Capability Maturity Model (CMMI Level 5) 6.79

 78. Annual training (technical staff) 6.67

 79. Metrics conversion (automated) 6.67

 80. Change review boards 6.62

 81. Formal governance 6.58

 82. Automated test library control 6.50

 83. Formal scope management 6.50

 84. Annual training (managers) 6.33

 85. Dashboard-style status reports 6.33

 86. Extreme programming (XP) 6.28

 87. Service-oriented architecture (SOA) 6.26

 88. Automated requirements tracing 6.25

 89. Total cost of ownership (TCO) measures 6.18

TABLE 1-4 Evaluation of Software Methods, Practices, and Results (continued)

Introduction and Definitions of Software Best Practices 27

Methodology, Practice, Result Average

Good Practices

 90. Automated performance analysis 6.17

 91. Baselines for process improvement 6.17

 92. Use cases 6.17

 93. Automated test case generation 6.00

 94. User satisfaction surveys 6.00

 95. Formal project office 5.88

 96. Automated modeling/simulation 5.83

 97. Certification (Six Sigma) 5.83

 98. Outsourcing (maintenance => CMMI Level 3) 5.83

 99. Capability Maturity Model (CMMI Level 4) 5.79

100. Certification (software quality assurance) 5.67

101. Outsourcing (development => CMM 3) 5.67

102. Value analysis (intangible value) 5.67

103. Root-cause analysis 5.50

104. Total cost of learning (TCL) measures 5.50

105. Cost of quality (COQ) 5.42

106. Embedded users in team 5.33

107. Normal structured design 5.17

108. Capability Maturity Model (CMMI Level 3) 5.06

109. Earned-value measures 5.00

110. Unified modeling language (UML) 5.00

111. Value analysis (tangible value) 5.00

Fair Practices

112. Normal maintenance activities 4.54

113. Rapid application development (RAD) 4.54

114. Certification (function points) 4.50

115. Function point analysis (Finnish) 4.50

116. Function point analysis (Netherlands) 4.50

117. Partial code reviews 4.42

118. Automated restructuring 4.33

119. Function point analysis (COSMIC) 4.33

120. Partial design reviews 4.33

121. Team Wiki communications 4.33

122. Function point analysis (unadjusted) 4.33

123. Function points (micro 0.001 to 10) 4.17

124. Automated daily progress reports 4.08

125. User stories 3.83

126. Outsourcing (offshore => CMM 3) 3.67

TABLE 1-4 Evaluation of Software Methods, Practices, and Results (continued)

(Continued)

28 Chapter One

Methodology, Practice, Result Average

Fair Practices

127. Goal-question metrics 3.50

128. Certification (project managers) 3.33

129. Refactoring 3.33

130. Manual document production 3.17

131. Capability Maturity Model (CMMI Level 2) 3.00

132. Certification (test personnel) 2.83

133. Pair programming 2.83

134. Clean-room development 2.50

135. Formal design languages 2.50

136. ISO quality standards 2.00

Neutral Practices

137. Function point analysis (backfiring) 1.83

138. Use case points 1.67

139. Normal customer support 1.50

140. Partial governance (low-risk projects) 1.00

141. Object-oriented metrics 0.33

142. Manual testing 0.17

143. Outsourcing (development < CMM 3) 0.17

144. Story points 0.17

145. Low-level languages (current) 0.00

146. Outsourcing (maintenance < CMM 3) 0.00

147. Waterfall development –0.33

148. Manual change control –0.50

149. Manual test library control –0.50

150. Reusability (average quality materials) –0.67

151. Capability Maturity Model (CMMI Level 1) –1.50

152. Informal progress tracking –1.50

153. Outsourcing (offshore < CMM 3) –1.67

Unsafe Practices

154. Inadequate test library control –2.00

155. Generalists instead of specialists –2.50

156. Manual cost estimating methods –2.50

157. Inadequate measurement of productivity –2.67

158. Cost per defect metrics –2.83

159. Inadequate customer support –2.83

160. Friction between stakeholders and team –3.50

161. Informal requirements gathering –3.67

162. Lines of code metrics (logical LOC) –4.00

163. Inadequate governance –4.17

TABLE 1-4 Evaluation of Software Methods, Practices, and Results (continued)

Introduction and Definitions of Software Best Practices 29

Methodology, Practice, Result Average

Unsafe Practices

164. Lines of code metrics (physical LOC) –4.50

165. Partial productivity measures (coding) –4.50

166. Inadequate sizing –4.67

167. High-level languages (obsolete) –5.00

168. Inadequate communications among team –5.33

169. Inadequate change control –5.42

170. Inadequate value analysis –5.50

Worst Practices

171. Friction/antagonism among team members –6.00

172. Inadequate cost estimating methods –6.04

173. Inadequate risk analysis –6.17

174. Low-level languages (obsolete) –6.25

175. Government mandates (short lead times) –6.33

176. Inadequate testing –6.38

177. Friction/antagonism among management –6.50

178. Inadequate communications with stakeholders –6.50

179. Inadequate measurement of quality –6.50

180. Inadequate problem reports –6.67

181. Error-prone modules in applications –6.83

182. Friction/antagonism among stakeholders –6.83

183. Failure to estimate requirements changes –6.85

184. Inadequate defect tracking methods –7.17

185. Rejection of estimates for business reasons –7.33

186. Layoffs/loss of key personnel –7.33

187. Inadequate inspections –7.42

188. Inadequate security controls –7.48

189. Excessive schedule pressure –7.50

190. Inadequate progress tracking –7.50

191. Litigation (noncompete violation) –7.50

192. Inadequate cost tracking –7.75

193. Litigation (breach of contract) –8.00

194. Defect potentials > 6.00 per function point –9.00

195. Reusability (high defect volumes) –9.17

196. Defect removal efficiency < 85% –9.18

197. Litigation (poor quality/damages) –9.50

198. Litigation (security flaw damages) –9.50

199. Litigation (patent violation) –10.00

200. Litigation (intellectual property theft) –10.00

TABLE 1-4 Evaluation of Software Methods, Practices, and Results (continued)

30 Chapter One

The candidates for best practices will be discussed and evaluated later
in this book in Chapters 7, 8, and 9. Here in Chapter 1 they are only
introduced to show what the overall set looks like.

Note that the factors are a mixture. They include full development
methods such as Team Software Process (TSP) and partial methods such
as quality function deployment (QFD). They include specific practices
such as “inspections” of various kinds, and also include social issues such
as friction between stakeholders and developers. They include metrics
such as “lines of code,” which is ranked as a harmful factor because this
metric penalizes high-level languages and distorts both quality and
productivity data. What all these things have in common is that they
either improve or degrade quality and productivity.

Since programming languages are also significant, you might ask why
specific languages such as Java, Ruby, or Objective C are not included.
Because, as of 2009, more than 700 programming languages exist; a new
language is created about every month.

In addition, a majority of large software applications utilize several
languages at the same time, such as Java and HTML, or use combina-
tions that may top a dozen languages in the same applications. Later in
Chapter 8 this book will discuss the impact of languages and their virtues
or weaknesses, but there are far too many languages, and they change
far too rapidly, for an evaluation to be useful for more than a few months.
Therefore in Table 1-4, languages are covered only in a general way:
whether they are high level or low level, and whether they are current
languages or “dead” languages no longer used for new development.

This book is not a marketing tool for any specific products or methods,
including the tools and methods developed by the author. This book
attempts to be objective and to base conclusions on quantitative data
rather than on subjective opinions.

To show how methods and practices differ by size of project, Table 1-5
illustrates the top 30 best practices for small projects of 1000 function
points and for large systems of 10,000 or more function points. As can
be seen, the two lists are very different.

For small projects, Agile, extreme programming, and high-level pro-
gramming languages are key practices because coding is the dominant
activity for small applications. When large applications are analyzed,
quality control ascends to the top. Also, careful requirements, design,
and architecture are important for large applications.

There are also differences in best practices by type of application.
Table 1-6 shows the top 30 best practices for information technology (IT)
projects compared with embedded and systems software projects.

Although high-quality reusable components are the top factor for both,
the rest of the two lists are quite different. For information technology

Introduction and Definitions of Software Best Practices 31

Small (1000 function points) Large (10,000 function points)

 1. Agile development 1. Reusability (> 85% zero-defect
materials)

 2. High-level languages (current) 2. Defect potentials < 3.00 per function
point

 3. Extreme programming (XP) 3. Formal cost tracking reports

 4. Personal Software Process (PSP) 4. Inspections (requirements)

 5. Reusability (> 85% zero-defect
materials)

 5. Formal security analysis

 6. Automated static analysis 6. Measurement of defect removal
efficiency

 7. Time boxing 7. Team Software Process (TSP)

 8. Reusable source code (zero defect) 8. Function point analysis (high speed)

 9. Reusable feature warranties 9. Capability Maturity Model (CMMI
Level 5)

10. Reusable feature certification 10. Automated security testing

11. Defect potentials < 3.00 per
function point

11. Inspections (design)

12. Reusable feature change controls 12. Defect removal efficiency > 95%

13. Reusable feature recall method 13. Inspections (code)

14. Object-oriented (OO) development 14. Automated sizing tools (function
points)

15. Inspections (code) 15. Hybrid (CMM + TSP/PSP + others)

16. Defect removal efficiency > 95% 16. Automated static analysis

17. Hybrid (CMM + TSP/PSP + others) 17. Personal Software Process (PSP)

18. Scrum session (daily) 18. Automated cost estimating tools

19. Measurement of defect removal
efficiency

19. Measurement of requirements changes

20. Function point analysis (IFPUG) 20. Service-oriented architecture (SOA)

21. Automated maintenance
workbenches

21. Automated quality and risk prediction

22. Early estimates of defect potentials 22. Benchmarks against industry data

23. Team Software Process (TSP) 23. Quality function deployment (QFD)

24. Embedded users in team 24. Formal architecture for large
applications

25. Benchmarks against industry data 25. Automated defect tracking tools

26. Measurement of defect severity
levels

26. Reusable architecture (scalable)

27. Use cases 27. Formal risk management

28. Reusable test cases (zero defects) 28. Activity-based productivity measures

29. Automated security testing 29. Formal progress reports (weekly)

30. Measurement of bad-fix injections 30. Function point analysis (pattern
matches)

TABLE 1-5 Best Practices for 1000– and 10,000–Function Point Software Projects

32 Chapter One

TABLE 1-6 Best Practices for IT Projects and Embedded/Systems Projects

Information Technology (IT) Projects Embedded and Systems Projects

 1. Reusability (> 85% zero-defect
materials)

 1. Reusability (> 85% zero-defect
materials)

 2. Formal governance 2. Defect potentials < 3.00 per function
point

 3. Team Software Process (TSP) 3. Defect removal efficiency > 95%

 4. Personal Software Process (PSP) 4. Team Software Process (TSP)

 5. Agile development 5. Measurement of defect severity levels

 6. Defect removal efficiency > 95% 6. Inspections (code)

 7. Formal security analysis 7. Lean Six Sigma

 8. Formal cost tracking reports 8. Six Sigma for software

 9. Defect potentials < 3.00 per function
point

 9. Automated static analysis

10. Automated static analysis 10. Measurement of defect removal
efficiency

11. Measurement of defect removal
efficiency

11. Hybrid (CMM + TSP/PSP + others)

12. Function point analysis (IFPUG) 12. Personal Software Process (PSP)

13. Service-oriented architecture (SOA) 13. Formal security analysis

14. Joint application design (JAD) 14. Formal cost tracking reports

15. Function point analysis (high speed) 15. Function point analysis (high speed)

16. Automated sizing tools (function
points)

16. Inspections (design)

17. Data mining for business rule
extraction

17. Automated project management tools

18. Benchmarks against industry data 18. Formal test plans

19. Hybrid (CMM + TSP/PSP + others) 19. Quality function deployment (QFD)

20. Reusable feature certification 20. Automated cost estimating tools

21. Reusable feature change controls 21. Automated security testing

22. Reusable feature recall method 22. Object-oriented (OO) development

23. Reusable feature warranties 23. Inspections (test materials)

24. Reusable source code (zero defect) 24. Agile development

25. Early estimates of defect potentials 25. Automated sizing tools (function points)

26. Measurement of bad-fix injections 26. Reusable feature certification

27. Reusable test cases (zero defect) 27. Reusable feature change controls

28. Inspections (requirements) 28. Reusable feature recall method

29. Activity-based productivity
measures

29. Reusable feature warranties

30. Reusable designs (scalable) 30. Reusable source code (zero defect)

projects, at least for those developed by Fortune 500 companies, governance
is in the number 2 spot for best practices. This is because inadequate or
incompetent governance can now lead to criminal charges against corpo-
rate officers as a result of the Sarbanes-Oxley Act of 2002.

Introduction and Definitions of Software Best Practices 33

For systems and embedded software, quality control measures of vari-
ous kinds are the top-ranked best practices. Historically, systems and
embedded software have had the best and most sophisticated software
quality control in the history of software. This is because the main prod-
ucts of the systems and embedded domain are complex physical devices
that might cause catastrophic damages or death if quality control is
deficient. Thus manufacturers of medical devices, aircraft control sys-
tems, fuel injection, and other forms of systems and embedded applica-
tions have long had sophisticated quality control, even before software
was used for physical devices.

The main point is that software development is not a “one size fits all”
kind of work. Best practices must be carefully selected to match both
the size and the type of the software under development.

A few basic principles are true across all sizes and all types: quality
control, change control, good estimating, and good measurement are
critical activities. Reuse is also critical, with the caveat that only zero-
defect reusable objects provide solid value.

Although this book is primarily about software engineering best prac-
tices, it is useful to discuss polar opposites and to show worst practices,
too. The definition of a worst practice as used in this book is a method or
approach that has been proven to cause harm to a significant number
of projects that used it. The word “harm” means degradation of quality,
reduction of productivity, or concealing the true status of projects. In
addition, “harm” includes data that is so inaccurate that it leads to false
conclusions about economic value.

Each of the harmful methods and approaches individually has been
proven to cause harm in a significant number of applications that used
them. This is not to say that they always fail. Sometimes, rarely, they
may even be useful. But in a majority of situations, they do more harm
than good in repeated trials.

A distressing aspect of the software industry is that bad practices
seldom occur in isolation. From examining the depositions and court
documents of lawsuits for projects that were cancelled or never oper-
ated effectively, it usually happens that multiple worst practices are
used concurrently.

From data and observations on the usage patterns of software meth-
ods and practices, it is distressing to note that practices in the harmful
or worst set are actually found on about 65 percent of U.S. software
projects. Conversely, best practices that score 9 or higher have only been
noted on about 14 percent of U.S. software projects. It is no wonder that
failures far outnumber successes for large software applications!

From working as an expert witness in a number of breach-of-contract
lawsuits, the author has found that many harmful practices tend to occur
repeatedly. These collectively are viewed by the author as candidates for

34 Chapter One

being deemed “professional malpractice.” The definition of professional
malpractice is something that causes harm that a trained practitioner
should know is harmful and therefore avoid using it. Table 1-7 shows 30
of these common but harmful practices.

Not all of these 30 occur at the same time. In fact, some of them, such
as the use of generalists, are only harmful for large applications in the
10,000–function point range. However, this collection of harmful practices
has been a drain on the software industry and has led to many lawsuits.

TABLE 1-7 Software Methods and Practices Considered “Professional Malpractice”

Rank Methods and Practices Scores

 1. Defect removal efficiency < 85% –9.18

 2. Defect potentials > 6.00 per function point –9.00

 3. Reusability (high defect volumes) –7.83

 4. Inadequate cost tracking –7.75

 5. Excessive schedule pressure –7.50

 6. Inadequate progress tracking –7.50

 7. Inadequate security controls –7.48

 8. Inadequate inspections –7.42

 9. Inadequate defect tracking methods –7.17

10. Failure to estimate requirements changes –6.85

11. Error-prone modules in applications –6.83

12. Inadequate problem reports –6.67

13. Inadequate measurement of quality –6.50

14. Rejection of estimates for business reasons –6.50

15. Inadequate testing –6.38

16. Inadequate risk analysis –6.17

17. Inadequate cost estimating methods –6.04

18. Inadequate value analysis –5.50

19. Inadequate change control –5.42

20. Inadequate sizing –4.67

21. Partial productivity measures (coding) –4.50

22. Lines of code (LOC) metrics –4.50

23. Inadequate governance –4.17

24. Inadequate requirements gathering –3.67

25. Cost per defect metrics –2.83

26. Inadequate customer support –2.83

27. Inadequate measurement of productivity –2.67

28. Generalists instead of specialists for large systems –2.50

29. Manual cost estimating methods for large systems –2.50

30. Inadequate test library control –2.00

Introduction and Definitions of Software Best Practices 35

Note that two common metrics are ranked as professional malpractice:
“lines of code” and “cost per defect.” They are viewed as malpractice
because both violate the tenets of standard economics and distort data
so that economic results are impossible to see. The lines of code metric
penalizes high-level languages. The cost per defect metric penalizes qual-
ity and achieves its best results for the buggiest artifacts. These problems
will be explained in more detail later.

With hundreds of methods and techniques available for developing
and maintaining software, not all of them can be classified as either best
practices or worst practices. In fact, for many practices and methods,
the results are so mixed or ambiguous that they can be called “neutral
practices.”

The definition of a neutral practice is a method or tool where there is
little statistical data that indicates either help or hindrance in software
development. In other words, there are no quantified changes in either
a positive or negative direction from using the method.

Perhaps the most interesting observation about neutral practices is
that they occur most often on small projects of 1500 function points and
below. Many years of data indicate that small projects can be developed
in a fairly informal manner and still turn out all right. This should not
be surprising, because the same observation can be made about scores
of products. For example, a rowboat does not need the same rigor of
development as does a cruise ship.

Because small projects outnumber large applications by more than
50 to 1, it is not easy to even perform best-practice analysis if small
programs are the only projects available for analysis. Many paths lead
to success for small projects. As application size goes up, the number
of successful paths goes down in direct proportion. This is one of the
reasons why university studies seldom reach the same conclusions as
industrial studies when it comes to software engineering methods and
results. Universities seldom have access to data from large software
projects in the 10,000– to 100,000–function point size range.

Serious analysis of best and worst practices requires access to data
from software applications that are in the size range of 10,000 or more
function points. For large applications, failures outnumber successes.
At the large end of the size spectrum, the effects of both best and worst
practices are magnified. As size increases, quality control, change con-
trol, and excellence in project management become more and more
important on the paths to successful projects.

Smaller applications have many advantages. Due to shorter develop-
ment schedules, the number of changing requirements is low. Smaller
applications can be built successfully using a variety of methods and
processes. Topics such as estimates and plans are much easier for small
projects with limited team size.

36 Chapter One

Large software applications in the range of 10,000 or more function
points are much more difficult to create, have significant volumes of
requirements changes, and will not be successful without topnotch qual-
ity control, change control, and project management. Many kinds of
specialists are needed for large software applications, and also special
organizations are needed such as project offices, formal quality assur-
ance teams, technical writing groups, and testing organizations.

Summary and Conclusions

There are hundreds of ways to make large software systems fail. There
are only a few ways of making them successful. However, the ways or
“paths” that lead to success are not the same for small projects below
1000 function points and large systems above 10,000 function points.
Neither are the ways or paths the same for embedded applications, web
applications, commercial software, and the many other types of software
applications in the modern world.

Among the most important software development practices are those
dealing with planning and estimating before the project starts, with
absorbing changing requirements during the project, and with success-
fully handling bugs or defects. Another key element of success is being
proactive with problems and solving them quickly, rather than ignoring
them and hoping they will go away.

Successful projects using state-of-the-art methods are always excel-
lent in the critical activities: estimating, change control, quality control,
progress tracking, and problem resolution. By contrast, projects that run
late or fail usually had optimistic estimates, did not anticipate changes,
failed to control quality, tracked progress poorly, and ignored problems
until too late.

Software engineering is not yet a true and recognized engineering
field. It will never become one so long as our failures outnumber out
successes. It would benefit the global economy and our professional
status to move software engineering into the ranks of true engineering
fields. But accomplishing this goal requires better quality control, better
change control, better measurements, and much better quantification
of our results than we have today.

Readings and References

These selections include some of the historic books on software best
practices, and also on broader topics such as quality in general. One
book on medical practice is included: Paul Starr’s book The Social
Transformation of American Medicine, which won a Pulitzer Prize in
1982. This book discusses the improvements in medical education and

Introduction and Definitions of Software Best Practices 37

certification achieved by the American Medical Association (AMA). The
path followed by the AMA has considerable relevance to improving soft-
ware engineering education, best practices, and certification. Thomas
Kuhn’s book on The Structure of Scientific Revolutions is also included,
because software engineering needs a revolution if it is to shift from
custom development of unique applications to construction of generic
applications from certified reusable components.

Boehm, Barry. Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall,
1981.

Brooks, Fred. The Mythical Man-Month. Reading, MA: Addison-Wesley, 1974, rev. 1995.
Bundschuh, Manfred, and Carol Dekkers. The IT Measurement Compendium. Berlin:

Springer-Verlag, 2008.
Charette, Bob. Software Engineering Risk Analysis and Management. New York:

McGraw-Hill, 1989.
Crosby, Philip B. Quality Is Free. New York: New American Library, Mentor Books,

1979.
DeMarco, Tom. Controlling Software Projects. New York: Yourdon Press, 1982.
DeMarco, Tom. Peopleware: Productive Projects and Teams. New York: Dorset House,

1999.
Garmus, David, and David Herron. Function Point Analysis—Measurement Practices

for Successful Software Projects. Boston: Addison Wesley Longman, 2001.
Gilb, Tom, and Dorothy Graham. Software Inspections. Reading, MA: Addison Wesley,

1993.
Glass, Robert L. Software Runaways: Lessons Learned from Massive Software Project

Failures. Englewood Cliffs, NJ: Prentice Hall, 1998.
Glass, Robert L. Software Creativity, Second Edition. Atlanta, GA: developer.*books,

2006.
Hamer-Hodges, Ken. Authorization Oriented Architecture—Open Application

Networking and Security in the 21st Century. Philadelphia: Auerbach Publications,
to be published in December 2009.

Humphrey, Watts. Managing the Software Process. Reading, MA: Addison Wesley, 1989.
Humphrey, Watts. PSP: A Self-Improvement Process for Software Engineers. Upper

Saddle River, NJ: Addison Wesley, 2005.
Humphrey, Watts. TSP—Leading a Development Team. Boston: Addison Wesley, 2006.
Humphrey, Watts. Winning with Software: An Executive Strategy. Boston: Addison

Wesley, 2002.
Jones, Capers. Applied Software Measurement, Third Edition. New York: McGraw-Hill,

2008.
Jones, Capers. Estimating Software Costs. New York: McGraw-Hill, 2007.
Jones, Capers. Software Assessments, Benchmarks, and Best Practices. Boston: Addison

Wesley Longman, 2000.
Kan, Stephen H. Metrics and Models in Software Quality Engineering, Second Edition.

Boston: Addison Wesley Longman, 2003.
Kuhn, Thomas. The Structure of Scientific Revolutions. Chicago: University of Chicago

Press, 1996.
Love, Tom. Object Lessons. New York: SIGS Books, 1993.
McConnell, Steve. Code Complete. Redmond, WA: Microsoft Press, 1993.
Myers, Glenford. The Art of Software Testing. New York: John Wiley & Sons, 1979.
Pressman, Roger. Software Engineering—A Practitioner’s Approach, Sixth Edition. New

York: McGraw-Hill, 2005.
Starr, Paul. The Social Transformation of American Medicine. New York: Basic Books,

1982.
Strassmann, Paul. The Squandered Computer. Stamford, CT: Information Economics

Press, 1997.

38 Chapter One

Weinberg, Gerald M. Becoming a Technical Leader. New York: Dorset House, 1986.
Weinberg, Gerald M. The Psychology of Computer Programming. New York: Van

Nostrand Reinhold, 1971.
Yourdon, Ed. Death March—The Complete Software Developer’s Guide to Surviving

“Mission Impossible” Projects. Upper Saddle River, NJ: Prentice Hall PTR, 1997.
Yourdon, Ed. Outsource: Competing in the Global Productivity Race. Upper Saddle

River, NJ: Prentice Hall PTR, 2005.

39

Chapter

 2
Overview of 50 Software

Best Practices

Since not everyone reads books from cover to cover, it seems useful to
provide a concise overview of software engineering best practices before
expanding the topics later in the book. As it happens, this section was
originally created for a lawsuit, which was later settled. That material
on best practices has been updated here to include recent changes in
software engineering technologies.

These best-practice discussions focus on projects in the 10,000–function
point range. The reason for this is pragmatic. This is the size range
where delays and cancellations begin to outnumber successful comple-
tions of projects.

The best practices discussed in this book cover a timeline that can
span 30 years or more. Software development of large applications can
take five years. Deploying and customizing such applications can take
another year. Once deployed, large applications have extremely long
lives and can be used for 25 years or more.

Over the 25-year usage period, numerous enhancements and defect
repairs will occur. There may also be occasional “renovation” or restruc-
turing of the application, changing file formats, and perhaps converting
the source code to a newer language or languages.

The set of best practices discussed here spans the entire life cycle from
the day a project starts until the day that the application is withdrawn
from service. The topics include, but are not limited to, the best practices
for the 50 subjects discussed here:

 1. Minimizing harm from layoffs and downsizing

 2. Motivation and morale of technical staff

 3. Motivation and morale of managers and executives

39

40 Chapter Two

 4. Selection and hiring of software personnel

 5. Appraisals and career planning for software personnel

 6. Early sizing and scope control of software applications

 7. Outsourcing software applications

 8. Using contractors and management consultants

 9. Selecting software methods, tools, and practices

10. Certifying methods, tools, and practices

11. Requirements of software applications

12. User involvement in software projects

13. Executive management support of software applications

14. Software architecture and design

15. Software project planning

16. Software project cost estimating

17. Software project risk analysis

18. Software project value analysis

19. Canceling or turning around troubled projects

20. Software project organization structures

21. Training managers of software projects

22. Training software technical personnel

23. Use of software specialists

24. Certification of software engineers, specialists, and managers

25. Communication during software projects

26. Software reusability

27. Certification of reusable materials

28. Programming or coding

29. Software project governance

30. Software project measurements and metrics

31. Software benchmarks and baselines

32. Software project milestone and cost tracking

33. Software change control before release

34. Configuration control

35. Software quality assurance

36. Inspections and static analysis

Overview of 50 Software Best Practices 41

37. Testing and test library control

38. Software security analysis and control

39. Software performance analysis

40. International software standards

41. Protecting intellectual property in software

42. Protection against viruses, spyware, and hacking

43. Software deployment and customization

44. Training clients or users of software applications

45. Customer support after deployment of software applications

46. Software warranties and recalls

47. Software change management after release

48. Software maintenance and enhancement

49. Updates and releases of software applications

50. Terminating or withdrawing legacy applications

Following are summary discussions of current best practices for these
50 managerial and technical areas.

1. Best Practices for Minimizing Harm
from Layoffs and Downsizing

As this book is written, the global economy is rapidly descending into the
worst recession since the Great Depression. As a result, unprecedented
numbers of layoffs are occurring. Even worse, a number of technology
companies will probably run out of funds and declare bankruptcy.

Observations during previous economic downturns show that com-
panies often make serious mistakes when handling layoffs and down-
sizing operations. First, since the selection of personnel to be removed
is usually made by managers and executives, technical personnel are
let go in larger numbers than managerial personnel, which degrades
operational performance.

Second, administrative and support personnel such as quality assur-
ance, technical writers, metrics and measurement specialists, secre-
tarial support, program librarians, and the like are usually let go before
software engineers and technical personnel. As a result, the remaining
technical personnel must take on a variety of administrative tasks for
which they are neither trained nor qualified, which also degrades opera-
tional performance.

The results of severe layoffs and downsizing usually show up in
reduced productivity and quality for several years. While there are no

42 Chapter Two

perfect methods for dealing with large-scale reductions in personnel,
some approaches can minimize the harm that usually follows:

Bring in outplacement services to help employees create résumés and
also to find other jobs, if available.

For large corporations with multiple locations, be sure to post avail-
able job openings throughout the company. The author once observed a
large company with two divisions co-located in the same building where
one division was having layoffs and the other was hiring, but neither
side attempted any coordination.

If yours is a U.S. company that employs offshore workers brought into
the United States on temporary visas, it would be extremely unwise
during the recession to lay off employees who are U.S. citizens at higher
rates than overseas employees. It is even worse to lobby for or to bring
in more overseas employees while laying off U.S. citizens. This has been
done by several major companies such as Microsoft and Intel, and it
results in severe employee morale loss, to say nothing of very bad pub-
licity. It may also result in possible investigations by state and federal
officials.

Analyze and prioritize the applications that are under development
and in the backlog, and attempt to cut those applications whose ROIs
are marginal.

Analyze maintenance of existing legacy applications and consider
ways of reducing maintenance staff without degrading security or oper-
ational performance. It may be that renovation, restructuring, removal
of error-prone modules, and other quality improvements can reduce
maintenance staffing but not degrade operational performance.

Calculate the staffing patterns needed to handle the applications in
the backlog and under development after low-ROI applications have
been purged.

As cuts occur, consider raising the span of control or the number of tech-
nical personnel reporting to one manager. Raising the span of control from
an average of about 8 technical employees per manager to 12 technical
employees per manager is often feasible. In fact, fairly large spans of con-
trol may even improve performance by reducing contention and disputes
among the managers of large projects.

Do not attempt to skimp on inspections, static analysis, testing, and
quality control activities. High quality yields better performance and
smaller teams, while low quality results in schedule delays, cost over-
runs, and other problems that absorb effort with little positive return.

Carefully analyze ratios of technical personnel to specialists such as
technical writing, quality assurance, configuration control, and other
personnel. Eliminating specialists in significantly larger numbers than
software engineers will degrade the operational performance of the soft-
ware engineers.

Overview of 50 Software Best Practices 43

In a severe recession, some of the departing personnel may be key
employees with substantial information on products, inventions, and
intellectual property. While most companies have nondisclosure agree-
ments in place for protection, very few attempt to create an inventory
of the knowledge that might be departing with key personnel. If layoffs
are handled in a courteous and professional manner, most employees
would be glad to leave behind information on key topics. This can be
done using questionnaires or “knowledge” interviews. But if the layoffs
are unprofessional or callous to employees, don’t expect employees to
leave much useful information behind.

In a few cases where there is a complete closure of a research facil-
ity, some corporations allow departing employees to acquire rights to
intellectual properties such as copyrights and even to patents filed by
the employees. The idea is that some employees may form startup com-
panies and thereby continue to make progress on useful ideas that oth-
erwise would drop from view.

As cuts in employment are being made, consider the typical work pat-
terns of software organizations. For a staff that totals 1000 personnel,
usually about half are in technical work such as software engineering,
30 percent are specialists of various kinds, and 20 percent are manage-
ment and staff personnel. However, more time and effort are usually
spent finding and fixing bugs than on any other measurable activity.

After downsizing, it could be advantageous to adopt technologies that
improve quality, which should allow more productive work from smaller
staffs. Therefore topics such as inspections of requirements and design,
code inspections, Six Sigma, static analysis, automated testing, and
methods that emphasize quality control such as the Team Software
Process (TSP) may allow the reduced staffing available to actually have
higher productivity than before.

A study of work patterns by the author in 2005 showed that in the
course of a normal 220-day working year, only about 47 days were actu-
ally spent on developing the planned features of new applications by
software engineering technical personnel. About 70 days were spent on
testing and bug repairs. (The rest of the year was spent on meetings,
administrative tasks, and dealing with changing requirements.)

Therefore improving quality via a combination of defect prevention
and more effective defect removal (i.e., inspections and static analysis
before testing, automated testing, etc.) could allow smaller staffs to per-
form the same work as larger staffs. If it were possible to cut down defect
removal days to 20 days per year instead of 70 days, that would have the
effect of doubling the time available for new development efforts.

Usually one of the first big cuts during a recession is to reduce cus-
tomer support, with severe consequences in terms of customer satis-
faction. Here, too, higher quality prior to delivery would allow smaller

44 Chapter Two

customer support teams to handle more customers. Since customer sup-
port tends to be heavily focused on defect issues, it can be hypothesized
that every reduction of 220 defects in a delivered application could reduce
the number of customer support personnel by one, but would not degrade
response time or time to achieve satisfactory solutions. This is based on
the assumption that customer support personnel speak to about 30 cus-
tomers per day, and each released defect is encountered by 30 customers.
Therefore each released defect occupies one day for one customer support
staff member, and there are 220 working days per year.

Another possible solution would be to renovate legacy applications
rather than build new replacements. Renovation and the removal of
error-prone modules, plus running static analysis tools and restructur-
ing highly complex code and perhaps converting the code to a newer
language, might stretch out the useful lives of legacy applications by
more than five years and reduce maintenance staffing by about one
person for every additional 120 bugs removed prior to deployment. This
is based on the assumption that maintenance programmers typically fix
about 10 bugs per month (severity 1 and 2 bugs, that is).

The bottom line is that if U.S. quality control were better than it is
today, smaller staffs could actually accomplish more new development
than current staffs. Too many days are being wasted on bug removal for
defects that could either be prevented or removed prior to testing.

A combination of defect prevention and effective defect removal via
inspections, static analysis, and automated and conventional testing
could probably reduce development staffing by 25 percent, maintenance
staffing by 50 percent, and customer support staffing by about 20 per-
cent without any reduction in operational efficiency, customer satis-
faction, or productivity. Indeed development schedules would improve
because they usually slip more during testing than at any other time,
due to excessive defects. As the economy sinks into recession, it is impor-
tant to remember not only that “quality is free,” as stated by Phil Crosby,
but that it also offers significant economic benefits for software.

One problem that has existed for many years is that few solid eco-
nomic studies have been performed and published that convincingly
demonstrate the value of software quality. A key reason for this is that
the two most common metrics for quality, lines of code and cost per
defect, are flawed and cannot deal with economics topics. Using defect
removal costs per function point is a better choice, but these metrics
need to be deployed in organizations that actually accumulate effort,
cost, and quality data simultaneously. From studies performed by the
author, combinations of defect prevention and defect removal methods
that lower defect potentials and raise removal efficiency greater than
95 percent, simultaneously benefit development costs, development
schedules, maintenance costs, and customer support costs.

Overview of 50 Software Best Practices 45

Over and above downsizing, many companies are starting to enforce
reduced work months or to require unpaid time off on the part of
employees in order to keep cash flow positive. Reduced work periods
and reduced compensation for all employees is probably less harmful
than cutting staff and keeping compensation constant for the remain-
der. However, caution is needed because if the number of required days
off exceeds certain thresholds, employees may switch from being legally
recognized as full-time workers to becoming part-time workers. If this
occurs, then their medical benefits, pensions, and other corporate perks
might be terminated. Since policies vary from company to company
and state to state, there is no general rule, but it is a problem to be
reckoned with.

The information technology employees of many state governments,
and some municipal governments, have long had benefits that are no
longer offered by corporations. These include payment for sick days
not used, defined pension programs, accumulating vacation days from
year to year, payment for unused vacation days at retirement, and zero-
payment health benefits. As state governments face mounting deficits,
these extraordinary benefits are likely to disappear in the future.

There are no perfect solutions for downsizing and laying off personnel,
but cutting specialists and administrative personnel in large numbers
may cause unexpected problems. Also, better quality control and better
maintenance or renovation can allow smaller remaining staffs to handle
larger workloads without excessive overtime, loss of operational effi-
ciency, or degradation of customer satisfaction.

2. Best Practices for Motivation
and Morale of Technical Staff

Many software engineers and other specialists such as quality assur-
ance and technical writers are often high-energy, self-motivated indi-
viduals. Psychological studies of software personnel do indicate some
interesting phenomena, such as high divorce rates and a tendency
toward introversion.

The nature of software development and maintenance work tends to
result in long hours and sometimes interruptions even in the middle
of the night. That being said, a number of factors are useful in keeping
technical staff morale at high levels.

Studies of exit interviews of software engineers at major corporations
indicate two distressing problems: (1) the best personnel leave in the
largest numbers and (2) the most common reason stated for voluntary
attrition is “I don’t like working for bad management.”

Thus, some sophisticated companies such as IBM have experimented
with reverse appraisals, where employees evaluate management

46 Chapter Two

performance, as well as normal appraisals, where employee perfor-
mance is evaluated.

Following are some topics noted in a number of leading companies where
morale is fairly high, such as IBM, Microsoft, Google, and the like:

Emphasize doing things right, rather than just working long hours
to make artificial and probably impossible schedules.

Allow and support some personal projects if the individuals feel that
the projects are valuable.

Ensure that marginal or poor managers are weeded out, because poor
management drives out good software engineers in larger numbers than
any other factor.

Ensure that appraisals are fair, honest, and can be appealed if employ-
ees believe that they were incorrectly downgraded for some reason.

Have occasional breakfast or lunch meetings between executives and
technical staff members, so that topics of mutual interest can be dis-
cussed in an open and nonthreatening fashion.

Have a formal appeal or “open door” program so that technical
employees who feel that they have not been treated fairly can appeal
to higher-level management. An important corollary of such a program
is “no reprisals.” That is, no punishments will be levied against person-
nel who file complaints.

Have occasional awards for outstanding work. But recall that many
small awards such as “dinners for two” or days off are likely to be more
effective than a few large awards. But don’t reward productivity or
schedules achieved at the expense of quality.

As business or economic situations change, keep all technical person-
nel apprised of what is happening. They will know if a company is in
financial distress or about to merge, so formal meetings to keep person-
nel up to date are valuable.

Suggestion programs that actually evaluate suggestions and take
actions are often useful. But suggestion programs that result in no
actions are harmful.

Surprisingly, some overtime tends to raise morale for psychological
reasons. Overtime makes projects seem to be valuable, or else they
would not require overtime. But excessive amounts of overtime (i.e.,
60-hour weeks) are harmful for periods longer than a couple of weeks.

One complex issue is that software engineers in most companies are
viewed as members of “professional staffs” rather than hourly work-
ers. Unless software engineers and technical workers are members of
unions, they normally do not receive any overtime pay regardless of
the hours worked. This issue has legal implications that are outside
the scope of this book.

Training and educational opportunities pay off in better morale and
also in better performance. Therefore setting aside at least ten days a year

Overview of 50 Software Best Practices 47

for education either internally or at external events would be beneficial.
It is interesting that companies with ten or more days of annual training
have higher productivity rates than companies with no training.

Other factors besides these can affect employee morale, but these give
the general idea. Fairness, communication, and a chance to do innova-
tive work are all factors that raise the morale of software engineering
personnel.

As the global economy slides into a serious recession, job opportuni-
ties will become scarce even for top performers. No doubt benefits will
erode as well, as companies scramble to stay solvent. The recession and
economic crisis may well introduce new factors not yet understood.

3. Best Practices for Motivation and
Morale of Managers and Executives

The hundred-year period between 1908 and the financial crisis and
recession of 2008 may later be viewed by economic historians as the
“golden age” of executive compensation and benefits.

The global financial crisis and the recession followed by attempts
to bail out industries and companies that are in severe jeopardy have
thrown a spotlight on a troubling topic: the extraordinary salaries,
bonuses, and retirement packages for top executives.

Not only do top executives in many industries have salaries of several
million dollars per year, but they also have bonuses of millions of dollars,
stock options worth millions of dollars, pension plans worth millions of
dollars, and “golden parachutes” with lifetime benefits and health-care
packages worth millions of dollars.

Other benefits include use of corporate jets and limos, use of corporate
boxes at major sports stadiums, health-club memberships, golf club
memberships, and scores of other “perks.”

Theoretically these benefits are paid because top executives are sup-
posed to maximize the values of companies for shareholders, expand
business opportunities, and guide corporations to successful business
opportunities.

But the combination of the financial meltdown and the global recession
coupled with numerous instances of executive fraud and malpractice (as
shown by Enron) will probably put an end to unlimited compensation
and benefits packages. In the United States at least companies receiv-
ing federal “bail out” money will have limits on executive compensation.
Other companies are also reconsidering executive compensation pack-
ages in light of the global recession, where thousands of companies are
losing money and drifting toward bankruptcy.

From 2008 onward, executive compensation packages have been under
a public spotlight and probably will be based much more closely on cor-
porate profitability and business success than in the past. Hopefully, in

48 Chapter Two

the wake of the financial meltdown, business decisions will be more
carefully thought out, and long-range consequences analyzed much
more carefully than has been the practice in the past.

Below the levels of the chief executives and the senior vice presidents
are thousands of first-, second-, and third-line managers, directors of
groups, and other members of corporate management.

At these lower levels of management, compensation packages are
similar to those of the software engineers and technical staff. In fact,
in some companies the top-ranked software engineers have compensa-
tion packages that pay more than first- and some second-line managers
receive, which is as it should be.

The skill sets of successful managers in software applications are
a combination of management capabilities and technical capabilities.
Many software managers started as software engineers, but moved into
management due to problem-solving and leadership abilities.

A delicate problem should be discussed. If the span of control or
number of technical workers reporting to a manager is close to the
national average of eight employees per manager, then it is hard to find
qualified managers for every available job. In other words, the ordinary
span of control puts about 12.5 percent of workers into management
positions, but less than 8 percent are going to be really good at it.

Raising the span of control and converting the less-qualified manag-
ers into staff or technical workers might have merit. A frequent objec-
tion to this policy is how can managers know the performance of so
many employees. However, under the current span of control levels,
managers actually spend more time in meetings with other managers
than they do with their own people.

As of 2009, software project management is one of the toughest kinds
of management work. Software project managers are charged with
meeting imposed schedules that may be impossible, with containing
costs that may be low, and with managing personnel who are often
high-energy and innovative.

When software projects fail or run late, the managers receive the
bulk of the blame for the situation, even though some of the problems
were due to higher-level schedule constraints or to impossible client
demands. It is an unfortunate fact that software project managers have
more failures and fewer successes than hardware engineering manag-
ers, marketing managers, or other managers.

The main issues facing software project management include sched-
ule constraints, cost constraints, creeping requirements, quality control,
progress tracking, and personnel issues.

Scheduling software projects with accuracy is notoriously difficult,
and indeed a majority of software projects run late, with the magnitude
of the delays correlating with application size. Therefore management

Overview of 50 Software Best Practices 49

morale tends to suffer because of constant schedule pressures. One way
of minimizing this issue is to examine the schedules of similar projects
by using historical data. If in-house historical data is not available, then
data can be acquired from external sources such as the International
Software Benchmarking Standards Group (ISBSG) in Australia. Careful
work breakdown structures are also beneficial. The point is, matching
project schedules with reality affects management morale. Since costs
and schedules are closely linked, the same is true for matching costs
to reality.

One reason costs and schedules for software projects tend to exceed
initial estimates and budgets is creeping requirements. Measurements
using function points derived from requirements and specifications find
the average rate of creep is about 2 percent per calendar month. This
fact can be factored into initial estimates once it is understood. In any
case, significant changes in requirements need to trigger fresh schedule
and cost estimates. Failure to do this leads to severe overruns, damages
management credibility, and of course low credibility damages manage-
ment morale.

Most software projects run into schedule problems during testing due
to excessive defects. Therefore upstream defect prevention and pretest
defects removal activities such as inspections and static analysis are
effective therapies against schedule and cost overruns. Unfortunately,
not many managers know this, and far too many tend to skimp on qual-
ity control. However, if quality control is good, morale is also likely to
be good, and the project will have a good chance of staying on target.
Therefore excellence in quality control tends to benefit both managerial
and professional staff morale.

Tracking software progress and reporting on problems is perhaps the
weakest link in software project management. In many lawsuits for
breach of contract, depositions reveal that serious problems were known
to exist by the technical staff and first-line managers, but were not
revealed to higher-level management or to clients until it was too late
to fix them. The basic rule of project tracking should be: “no surprises.”
Problems seldom go away by themselves, so once they are known, report
them and try and solve them. This will benefit both employee and man-
agement morale much more than sweeping problems under the rug.

Personnel issues are also important for software projects. Since many
software engineers are self-motivated, have high energy levels, and are
fairly innovative, management by example is better than management
by decree. Managers need to be fair and consistent with appraisals and to
ensure that personnel are kept informed of all issues arriving from higher
up in the company, such as possible layoffs or sales of business units.

Unfortunately, software management morale is closely linked to
software project successes, and as of 2009, far too many projects fail.

50 Chapter Two

Basing plans and estimates on historical data and benchmarks rather
than on client demands would also improve management morale.
Historical data is harder to overturn than estimates.

4. Best Practices for Selection and
Hiring of Software Personnel

As the global economy slides into a severe recession, many companies
are downsizing or even going out of business. As a result, it is a buyers’
market for those companies that are doing well and expanding. At no
time in history have so many qualified software personnel been on the
job market at the same time as at the end of 2008 and during 2009.

It is still important for companies to do background checks of all appli-
cants, since false résumés are not uncommon and are likely to increase
due to the recession. Also, multiple interviews with both management
and technical staff are beneficial to see how applicants might fit into
teams and handle upcoming projects.

If entry-level personnel are being considered for their first jobs out of
school, some form of aptitude testing is often used. Some companies also
use psychological interviews with industrial psychologists. However,
these methods have ambiguous results.

What seem to give the best results are multiple interviews combined
with a startup evaluation period of perhaps six months. Successful per-
formance during the evaluation period is a requirement for joining the
group on a full-time regular basis.

5. Best Practices for Appraisals and Career
Planning for Software Personnel

After about five years on the job, software engineers tend to reach a major
decision on their career path. Either the software engineer wants to stay
in technical work, or he or she wants to move into management.

Technical career paths can be intellectually satisfying and also have
good compensation plans in many leading companies. Positions such as
“senior software engineer” or “corporate fellow” or “advisory architect”
are not uncommon and are well respected. This is especially true for
corporations such as IBM that have research divisions where top-gun
engineers can do very innovative projects of their own choosing.

While some managers do continue to perform technical work, their
increasing responsibilities in the areas of schedule management, cost
management, quality management, and personnel management obvi-
ously reduce the amount of time available for technical work.

Software engineering has several different career paths, with devel-
opment programming, maintenance programming, business analysis,

Overview of 50 Software Best Practices 51

systems analysis, quality assurance, architecture, and testing all moving
in somewhat different directions.

These various specialist occupations bring up the fact that software
engineering is not yet a full profession with specialization that is recog-
nized by state licensing boards. Many kinds of voluntary specialization
are available in topics such as testing and quality assurance, but these
have no legal standing.

Large corporations can employ as many as 90 different kinds of spe-
cialists in their software organizations, including technical writers,
software quality assurance specialists, metrics specialists, integration
specialists, configuration control specialists, database administrators,
program librarians, and many more. However, these specialist occupa-
tions vary from company to company and have no standard training or
even standard definitions.

Not only are there no standard job titles, but also many companies
use a generic title such as “member of the technical staff,” which can
encompass a dozen specialties or more.

In a study of software specialties in large companies, it was common
to find that the human resource groups had no idea of what specialties
were employed. It was necessary to go on site and interview managers
and technical workers to find out this basic information.

In the past, one aspect of career planning for the best technical
personnel and managers included “job hopping” from one company to
another. Internal policies within many companies limited pay raises,
but switching to another company could bypass those limits. However,
as the economy retracts, this method is becoming difficult. Many com-
panies now have hiring freezes and are reducing staffs rather than
expanding. Indeed, some may enter bankruptcy.

6. Best Practices for Early Sizing and Scope
Control of Software Applications

For many years, predicting the size of software applications was dif-
ficult and very inaccurate. Calculating size by using function-point
metrics had to be delayed until requirements were known, but by
then it was too late for the initial software cost estimates and sched-
ule plans. Size in terms of source code could only be guessed at by
considering the sizes of similar applications, if any existed and their
sizes were known.

However, in 2008 and 2009, new forms of size analysis became avail-
able. Now that the International Software Benchmarking Standards
Group (ISBSG) has reached a critical mass with perhaps 5,000 software
applications, it is possible to acquire reliable size data for many kinds
of software applications from the ISBSG.

52 Chapter Two

Since many applications are quite similar to existing applications,
acquiring size data from ISBSG is becoming a standard early-phase activ-
ity. This data also includes schedule and cost information, so it is even
more valuable than size alone. However, the ISBSG data supports function
point metrics rather than lines of code. Since function points are a best
practice and the lines of code approach is malpractice, this is not a bad
situation, but it will reduce the use of ISBSG benchmarks by companies
still locked into LOC metrics.

For novel software or for applications without representation in the
ISBSG data, several forms of high-speed sizing are now available. A new
method based on pattern matching can provide fairly good approxima-
tions of size in terms of function points, source code, and even for other
items such as pages of specifications. This method also predicts the rate
at which requirements are likely to grow during development, which
has long been a weak link in software sizing.

Other forms of sizing include new kinds of function point approxima-
tions or “light” function point analysis, which can predict function point
size in a matter of a few minutes, as opposed to normal counting speeds
of only about 400 function points per day.

Early sizing is a necessary precursor to accurate estimation and also a
precursor to risk analysis. Many kinds of risks are directly proportional
to application size, so the earlier the size is known, the more complete
the risk analysis.

For small applications in the 1000–function point range, all features
are usually developed in a single release. However, for major applica-
tions in the 10,000– to 100,000–function point range, multiple releases
are the norm.

(For small projects using the Agile approach, individual features or
functions are developed in short intervals called sprints. These are usu-
ally in the 100– to 200–function point range.)

Because schedules and costs are directly proportional to application
size, major systems are usually segmented into multiple releases at
12- to 18-month intervals. Knowing the overall size, and then the sizes
of individual functions and features, it is possible to plan an effective
release strategy that may span three to four consecutive releases. By
knowing the size of each release, accurate schedule and cost estimating
becomes easier to perform.

Early sizing using pattern matching can be done before requirements
are known because this method is based on external descriptions of a
software application and then by matching the description against the
“patterns” of other similar applications.

The high-speed function point methods are offset in time and need at
least partial requirements to operate successfully.

Overview of 50 Software Best Practices 53

The best practice for early sizing is to use one or more (or all) of the high-
speed sizing approaches before committing serious funds to a software
application. If the size is large enough so that risks are likely to be severe,
then corrective actions can be applied before starting development, when
there is adequate time available.

Two innovative methods for software scope control have recently sur-
faced and seem to be effective. One is called Northern Scope because it
originated in Finland. The other is called Southern Scope because it origi-
nated in Australia. The two are similar in that they attempt to size appli-
cations early and to appoint a formal scope manager to monitor growth of
possible new features. By constantly focusing on scope and growth issues,
software projects using these methods have more success in their initial
releases because, rather than stuffing too many late features into the first
release, several follow-on releases are identified and populated early.

These new methods of scope control have actually led to the creation
of a new position called scope manager. This new position joins several
other new jobs that have emerged within the past few years, such as
web master and scrum master.

Sizing has been improving in recent years, and the combination of
ISBSG benchmarks plus new high-speed sizing methods shows promise
of greater improvements in the future.

7. Best Practices for Outsourcing Software Applications

For the past 20 years, U.S. corporations have been dealing with a major
business issue: should software applications be built internally, or
turned over to a contractor or outsourcer for development. Indeed the
issue is bigger than individual applications and can encompass all soft-
ware development operations, all software maintenance operations, all
customer support operations, or the entire software organization lock,
stock, and barrel.

The need for best practices in outsource agreements is demonstrated
by the fact that within about two years, perhaps 25 percent of outsource
agreements will have developed some friction between the clients and the
outsource vendors. Although results vary from client to client and contrac-
tor to contractor, the overall prognosis of outsourcing within the United
States approximates the following distribution, shown in Table 2-1, is
derived from observations among the author’s clients.

Software development and maintenance are expensive operations
and have become major cost components of corporate budgets. It is not
uncommon for software personnel to exceed 5 percent of total corporate
employment, and for the software and computing budgets to exceed
10 percent of annual corporate expenditures.

54 Chapter Two

Using the function point metric as the basis of comparison, most large
companies now own more than 2.5 million function points as the total volume
of software in their mainframe portfolios, and some very large companies
such as AT&T and IBM each own well over 10 million function points.

As an example of the more or less unplanned growth of software
and software personnel in modern business, some of the larger banks
and insurance companies now have software staffs that number in the
thousands. In fact, software and computing technical personnel may
compose the largest single occupation group within many companies
whose core business is far removed from software.

As software operations become larger, more expensive, and more wide-
spread, the executives of many large corporations are asking a fundamen-
tal question: Should software be part of our core business or not?

This is not a simple question to answer, and the exploration of some
of the possibilities is the purpose of this section. You would probably
want to make software a key component of your core business operations
under these conditions:

■ You sell products that depend upon your own proprietary software.
■ Your software is currently giving your company significant competitive

advantage.

■ Your company’s software development and maintenance effectiveness
are far better than your competitors’.

You might do well to consider outsourcing of software if its relation-
ship to your core business is along the following lines:

■ Software is primarily used for corporate operations, not as a product.

■ Your software is not particularly advantageous compared with your
competitors’.

■ Your development and maintenance effectiveness are marginal.

Results
Percent of Outsource

Arrangements

Both parties generally satisfied 70%

Some dissatisfaction by client or vendor 15%

Dissolution of agreement planned 10%

Litigation between client and contractor probable 4%

Litigation between client and contractor in progress 1%

TABLE 2-1 Approximate Distribution of U.S. Outsource Results After 24 Months

Overview of 50 Software Best Practices 55

Once you determine that outsourcing either specific applications or
portions of your software operations is a good match to your business
plans, some of the topics that need to be included in outsource agree-
ments include

■ The sizes of software contract deliverables must be determined during
negotiations, preferably using function points.

■ Cost and schedule estimation for applications must be formal and
complete.

■ Creeping user requirements must be dealt with in the contract in a
way that is satisfactory to both parties.

■ Some form of independent assessment of terms and progress should
be included.

■ Anticipated quality levels should be included in the contract.

■ Effective software quality control steps must be utilized by the
vendor.

■ If the contract requires that productivity and quality improvements
be based on an initial baseline, then great care must be utilized in
creating a baseline that is accurate and fair to both parties.

■ Tracking of progress and problems during development must be com-
plete and not overlook or deliberately conceal problems.

Fortunately, all eight of these topics are amenable to control once they
are understood to be troublesome if left to chance. An interesting sign
that an outsource vendor is capable of handling large applications is if
they utilize state-of-the-art quality control methods.

The state-of-the-art for large software applications includes sophisti-
cated defect prediction methods, measurements of defect removal effi-
ciency, utilization of defect prevention methods, utilization of formal
design and code inspections, presence of a Software Quality Assurance
(SQA) department, use of testing specialists, and usage of a variety of
quality-related tools such as defect tracking tools, complexity analysis
tools, debugging tools, and test library control tools.

Another important best practice for software outsource contracts
involves dealing with changing requirements, which always occur. For
software development contracts, an effective way of dealing with chang-
ing user requirements is to include a sliding scale of costs in the con-
tract itself. For example, suppose a hypothetical contract is based on an
initial agreement of $1000 per function point to develop an application
of 1000 function points in size, so that the total value of the agreement
is $1 million.

56 Chapter Two

The contract might contain the following kind of escalating cost scale
for new requirements added downstream:

Initial 1000 function points = $1000 per function point

Features added more than 3 months after contract
signing

= $1100 per function point

Features added more than 6 months after contract
signing

= $1250 per function point

Features added more than 9 months after contract
signing

= $1500 per function point

Features added more than 12 months after
contract signing

= $1750 per function point

Features deleted or delayed at user request = $250 per function point

Similar clauses can be utilized with maintenance and enhancement
outsource agreements, on an annual or specific basis, such as:

Normal maintenance and defect repairs = $250 per function point per year

Mainframe to client-server conversion = $500 per function point per system

Special “mass update” search and repair = $75 per function point per system

(Note that the actual cost per function point for software produced in
the United States runs from a low of less than $300 per function point
for small end-user projects to a high of more than $5,000 per function
point for large military software projects. The data shown here is for
illustrative purposes and should not actually be used in contracts as it
stands.)

The advantage of the use of function point metrics for development
and maintenance contracts is that they are determined from the user
requirements and cannot be unilaterally added or subtracted by the
contractor.

In summary form, successful software outsourced projects in
the 10,000–function point class usually are characterized by these
attributes:

■ Less than 1 percent monthly requirements changes after the require-
ments phase

■ Less than 1 percent total volume of requirements “churn”

Fewer than 5.0 defects per function point in total volume

■ More than 65 percent defect removal efficiency before testing begins

■ More than 96 percent defect removal efficiency before delivery

Overview of 50 Software Best Practices 57

Also in summary form, unsuccessful outsource software projects in
the 10,000–function point class usually are characterized by these attri-
butes:

■ More than 2 percent monthly requirements changes after the require-
ments phase

■ More than 5 percent total volume of requirements churn

■ More than 6.0 defects per function point in total volume

■ Less than 35 percent defect removal efficiency before testing begins

■ Less than 85 percent defect removal efficiency before delivery

In performing “autopsies” of cancelled or failed projects, it is fairly
easy to isolate the attributes that distinguish disasters from successes.
Experienced project managers know that false optimism in estimates,
failure to plan for changing requirements, inadequate quality approaches,
and deceptive progress tracking lead to failures and disasters. Conversely,
accurate estimates, careful change control, truthful progress tracking,
and topnotch quality control are stepping-stones to success.

Another complex topic is what happens to the employees whose work
is outsourced. The best practice is that they will be reassigned within
their own company and will be used to handle software applications and
tasks that are not outsourced. However, it may be that the outsourcing
company will take over the personnel, which is usually a very good to
fair practice based on the specifics of the companies involved. The worst
case is that the personnel whose work is outsourced will be laid off.

In addition to outsourcing entire applications or even portfolios, there
are also partial outsource agreements for specialized topics such as test-
ing, static analysis, quality assurance, and technical writing. However,
these partial assignments may also be done in-house by contractors who
work on-site, so it is hard to separate outsourcing from contract work
for these special topics.

Whether to outsource is an important business decision. Using best
practices for the contract between the outsource vendor and the client
can optimize the odds of success, and minimize the odds of expensive
litigation.

In general, maintenance outsource agreements are less troublesome
and less likely to end up in court than development outsource agree-
ments. In fact, if maintenance is outsourced, that often frees up enough
personnel so that application backlogs can be reduced and major new
applications developed.

As the economy worsens, there is uncertainty about the future of out-
sourcing. Software will remain an important commodity, so outsourcing

58 Chapter Two

will no doubt stay as an important industry. However, the economic crisis
and the changes in inflation rates and currency values may shift the bal-
ance of offshore outsourcing from country to country. In fact, if deflation
occurs, even the United States could find itself with expanding capabili-
ties for outsourcing.

8. Best Practices for Using Contractors and
Management Consultants

As this book is written in 2009, roughly 10 percent to 12 percent of the
U.S. software population are not full-time employees of the companies
that they work for. They are contractors or consultants.

On any given business day in any given Fortune 500 company, roughly
ten management consultants will be working with executives and man-
agers on topics that include benchmarks, baselines, strategic planning,
competitive analysis, and a number of other specialized topics.

Both of these situations can be viewed as being helpful practices and
are often helpful enough to move into the best practice category.

All companies have peaks and valleys in their software workloads.
If full-time professional staff is on board for the peaks, then they won’t
have any work during the valley periods. Conversely, if full-time pro-
fessional staffing is set up to match the valleys, when important new
projects appear, there will be a shortage of available technical staff
members.

What works best is to staff closer to the valley or midpoint of aver-
age annual workloads. Then when projects occur that need additional
resources, bring in contractors either for the new projects themselves,
or to take over standard activities such as maintenance and thereby
free up the company’s own technical staff. In other words, having full-
time staffing levels 5 percent to 10 percent below peak demand is a
cost-effective strategy.

The primary use of management consultants is to gain access to spe-
cial skills and knowledge that may not be readily available in-house.
Examples of some of the topics where management consultants have
skills that are often lacking among full-time staff include

■ Benchmarks and comparisons to industry norms

■ Baselines prior to starting process improvements

■ Teaching new or useful technologies such as Agile, Six Sigma, and
others

■ Measurement and metrics such as function point analysis

■ Selecting international outsource vendors

■ Strategic and market planning for new products

Overview of 50 Software Best Practices 59

■ Preparing for litigation or defending against litigation

■ Assisting in process improvement startups

■ Attempting to turn around troubled projects

■ Offering advice about IPOs, mergers, acquisitions, and venture
financing

Management consultants serve as a useful conduit for special stud-
ies and information derived from similar companies. Because manage-
ment consultants are paid for expertise rather than for hours worked,
many successful management consultants are in fact top experts in
their selected fields.

Management consultants have both a strategic and a tactical role.
Their strategic work deals with long-range topics such as market posi-
tions and optimizing software organization structures. Their tactical
role is in areas such as Six Sigma, starting measurement programs, and
aiding in collecting function point data.

In general, usage both of hourly contractors for software develop-
ment and maintenance, and of management consultants for special
topics benefits many large corporations and government agencies. If
not always best practices, the use of contractors and management con-
sultants are usually at least good practices.

9. Best Practices for Selecting Software
Methods, Tools, and Practices

Unfortunately, careful selection of methods, tools, and practices seldom
occurs in the software industry. Either applications are developed using
methods already in place, or there is rush to adopt the latest fad such
as CASE, I-CASE, RAD, and today, Agile in several varieties.

A wiser method of selecting software development methods would be
to start by examining benchmarks for applications that used various
methods, and then to select the method or methods that yield the best
results for specific sizes and types of software projects.

As this book is written, thousands of benchmarks are now available from
the nonprofit International Software Benchmarking Standards Group
(ISBSG), and most common methods are represented. Other benchmark
sources are also available, such as Software Productivity Research, the
David Consulting Group, and others. However, ISBSG is available on the
open market to the public and is therefore easiest to access.

Among the current choices for software development methods can
be found (in alphabetical order) Agile development, clean-room devel-
opment, Crystal development, Dynamic Systems Development Method
(DSDM), extreme programming (XP), hybrid development, iterative
development, object-oriented development, pattern-based development,

60 Chapter Two

Personal Software Process (PSP), rapid application development (RAD),
Rational Unified Process (RUP), spiral development, structured develop-
ment, Team Software Process (TSP), V-model development, and waterfall
development.

In addition to the preceding, a number of partial development meth-
ods deal with specific phases or activities. Included in the set of partial
methods are (in alphabetical order) code inspections, data-state design,
design inspections, flow-based programming, joint application design
(JAD), Lean Six Sigma, pair programming, quality function deployment
(QFD), requirements inspections, and Six Sigma for software. While
the partial methods are not full development methods, they do have a
measurable impact on quality and productivity.

It would be useful to have a checklist of topics that need to be evalu-
ated when selecting methods and practices. Among these would be

Suitability by application size How well the method works for
applications ranging from 10 function points to 100,000 function points.
The Agile methods seem to work well for smaller applications, while
Team Software Process (TSP) seems to work well for large systems, as
does the Rational Unified Process (RUP). Hybrid methods also need to
be included.

Suitability by application type How well the method works for
embedded software, systems software, web applications, information
technology applications, commercial applications, military software,
games, and the like.

Suitability by application nature How well the method works
for new development, for enhancements, for warranty repairs, and for
renovation of legacy applications. There are dozens of development
methodologies, but very few of these also include maintenance and
enhancement. As of 2009, the majority of “new” software applications
are really replacements for aging legacy applications. Therefore data
mining of legacy software for hidden requirements, enhancements, and
renovation should be standard features in software methodologies.

Suitability by attribute How well the method supports important
attributes of software applications including but not limited to defect pre-
vention, defect removal efficiency, minimizing security vulnerabilities,
achieving optimum performance, and achieving optimum user interfaces.
A development method that does not include both quality control and mea-
surement of quality is really unsuitable for critical software applications.

Suitability by activity How well the method supports require-
ments; architecture; design; code development; reusability; pretest
inspections; static analysis; testing; configuration control; quality assur-
ance; user information; and postrelease maintenance, enhancement, and
customer support.

Overview of 50 Software Best Practices 61

The bottom line is that methodologies should be deliberately selected
to match the needs of specific projects, not used merely because they are
a current fad or because no one knows of any other approach.

As this book is written, formal technology selection seems to occur
for less than 10 percent of software applications. About 60 percent use
whatever methods are the local custom, while about 30 percent adopt
the most recent popular method such as Agile, whether or not that
method is a good match for the application under development.

Development process refers to a standard set of activities that are
performed in order to build a software application. (Development process
and development methodology are essentially synonyms.)

For conventional software development projects, about 25 activities
and perhaps 150 tasks are usually included in the work breakdown
structure (WBS). For Agile projects, about 15 activities and 75 tasks are
usually included in the work breakdown structure.

The work breakdown structure of large systems will vary based on
whether the application is to be developed from scratch, or it involves
modifying a package or modifying a legacy application. In today’s world
circa 2009, projects that are modifications are actually more numerous
than complete new development projects.

An effective development process for projects in the nominal 10,000–
function point range that include acquisition and modification of com-
mercial software packages would resemble the following:

 1. Requirements gathering

 2. Requirements analysis

 3. Requirements inspections

 4. Data mining of existing similar applications to extract business
rules

 5. Architecture

 6. External design

 7. Internal design

 8. Design inspections

 9. Security vulnerability analysis

10. Formal risk analysis

11. Formal value analysis

12. Commercial-off-the-shelf (COTS) package analysis

13. Requirements/package mapping

14. Contacting package user association

62 Chapter Two

15. Package licensing and acquisition

16. Training of development team in selected package

17. Design of package modifications

18. Development of package modifications

19. Development of unique features

20. Acquisition of certified reusable materials

21. Inspection of package modifications

22. Documentation of package modifications

23. Inspections of documentation and HELP screens

24. Static analysis of package modifications

25. General testing of package modifications

26. Specialized testing of package modifications (performance,
security)

27. Quality assurance review of package modifications

28. Training of user personnel in package and modifications

29. Training of customer support and maintenance personnel

30. Deployment of package modifications

These high-level activities are usually decomposed into a full work
breakdown structure with between 150 and more than 1000 tasks and
lower-level activities. Doing a full work breakdown structure is too dif-
ficult for manual approaches on large applications. Therefore, project
management tools such as Artemis Views, Microsoft Project, Primavera,
or similar tools are always used in leading companies.

Because requirements change at about 2 percent per calendar month,
each of these activities must be performed in such a manner that
changes are easy to accommodate during development; that is, some
form of iterative development is necessary for each major deliverable.

However, due to fixed delivery schedules that may be contractually
set, it is also mandatory that large applications be developed with mul-
tiple releases in mind. At a certain point, all features for the initial
release must be frozen, and changes occurring after that point must
be added to follow-on releases. This expands the concept of iterative
development to a multiyear, multirelease philosophy.

A number of sophisticated companies such as IBM and AT&T have
long recognized that change is continuous with software applications.
These companies tend to have fixed release intervals, and formal plan-
ning for releases spreads over at least the next two releases after the
current release.

Overview of 50 Software Best Practices 63

Formal risk analysis and value analysis are also indicators of software
sophistication. As noted in litigation, failing projects don’t perform risk
analyses, so they tend to be surprised by factors that delay schedules
or cause cost overruns.

Sophisticated companies always perform formal risk analysis for
major topics such as possible loss of personnel, changing requirements,
quality, and other key topics. However, one form of risk analysis is not
done very well, even by most sophisticated companies: security vulner-
abilities. Security analysis, if it is done at all, is often an afterthought.

A number of approaches have proven track records for large software
projects. Among these are the capability maturity model (CMM) by the
Software Engineering Institute (SEI) and the newer Team Software
Process (TSP) and Personal Software Process (PSP) created by Watts
Humphrey and also supported by the SEI. The Rational Unified Process
(RUP) also has had some successes on large software projects. For
smaller applications, various flavors of Agile development and extreme
programming (XP) have proven track records of success. Additional
approaches such as object-oriented development, pattern matching,
Six Sigma, formal inspections, prototypes, and reuse have also demon-
strated value for large applications.

Over and above “pure” methods such as the Team Software Process
(TSP), hybrid approaches are also successful. The hybrid methods use
parts of several different approaches and blend them together to meet
the needs of specific projects. As of 2009, hybrid or blended development
approaches seem to outnumber pure methods in terms of usage.

Overall, hybrid methods that use features of Six Sigma, the capabil-
ity maturity model, Agile, and other methods have some significant
advantages. The reason is that each of these methods in “pure” form has
a rather narrow band of project sizes and types for which they are most
effective. Combinations and hybrids are more flexible and can match the
characteristics of any size and any type. However, care and expertise
are required in putting together hybrid methods to be sure that the best
combinations are chosen. It is a job for experts and not for novices.

There are many software process improvement network (SPIN) chap-
ters in major cities throughout the United States. These organizations
have frequent meetings and serve a useful purpose in disseminating infor-
mation about the successes and failures of various methods and tools.

It should be obvious that any method selected should offer improve-
ments over former methods. For example, current U.S. averages for
software defects total about 5.00 per function point. Defect removal
efficiency averages about 85 percent, so delivered defects amount to
about 0.75 per function point.

Any new process should lower defect potentials, raise defect removal
efficiency, and reduce delivered defects. Suggested values for an improved

64 Chapter Two

process would be no more than 3.00 defects per function point, 95 per-
cent removal efficiency, and delivered defects of no more than 0.15 defect
per function point.

Also, any really effective process should raise productivity and
increase the volume of certified reusable materials used for software
construction.

10. Best Practices for Certifying Methods,
Tools, and Practices

The software industry tends to move from fad to fad with each meth-
odology du jour making unsupported claims for achieving new levels
of productivity and quality. What would be valuable for the software
industry is a nonprofit organization that can assess the effectiveness
of methods, tools, and practices in an objective fashion.

What would also be useful are standardized measurement practices
for collecting productivity and quality data for all significant software
projects.

This is not an easy task. It is unfeasible for an evaluation group to
actually try out or use every development method, because such usage
in real life may last for several years, and there are dozens of them.

What probably would be effective is careful analysis of empirical results
from projects that used various methods, tools, and practices. Data can
be acquired from benchmark sources such as the International Software
Benchmarking Standards Group (ISBSG), or from other sources such as
the Finnish Software Metrics Association.

To do this well requires two taxonomies: (1) a taxonomy of software
applications that will provide a structure for evaluating methods by
size and type of project and (2) a taxonomy of software methods and
tools themselves.

A third taxonomy, of software feature sets, would also be useful, but
as of 2009, does not exist in enough detail to be useful. The basic idea
of all three taxonomies is to support pattern matching. In other words,
applications, their feature sets, and development methods all deal with
common issues, and it would be useful if the patterns associated with
these issues could become visible. That would begin to move the industry
toward construction of software from standard reusable components.

The two current taxonomies deal with what kinds of software might
use the method, and what features the method itself contains.

It would not be fair to compare the results of a large project of greater
than 10,000 function points with a small project of less than 1000 func-
tion points. Nor would it be fair to compare an embedded military appli-
cation against a web project. Therefore a standard taxonomy for placing
software projects is a precursor for evaluating and selecting methods.

Overview of 50 Software Best Practices 65

From performing assessment and benchmark studies with my col-
leagues over the years, a four-layer taxonomy seems to provide a suit-
able structure for software applications:

Nature The term nature refers to whether the project is a new devel-
opment, an enhancement, a renovation, or something else. Examples of
the nature parameter include new development, enhancement of legacy
software, defect repairs, and conversion to a new platform.

Scope The term scope identifies the size range of the project run-
ning from a module through an enterprise resource planning (ERP)
package. Sizes are expressed in terms of function point metrics as well
as source code. Size ranges cover a span that runs from less than 1
function point to more than 100,000 function points. To simplify analy-
sis, sizes can be discrete, that is, 1, 10, 100, 1000, 10,000, and 100,000
function points. Examples of the scope parameter include prototype,
evolutionary prototype, module, reusable module, component, stand-
alone program, system, and enterprise system.

Class The term class identifies whether the project is for external
use within the developing organization, or whether it is to be released
externally either on the Web or in some other form. Examples of the
class parameter include internal applications for a single location, inter-
nal applications for multiple locations, external applications for the
public domain (open source), external applications to be marketed com-
mercially, external applications for the Web, and external applications
embedded in hardware devices.

Type The term type refers to whether the application is embed-
ded software, information technology, a military application, an expert
system, a telecommunications application, a computer game, or some-
thing else. Examples of the type parameter include batch applications,
interactive applications, web applications, expert systems, robotics
applications, process-control applications, scientific software, neural
net applications, and hybrid applications that contain multiple types
concurrently.

This four-part taxonomy can be used to define and compare software
projects to ensure that similar applications are being compared. It is
also interesting that applications that share the same patterns on this
taxonomy are also about the same size when measured using function
point metrics.

The second taxonomy would define the features of the development
methodology itself. There are 25 topics that should be included:

Proposed Taxonomy for Software Methodology Analysis

 1. Team organization

 2. Specialization of team members

66 Chapter Two

 3. Project management—planning and estimating

 4. Project management—tracking and control

 5. Change control

 6. Architecture

 7. Business analysis

 8. Requirements

 9. Design

10. Reusability

11. Code development

12. Configuration control

13. Quality assurance

14. Inspections

15. Static analysis

16. Testing

17. Security

18. Performance

19. Deployment and customization of large applications

20. Documentation and training

21. Nationalization

22. Customer support

23. Maintenance (defect repairs)

24. Enhancement (new features)

25. Renovation

These 25 topics are portions of an approximate 30-year life cycle that
starts with initial requirements and concludes with final withdrawal
of the application many years later. When evaluating methods, this
checklist can be used to show which portions of the timeline and which
topics the methodology supports.

Agile development, for example, deals with 8 of these 25 factors:

 1. Team organization

 2. Project management—planning and estimating

 3. Change control

 4. Requirements

 5. Design

Overview of 50 Software Best Practices 67

 6. Code development

 7. Configuration control

 8. Testing

In other words, Agile is primarily used for new development of appli-
cations rather than for maintenance and enhancements of legacy
applications.

The Team Software Process (TSP) deals with 16 of the 25 factors:

 1. Team organization

 2. Specialization of team members

 3. Project management—planning and estimating

 4. Project management—tracking and control

 5. Change control

 6. Requirements

 7. Design

 8. Reusability

 9. Code development

10. Configuration control

11. Quality assurance

12. Inspections

13. Static analysis

14. Testing

15. Security

16. Documentation and training

TSP is also primarily a development method, but one that concen-
trates on software quality control and also that includes project man-
agement components for planning and estimating.

Another critical aspect of evaluating software methods, tools, and
practices is to measure the resulting productivity and quality levels.
Measurement is a weak link for the software industry. To evaluate
the effectiveness of methods and tools, great care must be exercised.
Function point metrics are best for evaluation and economic purposes.
Harmful and erratic metrics such as lines of code and cost per defect
should be avoided.

However, to ensure apples-to-apples comparison between projects
using specific methods, the measures need to granular-down to the level
of specific activities. If only project- or phase-level data is used, it will
be too inaccurate to use for evaluations.

68 Chapter Two

Although not every project uses every activity, the author makes use
of a generalized activity chart of accounts for collecting benchmark data
at the activity level:

Chart of Accounts for Activity-Level Software Benchmarks

 1. Requirements (initial)

 2. Requirements (changed and added)

 3. Team education

 4. Prototyping

 5. Architecture

 6. Project planning

 7. Initial design

 8. Detail design

 9. Design inspections

10. Coding

11. Reusable material acquisition

12. Package acquisition

13. Code inspections

14. Static analysis

15. Independent verification and validation

16. Configuration control

17. Integration

18. User documentation

19. Unit testing

20. Function testing

21. Regression testing

22. Integration testing

23. Performance testing

24. Security testing

25. System testing

26. Field testing

27. Software quality assurance

28 Installation

29. User training

30. Project management

Overview of 50 Software Best Practices 69

Unless specific activities are identified, it is essentially impossible to
perform valid comparisons between projects.

Software quality also needs to be evaluated. While cost of quality
(COQ) would be preferred, two important supplemental measures
should always be included. These are defect potentials and defect
removal efficiency.

The defect potential of a software application is the total number of
bugs found in requirements, design, code, user documents, and bad fixes.
The defect removal efficiency is the percentage of bugs found prior to
delivery of software to clients.

As of 2009, average values for defect potentials are

Defect Origins Defects per Function Point

Requirements bugs 1.00

Design bugs 1.25

Coding bugs 1.75

Documentation bugs 0.60

Bad fixes (secondary bugs) 0.40

TOTAL 5.00

Cumulative defect removal efficiency before delivery is only about
85 percent. Therefore methods should be evaluated in terms of how
much they reduce defect potentials and increase defect removal effi-
ciency levels. Methods such as the Team Software Process (TSP) that
lower potentials below 3.0 bugs per function point and that raise defect
removal efficiency levels above 95 percent are generally viewed as best
practices.

Productivity also needs to be evaluated. The method used by the
author is to select an average or midpoint approach such as Level 1
on the capability maturity model integration (CMMI) as a starting
point. For example, average productivity for CMMI 1 applications in
the 10,000–function point range is only about 3 function points per
staff month. Alternative methods that improve on these results, such
as Team Software Process (TSP) or the Rational Unified Process (RUP),
can then be compared with the starting value. Of course some methods
may degrade productivity, too.

The bottom line is the evaluating software methodologies, tools, and
practices scarcely performed at all circa 2009. A combination of activity-
level benchmark data from completed projects, a formal taxonomy for
pinning down specific types of software applications, and a formal taxon-
omy for identifying features of the methodology are all needed. Accurate
quality data in terms of defect potentials and defect removal efficiency
levels is also needed.

70 Chapter Two

One other important topic for certification would be to show improve-
ments versus current U.S. averages. Because averages vary by size
and type of application, a sliding scale is needed. For example, current
average schedules from requirements to delivery can be approximated
by raising the function point total of the application to the 0.4 power.
Ideally, an optimal development process would reduce the exponent to
the 0.3 power.

Current defect removal efficiency for software applications in the
United States is only about 85 percent. An improved process should
yield results in excess of 95 percent.

Defect potentials or total numbers of bugs likely to be encountered can
be approximated by raising the function point total of the application to
the 1.2 power, which results in alarmingly high numbers of defects for
large systems. An improved development process should lower defect
potentials below about the 1.1 power.

The volume of certified reusable material in current software appli-
cations runs from close to 0 percent up to perhaps 50 percent, but the
average value is less than 25 percent. The software industry would
be in much better shape economically if the volume of certified reusable
materials could top 85 percent on average, and reach 95 percent for
relatively common kinds of applications.

The bottom line is that certification needs to look at quantitative
results and include information on benefits from adopting new methods.
One additional aspect of certification is to scan the available reports and
benchmarks from the International Software Benchmarking Standards
Group (ISBSG). As their collection of historical benchmarks rises above
5,000 projects, more and more methods are represented in enough detail
to carry out multiple-regression studies and to evaluate their impacts.

11. Best Practices for Requirements
of Software Applications

As of 2009, more than 80 percent of software applications are not new
in the sense that such applications are being developed for the very first
time. Most applications today are replacements for older and obsolete
applications.

Because these applications are obsolete, it usually happens that their
written specifications have been neglected and are out of date. Yet in
spite of the lack of current documents, the older applications contain
hundreds or thousands of business rules and algorithms that need to
be transferred to the new application.

Therefore, as of 2009, requirements analysis should not deal only with
new requirements but should also include data mining of the legacy
code to extract the hidden business rules and algorithms. Some tools

Overview of 50 Software Best Practices 71

are available to do this, and also many maintenance workbenches can
display code and help in the extraction of latent business rules.

Although clear requirements are a laudable goal, they almost never
occur for nominal 10,000–function point software applications. The only
projects the author has observed where the initial requirements were
both clear and unchanging were for specialized small applications below
500 function points in size.

Businesses are too dynamic for requirements to be completely
unchanged for large applications. Many external events such as changes
in tax laws, changes in corporate structure, business process reengineer-
ing, or mergers and acquisitions can trigger changes in software applica-
tion requirements. The situation is compounded by the fact that large
applications take several years to develop. It is unrealistic to expect
that a corporation can freeze all of its business rules for several years
merely to accommodate the needs of a software project.

The most typical scenario for dealing with the requirements of a
nominal 10,000–function point application would be to spend several
months in gathering and analyzing the initial requirements. Then as
design proceeds, new and changed requirements will arrive at a rate of
roughly 2 percent per calendar month. The total volume of requirements
surfacing after the initial requirements exercise will probably approach
or even exceed 50 percent. These new and changing requirements will
eventually need to be stopped for the first release of the application,
and requirements surfacing after about 9 to 12 months will be aimed
at follow-on releases of the application.

The state of the art for gathering and analyzing the requirements for
10,000–function point projects includes the following:

■ Utilization of joint application design (JAD) for initial requirements
gathering

■ Utilization of quality function deployment (QFD) for quality require-
ments

■ Utilization of security experts for security analysis and vulnerability
prevention

■ Utilization of prototypes for key features of new applications

■ Mining legacy applications for requirements and business rules for new
projects

■ Full-time user involvement for Agile projects

■ Ensuring that requirements are clearly expressed and can be under-
stood

■ Utilization of formal requirement inspections with both users and
vendors

72 Chapter Two

■ Creation of a joint client/vendor change control board

■ Selection of domain experts for changes to specific features

■ Ensuring that requirements traceability is present

■ Multirelease segmentation of requirements changes

■ Utilization of automated requirements analysis tools

■ Careful analysis of the features of packages that will be part of the
application

The lowest rates of requirements changes observed on 10,000–function
point projects are a little below 0.5 percent a month, with an accumulated
total of less than 10 percent compared with the initial requirements.
However, the maximum amount of growth has topped 200 percent.
Average rates of requirements change run between 1 percent and
3 percent per calendar month during the design and coding phases, after
which changes are deferred to future releases.

The concurrent use of JAD sessions, careful analysis of requirements,
requirements inspections, and prototypes can go far to bring the require-
ments process under technical and management control.

Although the results will not become visible for many months or
sometimes for several years, the success or failure of a large software
project is determined during the requirements phase. Successful proj-
ects will be more complete and thorough in gathering and analyzing
requirements than failures. As a result, successful projects will have
fewer changes and lower volumes of requirements creep than failing
projects.

However, due to the fact that most new applications are partial repli-
cas of existing legacy software, requirements should include data mining
to extract latent business rules and algorithms.

12. Best Practices for User Involvement
in Software Projects

It is not possible to design and build nominal 10,000–function point
business applications without understanding the requirements of the
users. Further, when the application is under development, users nor-
mally participate in reviews and also assist in trials of specific deliv-
erables such as screens and documents. Users may also review or even
participate in the development of prototypes for key inputs, outputs,
and functions. User participation is a major feature of the new Agile
development methodology, where user representatives are embedded in
the project team. For any major application, the state of the art of user
involvement includes participation in:

Overview of 50 Software Best Practices 73

 1. Joint application design (JAD) sessions

 2. Quality function deployment (QFD)

 3. Reviewing business rules and algorithms mined from legacy
applications

 4. Agile projects on a full-time basis

 5. Requirements reviews

 6. Change control boards

 7. Reviewing documents produced by the contractors

 8. Design reviews

 9. Using prototypes and sample screens produced by the contractors

10. Training classes to learn the new application

11. Defect reporting from design through testing

12. Acceptance testing

User involvement is time-consuming but valuable. On average, user
effort totals about 20 percent of the effort put in by the software tech-
nical team. The range of user involvement can top 50 percent at the
high end and be less than 5 percent at the low end. However, for large
and complex projects, if the user involvement totals to less than about
10 percent of the effort expended by the development team, the project
will be at some risk of having poor user satisfaction when it is finally
finished.

The Agile methodology includes a full-time user representative as
part of the project team. This method does work well for small projects
and small numbers of users. It becomes difficult or impossible when the
number of users is large, such as the millions of users of Microsoft Office
or Microsoft Vista. For applications with millions of users, no one user
can possibly understand the entire range of possible uses.

For these high-usage applications, surveys of hundreds of users or
focus groups where perhaps a dozen users offer opinions are preferred.
Also, usability labs where users can try out features and prototypes
are helpful.

As can be seen, there is no “one size fits all” method for software
applications that can possibly be successful for sizes of 1, 10, 100, 1000,
10,000, and 100,000 function points. Each size plateau and each type of
software needs its own optimal methods and practices.

This same situation occurs with medicine. There is no antibiotic or
therapeutic agent that is successful against all diseases including bacte-
rial and viral illness. Each condition needs a unique prescription. Also
as with medicine, some conditions may be incurable.

74 Chapter Two

13. Best Practices for Executive Management
Support of Software Applications

The topic of executive management support of new applications varies
with the overall size of the application. For projects below about 500
function points, executive involvement may hover around zero, because
these projects are so low in cost and low in risk as to be well below the
level of executive interest.

However, for large applications in the 10,000–function point range,
executive scrutiny is the norm. It is an interesting phenomenon that
the frequent failure of large software projects has caused a great deal
of distrust of software managers by corporate executives. In fact, the
software organizations of large companies are uniformly regarded as
the most troublesome organizations in the company, due to high failure
rates, frequent overruns, and mediocre quality levels.

In the software industry overall, the state of the art of executive man-
agement support indicates the following roles:

■ Approving the return on investment (ROI) calculations for software
projects

■ Providing funding for software development projects

■ Assigning key executives to oversight, governance, and project direc-
tor roles

■ Reviewing milestone, cost, and risk status reports

■ Determining if overruns or delays have reduced the ROI below corpo-
rate targets

Even if executives perform all of the roles that normally occur, prob-
lems and failures can still arise. A key failing of software projects is that
executives cannot reach good business decisions if they are provided
with disinformation rather than accurate status reports. If software
project status reports and risk assessments gloss over problems and
technical issues, then executives cannot control the project with the pre-
cision that they would like. Thus, inadequate reporting and less-than-
candid risk assessments will delay the eventual and prudent executive
decision to try and limit further expenses by terminating projects that
are out of control.

It is a normal corporate executive responsibility to ascertain why proj-
ects are running out of control. One of the reasons why executives at
many large corporations distrust software is because software projects
have a tendency to run out of control and often fail to provide accu-
rate status reports. As a result, top executives at the levels of senior
vice presidents, chief operating officers, and chief executive officers find

Overview of 50 Software Best Practices 75

software to be extremely frustrating and unprofessional compared with
other operating units.

As a class, the corporate executives that the author has met are more
distrustful of software organizations than almost any other corporate
group under their management control. Unfortunately, corporate execu-
tives appear to have many reasons for being distrustful of software
managers after so many delays and cost overruns.

All of us in the software industry share a joint responsibility for rais-
ing the professional competence of software managers and software
engineers to such a level that we receive (and deserve) the trust of
corporate client executives.

14. Best Practices for Software
Architecture and Design

For small stand-alone applications in the 1000–function point range,
both architecture and design are often informal activities. However, as
application sizes increase to 10,000 and then 100,000 function points,
both architecture and design become increasingly important. They also
become increasingly complicated and expensive.

Enterprise architecture is even larger in scope, and it attempts to match
total corporate portfolios against total business needs including sales,
marketing, finance, manufacturing, R&D, and other operating units. At
the largest scale, enterprise architecture may deal with more than 5,000
applications that total more than 10 million function points.

The architecture of a large software application concerns its overall
structure and the nature of its connections to other applications and
indeed to the outside world. As of 2009, many alternative architectures
are in use, and a specific architecture needs to be selected for new appli-
cations. Some of these include monolithic applications, service-oriented
architecture (SOA), event-driven architecture, peer-to-peer, pipes and
filters, client-server, distributed, and many others, including some spe-
cialized architectures for defense and government applications.

A colleague from IBM, John Zachman, developed an interesting and
useful schema that shows some of the topics that need to be included in
the architectural decisions for large software applications. The overall
Zachman schema is shown in Table 2-2.

In the Zachman schema, the columns show the essential activities,
and the rows show the essential personnel involved with the software.
The intersections of the columns and rows detail tasks and decisions for
each join of the rows and columns. A quick review of Table 2-2 reveals
the rather daunting number of variables that need to be dealt with to
develop the architecture for a major software application.

76 Chapter Two

The design of software applications is related to architecture, but deals
with many additional factors. As of 2009, the selection of design methods
is unsettled, and there are more than 40 possibilities. The unified model-
ing language (UML) and use-cases are currently the hottest of the design
methods, but scores of others are also in use. Some of the other possibilities
include old-fashioned flowcharts, HIPO diagrams, Warnier-Orr diagrams,
Jackson diagrams, Nassi-Schneiderman charts, entity-relationship dia-
grams, state-transition diagrams, action diagrams, decision tables, data-
flow diagrams, object-oriented design, pattern-based design, and many
others, including hybrids and combinations.

The large number of software design methods and diagramming
techniques is a sign that no single best practice has yet emerged. The
fundamental topics of software design include descriptions of the func-
tions and features available to users and how users will access them.
At the level of internal design, the documents must describe how those
functions and features will be linked and share information internally.
Other key elements of software design include security methods and
performance issues. In addition, what other applications will provide
data to or take data from the application under development must be
discussed. Obviously, the design must also deal with hardware plat-
forms and also with software platforms such as the operating systems
under which the application will operate.

Because many software applications are quite similar, and have been
for more than 50 years, it is possible to record the basic features, func-
tions, and structural elements of common applications into patterns that
can be reused over and over. Reusable design patterns will become a best
practice once a standard method for describing those patterns emerges
from the many competing design languages and graphic approaches
that are in current use.

It is possible to visualize some of these architectural patterns by
examining the structures of existing applications using automated
tools. In fact, mining existing software for business rules, algorithms,

What How Where Who When Why

Planner

Owner

Designer

Builder

Contractor

Enterprise

TABLE 2-2 Example of the Zachman Architectural Schema

Overview of 50 Software Best Practices 77

and architectural information is a good first step toward creating
libraries of reusable components and a workable taxonomy of software
features.

Enterprise architecture also lends itself to pattern analysis. Any con-
sultant who visits large numbers of companies in the same industries
cannot help but notice that software portfolios are about 80 percent
similar for all insurance companies, banks, manufacturing companies,
pharmaceuticals, and so forth. In fact, the New Zealand government
requires that all banks use the same software, in part to make audits
and security control easier for regulators (although perhaps increasing
the risk of malware and denial of service attacks).

What the industry needs as of 2009 are effective methods for visu-
alizing and using these architectural patterns. A passive display of
information will be insufficient. There is a deeper need to link costs,
value, numbers of users, strategic directions, and other kinds of busi-
ness information to the architectural structures. In addition, it is
necessary to illustrate the data that the software applications use,
and also the flows of information and data from one operating unit
to another and from one system to another; that is, dynamic models
rather than static models would be the best representation approach.
Given the complexity and kinds of information, what would prob-
ably be most effective for visualization of patterns would be dynamic
holographic images.

15. Best Practices for Software
Project Planning

Project planning for large software projects in large corporations often
involves both planning specialists and automated planning tools. The
state of the art for planning software projects circa 2009 for large proj-
ects in the nominal 10,000–function point range involves

■ Development of complete work breakdown structures

■ Collecting and analyzing historical benchmark data from similar
projects

■ Planning aid provided by formal project offices

■ Consideration to staff hiring and turnover during the project

■ Usage of automated planning tools such as Artemis Views or Microsoft
Project

■ Factoring in time for requirements gathering and analysis

■ Factoring in time for handling changing requirements

78 Chapter Two

■ Consideration given to multiple releases if requirements creep is
extreme

■ Consideration given to transferring software if outsourcing is used

■ Consideration given to supply chains if multiple companies are
involved

■ Factoring in time for a full suite of quality control activities

■ Factoring in risk analysis of major issues that are likely to occur

Successful projects do planning very well indeed. Delayed or can-
celled projects, however, almost always have planning failures. The
most common planning failures include (1) not dealing effectively with
changing requirements, (2) not anticipating staff hiring and turnover
during the project, (3) not allotting time for detailed requirements
analysis, (4) not allotting sufficient time for formal inspections, test-
ing, and defect repairs, and (5) essentially ignoring risks until they
actually occur.

Large projects in sophisticated companies will usually have planning
support provided by a project office. The project office will typically be
staffed by between 6 and 10 personnel and will be well equipped with
planning tools, estimating tools, benchmark data, tracking tools, and
other forms of data analysis tools such as statistical processors.

Because project planning tools and software cost-estimating tools are
usually provided by different vendors, although they share data, plan-
ning and estimating are different topics. As used by most managers,
the term planning concerns the network of activities and the critical
path required to complete a project. The term estimating concerns cost
and resource predictions, and also quality predictions. The two terms
are related but not identical. The two kinds of tools are similar, but not
identical.

Planning and estimating are both more credible if they are supported
by benchmark data collected from similar projects. Therefore all major
projects should include analysis of benchmarks from public sources
such as the International Software Benchmarking Standards Group
(ISBSG) as well as internal benchmarks. One of the major problems of
the software industry, as noted during litigation, is that accurate plans
and estimates are often replaced by impossible plans and estimates
based on business needs rather than on team capabilities. Usually these
impossible demands come from clients or senior executives, rather than
from the project managers. However, without empirical data from simi-
lar projects, it is difficult to defend plans and estimates no matter how
accurate they are. This is a subtle risk factor that is not always recog-
nized during risk analysis studies.

Overview of 50 Software Best Practices 79

16. Best Practices for Software Project
Cost Estimating

For small applications of 1000 or fewer function points, manual estimates
and automated estimates are about equal in terms of accuracy. However,
as application sizes grow to 10,000 or more function points, automated esti-
mates continue to be fairly accurate, but manual estimates become danger-
ously inaccurate by leaving out key activities, failing to deal with changing
requirements, and underestimating test and quality control. Above 10,000
function points in size, automated estimating tools are the best practice,
while manual estimation is close to professional malpractice.

Estimating software projects in the nominal 10,000–function point
range is a critical activity. The current state of the art for estimating
large systems involves the use of:

■ Formal sizing approaches for major deliverables based on function
points

■ Secondary sizing approaches for code based on lines of code metrics

■ Tertiary sizing approaches using information such as screens, reports,
and so on

■ Inclusion of reusable materials in the estimates

■ Inclusion of supply chains in the estimate if multiple companies are
involved

■ Inclusion of travel costs if international or distributed teams are
involved

■ Comparison of estimates to historical benchmark data from similar
projects

■ Trained estimating specialists

■ Software estimating tools (CHECKPOINT, COCOMO, KnowledgePlan,
Price-S, SEER, SLIM, SoftCost, etc.)

■ Inclusion of new and changing requirements in the estimate

■ Quality estimation as well as schedule and cost estimation

■ Risk prediction and analysis

■ Estimation of all project management tasks

■ Estimation of plans, specifications, and tracking costs

■ Sufficient historical benchmark data to defend an estimate against
arbitrary changes

There is some debate in the software literature about the merits of
estimating tools versus manual estimates by experts. However, above

80 Chapter Two

10,000 function points, there are hardly any experts in the United
States, and most of them work for the commercial software estimating
companies.

The reason for this is that in an entire career, a project manager might
deal only with one or two really large systems in the 10,000–function
point range. Estimating companies, on the other hand, typically collect
data from dozens of large applications.

The most common failing of manual estimates for large applications
is that they are excessively optimistic due to lack of experience. While
coding effort is usually estimated fairly well, manual estimates tend to
understate paperwork effort, test effort, and the impacts of changing
requirements. Even if manual estimates were accurate for large applica-
tions, which they are not, the cost of updating manual estimates every few
weeks to include changing requirements is prohibitively expensive.

A surprising observation from litigation is that sometimes accurate
estimates are overruled and rejected precisely because they are accurate!
Clients or top managers reject the original and accurate estimate, and
replace it with an artificial estimate made up out of thin air. This is because
the original estimate showed longer schedules and higher costs than the
clients wanted, so they rejected it. When this happens, the project has
more than an 80 percent chance of failure, and about a 99 percent chance
of severe cost and schedule overruns.

A solution to this problem is to support the estimate by historical
benchmarks from similar applications. These can be acquired from the
International Software Benchmarking Standards Group (ISBSG) or
from other sources. Benchmarks are perceived as being more real than
estimates, and therefore supporting estimates with historical bench-
marks is a recommended best practice. One problem with this approach
is that historical benchmarks above 10,000 function points are rare, and
above 100,000 function points almost nonexistent.

Failing projects often understate the size of the work to be accom-
plished. Failing projects often omit to perform quality estimates at
all. Overestimating productivity rates is another common reason for
cost and schedule overruns. Underestimating paperwork costs is also
a common failing.

Surprisingly, both successful and failing projects are similar when
estimating coding schedules and costs. But failing projects are exces-
sively optimistic in estimating testing schedules and costs. Failing proj-
ects also tend to omit requirements changes during development, which
can increase the size of the project significantly.

Because estimating is complex, trained estimating specialists are
the best, although such specialists are few. These specialists always
utilize one or more of the leading commercial software estimating tools
or sometimes use proprietary estimating tools. About half of our leading

Overview of 50 Software Best Practices 81

clients utilize two commercial software estimating tools frequently and
may own as many as half a dozen. Manual estimates are never adequate
for major systems in the 10,000–function point range.

Manual estimates using standard templates are difficult to modify
when assumptions change. As a result, they often fall behind the reality
of ongoing projects with substantial rates of change. My observations of
the overall results of using manual estimates for projects of more than
about 1000 function points is that they tend to be incomplete and err
on the side of excessive optimism.

For large projects of more than 10,000 function points, manual estimates
are optimistic for testing, defect removal schedules, and costs more than 95
percent of the time. Manual estimating is hazardous for large projects.

For many large projects in large companies, estimating special-
ists employed by the project offices will do the bulk of the cost esti-
mating using a variety of automated estimating tools. Often project
offices are equipped with several estimating tools such as COCOMO,
KnowledgePlan, Price-S, SEER, SoftCost, SLIM, and so on, and will use
them all and look for convergence of results.

As previously discussed, even accurate estimates may be rejected
unless they are supported by historical data from similar projects. In
fact, even historical data may sometimes be rejected and replaced by
impossible demands, although historical data is more credible than
unsupported estimates.

For small projects of fewer than 1000 function points, coding remains
the dominant activity. For these smaller applications, automated and
manual cost estimates are roughly equal in accuracy, although of course
the automated estimates are much quicker and easier to change.

17. Best Practices for Software Project
Risk Analysis

Make no mistake about it, large software projects in the 10,000–function
point range are among the most risky business endeavors in human
history. The major risks for large software projects include

■ Outright cancellation due to excessive cost and schedule overruns

■ Outright termination due to downsizing or bankruptcy due to the poor
economy

■ Cost overruns in excess of 50 percent compared with initial estimates

■ Schedule overruns in excess of 12 months compared with initial
estimates

■ Quality control so inept that the software does not work effectively

■ Requirements changes in excess of 2 percent per calendar month

82 Chapter Two

■ Executive or client interference that disrupts the project

■ Failure of clients to review requirements and plans effectively

■ Security flaws and vulnerabilities

■ Performance or speed too slow to be effective

■ Loss of key personnel from the project during development

■ The presence of error-prone modules in legacy applications

■ Patent violations or theft of intellectual property

■ External risks (fire, earthquakes, hurricanes, etc.)

■ Sale or acquisition of a business unit with similar software

From analysis of depositions and court documents in breach of con-
tract litigation, most failing projects did not even perform a formal risk
analysis. In addition, quality control and change management were
inadequate. Worse, project tracking was so inept that major problems
were concealed rather than being dealt with as they occurred. Another
ugly risk is that sometimes fairly accurate estimates were rejected and
replaced by impossible schedule and cost targets based on business
needs rather than team capabilities.

The state of the art of software risk management is improving.
Traditionally, formal risk analysis by trained risk experts provided the
best defense. However, risk estimation tools and software risk models
were increasing in numbers and sophistication circa 2008. The new
Application Insight tool from Computer Aid Inc. and the Software Risk
Master prototype of the author are examples of predictive tools that can
quantify the probabilities and effects of various forms of risk.

As of 2009, the best practices for software risk management include

■ Early risk assessment even prior to development of full require-
ments

■ Early prediction of defect potentials and removal efficiency levels

■ Comparison of project risk patterns to similar projects

■ Acquisition of benchmarks from the ISBSG database

■ Early review of contracts and inclusion of quality criteria

■ Early analysis of change control methods

■ Early analysis of the value of the application due to the poor economy

The importance of formal risk management rises with application
size. Below 1000 function points, risk management is usually optional.
Above 10,000 function points, risk assessments are mandatory. Above
100,000 function points, failure to perform careful risk assessments is
evidence of professional malpractice.

Overview of 50 Software Best Practices 83

From repeated observations during litigation for breach of contract,
effective risk assessment is almost never practiced on applications that
later end up in court. Instead false optimism and unrealistic schedules
and cost estimates get the project started in a bad direction from the
first day.

Unfortunately, most serious risks involve a great many variable factors.
As a result, combinatorial complexity increases the difficulty of thorough
risk analysis. The unaided human mind has trouble dealing with prob-
lems that have more than two variables. Even automated risk models
may stumble if the number of variables is too great, such as more than
ten. As seen by the failure of economic risk models to predict the financial
crisis of 2008, risk analysis is not a perfect field and may miss serious
risks. There are also false positives, or risk factors that do not actually
exist, although these are fairly rare.

18. Best Practices for Software Project Value Analysis

Software value analysis is not very sophisticated as this book is written
in 2009. The value of software applications prior to development may not
even be quantified, and if it is quantified, then the value may be suspect.

Software applications have both financial and intangible value
aspects. The financial value can be subdivided into cost reductions and
revenue increases. The intangible value is more difficult to characterize,
but deals with topics such as customer satisfaction, employee morale,
and the more important topics of improving human life and safety or
improving national defense.

Some of the topics that need to be included in value analysis studies
include

Tangible Financial Value

■ Cost reductions from new application

■ Direct revenue from new application

■ Indirect revenue from new application due to factors such as hard-
ware sales

■ “Drag along” or revenue increases in companion applications

■ Domestic market share increases from new application

■ International market share increases from new application

■ Competitive market share decreases from new application

■ Increases in numbers of users due to new features

■ User performance increases

■ User error reductions

84 Chapter Two

Intangible Value

■ Potential harm if competitors instead of you build application

■ Potential harm if competitors build similar application

■ Potential gain if your application is first to market

■ Synergy with existing applications already released

■ Benefits to national security

■ Benefits to human health or safety

■ Benefits to corporate prestige

■ Benefits to employee morale

■ Benefits to customer satisfaction

What the author has proposed is the possibility of constructing a
value point metric that would resemble function point metrics in struc-
ture. The idea is to have a metric that can integrate both financial and
intangible value topics and therefore be used for return-on-investment
calculations.

In general, the financial value points would be equal to $1000. The
intangible value points would have to be mapped to a scale that pro-
vided approximate equivalence, such as each customer added or lost
would be worth 10 value points. Obviously, value associated with saving
human lives or national defense would require a logarithmic scale since
those values may be priceless.

Value points could be compared with cost per function point for eco-
nomic studies such as return on investment and total cost of ownership
(TCO).

19. Best Practices for Canceling or Turning
Around Troubled Projects

Given the fact that a majority of large software projects run late or are
cancelled without ever being completed, it is surprising that the lit-
erature on this topic is very sparse. A few interesting technical papers
exist, but no full-scale books. Of course there are many books on soft-
ware disasters and outright failures, but they are hardly best practice
discussions of trying to rescue troubled projects.

Unfortunately, only a small percentage of troubled projects can be
rescued and turned into successful projects. The reasons for this are
twofold: First, troubled projects usually have such bad tracking of prog-
ress that it is too late to rescue the project by the time the problems sur-
face to higher management or to clients. Second, troubled projects with

Overview of 50 Software Best Practices 85

schedule delays and cost overruns steadily lose value. Although such
projects may have had a positive value when first initiated, by the time
of the second or third cost overrun, the value has probably degraded so
much that it is no longer cost-effective to complete the application. An
example will clarify the situation.

The example shows an original estimate and then three follow-on
estimates produced when senior management was alerted to the fact
that the previous estimate was no longer valid. The application in ques-
tion is an order entry system for a large manufacturing company. The
initial planned size was 10,000 function points.

The original cost estimate was for $20 million, and the original value
estimate was for $50 million. However, the value was partly based upon
the application going into production in 36 months. Every month of
delay would lower the value.

Estimate 1: January 2009
Original size (function points) 10,000

Original budget (dollars) $20,000,000

Original schedule (months) 36

Original value (dollars) $50,000,000

Original ROI $2.50

Estimate 2: June 2010
Predicted size (function points) 12,000

Predicted costs (dollars) $25,000,000

Predicted schedule (months) 42

Predicted value (dollars) $45,000,000

Predicted ROI $1.80

Recovery possible

Estimate 3: June 2011
Predicted size (function points) 15,000

Predicted costs (dollars) $30,000,000

Predicted schedule (months) 48

Predicted value (dollars) $40,000,000

Predicted ROI $1.33

Recovery unlikely

Estimate 4: June 2012
Predicted size (function points) 17,000

Predicted costs (dollars) $35,000,000

Predicted schedule (months) 54

Predicted value (dollars) $35,000,000

Predicted ROI $1.00

Recovery impossible

86 Chapter Two

As can be seen, the steady increase in creeping requirements trig-
gered a steady increase in development costs and a steady increase
in development schedules. Since the original value was based in part
on completion in 36 months, the value eroded so that the project was
no longer viable. By the fourth estimate, recovery was unfeasible and
termination was the only choice.

The truly best practice, of course, would be to avoid the situation by
means of a careful risk analysis and sizing study before the application
started. Once the project is under way, best practices for turnarounds
include

■ Careful and accurate status tracking

■ Re-estimation of schedules and costs due to requirements changes

■ Re-estimation of value at frequent intervals

■ Considering intangible value as well as internal rate of return and
financial value

■ Using internal turnaround specialists (if available)

■ Hiring external turnaround consultants

■ Threatening litigation if the application is under contract

It the application has negative value and trying to turn it around is
unfeasible, then best practices for cancellation would include

■ Mining the application for useful algorithms and business rules

■ Extracting potentially useful reusable code segments

■ Holding a formal “postmortem” to document what went wrong

■ Assembling data for litigation if the application was under contract

Unfortunately, cancelled projects are common, but usually don’t gen-
erate much in the way of useful data to avoid similar problems in the
future. Postmortems should definitely be viewed as best practices for
cancelled projects.

One difficulty in studying cancelled projects is that no one wants
to spend the money to measure application size in function points.
However, the advent of new high-speed, low-cost function point meth-
ods means that the cost of counting function points is declining from
perhaps $6.00 per function point counted down to perhaps $0.01 per
function point counted. At a cost of a penny per function point, even a
100,000–function point disaster can now be quantified. Knowing the
sizes of cancelled projects will provide new insights into software eco-
nomics and aid in forensic analysis.

Overview of 50 Software Best Practices 87

20. Best Practices for Software Project
Organization Structures

Software project organization structures and software specialization
are topics that have more opinions than facts associated with them.
Many adherents of the “small team” philosophy claim that software
applications developed by teams of six or fewer are superior in terms
of quality and productivity. However, such small teams cannot develop
really large applications.

As software projects grow in size, the number and kinds of specialists
that are normally employed goes up rapidly. With increases in person-
nel, organization structures become more complex, and communication
channels increase geometrically. These larger groups eventually become
so numerous and diverse that some form of project office is required to
keep track of progress, problems, costs, and issues.

A study performed by the author and his colleagues of software occu-
pation groups in large corporations and government agencies identified
more than 75 different specialties. Because software engineering is not a
licensed profession with formal specialties, these specialists are seldom
clearly identified in personnel records. Therefore on-site visits and dis-
cussions with local managers are needed to ascertain the occupations
that are really used.

The situation is made more complex because some companies do not
identify specialists by job title or form of work, but use a generic title
such as “member of the technical staff” to encompass scores of different
occupations.

Also adding to the difficulty of exploring software specialization is
the fact that some personnel who develop embedded software are not
software engineers, but rather electrical engineers, automotive engi-
neers, telecommunications engineers, or some other type of engineer.
In many cases, these engineers refuse to be called “software engineers”
because software engineering is lower in professional status and not a
recognized professional engineering occupation.

Consider the differences in the number and kind of personnel who are
likely to be used for applications of 1000 function points, 10,000 function
points, and 100,000 function points. For small projects of 1000 function
points, generalists are the norm and specialists are few. But as applica-
tions reach 10,000 and 100,000 function points, specialists become more
important and more numerous. Table 2-3 illustrates typical staffing
patterns for applications of three sizes an order of magnitude apart.

As can easily be seen from Table 2-3, the diversity of occupations rises
rapidly as application size increases. For small applications, generalists
predominate, but for large systems, various kinds of specialists can top
one third of the total team size.

88 Chapter Two

Table 2-3 also illustrates why some methods such as Agile develop-
ment do very well for small projects, but may not be a perfect match for
large projects. As project sizes grow larger, it is hard to accommodate all
of the various specialists into the flexible and cohesive team organiza-
tions that are the hallmark of the Agile approach.

For example, large software projects benefit from specialized organi-
zation such as project offices, formal software quality assurance (SQA)
organizations, formal testing groups, measurement groups, change man-
agement boards, and others as well. Specialized occupations that benefit
large projects include architecture, security, database administration,
configuration control, testing, and function point analysis.

Melding these diverse occupations into a cohesive and cooperating
team for large software projects is not easy. Multiple departments and
multiple specialists bring about a geometric increase in communica-
tion channels. As a result, a best practice for large software projects
above 10,000 function points is a project office whose main role is

Occupation Group
1000

Function Points
10,000

Function Points
100,000

Function Points

Architect 1 5

Configuration control 2 8

Database
administration 2 10

Estimating specialist 1 3

Function point
counters 2 5

Measurement
specialist 1 5

Planning specialist 1 3

Project librarian 2 6

Project manager 1 6 75

Quality assurance 2 12

Scrum master 3 8

Security specialist 1 5

Software engineers 5 50 600

Technical writer 1 3 12

Testers 5 125

Web designer 1 5

TOTAL STAFF 7 83 887

Function points per
staff member 142.86 120.48 112.74

TABLE 2-3 Personnel Staffing Patterns for Software Projects

Overview of 50 Software Best Practices 89

coordination of the various skills and activities that are a necessary
part of large-system development. The simplistic Agile approach of
small self-organizing teams is not effective above about 2,500 func-
tion points.

Another issue that needs examination is the span of control, or the
number of employees reporting to a manager. For reasons of corporate
policy, the average number of software employees who report to a man-
ager in the United States is about eight. However, the observed range
of employees per manager runs from 3 to more than 20.

Studies carried out by the author within IBM noted that having eight
employees per manager tended to put more people in management than
were really qualified to do managerial work well. As a result, planning,
estimating, and other managerial functions were sometimes poorly per-
formed. My study concluded that changing the average span of control
from 8 to 11 would allow marginal managers to be reassigned to staff or
technical positions. Cutting down on the number of departments would
also reduce communication channels and allow managers to have more
time with their own teams, rather than spending far too much time
with other managers.

Even worse, personality clashes between managers and technical
workers sometimes led to the voluntary attrition of good technologists.
In fact, when exit interviews are examined, two distressing problems
tend to occur: (1) The best people leave in the largest numbers; and (2)
The most common reason cited for departure was “I don’t want to work
under bad management.”

Later in this book the pros and cons of small teams, large depart-
ments, and various spans of control will be discussed at more length,
as will special topics such as pair programming.

21. Best Practices for Training Managers of
Software Projects

When major delays or cost overruns for projects occur in the nominal
10,000–function point range, project management problems are always
present. Conversely, when projects have high productivity and quality
levels, good project management is always observed. The state of the art
for project management on large projects includes knowledge of:

 1. Sizing techniques such as function points

 2. Formal estimating tools and techniques

 3. Project planning tools and techniques

 4. Benchmark techniques and sources of industry benchmarks

 5. Risk analysis methods

90 Chapter Two

 6. Security issues and security vulnerabilities

 7. Value analysis methods

 8. Project measurement techniques

 9. Milestone and cost tracking techniques

10. Change management techniques

11. All forms of software quality control

12. Personnel management techniques

13. The domain of the applications being developed

For the global software industry, it appears that project management
was a weak link and possibly the weakest link of all. For example, for
failing projects, sizing by means of function points is seldom utilized.
Formal estimating tools are not utilized. Although project planning tools
may be used, projects often run late and over budget anyway. This indi-
cates that the plans were deficient and omitted key assumptions such
as the normal rate of requirements change, staff turnover, and delays
due to high defect volumes found during testing.

The roles of management in outsource projects are more complex
than the roles of management for projects developed internally. It is
important to understand the differences between client management
and vendor project management.

The active work of managing the project is that of the vendor project
managers. It is their job to create plans and schedules, to create cost
estimates, to track costs, to produce milestone reports, and to alert the
client directors and senior client executives to the existence of potential
problems.

The responsibility of the client director or senior client executive cen-
ters around facilitation, funding, and approval or rejection of plans and
estimates produced by the vendor’s project manager.

Facilitation means that the client director will provide access for the
vendor to business and technical personnel for answering questions
and gathering requirements. The client director may also provide to
the vendor technical documents, office space, and sometimes tools and
computer time.

Funding means that the client director, after approval by corporate
executives, will provide the money to pay for the project.

Approval means that the client director will consider proposals, plans,
and estimates created by the vendor and either accept them, reject
them, or request that they be modified and resubmitted.

The main problems with failing projects seem to center around the
approval role. Unfortunately clients may be presented with a stream
of optimistic estimates and schedule commitments by vendor project

Overview of 50 Software Best Practices 91

management and asked to approve them. This tends to lead to cumula-
tive overruns, and the reason for this deserves comment.

Once a project is under way, the money already spent on it will have
no value unless the project is completed. Thus if a project is supposed to
cost $1 million, but has a cost overrun that needs an additional $100,000
for completion, the client is faced with a dilemma. Either cancel the
project and risk losing the accrued cost of a million dollars, or provide
an additional 10 percent and bring the project to completion so that it
returns positive value and results in a working application.

If this scenario is repeated several times, the choices become more
difficult. If a project has accrued $5 million in costs and seems to need
another 10 percent, both sides of the dilemma are more expensive. This
is a key problem with projects that fail. Each time a revised estimate
is presented, the vendor asserts that the project is nearing completion
and needs only a small amount of time and some additional funds to
bring it to full completion. This can happen repeatedly.

All corporations have funding criteria for major investments. Projects
are supposed to return positive value in order to be funded. The value
can consist of either revenue increases, cost reductions, or competitive
advantage. A typical return on investment (ROI) for a software project in
the United States would be about 3 to 1. That is, the project should return
$3.00 in positive value for every $1.00 that is spent on the project.

During the course of development the accrued costs are monitored. If
the costs begin to exceed planned budgets, then the ROI for the project
will be diminished. Unfortunately for failing projects, the ability of client
executives to predict the ROI can be damaged by inaccurate vendor
estimating methods and cost control methods.

The root problem, of course, is that poor estimating methods are
never realistic nor are the schedules: they are always optimistic.
Unfortunately, it can take several iterations before the reality of this
pattern emerges.

Each time a vendor presents revised estimates and schedules, there
may be no disclosure to clients of internal problems and risks that the
vendor is aware of. Sometimes this kind of problem does not surface
until litigation occurs, when all of the vendor records have to be dis-
closed and vendor personnel are deposed.

The bottom line is that training of software managers needs to be
improved in the key tasks of planning, estimating, status reporting, cost
tracking, and problem reporting.

22. Best Practices for Training Software
Technical Personnel

The software development and maintenance domains are characterized
by workers who usually have a fairly strong work ethic and reasonable

92 Chapter Two

competence in core activities such as detail design, programming, and
unit testing. Many software personnel put in long hours and are fairly
good in basic programming tasks. However, to be successful on spe-
cific, 10,000–function point applications, some additional skill sets are
needed—knowledge of the following:

 1. Application domains

 2. The database packages, forms, tools, and products

 3. The skill sets of the subcontract companies

 4. Joint application design (JAD) principles

 5. Formal design inspections

 6. Complexity analysis

 7. All programming languages utilized

 8. Security issues and security vulnerabilities (a weak area)

 9. Performance issues and bottlenecks (a weak area)

10. Formal code inspections

11. Static analysis methods

12. Complexity analysis methods

13. Change control methods and tools

14. Performance measurement and optimization techniques

15. Testing methods and tools

When software technical problems occur, they are more often related
to the lack of specialized knowledge about the application domain or
about specific technical topics such as performance optimization rather
than to lack of knowledge of basic software development approaches.

There may also be lack of knowledge of key quality control activities
such as inspections, JAD, and specialized testing approaches. In general,
common programming tasks are not usually problems. The problems
occur in areas where special knowledge may be needed, which brings
up the next topic.

23. Best Practices for Use
of Software Specialists

In many human activities, specialization is a sign of technological
maturity. For example, the practice of medicine, law, and engineering
all encompass dozens of specialists. Software is not yet as sophisticated
as the more mature professions, but specialization is now occurring in
increasing numbers. After analyzing the demographics of large software

Overview of 50 Software Best Practices 93

production companies in a study commissioned by AT&T, from 20 to more
than 90 specialized occupations now exist in the software industry.

What is significant about specialization in the context of 10,000–
function point projects is that projects with a full complement of a dozen
or more specialists have a better chance of success than those relying
upon generalists.

The state of the art of specialization for nominal 10,000–function point
projects would include the following specialist occupation groups:

 1. Configuration control specialists

 2. Cost estimating specialists

 3. Customer liaison specialists

 4. Customer support specialists

 5. Database administration specialists

 6. Data quality specialists

 7. Decision support specialists

 8. Development specialists

 9. Domain knowledge specialists

10. Security specialists

11. Performance specialists

12. Education specialists

13. Function point specialists (certified)

14. Graphical user interface (GUI) specialists

15. Human factors specialists

16. Integration specialists

17. Joint application design (JAD) specialists

18. SCRUM masters (for Agile projects)

19. Measurement specialists

20. Maintenance specialists for postrelease defect repairs

21. Maintenance specialists for small enhancements

22. Outsource evaluation specialists

23 Package evaluation specialists

24. Performance specialists

25. Project cost estimating specialists

26. Project planning specialists

27. Quality assurance specialists

94 Chapter Two

28. Quality measurement specialists

29. Reusability specialists

30. Risk management specialists

31. Standards specialists

32. Systems analysis specialists

33. Systems support specialists

34. Technical writing specialists

35. Testing specialists

36. Tool specialists for development and maintenance workbenches

Senior project managers need to know what specialists are required
and should take active and energetic steps to find them. The domains
where specialists usually outperform generalists include technical writ-
ing, testing, quality assurance, database design, maintenance, and per-
formance optimization. For some tasks such as function point analysis,
certification examinations are a prerequisite to doing the work at all.
Really large projects also benefit from using planning and estimating
specialists.

Both software development and software project management are
now too large and complex for generalists to know everything needed
in sufficient depth. The increasing use of specialists is a sign that the
body of knowledge of software engineering and software management
is expanding, which is a beneficial situation.

For the past 30 years, U.S. and European companies have been out-
sourcing software development, maintenance, and help-desk activities
to countries with lower labor costs such as India, China, Russia, and
a number of others. In general it is important that outsource vendors
utilize the same kinds of methods as in-house development, and in par-
ticular that they achieve excellence in quality control.

Interestingly a recent study of outsource practices by the International
Software Benchmarking Standards Group (ISBSG) found that outsource
projects tend to use more tools and somewhat more sophisticated plan-
ning and estimating methods than similar projects produced in-house.
This is congruent with the author’s own observations.

24. Best Practices for Certifying Software
Engineers, Specialists, and Managers

As this book is written in 2008 and 2009, software engineering itself
and its many associated specialties are not fully defined. Of the 90 or
so occupations noted in the overall software domain, certification is

Overview of 50 Software Best Practices 95

possible for only about a dozen topics. For these topics, certification is
voluntary and has no legal standing.

What would benefit the industry would be to establish a joint certifica-
tion board that would include representatives from the major professional
associations such as the ASQ, IEEE (Institute of Electrical & Electronics
Engineers), IIBA (International Institute of Business Analysis), IFPUG
(International Function Point Users Group), PMI (#Project Management
Institute), SEI (Software Engineering Institute), and several others. The
joint certification board would identify the specialist categories and create
certification criteria. Among these criteria might be examinations or cer-
tification boards, similar to those used for medical specialties.

As this book is written, voluntary certification is possible for these
topics:

■ Function point analysis (IFPUG)

■ Function point analysis (COSMIC)

■ Function point analysis (Finnish)

■ Function point analysis (Netherlands)

■ Microsoft certification (various topics)

■ Six Sigma green belt

■ Six Sigma black belt

■ Certified software project manager (CSPM)

■ Certified software quality engineer (CSQE)

■ Certified software test manager (CSTM)

■ Certified software test professional (CSTP)

■ Certified software tester (CSTE)

■ Certified scope manager (CSM)

These forms of certification are offered by different organizations that
in general do not recognize certification other than their own. There is
no central registry for all forms of certification, nor are their standard
examinations.

As a result of the lack of demographic data about those who are regis-
tered, there is no solid information as to what percentage of various spe-
cialists and managers are actually certified. For technical skills such as
function point analysis, probably 80 percent of consultants and employ-
ees who count function points are certified. The same or even higher is
true for Six Sigma. However, for testing, for project management, and
for quality assurance, it would be surprising if the percentage of those
certified were higher than about 20 percent to 25 percent.

96 Chapter Two

It is interesting that there is overall certification neither for “soft-
ware engineering” nor for “software maintenance engineering” as a
profession.

Some of the technical topics that might be certified if the industry
moves to a central certification board would include

■ Software architecture

■ Software development engineering

■ Software maintenance engineering

■ Software quality assurance

■ Software security assurance

■ Software performance analysis

■ Software testing

■ Software project management

■ Software scope management

Specialized skills would also need certification, including but not lim-
ited to:

■ Six Sigma for software

■ Quality function deployment (QFD)

■ Function point analysis (various forms)

■ Software quality measurements

■ Software productivity measurements

■ Software economic analysis

■ Software inspections

■ SEI assessments

■ Vendor certifications (Microsoft, Oracle, SAP, etc.)

The bottom line as this book is written is that software certification
is voluntary, fragmented, and of unknown value to either practitioners
or to the industry. Observations indicate that for technical skills such
as function point analysis, certified counters are superior in accuracy to
self-taught practitioners. However, more study is needed on the benefits
of software quality and test certification.

What is really needed though is coordination of certification and the
establishment of a joint certification board that would consider all forms
of software specialization. The software engineering field would do well
to consider how specialties are created and governed in medicine and
law, and to adopt similar policies and practices.

Overview of 50 Software Best Practices 97

For many forms of certification, no quantitative data is available
that indicates that certification improves job performance. However,
for some forms of certification, enough data is available to show tangible
improvements:

1. Testing performed by certified testers is about 5 percent higher
in defect removal efficiency than testing performed by uncertified
testers.

2. Function point analysis performed by certified function point coun-
ters seldom varies by more than 5 percent when counting trial appli-
cations. Counts of the same trials by uncertified counters vary by
more than 50 percent.

3. Applications developed where certified Six Sigma black belts are part
of the development team tend to have lower defect potentials by about
1 defect per function point, and higher defect removal efficiency levels
by about 7 percent. (Compared against U.S. averages of 5.0 defects
per function point and 85 percent defect removal efficiency.)

Unfortunately, as this book is written, other forms of certification
are ambiguous in terms of quantitative results. Obviously, those who
care enough about their work to study and successfully pass written
examinations tend to be somewhat better than those who don’t, but this
is difficult to show using quantified data due to the very sparse sets of
data available.

What would benefit the industry would be for software to follow the
pattern of the American Medical Association and have a single organi-
zation responsible for identifying and certifying specialists, rather than
independent and sometimes competing organizations.

25. Best Practices for Communication
During Software Projects

Large software applications in the nominal 10,000–function point
domain are always developed by teams that number from at least 50
to more than 100 personnel. In addition, large applications are always
built for dozens or even hundreds of users, many of whom will be using
the application in specialized ways.

It is not possible to build any large and complex product where
dozens of personnel and dozens of users need to share information
unless communication channels are very well planned and utilized.
Communication needs are even greater when projects involve multiple
subcontractors.

As of 2009, new kinds of virtual environments where participants
interact using avatars in a virtual-reality world are starting to enter

98 Chapter Two

the business domain. Although such uses are experimental in 2009, they
are rapidly approaching the mainstream. As air travel costs soar and
the economy sours, methods such as virtual communication are likely to
expand rapidly. Within ten years, such methods might well outnumber
live meetings and live conferences.

Also increasing in use for interproject communication are “wiki sites,”
which are collaborative networks that allow colleagues to share ideas,
documents, and work products.

The state of the art for communication on a nominal 10,000–function
point project includes all of the following:

■ Monthly status reports to corporate executives from project manage-
ment

■ Weekly progress reports to clients by vendor project management

■ Daily communication between clients and the prime contractor

■ Daily communication between the prime contractor and all subcon-
tractors

■ Daily communication between developers and development manage-
ment

■ Use of virtual reality for communication across geographic boundaries

■ Use of “wiki” sites for communication across geographic boundaries

■ Daily “scrum” sessions among the development team to discuss
issues

■ Full e-mail support among all participants

■ Full voice support among all participants

■ Video conference communication among remote locations

■ Automated distribution of documents and source code among devel-
opers

■ Automated distribution of change requests to developers

■ Automated distribution of defect reports to developers

■ Emergency or “red flag” communication for problems with a material
impact

For failing projects, many of these communication channels were
either not fully available or had gaps that tended to interfere with both
communication and progress. For example, cross-vendor communica-
tions may be inadequate to highlight problems. In addition, the status
reports to executives may gloss over problems and conceal them, rather
than highlight causes for projected cost and schedule delays.

Overview of 50 Software Best Practices 99

The fundamental purpose of good communications was encapsu-
lated in a single phrase by Harold Geneen, the former chairman of ITT
Corporation: “NO SURPRISES.”

From reviewing the depositions and court documents of breach of
contract litigation, it is alarming that so many projects drift along with
inadequate status tracking and problem reporting. Usually projects
that are cancelled or that have massive overruns do not even start to
deal with the issues until it is far too late to correct them. By contrast,
successful projects have fewer serious issues to deal with, more effec-
tive tracking, and much more effective risk abatement programs. When
problems are first reported, successful projects immediately start task
forces or risk-recovery activities.

26. Best Practices for Software Reusability

At least 15 different software artifacts lend themselves to reusability.
Unfortunately, much of the literature on software reuse has concen-
trated only on reusing source code, with a few sparse and intermittent
articles devoted to other topics such as reusable design.

The state of the art of developing nominal 10,000–function point proj-
ects includes substantial volumes of reusable materials. Following are
the 15 artifacts for software projects that are potentially reusable:

 1. Architecture

 2. Requirements

 3. Source code (zero defects)

 4. Designs

 5. Help information

 6. Data

 7. Training materials

 8. Cost estimates

 9. Screens

10. Project plans

11. Test plans

12. Test cases

13. Test scripts

14. User documents

15. Human interfaces

100 Chapter Two

Not only are there many reusable artifacts, but also for reuse to be
both a technical and business success, quite a lot of information needs
to be recorded:

■ All customers or users in case of a recall

■ All bugs or defects in reusable artifacts

■ All releases of reusable artifacts

■ Results of certification of reusable materials

■ All updates or changes

Also, buggy materials cannot safely be reused. Therefore extensive
quality control measures are needed for successful reuse, including but
not limited to:

■ Inspections of reusable text documents

■ Inspections of reusable code segments

■ Static analysis of reusable code segments

■ Testing of reusable code segments

■ Publication of certification certificates for reusable materials

Successful software reuse involves much more than simply copying a
code segment and plugging it into a new application.

One of the common advantages of using an outsource vendor is that
these vendors are often very sophisticated in reuse and have many
reusable artifacts available. However, reuse is most often encountered
in areas where the outsource vendor is a recognized expert. For example,
an outsource vendor that specializes in insurance applications and has
worked with a dozen property and casualty insurance companies prob-
ably has accumulated enough reusable materials to build any insurance
application with at least 50 percent reusable components.

Software reuse is a key factor in reducing costs and schedules and in
improving quality. However, reuse is a two-edged sword. If the quality
levels of the reusable materials are good, then reusability has one of the
highest returns on investment of any known software technology. But if
the reused materials are filled with bugs or errors, the ROI can become
very negative. In fact, reuse of high quality or poor quality materials
tends to produce the greatest extreme in the range of ROI of any known
technology: plus or minus 300 percent ROIs have been observed.

Software reusability is often cited as a panacea that will remedy soft-
ware’s sluggish schedules and high costs. This may be true theoretically,
but reuse will have no practical value unless the quality levels of the
reusable materials approach zero defects.

Overview of 50 Software Best Practices 101

A newer form of reuse termed service-oriented architecture (SOA) has
appeared within the past few years. The SOA approach deals with reuse
by attempting to link fairly large independent functions or “services”
into a cohesive application. The functions themselves can also operate in
a stand-alone mode and do not require modification. SOA is an intrigu-
ing concept that shows great promise, but as of 2009, the concepts are
more theoretical than real. In any event, empirical data on SOA costs,
quality, and effectiveness have not yet become available.

Software reusability to date has not yet truly fulfilled the high expec-
tations and claims made for it. Neither object-oriented class libraries
nor other forms of reuse such as commercial enterprise resource plan-
ning (ERP) packages have been totally successful.

To advance reuse to the status of really favorable economics, better
quality for reusable materials and better security control for reusable
materials need to be more widely achieved. The technologies for accom-
plishing this appear to be ready, so perhaps within a few years, reuse
will finally achieve its past promise of success.

To put software on a sound economic basis, the paradigm for software
needs to switch from software development using custom code to soft-
ware construction using standard reusable components. In 2009, very
few applications are constructed from standard reusable components.
Part of the reason is that software quality control is not good enough
for many components to be used safely. Another part of the reason is
the lack of standard architectures for common application types and
the lack of standard interfaces for connecting components. The aver-
age volume of high-quality reusable material in typical applications
today is less than 25 percent. What is needed is a step-by-step plan
that will raise the volume of high-quality reusable material to more
than 85 percent on average and to more than 95 percent for common
applications types.

27. Best Practices for Certification
of Reusable Materials

Reuse of code, specifications, and other material is also a two-edged
sword. If the materials approach zero-defect levels and are well devel-
oped, then they offer the best ROI of any known technology. But if the
reused pieces are buggy and poorly developed, they only propagate bugs
through dozens or hundreds of applications. In this case, software reuse
has the worst negative ROI of any known technology.

Since reusable material is available from hundreds of sources of
unknown reliability, it is not yet safe to make software reuse a main-
stream development practice. Further, reusable material, or at least
source code, may have security flaws or even deliberate “back doors”

102 Chapter Two

inserted by hackers, who then offer the materials as a temptation to
the unwary.

This brings up an important point: what must happen for software
reuse to become safe, cost-effective, and valuable to the industry?

The first need is a central certification facility or multiple certifica-
tion facilities that can demonstrate convincingly that candidates for
software reuse are substantially bug free and also free from viruses,
spyware, and keystroke loggers. Probably an industry-funded nonprofit
organization would be a good choice for handling certification. An orga-
nization similar to Underwriters Laboratories or Consumer Reports
comes to mind.

But more than just certification of source code is needed. Among the
other topics that are precursors to successful reuse would be

■ A formal taxonomy of reusable objects and their purposes

■ Standard interface definitions for linking reusable objects

■ User information and HELP text for all reusable objects

■ Test cases and test scripts associated with all reusable objects

■ A repository of all bug reports against reusable objects

■ Identification of the sources of reusable objects

■ Records of all changes made to reusable objects

■ Records of all variations of reusable objects

■ Records of all distributions of reusable objects in case of recalls

■ A charging method for reusable material that is not distributed for
free

■ Warranties for reusable material against copyright and patent
violations

In other words, if reuse is going to become a major factor for software,
it needs to be elevated from informal and uncontrolled status to formal
and controlled status. Until this can occur, reuse will be of some value,
but hazardous in the long run. It would benefit the industry to have
some form of nonprofit organization serve as a central repository and
source of reusable material.

Table 2-4 shows the approximate development economic value of high-
quality reusable materials that have been certified and that approach
zero-defect levels. The table assumes reuse not only of code, but also of
architecture, requirements, design, test materials, and documentation.
The example in Table 2-4 is a fairly large system of 10,000 function
points. This is the size where normally failures top 50 percent, pro-
ductivity sags, and quality is embarrassingly bad. As can be seen, as

Overview of 50 Software Best Practices 103

Application size (function points) = 10,000

Reuse
Percent Staff

Effort
(months)

Prod.
(FP/Mon.)

Schedule
(months)

Defect
Potential

Removal
Efficiency

Delivered
Defects

0.00% 67 2,654 3.77 39.81 63,096 80.00% 12,619

10.00% 60 2,290 4.37 38.17 55,602 83.00% 9,452

20.00% 53 1,942 5.15 36.41 48,273 87.00% 6,276

30.00% 47 1,611 6.21 34.52 41,126 90.00% 4,113

40.00% 40 1,298 7.70 32.45 34,181 93.00% 2,393

50.00% 33 1,006 9.94 30.17 27,464 95.00% 1,373

60.00% 27 736 13.59 27.59 21,012 97.00% 630

70.00% 20 492 20.33 24.60 14,878 98.00% 298

80.00% 13 279 35.86 20.91 9,146 98.50% 137

90.00% 7 106 94.64 15.85 3,981 99.00% 40

100.00% 4 48 208.33 12.00 577 99.50% 3

TABLE 2-4 Development Value of High-Quality Reusable Materials

the percentage of reuse increases, both productivity and quality levels
improve rapidly, as do development schedules.

No other known development technology can achieve such a profound
change in software economics as can high-quality reusable materials.
This is the goal of object-oriented development and service-oriented archi-
tecture. So long as software applications are custom-coded and unique,
improvement in productivity and quality will be limited to gains of per-
haps 25 percent to 30 percent. For really major gains of several hundred
percent, high-quality reuse appears to be the only viable option.

Not only would high-quality reusable material benefit develop-
ment, but maintenance and enhancement work would also improve.
However, there is a caveat with maintenance. Once a reusable com-
ponent is installed in hundreds or thousands of applications, it is
mandatory to be able to recall it, update it, or fix any latent bugs that
are reported. Therefore both certification and sophisticated usage
records are needed to achieve maximum economic value. In this book
maintenance refers to defect repairs. Adding new features is called
enhancement.

Table 2-5 illustrates the maintenance value of reusable materials.
Both development staffing and maintenance staffing have strong cor-

relations to delivered defects, and therefore would be reduced as the
volume of certified reusable materials goes up.

Customer support is also affected by delivered defects, but other
factors also impact support ratios. Over and above delivered defects,
customer support is affected by numbers of users and by numbers of
installations of the application.

104 Chapter Two

Application size (function points) = 10,000

Reuse
Percent Staff

Effort
(months)

Prod.
(FP/Mon.)

Schedule
(months)

Defect
Potential

Removal
Efficiency

Latent
Defects

0.00% 13 160 62.50 12.00 12,619 80.00% 2,524

10.00% 12 144 69.44 12.00 9,452 83.00% 1,607

20.00% 11 128 78.13 12.00 6,276 87.00% 816

30.00% 9 112 89.29 12.00 4,113 90.00% 411

40.00% 8 96 104.17 12.00 2,393 93.00% 167

50.00% 7 80 125.00 12.00 1,373 95.00% 69

60.00% 5 64 156.25 12.00 630 97.00% 19

70.00% 4 48 208.33 12.00 298 98.00% 6

80.00% 3 32 312.50 12.00 137 98.50% 2

90.00% 1 16 625.00 12.00 40 99.00% 0

100.00% 1 12 833.33 12.00 3 99.50% 0

TABLE 2-5 Maintenance Value of High-Quality Reusable Materials

In general, one customer support person is assigned for about every
1000 customers. (This is not an optimum ratio and explains why it is so
difficult to reach customer support without long holds on telephones.) A
ratio of one support person for about every 150 customers would reduce
wait time, but of course raise costs. Because customer support is usually
outsourced to countries with low labor costs, the monthly cost is assumed
to be only $4,000 instead of $10,000.

Small companies with few customers tend to be better in customer
support than large companies with thousands of customers, because the
support staffs are not saturated for small companies.

Table 2-6 shows approximate values for customer support as reuse
goes up. Table 2-6 assumes 500 install sites and 25,000 users.

Because most customer support calls deal with quality issues, improv-
ing quality would actually have very significant impact on support costs,
and would probably improve customer satisfaction and reduce wait
times as well.

Enhancements would also benefit from certified reusable materials.
In general, enhancements average about 8 percent per year; that is,
if an application is 10,000 function points at delivery, then about 800
function points would be added the next year. This is not a constant
value, and enhancements vary, but 8 percent is a useful approximation.
Table 2-7 shows the effects on enhancements for various percentages
of reusable material.

Overview of 50 Software Best Practices 105

Application size (function points) = 10,000

Enhancements (function points) = 800

Years of usage = 10

Installations = 1,000

Application users = 50,000

Reuse
Percent Staff

Effort
(months)

Prod.
(FP/Mon.)

Schedule
(months)

Defect
Potential

Removal
Efficiency

Latent
Defects

0.00% 6 77 130.21 12.00 3,046 80.00% 609

10.00% 5 58 173.61 12.00 2,741 83.00% 466

20.00% 4 51 195.31 12.00 2,437 87.00% 317

30.00% 4 45 223.21 12.00 2,132 90.00% 213

40.00% 3 38 260.42 12.00 1,828 93.00% 128

50.00% 3 32 312.50 12.00 1,523 95.00% 76

60.00% 2 26 390.63 12.00 1,218 97.00% 37

70.00% 2 19 520.83 12.00 914 98.00% 18

80.00% 1 13 781.25 12.00 609 98.50% 9

90.00% 1 6 1562.50 12.00 305 99.00% 3

100.00% 1 4 2500.00 12.00 2 99.50% 0

TABLE 2-7 Enhancement Value of High-Quality Reusable Materials

Application size (function points) = 10,000

Installations = 500

Application users = 25,000

Reuse
Percent Staff

Effort
(months)

Prod.
(FP/Mon.)

Schedule
(months)

Defect
Potential

Removal
Efficiency

Latent
Defects

0.00% 25 300 33.33 12.00 12,619 80.00% 2,524

10.00% 23 270 37.04 12.00 9,452 83.00% 1,607

20.00% 20 243 41.15 12.00 6,276 87.00% 816

30.00% 18 219 45.72 12.00 4,113 90.00% 411

40.00% 16 197 50.81 12.00 2,393 93.00% 167

50.00% 15 177 56.45 12.00 1,373 95.00% 69

60.00% 13 159 62.72 12.00 630 97.00% 19

70.00% 12 143 69.69 12.00 298 98.00% 6

80.00% 11 129 77.44 12.00 137 98.50% 2

90.00% 10 116 86.04 12.00 40 99.00% 0

100.00% 9 105 95.60 12.00 3 99.50% 0

TABLE 2-6 Customer Support Value of High-Quality Reusable Materials

106 Chapter Two

Although total cost of ownership (TCO) is largely driven by defect
removal and repair costs, there are other factors, too. Table 2-8 shows a
hypothetical result for development plus ten years of usage for 0 percent
reuse and 80 percent reuse. Obviously, Table 2-8 oversimplifies TCO
calculations, but the intent is to show the significant economic value of
certified high-quality reusable materials.

Constructing applications that are 100 percent reusable is not likely
to be a common event. However, experiments indicate that almost any
application could achieve reuse levels of 85 percent to 90 percent if
certified reusable components were available. A study done some years
ago at IBM for accounting applications found that about 85 percent of
the code in the applications was common and generic and involved the
logistics of putting accounting onto a computer. About 15 percent of the
code actually dealt with accounting per se.

Not only code but also architecture, requirements, design, test mate-
rials, user manuals, and other items need to be part of the reusable
package, which also has to be under strict configuration control and of
course certified to zero-defect levels for optimum value. Software reuse
has been a promising technology for many years, but has never achieved
its true potential, due primarily to mediocre quality control. If service-
oriented architecture (SOA) is to fulfill its promise, then it must achieve
excellent quality levels and thereby allow development to make full use
of certified reusable components.

In addition to approaching zero-defect quality levels, certified com-
ponents should also be designed and developed to be much more secure
against hacking, viruses, botnets, and other kinds of security attacks.
In fact, a strong case can be made that developing reusable materials

Application size (function points) = 10,000

Annual enhancements (function points) = 800

Monthly cost = $10,000

Support cost = $4,000

Useful life after deployment = 10 years

 0% Reuse 80% Reuse Difference

Development $26,540,478 $2,788,372 –$23,752,106

Enhancement $7,680,000 $1,280,000 –$6,400,000

Maintenance $16,000,000 $3,200,000 –$12,800,000

Customer support $12,000,000 $5,165,607 –$6,834,393

TOTAL COST $62,220,478 $12,433,979 –$49,786,499

TCO Cost per Function Point $3,456.69 $690.78 –$2,765.92

TABLE 2-8 Total Cost of Ownership of High-Quality Reusable Materials (0% and 80%
reuse volumes)

Overview of 50 Software Best Practices 107

with better boundary controls and more secure programming languages,
such as E, would add even more value to certified reusable objects.

As the global economy descends into severe recession, every company
will be seeking methods to lower costs. Since software costs historically
have been large and difficult to control, it may be that the recession will
attract renewed interest in software reuse. To be successful, both quality
and security certification will be a critical part of the process.

28. Best Practices for Programming
or Coding

Programming or coding remains the central activity of software devel-
opment, even though it is no longer the most expensive. In spite of the
promise of software reuse, object-oriented (OO) development, application
generators, service-oriented architecture (SOA), and other methods that
attempt to replace manual coding with reusable objects, almost every
software project in 2009 depends upon coding to a significant degree.

Because programming is a manual and error-prone activity, the con-
tinued reliance upon programming or coding places software among the
most expensive of all human-built products.

Other expensive products whose cost structures are also driven by
the manual effort of skilled craftspeople include constructing 12-meter
yachts and constructing racing cars for Formula One or Indianapolis.
The costs of the custom-built racing yachts are at least ten times higher
than normal class-built yachts of the same displacements. Indy cars or
Formula 1 cars are close to 100 times more costly than conventional
sedans built on assembly lines and that include reusable components.

One unique feature of programming that is unlike any other engineer-
ing discipline is the existence of more than 700 different programming
languages. Not only are there hundreds of programming languages,
but also some large software applications may have as many as 12 to
15 languages used at the same time. This is partly due to the fact that
many programming languages are specialized and have a narrow focus.
Therefore if an application covers a wide range of functions, it may be
necessary to include several languages. Examples of typical combina-
tions include COBOL and SQL from the 1970s and 1980s; Visual Basic
and C from the 1990s; and Java Beans and HTML from the current
century.

New programming languages have been developed at a rate of more
than one a month for the past 30 years or so. The current table of pro-
gramming languages maintained by Software Productivity Research
(SPR) now contains more than 700 programming languages and con-
tinues to grow at a dozen or more languages per calendar year. Refer to
www.SPR.com for additional information.

108 Chapter Two

Best practices for programming circa 2009 include the following
topics:

■ Selection of programming languages to match application needs

■ Utilization of structured programming practices for procedural code

■ Selection of reusable code from certified sources, before starting to
code

■ Planning for and including security topics in code, including secure
languages such as E

■ Avoidance of “spaghetti bowl” code

■ Minimizing cyclomatic complexity and essential complexity

■ Including clear and relevant comments in the source code

■ Using automated static analysis tools for Java and dialects of C

■ Creating test cases before or concurrently with the code

■ Formal code inspections of all modules

■ Re-inspection of code after significant changes or updates

■ Renovating legacy code before starting major enhancements

■ Removing error-prone modules from legacy code

The U.S. Department of Commerce does not classify programming as
a profession, but rather as a craft or skilled trade. Good programming
also has some aspects of an art form. As a result, individual human skill
and careful training exert a very strong influence on the quality and
suitability of software programming.

Experiments in the industry use pair programming, where two pro-
grammers work concurrently on the same code; one does the program-
ming and the other does real-time review and inspection. Anecdotal
evidence indicates that this method may achieve somewhat higher
quality levels than average. However, the method seems intrinsically
inefficient. Normal development by one programmer, followed by static
analysis and peer reviews of code, also achieves better than average
quality at somewhat lower costs than pair programming.

It is a proven fact that people do not find their own errors with high
efficiency, primarily because they think many errors are correct and don’t
realize that they are wrong. Therefore peer reviews, inspections, and other
methods of review by other professionals have demonstrable value.

The software industry will continue with high costs and high error rates
so long as software applications are custom-coded. Only the substitution
of high-quality reusable objects is likely to make a fundamental change
in overall software costs, schedules, quality levels, and failure rates.

Overview of 50 Software Best Practices 109

It should be obvious that if software applications were assembled
from reusable materials, then the costs of each reusable component
could be much higher than today, with the additional costs going to
developing very sophisticated security controls, optimizing performance
levels, creating state-of-the-art specifications and user documents, and
achieving zero-defect quality levels. Even if a reusable object were to
cost 10 times more than today’s custom-code for the same function, if
the reused object were used 100 times, then the effective economic costs
would be only 1/10th of today’s cost.

29. Best Practices for Software
Project Governance

Over the past few years an alarming number of executives in major cor-
porations have been indicted and convicted for insider trading, financial
misconduct, deceiving stockholders with false claims, and other crimes
and misdemeanors. As a result, the U.S. Congress passed the Sarbanes-
Oxley Act of 2002, which took effect in 2004.

The Sarbanes-Oxley (SOX) Act applies to major corporations with
earnings above $75 million per year. The SOX Act requires a great deal
more accountability on the part of corporate executives than was normal
in the past. As a result, the topic of governance has become a major issue
within large corporations.

Under the concept of governance, senior executives can no longer
be passive observers of corporate financial matters or of the software
applications that contain financial data. The executives are required to
exercise active oversight and guidance on all major financial and stock
transactions and also on the software used to keep corporate books.

In addition, some added reports and data must be provided in the
attempt to expand and reform corporate financial measurements to
ensure absolute honesty, integrity, and accountability. Failure to comply
with SOX criteria can lead to felony charges for corporate executives,
with prison terms of up to 20 years and fines of up to $500,000.

Since the Sarbanes-Oxley measures apply only to major public compa-
nies with revenues in excess of $75 million per annum, private companies
and small companies are not directly regulated by the law. However, due
to past irregularities, executives in all companies are now being held to
a high standard of trust. Therefore governance is an important topic.

The first implementation of SOX measures seemed to require teams
of 25 to 50 executives and information technology specialists working for
a year or more to establish the SOX control framework. Many financial
applications required modification, and of course all new applications
must be SOX compliant. The continuing effort of administering and
adhering to SOX criteria will probably amount to the equivalent of

110 Chapter Two

perhaps 20 personnel full time for the foreseeable future. Because of
the legal requirements of SOX and the severe penalties for noncompli-
ance, corporations need to get fully up to speed with SOX criteria. Legal
advice is very important.

Because of the importance of both governance and Sarbanes-Oxley, a
variety of consulting companies now provide assistance in governance
and SOX adherence. There are also automated tools that can augment
manual methods of oversight and control. Even so, executives need to
understand and become more involved with financial software applica-
tions than was common before Sarbanes-Oxley became effective.

Improper governance can lead to fines or even criminal charges for
software developed by large U.S. corporations. However, good governance
is not restricted to very large public companies. Government agencies,
smaller companies, and companies in other countries not affected by
Sarbanes-Oxley would benefit from using best practices for software
governance.

30. Best Practices for Software Project
Measurements and Metrics

Leading companies always have software measurement programs for
capturing productivity and quality historical data. The state of the art
of software measurements for projects in the nominal 10,000–function
point domain includes measures of:

1. Accumulated effort

2. Accumulated costs

3. Accomplishing selected milestones

4. Development productivity

5. Maintenance and enhancement productivity

6. The volume of requirements changes

7. Defects by origin

8. Defect removal efficiency

9. Earned value (primarily for defense projects)

The measures of effort are often granular and support work break-
down structures (WBS). Cost measures are complete and include devel-
opment costs, contract costs, and costs associated with purchasing or
leasing packages. There is one area of ambiguity even for top compa-
nies: the overhead or burden rates associated with software costs vary
widely and can distort comparisons between companies, industries, and
countries.

Overview of 50 Software Best Practices 111

Many military applications use the earned value approach for mea-
suring progress. A few civilian projects use the earned value method,
but the usage is far more common in the defense community.

Development productivity circa 2008 normally uses function points
in two fashions: function points per staff month and/or work hours per
function point.

Measures of quality are powerful indicators of top-ranked software
producers. Laggards almost never measure quality, while top software
companies always do. Quality measures include data on defect vol-
umes by origin (i.e., requirements, design, code, bad fixes) and severity
level.

Really sophisticated companies also measure defect removal efficiency.
This requires accumulating all defects found during development and
also after release to customers for a predetermined period. For example,
if a company finds 900 defects during development and the clients find
100 defects in the first three months of use, then the company achieved
a 90 percent defect removal efficiency level. Top companies are usu-
ally better than 95 percent in defect removal efficiency, which is about
10 percent better than the U.S. average of 85 percent.

One of the uses of measurement data is for comparison against indus-
try benchmarks. The nonprofit International Software Benchmarking
Standards Group (ISBSG) has become a major industry resource for
software benchmarks and has data on more than 4000 projects as of
late 2008. A best practice circa 2009 is to use the ISBSG data collection
tool from the start of requirements through development, and then to
routinely submit benchmark data at the end. Of course classified or
proprietary applications may not be able to do this.

Sophisticated companies know enough to avoid measures and metrics
that are not effective or that violate standard economic assumptions.
Two common software measures violate economic assumptions and
cannot be used for economic analysis:

■ Cost per defect penalizes quality and makes buggy software look better
than it is.

■ The lines of code metric penalizes high-level languages and makes
assembly language look more productive than any other.

As will be discussed later, both lines of code and cost per defect vio-
late standard economic assumptions and lead to erroneous conclusions
about both productivity and quality. Neither metric is suitable for eco-
nomic study.

Measurement and metrics are embarrassingly bad in the software
industry as this book is written. Not only do a majority of companies mea-
sure little or nothing, but some of the companies that do try to measure

112 Chapter Two

use invalid metrics such as lines of code or cost per defect. Measurement
of software is a professional embarrassment as of 2009 and urgently
needs improvement in both the quantity and quality of measures.

Software has perhaps the worst measurement practices of any “engi-
neering” field in human history. The vast majority of software organiza-
tions have no idea of how their productivity and quality compare with
other organizations. Lack of good historical data also makes estimating
difficult, process improvement difficult, and is one of the factors asso-
ciated with the high cancellation rate of large software projects. Poor
software measurement should be viewed as professional malpractice.

31. Best Practices for Software Benchmarks
and Baselines

A software benchmark is a comparison of a project or organization
against similar projects and organizations from other companies. A
software baseline is a collection of quality and productivity information
gathered at a specific time. Baselines are used to evaluate progress
during software process improvement periods.

Although benchmarks and baselines have different purposes, they col-
lect similar kinds of information. The primary data gathered during both
benchmarks and baselines includes, but is not limited to, the following:

 1. Industry codes such as the North American Industry Classification
(NAIC) codes

 2. Development countries and locations

 3. Application taxonomy of nature, scope, class, and type

 4. Application complexity levels for problems, data, and code

 5. Application size in terms of function points

 6. Application size in terms of logical source code statements

 7. Programming languages used for the application

 8. Amount of reusable material utilized for the application

 9. Ratio of source code statements to function points

10. Development methodologies used for the application (Agile, RUP,
TSP, etc.)

11. Project management and estimating tools used for the application

12. Capability maturity level (CMMI) of the project

13. Chart of accounts for development activities

14. Activity-level productivity data expressed in function points

15. Overall net productivity expressed in function points

Overview of 50 Software Best Practices 113

16. Cost data expressed in function points

17. Overall staffing of project

18. Number and kinds of specialists employed on the project

19. Overall schedule for the project

20. Activity schedules for development, testing, documentation, and so on

21. Defect potentials by origin (requirements, design, code, documents,
bad fixes)

22. Defect removal activities used (inspections, static analysis, testing)

23. Number of test cases created for application

24. Defect removal efficiency levels

25. Delays and serious problems noted during development

These 25 topics are needed not only to show the results of specific
projects, but also to carry out regression analysis and to show which
methods or tools had the greatest impact on project results.

Consulting groups often gather the information for the 25 topics just
shown. The questionnaires used would contain about 150 specific ques-
tions. About two days of effort are usually needed to collect all of the
data for a major application benchmark in the 10,000–function point
size range. The work is normally carried out on-site by a benchmark
consulting group. During the data collection, both project managers and
team members are interviewed to validate the results. The interview
sessions usually last about two hours and may include half a dozen
developers and specialists plus the project manager.

Collecting full benchmark and baseline data with all 25 factors only
occurs within a few very sophisticated companies. More common would
be to use partial benchmarks that can be administered by web surveys or
remote means without requiring on-site interviews and data collection.
The ten most common topics gathered for these partial benchmarks and
baselines include, in descending order:

 1. Application size in terms of function points

 2. Amount of reusable material utilized for the application

 3. Development methodologies used for the application (Agile, RUP,
TSP, etc.)

 4. Capability maturity level (CMMI) of the project

 5. Overall net productivity expressed in function points

 6. Cost data expressed in function points

 7. Overall staffing of project

114 Chapter Two

 8. Overall schedule for the project

 9. Delays and serious problems noted during development

10. Customer-reported bugs or defects

These partial benchmarks and baselines are of course useful, but lack
the granularity for a full and complete statistical analysis of all factors
that affect application project results. However, the data for these partial
benchmarks and baselines can be collected remotely in perhaps two to
three hours once the application is complete.

Full on-site benchmarks can be performed by in-house personnel, but
more often are carried out by consulting companies such as the David
Consulting Group, Software Productivity Research, Galorath, and a
number of others.

As this book is written in 2009, the major source of remote bench-
marks and baselines is the International Software Benchmarking
Standards Group (ISBSG). ISBSG is a nonprofit organization with
headquarters in Australia. They have accumulated data on perhaps
5000 software projects and are adding new data at a rate of perhaps
500 projects per year.

Although the data is not as complete as that gathered by a full on-site
analysis, it is still sufficient to show overall productivity rates. It is also
sufficient to show the impact of various development methods such as
Agile, RUP, and the like. However, quality data is not very complete as
this book is written.

The ISBSG data is expressed in terms of function point metrics, which
is a best practice for both benchmarks and baselines. Both IFPUG func-
tion points and COSMIC function points are included, as well as several
other variants such as Finnish and Netherlands function points.

The ISBSG data is heavily weighted toward information technology
and web applications. Very little data is available at present for military
software, embedded software, systems software, and specialized kinds
of software such as scientific applications. No data is available at all for
classified military applications.

Another gap in the ISBSG data is due to the intrinsic difficulty of
counting function points. Because function point analysis is fairly slow
and expensive, very few applications above 10,000 function points have
ever been counted. As a result, the ISBSG data lacks applications such
as large operating systems and enterprise resource planning packages
that are in the 100,000 to 300,000–function point range.

As of 2009, some high-speed, low-cost function point methods are
available, but they are so new that they have not yet been utilized for
benchmark and baseline studies. However, by 2010 or 2012 (assuming
the economy improves), this situation may change.

Overview of 50 Software Best Practices 115

Because the data is submitted to ISBSG remotely by clients them-
selves, there is no formal validation of results, although obvious errors
are corrected. As with all forms of self-analysis, there may be errors due
to misunderstandings or to local variations in how topics are measured.

Two major advantages of the ISBSG data are the fact that it is avail-
able to the general public and the fact that the volume of data is increas-
ing rapidly.

Benchmarks and baselines are both viewed as best practices because
they have great value in heading off irrational schedule demands or
attempting applications with inadequate management and develop-
ment methods.

Every major project should start by reviewing available benchmark
information from either ISBSG or from other sources. Every process
improvement plan should start by creating a quantitative baseline
against which progress can be measured. These are both best practices
that should become almost universal.

32. Best Practices for Software Project
Milestone and Cost Tracking

Milestone tracking refers to having formal closure on the development
of key deliverables. Normally, the closure milestone is the direct result
of some kind of review or inspection of the deliverable. A milestone is
not an arbitrary calendar date.

Project management is responsible for establishing milestones, moni-
toring their completion, and reporting truthfully on whether the mile-
stones were successfully completed or encountered problems. When
serious problems are encountered, it is necessary to correct the problems
before reporting that the milestone has been completed.

A typical set of project milestones for software applications in the
nominal 10,000–function point range would include completion of:

1. Requirements review

2. Project plan review

3. Cost and quality estimate review

4. External design reviews

5. Database design reviews

6. Internal design reviews

7. Quality plan and test plan reviews

8. Documentation plan review

9. Deployment plan review

116 Chapter Two

10. Training plan review

11. Code inspections

12. Each development test stage

13. Customer acceptance test

Failing or delayed projects usually lack serious milestone tracking.
Activities might be reported as finished while work was still ongoing.
Milestones might be simple dates on a calendar rather than comple-
tion and review of actual deliverables. Some kinds of reviews may be
so skimpy as to be ineffective. Other topics such as training may be
omitted by accident.

It is important that the meaning of milestone is ambiguous in the
software industry. Rather than milestones being the result of a formal
review of a deliverable, the term milestone often refers to arbitrary cal-
endar dates or to the delivery of unreviewed and untested materials.

Delivering documents or code segments that are incomplete, contain
errors, and cannot support downstream development work is not the
way milestones are used by industry leaders.

Another aspect of milestone tracking among industry leaders is what
happens when problems are reported or delays occur. The reaction is strong
and immediate: corrective actions are planned, task forces assigned, and
correction begins to occur. Among laggards, on the other hand, problem
reports may be ignored, and corrective actions very seldom occur.

In a dozen legal cases involving projects that failed or were never
able to operate successfully, project tracking was inadequate in every
case. Problems were either ignored or brushed aside, rather than being
addressed and solved.

An interesting form of project tracking for object-oriented projects has
been developed by the Shoulders Corporation. This method uses a 3-D
model of software objects and classes using Styrofoam balls of various
sizes that are connected by dowels to create a kind of mobile.

The overall structure is kept in a location visible to as many team
members as possible. The mobile makes the status instantly visible to
all viewers. Color-coded ribbons indicate status of each component, with
different colors indicating design complete, code complete, documenta-
tion complete, and testing complete (gold). There are also ribbons for
possible problems or delays.

This method provides almost instantaneous visibility of overall proj-
ect status. The sale method has been automated using a 3-D modeling
package, but the physical structures are easier to see and have proven
more useful on actual projects. The Shoulders Corporation method con-
denses a great deal of important information into a single visual repre-
sentation that nontechnical staff can readily understand.

Overview of 50 Software Best Practices 117

33. Best Practices for Software Change
Control Before Release

Applications in the nominal 10,000–function point range run from 1 percent
to 3 percent per month in new or changed requirements during the
analysis and design phases. The total accumulated volume of changing
requirements can top 50 percent of the initial requirements when func-
tion point totals at the requirements phase are compared with function
point totals at deployment. Therefore successful software projects in the
nominal 10,000–function point range must use state-of-the-art methods
and tools to ensure that changes do not get out of control. Successful
projects also use change control boards to evaluate the need for specific
changes. And of course all changes that have a significant impact on
costs and schedules need to trigger updated development plans and
new cost estimates.

The state of the art of change control for applications in the 10,000–
function point range includes the following:

■ Assigning “owners” of key deliverables the responsibility for approv-
ing changes

■ Locked “master copies” of all deliverables that change only via formal
methods

■ Planning contents of multiple releases and assigning key features to
each release

■ Estimating the number and rate of development changes before
starting

■ Using function point metrics to quantify changes

■ A joint client/development change control board or designated domain
experts

■ Use of joint application design (JAD) to minimize downstream
changes

■ Use of formal requirements inspections to minimize downstream
changes

■ Use of formal prototypes to minimize downstream changes

■ Planned usage of iterative development to accommodate changes

■ Planned usage of Agile development to accommodate changes

■ Formal review of all change requests

■ Revised cost and schedule estimates for all changes greater than
10 function points

■ Prioritization of change requests in terms of business impact

118 Chapter Two

■ Formal assignment of change requests to specific releases

■ Use of automated change control tools with cross-reference capabilities

One of the observed byproducts of the usage of formal JAD sessions is
a reduction in downstream requirements changes. Rather than having
unplanned requirements surface at a rate of 1 percent to 3 percent per
month, studies of JAD by IBM and other companies have indicated that
unplanned requirements changes often drop below 1 percent per month
due to the effectiveness of the JAD technique.

Prototypes are also helpful in reducing the rates of downstream
requirements changes. Normally, key screens, inputs, and outputs are
prototyped so users have some hands-on experience with what the com-
pleted application will look like.

However, changes will always occur for large systems. It is not pos-
sible to freeze the requirements of any real-world application, and it is
naïve to think this can occur. Therefore leading companies are ready and
able to deal with changes, and do not let them become impediments to
progress. Consequently, some form of iterative development is a logical
necessity.

The newer Agile methods embrace changing requirements. Their
mode of operation is to have a permanent user representative as part of
the development team. The Agile approach is to start by building basic
features as rapidly as possible, and then to gather new requirements
based on actual user experiences with the features already provided in
the form of running code.

This method works well for small projects with a small number of
users. It has not yet been deployed on applications such as Microsoft
Vista, where users number in the millions and the features number
in the thousands. For such massive projects, one user or even a
small team of users cannot possibly reflect the entire range of usage
patterns.

Effective software change management is a complicated problem with
many dimensions. Software requirements, plans, specifications, source
code, test plans, test cases, user manuals, and many other documents
and artifacts tend to change frequently. Changes may occur due to exter-
nal factors such as government regulations, competitive factors, new
business needs, new technologies, or to fix bugs.

Furthermore some changes ripple through many different deliver-
ables. A new requirement, for example, might cause changes not only
to requirements documentation but also to internal and external speci-
fications, source code, user manuals, test libraries, development plans,
and cost estimates.

When function points are measured at the end of requirements and
then again at delivery, it has been found that the rate of growth of

Overview of 50 Software Best Practices 119

“creeping requirements” averages between 1 percent and 3 percent per
calendar month during the design and coding phases. Therefore if an
application has 1000 function points at the end of the requirements
phase, expect it to grow at a rate of perhaps 20 function points per
month for the next eight to ten months. Maximum growth has topped
5 percent per month, while minimum growth is about 0.5 percent per
month. Agile projects, of course, are at the maximum end.

For some government and military software projects, traceability is a
requirement, which means that all changes to code or other deliverables
must be traced back to an explicit requirement approved by government
stakeholders or sponsors.

In addition, a number of people may be authorized to change the
same objects, such as source code modules, test cases, and specifications.
Obviously, their separate changes need to be coordinated, so it may be
necessary to “lock” master copies of key deliverables and then to serialize
the updates from various sources.

Because change control is so complex and so pervasive, many auto-
mated tools are available that can aid in keeping all changes current
and in dealing with the interconnections of change across multiple
deliverables.

However, change control cannot be entirely automated since it is nec-
essary for stakeholders, developers, and other key players to agree on
significant changes to application scope, to new requirements, and to
items that may trigger schedule and cost changes.

At some point, changes will find their way into source code, which
implies new test cases will be needed as well. Formal integration and
new builds will occur to include sets of changes. These builds may occur
as needed, or they may occur at fixed intervals such as daily or weekly.

Change control is a topic that often causes trouble if it is not handled
well throughout the development cycle. As will be discussed later, it
also needs to be handled well after deployment during the maintenance
cycle. Change control is a superset of configuration control, since change
control also involves decisions of corporate prestige and competitive
issues that are outside the scope of configuration control.

34. Best Practices for Configuration Control

Configuration control is a subset of change control in general. Formal
configuration control originated in the 1950s by the U.S. Department
of Defense as a method of keeping track of the parts and evolution
of complex weapons systems. In other words, hardware configuration
control is older than software configuration control. As commonly prac-
ticed, configuration control is a mechanical activity that is supported
by many tools and substantial automation. Configuration control deals

120 Chapter Two

with keeping track of thousands of updates to documents and source
code. Ascertaining whether a particular change is valuable is outside
the scope of configuration control.

Software configuration control is one of the key practice areas of the
Software Engineering Institute’s capability maturity model (CMM and
CMMI). It is also covered by a number of standards produced by the IEEE,
ANSI (American National Standards Institute), ISO, and other organiza-
tions. For example, ISO standard 10007-2003 and IEEE standard 828-
1998 both cover configuration control for software applications.

Although configuration control is largely automated, it still requires
human intervention to be done well. Obviously, features need to be
uniquely identified, and there needs to be extensive mapping among
requirements, specifications, source code, test cases, and user documents
to ensure that every specific change that affects more than one deliver-
able is correctly linked to other related deliverables.

In addition, the master copy of each deliverable must be locked to
avoid accidental changes. Only formal methods with formal validation
should be used to update master copies of deliverables.

Automated configuration control is a best practice for all applications
that are intended for actual release to customers.

35. Best Practices for Software Quality
Assurance (SQA)

Software quality assurance is the general name for organizations
and specialists who are responsible for ensuring and certifying the
quality levels of software applications before they are delivered to
customers.

In large corporations such as IBM, the SQA organizations are inde-
pendent of software development organizations and report to a corpo-
rate vice president of quality. The reason for this is to ensure that no
pressure can be brought to bear on SQA personnel by means of threats
of poor appraisals or career damage if they report problems against
software.

SQA personnel constitute between 3 percent and 5 percent of software
engineering personnel. If the SQA organization is below 3 percent, there
usually are not enough personnel to staff all projects. It is not a best
practice to have “token SQA” organizations who are so severely under-
staffed that they cannot review deliverables or carry out their roles.

SQA organizations are staffed by personnel who have some training
in quality measurements and quality control methodologies. Many SQA
personnel are certified as black belts in Six Sigma practices. SQA is not
just a testing organization and indeed may not do testing at all. The
roles normally played by SQA groups include

Overview of 50 Software Best Practices 121

■ Estimating quality levels in terms of defect potentials and defect
removal efficiency

■ Measuring defect removal and assigning defect severity levels

■ Applying Six Sigma practices to software applications

■ Applying quality function deployment (QFD) to software applications

■ Moderating and participating in formal inspections

■ Teaching classes in quality topics

■ Monitoring adherence to relevant corporate, ANSI, and ISO quality
standards

■ Reviewing all deliverables to ensure adherence to quality standards
and practices

■ Reviewing test plans and quality plans to ensure completeness and
best practices

■ Measuring the results of testing

■ Performing root-cause analysis on serious defects

■ Reporting on potential quality problems to higher management

■ Approving release of applications to customers by certifying accept-
able quality levels

At IBM and some other companies, formal approval by software qual-
ity assurance is a prerequisite for actually delivering software to cus-
tomers. If the SQA organization recommends against delivery due to
quality issues, that recommendation can only be overturned by appeal
to the division’s vice president or to the president of the corporation.
Normally, the quality problems are fixed.

To be definitive about quality issues, the SQA organizations are the pri-
mary units that measure software quality, including but not limited to:

Customer satisfaction Leaders perform annual or semiannual cus-
tomer satisfaction surveys to find out what their clients think about their
products. Leaders also have sophisticated defect reporting and customer
support information available via the Web. Many leaders in the commer-
cial software world have active user groups and forums. These groups often
produce independent surveys on quality and satisfaction topics. There are
also focus groups, and some large software companies even have formal
usability labs, where new versions of products are tried out by customers
under controlled conditions. (Note: customer satisfaction is sometimes
measured by marketing organizations rather than by SQA groups.)

Defect quantities and origins Industry leaders keep accurate
records of the bugs or defects found in all major deliverables, and they
start early, during requirements or design. At least five categories of

122 Chapter Two

defects are measured: requirements defects, design defects, code defects,
documentation defects, and bad fixes, or secondary bugs introduced
accidentally while fixing another bug. Accurate defect reporting is one
of the keys to improving quality. In fact, analysis of defect data to search
for root causes has led to some very innovative defect prevention and
defect removal operations in many companies. Overall, careful measure-
ment of defects and subsequent analysis of the data is one of the most
cost-effective activities a company can perform.

Defect removal efficiency Industry leaders know the average and
maximum efficiency of every major kind of review, inspection, and test,
and they select optimum series of removal steps for projects of various
kinds and sizes. The use of pretest reviews and inspections is normal
among Baldrige winners and organizations with ultrahigh quality, since
testing alone is not efficient enough. Leaders remove from 95 percent to
more than 99 percent of all defects prior to delivery of software to cus-
tomers. Laggards seldom exceed 80 percent in terms of defect removal
efficiency and may drop below 50 percent.

Delivered defects by application Industry leaders begin to accu-
mulate statistics on errors reported by users as soon as the software is
delivered. Monthly reports are prepared and given to executives, which
show the defect trends against all products. These reports are also sum-
marized on an annual basis. Supplemental statistics such as defect
reports by country, state, industry, client, and so on, are also included.

Defect severity levels All of the industry leaders, without excep-
tion, use some kind of a severity scale for evaluating incoming bugs
or defects reported from the field. The number of plateaus varies from
one to five. In general, “Severity 1” problems cause the system to fail
completely, and the severity scale then descends in seriousness.

Complexity of software It has been known for many years that
complex code is difficult to maintain and has higher than average defect
rates. A variety of complexity analysis tools are commercially available
that support standard complexity measures such as cyclomatic and
essential complexity. It is interesting that the systems software com-
munity is much more likely to measure complexity than the information
technology (IT) community.

Test case coverage Software testing may or may not cover every
branch and pathway through applications. A variety of commercial tools
are available that monitor the results of software testing and that help
to identify portions of applications where testing is sparse or nonex-
istent. Here, too, the systems software domain is much more likely to
measure test coverage than the information technology (IT) domain.

Cost of quality control and defect repairs One significant
aspect of quality measurement is to keep accurate records of the costs

Overview of 50 Software Best Practices 123

and resources associated with various forms of defect prevention and
defect removal. For software, these measures include the costs of (1)
software assessments, (2) quality baseline studies, (3) reviews, inspec-
tions, and testing, (4) warranty repairs and postrelease maintenance, (5)
quality tools, (6) quality education, (7) your software quality assurance
organization, (8) user satisfaction surveys, and (9) any litigation involv-
ing poor quality or customer losses attributed to poor quality. In gen-
eral, the principles of Crosby’s “Cost of Quality” topic apply to software,
but most companies extend the basic concept and track additional fac-
tors relevant to software projects. The general topics of Cost of Quality
include the costs of prevention, appraisal, internal failures, and external
failures. For software more details are needed due to special topics such
as toxic requirements, security vulnerabilities, and performance issues,
which are not handled via normal manufacturing cost of quality.

Economic value of quality One topic that is not well covered in
the quality assurance literature is that of the economic value of quality.
A phrase that Phil Crosby, the former ITT vice president of quality, made
famous is “quality is free.” For software it is better than free; it more
than pays for itself. Every reduction of 120 delivered defects can reduce
maintenance staffing by about one person. Every reduction of about 240
delivered defects can reduce customer support staffing by about one
person. In today’s world, software engineers spend more days per year
fixing bugs than doing actual development A combination of quality-
centered development methods such as Team Software Process (TSP),
joint application design (JAD), quality function deployment (QFD),
static analysis, inspections, and testing can reduce costs throughout the
life cycle and also shorten development schedules. Unfortunately, poor
measurement practices make these improvements hard to see except
among very sophisticated companies.

As previously stated, a key reason for this is that the two most
common metrics for quality, lines of code and cost per defect, are flawed
and cannot deal with economics topics. Using defect removal costs per
function point is a better choice, but these metrics need to be deployed
in organizations that actually accumulate effort, cost, and quality data
simultaneously. From studies performed by the author, combinations of
defect prevention and defect removal methods that lower defect poten-
tials and raise removal efficiency greater than 95 percent benefit devel-
opment costs, development schedules, maintenance costs, and customer
support costs simultaneously.

Overall quality measures are the most important of almost any form of
software measurement. This is because poor quality always causes sched-
ule delays and cost overruns, while good quality is associated with on-
time completions of software applications and effective cost controls.

124 Chapter Two

Formal SQA organizations occur most often in companies that build
large and complex physical devices such as airplanes, mainframe
computers, telephone switching systems, military equipment, and medi-
cal equipment. Such organizations have long recognized that quality
control is important to success.

By contrast, organizations such as banks and insurance companies
that build information technology software may not have SQA organi-
zations. If they do, the organizations are usually responsible for testing
and not for a full range of quality activities.

Studies of the delivered quality of software applications indicate that
companies with formal SQA organizations and formal testing organiza-
tions tend to exceed 95 percent in cumulative defect removal efficiency
levels.

36. Best Practices for Inspections
and Static Analysis

Formal design and code inspections originated more than 35 years ago
in IBM. They still are among the top-ranked methodologies in terms of
defect removal efficiency. (Michael Fagan, formerly of IBM Kingston,
first published the inspection method with his colleagues Lew Priven,
Ron Radice, and then some years later, Roger Stewart.) Further, inspec-
tions have a synergistic relationship with other forms of defect removal
such as testing and static analysis and also are quite successful as defect
prevention methods.

Automated static analysis is a newer technology that originated per-
haps 12 years ago. Automated static analysis examines source code
for syntactical errors and also for errors in boundary conditions, calls,
links, and other troublesome and tricky items. Static analysis may not
find embedded requirements errors such as the notorious Y2K problem,
but it is very effective in finding thousands of bugs associated with
source code issues. Inspections and static analysis are synergistic defect
removal methods.

Recent work on software inspections by Tom Gilb, one of the more
prominent authors dealing with inspections, and his colleagues contin-
ues to support the early finding that the human mind remains the tool
of choice for finding and eliminating complex problems that originate
in requirements, design, and other noncode deliverables. Indeed, for
finding the deeper problems in source code, formal code inspections still
outrank testing in defect removal efficiency levels. However, both static
analysis and automated testing are now fairly efficient in finding an
increasingly wide array of problems.

If an application is written in a language where static analysis is
supported (Java, C, C++, and other C dialects), then static analysis is

Overview of 50 Software Best Practices 125

a best practice. Static analysis may top 87 percent in finding common
coding defects. Occasionally there are false positives, however. But these
can be minimized by “tuning” the static analysis tools to match the
specifics of the applications. Code inspections after static analysis can
find some deeper problems such as embedded requirements defects,
especially in key modules and algorithms.

Because neither code inspections nor static analysis are fully success-
ful in finding performance problems, it is also necessary to use dynamic
analysis for performance issues. Either various kinds of controlled
performance test suites are run, or the application is instrumented to
record timing and performance data.

Most forms of testing are less than 35 percent efficient in finding
errors or bugs. The measured defect removal efficiency of both formal
design inspections and formal code inspections averages more than
65 percent efficient, or twice as efficient as most forms of testing. Some
inspections top 85 percent in defect removal efficiency levels. Tom Gilb
reports that some inspection efficiencies have been recorded that are
as high as 88 percent.

A combination of formal inspections of requirements and design,
static analysis, formal testing by test specialists, and a formal (and
active) software quality assurance (SQA) group are the methods most
often associated with projects achieving a cumulative defect removal
efficiency higher than 99 percent.

Formal inspections are manual activities in which from three to six
colleagues go over design specifications page by page, using a formal pro-
tocol. The normal complement is four, including a moderator, a recorder,
a person whose work is being inspected, and one other. (Occasionally,
new hires or specialists such as testers participate, too.) Code inspec-
tions are the same idea, but they go over listings or screens line by line.
To term this activity an inspection, certain criteria must be met, includ-
ing but not limited to the following:

■ There must be a moderator to keep the session moving.

■ There must be a recorder to keep notes.

■ There must be adequate preparation time before each session.

■ Records must be kept of defects discovered.

■ Defect data should not be used for appraisals or punitive purposes.

The original concept of inspections was based on actual meetings with
live participants. The advent of effective online communications and
tools for supporting remote inspections now means that inspections can
be performed electronically, which saves on travel costs for teams that
are geographically dispersed.

126 Chapter Two

Any software deliverable can be subject to a formal inspection, and
the following deliverables have now developed enough empirical data
to indicate that the inspection process is generally beneficial:

■ Architecture inspections

■ Requirements inspections

■ Design inspections

■ Database design inspections

■ Code inspections

■ Test plan inspections

■ Test case inspections

■ User documentation inspections

For every software artifact where formal inspections are used, the
inspections range from just under 50 percent to more than 80 percent in
defect removal efficiency and have an average efficiency level of roughly
65 percent. This is overall the best defect removal efficiency level of any
known form of error elimination.

Further, thanks to the flexibility of the human mind and its ability
to handle inductive logic as well as deductive logic, inspections are also
the most versatile form of defect removal and can be applied to essen-
tially any software artifact. Indeed, inspections have even been applied
recursively to themselves, in order to fine-tune the inspection process
and eliminate bottlenecks and obstacles.

It is sometimes asked “If inspections are so good, why doesn’t every-
one use them?” The answer to this question reveals a basic weakness of
the software industry. Inspections have been in the public domain for
more than 35 years. Therefore no company except a few training com-
panies tries to “sell” inspections, while there are many vendors selling
testing tools. If you want to use inspections, you have to seek them out
and adopt them.

Most software development organizations don’t actually do research
or collect data on effective tools and technologies. They make their tech-
nology decisions to a large degree by listening to tool and methodology
vendors and adopting those where the sales personnel are most per-
suasive. It is even easier if the sales personnel make the tool or method
sound like a silver bullet that will give miraculous results immediately
upon deployment, with little or no training, preparation, or additional
effort. Since inspections are not sold by tool vendors and do require
training and effort, they are not a glamorous technology. Hence many
software organizations don’t even know about inspections and have no
idea of their versatility and effectiveness.

Overview of 50 Software Best Practices 127

It is a telling point that all of the top-gun software quality houses and
even industries in the United States tend to utilize pretest inspections.
For example, formal inspections are very common among computer
manufacturers, telecommunication manufacturers, aerospace manu-
facturers, defense manufacturers, medical instrument manufacturers,
and systems software and operating systems developers. All of these
need high-quality software to market their main products, and inspec-
tions top the list of effective defect removal methods.

It is very important not to allow toxic requirements, requirements
errors, and requirements omissions to flow downstream into code, because
requirements problems cannot be found and removed by testing.

Design problems should also be found prior to code development,
although testing can find some design problems.

The key message is that defects should be found within no more than
a few hours or days from when they originate. Defects that originate in
a specific phase such as requirements should never be allowed down-
stream into design and code.

Following are the most effective known methods for finding defects
within a specific phase or within a short time interval from when the
defects originate:

Defect Origins Optimal Defect Discovery Methods

Requirements defects Formal requirements inspections

Design defects Formal design inspections

Coding defects Static analysis
Formal code inspections
Testing

Document defects Editing of documents
Formal document inspections

Bad fixes Re-inspection after defect repairs
Rerunning static analysis tools after defect repairs
Regression testing

Test case defects Inspection of test cases

As can be seen, inspections are not the only form of defect removal, but
they are the only form that has proven to be effective against require-
ments defects, and they are also very effective against other forms of
defects as well.

A new nonprofit organization was created in 2009 that is intended to
provide instruction and quantified data about formal inspections. The
organization is being formed as this book is written.

As of 2009, inspections are supported by a number of tools that can
predict defects, defect removal efficiency, costs, and other relevant fac-
tors. These tools also collect data on defects and effort, and can con-
solidate the data with similar data from static analysis and testing.

128 Chapter Two

Formal inspections are a best practice for all mission-critical software
applications.

37. Best Practices for Testing and
Test Library Control

Software testing has been the main form of defect removal since soft-
ware began more than 60 years ago. At least 20 different forms of testing
exist, and typically between 3 and 12 forms of testing will be used on
almost every software application.

Note that testing can also be used in conjunction with other forms
of defect removal such as static analysis and formal inspections. In
fact, such synergistic combinations are best practices, because test-
ing by itself is not sufficient to achieve high levels of defect removal
efficiency.

Unfortunately, when measured, testing is rather low in defect removal
efficiency levels. Many forms of testing such as unit test are below 35
percent in removal efficiency, or find only about one bug out of three.

The cumulative efficiency of all forms of testing seldom tops 80 percent,
so additional steps such as inspections and static analysis are needed to
raise defect removal efficiency levels above 95 percent, which is a mini-
mum safe level.

Because of the many forms of testing and the existence of hundreds
or thousand of test cases, test libraries are often huge and cumbersome,
and require automation for successful management.

Testing has many varieties, including black box testing (no knowl-
edge of application structure), white box testing (application structure
is known), and gray box testing (data structures are known).

Another way of dividing testing is to look at test steps performed by
developers, by testing specialists or quality assurance, and by customers
themselves. Testing in all of its forms can utilize 20 percent to more than
40 percent of total software development effort. Given the low efficiency
of testing in terms of defect removal, alternatives that combine higher
efficiency levels with lower costs are worth considering.

There are also very specialized forms of testing such as tests concerned
with performance issues, security issues, and usability issues. Although
not testing in the normal sense of the word, applications with high secu-
rity criteria may also use professional hackers who seek to penetrate the
application’s defenses. Common forms of software testing include

Testing by Developers

■ Subroutine testing

■ Module testing

■ Unit testing

Overview of 50 Software Best Practices 129

Testing by Test Specialists or Software Quality Assurance

■ New function testing

■ Component testing

■ Regression testing

■ Performance testing

■ Security testing

■ Virus and spyware testing

■ Usability testing

■ Scalability testing

■ Standards testing (ensuring ISO and other standards are followed)

■ Nationalization testing (foreign languages versions)

■ Platform testing (alternative hardware or operating system versions)

■ Independent testing (military applications)

■ Component testing

■ System testing

Testing by Customers or Users

■ External beta testing (commercial software)

■ Acceptance testing (information technology; outsource applications)

■ In-house customer testing (special hardware devices)

In recent years automation has facilitated test case development,
test script development, test execution, and test library management.
However, human intelligence is still very important in developing test
plans, test cases, and test scripts.

Several issues with testing are underreported in the literature and
need more study. One of these is the error density in test cases them-
selves. Studies of samples of test libraries at selected IBM locations
sometimes found more errors in test cases than in the software being
tested. Another issue is that of redundant test cases, which implies that
two or more test cases are duplicates or test the same conditions. This
adds costs, but not rigor. It usually occurs when multiple developers or
multiple test personnel are engaged in testing the same software.

A topic that has been studied but which needs much more study is
that of testing defect removal efficiency. Since most forms of testing
seem to be less than 35 percent efficient, or find only about one bug out
of three, there is an urgent need to examine why this occurs.

A related topic is the low coverage of testing when monitored by vari-
ous test coverage analysis tools. Usually, only 75 percent or less of the

130 Chapter Two

source code in applications is executed during the course of testing.
Some of this may be dead code (which is another problem), some may
be paths that are seldom traversed, but some may be segments that are
missed by accident.

The bottom line is that testing alone is not sufficient to achieve defect
removal efficiency levels of 95 percent or higher. The current best prac-
tice would be to use testing in conjunction with other methods such as
requirements and design inspections, static analysis, and code inspec-
tions prior to testing itself. Both defect prevention and defect removal
should be used together in a synergistic fashion.

Effective software quality control is the most important single factor
that separates successful projects from delays and disasters. The reason
for this is because finding and fixing bugs is the most expensive cost ele-
ment for large systems and takes more time than any other activity.

Successful quality control involves defect prevention, defect removal,
and defect measurement activities. The phrase defect prevention includes
all activities that minimize the probability of creating an error or defect
in the first place. Examples of defect prevention activities include the Six
Sigma approach, joint application design (JAD) for gathering require-
ments, usage of formal design methods, use of structured coding tech-
niques, and usage of libraries of proven reusable material.

The phrase defect removal includes all activities that can find errors
or defects in any kind of deliverable. Examples of defect removal activi-
ties include requirements inspections, design inspections, document
inspections, code inspections, and all kinds of testing. Following are the
major forms of defect prevention and defect removal activities practiced
as of 2009:

Defect Prevention

■ Joint application design (JAD) for gathering requirements

■ Quality function deployment (QFD) for quality requirements

■ Formal design methods

■ Structured coding methods

■ Renovation of legacy code prior to updating it

■ Complexity analysis of legacy code prior to updating it

■ Surgical removal of error-prone modules from legacy code

■ Formal defect and quality estimation

■ Formal security plans

■ Formal test plans

■ Formal test case construction

■ Formal change management methods

Overview of 50 Software Best Practices 131

■ Six Sigma approaches (customized for software)

■ Utilization of the Software Engineering Institute’s capability matu-
rity model (CMM or CMMI)

■ Utilization of the new team and personal software processes (TSP,
PSP)

■ Embedded users with development teams (as in the Agile method)

■ Creating test cases before code (as with Extreme programming)

■ Daily SCRUM sessions

Defect Removal
■ Requirements inspections

■ Design inspections

■ Document inspections

■ Formal security inspections

■ Code inspections

■ Test plan and test case inspection

■ Defect repair inspection

■ Software quality assurance reviews

■ Automated software static analysis (for languages such as Java and
C dialects)

■ Unit testing (automated or manual)

■ Component testing

■ New function testing

■ Regression testing

■ Performance testing

■ System testing

■ Security vulnerability testing

■ Acceptance testing

The combination of defect prevention and defect removal activities
leads to some very significant differences when comparing the overall
numbers of software defects in successful versus unsuccessful projects.
For projects in the 10,000–function point range, the successful ones accu-
mulate development totals of around 4.0 defects per function point and
remove about 95 percent of them before delivery to customers. In other
words, the number of delivered defects is about 0.2 defect per function
point, or 2,000 total latent defects. Of these, about 10 percent or 200 would
be fairly serious defects. The rest would be minor or cosmetic defects.

132 Chapter Two

By contrast, the unsuccessful projects accumulate development totals of
around 7.0 defects per function point and remove only about 80 percent of
them before delivery. The number of delivered defects is about 1.4 defects
per function point, or 14,000 total latent defects. Of these, about 20 percent
or 2,800 would be fairly serious defects. This large number of latent defects
after delivery is very troubling for users.

Unsuccessful projects typically omit design and code inspections,
static analysis, and depend purely on testing. The omission of upfront
inspections causes three serious problems: (1) The large number of
defects still present when testing begins slows down the project to a
standstill; (2) The “bad fix” injection rate for projects without inspec-
tions is alarmingly high; and (3) The overall defect removal efficiency
associated only with testing is not sufficient to achieve defect removal
rates higher than about 80 percent.

38. Best Practices for Software Security
Analysis and Control

As this book is written in 2009, software security is becoming an increas-
ingly critical topic. Not only are individual hackers attempting to break
into computers and software applications, but also organized crime,
drug cartels, terrorist organizations such as al Qaeda, and even hostile
foreign governments are.

As computers and software become more pervasive in business and
government operations, the value of financial data, military data, medi-
cal data, and police data is high enough so that criminal elements can
afford to mount major attacks using very sophisticated tools and also
very sophisticated hackers. Cybersecurity is becoming a major battle-
ground and needs to be taken very seriously.

Modern software applications that contain sensitive data such as
financial information, medical records, personnel data, or military and
classified information are at daily risk from hackers, viruses, spyware,
and even from deliberate theft by disgruntled employees. Security con-
trol of software applications is a serious business, associated with major
costs and risks. Poor security control can lead to serious damages and
even to criminal charges against the software and corporate executives
who did not ensure high security levels.

Modern security control of critical software applications requires a
combination of specialized skills; sophisticated software tools; proper
architecture, design, and coding practices; and constant vigilance.
Supplemental tools and approaches such as hardware security devices,
electronic surveillance of premises, careful background checks of all per-
sonnel, and employment of hackers who deliberately seek out weaknesses
and vulnerabilities are also very common and may be necessary.

Overview of 50 Software Best Practices 133

However, software security starts with careful architecture, design,
and coding practices. In addition, security inspections and the employ-
ment of security specialists are key criteria for successful security con-
trol. Both “blacklisting” and “whitelisting” of applications that interface
with applications undergoing security analysis are needed. Also, pro-
gramming languages such as E (a Java variation) that are aimed at
security topics are important and also a best practice.

Security leaks or vulnerabilities come from a variety of sources, includ-
ing user inputs, application interfaces, and of course leaks due to poor
error-handling or poor coding practices. One of the reasons that special-
ists are required to reduce security vulnerabilities is because ordinary
training of software engineers is not thorough in security topics.

Dozens of companies are now active in the security area. The U.S.
Department of Homeland Security is planning on building a new
research lab specifically for software security. Nonprofit organizations
such as the Center for Internet Security (CIS) are growing rapidly in
membership, and joining such a group would be a best practice for both
corporations and government agencies.

In addition, security standards such as ISO 17799 also offer guidance
on software security topics.

Although hacking and online theft of data is the most widespread
form of security problem, physical security of computers and data cen-
ters is important, too. Almost every month, articles appear about loss
of confidential credit card and medical records due to theft of notebook
computers or desktop computers.

Because both physical theft and hacking attacks are becoming more
and more common, encryption of valuable data is now a best practice
for all forms of proprietary and confidential information.

From about 2000 forward into the indefinite future, there has been an
escalating contest between hackers and security experts. Unfortunately,
the hackers are becoming increasingly sophisticated and numerous.

It is theoretically possible to build some form of artificial intelligence
or neural network security analysis tools that could examine software
applications and find security flaws with very high efficiency. Indeed, a
similar kind of AI tool applied to architecture and design could provide
architects and designers with optimal security solutions.

A general set of best practices for software applications under devel-
opment includes

■ Improve the undergraduate and professional training of software
engineers in security topics.

■ For every application that will connect to the Internet or to other
computers, develop a formal security plan.

■ Perform security inspections of requirements and specifications.

134 Chapter Two

■ Develop topnotch physical security for development teams.

■ Develop topnotch security for home offices and portable equipment.

■ Utilize high-security programming languages such as E.

■ Utilize automated static analysis of code to find potential security
vulnerabilities.

■ Utilize static analysis on legacy applications that are to be updated.

Automation will probably become the overall best practice in the
future. However, as of 2009, security analysis by human experts remains
the best practice. While security experts are common in military and
classified areas, they are not yet used as often as they should be for
civilian applications.

39. Best Practices for Software
Performance Analysis

As any user of Windows XP or Windows Vista can observe, performance
of large and complex software applications is not as sophisticated as it
should be. For Windows, as an example, application load times slow down
over time. A combination of increasing Internet clutter and spyware can
degrade execution speed to a small fraction of optimum values.

While some utility applications can restore a measure of original
performance, the fact remains that performance optimization is a tech-
nology that needs to be improved. Microsoft is not alone with sluggish
performance. A frequent complaint against various Symantec tools such
as the Norton AntiVirus package is that of extremely slow performance.
The author has personally observed a Norton AntiVirus scan that did
not complete after 24 hours, although the computer did not have the
latest chips.

Since performance analysis is not always a part of software engineer-
ing or computer science curricula, many software engineers are not
qualified to deal with optimizing performance. Large companies such as
IBM employ performance specialists who are trained in such topics. For
companies that build large applications in the 100,000–function point
range, employment of specialists would be considered a best practice.

There are a number of performance tools and measurement devices
such as profilers that collect data on the fly. It is also possible to embed
performance measurement capabilities into software applications them-
selves, which is called instrumentation.

Since instrumentation and other forms of performance analysis may
slow down application speed, care is needed to ensure that the data is
correct. Several terms derived from physics and physicists have moved
into the performance domain. For example, a heisenbug is named after

Overview of 50 Software Best Practices 135

Heisenberg’s uncertainty principle. It is a bug that disappears when
an attempt is made to study it. Another physics-based term is bohrbug
named after Nils Bohr. A bohrbug occurs when a well-defined set of
conditions occur, and does not disappear. A third term from physics
is that of mandelbug named after Benoit Mandelbrot, who developed
chaos theory. This form of bug is caused by such random and chaotic
factors that isolation is difficult. A fourth and very unusual form of bug
is a schrodenbug named after Ernst Schrodinger. This form of bug does
not occur until someone notices that the code should not have worked
at all, and as soon as the bug is discovered, the software stops working
(reportedly).

Performance issues also occur based on business cycles. For example,
many financial and accounting packages tend to slow down at the end
of a quarter or the end of a fiscal year when usage increases dramati-
cally.

One topic that is not covered well in the performance literature is the
fact that software performance drops to zero when a high-severity bug is
encountered that stops it from running. Such problems can be measured
using mean-time-to-failure. These problems tend to be common in the
first month or two after a release, but decline over time as the software
stabilizes. Other stoppages can occur due to denial of service attacks,
which are becoming increasingly common.

This last point brings up the fact that performance best practices
overlap best practices in quality control and security control. A general
set of best practices includes usage of performance specialists, excel-
lence in quality control, and excellence in security control.

As with security, it would be possible to build an artificial intelligence
or neural net performance optimization tool that could find performance
problems better than testing or perhaps better than human perfor-
mance experts. A similar tool applied to architecture and design could
provide performance optimization rules and algorithms prior to code
development.

In general, AI and neural net approaches for dealing with complex
problems such as security flaws and performance issues have much
to recommend them. These topics overlap autonomous computing, or
applications that tend to monitor and improve their own performance
and quality.

40. Best Practices for International
Software Standards

Because software is not a recognized engineering field with certification
and licensing, usage of international standards has been inconsistent.
Further, when international standards are used, not very much empirical

136 Chapter Two

data is available that demonstrates whether they were helpful, neutral,
or harmful for the applications being developed. Some of the international
standards that apply to software are established by the International
Organization for Standards commonly known as the ISO. Examples of
standards that affect software applications include

■ ISO/IEC 10181 Security Frameworks

■ ISO 17799 Security

■ Sarbanes-Oxley Act

■ ISO/IEC 25030 Software Product Quality Requirements

■ ISO/IEC 9126-1 Software Engineering Product Quality

■ IEEE 730-1998 Software Quality Assurance Plans

■ IEEE 1061-1992 Software Metrics

■ ISO 9000-9003 Quality Management

■ ISO 9001:2000 Quality Management System

There are also international standards for functional sizing. As of
2008, data on the effectiveness of international standards in actually
generating improvements is sparse.

Military and defense applications also follow military standards
rather than ISO standards. Many other standards will be dealt with
later in this book.

41. Best Practices for Protecting Intellectual
Property in Software

The obvious first step and also a best practice for protecting intellectual
property in software is to seek legal advice from a patent or intellec-
tual property law firm. Only an intellectual property lawyer can pro-
vide proper guidance through the pros and cons of copyrights, patents,
trademarks, service marks, trade secrets, nondisclosure agreements,
noncompetition agreements, and other forms of protection. The author
is of course not an attorney, and nothing in this section or this book
should be viewed as legal advice.

Over and above legal advice, technical subjects also need to be consid-
ered, such as encryption of sensitive information, computer firewalls and
hacking protection, physical security of offices, and for classified mili-
tary software, perhaps even isolation of computers and using protective
screens that stop microwaves. Microwaves can be used to collect and
analyze what computers are doing and also to extract confidential data.

Many software applications contain proprietary information and
algorithms. Some defense and weapons software may contain classified

Overview of 50 Software Best Practices 137

information as well. Patent violation lawsuits and theft of intellectual
property lawsuits are increasing in number, and this trend will prob-
ably continue. Overt theft of software and data by hackers or bribery of
personnel are also occurring more often than in the past.

Commercial software vendors are also concerned about piracy and
the creation of unauthorized copies of software. The solutions to this
problem include registration, activation, and in some cases actually
monitoring the software running on client computers, presumably with
client permission. However, these solutions have been only partially
successful, and unlawful copying of commercial software is extremely
common in many developing countries and even in the industrialized
nations.

One obvious solution is to utilize encryption of all key specifications
and code segments. However, this method raises logistical issues for the
development team, since unencrypted information is needed for human
understanding.

A possible future solution may be associated with cloud computing,
where applications reside on network servers rather than on individual
computers. Although such a method might protect the software itself,
it is not trouble free and may be subject to hacking, interception from
wireless networks, and perhaps even denial of service attacks.

Since protection of intellectual property requires expert legal advice
and also specialized advice from experts in physical security and online
security, only a few general suggestions are given here.

Be careful with physical security of office spaces, notebook comput-
ers, home computers that may contain proprietary information, and
of course e-mail communications. Theft of computers, loss of notebook
computers while traveling, and even seizure of notebook computers
when visiting foreign countries might occur. Several companies prohibit
employees from bringing computers to various overseas locations.

In addition to physical security of computers, it may be necessary to
limit usage of thumb drives, DVDs, writable CD disks, and other remov-
able media. Some companies and government organizations prohibit
employees from carrying removable media in and out of offices.

If your company supports home offices or telecommuting, then your
proprietary information is probably at some risk. While most employees
are probably honest, there is no guarantee that their household mem-
bers might not attempt hacking just for enjoyment. Further, you may
not have any control over employee home wireless networks, some of
which may not have any security features activated.

For employees of companies with proprietary intellectual property,
some form of employment agreement and noncompetition agreement
would normally be required. This is sometimes a troublesome area,
and a few companies demand ownership of all employee inventions,

138 Chapter Two

whether or not they are job related. Such a Draconian agreement often
suppresses innovation.

Outsource agreements should also be considered as part of protecting
intellectual property. Obviously, outsource vendors need to sign confi-
dentiality agreements. These may be easier to enforce in the United
States than in some foreign locations, which is a factor that needs to be
considered also.

If the intellectual property is embedded in software, it may be prudent
to include special patterns of code that might identify the code if it is
pirated or stolen.

If the company downsizes or goes out of business, special legal advice
should be sought to deal with the implications of handling intellectual
property. For downsizing, obviously all departing employees will prob-
ably need to sign noncompete agreements. For going out of business,
intellectual property will probably be an asset under bankruptcy rules,
so it still needs to be protected.

While patents are a key method of protecting intellectual property,
they are hotly debated in the software industry. One side sees patents
as the main protective device for intellectual property; the other side
sees patents as merely devices to extract enormous fees. Also, there may
be some changes in patent laws that make software patents difficult to
acquire in the future. The topic of software patents is very complex, and
the full story is outside the scope of this book.

One curious new method of protecting algorithms and business rules
in software is derivative of the “Bible code” and is based on equidistant
letter spacing (ELS).

A statistical analysis of the book of Genesis found that letters that
were equally spaced sometimes spelled out words and even phrases. It
would be possible for software owners to use the same approach either
with comments or actual instructions and to embed a few codes using
the ELS method that identified the owner of the software. Equally
spaced letters that spelled out words or phrases such as “stop thief”
could be used as evidence of theft. Of course this might backfire if
thieves inserted their own ELS codes.

42. Best Practices for Protecting Against
Viruses, Spyware, and Hacking

As of 2009, the value of information is approaching the value of gold,
platinum, oil, and other expensive commodities. In fact, as the global
recession expands, the value of information is rising faster than the
value of natural products such as metals or oil. As the value of infor-
mation goes up, it is attracting more sophisticated kinds of thievery. In
the past, hacking and viruses were often individual efforts, sometimes

Overview of 50 Software Best Practices 139

carried out by students and even by high-school students at times just
for the thrill of accomplishing the act.

However, in today’s world, theft of valuable information has migrated
to organized crime, terrorist groups, and even to hostile foreign govern-
ments. Not only that, but denial of service attacks and “search bots” that
can take over computers are powerful and sophisticated enough to shut
down corporate data centers and interfere with government operations.
This situation is going to get worse as the global economy declines.

Since computers are used to store valuable information such as finan-
cial records, medical records, patents, trade secrets, classified military
information, customer lists, addresses and e-mail addresses, phone
numbers, and social security numbers, the total value of stored infor-
mation is in the range of trillions of dollars. There is no other commodity
in the modern world that is simultaneously so valuable and so easy to
steal as information stored in a computer.

Not only are there increasing threats against software and financial
data, but it also is technically within the realm of possibility to hack into
voting and election software as well. Any computer connected to the out-
side world by any means is at risk. Even computers that are physically
isolated may be at some risk due to their electromagnetic emissions.

Although many individual organizations such as Homeland Security,
the Department of Defense, the FBI, NSA (National Security Agency),
IBM, Microsoft, Google, Symantec, McAfee, Kaspersky, Computer
Associates, and scores of others have fairly competent security staffs
and also security tools, the entire topic needs to have a central coordi-
nating organization that would monitor security threats and distribute
data on best practices for preventing them. The fragmentation of the
software security world makes it difficult to organize defenses against
all known threats, and to monitor the horizon for future threats.

The FBI started a partnership organization with businesses called
InfraGuard that is intended to share data on software and computer
security issues. According to the InfraGuard web site, about 350 of
the Fortune 500 companies are members. This organization has local
branches affiliated with FBI field offices in most major cities such as
Boston, Chicago, San Francisco, and the like. However, smaller compa-
nies have not been as proactive as large corporations in dealing with
security matters. Membership in InfraGuard would be a good first step
and a best practice as well.

The Department of Homeland Security (DHS) also has a joint
government-business group for Software Assurance (SwA). This group
has published a Software Security State of the Art Report (SOAR) that
summarizes current best practices for prevention, defense, and recovery
from security flaws. Participation in this group and following the prin-
ciples discussed in the SOAR would be best practices, too.

140 Chapter Two

As this book is being written, Homeland Security is planning to con-
struct a major new security research facility that will probably serve
as a central coordination location for civilian government agencies and
will assist businesses as well.

A new government security report chaired by Representative James
Langevin of Rhode Island is also about to be published, and it deals with
all of the issues shown here as well as others, and in greater detail. It
will no doubt provide additional guidance beyond what is shown here.

Unfortunately, some of the security literature tends to deal with
threats that occur after development and deployment. The need to
address security as a fundamental principle of architecture, design,
and development is poorly covered. A book related to this one, by Ken
Hamer-Hodges, Authorization Oriented Architecture, will deal with
more fundamental subjects. Among the subjects is automating computer
security to move the problem from the user to the system itself. The
way to do this is through detailed boundary management. That is why
objects plus capabilities matter. Also, security frames such as Google
Caja, which prevents redirection to phishing sites, are best practices.
The new E programming language is also a best practice, since it is
designed to ensure optimum security.

The training of business analysts, systems analysts, and architects
in security topics has not kept pace with the changes in malware, and
this gap needs to be bridged quickly, because threats are becoming more
numerous and more serious.

It is useful to compare security infections with medical infections.
Some defenses against infections, such as firewalls, are like biohazard
suits, except the software biohazard suits tend to leak.

Other defenses, such as antivirus and antispyware applications, are
like antibiotics that stop some infections from spreading and also kill
some existing infections. However, as with medical antibiotics, some
infections are resistant and are not killed or stopped. Over time the
resistant infections tend to evolve more rapidly than the infections that
were killed, which explains why polymorphic software viruses are now
the virus of choice.

What might be the best long-term strategy for software would be to
change the DNA of software applications and to increase their natu-
ral immunity to infections via better architecture, better design, more
secure programming languages, and better boundary controls.

The way to solve security problems is to consider the very foundations
of the science and to build boundary control in physical terms based on
the Principle of Least Authority, where each and every subroutine call
is treated as an instance of a protected class of object. There should
be no Global items, no Global Name Space, no Global path names like
C:/directory/file or URL http://123.456.789/file. Every subroutine should

Overview of 50 Software Best Practices 141

be a protected call with boundary checking, and all program references
are dynamically bound from a local name at run time with access con-
trol check included at all times. Use secure languages and methods (for
example, E and Caja today). Some suggested general best practices from
the Hamer-Hodges draft include

■ Change passwords frequently (outdated by today’s technology).

■ Don’t click on e-mail links—type the URL in manually.

■ Disable the preview pane in all inboxes.

■ Read e-mail in plain text.

■ Don’t open e-mail attachments.

■ Don’t enable Java, JS, or particularly ActiveX.

■ Don’t display your e-mail address on your web site.

■ Don’t follow links without knowing what they link to.

■ Don’t let the computer save your passwords.

■ Don’t trust the “From” line in e-mail messages.

■ Upgrade to latest security levels, particularly for Internet Explorer.

■ Consider switching to Firefox or Chrome.

■ Never run a program unless it is trusted.

■ Read the User Agreement on downloads (they may sell your personal
data).

■ Expect e-mail to carry worms and viruses.

■ Just say no to pop-ups.

■ Say no if an application asks for additional or different authorities.

■ Say no if it asks to read or edit anything more than a Desktop
folder.

■ Say no if an application asks for edit authority on other stuff.

■ Say no if it asks for read authority on odd stuff, with a connection to
the Web.

■ During an application install, supply a new name, new icon, and a
new folder path.

■ Say no when anything asks for web access beyond a specific site.

■ Always say no unless you want to be hit sooner or later.

Internet security is so hazardous as of 2009 that one emerging best
practice is for sophisticated computer users to have two computers. One
of these would be used for web surfing and Internet access. The second

142 Chapter Two

computer would not be connected to the Internet and would accept only
trusted inputs on physical media that are of course checked for viruses
and spyware.

It is quite alarming that hackers are now organized and have jour-
nals, web sites, and classes available for teaching hacking skills. In fact,
a review of the literature indicates that there is more information avail-
able about how to hack than on how to defend against hacking. As of
2009, the hacking “industry” seems to be larger and more sophisticated
than the security industry, which is not surprising, given the increasing
value of information and the fundamental flaws in computer security
methods. There is no real census of either hackers or security experts,
but as of 2009, the hacking community may be growing at a faster rate
than the security community.

Standard best practices include use of firewalls, antivirus packages,
antispyware packages, and careful physical security. However, as the
race between hackers and security companies escalates, it is also nec-
essary to use constant vigilance. Virus definitions should be updated
daily, for example. More recent best practices include biological defenses
such as using fingerprints or retina patterns in order to gain access to
software and computers.

Two topics that have ambiguous results as of 2009 are those of iden-
tify theft insurance and certification of web sites by companies such
as VeriSign. As to identity theft insurance, the idea seems reasonable,
but what is needed is more active support than just reimbursement for
losses and expenses. What would perhaps be a best practice would be
a company or nonprofit that had direct connections to all credit card
companies, credit bureaus, and police departments and could offer rapid
response and assistance to consumers with stolen identities.

As to certification of web sites, an online search of that subject reveals
almost as many problems and mistakes as benefits. Here, too, the idea
may be valid, but the implementation is not yet perfect. Whenever prob-
lem reports begin to approach benefit reports in numbers, the topic is
not suitable for best practice status.

Some examples of the major threats in today’s cyberworld are dis-
cussed below in alphabetical order:

Adware Because computer usage is so common, computers have
become a primary medium for advertising. A number of software compa-
nies generate income by placing ads in their software that are displayed
when the software executes. In fact, for shareware and freeware, the
placing of ads may be the primary source of revenue. As an example,
the Eudora e-mail client application has a full-featured version that is
supported by advertising revenue. If adware were nothing but a pas-
sive display of information, it would be annoying but not hazardous.
However, adware can also collect information as well as display it.

Overview of 50 Software Best Practices 143

When this occurs, adware tends to cross a line and become spyware.
As of 2009, ordinary consumers have trouble distinguishing between
adware and spyware, so installation of antispyware tools is a best prac-
tice, even if not totally effective. In fact, sophisticated computer users
may install three or four different antispyware tools, because none are
100 percent effective by themselves.

Authentication, authorization, and access Computers and
software tend to have a hierarchy of methods for protection against
unauthorized use. Many features are not accessible to ordinary users,
but require some form of administrative access. Administrative access is
assigned when the computer or software is first installed. The adminis-
trator then grants other users various permissions and access rights. To
use the computer or software, users need to be authenticated or identi-
fied to the application with the consent of the administrator. Not only
human users but also software applications may need to be authenti-
cated and given access rights. While authenticating human users is not
trivial, it can be done without a great deal of ambiguity. For example,
retina prints or fingerprints provide an unambiguous identification of a
human user. However, authenticating and authorizing software seems
to be a weak link in the security chain. Access control lists (ACLs) are
the only available best practice, but just for static files, services, and
networks. ACL cannot distinguish identities, so a virus or Trojan has
the same authorization as the session owner! If some authorized soft-
ware contains worms, viruses, or other forms of malware, they may use
access rights to propagate. As of 2009, this problem is complex enough
that there seems to be no best practice for day-to-day authorization.
However, a special form of authorization called capability-based secu-
rity is at least in theory a best practice. Unfortunately, capability-based
security is complex and not widely utilized. Historically, the Plessey 250
computer implemented a hardware-based capability model in order to
prevent hacking and unauthorized changes of access lists circa 1975.
This approach dropped from use for many years, but has resurfaced by
means of Google’s Caja and the E programming language.

Back door Normally, to use software, some kind of login process
and password are needed. The term back door refers to methods for
gaining access to software while bypassing the normal entry points and
avoiding the use of passwords, user names, and other protocols. Error-
handling routines and buffer overruns are common backdoor entry
points. Some computer worms install back doors that might be used
to send spam or to perform harmful actions. One surprising aspect of
back doors is that occasionally they are deliberately put into software
by the programmers who developed the applications. This is why classi-
fied software and software that deals with financial data needs careful
inspection, static analysis, and of course background security checks

144 Chapter Two

of the software development team. Alarmingly, back doors can also be
inserted by compilers if the compiler developer put in such a function.
The backdoor situation is subtle and hard to defend against. Special
artificial intelligence routines in static analysis software may become a
best practice, but the problem remains complex and hard to deal with.
Currently, several best practice rules include (1) assume errors are signs
of an attack in process; (2) never let user-coded error recovery run at
elevated privileged levels; (3) never use global (path) addressing for
URL or networked files; and (4) local name space should be translated
only by a trusted device.

Botnets The term botnet refers to a collection of “software robots”
that act autonomously and attempt to seize control of hundreds or thou-
sand of computers on a network and turn them into “zombie computers.”
The bots are under control of a bot herder and can be used for a number
of harmful purposes such as denial of service attacks or sending spam.
In fact, this method has become so pervasive that bot herders actu-
ally sell their services to spammers! Botnets tend to be sophisticated
and hard to defend against. While firewalls and fingerprinting can be
helpful, they are not 100 percent successful. Constant vigilance and
top-gun security experts are a best practice. Some security companies
are now offering botnet protection using fairly sophisticated artificial
intelligence techniques. It is alarming that cybercriminals and cyberde-
fenders are apparently in a heated technology race. Lack of boundary
controls is what allow botnets to wander at will. Fundamental archi-
tectural changes, use of Caja, and secure languages such as E could
stop botnets.

Browser hijackers This annoying and hazardous security prob-
lem consists of software that overrides normal browser addresses and
redirects the browser to some other site. Browser hijackers were used
for marketing purposes, and sometimes to redirect to porn sites or
other unsavory locations. A recent form of browser hijacking is termed
rogue security sites. A pop-up ad will display a message such as “YOUR
COMPUTER IS INFECTED” and direct the user to some kind of secu-
rity site that wants money. Of course, it might also be a phishing site.
Modern antispyware tools are now able to block and remove browser
hijackers in most cases. They are a best practice for this problem, but
they must be updated frequently with new definitions. Some browsers
such as Google Chrome and Firefox maintain lists of rogue web sites and
caution users about them. This keeping of lists is a best practice.

Cookies These are small pieces of data that are downloaded from
web sites onto user computers. Once downloaded, they then go back and
forth between the user and the vendor. Cookies are not software but
rather passive data, although they do contain information about the
user. Benign uses of cookies are concerned with online shopping and with

Overview of 50 Software Best Practices 145

setting up user preferences on web sites such as Amazon. Harmful uses
of cookies include capturing user information for unknown or perhaps
harmful purposes. For several years, both the CIA and NSA downloaded
cookies into any computer that accessed their web sites for any reason,
which might have allowed the creation of large lists of people who did
nothing more than access web sites. Also, cookies can be hijacked or
changed by a hacker. Unauthorized change of a cookie is called cookie
poisoning. It could be used, for example, to change the amount of pur-
chase at an online store. Cookies can be enabled or disabled on web
browsers. Because cookies can be either beneficial or harmful, there is
no general best practice for dealing with them. The author’s personal
practice is to disable cookies unless a specific web site requires cookies
for a business purpose originated by the author.

Cyberextortion Once valuable information such as bank records,
medical records, or trade secrets are stolen, what next? One alarming
new form of crime is cyberextortion, or selling the valuable data back
to the original owner under threat of publishing it or selling it to com-
petitors. This new crime is primarily aimed at companies rather than
individuals. The more valuable the company’s data, the more tempt-
ing it is as a target. Best practices in this area involve using topnotch
security personnel, constant vigilance, firewalls and the usual gamut of
security software packages, and alerting authorities such as the FBI or
the cybercrime units of large police forces if extortion is attempted.

Cyberstalking The emergence of social networks such as YouTube,
MySpace, and Facebook has allowed millions of individuals to commu-
nicate who never (or seldom) meet each other face to face. These same
networks have also created new kinds of threats for individuals such as
cyberbullying and cyberstalking. Using search engines and the Internet,
it is fairly easy to accumulate personal information. It is even easier to
plant rumors, make false accusations, and damage the reputations of
individuals by broadcasting such information on the Web or by using
social networks. Because cyberstalking can be done anonymously, it
is hard to trace, although some cyberstalkers have been arrested and
charged. As this problem becomes more widespread, states are passing
new laws against it, as is the federal government. Defenses against
cyberstalking include contacting police or other authorities, plus con-
tacting the stalker’s Internet service provider if it is known. While it
might be possible to slow down or prevent this crime by using anony-
mous avatars for all social networks, that more or less defeats the pur-
pose of social networking.

Denial of service This form of cybercrime attempts to stop specific
computers, networks, or servers from carrying out normal operations
by saturating them with phony messages or data. This is a sophisti-
cated form of attack that requires considerable skill and effort to set

146 Chapter Two

up, and of course considerable skill and effort to prevent or stop. Denial
of service (DoS) attacks seemed to start about 2001 with an attack
against America Online (AOL) that took about a week to stop. Since
then numerous forms of DoS attacks have been developed. A precursor
to a denial of service attack may include sending out worms or search
robots to infiltrate scores of computers and turn them into zombies,
which will then unknowingly participate in the attack. This is a complex
problem, and the best practice for dealing with it is to have topnotch
security experts available and to maintain constant vigilance.

Electromagnetic pulse (EMP) A byproduct of nuclear explo-
sions is a pulse of electromagnetic radiation that is strong enough to
damage transistors and other electrical devices. Indeed, such a pulse
could shut down almost all electrical devices within perhaps 15 miles.
The damage may be so severe that repair of many devices—that is,
computers, audio equipment, cell phones, and so on—would be impos-
sible. The electromagnetic pulse effect has led to research in e-bombs, or
high-altitude bombs that explode perhaps 50 miles up and shut down
electrical power and damage equipment for hundreds of square miles,
but do not kill people or destroy buildings. Not only nuclear explosions
but other forms of detonation can trigger such pulses. While it is possible
to shield electronic devices using Faraday cages or surrounding them in
metallic layers, this is unfeasible for most civilians. The major military
countries such as the United States and Russia have been carrying out
active research in e-bombs and probably have them already available.
It is also possible that other countries such as North Korea may have
such devices. The presence of e-bombs is a considerable threat to the
economies of every country, and no doubt the wealthier terrorist orga-
nizations would like to gain access to such devices. There are no best
practices to defend against this for ordinary citizens.

Electromagnetic radiation Ordinary consumers using home
computers probably don’t have to worry about loss of data due to elec-
tromagnetic radiation, but this is a serious issue for military and clas-
sified data centers. While operating, computers radiate various kinds
of electromagnetic energy, and some of these can be picked up remotely
and deciphered in order to collect information about both applications
and data. That information could be extracted from electromagnetic
radiation was first discovered in the 1960s. Capturing electromagnetic
radiation requires rather specialized equipment and also specialized
personnel and software that would be outside the range of day-to-day
hackers. Some civilian threats do exist, such as the possibility of cap-
turing electromagnetic radiation to crack “smart cards” when they are
being processed. Best practices include physical isolation of equipment
behind copper or steel enclosures, and of course constant vigilance and
topnotch security experts. Another best practice would be to install

Overview of 50 Software Best Practices 147

electromagnetic generators in data centers that would be more pow-
erful than computer signals and hence interfere with detection. This
approach is similar to jamming to shut down pirate radio stations.

Hacking The word “hack” is older than the computer era and has
meaning in many fields, such as golf. However, in this book, hacking
refers to deliberate attempts to penetrate a computer or software appli-
cation with the intent to modify how it operates. While some hacking is
harmful and malicious, some may be beneficial. Indeed, many security
companies and software producers employ hackers who attempt to pen-
etrate software and hardware to find vulnerabilities that can then be
fixed. While firewalls, antivirus, and antispyware programs are all good
practices, what is probably the best practice is to employ ethical hackers
to attempt penetration of key applications and computer systems.

Identity theft Stealing an individual’s identity in order to make
purchases, set up credit card accounts, or even to withdraw funds from
banks is one of the fastest-growing crimes in human history. A new use
of identity theft is to apply for medical benefits. In fact, identity theft of
physicians’ identities can even be used to bill Medicare and insurance
companies with fraudulent claims. Unfortunately, this crime is far too
easy to commit, since it requires only moderate computer skills plus
commonly available information such as social security numbers, birth
dates, parents’ names, and a few other topics. It is alarming that many
identity thefts are carried out by relatives and “friends” of the victims.
Also, identity information is being sold and traded by hackers. Almost
every computer user receives daily “phishing” e-mails that attempt to
trick them into providing their account numbers and other identifying
information. As the global economy declines into recession, identity theft
will accelerate. The author estimates that at least 15 percent of the
U.S. population is at risk. Best practices to avoid identity theft include
frequent credit checks, using antivirus and anti-spyware software, and
also physical security of credit cards, social security cards, and other
physical media.

Keystroke loggers This alarming technology represents one of
the most serious threats to home computer users since the industry
began. Both hardware and software keystroke logging methods exist,
but computer users are more likely to encounter software keystroke log-
ging. Interestingly, keystroke logging also has benign uses in studying
user performance. In today’s world, not only keystrokes but also mouse
movements and touch-screen movements need to be recorded for the
technology to work. The most malicious use of keystroke logging is to
intercept passwords and security codes so that bank accounts, medical
records, and other proprietary data can be stolen. Not only computers
are at risk, but also ATM machines. In fact, this technology could also be
used on voting machines; possibly with the effect of influencing elections.

148 Chapter Two

Antispyware programs are somewhat useful, as are other methods such
as one-time passwords. This is such a complex problem that the current
best practice is to do almost daily research on the issue and look for
emerging solutions.

Malware This is a hybrid term that combines one syllable from
“malicious” and one syllable from “software.” The term is a generic
descriptor for a variety of troublesome security problems including
viruses, spyware, Trojans, worms, and so on.

Phishing This phrase is derived from “fishing” and refers to attempts
to get computer users to reveal confidential information such as account
numbers by having them respond to bogus e-mails that appear to be
from banks or other legitimate businesses. A classic example of phishing
are e-mails that purport to be from a government executive in Nigeria
who is having trouble getting funds out of the country and wants to
deposit them in a U.S. account. The e-mails ask the readers to respond
by sending back their account information. This early attempt at phish-
ing was so obviously bogus that hardly anyone responded to it, but sur-
prisingly, a few people might have. Unfortunately, modern attempts at
phishing are much more sophisticated and are very difficult to detect.
The best practice is never to respond to requests for personal or account
information that you did not originate. However, newer forms are more
sophisticated and can intercept browsers when they attempt to go to
popular web sites such as eBay or PayPal. The browser can be redirected
to a phony web site that looks just like the real one. Not only do phony
web sites exist, but also phony telephone sites. However, as phishing
becomes more sophisticated, it is harder to detect. Fortunately credit
card companies, banks, and other institutions at risk have formed a
nonprofit Anti-Phishing Working Group. For software companies, affili-
ation with this group would be a best practice. For individuals, verifying
by phone and refusing to respond to e-mail requests for personal and
account data are best practices. Many browsers such as Firefox and
Internet Explorer have anti-phishing blacklists of known phishing sites
and warn users if they are routed to them. Boundary control, Caja, and
languages such as E are also effective against phishing.

Physical security Physical security of data centers, notebook com-
puters, thumb drives, and wireless transmission remains a best prac-
tice. Almost every week, articles appear in papers and journals about
loss or theft of confidential data when notebook computers are lost or
stolen. There are dozens of effective physical security systems, and all of
them should be considered. A modern form of physical security involves
using fingerprints or retina patterns as passwords for computers and
applications.

Piracy Piracy in several forms is a major problem in the modern
world. The piracy of actual ships has been a problem off the African

Overview of 50 Software Best Practices 149

coast. However, software piracy has also increased alarmingly. While
China and the Asia Pacific region are well known as sources of piracy,
the disputes between Iran and the USA have led Iran to allow unlimited
copying of software and intellectual property, which means that the
Middle East is also a hotbed of software piracy. In the United States and
other countries with strong intellectual property laws, Microsoft and
other large software vendors are active in bringing legal charges against
pirates. The nonprofit Business Software Alliance even offers rewards
for turning in pirates. However, unauthorized copies of software remain
a serious problem. For smaller software vendors, the usual precautions
include registration and activation of software before it can be utilized.
It is interesting that the open-source and freeware communities deal
with the problem in rather different ways. For example, open-source
softwares commonly use static analysis methods, which can find some
security flaws. Also having dozens of developers looking at the code
raises the odds that security flaws might be identified.

Rootkits In the Unix operating system, the term root user refers
to someone having authorization to modify the operating system or
the kernel. For Windows, having administrative rights is equivalent.
Rootkits are programs that infiltrate computers and seize control of the
operating system. Once that control is achieved, then the rootkit can
be used to launch denial of service attacks, steal information, reformat
disk drives, or perform many other kinds of mischief. In 2005, the Sony
Corporation deliberately issued a rootkit on music CDs in an attempt to
prevent music piracy via peer-to-peer and computer copying. However,
an unintended consequence of this rootkit was to open up backdoor
access to computers that could by used by hackers, spyware, and viruses.
Needless to say, once the Sony rootkit was revealed to the press, the
outcry was sufficient for Sony to withdraw the rootkit. Rootkits tend
to be subtle and not only slip past some antivirus software, but indeed
may attack the antivirus software itself. There seem to be no best prac-
tices as of 2009, although some security companies such as Kaspersky
and Norton have development methods for finding some rootkits and
protecting themselves as well.

Smart card hijacking A very recent threat that has only just
started to occur is that of remote-reading of various “smart cards” that
contain personal data. These include some new credit cards and also
new passports with embedded information. The government is urging
citizens to keep such cards in metal containers or at least metal foil,
since the data can be accessed from at least 10 feet away. Incidentally,
the “EZ Pass” devices that commuters use to go through tolls without
stopping are not secure either.

Spam Although the original meaning of spam referred to a meat
product, the cyberdefinition refers to unwanted ads, e-mails, or instant

150 Chapter Two

messages that contain advertising. Now that the Internet is the world’s
primary communication medium and reaches perhaps one-fifth of all
humans on the planet, using the Internet for ads and marketing is going
to continue. The volume of spam is alarming and is estimated at topping
85 percent of all e-mail traffic, which obviously slows down the Internet
and slows down many servers as well. Spam is hard to combat because
some of it comes from zombie computers that have been hijacked by
worms or viruses and then unknowingly used for transmitting spam.
Some localities have made spamming illegal, but it is easy for spam-
mers to outsource to some other locality where it is not illegal. Related
to spamming is a new subindustry called e-mail address harvesting.
E-mail addresses can be found by search robots, and once found and cre-
ated, the lists are sold as commercial products. Another form of address
harvesting is from the fine print of the service agreements of social
networks, which state that a user’s e-mail address may not be kept pri-
vate (and will probably be sold as a profit-making undertaking). A best
practice against spam is to use spyware and spam blockers, but these
are not 100 percent effective. Some spam networks can be de-peered,
or cut off from other networks, but this is technically challenging and
may lead to litigation.

Spear phishing The term spear phishing refers to a new and very
sophisticated form of phishing where a great deal of personal informa-
tion is included in the phishing e-mail to deceive possible victims. The
main difference between phishing and spear phishing is the inclusion
of personal information. For example, an e-mail that identifies itself
as coming from a friend or colleague is more likely to be trusted than
one coming from a random source. Thus, spear phishing is a great
deal harder to defend against. Often hackers break into corporate
computers and then send spear phishing e-mails to all employees,
with disinformation indicating that the e-mail is from accounting,
human factors, or some other legitimate organization. In fact, the real
name of the manager might also be included. The only best practice
for spear phishing is to avoid sending personal or financial informa-
tion in response to any e-mail. If the e-mail seems legitimate, check
by phone before responding. However, spear phishing is not just a
computer scam, but also includes phony telephone messages and text
messages as well.

Spyware Software that installs itself on a host computer and takes
partial control of the operating system and web browser is termed
spyware. The purpose of spyware is to display unwanted ads, redirect
browsers to specific sites, and also to extract personal information that
might be used for purposes such as identity theft. Prior to version 7
of Microsoft Internet Explorer, almost any ActiveX program could be
downloaded and start executing. This was soon discovered by hackers as

Overview of 50 Software Best Practices 151

a way to put ads and browser hijackers on computers. Because spyware
often embedded itself in the registry, it was difficult to remove. In today’s
world circa 2009, a combination of firewalls and modern antispyware
software can keep most spyware from penetrating computers, and can
eliminate most spyware as well. However, in the heated technology race
between hackers and protectors, sometimes the hackers pull ahead.
Although Macintosh computers have less spyware directed their way
than computers running Microsoft Windows do, no computers or operat-
ing systems in the modern world are immune to spyware.

Trojans This term is of course derived from the famous Trojan
horse. In a software context, a Trojan is something that seems to be
useful so that users are deceived into installing it via download or by
disk. Once it’s installed, some kind of malicious software then begins to
take control of the computer or access personal data. One classic form of
distributing Trojans involves screensavers. Some beautiful view such as
a waterfall or a lagoon is offered as a free download. However, malicious
software routines that can cause harm are hidden in the screensaver.
Trojans are often involved in denial of service attacks, in identity theft,
in keystroke logging, and in many other harmful actions. Modern antivi-
rus software is usually effective against Trojans, so installing, running,
and updating such software is a best practice.

Viruses Computer viruses originated in the 1970s and started to
become troublesome in the 1980s. As with disease viruses, computer
viruses attempt to penetrate a host, reproduce themselves in large
numbers, and then leave the original host and enter new hosts. Merely
reproducing and spreading can slow networks and cause performance
slowdowns, but in addition, some viruses also have functions that delib-
erately damage computers, steal private information, or perform other
malicious acts. For example, viruses can steal address books and then
send infected e-mails to every friend and contact of the original host.
Macro viruses transmitted by documents created using Microsoft Word
or Microsoft Excel have been particularly common and particularly
troublesome. Viruses spread by instant messaging are also trouble-
some. Viruses are normally transmitted by attaching themselves to
a document, e-mail, or instant message. While antivirus software is
generally effective and a best practice, virus developers tend to be
active, energetic, and clever. Some newer viruses morph or change
themselves spontaneously to avoid antivirus software. These mutat-
ing viruses are called polymorphic viruses. Although viruses primarily
attack Microsoft Windows, all operating systems are at risk, includ-
ing Linux, Unix, Mac OS, Symbian, and all others. Best practices for
avoiding viruses are to install antivirus software and to keep the virus
definitions up to date. Taking frequent checkpoints and restore points
is also a best practice.

152 Chapter Two

Whaling This is a form of phishing that targets very high-level
executives such as company presidents, senior vice presidents, CEOs,
CIOs, board members, and so forth. Whaling tends to be very sophisti-
cated. An example might be an e-mail that purports to be from a well-
known law firm and that discusses possible litigation against the target
or his or her company. Other devices would include “who’s who” e-mail
requests, or requests from famous business journals. The only best prac-
tice is to avoid responding without checking out the situation by phone
or by some other method.

Wireless security leaks In the modern world, usage of wireless
computer networks is about as popular as cell phone usage. Many
homes have wireless networks as do public buildings. Indeed some
towns and cities offer wireless coverage throughout. As wireless com-
munication becomes a standard method for business-to-business and
person-to-person communication, it has attracted many hackers, iden-
tify thieves, and other forms of cybercriminals. Unprotected wireless
networks allow cybercriminals to access and control computers, redi-
rect browsers, and steal private information. Other less overt activities
are also harmful. For example, unprotected wireless networks can be
used to access porn sites or to send malicious e-mails to third parties
without the network owner being aware of it. Because many consum-
ers and computer users are not versed in computer and wireless net-
work issues, probably 75 percent of home computer networks are not
protected. Some hackers even drive through large cities looking for
unprotected networks (this is called war driving). In fact, there may
even be special signs and symbols chalked on sidewalks and buildings
to indicate unprotected networks. Many networks in coffee shops and
hotels are also unprotected. Best practices for avoiding wireless secu-
rity breaches include using the latest password and protection tools,
using encryption, and frequently changing passwords.

Worms Small software applications that reproduce themselves and
spread from computer to computer over networks are called worms.
Worms are similar to viruses, but tend to be self-propagating rather
than spreading by means of e-mails or documents. While a few worms
are benign (Microsoft once tried to install operating system patches
using worms), many are harmful. If worms are successful in reproduc-
ing and moving through a network, they use bandwidth and slow down
performance. Worse, some worms have payloads or subroutines that
perform harmful and malicious activities such as erasing files. Worms
can also be used to create zombie computers that might take part in
denial of service attacks. Best practices for avoiding worms include
installing the latest security updates from operating vendors such as
Microsoft, using antivirus software (with frequent definition updates),
and using firewalls.

Overview of 50 Software Best Practices 153

As can be seen from the variety of computer and software hazards in
the modern world, protection of computers and software from harmful
attacks requires constant vigilance. It also requires installation and
usage of several kinds of protective software. Finally, both physical secu-
rity and careless usage of computers by friends and relatives need to
be considered. Security problems will become more pervasive as the
global economy sinks into recession. Information is one commodity that
will increase in value no matter what is happening to the rest of the
economy. Moreover, both organized crime and major terrorist groups
are now active players in hacking, denial of service, and other forms of
cyberwarfare.

If you break down the economics of software security, the distribu-
tion of costs is far from optimal in 2009. From partial data, it looks
like about 60 percent of annual corporate security costs are spent on
defensive measures for data centers and installed software, about 35
percent is spent on recovering from attacks such as denial of service,
and only about 5 percent is spent on preventive measures. Assuming
an annual cost of $50 million for security per Fortune 500 company,
the breakdown might be $30 million on defense, $17.5 million for
recovery, and only $2.5 million on prevention during development of
applications.

With more effective prevention in the form of better architecture,
design, secure coding practices, boundary controls, and languages
such as E, a future cost distribution for security might be prevention,
60 percent; defense, 35 percent; and recovery, 5 percent. With better pre-
vention, the total security costs would be lower: perhaps $25 million per
year instead of $50 million per year. In this case the prevention costs would
be $15 million; defensive costs would be $8.75 million; and recovery costs
would be only $1.25 million. Table 2-9 shows the two cost profiles.

So long as software security depends largely upon human beings
acting wisely by updating virus definitions and installing antispyware,
it cannot be fully successful. What the software industry needs is to
design and develop much better preventive methods for building appli-
cations and operating systems, and then to fully automate defensive
approaches with little or no human intervention being needed.

2009 2019 Difference

Prevention $2,500,000 $15,000,000 $12,500,000

Defense $30,000,000 $8,750,000 –$21,250,000

Recovery $17,500,000 $1,250,000 –$16,250,000

TOTAL $50,000,000 $25,000,000 –$25,000,000

TABLE 2-9 Estimated Software Security Costs in 2009 and 2019 (Assumes Fortune
500 Company)

154 Chapter Two

43. Best Practices for Software Deployment
and Customization

Between development of software and the start of maintenance is a gray
area that is seldom covered by the software literature: deployment and
installation of software applications. Considering that the deployment
and installation of large software packages such as enterprise resource
planning (ERP) tools can take more than 12 calendar months, cost more
than $1 million, and involve more than 25 consultants and 30 in-house
personnel, deployment is a topic that needs much more research and
much better coverage in the literature.

For most of us who use personal computers or Macintosh computers,
installation and deployment are handled via the Web or from a CD or DVD.
While some software installations are troublesome (such as Symantec or
Microsoft Vista), many can be accomplished in a few minutes.

Unfortunately for large mainframe applications, they don’t just load
up and start working. Large applications such as ERP packages require
extensive customization in order to work with existing applications.

In addition, new releases are frequently buggy, so constant updates
and repairs are usually part of the installation process.

Also, large applications with hundreds or even thousands of users
need training for different types of users. While vendors may provide
some of the training, vendors don’t know the specific practices of their
clients. So it often happens that companies themselves have to put
together more than a dozen custom courses. Fortunately, there are tools
and software packages that can help in doing in-house training for large
applications.

Because of bugs and learning issues, it is unfeasible just to stop using
an old application and to start using a new commercial package. Usually,
side-by-side runs occur for several months, both to check for errors in
the new package and to get users up to speed as well.

To make a long (and expensive) story short, deployment of a major
new software package can run from six months to more than 12 months
and involve scores of consultants, educators, and in-house personnel
who need to learn the new software. Examples of best practices for
deployment include

■ Joining user associations for the new application, if any exist

■ Interviewing existing customers for deployment advice and counsel

■ Finding consultants with experience in deployment

■ Acquiring software to create custom courses

■ Acquiring training courses for the new application

■ Customizing the new application to meet local needs

Overview of 50 Software Best Practices 155

■ Developing interfaces between the new application and legacy
applications

■ Recording and reporting bugs or defects encountered during deploy-
ment

■ Installing patches and new releases from the vendor

■ Evaluating the success of the new application

Installation and deployment of large software packages are common,
but very poorly studied and poorly reported in the software literature.
Any activity that can take more than a calendar year, cost more than
$1 million, and involve more than 50 people in full-time work needs
careful analysis.

The costs and hazards of deployment appear to be directly related
to application size and type. For PC and Macintosh software, deploy-
ment is usually fairly straightforward and performed by the customers
themselves. However, some companies such as Symantec make it dif-
ficult by requiring the prior versions of their applications be removed,
but normal Windows removal of it leaves traces that can interfere with
the new installation.

Big applications such as mainframe operating systems, ERP pack-
ages, and custom software are very troublesome and expensive to deploy.
In addition, such applications often require extensive customization for
local conditions before they can be utilized. And, of course, this complex
situation also requires training users.

44. Best Practices for Training Clients
or Users of Software Applications

It is an interesting phenomenon of the software industry that commer-
cial vendors do such a mediocre job of providing training and tutorial
information that a major publishing subindustry has come into being
providing books on popular software packages such as Vista, Quicken,
Microsoft Office, and dozens of other popular applications. Also, training
companies offer interactive CD training for dozens of software packages.
As this book is written, the best practice for learning to use popular soft-
ware packages from major vendors is to use third-party sources rather
than the materials provided by the vendors themselves.

For more specialized mainframe applications such as those released
by Oracle and SAP, other companies also provide supplemental training
for both users and maintenance personnel, and usually do a better job
than the vendors themselves.

After 60 years of software, it might be thought that standard user-
training materials would have common characteristics, but they do not.

156 Chapter Two

What is needed is a sequence of learning material including but not
limited to:

■ Overview of features and functions

■ Installation and startup

■ Basic usage for common tasks

■ Usage for complex tasks

■ HELP information by topic

■ Troubleshooting in case of problems

■ Frequently asked questions (FAQ)

■ Operational information

■ Maintenance information

Some years ago, IBM performed a statistical analysis of user evaluations
for all software manuals provided to customers with IBM software. Then
the top-ranked manuals were distributed to all IBM technical writers with
a suggestion that they be used as guidelines for writing new manuals.

It would be possible to do a similar study today of third-party books
by performing a statistical analysis of the user reviews listed in the
Amazon catalog of technical books. Then the best books of various kinds
could serve as models for new books yet to be written.

Because hard-copy material is static and difficult to modify, tuto-
rial material will probably migrate to online copy plus, perhaps, books
formatted for e-book readers such as the Amazon Kindle, Sony PR-505,
and the like.

It is possible to envision even more sophisticated online training by
means of virtual environments, avatars, and 3-D simulations, although
these are far in the future as of 2009.

The bottom line is that tutorial materials provided by software ven-
dors are less than adequate for training clients. Fortunately, many com-
mercial book publishers and education companies have noted this and
are providing better alternatives, at least for software with high usage.

Over and above vendor and commercial books, user associations and
various web sites have volunteers who often can answer questions about
software applications. Future trends might include providing user infor-
mation via e-books such as the Amazon Kindle or Sony PR-505.

45. Best Practices for Customer Support
of Software Applications

Customer support of software applications is almost universally unsatis-
factory. A few companies such as Apple, Lenovo, and IBM have reasonably

Overview of 50 Software Best Practices 157

good reviews for customer support, but hundreds of others garner criticism
for long wait times and bad information.

Customer support is also labor-intensive and very costly. This is the
main reason why it is not very good. On average it takes about one
customer support person for every 10,000 function points in a software
application. It also takes one customer support person for about every
150 customers. However, as usage goes up, companies cannot afford
larger and larger customer support teams, so the ratio of support to
customers eventually tops 1000 to 1, which of course means long wait
times. Thus, large packages in the 100,000–function point range with
100,000 customers need either enormous support staff, or smaller staffs
that trigger very difficult access by customers.

Because of the high costs and labor intensity of customer support, it
is one of the most common activities outsourced to countries with low
labor costs such as India.

Surprisingly, small companies with only a few hundred customers
often have better customer support than large companies, due to the
fact that their support teams are not overwhelmed.

A short-range strategy for improving customer support is to improve
quality so that software is delivered with fewer bugs. However, not
many companies are sophisticated enough to even know how to do this.
A combination of inspections, static analysis, and testing can raise defect
removal efficiency levels up to perhaps 97 percent from today’s averages
of less than 85 percent. Releasing software with fewer bugs or defects
would yield a significant reduction in the volume of incoming requests
for customer support.

The author estimates that reducing delivered bugs by about 220 would
reduce customer support staffing by one person. This is based on the
assumption that customer support personnel answer about 30 calls per
day, and that each bug will be found by about 30 customers. In other
words, one bug can occupy one day for a customer support staff member,
and there are 220 working days per year.

A more comprehensive long-range strategy would involve many dif-
ferent approaches, including some that are novel and innovative:

■ Develop artificial-intelligence virtual support personnel who will
serve as the first tier of telephone support. Since live humans are
expensive and often poorly trained, virtual personnel could do a much
better job. Of course, these avatars would need to be fully stocked
with the latest information on bug reports, work-arounds, and major
issues.

■ Allow easy e-mail contacts between customers and support organi-
zations. For small companies or small applications, these could be
screened by live support personnel. For larger applications or those

158 Chapter Two

with millions of customers, some form of artificial-intelligence tool
would scan the e-mails and either offer solutions or route them to real
personnel for analysis.

■ Standardize HELP information and user’s guides so that all soft-
ware applications provide similar data to users. This would speed up
learning and allow users to change software packages with minimal
disruptions. Doing this would perhaps trigger the development of new
standards by the International Standards Organization (ISO), by the
IEEE, and by other standards bodies.

■ For reusable functions and features, such as those used in service-
oriented architecture, provide reusable HELP screens and tutorial
information as well as reusable source code. As software switches
from custom development to assembly from standard components,
the tutorial materials for those standard components must be part of
the package of reusable artifacts shared among many applications.

46. Best Practices for Software
Warranties and Recalls

Almost every commercial product comes with a warranty that offers repairs
or replacement for a period of time if the product should be defective: appli-
ances, automobiles, cameras, computers, optics, and so on. Software is a
major exception. Most “software warranties” explicitly disclaim fitness
for use, quality, or causing harm to consumers. Most software products
explicitly deny warranty protection either “express or implied.”

Some software vendors may offer periodic updates and bug repairs,
but if the software should fail to operate or should produce incorrect
results, the usual guarantee is merely to provide another copy, which
may have the same flaws. Usually, the software cannot be returned and
the vendor will not refund the purchase price, much less fix any damage
that the software might have caused such as corrupting files or leaving
unremoveable traces.

What passes for software warranties are part of end user license agree-
ments (EULA), which users are required to acknowledge or sign before
installing software applications. These EULA agreements are extremely
one-sided and designed primarily to protect the vendors.

The reason for this is the poor quality control of software applica-
tions, which has been a major weakness of the industry for more than
50 years.

As this book is being written, the federal government is attempting
to draft a Uniform Computer Information Transaction Act (UCITA) as
part of the Uniform Commercial Code. UCITA has proven to be very
controversial, and some claim it is even weaker in terms of consumer

Overview of 50 Software Best Practices 159

protection than current EULA practices, if that is possible. Because
state governments can make local changes, the UCITA may not even
be very uniform.

If software developers introduced the best practices of achieving
greater than 95 percent defect removal efficiency levels coupled with
building software from certified reusable components, then it would also
be possible to create the best practice fair warranties that benefit both
parties. Clauses within such warranties might include

■ Vendors would make a full refund of purchase price to any dissatisfied
customer within a fixed time period such as 30 days.

■ Software vendors would guarantee that the software would operate
in conformance to the information provided in user guides.

■ The vendors would offer free updates and bug repairs for at least a
12-month period after purchase.

■ Vendors would guarantee that software delivered on physical media
such as CD or DVD disks would be free of viruses and malware.

Over and above specific warranty provisions, other helpful topics
would include

■ Methods of reporting bugs or defects to the vendor would be included
in all user guides and also displayed in HELP screens.

■ Customer support would be promptly available by phone with less
than three minutes of wait time.

■ Responses to e-mail requests for help would occur within 24 business
hours of receipt (weekends might be excluded in some cases).

As of 2009, most EULA agreements and most software warranties are
professionally embarrassing.

47. Best Practices for Software Change
Management After Release

In theory, software change management after release of a software
application should be almost identical to change management before
the release; that is, specifications would be updated as needed, configu-
ration control would continue, and customer-reported bugs would be
added to the overall bug database.

In practice, postrelease change management is often less rigorous than
change management prior to the initial release. While configuration
control of code might continue, specifications are seldom kept current.
Also, small bug repairs and minor enhancements may occur that lack

160 Chapter Two

permanent documentation. As a result, after perhaps five years of usage,
the application no longer has a full and complete set of specifications.

Also, code changes may have occurred which triggered islands of
“dead code” that is no longer reached. Code comments may be out of
date. Complexity as measured using cyclomatic or essential complexity
will probably have gone up, so changes tend to become progressively
more difficult. This situation is common enough so that for updates,
many companies depend primarily on the tenure of long-term mainte-
nance employees, whose knowledge of the structure of aging legacy code
is vital for successful updates.

However, legacy software systems do have some powerful tools that
can help in bringing out new versions and even in developing replace-
ments. Because the source code does exist in most cases, it is possible
to apply automation to the source code and extract hidden business
rules and algorithms that can then be carried forward to replacement
applications or to renovated legacy applications. Examples of such tools
include but are not limited to:

■ Complexity analysis tools that can illustrate all paths and branches
through code

■ Static analysis tools that can find bugs in legacy code, in selected
languages

■ Static analysis tools that can identify error-prone modules for surgical
removal

■ Static analysis tools that can identify dead code for removal or isola-
tion

■ Data mining tools that can extract algorithms and business rules from
code

■ Code conversion tools that can convert legacy languages into Java or
modern languages

■ Function point enumeration tools that can calculate the sizes of legacy
applications

■ Renovation workbenches that can assist in handling changes to exist-
ing software

■ Automated testing tools that can create new test cases after examin-
ing code segments

■ Test coverage tools that can show gaps and omissions from current
test case libraries

In addition to automated tools, formal inspection of source code, test
libraries, and other artifacts of legacy applications can be helpful, too,
assuming the artifacts have been kept current.

Overview of 50 Software Best Practices 161

As the global economy continues to sink into a serious recession, keep-
ing legacy applications running for several more years may prove to
have significant economic value. However, normal maintenance and
enhancement of poorly structured legacy applications with marginal
quality is not cost-effective. What is needed is a thorough analysis of the
structure and features of legacy applications. Since manual methods are
likely to be ineffective and costly, automated tools such as static analysis
and data mining should prove to be valuable allies during the next few
years of the recession cycle.

48. Best Practices for Software Maintenance
and Enhancement

Software maintenance is more difficult and complex to analyze than
software development because the word “maintenance” includes so
many different kinds of activities. Also, estimating maintenance and
enhancement work requires evaluation not only of the changes them-
selves, but also detailed and complete analysis of the structure and code
of the legacy application that is being modified.

As of 2009, some 23 different forms of work are subsumed under the
single word “maintenance.”

Major Kinds of Work Performed Under the Generic Term
“Maintenance”

 1. Major enhancements (new features of greater than 50 function
points)

 2. Minor enhancements (new features of less than 5 function points)

 3. Maintenance (repairing defects for good will)

 4. Warranty repairs (repairing defects under formal contract)

 5. Customer support (responding to client phone calls or problem
reports)

 6. Error-prone module removal (eliminating very troublesome code
segments)

 7. Mandatory changes (required or statutory changes)

 8. Complexity or structural analysis (charting control flow plus com-
plexity metrics)

 9. Code restructuring (reducing cyclomatic and essential complexity)

10. Optimization (increasing performance or throughput)

11. Migration (moving software from one platform to another)

12. Conversion (changing the interface or file structure)

162 Chapter Two

13. Reverse engineering (extracting latent design information from
code)

14. Reengineering/renovation (transforming legacy application to
modern forms)

15. Dead code removal (removing segments no longer utilized)

16. Dormant application elimination (archiving unused software)

17. Nationalization (modifying software for international use)

18. Mass updates such as Euro or Year 2000 repairs

19. Refactoring, or reprogramming, applications to improve clarity

20. Retirement (withdrawing an application from active service)

21. Field service (sending maintenance members to client locations)

22. Reporting bugs or defects to software vendors

23. Installing updates received from software vendors

Although the 23 maintenance topics are different in many respects,
they all have one common feature that makes a group discussion pos-
sible: they all involve modifying an existing application rather than
starting from scratch with a new application.

Each of the 23 forms of modifying existing applications has a differ-
ent reason for being carried out. However, it often happens that several
of them take place concurrently. For example, enhancements and defect
repairs are very common in the same release of an evolving application.
There are also common sequences or patterns to these modification activi-
ties. For example, reverse engineering often precedes reengineering, and
the two occur so often together as to almost constitute a linked set. For
releases of large applications and major systems, the author has observed
from six to ten forms of maintenance all leading up to the same release!

In recent years the Information Technology Infrastructure Library
(ITIL) has begun to focus on many key issues that are associated with
maintenance, such as change management, reliability, availability, and
other topics that are significant for applications in daily use by many
customers.

Because aging software applications increase in complexity over time,
it is necessary to perform some form of renovation or refactoring from
time to time. As of 2009, the overall set of best practices for aging legacy
applications includes the following:

■ Use maintenance specialists rather than developers.

■ Consider maintenance outsourcing to specialized maintenance
companies.

■ Use maintenance renovation workbenches.

Overview of 50 Software Best Practices 163

■ Use formal change management procedures.

■ Use formal change management tools.

■ Use formal regression test libraries.

■ Perform automated complexity analysis studies of legacy applications.

■ Search out and eliminate all error-prone modules in legacy applica-
tions.

■ Identify all dead code in legacy applications.

■ Renovate or refactor applications prior to major enhancements.

■ Use formal design and code inspections on major updates.

■ Track all customer-reported defects.

■ Track response time from submission to repair of defects.

■ Track response time from submission to completion of change
requests.

■ Track all maintenance activities and costs.

■ Track warranty costs for commercial software.

■ Track availability of software to customers.

Because the effort and costs associated with maintenance and
enhancement of aging software are now the dominant expense of the
entire software industry, it is important to use state-of-the-art methods
and tools for dealing with legacy applications.

Improved quality before delivery can cut maintenance costs. Since
maintenance programmers typically fix about 10 bugs per calendar
month, every reduction in delivered defects of about 120 could reduce
maintenance staffing by one person. Therefore combinations of defect
prevention, inspections, static analysis, and better testing can reduce
maintenance costs. This is an important consideration in a world facing
a serious recession as we are in 2009.

Some of the newer approaches circa 2009 include maintenance or reno-
vation workbenches, such as the tools offered by Relativity Technologies.
This workbench also has a new feature that performs function point
analysis with high speed and good precision. Renovation prior to major
enhancements should be a routine activity.

Since many legacy applications contain error-prone modules that
are high in complexity and receive a disproportionate share of defect
reports, it is necessary to take corrective actions before proceeding with
significant changes. As a rule of thumb, less than 5 percent of the mod-
ules in large systems will receive more than 50 percent of defect reports.
It is usually impossible to fix such modules, so once they are identified,
surgical removal followed by replacement is the normal therapy.

164 Chapter Two

As of 2009, maintenance outsourcing has become one of the most popular
forms of software outsourcing. In general, maintenance outsource agree-
ments have been more successful than development outsource agreements
and seem to have fewer instances of failure and litigation. This is due in
part to the sophistication of the maintenance outsource companies and in
part to the fact that existing software is not prone to many of the forms of
catastrophic risk that are troublesome for large development projects.

Both maintenance and development share a need for using good
project management practices, effective estimating methods, and very
careful measurement of productivity and quality. While development
outsourcing ends up in litigation in about 5 percent of contracts, main-
tenance outsourcing seems to have fewer issues and to be less conten-
tious. As the economy moves into recession, maintenance outsourcing
may offer attractive economic advantages.

49. Best Practices for Updates and Releases
of Software Applications

Once software applications are installed and being used, three things
will happen: (1) bugs will be found that must be fixed; (2) new features
will be added in response to business needs and changes in laws and
regulations; and (3) software vendors will want to make money either
by bringing out new versions of software packages or by adding new
features for a fee. This part of software engineering is not well covered
by the literature. Many bad practices have sprung up that are harmful
to customers and users. Some of these bad practices include

■ Long wait times for customer support by telephone.

■ Telephone support that can’t be used by customers who have hearing
problems.

■ No customer support by e-mail, or very limited support (such as
Microsoft).

■ Incompetent customer support when finally reached.

■ Charging fees for customer support, even for reporting bugs.

■ Inadequate methods of reporting bugs to vendors (such as
Microsoft).

■ Poor response times to bugs that are reported.

■ Inadequate repairs of bugs that are reported.

■ Stopping support of older versions of software prematurely.

■ Forcing customers to buy new versions.

■ Changing file formats of new versions for arbitrary reasons.

Overview of 50 Software Best Practices 165

■ Refusing to allow customers to continue using old versions.

■ Warranties that cover only replacement of media such as disks.

■ One-sided agreements that favor only the vendor.

■ Quirky new releases that can’t be installed over old releases.

■ Quirky new releases that drop useful features of former releases.

■ Quirky new releases that don’t work well with competitive software.

These practices are so common that it is not easy to even find com-
panies that do customer support and new releases well, although there
are a few. Therefore the following best practices are more theoretical
than real as of 2009:

■ Ideally, known bugs and problems for applications should be displayed
on a software vendor’s web site.

■ Bug reports and requests for assistance should be easily handled by
e-mail. Once reported, responses should be returned within 48 hours.

■ Reaching customer support by telephone should not take more than
5 minutes.

■ When customer support is reached by phone, at least 60 percent of
problems should be resolved by the first tier of support personnel.

■ Reaching customer support for those with hearing impairments
should be possible.

■ Fee-based customer support should exclude bug reports and problems
caused by vendors.

■ Bug repairs should be self-installing when delivered to clients.

■ New versions and new features should not require manual uninstalls
of prior versions.

■ When file formats are changed, conversion to and from older formats
should be provided free of charge by vendors.

■ Support of applications with thousands of users should not be arbi-
trarily withdrawn.

■ Users should not be forced to buy new versions annually unless they
wish to gain access to the new features.

In general, mainframe vendors of expensive software packages
(greater than $100,000) are better at customer support than are the
low-end, high-volume vendors of personal computer and Macintosh
packages. However, poor customer support, inept customer support,
sluggish bug repairs, and forced migration to new products or releases of
questionable value remain endemic problems of the software industry.

166 Chapter Two

50. Best Practices for Terminating or
Withdrawing Legacy Applications

Large software applications tend to have surprisingly long life expectan-
cies. As of 2009, some large systems such as the U.S. air traffic control
system have been in continuous usage for more than 30 years. Many
large internal applications in major companies have been in use more
than 20 years.

Commercial applications tend to have shorter life expectancies than
information systems or systems software, since vendors bring out
new releases and stop supporting old releases after a period of years.
Microsoft, Intuit, and Symantec, for example, are notorious for with-
drawing support for past versions of software even if they still have
millions of users and are more stable than the newer versions.

Intuit, for example, deliberately stops support for old versions of
Quicken after a few years. Microsoft is about to stop support for Windows
XP even though Vista is still somewhat unstable and unpopular. Even
worse, Symantec, Intuit, and Microsoft tend to change file formats so
that records produced on new versions can’t be used on old versions.
Repeated customer outrage finally got the attention of Microsoft, so
that they usually provide some kind of conversion method. Intuit and
Symantec are not yet at that point.

Nonetheless at some point aging legacy applications will need replace-
ment. Sometimes the hardware on which they operate will need replace-
ment, too.

For small PC and Macintosh applications, replacement is a minor
inconvenience and a noticeable but not unbearable expense. However, for
massive mainframe software or heavy-duty systems software in the 10,000–
function point range, replacement can be troublesome and expensive.

If the software is custom-built and has unique features, replacement
will probably require development of a new application with all of the
original features, plus whatever new features appear to be useful. The
patient-record system of the Veterans Administration is an example of
an aging legacy system that has no viable commercial replacements.
An additional difficulty with retiring or replacing legacy systems is
that often the programming languages are “dead” and no longer have
working compilers or interpreters, to say nothing of having very few
programmers available.

Best practices for retiring aging systems (assuming they still are in
use) include the following:

■ Mine the application to extract business rules and algorithms needed
for a new version.

■ Survey all users to determine the importance of the application to
business operations.

Overview of 50 Software Best Practices 167

■ Do extensive searches for similar applications via the Web or with
consultants.

■ Attempt to stabilize the legacy application so that it stays useful as
the new one is being built.

■ Consider whether service-oriented architecture (SOA) may be suitable.

■ Look for certified sources of reusable material.

■ Consider the possibility of automated language conversion.

■ Utilize static analysis tools if the language(s) are suitable.

Make no mistake, unless an application has zero users, replacement
and withdrawal are likely to cause trouble.

Although outside the scope of this book, it is significant that the life
expectancies of all forms of storage are finite. Neither magnetic disks
nor solid-state devices are likely to remain in fully operational mode for
more than about 25 years.

Summary and Conclusions

The most obvious conclusions are six:
First, software is not a “one size fits all” occupation. Multiple practices

and methods are needed.
Second, poor measurement practices and a lack of solid quantified

data have made evaluating practices difficult. Fortunately, this situa-
tion is improving now that benchmark data is readily available.

Third, given the failure rates and number of cost and schedule over-
runs, normal development of software is not economically sustainable.
Switching from custom development to construction using certified
reusable components is needed to improve software economics.

Fourth, effective quality control is a necessary precursor that must
be accomplished before software reuse can be effective. Combinations
of defect prevention method, inspections, static analysis, testing, and
quality assurance are needed.

Fifth, as security threats against software increase in numbers and
severity, fundamental changes are needed in software architecture,
design, coding practices, and defensive methods.

Sixth, large software applications last for 25 years or more. Methods
and practices must support not only development, but also deployment
and many years of maintenance and enhancements.

Readings and References

Chapter 2 is an overview of many different topics. Rather than provide a
conventional reference list, it seems more useful to show some of the key

168 Chapter Two

books and articles available that deal with the major topics discussed
in the chapter.

Project Management, Planning, Estimating,
Risk, and Value Analysis

Boehm, Barry Dr. Software Engineering Economics. Englewood Cliffs, NJ: Prentice
Hall, 1981.

Booch Grady. Object Solutions: Managing the Object-Oriented Project. Reading, MA:
Addison Wesley, 1995.

Brooks, Fred. The Mythical Man-Month. Reading, MA: Addison Wesley, 1974, rev. 1995.
Charette, Bob. Software Engineering Risk Analysis and Management. New York:

McGraw-Hill, 1989.
Charette, Bob. Application Strategies for Risk Management. New York: McGraw-Hill,

1990.
Chrissies, Mary Beth; Konrad, Mike; Shrum, Sandy; CMMI®: Guidelines for Product

Integration and Process Improvement; Second Edition; Addison Wesley, Reading,
MA; 2006; 704 pages.

Cohn, Mike. Agile Estimating and Planning. Englewood Cliffs, NJ: Prentice Hall PTR,
2005.

DeMarco, Tom. Controlling Software Projects. New York: Yourdon Press, 1982.
Ewusi-Mensah, Kweku. Software Development Failures Cambridge, MA: MIT Press,

2003.
Galorath, Dan. Software Sizing, Estimating, and Risk Management: When Performance

Is Measured Performance Improves. Philadelphia: Auerbach Publishing, 2006.
Glass, R.L. Software Runaways: Lessons Learned from Massive Software Project

Failures. Englewood Cliffs, NJ: Prentice Hall, 1998.
Harris, Michael, David Herron, and Stasia Iwanicki. The Business Value of IT:

Managing Risks, Optimizing Performance, and Measuring Results. Boca Raton, FL:
CRC Press (Auerbach), 2008.

Humphrey, Watts. Managing the Software Process. Reading, MA: Addison Wesley, 1989.
Johnson, James, et al. The Chaos Report. West Yarmouth, MA: The Standish Group,

2000.
Jones, Capers. Assessment and Control of Software Risks.: Prentice Hall, 1994.
Jones, Capers. Estimating Software Costs. New York: McGraw-Hill, 2007.
Jones, Capers. “Estimating and Measuring Object-Oriented Software.” American

Programmer, 1994.
Jones, Capers. Patterns of Software System Failure and Success. Boston: International

Thomson Computer Press, December 1995.
Jones, Capers. Program Quality and Programmer Productivity. IBM Technical Report

TR 02.764. San Jose, CA: January 1977.
Jones, Capers. Programming Productivity. New York: McGraw-Hill, 1986.
Jones, Capers. “Why Flawed Software Projects are not Cancelled in Time.” Cutter IT

Journal, Vol. 10, No. 12 (December 2003): 12–17.
Jones, Capers. Software Assessments, Benchmarks, and Best Practices. Boston: Addison

Wesley Longman, 2000.
Jones, Capers. “Software Project Management Practices: Failure Versus Success.”

Crosstalk, Vol. 19, No. 6 (June 2006): 4–8.
Laird, Linda M. and Carol M. Brennan. Software Measurement and Estimation: A

Practical Approach. Hoboken, NJ: John Wiley & Sons, 2006.
McConnell, Steve. Software Estimating: Demystifying the Black Art. Redmond, WA:

Microsoft Press, 2006.
Park, Robert E., et al. Software Cost and Schedule Estimating - A Process Improvement

Initiative. Technical Report CMU/SEI 94-SR-03. Pittsburgh, PA: Software Engineering
Institute, May 1994.

Park, Robert E., et al. Checklists and Criteria for Evaluating the Costs and Schedule
Estimating Capabilities of Software Organizations Technical Report CMU/SEI

Overview of 50 Software Best Practices 169

95-SR-005. Pittsburgh, PA: Software Engineering Institute, Carnegie-Mellon Univ.,
January 1995.

Roetzheim, William H. and Reyna A. Beasley. Best Practices in Software Cost and
Schedule Estimation. Saddle River, NJ: Prentice Hall PTR, 1998.

Strassmann, Paul. Governance of Information Management: The Concept of an Information
Constitution, Second Edition. (eBook) Stamford, CT: Information Economics Press, 2004.

Strassmann, Paul. Information Productivity. Stamford, CT: Information Economics
Press, 1999.

Strassmann, Paul. Information Payoff. Stamford, CT: Information Economics Press, 1985.
Strassmann, Paul. The Squandered Computer. Stamford, CT: Information Economics

Press, 1997.
Stukes, Sherry, Jason Deshoretz, Henry Apgar, and Ilona Macias. Air Force Cost

Analysis Agency Software Estimating Model Analysis. TR-9545/008-2 Contract
F04701-95-D-0003, Task 008. Management Consulting & Research, Inc., Thousand
Oaks, CA 91362. September 30, 1996.

Symons, Charles R. Software Sizing and Estimating—Mk II FPA (Function Point
Analysis). Chichester, UK: John Wiley & Sons, 1991.

Wellman, Frank. Software Costing: An Objective Approach to Estimating and Controlling
the Cost of Computer Software. Englewood Cliffs, NJ: Prentice Hall, 1992.

Whitehead, Richard. Leading a Development Team. Boston: Addison Wesley, 2001.
Yourdon, Ed. Death March - The Complete Software Developer’s Guide to Surviving

“Mission Impossible” Projects. Upper Saddle River, NJ: Prentice Hall PTR, 1997.
Yourdon, Ed. Outsource: Competing in the Global Productivity Race. Upper Saddle

River, NJ: Prentice Hall PTR, 2005.

Measurements and Metrics

Abran, Alain and Reiner R. Dumke. Innovations in Software Measurement. Aachen,
Germany: Shaker-Verlag, 2005.

Abran, Alain, Manfred Bundschuh, Reiner Dumke, Christof Ebert, and Horst Zuse.
[“article title”?]Software Measurement News, Vol. 13, No. 2 (Oct. 2008). (periodical).

Bundschuh, Manfred and Carol Dekkers. The IT Measurement Compendium. Berlin:
Springer-Verlag, 2008.

Chidamber, S. R. and C. F. Kemerer. “A Metrics Suite for Object-Oriented Design,” IEEE
Trans. On Software Engineering, Vol. SE20, No. 6 (June 1994): 476–493.

Dumke, Reiner, Rene Braungarten, Günter Büren, Alain Abran, Juan J. Cuadrado-Gallego,
(editors). Software Process and Product Measurement. Berlin: Springer-Verlag, 2008.

Ebert, Christof and Reiner Dumke. Software Measurement: Establish, Extract,
Evaluate, Execute. Berlin: Springer-Verlag, 2007.

Garmus, David & David Herron. Measuring the Software Process: A Practical Guide to
Functional Measurement. Englewood Cliffs, NJ: Prentice Hall, 1995.

Garmus, David and David Herron. Function Point Analysis – Measurement Practices for
Successful Software Projects. Boston: Addison Wesley Longman, 2001.

International Function Point Users Group. IFPUG Counting Practices Manual, Release
4. Westerville, OH: April 1995.

International Function Point Users Group (IFPUG). IT Measurement – Practical Advice
from the Experts. Boston: Addison Wesley Longman, 2002.

Jones, Capers. Applied Software Measurement, Third Edition. New York: McGraw-Hill,
2008.

Jones, Capers. “Sizing Up Software.” Scientific American Magazine, Vol. 279, No. 6
(December 1998): 104–111.

Jones Capers. A Short History of the Lines of Code Metric, Version 4.0. (monograph)
Narragansett, RI: Capers Jones & Associates LLC, May 2008.

Kemerer, C. F. “Reliability of Function Point Measurement – A Field Experiment.”
Communications of the ACM, Vol. 36, 1993: 85–97.

Parthasarathy, M. A. Practical Software Estimation – Function Point Metrics for
Insourced and Outsourced Projects. Upper Saddle River, NJ: Infosys Press, Addison
Wesley, 2007.

170 Chapter Two

Putnam, Lawrence H. Measures for Excellence -- Reliable Software On Time, Within
Budget. Englewood Cliffs, NJ: Yourdon Press – Prentice Hall, 1992.

Putnam, Lawrence H. and Ware Myers. Industrial Strength Software – Effective
Management Using Measurement. Los Alamitos, CA: IEEE Press, 1997.

Stein, Timothy R. The Computer System Risk Management Book and Validation Life
Cycle. Chico, CA: Paton Press, 2006.

Stutzke, Richard D. Estimating Software-Intensive Systems. Upper Saddle River, NJ:
Addison Wesley, 2005.

Architecture, Requirements, and Design

Ambler, S. Process Patterns – Building Large-Scale Systems Using Object Technology.
Cambridge University Press, SIGS Books, 1998.

Artow, J. and I. Neustadt. UML and the Unified Process. Boston: Addison Wesley, 2000.
Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice. Boston:

Addison Wesley, 1997.
Berger, Arnold S. Embedded Systems Design: An Introduction to Processes, Tools, and

Techniques.: CMP Books, 2001.
Booch, Grady, Ivar Jacobsen, and James Rumbaugh. The Unified Modeling Language

User Guide, Second Edition. Boston: Addison Wesley, 2005.
Cohn, Mike. User Stories Applied: For Agile Software Development. Boston: Addison

Wesley, 2004.
Fernandini, Patricia L. A Requirements Pattern Succeeding in the Internet Economy.

Boston: Addison Wesley, 2002.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:

Elements of Reusable Object Oriented Design. Boston: Addison Wesley, 1995.
Inmon William H., John Zachman, and Jonathan G. Geiger. Data Stores, Data

Warehousing, and the Zachman Framework. New York: McGraw-Hill, 1997.
Marks, Eric and Michael Bell. Service-Oriented Architecture (SOA): A Planning and

Implementation Guide for Business and Technology. New York: John Wiley & Sons, 2006.
Martin, James & Carma McClure. Diagramming Techniques for Analysts and

Programmers. Englewood Cliffs, NJ: Prentice Hall, 1985.
Orr, Ken. Structured Requirements Definition. Topeka, KS: Ken Orr and Associates, Inc,

1981.
Robertson, Suzanne and James Robertson. Mastering the Requirements Process, Second

Edition. Boston: Addison Wesley, 2006.
Warnier, Jean-Dominique. Logical Construction of Systems. London: Van Nostrand

Reinhold.
Wiegers, Karl E. Software Requirements, Second Edition. Bellevue, WA: Microsoft Press,

2003.

Software Quality Control

Beck, Kent. Test-Driven Development. Boston: Addison Wesley, 2002.
Chelf, Ben and Raoul Jetley. “Diagnosing Medical Device Software Defects Using Static

Analysis.” Coverity Technical Report. San Francisco: 2008.
Chess, Brian and Jacob West. Secure Programming with Static Analysis. Boston:

Addison Wesley, 2007.
Cohen, Lou. Quality Function Deployment – How to Make QFD Work for You. Upper

Saddle River, NJ: Prentice Hall, 1995.
Crosby, Philip B. Quality is Free. New York: New American Library, Mentor Books, 1979.
Everett, Gerald D. and Raymond McLeod. Software Testing. Hoboken, NJ: John Wiley &

Sons, 2007.
Gack, Gary. Applying Six Sigma to Software Implementation Projects. http://software

.isixsigma.com/library/content/c040915b.asp.
Gilb, Tom and Dorothy Graham. Software Inspections. Reading, MA: Addison Wesley,

1993.

Overview of 50 Software Best Practices 171

Hallowell, David L. Six Sigma Software Metrics, Part 1. http://software.isixsigma.com/
library/content/03910a.asp.

International Organization for Standards. “ISO 9000 / ISO 14000.” http://www.iso.org/
iso/en/iso9000-14000/index.html.

Jones, Capers. Software Quality – Analysis and Guidelines for Success. Boston:
International Thomson Computer Press, 1997.

Kan, Stephen H. Metrics and Models in Software Quality Engineering, Second Edition.
Boston: Addison Wesley Longman, 2003.

Land, Susan K., Douglas B. Smith, John Z. Walz. Practical Support for Lean Six Sigma
Software Process Definition: Using IEEE Software Engineering Standards.: Wiley-
Blackwell, 2008.

Mosley, Daniel J. The Handbook of MIS Application Software Testing. Englewood Cliffs,
NJ: Yourdon Press, Prentice Hall, 1993.

Myers, Glenford. The Art of Software Testing. New York: John Wiley & Sons, 1979.
Nandyal Raghav. Making Sense of Software Quality Assurance. New Delhi: Tata

McGraw-Hill Publishing, 2007.
Radice, Ronald A. High Quality Low Cost Software Inspections. Andover, MA:

Paradoxicon Publishing, 2002.
Wiegers, Karl E. Peer Reviews in Software – A Practical Guide. Boston: Addison Wesley

Longman, 2002.

Software Security, Hacking,
and Malware Prevention

Acohido, Byron and John Swartz. Zero Day Threat: The Shocking Truth of How Banks
and Credit Bureaus Help Cyber Crooks Steal Your Money and Identity.: Union
Square Press, 2008.

Allen, Julia, Sean Barnum, Robert Ellison, Gary McGraw, and Nancy Mead. Software
Security: A Guide for Project Managers. (An SEI book sponsored by the Department
of Homeland Security) Boston: Addison Wesley Professional, 2008.

Anley, Chris, John Heasman, Felix Lindner, and Gerardo Richarte. The Shellcoders
Handbook: Discovering and Exploiting Security Holes. New York: Wiley, 2007.

Chess, Brian. Secure Programming with Static Analysis. Boston: Addison Wesley
Professional, 2007.

Dowd, Mark, John McDonald, and Justin Schuh. The Art of Software Security
Assessment: Identifying and Preventing Software Vulnerabilities. Boston: Addison
Wesley Professional, 2006.

Ericson, John. Hacking: The Art of Exploitation, Second Edition.: No Starch Press, 2008.
Gallager, Tom, Lawrence Landauer, and Brian Jeffries. Hunting Security Bugs.

Redmond, WA: Microsoft Press, 2006.
Hamer-Hodges, Ken. Authorization Oriented Architecture – Open Application

Networking and Security in the 21st Century. Philadelphia: Auerbach Publications,
to be published in December 2009.

Hogland, Greg and Gary McGraw. Exploiting Software: How to Break Code. Boston:
Addison Wesley Professional, 2004.

Hogland, Greg and Jamie Butler. Rootkits: Exploiting the Windows Kernal. Boston:
Addison Wesley Professional, 2005.

Howard, Michael and Steve Lippner. The Security Development Lifecycle. Redmond,
WA: Microsoft Press, 2006.

Howard, Michael and David LeBlanc. Writing Secure Code. Redmond, WA: Microsoft
Press, 2003.

Jones, Andy and Debi Ashenden. Risk Management for Computer Security: Protecting
Your Network and Information Assets.: Butterworth-Heinemann, 2005.

Landoll, Douglas J. The Security Risk Assessment Handbook: A Complete Guide for
Performing Security Risk Assessments. Boca Raton, FL: CRC Press (Auerbach), 2005.

McGraw, Gary. Software Security – Building Security In. Boston: Addison Wesley
Professional, 2006.

172 Chapter Two

Rice, David: Geekonomics: The Real Cost of Insecure Software. Boston: Addison Wesley
Professional, 2007.

Scambray, Joel. Hacking Exposed Windows: Microsoft Windows Security Secrets and
Solutions, Third Edition. New York: McGraw-Hill, 2007.

——— Hacking Exposed Web Applications, Second Edition. New York: McGraw-Hill, 2006.
Sherwood, John, Andrew Clark, and David Lynas. Enterprise Security Architecture: A

Business-Driven Approach.: CMP, 2005.
Shostack, Adam and Andrews Stewart. The New School of Information Security. Boston:

Addison Wesley Professional, 2008.
Skudis, Edward and Tom Liston. Counter Hack Reloaded: A Step-by-Step Guide to

Computer Attacks and Effective Defenses. Englewood Cliffs, NJ: Prentice Hall PTR, 2006.
Skudis, Edward and Lenny Zeltzer. Malware: Fighting Malicious Code. Englewood

Cliffs, NJ: Prentice Hall PTR, 2003.
Stuttard, Dafydd and Marcus Pinto. The Web Application Hackers Handbook:

Discovering and Exploiting Security Flaws., New York: Wiley, 2007.
Szor, Peter. The Art of Computer Virus Research and Defense. Boston: Addison Wesley

Professional, 2005.
Thompson, Herbert and Scott Chase. The Software Vulnerability Guide. Boston:

Charles River Media, 2005.
Viega, John and Gary McGraw. Building Secure Software: How to Avoid Security

Problems the Right Way. Boston: Addison Wesley Professional, 2001.
Whittaker, James A. and Herbert H. Thompson. How to Break Software Security.

Boston: Addison Wesley Professional, 2003.
Wysopal, Chris, Lucas Nelson, Dino Dai Zovi, and Elfriede Dustin. The Art of Software

Security Testing: Identifying Software Security Flaws. Boston: Addison Wesley
Professional, 2006.

Software Engineering and Programming

Barr, Michael and Anthony Massa. Programming Embedded Systems: With C and GNU
Development Tools.: O’Reilly Media, 2006.

Beck, K. Extreme Programming Explained: Embrace Change. Boston: Addison Wesley, 1999.
Bott, Frank, A. Coleman, J. Eaton, and D. Roland. Professional Issues in Software

Engineering.: Taylor & Francis, 2000.
Glass, Robert L. Facts and Fallacies of Software Engineering (Agile Software

Development). Boston: Addison Wesley, 2002.
Hans, Professor van Vliet. Software Engineering Principles and Practices, Third

Edition. London, New York: John Wiley & Sons, 2008.
Hunt, Andrew and David Thomas. The Pragmatic Programmer. Boston: Addison Wesley,

1999.
Jeffries, R., et al. Extreme Programming Installed. Boston: Addison Wesley, 2001.
Marciniak, John J. (Editor). Encyclopedia of Software Engineering (two volumes). New

York: John Wiley & Sons, 1994.
McConnell, Steve. Code Complete. Redmond, WA: Microsoft Press, 1993.
Morrison, J. Paul. Flow-Based Programming: A New Approach to Application

Development. New York: Van Nostrand Reinhold, 1994.
Pressman, Roger. Software Engineering – A Practitioner’s Approach, Sixth Edition. New

York: McGraw-Hill, 2005.
Sommerville, Ian. Software Engineering, Seventh Edition. Boston: Addison Wesley, 2004.
Stephens M. and D. Rosenberg. Extreme Programming Refactored: The Case Against

XP. Berkeley, CA: Apress L.P., 2003.

Software Development Methods

Boehm, Barry. “A Spiral Model of Software Development and Enhancement.”
Proceedings of the Int. Workshop on Software Process and Software Environments.
ACM Software Engineering Notes (Aug. 1986): 22–42.

Overview of 50 Software Best Practices 173

Cockburn, Alistair. Agile Software Development. Boston: Addison Wesley, 2001.
Cohen, D., M. Lindvall, and P. Costa. “An Introduction to agile methods.” Advances in

Computers, New York: Elsevier Science, 2004.
Highsmith, Jim. Agile Software Development Ecosystems. Boston: Addison Wesley,

2002.
Humphrey, Watts. TSP – Leading a Development Team. Boston: Addison Wesley, 2006.
Humphrey, Watts. PSP: A Self-Improvement Process for Software Engineers. Upper

Saddle River, NJ: Addison Wesley, 2005.
Krutchen, Phillippe. The Rational Unified Process – An Introduction. Boston: Addison

Wesley, 2003.
Larman, Craig and Victor Basili. “Iterative and Incremental Development – A Brief

History.” IEEE Computer Society (June 2003): 47–55.
Love, Tom. Object Lessons. New York: SIGS Books, 1993.
Martin, Robert. Agile Software Development: Principles, Patterns, and Practices. Upper

Saddle River, NJ: Prentice Hall, 2002.
Mills, H., M. Dyer, and R. Linger. “Cleanroom Software Engineering.” IEEE Software, 4,

5 (Sept. 1987): 19–25.
Paulk Mark, et al. The Capability Maturity Model Guidelines for Improving the

Software Process. Reading, MA: Addison Wesley, 1995.
Rapid Application Development. http://en.wikipedia.org/wiki/Rapid_

application_development.
Stapleton, J. DSDM – Dynamic System Development Method in Practice. Boston:

Addison Wesley, 1997.

Software Deployment, Customer
Support, and Maintenance

Arnold, Robert S. Software Reengineering. Los Alamitos, CA: IEEE Computer Society
Press, 1993.

Arthur, Lowell Jay. Software Evolution – The Software Maintenance Challenge. New
York: John Wiley & Sons, 1988.

Gallagher, R. S. Effective Customer Support. Boston: International Thomson Computer
Press, 1997.

Parikh, Girish. Handbook of Software Maintenance. New York: John Wiley & Sons,
1986.

Pigoski, Thomas M. Practical Software Maintenance – Best Practices for Managing Your
Software Investment. Los Alamitos, CA: IEEE Computer Society Press, 1997.

Sharon, David. Managing Systems in Transition – A Pragmatic View of Reengineering
Methods. Boston: International Thomson Computer Press, 1996.

Takang, Armstrong and Penny Grubh. Software Maintenance Concepts and Practice.
Boston: International Thomson Computer Press, 1997.

Ulrich, William M. Legacy Systems: Transformation Strategies. Upper Saddle River, NJ:
Prentice Hall, 2002.

Social Issues in Software Engineering

Brooks, Fred. The Mythical Manmonth, Second Edition. Boston: Addison Wesley, 1995.
DeMarco, Tom. Peopleware: Productive Projects and Teams. New York: Dorset House,

1999.
Glass, Robert L. Software Creativity, Second Edition. Atlanta, GA: developer.*books, 2006.
Humphrey, Watts. Winning with Software: An Executive Strategy. Boston: Addison

Wesley, 2002.
Johnson, James, et al. The Chaos Report. West Yarmouth, MA: The Standish Group,

2007.
Jones, Capers. “How Software Personnel Learn New Skills,” Sixth Edition (monograph).

Narragansett, RI: Capers Jones & Associates LLC, July 2008.

174 Chapter Two

Jones, Capers. “Conflict and Litigation Between Software Clients and Developers”
(monograph). Narragansett, RI: Software Productivity Research, Inc., 2008.

Jones, Capers. “Preventing Software Failure: Problems Noted in Breach of Contract
Litigation.” Narragansett, RI: Capers Jones & Associates LLC, 2008.

Krasner, Herb. “Accumulating the Body of Evidence for the Payoff of Software Process
Improvement – 1997” Austin, TX: Krasner Consulting.

Kuhn, Thomas. The Structure of Scientific Revolutions. University of Chicago Press,
1996.

Starr, Paul. The Social Transformation of American Medicine.: Basic Books Perseus
Group, 1982.

Weinberg, Gerald M. The Psychology of Computer Programming. New York: Van
Nostrand Reinhold, 1971.

Weinberg, Gerald M. Becoming a Technical Leader. New York: Dorset House, 1986.
Yourdon, Ed. Death March – The Complete Software Developer’s Guide to Surviving

“Mission Impossible” Projects. Upper Saddle River, NJ: Prentice Hall PTR, 1997.
Zoellick, Bill. CyberRegs – A Business Guide to Web Property, Privacy, and Patents.

Boston: Addison Wesley, 2002.

Web Sites

There are hundreds of software industry and professional associations.
Most have a narrow focus. Most are more or less isolated and have no
contact with similar associations. Exceptions to this rule include the
various software process improvement network (SPIN) groups and the
various software metrics associations.

This partial listing of software organizations and web sites is to facili-
tate communication and sharing of data across both organization and
national boundaries. Software is a global industry. Problems occur from
the first day of requirements to the last day of usage, and every day in
between. Therefore mutual cooperation across industry and technical
boundaries would benefit software and help it toward becoming a true
profession rather than a craft of marginal competence.

What might be useful for the software industry would be reciprocal
memberships among the major professional associations along the lines
of the American Medical Association. There is a need for an umbrella
organization that deals with all aspects of software as a profession, as
does the AMA for medical practice.

American Electronics Association (AEA) www.aeanet.org (may merge with ITAA)
American Society for Quality www.ASQ.org
Anti-Phishing Working Group www.antiphishing.org
Association for Software Testing www.associationforsoftwaretesting.org
Association of Computing Machinery www.ACM.org
Association of Competitive Technologies (ACT) www.actonline.org
Association of Information Technology Professionals www.aitp.org
Brazilian Function Point Users Group www.BFPUG.org
Business Application Software Developers Association www.basda.org
Business Software Alliance (BSA) www.bsa.org
Center for Internet Security www.cisecurity.org
Center for Hybrid and Embedded Software Systems (CHESS) http://chess.eecs

.berkeley.edu

Overview of 50 Software Best Practices 175

China Software Industry Association www.CSIA.org
Chinese Software Professional Association www.CSPA.com
Computing Technology Industry Association (CTIA) www.comptia.org
Embedded Software Association (ESA) www.esofta.com
European Design and Automation Association (EDAA) www.edaa.com
Finnish Software Measurement Association www.fisma.fi
IEEE Computer Society www.computer.org
Independent Computer Consultants Association (ICCA) www.icca.org
Information Technology Association of America (ITAA) www.itaa.org (may merge

with AEA)
Information Technology Metrics and Productivity Institute (ITMPI)

www.ITMPI.org
InfraGuard www.InfraGuard.net
Institute for International Research (IIR) eee.irusa.com
Institute of Electrical and Electronics Engineers (IEEE) www.IEEE.org
International Association of Software Architects www.IASAHOME.org
International Function Point Users Group (IFPUG) www.IFPUG.org
International Institute of Business Analysis www.IIBAorg
International Software Benchmarking Standards Group (ISBSG) www.ISBSG.org
Japan Function Point Users Group www.jfpug.org
Linux Professional Institute www.lpi.org
National Association of Software and Service Companies (India)

www.NASCOM.in
Netherlands Software Metrics Association www.NESMA.org
Process Fusion www.process-fusion.com
Programmers’ Guild www.programmersguild.org
Project Management Institute www.PMI.org
Russian Software Development Organization (RUSSOFT) www.russoft.org
Society of Information Management (SIM) www.simnet.org
Software and Information Industry Association www.siia.net
Software Engineering Body of Knowledge www.swebok.org
Software Engineering Institute (SEI) www.SEI.org
Software Productivity Research (SPR) www.SPR.com
Software Publishers Association (SPA) www.spa.org
United Kingdom Software Metrics Association www.UKSMA.org
U.S. Internet Industry Association (USIIA) www.usiia.org
Women in Technology International www.witi.com

This page intentionally left blank

177

Chapter

 3
A Preview of Software

Development and
Maintenance in 2049

Introduction

From the 1960s through 2009, software development has been essen-
tially a craft where complicated applications are designed as unique
artifacts and then constructed from source code on a line-by-line basis.
This method of custom development using custom code written line by
line can never be efficient, economical, or achieve consistent levels of
quality and security.

Composing and painting a portrait in oil paint and developing a soft-
ware application are very similar in their essential nature. Each of these
artifacts is unique, and each is produced using individual “brushstrokes”
that need to be perfectly placed and formed in order for the overall
results to be aesthetic and effective. Neither portraits nor software
applications are engineering disciplines.

Hopefully, by 2049, a true engineering discipline will emerge that will
allow software to evolve from a form of artistic expression to a solid engi-
neering discipline. This section presents a hypothetical analysis of the way
software applications might be designed and constructed circa 2049.

If software should become a true engineering discipline, then much
more than code development needs to be included. Architecture, require-
ments, design, code development, maintenance, customer support, train-
ing, documentation, metrics and measurements, project management,
security, quality, change control, benchmarks, and many other topics
need to be considered.

177

178 Chapter Three

The starting point in both 2009 and 2049 will of course be the require-
ments for the new application. In 2009 users are interviewed to develop
the requirements for new applications, but in 2049 a different method
may be available.

Let us assume that the application to be developed circa 2049 is a new
form of software planning and cost-estimating tool. The tool will provide
software cost estimates, schedule estimates, quality estimates, and staff-
ing estimates as do a number of existing tools. However, the tool will also
introduce a number of new features, such as:

 1. Early sizing prior to knowledge of full requirements

 2. Estimates of requirements changes during development

 3. Estimates of defect quantities in creeping requirements

 4. Integrated risk analysis

 5. Integrated value analysis

 6. Integrated security analysis

 7. Prediction of effects of any CMMI level on productivity and quality

 8. Prediction of effects of various quantities of reusable materials

 9. Prediction of effects of intelligent agents of software development

10. Prediction of effects of intelligent agents on software maintenance

11. Prediction of effects of intelligent agents on software documentation

12. Predication of effects of intelligent agents on software customer
support

13. Prediction of effects of intelligent agents on software failures

14. Automated conversion between function points, LOC, story points,
and so on

15. Estimates of learning curves on the part of users of the application

16. Estimates of mistakes made while users learn the application

17. Estimates of customer support and maintenance for 10+ years after
deployment

18. Estimates of application growth for 10+ years after initial deploy-
ment

19. Integrated capture of historical data during development and main-
tenance

20. Automated creation of benchmarks for productivity and quality

21. Expert advice on software quality control

22. Expert advice on software security control

A Preview of Software Development and Maintenance in 2049 179

23. Expert advice on software governance

24. Expert advice on intellectual property

25. Expert advice on relevant standards and regulations

The 19th and 20th new features of the estimating tool would
involve establishing an overall license with the International Software
Benchmarking Standards Group (ISBSG) so that customers would be
able to use the tool to gather and analyze benchmarks of similar applica-
tions while estimating new applications. Each client would have to pay
for this service, but it should be integrated into the tool itself. Thus, not
only would estimates be produced by the tool, but also benchmarks for
similar applications would be gathered and used to support the estimate
by providing historical data about similar applications.

The new estimating tool is intended to be used to collect historical
data and create benchmarks semiautomatically. These benchmarks
would utilize the ISBSG question set, with some additional questions
included for special topics such as security, defect removal efficiency, and
customer support not included in the ISBSG questions.

Because the tool will be used to both predict and store confidential and
perhaps classified information, security is a stringent requirement, and
a number of security features will be implemented, including encryption
of all stored information.

We can also assume that the company building the new estimating
tool has already produced at least one prior tool in the same business
area; in other words, existing products are available for analysis within
the company.

Requirements Analysis Circa 2049

The first step in gathering requirements circa 2049 will be to dispatch
an intelligent agent or avatar to extract all relevant information about
software estimating and planning tools from the Web. All technical
articles and marketing information will be gathered and analyzed for
similar tools such as Application Insight, Artemis Views, Checkpoint,
COCOMO and its clones, KnowledgePlan, Microsoft Project, Price-S,
SEER, SLIM, SPQR/20, SoftCost, and all other such tools.

The intelligent agent will also produce a consolidated list of all of the
functions currently available in all similar tools; that is, sizing methods,
currency conversion, inflation-rate adjustments, quality predictions,
total cost of ownership, and so on.

Hopefully, by 2049, software reuse will have reached a level of maturity
so that comprehensive catalogs of reusable artifacts will be available; cer-
tification for quality and security will be commonplace; and architecture

180 Chapter Three

and design will have reached the point where standard structural descrip-
tions for applications, attachment points, and other relevant issues will
be easily accessible.

The intelligent agent will also gather information from public records
about numbers of copies of such tools sold, revenues from the tools, user
associations for the tools, litigation against tool vendors, and other rel-
evant business topics.

If the tool is used to estimate financial software applications, the intel-
ligent agent will also scan the Web for all government regulations that
may be applicable such as Sarbanes-Oxley and other relevant rules. Due
to the financial crisis and recession, scores of new regulations are about to
surface, and only an intelligent agent and expert system can keep up.

For other forms of software, the intelligent agent might also scan the
Web for regulations, standards, and other topics that affect governance
and also government mandates—for example, software applications
that deal with medical devices, process medical records, or that need
legal privacy protection.

Once the universe of existing tools and feature sets has been analyzed,
the next step is to consider the new features that will add value over and
above what is already available in existing project planning and estimat-
ing tools. Here, requirements in 2049 will resemble those of 2009, in that
inputs from a number of stakeholders will be collected and analyzed.

Since the application to be developed is an expert-system, much of
the information about new features must come from experts in software
planning and estimating. Although the views of customers via surveys
or focus groups will be helpful, and the views of the marketing organiza-
tion of the company will be helpful, only experts are qualified to specify
the details of the more unique features.

That being said, as requirements for new features are being planned,
a parallel effort will take place to develop patent applications for some
or all of the unique features. Here too an intelligent agent will be dis-
patched to gather and analyze all existing patents that cover features
that might be similar to those planned for the new estimating tool.

Assuming that most of the new features truly are unique and not
present in any current estimating tool, somewhere between half a dozen
to perhaps 20 new patent applications will probably be prepared as
the requirements are assembled. This is an important step in building
applications that contain new intellectual content: violating a patent
can cause huge expenses and stop development cold. In particular, the
patents of companies such as Intellectual Ventures, whose main busi-
ness is patent licensing, need to be considered.

In addition to or perhaps in place of patents, there may also be trade
secrets, invention disclosures, copyrights, and other forms of protection
for confidential and proprietary information and algorithms.

A Preview of Software Development and Maintenance in 2049 181

For the tool discussed in this example, patent protection will be needed
for the early sizing feature, for the feature that predicts requirements
changes during development, and also for the feature that predicts
customer learning-curve costs. Other topics might also require patent
protection, but the three just cited are novel and unique and not found
in competitive tools. For example, no current estimating tools have any
algorithms that deal with the impacts of intelligent agents.

The requirements analysis phase will also examine the possible plat-
forms for the new estimating tool; that is, what operating systems will
host the tool, what hardware platforms, and so on. No doubt a tool of this
nature would be a good candidate for personal computers, but perhaps
a subset of the features might also be developed for hand-held devices.
In any case, a tool of this sort will probably run on multiple platforms
and therefore needs to be planned for Windows, Apple, Linux, Unix,
and so on.

Not only will the tool operate on multiple platforms, but also it is
obviously a tool that would be valuable in many countries. Here too
an intelligent agent would be dispatched to look for similar tools that
are available in countries such as China, Japan, Russia, South Korea,
Brazil, Mexico, and so on. This information will be part of market plan-
ning and also will be used to ascertain how many versions must be built
with information translated into other natural languages.

Using information gathered via intelligent agents on current market
size, another aspect of requirements analysis will be to predict the
market potentials of the new tool and its new features in terms of cus-
tomers, revenue, competitive advantages, and so forth. As with any other
company, the value of the new features will have to generate revenues
perhaps ten times greater than development and maintenance costs to
commit funds for the new product.

The outputs from the requirements phase would include the require-
ments for the new tool, summary data on all patents that are relative to
the application area, and a summary of the current market for estimat-
ing and project planning tools in every country where the tool is likely
to generate significant revenues. Summaries of relevant government
regulations would also be included. It is interesting that about 85 per-
cent of these outputs could be produced by intelligent agents and expert
systems with little human effort other than setting up search criteria.

Superficially, applications designed for service-oriented architecture
(SOA) also envision collections of standard reusable components. The
object-oriented (OO) paradigm has incorporated reusable objects for
more than 30 years. However, neither SOA nor the OO paradigm includes
formal mining of legacy applications for algorithms and business rules.
Neither uses intelligent agents for searching the Web. Neither SOA nor
OO envisions developing all-new features as reusable objects, although

182 Chapter Three

the OO paradigm comes close. Also, neither the quality control nor the
security practices of the SOA and OO methods are as rigorous as needed
for truly safe applications. For example, certification of the reused code
is spotty in both domains.

Design Circa 2049

Because many similar applications already exist, and because the com-
pany itself has built similar applications, design does not start with a
clean piece of paper or a clean screen. Instead design starts by a careful
analysis of the architecture and design of all similar applications.

One very important difference between design circa 2009 and design
circa 2049 will be the use of many standard reusable features from in-
house sources, commercial sources, or possibly from libraries of certified
reusable functions.

For example, since the application is a cost-estimating tool, no doubt
currency conversion, inflation rate adjustments, internal and accounting
rates of return, and many other features are available in reusable form
from either commercial vendors or in-house tools already developed.

Some of the printed output may use report generation tools such as
Crystal Reports or something similar. Some application data may be
stored in normal commercial databases such as Access, Bento, or similar
packages.

Since the company building the application already has similar appli-
cations, no doubt many features such as quality estimation, schedule
estimation, and basic cost estimation will be available. The caveat is
that reuse needs to be certified to almost zero-defect levels to be eco-
nomically successful.

Ideally, at least 85 percent of the features and design elements will
be available in reusable form, and only 15 percent will be truly new and
require custom design. For the new features, it is important to ensure
high levels of quality and security, so design inspections would be per-
formed on all new features that are to be added.

However, custom development for a single application is never cost-
effective. Therefore, a major difference in design circa 2049 from design
circa 2009 is that almost every new feature will be designed as a reus-
able artifact, rather than being designed as a unique artifact for a single
application.

Along with formal reuse as a design goal for all important features,
security, quality, and portability among platforms (Windows, Apple,
Unix, Linux, etc.) are fundamental aspects of design. Custom design
for a single application needs to be eliminated as a general practice,
and replaced by design for reuse that supports many applications and
many platforms.

A Preview of Software Development and Maintenance in 2049 183

For example, the new feature that permits early sizing without knowl-
edge of full requirements is obviously a feature that might be licensed to
other companies or used in many other applications. Therefore it needs
to be designed for multiple uses and multiple platforms. It would also
need patent protection.

It may be that the design environment circa 2049 will be quite differ-
ent from 2009. For example, since most applications are based on prior
applications, descriptions of previous features will be extracted from
the legacy applications. The extraction of design and algorithms from
legacy code can be done automatically via data mining of the source
code, assuming that past specifications have not been fully updated or
may even be missing.

Therefore in the future, software designers can concentrate more on
what is new and novel rather than dealing with common generic topics
from legacy applications. The design of the carryover features from
legacy applications will be generated by means of an expert system,
augmented by web searches for similar applications by using an intel-
ligent agent.

An expert-system design tool will be needed in order to mine informa-
tion from similar legacy applications. This tool will include the features
of static analysis, complexity analysis, security analysis, architecture
and design structural analysis, and also the capability of extracting
algorithms and business rules from legacy code.

Outputs from the tool will include structural design graphs, control
flow information, information on dead code, and also textual and math-
ematical descriptions of business rules and algorithms embedded in the
legacy code.

Even sample use cases and “user stories” could be constructed auto-
matically by an intelligent agent based on examining information avail-
able on the Web and from published literature. Data dictionaries of all
applications could also be constructed using expert systems with little
human involvement.

Because software is dynamic, it can be expected that animation and
simulation will also be part of design circa 2049. Perhaps a 3-D dynamic
model of the application might be created to deal with issues such as
performance, security vulnerabilities, and quality that are not easily
understood using static representations on paper.

The completed design would show both old and new features, and
would even include comparisons between the new application and com-
petitive applications, with most of this work being done automatically
through the aid of intelligent agents and the design engine. Manual
design and construction of new algorithms by human experts would
be primarily for the new features such as early sizing, requirements
growth, and customer learning curves.

184 Chapter Three

For software engineering to become a true engineering discipline, it
will be necessary to have effective methods for analyzing and identifying
optimal designs of software applications. Designing every application
as a unique custom product is not really engineering. An expert system
that can analyze the structure, features, performance, and usability of
existing applications is a fundamental part of moving software from a
craft to an engineering discipline.

Indeed, catalogs of hundreds of optimal designs augmented by cata-
logs of certified reusable components should be standard features of
software architecture and design circa 2049. To do this, a taxonomy of
application types and a taxonomy of features are needed. Also, standard
architectural structures are needed and may perhaps follow the method
of the Zachman architectural approach.

Software Development Circa 2049

Assuming that perhaps 85 percent of software application features will
be in the form of standard reusable components, software development
circa 2049 will be quite different from today’s line-by-line coding for
unique applications.

The first stage of software development circa 2049 is to accumulate all
existing reusable components and put them together into a working pro-
totype, with placeholders for the new features that will be added later.
This prototype can be used to evaluate basic issues such as usability,
performance, security, quality, and the like.

As new features are created and tested, they can be appended to the
initial working prototype. This approach is somewhat similar to Agile
development, except that most instances of Agile do not start by data
mining of legacy applications.

Some of the logistical portions of Agile development such as daily
progress meetings or Scrum sessions may also be of use.

However, because development is aimed at constructing reusable
objects rather than unique single-use objects, other techniques that
emphasize and measure quality will also be utilized. The Team Software
Process (TSP) and Personal Software Process (PSP) approaches, for
example, have demonstrated very high levels of quality control.

Due to very stringent security and quality requirements for the new
application, these reusable components must be certified to near zero-
defect levels. If such certification is not available, then the candidate
reusable components must be put through a very thorough examination
that will include automated static analysis, dynamic analysis, testing,
and perhaps inspections. In addition, the histories of all reusable compo-
nents will be collected and analyzed to evaluate any quality and security
flaws that might have been previously reported.

A Preview of Software Development and Maintenance in 2049 185

Because the new features for the application are not intended for a
single use, but are planned to become reusable components themselves,
it is obvious that they need to be developed very carefully. Of the avail-
able development methods for new development, the Team Software
Process (TSP) and the Personal Software Process (PSP) seem to have
the rigor needed for creating reusable artifacts. Some of the logistical
methods of Agile or other approaches may be utilized, but rigor and high
quality levels are the primary goals for successful reuse.

Because of the need for quality, automated static and dynamic analy-
sis, careful testing, and live inspections will also be needed. In particu-
lar, special kinds of inspections such as those concentrating on security
flaws and vulnerabilities will be needed.

Because of security issues, languages such as E that support secu-
rity might be used for development. However, some of the older reus-
able components will no doubt be in other languages such as C, Java,
C++, and so on, so language conversions may be required. However,
by 2049, hopefully, secure versions of all reusable components may be
available.

Software cost-estimating applications of the type discussed in this
example are usually about 2,500 function points in size circa 2009. Such
applications typically require about two and a half calendar years to
build and achieve productivity rates between 10 and 15 function points
per staff month.

Defect potentials for such applications average about 4.5 per function
point, while defect removal efficiency is only about 87 percent. As a
result, about 1,400 defects are still present when the software first goes
to users. Of these, about 20 percent, or 280, would be serious enough to
cause user problems.

By switching from custom design and custom code to construction
based on certified reusable components, it can be anticipated that pro-
ductivity rates will be in the range of 45 to 50 function points per staff
month. Schedules would be reduced by about one year, for a develop-
ment cycle of 1.5 calendar years instead of 2.5 calendar years.

Defect potentials would be only about 1.25 per function point, while
defect removal efficiency would be about 98 percent. As a result, only
about 60 latent defects would remain at delivery. Of these, only about
10 percent would be serious, so users might encounter as few as six
significant defects after release.

These improvements in quality will of course benefit customer sup-
port and maintenance as well as initial development.

Since the tool used as an example is designed to capture historical data
and create a superset of ISBSG benchmarks, obviously the development
of the tool itself will include productivity, schedule, staffing, and quality
benchmarks. In fact, it is envisioned that every major software application

186 Chapter Three

would include such benchmark data, and that it would routinely be added
to the ISBSG data collection. However, some applications’ benchmark data
may not be made publicly available due to competitive situations, classi-
fied military security, or for some other overriding factor.

It is interesting to speculate on what would be needed to develop
100 percent of a new application entirely from reusable materials. First,
an expert system would have to analyze the code and structure of a
significant number of existing legacy applications: perhaps 100 or more.
The idea of this analysis is to examine software structures and archi-
tecture from examination of code, and then to use pattern-matching to
assemble optimal design patterns.

Another criterion for 100 percent development would be to have
access to all major sources of reusable code, and, for that matter, access
to reusable test cases, reusable user documentation, reusable HELP
text, and other deliverables. Not all of these would come from a single
source, so a dynamic and constantly updated catalog would be needed
with links to the major sources of reusable materials.

Needless to say, interfaces among reusable components need to be
rigorously defined and standardized for large-scale reuse to be feasible
when components are available from multiple companies and are cre-
ated using multiple methods and languages.

Because quality and security are critical issues, selected code seg-
ments would either have to be certified to high standards of excellence,
or run through a very careful quality vetting process that included static
analysis, dynamic analysis, security analysis, and usability analysis.

Assuming all of these criteria were in place, the results would be
impressive. Productivity rates might top 100 function points per month
for an application of 2,500 function points, while development schedules
would probably be in the range of three to six calendar months.

Defect potentials would drop below one per function point, while defect
removal efficiency might hit 99 percent. At these levels, an application
of 2500 function points would contain about 25 defects still present at
delivery, of which perhaps 10 percent would be serious. Therefore, only
about three serious defects would be present at delivery.

It is unlikely that automatic development of sophisticated applica-
tions will occur even by 2049, but at least the technologies that would be
needed can be envisioned. It is even possible to envision a kind of robotic
assembly line for software where intelligent agents and expert systems
perform more than 90 percent of the tasks now performed by humans.

User Documentation Circa 2049

In 2009 both customer support and user documentation are weak links
for software applications, and usually range between “unacceptable”

A Preview of Software Development and Maintenance in 2049 187

and “marginal.” A few companies such as Apple, IBM, and Lenovo occa-
sionally reach levels of “good,” but not very often.

Since applications constructed from reusable components will have
HELP text and user information as part of the package, the first step
is to assemble all of the document sections for the reusable materials
that are planned for the new application. However, documentation for
specific functions lacks any kind of overall information for the entire
application with dozens or hundreds of features, so quite a lot of new
information must be created.

For user documentation and HELP text, the next step would be to
dispatch an intelligent agent or avatar to check the user reviews of all
customer manuals, third-party user guides, and HELP text as discussed
on the Web. Obviously, both praise and complaints about these topics are
plentiful in forums and discussion groups, but an intelligent agent will
be needed to gather and assemble a full picture. The reviews of third-
party books at web sites such as Amazon will also be analyzed.

Once the intelligent agent has finished collecting information, the
sample of books and text with the highest and most favorable reviews
from customers will be analyzed, using both automated tools such as
the FOG and Fleisch indexes, and also reviews by human writers and
authors.

The goal of this exercise is to find the structure and patterns of books
and user information that provides the best information based on evalu-
ations of similar applications by live customers. Once excellent docu-
ments have been identified, it might be a good idea to subcontract the
work of producing user information to the authors whose books have
received the best reviews for similar applications.

If these authors are not available, then at least their books can be
provided to the authors who are available and who will create the
user guides. The purpose is to establish a solid and successful pattern
to follow for all publications. Note that violation of copyrights is not
intended. It is the overall structure and sequence of information that
is important.

Some years ago IBM did this kind of analysis for their own users’
guides. Customer evaluation reports were analyzed, and all IBM techni-
cal writers received a box of books and guides that users had given the
highest evaluation scores.

Other kinds of tutorial material include instructional DVDs, webi-
nars, and perhaps live instruction for really large and complex applica-
tions such as ERP packages, operating systems, telephone switching
systems, weapon systems, and the like. Unless such material is on the
Web, it would be hard to analyze using intelligent agents. Therefore,
human insight will probably still play a major part in developing train-
ing materials.

188 Chapter Three

Since the application is intended to be marketed in a number of coun-
tries, documentation and training materials will have to be translated
into several national languages, using automated translation as the
starting point. Hopefully, in 2049, automated translation will result in
smoother and more idiomatic text than translations circa 2009. However,
a final edit by a human author may be needed.

Because tools such as this have global markets, it can be expected
that documentation routinely will be converted into Japanese, Russian,
German, French, Korean, Chinese, Spanish, Portuguese, and Arabic ver-
sions. In some cases, other languages such as Polish, Danish, Norwegian,
Swedish, or Lithuanian may also occur.

Customer Support in 2049

As to customer support, it currently is even worse than user informa-
tion. The main problems with customer support include, but are not
limited to:

1. Long wait times when attempting to reach customer support by
phone

2. Limited phone support for deaf or hard-of-hearing customers

3. Poorly trained first-line support personnel who can’t resolve many
questions

4. Limited hours for customer support; that is, working hours for one
time zone

5. Slow responses to e-mail queries for support

6. Charges for customer support even to report bugs in the vendor’s
software

7. Lack of analysis of frequently reported bugs or defects

8. Lack of analysis for “frequently asked questions” and responses

Some of these issues are due to software being routinely released
with so many serious bugs or defects that about 75 percent of customer
service calls for the first year of application usage are about bugs and
problems. When software is developed from certified reusable materials,
and when new development aims at near zero-defect quality levels, the
numbers of bug-related calls circa 2049 should be reduced by at least
65 percent compared with 2009 norms. This should help in terms of
response times for phone and e-mail customer queries.

The next issue is inadequate support for the deaf and hard-of-hear-
ing customers. This issue needs more substantial work on the part
of software vendors. Automatic translation of voice to text should be

A Preview of Software Development and Maintenance in 2049 189

available using technologies that resemble Dragon Naturally Speaking
or other voice translators, but hopefully will have improved in speed
and accuracy by 2049.

While TTY devices and telephone companies may offer assistance
for the deaf and hard of hearing, these approaches are inconvenient for
dealing with software trouble reports and customer service. Long wait
times before vendor support phones answer and the need to deal with
technical terms makes such support awkward at best.

Ideally, cell phones and landlines might have a special key combina-
tion that indicates usage by a deaf or hard-of-hearing person. When
this occurs, automatic translation of voice into screen text might be
provided by the vendors, or perhaps even made available by cell phone
manufacturers.

The main point is that there are millions of deaf and hard-of-hearing
computer users, and the poor quality of today’s software combined with
marginal user guides and HELP text makes access to software customer
support very difficult for deaf customers.

Other forms of physical disability such as blindness or loss of limbs
may also require special assistive tools.

Because some bugs and issues occur for hundreds or thousands of
customers, all bug reports need an effective taxonomy of symptoms so
they can be entered into a repository and analyzed by an expert system
for common causes and symptoms. These high-frequency problems need
to be conveyed to everyone in the customer-support organization. As the
bugs or problems are fixed or temporary solutions are developed, these
need to be provided to all support personnel in real time.

Some vendors charge for customer support calls. The main reason for
such charges is to cut down on the numbers of calls and thereby reduce
the need for customer support staff. Charging customers to report bugs
or for help in fixing bugs is a cynical and misguided policy. Companies
that do this usually have very unhappy customers who would gladly
migrate to other vendors. Better quality control is a more effective solu-
tion than charging for customer support.

All incoming problem reports that seem to be indicative of real bugs
in the software should trigger an immediate set of actions on the part
of the vendors:

1. The symptoms of the bug need to be analyzed using a standard tax-
onomy.

2. Analysis of the bug via static or dynamic analysis should be per-
formed at once.

3. The location of the bug in the application should be narrowed
down.

190 Chapter Three

4. The bug should be immediately routed to the responsible change
team.

5. Customers reporting the same bug should be alerted about its
status.

6. Repairs should be made available to customers as soon as possible.

7. If the bug is in reusable code from an external source, notification
should be made.

8. Severity levels and other topics should be included in monthly defect
reports.

Some large software companies such as IBM have fairly sophisticated
defect reporting tools that analyze bugs, catalog symptoms, route bugs to
the appropriate change team, and update defect and quality statistics.

Incidentally, since the example discussed here includes quality and
defect estimation capabilities, the tool should of course be used recur-
sively to estimate its own defect levels. That brings up the corollary
point that development methods such as TSP and PSP, static analysis,
and inspections that improve quality should also be used.

It is technically feasible to construct a customer-support expert system
that includes voice recognition; voice to text translation; and an arti-
ficial intelligence engine that could speak to customers, listen to their
problems, match the problems against other reports, provide status to
the customer, and for unique or special cases, transfer the customer to
a live human expert for additional consultation and support.

Indeed if expert analysis of reported defects and previous customer
calls were included in the mix, the AI engine could probably outperform
human customer support personnel.

Since this kind of an expert system does not depend upon human
specialists to answer the initial phone calls, it could lower the wait
time from less than 10 minutes, which is a typical value circa 2009, to
perhaps three rings of the phone, or less than 3 seconds.

A combination of high-quality reusable materials and support of
expert systems to analyze software defects could make significant
improvements in customer support.

Deployment and Customer Training in 2049

Applications such as the estimating tool used in this example are nor-
mally deployed in one (or more) of four different ways:

■ They are released on CD or DVD.

■ They are downloaded from the Web and installed by customers.

A Preview of Software Development and Maintenance in 2049 191

■ They can be run from the Web without installation (software as a
service).

■ They are installed by vendors or by vendor agents.

In 2009, the distribution among these four methods is shifting. The
relative proportions are CD installation about 60 percent, downloads
about 25 percent, vendor installs 10 percent, and web access about
5 percent.

If current trends continue, by 2049 the distribution might be web
access 40 percent, downloads 25 percent, CD installation 20 percent,
and vendor installation 15 percent. (Vendor installation usually is for
very large or specialized applications such as ERP packages, telephone
switching systems, robotic manufacturing, process control, medical
equipment, weapons systems, and the like. These require extensive
customization during the installation process.)

Although some applications are simple enough for customers to use
with only minimal training, a significant number of applications are
complicated and difficult to learn. Therefore, tutorial information and
training courses are necessary adjuncts for most large software pack-
ages. This training may be provided by the vendors, but a significant
third-party market exists of books and training materials created by
other companies such as book publishers and specialized education
groups.

Because of the high costs of live instruction, it can be anticipated
that most training circa 2049 will be done using prerecorded webinars,
DVDs, or other methods that allow training material to be used many
times and scheduled at the convenience of the customers.

However, it is also possible to envision expert systems and avatars
that operate in virtual environments. Such avatars might appear to be
live instructors and even answer questions from students and interact
with them, but in reality they would be AI constructs.

Because of the high cost of producing and distributing paper books
and manuals, by 2049 it can be expected that close to 100 percent of
instructional materials will be available either online, or in portable
forms such as e-book readers, and even cell phones and hand-held
devices. Paper versions could be produced on demand, but by 2049 the
need for paper versions should be much lower than in 2009.

Maintenance and Enhancement in 2049

Since the average life expectancies of software applications runs from 10 to
more than 30 years, a development process by itself is not adequate for a
true engineering discipline. It is also necessary to include maintenance

192 Chapter Three

(defect repairs) and enhancements (new features) for the entire life of
applications once they are initially developed and deployed.

In the software cost-estimating field discussed in this section,
COCOMO first came out in 1981, while Price-S is even older, and many
estimating tools were first marketed in the mid-1980s. As can be seen,
this business sector is already approaching 30 years of age. In fact, the
maximum life expectancy for large applications is currently unknown,
because many of them are still in service. A few applications, such as air
traffic control, may eventually top 50 years of continuous service.

Incidentally, the growth rate of software applications after their ini-
tial deployment is about 8 percent per calendar year, so after 20 to
30 years of usage, applications have ballooned to more than twice their
original size. Unfortunately, this growth is usually accompanied by
serious increases in cyclomatic and essential complexity; as a result
maintenance becomes progressively more expensive and “bad fixes” or
secondary defect injections made during changes increase over time.

To slow down the entropy or decay of aging legacy applications,
they need to be renovated after perhaps five to seven years of ser-
vice. Renovation would eliminate error-prone modules, refactor the
applications or simplify the complexity of the code, eliminate security
flaws, and possibly even convert the code to more modern languages
such as E. Automated renovation tools are available from several
vendors and seem to work well. One of these tools includes the abil-
ity to calculate the function point totals of applications as renovation
takes place, which is useful for benchmarks and studies of productiv-
ity and quality.

For the example estimating tool used here, new features will be added
at least once a year and possibly more often. These releases will also
include bug repairs, as they occur.

Because new programming languages come out at rates of about one
per month, and because there are already more than 700 programming
languages in existence, it is obvious that any estimating tool that sup-
ports estimates for coding must keep current on new languages as they
occur. Therefore, an intelligent agent will be kept busy scanning the Web
for descriptions of new languages, and for published reports on their
effects on quality and productivity.

Other new features will be gathered as an intelligent agent scans the
release histories of competitive estimating tools. For any commercial
application, it is important to be cognizant of the feature sets of direct
competitors and to match their offerings.

Of course, to achieve a position near the top of the market for software
estimating, mere passive replication of competitive features is not an
effective strategy. It is necessary to plan novel and advanced features
that are not currently offered by competitive estimating tools.

A Preview of Software Development and Maintenance in 2049 193

For the estimating example used in this discussion, a suite of new
and interesting features is being planned for several years out. These
include but are not limited to:

 1. Side-by-side comparison of development methods (Agile, RUP, TSP,
etc.)

 2. Inclusion of “design to cost” and “staff to cost” estimates

 3. Inclusion of earned-value estimates and tracking

 4. Estimates of impact of Six Sigma, quality function deployment, and
so on

 5. Estimates of impact of ISO9000 and other standards

 6. Estimates of impact of certification of personnel for testing, QA, and
so on

 7. Estimates of impact of specialists versus generalists

 8. Estimates of impact of large teams versus small teams

 9. Estimates of impact of distributed and international development

10. Estimates of impact of multinational, multiplatform applications

11. Estimates of impact of released defects on customer support

12. Estimates of deployment costs for large ERP and SOA projects

13. Estimates of recovery costs for denial of service and other security
attacks

14. Estimates of odds of litigation occurring for outsource projects

15. Estimates of costs of litigation should it occur (breach of contract)

16. Estimates of patent licensing costs

17. Estimates of cost of patent litigation should it occur

18. Estimates of consequential damages for major business software
defects

19. Estimates of odds of litigation due to serious bugs in application

20. Integration of project history with cost accounting packages

It should be obvious that maintenance of software applications that
are constructed almost completely from reusable components derived
from a number of sources is going to be more complicated than main-
tenance in 2009. For the example application in this section, features
and code may have been acquired from more than a dozen vendors and
possibly from half a dozen in-house applications as well.

Whenever a bug is reported against the application, that same bug
may also be relevant to scores of other applications that utilize the same

194 Chapter Three

reusable component. Therefore, it is necessary to have accurate informa-
tion on the sources of every feature in the application. When bugs occur,
the original source of the feature needs to be notified. If the bug is from
an existing in-house application, the owners and maintenance teams of
that application need to be notified.

Because the example application operates on multiple platforms
(Windows, Apple, Linux, Unix, etc.), there is also a good chance that a
defect reported on one platform may also be present in the versions that
operate on the other platforms. Therefore, a key kind of analysis would
involve running static and dynamic analysis tools for every version when-
ever a significant bug is reported. Obviously, the change teams for all ver-
sions need to be alerted if a bug appears to have widespread impact.

Of course, this requires very sophisticated analysis of bugs to identify
which specific feature is the cause. In 2009, this kind of analysis is done
by maintenance programming personnel, but in 2049, extended forms
of static and dynamic analysis tools should be able to pin down bugs
faster and more reliably than today.

Maintenance or defect repairs circa 2049 should have access to a pow-
erful workbench that integrates bug reporting and routing, automated
static and dynamic analysis, links to test libraries and test cases, test
coverage analyzers, and complexity analysis tools. There may also be
automatic test case generators, and perhaps more specialized tools such
as code restructuring tools and language translators.

Because function point metrics are standard practices for benchmarks,
no doubt the maintenance workbench will also generate automated
function point counts for legacy applications and also for enhancements
that are large enough to change the function point totals.

Historically, software applications tend to grow at about 8 percent
per calendar year, using the size of the initial release in function points
as the starting point. There is no reason to think that growth in 2049
will be slower than in 2009, but there’s some reason to think it might
be even faster.

For one thing, the utilization of intelligent agents will identify possible
features very rapidly. Development using standard reusable components
is quick enough so that the lag between identifying a useful feature and
adding it to an application will probably be less than 6 months circa
2049, as opposed to about 18 months circa 2009.

It is not uncommon circa 2009 for the original requirements and
design materials to fall out of use as applications age over the years.
In 2049, a combination of intelligent agents and expert systems will
keep the design current for as long as the application is utilized. The
same kinds of expert systems that are used to mine business rules
and algorithms could be kept in continuous use to ensure that the

A Preview of Software Development and Maintenance in 2049 195

software and its supporting materials are always at the same levels
of completeness.

This brings up the point that benchmarks for productivity and qual-
ity may eventually include more than 30 years of history and perhaps
even more than 50 years. Therefore, submission of data to benchmark
repositories such as ISBSG will be a continuous activity rather than a
one-time event.

Software Outsourcing in 2049

Dozens of outsourcing companies are in the United States, India, China,
Russia, and scores of other countries. Not only do outsource compa-
nies have to be evaluated, but larger economic issues such as inflation
rates, government stability, and intellectual property protection need
to be considered too. In today’s world of financial fraud, due diligence in
selecting an outsourcer will also need to consider the financial integrity
of the outsource company (as demonstrated by the financial irregulari-
ties of Satyam Consulting in India).

In 2009, potential clients of outsource companies are bombarded
by exaggerated claims of excellence and good results, often without
any real history to back it up. From working as an expert witness in a
dozen lawsuits involving breach of contract by outsourcers, the author
finds it astonishing to compare the marketing claims made by the
vendors to the actual way the projects in court were really developed.
The marketing claims enumerated best practices throughout, but in
reality most of the real practices were astonishingly bad: inadequate
estimating, deceitful progress reports, inadequate quality control,
poor change management, and a host of other failures tended to be
rampant.

By 2049, a combination of intelligent agents and expert systems
should add some rigor and solid business insight into the topic of
finding suitable outsource partners. Outsourcing is a business deci-
sion with two parts: (1) whether outsourcing is the right strategy for a
specific company to follow, and (2) if outsourcing is the right strategy,
how the company can select a really competent and capable outsource
vendor.

The first step in determining if outsourcing is a suitable strategy is to
evaluate your current software effectiveness and strategic direction.

As software operations become larger, more expensive, and more
widespread, the executives of many large corporations are asking a
fundamental question: Should software be part of our core business?

This is not a simple question to answer, and the exploration of some
of the possibilities is the purpose of this chapter. You would probably

196 Chapter Three

want to make software a key component of your core business operations
under these conditions:

 1. You sell products that depend upon your own proprietary software.

 2. Your software is currently giving your company significant competi-
tive advantage.

 3. Your company’s software development and maintenance effective-
ness are far better than your competitors’.

You might do well to consider outsourcing of software if its relation-
ship to your core business is along the following lines:

 1. Software is primarily used for corporate operations; not as a product.

 2. Your software is not particularly advantageous compared against
your competitors.

 3. Your development and maintenance effectiveness are marginal.

Over the past few years, the Information Technology Infrastructure
Library (ITIL) and service-oriented-architecture (SOA) have emerged.
These methods emphasize the business value of software and lead to
thinking about software as providing a useful service for users and
executives, rather than as an expensive corporate luxury.

Some of the initial considerations for dealing with the topic of whether
software should be an integral part of corporate operations or perhaps
outsourced include the following 20 points:

 1. Are you gaining significant competitive advantage from your current
software?

 2. Does your current software contain trade secrets or valuable pro-
prietary data?

 3. Are your company’s products dependent upon your proprietary
software?

 4. How much does your current software benefit these business func-
tions:

 A. Corporate management

 B. Finance

 C. Manufacturing and distribution

 D. Sales and marketing

 E. Customer support

 F. Human resources

A Preview of Software Development and Maintenance in 2049 197

 5. How much software does your company currently own?

 6. How much new software will your company need in the next five
years?

 7. How much of your software is in the form of aging legacy systems?

 8. How many of your aging legacy systems are ITIL-compliant?

 9. How many of your aging legacy systems are SOA-ready?

10. Is your software development productivity rate better than your
competitors?

11. Is your software maintenance more efficient than your competitors?

12. Is your time to market for software-related products better than
your competitors?

13. Is your software quality level better than your competitors?

14. Are you able to use substantial volumes of reusable artifacts?

15. How many software employees are currently on board?

16. How many software employees will be hired over the next five
years?

17. How many users of software are there in your company?

18. How many users of software will there be in five years?

19. Are you considering enterprise software packages such as SAP or
Oracle?

20. Are you finding it hard to hire new staff due to the personnel short-
age?

The patterns of answers can vary widely from company to company,
but will fall within this spectrum of possibilities:

 A. If your company is a software “top gun” and a notable leader
within your industry, then you probably would not consider out-
sourcing at all.

 B. At the opposite extreme, if your company trails all major com-
petitors in software topics, then outsourcing should be on the
critical path for immediate action.

 In two other situations, the pros and cons of outsourcing are
more ambiguous:

 C. Your software operations seem to be average within your indus-
try, neither better nor worse than your competitors in most
respects. In this case, outsourcing can perhaps offer you some
cost reductions or at least a stable software budget in the future,
if you select the right outsourcing partner.

198 Chapter Three

 D. Another ambiguous outsourcing situation is this: you don’t have
the vaguest idea whether your software operations are better or
worse than your competitors due to a chronic lack of data about
software in your industry or in your company.

In this situation, ignorance is dangerous. If you don't know in a quan-
titative way whether your software operations are good, bad, or indiffer-
ent, then you can be very sure that your company is not a top gun and
is probably no better than mediocre in overall software performance. It
may be much worse, of course. This harsh statement is because all of
the really good top-gun software groups have quality and productivity
measurement programs in place, so they know how good they are.

Your company might also compare a sample of recent in-house soft-
ware projects against industry benchmarks from a public source such as
the International Software Benchmarking Standards Group (ISBSG).

Once a company decides that outsourcing is a suitable business strat-
egy, the second part of the problem is to find a really competent out-
source partner. All outsource companies claim to be competent, and
many really are competent, but not all of them. Because outsourcing is
a long-term arrangement, companies need to perform serious due-dili-
gence studies when selecting outsource partners.

You may choose to evaluate potential outsource partners with your
own staff, or you can choose one or more of the external management
consultants who specialize in this area. In either case, the first step is
to dispatch an intelligent agent to bring back information on all of the
outsourcing companies whose business lines are similar to your busi-
ness needs: Computer Aid Incorporated (CAI), Electronic Data Systems,
IBM, Lockheed, Tata, Satyam (if it still exists), and many others.

Some of the information brought back by the intelligent agent would
include financial data if the company is public, information on past or
current lawsuits filed by customers, regulatory investigations against
the company by the SEC or state governments, and also benchmarks
that show productivity and quality results.

A fundamental decision in outsourcing in 2009 is to decide whether a
domestic or an international outsource partner is preferred. The interna-
tional outsource companies from countries such as India, China, or Russia
can sometimes offer attractive short-term cost reductions. However, com-
munication with international outsource partners is more complex than
with domestic partners, and other issues should be evaluated as well.

Recent economic trends have raised the inflation rates in India, China,
and Russia. The decline of the value of the dollar against foreign cur-
rencies such as the yen and pound have led to the situation that the
United States now is being considered as a major outsource location.
For example, IBM is about to open up a large new outsource center in

A Preview of Software Development and Maintenance in 2049 199

Dubuque, Iowa, which is a good choice because of the favorable business
climate and low labor costs.

Already costs in the United States are lower than in Japan, Germany,
France, and other major trading partners. If these trends continue (and
if the United States enters a recessionary period), the United States
might end up with cost structures that are very competitive in global
outsourcing markets.

However, by 2049, a completely different set of players may be involved
in global outsourcing. For example, as this is written, Vietnam is devel-
oping software methods fairly rapidly, and software expertise is expand-
ing in Mexico, Brazil, Argentina, Venezuela, and many other countries
south of the United States.

In fact, assuming some sort of lasting peace can be arranged for the
Middle East, by 2049, Iraq, Iran, Syria, and Lebanon may be signifi-
cant players in global technology markets. The same might occur for
Sri Lanka, Bangladesh, and possibly a dozen other countries.

By 2049, you should be able to dispatch an intelligent agent to bring
back information on every country’s inflation rates, intellectual property
protection laws, numbers of outsource companies, software engineer-
ing populations, software engineering schools and graduates, local tax
structures, outsource company turnover rates; and other information for
helping to select an optimum location for long-range contracts.

If you are considering an international outsource partner, some of the
factors to include in your evaluation are (1) the expertise of the candi-
date partners for the kinds of software your company utilizes; (2) the
availability of satellite or reliable broadband communication between
your sites and the outsource location; (3) the local copyright, patent, and
intellectual property protection within the country where the outsource
vendor is located; (4) the probability of political upheavals or factors that
might interfere with transnational information flow; and (5) the basic
stability and economic soundness of the outsource vendor, and what
might occur should the vendor encounter a severe financial downturn.

The domestic outsource companies can usually offer some level of
cost reduction or cost stabilization, and also fairly convenient commu-
nication arrangements. Also, one sensitive aspect of outsourcing is the
future employment of your current software personnel. The domestic
outsource companies may offer an arrangement where some or all of
your personnel become their employees.

One notable aspect of outsourcing is that outsource vendors who spe-
cialize within particular industries such as banking, insurance, telecom-
munications, or some other sector may have substantial quantities of
reusable material available. Since reuse is the technology that gives
the best overall efficiency for software, the reuse factor is one of the key
reasons why some outsource vendors may be able to offer cost savings.

200 Chapter Three

There are ten software artifacts where reuse is valuable, and some of
the outsource vendors may have reusable material from many of these
ten categories: reusable architecture, plans, estimates, requirements,
design, source code, data, human interfaces, user documentation, and
test materials.

Some of the general topics to consider when evaluating potential out-
source partners that are either domestic or international include the
following:

■ The expertise of the outsource vendor within your industry, and for
the kinds of software your company utilizes. (If the outsource vendor
serves your direct competitors, be sure that adequate confidentially
can be assured.)

■ The satisfaction levels of current clients who use the outsource ven-
dor’s services. You may wish to contact several clients and find out
their firsthand experiences. It is particularly useful to speak with
clients who have had outsource contracts in place for more than two
or three years, and hence who can talk about long-term satisfaction.
An intelligent agent might be able to locate such companies, or you
can ask the vendors for lists of clients (with the caveat that only happy
clients will be provided by the vendors).

■ Whether any active or recent litigation exists between the outsource
company and either current or past clients. Although active litigation
may not be a “showstopper” in dealing with an outsource vendor, it is
certainly a factor you will want to find out more about if the situation
exists.

■ How the vendor’s own software performance compares against indus-
try norms in terms of productivity, quality, reuse, and other quantita-
tive factors using standard benchmarks such as those provided by the
ISBSG. For this kind of analysis, the usage of the function point metric
is now the most widely used in the world, and far superior to any
alternative metrics. You should require that outsource vendors have
comprehensive productivity and quality measurements and use func-
tion points as their main metric. If the outsource vendor has no data on
their own quality or productivity, be cautious. You might also require
some kind of proof of capability, such as requiring that the outsource
vendor be at or higher than level 3 on the capability maturity model
integration (CMMI) of the Software Engineering Institute (SEI).

■ The kinds of project management tools that the vendor utilizes. Project
management is a weak link of the software industry, and the leaders
tend to utilize a suite of software project management tools, includ-
ing cost estimation tools, quality estimation tools, software planning
tools, software tracking tools, “project office” tools, risk management

A Preview of Software Development and Maintenance in 2049 201

tools, and several others. If your candidate outsource vendor has no
quantitative estimating or measurement capabilities, it is unlikely
that their performance will be much better than your own.

These five topics are only the tip of the iceberg. Some of the topics
included in contractor evaluation assessments include (1) the project
management tools and methods used by the vendor, (2) the software
engineering tools and methods used by the vendor, (3) the kinds of qual-
ity assurance approaches used by the vendor, (4) the availability or lack
of availability of reusable materials, (5) the configuration control and
maintenance approaches used by the vendor, (6) the turnover or attri-
tion rate of the vendors management and technical staff, and (7) the
basic measurements and metrics used by the vendor for cost control,
schedule control, quality control, and so on.

The International Software Benchmarking Standards Group (ISBSG)
has collected data on more than 5,000 software projects. New data is
being collected at a rate of perhaps 500 projects per year. This data is
commercially available and provides useful background information for
ascertaining whether your company’s costs and productivity rates are
better or worse than average.

Before signing a long-term outsource agreement, customers should
request and receive quantitative data on these topics from potential
outsource vendors:

 1. Sizes of prior applications built in both function points and lines of
code

 2. Defect removal efficiency levels (average, maximum, minimum)

 3. Any certification such as CMMI levels

 4. Staff turnover rates on an annual basis

 5. Any past or current litigation against the outsourcer

 6. Any past or present government investigations against the out-
sourcer

 7. References to other clients

 8. Quality control methods utilized by the outsourcer

 9. Security control methods utilized by the outsourcer

10. Progress tracking methods utilized by the outsourcer

11. Cost-tracking methods utilized by the outsourcer

12. Certified reusable materials utilized by the outsourcer

Automated software cost-estimating tools are available (such as the
example tool used in this chapter) that allow side-by-side estimates for

202 Chapter Three

the same project, with one version showing the cost and schedule profile
using your current in-house development approaches, and the second
version giving the results based on how the outsource contractor would
build the same product using their proprietary or unique approaches
and reusable materials.

From working as an expert witness in a dozen lawsuits between out-
source vendors and their dissatisfied clients, the author has found sev-
eral key topics that should be clearly defined in outsource contracts:

1. Include anticipated learning curves for bringing the outsource vendor
up to speed for all of the applications that are included in the agree-
ment. Assume about one-third of an hour per function point for each
outsource team member to get up to speed. In terms of the schedule
for getting up to speed, assume about two weeks for 1,000 function
points, or six weeks for 10,000 function points.

2. Clear language is needed to define how changing requirements will be
handled and funded. All changes larger than 50 function points will
need updated cost and schedule estimates, and also updated quality
estimates. Requirements churn, which are changes that do not affect
function point totals, also need to be included in agreements.

3. The quality control methods used by the outsource vendor should
be provably effective. A requirement to achieve higher than 95 per-
cent defect removal efficiency would be a useful clause in outsource
agreements. Defect tracking and quality measurements should be
required. For applications in C, Java, or other supported languages
static analysis should also be required.

4. Tracking and reporting progress during software development proj-
ects has been a weak link in outsource agreements. Every project
should be tracked monthly, and the reports to the client should
address all issues that may affect the schedule, costs, or quality of
the projects under development. If litigation does occur, these reports
will be part of the discovery process, and the vendors will be deposed
about any inaccuracies or concealment of problems.

5. Rules for terminating the agreement by both parties should be
included, and these rules need to be understood by both parties
before the agreement is signed.

6. If penalties for late delivery and cost overruns are included in the
agreement, they should be balanced by rewards and bonuses for fin-
ishing early. However, quality and schedule clauses need to be linked
together.

Many outsource contracts are vague and difficult to administer.
Outsource agreements should clearly state the anticipated quality

A Preview of Software Development and Maintenance in 2049 203

results, methods for handling requirements changes, and methods of
monitoring progress.

Some of the software your company owns may have such a significant
competitive value that you may not want to outsource it, or even to let
any other company know of its existence. One of the basic prepara-
tory steps before initiating an outsource arrangement is to survey your
major current systems and to arrange security or protection for valuable
software assets with high competitive value.

This survey of current systems will have multiple benefits for your
company, and you might want to undertake such a survey even if you
are not considering outsource arrangements at all. The survey of current
and planned software assets should deal with the following important
topics.

This is an area where intelligent agents and automated business-rule
extraction tools should be able to offer great assistance by 2049. In fact,
most of the business rules, algorithms, and proprietary data should have
been mined from legacy applications and put into expandable and acces-
sible forms by means of AI tools and intelligent agents.

■ Identification of systems and programs that have high competitive
value, or that utilize proprietary or trade-secret algorithms. These
systems may well be excluded from more general outsource arrange-
ments. If they are to be included in an outsource contract, then special
safeguards for confidential factors should be negotiated. Note also
that preservation of proprietary or competitive software and data is
very delicate when international outsource contracts are utilized. Be
sure that local patent, copyright, and intellectual property laws are
sufficient to safeguard your sensitive materials. You may need attor-
neys in several countries.

■ Analysis of the databases and files utilized by your software appli-
cations, and the development of a strategy for preservation of con-
fidential data under the outsource arrangement. If your databases
contain valuable and proprietary information on topics such as trade
secrets, competitors, specific customers, employee appraisals, pending
or active litigation, or the like, you need to ensure that this data is
carefully protected under any outsource arrangement.

■ Quantification of the number of users of your key system, and their
current levels of satisfaction and dissatisfaction with key applications.
In particular, you will want to identify any urgent enhancements that
may need to be passed on to an outsource vendor.

■ Quantification of the size of the portion of your current portfolio that
is to be included in the outsource contract. Normally, this quantifica-
tion will be based on the function point metric and will include the size

204 Chapter Three

in function points of all current systems and applications for which
the outsource vendor will assume maintenance responsibility.

■ Analysis of the plans and estimates for future or partly completed
software projects that are to be included in the outsource arrange-
ment and hence developed by the outsource vendor. You will want to
understand your own productivity and quality rates, and then com-
pare your anticipated results against those the outsource vendor will
commit to. Here, too, usage of the function point metric is now the
most common and the best choice for outsourcing contracts.

Because outsource contracts may last for many years and cost mil-
lions of dollars, it is well to proceed with care and thoroughness before
completing an outsource contract.

As of 2009, there is no overall census of how long typical outsource
agreements last, how many are mutually satisfactory, how many are
terminated, and how many end up in court. However, the author’s
work in litigation and with many customers indicates that 75 percent
of outsource agreements are mutually satisfactory; about 15 percent are
troubled; and perhaps 10 percent may end up in court.

By utilizing careful due-diligence augmented by intelligent agents
and expert systems, it is hoped that by 2049 more than 90 percent of
outsource agreements are mutually satisfactory, and less than 1 percent
might end up in litigation.

As the global recession lengthens and deepens, outsourcing may be
affected in unpredictable ways. On the downside, some outsource com-
panies and their clients may either (or both) go bankrupt. On the upside,
cost-effective outsourcing is a way to save money for companies that are
experiencing revenue and profitability drops.

A major new topic that should be added to outsource agreements from
2009 forward is that of what happens to the contract and to the software
under development in cases where one or both partners go bankrupt.

Software Package Evaluation
and Acquisition in 2049

In 2009, buying or leasing a software package is a troublesome area.
Vendor claims tend to be exaggerated and unreliable; software war-
ranties and guarantees are close to being nonexistent, and many are
actually harmful to clients; quality control even on the part of major
vendors such as Microsoft is poor to marginal; and customer support is
both difficult to access and not very good when it is accessed. There may
also be serious security vulnerabilities that invite hacking and theft of
proprietary data, or that facilitate denial of service attacks, as discussed
in Chapter 2 of this book.

A Preview of Software Development and Maintenance in 2049 205

In spite of these problems, more than 50 percent of the software run on
a daily basis in large corporations comes from external vendors or from
open-source providers. Almost all systems software such as operating
systems and telephone switching systems comes from vendors, as does
embedded software. Other large commercial packages include databases,
repositories, and enterprise-resource planning (ERP) applications.

Will this situation be much better in 2049 than it is in 2009? Hopefully,
a migration to construction from certified components (as discussed ear-
lier) will improve commercial software quality, security, and reliability
by 2049. It is hoped that improvements in customer support will occur
due to methods also discussed earlier in this chapter.

Prior to acquiring a software package in 2049, the starting point
would be to dispatch an intelligent agent that would scan the Web and
bring back information on these topics:

1. Information on all packages that provide the same or similar services
as needed

2. Reviews of all packages by journals and review organizations

3. Lists of all user associations for packages that have such associations

4. Information on the finances of public software vendors

5. Information on current and past litigation filed against software
vendors

6. Information on government investigations against software vendors

7. Information on quality results by static analysis tools and other
methods

8. Information on security flaws or vulnerabilities in the package

In 2009, software vendors usually refuse to provide any quantita-
tive data at all. Information on the size of applications, on productivity,
on customer-reported bugs, and even on the results of running static
analysis tools is not released to customers, with the exception of some
open-source packages. They also refuse to provide anything that passes
for a warranty or guarantee, other than something trivial or possibly
harmful (such as selling client information). Almost all software war-
ranties include specific disclaimers of any responsibilities for harm or
damages caused by bugs or security flaws.

A hidden but fundamental reason for poor software warranties is that
software controls so many key aspects of business, medicine, govern-
ment, and military operations that software failures can cause more
problems and expense than failures of almost any other kind of prod-
uct. Software bugs can cause death with medical equipment failures,
airplane and rocket malfunctions, air-traffic failure, weapons system

206 Chapter Three

failure, manufacturing shutdowns, errors in critical business data, and
scores of other really serious problems. If software companies should
ever become liable for consequential damages or business losses due to
software bugs, successful litigation could wipe out even major software
vendors.

Individuals and small companies that buy software packages at the
retail level have no power to change the very unprofessional marketing
approaches of software vendors. However, large companies, military
agencies, federal and state governments, and other large enterprises
do have enough clout to insist on changes in software package devel-
opment, warranties, guarantees, security control, quality control, and
other pertinent issues.

While intelligent agents and expert systems can help in minimizing
risks of buying packages with major quality and security flaws, it may
take government intervention to improve warranties and guarantees.
However, a good warranty would be such a powerful marketing tool
that if a major vendor such as IBM were to start to offer meaningful
warranties, all competitors would be forced to follow suit or lose most
of their business.

At the very least, software vendors should offer a full refund to dissat-
isfied customers for at least 90 days after purchase. While the vendors
might lose a small amount of money, they would probably make quite
a bit of additional revenue if this warranty were featured in their ads
and packaging.

For large clients that are acquiring major software packages from
vendors such as Microsoft, IBM, SAP, Oracle, and so forth, the following
information should be a precursor to actually leasing or purchasing a
commercial software product in 2049:

 1. Size of the application in function points and lines of code

 2. Quality control steps used during development

 3. Security control steps used during development

 4. Numbers of bugs and defects found prior to release of the product

 5. Numbers of bugs and defects reported by customers of the product

 6. Litigation against the vendor by dissatisfied customers

 7. Anticipated customer support for major defect repairs

 8. Anticipated defect repair turnaround after defects are reported

 9. Guarantee of no charges to customers for reporting defects

10. Guarantee of no charges to customers for support by phone or e-mail

11. Guarantee of refund for product returns within 90 days of instal-
lation

A Preview of Software Development and Maintenance in 2049 207

Much of this information would rightly be regarded by the vendors
as being proprietary and confidential. However, since the information
would be going to major customers, no doubt it could be provided under
nondisclosure agreements.

The deepening and lengthening global recession is going to add new
problems to the software industry, including to commercial vendors. A
new clause that needs to be included in major software contracts from
2009 forward is what happens to the software, the warranty, and to
the maintenance agreements should either the vendor or the client go
bankrupt.

Technology Selection and Technology
Transfer in 2049

Two major weaknesses of the software industry since its inception have
been that of technology selection and technology transfer. The software
industry seldom selects development methods based on solid empirical
data of success. Instead, the software industry has operated more or less
like a collection of cults, with various methods being developed by char-
ismatic leaders. Once developed, these methods then acquire converts
and disciples who defend the methods, often with little or no historical
data to demonstrate either success or failure.

Of course, some of these methods turn out to be fairly effective, or at
least effective for certain sizes and types of software. Examples of effec-
tive methods include (in alphabetical order) Agile development, code
inspections, design inspections, iterative development, object-oriented
development (OO), Rational Unified Process (RUP), and Team Software
Process (TSP). Other methods that do not seem to accomplish much
include CASE, I-CASE, ISO quality standards, and of course the tradi-
tional waterfall method. For a number of newer methods, there is not yet
enough data to be certain of effectiveness. These include extreme pro-
gramming, service-oriented architecture (SOA), and perhaps 20 more.
That few projects actually measure either productivity or quality is one
of the reasons why it is difficult to judge effectiveness.

If software is to make real progress as an engineering discipline,
rather than an art form, then measurement and empirical results need
to be more common than they have been. What would be useful for the
software industry is a nonprofit evaluation laboratory that resembles
the Consumers Union or the Underwriters Laboratory, or even the Food
and Drug Administration.

This organization would evaluate methods under controlled condi-
tions and then report on how well they operate for various kinds of
software, various sizes of applications, and various technical areas such
as requirements, design, development, defect removal, and the like.

208 Chapter Three

It would be very interesting and useful to have side-by-side compari-
sons of the results of using Agile development, clean-room development,
intelligent-agent development, iterative development, object-oriented
development, rapid application development, the Rational Unified
Process (RUP), the Team Software Process (TSP), various ISO stan-
dards, and other approaches compared against standard benchmark
examples.

In the absence of a formal evaluation laboratory, a second tier for
improving software selection would be for every software project to col-
lect reliable benchmark data on productivity and quality, and to submit
it to a nonprofit clearinghouse such as the International Software
Benchmarking Standards Group (ISBSG).

Historical data and benchmarks take several years to accumulate
enough information for statistical studies and multiple regression anal-
ysis. However, benchmarks are extremely useful for measuring progress
over time, whereas evaluations at a consumer lab only deal with a fixed
point in time.

Even if development methods are proven to be visibly successful, that
fact by itself does not guarantee adoption or utilization. Normally, social
factors are involved, and most people are reluctant to abandon current
methods unless their colleagues have done so.

This is not just a software problem, but has been an issue with inno-
vation and new practices in every field of human endeavor: medical
practice, military science, physics, geology, and scores of others.

Several important books deal with the issues of technology selection
and technology transfer. Although these books are not about software,
they have much to offer to the software community. One book is Thomas
Kuhn’s book The Structure of Scientific Revolutions. Another book is
Paul Starr’s The Social Transformation of American Medicine (winner
of the Pulitzer Prize in 1982). A third and very important book is Leon
Festinger’s The Theory of Cognitive Dissonance, which deals with the
psychology of opinion formation.

Another social problem with technology transfer is the misguided
attempts of some executives and managers to force methodologies on
unwilling participants. Forced adoption of methodologies usually fails
and causes resentment as well.

A more effective approach to methodology deployment is to start using
the method as a controlled experiment, with the understanding that
after a suitable trial period (six weeks to six months), the method will
be evaluated and either rejected or accepted.

When this experimental approach is used with methods such as formal
inspections, it almost always results in adoption of the technique.

Another troubling issue with technology selection is the fact that
many development methods are narrow in focus. Some work best for

A Preview of Software Development and Maintenance in 2049 209

small applications, but are ineffective for large systems. Others were
designed with large systems in mind and are too cumbersome for small
projects and small companies (such as the higher levels of the CMMI).
It is a mistake to assume that because a methodology gives good results
for a small sample, that it will give good results for every known size
and type of software application.

One of the valuable aspects of dispatching intelligent agents is that
they may have the ability to capture and display information about
the pros and cons of popular development methods such as Agile,
TSP, and other related topics such as CMMI, TickIT, ISO standards,
and so on.

It would be good if software practices were based on actual data and
empirical results in 2049, but this is by no means certain. Moving to
actual data will take at least 15 years, because hundreds of companies
will need to establish measurement programs and train practitioners
in effective measurement methods. Automated tools will need to be
acquired, too, and of course their costs need to be justified.

Another sociological issue that affects the software industry is that
a number of widely used measures either violate the assumptions of
standard economics, or are so ambiguous that they can’t be used for
benchmarks and comparative studies. Both “lines of code” and “cost
per defect” violate economic principles and should probably be viewed
as professional malpractice for economic analysis. Other metrics such
as “story points” and “use-case points” may have limited usefulness for
specific projects, but cannot be used for wide-scale economic analysis.
Neither can such measures be used for side-by-side comparisons with
projects that don’t utilize user stories or use-cases.

For meaningful benchmarks and economic studies to be carried out,
either the data must be collected initially using standard metrics such
as IFPUG function points, or there should be automated conversion
tools so the metrics such as “lines of code” or “story points” or “Cosmic
function points” could be converted into standard metrics. It is obvi-
ous that large-scale economic studies of either portfolios or the entire
software industry need to have all data expressed in terms of standard
metrics.

The common practice circa 2009 of using quirky and nonstandard
metrics is a sign that the software industry is not really an engineer-
ing discipline. The best that can be said about software in 2009 is
that it is a craft or art form that sometimes yields valuable results,
but often fails.

A study of technology transfer in IBM some years ago found that only
about one-third of applications were using what at the time were viewed
as being best practices. This led IBM to expend considerable resources
on improving technology transfer within the company.

210 Chapter Three

Similar studies at Hewlett-Packard and ITT also revealed rather
sluggish technology transfer and extremely subjective technology acqui-
sition. These are chronic problems that need a great deal more study
on the part of sociologists, industrial psychologists, and of course the
software engineering community itself.

Enterprise Architecture and Portfolio
Analysis in 2049

Once intelligent agents, expert design tools, and expert maintenance
workbenches become widely deployed, these will open up new forms of
work that deal with higher levels of software ownership at the enter-
prise and portfolio levels.

Today in 2009, corporations and government agencies own thou-
sands of software applications developed over many years and using
scores of different architectural approaches, design methods, devel-
opment methods, and programming languages. In addition, many
applications in the portfolios may be commercial packages such as
ERP packages, office suites, financial applications, and the like. These
applications are maintained at random intervals. Most contain sig-
nificant quantities of latent bugs. Some even contain “error-prone
modules,” which are highly complex and very buggy code segments
where bad-fix injection rates of new bugs introduced via changes may
top 50 percent.

It would make good business sense to dispatch the same intelligent
agents and use the same expert systems to perform a full and careful
analysis of entire portfolios. The goal of this exercise is to identify qual-
ity and security flaws in all current applications, map out how current
applications interact, and to place every application and its feature
set on the map of standard taxonomies and standard features that are
being used to support development from reusable components.

An additional feature that needs expert analysis and intelligent
agents is identifying the portions of software that might need updates
due to changes in various government regulations and laws, such as
changes in tax laws, changes in governance policies, changes in privacy
requirements, and scores of others. Hardly a day goes by without some
change in either state or federal laws and regulations, so only a combi-
nation of intelligent agents and expert systems could keep track of what
might be needed in a portfolio of thousands of applications.

In other words, it would be possible to perform large-scale data mining
of entire portfolios and extract all algorithms and business rules utilized
by entire corporations or government agencies. Corporate data diction-
aries would also be constructed via data mining. Since large portfolios
may include more than 10,000 applications and 10 million function

A Preview of Software Development and Maintenance in 2049 211

points in their entirety, this work cannot easily be done by human beings
and requires automation to be performed at all.

No doubt there would be many thousands of business rules and many
thousands of algorithms. Once extracted, these obviously need to be
classified and assembled into meaningful patterns based on various
taxonomies such as the Zachman architectural approach and also other
taxonomies such as those that define application types, feature types,
and a number of others.

Not only would this form of data mining consolidate business rules
and assist in rationalizing portfolio maintenance and government, but
it would also introduce much better rigor in terms of economic analysis,
governance, quality control, and security controls.

A huge data dictionary and catalog could be created that showed the
impacts of all known government regulations on every application in the
corporate portfolio. This kind of work exceeds the unaided capabilities
of human beings, and only expert systems and AI tools and intelligent
agents are likely to be able to do it at all.

Few companies actually know the sizes of their portfolios in terms
of either function points or lines of code. Few companies actually know
their maintenance cost breakdowns in terms of defect repairs, enhance-
ments, and other kinds of work. Few companies know current quality
levels and security flaws in existing software. Few companies know how
many users utilize each application, or the value of the applications to
the organization.

By 2049, it is possible to envision a suite of intelligent agents and
expert systems constantly at work identifying flaws and sections of
legacy applications that need attention due to quality and security
flaws. The agents would be geographically dispersed among perhaps 50
different corporate development and maintenance locations. However,
the results of these tools would be consolidated at the enterprise level.

As this data is gathered and analyzed, it would have to be stored in
an active repository so that it could be updated essentially every day as
new applications were added, current applications were updated, and
old applications were retired. Some of the kinds of data stored in this
repository would include application size in function points and LOC,
defect and change histories, security status and known vulnerabilities,
numbers of users, features based on standard taxonomies, and relation-
ships to other applications owned by the enterprise or by suppliers or
customers to which it connects.

It is also possible to envision much better planning at the level of
enterprise architecture and portfolio management when corporate busi-
ness needs and corporate software portfolios are reliably mapped and all
known business rules and business algorithms have been consolidated
from existing portfolios via automated tools.

212 Chapter Three

Software portfolios and the data they contain are simultaneously the
most valuable assets that most corporations own, and also the most trou-
blesome, error-prone, and expensive to develop, replace, and maintain.

It is obvious that software needs to migrate from a craft that builds
applications line by line to an engineering discipline that can construct
high-quality and high-security applications from standard components.
A combination of intelligent agents, expert systems, architectural meth-
ods, and several kinds of taxonomies are needed to accomplish this. In
addition, automated methods of security analysis and quality analysis
using both static and dynamic analysis should be in constant use to keep
applications secure and reliable.

Some of the business purposes for this kind of automated portfolio
analysis would include corporate governance, mergers and acquisitions,
assessing the taxable value of software assets, maintenance planning,
litigation for intellectual property and breach of contract, and of course
security and quality improvement. As the economy moves through
another recessionary year, every company needs to find ways of lower-
ing portfolio maintenance costs. Only when portfolios can be completely
scanned and analyzed by expert applications rather than by human
beings can really significant economies be realized.

Portfolio analysis is especially important in the case of mergers and
acquisitions between large corporations. Attempting to merge the port-
folios and software organizations of two large companies is a daunt-
ing task that often damages both partners. Careful analysis of both
portfolios, both data dictionaries, and both sets of business rules and
algorithms needs to be carried out, but is very difficult for unaided
human beings. Obviously, intelligent agents and expert systems would
be very helpful both for due diligence and later when the merger actu-
ally occurs.

At the level of enterprise architecture and portfolio analysis, graphi-
cal representations would be valuable for showing software usage and
status throughout the enterprise. A capability similar to that used today
for Google Earth might start with a high-level view of the entire cor-
poration and portfolio, and then narrow the view down to the level of
individual applications, individual business units, and possibly even
individual functions and users.

The main difference between Google Earth and an overall representa-
tion of a corporate portfolio is that the portfolio would be shown using
animation and real-time information. The idea is to have continuous
animated representation of the flow of business information from unit
to unit, from the company to and from suppliers, and also to and from
customers.

One additional point is significant. Software portfolios are taxable
assets in the view of the Internal Revenue Service. There is frequent

A Preview of Software Development and Maintenance in 2049 213

tax litigation after mergers and acquisitions that deals with the origi-
nal development costs of legacy applications. It would be prudent from
the point of view of minimizing tax consequences for every company to
know the size of each application in the portfolio, the original develop-
ment cost, and the continuous costs of maintenance and enhancements
over time.

A Preview of Software Learning in 2049

Because technology transfer is a weak link in 2009, it is interesting to
consider how software topics might be learned by software profession-
als in 2049.

Considering technologies that are available in 2009 and projecting
them forward, education and learning are likely to be very different
in the future. This short discussion provides a hypothetical scenario of
learning circa 2049.

Assume that you are interested in learning about current software
benchmarks for productivity and quality circa 2049.

By 2049, almost 100 percent of all published material will be available
online in various formats. Conversion from one format to another will
be common and automatic. Automatic translation from one language to
another such as Russian to English will no doubt be available, too.

Copyrights and payments for published material will hopefully be
resolved by 2049. Ideally, text mining of this huge mass of material will
have established useful cross-references and indexing across millions
of documents.

First, your computer in 2049 will probably be somewhat different
from today’s normal computers. It will perhaps have several screens and
also independent processors. One will be highly secure and deal primar-
ily with web access, while the other, also secure, will not be directly con-
nected to the Web. The second unit is available for writing, spreadsheets,
graphics, and other activities. Hardware security will be a feature of
both processors.

Computer keyboards may still exist, but no doubt voice commands
and touch-screens will be universally available. Since the technology
of creating 3-D images exists today, you may also have the capability
of looking at information in 3-D form, with or without using special
glasses. Virtual reality will no doubt be available as a teaching aid.

Because reading in a fixed position is soon tiring, one of the screens
or a supplemental screen will be detachable and can be held like a book.
The most probable format is for a screen similar to today’s Amazon
Kindle or Sony PR-505. These devices are about the size and shape of
a paperback book. No doubt by 2049, high-resolution graphics and full
colors will also be available for e-books, and probably animation as well.

214 Chapter Three

Voice commands and touch screens will probably be standard, too.
Batteries will be more effective in 2049 as well, and using a hand-held
device for eight to ten hours on battery power should be the norm rather
than an exception as it is in 2009.

Other technical changes might modify the physical appearance of
computers. For example, flat and flexible screens exist in 2009, as
do eyeglasses that can show images on the lenses. Regardless of the
physical shape of computers, access to the Web and to online infor-
mation will remain a major function; security will remain a major
problem.

By 2049, basically all information will be online, and you will have a
personal avatar librarian available to you that is programmed with all
of your major interests. On a daily basis you will have real-time sum-
maries of changes in the topics that concern you.

You start your search for benchmark information by entering your
personal learning area. The area might appear to be a 3-D image of your
favorite campus with trees, buildings, and avatars of other students
and colleagues.

You might begin by using a voice or keyed query such as “Show me
current software productivity and quality benchmarks.”

Your avatar might respond by asking for additional information to
narrow the search, such as: “Do you want development, maintenance,
customer support, quality, or security benchmarks?” You might narrow
the focus to “development productivity benchmarks.”

A further narrowing of the search might be the question, “Do you want
web applications, embedded software, military software, commercial
applications, or some specific form of software?”

You might narrow the issue to “embedded software.” Your avatar
might then state, “The International Software Benchmarking Standards
Group has 5,000 embedded applications from the United States, 7,500
from China, 6,000 from Japan, 3,500 from Russia, and 12,000 from other
countries. There are also 5,000 embedded benchmarks from other orga-
nizations. Do you want overall benchmarks, or do you wish to compare
one country with another?”

You might respond by saying “I’m interested in comparing the United
States, Japan, China, India, and Russia. For consistency, use only the
ISBSG benchmark data.”

The avatar might also ask, “Are you interested in specific languages
such as E, Java, Objective C, or in all languages?” In this case, you might
respond with “all languages.”

The avatar might also ask, “Are you interested in specific methods
such as Agile and Team Software Process, or in capability maturity
levels?” You might respond by saying, “I’m interested in comparing Agile
against Team Software Process.”

A Preview of Software Development and Maintenance in 2049 215

Your avatar might then say, “For embedded applications about 1,000
in each country used Agile methods and about 2,000 used TSP methods.
Almost all embedded applications were at CMMI level 3 or higher.”

At this point, you might say something like, “Create graphs that com-
pare embedded productivity levels by country for embedded applications
between 1,000 and 25,000 function points in size. Show a comparison
of Agile and TSP methods. Also show the highest productivity levels for
embedded applications of 1,000, 5,000, and 10,000 function points.”

Within a few seconds, your initial set of graphs will be displayed. You
might then decide to refine your search by asking for annual trends
for the past ten years, or by including other factors such as looking at
military versus civilian embedded applications.

You might also ask your avatar librarian for the schedules of upcom-
ing webinars and seminars on benchmarks. You might also ask for sum-
mary highlights of webinars and seminars on benchmarks held within
the past six months.

At this point, you might also ask your avatar to send copies of
the graphs to selected colleagues who are working in the same area
of research. No doubt by 2049, all professionals will be linked into a
number of social networks that deal with topics of shared interest.

These networks occur already in 2009 using commercial services such
a Plaxo, LinkedIn, various forums, wiki groups, and other means. But
today’s networks are somewhat awkward for sharing large volumes of
information.

Although this scenario is hypothetical and may not occur, the major
differences between learning in 2049 and learning in 2009 are likely to
include these key topics:

 1. Much better security of computers than what is available in 2009.

 2. The existence of AI avatars or intelligent agents that can assist
in dealing with vast quantities of information based on profiles of
personal interests.

 3. Much better indexing and cross-referencing capabilities among
documents than what is available in 2009.

 4. Workable methods for dealing with copyrights and payments across
millions of documents.

 5. The accumulation of private “libraries” of online information that
meet your personal criteria. To be useful, intelligent agents will
create cross-references and indexes across your entire collection.
The bulk of the information will be available online, and much of
it can be accessed from hand-held devices equivalent to the Kindle
as well as from your computers, smart phones, and other wireless
devices.

216 Chapter Three

 6. Schedules of all webinars, seminars, and other forms of communica-
tions that are in topics that match your personal interest profiles.
These can either be viewed as they occur, or stored for later viewing.
Your personal avatar librarian can also extract relevant informa-
tion in summary form.

 7. Existence of specialized social networks that allow colleagues to
communicate and share research and data in topics such as soft-
ware productivity, security, quality, and other key issues.

 8. Existence of virtual communities associated with social networks so
that you and your colleagues can participate in online discussions
and meetings in virtual environments.

 9. Utilization of standard taxonomies of knowledge to facilitate orga-
nizing millions of documents that cover thousands of topics.

10. The development of fairly sophisticated filters to separate low-value
information from high-value information. For example, articles on
productivity that lack quantitative data would probably be of lower
value than articles containing quantitative data.

In 2009, vast quantities of data and information are available on
the Web and Internet. But the data is chaotic, unstructured, and very
inconsistent in terms of intellectual content. Hopefully by 2049, a com-
bination of standard taxonomies, metadata, and the use avatars and
intelligent agents will make it possible to gather useful information on
any known topic by filtering out low-value data and condensing high-
value data into meaningful collections.

Also by 2049, hundreds of colleagues in various fields will be linked
together into social networks that enable them to share data on a
daily basis, and to rapidly examine the state of the art in any field of
knowledge.

With so much information available, copyright and payment methods
must be robust and reliable. Also, security of both personal data collections
and libraries of online documents must be very robust compared with 2009
norms. Much of the information may be encrypted. Hardware security
methods will probably augment software security methods. But the key
topic for extracting useful information from billions of source documents
will be the creation of intelligent agents that can act on your behalf.

Due Diligence in 2049

Although the recession has slowed down venture capital investments and
brought software IPOs almost to a standstill, it has not slowed down merg-
ers and acquisitions. In fact, several merger companies such as Corum had
record years in 2008, which is counter to the recessionary trend.

A Preview of Software Development and Maintenance in 2049 217

Whenever due diligence is required, and it is always required for
mergers and acquisitions and private investments, it is obvious that
the combination of intelligent agents and expert systems would be dis-
patched to evaluate the portfolios and applications of both parties.

If the companies are medium to large in size, then they will each own
more than 1,000 applications that total to more than 1 million function
points. Really big companies can own ten times as much software as
this. Due diligence of an entire portfolio is far too difficult for unaided
humans; only intelligent agents and expert systems can handle such
large volumes of software.

After a merger is complete, both the software portfolios and software
development organizations of both parties will need to be consolidated,
or at least some applications will need to operate jointly.

Therefore, every application should be examined by intelligent agents
and expert systems for security flaws, latent defects, interfaces, pres-
ence of data dictionaries, reusable materials, and many other topics.

For venture investments in startup companies with perhaps only
one or two software applications, expert analysis of the software’s qual-
ity, security vulnerabilities, and other topics would assist in judging
whether the investment is likely to be profitable, or may end up with
negative returns.

As previously mentioned, software is a taxable asset. Therefore, every
software application needs to keep permanent records of size, original
development costs, maintenance and enhancement costs, marketing costs,
and other financial data. Quality and reliability data should be kept too,
for aid in defense against possible lawsuits from clients or users.

Some of the topics that need to be evaluated during due diligence
activities include, but are not limited to, the following:

 1. Protection of intellectual property in software assets (patents, trade
secrets)

 2. On-going litigation (if any) for breach of contract, taxes, and so on

 3. Benchmarks of productivity and quality for past applications

 4. Quality control methods used for software development

 5. Data on defects and reliability of legacy software

 6. Data on customer satisfaction of legacy software

 7. Security control methods used in software applications (encryption,
E, etc.)

 8. Security control methods used at the enterprise level (firewalls,
antivirus, etc.)

 9. Existence of business rules, algorithms, and so on, for legacy appli-
cations

218 Chapter Three

10. Enterprise architectural schema

11. Open-source applications used by the companies

12. Similar applications owned by both companies

13. How easily applications can be modified

14. Architectural compatibilities or differences

15. Compensation differences between organizations

Unless a company is a conglomerate and frequently acquires other
companies, the logistics of due diligence can be daunting. Professional
advice is needed from attorneys and also from specialists in mergers
and acquisitions. Additional advice may be needed from security and
quality consultants, and also advice from architecture specialists may
be needed.

By 2049, a combination of intelligent agents and AI tools should
also be available to assist in due diligence for mergers, venture capital
investments, and other key business purposes.

Certification and Licensing in 2049

Certification and licensing of software personnel are controversial topics.
Certification and licensing were also controversial in the medical field
and the legal field as well. If certification exists, then the opposite case
of decertification for malpractice would also exist, which is even more
contentious and controversial.

The history of medical certification is spelled out in Paul Starr’s book
The Social Transformation of American Medicine, which won a Pulitzer
Prize in 1982. Since medicine in 2009 is the most prestigious learned
profession, it is interesting to read Starr’s book and consider how medi-
cal practice in the 1850s resembled software circa 2009.

Curricula for training physicians were two-year programs, and there
were no residencies or internships. Many medical schools were run for
profit and did not require college degrees or even high school diplomas
for entry. Over half of U.S. physicians never went to college.

During training in medical schools, most physicians never entered
a hospital or dealt with actual patients. In addition to medical schools
that taught “standard” medical topics, a host of arcane medical schools
taught nonstandard medicine such as homeopathy. There were no legal
distinctions among any of these schools.

Hospitals themselves were not certified or regulated either, nor were
they connected to medical schools. Many hospitals required that all
patients be treated only by the hospital’s staff physicians. When patients
entered a hospital, they could not be treated or even visited by their
regular physicians.

A Preview of Software Development and Maintenance in 2049 219

These small excerpts from Paul Starr’s book illustrate why the
American Medical Association was formed, and why it wished to improve
physician training and also introduce formal specialties, licensing, and
certification. As it happened, it required about 50 years for the AMA to
achieve these goals.

If certification and licensing should occur for software, the approach
used for medical certification is probably the best model. As with early
medical certification, some form of “grandfathering” would be needed
for existing practitioners who entered various fields before certification
began.

What is an interesting question to consider is: What are the actual
topics that are so important to software engineering that certification
and licensing might be of value? In the medical field, general practitio-
ners and internists deal with the majority of patients, but when certain
conditions are found, patients are referred to specialists: oncology for
cancer, cardiology, obstetrics, and so forth. There are currently 24 board-
certified medical specialties and about 60 total specialties.

For software engineering, the topics that seem important enough to
require specialized training and perhaps examinations and board cer-
tification are the following:

 1. General software engineering

 2. Software maintenance engineering

 3. Software security engineering

 4. Software quality engineering

 5. Large-system engineering (greater than 10,000 function points)

 6. Embedded software engineering

 7. Business software engineering

 8. Medical software engineering

 9. Weapons-system software engineering

10. Artificial-intelligence software engineering

There would also be some specialized topics where the work might or
might not be performed by software engineers:

 1. Software metrics and measurement

 2. Software contracts and litigation

 3. Software patents and intellectual property

 4. Software customer training

 5. Software documentation and HELP information

220 Chapter Three

 6. Software customer support

 7. Software testing and static analysis

 8. Software configuration control

 9. Software reusability

10. Software pathology and forensic analysis

11. Software due diligence

12. Data and business rule mining

13. Deployment of intelligent agents

As time goes by, other topics would probably be added to these lists.
The current set considers topics where formal training is needed, and
where either certification or licensing might possibly be valuable.

As of 2009, more than a dozen software topics have various forms of
voluntary certification available. Some of these include software project
management, function point counting (for several flavors of function
points), Six Sigma, testing (several different certificates by different
groups), Zachman architectural method, and quality assurance.

As of 2009, there seems to be no legal distinction between certified
and uncertified practitioners in the same fields. There is not a great
deal of empirical data on the value of certification in terms of improved
performance. An exception is that some controlled studies have dem-
onstrated that certified function-point counters have higher accuracy
levels than uncertified function-point counters.

By 2049, no doubt other forms of certification will exist for software,
but whether software will achieve the same level of training, licensing,
and certification as medicine is uncertain.

In 2009, about one-third of large software projects are terminated
due to excessive cost and schedule overruns. A majority of those that
are finished run late and exceed their budgets. When delivered, almost
all software applications contain excessive quantities of defects and
numerous very serious security flaws.

It is obvious from the current situation that software is not a true
engineering discipline in 2009. If software engineering were a true dis-
cipline, there would not be so many failures, disasters, quality problems,
security flaws, and cost overruns.

If software engineering should become a licensed and certified occupa-
tion, then the issue of professional malpractice will become an impor-
tant one. Only when the training and performance of software personnel
reaches the point where project failures drop below 1 percent and defect
removal efficiency approaches 99 percent would “software engineering”
performance be good enough to lower the odds of wiping out the industry
due to malpractice charges. In fact, even 2049 may be an optimistic date.

A Preview of Software Development and Maintenance in 2049 221

Software Litigation in 2049

Litigation seems to be outside of the realm of the rest of the economy,
and lawsuits for various complaints will apparently increase no matter
what the recession is doing. The author often works as an expert wit-
ness in software breach of contract litigation, but many other kinds of
litigation including, but not limited to, the following are

 1. Patent or copyright violations

 2. Tax litigation on the value of software assets

 3. Theft of intellectual property

 4. Plagiarism or copying code and document segments

 5. Violations of noncompetition agreements

 6. Violations of nondisclosure agreements

 7. Fraud and misrepresentation by software vendors

 8. Fraud and misrepresentation by software outsourcers

 9. Damages, death, or injuries caused by faulty software

10. Recovery of stolen assets due to computer fraud

11. Warranty violations for excessive time to repair defects

12. Litigation against executives for improper governance of software

13. Litigation against companies whose lax security led to data theft

14. Antitrust suits against major companies such as Microsoft

15. Fraud charges and suits against executives for financial
irregularities

The legal and litigation arena has much to offer the software com-
munity when it comes to searching and consolidating information. The
legal reference firm of Lexis-Nexis is already able to search more than
5 million documents from more than 30,000 sources in 2009. Not only
that, but legal information is already cross-indexed and much easier to
use for tracing relevant topics than software literature is.

From working as an expert witness in a number of lawsuits, the
author finds it very interesting to see how trial attorneys go about
their preparation. On the whole, a good litigator will know much more
about the issues of a case than almost any software engineer or software
manager knows about the issues of a new software application. In part
this is due to the excellent automation already available for searching
legal materials, and in part it is due to the organizations and support
teams in law firms, where paralegals support practicing attorneys in
gathering key data.

222 Chapter Three

Even the structure of a lawsuit might be a useful model for structur-
ing software development. The first document in a lawsuit is a com-
plaint filed by the plaintiff. Since most software applications are started
because of dissatisfaction with older legacy applications or dissatis-
faction with particular business practices, using the format of a legal
complaint might be a good model for initial requirements.

During the discovery period of a lawsuit, the defendants and the
plaintiffs are asked to provide written answers to written questions
prepared by the attorneys, often with the assistance of expert wit-
nesses. A discovery phase would be a good model for gathering more
detailed requirements and initial design information for software
projects.

At some point between the initial complaint and the completion of
the discovery phase, expert witnesses are usually hired to deal with
specific topics and to assist the lawyers in writing the deposition ques-
tions. The experts also write their own expert-opinion reports that draw
upon their knowledge of industry topics. For software litigation, experts
in quality control and software costs are often used. During software
projects, it would also be useful to bring outside experts for critical
topics such as security and quality where in-house personnel may not
be fully qualified.

After the discovery phase is complete, the next phase of a lawsuit
involves depositions, where the defendants, plaintiffs, witnesses, and
experts are interviewed and examined by attorneys for both sides of the
case. There is no exact equivalent to depositions in most software devel-
opment projects, although some aspects of quality function deployment
(QFD) and joint application design (JAD) do have slight similarities in
that they involve personnel with many points of view trying to zero in
on critical issues in face-to-face meetings.

Depositions are where the real issues of a lawsuit tend to surface.
Good litigators use depositions to find out all of the possible weaknesses
of the opposing side’s case and personnel. It might be very useful to have
a form of deposition for large software projects, where stakeholders and
software architects and designers were interviewed by consultants who
played the parts of both plaintiff and defendant attorneys.

The value of this approach for software is that someone would play the
role of a devil’s advocate and look for weaknesses in architecture, devel-
opment plans, cost estimates, security plans, quality plans, and other
topics that often cause major software projects to fail later on. Usually,
software projects are one-sided and tend to be driven by enthusiasts
who don’t have any interest in negative facts. The adversarial roles of
plaintiff and defendant attorneys and expert witnesses might stop a lot
of risky software projects before they got out of control or spend so much
money that cancellation would be a major financial loss.

A Preview of Software Development and Maintenance in 2049 223

For software, it would be useful if we could achieve the same level of
sophistication in searching out facts and insights about similar projects
that lawyers have for searching out facts about similar cases.

Once intelligent agents and expert systems begin to play a role in soft-
ware development and software maintenance, they will of course also play
a role in software litigation. A few examples of how intelligent agents and
expert systems can support software litigation are shown next:

■ The search engines used by Lexis-Nexis and other litigation support
groups are already somewhat in advance of equivalent search capa-
bilities for software information.

■ Software cost-estimating tools are already in use for tax cases, where
they are used to model the original development costs of applications
that failed to collect historical data.

■ Static analysis of code segments in litigation where allegations of
poor quality or damages are part of the plaintiff claims should add a
great deal of rigor to either the side of the plaintiff or the side of the
defendant.

■ A new kind of litigation may soon appear. This is litigation against com-
panies whose data has been stolen, thus exposing thousands of custom-
ers or patients to identity theft or other losses. Since the actual criminals
may be difficult to apprehend or live in other countries (or even be other
national governments), it may be that litigation will blame the company
whose data was stolen for inadequate security precautions. This is a
form of consequential damages, which are seldom allowed by U.S. courts.
But if such litigation should start, it would probably increase rapidly.
Static analysis and other expert systems could analyze the applications
from which the data was stolen and identify security flaws.

■ Automatic sizing methods for legacy applications that create func-
tion point totals can be used for several kinds of litigation (tax cases,
breach of contract) to provide comparative information about the
application involved in the case and similar applications. Size corre-
lates with both quality and productivity, so ascertaining size is useful
for several kinds of litigation.

■ A new form of software cost-estimating tool (used as an example in
this chapter) can predict the odds of litigation occurring for outsource
and contract software development. The same tool predicts delivered
defects and problems encountered by users when attempting to install
and use buggy software.

■ The same software cost-estimating tool used in this chapter, already
operational in prototype form in 2009, can predict the costs of litigation
for both the plaintiff and defendant. It often happens that neither party

224 Chapter Three

entering litigation has any idea of the effort involved, the costs involved,
the interruption of normal business activities, and the possible freezing
of software projects. The prototype estimates legal effort, expert-witness
effort, employee and executive effort, and the probable duration of the
trial unless it settles out of court.

■ Static analysis tools can be used to find identical code segments
in different applications, in cases involving illegal copying of code.
(Occasionally, software companies deliberately insert harmless errors
or unusual code combinations that can serve as telltale triggers in
case of theft. These can be identified using intelligent agents or as
special factors for static analysis tools.)

■ A combination of static analysis tools and other forms of intelligent
agents can be used to search out prior knowledge and similar designs
in patent violation cases.

■ Software benchmarks and software quality benchmarks can be used
to buttress expert opinions in cases of breach of contract or cases
involving claims of unacceptable quality levels.

■ For litigation, depositions are held face-to-face, and the statements
are taken down by a court stenographer. However, for software meet-
ings and fact-gathering in 2049, more convenient methods might be
used. Many meetings could take place in virtual environments where
the participants interacted through avatars, which could either be
symbolic or actually based on images of the real participants. Court
stenographers would of course not be necessary for ordinary discus-
sions of requirements and design for software, but it might be of
interest to record at least key discussions using technologies such
as Dragon Naturally Speaking. The raw text of the discussions could
then be analyzed by an expert system to derive business rules, key
algorithms, security and quality issues, and other relevant facts.

■ A powerful analytical engine that could examine source code, perform
static analysis, perform cyclomatic and essential complexity analysis,
seek out segments of code that might be copied illegally, quantify size
in terms of function points, examine test coverage, find error-prone
modules, look for security flaws, look for performance bottlenecks, and
perform other kinds of serious analysis would be a very useful support
tool for litigation, and also for maintenance of legacy applications.
The pieces of such a tool exist in 2009, but are not all owned by one
company, nor are they yet fully integrated into a single tool.

Software litigation is unfortunate when it occurs, and also expensive
and disruptive of normal business. Hopefully, improvements in quality
control and the utilization of certified reusable material will reduce breach
of contract and warranty cases. However, tax cases, patent violations, theft

A Preview of Software Development and Maintenance in 2049 225

of intellectual property, and violations of employment agreements can
occur no matter how the software is built and maintained.

In conclusion, the software industry should take a close look at the legal
profession in terms of how information is gathered, analyzed, and used.

Summary and Conclusions

A major change in development between 2009 and 2049 will be that the
starting point circa 2049 assumes the existence of similar applications that
can be examined and mined for business rules and algorithms. Another
major change is the switch from custom design and line-by-line coding to
construction from reusable designs and reusable code segments.

For these changes to occur, a new kind of design and development sup-
port tools will be needed that can analyze existing applications and extract
valuable information via data mining and pattern matching. Intelligent
agents that can scan the Web for useful data and patent information are
also needed. Not only patents, but government rules, laws, international
standards, and other topics also need intelligent agents.

A final change is that every application circa 2049 should routinely
gather and collect data for productivity, quality, and other benchmarks.
Some tools are available for these purposes in 2009 as are the ISBSG
questionnaires, but they are not yet as widely utilized as they should be.

The goal of the software industry should be to replace custom design
and labor-intensive line-by-line coding with automated construction
from zero-defect materials.

As the global economy continues another year of recession, all com-
panies need to find ways of reducing software development and main-
tenance costs. Line-by-line software development is near the limit of its
effective productivity, and it seldom achieved effective quality or secu-
rity. New methods are needed that replace custom design and custom
line-by-line coding with more automated approaches.

Maintenance and portfolio costs also need to be reduced, and here too
intelligent agents and expert systems that can extract latent business
rules and find quality and security flaws are on the critical path for
improving software portfolio economics and security.

Readings and References

Festinger, Leon. A Theory of Cognitive Dissonance. Palo Alto, CA: Stanford University
Press, 1957.

Kuhn, Thomas. The Structure of Scientific Revolutions. Chicago: University of Chicago
Press, 1970.

Pressman, Roger. Software Engineering – A Practitioners’ Approach, Sixth Edition. New
York: McGraw-Hill, 2005.

Starr, Paul. The Social Transformation of American Medicine. Basic Books, 1982.
Strassmann, Paul. The Squandered Computer. Stamford, CT: Information Economics

Press, 1997.

This page intentionally left blank

227

Chapter

 4
How Software Personnel

Learn New Skills

Introduction

The combination of the financial meltdown of 2008 and 2009 followed
by the global recession will make profound changes in training of pro-
fessional personnel. Low-cost methods such as e-learning will expand
rapidly. High-cost methods such as live conferences, classroom training,
and several forms of paper publications will decline rapidly. Fortunately,
the technologies associated with e-learning are at the point that their
effectiveness is increasing.

The rate of change of software technology is extremely rapid. New
programming languages appear almost monthly. New programming
tools appear almost daily. New software development methodologies
appear several times a year.

The fast rate of software technology change means that software pro-
fessionals are faced with a continuing need to learn new skills. What
channels are available to software professionals for learning new skills?
How good are the available ways of learning, and what new ways are
likely to occur?

Even as software learning methods improve, there are a number of
critical topics where software education lags far behind what is truly
needed to achieve professional status for software. The most glaring
omissions include

1. Software security practices for building low-risk applications

2. Software quality control practices for minimizing delivered defects

3. Software measures and metrics for effective economic analysis

227

228 Chapter Four

4. Software estimating and planning methods for on-time delivery

5. Software architecture for optimizing use of reusable components

6. Software methods for effective renovation of legacy applications

7. Software technology evaluation and technology transfer

8. Software intellectual property protection

These gaps and omissions need to be quickly filled if software is to
evolve from an art form into a true engineering discipline.

Due to the continuing recession, attendance at conferences is going
down, some in-house training is being cancelled, and some software
instructors are being laid off. These are likely to be permanent changes.
From 2009 through the indefinite future, e-learning and webinars are
likely to be the major education channel for professional education.

Even newer methods such as virtual environments, avatars, and text
mining are likely to grow as the recession continues. Over and above
their low costs, these newer methods may offer actual advantages as
approaches to learning.

The Evolution of Software Learning Channels

The world of software is evolving new technologies as rapidly as any indus-
try in human history. This means that software professionals are faced with
a need to acquire new knowledge and new skills at a very rapid clip.

As of 2009, the United States currently employs about 2.6 million per-
sonnel in the technical areas of programming or software development
and maintenance, about 280,000 software managers, and perhaps another
1.1 million ancillary personnel in related specialties such as software
sales, customer support, software technical writing, and many others.

The U.S. total is probably over 3.8 million professionals if all software-
related occupations are considered. The European total is slightly larger
than that of the United States, and the world total is approaching 18 mil-
lion. Exact counts are not available for India, China, and Russia, but these
three countries combined probably are equivalent to the U.S. total, and
software work is growing very rapidly in all three. Globally, all software
personnel need constant refreshment of their knowledge to stay current.

The financial crisis and recession of 2008 and 2009 (and beyond) are
likely to disrupt the normal channels of software education. To conserve
funds, many companies will cut back on training expenses. A significant
number of software personnel may lose their jobs due to downsizing
or to actual bankruptcy of their companies. As a result, attendance at
conferences will probably diminish sharply, as will attendance at com-
mercial education classes. The effect of a long recession on university and
graduate school education is uncertain. It may be that lack of normal

How Software Personnel Learn New Skills 229

job opportunities may actually increase university and graduate school
enrollments, assuming that loans and funding sources do not dry up.

Webinars and online educational channels are likely to expand due
in large part to their low costs for both sponsors and students. Indeed,
webinars are exploding so rapidly that there is a need for a central cata-
log of all webinars, organized by topic. On any business day, no fewer
than 50 software webinars are being offered in the United States, and
no doubt this number will soon rise into the hundreds.

It is conceivable that the recession may cause significant new
research into hypermodern training methods such as virtual real-
ity “classrooms,” text mining to convert paper documents into web-
accessible documents, and shifting information from paper form into
e-book and web-accessible form.

When this report was first produced in 1995, there were only ten
major channels for software personnel to acquire new information (see
Table 4-1). These channels varied in effectiveness and costs.

Today in 2009, there are 17 channels available for software person-
nel to acquire new information. New forms of electronic books, blogs,
Twitter, web browsing, and webinars, and simulation web sites such as
Second Life have been added to the suite of learning methods. In addi-
tion, Google and Microsoft are in the process of converting millions of
paper documents into online web-accessible documents.

The current report uses a new way of evaluating learning methods.
Each method is ranked in terms of four factors using a scale from 1
(best) to 10 (worst):

1. Cost

2. Learning efficiency

3. Learning effectiveness

4. Currency of information

 1. In-house education

 2. Commercial education

 3. Vendor education

 4. University education

 5. Self-study from workbooks

 6. Self-study from CD-ROMs or DVDs

 7. Live conferences

 8. Online education via the Internet and World Wide Web

 9. Books

10. Journals

TABLE 4-1 Software Education Channels Available in 1995

230 Chapter Four

The number “1” is the top rank or score for each category. All of the
available methods are then listed in descending order for each topic.

The first factor, cost, does not need much explanation. It simply refers
to the expenses a student is likely to have in order to use the learning
channel. Costs range from almost free for activities such as web brows-
ing, to extremely expensive for attending a major university or going
to graduate school.

The second factor, learning efficiency, refers to the amount of calendar
time required to impart a given amount of new knowledge to students. A
score of “1” indicates the most efficient form of learning. Online educa-
tion and web browsing are the quickest methods of learning.

The third factor, learning effectiveness, refers to the volume of information
that the learning channel can transmit to a student. A score of “1” indicates
the most effective form of learning. Live instructors in universities and in-
house training transmit more information than any other channels.

The fourth factor, currency, refers to the average age of the informa-
tion that is being transmitted, with a score of “1” ranking as highest or
having the most recent data. For currency, the online sources of educa-
tion tend to have the most recent data, followed by conferences and
commercial education. Universities lag in currency.

Table 4-2 lists the 17 channels evaluated in the 2009 versions of this
report.

Between 1995 and 2009, two computer-aided forms of learning, web
browsing and webinars (e-learning), have not only been added to the
list, but also have now achieved top ranking in the categories of cost,
currency, and efficiency. They are still in the middle of the list in terms
of effectiveness, however.

As the recession deepens and lengthens, and as technologies change,
we can expect to see many future changes in learning methods and
especially changes that achieve lower costs. Hopefully, higher effective-
ness might be achieved at the same time.

What Topics Do Software Engineers
Need to Learn Circa 2009?

Table 4-3 is a sample of current terms, acronyms, and abbreviations
that have come into prominence within the software community over
the past few years. The terms give flavor to the kinds of technologies
that software personnel need to know about in 2009, technologies which
in some cases did not exist even as late as 2000.

Even with 75 entries, this list covers no more than perhaps 30 per-
cent of the topics that are part of the overall knowledge of the software
engineering domain as of 2009. Indeed there are more than 700 known
programming languages and dialects, more than 50 software design

How Software Personnel Learn New Skills 231

approaches, and at least a dozen named software development methods,
to say nothing of an almost infinite variety of combinations of things.

The topics in Table 4-3 are primarily concerned with software engi-
neering topics. Many other topics affect software outside of software
engineering, such as asset management, licensing, protecting intellec-
tual property, governance, the Information Technology Infrastructure
Library (ITIL), and hundreds of other topics.

Each topic in this list is relatively new. Each is relatively complicated.
How can software personnel stay current with the latest technologies?
Even more important, how can software personnel actually learn how
to use these new concepts well enough to be effective in their jobs?

Since not every new topic is appropriate for every project, and since
some topics are mutually exclusive, it is also important for software
engineers and managers to know enough about each to select the appro-
priate methods for specific projects.

An interesting hypothesis is that one reason why traditional topics
tend to fall out of use is that the volume of new topics in the software
world is so large. For example, most personnel are limited in the amount
of time that can be spent on training. If there is a choice between a new
topic such as “Agile development” and a traditional topic such as “design
inspections,” the new is likely to be chosen over the old.

Average
Score Form of Education

Cost
Ranking

Efficiency
Ranking

Effectiveness
Ranking

Currency
Ranking

3.00 Web browsing 1 1 9 1

3.25 Webinars/e-learning 3 2 6 2

3.50 Electronic books 4 3 3 4

5.25 In-house training 9 4 1 7

6.00 Self-study CD/DVD 4 3 7 10

7.25 Vendor training 13 6 5 5

7.25 Commercial training 14 5 4 6

7.50 Wiki sites 2 9 16 3

8.25 Live conferences 12 8 8 5

9.00 Simulation web sites 8 7 13 8

10.25 Self-study from books 5 13 12 11

10.25 Journals 7 11 14 9

10.75 On-the-job training 11 10 10 12

11.75 Mentoring 10 12 11 14

12.00 Books 6 14 15 13

12.25 Undergraduate
training

15 15 3 16

12.25 Graduate training 16 16 2 15

TABLE 4-2 Ranking of Software Learning Channels as of January 2009

232 Chapter Four

TABLE 4-3 Software Knowledge Areas Circa 2009

35. ITIL (Information Technology
Infrastructure Library)

36. JAD (joint application design)

37. Java

38. JavaScript

39. OO (object-oriented)

40. OLAP (online analytical processing)

41. OLE (object linking and embedding)

42. Orthogonal defect tracking

43. Process improvement

44. PSP (Personal Software Process)

45. QFD (quality function deployment)

46. RAD (rapid application development)

47. REST (Representational State
Transfer)

48. RPC (Remote Procedure Call)

49. Ruby

50. Ruby with Rails

51. RUP (Rational Unified Process)

52. Renovation of legacy applications

53. Reusability

54. Scrum

55. Security vulnerabilities

56. Software as a Service (SaaS)

57. SOA (service-oriented architecture)

58. SOAP (Simple Object Access Protocol)

59. Six Sigma for software

60. Static analysis

61. Story points

62. Supply-chain integration

63. TCO (total cost of ownership)

64. TickIT

65. TQM (total quality management)

66. TSP (Team Software Process)

67. Trusted computing

68. UML (unified modeling language)

69. Use cases

70. Use-case points

71. Virtualization

72. Web-based applications

73. Web object points

74. Wiki sites

75. XML

 1. Agile development

 2. ASP (application service provider—
software available via the World
Wide Web)

 3. Automated static analysis

 4. Automated testing

 5. B2B (acronym for “business to
business” or business via the World
Wide Web)

 6. BPR (business process reengineering)

 7. Caja

 8. Client-server computing

 9. Cloud computing

10. Computer security

11. CMM (capability maturity model)

12. CMMI (capability maturity model
integration)

13. COSMIC (a function point variant
from Canada and Europe)

14. Configuration control

15. CRM (Customer Relationship
Management)

16. Data mining

17. Data quality

18. Data warehouses

19. Dot-com (a company doing business
via the World Wide Web)

20. E-business (electronic business)

21. E-learning

22. E programming language

23. EA (Enterprise Architecture)

24. ERP (enterprise resource planning)

25. Extreme programming (XP)

26. Formal design and code inspections

27. Function point metrics

28. GUI (graphical user interface)

29. Hacking defenses

30. HTML (Hypertext Markup
Language)

31. I-CASE (integrated computer-aided
software engineering)

32. IE (information engineering)

33. ISO (International Standards
Organization)

34. ISP (Internet service provider)

How Software Personnel Learn New Skills 233

In the 1500s, the English financier Sir Thomas Gresham noted
that when two forms of currency were in circulation that had differ-
ent values compared with a fixed standard such as gold, people would
hoard the more valuable currency and use the less valuable currency.
Gresham’s law describing this phenomenon was quite succinct: “bad
drives out good.”

For software education and training, students with finite available
time whose choice is between learning a brand-new technology or learn-
ing an older technology, the odds favor signing up for a class in the new
technology. For software, a variation of Gresham’s law for technology
education is “new drives out old.”

The fact that courses in new topics tend to be more popular than
courses in older topics has nothing to do with the effectiveness or value
of the two topics. It is merely a phenomenon that new topics seem to be
favored over older topics.

Some older topics such as formal inspections of requirements, design,
and code are still among the most effective forms of defect removal
ever developed and are also valuable in terms of defect prevention. Yet
courses in formal inspections seldom draw as many attendees as courses
in newer subjects such as test-driven development, Agile development,
or automated testing.

In this book, the way of evaluating the overall effectiveness of vari-
ous education channels is to combine data on the numbers of students
using the channel, the students’ satisfaction with the materials, and the
students’ abilities to actually acquire new skills.

The rankings in this section are derived from interviews and client
benchmark studies that the author and his company have performed.
Overall, about 600 companies have been visited, including roughly 150
large enough to be included in the Fortune 500 set. About 35 govern-
ment sites have also been visited, at both state and national levels.
More than a dozen of the enterprises visited employed at least 10,000
software personnel. Examples of major software employers include IBM,
Microsoft, and Electronic Data Systems (EDS). More than 100 of the
companies employed more than 1000 software personnel.

Software Engineering Specialists Circa 2009

The author was commissioned to carry out a study of software specializa-
tion within large enterprises. Some of the enterprises that participated
included AT&T, the U.S. Air Force, Texas Instruments, and IBM. These
enterprises were visited by the author and his colleagues, and they
participated in detailed surveys. A number of other corporations were
contacted by telephone, or as part of assessment and benchmark consult-
ing studies. These demographic studies are still continuing, and more

234 Chapter Four

recent data was published in the author’s book Software Assessments,
Benchmarks, and Best Practices (Addison-Wesley Professional, 2000).

The original study revealed several interesting facts about the soft-
ware workforce, but also revealed considerable ambiguity in software
demographics. For example:

■ Large corporations employ a huge variety of specialists.

■ Small corporations employ few specialists and utilize generalists.

■ Systems software and information technology groups use different
specialists.

■ Generic titles such as “member of the technical staff” confuse demo-
graphic data.

■ There is no consistency from company to company in job titles used.

■ There is no consistency among companies in work done by the same
job titles.

■ The e-business domain is creating scores of new software job-title
variants.

■ Human resource departments seldom have accurate software employee
data.

■ Software has many degrees besides computer science or software
engineering.

■ Some software personnel prefer not to be counted as software
professionals.

The last point was a surprise. Many of the personnel who write embed-
ded software are electrical or mechanical engineers by training. Some
of these engineers refuse to call themselves programmers or software
engineers, even though their primary work is actually that of creating
software.

In one company visited, several hundred engineers were developing
embedded software for automotive purposes, but were not considered
to be software workers by the human resources group, since their aca-
demic degrees were in other forms of engineering. When interviewed,
many of these engineers preferred to be identified by their academic
engineering degrees, rather than by their actual jobs. Seemingly, soft-
ware engineering is viewed as of somewhat lower status than electrical
engineering, telecommunications engineering, automotive engineering,
and many others.

In none of the companies and government organizations surveyed could
the human resources groups accurately enumerate the numbers of soft-
ware personnel employed or their job titles. In several of the companies
and government agencies visited, the human resources organizations had

How Software Personnel Learn New Skills 235

no job descriptions of the specialist occupations now part of the overall
software community, or even of some mainstream jobs such as “software
engineer” or “programmer.”

Assume you were interested in learning the roles and knowledge
required to perform a certain job such as “business analyst,” and you
visit ten companies who would seem likely to employ such specialists.
What you might find as of 2009 is the following:

■ Two of the companies employ business analysts, who use similar
job descriptions maintained by the company human resource orga-
nizations.

■ Three of the companies employ business analysts, but use unique
local jobs descriptions maintained locally and unknown to the human
resource organizations.

■ Three of the companies use the title of “business analyst,” but have
no written job descriptions either locally or with the human resource
organizations.

■ Two of the companies have people who seem to work as business ana-
lysts, but have different job titles such as “member of the technical
staff” or “advisory analyst.” These two have generic job descriptions
used by many other specialties.

Given the randomness of today’s situation, it is very difficult to
ascertain even basic facts such as how many software employees work
for large organizations. Ascertaining more granular data such as the
exact kind and number of specialists employed is impossible as of 2009.
Ascertaining the specific kinds of knowledge and training these special-
ists need is not quite impossible, but has thousands of local variations
and no consistent overall patterns.

The responsibilities for defining positions and recruiting software
technical personnel is often delegated to the software executives and
managers, with the role of the human resource organization being sec-
ondary and involving nothing more than processing offers and entering
new employees into various payroll and administrative systems.

The interviews carried out during the study revealed that statistical
analysis of software occupations using only employment data provided
by human resources organizations would understate the numbers of
software professionals by perhaps 30 percent in typical large high-tech-
nology companies. This is because specialized positions such as embed-
ded software development, quality assurance, technical writers, and
testing specialists may not be included in counts of programmers or
software engineers.

Another source of confusion is the use of generic occupation titles
such as “member of the technical staff,” which can subsume more than

236 Chapter Four

20 occupational specialties that include software, electrical engineers,
telecommunications engineers, avionics engineers, and many other
technical occupations such as business analysts and quality assurance
personnel. In some companies, the title “member of the technical staff”
includes hardware engineers, software engineers, and support personnel
such as technical writers.

The gaps and missing data from human resource organizations
explain some of the ambiguity in software population studies published
by journals and by government organizations such as the Bureau of
Labor Statistics. While many studies no doubt are accurate in terms of
reporting the information supplied by human resources organizations,
they are not able to deal with errors in the incoming raw data itself.

Varieties of Software Specialization
Circa 2009

The total number of kinds of software specialists exceeds 100 and
appears to be growing. The overall classes of specialization observed
fall into five discrete domains:

■ Specialists in specific tools, methods, or languages such as Java or
object-orientation

■ Specialists in particular business, industry, or technology domains
such as banking

■ Specialists in support tasks such as testing, quality assurance, or
documentation

■ Specialists in managerial tasks such as planning, estimating, and
measurement

■ Specialists in portions of software life cycles such as development or
maintenance

Table 4-4 lists the major kinds of specialists observed in the course
of software demographic studies and assessment studies among large
corporations and government agencies.

Although Table 4-4 includes some 115 job titles or forms of special-
ization (and is not even 100 percent complete), no company yet studied
has employed more than about 50 software specialties that could be
correctly identified. Organizations using “member of the technical staff”
as a generic job title may have other specialties that were not identified
during the author’s studies.

An additional recent title found in more than a dozen companies that
specialize in software is that of “evangelist.” This is an intriguing title
because it demonstrates that software technology selection tends to be a
faith-based activity rather than a scientific or knowledge-based activity.

How Software Personnel Learn New Skills 237

1. Accounting/financial specialists

2. Agile development specialists

3. Architects (software/systems)

4. Assessment specialists

5. Audit specialists

6. Baldrige Award specialists

7. Baselining specialists

8. Benchmarking specialists

9. Business analysts

10. Business Process Reengineering (BPR) specialists

11. Capability Maturity Model Integration (CMMI) specialists

12. Complexity specialists

13. Component development specialists

14. Configuration control specialists

15. Cost estimating specialists

16. Consulting specialists (various topics)

17. Curriculum planning specialists

18. Customer liaison specialists

19. Customer support specialists

20. Database administration specialists

21. Data center support specialists

22. Data quality specialists

23. Data warehouse specialists

24. Decision support specialists

25. Development specialists

26. Distributed systems specialists

27. Domain specialists

28. Education specialists (various topics)

29. Embedded systems specialists

30. Encryption specialists

31. Enterprise Resource Planning (ERP) specialists

32. Frame specialists

33. Expert-system specialists

34. Function point specialists (COSMIC certified)

35. Function point specialists (IFPUG certified)

36. Function point specialists (Finnish certified)

37. Function point specialists (Netherlands certified)

38. Generalists (who perform a variety of software-related tasks)

39. Globalization and nationalization specialists

40. Graphics artist specialists

41. Graphics production specialists

42. Graphical user interface (GUI) specialists

TABLE 4-4 Software Specialization in Large Software Organizations

(Continued)

238 Chapter Four

43. Hacking specialists (for defensive purposes)

44. Human factors specialists

45. Information engineering (IE) specialists

46. Instructors (Management topics)

47. Instructors (Software topics)

48. Instructors (Quality topics)

49. Instructors (Security topics)

50. Integration specialists

51. Internet specialists

52. ISO certification and standards specialists

53. Joint application design (JAD) specialists

54. Knowledge specialists

55. Library specialists (for project libraries)

56. Litigation support specialists

57. Maintenance specialists

58. Marketing specialists

59. Member of the technical staff (multiple specialties)

60. Measurement specialists

61. Metric specialists

62. Microcode specialists

63. Multimedia specialists

64. Nationalization specialists

65. Network maintenance specialists

66. Network specialists (LAN)

67. Network specialists (WAN)

68. Network specialists (Wireless)

69. Neural net specialists

70. Object-oriented specialists

71. Outsource evaluation specialists

72. Package evaluation specialists

73. Performance specialists

74. Personal Software Process (PSP) specialists

75. Project cost analysis specialists

76. Project managers

77. Project planning specialists

78. Process improvement specialists

79. Productivity specialists

80. Quality assurance specialists

81. Quality function deployment (QFD) specialists

82. Quality measurement specialists

83. Rapid application development (RAD) specialists

84. Rational Unified Process (RUP) specialists

TABLE 4-4 Software Specialization in Large Software Organizations (continued)

How Software Personnel Learn New Skills 239

85. Research fellow specialists

86. Reliability specialists

87. Repository specialists

88. Reengineering specialists

89. Renovation specialists

90. Reverse engineering specialists

91. Reusability specialists

92. Risk management specialists

93. Sales specialists

94. Sales support specialists

95. Scope managers

96. Scrum masters

97. Security specialists

98. Service-oriented architecture (SOA) specialists

99. Six Sigma specialists

100. Standards specialists (ANSI, IEEE, etc.)

101. Statistical specialists

102. Systems analysis specialists

103. Systems support specialists

104. Technology evaluation specialists

105. Team Software Process (TSP) specialists

106. Technical translation specialists

107. Technical writing specialists

108. Testing specialists

109. Test library control specialists

110. Total quality management (TQM) specialists

111. Value analysis specialists

112. Virtual reality specialists

113. Web development specialists

114. Web page design specialists

115. Webmasters

TABLE 4-4 Software Specialization in Large Software Organizations (continued)

The context of the evangelist title usually occurs with fairly new tech-
nical concepts such as “Java evangelist” or “Linux evangelist.” The title
is common enough so that a Global Network of Technology Evangelists
(GNoTE) was formed a few years ago by a Microsoft employee.

While the evangelist job title seems to be benign and is often associated
with interesting new concepts, it does highlight some differences between
software engineering, medicine, and older engineering fields in terms of
how ideas are examined and tested prior to widespread adoption. For
software, charismatic leadership seems to be more widely associated with

240 Chapter Four

technology selection and technology transfer than empirical data based
on experiment or actual usage.

The book Selling the Dream by Guy Kawasaki (formerly of Apple) in
1991 may be the first published use of “evangelist” in a software context.
However, in an interview, Kawasaki said that Apple was already using
“evangelist” when he first arrived, so he did not originate the title. Even
so, Apple is a likely choice as the origin of this interesting job title.

A few other software job titles have occurred whose origins are worth
noting. The Six Sigma community has adopted some of the terminology
from martial arts and uses “yellow belt,” “green belt,” and “black belt”
to indicate various degrees of proficiency.

If licensing and board certification should come to pass in the future
of software engineering, it is interesting to speculate how titles such
as “evangelist” and “black belt” might be handled by state licensing
examinations.

There are interesting correlations between specialization and com-
pany size, and also by specialization and industry.

In general, large corporations with more than 1000 total software
workers have the greatest numbers of specialists. Small companies with
fewer than about 25 software personnel may have no specialists at all in
terms of job titles, even though there may be some distribution of work
among the software staff.

The high-technology industries such as telecommunications, defense,
and aerospace employ more specialists than do service industries and
companies in the retail, wholesale, finance, and insurance sectors.

The software domain is expanding rapidly in terms of technologies.
The time has arrived when one person cannot know more than a fraction
of the information needed to do an effective job in the software industry.
When this situation occurs, specialization is the normal response.

If the 75 topics shown in Table 4-3 were combined with the 115 spe-
cialists shown in Table 4-4, the result would be a matrix with some 8,625
cells. Since each cell would include its own unique form of knowledge
and information requirements, it can be seen that keeping up to speed
in modern software engineering topics is a very difficult problem.

If a full spectrum of software topics with about 1000 entries were com-
bined with a full range of software and business specialists with about
250 occupations, the resulting matrix would contain some 250,000 cells.
It is apparent that unaided human intelligence could not encompass all
of the knowledge in all of the cells. Some form of simplification and a
formal taxonomy of knowledge branches would be needed to keep this
mass of information in order. No doubt intelligent agents and expert
systems would also be needed to extract and analyze knowledge for
specific activities and occupations.

How Software Personnel Learn New Skills 241

The emergence of specialization has occurred in most scholarly dis-
ciplines such as medicine and law. In fact, specialization has been a
common phenomenon for science in general. The specialties of chem-
istry, physics, biology, geology, and so on are all less than 200 years
old. Prior to the development of these specialized domains, those with
scholarly and scientific aspirations were identified by generic titles such
as “natural philosopher.”

If licensing and certification of software specialties should become a
reality, the presence of more than 115 different specialists will present
considerable difficulty. This is almost three times the number of medi-
cal specialties that exist in 2009 and more than four times the number
of legal specialists.

There would seem to be a necessity to prune and consolidate some
forms of specialization in order to bring the total number of specialists
into line with law and medicine; that is, fewer than 50 formal domains of
specialization and perhaps 25 primary specialties that have significant
numbers of practitioners.

It is interesting that software academic curricula appear to be aimed
more at generalists than at specialization. For example, most of the
quality assurance personnel interviewed learned the elements of testing
and quality control via on-the-job training or in-house courses rather
than at the university level.

Currently, the explosive growth of the World Wide Web and the emer-
gence of e-business as a major corporate focus are expanding the num-
bers of job titles. For example, the titles of “webmaster” and “web page
developer” appear to be less than ten years old.

New forms of specialization in the software domain occur very rap-
idly: more than five new kinds of specialists tend to occur almost every
calendar year. Chapter 3 of this book deals with the topic of software
certification and specialization. Chapter 3 offers suggestions about
the minimum number of specialists that might be needed. This is an
attempt to begin to identify the correlation between software occupa-
tions, and the knowledge and learning channels that will be required
to perform at professional levels.

Approximate Ratios of Specialists
to General Software Personnel

One of the major topics in the domain of specialization is how many spe-
cialists of various kinds are needed to support the overall work of the soft-
ware generalist community? Table 4-5 uses the term “generalist” to refer to
employees who perform software development programming and whose job
titles are “programmer,” “programmer/analyst,” or “software engineer.”

242 Chapter Four

The generalist category refers to workers whose main role is com-
puter programming, although they often do other work as well, such
as requirements analysis, design, testing, and perhaps creating user
documentation.

The topic of specialization is only just starting to be explored in depth,
so the following ratios have a high margin of error. Indeed, for some kinds
of specialization there are not yet any normative ratios available. Not all
of the specialists shown here occur within the same company. They are
ranked here in descending order. The data in Table 4-5 comes from large
corporations that employ more than 1000 software personnel in total.

Although the purpose of the author’s study of software specialization
was to explore software occupations in major companies, a secondary
result of the study was to recommend some significant improvements
in the nature of the data kept by human resource organizations.

In general, the demographic data maintained by human resource
organizations is inadequate to predict long-range trends or even current

Specialist Occupations Specialists to Generalists Generalist %

Maintenance and enhancement
specialists

1 to 4 25.0%

Testing specialists 1 to 8 12.5%

Systems analysts 1 to 12 12.0%

Technical writing specialists 1 to 15 6.6%

Business analyst 1 to 20 5.0%

Quality assurance specialists 1 to 25 4.0%

Database administration specialists 1 to 25 4.0%

Configuration control specialists 1 to 30 3.3%

Systems software support specialists 1 to 30 3.3%

Function point counting specialists 1 to 50 2.0%

Integration specialists 1 to 50 2.0%

Measurement specialists 1 to 50 2.0%

Network specialists (local, wide area) 1 to 50 2.0%

Performance specialists 1 to 75 1.3%

Architecture specialists 1 to 75 1.3%

Cost estimating specialists 1 to 100 1.0%

Reusability specialists 1 to 100 1.0%

Scope managers 1 to 125 0.8%

Package acquisition specialists 1 to 150 0.6%

Security specialists 1 to 175 0.6%

Process improvement specialists 1 to 200 0.5%

Education and training specialists 1 to 250 0.4%

Standards specialists 1 to 300 0.3%

TABLE 4-5 Approximate Ratios of Specialists to General Software Populations

How Software Personnel Learn New Skills 243

employment in software occupations. The data appears to be so incom-
plete for software occupations as to invalidate many demographic studies
published by government agencies and large information companies such
as Gartner Group. If we do not even know how many software person-
nel are employed today, it is hard to discuss future needs in a realistic
fashion.

Not only is there a huge gap in software demographic data, but there
also is an even larger gap in what all these specialized occupations
really need to know to perform their jobs with high levels of professional
competence. This gap affects university curricula and graduate schools,
and also affects every single learning channel.

The author hypothesizes that software has such a large number of
informal specialties because it is not yet a true engineering occupation.
Software is slowly evolving from a craft or art form, and therefore has
not yet achieved a stable point in either the kinds of knowledge that
are needed or the kinds of specialists that are required to utilize that
knowledge in a professional manner.

Evaluating Software Learning Channels
Used by Software Engineers

For more than 50 years, major software employers have tried to keep
their employees up to speed by offering training and education on
a continuing basis. The best-in-class software employers typically have
a pattern that resembles the following:

 1. From four to ten weeks of intensive training for new technical
employees

 2. Annual in-house training that runs from five to ten days per year

 3. From one to three external commercial seminars per year

 4. Monthly or at least quarterly “webinars” on newer topics

 5. A growing library of DVD training courses for self-study

 6. A significant library of technical books and journals

 7. Tuition-refund programs for managers and technical staff

 8. Access to web-based technical sites

 9. Subscriptions to software and management journals such as
CrossTalk

10. Subscriptions to executive journals such as CIO

11. Subscriptions to information providers such as Gartner Group

12. Increasing use of webinars, e-books, and web-based information

244 Chapter Four

Unfortunately, the recession of 2009 is likely to cause significant
reductions in many of these methods, as companies scramble to stay
solvent. Not only are some of the educational approaches likely to be cut
back, but also some of the instructors may face layoffs. Hiring itself may
be reduced to such low levels that training needs are also reduced.

Because multiple channels of education are available, it is interest-
ing to consider the topics for which each kind of channel is likely to
be selected, and their strengths and weaknesses. The following edu-
cational channels are ranked in terms of their overall scores. In the
following ranking, “1” is best. There are 17 channels shown in the full
discussion.

Number 1: Web Browsing
 Costs = 1; Efficiency = 1; Effectiveness = 9; Currency = 1; Overall
 Score = 3.00
 Prognosis: Expanding rapidly

Web browsing using search engines such as Google or Ask is now
the most rapid and cost-effective method for finding out about almost
any technical topic in the world. By using a few choice search phrases
such as “software quality” or “software cost estimating,” within a few
moments, millions of pages of information will be at hand.

The downside of web browsing is that the information is likely to be
scattered, chaotic, and a mixture of good and bad information. Even
so, web browsing is now a powerful research tool not only for software
engineers, but also for all knowledge workers.

A number of web portals provide unusually large numbers of links to
other relevant sources of information. One of these is the portal of the
Information Technology Metrics and Productivity Institute (ITMPI),
which provides an extensive fan-out to topics in areas such as software
engineering, quality assurance, project management, and maintenance
of legacy applications (www.ITMPI.org).

Among academic links, one of the most complete is that of Dave
W. Farthing of the University of Glamorgan in the United Kingdom (www
.comp.glam.ac.uk). This interesting portal has links to dozens of project
management sites and to the publishers of scores of project manage-
ment books.

A third portal to useful software topics is the web site of the Software
Engineering Institute (SEI), which is somewhat slanted toward the
government and defense sectors. However, it still covers a host of inter-
esting topics and provides many useful links (www.SEI.org).

However, consolidation of information by topic, cross indexing, and
knowledge extraction remain somewhat primitive in the software
domain.

How Software Personnel Learn New Skills 245

Number 2: Webinars, Podcasts, and E-Learning
 Costs = 3; Efficiency = 2; Effectiveness = 6; Currency = 2; Overall
 Score = 3.25
 Prognosis: Expanding rapidly in usage; improving in effectiveness

Using computers for training has long been possible, but new technol-
ogies are making rapid improvements. Within a few years, students may
be able to take extensive training in virtual environments augmented
by many new learning methods.

Webinars are a new kind of seminar that is exploding in popularity.
With webinars, the speakers and the attendees are located in their own
offices or homes, and all use their own local computers. A webinar host-
ing company connects all of the participants and also provides back-up
support in case any participant gets disconnected. The hosting company
also provides evaluations of the event.

Podcasts are similar to webinars, except that they may or may not be
broadcast live. If they are recorded, then the information is available on
demand at any time. Podcasts can also include quizzes and tests, with
automatic scoring and rerouting to different parts of the material based
on student answers.

In webinars, the primary speaker and also an MC communicate
with the attendees by phone, but PowerPoint slides or other computer-
generated information appears on the attendees’ screens, under the
control of the primary speaker or the MC.

Because no travel is involved, the efficiency and cost scores of webi-
nars are quite good. The currency score is also quite good. As of 2008,
the effectiveness was only mid-range but increasing rapidly. Webinars
at the moment are primarily used for single-purpose presentations of
up to about 90 minutes in duration.

Webinars and podcasts have expanded in numbers so rapidly that on
any given day, perhaps 50 such webinars are being offered concurrently
by various organizations. It is almost impossible to keep track of the num-
bers of webinars. What would be of value to the industry is a nonprofit
catalog that would allow companies and universities to post the schedules
and abstracts of all webinars for at least two months in advance.

In the future, it can be expected that because of the cost-effectiveness
of the webinar and podcast approach, entire courses of perhaps 10 to
20 hours in duration will migrate to the webinar method. At some point,
virtual environments using avatars will join the mix, and then e-learn-
ing will have a good chance of becoming more effective than any other
form of training in human history.

As of 2009, the technology of webinars is still immature. Disconnects,
low volume, and intermittent telephone problems are not uncommon.
The VOIP form of telephone calls, for example, often does not work at
all. No doubt these issues will be resolved over the next year or two.

246 Chapter Four

It is theoretically possible to envision entire courses taught on a global
basis without the students and instructors ever meeting face to face, by
using webinars and computer communications exclusively.

It is only a short step from today’s webinars to using a virtual class-
room where students and instructors can see each other, either as
abstract avatars or by using actual images of real people.

Some universities such as MIT have already integrated video and audio
connections into lecture halls, so that remote students can participate in
live classes. It is only a small step to extend this technology to hand-held
devices or to record the lectures and discussions for later use.

In addition to merely having webinars and then saying goodbye, astute
companies will note that the connections to several hundred possible
customers might be a good marketing opportunity as well. Attendees
can register with the instructor or the company sponsoring the event
to receive additional information.

Indeed, it would also be possible to invite webinar attendees to partici-
pate in other forms of information transfer such as wiki sites. There are
also blogs and Twitter sites, which are essentially channels for personal
views and opinions.

The long-range direction in online learning is positive. More and more
information will be available, and more and more personnel will be able
to communicate and share ideas without travel or face-to-face contact
in real life.

Eventually, some combination of avatars, virtual reality, and improved
methods of using intelligent agents to extract and consolidate knowledge
should lead to the ability to offer entire educational curricula from high-
school through graduate school via online and web-accessible methods.
No doubt wireless technologies will also be involved, and information
will also become available on hand-held devices such as smart phones.

Number 3: Electronic Books (e-books)
 Costs = 4; Efficiency = 3; Effectiveness = 3; Currency = 4; Overall
 Score = 3.50
 Prognosis: Expanding in usage; improving in effectiveness; declining
 in costs

Electronic books, or e-books, have been on the periphery of education
and entertainment for more than 20 years. In the past, electronic books
were characterized by dim screens, awkward interfaces, slow downloads,
limited content, and general inconvenience compared with paper books, or
even compared with normal computers whose screens are easier to see.

There have long been organizations such as Project Gutenberg that
make books available in HTML, PDA, Word, or other web-accessible forms.
This trend is now exploding as Google, Microsoft, and other major players
are attempting to use automated text-conversion tools to convert almost

How Software Personnel Learn New Skills 247

100 percent of hard-copy books into web-accessible formats. Needless to
say, these attempts have raised serious issues on copyrights, intellectual
property, and compensation for authors and copyright holders.

Also, given the huge volumes of online text now available, there are
also technical issues that need to be improved such as cross-references,
abstracts, indexes, inclusive catalogs, and so on. However, the trend toward
web-accessible text is expanding rapidly and will continue to do so.

Interestingly, the legal profession seems to be somewhat ahead of the
software profession in terms of concentrating knowledge, cross-refer-
encing it, and making information accessible to professionals who need
it. The Lexis-Nexis company, for example, has access to more than 5
million documents from perhaps 30,000 sources. There is no equiva-
lent organization that has such a well-organized collection of software
information.

More recently, starting in 2007 and 2008, Amazon and Sony began to
change the equation for electronic books with new models that solved
most of the problems of older e-books and simultaneously introduced
powerful new features.

The new Amazon Kindle and the Sony PR-505 have at least an outside
chance at transforming not only software learning, but also learning in
all other scientific disciplines. The best features of these new devices
include excellent screen clarity, very fast downloads (including wireless
connections), long battery life, and much-improved interfaces. In addi-
tion, they have some features that are even superior to regular paper
books. These include the ability to keep permanent annotations, to skip
from book to book on the same topic, and to get frequent updates as new
materials become available from publishers.

Using e-books as software learning tools, it would be easy to select and
download the top ten books on software project management, the top ten
books on software quality, the top ten books on software maintenance,
the top ten books on software cost estimating, and the top ten books
on software development, and have all of them present and available
simultaneously.

For colleges and universities, it would easily be possible to download
every book for every course each semester and have them all available
concurrently.

The current models of the Sony and Kindle devices are already quite
good, but as with all new products, improvements can be expected to
appear rapidly over the next few years. Within perhaps five years, it
can be anticipated that e-books will be making a substantial dent in
the market for conventional paper books. Some features to anticipate
include the ability to deal with graphics and animation downloads;
e-book subscriptions from major technical journals; and perhaps inclu-
sions of links to relevant web sites.

248 Chapter Four

Number 4: In-House Education
 Costs = 9; Efficiency = 4; Effectiveness = 1; Currency = 7; Overall
 Score = 5.25
 Prognosis: Effective, but declining due to recession

Due to the economic crisis and recession of 2008 and 2009, in-house
training is likely to diminish over the next few years due to layoffs and
cost-cutting on the part of major corporations, to say nothing of some
major corporations filing for bankruptcy and going out of business.

In-house education was number one in overall effectiveness from
1985, when our surveys started, through the end of 2007, before the
financial crisis and the recession. In-house education still ranks as
number 1 in effectiveness and is number 4 in efficiency. That means
that a great deal of information can be transmitted to students with
relative ease and speed.

However, this channel is only available for employees of fairly large
corporations such as IBM, Microsoft, Google, and the like. The author
estimates that roughly half of the U.S. software personnel currently
work in organizations large enough to have in-house training, that
is, just over 1.6 million U.S. software professionals have access to this
channel.

More recent studies in 2001, 2002, 2003, and 2004 indicated a decline
in this channel. The economic downturn of 2008 and 2009 caused some
in-house training to be cancelled, due in part to the instructors being
laid off or taking early retirement.

In addition, the reduction in entry-level hiring has reduced the need
for education of recent college graduates who are joining large companies
in junior positions. In-house education is likely to continue to be dimin-
ished through 2010 as the recession lengthens and deepens. If other
channels such as virtual education and webinars continue to expand,
the high-water mark for in-house education may have passed.

Some large software employers such as Accenture, AT&T, EDS, IBM,
Microsoft, and many others have in-house curricula for software pro-
fessionals and managers that are more diverse and current than most
universities in the United States. A former chairman of ITT observed
that the Fortune 500 companies in the United States have more soft-
ware instructors than all universities put together. Employees within
large companies have more student days of in-house training than all
other channels combined.

The in-house courses within major corporations are usually very con-
centrated and very intensive. An average course would run from two to
three business days, starting at about 8:30 in the morning and finishing
at about 4:30 in the afternoon. However, to optimize student availability,
some courses continue on into the evening.

How Software Personnel Learn New Skills 249

From observations of the curricula and attendance at some of the
courses, the in-house education facilities of large corporations are among
the most effective ways of learning current technologies.

Another advantage of in-house training is the ease of getting approval
to take the courses. It requires far less paperwork to gain approval for a
corporation’s in-house training than it does to deal with a tuition-refund
program for university courses.

As this is written in 2009, it is uncertain if in-house education will
regain the importance that it had during the 1980s and 1990s. The eco-
nomic future is too uncertain to make long-range predictions.

One interesting finding about in-house education is the impact on
software development productivity. Companies that provide ten days of
training per year for software engineers have higher annual productiv-
ity rates than companies that provide zero days of training, even though
ten working days are set aside for courses. The value of the training
appears to pay off in better performance.

Although the information was not explored in depth and there may
not be a provable relationship, it was interesting that companies with
ten days of training per year had lower rates of voluntary attrition
than companies with zero days of training. Apparently training has a
beneficial impact on job satisfaction.

Number 5: Self-Study Using CD-ROMs or DVDs
 Costs = 4; Efficiency = 3; Effectiveness = 7; Currency = 10; Overall
 Score = 6.00
 Prognosis: Improving slowly in usage; improving faster in effectiveness

The technology of self-study courses is on the verge of being trans-
formed by new CD-ROM and DVD approaches. It may also be trans-
formed by e-books. The older form of self-study courses consisted of
tutorial materials, exercises, and quizzes often assembled into loose-
leaf notebooks. The CD-ROM or DVD varieties include all of the prior
approaches, but can also feature hypertext links and a huge variety of
supplemental information.

The newest form of DVD training actually allows new content to be
added to the course while it is in session. This method is so new that
little empirical data is available. When it becomes widespread, the
“currency” score should climb rapidly.

The prospect of fully interactive learning via DVDs is an exciting one,
since graphics, animation, voices, and other topics can now be included.
However, the costs and skill required to put together an effective
DVD course are significantly greater than those needed for traditional
workbooks. The costs for the students are not particularly high, but the
production costs are high.

250 Chapter Four

Until about 1995, the number of CD-ROM drives in the hands of
potential students was below critical mass levels, and many of these
were older single-speed drives with sluggish access times and jerky
animation.

However, by 2009 the author estimates that more than 99 percent
of software personnel have DVD or CD-ROM drives on their office
computers. (Ultralight net-book devices weighing less than 3 pounds
often lack drives for DVDs and CDs. Also, some organizations that do
highly classified work prohibit all forms of removable media on the
premises.)

As of early 2009, the author estimates that more than 250,000 soft-
ware personnel have taken self-study courses via CD-ROMs or DVDs.
Probably fewer than 125 such courses currently are available due to the
difficulty and costs of production.

As the 21st century advances, it is possible that self-study courses
using CD-ROM and DVD approaches will expand in numbers and
improve in effectiveness. Giving this self-study channel a boost are
lightweight portable CD-ROM or DVD viewers in notebook computers
that can be carried and used on airplanes. The same is true of electronic
books.

Even newer technologies will allow the equivalent to DVDs to be
downloaded not only to computers, but also directly to television sets,
iPods, smart phones, and other hand-held devices.

The impact of the new Blu-Ray format can potentially improve the
interactive capabilities of DVD education, but so far this idea remains
largely unexploited by educational companies due to the fairly high
costs of Blu-Ray production.

Number 6: Commercial Education
 Costs = 14; Efficiency = 5; Effectiveness = 4; Currency = 6; Overall
 Score = 7.25
 Prognosis: Declining due to recession

The economic crisis of 2008 and 2009 and the continuing recession
are having a depressing impact on commercial education. Numbers
of students are in decline, and air-travel is becoming more and more
expensive. No doubt lower-cost methods such as e-learning will start to
supplant normal commercial education.

For many years, commercial education ranked number two in overall
effectiveness. There is a significant subindustry of commercial educa-
tion providers for the software domain. In 2009, it is now in fifth place,
but still quite effective.

Companies within this subindustry include Computer Aid (CAI),
Construx, Coverity, Cutter, Data-Tech, Digital Consulting Inc. (DCI),
Delphi, FasTrak, the Quality Assurance Institute (QAI), Learning Tree,

How Software Personnel Learn New Skills 251

Technology Transfer Institute (TTI), and many others who teach on a
national or even international level. These companies provide education
in both technical and managerial topics.

Operating at a higher level are specialized information companies
such as Gartner Group and Forrester Research. These companies both
provide standard reports and do customized research for clients. The
main client bases of such high-end companies are executives and top
management. In keeping with these target markets, the fees and costs
of such research are high enough so that they appeal primarily to major
corporations and some large government software executives, such as
the CIOs of states and major cities.

Nonprofit organizations also offer fee-based training. For example,
the nonprofit International Function Point Users Group (IFPUG)
offers training and workshops in function point topics. The Project
Management Institute (PMI) also offers commercial education, as does
the Software Engineering Institute (SEI). The International Software
Benchmarking Standards Group (ISBSG) also offers training in esti-
mation and benchmark topics, and publishes books and monographs
on both topics.

Hundreds of local companies and thousands of individual consultants
teach courses on a contract basis within companies and sometimes as
public courses as well. Many courses are offered by nonprofit organiza-
tions such as the ACM (Association for Computing Machinery), DPMA
(Data Processing Management Association), IEEE, IFPUG, SEI, and
scores of others.

The author estimates that about 500,000 U.S. software personnel
take at least one commercial software seminar in the course of a normal
business year. However, from 2009 onward, there will be a sharp decline
due to the global recession.

Since the major commercial educators run their training as a busi-
ness, they have to be pretty good to survive. A primary selling point of
the larger commercial education companies is to use famous people as
instructors on key topics. For example, such well-known industry figures
as Bill Curtis, Chris Date, Tom DeMarco, Tim Lister, Howard Rubin, Ed
Yourdon, Watts Humphrey, Dr. Gerry Weinberg, Dr. James Martin, and
Dr. Carma McClure all offer seminars through commercial education
companies.

A typical commercial seminar will run for two days, cost about $895
to enroll, and attract 50 students. A minor but popular aspect of com-
mercial education is the selection of very good physical facilities. Many
commercial software courses are taught at resort hotels in areas such
as Aspen, Orlando, Phoenix, or San Francisco.

However, the more recent recession of 2009 (and beyond) needs to
be considered. For several years, business activities involving travel to

252 Chapter Four

other cities were reduced somewhat and have never fully recovered. As
the recession grows more widespread, even further reductions can be
anticipated.

The main strengths of commercial education remain and are twofold:

■ Very current topics are the most salable.

■ Top-notch instructors are the most salable.

This means that commercial seminars are likely to cover material
that is not available from a university or even from an in-house curricu-
lum. It also means that students get a chance to interact with some of
the leading thinkers of the software domain. For example, in 2009, the
commercial education channel is much more likely than most to cover
current hot topics such as Agile development, Six Sigma for software,
or web-based topics.

The commercial education market has been most widely utilized by
companies in the top quartile of software productivity and with qual-
ity levels as noted during SPR assessment and benchmark studies. In
other words, companies that want top performance from their manag-
ers and technical workers realize that they need to bring in top-gun
educators.

Number 7: Vendor Education
 Costs = 13; Efficiency = 6; Effectiveness = 5; Currency = 5; Overall
 Score = 7.25
 Prognosis: Declining due to recession

Vendor education was formerly ranked number three in overall effec-
tiveness and is now number six. This is not because of slipping quality
on the part of vendors, but because of the rapid emergence of webinars
and new DVD technologies.

Vendor-supplied education has been a staple of the software world for
almost 50 years. Because vendor education in tools such as spreadsheets
and word processors are taken by non-software personnel, the total
number of students is enormous. However, within the software domain,
the author estimates that about 500,000 software personnel will take
at least one vendor course in a normal business year.

Vendor education used to be free in the days when hardware and
software were still bundled together. Some vendor education is still
free today, when used as part of marketing programs. Normally, vendor
education is sold to clients at the same time that they buy the tools or
packages for which training is needed.

Almost every large commercial software application is complicated.
Even basic applications such as word processors and spreadsheets

How Software Personnel Learn New Skills 253

now have so many features that they are not easily mastered.
Thus large software companies such as Artemis, IBM, Oracle, and
Computer Associates offer fee-based education as part of their service
offerings.

The size, feature set, and complexity of software products mean that
every major vendor now has some kind of education offering available.
For really popular tools in the class of Microsoft Word, WordPerfect,
Excel, Artemis Views, KnowledgePlan, and so on, there may be local
consultants and even high-school and college courses that supplement
vendor-supplied education.

For very large applications such as ERP packages from Oracle and
SAP, it is hardly possible to learn to use the software without extensive
education either from the vendors, or from specialized education com-
panies that support these packages.

Vendor education is a mainstay for complicated topics such as learn-
ing how to deploy and utilize enterprise resource planning packages by
vendors such as BAAN, Oracle, PeopleSoft, SAP, and others.

Vendor-provided education runs the gamut from very good to very
poor, but on the whole does a creditable job of getting clients up and
running on the applications in question.

Vendor education is usually a lot cheaper than commercial education,
and the effective costs are sometimes less than $100 per student day.
Vendor education is often offered on a company’s own premises, so it is
generally very convenient. On the other hand, you don’t expect big name
instructors to constitute the faculty of vendor training either.

However, newer methods such as e-learning are even cheaper and
have the advantage that courses can be taken 24 hours a day at the
convenience of the students. Therefore, vendor education will decline in
future years, and e-learning methods will become the major vehicle.

Further, as the recession deepens and lengthens, instructors are usually
among the first to lose their jobs due to cost-cutting measures. Therefore,
vendor education with live instructors is entering a period of decline.

As software packages continue to evolve new features and more com-
plexity, vendor-supplied education will remain a stable feature of the
software world well into the next century, but moving from live instruc-
tors toward perhaps e-learning or even using virtual environments with
avatars.

Vendor education has also been negatively affected by the economic
downturn circa 2008–2009. Some vendors lost money due to reduced
sales, so course offerings were naturally reduced as well. Other vendors
were acquired, and some went out of business. In spite of the reduc-
tion in courses and instructors, vendor-supplied education remains an
important channel of instruction, even though the numbers of vendors,
students, and courses are in decline.

254 Chapter Four

Number 8: Live Conferences
 Costs = 12; Efficiency = 8; Effectiveness = 8; Currency = 5; Overall
 Score = 8.25
 Prognosis: Declining due to recession

Unfortunately, the financial crisis and recession of 2008 and 2009
(and beyond) are causing a severe decline in live conferences, and this
trend may continue indefinitely. The author estimates that attendance
at live conferences in 2009 will probably be about 30 percent less than
the same events in 2006, due to layoffs, cost cutting, and other financial
issues.

Software-related conferences rank number eight in effectiveness in
teaching new skills. However, they would rank number one in highlight-
ing interesting new technologies. Unfortunately, the combined impact
of the September 11 disaster and the economic downturn since 2000
caused many companies to cut back corporate travel, which affected
conference attendance.

The author estimates that attendance at software conferences in 2003
was probably 15 percent below what might have been the norm in 1999.
However, 2006 and 2007 saw increases in conference attendance. The
recession of 2008 is still too new to have impacted many conferences as
this is written, but no doubt conference attendance will decline before
the end of 2008 and perhaps in 2009 based on the poor results of the
U.S. and world economies.

Even so, there are major software conferences every month of the
year, and some months may have multiple events. Conferences are
sponsored both by nonprofit organizations, such as the U.S. Air Force
STSC (Software Technology Support Center), IEEE, IFPUG, GUIDE
(Global Uniform Interoperable Data Exchange), SHARE (Software-
Hardware Asset Reuse Enterprise), or ASQC (American Society for
Quality Control), and also by commercial conference companies such
as Computer Aid (CAI), Cutter, Digital Consulting Inc. (DCI), Software
Productivity Group (SPG), or Technology Transfer Institute (TTI). There
are also high-end conferences for executives sponsored both by research
companies such as Gartner Group, and also by academia such as the
Harvard Business School or the Sloan School.

In addition, there are vendor-hosted conferences for users by compa-
nies such as Apple, Microsoft, Computer Associates, Oracle, CADRE,
COGNOS, SAS, SAP, and the like. These are often annual events that
sometimes draw several thousand participants.

The author estimates that about 250,000 U.S. software professionals
attended at least one conference in 2007, and some professionals may
have attended multiple conferences. The year 2008 will probably see a
drop due to the declining status of the U.S. economy.

How Software Personnel Learn New Skills 255

Software conferences are where the cutting edge of software technolo-
gies are explained and sometimes revealed for the very first time. Many
conferences also feature training seminars before or after the main
event, and hence overlap commercial education channels and vendor
education channels.

However, most of us go to conferences to find out what is new and
exciting in our chosen domains. The mix of speakers and topics at con-
ferences can range from brilliant to boring. Conferences are arranged
with many concurrent sessions so that it is easy to leave a boring session
and find a better one.

Most conferences combine keynote speeches to the whole audience
with parallel sessions that cover more specialized topics. A typical
U.S. software conference will run for three days, attract from 200
to more than 3000 attendees, and feature from 20 to more than 75
speakers.

In addition to primary speakers and seminar leaders, many confer-
ences also have “vendor showcases,” where companies in related busi-
nesses can display their goods and perhaps make sales or at least
contacts. The fees that vendors pay for participating in such conferences
defray the administrative costs and sometimes even allow conferences
to be run as profit-making opportunities.

On the whole, conferences do a good job in their primary role of expos-
ing leading-edge technologies to the audience. You seldom come away
from a conference with an in-depth working knowledge of a new tech-
nology. But you often come away with a solid understanding of what
technologies merit closer analysis.

Within recent years, several conferences have become so large that
the proceedings are now starting to be released on CD-ROM rather than
in traditional notebooks or bound hard copies.

In the future, it is possible that live conferences will merge with webi-
nars and with DVD production. It is technically possible to have simul-
taneous live events and webinars so that the speakers are seen by a
live audience and a remote audience at the same time. It would also be
possible to record the proceedings for later offline use or for downloading
to computers and hand-held devices.

If the economy continues to decline and live conferences lose attend-
ees, as happened during the dot-com crash and earlier recessions,
it may be that webinars will become effective substitutes for live
instruction.

Number 9: Wiki Sites
 Costs = 2; Efficiency = 9; Effectiveness = 16; Currency = 3; Overall
 Score = 7.50
 Prognosis: Increasing rapidly in usage; increasing in effectiveness

256 Chapter Four

The word “wiki” means “fast” in Hawaiian. The term has started to be
applied to web sites that allow multiple people to participate toward
common goals.

Wiki sites are making their first appearance in this list of educational
channels. This is a new and emerging technology that allows many par-
ticipants to collaborate on a common theme or common undertaking.

The most famous example of a wiki site is Wikipedia, which has
become the largest encyclopedia in the world. Each entry or article in
Wikipedia is written by a volunteer. Readers or other volunteers can
modify the entry and input their own thoughts and ideas.

At first glance, wikis would seem to lead to chaotic and perhaps offen-
sive final products. But many wikis, including Wikipedia, are temperate
in tone and rich in content. This is partly because readers can immedi-
ately delete offensive comments.

Some wiki sites try to screen and monitor inputs and changes before
posting them; others simply allow the material to be self-corrected by
other readers. Both methods seem to be effective.

What wiki sites do best is allow people with common interests to
quickly produce documents or web sites that contain their accumulated
and shared wisdom. Thus wiki sites would be very appropriate for techni-
cal issues such as Agile development, software quality, software security,
testing, maintenance, and other topics where there are many practitio-
ners with a need to share new data and experiences.

Number 10: Simulation Web Sites
 Costs = 8; Efficiency = 7; Effectiveness = 13; Currency = 8; Overall
 Score = 9.00
 Prognosis: Increasing rapidly in usage; increasing rapidly in
 effectiveness

Simulators for teaching mechanical skills such as how to fly an air-
plane or how to assemble a machine gun have been used by commercial
and military organizations for many years.

But in recent years, new forms of broader simulation sites have
emerged, such as Second Life, which is a kind of virtual world where
avatars (symbolic surrogates for computer users) wander through a
virtual landscape and interact with other avatars and with resources
such as text documents and graphics.

This new form of virtual reality has other purposes besides training
and education, but it is starting to move in the direction of education.
For example, it would be possible to teach formal design and code inspec-
tions using avatars in a virtual room. Not only could inspections be
taught via simulation, but indeed they could be performed as well.

Many other new technologies could also be taught in the same fashion.
Currently, the costs of producing tutorial materials are fairly high and

How Software Personnel Learn New Skills 257

the process is complex, but both of these issues should be eliminated
fairly soon.

Virtual reality in simulated worlds is likely to become a fast-moving
educational method within the next five years. It is theoretically pos-
sible to create a virtual “university” in which avatars for both students
and professors will interact exclusively in online environments.

Although simulation and virtual worlds are not in the mainstream
of education as of 2009, the odds are good that they will rise to the top
of the list within ten years.

Number 11: Software Journals
 Costs = 7; Efficiency = 11; Effectiveness = 14; Currency = 9; Overall
 Score = 10.25
 Prognosis: Declining in numbers due to recession; stable in effectiveness;

 migrating rapidly from paper to online publication formats; some
 migration to e-book formats

Now that journals are available for the Amazon Kindle and other e-
book platforms, it can be anticipated that e-journals will begin to replace
paper journals due to economic reasons. Electronic publishing is much
quicker and cheaper than paper publishing, and far more friendly to
the environment. Further, electronic journals are distributed within
minutes, so there is no delay due to surface mailing.

Conventional software journals tend to rank 14th in transferring
skills. The main strength of software journals is in popularizing con-
cepts and presenting the surfaces of technologies rather than the depths
of technologies.

There are scores of software-related journals. Some are commercial
journals published for profit and depending upon advertising revenues.
Many others are produced by nonprofit professional associations. For
example, IEEE Computer is produced by a nonprofit association as are
the other IEEE journals.

A literate and very broad-based software journal is published by the
U.S. Air Force Software Technology Support Center (STSC). This jour-
nal, CrossTalk, has become one of the few software journals to strive
for depth in articles, rather than shallow coverage consisting primarily
of short quotes from industry figures.

Another interesting journal is the Cutter Journal, originally founded
by software guru Ed Yourdon under the name of American Programmer.
As with the CrossTalk journal, the Cutter Journal publishes full-length
technical articles.

There are so many journals that a number of them are quite special-
ized and occupy fairly narrow niches. An example of one of these spe-
cialized niche journals is Metric Views, the journal of the International
Function Point Users Group.

258 Chapter Four

Many software journals are available to software professionals for
free, providing the potential subscribers bother to fill out a question-
naire (and have some responsibility for acquiring tools or software).
On the other hand, some journals have annual subscriptions that can
exceed $1000.

The software professional ends up with subscriptions to quite a few
journals, even though few may actually be read. SPR estimates that
software technical personnel subscribe to or have access to about four
journals per month on average.

Comparatively few software journals contain articles of lasting tech-
nical value. When journals do discuss technologies, it is seldom an in-
depth treatment. This is understandable, given that neither journalists
nor professional contributors can spare more than a minimum amount
of time to assemble information before writing articles.

The best articles in terms of technology transfer are those on spe-
cific topics, often in special issues. For example, several journals have
had special issues on topics such as quality assurance, measurement
and metrics, software maintenance, object-oriented approaches, change
management, and the like.

The least effective articles are the typical broad-brush surveys pro-
duced by journalists that consist largely of short quotes from 20 to 50
different people. This approach can seldom do more than bring a topic
into public view.

An interesting new trend is to publish online journals as well as paper
journals. Among the best and most interesting of the new online jour-
nals is the Information Technology Metrics and Productivity Institute
(ITMPI) Journal. The web site for this journal is www.ITMPI.org. This
journal is published by Computer Aid and includes interviews with
famous software personages such as Watts Humphrey and Ed Yourdon,
technical articles, and citations to hundreds of relevant web sites.

As online communication becomes the pervasive medium for informa-
tion exchange, both software journals and other print-based information
media are moving to create parallel online versions.

Number 12: Self-Study Using Books, E-Books, and Training
Material
 Costs = 5; Efficiency = 13; Effectiveness = 12; Currency = 11; Overall
 Score = 10.25
 Prognosis: Decreasing in numbers due to recession; stable in effectiveness;

 rapidly migrating away from paper documents toward DVD or online
 information

The self-study market using books ranks number 11 in overall effec-
tiveness. The market for traditional self-study courses is not fast grow-
ing, but has been relatively solid and stable for 50 years. The author

How Software Personnel Learn New Skills 259

estimates that a total of about 50,000 software professionals will take
some kind of self-study course over a normal business year.

The usual format of self-study material is a loose-leaf notebook.
This form of self-study material can be effective for those who are self-
motivated, but tends to be bland and frequently boring. Some self-study
courses also include video- or audiocassettes.

The most common topics for self-study are those that have rela-
tively large market potentials. This means that basic subjects such as
“Introduction to COBOL Programming” are most likely to be found in
self-study form.

Really new technologies are seldom found as self-study courses,
because of the time required to produce the materials and the uncer-
tainty of the market. There are always exceptions to rules, and fairly
new topics such as ISO 9000-9004 standards have already arrived in
self-study form due to the obviously large market.

In theory, electronic books on hand-held devices would seem to be a
useful medium for studies of any kind. However, among the author’s
clients, no formal course materials were produced for such devices as
of 2009. We did not encounter enough students using these devices to
form an opinion. Overall, usage of hand-held reading devices is still at
a very early stage of deployment, although they show great potential
for the future.

From 2006 through 2009, there has been an increase in books and
video materials available on hand-held devices such as PDAs and Apple
iPods. Some educational material is available, but the volume is too
small to form a solid opinion of effectiveness.

The new Amazon and Sony hand-held reading devices of 2008 are
more sophisticated than their predecessors. If these devices succeed,
then it is a sign that electronic reading devices are about to enter the
mainstream. The fact that one device can hold many books will certainly
prove advantageous to travelers and even to sales personnel.

Number 13: On-the-Job Training
 Costs = 11; Efficiency = 10; Effectiveness = 10; Currency = 12; Overall
 Score = 10.75
 Prognosis: Declining in numbers due to the recession

On-the-job training has been most often utilized either for special
techniques developed and used within companies, or for basic skills
that are seldom taught at universities, such as formal design and code
inspections.

With on-the-job training, new hires are instructed in selected meth-
ods by experienced users of the method. The most effective kinds of
on-the-job training are topics where performing a task is the best way
to learn the tasks. For example, formal inspections, quality function

260 Chapter Four

deployment (QFD), learning to use proprietary specification methods,
and learning to use programming languages that are unique to specific
companies are good choices for in-house training.

The downside of on-the-job training is that the experts who are doing
the training need to take time away from their own work. This is why
the costs are fairly high. Also, it sometimes happens that what the older
employees teach the new employees may be somewhat out of date.

As the recession lengthens and deepens, on-the-job training will prob-
ably decline due to layoffs and downsizing. The remaining personnel
may no longer have time to engage in extensive on-the-job training.

Number 14: Mentoring
 Costs = 10; Efficiency = 12; Effectiveness = 11; Currency = 15; Overall
 Score = 11.75
 Prognosis: Declining in numbers due to recession

The concept of “mentoring” involves a one-to-one relationship between
a new employee and an older and more experienced employee. Mentoring
is most often used for proprietary methods, such as teaching a new
employee about local corporate standards, or teaching a new employee
about custom tools that are only available in one location.

Mentoring is often effective at a social level, but it is somewhat expen-
sive if it requires that the mentor take too much time away from his or
her normal work.

Informal mentoring is likely to continue as a useful method for teach-
ing new personnel local methods, tools, development methods, mainte-
nance methods, and other topics that may have been customized.

Unfortunately, there are no statistics on the number of mentors or
people being mentored, so this channel of learning is ambiguous as to
usage and overall effectiveness.

Number 15: Professional Books, Monographs, and Technical
Reports
 Costs = 6; Efficiency = 14; Effectiveness = 16; Currency = 13; Overall
 Score = 12.00
 Prognosis: Decline in paper publication; rapid migration to e-book,

 online, and web publication

Software books tend to rank 15th in overall effectiveness in transfer-
ring software skills in the United States. The low ranking is not because
of the books themselves, but because the U.S. software industry does not
appear to be especially literate, which is something of a surprise given
the nature of the work.

Many of the books are excellent. For example, Dr. Barry Boehm’s clas-
sic Software Engineering Economics (Prentice Hall), Watts Humphrey’s
book on Team Software Processes (TSP) (Addison Wesley), and Dr. Roger

How Software Personnel Learn New Skills 261

Pressman’s classic Software Engineering—A Practitioner’s Approach
(McGraw-Hill) have all seen numerous editions and sold close to
1 million copies each.

Software books are a staple for reference purposes even if not for
pedagogical purposes. A typical software engineer will have a library of
between 20 and 100 volumes on topics of importance such as the pro-
gramming languages, operating systems, applications, and hardware
used in daily work.

As of 2009, there are more than 3 million software personnel in the
United States, and the numbers are growing fairly rapidly. Yet software
book publishers regard sales of more than 10,000 copies as a fairly good
volume. Sales of 25,000 copies are remarkably good for software titles,
and only a few software titles have approached 1 million copies.

The high-volume software books often aim at the end-user market
and not the professional or education markets. For example, books on
Visual Basic or primers on Windows can exceed 1 million copies in sales
because there are about 10 million users of these products who are not
professional software personnel.

It is possible to learn a variety of software-related skills from books,
but this approach is not as widely utilized as seminars or some kind of
formal training. One possible exception is that of learning personal topics,
such as Watts Humphrey’s Personal Software Process (PSP) method. As
of 2009, Watts’ books are the primary channel for this topic.

Another situation where books are actually used for self-learning of
new skills is the area of new programming languages. New program-
ming languages have been coming out at a rate of more than one per
month for the past 30 years, and more than 700 programming languages
have been listed in the Software Productivity Research (SPR) “table of
programming languages and levels.” Not many languages reach the
mainstream, but for those that do, such as Ruby or N or E, experienced
programmers can teach themselves the new language from books faster
than from most others methods.

There are many excellent software books on the market by publish-
ers such as Addison Wesley Longman, Auerbach, Dorset House, IEEE
Computer Society Press, McGraw-Hill, Prentice Hall, Que, Microsoft
Press, and the like.

Also included under the heading of books would be monographs pub-
lished by various companies and associations. For example, software-
related monographs of 50 to more than 100 pages in size are published by
Accenture, IBM, IFPUG, ISBSG, various IEEE associations, McKinsey,
Gartner Group, Meta Group, the Software Engineering Institute (SEI),
and Software Productivity Research (SPR).

These privately published monographs are distributed primarily to
the clients of the publishing organization. The costs range from zero up

262 Chapter Four

to more than $25,000 based on whether the monograph is intended as
a marketing tool, or contains proprietary or special data of interest to
the clients.

There are many software bookstores and large software sections
within general bookstores such as Borders. And of course software books
are featured in all of the major web-based bookstores such as Amazon
and Barnes & Noble. The total volume of good books on software topics
probably exceeds 2,500 titles for technical books and 250 titles for soft-
ware management books.

Yet in spite of the plentiful availability of titles, many software man-
agers and quite a few technical software personnel don’t read more than
one or two technical books a year, based on responses to assessment
interviews.

The author estimates that software professionals purchase about four
books per year on average (more than seem to be read). In any case, it
would be hard to keep current just from books since software technology
changes are so volatile.

There is a curious omission in the book domain for software and project
management topics. Among the more mature professions such as medicine
and law, a significant number of books are available in audio form such as
cassettes or CDs so they can be listened to at home or in automobiles. We
have not yet encountered any audio titles in the software engineering or
project management fields, although some may be available.

An increasing number of technical books are becoming available
online and can be viewed on personal computer screens or downloaded.
This method of gaining access to books is expanding, but has not yet
reached a critical mass. The author estimates that fewer than perhaps
100 software-related titles are available in online form, and that per-
haps fewer than 125,000 software professionals have utilized this chan-
nel of gaining access to books. However, both the number of titles and
accesses should increase rapidly over the next ten years.

New electronic devices such as the Amazon and Sony hand-held book
readers, the iPhone, and various PDA devices can be used to store books,
although this is not yet a major market for book publishers.

Of course, personal ownership of books may not be necessary if a
company or government agency maintains a good technical library. One
interesting observation from the author’s assessments over the years is
that companies with large technical libraries have higher annual produc-
tivity rates than companies of the same size without such libraries.

Having a library is probably not a causative factor for high pro-
ductivity, though. The most likely reason for the correlation is that
companies with good technical libraries also tend to have better than
average salary and compensation levels, so they select top performers
for software occupations.

How Software Personnel Learn New Skills 263

Vast numbers of monographs and technical reports usually range
between 20 and 75 pages. Usually, such documents are devoted to a
single topic, such as service-oriented architecture (SOA) or perhaps
marketing issues.

Some companies such as Gartner Group in the United States and
Research and Markets in Ireland do a surprisingly large business from
marketing both paper and online versions of monographs and technical
reports.

The primary markets for these shorter documents are either cor-
porate libraries or executives interested in business trends and high
enough in company hierarchies to be authorized to spend money on
subscriptions or individual studies, many of which are far more expen-
sive than ordinary books.

As tools for informing executives about emerging business trends,
the technical report business is fairly effective. As tools for learning the
specifics of technical topics such as testing or inspections, these shorter
reports are not as effective as books.

One technical problem with books published on paper is that the
software industry changes faster than the books can be revised and
new editions brought out.

A possible new business model for book publishers as they migrate to e-
books would be to sell subscriptions to updates at the same time as the book
is originally downloaded. For example, a downloaded software textbook in
e-book format might sell for $25, and subscriptions to updates might sell
for $10 per year. Not only would e-books be cheaper than paper books, but
offering them as subscriptions would lead to recurring revenue streams.

Number 16: Undergraduate University Education
 Costs = 15; Efficiency = 15; Effectiveness = 3; Currency = 16; Overall
 Score = 12.25
 Prognosis: May decline in numbers due to recession; stable in effec-

 tiveness; curricula lag technology changes by more than five years

From the author’s studies, undergraduate university education was
only number 15 in overall effectiveness for software professionals.
Universities are often not very current in the topics that they teach. In
general, university curricula lag the actual state of the art of software
by between five years and ten years. This lag is because of the way uni-
versities develop their teaching materials and their curricula.

There are a number of critical topics where software education at the
university level lags far behind what is truly needed to achieve profes-
sional status for software. The most glaring omissions include

1. Software security practices for safeguarding high-risk applications

2. Software quality control practices for minimizing delivered defects

264 Chapter Four

3. Software measures and metrics for effective economic analysis

4. Software estimating and planning for on-time delivery and costs

5. Software architecture for optimizing use of reusable components

6. Software methods for effective renovation of legacy applications

7. Software technology evaluation and technology transfer

These gaps and omissions need to be quickly filled if software is to
evolve from an art form into a true engineering discipline.

There are some exceptions to this rule that universities always lag.
Many universities have established fairly close ties with the local busi-
ness community and attempt to offer courses that match the needs
of the area’s software employers. For example, Stevens Institute of
Technology in New Jersey has established close ties with AT&T and
is offering a master’s program that includes topics suggested by AT&T.
Bentley College in the Boston area, Washington University in St. Louis,
Georgia State University in Atlanta, St. Thomas University in the St.
Paul area, and many other schools adjacent to large software producers
have adopted similar policies of curricula based on the needs of major
software employers.

An important strength of undergraduate education is that what gets
taught tends to be used throughout the rest of the professional lives of
the students. University education ranks number three in effectiveness,
or the volume of information transmitted.

The author estimates that perhaps 95,000 U.S. software professionals
will take university or college courses during a normal business year.

Having performed a consulting study on continuing software educa-
tion, the author noted a few practical issues. The way companies fund
tuition-refund programs is often remarkably cumbersome. Sometimes
several layers of management approval are required. The courses them-
selves must be job-related within fairly narrow boundaries. Some com-
panies reserve the option of having the students withdraw “because of
the needs of the company.”

Also, the tuition-refund policies are based on achieving passing grades.
This is not an unreasonable policy, but it does raise the mathematical
probability that the student will end up with significant out-of-pocket
expenses.

On the whole, university training appears to be more expensive and
less effective than in-house training, commercial education, or vendor
education for practicing software professionals.

A former chairman of the ITT Corporation once noted in a speech
that it took an average of about three years of in-house training and
on-the-job experience before a newly graduated software engineer could
be entrusted with serious project responsibilities. This was about two

How Software Personnel Learn New Skills 265

years longer than the training period needed by electrical or mechanical
engineers. The conclusion was that software engineering and computer
science curricula lagged traditional engineering curricula in teaching
subjects of practical value.

Indeed, a quick review of several university software engineering
and computer science curricula found some serious gaps in academic
training. Among the topics that seemingly went untaught were soft-
ware cost estimating, design and code inspections, statistical quality
control, maintenance of legacy applications, metrics and measurements,
Six Sigma methods, risk and value analysis, function points, and joint
application design (JAD) for requirements analysis. While basic techni-
cal topics are fairly good at the university level, topics associated with
project management are far from state-of-the-art levels.

Universities are also being impacted by the recession, and the future
of university training in terms of numbers of software engineering and
computer science students and graduates is uncertain. Whether or not
the recession will improve or degrade curricula is uncertain as this is
written in 2009.

Number 17: Graduate University Education
 Costs = 16; Efficiency = 16; Effectiveness = 2; Currency = 15; Overall
 Score = 12.25
 Prognosis: May decline in numbers due to recession; stable in effec-

 tiveness; curricula lag technology changes by more than five years

Graduate education in software engineering or computer science
unfortunately tends to bring up the rear and is ranked number 16.
Graduate school does rank number two in effectiveness, and it does
transmit a great deal of information to graduate students.

The downside is that a lot of the information that is transmitted may
be obsolete, since university curricula often lag the business and techni-
cal worlds by five to ten years.

Graduate education could be improved by greater concentration on
special topics such as the economics of software. Software costs are so
heavily dominated by defect removal expenses, catastrophic failures,
and huge cost and schedule overruns that there is a need to teach all
MBA students as well as specialist software engineer and computer sci-
ence graduate students the state of the art for defect prevention, defect
removal, and cost of quality economics.

Also, software security problems are not only rampant in 2009, but
also are becoming more numerous and more serious at a rapid pace.
It is obvious that universities have lagged severely in this area, and
also in the area of software quality control. For that matter, other key
topics such as construction from reusable materials also lag at both the
undergraduate and graduate levels.

266 Chapter Four

There appears to be a significant need to improve the speed at which
universities are able to incorporate new material and new technologies into
their curricula. For fast-moving industries such as computing and software,
the technologies are changing much faster than university curricula.

For that matter, the recession has demonstrated that economic and
financial curricula are not only severely out of date, but severely in
error as well.

Software Areas Where Additional
Education Is Needed

From working as an expert witness in a number of software lawsuits
for breach of contract or for litigation involving claims of poor quality,
the author finds that some important topics need additional educa-
tion or reeducation. Table 4-6 shows 25 major technology areas where

 1. Security vulnerability prevention

 2. Security recovery after attacks

 3. Quality control (defect prevention)

 4. Quality control (defect removal)

 5. Quality estimating

 6. Quality measurement

 7. Measurement and metrics of software

 8. Change management

 9. Tracking of software projects

11. Cost, quality, and schedule estimating

10. Intellectual property protection

12. Reuse of software artifacts

13. Risk analysis and abatement

14. Value analysis of software applications

15. Technology analysis and technology transfer

16. Renovation of legacy applications

17. Requirements collection and analysis

18. Software project management

19. Formal inspections

22. Test case design

20. Performance analysis

21. Customer support of software applications

23. Contract and outsource agreements

24. User training

25. User documentation

TABLE 4-6 Gaps in Software Training Circa 2009

How Software Personnel Learn New Skills 267

performance in the software world seems to be deficient, in approximate
order of importance to the software profession.

Failures and problems associated with these topics appear to be
endemic in the software world, and especially so for large software appli-
cations. From the frequency with which large software projects fail,
and the even larger frequency that have cost and schedule overruns, it
can be concluded that training in software topics urgently needs major
improvement.

New Directions in Software Learning

The global recession is causing thousands of organizations to reduce
costs in order to stay in business. Almost all labor-intensive activities
such as training are going to be scrutinized very carefully.

At the same time the technologies of virtual reality, e-books, and dis-
tributing information over hand-held devices are increasing in sophis-
tication and numbers of users.

Within a period of perhaps ten years, the combination of recessionary
pressures and technology changes will probably make major differences
in software learning methods. Online web-based information, e-books,
and hand-held devices will no doubt replace substantial volumes of
paper-based materials.

In addition, virtual reality may introduce artificial classrooms and
simulated universities where students and teachers interact through
avatars rather than face to face in real buildings.

The increasing sophistication of intelligent agents and expert sys-
tems will probably improve the ability to scan vast quantities of online
information. The fact that companies such as Google and Microsoft are
rapidly converting paper books and documents into online text will also
change the access to information.

However, software has a long way to go before it achieves the ease of
use and sophistication of the legal and medical professions in terms of the
organization and access to vital information. For example, there is no soft-
ware equivalent to the Lexis-Nexis legal reference company as of 2009.

Over the next few years, changes in learning methods may undergo
changes as profound as those introduced by the printing press and
television. However, the quality of software information is still poor
compared with the quality of information in more mature fields such
as medicine and law. The severe shortage of quantitative data on pro-
ductivity, schedules, quality, and costs makes software appear to be more
of a craft than a true profession.

However, the technologies of mining information, consolidating
knowledge, and making knowledge accessible are rapidly improving.
The overall prognosis for learning and information transfer is positive,

268 Chapter Four

but no doubt the formats for presenting the information will be very
different in the future than in the past.

Summary and Conclusions

In any technical field, it is hard to keep up with the latest developments.
Software technologies are changing very rapidly as the 21st century
advances, and this makes it difficult to stay current.

Seventeen different channels are available to the software commu-
nity for acquiring information on new software technologies. The most
effective historical channel is in-house training within a major corpora-
tion, but that channel is only available to the corporation’s employees.
Webinars and web-based research are rapidly advancing in sophistica-
tion and are already very inexpensive.

The use of virtual reality or simulation web sites is another exciting
prospect. It is technically possible for avatars of virtual students to
participate in simulated virtual classrooms.

Of the other channels, two appear to have strong potential for the
future: self-study utilizing CD-ROM or DVD technology, and online study
using the World Wide Web or an information utility. These channels are
beginning to expand rapidly in terms of information content and numbers
of users. Channels using wireless connectivity and hand-held devices may
also be added to the mix of learning methods, as already demonstrated by
the new generation of e-book readers from Amazon and Sony.

As the Internet and online services grow in usage, entirely new meth-
ods of education may be created as a byproduct of large-scale interna-
tional communication channels. In the future, some form of education
may become available via satellite radio, although none is currently
broadcast on that channel.

Unfortunately, given the large numbers of project failures in the soft-
ware domain, all 16 channels put together are probably not yet enough
to raise the level of software engineering and management competence
to fully professional status.

Curricula of Software Management
and Technical Topics

Shown next is the author’s proposed full curricula of managerial and
technical topics related to the software industry. The courses range from
top-level executive seminars through detailed technical courses. The
set of curricula is aimed at corporations with large software staffs. The
instructors are assumed to be top experts in the field.

Curricula such as this are not static. As new topics and technologies
emerge, the curricula should be updated at least on an annual basis,
and perhaps even more often.

How Software Personnel Learn New Skills 269

Software Curricula for Executives, Management, and Technical Personnel
Capers Jones (Copyright © 2007–2009 by Capers Jones. All rights reserved)

Executive Courses Days Sequence

Global Finance and Economics 1.00 1

Software Development Economics 1.00 2

Software Maintenance Economics 1.00 3

Software Security Issues in 2008 1.00 4

Software Architecture Trends 1.00 5

Economics of Outsourcing 1.00 6

Pros and Cons of Offshore Outsourcing 1.00 7

Protecting Intellectual Property 0.50 8

Sarbanes-Oxley Compliance 1.00 9

Software Litigation Avoidance 0.50 10

Case Studies in Best Practices 0.50 11

Software Risk Avoidance 0.50 12

Case Studies in Software Failures 0.50 13

Overview of the Capability Maturity Model 0.25 14

Economics of Six Sigma 0.25 15

Overview of Viruses and Spyware 0.50 16

TOTAL 11.50

Project Management Courses Days Sequence

Software Project Planning 2.00 1

Measurement and Metrics of Software 2.00 2

Software Cost Estimating: Manual 1.00 3

Software Cost Estimating: Automated 2.00 4

Software Quality and Defect Estimating 1.00 5

Software Security Planning 1.00 6

Software Milestone Tracking 1.00 7

Software Cost Tracking 1.00 8

Software Defect Tracking 1.00 9

Software Change Control 1.00 10

Function Points for Managers 0.50 11

Inspections for Project Managers 0.50 12

Testing for Project Managers 2.00 13

Six Sigma for Managers 2.00 14

Principles of TSP/PSP for Managers 1.00 15

Principles of Balanced Scorecards 1.00 16

Principles of Software Reuse 1.00 17

Software Risk Management 1.00 18

The Capability Maturity Model (CMM) 2.00 19

Six Sigma: Green Belt 3.00 20

Six Sigma: Black Belt 3.00 21

(Continued)

270 Chapter Four

Project Management Courses Days Sequence

Earned Value Measurement 1.00 22

Appraisals and Employee Relations 1.00 23

Project Management Body of Knowledge 2.00 24

TOTAL 34.00

Software Development Courses Days Sequence

Software Architecture Principles 1.00 1

Structured Development 2.00 2

Error-Prone Module Avoidance 1.00 3

Software Requirements Analysis 1.00 4

Software Change Control 1.00 5

Security Issues in 2008 1.00 6

Hacking and Virus Protection 2.00 7

Joint Application Design (JAD) 1.00 8

Static Analysis of Code 1.00 9

Formal Design Inspections 2.00 10

Formal Code Inspections 2.00 11

Test Case Design and Construction 2.00 12

Test Coverage Analysis 1.00 13

Reducing Bad Fix Injections 1.00 14

Defect Reporting and Tracking 1.00 15

Iterative and Spiral Development 1.00 16

Agile Development Methods 2.00 17

Using Scrum 1.00 18

Object-Oriented Design 2.00 19

Object-Oriented Development 2.00 20

Web Application Design and Development 2.00 21

Extreme Programming (XP) Methods 2.00 22

Development Using TSP/PSP 2.00 23

Principles of Database Development 2.00 24

Function Points for Developers 1.00 25

Design of Reusable Code 2.00 26

Development of Reusable Code 2.00 27

TOTAL 41.00

Software Maintenance Courses Days Sequence

Principles of Legacy Renovation 1.00 1

Error-Prone Module Removal 2.00 2

Complexity Analysis and Reduction 1.00 3

Identifying and Removing Security Flaws 2.00 4

Reducing Bad-Fix Injections 1.00 5

Defect Reporting and Analysis 0.50 6

Change Control 1.00 7

Configuration Control 1.00 8

How Software Personnel Learn New Skills 271

Software Maintenance Courses Days Sequence

Software Maintenance Workflows 1.00 9

Mass Updates to Multiple Applications 1.00 10

Maintenance of COTS Packages 1.00 11

Maintenance of ERP Applications 1.00 12

Static Analysis of Code 1.00 13

Data Mining for Business Rules 1.00 14

Regression Testing 2.00 15

Test Library Control 2.00 16

Test Case Conflicts and Errors 2.00 17

Dead Code Isolation 1.00 18

Function Points for Maintenance 0.50 19

Reverse Engineering 1.00 20

Reengineering 1.00 21

Refactoring 0.50 22

Maintenance of Reusable Code 1.00 23

Object-Oriented Maintenance 1.00 24

Maintenance of Agile and Extreme Code 1.00 25

TOTAL 27.50

Software Quality Assurance Courses Days Sequence

Error-Prone Module Analysis 2.00 1

Software Defect Estimating 1.00 2

Software Defect Removal Efficiency 1.00 3

Software Defect Tracking 1.00 4

Software Design Inspections 2.00 5

Software Code Inspections 2.00 6

Software Test Inspections 2.00 7

Static Analysis of Code 2.00 8

Software Security and Quality in 2008 2.00 9

Defect Removal Using TSP/PSP 2.00 10

Software Static Analysis 2.00 11

Software Test Case Design 2.00 12

Software Test Library Management 1.00 13

Reducing Bad-Fix Injections 1.00 14

Test Case Conflicts and Errors 1.00 15

Function Points for Quality Measurement 1.00 16

ISO 9000-9004 Quality Standards 1.00 17

Overview of the CMM 1.00 18

Quality Assurance of Software Reuse 1.00 19

Quality Assurance of COTS and ERP 1.00 20

Six Sigma: Green Belt 3.00 21

Six Sigma: Black Belt 3.00 22

TOTAL 35.00

(Continued)

272 Chapter Four

Software Testing Courses Days Sequence

Test Case Design 2.00 1

Test Library Control 2.00 2

Security Testing Overview 2.00 3

Test Schedule Estimating 1.00 4

Software Defect Estimating 1.00 5

Defect Removal Efficiency Measurement 1.00 6

Static Analysis and Testing 1.00 7

Test Coverage Analysis 1.00 8

Reducing Bad-Fix Injections 1.00 9

Identifying Error-Prone Modules 2.00 10

Database Test Design 1.00 11

Removal of Incorrect Test Cases 1.00 12

Fundamentals of Unit Testing 1.00 13

Fundamentals of Regression Testing 1.00 14

Fundamentals of Component Testing 1.00 15

Fundamentals of Stress Testing 1.00 16

Fundamentals of Virus Testing 2.00 17

Fundamentals of Lab Testing 1.00 18

Fundamentals of System Testing 2.00 19

Fundamentals of External Beta Testing 1.00 20

Test Case Conflicts and Errors 1.00 21

Testing Web Applications 1.00 22

Testing COTS Application Packages 1.00 23

Testing ERP Applications 1.00 24

Function Points for Test Measures 1.00 25

Testing Reusable Functions 1.00 26

TOTAL 32.00

Software Project Office Courses Days Sequence

Software Project Planning 3.00 1

Software Cost Estimating 3.00 2

Software Defect Estimating 2.00 3

Function Point Analysis 3.00 4

Software Architecture Issues 1.00 5

Software Security Issues 1.00 6

Software Change Management 2.00 7

Software Configuration Control 2.00 8

Overview of Software Inspections 1.00 9

Overview of Software Testing 1.00 10

Software Measurement and Metrics 2.00 11

Outsource Contract Development 1.00 12

COTS Acquisition 1.00 13

ERP Acquisition and Deployment 2.00 14

How Software Personnel Learn New Skills 273

Readings and References

Boehm, Barry, Dr. Software Engineering Economics. Englewood Cliffs, NJ: Prentice
Hall, 1981.

Curtis, Bill, Dr. Human Factors in Software Development. Washington, DC: IEEE
Computer Society, 1985.

Jones, Capers. Applied Software Measurement, Third Edition. New York: McGraw-Hill,
2008.

Jones, Capers. Estimating Software Costs, Second Edition. New York: McGraw-Hill,
2007.

Jones, Capers. Software Assessments, Benchmarks, and Best Practices. Boston: Addison
Wesley Longman, 2000.

Humphrey, Watts S. PSP—A Self-Improvement Process for Software Engineers. Upper
Saddle River, NJ: Pearson Education, 2005.

Software Project Office Courses Days Sequence

Sarbanes-Oxley Compliance 2.00 15

Multicompany Outsourced Projects 2.00 16

Software Risk Management 2.00 17

Case Studies of Software Failures 1.00 18

Case Studies of Best Practices 1.00 19

Software Milestone Tracking 2.00 20

Software Cost Tracking 2.00 21

Software Defect Tracking 2.00 22

Supply Chain Estimating 2.00 23

Balanced Scorecard Measurements 1.00 24

Earned-Value Measurements 1.00 25

Six Sigma Measurements 1.00 26

TSP/PSP Measurements 1.00 27

Software Value Analysis 1.00 28

ISO 9000-9004 Quality Standards 1.00 29

Backfiring LOC to Function Points 1.00 30

Metrics Conversion 1.00 31

TOTAL 49.00

TOTAL CURRICULA Days Classes

Executive Education 11.50 16

Project Management Education 34.00 24

Software Development 41.00 27

Software Maintenance 27.50 25

Software Quality Assurance 35.00 22

Software Testing 32.00 26

Software Project Office 49.00 31

TOTAL 230.00 171.00

274 Chapter Four

Humphrey, Watts S. TSP—Leading a Development Team. Upper Saddle River, NJ:
Pearson Education, 2006.

Kawasaki, Guy. Selling the Dream. Collins Business, 1992.
Pressman, Roger. Software Engineering—A Practitioner’s Approach, Sixth Edition.

New York: McGraw-Hill, 2005.
Weinberg, Dr. Gerald. The Psychology of Computer Programming. New York: Van

Nostrand Reinhold, 1971.
Yourdon, Ed. Decline and Fall of the American Programmer. Englewood Cliffs, NJ:

Yourdon Press, Prentice Hall, 1992.
Yourdon, Ed. Rise and Resurrection of the American Programmer. Englewood Cliffs, NJ:

Yourdon Press, Prentice Hall, 1996.

275

Chapter

 5
Software Team Organization

and Specialization

Introduction

More than almost any other technical or engineering field, software devel-
opment depends upon the human mind, upon human effort, and upon
human organizations. From the day a project starts until it is retired
perhaps 30 years later, human involvement is critical to every step in
development, enhancement, maintenance, and customer support.

Software requirements are derived from human discussions of appli-
cation features. Software architecture depends upon the knowledge of
human specialists. Software design is based on human understanding
augmented by tools that handle some of the mechanical aspects, but
none of the intellectual aspects.

Software code is written line-by-line by craftspeople as custom arti-
facts and involves the highest quantity of human effort of any modern
manufactured product. (Creating sculpture and building special prod-
ucts such as 12-meter racing yachts or custom furniture require similar
amounts of manual effort by skilled artisans, but these are not main-
stream products that are widely utilized by thousands of companies.)

Although automated static analysis tools and some forms of auto-
mated testing exist, the human mind is also a primary tool for finding
bugs and security flaws. Both manual inspections and manual creation
of test plans and test cases are used for over 95 percent of software
applications, and for almost 100 percent of software applications larger
than 1,000 function points in size. Unfortunately, both quality and secu-
rity remain weak links for software.

As the economy sinks into global recession, the high costs and mar-
ginal quality and security of custom software development are going

275

276 Chapter Five

to attract increasingly critical executive attention. It may well be that
the global recession will provide a strong incentive to begin to migrate
from custom development to construction from standard reusable com-
ponents. The global recession may also provide motivation for designing
more secure software with higher quality, and for moving toward higher
levels of automation in quality control and security control.

In spite of the fact that software has the highest labor content of any
manufactured product, the topic of software team organization struc-
ture is not well covered in the software literature.

There are anecdotal reports on the value of such topics as pair-pro-
gramming, small self-organizing teams, Agile teams, colocated teams,
matrix versus hierarchical organizations, project offices, and several
others. But these reports lack quantification of results. It is hard to
find empirical data that shows side-by-side results of different kinds of
organizations for the same kinds of applications.

One of the larger collections of team-related information that is avail-
able to the general public is the set of reports and data published by the
International Software Benchmarking Standards Group (ISBSG). For
example, this organization has productivity and average application
size for teams ranging between 1 and 20 personnel. They also have data
on larger teams, with the exception that really large teams in excess of
500 people are seldom reported to any benchmark organization.

Quantifying Organizational Results

This chapter will deal with organizational issues in a somewhat unusual
fashion. As various organization structures and sizes are discussed,
information will be provided that attempts to show in quantified form
a number of important topics:

 1. Typical staffing complements in terms of managers, software engi-
neers, and specialists.

 2. The largest software projects that a specific organization size and
type can handle.

 3. The average size of software projects a specific organization size
and type handles.

 4. The average productivity rates observed with specific organization
sizes and types.

 5. The average development schedules observed with specific organi-
zation sizes and types.

 6. The average quality rates observed with specific organization sizes
and types.

Software Team Organization and Specialization 277

 7. Demographics, or the approximate usage of various organization
structures.

 8. Demographics in the sense of the kinds of specialists often deployed
under various organizational structures.

Of course, there will be some overlap among various sizes and kinds
of organization structures. The goal of the chapter is to narrow down
the ranges of uncertainty and to show what forms of organization are
best suited to software projects of various sizes and types.

Organizations in this chapter are discussed in terms of typical depart-
mental sizes, starting with one-person projects and working upward
to large, multinational, multidisciplinary teams that may have 1,000
personnel or more.

Observations of various kinds of organization structures are derived
from on-site visits to a number of organizations over a multiyear period.
Examples of some of the organizations visited by the author include
Aetna Insurance, Apple, AT&T, Boeing, Computer Aid Incorporated
(CAI), Electronic Data Systems (EDS), Exxon, Fidelity, Ford Motors,
General Electric, Hartford Insurance, IBM, Microsoft, NASA, NSA,
Sony, Texas Instruments, the U.S. Navy, and more than 100 other
organizations.

Organization structures are important aspects of successful software
projects, and a great deal more empirical study is needed on organiza-
tional topics.

The Separate Worlds of Information
Technology and Systems Software

Many medium and large companies such as banks and insurance com-
panies only have information technology (IT) organizations. While there
are organizational problems and issues within such companies, there
are larger problems and issues within companies such as Apple, Cisco,
Google, IBM, Intel, Lockheed, Microsoft, Motorola, Oracle, Raytheon,
SAP and the like, which develop systems and embedded software as
well as IT software.

Within most companies that build both IT and systems software, the
two organizations are completely different. Normally, the IT organiza-
tion reports to a chief information officer (CIO). The systems software
groups usually report to a chief technology officer (CTO).

The CIO and the CTO are usually at the same level, so neither has
authority over the other. Very seldom do these two disparate software
organizations share much in the way of training, tools, methodologies,
or even programming languages. Often they are located in different
buildings, or even in different countries.

278 Chapter Five

Because the systems software organization tends to operate as a profit
center, while the IT organizations tends to operate as a cost center, there
is often friction and even some dislike between the two groups.

The systems software group brings in revenues, but the IT organi-
zation usually does not. The friction is made worse by the fact that
compensation levels are often higher in the systems software domain
than in the IT domain.

While there are significant differences between IT and systems soft-
ware, there are also similarities. As the global recession intensifies and
companies look for ways to save money, sharing information between
IT and systems groups would seem to be advantageous.

Both sides need training in security, in quality assurance, in testing,
and in software reusability. The two sides tend to be on different business
cycles, so it is possible that the systems software side might be growing
while the IT side is downsizing, or vice versa. Coordinating position open-
ings between the two sides would be valuable in a recession.

Also valuable would be shared resources for certain skills that both
sides use. For example, there is a chronic shortage of good technical
writers, and there is no reason why technical communications could not
serve the IT organization and the systems organization concurrently.

Other groups such as testing, database administration, and quality
assurance might also serve both the systems and IT organizations.

So long as the recession is lowering sales volumes and triggering
layoffs, organizations that employ both systems software and IT groups
would find it advantageous to consider cooperation.

Both sides usually have less than optimal quality, although systems
software is usually superior to IT applications in that respect. It is pos-
sible that methods such as PSP, TSP, formal inspections, static analysis,
automated testing, and other sophisticated quality control methods could
be used by both the IT side and the systems side, which would simplify
training and also allow easier transfers of personnel from one side to
the other.

Colocation vs. Distributed Development

The software engineering literature supports a hypothesis that develop-
ment teams that are colocated in the same complex are more productive
than distributed teams of the same size located in different cities or
countries.

Indeed a study carried out by the author that dealt with large soft-
ware applications such as operating systems and telecommunication
systems noted that for each city added to the development of the same
applications, productivity declined by about 5 percent compared with
teams of identical sizes located in a single site.

Software Team Organization and Specialization 279

The same study quantified the costs of travel from city to city. For one
large telecommunications application that was developed jointly between
six cities in Europe and one city in the United States, the actual costs of
airfare and travel were higher than the costs of programming or coding.
The overall team size for this application was about 250, and no fewer
than 30 of these software engineers or specialists would be traveling from
country to country every week, and did so for more than three years.

Unfortunately, the fact that colocation is beneficial for software is an
indication that “software engineering” is a craft or art form rather than
an engineering field. For most engineered products such as aircraft,
automobiles, and cruise ships, many components and subcomponents
are built by scores of subcontractors who are widely dispersed geograph-
ically. While these manufactured parts have to be in one location for
final assembly, they do not have to be constructed in the same building
to be cost-effective.

Software engineering lacks sufficient precision in both design and
development to permit construction from parts that can be developed
remotely and then delivered for final construction. Of course, software
does involve both outsourcers and remote development teams, but the
current results indicate lower productivity than for colocated teams.

The author’s study of remote development was done in the 1980s,
before the Web and the Internet made communication easy across geo-
graphic boundaries.

Today in 2009, conference calls, webinars, wiki groups, Skype, and
other high-bandwidth communication methods are readily available.
In the future, even more sophisticated communication methods will
become available.

It is possible to envision three separate development teams located
eight hours apart, so that work on large applications could be transmit-
ted from one time zone to another at the end of every shift. This would
permit 24-hour development by switching the work to three different
countries located eight hours apart. Given the sluggish multiyear devel-
opment schedules of large software applications, this form of distributed
development might cut schedules down by perhaps 60 percent compared
with a single colocated team.

For this to happen, it is obvious that software would need to be an engi-
neering discipline rather than a craft or art form, so that the separate
teams could work in concert rather than damaging each other’s results.
In particular, the architecture, design, and coding practices would have
to be understood and shared by the teams at all three locations.

What might occur in the future would be a virtual development environ-
ment that was available 24 hours a day. In this environment, avatars of
the development teams could communicate “face to face” by using either
their own images or generic images. Live conversations via Skype or the

280 Chapter Five

equivalent could also be used as well as e-mail and various specialized
tools for activities such as remote design and code inspections.

In addition, suites of design tools and project planning tools would also
be available in the virtual environment so that both technical and busi-
ness discussions could take place without the need for expensive travel.
In fact, a virtual war room with every team’s status, bug reports, issues,
schedules, and other project materials could be created that might even
be more effective than today’s colocated organizations.

The idea is to allow three separate teams located thousands of miles
apart to operate with the same efficiency as colocated teams. It is also
desirable for quality to be even better than today. Of course, with 24-hour
development, schedules would be much shorter than they are today.

As of 2009, virtual environments are not yet at the level of sophisti-
cation needed to be effective for large system development. But as the
recession lengthens, methods that lower costs (especially travel costs)
need to be reevaluated at frequent intervals.

An even more sophisticated and effective form of software engineer-
ing involving distributed development would be that of just-in-time
software engineering practices similar to those used on the construction
of automobiles, aircraft, and large cruise ships.

In this case, there would need to be standard architectures that sup-
ported construction from reusable components. The components might
either be already in stock, or developed by specialized vendors whose
geographic locations might be anywhere on the planet.

The fundamental idea is that rather than custom design and custom
coding, standard architectures and standard designs would allow con-
struction from standard reusable components.

Of course, this idea involves many software engineering technical
topics that don’t fully exist in 2009, such as parts lists, standard inter-
faces, certification protocols for quality and security, and architectural
methods that support reusable construction.

As of 2009, the development of custom-built software applications
ranges between $1,000 per function point and $3,000 per function point.
Software maintenance and enhancements range between about $100
and $500 per function point per year, forever. These high costs make
software among the most expensive business “machines” ever created.

As the recession lengthens, it is obvious that the high costs of custom
software development need to be analyzed and more cost-effective meth-
ods developed. A combination of certified reusable components that could
be assembled by teams that are geographically dispersed could, in theory,
lead to significant cost reductions and schedule reductions also.

A business goal for software engineers would be to bring software
development costs down below $100 per function point, and annual
maintenance and enhancement costs below $50 per function point.

Software Team Organization and Specialization 281

A corollary business goal might be to reduce development schedules
for 10,000–function point applications from today’s averages of greater
than 36 calendar months down to 12 calendar months or less.

Defect potentials should be reduced from today’s averages of greater
than 5.00 per function point down to less than 2.50 per function point.
At the same time, average levels of defect removal efficiency should
rise from today’s average of less than 85 percent up to greater than 95
percent, and ideally greater than 97 percent.

Colocation cannot achieve such major reductions in costs, schedules,
and quality, but a combination of remote development, virtual develop-
ment environments, and standard reusable components might well turn
software engineering into a true engineering field, and also lower both
development and maintenance costs by significant amounts.

The Challenge of Organizing
Software Specialists

In a book that includes “software engineering” in the title, you might
suppose that the majority of the audience at which the book is aimed
are software engineers working on development of new applications.
While such software engineers are a major part of the audience, they
actually comprise less than one-third of the personnel who work on
software in large corporations.

In today’s world of 2009, many companies have more personnel working
on enhancing and modifying legacy applications than on new develop-
ment. Some companies have about as many test personnel as they do
conventional software engineering personnel—sometimes even more.

Some of the other software occupations are just as important as soft-
ware engineers for leading software projects to a successful outcome.
These other key staff members work side-by-side with software engi-
neers, and major applications cannot be completed without their work.
A few examples of other important and specialized skills employed on
software projects include architects, business analysts, database admin-
istrators, test specialists, technical writers, quality assurance special-
ists, and security specialists.

As discussed in Chapter 4 and elsewhere, the topic of software spe-
cialization is difficult to study because of inconsistencies in job titles,
inconsistencies in job descriptions, and the use of abstract titles such
as “member of the technical staff” that might encompass as many as
20 different jobs and occupations.

In this chapter, we deal with an important issue. In the presence of so
many diverse skills and occupations, all of which are necessary for soft-
ware projects, what is the best way to handle organization structures?

282 Chapter Five

Should these specialists be embedded in hierarchical structures? Should
they be part of matrix software organization structures and report in to
their own chain of command while reporting via “dotted lines” to project
managers? Should they be part of small self-organizing teams?

This topic of organizing specialists is surprisingly ambiguous as of
2009 and has very little solid data based on empirical studies. A few
solid facts are known, however:

 1. Quality assurance personnel need to be protected from coercion in
order to maintain a truly objective view of quality and to report
honestly on problems. Therefore, the QA organization needs to be
separate from the development organization all the way up to the
level of a senior vice president of quality.

 2. Because the work of maintenance and bug repairs is rather differ-
ent from the work of new development, large corporations that have
extensive portfolios of legacy software applications should consider
using separate maintenance departments for bug repairs.

 3. Some specialists such as technical writers would have little oppor-
tunity for promotion or job enrichment if embedded in departments
staffed primarily by software engineers. Therefore, a separate
technical publications organization would provide better career
opportunities.

The fundamental question for specialists is whether they should be
organized in skill-based units with others who share the same skills
and job titles, or embedded in functional departments where they will
actually exercise those skills.

The advantage of skill-based units is that they offer specialists wider
career opportunities and better educational opportunities. Also, in case
of injury or incapacity, the skill-based organizations can usually assign
someone else to take over.

The advantage of the functional organization where specialists are
embedded in larger units with many other kinds of skills is that the
specialists are immediately available for the work of the unit.

In general, if there are a great many of a certain kind of special-
ist (technical writers, testers, quality assurance, etc.), the skill-based
organizations seem advantageous. But for rare skills, there may not be
enough people in the same occupation for a skill-based group to even
be created (i.e., security, architecture, etc.).

In this chapter, we will consider various alternative methods for deal-
ing with the organization of key specialists associated with software.
There are more than 120 software-related specialties in all, and for
some of these, there may only be one or two employed even in fairly
large companies.

Software Team Organization and Specialization 283

This chapter concentrates on key specialties whose work is critical
to the success of large applications in large companies. Assume the
software organization in a fairly large company employs a total of 1,000
personnel. In this total of 1,000 people, how many different kinds of spe-
cialists and how many specific individuals are likely to be employed? For
that matter, what are the specialists that are most important to success?
Table 5-1 identifies a number of these important specialists and the
approximate distribution out of a total of 1,000 software personnel.

TABLE 5-1 Distribution of Software Specialists for 1,000 Total Software Staff

Number Percent

 1. Maintenance specialists 315 31.50%

 2. Development software engineers 275 27.50%

 3. Testing specialists 125 12.50%

 4. First-line managers 120 12.00%

 5. Quality assurance specialists 25 2.50%

 6. Technical writing specialists 23 2.30%

 7. Customer support specialists 20 2.00%

 8. Configuration control specialists 15 1.50%

 9. Second-line managers 9 0.90%

10. Business analysts 8 0.80%

11. Scope managers 7 0.70%

12. Administrative support 7 0.70%

13. Project librarians 5 0.50%

14. Project planning specialists 5 0.50%

15. Architects 4 0.40%

16. User interface specialists 4 0.40%

17. Cost estimating specialists 3 0.30%

18. Measurement/metric specialists 3 0.30%

19. Database administration specialists 3 0.30%

20. Nationalization specialists 3 0.30%

21. Graphical artists 3 0.30%

22. Performance specialists 3 0.30%

23. Security specialists 3 0.30%

24. Integration specialists 3 0.30%

25. Encryption specialists 2 0.20%

26. Reusability specialists 2 0.20%

27. Test library control specialists 2 0.20%

28. Risk specialists 1 0.10%

29. Standards specialists 1 0.10%

30. Value analysis specialists 1 0.10%

TOTAL SOFTWARE EMPLOYMENT 1000 100.00%

284 Chapter Five

As can be seen from Table 5-1, software engineers do not operate all by
themselves. A variety of other skills are needed in order to develop and
maintain software applications in the modern world. Indeed, as of 2009,
the number and kinds of software specialists are increasing, although
the recession may reduce the absolute number of software personnel if
it lengthens and stays severe.

Software Organization Structures
from Small to Large

The observed sizes of software organization structures range from a low
of one individual up to a high that consists of multidisciplinary teams
of 30 personnel or more.

For historical reasons, the “average” size of software teams tends to be
about eight personnel reporting to a manager or team leader. However,
both smaller and larger teams are quite common.

This section of Chapter 5 examines the sizes and attributes of soft-
ware organization structures from small to large, starting with one-
person projects.

One-Person Software Projects

The most common corporate purpose for one-person projects is that of
carrying out maintenance and small enhancements to legacy software
applications. For new development, building web sites is a typical one-
person activity in a corporate context.

However, a fairly large number of one-person software companies
actually develop small commercial software packages such as iPhone
applications, shareware, freeware, computer games, and other small
applications. In fact, quite a lot of innovative new software and product
ideas originate from one-person companies.

Demographics Because small software maintenance projects are
common, on any given day, probably close to 250,000 one-person projects
are under way in the United States, with the majority being mainte-
nance and enhancements.

In terms of one-person companies that produce small applications, the
author estimates that as of 2009, there are probably more than 10,000 in
the United States. This has been a surprisingly fruitful source of inno-
vation, and is also a significant presence in the open-source, freeware,
and shareware domains.

Project size The average size of new applications done by one-person
projects is about 50 function points, and the maximum size is below 1,000

Software Team Organization and Specialization 285

function points. For maintenance or defect repair work, the average size is
less than 1 function point and seldom tops 5 function points. For enhance-
ment to legacy applications, the average size is about 5 to 10 function
points for each new feature added, and seldom tops 15 function points.

Productivity rates Productivity rates for one-person efforts are usually
quite good, and top 30 function points per staff month. One caveat is
that if the one-person development team also has to write user manuals
and provide customer support, then productivity gets cut approximately
in half.

Another caveat is that many one-person companies are home based.
Therefore unexpected events such as a bout of flu, a new baby, or some
other normal family event such as weddings and funerals can have a
significant impact on the work at hand.

A third caveat is that one-person software projects are very sensitive
to the skill and work practices of specific individuals. Controlled experi-
ments indicate about a 10-to-1 difference between the best and worst
results for tasks such as coding and bug removal. That being said, quite
a few of the people who migrate into one-person positions tend to be at
the high end of the competence and performance scale.

Schedules Development schedules for one-person maintenance and
enhancement projects usually range between a day and a week. For new
development by one person, schedules usually range between about two
months and six months.

Quality The quality levels for one-person applications are not too bad.
Defect potentials run to about 2.5 bugs per function point, and defect
removal efficiency is about 90 percent. Therefore a small iPhone applica-
tion of 25 function points might have a total of about 60 bugs, of which
6 will still be present at release.

Specialization You might think that one-person projects would be the
domain of generalists, since it is obvious that special skills such as
testing and documentation all have to be found in the same individual.
However, one of the more surprising results of examining one-person
projects is that many of them are carried out by people who are not
software engineers or programmers at all.

For embedded and systems software, many one-person software
projects are carried out by electrical engineers, telecommunication
engineers, automotive engineers, or some other type of engineer. Even
for business software, some one-person projects may be carried out by
accountants, attorneys, business analysts, and other domain experts who
are also able to program. This is one of the reasons why such a significant

286 Chapter Five

number of inventions and new ideas flow from small companies and
one-person projects.

Cautions and counter indications The major caution about one-person
projects for either development or maintenance is lack of backup in case
of illness or incapacity. If something should happen to that one person,
work will stop completely.

A second caution is if the person developing software is a domain
expert (i.e., accountant, business analyst, statistician, etc.) who is
building an application for personal use in a corporation, there may be
legal questions involving the ownership of the application should the
employee leave the company.

A third caution is that there may be liability issues in case the soft-
ware developed by a knowledge worker contains errors or does some
kind of damage to the company or its clients.

Conclusions One-person projects are the norm and are quite effective
for small enhancement updates and for maintenance changes to legacy
applications.

Although one-person development projects must necessarily be rather
small, a surprising number of innovations and good ideas have origi-
nated from brilliant individual practitioners.

Pair Programming for Software
Development and Maintenance

The idea of pair-programming is for two software developers to share one
computer and take turns doing the coding, while the other member of
the team serves as an observer. The roles switch back and forth between
the two at frequent intervals, such as perhaps every 30 minutes to an
hour. The team member doing the coding is called the driver and the
other member is the navigator or observer.

As of 2009, the results of pair programming are ambiguous. Several
studies indicate fewer defects from pair programming, while others
assert that development schedules are improved as well.

However, all of the experiments were fairly small in scale and fairly
narrow in focus. For example, no known study of pair-programming defects
compared the results against an individual programmer who used static
analysis and automatic testing. Neither have studies compared top-gun
individuals against average to mediocre pairs, or vice versa.

There are also no known studies that compare the quality results of
pair programming against proven quality approaches such as formal
design and code inspections, which have almost 50 years of empirical
data available, and which also utilize the services of other people for
finding software defects.

Software Team Organization and Specialization 287

While many of the pair-programming experiments indicate shorter
development schedules, none indicate reduced development effort or costs
from having two people perform work that is normally performed by one
person.

For pair programming to lower development costs, schedules would
have to be reduced by more than 50 percent. However, experiments
and data collected to date indicate schedule reductions of only about
15 percent to 30 percent, which would have the effect of raising develop-
ment costs by more than 50 percent compared with a single individual
doing the same work.

Pair-programming enthusiasts assert that better quality will com-
pensate for higher development effort and costs, but that claim is not
supported by studies that included static analysis, automatic testing,
formal inspections, and other sophisticated defect removal methods. The
fact that two developers who use manual defect removal methods might
have lower defects than one developer using manual defect removal
methods is interesting but unconvincing.

Pair programming might be an interesting and useful method for
developing reusable components, which need to have very high quality
and reliability, but where development effort and schedules are com-
paratively unimportant. However, Watts Humphrey’s Team Software
Process (TSP) is also an excellent choice for reusable components and
has far more historical data available than pair programming does.

Subjectively, the pair-programming concept seems to be enjoyable to
many who have experienced it. The social situation of having another
colleague involved with complicated algorithms and code structures is
perceived as being advantageous.

As the recession of 2009 continues to expand and layoffs become more
numerous, it is very likely that pair programming will no longer be
utilized, due to the fact that companies will be reducing software staffs
down to minimal levels and can no longer afford the extra overhead.

Most of the literature on pair programming deals with colocation in
a single office. However, remote pair-programming, where the partners
are in different cities or countries, is occasionally cited.

Pair programming is an interesting form of collaboration, and collabo-
ration is always needed for applications larger than about 100 function
points in size.

In the context of test-driven development, one interesting variation
of pair programming would be for one of the pair to write test cases and
the other to write code, and then to switch roles.

Another area where pair programming has been used successfully
is that of maintenance and bug repairs. One maintenance outsource
company has organized their maintenance teams along the lines of an
urban police station. The reason for this is that bugs come in at random

288 Chapter Five

intervals, and there is always a need to have staff available when a new
bug is reported, especially a new high-severity bug.

In the police model of maintenance, a dispatcher and several pairs of
maintenance programmers work as partners, just as police detectives
work as partners.

During defect analysis, having two team members working side by
side speeds up finding the origins of reported bugs. Having two people
work on the defect repairs as partners also speeds up the repair inter-
vals and reduces bad-fix injections. (Historically, about 7 percent of
attempts to repair a bug accidentally introduce a new bug in the fix
itself. These are called bad fixes.)

In fact, pair programming for bug repairs and maintenance activities
looks as if it may be the most effective use of pairs yet noted.

Demographics Because pair programming is an experimental approach,
the method is not widely deployed. As the recession lengthens, there may
be even less pair-programming. The author estimates that as of 2009,
perhaps 500 to 1,000 pairs are currently active in the United States.

Project size The average size of new applications done by pair-program-
ming teams is about 75 function points, and the maximum size is fewer
than 1,000 function points. For maintenance or defect repair work, the
average size is less than 1 function point. For enhancement to legacy
applications, the average size is about 5 to 10 function points for each
new feature added.

Productivity rates Productivity rates for pair-programming efforts
are usually in the range of 16 to 20 function points per staff month or
30 percent less than the same project done by one person.

Pair-programming software projects are very sensitive to the skill
and work practices of specific individuals. As previously mentioned, con-
trolled experiments indicate about a 10-to-1 range difference between
the best and worst results for tasks such as coding and bug removal by
individual participants in such studies.

Some psychological studies of software personnel indicate a tendency
toward introversion, which may make the pair-programming concept
uncomfortable to some software engineers. The literature on pair pro-
gramming does indicate social satisfaction.

Schedules Development schedules for pair-programming maintenance
and enhancement projects usually range between a day and a week.
For new development by pairs, schedules usually range between about
two months and six months. Schedules tend to be about 10 percent to
30 percent shorter than one-person efforts for the same number of func-
tion points.

Software Team Organization and Specialization 289

Quality The quality levels for pair-programming applications are not
bad. Defect potentials run to about 2.5 bugs per function point, and
defect removal efficiency is about 93 percent. Therefore, a small iPhone
application of 25 function points might have a total of about 60 bugs, of
which 4 will still be present at release. This is perhaps 15 percent better
than individual developers using manual defect removal and testing.
However, there is no current data that compares pair programming with
individual programming efforts where automated static analysis and
automated testing are part of the equation.

Specialization There are few studies to date on the role of specialization
in a pair-programming context. However, there are reports of interest-
ing distributions of effort. For example, one of the pair might write test
cases while the other is coding, or one might write user stories while
the other codes.

To date there are no studies of pair programming that concern teams
with notably different backgrounds working on the same application;
that is, a software engineer teamed with an electrical engineer or an
automotive engineer; a software engineer teamed with a medical doctor;
and so forth. The pairing of unlike disciplines would seem to be a topic
that might be worth experimenting with.

Cautions and counter indications The topic of pair programming needs
additional experimentation before it can become a mainstream approach,
if indeed it ever does. The experiments need to include more sophisticated
quality control, and also to compare top-gun individual programmers.
The higher costs of pair programming are not likely to gain adherents
during a strong recession.

Conclusions There is scarcely enough empirical data about pair pro-
gramming to draw solid conclusions. Experiments and anecdotal results
are generally favorable, but the experiments to date cover only a few
variables and ignore important topics such as the role of static analysis,
automatic testing, inspections, and other quality factors. As the global
recession lengthens and deepens, pair programming may drop from
view due to layoffs and downsizing of software organizations.

Self-Organizing Agile Teams

For several years, as the Agile movement gained adherents, the concept
of small self-organizing teams also gained adherents. The concept of
self-organized teams is that rather than have team members reporting
to a manager or formal team leader, the members of the team would
migrate to roles that they felt most comfortably matched their skills.

290 Chapter Five

In a self-organizing team, every member will be a direct contribu-
tor to the final set of deliverables. In an ordinary department with a
manager, the manager is usually not a direct contributor to the code
to deliverables that reach end users. Therefore, self-organizing teams
should be slightly more efficient than ordinary departments of the same
size, because they would have one additional worker.

In U.S. businesses, ordinary departments average about eight employ-
ees per manager. The number of employees reporting to a manager is
called the span of control. (The actual observed span of control within
large companies such as IBM has ranged from a low of 2 to a high of
30 employees per manager.)

For self-organizing teams, the nominal range of size is about “7 plus or
minus 2.” However, to truly match any given size of software project, team
sizes need to range from a low of two up to a maximum of about 12.

A significant historical problem with software has been that of decom-
posing applications to fit existing organization structures, rather than
decomposing the applications into logical pieces based on the funda-
mental architecture.

The practical effect has been to divide large applications into multiple
segments that can be developed by an eight-person department whether
or not that matches the architecture of the application.

In an Agile context, a user representative may be a member of the
team and provides inputs as to the features that are needed, and also
provides experiential reports based on running the pieces of the applica-
tion as they are finished. The user representative has a special role and
normally does not do any code development, although some test cases
may be created by the embedded user representative. Obviously, the
user will provide inputs in terms of user stories, use cases, and informal
descriptions of the features that are needed.

In theory, self-organizing teams are cross-functional, and everyone
contributes to every deliverable on an as-needed basis. However, it is
not particularly effective for people to depart from their main areas of
competence. Technical writers may not make good programmers. Very
few people are good technical writers. Therefore, the best results tend
to be achieved when team members follow their strengths.

However, in areas where everyone (or no one) is equally skilled, all can
participate. Creating effective test cases may be an example where skills
are somewhat sparse throughout. Dealing with security of code is an
area where so few people are skilled that if it is a serious concern, out-
side expertise will probably have to be imported to support the team.

Another aspect of self-organizing teams is the usage of daily status
meetings, which are called Scrum sessions, using a term derived from
the game of rugby. Typically, Scrum sessions are short and deal with
three key issues: (1) what has been accomplished since the last Scrum

Software Team Organization and Specialization 291

session, (2) what is planned between today and the next Scrum session,
and (3) what problems or obstacles have been encountered.

(Scrum is not the only method of meeting and sharing information.
Phone calls, e-mails, and informal face-to-face meetings occur every day.
There may also be somewhat larger meetings among multiple teams,
on an as-needed basis.)

One of the controversial roles with self-organizing teams is that of
Scrum master. Nominally, the Scrum master is a form of coordinator
for the entire project and is charged with setting expectations for work
that spans multiple team members; that is, the Scrum master is a sort
of coach. This role means that the personality and leadership qualities
of the Scrum master exert a strong influence on the overall team.

Demographics Because Agile has been on a rapid growth path for sev-
eral years, the number of small Agile teams is still increasing. As of
2009, the author estimates that in the United States alone there are
probably 35,000 small self-organizing teams that collectively employ
about 250,000 software engineers and other occupations.

Project size The average size of new applications done by self-organizing
teams with seven members is about 1,500 function points, and the
maximum size is perhaps 3,000 function points. (Beyond 3,000 func-
tion points, teams of teams would be utilized.) Self-organizing teams
are seldom used for maintenance or defect repair work, since a bug’s
average size is less than 1 function point and needs only one person. For
enhancements to legacy applications, self-organizing teams might be
used for major enhancements in the 150– to 500–function point range.
For smaller enhancements of 5 to 10 function points, individuals would
probably be used for coding, with perhaps some assistance from testers,
technical writers, and integration specialists.

Although there are methods for scaling up small teams to encom-
pass teams of teams, scaling has been a problem for self-organizing
teams. In fact, the entire Agile philosophy seems better suited to
applications below about 2,500 function points. Very few examples
of large systems greater than 10,000 function points have even been
attempted using Agile or self-organizing teams.

Productivity rates Productivity rates for self-organizing teams on proj-
ects of 1,500 function points are usually in the range of 15 function
points per staff month. They sometimes top 20 function points per staff
month for applications where the team has significant expertise and may
drop below 10 function points per staff month for unusual or complex
projects.

292 Chapter Five

Productivity rates for individual sprints are higher, but that fact is
somewhat irrelevant because the sprints do not include final integration
of all components, system test of the entire application, and the final
user documentation.

Self-organizing team projects tend to minimize the performance
ranges of individuals and may help to bring novices up to speed fairly
quickly. However, if the range of performance on a given team exceeds
about 2-to-1, those at the high end of the performance range will become
dissatisfied with the work of those at the low end of the range.

Schedules Development schedules for new development by self-
organizing teams for typical 1,500–function point projects usually range
between about 9 months and 18 months and would average perhaps
12 calendar months for the entire application.

However, the Agile approach is to divide the entire application into a
set of segments that can be developed independently. These are called
sprints and would typically be of a size that can be completed in perhaps
one to three months. For an application of 1,500 function points, there
might be five sprints of about 300 function points each. The schedule
for each sprint might be around 2.5 calendar months.

Quality The quality levels for self-organizing teams are not bad, but
usually don’t achieve the levels of methods such as Team Software
Process (TSP) where quality is a central issue. Typical defect potentials
run to about 4.5 bugs per function point, and defect removal efficiency
is about 92 percent.

Therefore, an application of 1,500 function points developed by a
self-organizing Agile team might have a total of about 6,750 bugs, of
which 540 would still be present at release. Of these, about 80 might
be serious bugs.

However, if tools such as automated static analysis and automated
testing are used, then defect removal efficiency can approach 97 percent.
In this situation, only about 200 bugs might be present at release. Of
these, perhaps 25 might be serious.

Specialization There are few studies to date on the role of specialization
in self-organizing teams. Indeed, some enthusiasts of self-organizing
teams encourage generalists. They tend to view specialization as being
similar to working on an assembly line. However, generalists often have
gaps in their training and experience. The kinds of specialists who might
be useful would be security specialists, test specialists, quality assur-
ance specialists, database specialists, user-interface specialists, network
specialists, performance specialists, and technical writers.

Software Team Organization and Specialization 293

Cautions and counter indications The main caution about self-organizing
teams is that the lack of a standard and well-understood structure opens up
the team to the chance of power struggles and disruptive social conflicts.

A second caution is that scaling Agile up from small applications to
large systems with multiple teams in multiple locations has proven to
be complicated and difficult.

A third caution is that the poor measurement practices associated
with Agile and with many self-organizing teams give the method the
aura of a cult rather than of an engineering discipline. The failure either
to measure productivity or quality, or to report benchmarks using stan-
dard metrics is a serious deficiency.

Conclusions The literature and evidence for self-organizing Agile teams
is somewhat mixed and ambiguous. For the first five years of the Agile
expansion, self-organizing teams were garnering a majority of favorable
if subjective articles.

Since about the beginning of 2007, on the other hand, an increasing
number of articles and reports have appeared that raise questions about
self-organizing teams and that even suggest that they be abolished due
to confusion as to roles, disruptive power struggles within the teams,
and outright failures of the projects.

This is a typical pattern within the software industry. New develop-
ment methods are initially championed by charismatic individuals and
start out by gaining a significant number of positive articles and positive
books, usually without any empirical data or quantification of results.

After several years, problems begin to be noted, and increasing num-
bers of applications that use the method may fail or be unsuccessful. In
part this may be due to poor training, but the primary reason is that
almost no software development method is fully analyzed or used under
controlled conditions prior to deployment. Poor measurement practices
and a lack of benchmarks are also chronic problems that slow down
evaluation of software methods.

Unfortunately, self-organizing teams originated in the context of Agile
development. Agile has been rather poor in measuring either productiv-
ity or quality, and creates almost no effective benchmarks. When Agile
projects are measured, they tend to use special metrics such as story
points or use-case points, which are not standardized and lack empirical
collections of data and benchmarks.

Team Software Process (TSP) Teams

The concept of Team Software Process (TSP) was developed by Watts
Humphrey based on his experiences at IBM and as the originator of
the capability maturity model (CMM) for the Software Engineering
Institute (SEI).

294 Chapter Five

The TSP concept deals with the roles and responsibilities needed to
achieve successful software development. But TSP is built on individual
skills and responsibilities, so it needs to be considered in context with
the Personal Software Process (PSP). Usually, software engineers and
specialists learn PSP first, and then move to TSP afterwards.

Because of the background of Watts Humphrey with IBM and with
the capability maturity model, the TSP approach is congruent with the
modern capability maturity model integrated (CMMI) and appears to
satisfy many of the criteria for CMMI level 5, which is the top or highest
level of the CMMI structure.

Because TSP teams are self-organizing teams, they have a surface
resemblance to Agile teams, which are also self-organizing. However,
the Agile teams tend to adopt varying free-form structures based on the
skills and preferences of whoever is assigned to the team.

The TSP teams, on the other hand, are built on a solid underpinning
of specific roles and responsibilities that remain constant from project
to project. Therefore, with TSP teams, members are selected based on
specific skill criteria that have been shown to be necessary for successful
software projects. Employees who lack needed skills would probably not
become members of TSP teams, unless training were available.

Also, prior training in PSP is mandatory for TSP teams. Other kinds
of training such as estimating, inspections, and testing may also be used
as precursors.

Another interesting difference between Agile teams and TSP teams is
the starting point of the two approaches. The Agile methods were origi-
nated by practitioners whose main concerns were comparatively small
IT applications of 1,500 or fewer function points. The TSP approach was
originated by practitioners whose main concerns were large systems
software applications of 10,000 or more function points.

The difference in starting points leads to some differences in skill sets
and specialization. Because small applications use few specialists, Agile
teams are often populated by generalists who can handle design, coding,
testing, and even documentation on an as-needed basis.

Because TSP teams are often involved with large applications, they
tend to utilize specialists for topics such as configuration control, inte-
gration, testing, and the like.

While both Agile and TSP share a concern for quality, they tend to go
after quality in very different fashions. Some of the Agile methods are
based on test-driven development, or creating test cases prior to creat-
ing the code. This approach is fairly effective. However, Agile tends to
avoid formal inspections and is somewhat lax on recording defects and
measuring quality.

With TSP, formal inspections of key deliverables are an integral part, as
is formal testing. Another major difference is that TSP is very rigorous in

Software Team Organization and Specialization 295

measuring every single defect encountered from the first day of require-
ments through delivery, while defect measures during Agile projects are
somewhat sparse and usually don’t occur before testing.

Both Agile and TSP may utilize automated defect tracking tools, and
both may utilize approaches such as static analysis, automated testing,
and automated test library controls.

Some other differences between Agile and TSP do not necessarily affect
the outcomes of software projects, but they do affect what is known about
those outcomes. Agile tends to be lax on measuring productivity and qual-
ity, while TSP is very rigorous in measuring task hours, earned value,
defect counts, and many other quantified facts.

Therefore, when projects are finished, Agile projects have only vague
and unconvincing data that demonstrates either productivity or qual-
ity results. TSP, on the other hand, has a significant amount of reliable
quantified data available.

TSP can be utilized with both hierarchical and matrix organization
structures, although hierarchical structures are perhaps more common.
Watts Humphrey reports that TSP is used for many different kinds of
software, including defense applications, civilian government applica-
tions, IT applications, commercial software in companies such as Oracle
and Adobe, and even by some of the computer game companies, where
TSP has proven to be useful in eliminating annoying bugs.

Demographics TSP is most widely used by large organizations that
employ between perhaps 1,000 and 50,000 total software personnel.
Because of the synergy between TSP and the CMMI, it is also widely
used by military and defense software organizations. These large organi-
zations tend to have scores of specialized skills and hundreds of projects
going on at the same time.

The author estimates that there are about 500 companies in the
United States now using TSP. While usage may be experimental in some
of these companies, usage is growing fairly rapidly due to the success
of the approach. The number of software personnel using TSP in 2009
is perhaps 125,000 in the United States.

Project size The average size of new applications done by TSP teams
with eight employees and a manager is about 2,000 function points.
However, TSP organizations can be scaled up to any arbitrary size, so
even large systems in excess of 100,000 function points can be handled
by TSP teams working in concert. For large applications with multiple
TSP teams, some specialist teams such as testing, configuration control,
and integration also support the general development teams.

Another caveat with multiple teams attempting to cooperate is that
when more than about a dozen teams are involved simultaneously,

296 Chapter Five

some kind of a project office may be needed for overall planning and
coordination.

Productivity rates Productivity rates for TSP departments on projects of
2,000 function points are usually in the range of 14 to18 function points
per staff month. They sometimes top 22 function points per staff month
for applications where the team has significant expertise, and may drop
below 10 function points per staff month for unusual or complex proj-
ects. Productivity tends to be inversely proportional to application size
and declines as applications grow larger.

Schedules Development schedules for new development by TSP groups
with eight team members working on a 2,000–function point project
usually range between about 12 months and 20 months and would aver-
age perhaps 14 calendar months for the entire application.

Quality The quality levels for TSP organizations are exceptionally good.
Average defect potentials with TSP run to about 4.0 bugs per func-
tion point, and defect removal efficiency is about 97 percent. Delivered
defects would average about 0.12 per function point.

Therefore, an application of 2,000 function points developed by a single
TSP department might have a total of about 8,000 bugs, of which 240 would
still be present at release. Of these, about 25 might be serious bugs.

However, if in addition to pretest inspections, tools such as automated
static analysis and automated testing are used, then defect removal
efficiency can approach 99 percent. In this situation, only about 80 bugs
might be present at release. Of these, perhaps 8 might be serious bugs,
which is a rate of only 0.004 per function point.

Generally, as application sizes increase, defect potentials also increase,
while defect removal efficiency levels decline. Interestingly, with TSP,
this rule may not apply. Some of the larger TSP applications achieve
more or less the same quality as small applications.

Another surprising finding with TSP is that productivity does not
seem to degrade significantly as application size goes up. Normally,
productivity declines with application size, but Watts Humphrey reports
no significant reductions across a wide range of application sizes. This
assertion requires additional study, because that would make TSP
unique among software development methods.

Specialization TSP envisions a wide variety of specialists. Most TSP
teams will have numerous specialists for topics such as architecture,
testing, security, database design, and many others.

Interestingly, the TSP approach does not recommend software quality
assurance (SQA) as being part of a standard TSP team. This is because

Software Team Organization and Specialization 297

of the view that the TSP team itself is so rigorous in quality control that
SQA is not needed.

In companies where SQA groups are responsible for collecting quality
data, TSP teams will provide such data as needed, but it will be collected
by the team’s own personnel rather than by an SQA person or staff
assigned to the project.

Cautions and counter indications The main caution about TSP organiza-
tions and projects is that while they measure many important topics,
they do not use standard metrics such as function points. The TSP use
of task hours is more or less unique, and it is difficult to compare task
hours against standard resource metrics.

Another caution is that few if any TSP projects have ever submit-
ted benchmark data to any of the formal software benchmark groups
such as the International Software Benchmarking Standards Group
(ISBSG). As a result, it is almost impossible to compare TSP against
other methods without doing complicated data conversion.

It is technically feasible to calculate function point totals using sev-
eral of the new high-speed function point methods. In fact, quantifying
function points for both new applications and legacy software now takes
only a few minutes. Therefore, reporting on quality and productivity
using function points would not be particularly difficult.

Converting task-hour data into normal workweek and work-month
information would be somewhat more troublesome, but no doubt the
data could be converted using algorithms or some sort of rule-based
expert system.

It would probably be advantageous for both Agile and TSP projects
to adopt high-speed function point methods and to submit benchmark
results to one or more of the benchmark organizations such as ISBSG.

Conclusions The TSP approach tends to achieve a high level of successful
applications and few if any failures. As a result, it deserves to be studied
in depth.

From observations made during litigation for projects that failed or
never operated successfully, TSP has not yet had failures that ended up in
court. This may change as the number of TSP applications grows larger.

TSP emphasizes the competence of the managers and technical staff,
and it emphasizes effective quality control and change management
control. Effective estimating and careful progress tracking also are stan-
dard attributes of TSP projects. The fact that TSP personnel are carefully
trained before starting to use the method, and that experienced mentors
are usually available, explains why TSP is seldom misused.

With Agile, for example, there may be a dozen or more variations of
how development activities are performed, but they still use the name

298 Chapter Five

“Agile” as an umbrella term. TSP activities are more carefully defined
and used, so when the author visited TSP teams in multiple companies,
the same activities carried out the same way were noted.

Because of the emphasis on quality, TSP would be a good choice as the
construction method for standard reusable components. It also seems to
be a good choice for hazardous applications where poor quality might
cause serious problems; that is, in medical systems, weapons systems,
financial applications, and the like.

Conventional Departments with Hierarchical
Organization Structures

The concept of hierarchical organizations is the oldest method for
assigning social roles and responsibilities on the planet. The etymology
of the word “hierarchy” is from the Greek, and the meaning is “rule by
priests.” But the concept itself is older than Greece and was also found
in Egypt, Sumer, and most other ancient civilizations.

Many religions are organized in hierarchical fashion, as are military
organizations. Some businesses are hierarchical if they are privately
owned. Public companies with shareholders are usually semi-hierarchical,
in that the operating units report upward level-by-level to the president
or chief executive officer (CEO). The CEO, however, reports to a board
of directors elected by the shareholders, so the very top level of a public
company is not exactly a true hierarchy.

In a hierarchical organization, units of various sizes each have a formal
leader or manager who is appointed to the position by higher authorities.
While the appointing authority is often the leader of the next highest
level of organization in the structure, the actual power to appoint is usu-
ally delegated from the top of the hierarchy. Once appointed, each leader
reports to the next highest leader in the same chain of command.

While appointed leaders or managers at various levels have author-
ity to issue orders and to direct their own units, they are also required
to adhere to directives that descend from higher authorities. Progress
reports flow back up to higher authorities.

In business hierarchies, lower level managers are usually appointed
by the manager of the next highest level. But for executive positions
such as vice presidents the appointments may be made by a committee
of top executives. The purpose of this, at least in theory, is to ensure
the competence of the top executives of the hierarchy. However, the
recent turmoil in the financial sector and the expanding global reces-
sion indicates that top management tends to be a weak link in far too
many companies.

It should be noted that the actual hierarchical structure of an orga-
nization and its power structure may not be identical. For example,

Software Team Organization and Specialization 299

in Japan during the Middle Ages, the emperor was at the top of the
formal government hierarchy, but actual ruling power was vested in a
military organization headed by a commander called the shogun. Only
the emperor could appoint the shogun, but the specific appointment
was dictated by the military leadership, and the emperor had almost
no military or political power.

A longstanding issue with hierarchical organizations is that if the
leader at the top of the pyramid is weak or incompetent, the entire
structure may be at some risk of failing. For hierarchical governments,
weak leadership may lead to revolutions or loss of territory to strong
neighbors.

For hierarchical business organizations, weak leadership at the top
tends to lead to loss of market share and perhaps to failure or bank-
ruptcy. Indeed analysis of the recent business failures from Enron
through Lehmann does indicate that the top of these hierarchies did
not have the competence and insight necessary to deal with serious
problems, or even to understand what the problems were.

It is an interesting business phenomenon that the life expectancy of a
hierarchical corporation is approximately equal to the life expectancies
of human beings. Very few companies live to be 100 years old. As the
global recession lengthens and deepens, a great many companies are
likely to expire, although some will expand and grow stronger.

A hierarchical organization has two broad classes of employees. One
of these classes consists of the workers or specialists who actually do
the work of the enterprise. The second class consists of the managers
and executives to whom the workers report. Of course, managers also
report to higher-level managers.

The distinction between technical work and managerial work is so
deeply embedded in hierarchical organizations that it has created two
very distinct career paths: management and technical work.

When starting out their careers, young employees almost always
begin as technical workers. For software, this means starting out as
software engineers, programmers, systems analysts, technical writers,
and the like. After a few years of employment, workers need to make
a career choice and either get promoted into management or stay with
technical work.

The choice is usually determined by personality and personal inter-
ests. Many people like technical work and never want to get into manage-
ment. Other people enjoy planning and coordination of group activities
and opt for a management career.

There is an imbalance in the numbers of managers and technical
workers. In most companies, the managerial community totals to about
15 percent of overall employment, while the technical workers total to
about 85 percent. Since managers are not usually part of the production

300 Chapter Five

process of the company, it is important not to have an excessive number
of managers and executives. Too many managers and executives tend to
degrade operational performance. This has been noted in both business
and military organizations.

It is interesting that up to a certain point, the compensation levels
of technical workers and managers are approximately the same. For
example, in most corporations, the top technical workers can have com-
pensation that equals third-line managers. However, at the very top of
corporations, there is a huge imbalance.

The CEOs of a number of corporations and some executive vice presi-
dents have compensation packages that are worth millions of dollars. In
fact, some executive compensation packages are more than 250 times the
compensation of the average worker within the company. As the global
recession deepens, these enormous executive compensation packages are
being challenged by both shareholders and government regulators.

Another topic that is beginning to be questioned is the span of control,
or the number of technical workers who report to one manager. For his-
torical reasons that are somewhat ambiguous, the average department
in the United States has about eight technical workers reporting to one
manager. The ranges observed run from two employees per manager to
about 30 employees per manager.

Assuming an average of eight technical workers per manager, then
about 12.5 percent of total employment would be in the form of first-line
managers. When higher-level managers are included, the overall total
is about 15 percent.

From analyzing appraisal scores and examining complaints against
managers in large corporations, it appears that somewhat less than
15 percent of the human population is qualified to be effective in man-
agement. In fact, only about 10 percent (or less) seem to be qualified to
be effective in management.

That being said, it might be of interest to study raising the average
span of control from 8 workers per manager up to perhaps 12 workers
per manager. Weeding out unqualified managers and restoring them to
technical work might improve overall efficiency and reduce the social
discomfort caused by poor management.

Practicing managers state that increasing the span of control would
lower their ability to control projects and understand the actual work of
their subordinates. However, time and motion studies carried out by the
author in large corporations such as IBM found that software managers
tended to spend more time in meetings with other managers than in dis-
cussions or meetings with their own employees. In fact, a possible law of
business is “managerial meetings are inversely proportional to the span
of control.” The more managers on a given project, the more time they
spend with other managers rather than with their own employees.

Software Team Organization and Specialization 301

Another and more controversial aspect of this study had to do with
project failure rates, delays, and other mishaps. For large projects with
multiple managers, the failure rates seem to correlate more closely
to the number of managers involved with the projects than with the
number of software engineers and technical workers.

While the technical workers often managed to do their jobs and get
along with their colleagues in other departments, managerial efforts tend
to be diluted by power struggles and debates with other managers.

This study needs additional research and validation. However, it led
to the conclusion that increasing the span of control and reducing mana-
gerial numbers tends to raise the odds of a successful software project
outcome. This would especially be true if the displaced managers hap-
pened to be those of marginal competence for managerial work.

In many hierarchical departments with generalists, the same people
do both development and maintenance. It should be noted that if the
same software engineers are responsible for both development and
maintenance concurrently, it will be very difficult to estimate their
development work with accuracy. This is because maintenance work
involved with fixing high-severity defects tends to preempt software
development tasks and therefore disrupts development schedules.

Another topic of significance is that when exit interviews are reviewed
for technical workers, two troubling facts are noted: (1) technical work-
ers with the highest appraisal scores tend to leave in the largest num-
bers; and (2) the most common reason cited for leaving a company is
“I don’t like working for bad management.”

Another interesting phenomenon about management in hierarchical
organizations is termed “the Peter Principle” and needs to be mentioned
briefly. The Peter Principle was created by Dr. Lawrence J. Peter and
Raymond Hull in the 1968 book of the same name. In essence, the Peter
Principle holds that in hierarchical organizations, workers and manag-
ers are promoted based on their competence and continue to receive
promotions until they reach a level where they are no longer competent.
As a result, a significant percentage of older employees and managers
occupy jobs for which they are not competent.

The Peter Principle may be amusing (it was first published in a
humorous book), but given the very large number of cancelled software
projects and the even larger number of schedule delays and cost over-
runs, it cannot be ignored or discounted in a software context.

Assuming that the atomic unit of a hierarchical software organization
consists of eight workers who report to one manager, what are their
titles, roles, and responsibilities?

Normally, the hierarchical mode of organization is found in compa-
nies that utilize more generalists than specialists. Because software
specialization tends to increase with company size, the implication is

302 Chapter Five

that hierarchical organizations are most widely deployed for small to
midsize companies with small technical staffs. Most often, hierarchical
organizations are found in companies that employ between about 5 and
50 software personnel.

The primary job title in a hierarchical structure would be programmer
or software engineer, and such personnel would handle both develop-
ment and maintenance work.

However, the hierarchical organization is also found in larger companies
and in companies that do have specialists. In this case, an eight-person
department might have a staffing complement of five software engineers,
two testers, and a technical writer all reporting to the same manager.

Large corporations have multiple business units such as marketing,
sales, finance, human resources, manufacturing, and perhaps research.
Using hierarchical principles, each of these might have its own software
organization dedicated to building the software used by a specific business
unit; that is, financial applications, manufacturing support applications,
and so forth.

But what happens when some kind of a corporate or enterprise appli-
cation is needed that cuts across all business units? Cross-functional
applications turned out to be difficult in traditional hierarchical or
“stovepipe” organizations.

Two alternative approaches were developed to deal with cross-
functional applications. Matrix management was one, and it will be
discussed in the next section of this chapter. The second was enter-
prise resource planning (ERP) packages, which were created by large
software vendors such as SAP and Oracle to handle cross-functional
business applications.

As discussed in the next topic, the matrix-management organization
style is often utilized for software groups with extensive specializa-
tion and a need for cross-functional applications that support multiple
business units.

Demographics In the software world, hierarchical organizations are
found most often in small companies that employ between perhaps
5 and 50 total software personnel. These companies tend to adopt a
generalist philosophy and have few specialists other than some tech-
nical skills such as network administration and technical writing. In
a generalist context, hierarchical organizations of about five to eight
software engineers reporting to a manager handle development, testing,
and maintenance activities concurrently.

The author estimates that there are about 10,000 such small compa-
nies in the United States. The number of software personnel working
under hierarchical organization structures is perhaps 250,000 in the
United States as of 2009.

Software Team Organization and Specialization 303

Hierarchical structures are also found in some large companies, so
perhaps another 500,000 people work in hierarchical structures inside
large companies and government agencies.

Project size The average size of new applications done by hierarchical
teams with eight employees and a manager is about 2,000 function
points. However, one of the characteristics of hierarchical organizations
is that they can cooperate on large projects, so even large systems in
excess of 100,000 function points can be handled by multiple depart-
ments working in concert.

The caveat with multiple departments attempting to cooperate is
that when more than about a dozen are involved simultaneously, some
kind of project office may be utilized for overall planning and coordina-
tion. Some of the departments involved may handle integration, testing,
configuration control, quality assurance, technical writing, and other
specialized topics.

Productivity rates Productivity rates for hierarchical departments on
projects of 2,000 function points are usually in the range of 12 func-
tion points per staff month. They sometimes top 20 function points per
staff month for applications where the team has significant expertise,
and may drop below 10 function points per staff month for unusual
or complex projects. Productivity tends to be inversely proportional to
application size and declines as applications grow larger.

Schedules Development schedules for new development by a single
hierarchical group with eight team members working on a 2,000–
function point project usually range between about 14 months and
24 months and would average perhaps 18 calendar months for the
entire application.

Quality The quality levels for hierarchical departments are fairly aver-
age. Defect potentials run to about 5.0 bugs per function point, and
defect removal efficiency is about 85 percent. Delivered defects would
average about 0.75 per function point.

Therefore, an application of 2,000 function points developed by a
single hierarchical department would have a total of about 10,000 bugs,
of which 1,500 would still be present at release. Of these, about 225
might be serious bugs.

However, if pretest inspections are used, and if tools such as auto-
mated static analysis and automated testing are used, then defect
removal efficiency can approach 97 percent. In this situation, only
about 300 bugs might be present at release. Of these, perhaps 40 might
be serious.

304 Chapter Five

Specialization There are few studies to date on the role of specialization
in hierarchical software organization structures. Because of common
gaps in the training and experience of generalists, some kinds of special-
ization are needed for large applications. The kinds of specialists that
might be useful would be security specialists, test specialists, quality
assurance specialists, database specialists, user-interface specialists,
network specialists, performance specialists, and technical writers.

Cautions and counter indications The main caution about hierarchical
organization structures is that software work tends to be artificially
divided to match the abilities of eight-person departments, rather than
segmented based on the architecture and design of the applications
themselves. As a result, some large functions in large systems are arbi-
trarily divided between two or more departments when they should be
handled by a single group.

While communication within a given department is easy and sponta-
neous, communication between departments tends to slow down due to
managers guarding their own territories. Thus, for large projects with
multiple hierarchical departments, there are high probabilities of power
struggles and disruptive social conflicts, primarily among the manage-
ment community.

Conclusions The literature on hierarchical organizations is interesting
but incomplete. Much of the literature is produced by enthusiasts for
alternate forms of organization structures such as matrix management,
Agile teams, pair programming, clean-room development, and the like.

Hierarchical organizations have been in continuous use for software
applications since the industry began. While that fact might seem to
indicate success, it is also true that the software industry has been
characterized by having higher rates of project failures, cost overruns,
and schedule overruns than any other industry. The actual impact of
hierarchical organizations on software success or software failure is still
somewhat ambiguous as of 2009.

Other factors such as methods, employee skills, and management
skills tend to be intertwined with organization structures, and this
makes it hard to identify the effect of the organization itself.

Conventional Departments with Matrix
Organization Structures

The history of matrix management is younger than the history of soft-
ware development itself. The early literature on matrix management
seemed to start around the late 1960s, when it was used within NASA
for dealing with cross-functional projects associated with complex space
programs.

Software Team Organization and Specialization 305

The idea of matrix management soon moved from NASA into the
civilian sector and was eventually picked up by software organizations
for dealing with specialization and cross-functional applications.

In a conventional hierarchical organization, software personnel of
various kinds report to managers within a given business unit. The
technical employees may be generalists, or the departments may include
various specialists too, such as software engineers, testers, and techni-
cal writers. If a particular business unit has ten software departments,
each of these departments might have a number of software engineers,
testers, technical writers, and so forth.

By contrast, in a matrix organization, various occupation groups and
specialists report to a skill or career manager. Thus all technical writers
might report to a technical publications group; all software engineers
might be in a software engineering group; all testers might be in a test
services group; and so forth.

By consolidating various kinds of knowledge workers within skill-
based organizations, greater job enrichment and more career opportu-
nities tend to occur than when specialists are isolated and fragmented
among multiple hierarchical departments.

Under a matrix organization, when specialists are needed for vari-
ous projects, they are assigned to projects and report temporarily to
the project managers for the duration of the projects. This of course
introduces the tricky concept of employees working for two managers
at the same time.

One of the managers (usually the skill manager) has appraisal and
salary authority over specialist employees, while the other (usually
the project manager) uses their services for completing the project.
The project managers may provide inputs to the skill managers about
job performance.

The manager with appraisal and salary authority over employees is
said to have solid line reporting authority. The manager who merely
borrows the specialists for specific tasks or a specific project is said to
have dotted line authority. These two terms reflect the way organization
charts are drawn.

It is an interesting phenomenon that matrix management is new
enough so that early versions of SAP, Oracle, and some other enterprise
resource planning (ERP) applications did not support dotted-line or
matrix organization structures. As of 2009, all ERP packages now sup-
port matrix organization diagrams.

The literature on matrix management circa 2009 is very strongly
polarized between enthusiasts and opponents. About half of the books
and articles regard matrix management as a major business achieve-
ment. The other half of the books and articles regard matrix manage-
ment as confusing, disruptive, and a significant business liability.

306 Chapter Five

A Google search of the phrase “failures of matrix management”
returned 315,000 citations, while a search of the phrase “successes of
matrix management” returned 327,000 citations. As can be seen, this is
a strong polarization of opinion that is almost evenly divided.

Over the years, three forms of matrix organization have surfaced
called weak matrix, strong matrix, and balanced matrix.

The original form of matrix organization has now been classified
as a weak matrix. In this form of organization, the employees report
primarily to a skill manager and are borrowed by project managers on
an as-needed basis. The project managers have no appraisal author-
ity or salary authority over the employees and therefore depend upon
voluntary cooperation to get work accomplished. If there are conflicts
between the project managers and the skill managers in terms of
resource allocations, the project managers lack the authority to acquire
the skills their projects may need.

Because weak matrix organizations proved to be troublesome, the
strong matrix variation soon appeared. In a strong matrix, the special-
ists may still report to a skill manager, but once assigned to a project,
the needs of the project take precedence. In fact, the specialists may
even be formally assigned to the project manager for the duration of
the project and receive appraisals and salary reviews.

In a balanced matrix, responsibility and authority are nominally
equally shared between the skill manager and the project manager. While
this sounds like a good idea, it has proven to be difficult to accomplish.
As a result, the strong matrix form seems to be dominant circa 2009.

Demographics In the software world, matrix organizations are found
most often in large companies that employ between perhaps 1,000 and
50,000 total software personnel. These large companies tend to have
scores of specialized skills and hundreds of projects going on at the
same time.

The author estimates that there are about 250 such large companies
in the United States with primarily matrix organization. The number
of software personnel working under matrix organization structures is
perhaps 1 million in the United States as of 2009.

Project size The average size of new applications done by matrix teams
with eight employees and a manager is about 2,000 function points.
However, matrix organizations can be scaled up to any arbitrary size, so
even large systems in excess of 100,000 function points can be handled
by multiple matrix departments working in concert.

The caveat with multiple departments attempting to cooperate is that
when more than about a dozen are involved simultaneously, some kind
of a project office may be needed for overall planning and coordination.

Software Team Organization and Specialization 307

With really large applications in excess of 25,000 function points,
some of the departments may be fully staffed by specialists who handle
topics such as integration, testing, configuration control, quality assur-
ance, technical writing, and other specialized topics.

Productivity rates Productivity rates for matrix departments on projects
of 2,000 function points are usually in the range of 10 function points
per staff month. They sometimes top 16 function points per staff month
for applications where the team has significant expertise, and may drop
below 6 function points per staff month for unusual or complex projects.
Productivity tends to be inversely proportional to application size and
declines as applications grow larger.

Schedules Development schedules for new development by a single
matrix group with eight team members working on a 2,000–function
point project usually ranges between about 16 months and 28 months and
would average perhaps 18 calendar months for the entire application.

Quality The quality levels for matrix organizations often are average.
Defect potentials run to about 5.0 bugs per function point, and defect
removal efficiency is about 85 percent. Delivered defects would average
about 0.75 per function point. Matrix and hierarchical organizations are
identical in quality, unless special methods such as formal inspections,
static analysis, automated testing, and other state-of-the-art approaches
have been introduced.

Therefore, an application of 2,000 function points developed by a
single matrix department might have a total of about 10,000 bugs, of
which 1,500 would still be present at release. Of these, about 225 might
be serious bugs.

However, if pretest inspections are used, and if tools such as automated
static analysis and automated testing are used, then defect removal effi-
ciency can approach 97 percent. In this situation, only about 300 bugs
might be present at release. Of these, perhaps 40 might be serious.

As application sizes increase, defect potentials also increase, while
defect removal efficiency levels decline.

Specialization The main purpose of the matrix organization structure is
to support specialization. That being said, there are few studies to date
on the kinds of specialization in matrix software organization structures.
As of 2009, topics such as the numbers of architects needed, the number
of testers needed, and the number of quality assurance personnel needed
for applications of various sizes remains ambiguous.

Typical kinds of specialization are usually needed for large applica-
tions. The kinds of specialists that might be useful would be security
specialists, test specialists, quality assurance specialists, database

308 Chapter Five

specialists, user-interface specialists, network specialists, perfor-
mance specialists, and technical writers.

Cautions and counter indications The main caution about matrix organi-
zation structures is that of political disputes between the skill managers
and the project managers.

Another caution, although hard to evaluate, is that roughly half of the
studies and literature about matrix organization assert that the matrix
approach is harmful rather than beneficial. The other half, however,
says the opposite and claims significant value from matrix organiza-
tions. But any approach with 50 percent negative findings needs to be
considered carefully and not adopted blindly.

A common caution for both matrix and hierarchical organizations is
that software work tends to be artificially divided to match the abilities
of eight-person departments, rather than segmented based on the archi-
tecture and design of the applications. As a result, some large functions in
large systems are arbitrarily divided between two or more departments
when they should be handled by a single group.

While technical communication within a given department is easy
and spontaneous, communication between departments tends to slow
down due to managers guarding their own territories. Thus, for large
projects with multiple hierarchical or matrix departments, there are
high probabilities of power struggles and disruptive social conflicts,
primarily among the management community.

Conclusions The literature on matrix organizations is so strongly polar-
ized that it is hard to find a consensus. With half of the literature praising
matrix organizations and the other half blaming them for failures and
disasters, it is not easy to find solid empirical data that is convincing.

From observations made during litigation for projects that failed or
never operated successfully, there seems to be little difference between
hierarchical and matrix organizations. Both matrix and hierarchical
organizations end up in court about the same number of times.

What does make a difference is the competence of the managers and
technical staff, and the emphasis on effective quality control and change
management control. Effective estimating and careful progress tracking
also make a difference, but none of these factors are directly related to
either the hierarchical or matrix organization styles.

Specialist Organizations in Large Companies

Because development software engineers are not the only or even the
largest occupation group in big companies and government agencies,
it is worthwhile to consider what kinds of organizations best serve the
needs of the most common occupation groups.

Software Team Organization and Specialization 309

In approximate numerical order by numbers of employees, the major
specialist occupations would be

 1. Maintenance software engineers

 2. Test personnel

 3. Business analysts and systems analysts

 4. Customer support personnel

 5. Quality assurance personnel

 6. Technical writing personnel

 7. Administrative personnel

 8. Configuration control personnel

 9. Project office staff

■ Estimating specialists

■ Planning specialists

■ Measurement and metrics specialists

■ Scope managers

■ Process improvement specialists

■ Standards specialists

Many other kinds of personnel perform technical work such as net-
work administration, operating data centers, repair of workstations and
personal computers, and other activities that center around operations
rather than software. These occupations are important, but are outside
the scope of this book.

Following are discussion of organization structures for selected
specialist groups.

Software Maintenance Organizations

For small companies with fewer than perhaps 50 software personnel,
maintenance and development are usually carried out by the same
people, and there are no separate maintenance groups. For that matter,
some forms of customer support may also be tasked to the software
engineering community in small companies.

However, as companies grow larger, maintenance specialization tends
to occur. For companies with more than about 500 software personnel,
maintenance groups are the norm rather than the exception.

(Note: The International Software Benchmarking Standards Group
(ISBSG) has maintenance benchmark data available for more than

310 Chapter Five

400 projects and is adding new data monthly. Refer to www.ISBSG.org
for additional information.)

The issue of separating maintenance from development has both
detractors and adherents.

The detractors of separate maintenance groups state that separating
maintenance from development may require extra staff to become famil-
iar with the same applications, which might artificially increase overall
staffing. They also assert that if enhancements and defect repairs are
taking place at the same time for the same applications and are done by
two different people, the two tasks might interfere with each other.

The adherents of separate maintenance groups assert that because
bugs occur randomly and in fairly large numbers, they interfere with
development schedules. If the same person is responsible for adding a
new feature to an application and for fixing bugs, and suddenly a high-
severity bug is reported, fixing the bug will take precedence over doing
development. As a result, development schedules will slip and probably
slip so badly that the ROI of the application may turn negative.

Although both sets of arguments have some validity, the author’s
observations support the view that separate maintenance organizations
are the most useful for larger companies that have significant volumes
of software to maintain.

Separate maintenance teams have higher productivity rates in find-
ing and fixing problems than do developers. Also, having separate main-
tenance change teams makes development more predictable and raises
development productivity.

Some maintenance groups also handle small enhancements as well
as defect repairs. There is no exact definition of a “small enhancement,”
but a working definition is an update that can be done by one person in
less than one week. That would limit the size of small enhancements to
about 5 or fewer function points.

Although defect repairs and enhancements are the two most common
forms of maintenance, there are actually 23 different kinds of mainte-
nance work performed by large organizations, as shown in Table 5-2.

Although the 23 maintenance topics are different in many respects,
they all have one common feature that makes a group discussion pos-
sible: they all involve modifying an existing application rather than
starting from scratch with a new application.

Each of the 23 forms of modifying existing applications has a dif-
ferent reason for being carried out. However, it often happens that
several of them take place concurrently. For example, enhancements
and defect repairs are very common in the same release of an evolving
application.

The maintenance literature has a number of classifications for main-
tenance tasks such as “adaptive,” “corrective,” or “perfective.” These seem

Software Team Organization and Specialization 311

to be classifications that derive from academia. While there is nothing
wrong with them, they manage to miss the essential point. Maintenance
overall has only two really important economic distinctions:

 1. Changes that are charged to and paid for by customers (enhance-
ments)

 2. Changes that are absorbed by the company that built the software
(bug repairs)

Whether a company uses standard academic distinctions of mainte-
nance activities or the more detailed set of 23 shown here, it is important
to separate costs into the two buckets of customer-funded or self-funded
expenses.

Some companies such as Symantec charge customers for service
calls, even for reporting bugs. The author regards such charges as being
unprofessional and a cynical attempt to make money out of incompetent
quality control.

TABLE 5-2 Twenty-Three Kinds of Maintenance Work

 1. Major enhancements (new features of greater than 20 function points)

 2. Minor enhancements (new features of less than 5 function points)

 3. Maintenance (repairing defects for good will)

 4. Warranty repairs (repairing defects under formal contract)

 5. Customer support (responding to client phone calls or problem reports)

 6. Error-prone module removal (eliminating very troublesome code segments)

 7. Mandatory changes (required or statutory changes)

 8. Complexity or structural analysis (charting control flow plus complexity metrics)

 9. Code restructuring (reducing cyclomatic and essential complexity)

10. Optimization (increasing performance or throughput)

11. Migration (moving software from one platform to another)

12. Conversion (changing the interface or file structure)

13. Reverse engineering (extracting latent design information from code)

14. Reengineering (transforming legacy applications to modern forms)

15. Dead code removal (removing segments no longer utilized)

16. Dormant application elimination (archiving unused software)

17. Nationalization (modifying software for international use)

18. Mass updates such as Euro or Year 2000 repairs

19. Refactoring, or reprogramming applications to improve clarity

20. Retirement (withdrawing an application from active service)

21. Field service (sending maintenance members to client locations)

22. Reporting bugs or defects to software vendors

23. Installing updates received from software vendors

312 Chapter Five

There are also common sequences or patterns to these modification
activities. For example, reverse engineering often precedes reengineer-
ing, and the two occur so often together as to almost constitute a linked
set. For releases of large applications and major systems, the author
has observed from six to ten forms of maintenance all leading up to the
same release.

In recent years, the Information Technology Infrastructure Library
(ITIL) has had a significant impact on maintenance, customer sup-
port, and service management in general. The ITIL is a rather large
collection of more than 30 books and manuals that deal with service
management, incident reporting, change teams, reliability criteria,
service agreements, and a host of other topics. As this book is being
written in 2009, the third release of the ITIL is under way.

It is an interesting phenomenon of the software world that while
ITIL has become a major driving force in service agreements within
companies for IT service, it is almost never used by commercial vendors
such as Microsoft and Symantec for agreements with their customers.
In fact, it is quite instructive to read the small print in the end-user
license agreements (EULAs) that are always required prior to using
the software.

When these agreements are read, it is disturbing to see clauses that
assert that the vendors have no liabilities whatsoever, and that the
software is not guaranteed to operate or to have any kind of quality
levels.

The reason for these one-sided EULA agreements is that software
quality control is so bad that even major vendors would go bankrupt if
sued for the damages that their products can cause.

For many IT organizations and also for commercial software groups,
a number of functions are joined together under a larger umbrella: cus-
tomer support, maintenance (defect repairs), small enhancements (less
than 5 function points), and sometimes integration and configuration
control.

In addition, several forms of maintenance work deal with software
not developed by the company itself:

 1. Maintenance of commercial applications such as those acquired
from SAP, Oracle, Microsoft, and the like. The maintenance tasks
here involve reporting bugs, installing new releases, and possibly
making custom changes for local conditions.

 2. Maintenance of open-source and freeware applications such as
Firefox, Linux, Google, and the like. Here, too, the maintenance
tasks involve reporting bugs and installing new releases, plus cus-
tomization as needed.

Software Team Organization and Specialization 313

 3. Maintenance of software added to corporate portfolios via mergers
or acquisitions with other companies. This is a very tricky situa-
tion that is fraught with problems and hazards. The tasks here can
be quite complex and may involve renovation, major updates, and
possibly migration from one database to another.

In addition to normal maintenance, which combines defect repairs
and enhancements, legacy applications may undergo thorough and
extensive modernization, called renovation.

Software renovation can include surgical removal of error-prone
modules, automatic or manual restructuring to reduce complexity,
revision or replacement of comments, removal of dead code segments,
and possibly even automatic conversion of the legacy application
from old or obsolete programming languages into newer program-
ming languages.

Renovation may also include data mining to extract business rules
and algorithms embedded in the code but missing from specifications
and written descriptions of the code. Static analysis and automatic test-
ing tools may also be included in renovation. Also, it is now possible to
generate function point totals for legacy applications automatically, and
this may also occur as part of renovation activities.

The observed effect of software renovation is to stretch out the useful
life of legacy applications by an additional ten years. Renovation reduces
the number of latent defects in legacy code, and therefore reduces future
maintenance costs by about 50 percent per calendar year for the applica-
tions renovated. Customer support costs are also reduced.

As the recession deepens and lengthens, software renovation will
become more and more valuable as a cost-effective alternative to retir-
ing legacy applications and redeveloping them. The savings accrued
from renovation could reduce maintenance costs so significantly
that redevelopment could occur using the savings that accrue from
renovation.

If a company does plan to renovate legacy applications, it is appro-
priate to fix some of the chronic problems that no doubt are present in
the original legacy code. The most obvious of these would be to remove
security vulnerabilities, which tend to be numerous in legacy applications.
The second would be to improve quality by using inspections, static
analysis, automated testing, and other modern techniques such as TSP
during renovations.

A combination of the Team Software Process (TSP), the Caja security
architecture from Google, and perhaps the E programming language, which
is more secure than most languages, might be considered for renovating
applications that deal with financial or valuable proprietary data.

314 Chapter Five

For predicting the staffing and effort associated with software main-
tenance, some useful rules of thumb have been developed based on
observations of maintenance groups in companies such as IBM, EDS,
Software Productivity Research, and a number of others.

Maintenance assignment scope = the amount of software that one
maintenance programmer can successfully maintain in a single calen-
dar year. The U.S. average as of 2009 is about 1,000 function points. The
range is between a low of about 350 function points and a high of about
5,500 function points. Factors that affect maintenance assignment scope
include the experience of the maintenance team, the complexity of the
code, the number of latent bugs in the code, the presence or absence of
“error-prone modules” in the code, and the available tool suites such as
static analysis tools, data mining tools, and maintenance workbenches.
This is an important metric for predicting the overall number of main-
tenance programmers needed.

(For large applications, knowledge of the internal structure is vital
for effective maintenance and modification. Therefore, major systems
usually have their own change teams. The number of maintenance pro-
grammers in such a change team can be calculated by dividing the size
of the application in function points by the appropriate maintenance
assignment scope, as shown in the previous paragraph.)

Defect repair rates = the average number of bugs or defects that
a maintenance programmer can fix in a calendar month of 22 working
days. The U.S. average is about 10 bugs repaired per calendar month.
The range is from fewer than 5 to about 17 bugs per staff month. Factors
that affect this rate include the experience of the maintenance program-
mer, the complexity of the code, and “bad-fix injections,” or new bugs
accidentally injected into the code created to repair a previous bug. The
U.S. average for bad-fix injections is about 7 percent.

Renovation productivity = the average number of function points
per staff month for renovating software applications using a full suite
of renovation support tools. The U.S. average is about 65 function points
per staff month. The range is from a low of about 25 function points per
staff month for highly complex applications in obscure languages to
more than 125 function points per staff month for applications of mod-
erate complexity in fairly modern languages. Other factors that affect
this rate include the overall size of the applications, the presence or
absence of “error-prone modules” in the application, and the experience
of the renovation team.

(Manual renovation without automated support is much more dif-
ficult, and hence productivity rates are much lower—in the vicinity of
14 function points per staff month. This is somewhat higher than new
development, but still close to being marginal in terms of return on
investment.)

Software Team Organization and Specialization 315

Software does not age gracefully. Once software is put into production,
it continues to change in three important ways:

 1. Latent defects still present at release must be found and fixed after
deployment.

 2. Applications continue to grow and add new features at a rate of
between 5 percent and 10 percent per calendar year, due either to
changes in business needs, or to new laws and regulations, or both.

 3. The combination of defect repairs and enhancements tends to
gradually degrade the structure and increase the complexity of
the application. The term for this increase in complexity over
time is called entropy. The average rate at which software entropy
increases is about 1 percent to 3 percent per calendar year.

A special problem with software maintenance is caused by the
fact that some applications use multiple programming languages.
As many as 15 different languages have been found within a single
large application.

Multiple languages are troublesome for maintenance because they
add to the learning chores of the maintenance teams. Also some (or all)
of these language may be “dead” in the sense that there are no longer
working compilers or interpreters. This situation chokes productivity
and raises the odds of bad-fix injections.

Because software defect removal and quality control are imperfect,
there will always be bugs or defects to repair in delivered software appli-
cations. The current U.S. average for defect removal efficiency is only
about 85 percent of the bugs or defects introduced during development.
This has been the average for more than 20 years.

The actual values are about 5 bugs per function point created during
development. If 85 percent of these are found before release, about
0.75 bug per function point will be released to customers.

For a typical application of 1,000 function points or 100,000 source
code statements, that implies about 750 defects present at delivery.
About one fourth, or 185 defects, will be serious enough to stop the
application from running or will create erroneous outputs.

Since defect potentials tend to rise with the overall size of the appli-
cation, and since defect removal efficiency levels tend to decline with
the overall size of the application, the overall volume of latent defects
delivered with the application rises with size. This explains why super-
large applications in the range of 100,000 function points, such as
Microsoft Windows and many enterprise resource planning (ERP)
applications, may require years to reach a point of relative stability.
These large systems are delivered with thousands of latent bugs or
defects.

316 Chapter Five

Of course, average values are far worse than best practices. A com-
bination of formal inspections, static analysis, and automated testing
can bring cumulative defect removal efficiency levels up to 99 percent.
Methods such as the Team Software Process (TSP) can lower defect
potentials down below 3.0 per function point.

Unless very sophisticated development practices are followed, the first
year of the release of a new software application will include a heavy
concentration of defect repair work and only minor enhancements.

However, after a few years, the application will probably stabilize as
most of the original defects are found and eliminated. Also after a few
years, new features will increase in number.

As a result of these trends, maintenance activities will gradually
change from the initial heavy concentration on defect repairs to a longer-
range concentration on new features and enhancements.

Not only is software deployed with a significant volume of latent
defects, but the phenomenon of bad-fix injection has been observed
for more than 50 years. Roughly 7 percent of all defect repairs will
contain a new defect that was not there before. For very complex and
poorly structured applications, these bad-fix injections have topped
20 percent.

Even more alarming, once a bad fix occurs, it is very difficult to cor-
rect the situation. Although the U.S. average for initial bad-fix injection
rates is about 7 percent, the secondary injection rate against previous
bad fixes is about 15 percent for the initial repair and 30 percent for the
second. A string of up to five consecutive bad fixes has been observed,
with each attempted repair adding new problems and failing to correct
the initial problem. Finally, the sixth repair attempt was successful.

In the 1970s, the IBM Corporation did a distribution analysis of
customer-reported defects against their main commercial software
applications. The IBM personnel involved in the study, including the
author, were surprised to find that defects were not randomly distrib-
uted through all of the modules of large applications.

In the case of IBM’s main operating system, about 5 percent of the
modules contained just over 50 percent of all reported defects. The most
extreme example was a large database application, where 31 modules
out of 425 contained more than 60 percent of all customer-reported bugs.
These troublesome areas were known as error-prone modules.

Similar studies by other corporations such as AT&T and ITT found
that error-prone modules were endemic in the software domain. More
than 90 percent of applications larger than 5,000 function points were
found to contain error-prone modules in the 1980s and early 1990s.
Summaries of the error-prone module data from a number of companies
were published in the author’s book Software Quality: Analysis and
Guidelines for Success.

Software Team Organization and Specialization 317

Fortunately, it is possible to surgically remove error-prone modules
once they are identified. It is also possible to prevent them from occur-
ring. A combination of defect measurements, formal design inspections,
formal code inspections, and formal testing and test-coverage analysis
have proven to be effective in preventing error-prone modules from
coming into existence.

Today, in 2009, error-prone modules are almost nonexistent in organiza-
tions that are higher than level 3 on the capability maturity model (CMM)
of the Software Engineering Institute. Other development methods such
as the Team Software Process (TSP) and Rational Unified Process (RUP)
are also effective in preventing error-prone modules. Several forms of
Agile development such as extreme programming (XP) also seem to be
effective in preventing error-prone modules from occurring.

Removal of error-prone modules is a normal aspect of renovating
legacy applications, so those software applications that have under-
gone renovation will have no error-prone modules left when the work
is complete.

However, error-prone modules remain common and troublesome for
CMMI level 1 organizations. They are also alarmingly common in legacy
applications that have not been renovated and that are maintained
without careful measurement of defects.

Once deployed, most software applications continue to grow at annual
rates of between 5 percent and 10 percent of their original functionality.
Some applications, such as Microsoft Windows, have increased in size
by several hundred percent over a ten-year period.

The combination of continuous growth of new features coupled with
continuous defect repairs tends to drive up the complexity levels of aging
software applications. Structural complexity can be measured via met-
rics such as cyclomatic and essential complexity using a number of com-
mercial tools. If complexity is measured on an annual basis and there
is no deliberate attempt to keep complexity low, the rate of increase is
between 1 percent and 3 percent per calendar year.

However, and this is important, the rate at which entropy or com-
plexity increases is directly proportional to the initial complexity of the
application. For example, if an application is released with an average
cyclomatic complexity level of less than 10, it will tend to stay well struc-
tured for at least five years of normal maintenance and enhancement
changes.

But if an application is released with an average cyclomatic com-
plexity level of more than 20, its structure will degrade rapidly, and its
complexity levels might increase by more than 2 percent per year. The
rate of entropy and complexity will even accelerate after a few years.

As it happens, both bad-fix injections and error-prone modules tend to
correlate strongly (although not perfectly) with high levels of complexity.

318 Chapter Five

A majority of error-prone modules have cyclomatic complexity levels
of 10 or higher. Bad-fix injection levels for modifying high-complexity
applications are often higher than 20 percent.

Here, too, renovation can reverse software entropy and bring cyclo-
matic complexity levels down below 10, which is the maximum safe
level of code complexity.

There are several difficulties in exploring software maintenance costs
with accuracy. One of these difficulties is the fact that maintenance
tasks are often assigned to development personnel who interleave both
development and maintenance as the need arises. This practice makes
it difficult to distinguish maintenance costs from development costs,
because the programmers are often rather careless in recording how
time is spent.

Another and very significant problem is that a great deal of software
maintenance consists of making very small changes to software appli-
cations. Quite a few bug repairs may involve fixing only a single line of
code. Adding minor new features, such as perhaps a new line-item on a
screen, may require fewer than 50 source code statements.

These small changes are below the effective lower limit for counting
function point metrics. The function point metric includes weighting
factors for complexity, and even if the complexity adjustments are set to
the lowest possible point on the scale, it is still difficult to count function
points below a level of perhaps 15 function points.

An experimental method called micro function points has been devel-
oped for small maintenance changes and bug repairs. This method is
similar to standard function points, but drops down to three decimal
places of precision and so can deal with fractions of a single function
point.

Of course, the work of making a small change measured with micro
function points may be only an hour or less. But in large companies,
where as many as 20,000 such changes are made in a year, the cumula-
tive costs are not trivial. Micro function points are intended to eliminate
the problem that small maintenance updates have not been subject to
formal economic analysis.

Quite a few maintenance tasks involve changes that are either a frac-
tion of a function point, or may at most be fewer than 5 function points
or about 250 Java source code statements. Although normal counting
of function points is not feasible for small updates, and micro function
points are still experimental, it is possible to use the backfiring method
of converting counts of logical source code statements into equivalent
function points. For example, suppose an update requires adding 100
Java statements to an existing application. Since it usually takes about
50 Java statements to encode 1 function point, it can be stated that this
small maintenance project is about 2 function points in size.

Software Team Organization and Specialization 319

Because of the combination of 23 separate kinds of maintenance work
mixed with both large and small updates, maintenance effort is harder to
estimate and harder to measure than in conventional software develop-
ment. As a result, there are many fewer maintenance benchmarks than
development benchmarks. In fact, there is much less reliable information
about maintenance than about almost any other aspect of software.

Maintenance activities are frequently outsourced to either domestic or
offshore outsource companies. For a variety of business reasons, main-
tenance outsource contracts seem to be more stable and less likely to
end up in court than software development contracts.

The success of maintenance outsource contracts is because of two
major factors:

 1. Small maintenance changes do not have the huge cost and schedule
slippage rates associated with major development projects.

 2. Small maintenance changes to existing software almost never fail
completely. A significant number of development projects do fail and
are never completed at all.

There may be other reasons as well, but the fact remains that main-
tenance outsource contracts seem more stable and less likely to end up
in court than development outsource contracts.

Maintenance is the dominant work of the software industry in 2009
and will probably stay the dominant activity for the indefinite future.
For software, as with many other industries, once the industry passes
50 years of age, more workers are involved with repairing existing prod-
ucts than there are workers involved with building new products.

Demographics In the software world, separate maintenance organiza-
tions are found most often in large companies that employ between
perhaps 500 and 50,000 total software personnel.

The author estimates that there are about 2,500 such large compa-
nies the United States with separate maintenance organizations. The
number of software personnel working on maintenance in maintenance
organizations is perhaps 800,000 in the United States as of 2009. (The
number of software personnel who perform both development and main-
tenance is perhaps 400,000.)

Project size The average size of software defects is less than 1 function
point, which is why micro-function points are needed. Enhancements
or new features typically range from a low of perhaps 5 function points
to a high of perhaps 500 function points. However, there are so many
enhancements, that software applications typically grow at a rate of
around 8 percent per calendar year for as long as they are being used.

320 Chapter Five

Productivity rates Productivity rates for defect repairs are only about
10 function points per staff month, due to the difficulty of finding the
exact problem, plus the need for regression testing and constructing
new releases. Another way of expressing defect repair productivity is to
use defects or bugs fixed per month, and a typical value would be about
10 bugs per staff month.

The productivity rates for enhancements average about 15 function
points per staff month, but vary widely due to the nature and size of the
enhancement, the experience of the team, the complexity of the code,
and the rate at which requirements change during the enhancement.
The range for enhancements can be as low as about 5 function points
per staff month, or as high as 35 function points per staff month.

Schedules Development schedules for defect repairs range from a few
hours to a few days, with one major exception. Defects that are abeyant,
or cannot be replicated by the change teams, may take weeks to repair
because the internal version of the application used by the change team
may not have the defect. It is necessary to get a great deal more infor-
mation from users in order to isolate abeyant defects.

Fixing a bug is not the same as issuing a new release. Within some
companies such as IBM, maintenance schedules in the sense of defect
repairs vary with the severity level of the bugs reported; that is, severity
1 bugs (most serious), about 1 week; severity 2 bugs, about two weeks;
severity 3 bugs, next release; severity 4 bugs, next release or whenever
it is convenient.

Development schedules for enhancements usually run from about
1 month up to 9 months. However, many companies have fixed release
intervals that aggregate a number of enhancements and defect repairs
and release them at the same time. Microsoft “service packs” are one
example, as are the intermittent releases of Firefox. Normally, fixed
release intervals are either every six months or once a year, although
some may be quarterly.

Quality The main quality concerns for maintenance or defect repairs
are threefold: (1) higher defect potentials for maintenance and enhance-
ments than for new development, (2) the presence or absence of error-
prone modules in the application, and (3) the bad-fix injection rates for
defect repairs, which average about 7 percent.

Maintenance and enhancement defect potentials are higher than for
new development and run to about 6.0 bugs per function point. Defect
removal efficiency is usually lower than for new development and is only
about 83 percent. As a result, delivered defects would average about
1.08 per function point.

Software Team Organization and Specialization 321

An additional quality concern that grows slowly worse over a period
of years is that application complexity (as measured by cyclomatic com-
plexity) slowly increases because changes tend to degrade the original
structure. As a result, each year, defect potentials may be slightly higher
than the year before, while bad-fix injections may increase. Unless the
application is renovated, these problems tend to become so bad that
eventually the application can no longer be safely modified.

In addition to renovation, other approaches such as formal inspections
for major enhancements and significant defect repairs, static analysis,
and automatic testing can raise defect removal efficiency levels above
95 percent. However, bad-fix injections and error-prone modules are
still troublesome.

Specialization The main purpose of the maintenance organization
structures is to support maintenance specialization. While not every-
one enjoys maintenance, it happens that quite a few programmers and
software engineers do enjoy it.

Other specialist work in a maintenance organization includes inte-
gration and configuration control. Maintenance software engineers
normally do most of the testing on small updates and small enhance-
ments, although formal test organizations may do some specialized
testing such as system testing prior to a major release.

Curiously, software quality assurance (SQA) is seldom involved
with defect repairs and minor enhancements carried out by main-
tenance groups. However, SQA specialists usually do work on major
enhancements.

Technical writers don’t have a major role in software maintenance,
but may occasionally be involved if enhancements trigger changes in
user manuals or HELP text.

That being said, few studies to date deal with either personality or
technical differences between successful maintenance programmers and
successful development programmers.

Cautions and counter indications The main caution about maintenance
specialization and maintenance organizations is that they tend to lock
personnel into narrow careers, sometimes limited to repairing a single
application for a period of years. There is little chance of career growth
or knowledge expansion if a software engineer spends years fixing bugs
in a single software application. Occasionally, switching back and forth
from maintenance to development is a good practice for minimizing
occupational boredom.

Conclusions The literature on maintenance organizations is very
sparse compared with the literature on development. Although there are

322 Chapter Five

some good books, there are few long-range studies that show application
growth, entropy increase, and defect trends over multiple years.

Given that software maintenance is the dominant activity of the
software industry in 2009, a great deal more research and study are
indicated. Research is needed on data mining of legacy applications to
extract business rules; on removing security vulnerabilities from legacy
code; on the costs and value of software renovation; and on the applica-
tion of quality control methods such as inspections, static analysis, and
automated testing to legacy code.

Customer Support Organizations

In small companies with few software applications and few custom-
ers or application users, support may be carried out on an informal
basis by the development team itself. However, as numbers of customers
increase and numbers of applications needing support increase, a point
will soon be reached where a formal customer support organization will
be needed.

Informal rules of thumb for customer support indicate that customer
support staffing is dependent on three variables:

 1. Number of customers

 2. Number of latent bugs or defects in released software

 3. Application size measured in terms of function points or lines
of code

One full-time customer support person would probably be needed for
applications that meet these criteria: 150 customers, 500 latent bugs in
the software (75 serious bugs), and 10,000 function points or 500,000
source code statements in a language such as Java.

The most effective known method for improving customer support is to
achieve much better application quality levels than are typical today in
2009. Every reduction of about 220 latent defects at delivery can reduce
customer support staffing needs by one person. This is based on the
assumption that customer support personnel speak to about 30 custom-
ers per day, and each released defect is encountered by 30 customers.
Therefore, each released defect occupies one day for one customer sup-
port staff member, and there are 220 working days per year.

Some companies attempt to reduce customer support costs by charg-
ing for support calls, even to report bugs in the applications! This is
an extremely bad business practice that primarily offends customers
without benefiting the companies. Every customer faced with a charge
for customer support is an unhappy customer who is actively in search
of a more sensible competitive product.

Software Team Organization and Specialization 323

Also, since software is routinely delivered with hundreds of serious
bugs, and since customer reports of those bugs are valuable to soft-
ware vendors, charging for customer support is essentially cutting off
a valuable resource that can be used to lower maintenance costs. Few
companies that charge for support have many happy customers, and
many are losing market shares.

Unfortunately, customer support organizations are among the most
difficult of any kind of software organization to staff and organize well.
There are several reasons for this. The first is that unless a company
charges for customer support (not a recommended practice), the costs
can be high. The second is that customer-support work tends to have
limited career opportunities, and this makes it difficult to attract and
keep personnel.

As a result, customer support was one of the first business activities
to be outsourced to low-cost offshore providers. Because customer sup-
port is labor intensive, it was also among the first business activities
to attempt to automate at least some responses. To minimize the time
required for discussions with live support personnel, there are a variety
of frequently asked questions (FAQ) and other topics that users can
access by phone or e-mail prior to speaking with a real person.

Unfortunately, these automated techniques are often frustrating to
users because they require minutes of time dealing with sometimes
arcane voice messages before reaching a real person. Even worse,
these automated voice messages are almost useless for the hard of
hearing.

That being said, companies in the customer support business have
made some interesting technical innovations with voice response sys-
tems and also have developed some fairly sophisticated help-desk pack-
ages that keep track of callers or e-mails, identify bugs or defects that
have been previously reported, and assist with other administrative
functions.

Because calls and e-mail from customers contain a lot of potentially
valuable information about deep bugs and security flaws, prudent com-
panies want to capture this information for analysis and to use it as part
of their quality and security improvement programs.

At a sociological level, an organization called the Service and Support
Professionals Association (SSPA) not only provides useful information
for support personnel, but also evaluates the customer support of vari-
ous companies and issues awards and citations for excellence. The SSPA
group also has conferences and events dealing with customer support.
(The SSPA web site is www.thesspa.com.)

SSPA has an arrangement with the well-known J.D. Power and
Associates to evaluate customer service in order to motivate companies

324 Chapter Five

by issuing various awards. As an example, the SSPA web site mentions
the following recent awards as of 2009:

■ ProQuest Business Solutions—Most improved
■ IBM Rochester—Sustained excellence for three consecutive years
■ Oracle Corporation—Innovative support
■ Dell—Mission critical support
■ RSA Security—Best support for complex systems

For in-house support as opposed to commercial companies that sell
software, the massive compendium of information contained in the
Information Technology Infrastructure Library (ITIL) spells out great
topics such as Help-Desk response time targets, service agreements,
incident management, and hundreds of other items of information.

Software customer support is organized in a multitier arrangement
that uses automated and FAQ as the initial level, and then brings in
more expertise at other levels. An example of such a multitier arrange-
ment might resemble the following:

■ Level 0—Automated voice messages, FAQ, and pointers to available
downloads

■ Level 1—Personnel who know basics of the application and common
bugs

■ Level 2—Experts in selected topics
■ Level 3—Development personnel or top-gun experts

The idea behind the multilevel approach is to minimize the time
requirements of developers and experts, while providing as much useful
information as possible in what is hopefully an efficient manner.

As mentioned in a number of places in this book, the majority of customer
service calls and e-mails are due to poor quality and excessive numbers
of bugs. Therefore, more sophisticated development approaches such as
using Team Software Process (TSP), formal inspections, static analysis,
automated testing, and the like will not only reduce development costs and
schedules, but will also reduce maintenance and customer support costs.

It is interesting to consider how one of the J.D. Power award recipi-
ents, IBM Rochester, goes about customer support:

“There is a strong focus on support responsiveness, in terms of both time
to response as well as the ability to provide solutions. When customers
call in, there is a target that within a certain amount of time (a minute or
a couple of minutes), the call must be answered. IBM does not want long
hold times where customers spend >10 minutes just waiting for the phone
to be answered.

Software Team Organization and Specialization 325

When problems/defects are reported, the formal fix may take some time.
Before the formal fix is available, the team will provide a temporary solu-
tion in as soon as possible, and a key metric used is “time to first relief.”
The first-relief temporary repairs may take less than 24 hours for some
new problems, and even less if the problem is already known.

When formal fixes are provided, a key metric used by IBM Rochester is
the quality of the fixes: percent of defective fixes. The Rochester’s defec-
tive fix rate is the lowest among the major platforms in IBM. (Since the
industry average for bad-fix injection is about 7%, it is commendable that
IBM addresses this issue.)

The IBM Rochester support center also conducts a “trailer survey.” This is
a survey of customer satisfaction about the service or fix. These surveys
are based on samples of problem records that are closed. IBM Rochester’s
trailer survey satisfaction is in the high 90s in terms of percentages of
satisfied customers.

Another IBM Rochester factor could be called the “cultural factor.” IBM as
a corporation and Rochester as a lab both have a long tradition of focus on
quality (e.g., winning the Malcolm Baldrige quality award). Because cus-
tomer satisfaction correlates directly with quality, the IBM Rochester prod-
ucts have long had a reputation for excellence (IBM system /34, system/36,
system /38, AS/400, system i, etc.). IBM and Rochester employees are proud
of the quality that they deliver for both products and services.”

For major customer problems, teams (support, development, test, etc.)
work together to come up with solutions. Customer feedback has long
been favorable for IBM Rochester, which explains their multiyear award
for customer support excellence. Often when surveyed customers men-
tion explicitly and favorably the amount of support and problem solving
that they receive from the IBM Rochester site.

Demographics In the software world, in-house customer support staffed
by actual employees is in rapid decline due to the recession. Probably a
few hundred large companies still provide such support, but as layoffs
and downsizing continue to escalate, their numbers will be reduced.

However, for small companies that have never employed full-time
customer support personnel, no doubt the software engineers will still
continue to field customer calls and respond to e-mails. There are prob-
ably 10,000 or more U.S. organizations with between 1 and 50 employees
where customer support tasks are performed informally by software
engineers or programmers.

For commercial software organizations, outsourcing of customer sup-
port to specialized support companies is now the norm. While some of
these support companies are domestic, there are also dozens of customer

326 Chapter Five

support organizations in other countries with lower labor costs than
the United States or Europe. However, as the recession continues, labor
costs will decline in the United States, which now has large pools of
unemployed software technical personnel. Customer support, mainte-
nance, and other labor-intensive tasks may well start to move back to
the United States.

Project size The average size of applications where formal customer
support is close to being mandatory is about 10,000 function points. Of
course, for any size application, customers will have questions and need
to report bugs. But applications in the 10,000–function point range usu-
ally have many customers. In addition, these large systems always are
released with thousand of latent bugs.

Productivity rates Productivity rates for customer support are not mea-
sured using function points, but rather numbers of customers assisted.
Typically, one tier-1 customer support person on a telephone support
desk can talk to about 30 people per day, which translates into each call
taking about 16 minutes.

For tier 2 and tier 3 customer support, where experts are used, the
work of talking to customers is probably not full time. However, for
problems serious enough to reach tier 2, expect each call to take about
70 minutes. For problems that reach tier 3, there will no doubt be mul-
tiple calls back and forth and probably some internal research. Expect
tier 3 calls to take about 240 minutes.

If a customer is reporting a new bug that has not been identified or fixed,
then days or even weeks may be required. (The author worked as an expert
witness in a lawsuit where the time required to fix one bug in a financial
application was more than nine calendar months. In the course of fixing
this bug, the first four attempts each took about two months. They not only
failed to fix the original bug, but added new bugs in each fix.)

Schedules The primary schedule issue for customer support is the wait
or hold time before speaking to a live support person. Today, in 2009,
reaching a live person can take between 10 minutes and more than 60
minutes of hold time. Needless to say, this is very frustrating to clients.
Improving quality should also reduce wait times. Assuming constant
support staffing, every reduction of ten severity 1 or 2 defects released
in software should reduce wait times by about 30 seconds.

Quality Customer support calls are directly proportional to the number
of released defects or bugs in software. It is theoretically possible that
releasing software with zero defects might reduce the number of cus-
tomer support calls to zero, too. In today’s world, where defect removal

Software Team Organization and Specialization 327

efficiency only averages 85 percent and hundreds or thousands of seri-
ous bugs are routinely still present when software is released, there will
be hundreds of customer support calls and e-mails.

It is interesting that some open-source and freeware applications such
as Linux, Firefox, and Avira seem to have better quality levels than equiv-
alent applications released by established vendors such as Microsoft and
Symantec. In part this may be due to the skills of the developers, and in
part it may be due to routinely using tools such as static analysis prior
to release.

Specialization The role of tier-1 customer support is very specialized.
Effective customer support requires a good personality when dealing
with crabby customers plus fairly sophisticated technical skills. Of these
two, the criterion for technical skill is easier to fill then the criterion for
a good personality when dealing with angry or outraged customers. That
being said, there are few studies to date that deal with either personal-
ity or technical skills in support organizations.

In addition to customer support provided by vendors of software, some
user associations and nonprofit groups provide customer support on
a volunteer basis. Many freeware and open-source applications have
user groups that can answer technical questions. Even for commercial
software, it is sometimes easier to get an informed response to a ques-
tion from an expert user than it is from the company that built the
software.

Cautions and counter indications The main caution about customer sup-
port work is that it tends to lock personnel into narrow careers, some-
times limited to discussing a single application such as Oracle or SAP
for a period of years. There is little chance of career growth or knowledge
expansion.

Another caution is that improving customer support via automation
and expert systems is technically feasible, but many existing patents
cover such topics. As a result, attempts to develop improved customer
support automation may require licensing of intellectual property.

Conclusions The literature on customer support is dominated by
two very different forms of information. The Information Technology
Infrastructure Library (ITIL) contains more than 30 volumes and more
than 5,000 pages of information on every aspect of customer support.
However, the ITIL library is aimed primarily at in-house customer sup-
port and is not used very much by commercial software vendors.

For commercial software customer support, some trade books are
available, but the literature tends to be dominated by white papers
and monographs published by customer support outsource companies.

328 Chapter Five

Although these tend to be marketing texts, some of them do provide
useful information about the mechanics of customer support. There
are also interesting reports available from companies that provide cus-
tomer-support automation, which is both plentiful and seems to cover
a wide range of features.

Given the fact that customer support is a critical activity of the
software industry in 2009, a great deal more research and study are
indicated. Research is needed on the relationship between quality and
customer support, on the role of user associations and volunteer groups,
and on the potential automation that might improve customer support.
In particular, research is needed on providing customer support for deaf
and hard-of-hearing customers, blind customers, and those with other
physical challenges.

Software Test Organizations

There are ten problems with discussing software test organizations that
need to be highlighted:

 1. There are more than 15 different kinds of software testing.

 2. Many kinds of testing can be performed either by developers, by
in-house test organizations, by outsource test organizations, or by
quality assurance teams based on company test strategies.

 3. With Agile teams and with hierarchical organizations, testers will
probably be embedded with developers and not have separate
departments.

 4. Matrix organizations testers would probably be in a separate test-
ing organization reporting to a skill manager, but assigned to spe-
cific projects as needed.

 5. Some test organizations are part of quality assurance organizations
and therefore have several kinds of specialists besides testing.

 6. Some quality assurance organizations collect data on test results,
but do no testing of their own.

 7. Some testing organizations are called “quality assurance” and per-
form only testing. These may not perform other QA activities such
as moderating inspections, measuring quality, predicting quality,
teaching quality, and so on.

 8. For any given software application, the number of separate kinds
of testing steps ranges from a low of 1 form of testing to a high of
17 forms of testing based on company test strategies.

Software Team Organization and Specialization 329

 9. For any given software application, the number of test and/or qual-
ity assurance organizations that are part of its test strategy can
range from a low of one to a high of five, based on company quality
strategies.

10. For any given defect removal activity, including testing, as many as
11 different kinds of specialists may take part.

As can perhaps be surmised from the ten points just highlighted,
there is no standard way of testing software applications in 2009. Not
only is there no standard way of testing, but there are no standard
measures of test coverage or defect removal efficiency, although both
are technically straightforward measurements.

The most widely used form of test measurement is that of test cover-
age, which shows the amount of code actually executed by test cases.
Test coverage measures are fully automated and therefore easy to do.
This is a useful metric, but much more useful would be to measure
defect removal efficiency as well.

Defect removal efficiency is more complicated and not fully auto-
mated. To measure the defect removal efficiency of a specific test stage
such as unit test, all defects found by the test are recorded. After unit
test is finished, all other defects found by all other tests are recorded,
as are defects found by customers in the first 90 days. When all defects
have been totaled, then removal efficiency can be calculated.

Assume unit test found 100 defects, function test and later test stages
found 200 defects, and customers reported 100 defects in the first
90 days of use. The total number of defects found was 400. Since unit
test found 100 out of 400 defects, in this example, its efficiency is 25
percent, which is actually not far from the 30 percent average value of
defect removal efficiency for unit test.

(A quicker but less reliable method for determining defect removal
efficiency is that of defect seeding. For example, if 100 known bugs were
seeded into the software discussed in the previous paragraph and 25
were found, then the defect removal efficiency level of 25 percent could
be calculated immediately. However, there is no guarantee that the
“tame” bugs that were seeded would be found at exactly the same rate
as “wild” bugs that are made by accident.)

It is an unfortunate fact that most forms of testing are not very effi-
cient and find only about 25 percent to 40 percent of the bugs that are
actually present, although the range is from less than 20 percent to
more than 70 percent.

It is interesting that there is much debate over black box testing,
which lacks information on internals; white box testing, with full vis-
ibility of internal code; and gray box testing, with visibility of internals,
but testing is at the external level.

330 Chapter Five

So far as can be determined, the debate is theoretical, and few experi-
ments have been performed to measure the defect removal efficiency
levels of black, white, or gray box testing. When measures of efficiency
are taken, white box testing seems to have higher levels of defect
removal efficiency than black box testing.

Because many individual test stages such as unit test are so low
in efficiency, it can be seen why several different kinds of testing are
needed. The term cumulative defect removal efficiency refers to the
overall efficiency of an entire sequence of tests or defect removal
operations.

As a result of lack of testing standards and lack of widespread test-
ing effectiveness measurements, testing by itself does not seem to be a
particularly cost-effective approach for achieving high levels of quality.
Companies that depend purely upon testing for defect removal almost
never top 90 percent in cumulative defect removal, and often are below
75 percent.

The newer forms of testing such as test-driven development (TDD)
use test cases as a form of specification and create the test cases first,
before the code itself is created. As a result, the defect removal efficiency
of TDD is higher than many forms of testing and can top 85 percent.
However, even with TDD, bad-fix injection needs to be factored into the
equation. About 7 percent of attempts to fix bugs accidentally include
new bugs in the fixes.

If TDD is combined with other approaches such as formal inspection
of the test cases and static analysis of the code, then defect removal
efficiency can top 95 percent.

There is some ambiguity in the data that deals with automatic testing
versus manual testing. In theory, automatic testing should have higher
defect removal efficiency than manual testing in at least 70 percent
of trials. For example, manual unit testing averages about 30 percent
in terms of defect removal efficiency, while automatic testing may top
50 percent. However, testing skills vary widely among software engi-
neers and programmers, and automatic testing also varies widely. More
study of this topic is indicated.

The poor defect removal efficiency of normal testing brings up an
important question: If testing is not very effective in finding and remov-
ing bugs, what is effective? This is an important question, and it is
also a question that should be answered in a book entitled Software
Engineering Best Practices.

The answer to the question of “What is effective in achieving high
levels of quality?” is that a combination of defect prevention and mul-
tiple forms of defect removal is needed for optimum effectiveness.

Defect prevention refers to methods and techniques that can lower
defect potentials from U.S. averages of about 5.0 per function point.

Software Team Organization and Specialization 331

Examples of methods that have demonstrated effectiveness in terms
of defect prevention include the higher levels of the capability matu-
rity model integration (CMMI), joint application design (JAD), qual-
ity function deployment (QFD), root-cause analysis, Six Sigma for
software, the Team Software Process (TSP), and also the Personal
Software Process (PSP).

For small applications, the Agile method of having an embedded user
as part of the team can also reduce defect potentials. (The caveat with
embedded users is that for applications with more than about 50 users,
one person cannot speak for the entire set of users. For applications with
thousands of users, having a single embedded user is not adequate. In such
cases, focus groups and surveys of many users are necessary.)

As it happens, formal inspections of requirements, design, and code
serve double duty and are very effective in terms of defect prevention as
well as being very effective in terms of defect removal. This is because
participants in formal inspections spontaneously avoid making the
same mistakes that are found during the inspections.

The combination of methods that have been demonstrated to raise
defect removal efficiency levels includes formal inspections of require-
ments, design, code, and test materials; static analysis of code prior to
testing; and then a test sequence that includes at least eight forms of
testing: (1) unit test, (2) new function test, (3) regression test, (4) per-
formance test, (5) security test, (6) usability test, (7) system test, and
(8) some form of external test with customers or clients, such as beta
test or acceptance test.

Such a combination of pretest inspections, static analysis, and at least
eight discrete test stages will usually approach 99 percent in terms of
cumulative defect removal efficiency levels. Not only does this combination
raise defect removal efficiency levels, but it is also very cost-effective.

Projects that top 95 percent in defect removal efficiency levels usually
have shorter development schedules and lower costs than projects that
skimp on quality. And, of course, they have much lower maintenance
and customer support costs, too.

Testing is a teachable skill, and there are a number of for-profit and
nonprofit organizations that offer seminars, classes, and several flavors
of certification for test personnel. While there is some evidence that
certified test personnel do end up with higher levels of defect removal
efficiency than uncertified test personnel, the poor measurement and
benchmark practices of the software industry make that claim some-
what anecdotal. It would be helpful if test certification included a
learning segment on how to measure defect removal efficiency.

Following in Table 5-3 are examples of a number of different forms
of software inspection, static analysis, and testing, with the probable
organization that performs each activity indicated.

332 Chapter Five

Table 5-3 shows 26 different kinds of defect removal activity carried
out by a total of 11 different kinds of internal specialists, 3 specialists
from outside companies, and also by customers. However, only very large
and sophisticated high-technology companies would have such a rich
mixture of specialization and would utilize so many different kinds of
defect removal.

Smaller companies would either have the testing carried out by software
engineers or programmers (who often are not well trained), or they would

TABLE 5-3 Forms of Software Defect Removal Activities

Pretest Removal Inspections Performed by

 1. Requirements Analysts

 2. Design Designers

 3. Code Programmers

 4. Test plans Testers

 5. Test cases Testers

 6. Static analysis Programmers

General Testing
 7. Subroutine test Programmers

 8. Unit test Programmers

 9. New function test Testers or programmers

10. Regression test Testers or programmers

11. System test Testers or programmers

Special Testing
12. Performance testing Performance specialists

13. Security testing Security specialists

14. Usability testing Human factors specialists

15. Component testing Testers

16. Integration testing Testers

17. Nationalization testing Foreign language experts

18. Platform testing Platform specialists

19. SQA validation testing Software quality assurance

20. Lab testing Hardware specialists

External Testing
21. Independent testing External test company

22. Beta testing Customers

23. Acceptance testing Customers

Special Activities
24. Audits Auditors, SQA

25. Independent verification and validation (IV&V) IV&V contractors

26. Ethical hacking Hacking consultants

Software Team Organization and Specialization 333

have a testing group staffed primarily by testing specialists. Testing can
also be outsourced, although as of 2009, this activity is not common.

At this point, it is useful to address three topics that are not well
covered in the testing literature:

 1. How many testers are needed for various kinds of testing?

 2. How many test cases are needed for various kinds of testing?

 3. What is the defect removal efficiency of various kinds of testing?

Table 5-4 shows the approximate staffing levels for the 17 forms of
testing that were illustrated in Table 5-3. Note that this information is
only approximate, and there are wide ranges for each form of testing.

Because testing executes source code, the information in Table 5-4
is based on source code counts rather than on function points. With
more than 700 programming languages ranging from assembly through

TABLE 5-4 Test Staffing for Selected Test Stages

Application language Java

Application code size 50,000

Application KLOC 50

Function points 1,000

General Testing Assignment Scope Test Staff

 1. Subroutine test 10,000 5.00

 2. Unit test 10,000 5.00

 3. New function test 25,000 2.00

 4. Regression test 25,000 2.00

 5. System test 50,000 1.00

Special Testing
 6. Performance testing 50,000 1.00

 7. Security testing 50,000 1.00

 8. Usability testing 25,000 2.00

 9. Component testing 25,000 2.00

10. Integration testing 50,000 1.00

11. Nationalization testing 1,50,000 0.33

12. Platform testing 50,000 1.00

13. SQA validation testing 75,000 0.67

14. Lab testing 50,000 1.00

External Testing
15. Independent testing 7,500 6.67

16. Beta testing 25,000 2.00

17. Acceptance testing 25,000 2.00

334 Chapter Five

modern languages such as Ruby and E, the same application illustrated
in Table 5-4 might vary by more than 500 percent in terms of source
code size. Java is the language used in Table 5-4 because it is one of the
most common languages in 2009.

The column labeled “Assignment Scope” illustrates the amount of
source code that one tester will probably be responsible for testing.
Note that there are very wide ranges in assignment scopes based on the
experience levels of test personnel, on the cyclomatic complexity of the
code, and to a certain extent, on the specific language or combination of
languages in the application being tested.

Because the testing shown in Table 5-4 involves a number of differ-
ent people with different skills who probably would be from different
departments, the staffing breakdown for all 17 tests would include
5 developers through unit test; 2 test specialists for integration and
system test; 3 specialists for security, nationalization, and usability
test; 1 SQA specialist; 7 outside specialists from other companies; and
2 customers: 20 people in all.

Of course, it is unlikely that any small application of 1,000 function
points or 50 KLOC (thousands of lines of code) would use (or need) all
17 of these forms of testing. The most probable sequence for a 50-KLOC
Java application would be 6 kinds of testing performed by 5 developers,
2 test specialists, and 2 users, for a total of 9 test personnel in all.

In Table 5-5, data from the previous tables is used as the base for
staffing, but the purpose of Table 5-5 is to show the approximate num-
bers of test cases produced for each test stage, and then the total number
of test cases for the entire application. Here, too, there are major varia-
tions, so the data is only approximate.

The code defect potential for the 50 KLOC code sample of the Java
application would be about 1,500 total bugs, which is equal to 1.5 code
bugs per function point, or 30 bugs per KLOC. (Note that earlier bugs
in requirements and design are excluded and assumed to have been
removed before testing begins.)

If all 17 of the test stages were used, they would probably detect about 95
percent of the total bugs present, or 1,425 in all. That would leave 75 bugs
latent when the application is delivered. Assuming both the numbers for
potential defects and the numbers for test cases are reasonably accurate
(a questionable assumption) then it takes an average of 1.98 test cases to
find 1 bug.

Of course, since only about 6 out of the 17 test stages are usually per-
formed, the removal efficiency would probably be closer to 75 percent, which
is why additional nontest methods such as inspections and static analysis
are needed to achieve really high levels of defect removal efficiency.

If even this small 50-KLOC example uses more than 2,800 test cases,
it is obvious that corporations with hundreds of software applications

Software Team Organization and Specialization 335

will eventually end up with millions of test cases. Once created, test cases
have residual value for regression test purposes. Fortunately, a number
of automated tools can be used to store and manage test case libraries.

The existence of such large test libraries is a necessary overhead
of software development and maintenance. However, this topic needs
additional study. Creating reusable test cases would seem to be of value.
Also, there are often errors in test cases, which is why inspections of test
plans and test cases are useful.

With hundreds of different people creating test cases in large com-
panies and government agencies, there is a good chance that duplicate
tests will accidentally be created. In fact, this does occur, and a study at

TABLE 5-5 Test Cases for Selected Test Stages

Application language Java

Application code size 50,000

Application KLOC 50

Function points 1,000

Test Staff
Test Cases
Per KLOC

Total Test
Cases

Test Cases
Per Person

General Testing
 1. Subroutine test 5.00 12.00 600 120.00

 2. Unit test 5.00 10.00 500 100.00

 3. New function test 2.00 5.00 250 125.00

 4. Regression test 2.00 4.00 200 100.00

 5. System test 1.00 3.00 150 150.00

Special Testing
 6. Performance testing 1.00 1.00 50 50.00

 7. Security testing 1.00 3.00 150 150.00

 8. Usability testing 2.00 3.00 150 75.00

 9. Component testing 2.00 1.50 75 37.50

10. Integration testing 1.00 1.50 75 75.00

11. Nationalization testing 0.33 0.50 25 75.76

12. Platform testing 1.00 2.00 100 100.00

13. SQA validation testing 0.67 1.00 50 74.63

14. Lab testing 1.00 1.00 50 50.00

External Testing
15. Independent testing 6.67 4.00 200 29.99

16. Beta testing 2.00 2.00 100 50.00

17. Acceptance testing 2.00 2.00 100 50.00

TOTAL TEST CASES 2825

TEST CASES PER KLOC 56.50

TEST CASES PER PERSON (20 TESTERS) 141.25

336 Chapter Five

IBM noted about 30 percent redundancy or duplicates in one software
lab’s test library.

The final Table 5-6 in this section shows defect removal efficiency
levels against six sources of error: requirements defects, design defects,
coding defects, security defects, defects in test cases, and performance
defects.

Table 5-6 is complicated by the fact that not every defect removal
method is equally effective against each type of defect. In fact, many

TABLE 5-6 Defect Removal Efficiency by Defect Type

Pretest Removal
Inspections:

Req.
defects

Des.
defects

Code
defects

Sec.
defects

Test
defects

Perf.
defects

 1. Requirements 85.00%

 2. Design 85.00% 25.00%

 3. Code 85.00% 40.00% 15.00%

 4. Test plans 85.00%

 5. Test cases 85.00%

 6. Static analysis 30.00% 87.00% 25.00% 20.00%

General Testing
 7. Subroutine test 35.00% 10.00%

 8. Unit test 30.00% 10.00%

 9. New function test 15.00% 35.00% 10.00%

10. Regression test 15.00%

11. System test 10.00% 20.00% 25.00% 7.00% 25.00%

Special Testing
12. Performance testing 5.00% 10.00% 70.00%

13. Security testing 65.00%

14. Usability testing 10.00% 10.00%

15. Component testing 10.00% 25.00%

16. Integration testing 10.00% 30.00%

17. Nationalization testing 3.00%

18. Platform testing 10.00%

19. SQA validation testing 5.00% 5.00% 15.00%

20. Lab testing 10.00% 10.00% 10.00% 20.00%

External Testing
21. Independent testing 5.00% 30.00% 5.00% 5.00% 10.00%

22. Beta testing 30.00% 25.00% 10.00% 15.00%

23. Acceptance testing 30.00% 20.00% 5.00% 15.00%

Special Activities
24. Audits 15.00% 10.00%

25. Independent verification
and validation (IV&V) 10.00% 10.00% 10.00%

26. Ethical hacking 85.00%

Software Team Organization and Specialization 337

forms of defect removal have 0 percent efficiency against security flaws.
Coding defects are the easiest type of defect to remove; requirements
defects, security defects, and defects in test materials are the most dif-
ficult to eliminate.

Historically, formal inspections have the highest levels of defect
removal efficiency against the broadest range of defects. The more
recent method of static analysis has a commendably high level of defect
removal efficiency against coding defects, but currently operates only on
about 15 programming languages out of more than 700.

The data in Table 5-6 has a high margin of error, but the table itself
shows the kind of data that needs to be collected in much greater volume
to improve software quality and raise overall levels of defect removal effi-
ciency across the software industry. In fact, every software application
larger than 1,000 function points in size should collect this kind of data.

One important source of defects is not shown in Table 5-6 and that
is bad-fix injection. About 7 percent of bug repairs contain a fresh
bug in the repair itself. Assume that unit testing found and removed
100 bugs in an application. But there is a high probability that 7 new
bugs would be accidentally injected into the application due to errors
in the fixes themselves. (Bad-fix injections greater than 25 percent may
occur with error-prone modules.)

Bad-fix injection is a very common source of defects in software, but it
is not well covered either in the literature on testing or in the literature
on software quality assurance.

Another quality issue that is not well covered is that of error-
prone modules. As mentioned elsewhere in this book, bugs are not
randomly distributed, but tend to clump in a small number of very
buggy modules.

If an application contains one or more error-prone modules, then
defect removal efficiency levels against those modules may be only half
of the values shown in Table 5-6, and bad-fix injection rates may top
25 percent. This is why error-prone modules can seldom be repaired, but
need to be surgically removed and replaced by a new module.

In spite of the long history of testing and the large number of test per-
sonnel employed by the software industry, a great deal more research
is needed. Some of the topics that need research are automatic genera-
tion of test cases from specifications, developing reusable test cases,
better predictions of test case numbers and removal efficiency, and
much better measurement of test results in terms of defect removal
efficiency levels.

Demographics In the software world, testing has long been one of the
major development activities, and test personnel are among the largest
software occupation groups. But to date there is no accurate census of

338 Chapter Five

test personnel, due in part to the fact that so many different kinds of
specialists get involved in testing.

Because testing is on the critical path for releasing software, there
is a tendency for software project managers or even senior executives
to put pressure on test personnel to truncate testing when schedules
are slipping. By having test organizations reporting to separate skill
managers, as opposed to project or application managers, this adds a
measure of independence.

However, testing is such an integral part of software development that
test personnel need to be involved essentially from the first day that
development begins. Whether testers report to skill managers or are
embedded in project teams, they need early involvement during require-
ment and design. This is especially true with test-driven development
(TDD), where test cases are an integral part of the requirements and
design processes.

Project size The minimum size of applications where formal testing
is mandatory is about 100 function points. As a rule, the larger the
application, the more kinds of pretest defect removal activities and
more kinds of testing are needed to be successful or even to finish the
application at all.

For large systems less than 10,000 function points, inspections, static
analysis, security analysis, and about ten forms of testing are needed
to achieve high levels of defect removal efficiency. Unfortunately, many
companies skimp on testing and nontest activities, so U.S. average
results are embarrassingly bad: 85 percent cumulative defect removal
efficiency. These results have been fairly flat or constant from 1996
through 2009.

Productivity rates There are no effective productivity rates for testing.
There are no effective size metrics for test cases. At a macro level, testing
productivity can be measured by using “work hours per function point”
or the reciprocal “function points per staff month,” but those measures
are abstract and don’t really capture the essence of testing.

Measures such as “test cases created per month” or “test cases exe-
cuted per month” send the wrong message, because they might encour-
age extra testing simply to puff up the results and not raise defect
removal efficiency.

Measures such as “defects detected per month” are unreliable, because
for really top-gun developers, there may not be very many defects to
find. The “cost per defect” metric is also unreliable for the same reason.
Testers will still run many test cases whether an application has any
bugs or not. As a result, cost per defect rises as defect quantities go
down; hence the cost per defect metric penalizes quality.

Software Team Organization and Specialization 339

Schedules The primary schedule issues for test personnel are those of
test case creation and test case execution. But testing schedules depend
more upon the number of bugs found and the time it takes to repair the
bugs than on test cases.

One factor that is seldom measured but also delays test schedules
is bugs or defects in test cases themselves. A study done some years
ago by IBM found more bugs in test cases than in the applications
being tested. This topic is not well covered by the testing literature.
(This was the same study that had found about 30 percent redun-
dant or duplicate test cases in test libraries.) Running duplicate test
cases adds to testing costs and schedules, but not to defect removal
efficiency levels.

When testing starts on applications with high volumes of defects, the
entire schedule for the project is at risk, because testing schedules will
extend far beyond their planned termination. In fact, testing delays due
to excessive defect volumes is the main reason for software schedule
delays.

The most effective way to minimize test schedules is to have very few
defects present because pretest inspections and static analysis found
most of them before testing began. Defect prevention such as TSP or
joint application design (JAD) can also speed up test schedules.

For the software industry as a whole, delays in testing due to exces-
sive bugs is a major cause of application cost and schedule overruns
and also of project cancellations. Because long delays and cancellation
trigger a great deal of litigation, high defect potentials and low levels
of defect removal efficiency are causative factors in breach of contract
lawsuits.

Quality Testing by itself has not been efficient enough in finding bugs to
be the only form of defect removal used on major software applications.
Testing alone almost never tops 85 percent defect removal efficiency,
with the exception of the newer test-driven development (TDD), which
can hit 90 percent.

Testing combined with formal inspections and static analysis achieves
higher levels of defect removal efficiency, shorter schedules, and lower
costs than testing alone. Moreover, these savings not only benefit devel-
opment, but also lower the downstream costs of customer support and
maintenance.

Readers who are executives and qualified to sign contracts are
advised to consider 95 percent as the minimum acceptable level of
defect removal efficiency. Every outsource contract, every internal qual-
ity plan, and every license with a software vendor should require proof
that the development organization will top 95 percent in defect removal
efficiency.

340 Chapter Five

Specialization Testing specialization covers a wide range of skills.
However, for many small companies with a generalist philosophy, soft-
ware developers may also serve as software testers even though they
may not be properly trained for the role.

For large companies, a formal testing department staffed by testing
specialists will give better results than development testing by itself.
For very large multinational companies and for companies that build
systems and embedded software, test and quality assurance specialists
will be numerous and have many diverse skills.

There are several forms of test certification available. Testers who go
to the trouble of achieving certification are to be commended for taking
their work seriously. However, there is not a great deal of empirical
data that compares the defect removal efficiency levels of tests carried
out by certified testers versus the same kind of testing performed by
uncertified testers.

Cautions and counter indications The main caution about testing is that
it does not find very many bugs or defects. For more than 50 years, the
software industry has routinely delivered large software applications
with hundreds of latent bugs, in spite of extensive testing.

A second caution about testing is that testing cannot find require-
ments errors such as the famous Y2K problem. Once an error becomes
embedded in requirements and is not found via inspections, quality func-
tion deployment (QFD), or some other nontest approach, all that testing
will accomplish is to confirm the error. This is why correct requirements
and design documents are vital for successful testing. This also explains
why formal inspections of requirements and design documents raise
testing efficiency by about 5 percent per test stage.

Conclusions The literature on testing is extensive but almost totally
devoid of quantitative data that deals with defect removal efficiency,
with testing costs, with test staffing, with test specialization, with
return on investment (ROI), or with the productivity of test personnel.
However, there are dozens of books and hundreds of web sites with
information on testing.

Several nonprofit organizations are involved with testing, such as the
Association for Software Testing (AST) and the American Society for
Quality (ASQ). There is also a Global Association for Software Quality
(GASQ).

There are local and regional software quality organizations in many
cities. There are also for-profit test associations that hold a number of
conferences and workshops, and also offer certification exams.

Given the central role of testing over the past 50 years of software
engineering, the gaps in the test literature are surprising and dismaying.

Software Team Organization and Specialization 341

A technical occupation that has no clue about the most efficient and cost-
effective methods for preventing or removing serious errors is not qualified
to be called “engineering.”

Some of the newer forms of testing such as test-driven development
(TDD) are moving in a positive direction by shifting test case develop-
ment to earlier in the development cycle, and by joining test cases with
requirements and design. These changes in test strategy result in higher
levels of defect removal efficiency coupled with lower costs as well.

But to achieve really high levels of quality in a cost-effective manner,
testing alone has always been insufficient and remains insufficient in
2009. A synergistic combination of defect prevention and a multiphase
suite of defect removal activities that combine inspections, static analysis,
automated testing, and manual testing provide the best overall results.

For the software industry as a whole, defect potentials have been far
too high, and defect removal efficiency far too low for far too many years.
This unfortunate combination has raised development costs, stretched
out development schedules, caused many failures and also litigation,
and raised maintenance and customer support costs far higher than
they should be.

Defect prevention methods such as Team Software Process (TSP),
quality function deployment (QFD), Six Sigma for software, joint appli-
cation design (JAD), participation in inspections, and certified reusable
components have the theoretical potential of lowering defect potentials
by 80 percent or more compared with 2009. In other words, defect poten-
tials could drop from about 5.0 per function point down to about 1.0 per
function point or lower.

Defect removal combinations that include formal inspections, static
analysis, test-driven development, using both automatic and manual
testing, and certified reusable test cases could raise average defect
removal efficiency levels from today’s approximate average of about
85 percent in 2009 up to about 97 percent. Levels that approach
99.9 percent could even be achieved in many cases.

Effective combinations of defect prevention and defect removal
activities are available in 2009 but seldom used except by a few very
sophisticated organizations. What is lacking is not so much the tech-
nologies that improve quality, but awareness of how effective the best
combinations really are. Also lacking is awareness of how ineffective
testing alone can be. It is lack of widespread quality measurements
and lack of quality benchmarks that are delaying improvements in
software quality.

Also valuable are predictive estimating tools that can predict both
defect potentials and the defect removal efficiency levels of any com-
bination of review, inspection, static analysis, automatic test stage,
and manual test stage. Such tools exist in 2009 and are marketed by

342 Chapter Five

companies such as Software Productivity Research (SPR), SEER, Galorath,
and Price Systems. Even more sophisticated tools that can predict the
damages that latent defects cause to customers exist in prototype form.

The final conclusion is that until the software industry can routinely
top 95 percent in average defect removal efficiency levels, and hit 99
percent for critical software applications, it should not even pretend
to be a true engineering discipline. The phrase “software engineering”
without effective quality control is a hoax.

Software Quality Assurance (SQA)
Organizations

The author of this book worked for five years in IBM’s Software Quality
Assurance organizations in Palo Alto and Santa Teresa, California. As a
result, the author may have a residual bias in favor of SQA groups that
function along the lines of IBM’s SQA groups.

Within the software industry, there is some ambiguity about the role
and functions of SQA groups. Among the author’s clients (primarily
Fortune 500 companies), following is an approximate distribution of
how SQA organizations operate:

■ In about 50 percent of companies, SQA is primarily a testing orga-
nization that performs regression tests, performance tests, system
tests, and other kinds of testing that are used for large systems as
they are integrated. The SQA organization reports to a vice president
of software engineering, to a CIO, or to local development managers
and is not an independent organization. There may be some respon-
sibility for measuring quality, but testing is the main focus. These
SQA organizations tend to be quite large and may employ more than
25 percent of total software engineering personnel.

■ In about 35 percent of companies, SQA is a focal point for estimating
and measuring quality and ensuring adherence to local and national
quality standards. But the SQA group is separate from testing orga-
nizations, and performs only limited and special testing such as stan-
dards adherence. To have an independent view, the SQA organization
reports to its own vice president of quality and is not part of the devel-
opment or test organizations. (This is the form of SQA that IBM had
when the author worked there.) These organizations tend to be fairly
small and employ between 1 percent and 3 percent of total software
engineering personnel.

■ About 10 percent of companies have a testing organization but no
SQA organization at all. The testing group usually reports to the CIO
or to a vice president or senior software executive. In such situations,
testing is the main focus, although there may be some measurement

Software Team Organization and Specialization 343

of quality. While the testing organization may be large, the staffing
for SQA is zero.

■ In about 5 percent of companies, there is a vice president of SQA and
possibly one or two assistants, but nobody else. In this situation, SQA
is clearly nothing more than an act that can be played when custom-
ers visit. Such organizations may have testing groups that report
to various development managers. The so-called SQA organizations
where there are executives but no SQA personnel employ less than
one-tenth of one percent of total software engineering personnel.

Because software quality assurance (SQA) is concerned with more than
testing, it is interesting to look at the activities and roles of “traditional”
SQA groups that operate independently from test organizations.

 1. Collecting and measuring software quality during development and
after release, including analyzing test results and test coverage. In
some organizations such as IBM, defect removal efficiency levels
are also calculated.

 2. Predicting software quality levels for major new applications,
including construction of special quality estimating tools.

 3. Performing statistical studies of quality or carrying out root-cause
analysis.

 4. Examining and teaching quality methods such as quality function
deployment (QFD) or Six Sigma for software.

 5. Participating in software inspections as moderators or recorders,
and also teaching inspections.

 6. Ensuring that local, national, and international quality standards
are followed. SQA groups are important for achieving ISO 9000
certification, for example.

 7. Monitoring the activities associated with the various levels of the
capability maturity model integration (CMMI). SQA groups play a
major part in software process improvements and ascending to the
higher levels of the CMMI.

 8. Performing specialized testing such as standards adherence.

 9. Teaching software quality topics to new employees.

10. Acquiring quality benchmark data from external organizations
such as the International Software Benchmarking Standards
Group (ISBSG).

A major responsibility of IBM’s SQA organization was determining
whether the quality level of new applications was likely to be good

344 Chapter Five

enough to ship the application to customers. The SQA organization
could stop delivery of software that was felt to have insufficient quality
levels.

Development managers could appeal an SQA decision to stop the
release of questionable software, and the appeal would be decided by
IBM’s president or by a senior vice president. This did not happen often,
but when it did, the event was taken very seriously by all concerned.
The fact that the SQA group was vested with this power was a strong
incentive for development managers to take quality seriously.

Obviously, for SQA to have the power to stop delivery of a new applica-
tion, the SQA team had to have its own chain of command and its own
senior vice president independent of the development organization. If
SQA had reported to a development executive, then threats or coercion
might have made the SQA role ineffective.

One unique feature of the IBM SQA organization was a formal “SQA
research” function, which provided time and resources for carrying out
research into topics that were beyond the state of the art currently avail-
able. For example, IBM’s first quality estimation tool was developed
under this research program. Researchers could submit proposals for
topics of interest, and those selected and approved would be provided
with time and with some funding if necessary.

Several companies encourage SQA and other software engineering
personnel to write technical books and articles for outside journals such
as CrossTalk (the U.S. Air Force software journal) or some of the IEEE
journals.

One company, ITT, as part of its software engineering research lab,
allowed articles to be written during business hours and even provided
assistance in creating camera-ready copy for books. It is a significant
point that authors should be allowed to keep the royalties from the
technical books that they publish.

It is an interesting phenomenon that almost every company with
defect removal efficiency levels that average more than 90 percent has
a formal and active SQA organization. Although formal and active SQA
groups are associated with better-than-average quality, the data is not
sufficient to assert that SQA is the primary cause of high quality.

The reason is that most organizations that have low software quality
don’t have any measurements in place, and their poor quality levels only
show up if they commission a special assessment, or if they are sued
and end up in court.

It would be nice to say that organizations with formal SQA teams aver-
age greater than 90 percent in defect removal efficiency and that similar
companies doing similar software that lack formal SQA teams average
less than 80 percent in defect removal efficiency. But the unfortunate fact
is that only the companies with formal SQA teams are likely to know

Software Team Organization and Specialization 345

what their defect removal efficiency levels are. In fact, quality measure-
ment practices are so poor that even some companies that do have an
SQA organization do not know their defect removal efficiency levels.

Demographics In the software world, SQA is not large numerically,
but has been a significant source of quality innovation. There are per-
haps 5,000 full-time SQA personnel employed in the United States as
of 2009.

SQA organizations are very common in companies that build sys-
tems software, embedded software, or commercial software, such as SAP,
Microsoft, Oracle, and the like. SQA organizations are less common in
IT groups such as banks and finance companies, although they do occur
within the larger companies.

Many cities have local SQA organizations, and there are also national
and international equality associations as well.

There is one interesting anomaly with SQA support of software appli-
cations. Development teams that use the Team Software Process (TSP)
have their own internal equivalent of SQA and also collect extensive
data on bugs and quality. Therefore, TSP teams normally do not have
any involvement from corporate SQA organizations. They of course
provide data to the SQA organization for corporate reporting purposes,
but they don’t have embedded SQA personnel.

Project size Normally, SQA involvement is mandatory for large appli-
cations above about 2,500 function points. While SQA involvement
might be useful for smaller applications, they tend to have better
quality than large applications. Since SQA resources are limited,
concentrating on large applications is perhaps the best use of SQA
personnel.

Productivity rates There are no effective productivity rates for SQA
groups. However, it is an interesting and important fact that produc-
tivity rates for software applications that do have SQA involvement,
and which manage to top 95 percent in defect removal efficiency,
are usually much better than applications of the same size that
lack SQA.

Even if SQA productivity itself is ambiguous, measuring the quality
and productivity of the applications that are supported by SQA teams
indicates that SQA has significant business value.

Schedules The primary schedule issues for SQA teams are the overall
schedules for the applications that they support. As with productivity
and quality, there is evidence that an SQA presence on an application
tends to prevent schedule delays.

346 Chapter Five

Indeed if SQA is successful in introducing formal inspections, sched-
ules can even be shortened.

The most effective way to shorten software development schedules is
to have very few defects due to defect prevention, and to remove most
of them prior to testing due to pretest inspections and static analysis.
Since SQA groups push hard for both defect prevention and early defect
removal, an effective SQA group will benefit development schedules—and
especially so for large applications, which typically run late.

For the software industry as a whole, delays due to excessive bugs
are a major cause of application cost and schedule overruns and also of
project cancellations. Effective SQA groups can minimize the endemic
problems.

It is a proven fact that an effective SQA organization can lead to
significant cost reductions and significant schedule improvements for
software projects. Yet because the top executives in many companies do
not understand the economic value of high quality and regard quality
as a luxury rather than a business necessity, SQA personnel are among
the first to be let go during a recession.

Quality The roles of SQA groups center on quality, including quality
measurement, quality predictions, and long-range quality improvement.
SQA groups also have a role in ISO standards and the CMMI. SQA
organizations also teach quality courses and assist in the deployment
of methods such as quality function deployment (QFD) and Six Sigma
for software. In fact, it is not uncommon for many SQA personnel to be
Six Sigma black belts.

There is some uncertainty in 2009 about the role of SQA groups when
test-driven development (TDD) is utilized. Because TDD is fairly new,
the intersection of TDD and SQA is still evolving.

As already mentioned in the testing section of this chapter, read-
ers who are executives and qualified to sign contracts are advised to
consider 95 percent as the minimum acceptable level of defect removal
efficiency. Every outsource contract, every internal quality plan, and
every license with a software vendor should require proof that the devel-
opment organization will top 95 percent in defect removal efficiency.

There is one troubling phenomenon that needs more study. Large
systems above 10,000 function points are often released with hundreds
of latent bugs in spite of extensive testing and sometimes in spite of
large SQA teams. Some of these large systems ended up in lawsuits
where the author happened to an expert witness. It usually happened
that the advice of the SQA teams was not taken, and that the project
manager skimped on quality control in a misguided attempt to compress
schedules.

Software Team Organization and Specialization 347

Specialization SQA specialization covers a wide range of skills that can
include statistical analysis, function point analysis, and also testing.
Other special skills include Six Sigma, complexity analysis, and root-
cause analysis.

Cautions and counter indications The main caution about SQA is that it
is there to help, and not to hinder. Dogmatic attitudes are counterpro-
ductive for effective cooperation with development and testing groups.

Conclusions An effective SQA organization can benefit not only qual-
ity, but also schedules and costs. Unfortunately, during recessions, SQA
teams are among the first to be affected by layoffs and downsizing. As
the recession of 2009 stretches out, it causes uncertainty about the
future of SQA in U.S. business.

Because quality benefits costs and schedules, it is urgent for SQA
teams to take positive steps to include measures of defect removal effi-
ciency and measures of the economic value of quality as part of their
standard functions. If SQA could expand the number of formal quality
benchmarks brought in to companies, and collect data for submission
to benchmark groups, the data would benefit both companies and the
software industry.

Several nonprofit organizations are involved with SQA, such as the
American Society for Quality (ASQ). There is also a Global Association
for Software Quality (GASQ).

Local and regional software quality organizations are in many
cities. Also, for-profit SQA associations such as the Quality Assurance
Institute (QAI) hold a number of conferences and workshops, and also
offer certification exams.

SQA needs to assist in introducing a synergistic combination of defect
prevention and a multiphase suite of defect removal activities that
combine inspections, static analysis, automated testing, and manual
testing. There is no silver bullet for quality, but fusions of a variety
of quality methods can be very effective. SQA groups are the logical
place to provide information and training for these effective hybrid
methods.

Effective combinations of defect prevention and defect removal
activities are available in 2009, but seldom used except by a few very
sophisticated organizations. As mentioned in the testing section of
this chapter, what is lacking is not so much the technologies that
improve quality, but awareness of how effective the best combinations
really are. It is lack of widespread quality measurements and lack
of quality benchmarks that are delaying improvements in software
quality.

348 Chapter Five

Also valuable are predictive estimating tools that can predict both defect
potentials and the defect removal efficiency levels of any combination of
review, inspection, static analysis, automatic test stage, and manual test
stage. Normally, SQA groups will have such tools and use them frequently.
In fact, the industry’s first software quality prediction tool was developed
by the IBM SQA organization in 1973 in San Jose, California.

The final conclusion is that SQA groups need to keep pushing until
the software industry can routinely top 95 percent in average defect
removal efficiency levels, and hit 99 percent for critical software applica-
tions. Any results less than these are insufficient and unprofessional.

Summary and Conclusions

Fred Brooks, one of the pioneers of software at IBM, observed in his clas-
sic book The Mythical Man Month that software was strongly affected
by organization structures. Not long after Fred published, the author
of this book, who also worked at IBM, noted that large systems tended
to be decomposed to fit existing organization structures. In particular,
some major features were artificially divided to fix standard eight-
person departments.

This book only touches the surface of organizational issues. Deeper
study is needed on the relative merits of small teams versus large teams.
In addition, the “average” span of control of eight employees reporting
to one manager may well be in need of revision. Studies of the effective-
ness of various team sizes found that raising the span of control from
8 up to 12 would allow marginal managers to return to technical work
and would minimize managerial disputes, which tend to be endemic.
Further, since software application sizes are increasing, larger spans of
control might be a better match for today’s architecture.

Another major topic that needs additional study is that of really large
software teams that may include 500 or more personnel and dozens
of specialists. There is very little empirical data on the most effective
methods for dealing with such large groups with diverse skills. If such
teams are geographically dispersed, that adds yet another topic that is
in need of additional study.

More recently Dr. Victor Basili, Nachiappan Nagappan, and Brendan
Murphy studied organization structures at Microsoft and concluded
that many of the problems with Microsoft Vista could be traced back to
organizational structure issues.

However, in 2009, the literature on software organization structures
and their impact is sparse compared with other topics that influence
software engineering such as methods, tools, programming languages,
and testing.

Software Team Organization and Specialization 349

Formal organization structures tend to be territorial because manag-
ers are somewhat protective of their spheres of influence. This tends
to narrow the focus of teams. Newer forms of informal organizations
that support cross-functional communication are gaining in popularity.
Cross-functional contacts also increase the chances of innovation and
problem solving.

Software organization structures should be dynamic and change with
technology, but unfortunately, they often are a number of years behind
where they should be.

As the recession of 2009 continues, it may spur additional research
into organizational topics. For example, new subjects that need to be
examined include wiki sites, virtual departments that communicate
using virtual reality, and the effectiveness of home offices to minimize
fuel consumption.

A very important topic with almost no literature is that of dealing
with layoffs and downsizing in the least disruptive way. That topic is
discussed in Chapters 1 and 2 of this book, but few additional citations
exist. Because companies tend to get rid of the wrong people, layoffs
often damage operational efficiency levels for years afterwards.

Another important topic that needs research, given the slow develop-
ment schedules for software, would be a study of global organizations
located in separate time zones eight hours apart, which would allow
software applications and work products to be shifted around the globe
from team to team, and thus permit 24-hour development instead of
8-hour development.

A final organizational topic that needs additional study are the opti-
mum organizations that can create reusable modules and other reusable
deliverables, and then construct software applications from reusable
components rather than coding them on a line-by-line basis.

Readings and References

Brooks, Fred. The Mythical Man-Month. Reading, MA: Addison Wesley, 1995.
Charette, Bob. Software Engineering Risk Analysis and Management. New York:

McGraw-Hill, 1989.
Crosby, Philip B. Quality is Free. New York: New American Library, Mentor Books, 1979.
DeMarco, Tom. Controlling Software Projects. New York: Yourdon Press, 1982.
DeMarco, Tom. Peopleware: Productive Projects and Teams. New York: Dorset

House,1999.
Glass, Robert L. Software Creativity, Second Edition. Atlanta: *books, 2006.
Glass, R.L. Software Runaways: Lessons Learned from Massive Software Project Failures.

Englewood Cliffs, NJ: Prentice Hall, 1998.
Humphrey, Watts. Managing the Software Process. Reading, MA: Addison Wesley, 1989.
Humphrey, Watts. PSP: A Self-Improvement Process for Software Engineers. Upper

Saddle River, NJ: Addison Wesley, 2005.
Humphrey, Watts. TSP – Leading a Development Team. Boston: Addison Wesley, 2006.
Humphrey, Watts. Winning with Software: An Executive Strategy. Boston: Addison

Wesley, 2002.

350 Chapter Five

Jones, Capers. Applied Software Measurement, Third Edition. New York: McGraw-Hill,
2008.

Jones, Capers. Estimating Software Costs. New York: McGraw-Hill, 2007.
Jones, Capers. Software Assessments, Benchmarks, and Best Practices. Boston: Addison

Wesley Longman, 2000.
Kan, Stephen H. Metrics and Models in Software Quality Engineering, Second Edition.

Boston: Addison Wesley Longman, 2003.
Kuhn, Thomas. The Structure of Scientific Revolutions. Chicago: University of Chicago

Press, 1996.
Nagappan, Nachiappan, B. Murphy, and V. Basili. The Influence of Organizational

Structure on Software Quality. Microsoft Technical Report MSR-TR-2008-11.
Microsoft Research, 2008.

Pressman, Roger. Software Engineering – A Practitioner’s Approach, Sixth Edition. New
York: McGraw-Hill, 2005.

Strassmann, Paul. The Squandered Computer. Stamford, CT: Information Economics
Press, 1997.

Weinberg, Gerald M. Becoming a Technical Leader. New York: Dorset House, 1986.
Weinberg, Gerald M. The Psychology of Computer Programming. New York: Van

Nostrand Reinhold, 1971.
Yourdon, Ed. Outsource: Competing in the Global Productivity Race. Upper Saddle River,

NJ: Prentice Hall PTR, 2005.
Yourdon, Ed. Death March – The Complete Software Developer’s Guide to Surviving

“Mission Impossible” Projects. Upper Saddle River, NJ: Prentice Hall PTR, 1997.

351

Chapter

 6
Project Management and

Software Engineering

Introduction

Project management is a weak link in the software engineering chain. It
is also a weak link in the academic education curricula of many univer-
sities. More software problems and problems such as cost and schedule
overruns can be attributed to poor project management than to poor
programming or to poor software engineering practices. Because poor
project management is so harmful to good software engineering, it is
relevant to a book on best practices.

Working as an expert witness in a number of cases involving cancelled
projects, quality problems, and other significant failures, the author
observed bad project management practices on almost every case. Not
only were project management problems common, but in some lawsuits,
the project managers and higher executives actually interfered with
good software engineering practices by canceling inspections and trun-
cating testing in the mistaken belief that such actions would shorten
development schedules.

For example, in a majority of breach of contract lawsuits, project man-
agement issues such as inadequate estimating, inadequate quality con-
trol, inadequate change control, and misleading or even false status
tracking occur repeatedly.

As the recession continues, it is becoming critical to analyze every
aspect of software engineering in order to lower costs without degrading
operational efficiency. Improving project management is on the critical
path to successful cost reduction.

351

352 Chapter Six

Project management needs to be defined in a software context. The
term project management has been artificially narrowed by tool vendors
so that it has become restricted to the activities of critical path analysis
and the production of various scheduling aids such as PERT and Gantt
charts. For successful software project management, many other activi-
ties must be supported.

Table 6-1 illustrates 20 key project management functions, and how
well they are performed circa 2009, based on observations within about
150 companies. The scoring range is from –10 for very poor performance
to +10 for excellent performance.

Using this scoring method that runs from +10 to –10, the midpoint or
average is 0. Observations made over the past few years indicate that proj-
ect management is far below average in far too many critical activities.

The top item in Table 6-1, reporting “red flag” items, refers to notify-
ing clients and higher managers that a project is in trouble. In almost
every software breach of contract lawsuit, problems tend to be concealed
or ignored, which delays trying to solve problems until they grow too
serious to be cured.

Project Management Functions Score Definition

 1. Reporting “red flag” problems –9.5 Very poor

 2. Defect removal efficiency measurements –9.0 Very poor

 3. Benchmarks at project completion –8.5 Very poor

 4. Requirements change estimating –8.0 Very poor

 5. Postmortems at project completion –8.0 Very poor

 6. Quality estimating –7.0 Very poor

 7. Productivity measurements –6.0 Poor

 8. Risk estimating –3.0 Poor

 9. Process improvement tracking –2.0 Poor

10. Schedule estimating 1.0 Marginal

11. Initial application sizing 2.0 Marginal

12. Status and progress tracking 2.0 Marginal

13. Cost estimating 3.0 Fair

14. Value estimating 4.0 Fair

15. Quality measurements 4.0 Fair

16. Process improvement planning 4.0 Fair

17. Quality and defect tracking 5.0 Good

18. Software assessments 6.0 Good

19. Cost tracking 7.0 Very good

20. Earned-value tracking 8.0 Very good

Average –0.8 Poor

TABLE 6-1 Software Project Management Performance Circa 2009

Project Management and Software Engineering 353

The main reason for such mediocre performance by software project
managers is probably lack of effective curricula at the university and
graduate school level. Few software engineers and even fewer MBA stu-
dents are taught anything about the economic value of software quality
or how to measure defect removal efficiency levels, which is actually the
most important single measurement in software engineering.

If you examine the tools and methods for effective software project
management that are available in 2009, a much different profile would
occur if software managers were trained at state-of-the-art levels.

Table 6-2 makes the assumption that a much improved curricula for
project managers could be made available within ten years, coupled with
the assumption that project managers would then be equipped with
modern sizing, cost estimating, quality estimating, and measurement
tools. Table 6-2 shows what software project managers could do if they
were well trained and well equipped.

Instead of jumping blindly into projects with poor estimates and
inadequate quality plans, Table 6-2 shows that it is at least theoreti-
cally possible for software project managers to plan and estimate with

Project Management Functions Score Definition

 1. Reporting “red flag” problems 10.0 Excellent

 2. Benchmarks at project completion 10.0 Excellent

 3. Postmortems at project completion 10.0 Excellent

 4. Status and progress tracking 10.0 Excellent

 5. Quality measurements 10.0 Excellent

 6. Quality and defect tracking 10.0 Excellent

 7. Cost tracking 10.0 Excellent

 8. Defect removal efficiency measurements 9.0 Excellent

 9. Productivity measurements 9.0 Very good

10. Software assessments 9.0 Very good

11. Earned-value tracking 9.0 Very good

12. Quality estimating 8.0 Very good

13. Initial application sizing 8.0 Very good

14. Cost estimating 8.0 Very good

15. Risk estimating 7.0 Good

16. Schedule estimating 7.0 Good

17. Process improvement tracking 6.0 Good

18. Value estimating 6.0 Good

19. Process improvement planning 6.0 Good

20. Requirements change estimating 5.0 Good

Average 8.4 Very good

TABLE 6-2 Potential Software Project Management Performance by 2019

354 Chapter Six

high precision, measure with even higher precision, and create bench-
marks for every major application when it is finished. Unfortunately, the
technology of software project management is much better than actual
day-to-day performance.

As of 2009, the author estimates that only about 5 percent of U.S.
software projects create benchmarks of productivity and quality data at
completion. Less than one-half of 1 percent submit benchmark data to a
formal benchmark repository such as that maintained by the International
Software Benchmarking Standards Group (ISBSG), Software Productivity
Research (SPR), the David Consulting Group, Quality and Productivity
Management Group (QPMG), or similar organizations.

Every significant software project should prepare formal benchmarks
at the completion of the project. There should also be a postmortem
review of development methods to ascertain whether improvements
might be useful for future projects.

As of 2009, many independent software project management tools are
available, but each only supports a portion of overall software project
management responsibilities. A new generation of integrated software
project management tools is approaching, which has the promise of
eliminating the gaps in current project management tools and improv-
ing the ability to share information from tool to tool. New classes of
project management tools such as methodology management tools have
also joined the set available to the software management community.

Software project management is one of the most demanding jobs of
the 21st century. Software project managers are responsible for the con-
struction of some of the most expensive assets that corporations have
ever attempted to build. For example, large software systems cost far
more to build and take much longer to construct than the office build-
ings occupied by the companies that have commissioned the software.
Really large software systems in the 100,000–function point range can
cost more than building a domed football stadium, a 50-story skyscraper,
or a 70,000-ton cruise ship.

Not only are large software systems expensive, but they also have
one of the highest failure rates of any manufactured object in human
history. The term failure refers to projects that are cancelled without
completion due to cost or schedule overruns, or which run later than
planned by more than 25 percent.

For software failures and disasters, the great majority of blame can
be assigned to the management community rather than to the tech-
nical community. Table 6-3 is derived from one of the author’s older
books, Patterns of Software System Failure and Success, published by
the International Thomson Press. Note the performance of software
managers on successful projects as opposed to their performance associ-
ated with cancellations and severe overruns.

Project Management and Software Engineering 355

As mentioned in Chapter 5 of this book, the author’s study of proj-
ect failures and analysis of software lawsuits for breach of contract
reached the conclusion that project failures correlate more closely to
the number of managers involved with software projects than they do
with the number of software engineers.

Software projects with more than about six first-line managers tend
to run late and over budget. Software projects with more than about
12 first-line managers tend to run very late and are often cancelled.

As can easily be seen, deficiencies of the software project management
function are a fundamental root cause of software disasters. Conversely,
excellence in project management can do more to raise the probability of
success than almost any other factor, such as buying better tools, or chang-
ing programming languages. (This is true for larger applications above
1000 function points. For small applications in the range of 100 function
points, software engineering skills still dominate results.)

On the whole, improving software project management performance
can do more to optimize software success probabilities and to minimize
failure probabilities than any other known activity. However, improving
software project management performance is also one of the more difficult
improvement strategies. If it were easy to do, the software industry would
have many more successes and far fewer failures than in fact occur.

A majority of the failures of software projects can be attributed to fail-
ures of project management rather than to failures of the technical staff.
For example, underestimating schedules and resource requirements is
associated with more than 70 percent of all projects that are cancelled
due to overruns. Another common problem of project management is

Activity Successful Projects Unsuccessful Projects

Sizing Good Poor

Planning Very good Fair

Estimating Very good Very poor

Tracking Good Poor

Measurement Good Very Poor

Quality control Excellent Poor

Change control Excellent Poor

Problem resolutions Good Poor

Risk analysis Good Very poor

Personnel management Good Poor

Supplier management Good Poor

Overall Performance Very good Poor

TABLE 6-3 Software Management Performance on Successful and Unsuccessful
Projects

356 Chapter Six

ignoring or underestimating the work associated with quality control
and defect removal. Yet another management problem is failure to deal
with requirements changes in an effective manner.

Given the high costs and significant difficulty associated with software
system construction, you might think that software project managers
would be highly trained and well equipped with state-of-the-art planning
and estimating tools, with substantial analyses of historical software cost
structures, and with very thorough risk analysis methodologies. These
are natural assumptions to make, but they are false. Table 6-4 illustrates
patterns of project management tool usage of leading, average, and lag-
ging software projects.

Table 6-4 shows that managers on leading projects not only use a
wider variety of project management tools, but they also use more of
the features of those tools.

In part due to the lack of academic preparation for software project
managers, most software project managers are either totally untrained
or at best partly trained for the work at hand. Even worse, software
project managers are often severely under-equipped with state-of-the-
art tools.

TABLE 6-4 Numbers and Size Ranges of Project Management Tools
(Size data expressed in terms of function point metrics)

Project Management Lagging Average Leading

Project planning 1,000 1,250 3,000

Project cost estimating 3,000

Statistical analysis 3,000

Methodology management 750 3,000

Benchmarks 2,000

Quality estimation 2,000

Assessment support 500 2,000

Project measurement 1,750

Portfolio analysis 1,500

Risk analysis 1,500

Resource tracking 300 750 1,500

Value analysis 350 1,250

Cost variance reporting 500 1,000

Personnel support 500 500 750

Milestone tracking 250 750

Budget support 250 750

Function point analysis 250 750

Backfiring: LOC to FP 750

Function point subtotal 1,800 5,350 30,250

Number of tools 3 10 18

Project Management and Software Engineering 357

From data collected from consulting studies performed by the author,
less than 25 percent of U.S. software project managers have received any
formal training in software cost estimating, planning, or risk analysis;
less than 20 percent of U.S. software project managers have access to
modern software cost-estimating tools; and less than 10 percent have
access to any significant quantity of validated historical data from proj-
ects similar to the ones they are responsible for.

The comparatively poor training and equipment of project managers
is troubling. There are at least a dozen commonly used software cost-
estimating tools such as COCOMO, KnowledgePlan, Price-S, SEER,
SLIM, and the like. Of a number of sources of benchmark data, the
International Software Benchmarking Standards Group (ISBSG) has
the most accessible data collection.

By comparison, the software technical personnel who design and build
software are often fairly well trained in the activities of analysis, design,
and software development, although there are certainly gaps in topics
such as software quality control and software security.

The phrase “project management” has unfortunately been narrowed
and misdefined in recent years by vendors of automated tools for sup-
porting real project managers. The original broad concept of project
management included all of the activities needed to control the outcome
of a project: sizing deliverables, estimating costs, planning schedules
and milestones, risk analysis, tracking, technology selection, assessment
of alternatives, and measurement of results.

The more narrow concept used today by project management tool
vendors is restricted to a fairly limited set of functions associated with
the mechanics of critical path analysis, work breakdown structuring,
and the creation of PERT charts, Gantt charts, and other visual sched-
uling aids. These functions are of course part of the work that project
managers perform, but they are neither the only activities nor even the
most important ones for software projects.

The gaps and narrow focus of conventional project management tools
are particularly troublesome when the projects in question are software
related. Consider a very common project management question associ-
ated with software projects: What will be the results to software sched-
ules and costs from the adoption of a new development method such as
Agile development or the Team Software Process (TSP)?

Several commercial software estimating tools can predict the results
of both Agile and TSP development methods, but not even one standard
project management tool such as Microsoft Project has any built-in
capabilities for automatically adjusting its assumptions when dealing
with alternative software development approaches.

The same is also true for other software-related technologies such
as the project management considerations of dealing with the formal

358 Chapter Six

inspections in addition to testing, static analysis, the ISO 9000-9004
standards, the SEI maturity model, reusable components, ITIL, and
so forth.

The focus of this chapter is primarily on the activities and tasks asso-
ciated with software project management. Project managers also spend
quite a bit of time dealing with personnel issues such as hiring, apprais-
als, pay raises, and staff specialization. Due to the recession, project
managers will probably also face tough decisions involving layoffs and
downsizing.

Most software project managers are also involved with departmental
and corporate issues such as creating budgets, handling travel requests,
education planning, and office space planning. These are important
activities, but are outside the scope of what managers do when they are
involved specifically with project management.

The primary focus of this chapter is on the tools and methods that
are the day-to-day concerns of software project managers, that is, sizing,
estimating, planning, measurement and metrics, quality control, process
assessments, technology selection, and process improvement.

There are 15 basic topics that project managers need to know about,
and each topic is a theme of some importance to professional software
project managers:

 1. Software sizing

 2. Software project estimating

 3. Software project planning

 4. Software methodology selection

 5. Software technology and tool selection

 6. Software quality control

 7. Software security control

 8. Software supplier management

 9. Software progress and problem tracking

10. Software measurements and metrics

11. Software benchmarking

12. Software risk analysis

13. Software value analysis

14. Software process assessments

15. Software process improvements

These 15 activities are not the only topics of concern to software proj-
ect managers, but they are critical topics in terms of the ability to control

Project Management and Software Engineering 359

major software projects. Unless at least 10 of these 13 are performed in
a capable and competent manner, the probability of the project running
out of control or being cancelled will be alarmingly high.

Because the author’s previous books on Estimating Software Costs
(McGraw-Hill, 2007) and Applied Software Measurement (McGraw-Hill,
2008) dealt with many managerial topics, this book will cover only 3 of
the 15 management topics:

1. Software sizing

2. Software progress and problem tracking

3. Software benchmarking

Sizing is the precursor to estimating. Sizing has many different
approaches, but several new approaches have been developed within
the past year.

Software progress tracking is among the most critical of all software
project management activities. Unfortunately, based on depositions
and documents discovered during litigation, software progress track-
ing is seldom performed competently. Even worse, when projects are
in trouble, tracking tends to conceal problems until it is too late to
solve them.

Software benchmarking is underreported in the literature. As this
book is in production, the ISO standards organization is preparing a
new ISO standard on benchmarking. It seems appropriate to discuss
how to collect benchmark data and what kinds of reports constitute
effective benchmarks.

Software Sizing

The term sizing refers to methods for predicting the volume of various
deliverable items such as source code, specifications, and user manu-
als. Software bugs or defects should also be included in sizing, because
they cost more money and take more time than any other software
“deliverable.” Bugs are an accidental deliverable, but they are always
delivered, like it or not, so they need to be included in sizing. Because
requirements are unstable and grow during development, changes and
growth in application requirements should be sized, too.

Sizing is the precursor to cost estimating and is one of the most criti-
cal software project management tasks. Sizing is concerned with pre-
dicting the volumes of major kinds of software deliverables, including
but not limited to those shown in Table 6-5.

As can be seen from the list of deliverables, the term sizing includes
quite a few deliverables. Many more things than source code need to be
predicted to have complete size and cost estimates.

360 Chapter Six

Paper documents
Requirements

Text requirements

Function requirements (features of
the application)

Nonfunctional requirements (quality
and constraints)

Use-cases

User stories

Requirements change (new features)

Requirements churn (changes that
don’t affect size)

Architecture

External architecture (SOA, client-
server, etc.)

Internal architecture (data structure,
platforms, etc.)

Specifications and design

External

Internal

Planning documents

Development plans

Quality plans

Test plans

Security plans

Marketing plans

Maintenance and support plans

User manuals

Reference manuals

Maintenance manuals

Translations into foreign languages

Tutorial materials

Translations of tutorial materials

Online HELP screens

Translations of HELP screens

Source code
New source code

Reusable source code from
certified sources

Reusable source code from
uncertified sources

Inherited or legacy source code

Code added to support
requirements change and churn

TABLE 6-5 Software Deliverables Whose Sizes Should Be Quantified

Project Management and Software Engineering 361

Note that while bugs or defects are accidental deliverables, there are
always latent bugs in large software applications and they have serious
consequences. Therefore, estimating defect potentials and defect removal
efficiency levels are critical tasks of software application sizing.

This section discusses several methods of sizing software applications,
which include but are not limited to:

 1. Traditional sizing by analogy with similar projects

 2. Traditional sizing using “lines of code” metrics

 3. Sizing using story point metrics

 4. Sizing using use-case metrics

 5. Sizing using IFPUG function point metrics

 6. Sizing using other varieties of function point metrics

 7. High-speed sizing using function point approximations

 8. High-speed sizing legacy applications using backfiring

 9. High-speed sizing using pattern matching

10. Sizing application requirements changes

Accurate estimation and accurate schedule planning depend on
having accurate size information, so sizing is a critical topic for success-
ful software projects. Size and size changes are so important that a new
management position called “scope manager” has come into existence
over the past few years.

Test cases
New test cases

Reusable test cases

Bugs or defects
Requirements defects (original)

Requirements defects (in changed
requirements)

Architectural defects

Design defects

Code defects

User documentation defects

“Bad fixes” or secondary defects

Test case defects

TABLE 6-5 Software Deliverables Whose Sizes Should Be Quantified (continued)

362 Chapter Six

New methods for formal size or scope control have been created.
Interestingly, the two most common methods were developed in very
distant locations from each other. A method called Southern Scope was
developed in Australia, while a method called Northern Scope was devel-
oped in Finland. Both of these scope-control methods focus on change
controls and include formal sizing, reviews of changes, and other tech-
niques for quantifying the impact of growth and change. While other
size control methods exist, the Southern Scope and Northern Scope
methods both appear to be more effective than leaving changes to ordi-
nary practices.

Because thousands of software applications exist circa 2009, care-
ful forensic analysis of existing software should be a good approach
for predicting the sizes of future applications. As of 2009, many “new”
applications are replacements of existing legacy applications. Therefore,
historical data would be useful, if it were reliable and accurate.

Size is a useful precursor for estimating staffing, schedules, effort,
costs, and quality. However, size is not the only factor that needs to be
known. Consider an analogy with home construction. You need to know
the number of square feet or square meters in a house to perform a cost
estimate. But you also need to know the specifics of the site, the con-
struction materials to be used, and any local building codes that might
require costly additions such as hurricane-proof windows or special
septic systems.

For example, a 3000-square-foot home to be constructed on a flat
suburban lot with ordinary building materials might be constructed for
$100 per square foot, or $300,000. But a luxury 3000-square-foot home
built on a steep mountain slope that requires special support and uses
exotic hardwoods might cost $250 per square foot or $750,000.

Similar logic applies to software. An embedded application in a medi-
cal device may cost twice as much as the same size application that
handles business data. This is because the liabilities associated with
software in medical devices require extensive verification and validation
compared with ordinary business applications.

(Author’s note: Prior to the recession, one luxury home was built on a
remote lake so far from civilization that it needed a private airport and
its own electric plant. The same home featured handcrafted windows
and wall panels created on site by artists and craftspeople. The bud-
geted cost was about $40 million, or more than $6,000 per square foot.
Needless to say, this home was built before the Wall Street crash since
the owner was a financier.)

Three serious problems have long been associated with software sizing:
(1) Most of the facts needed to create accurate sizing of software deliver-
ables are not known until after the first cost estimates are required; (2)
Some sizing methods such as function point analysis are time-consuming

Project Management and Software Engineering 363

and expensive, which limits their utility for large applications; and (3)
Software deliverables are not static in size and tend to grow during
development. Estimating growth and change is often omitted from sizing
techniques. Let us now consider a number of current software sizing
approaches.

Traditional Sizing by Analogy

The traditional method of sizing software projects has been that of anal-
ogy with older projects that are already completed, so that the sizes of
their deliverables are known. However, newer methods are available
circa 2009 and will be discussed later in this chapter.

The traditional sizing-by-analogy method has not been very success-
ful for a variety of reasons. It can only be used for common kinds of
software projects where similar projects exist. For example, sizing by
analogy works fairly well for compilers, since there are hundreds of
compilers to choose from. The analogy method can also work for other
familiar kinds of applications such as accounting systems, payroll sys-
tems, and other common application types. However, if an application is
unique, and no similar applications have been constructed, then sizing
by analogy is not useful.

Because older legacy applications predate the use of story points or
use-case points, or sometimes even function points, not every legacy
application is helpful in terms of providing size guidance for new
applications. For more than 90 percent of legacy applications, their
size is not known with precision, and even code volumes are not
known, due to “dead code” and calls to external routines. Also, many
of their deliverables (i.e., requirements, specifications, plans, etc.)
have long since disappeared or were not updated, so their sizes may
not be available.

Since legacy applications tend to grow at an annual rate of about 8
percent, their current size is not representative of their initial size at
their first release. Very seldom is data recorded about requirements
growth, so this can throw off sizing by analogy.

Even worse, a lot of what is called “historical data” for legacy applications
is very inaccurate and can’t be relied upon to predict future applications.
Even if legacy size is known, legacy effort and costs are usually incom-
plete. The gaps and missing elements in historical data include unpaid
overtime (which is almost never measured), project management effort,
and the work of part-time specialists who are not regular members of the
development team (database administration, technical writers, quality
assurance, etc.). The missing data on legacy application effort, staffing,
and costs is called leakage in the author’s books. For small applications
with one or two developers, this leakage from historical data is minor.

364 Chapter Six

But for large applications with dozens of team members, leakage of miss-
ing effort and cost data can top 50 percent of total effort.

Leakage of effort and cost data is worse for internal applications
developed by organizations that operate as cost centers and that there-
fore have no overwhelming business need for precision in recording
effort and cost data. Outsource applications and software built under
contract is more accurate in accumulating effort and cost data, but even
here unpaid overtime is often omitted.

It is an interesting point to think about, but one of the reasons why IT
projects seem to have higher productivity rates than systems or embed-
ded software is that IT project historical data “leaks” a great deal more
than systems and embedded software. This leakage is enough by itself
to make IT projects look at least 15 percent more productive than sys-
tems or embedded applications of the same size in terms of function
points. The reason is that most IT projects are created in a cost-center
environment, while systems and embedded applications are created in
a profit-center environment.

The emergence of the International Software Benchmarking Standards
Group (ISBSG) has improved the situation somewhat, since ISBSG now
has about 5000 applications of various kinds that are available to the
software engineering community. All readers who are involved with
software are urged to consider collecting and providing benchmark data.
Even if the data cannot be submitted to ISBSG for proprietary or busi-
ness reasons, keeping such data internally will be valuable.

The ISBSG questionnaires assist by collecting the same kinds of infor-
mation for hundreds of applications, which facilitates using the data for
estimating purposes. Also, companies that submit data to the ISBSG
organization usually have better-than-average effort and cost tracking
methods, so their data is probably more accurate than average.

Other benchmark organizations such as Software Productivity
Research (SPR), the Quality and Productivity Management Group
(QPMG), the David Consulting Group, and a number of others have
perhaps 60,000 projects, but this data has limited distribution to specific
clients. This private data is also more expensive than ISBSG data. A
privately commissioned set of benchmarks with a comparison to similar
relevant projects may cost between $25,000 and $100,000, based on the
number of projects examined. Of course, the on-site private benchmarks
are fairly detailed and also correct common errors and omissions, so the
data is fairly reliable.

What would be useful for the industry is a major expansion in soft-
ware productivity and quality benchmark data collection. Ideally, all
development projects and all major maintenance and enhancement
projects would collect enough data so that benchmarks would become
standard practices, rather than exceptional activities.

Project Management and Software Engineering 365

For the immediate project under development, the benchmark data
is valuable for showing defects discovered to date, effort expended to
date, and ensuring that schedules are on track. In fact, similar but
less formal data is necessary just for status meetings, so a case can be
made that formal benchmark data collection is close to being free since
the information is needed whether or not it will be kept for benchmark
purposes after completion of the project.

Unfortunately, while sizing by analogy should be useful, flaws and
gaps with software measurement practices have made both sizing by
analogy and also historical data of questionable value in many cases.

Timing of sizing by analogy If there are benchmarks or historical size
data from similar projects, this form of sizing can be done early, even
before the requirements for the new application are fully known. This
is one of the earliest methods of sizing. However, if historical data is
missing, then sizing by analogy can’t be done at all.

Usage of sizing by analogy There are at least 3 million existing soft-
ware applications that might, in theory, be utilized for sizing by analogy.
However, from visits to many large companies and government agencies,
the author hypothesizes that fewer than 100,000 existing legacy appli-
cations have enough historical data for sizing by analogy to be useful
and accurate. About another 100,000 have partial data but so many
errors that sizing by analogy would be hazardous. About 2.8 million
legacy applications either have little or no historical data, or the data is
so inaccurate that it should not be used. For many legacy applications,
no reliable size data is available in any metric.

Schedules and costs This form of sizing is quick and inexpensive,
assuming that benchmarks or historical data are available. If neither
size nor historical data is available, the method of sizing by analogy
cannot be used. In general, benchmark data from an external source
such as ISBSG, the David Consulting Group, QPMG, or SPR will be
more accurate than internal data. The reason for this is that the exter-
nal benchmark organizations attempt to correct common errors, such
as omitting unpaid overtime.

Cautions and counter indications The main counter indication is that
sizing by analogy does not work at all if there is neither historical data
nor accurate benchmarks. A caution about this method is that historical
data is usually incomplete and leaves out critical information such as
unpaid overtime. Formal benchmarks collected for ISBSG or one of the
other benchmark companies will usually be more accurate than most
internal historical data, which is of very poor reliability.

366 Chapter Six

Traditional Sizing Based on Lines
of Code (LOC) Metrics

When the “lines of code” or LOC metric originated in the early 1960s,
software applications were small and coding composed about 90 percent
of the effort. Today in 2009, applications are large, and coding composes
less than 40 percent of the effort. Between the 1960s and today, the useful-
ness of LOC metrics degraded until that metric became actually harmful.
Today in 2009, using LOC metrics for sizing is close to professional mal-
practice. Following are the reasons why LOC metrics are now harmful.

The first reason that LOC metrics are harmful is that after more
than 60 years of usage, there are no standard counting rules for source
code! LOC metrics can be counted using either physical lines or logical
statements. There can be more than a 500 percent difference in appar-
ent size of the same code segment when the counting method switches
between physical lines and logical statements.

In the first edition of the author’s book Applied Software Measurement
in 1991, formal rules for counting source code based on logical statements
were included. These rules were used by Software Productivity Research
(SPR) for backfiring when collecting benchmark data. But in 1992, the
Software Engineering Institute (SEI) issued their rules for counting source
code, and the SEI rules were based on counts of physical lines. Since both
the SPR counting rules and the SEI counting rules are widely used, but
totally different, the effect is essentially that of having no counting rules.

(The author did a study of the code-counting methods used in major
software journals such as IEEE Software, IBM Systems Journal,
CrossTalk, the Cutter Journal, and so on. About one-third of the articles
used physical lines, one-third used logical statements, and the remain-
ing third used LOC metrics, but failed to mention whether physical
lines or logical statements (or both) were used in the article. This is a
serious lapse on the part of both the authors and the referees of soft-
ware engineering journals. You would hardly expect a journal such as
Science or Scientific American to publish quantified data without care-
fully explaining the metrics used to collect and analyze the results.
However, for software engineering journals, poor measurements are the
norm rather than the exception.)

The second reason that LOC metrics are hazardous is because they
penalize high-level programming languages in direct proportion to the
power of the language. In other words, productivity and quality data
expressed using LOC metrics looks better for assembly language than
for Java or C++.

The penalty is due to a well-known law of manufacturing economics,
which is not well understood by the software community: When a manu-
facturing process has a large number of fixed costs and there is a decline
in the number of units manufactured, the cost per unit must go up.

Project Management and Software Engineering 367

A third reason is that LOC metrics can’t be used to size or measure
noncoding activities such as requirements, architecture, design, and
user documentation. An application written in the C programming lan-
guage might have twice as much source code as the same application
written in C++. But the requirements and specifications would be the
same size.

It is not possible to size paper documents from source code without
adjusting for the level of the programming language. For languages
such as Visual Basic that do not even have source code counting rules
available, it is barely possible to predict source code size, much less the
sizes of any other deliverables.

The fourth reason the LOC metrics are harmful is that circa 2009,
more than 700 programming languages exist, and they vary from very
low-level languages such as assembly to very high-level languages such
as ASP NET. More than 50 of these languages have no known counting
rules.

The fifth reason is that most modern applications use more than a
single programming language, and some applications use as many as
15 different languages, each of which may have unique code counting rules.
Even a simple mix of Java and HTML makes code counting difficult.

Historically, the development of Visual Basic and its many competi-
tors and descendants changed the way many modern programs are
developed. Although “visual” languages do have a procedural source
code portion, much of the more complex programming uses button con-
trols, pull-down menus, visual worksheets, and reusable components.

In other words, programming is being done without anything that can
be identified as a “line of code” for sizing, measurement, or estimation
purposes. By today in 2009, perhaps 60 percent of new software appli-
cations are developed using either object-oriented languages or visual
languages (or both). Indeed, sometimes as many as 12 to 15 different
languages are used in the same applications.

For large systems, programming itself is only the fourth most expen-
sive activity. The three higher-cost activities cannot be measured or esti-
mated effectively using the lines of code metric. Also, the fifth major cost
element, project management, cannot easily be estimated or measured
using the LOC metric either. Table 6-6 shows the ranking in descending
order of software cost elements for large applications.

The usefulness of a metric such as lines of code, which can only mea-
sure and estimate one out of the five major software cost elements of
software projects, is a significant barrier to economic understanding.

Following is an excerpt from the 3rd edition of the author’s book
Applied Software Measurement (McGraw-Hill, 2008), which illustrates
the economic fallacy of KLOC metrics. Here are two case studies showing
both the LOC results and function point results for the same application

368 Chapter Six

1. Defect removal (inspections, static analysis, testing, finding, and fixing bugs)

2. Producing paper documents (plans, architecture, specifications, user manuals)

3. Meetings and communication (clients, team members, managers)

4. Programming

5. Project management

TABLE 6-6 Rank Order of Large System Software Cost Elements

in two languages: basic assembly and C++. In Case 1, we will assume
that an application is written in assembly. In Case 2, we will assume
that the same application is written in C++.

Case 1: Application written in the assembly language Assume that the
assembly language program required 10,000 lines of code, and the vari-
ous paper documents (specifications, user documents, etc.) totaled to 100
pages. Assume that coding and testing required ten months of effort,
and writing the paper documents took five months of effort. The entire
project totaled 15 months of effort, and so has a productivity rate of 666
LOC per month. At a cost of $10,000 per staff month, the application
cost $150,000. Expressed in terms of cost per source line, the cost is $15
per line of source code.

Case 2: The same application written in the C++ language Assume that the
C++ version of the same application required only 1000 lines of code.
The design documents probably were smaller as a result of using an
object-oriented (OO) language, but the user documents are the same size
as the previous case: assume a total of 75 pages were produced. Assume
that coding and testing required one month, and document production
took four months. Now we have a project where the total effort was only
five months, but productivity expressed using LOC has dropped to only
200 LOC per month. At a cost of $10,000 per staff month, the applica-
tion cost $50,000 or only one-third as much as the assembly language
version. The C++ version is a full $100,000 cheaper than the assembly
version, so clearly the C++ version has much better economics. But the
cost per source line for this version has jumped to $50.

Even if we measure only coding, we still can’t see the value of high-
level languages by means of the LOC metric: the coding rates for both
the assembly language and C++ versions were both identical at 1000
LOC per month, even though the C++ version took only one month as
opposed to ten months for the assembly version.

Since both the assembly and C++ versions were identical in terms of
features and functions, let us assume that both versions were 50 func-
tion points in size. When we express productivity in terms of function
points per staff month, the assembly version had a productivity rate of

Project Management and Software Engineering 369

3.33 function points per staff month. The C++ version had a productivity
rate of 10 function points per staff month. When we turn to costs, the
assembly version had a cost of $3000 per function point, while the C++
version had a cost of $1000 per function point. Thus, function point met-
rics clearly match the assumptions of standard economics, which define
productivity as goods or services produced per unit of labor or expense.

Lines of code metrics, on the other hand, do not match the assump-
tions of standard economics and in fact show a reversal. Lines of code
metrics distort the true economic picture by so much that their use for
economic studies involving more than one programming language might
be classified as professional malpractice.

Timing of sizing by lines of code Unless the application being sized is
going to replace an existing legacy application, this method is pure
guesswork until the code is written. If code benchmarks or historical
code size data from similar projects exist, this form of sizing can be done
early, assuming the new language is the same as the former language.
However, if there is no history, sizing using lines of code, or the old lan-
guage is not the same as the new, this can’t be done with accuracy, and
it can’t be done until the code is written, which is far too late. When
either the new application or the old application (or both) use multiple
languages, code counting becomes very complicated and difficult.

Usage of lines of code sizing As of 2009, at least 3 million legacy appli-
cations still are in use, and another 1.5 million are under development.
However, of this total of about 4.5 million applications, the author esti-
mates that more than 4 million use multiple programming languages
or use languages for which no effective counting rules exist. Of the
approximate total of 500,000 applications that use primarily a single
language where counting rules do exist, no fewer than 500 program-
ming languages have been utilized. Essentially, code sizing is inaccurate
and hazardous, except for applications that use a single language such
as assembler, C, dialects of C, COBOL, Fortran, Java, and about 100
others.

In today’s world circa 2009, sizing using LOC metrics still occurs
in spite of the flaws and problems with this metric. The Department
of Defense and military software are the most frequent users of LOC
metrics. The LOC metric is still widely used by systems and embedded
applications. The older waterfall method often employed LOC sizing, as
does the modern Team Software Process (TSP) development method.

Schedules and costs This form of sizing is quick and inexpensive, assum-
ing that automated code counting tools are available. However, if the
application has more than two programming languages, automated code

370 Chapter Six

counting may not be possible. If the application uses some modern lan-
guage, code counting is impossible because there are no counting rules for
the buttons and pull-down menus used to “program” in some languages.

Cautions and counter indications The main counter indication is that
lines of code metrics penalize high-level languages. Another indication
is that this method is hazardous for sizing requirements, specifications,
and paper documents. Also, counts of physical lines of code may differ
from counts of logical statements by more than 500 percent. Since the
software literature and published productivity data is ambiguous as
to whether logical or physical lines are used, this method has a huge
margin of error.

Sizing Using Story Point Metrics

The Agile development method was created in part because of a reaction
against the traditional software cost drivers shown in Table 6-6. The
Agile pioneers felt that software had become burdened by excessive vol-
umes of paper requirements and specifications, many of which seemed
to have little value in actually creating a working application.

The Agile approach tries to simplify and minimize the production of
paper documents and to accelerate the ability to create working code.
The Agile philosophy is that the goal of software engineering is the cre-
ation of working applications in a cost-effective fashion. In fact, the goal
of the Agile method is to transform the traditional software cost drivers
into a more cost-effective sequence, as shown in Table 6-7.

As part of simplifying the paper deliverables of software applications,
a method for gathering the requirements for Agile projects is that of user
stories. These are very concise statements of specific requirements that
consist of only one or two sentences, which are written on 3"×5" cards
to ensure compactness.

An example of a basic user story for a software cost-estimating tool
might be, The estimating tool should include currency conversion between
dollars, euros, and yen.

Once created, user stories are assigned relative weights called story
points, which reflect their approximate difficulty and complexity compared

TABLE 6-7 Rank Order of Agile Software Cost Elements

1. Programming

2. Meetings and communication (clients, team members, managers)

3. Defect removal (inspections, static analysis, testing, finding and fixing bugs)

4. Project management

5. Producing paper documents (plans, architecture, specifications, user manuals)

Project Management and Software Engineering 371

with other stories for the same application. The currency conversion exam-
ple just shown is quite simple and straightforward (except for the fact that
currencies fluctuate on a daily basis), so it might be assigned a weight
of 1 story point. Currency conversion is a straightforward mathematical
calculation and also is readily available from online sources, so this is not
a difficult story or feature to implement.

The same cost-estimating application will of course perform other
functions that are much harder and more complex than currency con-
version. An example of a more difficult user story might be, The esti-
mating tool will show the effects of CMMI levels on software quality and
productivity.

This story is much harder to implement than currency conversion,
because the effects of CMMI levels vary with the size and nature of the
application being developed. For small and simple applications, CMMI
levels have hardly any impact, but for large and complex applications,
the higher CMMI levels have a significant impact. Obviously, this story
would have a larger number of story points than currency conversion,
and might be assigned a weight of 5, meaning that it is at least five
times as difficult as the previous example.

The assignment of story point weights for a specific application is
jointly worked out between the developers and the user representative.
Thus, for specific applications, there is probably a high degree of math-
ematical consistency between story point levels; that is, levels 1, 2, 3,
and so on, probably come close to capturing similar levels of difficulty.

The Agile literature tends to emphasize that story points are units of
size, not units of time or effort. However, that being said, story points are
in fact often used for estimating team velocity and even for estimating
the overall schedules for both sprints and even entire applications.

However, user stories and therefore story points are very flexible, and
there is no guarantee that Agile teams on two different applications will
use exactly the same basis for assigning story point weights.

It may be that as the Agile approach gains more and more adherence
and wider usage, general rules for determining story point weights will
be created and utilized, but this is not the case circa 2009.

It would be theoretically possible to develop mathematical conversion
rules between story points and other metrics such as IFPUG function
points, COSMIC function points, use-case points, lines of code, and so
forth. However, for this to work, story points would need to develop
guidelines for consistency between applications. In other words, quanti-
ties such as 1 story point, 2 story points, and so on, would have to have
the same values wherever they were applied.

From looking at samples of story points, there does not seem to be a
strict linear relation between user stories and story points in terms of
effort. What might be a useful approximation is to assume that for each

372 Chapter Six

increase of 1 in terms of story points, the IFPUG function points needed
for the story would double. For example:

Story Points IFPUG Function Points

1 2

2 4

3 8

4 16

5 32

This method is of course hypothetical, but it would be interesting to
carry out trials and experiments and create a reliable conversion table
between story points and function points.

It would be useful if the Agile community collected valid historical
data on effort, schedules, defects, and other deliverables and submitted
them to benchmarking organizations such as ISBSG. Larger volumes
of historical data would facilitate the use of story points for estimating
purposes and would also speed up the inclusion of story points in com-
mercial estimating tools such as COCOMO, KnowledgePlan, Price-S,
SEER, SLIM, and the like.

A few Agile projects have used function point metrics in addition to
story points. But as this book is written in 2009, no Agile projects have
submitted formal benchmarks to ISBSG or to other public benchmark
sources. Some Agile projects have been analyzed by private benchmark
organizations, but the results are proprietary and confidential.

As a result, there is no reliable quantitative data circa 2009 that
shows either Agile productivity or Agile quality levels. This is not a sign
of professional engineering, but it is a sign of how backwards “software
engineering” is compared with more mature engineering fields.

Timing of sizing with story points While Agile projects attempt an over-
view of an entire application at the start, user stories occur continu-
ously with every sprint throughout development. Therefore, user stories
are intended primarily for the current sprint and don’t have much to
say about future sprints that will occur downstream. As a result, story
points are hard to use for early sizing of entire applications, although
useful for the current sprint.

Usage of story point metrics Agile is a very popular method, but it is
far from being the only software development method. The author esti-
mates that circa 2009, about 1.5 million new applications are being
developed. Of these perhaps 200,000 use the Agile method and also
use story points. Story points are used primarily for small to mid-sized
IT software applications between about 250 and 5000 function points.

Project Management and Software Engineering 373

Story points are not used often for large applications greater than
10,000 function points, nor are they often used for embedded, systems,
and military software.

Schedules and costs Since story points are assigned informally by team
consensus, this form of sizing is quick and inexpensive. It is possible to
use collections of story cards and function points, too. User stories could
be used as a basis for function point analysis. But Agile projects tend to
stay away from function points. It would also be possible to use some of
the high-speed function point methods with Agile projects, but as this
book is written, there is no data that shows this being done.

Cautions and counter indications The main counter indication for story
points is that they tend to be unique for specific applications. Thus, it
is not easy to compare benchmarks between two or more different Agile
applications using story points, because there is no guarantee that the
applications used the same weights for their story points.

Another counter indication is that story points are useless for com-
parisons with applications that were sized using function points, use-
case points, or any other software metric. Story points can only be used
for benchmark comparisons against other story points, and even here
the results are ambiguous.

A third counter indication is that there are no large-scale collections
of benchmark data that are based on story points. For some reason, the
Agile community has been lax on benchmarks and collecting historical
data. This is why it is so hard to ascertain if Agile has better or worse
productivity and quality levels than methods such as TSP, iterative
development, or even waterfall development. The shortage of quantita-
tive data about Agile productivity and quality is a visible weakness of
the Agile approach.

Sizing Using Use-Case Metrics

Use-cases have been in existence since the 1980s. They were originally
discussed by Ivar Jacobsen and then became part of the unified model-
ing language (UML). Use-cases are also an integral part of the Rational
Unified Process (RUP), and Rational itself was acquired by IBM. Use-
cases have both textual and several forms of graphical representation.
Outside of RUP, use-cases are often used for object-oriented (OO) appli-
cations. They are sometimes used for non-OO applications as well.

Use-cases describe software application functions from the point of view
of a user or actor. Use-cases can occur in several levels of detail, including
“brief,” “casual,” and “fully dressed,” which is the most detailed. The fully
dressed use-cases are of sufficient detail that they can be used for function
point analysis and also can be used to create use-case points.

374 Chapter Six

Use-cases include other topics besides actors, such as preconditions,
postconditions, and several others. However, these are well defined and
fairly consistent from application to application.

Use-cases and user stories have similar viewpoints, but use-cases
are more formal and often much larger than user stories. Because of
the age and extensive literature about use-cases, they tend to be more
consistent from application to application than user stories do.

Some criticisms are aimed at use-cases for not dealing with nonfunc-
tional requirements such as security and quality. But this same criti-
cism could be aimed with equal validity at any design method. In any
case, it is not difficult to append quality, security, and other nonfunc-
tional design issues to use-cases.

Use-case points are based on calculations and logic somewhat simi-
lar to function point metrics in concept but not in specific details. The
factors that go into use-case points include technical and environmen-
tal complexity factors. Once calculated, use-case points can be used to
predict effort and costs for software development. About 20 hours of
development work per use-case has been reported, but the activities
that go into this work can vary.

Use-case diagrams and supporting text can be used to calculate func-
tion point metrics as well as use-case metrics. In fact, the rigor and con-
sistency of use-cases should allow automatic derivation of both use-case
points and function points.

The use-case community tends to be resistant to function points and
asserts that use-cases and function points look at different aspects,
which is only partly true. However, since both can yield information on
work hours per point, it is obvious that there are more similarities than
the use-case community wants to admit to.

If you assume that a work month consists of 22 days at 8 hours per
day, there are about 176 hours in a work month. Function point produc-
tivity averages about 10 function points per staff month, or 17.6 work
hours per function point.

Assuming that use-case productivity averages about 8.8 use-cases
per month, which is equivalent to 20 hours per use-case, it can be seen
that use-case points and IFPUG function points yield results that are
fairly close together.

Other authors and benchmark organizations such as the David
Consulting Group and ISBSG have published data on conversion ratios
between IFPUG function point metrics and use-case points. While the
other conversion ratios are not exactly the same as the ones in this
chapter, they are quite close, and the differences are probably due to
using different samples.

There may be conversion ratios between use-case points and COSMIC
function points, Finnish function points, or other function point variants,

Project Management and Software Engineering 375

but the author does not use any of the variants and has not searched
their literature.

Of course, productivity rates using both IFPUG function points and
use-case points have wide ranges, but overall they are not far apart.

Timing of sizing with use-case points Use-cases are used to define require-
ments and specifications, so use-case points can be calculated when use-
cases are fairly complete; that is, toward the end of the requirements
phase. Unfortunately, formal estimates are often needed before this
time.

Usage of use-case points RUP is a very popular method, but it is far
from being the only software development method. The author esti-
mates that circa 2009, about 1.5 million new applications are being
developed. Of these, perhaps 75,000 use the RUP method and also use-
case points. Perhaps another 90,000 projects are object-oriented and
utilize use-cases, but not RUP. Use-case points are used for both small
and large software projects. However, the sheer volume of use-cases
becomes cumbersome for large applications.

Schedules and costs Since use-case points have simpler calculations
than function points, this form of sizing is somewhat quicker than func-
tion point analysis. Use-case points can be calculated at a range of
perhaps 750 per day, as opposed to about 400 per day for function point
analysis. Even so, the cost for calculating use-case points can top $3
per point if manual sizing is used. Obviously, automatic sizing would
be a great deal cheaper and also faster. In theory, automatic sizing of
use-case points could occur at rates in excess of 5000 use-case points
per day.

Cautions and counter indications The main counter indication for use-
case points is that there are no large collections of benchmark data
that use them. In other words, use-case points cannot yet be used for
comparisons with industry databases such as ISBSG, because function
point metrics are the primary metric for benchmark analysis.

Another counter indication is that use-case points are useless for com-
parisons with applications that were sized using function points, story
points, lines of code, or any other software metric. Use-case points can
only be used for benchmark comparisons against other use-case points,
and even here the results are sparse and difficult to find.

A third counter indication is that supplemental data such as pro-
ductivity and quality is not widely collected for projects that utilize
use-cases. For some reason, both the OO and RUP communities have
been lax on benchmarks and collecting historical data. This is why it

376 Chapter Six

is so hard to ascertain if RUP or OO applications have better or worse
productivity and quality levels than other methods. The shortage of
quantitative data about RUP productivity and quality compared with
other methods such as Agile and TSP productivity and quality is a vis-
ible weakness of the use-case point approach.

Sizing Based on IFPUG Function
Point Analysis

Function point metrics were developed by A.J. Albrecht and his col-
leagues at IBM in response to a directive by IBM executives to find a
metric that did not distort economic productivity, as did the older lines
of code metric. After research and experimentation, Albrecht and his
colleagues developed a metric called “function point” that was indepen-
dent of code volumes.

Function point metrics were announced at a conference in 1978 and
put into the public domain. In 1984, responsibility for the counting rules
of function point metrics was transferred from IBM to a nonprofit organi-
zation called the International Function Point Users Group (IFPUG).

Sizing technologies based on function point metrics have been pos-
sible since this metric was introduced in 1978. Function point sizing is
more reliable than sizing based on lines of code because function point
metrics support all deliverable items: paper documents, source code,
test cases, and even bugs or defects. Thus, function point sizing has
transformed the task of sizing from a very difficult kind of work with a
high error rate to one of acceptable accuracy.

Although the counting rules for function points are complex today,
the essence of function point analysis is derived by a weighted formula
that includes five elements:

1. Inputs

2. Outputs

3. Logical files

4. Inquiries

5. Interfaces

There are also adjustments for complexity. The actual rules for count-
ing function points are published by the International Function Point
Users Group (IFPUG) and are outside the scope of this section.

The function point counting items can be quantified by reviewing
software requirements and specifications. Note that conventional paper
specifications, use-cases, and user stories can all be used for function
point analysis. The counting rules also include complexity adjustments.

Project Management and Software Engineering 377

The exact rules for counting function points are outside the scope of this
book and are not discussed.

Now that function points are the most widely used software size
metric in the world, thousands of projects have been measured well
enough to extract useful sizing data for all major deliverables: paper
documents such as plans and manuals, source code, and test cases. Here
are a few examples from all three sizing domains. Table 6-8 illustrates
typical document volumes created for various kinds of software.

Table 6-8 illustrates only a small sample of the paperwork and docu-
ment sizing capabilities that are starting to become commercially avail-
able. In fact, as of 2009, more than 90 kinds of document can be sized
using function points, including translations into other national lan-
guages such as Japanese, Russian, Chinese, and so on.

Not only can function points be used to size paper deliverables, but
they can also be used to size source code, test cases, and even software
bugs or defects. In fact, function point metrics can size the widest range
of software deliverables of any known metric.

For sizing source code volumes, data now is available on roughly 700
languages and dialects. There is also embedded logic in several com-
mercial software estimating tools for dealing with multiple languages
in the same application.

Since the function point total of an application is known at least
roughly by the end of requirements, and in some detail by the middle of
the specification phase, it is now possible to produce fairly accurate size
estimates for any application where function points are utilized. This
form of sizing is now a standard function for many commercial software
estimating tools such as COCOMO II, KnowledgePlan, Price-S, SEER,
SLIM, and others.

The usefulness of IFPUG function point metrics has made them the
metric of choice for software benchmarks. As of 2009, benchmarks based
on function points outnumber all other metrics combined. The ISBSG

Systems
Software MIS Software

Military
Software

Commercial
Software

User requirements 0.45 0.50 0.85 0.30

Functional specifications 0.80 0.55 1.75 0.60

Logic specifications 0.85 0.50 1.65 0.55

Test plans 0.25 0.10 0.55 0.25

User tutorial documents 0.30 0.15 0.50 0.85

User reference documents 0.45 0.20 0.85 0.90

Total document set 3.10 2.00 6.15 3.45

TABLE 6-8 Number of Pages Created Per Function Point for Software Projects

378 Chapter Six

benchmark data currently has about 5000 projects and is growing at a
rate of perhaps 500 projects per year.

The proprietary benchmarks by companies such as QPMG, the David
Consulting Group, Software Productivity Research, Galorath Associates,
and several others total perhaps 60,000 software projects using function
points and grow at a collective rate of perhaps 1000 projects per year.
There are no other known metrics that even top 1000 projects.

Over the past few years, concerns have been raised that software
applications also contain “nonfunctional requirements” such as per-
formance, quality, and so on. This is true, but the significance of these
tends to be exaggerated.

Consider the example of home construction. A major factor in the
cost of home construction is the size of the home, measured in terms of
square feet or square meters. The square footage, the amenities, and
the grade of construction materials are user requirements. But in the
author’s state (Rhode Island), local building codes add significant costs
due to nonfunctional requirements. Homes built near a lake, river, or
aquifer require special hi-tech septic systems, which cost about $30,000
more than standard septic systems. Homes built within a mile of the
Atlantic Ocean require hurricane-proof windows, which cost about three
times more than standard windows.

These government mandates are not user requirements. But they
would not occur without a home being constructed, so they can be dealt
with as subordinate cost elements. Therefore, estimates and measures
such as “cost per square foot” are derived from the combination of func-
tional user requirements and government building codes that force
mandated nonfunctional requirements on homeowners.

Timing of IFPUG function point sizing IFPUG function points are derived
from requirements and specifications, and can be quantified by the time
initial requirements are complete. However, the first formal cost esti-
mates usually are needed before requirements are complete.

Usage of IFPUG function points While the IFPUG method is the most
widely used form of function point analysis, none of the function point
methods are used widely. Out of an approximate total of perhaps 1.5
million new software applications under development circa 2009, the
author estimates that IFPUG function point metrics are currently
being used on about 5000 applications. Function point variants, back-
firing, and function point approximation methods are probably in use
on another 2500 applications. Due to limitations in the function point
method itself, IFPUG function points are seldom used for applications
greater than 10,000 function points and can’t be used at all for small
updates less than 15 function points in size.

Project Management and Software Engineering 379

Schedules and costs This form of sizing is neither quick nor inexpen-
sive. Function point analysis is so slow and expensive that applications
larger than about 10,000 function points are almost never analyzed.

Normal function point analysis requires a certified function point analy-
sis to be performed with accuracy (uncertified counts are highly inaccu-
rate). Normal function point analysis proceeds at a rate of between 400
and 600 function points per day. At a daily average consulting fee of $3000,
the cost is between $5.00 and $7.50 for every function point counted.

Assuming an average cost of $6.00 per function point counted,
counting a 10,000–function point application would cost $60,000. This
explains why normal function point analysis is usually only performed
for applications in the 1000-function point size range.

Later in this section, various forms of high-speed function point
approximation are discussed. It should be noted that automatic func-
tion point counting is possible when formal specification methods such
as use-cases are utilized.

Cautions and counter indications The main counter indication with func-
tion point analysis is that it is expensive and fairly time-consuming.
While small applications less than 1000 function points can be sized
in a few days, large systems greater than 10,000 function points would
require weeks. No really large systems greater than 100,000 function
points have ever been sized with function points due to the high costs
and the fact that the schedule for the analysis would take months.

Another counter indication is that from time to time, the counting
rules change. When this occurs, historical data based on older versions
of the counting rules may change or become incompatible with newer
data. This situation requires conversion rules from older to newer count-
ing rules. If nonfunctional requirements are indeed counted separately
from functional requirements, such a change in rules would cause sig-
nificant discontinuities in historical benchmark data.

Another counter indication is that there is a lower limit for function point
analysis. Small changes less than 15 function points can’t be sized due to
the lower limits of the adjustment factors. Individually, these changes are
trivial, but within large companies, there may be thousands of them every
year, so their total cost can exceed several million dollars.

A caution is that accurate function point analysis requires certified
function point counters who have successfully passed the certification
examination offered by IFPUG. Uncertified counters should not be used
because the counting rules are too complex. As with tax regulations, the
rules change fairly often.

Function point analysis is accurate and useful, but slow and expen-
sive. As a result, a number of high-speed function point methods have
been developed and will be discussed later in this section.

380 Chapter Six

Sizing Using Function Point Variations

The success of IFPUG function point metrics led to a curious situation.
The inventor of function point metrics, A.J. Albrecht, was an electri-
cal engineer by training and envisioned function points as a general-
purpose metric that could be used for information technology projects,
embedded software, systems software, and military software, and even
games and entertainment software. However, the first published results
that used function point metrics happened to be information technology
applications such as accounting and financial software.

The historical accident that function point metrics were first used for
IT applications led some researchers to conclude that function points
only worked for IT applications. As a result, a number of function point
variations have come into being, with many of them being aimed at sys-
tems and embedded software. These function point variations include
but are not limited to:

 1. COSMIC function points

 2. Engineering function points

 3. 3-D function points

 4. Full function points

 5. Feature points

 6. Finnish function points

 7. Mark II function points

 8. Netherlands function points

 9. Object-oriented function points

10. Web-object function points

When IFPUG function points were initially used for systems and
embedded software, it was noted that productivity rates were lower
for these applications. This is because systems and embedded software
tend to be somewhat more complex than IT applications and really are
harder to build, so productivity will be about 15 percent lower than for
IT applications of the same size.

However, rather than accepting the fact that some embedded and
systems applications are tougher than IT applications and will there-
fore have lower productivity rates, many function point variants were
developed that increased the apparent size of embedded and systems
applications so that they appear to be about 15 percent larger than
when measured with IFPUG function points.

As mentioned earlier, it is an interesting point to think about, but one
of the reasons why IT projects seem to have higher productivity rates

Project Management and Software Engineering 381

than systems or embedded software is that IT project historical data
leaks a great deal more than historical data systems and embedded
software. This is because IT applications are usually developed by a
cost center, but systems and embedded software are usually developed
by a profit center. This leakage is enough by itself to make IT projects
look at least 15 percent more productive than systems or embedded
applications of the same size in terms of function points. It is perhaps a
coincidence that the size increases for systems and embedded software
predicted by function point variants such as COSMIC are almost exactly
the same as the leakage rates from IT application historical data.

Not all of the function point variants are due to a desire to puff up the
sizes of certain kinds of software, but many had that origin. As a result
now, in 2009, the term function point is extremely ambiguous and includes
many variations. It is not possible to mix these variants and have a single
unified set of benchmarks. Although some of the results may be similar,
mixing the variants into the same benchmark data collection would be like
mixing yards and meters or statute miles and nautical miles.

The function point variations all claim greater accuracy for certain
kinds of software than IFPUG function points, but what this means is
that the variations produce larger counts than IFPUG for systems and
embedded software and for some other types of software. This is not the
same thing as “accuracy” in an objective sense.

In fact, there is no totally objective way of ascertaining the accuracy of
either IFPUG function points or the variations. It is possible to ascertain
the differences in results between certified and uncertified counters, and
between groups of counters who calculate function points for the same
test case. But this is not true accuracy: it’s only the spread of human
variation.

With so many variations, it is now very difficult to use any of them for
serious estimating and planning work. If you happen to use one of the vari-
ant forms of function points, then it is necessary to seek guidance from the
association or group that controls the specific counting rules used.

As a matter of policy, inventors of function point variants should be
responsible for creating conversion rules between these variants and
IFPUG function points, which are the oldest and original form of func-
tional measurement. However, with few exceptions, there are no really
effective conversion rules. There are some conversion rules between
IFPUG and COSMIC and also between several other variations such
as the Finnish and Netherlands functional metrics.

The older feature point metric was jointly developed by A.J. Albrecht
and the author, so it was calibrated to produce results that matched
IFPUG function points in over 90 percent of cases; for the other
10 percent, the counting rules created more feature points than function
points, but the two could be converted by mathematical means.

382 Chapter Six

There are other metrics with multiple variations such as statute miles
and nautical miles, Imperial gallons and U.S. gallons, or temperature
measured using Fahrenheit or Celsius. Unfortunately, the software
industry has managed to create more metric variations than any other
form of “engineering.” This is yet another sign that software engineering
is not yet a true engineering discipline, since it does not yet know how
to measure results with high precision.

Timing of function point variant sizing Both IFPUG function points and
the variations such as COSMIC are derived from requirements and
specifications, and can be quantified by the time initial requirements are
complete. However, the first formal cost estimates usually are needed
before requirements are complete.

Usage of function point variations The four function point variations
that are certified by the ISO standards organization include the IFPUG,
COSMIC, Netherlands, and Finnish methods. Because IFPUG is much
older, it has more users. The COSMIC, Netherlands, and Finnish meth-
ods probably have between 200 and 1000 applications currently using
them. The older Mark II method probably had about 2000 projects
mainly in the United Kingdom. The other function point variations
have perhaps 50 applications each.

Schedules and costs IFPUG, COSMIC, and most variations require
about the same amount of time. These forms of sizing are neither quick
nor inexpensive. Function point analysis of any flavor is so slow and
expensive that applications larger than about 10,000 function points
are almost never analyzed.

Normal function point analysis for all of the variations requires a cer-
tified function point analysis to be performed with accuracy (uncertified
counts are highly inaccurate). Normal function point analysis proceeds
at a rate of between 400 and 600 function points per day. At a daily
average consulting fee of $3000, the cost is between $5.00 and $7.50 for
every function point counted.

Assuming an average cost of $6 per function point counted for the
major variants, counting a 10,000–function point application would cost
$60,000. This explains why normal function point analysis is usually
only performed for applications in the 1000-function point size range.

Cautions and counter indications The main counter indication with
function point analysis for all variations is that it is expensive and
fairly time-consuming. While small applications less than 1000 function
points can be sized in a few days, large systems greater than 10,000
function points would require weeks. No really large systems greater

Project Management and Software Engineering 383

than 100,000 function points have ever been sized using either IFPUG
or the variations such as COSMIC due to the high costs and the fact
that the schedule for the analysis would take months.

Another counter indication is that there is a lower limit for function
point analysis. Small changes less than 15 function points can’t be sized
due to the lower limits of the adjustment factors. This is true for all of
the variations such as COSMIC, Finnish, and so on. Individually, these
changes are trivial, but large companies could have thousands of them
every year at a total cost exceeding several million dollars.

A caution is that accurate function point analysis requires a certified
function point counter who has successfully passed the certification exam-
ination offered by the function point association that controls the metric.
Uncertified counters should not be used, because the counting rules are
too complex. As with tax regulations, the rules change fairly often.

Function point analysis is accurate and useful, but slow and expen-
sive. As a result, a number of high-speed function point methods have
been developed and will be discussed later in this section.

High-Speed Sizing Using Function
Point Approximations

The slow speed and high costs of normal function point analysis were
noted within a few years of the initial development of function point
metrics. Indeed, the very first commercial software cost-estimating tool
that supported function point metrics, SPQR/20 in 1985, supported a
method of high-speed function point analysis based on approximation
rather than actual counting.

The term approximation refers to developing a count of function points
without having access to, or knowledge of, every factor that determines
function point size when using normal function point analysis.

The business goal of the approximation methods is to achieve func-
tion point totals that would come within about 15 percent of an actual
count by a certified counter, but achieve that result in less than one
day of effort. Indeed, some of the approximation methods operate in
only a minute or two. The approximation methods are not intended
as a full substitute for function point analysis, but rather to provide
quick estimates early in development. This is because the initial cost
estimate for most projects is demanded even before requirements are
complete, so there is no way to carry out formal function point analysis
at that time.

There are a number of function point approximation methods circa
2009, but the ones that are most often used include

1. Unadjusted function points

2. Function points derived from simplified complexity adjustments

384 Chapter Six

3. Function points “light”

4. Function points derived from data mining of legacy applications

5. Function points derived from questions about the application

6. Function points derived from pattern matching (discussed later in
this section)

The goal of these methods is to improve on the average counting speed
of about 400 function points per day found with normal function point
analysis. That being said, the “unadjusted” function point method seems
to achieve rates of about 700 function points per day. The method using
simplified complexity factors achieves rates of about 600 function points
per day. The function point “light” method achieves rates of perhaps 800
function points per day.

The function point light method was developed by David Herron of
the David Consulting Group, who is a certified function point counter.
His light method is based on simplifying the standard counting rules
and especially the complexity adjustments.

The method based on data mining of legacy applications is technically
interesting. It was developed by a company called Relativity Technologies
(now part of Micro Focus). For COBOL and other selected languages, the
Relativity function point tool extracts hidden business rules from source
code and uses them as the basis for function point analysis.

The technique was developed in conjunction with certified function
point analysts, and the results come within a few percentage points of
matching standard function point analysis. The nominal speed of this
approach is perhaps 1000 function points per minute (as opposed to 400
per day for normal counts). For legacy applications, this method can be
very valuable for retrofitting function points and using them to quantify
maintenance and enhancement work.

There are several methods of approximation based on questions
about the application. Software Productivity Research (SPR) and Total
Metrics both have such tools available. The SPR approximation methods
are embedded in the KnowledgePlan estimation tool. The Total Metrics
approximation method is called Function Point Outline and deals with
some interesting external attributes of software applications, such as
the size of the requirements or functional specifications.

As noted earlier in this chapter, function points have long been used
to measure and predict the size of requirements and specifications. The
FP Outlook approach merely reversed the mathematics and uses known
document sizes to predict function points, which is essentially another
form of backfiring. Of course, document size is only one of the questions
asked, but the idea is to create function point approximations based on
easily available information.

Project Management and Software Engineering 385

The speed of the FP Outlook tool and the other question-based func-
tion point approximation methods seems to be in the range of perhaps
4000 function points per day, as opposed to the 400 function points per
day of normal function point analysis.

Timing of function point approximation sizing The methods based on ques-
tions about applications can be used earlier than standard function
points. Function points “light” can be used at the same time as stan-
dard function points; that is, when the requirements are known. The
data mining approach requires existing source code and hence is used
primarily for legacy applications. However, the approximation methods
that use questions about software applications can be used very early
in requirements: several months prior to when standard function point
analysis might be carried out.

Usage of function point approximations The function point approxima-
tion methods vary in usage. The Relativity method and the Total Metrics
method were only introduced in 2008, so usage is still growing: perhaps
250 projects each. The older approximation methods may have as many
as 750 projects each.

Schedules and costs The main purpose of the approximation methods
is to achieve faster function point counts and lower costs than IFPUG,
COSMIC, or any other standard method of function point analysis. Their
speed of operation ranges between about twice that of standard function
points up to perhaps 20 times standard function point analysis. The cost
per function point counted runs from less than 1 cent up to perhaps $3,
but all are cheaper than standard function point analysis.

Cautions and counter indications The main counter indication with func-
tion point approximation is accuracy. The Relativity method matches
standard IFPUG function points almost exactly. The other approximation
methods only come within about 15 percent of manual counts by certified
counters. Of course, coming within 15 percent three months earlier than
normal function points might be counted, with a cost of perhaps one-tenth
normal function point analysis, are both significant business advantages.

Sizing Legacy Applications Based
on “Backfiring” or LOC to Function
Point Conversion

The concept of backfiring is nothing more than reversing the direction
of the equations used when predicting source code size from function
points. The technology of backfiring or direct conversion of LOC data

386 Chapter Six

into the equivalent number of function points was pioneered by Allan
Albrecht, the inventor of the function point metric. The first backfire
data was collected within IBM circa 1975 as a part of the original devel-
opment of function point metrics.

The first commercial software estimating tool to support backfiring
was SPQR/20, which came out in 1985 and supported bi-directional
sizing for 30 languages. Today, backfiring is a standard function for
many commercial software estimating tools such as the ones already
mentioned earlier in this section.

From 30 languages in 1985, the number of languages that can be
sized or backfired has now grown to more than 450 circa 2009, when
all dialects are counted. Of course, for the languages where no counting
rules exist, backfiring is not possible. Software Productivity Research
publishes an annual table of conversion ratios between logical lines of
code and function points, and the current edition circa 2009 contains
almost 700 programming languages and dialects. Similar tables are
published by other consulting organizations such as Gartner Group and
the David Consulting Group.

There are far too many programming languages to show more than a
few examples in this short subsection. Note also that the margin of error
when backfiring is rather large. Even so, the results are interesting and
now widely utilized. Following are examples taken from the author’s
Table of Programming Languages and Levels, which is updated sev-
eral times a year by Software Productivity Research (Jones, 1996). This
data indicates the ranges and median values in the number of source
code statements required to encode one function point for selected lan-
guages. The counting rules for source code are based on logical state-
ments and are defined in an appendix of the author’s book Applied
Software Measurement (McGraw-Hill, 2008). Table 6-9 shows samples
of the ratios of logical source code statements to function points. A full
table for all 2,500 or so programming languages would not fit within
the book.

Although backfiring is usually not as accurate as actually counting
function points, there is one special case where backfiring is more accu-
rate: very small modifications to software applications that have fewer
than 15 function points. For changes less than 1 function point, backfir-
ing is one of only two current approaches for deriving function points.
(The second approach is pattern matching, which will be discussed later
in this section.)

While backfiring is widely used and also supported by many com-
mercial software cost-estimating tools, the method is something of an
“orphan,” because none of the function point user groups such as IFPUG,
COMIC, and the like have ever established committees to evaluate back-
firing or produced definitive tables of backfire data.

Project Management and Software Engineering 387

One potential use of backfiring would be to convert historical data
for applications that used story points or use-case points into function
point form. This would only require deriving logical code size and then
using published backfire ratios.

It would also be fairly trivial for various kinds of code analyzers such
as complexity analysis tools or static analysis tools to include backfire
algorithms, as could compilers for that matter.

Even though the function point associations ignore backfiring, many
benchmark organizations such as Software Productivity Research (SPR),

Source Statements Per Function Point

Language Nominal Level Low Mean High

1st Generation 1.00 220 320 500

Basic assembly 1.00 200 320 450

Macro assembly 1.50 130 213 300

C 2.50 60 128 170

BASIC (interpreted) 2.50 70 128 165

2nd Generation 3.00 55 107 165

FORTRAN 3.00 75 107 160

ALGOL 3.00 68 107 165

COBOL 3.00 65 107 150

CMS2 3.00 70 107 135

JOVIAL 3.00 70 107 165

PASCAL 3.50 50 91 125

3rd Generation 4.00 45 80 125

PL/I 4.00 65 80 95

MODULA 2 4.00 70 80 90

ADA 83 4.50 60 71 80

LISP 5.00 25 64 80

FORTH 5.00 27 64 85

QUICK BASIC 5.50 38 58 90

C++ 6.00 30 53 125

Ada 9X 6.50 28 49 110

Data base 8.00 25 40 75

Visual Basic (Windows) 10.00 20 32 37

APL (default value) 10.00 10 32 45

SMALLTALK 15.00 15 21 40

Generators 20.00 10 16 20

Screen painters 20.00 8 16 30

SQL 27.00 7 12 15

Spreadsheets 50.00 3 6 9

TABLE 6-9 Ratios of Logical Source Code Statements to Function Points for
Selected Programming Languages

388 Chapter Six

the David Consulting Group, QPMG, Gartner Group, and so on, do pub-
lish tables of backfire conversion ratios.

While many languages in these various tables have the same level
from company to company, other languages vary widely in the apparent
number of source code statements per function point based on which
company’s table is used. This is an awkward problem, and coopera-
tion among metrics consulting groups would be useful to the industry,
although it will probably not occur.

Somewhat surprisingly, as of 2009, all of the published data on back-
firing relates to standard IFPUG function point metrics. It would be
readily possible to generate backfiring rules for COSMIC function
points, story point, use-case points, or any other metric, but this does
not seem to have happened, for unknown reasons.

Timing of backfire function point sizing Since backfiring is based on source
code, its primary usage is for sizing legacy applications so that historical
maintenance data can be expressed in terms of function points. A sec-
ondary usage for backfiring is to convert historical data based on lines
of code metrics into function point data so it can be compared against
industry benchmarks such as those maintained by ISBSG.

Usage of backfire function points The backfire method was created in
part by A.J. Albrecht as a byproduct of creating function point met-
rics. Therefore, backfiring has been in continuous use since about 1975.
Because of the speed and ease of backfiring, more applications have
been sized with this method than almost any other. Perhaps as many
as 100,000 software applications have been sized via backfiring.

Schedules and costs If source code size is known, the backfiring form of
sizing is both quick and inexpensive. Assuming automated code count-
ing, rates of more than 10,000 LOC per minute can be converted into
function point form. This brings the cost down to less than 1 cent per
function point, as opposed to about $6 per function point for normal
manual function point analysis. Backfiring does not require a certified
counter. Of course, the accuracy is not very high.

Cautions and counter indications The main counter indication for back-
firing is that it is not very accurate. Due to variations in program-
ming styles, individual programmers can vary by as much as 6-to-1 in
the number of lines of code used to implement the same functionality.
Therefore, backfiring also varies widely. When backfiring is used for
hundreds of applications in the same language, such as COBOL, the
average value of about 106 code statements in the procedure and data

Project Management and Software Engineering 389

division yield reasonably accurate function point totals. But for lan-
guages with few samples, the ranges are very wide.

A second caution is that there are no standard methods for counting
lines of code. The backfire approach was originally developed based on
counts of logical statements. If backfiring is used on counts of physical
lines, the results might vary by more than 500 percent from backfiring
the same samples using logical statements.

Another counter indication is that backfiring becomes very compli-
cated for applications coded in two or more languages. There are auto-
mated tools that can handle backfire conversions for any number of
languages, but it is necessary to know the proportions of code in each
language for the tools to work.

A final caution is that the published rules that show conversion ratios
between lines of code and function points vary based on the source. The
published rules by the David Consulting Group, Gartner Group, the
Quality and Productivity Management Group (QPMG), and Software
Productivity Research (SPR) do not show the same ratios for many
languages. Since none of the function point associations such as IFPUG
have ever studied backfiring, nor have any universities, there is no over-
all authoritative source for validating backfire assumptions.

Backfiring remains popular and widely used, even though of question-
able accuracy. The reason for its popularity is because of the high costs
and long schedules associated with normal function point analysis.

Sizing Based on Pattern Matching

The other sizing methods in this section are in the public domain and are
available for use as needed. But sizing based on pattern matching has had
a patent application filed, so the method is not yet generally available.

The pattern-matching method was not originally created as a sizing
method. It was first developed to provide an unambiguous way of identify-
ing applications for benchmark purposes. After several hundred applica-
tions had been measured using the taxonomy, it was noted that applications
with the same patterns on the taxonomy were of the same size.

Pattern matching is based on the fact that thousands of legacy applica-
tions have been created, and for a significant number, size data already
exists. By means of a taxonomy that captures the nature, scope, class,
and type of existing software applications, a pattern is created that can
be used to size new software applications.

What makes pattern-matching work is a taxonomy that captures
key elements of software applications. The taxonomy consists of seven
topics: (1) nature, (2) scope, (3) class, (4) type, (5) problem complexity,
(6) code complexity, and (7) data complexity. Each topic uses numeric
values for identification.

390 Chapter Six

In comparing one software project against another, it is important to
know exactly what kinds of software applications are being compared. This
is not as easy as it sounds. The industry lacks a standard taxonomy of soft-
ware projects that can be used to identify projects in a clear and unambigu-
ous fashion other than the taxonomy that is used with this invention.

The author has developed a multipart taxonomy for classifying proj-
ects in an unambiguous fashion. The taxonomy is copyrighted and
explained in several of the author’s previous books including Estimating
Software Costs (McGraw-Hill, 2007) and Applied Software Measurement
(McGraw-Hill, 2008). Following is the taxonomy:

When the taxonomy is used for benchmarks, four additional factors
from public sources are part of the taxonomy:

Country code = 1 (United States)

Region code = 06 (California)

City code = 408 (San Jose)

NAIC industry code = 1569 (Telecommunications)

These codes are from telephone area codes, ISO codes, and the North
American Industry Classification (NAIC) codes of the Department of
Commerce. These four codes do not affect the size of applications, but
provide valuable information for benchmarks and international eco-
nomic studies. This is because software costs vary widely by country,
geographic region, and industry. For historical data to be meaningful, it
is desirable to record all of the factors that influence costs.

The portions of the taxonomy that are used for estimating application
size include the following factors:

PROJECT NATURE: __

 1. New program development

 2. Enhancement (new functions added to existing software)

 3. Maintenance (defect repair to existing software)

 4. Conversion or adaptation (migration to new platform)

 5. Reengineering (re-implementing a legacy application)

 6. Package modification (revising purchased software)

PROJECT SCOPE: __

 1. Algorithm

 2. Subroutine

 3. Module

 4. Reusable module

Project Management and Software Engineering 391

 5. Disposable prototype

 6. Evolutionary prototype

 7. Subprogram

 8. Stand-alone program

 9. Component of a system

10. Release of a system (other than the initial release)

11. New departmental system (initial release)

12. New corporate system (initial release)

13. New enterprise system (initial release)

14. New national system (initial release)

15. New global system (initial release)

PROJECT CLASS: __

 1. Personal program, for private use

 2. Personal program, to be used by others

 3. Academic program, developed in an academic environment

 4. Internal program, for use at a single location

 5. Internal program, for use at a multiple locations

 6. Internal program, for use on an intranet

 7. Internal program, developed by external contractor

 8. Internal program, with functions used via time sharing

 9. Internal program, using military specifications

10. External program, to be put in public domain

11. External program to be placed on the Internet

12. External program, leased to users

13. External program, bundled with hardware

14. External program, unbundled and marketed commercially

15. External program, developed under commercial contract

16. External program, developed under government contract

17. External program, developed under military contract

PROJECT TYPE: __

 1. Nonprocedural (generated, query, spreadsheet)

 2. Batch application

392 Chapter Six

 3. Web application

 4. Interactive application

 5. Interactive GUI applications program

 6. Batch database applications program

 7. Interactive database applications program

 8. Client/server applications program

 9. Computer game

10. Scientific or mathematical program

11. Expert system

12. Systems or support program including “middleware”

13. Service-oriented architecture (SOA)

14. Communications or telecommunications program

15. Process-control program

16. Trusted system

17. Embedded or real-time program

18. Graphics, animation, or image-processing program

19. Multimedia program

20. Robotics, or mechanical automation program

21. Artificial intelligence program

22. Neural net program

23. Hybrid project (multiple types)

PROBLEM COMPLEXITY: ________

 1. No calculations or only simple algorithms

 2. Majority of simple algorithms and simple calculations

 3. Majority of simple algorithms plus a few of average complexity

 4. Algorithms and calculations of both simple and average complexity

 5. Algorithms and calculations of average complexity

 6. A few difficult algorithms mixed with average and simple

 7. More difficult algorithms than average or simple

 8. A large majority of difficult and complex algorithms

 9. Difficult algorithms and some that are extremely complex

10. All algorithms and calculations are extremely complex

Project Management and Software Engineering 393

CODE COMPLEXITY: _________

 1. Most “programming” done with buttons or pull-down controls

 2. Simple nonprocedural code (generated, database, spreadsheet)

 3. Simple plus average nonprocedural code

 4. Built with program skeletons and reusable modules

 5. Average structure with small modules and simple paths

 6. Well structured, but some complex paths or modules

 7. Some complex modules, paths, and links between segments

 8. Above average complexity, paths, and links between segments

 9. Majority of paths and modules are large and complex

10. Extremely complex structure with difficult links and large modules

DATA COMPLEXITY: _________

 1. No permanent data or files required by application

 2. Only one simple file required, with few data interactions

 3. One or two files, simple data, and little complexity

 4. Several data elements, but simple data relationships

 5. Multiple files and data interactions of normal complexity

 6. Multiple files with some complex data elements and interactions

 7. Multiple files, complex data elements and data interactions

 8. Multiple files, majority of complex data elements and interactions

 9. Multiple files, complex data elements, many data interactions

10. Numerous complex files, data elements, and complex interactions

As most commonly used for either measurement or sizing, users will
provide a series of integer values to the factors of the taxonomy, as
follows:

PROJECT NATURE 1

PROJECT SCOPE 8

PROJECT CLASS 11

PROJECT TYPE 15

PROBLEM COMPLEXITY 5

DATA COMPLEXITY 6

CODE COMPLEXITY 2

394 Chapter Six

Although integer values are used for nature, scope, class, and type, up
to two decimal places can be used for the three complexity factors. The
algorithms will interpolate between integer values. Thus, permissible
values might also be

PROJECT NATURE 1

PROJECT SCOPE 8

PROJECT CLASS 11

PROJECT TYPE 15

PROBLEM COMPLEXITY 5.25

DATA COMPLEXITY 6.50

CODE COMPLEXITY 2.45

The combination of numeric responses to the taxonomy provides a
unique “pattern” that facilitates both measurement and sizing. The funda-
mental basis for sizing based on pattern matching rests on two points:

1. Observations have demonstrated that software applications that
have identical patterns in terms of the taxonomy are also close to
being identical in size expressed in function points.

2. The seven topics of the taxonomy are not equal in their impacts.
The second key to pattern matching is the derivation of the relative
weights that each factor provides in determining application size.

To use the pattern-matching approach, mathematical weights are
applied to each parameter. The specific weights are defined in the
patent application for the method and are therefore proprietary and
not included here. However, the starting point for the pattern-matching
approach is the average sizes of the software applications covered by the
“scope” parameter. Table 6-10 illustrates the unadjusted average values
prior to applying mathematical adjustments.

As shown in Table 6-10, an initial starting size for a software applica-
tion is based on user responses to the scope parameter. Each answer is
assigned an initial starting size value in terms of IFPUG function points.
These size values have been determined by examination of applications
already sized using standard IFPUG function point analysis. The initial
size values represent the mode of applications or subcomponents that
have been measured using function points.

The scope parameter by itself only provides an approximate initial
value. It is then necessary to adjust this value based on the other param-
eters of class, type, problem complexity, code complexity, and data com-
plexity. These adjustments are part of the patent application for sizing
based on pattern matching.

From time to time, new forms of software will be developed. When this
occurs, the taxonomy can be expanded to include the new forms.

Project Management and Software Engineering 395

The taxonomy can be used well before an application has started its
requirements. Since the taxonomy contains information that should be
among the very first topics known about a future application, it is pos-
sible to use the taxonomy months before requirements are finished and
even some time before they begin.

It is also possible to use the taxonomy on legacy applications that
have been in existence for many years. It is often useful to know the
function point totals of such applications, but normal counting of func-
tion points may not be feasible since the requirements and specifications
are seldom updated and may not be available.

The taxonomy can also be used with commercial software, and indeed
with any form of software including classified military applications
where there is sufficient public or private knowledge of the application
to assign values to the taxonomy tables.

The taxonomy was originally developed to produce size in terms of
IFPUG function points and also logical source code statements. However,
the taxonomy could also be used to produce size in terms of COSMIC
function points, use-case points, or story points. To use the taxonomy
with other metrics, historical data would need to be analyzed.

The sizing method based on pattern matching can be used for any
size application ranging from small updates that are only a fraction
of a function point up to massive defense applications that might top
300,000 function points. Table 6-11 illustrates the pattern-matching

APPLICATION SCOPE PARAMETER

Value Definition Size in Function Points

 1. Algorithm 1

 2. Subroutine 5

 3. Module 10

 4. Reusable module 20

 5. Disposable prototype 50

 6. Evolutionary prototype 100

 7. Subprogram 500

 8. Stand-alone program 1,000

 9. Component of a system 2,500

10. Release of a system 5,000

11. New Departmental system 10,000

12. New Corporate system 50,000

13. New Enterprise system 100,000

14. New National system 250,000

15. New Global system 500,000

TABLE 6-10 Initial Starting Values for Sizing by Pattern Matching

396 Chapter Six

Note 1: IFPUG rules version 4.2 are assumed.

Note 2: Code counts are based on logical statements; not physical lines

Application

Size in
Function Points

(IFPUG 4.2)
Language

Level
Total

Source Code

Lines per
Function

Point

1. Star Wars missile defense 352,330 3.50 32,212,992 91

2. Oracle 310,346 4.00 24,827,712 80

3. WWMCCS 307,328 3.50 28,098,560 91

4. U.S. Air Traffic control 306,324 1.50 65,349,222 213

5. Israeli air defense system 300,655 4.00 24,052,367 80

6. SAP 296,764 4.00 23,741,088 80

7. NSA Echelon 293,388 4.50 20,863,147 71

8. North Korean border
defenses 273,961 3.50 25,047,859 91

9. Iran’s air defense system 260,100 3.50 23,780,557 91

10. Aegis destroyer C&C 253,088 4.00 20,247,020 80

11. Microsoft VISTA 157,658 5.00 10,090,080 64

12. Microsoft XP 126,788 5.00 8,114,400 64

13. IBM MVS 104,738 3.00 11,172,000 107

14. Microsoft Office
Professional 93,498 5.00 5,983,891 64

15. Airline reservation system 38,392 2.00 6,142,689 160

16. NSA code decryption 35,897 3.00 3,829,056 107

17. FBI Carnivore 31,111 3.00 3,318,515 107

18. Brain/Computer interface 25,327 6.00 1,350,757 53

19. FBI fingerprint analysis 25,075 3.00 2,674,637 107

20. NASA space shuttle 23,153 3.50 2,116,878 91

21. VA patient monitoring 23,109 1.50 4,929,910 213

22. F115 avionics package 22,481 3.50 2,055,438 91

23. Lexis-Nexis legal analysis 22,434 3.50 2,051,113 91

24. Russian weather satellite 22,278 3.50 2,036,869 91

25. Data warehouse 21,895 6.50 1,077,896 49

26. Animated film graphics 21,813 8.00 872,533 40

27. NASA Hubble controls 21,632 3.50 1,977,754 91

28. Skype 21,202 6.00 1,130,759 53

29. Shipboard gun controls 21,199 3.50 1,938,227 91

30. Natural language
translation 20,350 4.50 1,447,135 71

31. American Express billing 20,141 4.50 1,432,238 71

32. M1 Abrams battle tank 19,569 3.50 1,789,133 91

33. Boeing 747 avionics
package 19,446 3.50 1,777,951 91

34. NASA Mars rover 19,394 3.50 1,773,158 91

TABLE 6-11 Sample of 150 Applications Sized Using Pattern Matching

Project Management and Software Engineering 397

Note 1: IFPUG rules version 4.2 are assumed.

Note 2: Code counts are based on logical statements; not physical lines

Application

Size in
Function Points

(IFPUG 4.2)
Language

Level
Total

Source Code

Lines per
Function

Point

35. Travelocity 19,383 8.00 775,306 40

36. Apple iPhone 19,366 12.00 516,432 27

37. Nuclear reactor controls 19,084 2.50 2,442,747 128

38. IRS income tax analysis 19,013 4.50 1,352,068 71

39. Cruise ship navigation 18,896 4.50 1,343,713 71

40. MRI medical imaging 18,785 4.50 1,335,837 71

41. Google search engine 18,640 5.00 1,192,958 64

42. Amazon web site 18,080 12.00 482,126 27

43. Order entry system 18,052 3.50 1,650,505 91

44. Apple Leopard 17,884 12.00 476,898 27

45. Linux 17,505 8.00 700,205 40

46. Oil refinery process control 17,471 3.50 1,597,378 91

47. Corporate cost accounting 17,378 3.50 1,588,804 91

48. FedEx shipping controls 17,378 6.00 926,802 53

49. Tomahawk cruise missile 17,311 3.50 1,582,694 91

50. Oil refinery process control 17,203 3.00 1,834,936 107

51. ITT System 12 telecom 17,002 3.50 1,554,497 91

52. Ask search engine 16,895 6.00 901,060 53

53. Denver Airport luggage 16,661 4.00 1,332,869 80

54. ADP payroll application 16,390 3.50 1,498,554 91

55. Inventory management 16,239 3.50 1,484,683 91

56. eBay transaction controls 16,233 7.00 742,072 46

57. Patriot missile controls 15,392 3.50 1,407,279 91

58. Second Life web site 14,956 12.00 398,828 27

59. IBM IMS database 14,912 1.50 3,181,283 213

60. America Online (AOL) 14,761 5.00 944,713 64

61. Toyota robotic mfg. 14,019 6.50 690,152 49

62. Statewide child support 13,823 6.00 737,226 53

63. Vonage VOIP 13,811 6.50 679,939 49

64. Quicken 2006 11,339 6.00 604,761 53

65. ITMPI web site 11,033 14.00 252,191 23

66. Motor vehicle
registrations 10,927 3.50 999,065 91

67. Insurance claims handling 10,491 4.50 745,995 71

68. SAS statistical package 10,380 6.50 511,017 49

69. Oracle CRM features 6,386 4.00 510,878 80

TABLE 6-11 Sample of 150 Applications Sized Using Pattern Matching (continued)

(Continued)

398 Chapter Six

Note 1: IFPUG rules version 4.2 are assumed.

Note 2: Code counts are based on logical statements; not physical lines

Application

Size in
Function Points

(IFPUG 4.2)
Language

Level
Total

Source Code

Lines per
Function

Point

70. DNA analysis 6,213 9.00 220,918 36

71. Enterprise JavaBeans 5,877 6.00 313,434 53

72. Software renovation
tool suite 5,170 6.00 275,750 53

73. Patent data mining 4,751 6.00 253,400 53

74. EZ Pass vehicle controls 4,571 4.50 325,065 71

75. U.S. patent applications 4,429 3.50 404,914 91

76. Chinese submarine sonar 4,017 3.50 367,224 91

77. Microsoft Excel 2007 3,969 5.00 254,006 64

78. Citizens bank online 3,917 6.00 208,927 53

79. MapQuest 3,793 8.00 151,709 40

80. Bank ATM controls 3,625 6.50 178,484 49

81. NVIDIA graphics card 3,573 2.00 571,637 160

82. Lasik surgery (wave guide) 3,505 3.00 373,832 107

83. Sun D-Trace utility 3,309 6.00 176,501 53

84. Microsoft Outlook 3,200 5.00 204,792 64

85. Microsoft Word 2007 2,987 5.00 191,152 64

86. Artemis Views 2,507 4.50 178,250 71

87. ChessMaster 2007 game 2,227 6.50 109,647 49

88. Adobe Illustrator 2,151 4.50 152,942 71

89. SpySweeper antispyware 2,108 3.50 192,757 91

90. Norton antivirus software 2,068 6.00 110,300 53

91. Microsoft Project 2007 1,963 5.00 125,631 64

92. Microsoft Visual Basic 1,900 5.00 121,631 64

93. Windows Mobile 1,858 5.00 118,900 64

94. SPR KnowledgePlan 1,785 4.50 126,963 71

95. All-in-one printer 1,780 2.50 227,893 128

96. AutoCAD 1,768 4.00 141,405 80

97. Software code
restructuring 1,658 4.00 132,670 80

98. Intel Math function library 1,627 9.00 57,842 36

99. Sony PlayStation game
controls 1,622 6.00 86,502 53

100. PBX switching system 1,592 3.50 145,517 91

101. SPR Checkpoint 1,579 3.50 144,403 91

102. Microsoft Links golf game 1,564 6.00 83,393 53

103. GPS navigation system 1,518 8.00 60,730 40

TABLE 6-11 Sample of 150 Applications Sized Using Pattern Matching (continued)

Project Management and Software Engineering 399

Note 1: IFPUG rules version 4.2 are assumed.

Note 2: Code counts are based on logical statements; not physical lines

Application

Size in
Function Points

(IFPUG 4.2)
Language

Level
Total

Source Code

Lines per
Function

Point

104. Motorola cell phone 1,507 6.00 80,347 53

105. Seismic analysis 1,492 3.50 136,438 91

106. PRICE-S 1,486 4.50 105,642 71

107. Sidewinder missile controls 1,450 3.50 132,564 91

108. Apple iPod 1,408 10.00 45,054 32

109. Property tax assessments 1,379 4.50 98,037 71

110. SLIM 1,355 4.50 96,342 71

111. Microsoft DOS 1,344 1.50 286,709 213

112. Mozilla Firefox 1,340 6.00 71,463 53

113. CAI APO (original
estimate) 1,332 8.00 53,288 40

114. Palm OS 1,310 3.50 119,772 91

115. Google Gmail 1,306 8.00 52,232 40

116. Digital camera controls 1,285 5.00 82,243 64

117. IRA account management 1,281 4.50 91,096 71

118. Consumer credit report 1,267 6.00 67,595 53

119. Laser printer driver 1,248 2.50 159,695 128

120. Software complexity
analyzer 1,202 4.50 85,505 71

121. JAVA compiler 1,185 6.00 63,186 53

122. COCOMO II 1,178 4.50 83,776 71

123. Smart bomb targeting 1,154 5.00 73,864 64

124. Wikipedia 1,142 12.00 30,448 27

125. Music synthesizer 1,134 4.00 90,736 80

126. Configuration control 1,093 4.50 77,705 71

127. Toyota Prius engine 1,092 3.50 99,867 91

128. Cochlear implant (internal) 1,041 3.50 95,146 91

129. Nintendo Game Boy DS 1,002 6.00 53,455 53

130. Casio atomic watch 993 5.00 63,551 64

131. Football bowl selection 992 6.00 52,904 53

132. COCOMO I 883 4.50 62,794 71

133. APAR analysis and routing 866 3.50 79,197 91

134. Computer BIOS 857 1.00 274,243 320

135. Automobile fuel injection 842 2.00 134,661 160

136. Antilock brake controls 826 2.00 132,144 160

137. Quick Sizer Commercial 794 6.00 42,326 53

TABLE 6-11 Sample of 150 Applications Sized Using Pattern Matching (continued)

(Continued)

400 Chapter Six

Note 1: IFPUG rules version 4.2 are assumed.

Note 2: Code counts are based on logical statements; not physical lines

Application

Size in
Function Points

(IFPUG 4.2)
Language

Level
Total

Source Code

Lines per
Function

Point

138. CAI APO (revised
estimate) 761 8.00 30,450 40

139. LogiTech cordless mouse 736 6.00 39,267 53

140. Function point workbench 714 4.50 50,800 71

141. SPR SPQR/20 699 4.50 49,735 71

142. Instant messaging 687 5.00 43,944 64

143. Golf handicap analyzer 662 8.00 26,470 40

144. Denial of service virus 138 2.50 17,612 128

145. Quick Sizer prototype 30 20.00 480 16

146. ILOVEYOU computer
worm 22 2.50 2,838 128

147. Keystroke logger virus 15 2.50 1,886 128

148. MYDOOM computer virus 8 2.50 1,045 128

149. APAR bug report 3.85 3.50 352 91

150. Screen format change 0.87 4.50 62 71

AVERAGE 33,269 4.95 2,152,766 65

TABLE 6-11 Sample of 150 Applications Sized Using Pattern Matching (continued)

sizing method for a sample of 150 software applications. Each applica-
tion was sized in less than one minute.

Because the pattern-matching approach is experimental and being cali-
brated, the information shown in Table 6-11 is provisional and subject to
change. The data should not be used for any serious business purpose.

Note that the column labeled “language level” refers to a mathemati-
cal rule that was developed in the 1970s in IBM. The original definition
of “level” was the number of statements in a basic assembly language
that would be needed to provide the same function as one statement in
a higher-level language. Using this rule, COBOL is a “level 3” language
because three assembly statements would be needed to provide the func-
tions of 1 COBOL statement. Using the same rule, Smalltalk would be
a level 18 language, while Java would be a level 6 language.

When function point metrics were developed in IBM circa 1975, the
existing rules for language level were extended to include the number
of logical source code statements per function point.

For both backfiring and predicting source code size using pattern
matching, language levels are a required parameter. However, there is

Project Management and Software Engineering 401

published data with language levels for about 700 programming lan-
guages and dialects.

Timing of pattern-matching sizing Because the taxonomy used for pat-
tern matching is generic, it can be used even before requirements are
fully known. In fact, pattern matching is the sizing method that can be
applied the earliest in software development: long before normal func-
tion point analysis, story points, use-case points, or any other known
metric. It is the only method that can be used before requirements
analysis begins, and hence provide a useful size approximation before
any money is committed to a software project.

Usage of pattern matching Because the pattern matching approach is
covered by a patent application and still experimental, usage as of 2009
has been limited to about 250 trial software applications.

It should be noted that because pattern matching is based on an exter-
nal taxonomy rather than on specific requirements, the pattern-match-
ing approach can be used to size applications that are impossible to size
using any other method. For example, it is possible to size classified mili-
tary software being developed by other countries such as Iran and North
Korea, neither of whom would provide such information knowingly.

Schedules and costs The pattern-matching approach is embodied in a
prototype sizing tool that can predict application size at rates in excess
of 300,000 function points per minute. This makes pattern matching
the fastest and cheapest sizing method yet developed. The method is so
fast and so easy to perform that several size estimates can easily be per-
formed using best-case, expected-case, and worst-case assumptions.

Even without the automated prototype, the pattern-matching calcu-
lations can be performed using a pocket calculator or even by hand in
perhaps 2 minutes per application.

Cautions and counter indications The main counter indication for pattern
matching is that it is still experimental and being calibrated. Therefore,
results may change unexpectedly.

Another caution is that the accuracy of pattern matching needs to be
examined with a large sample of historical projects that have standard
function point counts.

Sizing Software Requirements Changes

Thus far, all of the sizing methods discussed have produced size esti-
mates that are valid only for a single moment. Observations of software
projects indicate that requirements grow and change at rates of between

402 Chapter Six

1 percent and more than 2 percent every calendar month during the
design and coding phases.

Therefore, if the initial size estimate at the end of the requirements
phase is 1000 function points, then this total might grow by 6 percent or
60 function points during the design phase and by 8 percent or 80 func-
tion points during the coding phase. When finally released, the original
1000 function points will have grown to 1140.

Because growth in requirements is related to calendar schedules,
really large applications in the 10,000-function point range or higher can
top 35 percent or even 50 percent in total growth. Obviously, this much
growth will have a significant impact on both schedules and costs.

Some software cost-estimating tools such as KnowledgePlan include
algorithms that predict growth rates in requirements and allow users
to either accept or reject the predictions. Users can also include their
own growth predictions.

There are two flavors of requirements change:

Requirements creep These are changes to requirements that cause func-
tion point totals to increase and that also cause more source code to be
written. Such changes should be sized and of course if they are signifi-
cant, they should be included in revised cost and schedule estimates.

Requirements churn These are changes that do not add to the function
point size total of the application, but which may cause code to be writ-
ten. An example of churn might be changing the format or appearance
of an input screen, but not adding any new queries or data elements. An
analogy from home construction might be replacing existing windows
with hurricane-proof windows that fit the same openings. There is no
increase in the square footage or size of the house, but there will be
effort and costs.

Software application size is never stable and continues to change during
development and also after release. Therefore, sizing methods need to be
able to deal with changes and growth in requirements, and these require-
ments changes will also cause growth in source code volumes.

Requirements creep has a more significant impact than just growth
itself. As it happens, because changing requirements tend to be rushed,
they have higher defect potentials than the original requirements. They
also tend be harder to find and eliminate bugs, because if the changes
are late, inspections may be skipped and testing will be less thorough.

As a result, creeping requirements on large software projects tend to
be the source of many more defects that get delivered than the original
requirements. For large systems in the 10,000-function point range,
almost 50 percent of the delivered defects can be attributed to require-
ments changes during development.

Project Management and Software Engineering 403

Software Progress and
Problem Tracking

From working as an expert witness in a number of software lawsuits,
the author noted a chronic software project management problem. Many
projects that failed or had serious delays in schedules or quality prob-
lems did not identify any problems during development by means of
normal progress reports.

From depositions and discovery, both software engineers and first-line
project managers knew about the problems, but the information was
not included in status reports to clients and senior management when
the problems were first noticed. Not until very late, usually too late
to recover, did higher management or clients become aware of serious
delays, quality problems, or other significant issues.

When asked why the information was concealed, the primary reason
was that the lower managers did not want to look bad to executives. Of
course, when the problems finally surfaced, the lower managers looked
very bad, indeed.

By contrast, projects that are successful always deal with problems
in a more rational fashion. They identify the problems early, assemble
task groups to solve them, and usually bring them under control before
they become so serious that they cannot be fixed. One of the interesting
features of the Agile method is that problems are discussed on a daily
basis. The same is true for the Team Software Process (TSP).

Software problems are somewhat like serious medical problems. They
usually don’t go away by themselves, and many require treatment by
professionals in order to eliminate them.

Once a software project is under way, there are no fixed and reli-
able guidelines for judging its rate of progress. The civilian software
industry has long utilized ad hoc milestones such as completion of
design or completion of coding. However, these milestones are notori-
ously unreliable.

Tracking software projects requires dealing with two separate
issues: (1) achieving specific and tangible milestones, and (2) expend-
ing resources and funds within specific budgeted amounts.

Because software milestones and costs are affected by requirements
changes and “scope creep,” it is important to measure the increase in
size of requirements changes, when they affect function point totals.
However, as mentioned in a previous section in this chapter, some
requirements changes do not affect function point totals, which are
termed requirements churn. Both creep and churn occur at random
intervals. Churn is harder to measure than creep and is often measured
via “backfiring” or mathematical conversion between source code state-
ments and function point metrics.

404 Chapter Six

As of 2009, automated tools are available that can assist project man-
agers in recording the kinds of vital information needed for milestone
reports. These tools can record schedules, resources, size changes, and
also issues or problems.

For an industry now more than 60 years of age, it is somewhat sur-
prising that there is no general or universal set of project milestones for
indicating tangible progress. From the author’s assessment and bench-
mark studies, following are some representative milestones that have
shown practical value.

Note that these milestones assume an explicit and formal review
connected with the construction of every major software deliverable.
Table 6-12 shows representative tracking milestones for large soft-
ware projects. Formal reviews and inspections have the highest defect
removal efficiency levels of any known kind of quality control activity,
and are characteristic of “best in class” organizations.

The most important aspect of Table 6-12 is that every milestone is
based on completing a review, inspection, or test. Just finishing up a
document or writing code should not be considered a milestone unless
the deliverables have been reviewed, inspected, or tested.

TABLE 6-12 Representative Tracking Milestones for Large Software Projects

1. Requirements document completed

2. Requirements document review completed

3. Initial cost estimate completed

4. Initial cost estimate review completed

5. Development plan completed

6. Development plan review completed

7. Cost tracking system initialized

8. Defect tracking system initialized

9. Prototype completed

10. Prototype review completed

11. Complexity analysis of base system (for enhancement projects)

12. Code restructuring of base system (for enhancement projects)

13. Functional specification completed

14. Functional specification review completed

15. Data specification completed

16. Data specification review completed

17. Logic specification completed

18. Logic specification review completed

19. Quality control plan completed

Project Management and Software Engineering 405

In the litigation where the author worked as an expert witness, these
criteria were not met. Milestones were very informal and consisted
primarily of calendar dates, without any validation of the materials
themselves.

Also, the format and structure of the milestone reports were inad-
equate. At the top of every milestone report, problems and issues or “red
flag” items should be highlighted and discussed first.

During depositions and reviews of court documents, it was noted that
software engineering personnel and many managers were aware of the
problems that later triggered the delays, cost overruns, quality prob-
lems, and litigation. At the lowest levels, these problems were often
included in weekly status reports or discussed at daily team meetings.
But for the higher-level milestone and tracking reports that reached
clients and executives, the hazardous issues were either omitted or
glossed over.

20. Quality control plan review completed

21. Change control plan completed

22. Change control plan review completed

23. Security plan completed

24. Security plan review completed

25. User information plan completed

26. User information plan review completed

27. Code for specific modules completed

28. Code inspection for specific modules completed

29. Code for specific modules unit tested

30. Test plan completed

31. Test plan review completed

32. Test cases for specific test stage completed

33. Test case inspection for specific test stage completed

34. Test stage completed

35. Test stage review completed

36. Integration for specific build completed

37. Integration review for specific build completed

38. User information completed

39. User information review completed

40. Quality assurance sign off completed

41. Delivery to beta test clients completed

42. Delivery to clients completed

TABLE 6-12 Representative Tracking Milestones for Large Software Projects
(continued)

406 Chapter Six

A suggested format for monthly progress tracking reports delivered
to clients and higher management would include these sections:

Suggested Format for Monthly Status Reports for Software Projects

 1. New “red flag” problems noted this month

 2. Status of last month’s “red flag” problems

 3. Discussion of “red flag” items more than one month in duration

 4. Change requests processed this month versus change requests
predicted

 5. Change requests predicted for next month

 6. Size in function points for this month’s change requests

 7. Size in function points predicted for next month’s change
requests

 8. Change requests that do not affect size in function points

 9. Schedule impacts of this month’s change requests

10. Cost impacts of this month’s change requests

11. Quality impacts of this month’s change requests

12. Defects found this month versus defects predicted

13. Defect severity levels of defects found this month

14. Defect origins (requirements, design, code, etc.)

15. Defects predicted for next month

16. Costs expended this month versus costs predicted

17. Costs predicted for next month

18. Earned value for this month’s deliverable (if earned value is used)

19. Deliverables completed this month versus deliverables predicted

20. Deliverables predicted for next month

Although the suggested format somewhat resembles the items calcu-
lated using the earned value method, this format deals explicitly with
the impact of change requests and also uses function point metrics for
expressing costs and quality data.

An interesting question is the frequency with which milestone prog-
ress should be reported. The most common reporting frequency is
monthly, although an exception report can be filed at any time it is
suspected that something has occurred that can cause perturbations.
For example, serious illness of key project personnel or resignation of
key personnel might very well affect project milestone completions, and
this kind of situation cannot be anticipated.

Project Management and Software Engineering 407

It might be thought that monthly reports are too far apart for small
projects that only last six or fewer months in total. For small projects,
weekly reports might be preferred. However, small projects usually do
not get into serious trouble with cost and schedule overruns, whereas
large projects almost always get in trouble with cost and schedule
overruns. This article concentrates on the issues associated with large
projects. In the litigation where the author has been an expert wit-
ness, every project under litigation except one was larger than 10,000
function points.

The simultaneous deployment of software sizing tools, estimating
tools, planning tools, and methodology management tools can pro-
vide fairly unambiguous points in the development cycle that allow
progress to be judged more or less effectively. For example, software
sizing technology can now predict the sizes of both specifications and
the volume of source code needed. Defect estimating tools can predict
the numbers of bugs or errors that might be encountered and discov-
ered. Although such milestones are not perfect, they are better than the
former approaches.

Project management is responsible for establishing milestones, moni-
toring their completion, and reporting truthfully on whether the mile-
stones were successfully completed or encountered problems. When
serious problems are encountered, it is necessary to correct the problems
before reporting that the milestone has been completed.

Failing or delayed projects usually lack serious milestone tracking.
Activities are often reported as finished while work was still ongoing.
Milestones on failing projects are usually dates on a calendar rather
than completion and review of actual deliverables.

Delivering documents or code segments that are incomplete, contain
errors, and cannot support downstream development work is not the
way milestones are used by industry leaders.

Another aspect of milestone tracking among industry leaders is what
happens when problems are reported or delays occur. The reaction
is strong and immediate: corrective actions are planned, task forces
assigned, and correction begins. Among laggards, on the other hand,
problem reports may be ignored, and very seldom do corrective actions
occur.

In more than a dozen legal cases involving projects that failed or were
never able to operate successfully, project tracking was inadequate in
every case. Problems were either ignored or brushed aside, rather than
being addressed and solved.

Because milestone tracking occurs throughout software development,
it is the last line of defense against project failures and delays. Milestones
should be established formally and should be based on reviews, inspec-
tions, and tests of deliverables. Milestones should not be the dates that

408 Chapter Six

deliverables more or less were finished. Milestones should reflect the
dates that finished deliverables were validated by means of inspections,
testing, and quality assurance review.

An interesting form of project tracking has been developed by the
Shoulders Corp for keeping track of object-oriented projects. This method
uses a 3-D model of software objects and classes using Styrofoam balls
of various sizes that are connected by dowels to create a kind of mobile.
The overall structure is kept in a location viewable by as many team
members as possible. The mobile makes the status instantly visible to
all viewers. Color-coded ribbons indicate status of each component, with
different colors indicated design complete, code complete, documenta-
tion complete, and testing complete (gold). There are also ribbons for
possible problems or delays. This method provides almost instantaneous
visibility of overall project status. The same method has been automated
using a 3-D modeling package, but the physical structures are easier
to see and have proven more useful on actual projects. The Shoulders
Corporation method condenses a great deal of important information
into a single visual representation that nontechnical staff can readily
understand.

A combination of daily status meetings that center on problems and
possible delays are very useful. When formal written reports are submit-
ted to higher managers or clients, the data should be quantified. In addi-
tion, possible problems that might cause delays or quality issues should
be the very first topics in the report because they are more important
than any other topics that are included.

Software Benchmarking

As this book is being written in early 2009, a new draft standard on per-
formance benchmarks is being circulated for review by the International
Standards Organization (ISO). The current draft is not yet approved.
The current draft deals with concepts and definitions, and will be fol-
lowed by additional standards later. Readers should check with the ISO
organization for additional information.

One of the main business uses of software measurement and metric
data is that of benchmarking, or comparing the performance of a com-
pany against similar companies within the same industry, or related
industries. (The same kind of data can also be used as a “baseline” for
measuring process improvements.)

The term benchmark is far older than the computing and software
professions. It seemed to have its origin in carpentry as a mark of stan-
dard length on workbenches. The term soon spread to other domains.
Another early definition of benchmark was in surveying, where it indi-
cated a metal plate inscribed with the exact longitude, latitude, and

Project Management and Software Engineering 409

altitude of a particular point. Also from the surveying domain comes
the term baseline which originally defined a horizontal line measured
with high precision to allow it to be used for triangulation of heights
and distances.

When the computing industry began, the term benchmark was origi-
nally used to define various performance criteria for processor speeds,
disk and tape drive speeds, printing speeds, and the like. This definition
is still in use, and indeed a host of new and specialized benchmarks has
been created in recent years for new kinds of devices such as CD-ROM
drives, multisynch monitors, graphics accelerators, solid-state flash
disks, high-speed modems, and the like.

As a term for measuring the relative performance of organizations
in the computing and software domains, the term benchmark was first
applied to data centers in the 1960s. This was a time when computers
were entering the mainstream of business operations, and data centers
were proliferating in number and growing in size and complexity. This
usage is still common for judging the relative efficiencies of data center
operations.

Benchmark data has a number of uses and a number of ways of being
gathered and analyzed. The most common and significant ways of gath-
ering benchmark data are these five:

1. Internal collection for internal benchmarks This form is data
gathered for internal use within a company or government unit
by its own employees. In the United States, the author estimates
that about 15,000 software projects have been gathered using this
method, primarily by large and sophisticated corporations such as
AT&T, IBM, EDS, Microsoft, and the like. This internal benchmark
data is proprietary and is seldom made available to other organiza-
tions. The accuracy of internal benchmark data varies widely. For
some sophisticated companies such as IBM, internal data is very
accurate. For other companies, the accuracy may be marginal.

2. Consultant collection for internal benchmarks The second
form is that of data gathered for internal use within a company
or government unit by outside benchmark consultants. The author
estimates that about 20,000 software projects have been gathered
using this method, since benchmark consultants are fairly numer-
ous. This data is proprietary, with the exception that results may
be included in statistical studies without identifying the sources
of the data. Outside consultants are used because benchmarks are
technically complicated to do well, and specialists generally outper-
form untrained managers and software engineers. Also, the extensive
experience of benchmark consultants helps in eliminating leakage
and in finding other problems.

410 Chapter Six

3. Internal collection for public or ISBSG benchmarks This
form is data gathered for submission to an external nonprofit bench-
mark organization such as the International Software Benchmarking
Standards Group (ISBSG) by a company’s own employees. The author
estimates that in the United States perhaps 3000 such projects have
been submitted to the ISBSG. This data is readily available and
can be commercially purchased by companies and individuals. The
data submitted to ISBSG is also made available via monographs
and reports on topics such as estimating, the effectiveness of vari-
ous development methods, and similar topics. The questionnaires
for such benchmarks are provided to clients by the ISBSG, together
with instructions on how to collect the data. This method of gather-
ing data is inexpensive, but may have variability from company to
company since answers may not be consistent from one company to
another.

4. Consultant collection for proprietary benchmarks This
form consists of data gathered for submission to an external for-
profit benchmark organization such as Gartner Group, the David
Consulting Group, Galorath Associates, the Quality and Productivity
Management Group, Software Productivity Research (SPR), and
others by consultants who work for the benchmark organizations.
Such benchmark data is gathered via on-site interviews. The author
estimates that perhaps 60,000 projects have been gathered by the
for-profit consulting organizations. This data is proprietary, with the
exception of statistical studies that don’t identify data sources. For
example, this book and the author’s previous book, Applied Software
Measurement, utilize corporate benchmarks gathered by the author
and his colleagues under contract. However, the names of the clients
and projects are not mentioned due to nondisclosure agreements.

5. Academic benchmarks This form is data gathered for academic
purposes by students or faculty of a university. The author estimates
that perhaps 2000 projects have been gathered using this method.
Academic data may be used in PhD or other theses, or it may be used
for various university research projects. Some of the academic data
will probably be published in journals or book form. Occasionally,
such data may be made available commercially. Academic data is
usually gathered via questionnaires distributed by e-mail, together
with instructions for filling them out.

When all of these benchmark sources are summed, the total is about
100,000 projects. Considering that at least 3 million legacy applications
exist and another 1.5 million new projects are probably in development,
the sum total of all software benchmarks is only about 2 percent of
software projects.

Project Management and Software Engineering 411

When the focus narrows to benchmark data that is available to the
general public through nonprofit or commercial sources, the U.S. total is
only about 3000 projects, which is only about 0.07 percent. This is far too
small a sample to be statistically valid for the huge variety of software
classes, types, and sizes created in the United States. The author sug-
gests that public benchmarks from nonprofit sources such as the ISBSG
should expand up to at least 2 percent or about 30,000 new projects out
of 1.5 million or so in development. It would also be useful to have at
least a 1 percent sample of legacy applications available to the public,
or another 30,000 projects.

A significant issue with current benchmark data to date is the unequal
distribution of project sizes. The bulk of all software benchmarks are for
projects between about 250 and 2500 function points. There is very little
benchmark data for applications larger than 10,000 function points,
even though these are the most expensive and troublesome kinds of
applications. There is almost no benchmark data available for small
maintenance projects below 15 function points in size, even though such
projects outnumber all other sizes put together.

Another issue with benchmark data is the unequal distribution by
project types. Benchmarks for IT projects comprise about 65 percent
of all benchmarks to date. Systems and embedded software comprise
about 15 percent, commercial software about 10 percent, and military
software comprises about 5 percent. (Since the Department of Defense
and the military services own more software than any other organiza-
tions on the planet, the lack of military benchmarks is probably due to
the fact that many military projects are classified.) The remaining 5
percent includes games, entertainment, iPhone and iPod applications,
and miscellaneous applications such as tools.

Categories of Software Benchmarks

There are a surprisingly large number of kinds of software benchmarks,
and they use different metrics, different methods, and are aimed at dif-
ferent aspects of software as a business endeavor.

Benchmarks are primarily collections of quantitative data that show
application, phase, or activity productivity rates. Some benchmarks
also include application quality data in the form of defects and defect
removal efficiency. In addition, benchmarks should also gather informa-
tion about the programming languages, tools, and methods used for the
application.

Over and above benchmarks, the software industry also performs soft-
ware process assessments. Software process assessments gather detailed
data on software best practices and on specific topics such as project
management methods, quality control methods, development methods,

412 Chapter Six

maintenance methods, and the like. The process assessment method
developed by the Software Engineering Institute (SEI) that evaluates
an organization’s “capability maturity level” is probably the best-known
form of assessment, but there are several others as well.

Since it is obvious that assessment data and benchmark data are
synergistic, there are also hybrid methods that collect assessment and
benchmark data simultaneously. These hybrid methods tend to use
large and complicated questionnaires and are usually performed via
on-site consultants and face-to-face interviews. However, it is possible
to use e-mail or web-based questionnaires and communicate with soft-
ware engineers and managers via Skype or some other method rather
than actual travel.

The major forms of software benchmarks included in this book circa
2009 are

 1. International software benchmarks

 2. Industry software benchmarks

 3. Overall software cost and resource benchmarks

 4. Corporate software portfolio benchmarks

 5. Project-level software productivity and quality benchmarks

 6. Phase-level software productivity and quality benchmarks

 7. Activity-level software productivity and quality benchmarks

 8. Software outsource versus internal performance benchmarks

 9. Software maintenance and customer support benchmarks

10. Methodology benchmarks

11. Assessment benchmarks

12. Hybrid assessment and benchmark studies

13. Earned-value benchmarks

14. Quality and test coverage benchmarks

15. Cost of quality (COQ) benchmarks

16. Six Sigma benchmarks

17. ISO quality standard benchmarks

18. Security benchmarks

19. Software personnel and skill benchmarks

20. Software compensation benchmarks

21. Software turnover or attrition benchmarks

22. Software performance benchmarks

Project Management and Software Engineering 413

23. Software data center benchmarks

24. Software customer satisfaction benchmarks

25. Software usage benchmarks

26. Software litigation and failure benchmarks

27. Award benchmarks

As can be seen from this rather long list of software-related bench-
marks, the topic is much more complicated than might be thought.

International software benchmarks Between the recession and global
software competition, it is becoming very important to be able to com-
pare software development practices around the world. International
software benchmarking is a fairly new domain, but has already begun
to establish a substantial literature, with useful books by Michael
Cusumano, Watts Humphries, Howard Rubin, and Edward Yourdon as
well as by the author of this book. One weakness with the ISBSG data
is that country of origin is deliberately concealed. This policy should be
reconsidered in light of the continuing recession.

When performing international benchmarks, many local factors need
to be recorded. For example, Japan has at least 12 hours of unpaid over-
time per week, while other countries such as Canada and Germany have
hardly any. In Japan the workweek is about 44 hours, while in Canada
it is only 36 hours. Vacation days also vary from country to country,
as do the number of public holidays. France and the EU countries, for
example, have more than twice as many vacation days as the United
States.

Of course, the most important international topics for the purposes of
outsourcing are compensation levels and inflation rates. International
benchmarks are a great deal more complex than domestic benchmarks.

Industry benchmarks As the recession continues, more and more atten-
tion is paid to severe imbalances among industries in terms of costs
and salaries. For example, the large salaries and larger bonuses paid to
bankers and financial executives have shocked the world business com-
munity. Although not as well-known because the amounts are smaller,
financial software executives and financial software engineering per-
sonnel earn more than similar personnel in other industries, too. As
the recession continues, many companies are facing the difficult ques-
tion of whether to invest significant amounts of money and effort into
improving their own software development practices, or to turn over all
software operations to an outsourcing vendor who may already be quite
sophisticated. Benchmarks of industry schedules, effort, and costs will
become increasingly important.

414 Chapter Six

As of 2009, enough industry data exists to show interesting variations
between finance, insurance, health care, several forms of manufactur-
ing, defense, medicine, and commercial software vendors.

Overall software cost and resource benchmarks Cost and resources at
the corporate level are essentially similar to the classic data center
benchmarking studies, only transferred to a software development
organization. These studies collect data on the annual expenditures
for personnel and equipment, number of software personnel employed,
number of clients served, sizes of software portfolios, and other tangible
aspects associated with software development and maintenance. The
results are then compared against norms or averages from companies
of similar sizes, companies within the same industry, or companies that
have enough in common to make the comparisons interesting. These
high-level benchmarks are often produced by “strategic” consulting
organization such as McKinsey, Gartner Group, and the like. This form
of benchmark does not deal with individual projects, but rather with
corporate or business-group expense patterns.

In very large enterprises with multiple locations, similar benchmarks
are sometimes used for internal comparisons between sites or divisions.
The large accounting companies and a number of management consult-
ing companies can perform general cost and resource benchmarks.

Corporate software portfolio benchmarks A corporate portfolio can be as
large as 10 million function points and contain more than 5000 applica-
tions. The applications can include IT projects, systems software, embed-
ded software, commercial software, tools, outsourced applications, and
open-source applications. Very few companies know how much software
is in their portfolios. Considering that the total portfolio is perhaps the
most valuable asset that the company owns, the lack of portfolio-level
benchmarks is troubling.

There are so few portfolio benchmarks because of the huge size of
portfolios and the high costs of collecting data on the entire mass of
software owned by large corporations.

A portfolio benchmark study in which the author participated for
a large manufacturing conglomerate took about 12 calendar months
and involved 10 consultants who visited at least 24 countries and 60
companies owned by the conglomerate. Just collecting data for this one
portfolio benchmark cost more than $2 million. However, the value of
the portfolio itself was about $15 billion. That is a very significant asset
and therefore deserves to be studied and understood.

Of course, for a smaller company whose portfolio was concentrated
in a single data center, such a study might have been completed in a
month by only a few consultants. But unfortunately, large corporations

Project Management and Software Engineering 415

are usually geographically dispersed, and their portfolios are highly
fragmented across many cities and countries.

Project-level productivity and quality benchmarks Project-level produc-
tivity and quality benchmarks drop down below the level of entire
organizations and gather data on specific projects. These project-level
benchmark studies accumulate effort, schedule, staffing, cost, and qual-
ity data from a sample of software projects developed and/or maintained
by the organization that commissioned the benchmark. Sometimes the
sample is as large as 100 percent, but more often the sample is more
limited. For example, some companies don’t bother with projects below
a certain minimum size, such as 50 function points, or exclude projects
that are being developed for internal use as opposed to projects that are
going to be released to external clients.

Project-level productivity and quality benchmarks are sometimes per-
formed using questionnaires or survey instruments that are e-mailed or
distributed to participants. This appears to be the level discussed in the
new ISO draft benchmark standard. Data at the project level includes
schedules, effort in hours or months, and costs. Supplemental data on
programming languages and methodologies may be included. Quality
data should be included, but seldom is.

To avoid “apples to oranges” comparisons, companies that perform
project-level benchmark studies normally segment the data so that sys-
tems software, information systems, military software, scientific soft-
ware, and other kinds of software are compared against projects of the
same type. Data is also segmented by application size, to ensure that
very small projects are not compared against huge systems. New proj-
ects and enhancement and maintenance projects are also segmented.

Although collecting data at the project level is fairly easy to do, there
is no convenient way to validate the data or to ensure that “leakage”
has not omitted a significant quantity of work and therefore costs. The
accuracy of project level data is always suspect.

Phase-level productivity and quality benchmarks Unfortunately, project-
level data is essentially impossible to validate and therefore tends to
be unreliable. Dropping down to the level of phases provides increased
granularity and therefore increased value. There are no standard defi-
nitions of phases that are universally agreed to circa 2009. However,
a common phase pattern includes requirements, design, development,
and testing.

When a benchmark study is carried out as a prelude to software process
improvement activities, the similar term baseline is often used. In this
context, the baseline reflects the productivity, schedule, staffing, and/or
quality levels that exist when the study takes place. These results can

416 Chapter Six

then be used to measure progress or improvements at future intervals.
Benchmarks and baselines collect identical information and are essen-
tially the same. Project-level data is not useful for baselines, so phase-
level data is the minimum level of granularity that can show process
improvement results.

Phase-level benchmarks are used by the ISBSG and also frequently
used in academic studies. In fact, the bulk of the literature on software
benchmarks tends to deal with phase-level data. Enough phase-level
data is now available to have established fairly accurate averages and
ranges for the United States, and preliminary averages for many other
countries.

Activity-level productivity and quality benchmarks Unfortunately, mea-
surement that collects only project data is impossible to validate. Phase-
level data is hard to validate because many activities such as technical
documentation and project management cross phase boundaries.

Activity-based benchmarks are even more detailed than the project-
level benchmarks already discussed. Activity-based benchmarks drop
down to the level of the specific kinds of work that must be performed in
order to build a software application. For example, the 25 activities used
by the author since the 1980s include specific sub-benchmarks for require-
ments, prototyping, architecture, planning, initial design, detail design,
design reviews, coding, reusable code acquisition, package acquisition,
code inspections, independent verification and validation, configuration
control, integration, user documentation, unit testing, function testing,
integration testing, system testing, field testing, acceptance testing, inde-
pendent testing, quality assurance, installation, and management.

Activity-based benchmarks are more difficult to perform than other
kinds of benchmark studies, but the results are far more useful for
process improvement, cost reduction, quality improvement, schedule
improvement, or other kinds of improvement programs. The great
advantage of activity-based benchmarks is that they reveal very impor-
tant kinds of information that the less granular studies can’t provide.
For example, for many kinds of software projects, the major cost drivers
are associated with the production of paper documents (plans, speci-
fications, user manuals) and with quality control (inspections, static
analysis, testing). Both paperwork costs and defect removal costs are
often more expensive than coding. Findings such as this are helpful in
planning improvement programs and calculating returns on invest-
ments. But to know the major cost drivers within a specific company
or enterprise, it is necessary to get down to the level of activity-based
benchmark studies.

Activity-based benchmarks are normally collected via on-site interviews,
although today Skype or a conference call might be used. The benchmark

Project Management and Software Engineering 417

interview typically takes about two hours and involves the project man-
ager and perhaps three team members. Therefore the hours are about
eight staff hours plus consulting time for collecting the benchmark itself.
If function points are counted by the consultant, they would take addi-
tional time.

Software outsource versus internal performance benchmarks One of the
most frequent reasons that the author has been commissioned to carry
out productivity and quality benchmark studies is that a company
is considering outsourcing some or all of their software development
work.

Usually the outsource decision is being carried out high in the com-
pany at the CEO or CIO levels. The lower managers are alarmed that
they might lose their jobs, and so they commission productivity and
quality studies to compare in-house performance against both industry
data and also data from major outsource vendors in the United States
and abroad.

Until recently, U.S. performance measured in terms of function points
per month was quite good compared with the outsource countries of
China, Russia, India, and others. However, when costs were measured,
the lower labor costs overseas gave offshore outsourcers a competitive
edge. Within the past few years, inflation rates have risen faster over-
seas than in the United States, so the cost differential has narrowed.
IBM, for example, recently decided to build a large outsource center in
Iowa due to the low cost-of-living compared with other locations.

The continuing recession has resulted in a surplus of U.S. software
professionals and also lowered U.S. compensation levels. As a result, cost
data is beginning to average out across a large number of countries. The
recession is affecting other countries too, but since travel costs continue
to go up, it is becoming harder or at least less convenient to do business
overseas.

Software maintenance and customer support benchmarks As of 2009,
there are more maintenance and enhancement software engineers than
development software engineers. Yet benchmarks for maintenance and
enhancement work are not often performed. There are several reasons
for this. One reason is that maintenance work has no fewer than 23
different kinds of update to legacy applications, ranging from minor
changes through complete renovation. Another reason is that a great
deal of maintenance work involves changes less than 15 function points
in size, which is below the boundary level of normal function point
analysis. Although individually these small changes may be fast and
inexpensive, there are thousands of them, and their cumulative costs
in large companies total to millions of dollars per year.

418 Chapter Six

One of the key maintenance metrics that has value is that of main-
tenance assignment scope or the amount of software one person can
keep up and running. Other maintenance metrics include number of
users supported, rates at which bugs are fixed, and normal productivity
rates expressed in terms of function points per month or work hours
per function point. Defect potentials and defect removal efficiency level
are also important.

One strong caution for maintenance benchmarks: the traditional “cost
per defect” metric is seriously flawed and tends to penalize quality. Cost
per defect achieves the lowest costs for the buggiest software. It also
seems to be cheaper early rather than late, but this is really a false
conclusion based on overhead rather than actual time and motion.

The new requirements for service and customer support included in
the Information Technology Infrastructure Library (ITIL) are giving
a new impetus to maintenance and support benchmarks. In fact, ITIL
benchmarks should become a major subfield of software benchmarks.

Methodology benchmarks There are many different forms of software
development methodology such as Agile development, extreme program-
ming (XP), Crystal development, waterfall development, the Rational
Unified Process (RUP), iterative development, object-oriented develop-
ment (OO), rapid application development (RAD), the Team Software
Process (TSP), and dozens more. There are also scores of hybrid develop-
ment methods and probably hundreds of customized or local methods
used only by a single company.

In addition to development methods, a number of other approaches
can have an impact on software productivity, quality, or both. Some
of these include Six Sigma, quality function deployment (QFD), joint
application design (JAD), and software reuse.

Benchmark data should be granular and complete enough to dem-
onstrate the productivity and quality levels associated with various
development methods. The ISBSG benchmark data is complete enough
to do this. Also, the data gathered by for-profit benchmark organizations
such as QPMG and SPR can do this, but there are logistical problems.

The logistical problems include the following: Some of the popular
development methods such as Agile and TSP use nonstandard metrics
such as story points, use-case points, ideal time, and task hours. The
data gathered using such metrics is incompatible with major industry
benchmarks, all of which are based on function point metrics and stan-
dard work periods.

Another logistical problem is that very few organizations that use some
of these newer methods have commissioned benchmarks by outside con-
sultants or used the ISBSG data questionnaires. Therefore, the effective-
ness of many software development methods is ambiguous and uncertain.

Project Management and Software Engineering 419

Conversion of data to function points and standard work periods is techni-
cally possible, but has not yet been performed by the Agile community or
most of the other methods that use nonstandard metrics.

Assessment benchmarks Software assessment has been available in
large companies such as IBM since the 1970s. IBM-style assessments
became popular when Watts Humphrey left IBM and created the assess-
ment method for the Software Engineering Institute (SEI) circa 1986.
By coincidence, the author also left IBM and created the Software
Productivity Research (SPR) assessment method circa 1984.

Software process assessments received a burst of publicity from the
publication of two books. One of these was Watts Humphrey’s book
Managing the Software Process (Addison Wesley, 1989), which describes
the assessment method used by the Software Engineering Institute (SEI).
A second book on software assessments was the author’s Assessment
and Control of Software Risks (Prentice Hall, 1994), which describes
the results of the assessment method used by Software Productivity
Research (SPR). Because both authors had been involved with software
assessments at IBM, the SEI and SPR assessments had some attributes
in common, such as a heavy emphasis on software quality.

Both the SEI and SPR assessments are similar in concept to medical
examinations. That is, both assessment approaches try to find every-
thing that is right and everything that may be wrong with the way
companies build and maintain software. Hopefully, not too much will be
wrong, but it is necessary to know what is wrong before truly effective
therapy programs can be developed.

By coincidence, both SPR and SEI utilize 5-point scales in evaluating
software performance. Unfortunately, the two scales run in opposite
directions. The SPR scale is based on a Richter scale, with the larger
numbers indicating progressively more significant hazards. The SEI
scale uses “1” as the most primitive score, and moves toward “5” as
processes become more rigorous. Following is the SEI scoring system,
and the approximate percentages of enterprises that have been noted
at each of the five levels.

SEI Scoring System for the Capability Maturity Model (CMM)

Definition Frequency

1 = Initial 75.0%

2 = Repeatable 15.0%

3 = Defined 7.0%

4 = Managed 2.5%

5 = Optimizing 0.5%

420 Chapter Six

As can be seen, about 75 percent of all enterprises assessed using the
SEI approach are at the bottom level, or “initial.” Note also that the SEI
scoring system lacks a midpoint or average.

A complete discussion of the SEI scoring system is outside the scope
of this book. The SEI scoring is based on patterns of responses to a set
of about 150 binary questions. The higher SEI maturity levels require
“Yes” answers to specific patterns of questions.

Following is the SPR scoring system, and the approximate percent-
ages of results noted within three industry groups: military software,
systems software, and management information systems software.

SPR Assessment Scoring System

Definition
Frequency
(Overall)

Military
Frequency

Systems
Frequency

MIS
Frequency

1 = Excellent 2.0% 1.0% 3.0% 1.0%

2 = Good 18.0% 13.0% 26.0% 12.0%

3 = Average 56.0% 57.0% 50.0% 65.0%

4 = Poor 20.0% 24.0% 20.0% 19.0%

5 = Very Poor 4.0% 5.0% 2.0% 3.0%

The SPR scoring system is easier to describe and understand. It is
based on the average responses to the 300 or so SPR questions on the
complete set of SPR assessment questionnaires.

By inversion and mathematical compression of the SPR scores, it is
possible to establish a rough equivalence between the SPR and SEI
scales, as follows:

SPR Scoring Range Equivalent SEI Score Approximate Frequency

5.99 to 3.00 1 = Initial 80.0%

2.99 to 2.51 2 = Repeatable 10.0%

2.01 to 2.50 3 = Defined 5.0%

1.01 to 2.00 4 = Managed 3.0%

0.01 to 1.00 5 = Optimizing 2.0%

The conversion between SPR and SEI assessment results is not per-
fect, of course, but it does allow users of either assessment methodology
to have an approximate indication of how they might have appeared
using the other assessment technique.

There are other forms of assessment too. For example, ISO quality
certification uses a form of software assessment, as do the SPICE and
TickIT approaches in Europe.

In general, software assessments are performed by outside consul-
tants, although a few organizations do have internal assessment experts.

Project Management and Software Engineering 421

For SEI-style assessments, a number of consulting groups are licensed
to carry out the assessment studies and gather data.

Hybrid assessment and benchmark studies Benchmark data shows pro-
ductivity and quality levels, but does not explain what caused them.
Assessment data shows the sophistication of software development
practices, or the lack of same. But assessments usually collect no quan-
titative data.

Obviously, assessment data and benchmark data are synergistic, and
both need to be gathered. The author recommends that a merger of
assessment and benchmark data would be very useful to the industry.
In fact the author’s own benchmarks are always hybrid and gather
assessment and benchmark data concurrently.

One of the key advantages of hybrid benchmarks is that the quantita-
tive data can demonstrate the economic value of the higher CMM and
CMMI levels. Without empirical benchmark data, the value of ascending
the CMMI from level 1 to level 5 is uncertain. But benchmarks do dem-
onstrate substantial productivity and quality levels for CMMI levels 3,
4, and 5 compared with levels 1 and 2.

The software industry would benefit from a wider consolidation of
assessment and benchmark data collection methods. The advantage of
the hybrid approach is that it minimizes the number of times managers
and technical personnel are interviewed or asked to provide informa-
tion. This keeps the assessment and benchmark data collection activi-
ties from being intrusive or interfering with actual day-to-day work.

Some of the kinds of data that need to be consolidated to get an over-
all picture of software within a large company or government group
include

 1. Demographic data on team sizes

 2. Demographic data on specialists

 3. Demographic data on colocation or geographic dispersion of teams

 4. Application size using several metrics (function points, story points,
LOC, etc.)

 5. Volumes of reusable code and other deliverables

 6. Rates of requirements change during development

 7. Data on project management methods

 8. Data on software development methods

 9. Data on software maintenance methods

10. Data on specific programming languages

11. Data on specific tool suites used

422 Chapter Six

12. Data on quality-control and testing methods

13. Data on defect potentials and defect removal efficiency levels

14. Data on security-control methods

15. Activity-level schedule, effort, and cost data

Hybrid assessment and benchmark data collection could gather all
of this kind of information in a fairly cost-effective and nonintrusive
fashion.

Earned-value benchmarks The earned-value method of comparing accu-
mulated effort and costs against predicted milestones and deliverables
is widely used on military software applications; indeed, it is a require-
ment for military contracts. However, outside of the defense community,
earned-value calculations are also used by some outsource contracts and
occasionally on internal applications.

Earned-value calculations are performed at frequent intervals, usu-
ally monthly, and show progress versus expense levels. The method is
somewhat specialized and the calculations are complicated, although
dozens of tools are available that can carry them out.

The earned-value approach by itself is not a true benchmark because
it has a narrow focus and does not deal with topics such as quality,
requirements changes, and other issues. However, the data that is col-
lected for the earned-value approach is quite useful for benchmark stud-
ies, and could also show correlations with assessment results such as
the levels of the capability maturity model integration (CMMI).

Quality and test coverage benchmarks Software quality is poorly rep-
resented in the public benchmark data offered by nonprofit organiza-
tions such as ISBSG (International Software Benchmarking Standards
Group). In fact, software quality is not very well done by the entire
software industry, including some major players such as Microsoft.

Companies such as IBM that do take quality seriously measure all
defects from requirements through development and out into the field.
The data is used to create benchmarks of two very important metrics:
defect potentials and defect removal efficiency. The term defect poten-
tials refers to the sum total of defects that are likely to be found in
software. The term defect removal efficiency refers to the percentage
of defects found and removed by every single review, inspection, static
analysis run, and test stage.

In addition, quality benchmarks may also include topics such as
complexity measured using cyclomatic and essential complexity; test
coverage (percentage of code actually touched by test cases); and defect
severity levels. There is a shortage of industry data on many quality
topics, such as bugs or errors in test cases themselves.

Project Management and Software Engineering 423

In general, the software industry needs more and better quality and
test coverage benchmarks. The test literature is very sparse with infor-
mation such as numbers of test cases, numbers of test runs, and defect
removal efficiency levels.

A strong caution about quality benchmarks is that “cost per defect”
is not a safe metric to use because it penalizes quality. The author
regards this metric as approaching professional malpractice. A better
metric for quality economics is that of defect removal cost per func-
tion point.

Cost of quality (COQ) benchmarks It is unfortunate that such an impor-
tant idea as the “cost of quality” has such an inappropriate name.
Quality is not only “free” as pointed out by Phil Crosby of ITT, but it
also has economic value. The COQ measure should have been named
something like the “cost of defects.” In any case, the COQ approach is
older than the software and computing industry and derives from a
number of pioneers such as Joseph Juran, W. Edwards Deming, Kaoru
Ishikawa, Genichi Taguchi, and others.

The traditional cost elements of COQ include prevention, appraisal,
and failure costs. While these are workable for software, software COQ
often uses cost buckets such as defect prevention, inspection, static
analysis, testing, and delivered defect repairs. The ideas are the same,
but the nomenclature varies to match software operations.

Many companies perform COQ benchmark studies of both software
applications and engineered products. There is a substantial literature
on this topic and dozens of reference books.

Six Sigma benchmarks “Six Sigma” is a mathematical expression that
deals with limiting defects to no more than 3.4 per 1 million opportuni-
ties. While this quantitative result appears to be impossible for software,
the philosophy of Six Sigma is readily applied to software.

The Six Sigma approach uses a fairly sophisticated and complex suite
of metrics to examine software defect origins, defect discovery methods,
defects delivered to customers, and other relevant topics. However, the
Six Sigma approach is also about using such data to improve both defect
prevention and defect detection.

A number of flavors of Six Sigma exist, but the most important flavor
circa 2009 is that of “Lean Six Sigma,” which attempts a minimalist
approach to the mathematics of defects and quality analysis.

The Six Sigma approach is not an actual benchmark in the tradi-
tional sense of the word. As commonly used, a benchmark is a discrete
collection of data points gathered in a finite period, such as collecting
data on 50 applications developed in 2009 by a telecommunications
company.

424 Chapter Six

The Six Sigma approach is not fixed in time or limited in number
of applications. It is a continuous loop of data collection, analysis, and
improvement that continues without interruption once it is initiated.

Although the ideas of Six Sigma are powerful and often effective,
there is a notable gap in the literature and data when Six Sigma is
applied to software. As of 2009, there is not a great deal of empirical data
that shows the application of Six Sigma raises defect removal efficiency
levels or lowers defect potentials.

The overall U.S. average for defect potentials circa 2009 is about 5.00
bugs per function point, while defect removal efficiency averages about
85 percent. This combination leaves a residue of 0.75 bug per function
point when software is delivered to users.

Given the statistical nature of Six Sigma metrics, it would be inter-
esting to compare all companies that use Lean Six Sigma or Six Sigma
for software against U.S. averages. If so, one might hope that defect
potentials would be much lower (say about 3.00 bugs per function point),
while removal efficiency was much higher (say greater than 95 percent).
Unfortunately, this kind of data is sparse and not yet available in suf-
ficient quantity for a convincing statistical study.

As it happens, one way of achieving Six Sigma for software would
be to achieve a defect removal efficiency rate of 99.999 percent, which
has actually never occurred. However, it would seem useful to compare
actual levels of defect removal efficiency against this Six Sigma theo-
retical target.

From a historical standpoint, defect removal efficiency calculations
did not originate in the Six Sigma domain, but rather seemed to origi-
nate in IBM, when software inspections were being compared with other
forms of defect removal activities in the early 1970s.

ISO quality benchmarks Organizations that needed certification for
the ISO 9000-9004 quality standards or for other newer relevant ISO
standards undergo an on-site examination of their quality methods
and procedures, and especially the documentation for quality control
approaches. This certification is a form of benchmark and actually is
fairly expensive to carry out. However, there is little or no empirical data
that ISO certification improves software quality in the slightest.

In other words, neither defect potentials nor defect removal efficiency
levels of ISO certified organizations seem to be better than similar
uncertified organizations. Indeed there is anecdotal evidence that aver-
age software quality for uncertified companies may be slightly higher
than for certified companies.

Security benchmarks With the exception of studies by Homeland
Security, the FBI, and more recently, the U.S. Congress, there is almost

Project Management and Software Engineering 425

a total absence of security benchmarks at the corporate level. As the
recession lengthens and security attacks increase, there is an urgent
need for security benchmarks that can measure topics such as the resis-
tance of software to attack; numbers of attacks per company and per
application; costs of security flaw prevention; costs of recovery from
security attacks and denial of service attacks; and evaluations of the
most effective forms of security protection.

The software journals do include benchmarks for antivirus and anti-
spyware applications and firewalls that show ease of use and viruses
detected or viruses let slip through. However, these benchmarks are
somewhat ambiguous and casual.

So far as can be determined, there are no known benchmarks on topics
such as the number of security attacks against Microsoft Vista, Oracle,
SAP, Linux, Firefox, Internet Explorer, and the like. It would be useful to
have monthly benchmarks on these topics. The lack of effective security
benchmarks is a sign that the software industry is not yet fully up to
speed on security issues.

Software personnel and skill benchmarks Software personnel and skills
inventory benchmarks in the context of software are a fairly new arrival
on the scene. Software has become one of the major factors in global
business. Some large corporations have more than 50,000 software per-
sonnel of various kinds, and quite a few companies have more than 2500.
Over and above the large numbers of workers, the total complement of
specific skills and occupation groups associated with software is now
approaching 90.

As discussed in earlier chapters, large enterprises have many dif-
ferent categories of specialists in addition to their general software
engineering populations: For example, quality assurance specialists,
integration and test specialists, human factors specialists, performance
specialists, customer support specialists, network specialists, database
administration specialists, technical communication specialists, main-
tenance specialists, estimating specialists, measurement specialists,
function point counting specialists, and many others.

There are important questions in the areas of how many specialists
of various kinds are needed, how they should be recruited, trained, and
perhaps certified in their area of specialization. There are also questions
dealing with the best way of placing specialists within the overall software
organization structures. Benchmarking in this domain involves collecting
information on how companies of various sizes in various industries deal
with the increasing need for specialization in an era of downsizing and
business process reengineering due to the continuing recession.

A new topic of increasing importance due to the recession is the
distribution of foreign software workers who are working in the

426 Chapter Six

United States on temporary work-related visas. This topic has recently
been in the press when it was noted that Microsoft and Intel were laying off
U.S. workers at a faster rate than they were laying off foreign workers.

Software compensation benchmarks Compensation benchmarks have
been used for more than 25 years for nonsoftware studies, and they soon
added software compensation to these partly open or blind benchmarks.

The way compensation benchmarks work is that many companies
provide data on the compensation levels that they pay to various workers
using standard job descriptions. A neutral consulting company analyzes
the data and reports back to each company. Each report shows how spe-
cific companies compare with group averages. In the partly open form,
the names of the other companies are identified but of course their actual
data is concealed. In the blind form, the number of participating compa-
nies is known, but none of the companies are identified. There are legal
reasons for having these studies carried out in blind or partly open forms,
which involve possible antitrust regulations or conspiracy charges.

Software turnover and attrition benchmarks This form of benchmark was
widely used outside of software before software became a major business
function. The software organizations merely joined in when they became
large enough for attrition to become an important issue.

Attrition and turnover benchmarks are normally carried out by
human resource organizations rather than software organizations.
They are classic benchmarks that are usually either blind or partly
open. Dozens or even hundreds of companies report their attrition
and turnover rates to a neutral outside consulting group, which then
returns statistical results to each company. Each company’s rate is
compared with the group, but the specific rates for the other partici-
pants are concealed.

There are also internal attrition studies within large corporations such
as IBM, Google, Microsoft, EDS, and the like. The author has had access
to some very significant data from internal studies. The most important
points were that software engineers with the highest appraisal scores
leave in the greatest numbers. The most common reason cited for leav-
ing in exit interviews is that good technical workers don’t like working
for bad managers.

Software performance benchmarks Software execution speed or perfor-
mance is one of the older forms of benchmark, and has been carried out
since the 1970s. These are highly technical benchmarks that consider
application throughput or execution speed for various kinds of situa-
tions. Almost every personal computer magazine has benchmarks for

Project Management and Software Engineering 427

topics such as graphics processing, operating system load times, and
other performance issues.

Software data center benchmarks This form of benchmark is probably
the oldest form for the computing and software industry and has been
carried out continuously since the 1960s. Data center benchmarks are
performed to gather information on topics such as availability of hard-
ware and software, mean time to failure of software applications, and
defect repair intervals. The new Information Technology Infrastructure
Library (ITIL) includes a host of topics that need to be examined so they
can be included in service agreements.

While data center benchmarks are somewhat separate from software
benchmarks, the two overlap because poor data center performance
tends to correlate with poor quality levels of installed software.

Customer satisfaction benchmarks Formal customer satisfaction surveys
have long been carried out by computer and software vendors such as
IBM, Hewlett-Packard, Unisys, Google, and some smaller companies,
too. These benchmark studies are usually carried out by the market-
ing organization and are used to suggest improvements in commercial
software packages.

There are some in-house benchmarks of customer satisfaction within
individual companies such as insurance companies that have thousands
of computer users. These studies may also be correlated to data center
benchmarks.

Software usage benchmarks As software becomes an important business
and operational tool, it is obvious that software usage tends to improve
the performance of various kinds of knowledge work and clerical work.
In fact, prior to the advent of computers, the employment patterns of
insurance companies included hundreds of clerical workers who han-
dled applications, claims, and other clerical tasks. Most of these were
displaced by computer software, and as a result the demographics of
insurance companies changed significantly.

Function point metrics can be used to measure consumption of soft-
ware just as well as they can measure production of software. Although
usage benchmarks are rare in 2009, they are likely to grow in impor-
tance as the recession continues.

Usage benchmarks of software project managers, for example, indi-
cate that managers who are equipped with about 3000 function points
of cost estimating tools and 3000 function points of project management
tools have fewer failures and shorter schedules for their projects than
managers who attempt estimating and planning by hand.

428 Chapter Six

Usage studies also indicate that many knowledge workers who are
well equipped with software outperform colleagues who are not so well
equipped. This is true for knowledge work such as law, medicine, and
engineering, and also for work where data plays a significant role such
as marketing, customer support, and maintenance.

Software consumption benchmark studies are just getting started
circa 2009, but are likely to become major forms of benchmarks within
ten years, especially if the recession continues.

Software litigation and failure benchmarks In lawsuits for breach of con-
tract, poor quality, fraud, cost overruns, or project failure, benchmarks
play a major role. Usually in such cases software expert witnesses are
hired to prepare reports and testify about industry norms for topics
such as quality control, schedules costs, and the like. Industry experts
are also brought in for tax cases if the litigation involves the value or
replacement costs of software assets.

The expert reports produced for lawsuits attempt to compare the
specifics of the case against industry background data for topics such
as defect removal efficiency levels, schedules, productivity, costs, and
the like.

The one key topic where litigation is almost unique in gathering
data is that of the causes of software failure. Most companies that have
internal failures don’t go to court. But failures where the software was
developed under contract go to court with high frequency. These law-
suits have extensive and thorough discovery and deposition phases, so
the expert witnesses who work on such cases have access to unique data
that is not available from any other source.

Benchmarks based on litigation are perhaps the most complete source
of data on why projects are terminated, run late, exceed their budgets,
or have excessive defect volumes after release.

Award benchmarks There are a number of organizations that offer
awards for outstanding performance. For example, the Baldrige Award
is well known for quality and customer service. The Forbes Annual issue
on the 100 best companies to work for is another kind of award. J.D.
Power and Associates issues awards for various kinds of service and
support excellence. For companies that aspire to “best in class” status,
a special kind of benchmark can be carried out dealing with the criteria
of the Baldrige Awards.

If a company is a candidate for some kind of award, quite a bit of work
is involved in collecting the necessary benchmark information. However,
only fairly sophisticated companies that are actually doing a good job
are likely to have such expenses.

Project Management and Software Engineering 429

As of 2009, probably at least a dozen awards are offered by vari-
ous corporations, government groups, and software journals. There are
awards for customer service, for high quality, for innovative applica-
tions, and for many other topics as well.

Types of Software Benchmark
Studies Performed

There are a number of methodologies used to gather the data for bench-
mark studies. These include questionnaires that are administered by
mail or electronic mail, on-site interviews, or some combination of
mailed questionnaires augmented by interviews.

Benchmarking studies can also be “open” or “blind” in terms of
whether the participants know who else has provided data and infor-
mation during the benchmark study.

Open benchmarks In a fully open study, the names of all participating
organizations are known, and the data they provide is also known. This
kind of study is difficult to do between competitors, and is normally
performed only for internal benchmark studies of the divisions and
locations within large corporations.

Because of corporate politics, the individual business units within a
corporation will resist open benchmarks. When IBM first started software
benchmarks, there were 26 software development labs, and each lab man-
ager claimed that “our work is so complex that we might be penalized.”
However, IBM decided to pursue open benchmarks, and that was a good
decision because it encouraged the business unit to improve.

Partly open benchmarks One of the common variations of an open study
is a limited benchmark, often between only two companies. In a two-com-
pany benchmark, both participants sign fairly detailed nondisclosure
agreements, and then provide one another with very detailed informa-
tion on methods, tools, quality levels, productivity levels, schedules, and
the like. This kind of study is seldom possible for direct competitors, but
is often used for companies that do similar kinds of software but operate
in different industries, such as a telecommunications company sharing
data with a computer manufacturing company.

In partly open benchmark studies, the names of the participating
organizations are known, even though which company provided specific
points of data is concealed. Partly open studies are often performed
within specific industries such as insurance, banking, telecommuni-
cations, and the like. In fact, studies of this kind are performed for a
variety of purposes besides software topics. Some of the other uses of
partly open studies include exploring salary and benefit plans, office

430 Chapter Six

space arrangements, and various aspects of human relations and
employee morale.

An example of a partly open benchmark is a study of the productivity
and quality levels of insurance companies in the Hartford, Connecticut,
area where half a dozen are located. All of these companies are com-
petitors, and all are interested in how they compare with the others.
Therefore, a study gathered data from each and reported back on how
each company compared with the averages derived from all of the com-
panies. But information on how a company such as Hartford Insurance
compared with Aetna or Travelers would not be provided.

Blind benchmarks In blind benchmark studies, none of the participants
know the names of the other companies that participate. In extreme
cases, the participants may not even know the industries from which
the other companies were drawn. This level of precaution would only
be needed if there were very few companies in an industry, or if the
nature of the study demanded extraordinary security measures, or if
the participants are fairly direct competitors.

When large corporations first start collecting benchmark data, it is
obvious that the top executives of various business units will be con-
cerned. They all have political rivals, and no executive want his or her
business unit to look worse than a rival business unit. Therefore, every
executive will want blind benchmarks that conceal the results of spe-
cific units. This is a bad mistake, because nobody will take the data
seriously.

For internal benchmark and assessment studies within a company,
it is best to show every unit by name and let corporate politics serve as
an incentive to improve. This brings up the important point that bench-
marks have a political aspect as well as a technical aspect.

Since executives and project managers have rivals, and corporate
politics are often severe, nobody wants to be measured unless they are
fairly sure the results will indicate that they are better than average,
or at least better than their major political opponents.

Benchmark Organizations Circa 2009

A fairly large number of consulting companies collect benchmark data of
various kinds. However, these consulting groups tend to be competitors,
and therefore it is difficult to have any kind of coordination or consolida-
tion of benchmark information.

As it happens, three of the more prominent benchmark organizations do
collect activity-level data in similar fashions: The David Consulting Group,
Quality and Productivity Management Group (QPMG), and Software
Productivity Research (SPR). This is due to the fact the principals for all

Project Management and Software Engineering 431

three organizations have worked together in the past. However, although
the data collection methods are similar, there are still some differences.
But the total volume of data among these three is probably the largest
collection of benchmark data in the industry. Table 6-13 shows examples
of software benchmark organizations.

For all of these 20 examples of benchmark organizations, IFPUG
function points are the dominant metric, followed by COSMIC function
points as a distant second.

Reporting Methods for Benchmark
and Assessment Data

Once assessment and benchmark data has been collected, two interest-
ing questions are who gets to see the data, and what is it good for?

Normally, assessment and benchmarks are commissioned by an exec-
utive who wants to improve software performance. For example, bench-
marks and assessments are sometimes commissioned by the CEO of a
corporation, but more frequently by the CIO or CTO.

The immediate use of benchmarks and assessments is to show the
executive who commissioned the study how the organization compares

TABLE 6-13 Examples of Software Benchmark Organizations

 1. Business Applications Performance Corporation (BAPco)

 2. Construx

 3. David Consulting Group

 4. Forrester Research

 5. Galorath Associates

 6. Gartner Group

 7. Information Technology Metrics and Productivity Institute (ITMPI)

 8. International Software Benchmarking Standards Group (ISBSG)

 9. ITABHI Corporation

10. Open Standards Benchmarking Collaborative (OSBC)

11. Process Fusion

12. Quality and Productivity Management Group (QPMG)

13. Quality Assurance Institute (QAI)

14. Quality Plus

15. Quantitative Software Management (QSM)

16. Software Engineering Institute (SEI)

17. Software Productivity Research (SPR)

18. Standard Performance Evaluation Corporation (SPEC)

19. Standish Group

20. Total Metrics

432 Chapter Six

against industry data. The topics of interest at the executive level
include

Benchmark Contents (standard benchmarks)

Number of projects in benchmark sample

Country and industry identification codes

Application sizes

Methods and tool used

Growth rate of changing requirements

Productivity rates by activity

Net productivity for entire project

Schedules by activity

Net schedule for entire project

Staffing levels by activity

Specialists utilized

Average staff for entire project

Effort by activity

Total effort for entire project

Costs by activity

Total costs for entire project

Comparison to industry data

Suggestions for improvements based on data

Once an organization starts collecting assessment and benchmark
data, they usually want to improve. This implies that data collection
will be an annual event, and that the data will be used as baselines to
show progress over multiple years.

When improvement occurs, companies will want to assemble an
annual baseline report that shows progress for the past year and the
plans for the next year. These annual reports are produced on the same
schedule as corporate annual reports for shareholders; that is, they are
created in the first quarter of the next fiscal year.

The contents for such an annual report would include

Annual Software Report for Corporate Executives and Senior Management

CMMI levels by business group

Completed software projects by type

IT applications

Project Management and Software Engineering 433

Systems software

Embedded applications

Commercial packages

Other (if any)

Cancelled software projects (if any)

Total costs of software in current year

Unbudgeted costs in current year

Litigation

Denial of service attacks

Malware attacks and recovery

Costs by type of software

Costs of development versus maintenance

Customer satisfaction levels

Employee morale levels

Average productivity

Ranges of productivity

Average quality

Discovered defects during development

Delivered defects reported by clients in 90 days

Cost of quality (COQ) for current year

Comparison of local results to ISBSG and other external benchmarks

Most of the data in the annual report would be derived from assess-
ment and benchmark studies. However, a few topics such as those deal-
ing with security problems such as denial of service attacks are not part
of either standard benchmarks or standard assessments. They require
special studies.

Summary and Conclusions

Between about 1969 and today in 2009, software applications have
increased enormously in size and complexity. In 1969, the largest appli-
cations were fewer than 1000 function points, while in 2009, they top
100,000 function points in size.

In 1969, programming or coding was the major activity for software
applications and constituted about 90 percent of the total effort. Most
applications used only a single programming language. The world total

434 Chapter Six

of programming languages was fewer than 25. Almost the only spe-
cialists in 1969 were technical writers and perhaps quality assurance
workers.

Today in 2009, coding or programming is less than 40 percent of the
effort for large applications, and the software industry now has more
than 90 specialists. More than 700 programming languages exist, and
almost every modern application uses at least two programming lan-
guages; some use over a dozen.

As the software industry increased in numbers of personnel, size of
applications, and complexity of development, project management fell
behind. Today in 2009, project managers are still receiving training that
might have been effective in 1969, but it falls short of what is needed in
today’s more complicated world.

Even worse, as the recession increases in severity, there is an urgent
need to lower software costs. Project managers and software engineers
need to have enough solid empirical data to evaluate and understand
every single cost factor associated with software. Unfortunately, poor mea-
surement practices and a shortage of solid data on quality, security, and
costs have put the software industry in a very bad economic position.

Software costs more than almost any other manufactured product;
it is highly susceptible to security attacks; and it is filled with bugs or
defects. Yet due to the lack of reliable benchmark and quality data, it is
difficult for either software engineers or project managers to deal with
these serious problems effectively.

The software industry needs better quality, better security, lower
costs, and shorter schedules. But until solid empirical data is gathered
on all important projects, both software engineers and project manag-
ers will not be able to plan effective solutions to industrywide problems.
Many process improvement programs are based on nothing more than
adopting the methodology du jour, such as Agile in 2009, without any
empirical data on whether it will be effective. Better measurements and
better benchmarks are the keys to software success.

Readings and References

Abran, Alain and Reiner R. Dumke. Innovations in Software Measurement. Aachen,
Germany: Shaker-Verlag, 2005.

Abran, Alain, Manfred Bundschuh, Reiner Dumke, Christof Ebert, and Horst Zuse.
Software Measurement News, Vol. 13, No. 2, Oct. 2008.

Boehm, Dr. Barry. Software Engineering Economics. Englewood Cliffs, NJ: Prentice
Hall, 1981.

Booch, Grady. Object Solutions: Managing the Object-Oriented Project. Reading, MA:
Addison Wesley, 1995.

Brooks, Fred. The Mythical Man-Month. Reading, MA: Addison Wesley, 1974, rev. 1995.
Bundschuh, Manfred and Carol Dekkers. The IT Measurement Compendium. Berlin:

Springer-Verlag, 2008.

Project Management and Software Engineering 435

Capability Maturity Model Integration. Version 1.1. Software Engineering Institute,
Carnegie-Mellon Univ., Pittsburgh, PA. March 2003. www.sei.cmu.edu/cmmi/

Charette, Bob. Application Strategies for Risk Management. New York: McGraw-Hill,
1990.

Charette, Bob. Software Engineering Risk Analysis and Management. New York:
McGraw-Hill, 1989.

Cohn, Mike. Agile Estimating and Planning. Englewood Cliffs, NJ: Prentice Hall PTR,
2005.

DeMarco, Tom. Controlling Software Projects. New York: Yourdon Press, 1982.
Ebert, Christof and Reiner Dumke. Software Measurement: Establish, Extract,

Evaluate, Execute. Berlin: Springer-Verlag, 2007.
Ewusi-Mensah, Kweku. Software Development Failures. Cambridge, MA: MIT Press,

2003.
Galorath, Dan. Software Sizing, Estimating, and Risk Management: When Performance

is Measured Performance Improves. Philadelphia: Auerbach Publishing, 2006.
Garmus, David and David Herron. Function Point Analysis—Measurement Practices for

Successful Software Projects. Boston: Addison Wesley Longman, 2001.
Garmus, David and David Herron. Measuring the Software Process: A Practical Guide

to Functional Measurement. Englewood Cliffs, NJ: Prentice Hall, 1995.
Glass, R.L. Software Runaways: Lessons Learned from Massive Software Project

Failures. Englewood Cliffs, NJ: Prentice Hall, 1998.
Harris, Michael, David Herron, and Stacia Iwanicki. The Business Value of IT:

Managing Risks, Optimizing Performance, and Measuring Results. Boca Raton, FL:
CRC Press (Auerbach), 2008.

Humphrey, Watts. Managing the Software Process. Reading, MA: Addison Wesley, 1989.
International Function Point Users Group (IFPUG). IT Measurement—Practical Advice

from the Experts. Boston: Addison Wesley Longman, 2002.
Johnson, James, et al. The Chaos Report. West Yarmouth, MA: The Standish Group, 2000.
Jones, Capers. Assessment and Control of Software Risks. Englewood Cliffs, NJ:

Prentice Hall, 1994.
Jones, Capers. Estimating Software Costs. New York: McGraw-Hill, 2007.
Jones, Capers. Patterns of Software System Failure and Success. Boston: International

Thomson Computer Press, December 1995.
Jones, Capers. Program Quality and Programmer Productivity. IBM Technical Report

TR 02.764, IBM. San Jose, CA. January 1977.
Jones, Capers. Programming Productivity. New York: McGraw-Hill, 1986.
Jones, Capers. Software Assessments, Benchmarks, and Best Practices. Boston: Addison

Wesley Longman, 2000.
Jones, Capers. “Software Project Management Practices: Failure Versus Success.”

CrossTalk, Vol. 19, No. 6 (June 2006): 4–8.
Jones, Capers. “Why Flawed Software Projects are not Cancelled in Time.” Cutter IT

Journal, Vol. 10, No. 12 (December 2003): 12–17.
Laird, Linda M. and Carol M. Brennan. Software Measurement and Estimation: A

Practical Approach. Hoboken, NJ: John Wiley & Sons, 2006.
McConnell, Steve. Software Estimating: Demystifying the Black Art. Redmond, WA:

Microsoft Press, 2006.
Park, Robert E., et al. Checklists and Criteria for Evaluating the Costs and Schedule

Estimating Capabilities of Software Organizations. Technical Report CMU/SEI 95-
SR-005. Pittsburgh, PA: Software Engineering Institute, January 1995.

Park, Robert E., et al. Software Cost and Schedule Estimating—A Process Improvement
Initiative. Technical Report CMU/SEI 94-SR-03. Pittsburgh, PA: Software
Engineering Institute, May 1994.

Parthasarathy, M.A. Practical Software Estimation—Function Point Metrics for
Insourced and Outsourced Projects. Upper Saddle River, NJ: Infosys Press, Addison
Wesley, 2007.

Putnam, Lawrence H. and Ware Myers. Industrial Strength Software—Effective
Management Using Measurement. Los Alamitos, CA: IEEE Press, 1997.

Putnam, Lawrence H. Measures for Excellence – Reliable Software On Time, Within
Budget. Englewood Cliffs, NJ: Yourdon Press, Prentice Hall, 1992.

436 Chapter Six

Roetzheim, William H. and Reyna A. Beasley. Best Practices in Software Cost and
Schedule Estimation. Saddle River, NJ: Prentice Hall PTR, 1998.

Stein, Timothy R. The Computer System Risk Management Book and Validation Life
Cycle. Chico, CA: Paton Press, 2006.

Strassmann, Paul. Governance of Information Management: The Concept of an
Information Constitution, Second Edition. (eBook). Stamford, CT: Information
Economics Press, 2004.

Strassmann, Paul. Information Payoff. Stamford, CT: Information Economics Press,
1985.

Strassmann, Paul. Information Productivity. Stamford, CT: Information Economics
Press, 1999.

Strassmann, Paul. The Squandered Computer. Stamford, CT: Information Economics
Press, 1997.

Stukes, Sherry, Jason Deshoretz, Henry Apgar, and Ilona Macias. Air Force Cost
Analysis Agency Software Estimating Model Analysis. TR-9545/008-2. Contract
F04701-95-D-0003, Task 008. Management Consulting & Research, Inc. Thousand
Oaks, CA. September 30 1996.

Stutzke, Richard D. Estimating Software-Intensive Systems. Upper Saddle River, NJ:
Addison Wesley, 2005.

Symons, Charles R. Software Sizing and Estimating—Mk II FPA (Function Point
Analysis). Chichester, UK: John Wiley & Sons, 1991.

Wellman, Frank. Software Costing: An Objective Approach to Estimating and
Controlling the Cost of Computer Software. Englewood Cliffs, NJ: Prentice Hall,
1992.

Whitehead, Richard. Leading a Development Team. Boston: Addison Wesley, 2001.
Yourdon, Ed. Death March—The Complete Software Developer’s Guide to Surviving

“Mission Impossible” Projects. Upper Saddle River, NJ: Prentice Hall PTR, 1997.
Yourdon, Ed. Outsource: Competing in the Global Productivity Race. Englewood Cliffs,

NJ: Prentice Hall PTR, 2005.

437

Chapter

 7
Requirements, Business

Analysis, Architecture, Enterprise
Architecture, and Design

Introduction

Before any code can be created for a software application, it is neces-
sary to define the features, scope, structure, and user interfaces that
will be developed. It is also necessary to define the methods of delivery
of those features, and the platforms on which the application will oper-
ate. In addition, targets and goals for the application must be defined
in terms of performance, security, reliability, and a number of other
topics. These various issues are spread among a number of documents
and plans that include requirements, business analysis, architecture,
and design. Each of these can be subset into several topical segments
and subdocuments.

Although a number of templates and models exist for each kind of
document, no methods have proven to be totally successful. Even after
more than 60 years of software, a number of common problems still
occur for almost all major software applications:

 1. Requirements grow and change at rates in excess of 1 percent per
calendar month.

 2. Few applications include greater than 80 percent of user require-
ments in the first release.

 3. Some requirements are dangerous or “toxic” and should not be
included.

437

438 Chapter Seven

 4. Some applications are overstuffed with extraneous features no one
asked for.

 5. Most software applications are riddled with security vulnerabilities.

 6. Errors in requirements and design cause many high-severity
bugs.

 7. Effective methods such as requirement and design inspections are
seldom used.

 8. Standard, reusable requirements and designs are not widely
available.

 9. Mining legacy applications for “lost” business requirements seldom
occurs.

10. The volume of paper documents may be too large for human under-
standing.

These ten problems are endemic to the software industry. Unlike the
design of physical structures such as aircraft, boats, buildings, or medi-
cal equipment, software does not utilize effective and proven design
methods and standard document formats. In other words, if a reader
picks up the requirements or specifications for two different software
applications, the contents and format are likely to be very different.
These differences make validation difficult because without standard
and common structures, there are far too many variations to allow easy
editing or error identification. Automated verification of requirements
and design are theoretically possible, but beyond the state of the art as
of 2009. Formal inspections of requirements and other documents are
effective, but of course manual inspections are slower than automated
verification.

There are also numerous “languages” for representing requirement
and design features. These include use-cases, user stories, decision
tables, fishbone diagrams, state-change diagrams, entity-relationship
diagrams, executable English, normal English, the unified modeling
language (UML), and perhaps 30 other flavors of graphical representa-
tion (flowcharts, Nassi-Schneiderman charts, data-flow diagrams, HIPO
diagrams, etc.). For quality requirements, there are also special dia-
grams associated with quality function deployment (QFD).

The existence of so many representation techniques indicates that
no perfect representation method has yet been developed. If any one of
these methods were clearly superior to the others, then no doubt it would
become a de facto standard used for all software projects. So far as can
be determined, no representation method is used by more than perhaps
10 percent of software applications. In fact, most software applications
utilize multiple representation methods because none is fully adequate

Requirements, Analysis, Architecture, and Design 439

for all business and technical purposes. Therefore, combinations of text
and graphical representations in the form of use-cases, flowcharts, and
other diagrams are the most common approach.

In this chapter, we will be dealing with some of the many variations in
methods for handling software requirements, business analysis, archi-
tecture, and design.

Software Requirements

If software engineering is to become a true profession rather than an art
form, software engineers have a responsibility to help customers define
requirements in a thorough and effective manner.

It is the job of a professional software engineer to insist on effective
requirements methods such as joint application design (JAD), quality
function deployment (QFD), and requirements inspections. It is also the
responsibility of software engineers to alert clients to any potentially
harmful requirements.

Far too often the literature on software requirements is passive and
makes the incorrect assumption that users will be 100 percent effec-
tive in identifying requirements. This is a dangerous assumption. User
requirements are never complete and they are often wrong. For a soft-
ware project to succeed, requirements need to be gathered and analyzed
in a professional manner, and software engineering is the profession
that should know how to do this well.

It should be the responsibility of the software engineers to insist that
proper requirements methods be used. These include data mining of
legacy applications, joint application design (JAD), quality function
deployment (QFD), prototypes, and requirements inspections. Another
method that benefits requirements such as embedded users (as with
Agile development). Use-cases might also be recommended.

The users of software applications are not software engineers and
cannot be expected to know optimal ways of expressing and analyzing
requirements. Ensuring that requirements collection and analysis are
at state-of-the-art levels devolves to the software engineering team.

Today in 2009, almost half of all major applications are replacements
for aging legacy applications, some of which have been in use for more
than 25 years. Unfortunately, legacy applications seldom have current
specifications or requirements documents available.

Due to the lack of available information about the features and func-
tions of the prior legacy application, a new form of requirements analy-
sis is coming into being. This new form starts by data mining of the
legacy application in order to extract business rules and algorithms. As
it happens, data mining can also be used to gather data for sizing, in
terms of both function points and code statements.

440 Chapter Seven

Structure and Contents of Software
Requirements

Software requirements obviously describe the key features and functions
that a software application will contain. But requirements specifica-
tions also serve other business purposes. For example, the requirements
should also discuss any limits or constraints on the software, such as
performance criteria, reliability criteria, security criteria, and the like.

The costs and schedules of building software applications are strongly
influenced by the size of the application in terms of the total require-
ments set that will be implemented. Therefore, requirements are the
primary basis of ascertaining software size.

By fortunate coincidence, the structure of the function point metric
is a good match to the fundamental issues that should be included in
software requirements. In chronological order, these seven fundamen-
tal topics should be explored as part of the requirements gathering
process:

 1. The outputs that should be produced by the application

 2. The inputs that will enter the software application

 3. The logical files that must be maintained by the application

 4. The entities and relationships that will be in the logical files of the
application

 5. The inquiry types that can be used with the application

 6. The interfaces between the application and other systems

 7. Key algorithms that must be present in the application

Five of these seven topics are the basic elements of the International
Function Point Users Group (IFPUG) function point metric.

The fourth topic, “entities and relationships,” is part of the British
Mark II function point metric and the newer COSMIC function point.

The seventh topic, “algorithms,” is a standard factor of the feature
point metric, which added a count of algorithms to the five basic func-
tion point elements used by IFPUG.

The similarity between the topics that need to be examined when
gathering requirements and those used by the functional metrics makes
the derivation of function point totals during requirements a fairly
straightforward task. In fact, automated creation of function point size
from requirements has been accomplished experimentally, although this
is not yet commonplace.

However, 30 additional topics also need to be explored and decided
during the requirements phase. Some of these are nonfunctional require-
ments, and some are business requirements needed to determine whether

Requirements, Analysis, Architecture, and Design 441

funding should be provided for the application. These additional topics
include

 1. The size of the application in function points and source code

 2. The schedule of the application from requirements to delivery

 3. The staffing of the development team, including key specialists

 4. The cost of the application by activity and also in terms of cost per
function point

 5. The business value of the application and return on investment
(ROI)

 6. The nonfinancial value, such as competitive advantages and cus-
tomer loyalty

 7. The major risks facing the application, that is, termination, delays,
overruns, and so on

 8. The features of competitive applications by business rivals

 9. The method of delivery, such as SOA, SaaS, disks, downloads, and
so on

10. The supply chain of the application, or related applications upstream
or downstream

11. The legacy requirements derived from older applications being
replaced

12. The laws and regulations that impact the application (i.e., tax laws;
privacy, etc.)

13. The quality levels in terms of defects, reliability, and ease of use
criteria

14. The error-handling features in case of user errors or power outages,
and so on

15. The warranty terms of the application and responses to warranty
claims

16. The hardware platform(s) on which the application will operate

17. The software platform(s), such as operating systems and databases

18. The nationalization criteria, or the number of foreign language
versions

19. The security criteria for the application and its companion databases

20. The performance criteria, if any, for the application

21. The training requirements or form of tutorial materials that may
be needed

442 Chapter Seven

22. The installation procedures for starting and initializing the applica-
tion

23. The reuse criteria for the application in terms of both reused mate-
rials going into the application and also whether features of the
application may be aimed at subsequent reuse by downstream
applications

24. The use cases or major tasks users are expected to be able to per-
form via the application

25. The control flow or sequence of information moving through the
application

26. Possible future requirements for follow-on releases

27. The hazard levels of any requirements that might be potentially
“toxic”

28. The life expectancy of the application in terms of service life once
deployed

29. The projected total cost of ownership (TCO) of the application

30. The release frequency for new features and repairs (annually,
monthly, etc.)

The seven primary topics and the 30 supplemental topics are not the
only items that need to be examined during requirements, but none of
these should be omitted, since they can all significantly affect software
projects.

Most of these 37 topics are needed for many different kinds of appli-
cations: commercial packages, in-house applications, outsource applica-
tions, defense projects, systems software, and embedded applications.

Statistical Analysis of Software
Requirements

From analyzing thousands of software applications in hundreds of compa-
nies, the author has noted some basic facts about software requirements.

As software applications grow larger, the volume of software require-
ments also grows larger. However, the growth in requirements cannot
keep pace with the growth of the software itself. As a result, the larger
the application, the less complete the requirements are.

The fact that software requirements are incomplete for large soft-
ware applications leads to the phenomenon of continuous requirements
change at rates between 1 percent and 3 percent per calendar month.

Requirements may contain hundreds of bugs or defects. These are
difficult to remove via testing, but can be found by means of formal
requirement inspections.

Requirements, Analysis, Architecture, and Design 443

Requirements are translated into designs, and designs are translated
into code. A study by the author at IBM found that at each translation
point, 10 percent to 15 percent of the requirements do not make it down-
stream into the next stage, at least initially.

In addition to creeping requirements instituted by users, which pre-
sumably have some business value, a surprising number of changes
are added by developers, without any formal requirements or even any
apparent need on the part of users. For some applications, more than
7 percent of the delivered functions were added by the developers, some-
times without the users even being aware of them. The topic of sponta-
neous and unsolicited change is seldom discussed in the requirements
literature. (When developers were asked why they did this, the most
common response was “I thought it might be useful.”)

In aggregate, about 15 percent of initial user requirements are miss-
ing from the formal requirements documents and show up as creeping
requirements later on. At each translation point from requirements to
some other deliverable such as design or code, about 10 percent of the
requirements accidentally drop out and have to be added back in later
or in subsequent releases. As mentioned, developers spontaneously add
features without any user requirements asking for them, and sometimes
even without the knowledge of the users. Perhaps 7 percent of delivered
features are in the form of unsolicited developer-added features that
lack any customer requirements, although some of these may turn out
to be useful. In addition to unplanned growth and unplanned loss of
requirements, some requirements are toxic or harmful, while many may
contain errors ranging from high severity to low severity.

In theory, some kinds of requirements such as executable English
could use static analysis or some form of automated validation, but to
date this approach is experimental.

Some software requirements may be toxic or cause serious harm if
they are not removed. A prime example of a toxic requirement is the
famous Y2K problem. Another example of a toxic requirement is the file-
handling protocol of the Quicken financial application. If backup files
are opened instead of being restored, then data integrity can be lost.
A very common toxic requirement in many applications is the failure to
accommodate people with three names. Yet another toxic requirement is
the poor error-handling routines in many software applications, which
have become the preferred route for virus and spyware infections. The
bottom line is that the traditional definition of quality as “conformance
to requirements” is not safe because of the presence of so many serious
toxic requirements.

At this point it is interesting to look at information about the size of
software requirements, and also about the numbers of bugs or defects
that might be in software requirements.

444 Chapter Seven

Table 7-1 shows the approximate size of software requirements in terms
of pages per function point. The metric used is that of the International
Function Point Users Group (IFPUG), counting rules version 4.2. Five
different requirement “languages” are shown in Table 7-1.

Note that for Table 7-1 and the other tables in this chapter, no data
is available for “user stories” for applications in the 10,000 to 100,000–
function point range. This is because the Agile methods are not used
for such large applications, or at least have not reported any results to
benchmark organizations.

The most important fact that Table 7-1 reveals is that the size of
requirements peaks at about 1000 function points. For large applica-
tions, the volume of paper documents would grow too large to read if
100 percent of requirements were documented.

Table 7-2 extends the results from Table 7-1 and shows the approximate
total quantity of pages in the requirements for each of the five methods.

As can be seen, large systems have an enormous volume of pages for
requirements, and yet they are not complete. In fact, if requirements were
100 percent complete for a large application in the 100,000–function point
size range, it would take more than 2500 days, or almost seven years, to
read them! It is obvious that such a mass of paper is unmanageable.

Table 7-3 extends the logic derived from Table 7-2 and shows the
approximate completeness of software requirements.

Function
Points

English
Text

Exec.
English

Use-
Cases

UML
Diagrams

User
Stories Average

10 0.40 0.35 0.50 1.00 0.35 0.52

100 0.50 0.45 0.60 1.10 0.40 0.61

1,000 0.55 0.50 0.70 1.15 0.45 0.67

10,000 0.40 0.45 0.60 0.80 0.00 0.56

100,000 0.30 0.40 0.50 0.75 0.00 0.49

Average 0.43 0.43 0.58 0.96 0.40 0.56

TABLE 7-1 Requirements Pages per Function Point

Function
Points

English
Text

Exec.
English

Use-
Cases

UML
Diagrams

User
Stories Average

10 4 4 5 10 4 5

100 50 45 60 110 40 61

1,000 550 500 700 1,150 450 670

10,000 4,000 4,500 6,000 8,000 0 4,500

100,000 30,000 40,000 50,000 75,000 0 48,750

Average 6,921 9,010 11,353 16,854 165 8,860

TABLE 7-2 Requirement Pages Produced by Application Size

Requirements, Analysis, Architecture, and Design 445

As can be seen from Table 7-3, completeness of requirements declines
as software size goes up. This explains why creeping requirements are
endemic within the software industry. It is doubtful if any requirement
method or language could really reach 100 percent for large applications.

Table 7-4 shows the approximate numbers of requirements defects
per function point observed in applications of various sizes, using vari-
ous languages.

While the size of software requirement specifications goes down as
application size goes up, the same is not true for requirements bugs or
defects. The larger the application, the more requirement bugs there
are likely to be.

However, note that these tables show only approximate average
results. Many defect prevention methods such as joint application
design (JAD), prototypes, and participation in formal inspections can
lower these typical results by more than 60 percent.

Table 7-5 extends the results of Table 7-4 and shows the approximate
numbers of requirements defects that are likely to occur by application
size. For large applications, the numbers are alarming and cry out for
using state-of-the-art defect prevention and removal methods.

Note that these defects are of all severity levels. Only a small fraction
would generate serious problems. But with thousands of latent defects in
requirements, it is obvious that formal inspections and other methods of

Function
Points

English
Text

Exec.
English

Use-
Cases

UML
Diagrams

User
Stories Average

10 98.00% 99.00% 96.00% 99.00% 93.00% 97.00%

100 95.00% 96.00% 95.00% 97.00% 90.00% 94.60%

1,000 90.00% 93.00% 90.00% 95.00% 87.00% 91.00%

10,000 77.00% 90.00% 82.00% 90.00% 0.00% 84.75%

100,000 62.00% 83.00% 74.00% 80.00% 0.00% 74.75%

Average 84.40% 92.20% 87.40% 92.20% 90.00% 88.42%

TABLE 7-3 Requirements Completeness by Software Size

Function
Points

English
Text

Exec.
English

Use-
Cases

UML
Diagrams

User
Stories Average

10 0.52 0.46 0.65 1.30 0.48 0.68

100 0.57 0.50 0.80 1.46 0.53 0.77

1,000 0.60 0.55 0.98 1.61 0.63 0.87

10,000 0.70 0.60 1.20 1.60 0.00 1.03

100,000 0.72 0.65 1.10 1.65 0.00 1.03

Average 0.62 0.55 0.95 1.52 0.55 0.88

TABLE 7-4 Requirements Defects per Function Point

446 Chapter Seven

requirement defect removal should be standard practices for all applica-
tions larger than 1000 function points.

Because the numbers in Table 7-5 are so large and alarming, Table 7-6
shows only the most serious or “toxic” defects that are likely to occur.

The defects shown in Table 7-6 are harmful problems such as the
Y2K problem that cause problems for users and that trigger expensive
repairs when they finally surface and are identified.

The bottom line is that requirements cannot be complete for large
applications above 10,000 function points. At least they never have been
complete.

In addition, there will be requirements defects, and a fraction of
requirements defects will cause serious harm. Much more study is
needed of requirements defects, defect prevention, and defect removal.

One topic requiring additional study is how many people are involved
in the requirements process. Customers have “assignment scopes” of
about 5000 function points. That reflects the normal quantity of soft-
ware features that one user knows well enough to define what is needed.
The range of user knowledge runs from about 1000 function points up
to perhaps 10,000 function points.

The assignment scope of systems or business analysts is larger, and
runs up to about 50,000 function points, although average amounts are
perhaps 15,000 function points.

TABLE 7-5 Requirements Defects by Application Size

Function
Points

English
Text

Exec.
English

Use-
Cases

UML
Diagrams

User
Stories Average

10 5 5 7 13 5 7

100 57 50 80 146 53 77

1,000 600 550 980 1,610 630 874

10,000 7,000 6,000 12,000 16,000 0 10,250

100,000 72,000 65,000 110,000 165,000 0 103,000

Average 15,932 14,321 24,613 36,554 229 22,842

Function
Points

English
Text

Exec.
English

Use-
Cases

UML
Diagrams

User
Stories Average

10 0 0 0 0 0 0

100 0 0 0 0 0 0

1,000 1 1 2 4 1 2

10,000 15 14 25 40 0 19

100,000 175 150 300 400 0 205

Average 38 33 65 89 0 45

TABLE 7-6 Toxic Requirements that Cause Serious Harm

Requirements, Analysis, Architecture, and Design 447

These typical assignment scopes mean that for a large system in the
50,000–function point range, about ten customers will need to be inter-
viewed by one systems analyst. In other words, the ratio of business
analysts to customers is about 1-to-10.

These ratios have implications for the Agile approach of embedding
users in development teams. Since most Agile projects are small and fewer
than 1500 function points, a single user can suffice to express most of the
requirements. However, for large applications, more users are necessary.

Another topic that needs more work is the rate at which requirements
can be gathered and analyzed. If you assume a typical joint application
design (JAD) session contains four user representatives and two busi-
ness analysts, they can usually discuss and document requirements at
a rate of perhaps 1000 function points per day. It should be noted that
requirements specifications average perhaps 0.5 page per function point
using English text, and perhaps 0.75 page using the UML.

A single user embedded within an Agile development team can
explain requirements at a rate of perhaps 200 function points per day.
User stories are compact and average about 0.3 page per function point.
However, they are not complete, so verbal interchange between the user
and the development team is an integral part of Agile requirements.

Creating Taxonomies of Reusable
Software Requirements

For purposes of benchmarks, feature analysis, and statistical analysis
of productivity and quality, it is useful to record basic information about
software applications. Surprisingly, the software industry does not have
a standard taxonomy that allows applications to be uniquely identified.
To fill this gap, the author has developed a taxonomy that allows soft-
ware applications to be analyzed statistically with little ambiguity.

For identifying software for statistical purposes and for studying soft-
ware requirements by industry, it is useful to know certain basic facts
such as the country of origin and the industry. To record these facts,
standard codes can be used:

Country code = 1 (United States)

Region code = 06 (California)

City code = 408 (San Jose)

Industry code = 1569 (Telecommunications)

CMMI level = 3 (Controlled and repeatable)

Starting date = 04/20/2009

Plan completion date = 05/10/2011

True completion date = 09//25/2011

These codes are from telephone area codes, ISO codes, and the North
American Industry Classification (NAIC) codes of the Department

448 Chapter Seven

of Commerce. They do not affect the sizing algorithms of the invention,
but provide valuable information for benchmarks and international
economic studies. This is because software costs vary widely by country,
geographic region, and industry. For historical data to be meaningful,
it is desirable to record all of the factors that influence costs, schedules,
requirements, and other factors.

The entry for “CMMI level” refers to the famous Capability Maturity
Model Integration developed by the Software Engineering Institute
(SEI).

After location and industry identification, the taxonomy consists of
seven topics:

 1. Project nature

 2. Project scope

 3. Project class

 4. Project type

 5. Problem complexity

 6. Code complexity

 7. Data complexity

In comparing one software project against another, it is important to
know exactly what kinds of software applications are being compared.
This is not as easy as it sounds. The industry has long lacked a standard
taxonomy of software projects that can be used to identify projects in a
clear and unambiguous fashion.

By means of multiple-choice questions, the taxonomy shown here
condenses more than 35 million variations down to a small number of
numeric data items that can easily be used for statistical analysis. The
main purpose of a taxonomy is to provide fundamental structures that
improve the ability to do research and analysis.

The taxonomy shown here has been in continuous use since 1984. The
taxonomy is explained in several of the author’s prior books, including
Estimating Software Costs (McGraw-Hill, 2007) and Applied Software
Measurement (McGraw-Hill, 2008), as well as in older editions of the
same books and also in monographs. The taxonomy is also embedded
in software estimating tools designed by the author. The elements of
the taxonomy follow:

PROJECT NATURE: __

 1. New program development

 2. Enhancement (new functions added to existing software)

Requirements, Analysis, Architecture, and Design 449

 3. Maintenance (defect repair to existing software)

 4. Conversion or adaptation (migration to new platform)

 5. Reengineering (re-implementing a legacy application)

 6. Package modification (revising purchased software)

PROJECT SCOPE: __

 1. Algorithm

 2. Subroutine

 3. Module

 4. Reusable module

 5. Disposable prototype

 6. Evolutionary prototype

 7. Subprogram

 8. Stand-alone program

 9. Component of a system

10. Release of a system (other than the initial release)

11. New departmental system (initial release)

12. New corporate system (initial release)

13. New enterprise system (initial release)

14. New national system (initial release)

15. New global system (initial release)

PROJECT CLASS: __

 1. Personal program, for private use

 2. Personal program, to be used by others

 3. Academic program, developed in an academic environment

 4. Internal program, for use at a single location

 5. Internal program, for use at multiple locations

 6. Internal program, for use on an intranet

 7. Internal program, developed by external contractor

 8. Internal program, with functions used via time sharing

 9. Internal program, using military specifications

10. External program, to be put in public domain

450 Chapter Seven

11. External program, to be placed on the Internet

12. External program, leased to users

13. External program, bundled with hardware

14. External program, unbundled and marketed commercially

15. External program, developed under commercial contract

16. External program, developed under government contract

17. External program, developed under military contract

PROJECT TYPE: __

 1. Nonprocedural (generated, query, spreadsheet)

 2. Batch application

 3. Web application

 4. Interactive application

 5. Interactive GUI applications program

 6. Batch database applications program

 7. Interactive database applications program

 8. Client/server applications program

 9. Computer game

10. Scientific or mathematical program

11. Expert system

12. Systems or support program, including “middleware”

13. Service-oriented architecture (SOA)

14. Communications or telecommunications program

15. Process-control program

16. Trusted system

17. Embedded or real-time program

18. Graphics, animation, or image-processing program

19. Multimedia program

20. Robotics, or mechanical automation program

21. Artificial intelligence program

22. Neural net program

23. Hybrid project (multiple types)

Requirements, Analysis, Architecture, and Design 451

PROBLEM COMPLEXITY: ________

 1. No calculations or only simple algorithms

 2. Majority of simple algorithms and simple calculations

 3. Majority of simple algorithms plus a few of average complexity

 4. Algorithms and calculations of both simple and average complexity

 5. Algorithms and calculations of average complexity

 6. A few difficult algorithms mixed with average and simple

 7. More difficult algorithms than average or simple

 8. A large majority of difficult and complex algorithms

 9. Difficult algorithms and some that are extremely complex

10. All algorithms and calculations extremely complex

CODE COMPLEXITY: _________

 1. Most “programming” done with buttons or pull-down controls

 2. Simple nonprocedural code (generated, database, spreadsheet)

 3. Simple plus average nonprocedural code

 4. Built with program skeletons and reusable modules

 5. Average structure with small modules and simple paths

 6. Well structured, but some complex paths or modules

 7. Some complex modules, paths, and links between segments

 8. Above average complexity, paths, and links between segments

 9. Majority of paths and modules are large and complex

10. Extremely complex structure with difficult links and large modules

DATA COMPLEXITY: _________

 1. No permanent data or files required by application

 2. Only one simple file required, with few data interactions

 3. One or two files, simple data, and little complexity

 4. Several data elements, but simple data relationships

 5. Multiple files and data interactions of normal complexity

 6. Multiple files with some complex data elements and interactions

 7. Multiple files, complex data elements and data interactions

452 Chapter Seven

 8. Multiple files, majority of complex data elements and interactions

 9. Multiple files, complex data elements, many data interactions

10. Numerous complex files, data elements, and complex interactions

As most commonly used for either measurement or sizing, users will pro-
vide a series of integer values to the factors of the taxonomy, as follows:

PROJECT NATURE 1

PROJECT SCOPE 8

PROJECT CLASS 11

PROJECT TYPE 15

PROBLEM COMPLEXITY 5

DATA COMPLEXITY 6

CODE COMPLEXITY 2

Although integer values are used for nature, scope, class, and type,
up to two decimal places can be used for the three complexity factors.
Thus, permissible values might also be

PROJECT NATURE 1

PROJECT SCOPE 8

PROJECT CLASS 11

PROJECT TYPE 15

PROBLEM COMPLEXITY 5.25

DATA COMPLEXITY 6.50

CODE COMPLEXITY 2.45

The combination of numeric responses to the taxonomy provides
a unique “pattern” that facilitates sizing, estimating, measurement,
benchmarks, and statistical analysis of features and requirements. The
taxonomy makes it easy to predict the outcome of a future project by
examining the results of older projects that have identical or similar
patterns using the taxonomy. As it happens, applications with identical
patterns are usually of the same size in terms of function points (but
not source code) and often have similar results.

Not only are applications that share common patterns close to the
same size, but they also tend to have very similar feature sets and to
have implemented very similar requirements. Therefore, placing an
application on a taxonomy such as the one described here could be a
step toward creating families of reusable requirements that can serve
dozens or even hundreds of applications. The same taxonomy can assist
in assembling the feature sets for systems using the service-oriented
architecture (SOA).

Requirements, Analysis, Architecture, and Design 453

When demographic information is included, all the factors in the tax-
onomy are as follows:

COUNTRY CODE 1 (United States)

REGION CODE 06 (California)

CITY CODE 408 (San Jose)

INDUSTRY CODE 1569 (Telecommunications)

CMMI LEVEL 3 (Controlled and repeatable)

STARTING DATE 04/20/2009

PLAN COMPLETION DATE 05/10/2011

TRUE COMPLETION DATE 09/25/2011

SCHEDULE SLIP 4.25 (Calendar months)

INITIAL SIZE 1000 (Function points)

REUSED SIZE 200 (Function points)

UNPLANNED GROWTH 300 (Function points)

DELIVERED SIZE 1500 (Function points)

INITIAL SIZE (SOURCE CODE) 52,000 (Logical statements)

REUSED SIZE 10,400 (Logical statements)

UNPLANNED GROWTH 15,600 (Logical statements)

DELIVERED SIZE (SOURCE CODE) 62,400 (Logical statements)

PROGRAMMING LANGUAGE(S) 65 (Java)

REUSED CODE 65 (Java)

PROJECT NATURE 1 (New application)

PROJECT SCOPE 8 (Stand-alone application)

PROJECT CLASS 11 (Expert system)

PROJECT TYPE 15 (External, unbundled)

PROBLEM COMPLEXITY 5.25 (Mixed, but high complexity)

DATA COMPLEXITY 6.50 (Mixed, but high complexity)

CODE COMPLEXITY 2.45 (Low complexity)

The taxonomy provides an unambiguous pattern that can be used
both for classifying historical data and for sizing and estimating soft-
ware projects. This is because software applications that share the same
pattern also tend to be of the same size when measured using IFPUG
function point metrics.

When applications that share the same pattern have differences in
productivity or quality, that indicates differences in the effectiveness of
methods or differences in the abilities of the development team. In any
case, the taxonomy makes statistical analysis more reliable because it
prevents “apples to oranges” comparisons.

Software applications will not be of the same size using lines of code
(LOC) metrics due to the fact that there are more than 700 programming
languages in existence. Also, a majority of software applications are coded
in more than one programming language.

454 Chapter Seven

Software applications of the same size may vary widely in costs and
schedules for development due to the varying skills of the develop-
ment teams, the programming languages used, the development tools
and methods utilized, and also the industry and geographic location
of the developing organization. Although size is a required starting
point for estimating software applications, it is not the only informa-
tion needed.

The taxonomy can be used well before an application has started its
requirements. Since the taxonomy contains information that should be
among the very first topics known about a future application, it is pos-
sible to use the taxonomy months before requirements are finished and
even some time before they begin.

It is also possible to use the taxonomy on legacy applications that
have been in existence for many years. It is often useful to know the
function point totals of such applications, but normal counting of func-
tion points may not be feasible since the requirements and specifications
are seldom updated and may not be available.

The taxonomy can also be used with commercial software, and indeed
with any form of software, including classified military applications
where there is sufficient public or private knowledge of the application
to assign values to the taxonomy tables.

In theory, the taxonomy could be extended to include other interest-
ing topics such as development methods, programming languages, tools,
defect removal, and many others. However, two problems make this
extension difficult:

 1. New languages, tools, and methods occur every month, so there is
no stability.

 2. A majority of applications use multiple languages, methods, and
tools.

However, to show what an extended taxonomy might look like, follow-
ing is an example of the basic taxonomy extended to include develop-
ment methods:

COUNTRY CODE 1 (United States)

REGION CODE 06 (California)

CITY CODE 408 (San Jose)

INDUSTRY CODE 1569 (Telecommunications)

CMMI LEVEL 3 (Controlled and repeatable)

STARTING DATE 04/20/2009

PLAN COMPLETION DATE 05/10/2011

TRUE COMPLETION DATE 09/25/2011

SCHEDULE SLIP 4.25 (Calendar months)

Requirements, Analysis, Architecture, and Design 455

INITIAL SIZE 1000 (Function points)

REUSED SIZE 200 (Function points)

UNPLANNED GROWTH 300 (Function points)

DELIVERED SIZE 1500 (Function points)

INITIAL SIZE (SOURCE CODE) 52,000 (Logical statements)

REUSED SIZE 10,400 (Logical statements)

UNPLANNED GROWTH 15,600 (Logical statements)

DELIVERED SIZE (SOURCE CODE) 62,400 (Logical statements)

PROGRAMMING LANGUAGE(S) 65 (Java)

REUSED CODE 65 (Java)

PROJECT NATURE 1 (New application)

PROJECT SCOPE 8 (Stand-alone application)

PROJECT CLASS 11 (Expert system)

PROJECT TYPE 15 (External; unbundled)

PROBLEM COMPLEXITY 5.25 (Mixed but high complexity)

DATA COMPLEXITY 6.50 (Mixed but high complexity)

CODE COMPLEXITY 2.45 (Low complexity)

SIZING METHOD 1 (IFPUG function points)

ESTIMATING METHODS 3 (KnowledgePlan)

MANAGEMENT REPORTING 2 (Automated insight)

RISK ANALYSIS 0 (Not used)

FINANCIAL VALUE ANALYSIS 1 (Used)

INTANGIBLE VALUE ANALYSIS 0 (Not used)

REQUIREMENTS GATHERING 1 (Joint application design)

REQUIREMENTS LANGUAGE(S) 5 (Hybrid: Use-cases, English)

QUALITY REQUIREMENTS 1 (QFD)

SOFTWARE QUALITY ASSURANCE 1 (Formal SQA involvement)

DEVELOPMENT METHOD 3 (Team Software Process)

PRETEST DEFECT REMOVAL
REQUIREMENTS INSPECTION 1 (Used)

DESIGN INSPECTION 1 (Used)

CODE INSPECTION 0 (Not used)

STATIC ANALYSIS 1 (Used)

SIX SIGMA 0 (Not used)

IV & V 0 (Not used)

AUTOMATED TESTING 0 (Not used)

TEST STAGES
UNIT TEST 1 (Used)

NEW FUNCTION TEST 1 (Used)

REGRESSION TEST 1 (Used)

COMPONENT TEST 1 (Used)

PERFORMANCE TEST 1 (Used)
(Continued)

456 Chapter Seven

SECURITY TEST 0 (Not used)

INDEPENDENT TEST 0 (Not used)

SYSTEM TEST 1 (Used)

ACCEPTANCE TEST 1 (Used)

Although the basic taxonomy has been in continuous use since 1984,
the extended taxonomy that shows tools, languages, and methods is
hypothetical. It is included because such an extended taxonomy would
facilitate estimates, benchmark analysis, statistical studies, and mul-
tiple regression analysis to show the effectiveness of various methods
and practices.

By converting millions of alternatives into numeric data by means
of multiple-choice questions, taxonomies facilitate statistical analysis.
Also, various “patterns” among the alternatives can easily be evaluated
in terms of improving or degrading productivity and quality, or explor-
ing reusable requirements. The software industry should invest more
energy into development of useful taxonomies along the lines used by
other sciences such as biology, linguistics, physics, and chemistry.

Software Requirements Methods
and Practices

There are numerous variations in how software requirements are col-
lected, analyzed, and converted into software. Following are descriptions
and some results noted for a number of common variations. They are
discussed in alphabetical order.

Agile requirements with embedded users An interesting idea that has
emerged from the Agile methods is that of a full-time user representa-
tive as part of the development team. The role of these embedded users
is to provide the requirements for new applications in fairly small doses
that can immediately be implemented and put to use. Typically, seg-
ments between 5 percent and 10 percent of the total requirements are
defined and built during each “sprint.” This is equivalent to 40 to 200
function points per sprint.

This method of full-time users has proven to be effective for small
applications where one person can actually express the needs of all
users. It is not effective for applications such as Microsoft Office with
millions of users, because no one can speak for the needs of all users.
Neither is this method effective for certain kinds of embedded applica-
tions such as fuel-injection controls.

Including users with development teams is an innovative approach that
works well once the limits are understood. See also “Focus Groups,” “Data
Mining for Legacy Requirements,” and “Joint Application Design (JAD).”

Requirements, Analysis, Architecture, and Design 457

Creeping requirements Changes taking place in requirements after a
formal requirements phase is a normal occurrence. Surprisingly, many
applications are not effective in dealing with requirements changes.
Creeping requirements are calculated by measuring the function point
total for an application at the end of the requirements phase, and then
doing another function point count when the application is delivered,
including all requirements that surfaced after the requirements phase.
This form of measurement indicates creeping requirements grow at
about 2 percent per calendar month during the subsequent design phase
and perhaps 1 percent per calendar month during much of the coding
phase. After the midpoint of the coding phase, requirements changes
are redirected into future releases.

Typical growth patterns for a “normal” application of 1500 function
points would be in the range of 30 function points of creeping require-
ments per month during design and 15 function points of growth per
month during coding. Since design should last two months and coding
eight months, total growth in terms of creeping requirements would be
60 function points during design and 120 function points during coding,
or 180 function points in all. Thus, the application with 1500 function
points defined at the end of the requirements phase would be delivered
as an application of 1680 function points.

Note that larger applications with longer schedules obviously have
much larger totals of requirements creep.

Considering the same application in an Agile context, each sprint
might include 150 to 250 function points. The total size at delivery would
still be about 1680 function points, but the application is developed in
stages.

The most effective way to deal with requirements creep is to use
methods that reduce unplanned creep and also to use methods that
validate changes. Joint Application Design (JAD), executable English,
and prototypes slow down creep. Requirements inspections and change
control boards can validate changes. The Agile method of embedding
users with developers increases creep up to 10 percent per month, but
this is benign because the Agile teams are geared up for such growth.

There are several problems associated with creeping requirements
outside of the Agile domain: (1) they have higher defect potentials than
original requirements; (2) they cause schedule delays and cost over-
runs; (3) they are frequent causes of litigation for applications developed
under contract or for outsourced applications.

Data mining for legacy requirements As of 2009, more than half of “new”
applications are replacements for aging legacy software applications.
Some of these legacy applications may have been in continuous use for
more than 25 years. Unfortunately, the software industry is lax in keeping

458 Chapter Seven

requirements and design documents up to date, so for a majority of legacy
applications, there is no easy way to find out what requirements need to
be transferred to the new replacement.

However, some automated tools can examine the source code of legacy
applications and extract latent requirements embedded in the code.
These hidden requirements can be assembled for use in the replace-
ment application. They can also be used to calculate the size of the
legacy application in terms of function points, and thereby can assist
in estimating the new replacement application. Latent requirements
can also be extracted manually using formal code inspections, but this
is much slower than automated data mining.

Executable English Since many business rules can be expressed in terms
of English (or other natural languages), it makes sense to attempt to
automate a formal dialect of English that facilitates requirements anal-
ysis. This is not a new idea, since COBOL was intended to have similar
capabilities. An organization called Internet Business Logic, headed by
Dr. Adrian Walker, has such a dialect available and automation to sup-
port it. Examples and downloads are available to try out the method.
The information on executable English occurs in several web sites, but
the Microsoft Development Network is perhaps the best known. The
URL is http://msdn.microsoft.com/en-uslibrary/cc169602.aspx.

However, additional study and data would be useful. Some unan-
swered questions exist about using executable English for “toxic”
requirements such as the Y2K problem. There are no intrinsic barriers
to expressing harmful requirements in executable English. Also, there
are no side-by-side comparisons in terms of requirements costs, require-
ments defects, or requirement productivity rates between executable
English and other methods. Finally, hybrid approaches to use a com-
bination of executable English with other methods have not yet been
fully examined.

In theory, it would be possible to run static analysis tools against
requirements specifications written in executable English, assuming
that the static analysis tools had parsers available. If so, finding logical
problems and omissions in executable English might add value to static
analysis tools such as Coverity, KlocWorks, XTRAN, and the like.

Automatic error detection in requirements and design created from
executable English would help to eliminate serious classes of error that
have long been difficult to deal with: incomplete and toxic requirements. A
future merger of static analysis and executable English holds many inter-
esting prospects for improving the quality of requirements analysis.

Focus groups A focus group is an assembly of customers who are asked
to participate in group discussions about the features and functions of

Requirements, Analysis, Architecture, and Design 459

new products. Focus groups usually range from perhaps 5 to more than
25 participants based on the demographic needs of the potential prod-
uct. Focus groups may offer suggestions or even use working models
and prototypes.

Focus groups have proven to be effective for products that are aimed
at a mixture of diverse interests and many possible kinds of use. Focus
groups are older than software and are frequently used for electronic
devices, appliances, and other manufactured objects.

In a software context, focus groups are most effective for commercial
software applications aimed at hundreds or thousands of users, where
diversity is part of the application goals.

Functional and nonfunctional requirements Software requirements come
in two flavors: functional requirements and nonfunctional requirements.
The term functional requirement is defined as a specific feature that a
user wants to have included in a software application. Functional require-
ments add bulk to software applications, and in general every functional
requirement can be measured in terms of function point metrics.

Nonfunctional requirements are defined as constraints or limits users
care about with software applications, such as performance or reliabil-
ity. Nonfunctional requirements may require work to achieve, but usu-
ally don’t add size to the application.

Joint application design (JAD) The concept of joint application design
originated in IBM Toronto as a method for gathering the requirements
for financial applications. The normal method of carrying out JAD is
for a group of stakeholders or users to meet face-to-face with a group of
software architects and designers in a formal setting with a moderator.
The JAD sessions use standard requirement checklists to ensure that
all relevant topics are covered. Often JAD meetings take place in off-site
facilities. Between three and ten users meet with a group of between
three and ten software architects and designers in a typical JAD event.
The meetings usually run from 2 days to more than 15 days, based on
the size of the application under discussion.

JAD sessions have more than 35 years of empirical data and rank as
one of the most effective methods for gathering requirements for large
applications. Use of JAD can lower creeping requirements levels down
to perhaps one-half percent per month.

Pattern matching As noted previously in the section of this chapter deal-
ing with taxonomies, many applications are quite similar in terms of
functional requirements. For example, consultants who work with many
companies within industries such as finance, insurance, health care,
and manufacturing quickly realize that every company within specific

460 Chapter Seven

industries has the same kinds of software applications. Indeed, the
similarity of applications within industries is what caused the creation
of the enterprise resource planning (ERP) tools such as those marketed
by SAP, Oracle, BAAN, and others.

However, as of 2009, the software industry lacks effective methods
for identifying and reusing specific functional requirements between
applications. To identify patterns and similarities, it would be desirable
to have all functions expressed in standard fashions, and also to have a
full taxonomy of major software features.

It would be possible for various kinds of static analysis tools to identify
common patterns among multiple applications, and this would facilitate
reuse of common features and functions. But so long as requirements
are expressed using more than 30 flavors of graphical representation
coupled with free-style English, automated pattern matching is difficult
or impossible.

Prototypes By definition, a software prototype is a partial model of a
possible software application, but stripped down to a few key functions
and algorithms. As a general rule, prototypes are about 10 percent of
the size of completed applications. The reason for the small size of proto-
types is that they are intended to be developed quickly. For example, a 10
percent prototype of a 10,000–function point application would amount
to 1000 function points, which is fairly difficult to develop quickly.

The optimal size of applications where prototypes give the best results
is around 1000 function points. A 10 percent prototype would be only
100 function points, which can be developed quickly.

Prototypes come in two flavors, disposable and evolutionary. As the
name implies, a disposable prototype can be discarded once it has served
its purpose. On the other hand, an evolutionary prototype will add more
features and gradually evolve into a finished product.

Of the two flavors, disposable prototypes are safer. The shortcuts and
poor quality control associated with evolutionary prototypes may lead
to downstream security flaws, quality problems, and performance prob-
lems with evolutionary prototypes.

Prototypes of both flavors are very successful in reducing creeping
requirements. As a rule of thumb, requirements creep for applications
that use prototypes is less than one-half percent per calendar month, or
less than half the creep of similar applications without prototypes.

Quality function deployment (QFD) Like many effective quality control
approaches, QFD originated in Japan. QFD was apparently first used
circa 1972 by Mitsubishi for the quality requirements of a large ocean-
going tanker. QFD is sometimes called “house of quality” because the
QFD diagrams resemble a house with a peaked roof.

Requirements, Analysis, Architecture, and Design 461

Although QFD originated for manufactured products, it has been
used with software. Primarily QFD is used for embedded and systems
software, such as aircraft and medical instruments. It is also used by
computer companies such as Hewlett-Packard and IBM for both soft-
ware and hardware products.

There are a number of books and reports on QFD. Since learning
to use QFD and successfully deploying takes more than a week, addi-
tional information is needed before starting a QFD program. A nonprofit
QFD institute exists and is one source of additional data. As with the
Six Sigma approach, QFD borrows some topics from martial arts and
uses a “belt” system to indicate training levels. As with Six Sigma and
many martial arts, a black belt is the highest level of achievement. (Of
course, true martial arts practitioners object to this approach on the
grounds that earning a black belt in a martial art takes years of train-
ing and practice. Earning a black belt in Six Sigma or QFD takes only
a few months of training and requires very little in the way of hands-on
experience.)

Requirements engineering The topic of requirements engineering is a
fairly new subset of software engineering. Requirements engineering
attempts to add rigor to requirements gathering and analysis by using
formal methods of elicitation, analysis, and also by creating models
of the application and validating the requirements. That being said,
requirements engineering is still evolving and is not yet a fully formed
discipline.

Requirements engineering is most likely to be used for systems and
embedded software that operates fairly complex physical devices. The
reason is that systems and embedded software needs much more rigor
and better quality to operate successfully than any other kinds of
software.

While empirical data on requirements engineering is sparse in 2009,
anecdotal evidence suggests that applications using requirements engi-
neering methods tend to have somewhat lower levels of requirements
defects and somewhat higher levels of requirements defect removal
efficiency than similar applications with more casual requirements
methods. However, organizations using requirements engineering also
tend to be at or above level 3 on the CMMI, which by itself could explain
the improvements.

Requirements engineering is synergistic with formal methods such
as the Rational Unified Process (RUP) and the UML approach. It is
also synergistic with the Team Software Process (TSP). Requirements
engineering is not normally used with Agile projects because the rigor
is antithetical to the Agile approach. It would not be easy to perform
formal requirements engineering analysis on short user stories.

462 Chapter Seven

Requirement inspections Formal inspections of software deliverables
such as requirements originated within IBM in the early 1970s.
Inspections are approaching 40 years of continued usage and remain
one of the most effective defect removal methods with the highest levels
of defect removal efficiency. Formal inspections can top 85 percent in
defect removal efficiency and seldom drop below 65 percent. By contrast,
most forms of testing are below 35 percent in defect removal efficiency
levels and seldom top 50 percent. Inspections are also good for defect
prevention, since participants spontaneously avoid the same kinds of
defects that the inspections find.

Inspections are team activities with well-defined roles for the mod-
erator, the recorder, the inspectors, and the person whose work is being
inspected. Substantial data and books exist on the topic of inspections.
A new nonsoftware inspection organization was created in 2009, in place
of the former Software Inspection and Review Organization (SIRO)
group from the 1980s.

Requirements traceability Once a specific requirement is defined, it
must be included in design documents and source code as well. Test
cases must also be created to ensure that the requirement has been
correctly implemented. Training materials and user reference materials
will probably have to be created to explain how to use the requirement.
“Requirements traceability” refers to methods that allow requirements
to be backtracked from other deliverables such as code and test cases.

In theory, traceability in both forward and backward directions is pos-
sible if each explicit requirement is assigned a unique identifier or serial
number. Once assigned, the same number is used in specifications, code,
test cases, and other deliverables where the same requirement is used.

Traceability is often performed via a matrix where every requirement
is listed on one axis, and every document or code segment that contains
the requirement is listed on the other access. The intersection of the two
axes indicates that the requirement was either present or not.

In theory, traceability is straightforward, but in practice, require-
ments traceability is complex and difficult, although a number of auto-
mated tools exist that can ease the problems.

Traceability is most often used for defense applications, systems soft-
ware, and embedded software, because these applications often have
serious legal and liability issues associated with them. Traceability is
also important for information technology applications in the wake of
the Sarbanes-Oxley Act, which enforces penalties for poor governance
of financial software constructed by Fortune 500 companies.

However, traceability is seldom used for web applications, entertain-
ing software, applets for devices such as iPhone, and for software that
is developed for internal use within a single company.

Requirements, Analysis, Architecture, and Design 463

Much of the literature on requirements traceability deals with trace-
ability problems, which are numerous and severe. In spite of more than
100 tools that assert that they can help in performing requirements
traceability, effective traceability remains troublesome and imperfect.

If reusable requirements will be used in multiple applications, it
is obvious that traceability will need to encompass cross-application
traces as well as single-application traces. This implies a need for 3-D
traceability matrixes.

Reusable requirements Many software applications perform very
similar functions within an industry. For example, insurance claims
processing is very similar from company to company. Order process-
ing and invoicing are very similar within hundreds of companies and
thousands of applications. Almost all applications need functions for
error handling.

In theory, at least 60 percent to 75 percent of any business application
could probably be created from standard reusable parts, assuming those
parts are certified to high levels of reliability and are readily available.
Unfortunately, what is lacking is an effective catalog of reusable mate-
rials that include reusable requirements, design, code, interfaces, and
test cases. Obviously, common features also need to be traceable back
to their original origins, in case of errors or recalls.

Some catalogs of reusable functions are within specific domains such
as defense and avionics software, and these are samples of what is
needed. However, there is no overall industrywide catalog available
circa 2009.

As it happens, the taxonomy discussed earlier in this chapter could be
extended downwards to describe individual or specific reusable require-
ments or features. This is because almost every function or feature pro-
vided by software applications needs to supply similar services and to
perform similar actions. The topics that would compose a taxonomy of
reusable functions would probably include

 1. The origin of the function

 2. The creation date of the function

 3. The version number of the function

 4. The certification level of the function

 5. The business purpose of the function

 6. The name of the feature

 7. The traceability serial number of the function

 8. The programming language of the function

 9. The links to the function’s reusable test cases

464 Chapter Seven

10. The links to the function’s reusable documentation

11. The links to related functions

12. The inputs to the function

13. The outputs from the function

14. The messages passed by the function

15. The messages received by the function

16. The entities and relationships within the function

17. The logical files used by the function

18. The inquiry types that can be made of the function

19. The interfaces with other functions if other than messages

20. The error-handling methods of the function

21. The security methods of the function

22. The algorithms that the function performs

Reusable requirements would obviously extend requirements trace-
ability into another dimension. Not only would requirements have to
be traced backwards from the code in a specific application, but if many
applications contain the same reusable function, then cross-application
traceability would also be needed. This would necessitate using 3-D
matrixes.

Security requirements deployment (SRD) As the global recession inten-
sifies, attacks on software applications in the form of worms, viruses,
spyware, keystroke loggers, and denial of service attacks are increasing
daily. Most software engineers and most quality assurance personnel
are not adequately trained in security control techniques to be fully
effective. Most software application customers and users are almost
helpless.

The idea of security requirements deployment (SRD), which is being
introduced in this book, is to apply the same rigor to security require-
ments as quality function deployment (QFD) applies to quality require-
ments. However, there is an additional factor that must be addressed
for SRD to be effective. It is necessary to bring in at least one top-gun
security expert to meet with the development team and the user repre-
sentatives during the SRD planning sessions.

The topics that are to be addressed during SRD planning sessions
include conventional protection methods such as physical security
and avoiding the most common security vulnerabilities. However, the
urgency of the situation calls for more advanced methods that can actu-
ally improve the resistance of source code to outside attack. This implies

Requirements, Analysis, Architecture, and Design 465

getting up to speed with capability logic, restricting permissions, and
using languages such as E that create attack-resistant code. Adopting
methods such as those used by the Google Caja approach. The word
Caja is Spanish for “box” and refers to methods developed by Google
for encapsulating JavaScript and HTML to prevent outside agents from
attacking or modifying them.

In addition, SRD sessions should discuss security inspections, using
static-analysis tools that are optimized to find security flaws, and intro-
ducing special security test stages. It may also be relevant to consider
the employment of “ethical hackers” to attempt to penetrate or gain
access to confidential information or seize control of software.

The seriousness of software security flaws in today’s world requires
immediate and urgent solutions. A firewall combined with antivirus
software and antispyware software is no longer sufficient to provide
real protection. In the modern world, the attacks no longer come from
malicious amateurs, but some come from well-funded and well-trained
foreign governments and from very well-funded organized crime syn-
dicates.

Unified modeling language (UML) The UML modeling language is an
integral part of the Rational Unified Process (RUP) that is now owned
by IBM. The history of the UML as a merger of the concepts of Grady
Booch, James Rumbaugh, and Ivar Jacobsen is well known among the
software community. The UML and its predecessors were originally
aimed at supporting object-oriented requirements and design, but can
actually support almost any form of software.

The UML is a rich and complex set of graphic notations that encom-
pass not only requirements but also architecture, database design, and
other software artifacts. In fact, UML 2.0 includes 13 different kinds of
diagram. As a result of the richness of the UML constructs, there is a
very lengthy learning curve associated with the UML.

As of 2009, scores of commercial tools can facilitate UML diagram
construction and management. UML diagrams can easily be inspected
using standard protocols for requirements and design inspections.
However, it would also be useful to have some form of automated con-
sistency and validity checking tools. What comes to mind would be a
kind of superset of static analysis capabilities.

For reusable requirements and reusable features that are likely to be
utilized by multiple applications, it would be useful to have some kind
of a pattern-matching intelligent agent that could scour UML diagrams
and extract similar patterns.

UML is not a panacea, but the Object Management Group (OMG) is
continuously working to add useful features and eliminate troublesome
elements. Therefore, UML is likely to expand in usefulness in the future.

466 Chapter Seven

UML diagrams are normal inputs to standard function point analysis.
In theory, it is possible to develop a tool that would automatically create
function point totals from parsing various UML diagrams. In fact, such
experimental tools have been constructed.

The meta-language underneath UML is amenable to static analysis
and other forms of automatic verification. Test suites might also be con-
structed from the UML meta-language. Finally, size in terms of function
points might be calculated using the meta-language.

Use-cases The concept of use-cases originated with Ivar Jacobsen, who
is also one of the pioneers working the UML. Although use-cases are
associated with the UML, they are also popular as a stand-alone method
of gathering requirements. Use-cases are aimed squarely at functional
requirements and provide an interesting visual representation of how
users invoke, modify, control, and eventually terminate actions by soft-
ware applications. The application itself is treated as a black box, and
use-cases concentrate on how users interact with it to accomplish busi-
ness functions.

Use-cases have introduced some interesting abstractions into soft-
ware requirements analysis, such as “actors” and “roles.” These focus
attention on essential topics and tend to lead analysts and customers
in fruitful directions.

A number of templates provide assistance in thinking through a
sequence of user interactions with software. These templates usually
include topics such as “goals,” “actors,” “preconditions,” and “triggers,”
among others.

As with other features of the UML, many commercial tools are
available for drawing and managing use-cases. Use-cases are also
amenable to formal requirements and design inspections, and can
be used to predict application size via function point analysis. In
general, use-cases are among the easiest requirements artifacts for
inspection, because the visual representation makes it easy to exam-
ine assumptions.

Use-cases are also used in the context of joint application design
(JAD) and are sometimes created on-the-fly during JAD sessions.

User stories The Agile methods aim at creating running code as fast as
possible, and the Agile community feels that the massive paper docu-
ment sets associated with the UML and sometimes with use-cases are
barriers to progress rather than effective solutions. As a result, the
Agile community has developed a flexible and fast method of gathering
requirements termed user stories. One unique feature of user stories is
that they are closely coupled with test cases; in fact, the test cases and
the user stories are developed concurrently.

Requirements, Analysis, Architecture, and Design 467

To keep the user stories concise and in keeping with the Agile philoso-
phy of minimizing paper documents, the stories are usually written on
3" × 5" cards rather than standard office paper. Many user stories are
only a single sentence, or perhaps a few sentences. An example of such
a short user story might be, “I want to withdraw cash from an ATM.”
However, this means that complicated transactions may take dozens of
cards, with each card defining only a single step in the entire process.

While use-cases can be inputs to function point analysis, their concise-
ness and lack of detail is one of the reasons why function point analysis
is not used very often for Agile applications. In fact, an alternative to
user stories would be to base function point analysis on the associated
test cases, which of necessity must be more complete.

It is a good thing that test cases and user stories are created concur-
rently, because formal inspections of user stories would not find many
defects, since the stories are so abbreviated. However, inspections of the
test cases created with the user stories are of potential value.

Another issue with user stories is their longevity. Once the initial
release of an application goes to customers, development of the second
and future releases may pass to other development teams or be out-
sourced. How do these follow-on groups know what requirements are in
the first release? In other words, are user stories a practical way of trans-
mitting knowledge about requirement over a 10- to 20-year period?

Some Agile organizations use a metric called story points for estima-
tion. However, there are no large benchmark collections that use story
points. In addition, it is not possible to compare projects whose require-
ments are derived from story points against similar projects that used
other methods such as UML or use-cases.

It is theoretically possible to convert story points into function points,
but a better method would be for Agile projects to use one of the high-
speed function point sizing methods. Having function points available
would allow side-by-side comparisons with other projects and would
permit Agile projects to submit data to standard benchmark collections
such as that of the International Software Benchmarking Standards
Group (ISBSG).

Summary of Software Requirements
Circa 2009

Even after 60 years of software development, methods for gathering
and analyzing user requirements continue to be troublesome. Creeping
requirements still occur, as do requirements errors and also toxic require-
ments. Requirement inspections are an effective antidote to these prob-
lems, but occur for less than 5 percent of U.S. software projects and even
fewer on a global basis.

468 Chapter Seven

Research into an extended taxonomy for specific features and spe-
cific requirements would be valuable to the industry because such a
taxonomy would allow similar requirements to be compared and evalu-
ated from multiple applications. This is because applications that share
the same “pattern” on the taxonomy usually have similar features and
similar requirements.

Also valuable would be elevating the methods of static analysis so
that they operated on requirements. Additional research on data mining
to extract hidden requirements from source code would be an adjunct
to using static analysis on requirements, as would automatic derivation
of function point totals.

The eventual goal of requirements engineering should be to create
catalogs of standard reusable requirements and associated test and
tutorial materials. In theory, more than 50 percent and perhaps more
than 75 percent of the features in software applications could eventually
come from certified reusable materials.

Business Analysis

The phrase “business analysis” is very similar to the older phrase “sys-
tems analysis.” Many corporations employ business analysis specialists
who serve as a liaison between the software engineering community and
the operating units of the company.

Because of their role as liaison between the technical and business
communities, business analysts are involved very early and are key
participants even before requirements elicitation starts.

Business analysts continue to be involved during the design and early
part of the coding phases, due to having to analyze and deal with creep-
ing requirements that do not taper off until well into the coding phase.
After that, additional requirements are shunted into future releases.

The roles of the business analysts are to aid in requirements elicita-
tion, and to ensure that both the information technology side and the
customer or stakeholder side communicate clearly and effectively.

The background and training for business analysis specialists is
somewhat ambiguous as of 2009. Many are former systems analysts,
software engineers, or quality assurance specialists who wanted broader
responsibilities.

There is a nonprofit International Institute of Business Analysis
(IIBA) that maintains a Business Analysis Body of Knowledge (BABOK)
library with substantial volumes of information.

Because business analysts have backgrounds in both software and
business topics, they are in a good position to facilitate requirements
elicitation and requirements analysis. For example, business analysts
are often moderators at joint application design (JAD) sessions.

Requirements, Analysis, Architecture, and Design 469

Business analysts can also participate in requirement inspections,
quality function deployment (QFD), and other activities that either col-
lect requirements or analyze them and explain their meaning to the
software community.

Some visible gaps in the roles of business analysts often require other
kinds of specialists. To illustrate a few of these gaps:

 1. Sizing and estimating software projects

 2. Scope management of software projects

 3. Risk analysis of software projects

 4. Tracking and monitoring the progress of software projects

 5. Quality control of software projects

 6. Security analysis and protection of software projects

The reason for the assertion that these areas represent “gaps” is
because problems are very common in all six areas regardless of whether
business analysis is part of the requirements process.

Business analysts should know a great deal about corporate and enter-
prise software issues. In fact, the roles of business analysts and the roles
of enterprise architects, to be discussed later in this chapter, overlap.

In the future it would be useful to have a full and complete description
of the roles played by business analysts, architects, enterprise archi-
tects, scope managers, and project office managers, because they all
have some common responsibilities.

One useful service that business analysts could provide for their
employers is to collect and summarize benchmark data from a variety
of sources. In fact, in 30 kinds of software benchmarks, early knowl-
edge during the requirements phase would be useful. The 30 forms of
benchmark include

 1. Portfolio benchmarks

 2. Industry benchmarks (banks, insurance, defense, etc.)

 3. International benchmarks (U.S., UK, Japan, China, etc.)

 4. Application class benchmarks (embedded, systems, IT, etc.)

 5. Application size benchmarks (1, 10, 100, 1000, function points, etc.)

 6. Requirements creep benchmarks (monthly rates of change)

 7. Data center and operations benchmarks (availability, MTTF, etc.)

 8. Data quality benchmarks

 9. Database volume benchmarks

10. Staffing and specialization benchmarks

470 Chapter Seven

11. Staff turnover and attrition benchmarks

12. Staff compensation benchmarks

13. Organization structure benchmarks (matrix, small team, Agile, etc.)

14. Development productivity benchmarks

15. Software quality benchmarks

16. Software security benchmarks (cost of prevention, recovery, etc.)

17. Maintenance and support benchmarks

18. Legacy renovation benchmarks

19. Total cost of ownership (TCO) benchmarks

20. Cost of quality (COQ) benchmarks

21. Customer satisfaction benchmarks

22. Methodology benchmarks (Agile, RUP, TSP, etc.)

23. Tool usage benchmarks (project management, static analysis, etc.)

24. Reusability benchmarks (volumes of various reusable deliverables)

25. Software usage benchmarks (by occupation, by function)

26. Outsource benchmarks

27. Schedule slip benchmarks

28. Cost overrun benchmarks

29. Project failure benchmarks (from litigation records)

30. Litigation cost benchmarks

Business analysts are not the only personnel who should be familiar
with such benchmark data, but due to their central and important role
early in application development, business analysts are in a key position
so the more they know, the more valuable their work becomes.

The assignment scope of business analysts runs between 1500 and
50,000 function points. That means that an approximate ratio of busi-
ness analysts to ordinary software engineers would range from about 1
to 10 up to perhaps 1 to 25. The ratio of business analysts to customers
runs from about 1 to 10 up to perhaps 1 to 50.

Software Architecture

In essence, software architecture is concerned with seven topics:

 1. The overall structure of a software application

 2. The structure of the data used by the software application

 3. The interfaces between a software application and the world outside

Requirements, Analysis, Architecture, and Design 471

 4. The decomposition of the application into functional components

 5. The linkage or transmission of information among the functional
components

 6. The performance attributes associated with the structure

 7. The security attributes associated with the structure

There are other associated topics, but these seven seem to be the
fundamental topics of concern.

The roles of both software architects and enterprise architects have
been evolving in recent years and will continue to evolve as new topics
such as cloud computing, service-oriented architecture (SOA), and vir-
tualization become more widespread.

The importance of software architecture resembles the importance of
the architecture of houses and buildings: the larger the structure, the
more important good architecture becomes.

By coincidence, the size of a physical building measured in terms of
“square feet” and the size of a software application measured in terms
of “function points” share identical patterns when it comes to the impor-
tance or value of good architecture. Table 7-7 illustrates how architec-
ture goes up in value with physical size.

Using the information shown in Table 7-7, a small iPhone applet with
a size of perhaps 5 function points, or 250 Java statements can be suc-
cessfully implemented without any formal architecture at all, other than
the developer’s private knowledge of the value of structured code.

However, a very large system in the size range of Vista, Oracle, SAP,
and the like will probably not even be possible without very good archi-
tecture and a number of architectural specialists. These massive applica-
tions top 100,000 function points, or more than 5 million statements in a
language such as Java (probably more than 15 million in actuality).

Both software architecture and the architecture of buildings are con-
cerned largely with structural issues. However, software architecture
is even more complicated than building architecture because software

Size in Square Feet or
Size in Function Points Importance of Architecture

1 Not possible and not needed

10 Not needed

100 Minimal need for architecture

1,000 Architecture useful

10,000 Architecture important

100,000 Architecture critical

TABLE 7-7 Value of Architecture Increases with Structural Size

472 Chapter Seven

applications are not static once they are constructed. They grow con-
tinuously at about 8 percent per year as new features are added. This
is much faster than buildings grow once complete. Also, software appli-
cations have no value unless they are operating. When they operate,
software applications have a very dynamic structure that can change
rapidly due to calls and features that open up and are modified during
execution. Therefore, software architects have to deal with dynamic
and performance-related issues that building architects only encounter
occasionally for structures such as drawbridges and transit systems.

Another significant difference between building architecture and soft-
ware architecture is in the area of security. Of course, for some buildings
such as the Pentagon and CIA headquarters, security is a top architec-
tural concern, but security is not usually a major architectural issue for
ordinary homes and small office buildings.

For software, applications security is becoming increasingly important
for all size levels. As the recession continues, security will become even
more important because threats are becoming much more sophisticated.
The recent success of the conflicker worm, which affected more than
1.9 million computers, including some in “secure” government agencies
in early 2009, provides an urgent wakeup call to the increasing impor-
tance of security as an architectural issue for software.

As software engineering gradually evolves from a craft to an engineer-
ing field, the importance of architecture will continue to grow. One reason
for this is because software architectural styles are rapidly evolving.

Returning to the analogy of the architecture of buildings, various
chronological periods are sometimes characterized by the dominant
form of architecture employed. There are also regional differences.
Thus, many histories of architecture in the United States include dis-
cussions of the “Queen Anne” style, the “General Grant Gothic” style,
the “Southern Antebellum” style, the “English Tudor” style, the “Frank
Lloyd Wright” style, and dozens more.

Software engineering is not yet old enough to have formal histories
of the evolution of architectural styles, but they are changing at least
as rapidly as the architecture of homes and buildings.

One useful but missing piece of information from software bench-
marks would be a description or taxonomy of the architecture that was
used for applications. This would facilitate analysis of topics such as
quality levels and security vulnerabilities associated with various soft-
ware architectures.

When applications were small and averaged less than 1000 function
points in size, as they did in until the late 1960s, software architecture
was not a topic of interest. Edsger Dijkstra and David Parnas first dis-
cussed software architecture as a topic of importance circa 1968. Later
pioneers such as Mary Shaw and David Garlan continued to stress

Requirements, Analysis, Architecture, and Design 473

that software architecture was a critical factor for the success of large
systems.

The reason for the increasing importance of architecture was because
of four factors:

 1. Software applications were growing rapidly and exceeding 10,000
function points or 1 million source code statements. Today in 2009,
sizes may be greater than ten times larger yet again.

 2. The volume of data used by software applications has been growing
even faster than software itself. The number of automated records
increased from thousands to millions to billions and continues to
increase. No doubt trillions of records are just over the horizon.

 3. Database and data organization schemas have been evolving as fast
or faster than software architectural schemas.

 4. Software applications were no longer operating all by themselves
on one computer.

When large software applications began to be divided into compo-
nents that could operate in parallel, or operate on separate computers
at the same time, architecture became a very important topic.

Software applications that ran alone on a single computer were con-
sidered to have a “monolithic” architecture. One of the significant depar-
tures from this model was to have some of the functions executing on a
host computer (often a mainframe) while other functions operated on
personal computers. This method of decomposition was called client-
server architecture.

In the 1980s and even more in the 1990s, many other architectural
approaches emerged. They included but were not limited to event-driven
architecture, three-tier architecture (presentation layer, business logic
layer, and database layer), N-tier architecture with even more layers,
peer-to-peer architecture, model-driven architecture, and of course the
more recent pattern-based architecture, service-oriented architecture
(SOA), soon followed by cloud computing.

At the same time that software architectures were expanding and
evolving, data structures and data volumes were expanding and evolv-
ing. Hierarchical data structures were joined by relational data struc-
tures and also row-oriented data, column-oriented data, object-oriented
data, and a number of others.

Obviously, software architects need to consider the join between the
structure of software itself and optimal data organizations to accom-
plish the purpose of the application. These are not trivial choices, and
both experience and special knowledge are required.

Successfully choosing and designing applications using any of these
more recent forms of software and data architecture became a job that

474 Chapter Seven

required special training and considerable experience. As a result, many
large companies such as IBM and Microsoft created new job descriptions
and new job titles such as “architect” and “senior architect.”

As the positions of architect began to appear in large companies, sev-
eral associations emerged so that architects could share information
and gain access to the latest thinking. One of these is the International
Association of Software Architects (IASA), and another is the World
Wide Institute of Software Architects (WWISA). There are also special-
ized journals such as the Microsoft Architecture Journal dealing with
architectural topics.

As of 2009, the weight of evidence supports the hypothesis that large
companies that build large software applications should employ profes-
sional software architects. That can be considered a best practice.

An interesting question is how many architects does a company need?
The normal assignment scope for an architect ranges between 5000 and
about 100,000 function points. This means that an application of 10,000
function points will need at least one architect. However, a massive
application of 150,000 function points might need at least two archi-
tects. Total employment of architects even in large companies such as
IBM or Microsoft is probably less than 100 architects out of perhaps
50,000 total software engineers.

However, the evolution of specific architectural styles is far too rapid,
and the criteria for evaluating architectures is far too hazy to state that
using a specific form of architecture for a specific application is a good
choice, a questionable choice, or a potentially disastrous choice.

It should be recalled that hundreds of companies jumped onto the
client-server bandwagon in the 1980s, only to discover that complexity
levels were so high and implementation so difficult that quality and
reliability sometime dropped to unusable levels.

As of 2009, service-oriented architecture is attracting a huge amount
of coverage in the literature and many early converts. But will SOA
prove to be a truly successful architectural advance, or only a quantum
leap in complexity without too many benefits? Unfortunately, there are
not yet enough completed SOA applications to be sure that this theo-
retically useful architecture will live up to the promises that are being
made on its behalf. (Recall that SOA applications are not downloaded
into individual computers, but operate remotely from web hosts. This of
course requires high bandwidths and transmission speed to be effective.
No one has considered whether there is enough bandwidth available if
there are thousands of SOA applications attempting to serve millions
of clients at the same time.)

Another form of advanced architecture with huge claims is that of cloud
computing. With this architecture, applications are segmented so that
they can run concurrently on literally hundreds of remote computers.

Requirements, Analysis, Architecture, and Design 475

This raises questions of safety and security given the rather poor security
protocols that might be found in a cloud computing environment.

The bottom line for architecture as of 2009 is that it is evolving so
rapidly that it is worthwhile to employ professional software archi-
tects who can stay current with the evolution of software architectural
styles.

But selecting a specific architecture for a specific application is not
a clear-cut choice with only one correct answer. The choice needs to
be made by the architects assigned to the application, based on their
knowledge of both architectural principles and also on their knowledge
of the purpose and features of the application in question.

Enterprise Architecture

The need for enterprise architecture has grown progressively more
important over the past 30 years, due in large part to the way comput-
ers and software became embedded in corporate operations.

In the late 1960s, when mainframe computers first began to be applied
to business problems, their capabilities were somewhat primitive and
limited. As a result, early business applications tended to be very local,
to operate on a specific computer in a specific data center, and to serve
only a limited number of users in a single business unit.

Corporations have multiple operating units, including manufacturing,
marketing, sales, finance, human resources, and a number of others.
Large corporations also have multiple business and manufacturing sites
scattered through multiple cities and states.

When computers and software first became business tools, it was a
common practice for each operating unit to have its own data center and
to develop its own software. Often there was little or no communication
between operating units as to the features, interfaces, or data that the
applications were automating.

By the 1980s, large corporations had developed hundreds or even
thousands of software applications, the majority of which served only
narrow and local purposes. When corporate officers such as the CEO
needed consolidated information from across all business units, time-
consuming and expensive work was necessary to extract data from vari-
ous applications and produce consolidated reports.

This awkward situation triggered the emergence of enterprise architec-
ture as a key discipline to bring data processing consistency across mul-
tiple operating units. The same situation also triggered the emergence of
an important commercial software market: enterprise resource planning
(ERP). The basic concept of ERP applications is that individual applica-
tions are so hard to link together that it would be cheaper to replace all
of them with a single large system that could serve all operating units

476 Chapter Seven

at the same time, and to store data in a consistent format that served
corporate and unit needs simultaneously.

From about 2000 onward, numerous instances of corporate fraud and
severe accounting errors such as demonstrated by Enron have added
another dimension to enterprise architecture. Enterprise architects are
also key players in software governance, or ensuring that financial data
is accurate and that corporate officers take responsibility for its accu-
racy under threat of severe penalties.

The main difference between architecture as discussed in the previ-
ous section and enterprise architecture is the scope of responsibility.
Normally, architects work on individual applications, which might range
from 10,000 to more than 100,000 function points. Enterprise architects
work on corporate portfolios, which may range from about 2 million
function points to more than 20 million function points in aggregate
size. Corporate portfolios for large companies such as Microsoft, IBM,
or Lockheed contain thousands of applications.

Yet another aspect of enterprise architecture is the fact that large
corporations create and use many different kinds of software: conven-
tional information technology applications, web applications, embedded
applications, and systems software. Some of these applications are built
by in-house personnel; some are outsourced; some come from commer-
cial vendors; some are open-source applications; and some come from
mergers and acquisitions with other companies. In addition, any large
corporation today in 2009 must also interface with the computer sys-
tems of other corporations and also with government agencies such as
taxation and workers compensation.

The most difficult part of enterprise architecture is probably that
of dealing with joining two software portfolios as a result of a merger
or acquisition. Usually, at least 80 percent of the applications in both
companies perform similar functions, but they may use different data
structures, have different interface methods, and have different internal
architectures.

Combining portfolios from two different companies in the wake of a
merger is one of the most difficult tasks faced by enterprise architects,
by architects, by business analysts, and by all other software engineer-
ing personnel.

Yet another set of concerns studied by enterprise architects are the
communication methods among disparate business units and also the
databases and repositories they develop and maintain.

In addition, enterprise architects are also concerned with a host of
technology issues including but not limited to hardware platforms, soft-
ware operating systems, open-source software, COTS packages from
external vendors, and emerging topics such as cloud computing and
service-oriented architecture that are not yet fully deployed.

Requirements, Analysis, Architecture, and Design 477

Enterprise architecture has the same relationship to architecture
that urban planning has to building architecture. With building archi-
tecture, an architect is concerned primarily with a single building. But
urban planners need to be concerned about thousands of buildings at
the same time. Urban planners need to think about what kinds of infra-
structure will be needed to support various sectors such as residential,
commercial, industrial, and so forth.

Table 7-8 shows the importance of enterprise architecture with
increasing numbers of applications owned by the enterprise.

Table 7-8 brings up an interesting question: How many enterprise
architects are needed in a large company? Because this is a fairly new
occupation, there is no definitive answer. However, given the complexity
of the situation, a corporation probably needs one enterprise architect
for about every 1000 significant applications in their portfolio. Thus, if
a company has 5000 applications in their portfolio, they may need five
enterprise architects.

Expressed another way, the assignment scope of an enterprise archi-
tect runs from 500,000 up to more than 2 million function points.

For a large corporation such as IBM, Microsoft, or Unisys, a full port-
folio might include

 3,000 in-house information technology applications
 1,500 web-based applications
 1,000 tools (project management, testing, etc.)
 3,500 commercial applications from other companies (ERP, HR, etc.)
 2,000 commercial applications sold to other companies
 2,500 systems-software applications
 500 embedded applications (security, AC, etc.)
 250 open-source applications

14,250 total applications

Assuming this total quantity of applications, then about 15 enterprise
architects are likely to be employed.

Number of Applications
Owned by Enterprise Importance of Enterprise Architecture

10 Enterprise architecture not needed

100 Enterprise architecture useful

1,000 Enterprise architecture important

10,000 Enterprise architecture very important

100,000 Enterprise architecture critical

1,000,000 Enterprise architecture critical but very difficult to achieve

TABLE 7-8 Value of Enterprise Architecture Increases with Applications

478 Chapter Seven

These disparate applications will probably operate on more than a
dozen hardware platforms and encompass at least half a dozen operat-
ing systems. In other words, the software world of a large corporation
is a smorgasbord of diverse applications, platforms, data file structures,
communication channels, and other problem areas.

As of 2009, the roles of enterprise architects are evolving under the
impact of service-oriented architecture (SOA), cloud computing, the
explosion of open-source applications, and also under the emerging cri-
teria for more accurate financial reports mandated by Sarbanes-Oxley
legislation.

The global recession will also have a significant but unpredictable
impact on enterprise architecture. There are no models or guidelines
for what happens to enterprise architecture during periods of massive
layoffs, closures of business units, abandonment of unfinished applica-
tions, and reduced numbers of development and maintenance personnel.
In fact, there is some risk that enterprise architects themselves may be
among those who are laid off, because their work is not always perceived
as having a direct impact on corporate bottom lines.

Several nonprofit associations support the enterprise architecture
domain. One of these is the Association of Enterprise Architects (AEA),
whose web site is aeaasociation.org.

Another is the awkwardly named Association of Open Group Enterprise
Architects (AOGEA), whose web site is AOGEA.org. This organization
and its awkward name are due to a merger between the Open Group
organization and the Global Enterprise Architecture Organization
(GEAO). The merged group asserts that it has become the largest asso-
ciation of architects in the world.

There is also a journal for enterprise architects, The Journal of
Enterprise Architecture (JEA), published by the Association of Enterprise
Architects.

It is difficult to find information about the specific plans of enterprise
architects for corporations, because their work is usually proprietary
and not made available to the public. However, many units of the federal
government and most state governments do publish or make available
information about their enterprise architectures. The Department of
Defense is the world’s largest user of computer software and is attempt-
ing to develop a new and improved enterprise architecture.

The huge increases in hacking, worms, viruses, and denial of service
attacks are obviously topics of great concern to enterprise architects.
However, security requires special skills, which are rare today, so exter-
nal consultants on security are needed to buttress the work of enterprise
architects until they can catch up.

In terms of best practices, organizations that own more than about 500
software applications should employ at least one enterprise architect.

Requirements, Analysis, Architecture, and Design 479

Large corporations with more than 5000 software applications may need
five, as noted before using ratios of applications to enterprise architects.

The roles played by enterprise architects in specific companies vary
widely, and it is hard to pin down best practices. Obviously, increasing
data sharing among operating units would be a best practice. Eliminating
redundant applications and pruning portfolios of aging and unwieldy
legacy applications would be another best practice. Other roles, which
may or may not be viewed as best practices, might include changing the
ratios of COTS applications to in-house software, and perhaps partici-
pating in the selection and deployment of enterprise resource planning
(ERP) applications. No doubt the work of enterprise architecture will
continue to evolve with technical and business changes.

Software Design

Suppose you were asked by the CEO of your company to examine the
most recent 250 applications developed internally and to identify can-
didate features for creating a library of reusable designs, code, and test
cases. How could this assignment be carried out?

This would not be an easy assignment given the state of the art of
software design circa 2009. About 75 of the smaller applications below
1000 function points would probably have used Agile development and
expressed their designs via user stories perhaps augmented by other
representation methods. User stories are useful enough for individual
applications, but not necessarily useful for identifying common patterns
across multiple applications.

About 50 of the larger business applications above 5000 function
points would have used more formal design methods; probably the UML
with the requirements being elicited via joint application design (JAD).
While the UML does capture individual patterns, the large volume of
UML diagrams and their many flavors means that scanning through
UML for a sample of 50 applications, trying to identify common features,
would not be easy or rapid.

An automated tool such as a static analysis tool might parse the meta-
language underlying UML and identify common patterns, but this is
not readily done circa 2009.

About 25 of the scientific or engineering applications would have used
state-change diagrams, modeling languages such as LePus3, Express,
and probably quality function deployment (QFD) with “house of quality”
diagrams and various architectural meta-language models.

The remaining 100 of the applications might have utilized a wide
variety of methods including but not limited to use-cases, the UML,
Nassi-Schneiderman charts, Jackson design, flowcharts, decision tables,
data-flow diagrams, HIPO diagrams, and probably more as well. Some of

480 Chapter Seven

these define patterns, but they are not easy to scan for a sample of 100
projects.

In summary, the 250 most recent applications might have used more
than 50 different design languages and methodologies, which, for the most
part, are not easily translatable from one to another. Neither are they
amenable to automatic verification and error-checking.

As a result of the large variety of fairly incompatible design repre-
sentations used on the sample of 250 applications in the same company,
there is no easy way to pick out features or patterns that are common
among several applications using design documents. This makes it dif-
ficult to identify candidate features for a library of reusable materials.

Since all of the applications are complete and operating, it might be
possible to identify the patterns by means of static-analysis tools on the
source code itself, assuming that all of these applications are written
in C, C++, Java, or any of the approximately 25 languages where static
analysis operates.

Since some of the design methods have underlying meta-languages,
static analysis is theoretically possible, but most static analysis tools
support programming languages and not meta-languages as of 2009.

It would also be possible to look for patterns using one or more of the
legacy renovation tools that parse source code and to display the code
in a fashion that makes maintenance and modification easy.

Yet another possibility would be to use some of the more sophisticated
complexity analysis tools that examine source code and to calculate
cyclomatic and essential complexity and also to identify code patterns.

The bottom line is that as of 2009, it is easier to find and identify
patterns in code than it is to identify patterns in design. This is not the
way it should be. Design methods should be amenable to automated
analysis in order to detect defects and also to look for patterns of reus-
able elements.

Another issue with software design is that software design errors are
the second most numerous form of software error. Design errors aver-
age about 1.25 bugs or mistakes per function point, while code averages
about 1.75 bugs per function point.

Since design documentation runs between one page and two pages per
function point, the implication is that essentially every page of a design
specification has at least one bug or error. This is why design inspections
are so powerful and effective in reducing software design problems.

Given that the typical error density in software design remains high
whether the representation method consists of use-cases, the UML,
flowcharts, or any of the other 50 or so representation methods, there is
insufficient data to select any current design methods as a best practice.
What is more useful, perhaps, is to consider the fundamental topics that
need to be part of software designs.

Requirements, Analysis, Architecture, and Design 481

Software Design Views

When considered objectively, software design is a subset of the more
general topic of knowledge representation. That brings up important
questions as to what kinds of knowledge need to be represented when
designing a software application. It also brings up questions as to what
languages or forms of representation are best for the various topics that
are part of software designs.

Because software is not readily visible and also has dynamic attri-
butes, it is somewhat more difficult to enumerate the topics of software
that need to be represented than it might be for a static physical object
such as a building. Eight general topics are needed to represent software
applications:

 1. The external view of software features visible to users and derived
from explicit user requirements. The external view includes screen
images, report formats, and responses to user actions as might occur
with embedded software. This view might identify features that are
shared with other applications and hence potentially reusable. This
view also should deal with error-handling for user errors. This view
will also discuss the various hardware and software platforms on
which the application will operate, and also the various countries
and national languages that will be supported. This view is fairly
concise and seems to average between 0.5 and 1.0 page per function
point.

 2. The algorithm view of the mathematical formulas or algorithms
contained in the application. These might be straightforward calcu-
lations such as currency conversions or very complex formulas such
as those associated with quantum mechanics. In any case, the major
algorithms need to be represented and explained prior to encoding
them. This view is very concise and averages below 0.25 page per
function point.

 3. The structural view of software applications includes components
and modules and how they are joined together to form a complete
application. This view includes the sequence or concurrency with
which these modules will execute. Calls or interfaces to external
applications are also part of the structural view. This view might
also show modules or features that are reused from external sources
or custom-built for a specific application. Classes and inheritance
using object-oriented methods would also be shown in the struc-
tural view. This is the most verbose view and runs between 1.0 and
2.0 pages per function point.

 4. The data view includes the kinds of information created, used, or
manipulated by the software application. This view includes facts

482 Chapter Seven

about the data such as whether it consists of business information,
symbols, sensor-based information, images, sounds, or something
else. For example, the embedded software inside a cochlear implant
converts external audio information into electrical signals. Because
as of 2009, there is no “data point” metric or any other metric for
expressing the size of databases, repositories, and data warehouses,
there is no effective way to express the size or volume of data used
by software.

 5. The attribute view or nonfunctional goals and targets for the appli-
cation once it is deployed. These attributes can include performance
in terms of execution speed, reliability in terms of mean time to
failure (MTTF), quality in terms of delivered defects, and a number
of other attributes as well. This view is also very concise and usually
requires less than three pages no matter how large the application
itself is.

 6. The security view or how the application will defend itself against
viruses, worms, search bots, denial of service attacks, and other
attempts to either interfere with the operation of the software or
steal information used by the software. This view is new circa 2009,
but quickly needs to become a standard feature of software applica-
tion design and especially so for financial applications, health-care
applications, and any application that deals with valuable or classi-
fied information. This view is too new to have any size information
available as of 2009. However, it will probably turn out to be fairly
concise.

 7. The pattern view, or the combinations of the other views that are
likely to occur in multiple software applications, and hence are
candidates for reuse. Typical patterns with reuse potential will
contain similar external features, similar algorithms, and similar
data structures. Class libraries and inheritance of object-oriented
software may also be part of software patterns. This view seems to
require about 0.1 to 0.4 page per function point to describe specific
patterns, with the size being based on the reusable feature being
described.

 8. The logistical view records certain historical facts about software
applications that are often lost or difficult to find. These logistical
topics include the date the application was first started, the loca-
tions and companies involved in construction, and information on
the methods, tools, and practices used in construction. Application
size in terms of both function points and logical code statements
would be included in the logistical view, along with the various lan-
guages utilized. Since applications continue to grow, the logistical
view should identify creeping requirements and then later growth

Requirements, Analysis, Architecture, and Design 483

over multiple releases. The logistical view also includes the sources of
reusable materials for the application. The logistical view is intended
to aid in benchmarking. The logistical view would also be useful
for multiple regression analysis to demonstrate the effectiveness of
methods such as Agile or TSP. Part of the logistical view would be
the placement of the application on a formal taxonomy, such as the
one discussed earlier in this chapter. This view is usually less than
ten pages, regardless of the size of the application itself.

When all of the eight views are summed together, the average size is
about 3.0 pages per function point, and the range runs from less than
1.5 pages per function point to more than 6.0 pages per function point.

From the fairly large sizes associated with software design, it is easy
to understand why the creation of paper documents can cost more than
the source code for large applications. It is also easy to understand why
some of the Agile concepts are in reaction to the large volumes and high
costs of normal software design practices.

Given the multiple views that need to be captured during software
design, it is obvious that no single language or representation method
can deal with all eight kinds of view. Therefore, software design must
utilize multiple methods of representing knowledge:

■ Natural language text can be used for defining the attribute view,
the logistics view, and for some of the external views. Special forms
of natural language such as “executable English” may also be used.

■ Images may be needed for some aspects of the external view, such as
typical screens or samples of outputs.

■ Mathematical formulas or other forms of scientific notations are
needed for the algorithm view.

■ Symbols and diagrams are needed for the structural view. Because
of the dynamic nature of software, some form of animation would be
preferable to static views. With animation, performance can be mod-
eled during design.

Since automation for verification purposes would be somewhat dif-
ficult across multiple representation methods, it would be desirable and
useful if the major views could be mapped into a single meta-language.
Obviously, most of the views eventually get mapped into source code,
but by the time the code is complete, it is too late to verify and validate
the design.

Whether a generalized design meta-language is based on some form of
Backus-Naur notation, a definite clause grammar (DCG), or something
else, it should have the property of being analyzed automatically for
verification and validation purposes. Taking verification and validation

484 Chapter Seven

one step further, it might also be possible to generate a suite of test cases
from the analysis of the meta-language.

The bottom line on software design circa 2009 is that some of the 50 or
so representation methods are effective for individual applications. But
none are effective for pattern analysis and identification of candidates
for reusable features.

Summary and Conclusions

The creation of various paper representations of software applica-
tions before the code itself is created has long been troublesome for the
software engineering domain. Errors and mistakes are found in every
form of paper description of software. Translation from requirements to
design and from design to code always manages to leave some features
behind, and often manages to add features that no one asked for.

The cost of producing paper documents is often greater than the cost
of the source code itself. While paper documents can be inspected for
errors, and inspections are quite effective, it is very difficult to carry
out automated verification and validation of either text documents or
graphic design documents.

In total software requirements, analysis, architecture, and design
contribute to about 60 percent of all software bugs or defects and accu-
mulate between 30 percent and 40 percent of software costs. Indeed, the
three top cost elements of large software applications are

 1. Finding and fixing bugs (many of which originate in paper docu-
ments)

 2. Producing paper documents including requirements, architecture,
and design

 3. Creating the source code itself

Because paper documents are simultaneously more defective and more
expensive than source code itself, there is a continuing need for software
engineering researchers to pay more attention to both the error content
of paper documents and also to the economic costs of paperwork.

Hopefully, future studies will enable software patterns to be more
easily found and will also permit more effective validation of require-
ments and design by automated means.

As of 2009, formal inspection of requirements, architecture, and
design is the most effective known way of eliminating defects in these
important documents. But inspections are somewhat slow and costly.
However, neither static analysis nor testing is fully capable of finding
and removing requirements and design errors, so manual inspections
are critical activities.

Requirements, Analysis, Architecture, and Design 485

Readings and References

Note: Software requirements, business analysis, architecture, enterprise
architecture, and design collectively have more than 500 book titles and
thousands of journal articles in print. Yet in spite of the huge volume
of published information, these areas of software engineering continue
to be troublesome and erratic. The titles shown here represent only a
small sample of the available literature.

The Cost and Quality Associated
with Software Paperwork
Beck, Kent. Test-Driven Development. Boston, MA: Addison Wesley, 2002.
Cohen, Lou. Quality Function Deployment—How to Make QFD Work for You. Upper

Saddle River, NJ: Prentice Hall, 1995.
Cohn, Mike. Agile Estimating and Planning. Englewood Cliffs, NJ: Prentice Hall PTR,

2005.
Garmus, David and David Herron. Function Point Analysis—Measurement Practices for

Successful Software Projects. Boston, MA: Addison Wesley Longman, 2001.
Garmus, David and David Herron. Measuring the Software Process: A Practical Guide

to Functional Measurement. Englewood Cliffs, NJ: Prentice Hall, 1995.
Gilb, Tom and Dorothy Graham. Software Inspections. Reading, MA: Addison Wesley,

1993.
Glass, R.L. Software Runaways: Lessons Learned from Massive Software Project

Failures. Englewood Cliffs, NJ: Prentice Hall, 1998.
Harris, Michael, David Herron, and Stacia Iwanicki. The Business Value of IT:

Managing Risks, Optimizing Performance, and Measuring Results. Boca Raton, FL:
CRC Press (Auerbach), 2008.

Humphrey, Watts. Managing the Software Process. Reading, MA: Addison Wesley, 1989.
Jones, Capers. Assessment and Control of Software Risks. Englewood Cliffs, NJ:

Prentice Hall, 1994.
Jones, Capers. Estimating Software Costs. New York, NY: McGraw-Hill, 2007.
Jones, Capers. Patterns of Software System Failure and Success. Boston, MA:

International Thomson Computer Press, 1995.
Jones, Capers. Software Assessments, Benchmarks, and Best Practices. Boston, MA:

Addison Wesley Longman, 2000.
Jones, Capers. “Software Project Management Practices: Failure Versus Success.”

CrossTalk, Vol. 19, No. 6 (June 2006): 4–8.
Jones, Capers. “Why Flawed Software Projects are not Cancelled in Time.” Cutter IT

Journal, Vol. 10, No. 12 (December 2003): 12–17.
Kan, Stephen H. Metrics and Models in Software Quality Engineering, Second Edition.

Boston, MA: Addison Wesley Longman, 2003.
McConnell, Steve. Software Estimating: Demystifying the Black Art. Redmond, WA:

Microsoft Press, 2006.
Radice, Ronald A. High Quality Low Cost Software Inspections. Andover, MA:

Paradoxicon Publishing, 2002.
Roetzheim, William H., and Reyna A. Beasley. Best Practices in Software Cost and

Schedule Estimation. Upper Saddle River, NJ: Prentice Hall PTR, 1998.
Strassmann, Paul. Governance of Information Management: The Concept of an

Information Constitution, Second Edition. (eBook). Stamford, CT: Information
Economics Press, 2004.

Strassmann, Paul. Information Payoff. Stamford, CT: Information Economics Press, 1985.
Strassmann, Paul. Information Productivity. Stamford, CT: Information Economics

Press, 1999.
Strassmann, Paul. The Squandered Computer. Stamford, CT: Information Economics

Press, 1997.

486 Chapter Seven

Wiegers, Karl E. Peer Reviews in Software—A Practical Guide. Boston: Addison Wesley
Longman, 2002.

Yourdon, Ed. Death March—The Complete Software Developer’s Guide to Surviving
“Mission Impossible” Projects. Upper Saddle River, NJ: Prentice Hall PTR, 1997.

Software Requirements
Artow, J. & I. Neustadt. UML and the Unified Process. Boston: Addison Wesley, 2000.
Booch, Grady, Ivar Jacobsen, and James Rumbaugh. The Unified Modeling Language

User Guide, Second Edition. Boston: Addison Wesley, 2005.
Cockburn, Alistair. Writing Effective Use Cases. Boston: Addison Wesley. 2000.
Cohn, Mike. User Stories Applied: For Agile Software Development. Boston: Addison

Wesley, 2004.
Fernandini, Patricia L. A Requirements Pattern. Succeeding in the Internet Economy.

Boston: Addison Wesley, 2002.
Gottesidner, Ellen. The Software Requirements Memory Jogger. Salem, NH: Goal QPC

Inc., 2005.
Inmon, William H., John Zachman, and Jonathan G. Geiger. Data Stores, Data

Warehousing, and the Zachman Framework. New York: McGraw-Hill, 1997.
Orr, Ken. Structured Requirements Definition. Topeka, KS: Ken Orr and Associates,

Inc., 1981.
Robertson, Suzanne and James Robertson. Mastering the Requirements Process, Second

Edition. Boston: Addison Wesley, 2006.
Wiegers, Karl E. Software Requirements, Second Edition. Bellevue, WA: Microsoft Press,

2003.
Wiegers, Karl E. More About Software Requirements: Thorny Issues and Practical

Advice. Bellevue, WA: Microsoft Press, 2000.

Software Business Analysis
Carkenord, Barbara A. Seven Steps to Mastering Business Analysis. Ft. Lauderdale, FL:

J. Ross Publishing, 2008.
Haas, Kathleen B. Getting it Right: Business Requirements Analysis Tools and

Techniques. Vienna, VA: Management Concepts. 2007.

Software Architecture
Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice. Boston:

Addison Wesley, 1997.
Marks, Eric and Michael Bell. Service-Oriented Architecture (SOA): A Planning and

Implementation Guide for Business and Technology. New York: John Wiley & Sons,
2006.

Reekie, John and Rohan McAdam. A Software Architecture Primer. Angophora Press, 2006.
Shaw, Mary and David Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Englewood Cliffs, NJ: Prentice Hall, 1996.
Taylor, R.N., N. Medvidovic, E.M. Dashofy. Software Architecture: Foundations, Theory,

and Practice. Hoboken, NJ: Wiley, 2009.
Warnier, Jean-Dominique. Logical Construction of Systems. London: Van Nostrand

Reinhold, 1978.

Enterprise Architecture
Bernard, Scott. An Introduction to Enterprise Architecture, Second Edition. Philadelphia,

PA: Auerbach Publications, 2008.
Fowler, Martin. Patterns of Enterprise Application Architecture. Boston, MA: Addison

Wesley, 2007.

Requirements, Analysis, Architecture, and Design 487

Lankhorst, Marc. Enterprise Architecture at Work: Modeling, Communication, and
Analysis. Cologne, DE: Springer, 2005.

Spewak, Steven H. Enterprise Architecture Planning: Developing a Blueprint for Data,
Applications, and Technology. Hoboken, NSJ: Wiley, 1993.

Software Design
Ambler, S. Process Patterns—Building Large-Scale Systems Using Object Technology.

Cambridge University Press, SIGS Books, 1998.
Berger, Arnold S. Embedded Systems Design: An Introduction to Processes, Tools, and

Techniques. Burlington, MA:CMP Books. 2001.
Gamma, Erich, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns:

Elements of Reusable Object Oriented Design. Boston: Addison Wesley, 1995.
Martin, James & Carma McClure. Diagramming Techniques for Analysts and

Programmers. Englewood Cliffs, NJ: Prentice Hall, 1985.
Shalloway, Alan & James Trott. Design Patterns Explained: A New Perspective on

Object-Oriented Design, Second Edition. Boston, MA: Addison Wesley Professional,
2004.

This page intentionally left blank

489

Chapter

 8
Programming and Code

Development

Introduction

This chapter has an unusual slant compared with other books on soft-
ware engineering. Among other topics, it deals with 12 important ques-
tions that are not well covered in the software engineering literature:

 1. Why do we have more than 2500 programming languages?

 2. Why does a new programming language appear more than once a
month?

 3. How many programming languages are really needed by software
engineering?

 4. Why do most modern applications use between 2 and 15 different
languages?

 5. How many applications being maintained are written in “dead”
programming languages with few programmers?

 6. How many programmers use major languages; how many use minor
languages?

 7. Should there be a national translation center that maintains com-
pilers and tools for dead programming languages and that can con-
vert antique languages into modern languages?

 8. What are the major kinds of bugs found in source code?

 9. How effective are debuggers and static analysis tools compared
with inspections?

489

490 Chapter Eight

10. How effective are various kinds of testing in terms of bug
removal?

11. How effective is reusable code in terms of quality, security, and
costs?

12. Why has the “lines of code” metric stopped being effective for soft-
ware economic studies?

These 12 topics are not the only topics that are important about pro-
gramming, but they are not discussed often in software engineering
journals or books. Following are discussions of the 12 topics.

A Short History of Programming and
Language Development

It is interesting to consider the history of programming and the devel-
opment of programming languages. The early history of mechanical
computers driven by gears, cogs, and later punched cards is interest-
ing, but not relevant. However, these devices did embody the essence of
computer programming, which is to control the behavior of a mechanical
device by means of discrete instructions that could be varied in order to
change the behavior of the machine.

The pioneers of computer design include Charles Babbage, Ada
Lovelace, Hermann Hollerith, Alan Turing, John Von Neumann, Conrad
Zuse, J. Presper Eckert, John Mauchly, and a number of others. John
Backus, Konrad Zuse, and others contributed to the foundations of pro-
gramming languages. David Parnas and Edsger Dijkstra contributed
to the development of structured programming that minimized the ten-
dency of code branching to form “spaghetti bowls” of so many branches
that the code became nearly unreadable.

Ada Lovelace was an associate of Charles Babbage. In 1842 and 1843,
she described a method of calculating Bernoulli numbers for use on the
Babbage analytical engine. Her work is often cited as the world’s first
computer program, although there is some debate about this.

In the years during and prior to World War II, a number of companies
in various countries built electro-mechanical computing devices, pri-
marily for special purposes such as calculating trajectories or handling
mathematical tasks.

The earliest models were “programmed” in part by changing wire con-
nections or using plug boards. But during World War II, computing devices
were developed with memory that could store both data and instructions.
The ability to have language instructions stored in memory opened the
gates to modern computer programming as we know it today.

Konrad Zuse of Germany built the Z3 computer in 1941 and later
designed what seems to be the first high-level language, Plankalkül,

Programming and Code Development 491

in 1948, although no compiler was created and the language was not
used.

The earliest “languages” that were stored in computers were binary
codes or machine languages, which obviously were extremely difficult to
understand, code, or modify. The difficulty of working with machine codes
directly led to languages that were more amenable to human under-
standing but capable of being translated into machine instructions.

The earliest of these languages were termed assembly languages and
usually had a one-to-one correspondence between the human-readable
instructions (called source code) and the executable instructions (called
object code).

The idea of developing languages that humans could use to describe
various algorithms or data manipulation steps proved to be so useful that
very shortly a number of more specialized languages were developed.

In these languages the human portions were optimized for certain
kinds of problems, and the work of translating the languages into
machine code was left to the compilers. Incidentally, the main difference
between an assembler and a compiler is that assemblers tend to have a
one-to-one ratio between source code and object code, while compilers
have a one-to-many ratio. In other words, one statement in a compiled
language might generate a dozen or more machine instructions.

The ability to translate a single source instruction into many object
instructions led to the concept of high-level programming languages. In
general, the higher the level of a programming language, the more object
code can be created from a single source code statement.

Both assembly and compilation were handled by special translation
programs as batch activities. The source code could not be run immedi-
ately. Sometimes translation might be delayed for hours if the computer
was being used for other work and other computers were not available.
These delays led to another form of code translation. Programming
language translators called interpreters were soon developed, which
allowed source code to be converted into object code immediately.

In the early days of computing and programming, software was used
primarily for a narrow range of mathematical calculations. But the
speed of digital computers soon gave rise to wider ranges of applica-
tions. When computers started to be aimed at business problems and
to manipulate text and data, it became obvious that if the source code
included some of the language and vocabulary of the problem domain,
then programming languages would be easier to learn and use. The use
of computers to control physical devices opened up yet another need for
languages optimized for dealing with physical objects.

As a result, scores of domain-specific programming languages were
developed that were aimed at tasks such as list processing, business
applications, astronomy, embedded applications, and a host of others.

492 Chapter Eight

Why Do We Have More than 2500
Programming Languages?

The concept of having source code optimized for specific kinds of busi-
ness or technical problems is one of the factors that led to the enormous
proliferation of programming languages.

There are some technical advantages for having programming lan-
guages match the vocabulary of various problem domains. For one thing,
such languages are easy to learn for programmers who are familiar with
the various domains.

It is actually fairly easy to develop a new programming language.
As computers began to be used for more and more kinds of problems,
the result was more and more programming languages. Developing a
new programming language that attracted other programmers also had
social and prestige value.

As a result of these technical and social reasons, the software industry
developed new programming languages with astonishing frequency.
Today, as of 2009, no one really knows the actual number of program-
ming languages and dialects, but the largest published lists of program-
ming languages now contain 2500 languages (The Language List by Bill
Kinnersley, http://people.ku.edu).

The author’s former company, Software Productivity Research, has
been keeping a list of common programming languages since 1984, and
the current version contains more than 700 programming languages.
New programming languages continue to come out at a rate of two or
three per calendar month; some months, more than 10 languages have
arrived. There is no end in sight.

One reason for the plethora of languages is that a new language can
be developed by a single software engineer in only a month or two. In
fact, with compiler-compilers, a new programming language can evolve
from a vague idea to compiled code in 60 days or less.

In 1984, the author’s first commercial software estimating tool was
put on the market. The first release of the tool could perform cost and
quality estimates for 30 different programming languages, but the tool
itself could handle other languages using the same logic and algorithms.
Therefore, we made a statement to customers that our tool could sup-
port cost estimates for “all known programming languages.”

Having made the claim, it was necessary to back it up by assembling
a list of all known programming languages and their levels. At the time
the claim was made in 1984, the author hypothesized that the list might
include 50 languages. However, when the data was collected, it was
discovered that the set of “all known programming languages” included
about 250 languages and dialects circa 1984.

It was also discovered while compiling the list that new languages
were popping up about once a month; sometimes quite a few more.

Programming and Code Development 493

It became obvious that keeping track of languages was not going to be
quick and easy, but would require continuous effort.

Today, as of 2009, the current list of languages maintained by Software
Productivity Research has grown to more than 700 programming lan-
guages, and the frequency with which new languages come out seems
to be increasing from about one new language per month up to perhaps
two or even four and occasionally ten new languages per month.)

An approximate chronology of significant programming languages is
shown in Table 8-1.

Table 8-1 is only a tiny subset of the total number of programming
languages. It is included just to give readers who may not be practicing
programmers an idea of the wide variety of languages in existence.

Those familiar with programming concepts can see from the list that
programming language design took two divergent paths:

■ Specialized languages that were optimal for narrow sets of problems
such as FORTRAN, Lisp, ASP, and SQL

■ General-purpose languages that could be used for a wide range of
problems such as Ada, Objective C, PL/I, and Ruby.

It is of sociological interest that the vast majority of special-purpose
languages were developed by individuals or perhaps two individuals.
For example, Basic was developed by John Kemeny and Thomas Kurtz;
C was developed by Dennis Ritchie; FORTRAN was developed by John
Backus; Java was developed by James Gosling; and Objective C was
developed by Brad Cox and Tom Love.

The general-purpose languages were usually developed by commit-
tees. For example, COBOL was developed by a famous committee with
major inputs from Grace Hopper of the U.S. Navy. Other languages
developed by committees include Ada and PL/I. However, some general-
purpose languages were also developed by individuals or colleagues,
such as Ruby and Objective C.

For reasons that are perhaps more sociological than technological, the
attempts at building general-purpose languages such as PL/I and Ada
have not been as popular with programmers as many of the special-
purpose languages.

This is a topic that needs both sociological and technical research,
because PL/I and Ada appear to be well designed, robust, and capable
of tacking a wide variety of applications with good results.

Another major divergence in programming languages occurred during
the late 1970s, although research had started earlier. This is the split
between object-oriented languages such as SMALLTALK, C++, and
Objective C and languages that did not adopt OO methods and termi-
nology, such as Basic, Visual Basic, and XML.

494 Chapter Eight

1951 Assembly languages

1954 FORTRAN (Formula Translator)

1958 Lisp (List Processing)

1959 COBOL (Common Business-Oriented Language)

1959 JOVIAL (Jules Own Version of the International Algorithmic Language)

1959 RPG (formerly Report Program Generator)

1960 ALGOL (Algorithmic Language)

1962 APL (A Programming Language)

1962 SIMULA

1964 Basic (Beginner’s all-purpose symbolic instruction code)

1964 PL/I

1964 CORAL

1967 MUMPS

1970 PASCAL

1970 Prolog

1970 Forth

1972 C

1978 SQL (Structured query language)

1980 CHILL

1980 dBASE II

1982 SMALLTALK

1983 Ada83

1985 Quick Basic

1985 Objective C

1986 C++

1986 Eiffel

1986 JavaScript

1987 Visual Basic

1987 PERL

1989 HTML (Hypertext Markup Language)

1993 AppleScript

1995 Java

1995 Ruby

1999 XML (Extensible Markup Language)

2000 C#

2000 ASP (Active Server Pages)

2002 ASP.NET

TABLE 8-1 Chronology of Programming Language Development

Today in 2009, more than 50 percent of active programming languages
tend to be in the object-oriented camp, while the other languages are
procedural languages, functional languages, or use some other method
of operation.

Programming and Code Development 495

Yet another dichotomy among programming languages is whether
they are typed or un-typed. The term typed means that operations in
a language are restricted to only specific data types. For example, a
typed language would not allow mathematical operations against char-
acter data. Examples of typed languages include Ruby, SMALLTALK,
and Lisp.

The opposite case, or un-typed languages, means that operations can
be performed against any type of data. Examples of un-typed languages
include assembly language and Forth.

The terms type and un-typed are somewhat ambiguous, as are the
related terms of strongly typed and weakly typed. Over and above ambi-
guity, there is some debate as to the virtues and limits of typed versus
un-typed languages.

Exploring the Popularity of Programming
Languages

There are a number of ways of studying the usage and popularity of
programming languages. These include

 1. Statistical analysis of web searches for specific languages

 2. Statistical analysis of books and articles published about specific
languages

 3. Statistical analysis of citations in the literature about specific lan-
guages

 4. Statistical analysis of job ads for programmers that cite language
skills

 5. Surveys and statistical analysis of languages in legacy applica-
tions

 6. Surveys and statistical analysis of languages used for new applica-
tions

A company called Tiobe publishes a monthly analysis of programming
language popularity that ranks 100 different programming languages.
Since this section is being written in May 2009, the 20 most popular lan-
guages for this month from the Tiobe rankings are listed in Table 8-2.

Older readers may wonder where COBOL, FORTRAN, PL/I, and Ada
reside. They are further down the Tiobe list in languages 21 through 40.

Since new languages pop up at a rate of more than one per month,
language popularity actually fluctuates rather widely on a monthly
basis. As interesting new programming languages appear, their popu-
larity goes up rapidly. But based on their utility or lack of utility over
longer periods, they may drop down again just as fast.

496 Chapter Eight

The popularity of programming languages bears a certain resemblance
to the popularity of prime-time television shows. Some new shows such
as Two and a Half Men surface, attract millions of viewers, and may last
for a number of seasons. A few shows such as Seinfeld become so popular
that they go into syndication and continue to be aired long after produc-
tion stops. But many shows are dropped after a single season.

It is interesting that the life expectancy of programming languages
and the life expectancy of television shows are about the same. Many
programming languages have active lives that span only a few “seasons”
and then disappear. Other languages become standards and may last for
many years. However, when all 2500 languages are considered, the aver-
age active life of a programming language when it is being used for new
development is less than five years. Very few programming languages
attract development programmers after more than ten years.

Some of the languages that are in the class of Seinfeld or I Love Lucy
and may last more than 25 years under syndication include

■ Ada

■ C

■ C++

1. Java
2. C
3. C++
4. PHP
5. Visual Basic
6. Python
7. C#
8. JavaScript
9. Perl

10. Ruby
11. Delphi
12. PL/SQL
13. SAS
14. PASCAL
15. RPG (OS/400)
16. ABAP
17. D
18. MATLAB
19. Logo
20. Lua

TABLE 8-2 Popularity Ranking of Programming Languages as of May 2009

Programming and Code Development 497

■ COBOL

■ Java

■ Objective C

■ PL/I

■ SQL

■ Visual Basic

■ XML

In a programming language context, the term syndication means that
the language is no longer under the direct control of its originator, but
rather control has passed to a user group or to a commercial company,
or that the language has been put in the public domain and is available
via open-source compilers.

It would be interesting and valuable if there were benchmarks and
statistics kept of the numbers of applications written in these long-lived
programming languages. No doubt C and COBOL have each been used
for more than 1 million applications on a global basis.

In fact, continuing with the analogy of the entertainment business,
it might be interesting to have awards for languages that have been
used for large numbers of applications. Perhaps “silver” might go for
100,000 applications, “gold” for 1 million applications, and “platinum”
for 10 million applications.

If such an award were created, a good name for it might be the
“Hopper,” after Admiral Grace Hopper, who did so much to advance
programming languages and especially COBOL. In fact, COBOL is prob-
ably the first programming language in history to achieve the 1-million-
application plateau.

Although the idea of awards for various numbers of applications is
interesting, that would mean that statistics were available for ascer-
taining how many applications were created in specific languages or
combinations of languages. As of 2009, the software industry does not
keep such data.

The choice of which language should be used for specific kinds of
applications is surprisingly subjective. A colleague at IBM was asked
in a meeting if he programmed in the APL language. His response was,
“No, I’m not of that faith.”

It would be technically possible to develop a standard method of
describing and cataloging the features of programming languages.
Indeed, with more than 2500 languages in existence, such a catalog is
urgently needed. Even if the catalog only started with 100 of the most
widely used languages, it would provide valuable information.

498 Chapter Eight

The full set of topics included to create an effective taxonomy of pro-
gramming languages is outside the scope of this book, but might contain
factors such as:

1. Language name Name of language

2. Architecture Object-oriented, functional, procedural, etc.

3. Origin Year of creation, names of inventors

4. Sources URLs of distributors of language compilers

5. Current version Version number of current release; 1, 2, or
whatever

6. Support URLs or addresses of maintenance organizations

7. User associations Names, URLs, and locations of user groups

8. Tutorial materials Books and learning sources about the language

9. Reviews or critiques Published reviews of language in refereed
journals

10. Legal status Public domain, licensed, patents, etc.

11. Language definition Whether it is formal, informal

12. Language syntax Description of syntax

13. Language typing Strongly typed, weakly typed, un-typed, etc.

14. Problem domains Mathematics, web, embedded, graphics, etc.

15. Hardware platforms Hardware language was intended to support

16. OS platforms Operating systems language compilers work
with

17. Intended uses Targeted application types

18. Known limitations Performance, security, problem domains, etc.

19. Dialects Variations of the basic language

20. Companion languages .NET, XML, etc. (languages used jointly)

21. Extensibility Commands added by language users

22. Level Logical statements relative to assembly
language

23. Backfire level Logical statements per function point

24. Reuse sources Certified modules, uncertified, etc.

25. Security features Intrinsic security features, such as in
the E language

26. Debuggers available Names of debugging tools

27. Static analysis available Names of static analysis tools

28. Development tools available Names of development tools

29. Maintenance tools available Names of maintenance tools

30. Applications to date Approximately 100, 1000, 10,000, 100,000, etc.

Given the huge number of programming languages, it is surprising
that no standard taxonomy exists. Web searches reveal more than a dozen
topics when using search arguments such as “taxonomies of program-
ming languages” or “categories of programming languages.” However,

Programming and Code Development 499

these vary widely, and some contain more than 50 different descriptive
forms, but seem to lack any fundamental organizing principle.

Returning now to the main theme, somewhat alarmingly, the life
expectancy of many software applications is longer than the active life
of the languages in which they were written. An example of this is the
patient-record systems of medical records maintained by the Veterans
Administration. It is written in the MUMPS programming language
and has far outlived MUMPS itself.

It is obvious to students of software engineering economics that if
programming languages have an average life expectancy of only 5 years,
but large applications last an average of 25 years, then software mainte-
nance costs are being driven higher than they should be due to the very
large number of aging applications that were coded in programming
languages that are now dead or dying.

How Many Programming Languages
Are Really Needed?

The plethora of programming languages raises basic questions that
need to be addressed by the software engineering literature: How many
programming languages does software engineering really need?

Having thousands of programming languages raises a corollary ques-
tion: Is the existence of more than 2500 programming languages a good
thing or a bad thing?

The argument that asserts having thousands of languages is a good
thing centers around the fact that languages tend to be optimized for
unique classes of problems. As new problems are encountered, they
demand new programming languages, or at least that is a hypothesis.

The argument that asserts having thousands of languages is a bad
thing centers around economics. Maintenance of legacy applications
written in dead languages is an expensive nightmare. The constant
need to train development programmers in the latest cult language
is expensive. Many useful tools such as static analysis tools and auto-
mated test tools support only a small subset of programming languages,
and therefore may require expensive modifications for new languages.
Accumulating large volumes of certified reusable code is more difficult
and expensive if thousands of languages have to be dealt with.

The existence of thousands of programming languages has created a
new subindustry within software engineering. This new subindustry is
concerned with translating dead or dying languages into new living lan-
guages. For example, it is now possible to translate the MUMPS language
circa 1967 into the C or Java languages and to do so automatically.

A corollary subindustry is that of renovation or periodically perform-
ing special maintenance activities on legacy applications to clean out

500 Chapter Eight

dead code, remove error-prone modules, and to reduce the inevitable
increase in cyclomatic and essential complexity that occurs over time
due to repeated small changes.

Linguists and those familiar with natural human languages are
aware that translation from one language to another is not perfect. For
example, some Eskimo dialects include more than 30 different words
for various kinds of snow. It is hard to get an exact translation into a
language such as English that developed in a temperate climate and
has only a few variations on “snow.”

Since many programming languages have specialized constructs for
certain classes of problem, the translation into other languages may lead
to awkward constructs that might be difficult for human programmers
to understand or deal with during maintenance and enhancement work.
Even so, if the translation opens up a dead language to a variety of static
analysis and maintenance tools, the effort is probably worthwhile.

To deal with the question of how many programming languages are
needed, it is useful to start by considering the universe of problem areas
that need to be put onto computers. There seem to be ten discrete prob-
lem areas, divided into two different major kinds of processing, as shown
in Table 8-3.

These two general categories reflect the major forms of software that
actually exist today: (1) software that processes information, and (2)
software that controls physical devices or deals with physical properties
such as sound or light or music.

These two broad categories might lead to the conclusion that per-
haps two programming languages would be the minimum number that
would be able to address all problem areas. One language would be
optimized for information systems, and another would be optimized
for dealing with physical devices and electronic signals. However, the

Logical and Mathematical Problem Areas
1. Mathematical calculations

2. Logic and algorithmic expressions

3. Numerical data

4. Text and string data

5. Time and dates

Physical Problem Areas
1. Sensor-based electronic signals

2. Audible signals and music

3. Static images

4. Dynamic or moving images

5. Colors

TABLE 8-3 Problem Domains of Software Applications

Programming and Code Development 501

track records of general-purpose languages such as PL/I and Ada have
not indicated much success for languages that attempt to do too many
things at once.

Few problems are “pure” and deal with only one narrow topic. In fact,
most applications deal with hybrid problem domains. This leads to a
possible conclusion that programming languages may reflect the permu-
tations of problem areas rather than the problem areas individually.

If the permutations of all ten problem areas were considered, then we
might eventually end up with 3,628,800 programming languages. This
is even more unlikely to occur than having one “superlanguage” that
could tackle all problem areas.

From examining samples of both information processing applications
and embedded and systems software applications, a provisional hypoth-
esis is that about four different problem areas occur in typical software
applications. The permutation of four topics out of a total of ten topics
leads to the hypothesis that the software engineering domain will even-
tually end up with about 5,040 different programming languages.

Since we already have about 2500 programming languages and dia-
lects in 2009, there may yet be another 2500 languages still to be devel-
oped in the future. At the rate new languages are occurring of roughly
100 per year, it can be projected that new languages will proceed at
about the same rate for another 25 years. From an economic standpoint,
this does not seem to be a very cost-effective engineering solution.

Assuming that the software engineering community does reach 5040
languages, the probable distribution of those languages would be

■ 4800 languages would be dead or dying, with few programmers

■ 200 languages would be in legacy applications and therefore need
maintenance

■ 40 languages would be new and gathering increasing numbers of
programmers

A technical alternative to churning out another 2500 specialized lan-
guages for every new kind of problem that surfaces would be to consider
building polymorphic compilers that would support any combination of
problem areas.

Creating a National Programming
Language Translation Center

When considering alternatives to churning out another 2500 program-
ming languages, it might be of value to create a formal programming
language translation center stocked with the language definitions of all
known programming languages.

502 Chapter Eight

This center could provide guidance in the translation of dead or dying
languages into modern active languages. Some companies already per-
form translation, but out of today’s total of 2500 languages, only a few
are handled with technical and linguistic accuracy. Automated transla-
tion as of 2009 probably only handles 50 languages out of 2500 total
languages.

Given the huge number of existing programming languages and the
rapid rate of creation of new programming languages, such a transla-
tion center would probably require a full-time staff of at least 50 person-
nel. This would mean that only very large companies such as IBM or
Microsoft or large government agencies such as Homeland Security or the
Department of Defense would be likely to attempt such an activity.

Over and above translation, the national programming language
translation center could also perform careful linguistic analyses of all
current languages in order to identify the main strengths and weak-
nesses of current languages. One obvious weakness of most languages
is that they are not very secure.

Another function of the translation center would be to record demo-
graphic information about the numbers and kinds of applications that
use various languages. For example, the languages used for financial
systems, for weapons systems, for medical applications, for taxation
systems, and for patient records have economic and even national
importance. It would be useful to keep records of the programming
languages used for such vital applications. Obviously, maintenance and
restoration of these vital applications has major business and national
importance.

Table 8-4 is a summary of 40 kinds of software applications that
have critical importance to the United States. Table 8-4 also shows the
various programming languages used in these 40 kinds of applications.
A major function of a code translation center would be to accumu-
late more precise data on critical applications and the languages used
in them.

Both columns of Table 8-4 need additional research. There are no
doubt more kinds of critical applications than the 40 listed here. Also, in
order to fit on a printed page, the second column of the table is limited
to about six or seven programming languages. For many of these criti-
cal applications, there may be 50 or more languages in use at national
levels.

The North American Industry Classification (NAIC) codes of the
Department of Commerce identify at least 250 industries that the
author knows create software in substantial volumes. However, the 40
industries shown in Table 8-4 probably contain almost 50 percent of
applications critical to U.S. business and government operations.

Programming and Code Development 503

Critical Software Programming Languages

1. Air traffic control Ada, Assembly, C, Jovial, PL/I

2. Antivirus & security ActiveX, C, C++, Oberon7

3. Automotive engines C, C++, Forth, Giotto

4. Banking applications C, COBOL, E, HTML, Java, PL/I, SQL, XML

5. Broadband C, C++, CESOF, JAVA

6. Cell phones C, C++, C#, Objective C

7. Credit cards ASP.NET, C, COBOL, Java, Perl, PHP, PL/I

8. Credit checking ABAP, COBOL, FORTRAN, PL/I, XML

9. Credit unions C, COBOL, HTML, PL/I, SQL

10. Criminal records ABAP, C, COBOL, FORTRAN, Hancock

11. Defense applications Ada, Assembly, C, CMS2, FORTRAN, Java, Jovial, SPL

12. Electric power Assembly, C, DCOPEJ, Java, Matpower

13. FBI, CIA, NSA, etc. Ada, APL, Assembly, C, C++, FORTRAN, Hancock

14. Federal taxation C, COBOL, Delphi, FORTRAN, Java, SQL

15. Flight controls Ada, Assembly, C, C++, C#, LabView

16. Insurance ABAP, COBOL, FORTRAN, Java, PL/I

17. Mail and shipping COBOL, dBase2, PL/I, Python, SQL

18. Manufacturing AML, APT, C, Forth, Lua, RLL

19. Medical equipment Assembly, Basic, C, CO, CMS2, Java

20. Medical records ABAP, COBOL, MUMPS. SQL

21. Medicare Assembly, COBOL, Java, PL/I, dBase2, SQL

22. Municipal taxation C, COBOL, Delphi, Java

23. Navigation Assembly, C, C++, C#, Lua, Logo, MatLab

24. Oil and Energy AMPL,C, G, GAMS/MPSGE, SLP,

25. Open-source software C, C++, JavaScript, Python, Suneido, XUL

26. Operating systems, large Assembly, C, C#, Objective C, PL/S, VB

27. Operating systems, small C, C++, Objective C, OSL, SR

28. Pharmaceuticals C, C++, Java, PASCAL, SAS, Visual Basic

29. Police records C, COBOL, DBase2, Hancock, SQL

30. Satellites C, C++, C#, Java, Jovial, PHP, Pluto

31. Securities trading ABAP, C #,COBOL, DBase2, Java, SQL

32. Social Security Assembly, COBOL, PL/I, dBase2, SQL

33. State taxation C, COBOL, Delphi, FORTRAN, Java, SQL

34. Surface transportation C, C++, COBOL, FORTRAN, HTML, SQL

35. Telephone switching C, CHILL, CORAL, Erlang, ESPL1,ESTEREL

36. Television broadcasts C, C++, C#, Java, Forth

37. Voting equipment Ada, C, C++, Java

38. Weapons systems Ada, Assembly, C, C++, Jovial

39. Web applications AppleScript, ASP, CMM, Dylan, E, Perl, PHP, .NET

40. Welfare (State) ASP.NET, C, COBOL, dBASE2, PL/I, SQL

TABLE 8-4 Programming Languages Used for Critical Software Applications

504 Chapter Eight

As a result of the importance of these 40 software application areas
to the United States business and to government operations, they prob-
ably receive almost 75 percent of cyberattacks in the form of viruses,
spyware, search-bots, and denial of service attacks. These 40 industries
need to focus on security. Even a cursory examination of the program-
ming languages used by these industries reveals that few of them are
particularly resistant to viruses or malware attacks.

For all 40, maintenance is expensive and for many, it is growing
progressively more expensive due to the difficulty of simultaneously
maintaining applications written in so many different programming
languages.

As a technical byproduct of translation from older languages to new
languages, one value-added function of a national programming lan-
guage translation center would be to eliminate security vulnerabilities
at the same time the older languages are being translated.

If the language translation center operated as a profit-making busi-
ness, it might well grow a good-sized company. Assuming the company
billed at the same rate as Y2K companies (about $1.00 per logical state-
ment), a national translation center might clear $75 million per year,
assuming accurate and competent translation technology.

What the author suggests is that rather than continue to develop
random programming languages at random but rapid intervals, there is
a need to address programming languages at a fundamental linguistic
level.

A study team that included linguists, software engineers, and domain
specialists might be able to address the problems of the most effective
ways of expressing the ten problem areas and their permutations. The
goal would be to understand the minimum set of programming lan-
guages capable of handling any combination of problem areas.

If economists were added to the study team, they would also be able to
address the financial impact of attempting to maintain and occasionally
renovate applications written in hundreds of dead and dying program-
ming languages.

Why Do Most Applications Use Between 2
and 15 Programming Languages

A striking phenomenon of software engineering is the presence of mul-
tiple programming languages in the same applications. This is not a
new trend, and many older applications used combinations such as
COBOL and SQL. More recent combinations might include Java and
HTML or XML.

A similar phenomenon is the fact that many programming lan-
guages are themselves combinations of two or more other programming

Programming and Code Development 505

languages. For example, the Objective C language combines features
from SMALLTALK and C. The Ruby language combines features from
Ada, Eiffel, Perl, and Python among others.

Recall that a majority of programming languages are somewhat
specialized, and these seem to be more popular than general-purposes
languages. A hypothesis that explains why applications use several
different programming languages is that the “problem space” of the
application is broader than the “solution space” of individual program-
ming languages.

It was mentioned earlier that many applications include at least
four of the ten problem areas cited in Table 8-3. However, many pro-
gramming languages seem to be optimized only for one to three of the
problem areas. This creates a situation where multiple programming
languages are needed to implement all of the problem areas in the
application.

Of course, using any of the more general-purpose languages such as
Ada or PL/I would reduce the numbers of languages, but for sociological
reasons, these general-purpose languages have not been as popular as
the more specialized languages.

The implications of having many different languages in the same
application are that development is more difficult, debugging is
more difficult, static analysis is more difficult, and code inspection is
more difficult. After release, maintenance and enhancement tasks are more
difficult.

Table 8-5 illustrates how both development and maintenance costs
go up as the number of languages in an application increase. The costs
show the rate of increase compared with a single language.

Both development and maintenance costs increase as numbers of pro-
gramming languages in the same application increase, but maintenance
is more severely impacted.

Languages in Application Development Costs Maintenance Costs

1 $1.00 $1.00

2 $1.07 $1.14

3 $1.12 $1.17

4 $1.13 $1.20

5 $1.18 $1.24

6 $1.22 $1.30

7 $1.23 $1.35

8 $1.27 $1.40

9 $1.30 $1.47

10 $1.34 $1.55

TABLE 8-5 Impact of Multiple Languages on Costs

506 Chapter Eight

How Many Programmers Use Various
Programming Languages?

There is no real census of either languages used in applications or
number of programmers. While the Department of Commerce and the
Bureau of Labor Statistics do issue reports on such topics in the United
States, their statistics are known to be inaccurate.

A survey done by the author and his colleagues a few years ago found
that the human resources organizations in most large corporations did
not know how many programmers or software engineers were actually
employed. Since government statistics are based on reports from HR
organizations, if they don’t know, then HR organizations can’t provide
good data to the government.

Among the reasons government statistics probably understate the
numbers of programmers and software engineers is because of ambigu-
ous job titles. For example, some large companies use titles such as
“member of the technical staff” as an umbrella title that might include
software engineers, hardware engineers, systems analysts, and perhaps
another dozen occupations.

Another problem with knowing how many software engineers there
are is the fact that many personnel working on embedded applications
are not software engineers or computer scientists by training, but rather
electrical engineers, aeronautical engineers, telecommunications engi-
neers, or some other type of engineer.

Because the status of these older forms of engineering is higher than
the status of software engineering, many people working on embed-
ded software refuse to be called software engineers and insist on being
identified by their true academic credentials.

The study carried out by the author and his colleagues was to derive
information on the number of software specialists (i.e., quality assurance,
database administration, etc.) employed by large software-intensive com-
panies such as IBM, AT&T, Hartford Insurance, and so forth.

The study included on-site visits and discussions with both HR organi-
zations and also local software managers and executives. It was during
the discussions with local software managers and executives that it was
discovered that not a single HR organization actually had good statistics
on software engineering populations.

Based on on-site interviews with client companies and then extrapola-
tion from their data to national levels, the author assumes that the U.S.
total of software engineers circa 2009 is about 2.5 million. Government
statistics as of 2009 indicate around 600,000 programmers, but these
statistics are low for reasons already discussed. Additionally, the govern-
ment statistics also tend to omit one-person companies and individual
programmers who develop applets or single applications.

Programming and Code Development 507

About 60 percent of these software engineers work in maintenance
and enhancement tasks, and 40 percent work as developers on new
applications. There are of course variations. For example, many more
developers than maintenance personnel work on web applications,
because all of these applications are fairly new. But for traditional
mainframe business applications and ordinary embedded and systems
software applications, maintenance workers outnumber development
workers by a substantial margin.

Table 8-6 shows the approximate numbers of software engineers by
language for the United States. However, the data in Table 8-6 is hypo-
thetical and not exact. Among the reasons that the data is not exact
is that many software engineers know more than one programming
language and work with more than one programming language.

However, Table 8-6 does illustrate a key point: The most common lan-
guages for software development are not the same as the most common
languages for software maintenance. This situation leads to a great deal
of trouble for the software industry.

The most obvious problem illustrated by Table 8-6 is that it is difficult
to get development personnel to work on maintenance tasks because of
the perceived view that older languages are not as glamorous as modern
languages.

A second problem is that due to the differences in programming lan-
guages between maintenance and new development, two different sets

Development
Languages

Software
Engineers

Maintenance
Languages

Software
Engineers

Java 175,000 COBOL 575,000

C 150,000 PL/I 125,000

C++ 130,000 Ada 100,000

Visual Basic 100,000 Visual Basic 75,000

C# 90,000 RPG 75,000

Ruby 65,000 Basic 75,000

JavaScript 50,000 Assembler 75,000

Perl 30,000 C 75,000

Python 20,000 FORTRAN 65,000

COBOL 15,000 Java 60,000

PHP 15,000 JavaScript 40,000

Objective C 10,000 Jovial 10,000

Others 150,000 Others 150,000

1,000,000 1,500,000

TABLE 8-6 Estimated Number of Software Engineers by Language

508 Chapter Eight

of tools are likely to be needed. The developers are interested in using
modern tools including static analysis, automated testing, and other
fairly new innovations.

However, many of these new tools do not support older languages,
so the software maintenance community needs to be equipped with
maintenance workbenches that include tools with different capabilities.
For example, tools that analyze cyclomatic and essential complexity
are used more often in maintenance work than in new development.
Tools that can trace execution flow are also used more widely in main-
tenance work than in development. Another new kind of tool that sup-
ports maintenance more than development can “mine” legacy code and
extract hidden business rules. Yet another kind of tool that supports
maintenance work is tools that can parse the code and automatically
generate function point totals.

It is fairly easy for programmers to learn new languages, but nobody can
possibly learn 2500 programming languages. An average programmer in
the U.S. is probably fairly expert in one language and fairly knowledgeable
in three others. Some may know as many as ten languages. The plethora
of languages obviously introduces major problems in academic training
and in ways of keeping programmers current in their skill sets.

The bottom line is that development and maintenance tool suites are
often very different, and this is due in large part to the differences in
programming languages used for development and for maintenance.

Since the great majority of languages widely used for development
today in 2009 will fall out of service in less than ten years, the software
industry faces some severe maintenance challenges.

Languages used for new development are surfacing at rates of
more than two per month. Most of these languages will be short-lived.
However, some of the applications created in these ephemeral languages
will last for many years. As a result, the set of programming languages
associated with legacy applications that need maintenance is growing
larger at rates that sometimes might top 50 languages per year!

A major economic problem associated with having thousands of
programming languages is that the plethora of languages is driving
up maintenance costs. Ironically, one of the major claims of new pro-
gramming languages is that “they improve programming productivity.”
Assuming that such claims are true at all, they are only true for new
development. Every single new language is eventually going to add to
the U.S. software maintenance burden. This is because programming
languages have shorter life expectancies than the applications created
with them. One by one, today’s “new” languages will drop out of use
and leave behind hundreds of aging legacy applications with declining
numbers of trained programmers, few effective tools, and sometimes
not even working compilers.

Programming and Code Development 509

What Kinds of Bugs or Defects
Occur in Source Code?

In 2008 and 2009, a major new study was performed that identified the
most common and serious 25 software bugs or defects. The study was
sponsored by the SANS Institute, with the cooperation of MITRE and
about 30 other organizations.

This new study is deservedly attracting a great deal of attention. In
the history of software quality and security, it will no doubt be ranked
as a landmark report. Indeed, all software engineering groups should
get copies of the report and make it required reading for software engi-
neers, quality assurance personnel, and also for software managers and
executives.

Access to the report can be had via either the SANS Institute or
MITRE web sites. The relevant URLS are

■ www.SANS.org

■ www.CWE-MITRE.org

In spite of the fact that software engineering is now a major occupa-
tion and millions of applications have been coded, only recently has
there been a serious and concentrated effort to understand the nature
of bugs and defects that exist in source code. The SANS report is signifi-
cant because the list of 25 serious problems was developed by a group
of some 40 experts from major software organizations. As a result, it is
obvious that the problems cited are universal programming problems
and not issues for a single company.

Over the years, many large companies such as IBM, AT&T, Microsoft,
and Unisys have had very sophisticated defect tracking and monitor-
ing systems. These same companies have also used root-cause analy-
sis. Some of the results of these internal defect tracking systems have
been published, but they usually were not perceived as having general
applicability.

A number of common problems have long been well understood: buffer
overflows, branches to incorrect locations, and omission of error han-
dling are well known and avoided by experienced software engineers.
But that is not the same as attempting a rigorous analysis and quanti-
fication of coding defects.

The SANS report is a very encouraging example of the kind of prog-
ress that can be made when top experts from many companies work
together in a cooperative manner to explore common problems. The
SANS study group included experts from academia, government, and
commercial companies. It is also encouraging that these three kinds of
organizations were able to cooperate successfully. The normal relation-
ship among the three is often adversarial rather than cooperative, so

510 Chapter Eight

having all three work together and produce a useful report is a fairly
rare occurrence.

Hopefully, the current work will serve as a model of future collabora-
tion that will deal with other important software issues. Some of the
additional topics that might do well in a collaborative mode include:

 1. Defect removal methods

 2. Economic analysis of software development

 3. Economic analysis of software maintenance

 4. Software metrics and measurement

 5. Software reusability

Some of the organizations that participated in the SANS study include
in alphabetical order:

■ Apple

■ Aspect Security

■ Breach Security

■ CERT

■ Homeland Security

■ Microsoft

■ Mitre

■ National Security Agency

■ Oracle

■ Perdue University

■ Red Hat

■ Tata

■ University of California

This is only a partial list, but it shows that the study included aca-
demia, commercial software organizations, and government agencies.

The overall list of 25 security problems was subdivided into three
larger topical areas. Readers are urged to review the full report, so only
a bare list of topics is included here:

Interactions

 1. Poor input validation

 2. Poor encoding of output

 3. SQL query structures

Programming and Code Development 511

 4. Web page structures

 5. Operating system command structures

 6. Open transmission of sensitive data

 7. Forgery of cross-site requests

 8. Race conditions

 9. Leaks from error messages

Resource Management

10. Unconstrained memory buffers

11. Control loss of state data

12. Control loss of paths and file names

13. Hazardous paths

14. Uncontrolled code generation

15. Reusing code without validation

16. Careless resource shutdown

17. Careless initialization

18. Calculation errors

Defense Leakages

19. Inadequate authorization and access control

20. Inadequate cryptographic algorithms

21. Hard coding and storing passwords

22. Unsafe permission assignments

23. Inadequate randomization

24. Excessive issuance of privileges

25. Client/server security lapses

The complete SANS list contains detailed information about each of
the 25 defects and also supplemental information on how the defects
are likely to occur, methods of prevention, and other important issues.
This is why readers are urged to examine the full SANS list.

As of 2009, these 25 problems may occur in more than 85 percent of
all operational software applications. One or more of these 25 problems
can be cited in more than 95 percent of all successful malware attacks.
Needless to say, the SANS list is a very important document that needs
widespread distribution and extensive study.

512 Chapter Eight

The SANS report is a valuable resource for companies involved in
testing, static analysis, inspections, and quality assurance. It provides
a very solid checklist of topics that need to be validated before code can
be safely released to the outside world.

Logistics of Software Code Defects

While the SANS report does an excellent job of identifying serious soft-
ware and code defects, once the defects are present in the code and the
code is in the hands of users, some additional issues need discussion.
Following is a list of topics that discuss logistical issues associated with
software defects:

 1. Defect A problem caused by human beings that causes a software
application to either stop running or to produce incorrect results.
Defects can be errors of commission, where developers did some-
thing wrong, or errors of omission, where developers failed to antici-
pate a specific condition.

 2. Defect severity level (IBM definition) Severity 1, software stops
working; Severity 2, major features disabled or incorrect; Severity
3, minor problem; Severity 4, cosmetic error with no operational
impact.

 3. Invalid defect A problem reported as a defect but which upon
analysis turns out to be caused by something other than the soft-
ware itself. Hardware problems, user errors, and operating system
errors mistakenly reported as application errors are the most
common invalid defects. These total as many as 15 percent of valid
defect reports.

 4. Abeyant defect (IBM term) A defect reported by a specific cus-
tomer that cannot be replicated on any other version of the software
except the one being used by the customer. Usually, abeyant defects
are caused by some unique combination of hardware devices and
other applications that run at the same time as the software against
which the defect was reported. These are rare but very difficult to
track down and repair.

 5. False positive A code segment initially identified by a static
analysis tool or a test case as a potential defect. Upon further analy-
sis, the code turns out to be correct.

 6. Secondhand defects A defect in an application that was not
caused by any overt mistakes on the part of the development team
itself, but instead was caused by errors in a compiler or tool used
by the development team. Errors in code generators and automatic
test tools are examples of secondhand defects. The developers used

Programming and Code Development 513

the tools in good faith, but as a result, bugs were created. An exam-
ple of a secondhand defect was a compiler error that incorrectly
handled an instruction. The code was compiled and executed, but
the instruction did not operate as defined in the language specifica-
tion. It was necessary to review the machine language listings to
find this secondhand defect since it was not visible in the source
code itself.

 7. Undetected defects These are similar to secondhand defects,
but turn out to be due to either incomplete test coverage or to gaps
in static analysis tools. It is widely known that test suites almost
never touch 100 percent of the code in any application, and some-
times less than 60 percent of the code in large applications. To
minimize the impact of undetected defects and partial test cover-
age, it is necessary to use test coverage analysis tools. Major gaps
in coverage may need special testing or formal inspections.

 8. Data defects Defects that are not in source code or applications,
but which reside in the data that passes through the application. A
very common example of a data defect would be an incorrect mail-
ing address. Data errors are numerous and may be severe, and they
are also difficult to eliminate. Data defects probably outnumber
code defects, and their status in terms of liability is ambiguous.
More serious examples of data defects are errors in credit reports,
which can lower credit ratings without any legitimate reason and
also without any overt defects in software. Data defects are noto-
riously difficult to repair, in part because there are no effective
quality assurance organizations involved with data defects. In fact,
there may not even be any reporting channels.

 9. Externally caused defects A defect that was not originally a
defect, but became one due to external changes such as new tax
laws, changes in pension plans, and other government mandates
that trigger code changes in software applications. An example
would be a change in state sales taxes from 6 percent to 7.5 per-
cent, which necessitates changes in many software applications.
Any application that does not make the change will end up with a
defect even though it may have run successfully for years prior to
the external change. Such changes are frequent but unpredictable
because they are based on government actions.

10. Bad fixes About 7 percent of attempts to repair a software code
defect accidentally contain a new defect. Sometimes there are sec-
ondary and even tertiary bad fixes. In one lawsuit against a soft-
ware vendor, four consecutive attempts to fix a bug in a financial
application added new defects and did not fix the original defect.
The fifth attempt finally got it right.

514 Chapter Eight

11. Legacy defects These are defects that surface today, but which
may have been hidden in software applications for ten years or
more. An example of a legacy defect was a payroll application that
stopped calculating overtime payments correctly. What happened
was that overtime began to exceed $10.00 per hour, and the field
had been defined with $9.99 as the maximum amount. The problem
was more than ten years old when it first occurred and was identi-
fied. (The original developers of the application were no longer even
employed by the company at the time the problem surfaced.)

12. Reused defects Between 15 percent and 50 percent of software
applications are based on reused code either acquired commercially
or picked up from other applications. Due to the lack of certifica-
tion of reusable materials, many bugs or errors are in reused code.
Whether liability should be assigned to the developer or to the user
of reused material is ambiguous as of 2009.

13. Error-prone modules (IBM term) Studies of IBM software dis-
covered that bugs or defects were not randomly distributed but
tended to clump in a small number of places. For example, in the
IMS database product, about 35 modules out of 425 were found to
contain almost 60 percent of total customer-reported bugs. Error-
prone modules are fairly common in large software applications. As
a rule of thumb, about 3 percent of the modules in large systems
are candidates for being classified as error-prone modules.

14. Incident An incident is an abrupt stoppage of a software applica-
tion for unknown reasons. However, when the software is restarted,
it operates successfully. Incidents are not uncommon, but their ori-
gins are difficult to pin down. Some may be caused by momentary
power surges or power outages; some may be caused by hardware
problems or even cosmic rays; and some may be caused by soft-
ware bugs. Because incidents are usually random in occurrence and
cannot be replicated, it is difficult to study them.

15. Security vulnerabilities These are code segments that are
frequently used by viruses, worms, and hackers to gain access to
software applications. Error handling routines and buffer overflows
are common examples of vulnerabilities. As of 2009, these are not
usually classified as defects because they are only channels for
malicious attacks. However, given the alarming increase in such
attacks, there may be a need to reevaluate how to classify security
vulnerabilities.

16. Malicious software engineers From time to time software
engineers become disgruntled with their colleagues, their manag-
ers, or the companies that they work for. When this situation occurs,

Programming and Code Development 515

some software engineers deliberately insert malicious code into the
applications that they are developing. This situation is most likely
to occur in the time interval between a software engineer receiv-
ing a layoff notice and the actual day of departure. While only a
few software engineers cause deliberate harm, the situation may
become more prevalent as the recession deepens and lengthens. In
any case, the fact that software engineers can deliberately perform
harmful acts is one of the reasons why software engineers who work
for the Internal Revenue Service have their tax returns examined
manually. Of course, not only malicious code can occur, but also
other harmful kinds of coding might be used by software engineer-
ing employees, such as diverting funds to personal accounts.

17. Defect potentials This term originated in IBM circa 1973 and is
included in all of my major books. The term defect potential refers
to the sum total of possible defects that are likely to be encoun-
tered during software development. The total includes five sources of
defects: (1) requirements defects, (2) design defects, (3) code defects,
(4) document defects, and (5) bad fixes or secondary defects. Current
U.S. averages for defect potentials are about 5.0 per function point. A
rule of thumb for predicting defect potentials is to raise the size of the
application in function points to the 1.25 power. This gives a useful
approximation of total defects that are likely to occur for applications
between about 100 function points and 10,000 function points.

18. Defect removal efficiency This term also originated in IBM
circa 1973. It refers to the ratio of defects detected to defects pres-
ent. If a unit test finds 30 bugs out of a total of 100 bugs, it is 30
percent efficient. Most forms of testing are less than 50 percent
efficient. Static analysis and formal inspections top 80 percent in
defect removal efficiency.

19. Cumulative defect removal efficiency This term also origi-
nated in IBM circa 1973. It refers to the aggregate total of defects
removed by all forms of inspection, static analysis, and testing. If a
series of removal operations that includes requirement, design, and
code inspections; static analysis; and unit, new function, regression,
performance, and system tests finds 950 defects out of a possible
1000, the cumulative efficiency is 95 percent. Current U.S. averages
are only about 85 percent. Cumulative defect removal efficiency is
calculated at a fixed point in time, usually 90 days after software
is released to customers.

20. Performance issues Some applications have stringent perfor-
mance criteria. An example might be the target-seeking guidance
system in a Patriot missile; another example would be the embed-
ded software inside antilock brakes. If the software fails to achieve

516 Chapter Eight

its performance targets, it may be unusable or even hazardous.
However, performance issues are not usually classified as defects
because no incorrect code is involved. What is involved are execu-
tion paths that are too long or that include too many calls and
branches. Even though there may be no overt errors, there are sub-
stantial liabilities associated with performance problems.

21. Cyclomatic and essential complexity These are mathemati-
cal expressions that provide a quantitative basis for judging the
complexity of source code segments. The metrics were invented by
Dr. Tom McCabe and are sometimes called McCabe complexity
metrics. Calculations are based on graph theory, and the general
formula is “edges – nodes + 2.” Practically speaking, cyclomatic com-
plexity levels less than ten indicate low complexity when the code
is reviewed by software engineers. Cyclomatic complexity levels
greater than 20 indicate very complex code. The metrics are signifi-
cant because of correlations between defect densities and cyclomatic
complexity levels. Essential complexity is similar, but uses mathe-
matical techniques to simply the graphs by removing redundancy.

22. Toxic requirement This is a new term introduced in 2009 and
derived from the financial phrase toxic assets. A toxic requirement
is defined as an explicit user requirement that is harmful and will
cause serious damages if not removed. Unfortunately, toxic require-
ments cannot be removed by means of regular testing because once
toxic requirements are embedded in requirements and design docu-
ments, any test cases created from those documents will confirm the
error rather than identify it. Toxic requirements can be removed
by formal inspections of requirements, however. An example of a
toxic requirement is the famous Y2K problem, which originated
as a specific user requirement. A more recent example of a toxic
requirement is the file handling of the Quicken financial software
application. If a backup file is “opened” instead of being “restored,”
then Quicken files can lose integrity.

Summary and Conclusions
on Software Defects

As discussed earlier in this book, the current U.S. average for software
defect volumes is about 5.0 per function point. (This total includes
requirements defects, design defects, coding defects, documentation
defects, and bad fixes or secondary defects.)

Cumulative defect removal is only about 85 percent. As a result, soft-
ware applications are routinely delivered with about 0.75 defect per
function point. Note that at the point of delivery, all of the early defects
in requirements and design have found their way into the code. In other

Programming and Code Development 517

words, while the famous Y2K problem originated as a requirements
defect, it eventually found its way into source code. No programming
language was immune, and therefore the Y2K problem was endemic
across thousands of applications written in all known programming
languages.

For a typical application of 1000 function points, 0.75 released defect
per function point implies about 750 delivered defects. Of these, about
20 percent will be high-severity defects: 150 high-severity defects will
probably be in the code when users get the first releases.

Five important kinds of remedial actions can improve this situation:

 1. Measurement of defect volumes by 100 percent of software organi-
zations.

 2. Measurement of defect removal efficiency for every kind of inspec-
tion, static analysis, and test stage used.

 3. Reducing defect potentials by means of effective defect prevention
methods such as joint application design (JAD) and quality function
deployment (QFD), and others.

 4. Raising defect removal efficiency levels by means of formal inspec-
tions, static analysis, and improved testing.

 5. Examining the results of quality on defect removal costs and also on
total development costs and schedules, plus maintenance costs.

The combination of these five key activities can lower defect poten-
tials down to less than 3.0 defects per function point and raise defect
removal efficiency levels higher than 95 percent on average, with mis-
sion-critical applications hitting 99 percent.

An achievable goal for the software industry would be to achieve aver-
ages of less than 3.0 defects per function point, defect removal efficiency
levels of more than 95 percent, and delivered defect volumes of less than
0.15 defect per function point.

The combined results from better measurement, better defect pre-
vention, and better defect removal would reduce delivered defects for
a 1000–function point application from 750 down to only 150. Of these
150, only about 10 percent would be high-severity defects. Thus, instead
of 150 high-severity defects that normally occur today, only 15 high-
severity defects might occur. This is an improvement of a full order of
magnitude.

Even better, empirical data indicates that applications at the high
end of the quality spectrum have shorter development schedules, lower
development costs, and much lower maintenance costs.

Indeed, the main reason for both schedule slippages and cost over-
runs is because of excessive defect volumes at the start of testing.

518 Chapter Eight

Most projects are on schedule and within budget until testing starts,
at which time excessive defects stretch out testing by several hundred
percent compared with plans and cost estimates.

The technologies to achieve better quality results actually exist today
in 2009, but are not widely deployed. That means that better awareness
of quality and the economic value of quality are critical weaknesses of
the software industry circa 2009.

Preventing and Removing Defects from
Application Source Code

During development of software applications, the approximate average
number of defects encountered averages about 1.75 per function point or
17.5 per KLOC for languages where the ratio of lines of code to function
points is about 100. As pointed out earlier in this book, defect volumes
vary by the level of the programming languages, and they also vary by
the experience and skill of the programming team.

The minimum quantity of defects in source code will be about 0.5 per
function point or 5 per KLOC, while the maximum quantity will top
3.5 defects per function point or 35 defects per KLOC, assuming the
same level of programming language.

However, in spite of wide ranges of potential defects, there are still
more coding defects than any other kind of defect. Defect removal effi-
ciency against coding defects is in the range of 80 percent to 99 per-
cent. Some coding defects will slip through even in the best of cases,
although it is certainly better to approach 99 percent than it is to lag
at 80 percent.

For coding defects as with all other defect sources, two channels need
to be included in order to improve code quality:

 1. Defect prevention, or methods that can lower defect potentials.

 2. Defect removal, or methods that can seek out, find, and eliminate
coding defects.

The available forms of defect prevention for coding defects include
certified reusable code modules, use of patterns or standard coding
approaches for common situations, use of structured programming
methods, use of higher-level programming languages, constructing
prototypes prior to formal development, dividing large applications
into small segments (as does Agile development), participation in
code inspections, test-based development, and usage of static analysis
tools. Pair programming is also reported to have some efficacy in terms
of defect prevention, but this method has very low usage and very
little data.

Programming and Code Development 519

The available forms of defect removal for coding defects include desk
checking, pair programming, debugging tools, code inspections, static
analysis tools, and 17 kinds of conventional testing plus automated unit
testing and regression testing.

Defect removal by individual software engineers is difficult to study.
Desk checking, debugging, and unit testing are usually private activi-
ties with no observers and no detailed records kept. Most corporate
defect-tracking systems do not start to collect data until public defect
removal begins with formal inspections, function tests, and regression
tests. What happens before these public events is usually invisible.
There are some exceptions, however.

At one point, IBM asked for volunteers who were willing to record the
numbers of bugs they found in their own code by themselves. The pur-
pose of the study was to find out what was the actual defect removal effi-
ciency from these normally invisible forms of defect removal. Obviously,
the data was not used in any punitive fashion and was kept confidential,
other than to produce some statistical reports.

More recently the Personal Software Process (PSP) and Team
Software Process (TSP) methods developed by Watts Humphrey have
also included defect recording throughout the code development cycle.

Unfortunately, the Agile development method has moved in the other
direction and usually does not record private defect removal. Indeed,
many Agile projects do not record defect data at all, which is a mistake
because it reduces the ability of the Agile method to prove its value in
terms of quality.

The public forms of defect removal are discussed in this book in
Chapter 9, which deals with quality. The emphasis in this chapter is
more on the private forms of defect removal, which are seldom covered
in the software engineering literature.

Private defect removal lacks the large volumes of data associated with
some of the public forms such as formal inspections, static analysis, and
the test stages that involve other players such as test specialists and soft-
ware quality assurance. But for the sake of completeness, the topics of pri-
vate defect prevention and private defect removal need to be included.

Before discussing the effectiveness of either defect prevention or
defect removal, it should be noted that individual software engineers
or programmers vary widely in experience and skills.

In one controlled study at IBM where a number of programmers were
asked to implement the same trial example, the quantity of code pro-
duced varied by about 6 to 1 between the bulkiest solution and the most
concise solution for the same specification.

Similar studies showed about a 10 to 1 variation in the amount of
time a sample of programmers needed to code and debug a standard
problem statement.

520 Chapter Eight

These wide variations in individual performance mean that individ-
ual human variations in a population of software engineers probably
account for more divergence in results than do methods, tools, or factors
that can be studied objectively.

Forms of Programming Defect Prevention

It is much more difficult to measure or quantify defect prevention than
it is to measure defect removal. With defect removal, it is possible to
accumulate statistics on numbers of defects found and their severity
levels.

Once the project is released to customers, defect counts continue.
After 90 days of usage, it is possible to combine the internally discov-
ered defects with the customer-reported defects and to calculate defect
removal efficiency. If development personnel found 85 defects and cus-
tomers reported 15 defects, the removal efficiency is 85 percent. Such
data is easy to collect, valuable, and fairly accurate, except for some
invisible defects found via private removal actions such as desk check-
ing and unit test.

For defect prevention, there is no easy way to measure the absence of
defects. The methods available for exploring defect prevention require
collecting data from a fairly large number of projects, where some of
them utilized a specific defect prevention method and others did not.

For example, assume you measure a sample of 50 projects that used
structured coding methods and another 50 projects that did not use
structured programming methods. Assume the 50 projects that used
structured programming averaged 10 coding defects per KLOC or 1
per function point. Assume the 50 projects that did not use structured
programming averaged 20 coding defects per KLOC or 2 per function
point. This kind of analysis allows you to make a hypothesis that the
structured coding prevents about 50 percent of coding defects, but it is
still only a hypothesis and not proof.

Further, real-life situations are seldom simple and easy to deal with.
There may be numerous other factors at play, such as usage of static
analysis, usage of higher-level languages, usage of inspections, variations
in programming experience, complexity of the problems, and so forth.

The many different factors that can influence defect prevention mean
that exact knowledge of the effectiveness of any specific factor is some-
what subjective at best, and will probably stay that way.

Academic institutions can perform controlled experiments with stu-
dents where they measure the effectiveness of a single variable, but
such studies are fairly rare concerning defect prevention.

However, from long-range observations involving hundreds of soft-
ware personnel and hundreds of software projects over a multi-year

Programming and Code Development 521

time span, some objective factors about defect prevention have reason-
ably strong support:

Code reuse as defect prevention If reusable code is available that has
been certified to zero-defect levels, or at least carefully inspected, tested,
and subjected to static analysis before being made reusable, this is the
best known form of defect prevention. Defect potentials in certified reus-
able code modules are only a fraction of the 15 per KLOC normally
encountered during custom development; sometimes only about 1/100th
as many defects are encountered.

However, and this is an important point, using uncertified reusable code
can be both hazardous and expensive. If the defect potentials in uncer-
tified reusable code are more than about 1 per KLOC, and the reused
code is plugged into more than ten different applications, the combined
debugging costs will be so high that this example of reuse would have a
negative return on investment.

Although certified reuse is the most effective form of defect prevention
and counts as a best practice, it is also the rarest. Uncertified sources of
reuse outnumber certified sources by at least 50 to 1. Reuse of certified
code and other materials would class as a best practice. But reuse of
materials that are uncertified must be classed as a hazardous practice.

It is much harder for software engineers to debug someone else’s
unfamiliar code than it is to debug their own. Every single time a reused
code module is utilized for a new application, there is a good chance that
the same errors will be encountered. Thus, uncertified reuse is hazard-
ous and can be more expensive than custom development of the same
module—hence, the reason the uncertified reuse can have a significant
negative return on investment (ROI).

Code reuse comes from many sources, including commercial vendors,
legacy applications, object-oriented class libraries, corporate reuse
libraries, public-domain and open-source libraries, and a number of
others. While reusable code is fairly plentiful, something that is not
plentiful is data on the repair frequencies of reusable materials. (See
the section on certifying reusable materials earlier in this book for addi-
tional information.)

As mentioned elsewhere in the book, code reuse by itself is only part
of the reusability picture. Reusable designs, data structures, test cases,
tutorial information, work breakdown structures, and HELP text are also
reusable and should be packaged together with the code they support.

Patterns as defect prevention Programmers and software engineers who
have developed large numbers of software applications tend to be aware
that certain sequences of code occur many times in many applications.
Some of these sequences include validating inputs to ensure that error

522 Chapter Eight

conditions such as having character data entered into a numeric field is
rejected, or that text and numeric strings do not contain more characters
than specified by the application’s design.

Patterns gained via personal experience are of course reusable even
if informal and personal. However, it has become clear that this kind
of knowledge occurs so often that it could be written down, illustrated
graphically, and then used to train new software engineers as they learn
trade craft.

Pattern-based development has the potential of lowering defect poten-
tials of young and inexperienced developers by more than 50 percent.
Once standard patterns are widely published and available, they can also
serve to facilitate career changes from one kind of software to another.
For example, there are very different kinds of patterns associated with
embedded applications than with information technology applications.

What is lacking for pattern-based development circa 2009 is an effec-
tive taxonomy that can be used to catalog the patterns and aid in select-
ing the appropriate set of patterns. Also, there is no exact knowledge of
how many patterns are likely to be useful and valuable. In the future,
pattern usage will no doubt be classed as a best practice, although doing
so in 2009 is probably a few years premature.

Individual software engineers working in a narrow range of applica-
tions probably utilize from 25 to 50 common patterns centering in input
and output validation, error handling, and perhaps security-related
topics. But when all types and forms of software are included, such as
financial applications, embedded applications, web applications, operat-
ing systems, compilers, avionics, and so on, the total number of useful
patterns could easily top 1000. This is too large a number to be listed
randomly, so patterns need to be organized if they are to become useful
tools of the trade.

Inspections as defect prevention Participation in formal inspections
turns out to be equally effective as a defect-prevention method and a
defect-removal method. Participants in formal inspections spontane-
ously avoid making the kinds of mistakes that are found during the
inspection sessions. Therefore, after participating in a number of inspec-
tions, coding defects tend to be reduced by more than 80 percent com-
pared with the volumes encountered prior to starting to use inspections.
As a result, formal inspections get double counted as best practices: they
are highly effective for both defect prevention and defect removal.

Inspections turn out to be so effective in terms of defect prevention
that long-range usage of inspections has a tendency to become boring
for the participants due to a lack of interesting bugs or defects after
about a year of inspections. (Unfortunately, some companies stop using
inspections, so defect volumes begin to creep upwards again.)

Programming and Code Development 523

One other useful aspect of inspections is that when novices inspect
the work of experts, they spontaneously learn improved programming
skills. Conversely, when experts inspect the work of novices, they can
provide a great deal of useful advice as well as find a great many bugs
or defects. Therefore, it is useful to have several experts or top software
engineers as participants in inspections.

Automated static analysis as defect prevention Static analysis is a fairly
new technology that is distinct from testing. Automated static analy-
sis tools have embedded rules and logic that are set up to discover
common forms of defects in source code. These tools are quite effective
and have defect removal efficiency levels that top 85 percent. A caveat
is that only about 50 languages out of 2500 are supported, and these
are primarily modern languages such as C, C#, C++, Java, and the
like. Older and obscure languages such as MUMPS, Coral, Chill, and
the like are not supported. However, with almost 100 static analysis
tools available, there are tools that can handle some older or special-
ized languages such as ABAP, Ada, COBOL, and PL/I. Some of the
tools have extensible rules, so in theory all of the 2500 languages in
existence might gain access to static analysis, although this is unlikely
to occur.

Because static analysis tools are effective at finding bugs in source
code, and the static analysis tools are usually run by programmers, they
have a double benefit of also acting as defect prevention agents. In other
words, programmers who carefully respond to the defects identified by
automated static analysis tools will spontaneously avoid making the
same defects in the future.

As of 2009, usage of static analysis counts as a best practice for sup-
ported programming languages. The evidence is already significant for
defect removal and is increasing for defect prevention.

Static-analysis tools are widely used by the open-source development
community with good results. Due to the power and utility of static
analysis, usage is expanding and this method should become a stan-
dard activity; in fact, static analysis should be included in every pro-
gramming development and maintenance environment and should be a
normal part of all development and maintenance methodologies.

Test-based development (TBD) as defect prevention The extreme pro-
gramming (XP) method includes developing test cases prior to devel-
oping source code. Indeed, the test cases are used as an adjunct to the
requirements and design of software applications.

This method of early test-case development focuses attention on qual-
ity, and therefore TBD gets double credit as a best practice for both defect
prevention and defect removal. Because TBD is fairly new, empirical

524 Chapter Eight

data based on large numbers of trials is not yet available. The rather
lax measurement practices of the Agile community add to the problem
of ascertaining the actual effectiveness of TBD.

However, from anecdotal evidence, it appears that TBD may reduce
defect potentials by perhaps 30 percent and raise unit test defect removal
efficiency from around 35 percent up to perhaps 50 percent. Both results
are steps in the right direction, but additional data on TBD is needed.
TBD is a candidate for a best practice and no doubt will be classed as
one when additional quantitative data becomes available.

High-level languages as defect prevention One of the claimed advantages
of high-level programming languages is that they reduce defect poten-
tials. A related claim is that if defects do occur, they are easier to find.
Both claims appear to be valid, but the situation is somewhat compli-
cated, and there are exceptions to general rules about the effectiveness
of high-level languages.

Any reduction in source code volumes will obviously reduce chances
for errors. If a specific function requires 1000 lines of code in assembly
language, but can be done with only 150 Java statements, the odds are
good that fewer defects will occur with Java. Even if both versions have
a constant ten bugs per KLOC, the larger assembly version might have
10 bugs, while the smaller Java version might have only 1 or 2.

However, some high-level programming languages have fairly com-
plex syntax and therefore make it easy to introduce errors by accident.
The APL programming language is an example of a language that is
very high level, but also difficult to read and understand, and therefore
difficult to debug, and especially so if the person attempting to debug
is not the original programmer.

Observations indicate the languages with regular syntax, mnemonic
labels, and commands that are amenable to human understanding will
have somewhat fewer coding defects than languages of the same level,
but with arcane commands and complicated syntax that include many
nested commands.

What would be useful and interesting would be controlled studies
by academic institutions that measured both defect densities and
debugging times for implementing standard problems in various
languages. It would be very interesting to see defect volumes and
debugging times compared for popular languages such as C, C#, C++,
Objective C, Java, JavaScript, Lua, Ruby, Visual Basic, and perhaps
50 more. However, as of 2009, this kind of controlled study does not
seem to exist.

As of 2009, the plethora of programming languages and their negative
impact on maintenance costs make best practice status for any specific
language somewhat questionable.

Programming and Code Development 525

Prototypes as defect prevention For large and complex applications, it
may be necessary to try out a number of alternative code sequences
before selecting a best-case alternative for the final versions. Prototypes
are useful in reducing defects in the final version by allowing software
engineers to experiment with alternatives in a benign fashion.

As a general rule prototypes are created mainly for the most trouble-
some and complicated pieces of work. As a result, the size of typical
prototypes is only about 5 percent to perhaps 10 percent of the size of
the total application. This practice of concentrating on the toughest
problems makes prototypes useful, and their compact size keeps them
from getting to be expensive in their own right.

Prototypes come in two flavors: disposable and evolutionary. As the
name implies, disposable prototypes are used to try out algorithms and
code sequences and then discarded. Evolutionary prototypes grow into
the finished application.

Because prototypes are usually developed at high speed in an experi-
mental fashion, the disposable prototypes are somewhat safer than evo-
lutionary prototypes. Prototypes may contain more bugs or defects than
polished work, and attempting to convert them into a finished product
may lead to higher than expected bug counts.

Disposable prototypes used to try out alternative solutions or to
experiment with difficult programming problems would be defined as
best practices. However, evolutionary prototypes that are carelessly
developed in the interest of speed are not best practices, but instead
somewhat hazardous.

Code structure as defect prevention Professor Edsger Dijkstra published
one of the most famous letters in the history of software engineering
entitled “Go-to statements considered harmful.” The letter to the editor
was published in August 1968 in The Communications of the ACM.

The thesis of this letter was that excessive use of branches or “go to”
statements made the structure of software applications so complex that
errors of incorrect branch sequences might occur that were very difficult
to identify and remove.

This letter triggered a revolution in programming style that came to
be known as structured programming. Under the principles of struc-
tured programming, branches were reduced and programmers began to
realize that complex loops and clever coding sequences introduced bugs
and made the code harder to test and validate.

As it happens another pioneering software engineer, Dr. Tom McCabe,
developed a way of measuring code structure that was published in
December 1976 in IEEE Transactions on Software. The measures devel-
oped by Dr. McCabe were those of “cyclomatic complexity” and “essential
complexity.”

526 Chapter Eight

Cyclomatic complexity is based on graph theory and is a formal way
of evaluating the complexity of a graph that describes the flow of control
through a software application. The formula for calculating cyclomatic
complexity is “edges – nodes + two.”

Essential complexity is also based on graph theory, only it eliminates
redundant or duplicate paths through code.

In terms of cyclomatic complexity, a code segment with no branches
has a complexity score of 1, which indicates that the code executes in a
linear fashion with no branches or go-to statements. From a psychologi-
cal standpoint, cyclomatic complexity levels of less than 10 are usually
perceived as being well structured. However, as cyclomatic complexity
levels rise to greater than 20, the code segments become increasingly
difficult to understand or to follow from end to end without errors.

There is some empirical evidence that code with cyclomatic complex-
ity levels of less than 10 have only about 40 percent as many errors as
code with cyclomatic complexity levels greater than 20. Code with a
cyclomatic complexity level of 1 seems to have the fewest errors, if other
factors are held constant, such as the programming languages and the
experience of the developer.

One interesting study in IBM found a surprising result: that code
defects were sometimes higher for the work of senior or experienced pro-
grammers compared with the same volume of code written by novices
or new programmers. However, the actual cause of this anomaly was
that the experts were working on very difficult and complex applica-
tions, while the novices were doing only simple routines that were easy
to understand. In any case, the study indicated that problem difficulty
has a significant impact on defect density levels.

The importance of cyclomatic and essential complexity on code defects
led to the development of a number of commercial tools. Many tools
available circa 2009 can calculate cyclomatic and essential complexity
of code in a variety of languages.

In the 1980s, several tools on the market were aimed primarily at
COBOL and not only evaluated code complexity, but also could auto-
matically restructure the code and reduce both cyclomatic and essential
complexity. These tools asserted, with some evidence to back up the
assertions, that the revised code with low complexity levels could be
modified and maintained with less effort than the original code.

Use of structured programming techniques and keeping cyclomatic
complexity levels low would both be viewed as best practices. Code with
low complexity levels and few branches tends to have fewer defects, and
the defects that are present tend to be easier to find. Therefore, struc-
tured programming counts as a best practice for defect prevention.

Segmentation as defect prevention More than 50 years of empirical data
has proven conclusively that defect potentials correlate almost perfectly

Programming and Code Development 527

with application size measured using both lines of code and function
points. Because size and defects are closely coupled, it is reasonable
to ask, Why not decompose large systems into a number of smaller
segments?

Unfortunately, this is not as easy as it sounds. To make an analogy,
since constructing an 80,000-ton cruise ship is known to be expensive,
why not decompose the ship into 80,000 small boats that are cheap to
build? Obviously, the features and user requirements of 80,000 small
boats are not the same as those of one large 80,000-ton cruise ship.

As of 2009, there are no proven and successful methods for segment-
ing or decomposing large systems into small independent components.
As it happens, the Agile method of dividing a system into segments or
sprints that can be developed sequentially has shown itself to be fairly
successful. But most of the Agile applications are below 10,000 function
points and are comparatively simple in architecture.

There have not yet been any Agile projects that tackle something of
the size of Microsoft Vista at about 150,000 function points or a large
ERP package at perhaps 300,000 function points. Indeed, if Agile sprints
were used for these applications and team sizes were in the range of
average Agile projects (less than ten people) then probably 150 sprints
would be needed for Vista and 300 would be needed for an ERP pack-
age. Assuming one month per sprint, the schedule would be perhaps 12
years for Vista and 25 years for the ERP package. Multiple teams would
speed things up, but interfaces between the code of each team would
add complexity and also add defects.

The bottom line is that segmentation into small independent pack-
ages or components is effective when it can be done well, but not
always possible given the feature sets and architecture of many large
systems. Thus best practice status cannot be assigned to segmenta-
tion as of 2009, due to the lack of standard and effective methods for
segmentation.

For large applications, segmentation is most common for major fea-
tures, but each of these features may themselves be in the range of
10,000 function points or more. There is not yet any proven way to
divide a massive system of 150,000 function points or 15 million lines
of code into perhaps 15,000 small independent pieces. About the best
that occurs circa 2009 is to divide these massive systems into perhaps
ten large segments.

Methodologies and measurements as defect prevention The Personal
Software Process (PSP) and Team Software Process (TSP) developed
by Watts Humphrey feature careful recording of all defects found during
development, including the normally invisible defects found privately
via desk checking and unit testing.

528 Chapter Eight

The act of recording specific defects tends to embed them in the minds
of software engineers and programmers. The result is that after several
projects in succession, coding defects decline by perhaps 40 percent since
they are spontaneously avoided.

Measurements and methodologies are therefore useful in terms of
defect prevention because they tend to focus attention on defects and so
trigger reductions over time. The methods that record defects and focus
on quality are classed as best practices.

One unusual aspect of TSP is that the results seem to improve with
application size. In other words, TSP operates successfully for large
systems in excess of 10,000 function points. This is a fairly rare occur-
rence among development methods.

Pair programming as defect prevention The idea of pair programming is
for two software engineers or programmers to share one workstation.
They take turns coding, and the other member of the pair observes the
code and makes comments and suggestions as the coding takes place.
The pair also has discussions on alternatives prior to actually doing the
code for any module or segment.

The method of pair programming has some experimental data that
suggests it may be effective in terms of both defect removal and defect
prevention. However, the pair programming method has so little usage
on actual software projects that it is not possible to evaluate these
claims as of 2009 on large-scale applications.

On the surface, pair programming would seem to come very close to
doubling the effort required to complete any given code segment. Indeed,
due to normal human tendencies to chat and discuss social topics, there
is some reason to suspect that pair programming would be more than
twice as expensive as individual programming.

Until additional information becomes available from actual projects
rather than from small experiments, there is not enough data to judge
the impact of pair programming in terms of defect removal or defect
prevention.

Other methods as defect prevention The methods cited earlier in this
chapter have been used enough so that their effectiveness in terms of
code defect prevention can be hypothesized. Other methods seem to
have some benefits in terms of defect prevention, but they are harder to
judge. One of these methods is Six Sigma as it applies to software. The
Six Sigma approach does include measurements of defects and analysis
of causes. However, Six Sigma is usually a corporate approach that is
not applied to specific projects, so it is harder to evaluate. Other code
defect prevention techniques that may be beneficial but for which the

Programming and Code Development 529

author has no solid data include quality function deployment (QFD),
root-cause analysis, the Rational Unified Process (RUP), and many of
the Agile development variations.

Combinations and synergies among defect prevention methods Although
the methods cited earlier may occur individually, they are often used in
combinations that sometimes appear synergistic. For example, struc-
tured coding is often used with TSP, with inspections, and with static
analysis.

The most frequent combination is the pairing of high-level program-
ming languages with the concepts of structured programming. The
combination that tends to yield the highest overall levels of defect pre-
vention would be methodologies such as TSP teamed with high-level
programming languages, certified reusable code, patterns, prototypes,
static analysis, and inspections.

Overriding all other aspects of defect prevention and defect removal,
individual experience and skill levels of the software engineers continue
to be a dominant factor. However, as of 2009, the software engineering
field lacks standard methods for evaluating human performance; it has
no licensing or certification, no board specialties, and no methods of
judging professional malpractice. Therefore, expertise among software
engineers is important but difficult to evaluate.

Summary of Observations
on Defect Prevention

Because of the difficulty and uncertainty of measuring defect preven-
tion, the suite of defect prevention methods lacks the large volumes of
solid statistical data associated with defect removal.

Personal defect prevention is especially difficult to study because
most of the activities are private and therefore seldom have records or
statistical information available, other than data kept by volunteers.

Long-range measurements over time and involving hundreds of appli-
cations and software engineers give some strong indications of what
works in terms of defect prevention, but the results are still less than
precise and will probably stay that way.

Forms of Programming Defect Removal

There is very good data available on the public forms of defect removal
such as formal inspections, function test, regression test, independent
verification and validation, and many others. But private defect removal
is another story. The phrase private defect removal refers to activities
that software engineers or programmers perform by themselves without
witnesses and usually without keeping any written records.

530 Chapter Eight

The major forms of private defect removal include, but are not limited
to:

 1. Desk checking

 2. Debugging using automated tools

 3. Automated static analysis

 4. Subroutine testing

 5. Unit testing (manual)

 6. Unit testing (automated)

Since most of these defect removal methods are used in private, data
to judge their effectiveness comes from either volunteers who keep
records of bugs found, or from practitioners of methods that include
complete records of all defects, such as PSP and TSP.

Automated static analysis is a method that happens to be used both
privately by individual programmers on their own code, and also pub-
licly by open-source developers who are working collaboratively on
large applications such as Firefox, Linux, and the like. Therefore, static
analysis has substantial data available for its public uses, and it can be
assumed that private use of static analysis will be equally effective.

Desk checking for defect removal In the early days of programming and
computing, the time lag between writing source code and getting it
assembled or compiled was sometimes as much as 24 hours. When pro-
gram source code was punched into cards and the cards were then put
in a queue for assembly or compilation, many hours would go by before
the code could be executed or tested.

In these early days of programming between the late 1960s and the
1970s, desk checking or carefully reading the listing of a program to
look for errors was the most common method of personal defect removal.
Desk checking was also a technical necessity because errors in a deck
of punch cards could stop the assembly or compilation process and add
perhaps another 24 hours before testing could commence.

Today in 2009, code segments can be compiled or interpreted instantly,
and can be executed instantly as well. Indeed, they can be executed
using programming environments that include debugging tools and
automated static analysis. Therefore, desk checking has declined in
frequency of usage due to the availability of personal workstations and
personal development environments.

Although there is not much in the way of recent data on the effective-
ness of desk checking, historical data from 30 years ago indicates about
40 percent to just over 60 percent in terms of defect removal efficiency
levels.

Programming and Code Development 531

Today in 2009, desk checking is primarily reserved for a small subset
of very tricky bugs or defects that have not been successfully detected
and removed via other methods. These include security vulnerabilities,
performance problems, and sometimes toxic requirements that have
slipped into source code. These are hard to detect via static analysis or
normal testing because they may not involve overt code errors such as
branches to incorrect locations or boundary violations.

These special and unique bugs compose only about 5 percent of total
numbers of bugs likely to be found in software applications. Deck check-
ing is actually close to 70 percent in dealing with these very troublesome
bugs that have eluded other methods. (The reason that desk checking is
not higher is because sometimes software engineers don’t realize that
a particular code practice is wrong. This is why proofreading of manu-
scripts is needed. Authors cannot always see their own mistakes.)

While these subtle bugs can be detected using formal inspections,
formal inspections do not occur on more than about 10 percent of soft-
ware applications and require between three and eight participants.
Desk checking, on the other hand, is a one-person activity that can be
performed at any time with no formal preparation or training.

Desk checking in 2009 is a supplemental method that may not be
needed for every software project. It is effective for a number of subtle
bugs and might be viewed as a best practice on an as-needed basis.

Automated debugging for defect removal Software engineers and pro-
grammers circa 2009 have access to hundreds of debugging tools. These
tools normally support either specific programming languages such as
Java and Ruby or specific operating systems such as Linux, Leopard,
Windows Vista, and many others. In any case, a great many debugging
tools are available.

The features of debugging tools vary, but all of them allow the execu-
tion of code to be stopped at various places; they allow changes to code;
and they may include features to look for common problems such as
buffer overflows and branching errors. Beyond that, the specialized
debugging tools have a number of special features that are relevant to
specific languages or operating systems.

Debugging tools are so common that usage is a standard practice
and therefore would be classed as a best practice. That being said,
none are 100 percent effective, and quite a few bugs can escape. In fact,
given the numbers of bugs found later via inspections, static analysis,
and testing, the average efficiency of program debugging is only about
30 percent or less.

Automated static analysis for defect removal Static analysis tools examine
source code and the paths through the code and look for common errors.

532 Chapter Eight

Some of these tools have built-in sets of rules, while others have exten-
sible rule sets.

A keyword search of the Web using “automated static analysis” turns
up more than 100 such tools including Axivion, CAST, Coverity, Fortify,
GrammaTeck, Klocwork, Lattix, Ounce, Parasoft, ProjectAnalyzer,
ReSharper, SoArc, SofCheck, Viva64, Understand, Visual Studio Team
System, and XTRAN.

Individually, each static analysis tool supports up to 30 languages. For
common languages such as Java and C, dozens of static analysis tools
are available; for older languages such as Ada, Jovial, and PL/I, there
are only a few static analysis tools. For very specialized languages such
as ABAP used for writing code in SAP environments, there are only one
or two static analysis tools.

Without doing an exhaustive search, it appears that out of the current
total of 2500 programming languages developed to date, static analysis
tools are available for perhaps 50 programming languages. However,
some of these static analysis tools support extensible rules, so it is theo-
retically possible to create rules for examining all of the 2500 languages.
This is unlikely to occur, due to economic reasons for obscure languages
or those not used for business or scientific applications.

As a class, static analysis tools seem to be effective and can find per-
haps 85 percent of common programming errors. Therefore, usage of
static analysis tools can be viewed as a best practice; rapidly becoming
a standard practice, too.

However, static analysis tools only find coding problems and do not
find toxic requirements, performance problems, user interface problems,
and some kinds of security vulnerabilities. Therefore, additional forms
of defect removal are needed.

Some static analysis tools provide additional features besides defect
detection. Some are able to assist in translating older languages into
newer languages, such as turning COBOL into Java if desired.

It is also possible to raise the level of static analysis and examine the
meta-languages underlying several forms of requirements and design
documentation such as those created via the unified modeling language
(UML). Indeed, it is theoretically possible to use a form of extended
static analysis to create test suites.

Because static analysis and formal code inspections usually find many
of the same kinds of bugs, normally either one form or the other is uti-
lized, but not both. Static analysis and inspections have roughly the
same levels of defect removal efficiency, but static analysis is cheaper
and quicker. However, code inspections can find more subtle problems
such as performance issues or security vulnerabilities. These are not
code “bugs” per se, but they do cause trouble.

If static analysis and code inspections are both utilized, which occurs
for mission-critical applications such as some medical instruments and

Programming and Code Development 533

some kinds of security and military software, static analysis would nor-
mally come before code inspections.

A small number of issues identified by static analysis tools turn out
to be false positives, or code segments identified as bugs which turn out
to be correct. However, a few false positives is a small price to pay for
such a high level of defect removal efficiency.

Subroutine testing for defect removal Testing comes in many flavors and
covers many different sizes of code volumes. The phrase subroutine
testing refers to a small collection of perhaps up to ten source code
instructions that produces an output or performs an action that needs
to be verified. Subroutine testing is usually the lowest level of testing
in terms of code volumes.

By contrast, unit testing would normally include perhaps 100 instruc-
tions or more, while the “public” forms of testing such as function testing
and regression testing may deal with thousands of instructions.

As the volume of source code increases, paths through the code
increase, and therefore more and more test cases are needed to actu-
ally cover 100 percent of the code. Indeed, for very large systems,
100 percent coverage appears to be impossible, or at least very rare.

Subroutine testing is a standard practice and also a best practice
because it eliminates a significant number of problems. However, the
defect removal efficiency of subroutine testing is only 30 percent to
perhaps 40 percent. This is because the code volumes are too small for
detecting many kinds of bugs such as branching errors.

Subroutine testing may or may not use actual formal test cases. The
usual mode is to execute the code and check the outputs for validity.
Subroutine test cases, if any, are normally disposable.

Manual unit testing for defect removal Unit testing of complete modules
is the largest form of testing that is normally private or carried out by
individual programmers without the involvement of other personnel
such as test specialists or software quality assurance.

Manual unit testing is the first and oldest kind of formal testing.
Indeed, in the 1960s and early 1970s, when many applications only
contained 100 code statements or so, unit testing was often the only
form of testing performed.

The phrase unit testing refers to testing a complete module of perhaps
100 code statements that performs a discrete function with inputs, out-
puts, algorithms, and logic that need to be validated.

Unit testing can combine “black box” testing and “white box” test-
ing. The phrase black box means that the internal code of a module
is hidden, so only inputs and outputs are visible. Black box testing
therefore tests input and output validity. The phrase white box means
that internal code is revealed, so branches and control flow through

534 Chapter Eight

an application can be tested. Combining the two forms of testing should
in theory test everything. However, code coverage seldom hits 100 per-
cent, and for large applications that are high in cyclomatic complexity
it may drop below 50 percent.

Unit testing tends to look at limits, ranges of values, error-handling,
and security-related issues. Unfortunately, unit testing is only in the
range of perhaps 30 percent to 50 percent efficient in finding bugs. For
example, unit testing is not able to find many performance-related issues
because they typically involve longer paths and multiple modules.

For modules that tend to include a number of branches or complex
flows, unit testing begins to encounter problems with test coverage. As
cyclomatic complexity levels go up, it takes more and more test cases
to cover every path. In fact, 100 percent coverage almost never occurs
when cyclomatic complexity levels get above 5, even for modules with
only 100 code statements.

Unit testing is a standard activity for software engineering and
therefore counts as a best practice in spite of the somewhat low defect
removal efficiency. Without unit testing, the later stages of testing such
as function testing, stress testing, component testing, and system test-
ing would not be possible.

The test cases created for unit testing are normally placed in a formal
test library so that they can be used later for regression testing. Since
the test cases are going to be long-lived and used repeatedly, they need
proper identification as to what applications and features they test, what
functions they test, when they were created, and by whom. There will
also be accompanying test scripts that deal with invoking and executing
the test cases. The specifics of formal test case design are outside the
scope of this book, but such topics are covered in many other books.

Unit testing can be used in conjunction with other forms of defect
removal such as formal code inspections and static analysis. Usually,
static analysis would be performed prior to unit testing, while code
inspections would be performed after unit testing. This is because static
analysis is quick and inexpensive and finds many bugs that might be
found via unit testing. Unit testing is done prior to code inspections for
the same reason; it is faster and cheaper. However, code inspections are
very effective at finding subtle issues that elude both static analysis and
unit testing, such as security vulnerabilities and performance issues.

Using code inspections, static analysis, and unit testing for the same
code is a fairly rare occurrence that most often occurs on mission-critical
applications such as weapons systems, medical instruments, and other
software applications where failure might cause death or destruction.

Manual unit testing was a normal and standard activity for more than
40 years and is still very widespread. However, performance of units varies
from “poorly performed” to “extremely good.” Because of the inconsistencies

Programming and Code Development 535

in methods of carrying out unit testing and in testing results, the ranges
are too wide to say that unit testing per se is a best practice. Careful unit
testing with both black box and white box test cases and thoughtful consid-
eration to test coverage would be considered a best practice. Careless unit
testing with hasty test cases and partial coverage would rank no better
than marginally adequate and would not be a best practice.

Testing is a teachable skill, and there are many classes available by
both academia and commercial test companies. There are also several
forms of certification for test personnel. It would be useful to know if
formal test training and certification elevated test defect removal effi-
ciency by significant amounts. There is considerable anecdotal evidence
that certification is beneficial, but more large-scale surveys and studies
are needed on this topic.

Automated unit testing for defect removal While manual unit testing has
been part of software engineering since the 1960s, automated unit testing is
newer and started to occur only in the 1980s in response to larger and more
complex applications plus the arrival of graphical user interfaces (GUI),
which greatly expanded the nature of software inputs and outputs.

The phrase “automated unit testing” is somewhat ambiguous circa
2009. The most common usage of the term implies manual creation of
unit test cases combined with a framework or scaffold that allows them
to be run automatically on a regular basis without explicit actions by
software engineers.

Automated unit testing has been adopted by the Agile and extreme
programming (XP) communities together with the corollary idea of cre-
ating test cases before creating code. This combination seems to be fairly
effective in terms of defect removal and also pays off with improved
defect prevention by focusing the attention of software engineers on
quality topics.

The phrase automated unit testing deals mainly with test case execu-
tion and recording of defects that are encountered: most of the test cases
are still created by hand. However, it is theoretically possible to envision
automated test case creation as well.

Recall from Chapter 7 that during requirements gathering and analy-
sis, seven fundamental topics and 30 supplemental topics need to be
considered. As it happens, these same 37 issues also need to be tested.
A form of static analysis elevated to execute against requirements and
specification meta-languages should, in theory, be able to produce a
suite of test cases as a byproduct.

Some forms of test automation are aimed at web applications; others are
aimed at embedded applications; and still others are aimed at information
technology products. Automated testing is an emerging technology that as
of 2009 is still rapidly evolving.

536 Chapter Eight

There is a shortage of solid empirical data that compares automated
unit testing and manual unit testing in a side-by-side fashion for appli-
cations of similar size and complexity. Anecdotal information gives an
edge to automated testing for speed and convenience. However, the most
critical metric for testing is that of defect removal efficiency. As this
book is written, there is not enough solid data that compares automated
unit testing to the best forms of manual unit testing to judge whether
automated unit tests have higher levels of defect removal efficiency
than manual unit tests.

As additional data becomes available, there is a good chance that
automatic unit testing will enter the best practice class. As of 2009, the
data shows some effort and cost benefits, but defect removal efficiency
benefits remain uncertain.

Defect removal for legacy applications About 40 percent of the software
engineers in the world are faced with performing maintenance on aging
legacy applications that they did not create themselves. Although the
legacy applications may be old, they are far from trouble free, and they
still contain latent bugs or defects.

This situation brings up a number of questions about defect removal for
legacy code where the original developers are gone, the specifications may
be missing or out of date, comments may be sparse or incorrect, regression
tests are of unknown completeness, and the code itself may be in a dead
language or one the current maintenance team has not used.

Fortunately, a number of companies and tools have addressed the
issues of maintaining aging legacy code. Some of these companies have
developed “maintenance workbenches” that include features such as:

 1. Automated static analysis

 2. Automated test coverage analysis

 3. Automated function point calculations

 4. Automated cyclomatic and essential complexity calculations

 5. Automated debugging support for many (but not all) languages

 6. Automated data mining for business rules

 7. Automated translation from dead languages to newer languages

With aging legacy applications being written in as many as 2500 dif-
ferent programming languages, no single tool can provide universal sup-
port. However, for legacy code written in the more common languages
such as Ada, COBOL, C, PL/I, and the like, a number of maintenance
tools are available.

Usage of maintenance workbenches as a class counts as a best prac-
tice, but there are too many tools and variations to identify specific

Programming and Code Development 537

workbenches. Also, these tools are evolving fairly rapidly, and new fea-
tures occur frequently.

Synergies and combinations of personal defect removal The methods
discussed in this section are used in combination rather than alone.
Debugging, automated static analysis, and unit testing form the most
common combination. The combined effectiveness of these three meth-
ods can top 97 percent in terms of defect removal efficiency when per-
formed by experienced software engineers. The combined results can
also drop below 85 percent when performed by novices.

Summary and Conclusions on
Personal Defect Removal

Although personal defect removal activities are private and therefore
difficult to study, they have been the frontline of defense against soft-
ware defects for more than 50 years. That being said, the fact that soft-
ware defects emerge and are still present when software is delivered
indicates that none of the personal defect removal methods are 100
percent effective.

However, some of the newer defect removal tools such as automated
static analysis are improving the situation and adding rigor to the suite
of personal defect removal tools and methods.

Since individual software engineers can keep records of the bugs they
find, it would be useful and valuable if personal defect removal effi-
ciency levels could be elevated up to more than 90 percent before the
public forms of defect removal begin.

Personal defect removal will continue to have a significant role as
software engineering evolves from a craft to a true engineering dis-
cipline. Knowing the most effective and efficient ways for preventing
and removing defects is a sign of software engineering professionalism.
Lack of defect measures and unknown levels of defect removal efficiency
imply amateurishness; not professionalism.

Economic Problems of the
“Lines of Code” Metric

Introduction

Any discussion of programming and code development would be incom-
plete without considering the famous lines of code (LOC) metric, which
has been used to measure both productivity and quality since the dawn
of the computer era.

538 Chapter Eight

The LOC metric was first introduced circa 1960 and was used for
economic, productivity, and quality studies. At first the LOC metric was
reasonably effective for all three purposes.

As additional higher-level programming languages were created, the
LOC metric began to encounter problems. LOC metrics were not able to
measure noncoding activities such as requirements and design, which
were becoming increasingly expensive.

These problems became so severe that a controlled study in 1994
that used both LOC metrics and function point metrics for ten versions
of the same application coded in ten languages reached an alarming
conclusion: LOC metrics violated the standard assumptions of economic
productivity so severely that using LOC metrics for studies involving
more than one programming language constituted professional mal-
practice!

Such a strong statement cannot be made without examples and case
studies to show the LOC problems. Following is a chronology of the use
of LOC metrics that shows when and why the metric began to cease
being useful and start being troublesome. The chronology runs from
1960 to the present day, and it projects some ideas forward to 2020.

Lines of Code Metrics Circa 1960

The lines of code (LOC) metric for software projects was first introduced
circa 1960 and was used for economic, productivity, and quality studies.
The economics of software applications were measured using “dollars
per LOC.” Productivity was measured in terms of “lines of code per time
unit.” Quality was measured in terms of “defects per KLOC” where “K”
was the symbol for 1000 lines of code. The LOC metric was reasonably
effective for all three purposes.

When the LOC metric was first introduced, there was only one pro-
gramming language, basic assembly language. Programs were small
and coding effort composed about 90 percent of the total work. Physical
lines and logical statements were the same thing for basic assembly
language.

In this early environment, the LOC metric was useful for economic,
productivity, and quality analyses. The LOC metric worked fairly well
for a single language where there was little or no reused code and where
there were no significant differences between counts of physical lines
and counts of logical statements. But the golden age of the LOC metric,
where it was effective and had no rivals, only lasted about ten years.

However, this ten-year span was time enough so that the LOC metric
became firmly embedded in the psychology of software engineering. Once
an idea becomes firmly fixed, it tends to stay in place until new evidence
becomes overwhelming. Unfortunately, as the software industry changed

Programming and Code Development 539

and evolved rapidly, the LOC metric did not change. As time passed,
the LOC metric became less and less useful until by about 1980 it had
become extremely harmful without very many people realizing it. Due to
cognitive dissonance, the LOC metric was used but not examined criti-
cally in the light of changes in other software engineering methods.

Lines of Code Metrics Circa 1970

By 1970, basic assembly had been supplanted by macro-assembly.
The first generation of higher-level programming languages such as
COBOL, FORTRAN, and PL/I was starting to be used. Usage of basic
assembly language was beginning to drop out of use as better alterna-
tives became available. This was perhaps the first instance of a long
series of programming languages that died out, leaving a train of aging
legacy applications that would be difficult to maintain as programmers
and compilers stopped being available who were familiar with the dead
languages.

The first known problem with LOC metrics was in 1970, when many
IBM publication groups exceeded their budgets for that year. It was
discovered (by the author) that technical publication group budgets
had been based on 10 percent of the budgets assigned to programming
or coding.

The publication projects based on code budgets for assembly language
did not overrun their budgets, but manuals for the projects coded in
PL/S (a derivative of PL/I) had major overruns. This was because PL/S
reduced coding effort by half, but the technical manuals were as big as
ever. Therefore, when publication budgets were set at 10 percent of code
budgets, and coding costs declined by 50 percent, all of the publication
budgets for PL/S projects were exceeded.

The initial solution to this problem at IBM was to give a formal math-
ematical definition to language levels. The level was defined as the
number of statements in basic assembly language needed to equal the
functionality of 1 statement in a higher-level language. Thus, COBOL
was a level 3 language because it took three basic assembly statements
to equal one COBOL statement. Using the same rule, SMALLTALK is
a level 18 language.

For several years before function points were invented, IBM used
“equivalent assembly statements” as the basis for estimating noncode
work such as user manuals. (Indeed, a few companies still use equiva-
lent assembly language even in 2009.)

Thus, instead of basing a publication budget on 10 percent of the
effort for writing a program in PL/S, the budget would be based on 10
percent of the effort if the code were basic assembly language. This
method was crude but reasonably effective. This method recognized that

540 Chapter Eight

not all languages required the same number of lines of code to deliver
specific functions.

However, neither IBM customers nor IBM executives were comfort-
able with the need to convert the sizes of modern languages into the
size of an antique language for cost-estimating purposes. Therefore, a
better form of metric was felt to be necessary.

The documentation problem plus dissatisfaction with the equivalent
assembler method were two of the reasons IBM assigned Allan Albrecht
and his colleagues to develop function point metrics. Additional very
powerful programming languages such as APL were starting to appear,
and IBM wanted both a metric and an estimating method that could
deal with noncoding work as well as coding in an accurate fashion.

The use of macro-assembly language had introduced code reuse, and
this caused measurement problems, too. It raised the issue of how to
count reused code in software applications, or how to count any other
reused material for economic purposes.

The solution here was to separate productivity into two discrete topics:

 1. Development productivity

 2. Delivery productivity

The former, development productivity, dealt with the code and materi-
als that had to be constructed from scratch in the traditional way.

The latter, delivery productivity, dealt with the final application as
delivered, including reused material. For example, using macro-assem-
bly language, a productivity rate for development productivity might
be 300 lines of code per month. But due to reusing code in the form of
macro expansions, delivery productivity might be as high as 750 lines
of code per month.

This is an important business distinction that is not well understood
even in 2009. The true goal of software engineering is to improve the
rate of delivery productivity. Indeed, it is possible for delivery productiv-
ity to rise while development productivity declines!

This might occur by carefully crafting a reusable code module and
certifying it to zero-defect quality levels. Assume a 500–line code module
is developed for widespread reuse. Assume the module was carefully
developed, fully inspected, examined via static analysis, and fully tested.
The module was certified to be of zero-defect status.

This kind of careful development and certification might yield a net
development productivity rate of only 100 lines of code per month, while
normal development for a single-use module would be closer to 500 lines
of code per month. Thus, a total of five months instead of a single month
of development effort went to creating the module. This is of course a
very low rate of development productivity.

Programming and Code Development 541

However, once the module is certified and available for reuse, assume
that utilizing it in additional applications can be done in only one hour.
Therefore, every time the module is utilized, it saves about one month
of custom development!

If the module is utilized in only five applications, it will have paid for
its low development productivity. Every time this module is used, its
effective delivery productivity rate is equal to 500 lines of code per hour,
or about 66,000 lines of code per month!

Thus, while the development productivity of the module dropped down
to only 100 lines of code per month, the delivery productivity rate is
equivalent to 66,000 lines of code per month. The true economic value
of this module does not reside in how fast it was developed, but rather
in how many times it can be delivered in other applications because it
is reusable.

To be successful, reused code needs to approach or achieve zero-defect
status. It does not matter what the development speed is, if once com-
pleted the code can then be used in hundreds of applications.

As service-oriented architecture (SOA) and software as a service
(SaaS) approach, their goal is to make dramatic improvements in the
ability to deliver software features. Development speed is comparatively
unimportant so long as quality approaches zero-defect levels.

Returning to the historical chronology, another issue shared between
macro-assembly language and other new languages was the difference
between physical lines of code and logical statements. Some languages,
such as Basic, allowed multiple statements to be placed on a physical
line. Other languages, such as COBOL, divided some logical statements
into multiple physical lines. The difference between a count of physical
lines and a count of logical statements could differ by as much as 500
percent. For some languages, there would be more physical lines than
logical statements, but for other languages, the reverse was true. This
problem was never fully resolved by LOC users and remains trouble-
some even in 2009.

Due to the increasing power and sophistication of high-level program-
ming languages such as C++, Objective C, SMALLTALK, and the like,
the percentage of project effort devoted to coding was dropping from
90 percent down to about 50 percent. As coding effort declined, LOC metrics
were no longer effective for economic, productivity, or quality studies.

After function point metrics were developed circa 1975, the defini-
tion of language level was expanded to include the number of logical
code statements equivalent to 1 function point. COBOL, for example,
requires about 105 statements per function point in the procedure and
data divisions.

This expansion is the mathematical basis for backfiring, or direct
conversion from source code to function points. Of course, individual

542 Chapter Eight

programming styles make backfiring a method with poor accuracy even
though it remains widely used for legacy applications where code exists
but specifications may be missing.

There are tables available from several consulting companies such as
David Consulting, Gartner Group, and Software Productivity Research
(SPR) that provide values for source code statements per function point
for hundreds of programming languages.

In 1978, A.J. Albrecht gave a public lecture on function point metrics
at a joint IBM/SHARE/GUIDE conference in Monterey, California. Soon
after this, function points started to be published in the software litera-
ture. IBM customers soon began to use function points, and this led to
the formation of a function point user’s group, originally in Canada.

Lines of Code Metrics Circa 1980

By about 1980, the number of programming languages had topped 50,
and object-oriented languages were rapidly evolving. As a result, soft-
ware reusability was increasing rapidly.

Another issue that surfaced circa 1980 was the fact that many appli-
cations were starting to use more than one programming language, such
as COBOL and SQL. The trend for using multiple languages in the same
application has become the norm rather than the exception. However,
the difficulty of counting lines of code with accuracy was increased when
multiple languages were used.

About the middle of this decade, function point users organized and
created the nonprofit International Function Point Users Group (IFPUG).
Originally based in Canada, IFPUG moved to the United States in the
mid-1980s. Affiliates in other countries soon were formed, so that by the
end of the decade, function point user groups were in a dozen countries.

In 1985, the first commercial software cost-estimating tool based on
function points reached the market, SPQR/20. This tool supported esti-
mates for 30 common programming languages and also could be used
for combinations of more than one programming language.

This tool included sizing and estimating of paper documents such as
requirements, design, and user manuals. It also estimated noncoding
tasks including testing and project management.

Because LOC metrics were still widely used, the SPQR/20 tool
expressed productivity and quality results using both function points
and LOC metrics. Because it was easy to switch from one language
to another, it was interesting to compare the results using both func-
tion point and LOC metrics when changing from macro-assembly to
FORTRAN or Ada or PL/I or Java.

As the level of a programming language goes up, economic productiv-
ity expressed in terms of function points per staff month also goes up,

Programming and Code Development 543

which matches standard economics. But as language levels get higher,
productivity expressed in terms of lines of code per month drops down.
This reversal by LOC metrics violates all rules of standard economics
and is a key reason for asserting that LOC metrics constitute profes-
sional malpractice.

It is a well-known law of manufacturing economics that when a develop-
ment cycle includes a high percentage of fixed costs, and there is a decline
in the number of units manufactured, the cost per unit will go up.

If line of code is considered to be a manufacturing unit and there is a
switch from a low-level language to a high-level language, the number
of units will decline. But the paper documents in the form of require-
ments, specifications, and user documents do not decline. Instead they
stay almost constant and have the economic effect of fixed costs. This
of course will raise the cost per unit. Because this situation is poorly
understood, two examples will clarify the situation.

Case A Suppose we have an application that consists of 1000 lines of
code in basic assembly language. (We can also assume that the applica-
tion is 5 function points.) Assume the development personnel are paid
at a rate of $5000 per staff month.

Assume that coding took 1 staff month and production of paper docu-
ments in the form of requirements, specifications, and user manuals
also took 1 staff month. The total project took 2 staff months and cost
$10,000. Productivity expressed as LOC per staff month is 500. The cost
per LOC is $10.00. Productivity expressed in terms of function points
per staff month is 2.5. The cost per function point is $2000.

Case B Assume that we are doing the same application using the Java
programming language. Instead of 1000 lines of code, the Java version
only requires 200 lines of code. The function point total stays the same
at 5 function points. Development personnel are also paid at the same
rate of $5000 per staff month.

In Case B suppose that coding took only 1 staff week, but the produc-
tion of paper documents remained constant at 1 staff month.

Now the entire project took only 1.25 staff months instead of 2 staff
months. The cost was only $6250 instead of $10,000. Clearly economic
productivity has improved, since we did the same job as Case A with a
savings of $3750. We delivered exactly the same functions to users, but
with much less code and therefore much less effort, so true economic
productivity increased.

When we measure productivity for the entire project using LOC met-
rics, our rate has dropped down to only 160 LOC per month from the
500 LOC per month shown for Case A!

544 Chapter Eight

Our cost per LOC has soared up to $31.25 per LOC. Obviously, LOC
metrics cannot measure true economic productivity. Also obviously, LOC
metrics penalize high-level languages. In fact, many studies have proven
that the penalty exacted by LOC metrics is directly proportional to the
level of the programming language, with the highest-level languages
looking the worst!

Since the function point totals of both Case A and Case B versions are
the same at 5 function points, Case B has a productivity rate of 4 func-
tion points per staff month. The cost per function point is only $1250.
These improvements match the rules of standard economics, because
the faster and cheaper version has better results than the slower more
expensive version.

What has happened of course is that the paperwork portion of the
project did not decline even though the code portion declined substan-
tially. This is why LOC metrics are professional malpractice if applied
to compare projects that used different programming languages. They
move in the opposite direction from standard economic productivity
rates and penalize high-level languages. Table 8-7 summarizes both
Case A and Case B.

As can be seen by looking at Cases A and B when they are side by side,
LOC metrics actually reverse the terms of the economic equation and
make the large, slow, costly version look better than the small, quick,
cheap version.

It might be said that the reversal of productivity with LOC metrics
is because paperwork was aggregated with coding. But even when only
coding by itself is measured, LOC metrics still violate standard eco-
nomic assumptions.

Case A Case B Difference

Language Assembly Java

Lines of code (LOC) 1000 200 –800

Function points 5.00 5.00 0

Monthly compensation $5,000.00 $5,000.00 $0.00

Paperwork effort (months) 1.00 1.00 0

Coding effort (months) 1.00 0.25 –0.75

Total effort (months) 2.00 1.25 –0.75

Project cost $10,000.00 $6,250.00 –$3,750.00

LOC per month 500 160 –340

Cost per LOC $10.00 $31.25 $21.25

Function points per month 2.50 4.00 1.5

Cost per function point $2,000.00 $1,250.00 –$750.00

TABLE 8-7 Comparing Low-Level and High-Level Languages

Programming and Code Development 545

The 1000 LOC of assembly code was done in 1 month at a rate of 1000
LOC per month. The pure coding cost was $5000 or $5.00 per LOC.

The 200 LOC of Java code was done in 1 week, or 0.25 month.
Converted into a monthly rate, that is only 800 LOC per month. The
coding cost for Java was $1250, so the cost per LOC was $6.25.

Thus, Java costs more per LOC than assembly, even though Java took
only one-fourth the time and one-fourth the cost! When you try and
measure the two different languages using LOC, assembly looks better
than Java, which is definitely a false conclusion. Table 8-8 shows the
comparison between assembly and Java for coding only.

In real economic terms, the Java code only cost $1250 while the assem-
bly code cost $5000. Obviously, Java has better economics because the
same job was done for a savings of $3750.

But the Java LOC production rate is lower than assembly, and the
cost per LOC has jumped from $5.00 to $6.25! From an economic stand-
point, variations in LOC per month and cost per LOC are unimportant
if there is a major difference in how much code is needed to complete
an application.

Unfortunately, LOC metrics end up as professional malpractice no
matter how you use them if you are trying to measure economic pro-
ductivity between unlike programming languages. By contrast, the Java
code’s cost per function point was $250, while the assembly code’s cost
per function point was $1000, and this matches the assumptions of
standard economics.

Function point production for Java was 20 function points per staff
month versus only 5 function points per staff month for assembly. Thus,
function points match the assumptions of standard economics while
LOC metrics violate standard economics.

Returning to the main thread, within a few years, all other commercial
software estimating tools would also support function point metrics, so

Case A Case B Difference

Language Assembly Java

Lines of code (LOC) 1000 200 –800

Function points 5.00 5.00 0

Monthly compensation $5,000.00 $5,000.00 $0.00

Coding effort (months) 1.00 0.25 –0.75

Coding cost $5,000.00 $1,250.00 –$3,750.00

LOC per month 1000 800 –200

Cost per LOC $5.00 $6.25 $1.25

Function points per month 5 20 15

Cost per function point $1,000.00 $250.00 –$750.00

TABLE 8-8 Comparing Coding for Low-Level and High-Level Languages

546 Chapter Eight

that CHECKPOINT, COCOMO, KnowledgePlan, Price-S, SEER, SLIM
SPQR/20, and others could express estimates in terms of both function
points and LOC metrics.

By the end of this decade, coding effort was below 35 percent of total
project effort, and LOC was no longer valid for either economic or qual-
ity studies. LOC metrics could not quantify requirements and design
defects, which now outnumbered coding defects. LOC metrics could not
be used to measure any of the noncoding activities such as require-
ments, design, documentation, or project management.

The response of the LOC users to these problems was unfortunate:
they merely stopped measuring anything but code production and
coding defects. The bulk of all published reports based on LOC metrics
cover less than 35 percent of development effort and less than 25 per-
cent of defects, with almost no data being published on requirements
and design defects, rates of requirements creep, design costs, and other
modern problems.

The history of the LOC metric provides an interesting example of
Dr. Leon Festinger’s theory of cognitive dissonance. Once an idea
becomes entrenched, the human mind tends to reject all evidence to
the contrary. Only when the evidence becomes overwhelming will there
be changes of opinion, and such changes tend to occur rapidly.

Lines of Code Metrics Circa 1990

By about 1990, not only were there more than 500 programming lan-
guages in use, but some applications were written in 12 to 15 different
languages. There were no international standards for counting code, and
many variations were used sometimes without being defined.

In 1991, the first edition of the author’s book Applied Software
Measurement included a proposed draft standard for counting lines
of code based on counting logical statements. One year later, Bob Park
from the Software Engineering Institute (SEI), also published a pro-
posed draft standard, only based on counting physical lines.

A survey of software journals by the author in 1993 found that about
one-third of published articles used physical lines, one-third used logical
statements, and the remaining third used LOC metrics without even
bothering to say how they were counted. Since there is about a 500 per-
cent variance between physical LOC and logical statements for many
languages, this was not a good situation.

The technical journals that deal with medical practice and engineer-
ing often devote as much as 50 percent of the text to explaining and
defining the measurement methods used to derive the results. The soft-
ware engineering journals, on the other hand, often fail to define the
measurement methods at all.

Programming and Code Development 547

The software journals seldom devote more than a few lines of text to
explaining the nature of the measurements used for the results. This is
one of several reasons why the term “software engineering” is something
of an oxymoron. In fact it is not even legal to use the term “software
engineering” in some states and countries, because software develop-
ment is not a recognized engineering discipline or a licensed engineering
discipline.

But there was a worse problem approaching than ambiguity in count-
ing lines of code. The arrival of Visual Basic introduced a class of pro-
gramming languages where counting lines of code was not even possible.
This is because a lot of Visual Basic “programming” was not done with
procedural code, but rather with buttons and pull-down menus.

Of the approximate 2500 programming languages and dialects in
existence circa 2009, there are only effective published counting rules
for about 150. About another 2000 are similar to other languages and
could perhaps share the same counting rules. But for at least 50 lan-
guages that use graphics or visual means to augment procedural code,
there are no code counting rules at all. Unfortunately, some of the lan-
guages without code counting rules tend to be most recent languages
that are used for web site development.

In 1994, a controlled study was done that used both LOC metrics
and function points for ten versions of the same application written in
ten different programming languages, including four object-oriented
languages.

The study was published in American Programmer in 1994. This
study found that LOC metrics violated the basic concepts of economic
productivity and penalized high-level and OO languages due to the fixed
costs of requirements, design, and other noncoding activities. This was
the first published study to state that LOC metrics constituted profes-
sional malpractice if used for economic studies where more than one
programming language was involved.

By the 1990s most consulting studies that collected benchmark and
baseline data used function points. There are no large-scale benchmarks
based on LOC metrics. The International Software Benchmarking
Standards Group (ISBSG) was formed in 1997 and only publishes data
in function point form. Consulting companies such as SPR and the
David Consulting Group also use function point metrics.

By the end of the decade, some projects were spending less than 20 per-
cent of the total effort on coding, so LOC metrics could not be used for the
80 percent of effort outside the coding domain. The LOC users remained
blindly indifferent to these problems and continued to measure only
coding, while ignoring the overall economics of complete development
cycles that include requirements, analysis, design, user documentation,
project management, and many other noncoding tasks.

548 Chapter Eight

By the end of the decade, noncoding defects in requirements and
design outnumbered coding defects almost 2 to 1. But since noncode
defects could not be measured with LOC metrics, the LOC literature
simply ignores them.

Indeed, still in 2009, debates occur about the usefulness of the LOC
metric, but the arguments unfortunately are not solidly grounded in
manufacturing economics. The LOC enthusiasts seem to ignore the
impact of fixed costs on software development.

The main argument of the LOC enthusiasts is that development effort
has a solid statistical correlation to size measured in terms of lines of
code. This is true, but irrelevant in terms of standard economics.

If it takes 1000 lines of C code to deliver ten function points to custom-
ers and the cost was $10,000, then the cost per LOC is $10.00. Assuming
one month of programming effort, the productivity rate using LOC is
1000 LOC per month.

If the same ten function points were delivered to customers in
Objective C, there might be only 250 lines of code and the cost might
be only $2500. The effort might take only one week instead of a whole
month. But the cost per LOC is unchanged at $10.00 and the LOC pro-
ductivity rate is also unchanged at 1000 LOC per month.

With LOC metrics, both versions appear to have identical productivity
rates of 1000 LOC per month, but these are development rates; not deliv-
ery rates. Since the functionality is the same for both C and Objective C
versions, it is important that the cost per function point for C was $1000,
while for Objective C the cost per function point was only $250.

Measured in terms of function points per month, the rate for C was
10, while the rate for Objective C increased to 40. Thus, when measured
correctly, the economic value of high-level languages and delivery rates
are clearly revealed, while the LOC metric does not show either eco-
nomic or delivery productivity at all.

Lines of Code Metrics Circa 2000

By the end of the century, the number of programming languages had
topped 2000 and continues to grow at more than one new program-
ming language per month. Current rates of new programming language
development may approach 100 new languages per year.

Web applications are mushrooming, and all of these are based on very
high-level programming languages and substantial reuse. The Agile
methods are also mushrooming and also tend to use high-level pro-
gramming languages. Software reuse in some applications now tops 80
percent. LOC metrics cannot be used for most web applications and are
certainly not useful for measuring Scrum sessions and other noncoding
activities that are part of Agile projects.

Programming and Code Development 549

Function point metrics had become the dominant metric for serious
economic and quality studies. But two new problems appeared that
have kept function point metrics from actually becoming the industry
standard for both economic and quality studies.

The first problem is that some software applications are now so large
(greater than 300,000 function points) that normal function point analy-
sis is too slow and too expensive to be used.

There are gaps at both ends of normal function point analysis. Above
15,000 function points, the costs and schedule for counting function point
metrics become so high that large projects are almost never counted.
(Function point analysis operates between 400 and 600 function points
per day per counter. The approximate cost is about $6.00 per function
point counted.)

At the low end of the scale, the counting rules for function points do
not operate below a size of about 15 function points. Thus, small changes
and bug repairs cannot be counted. Individually, such changes may be as
small as 1/50th of a function point and are rarely larger than 10 function
points. But large companies can make 30,000 or more changes per year,
with a total size that can top 100,000 function points.

The second problem is that the success of the original function point
metric has triggered an explosion of function point clones. As of 2009,
there are at least 24 function point variations. This makes benchmark
and baseline studies difficult, because there are very few conversion
rules from one variation to another.

In addition to standard IFPUG function points, there are also Mark
II function points, COSMIC function points, Finnish function points,
Netherlands function points, story points, feature points, web-object
points, and many others.

Although LOC metrics continue to be used, they continue to have such
major errors that they constitute professional malpractice for economic
and quality studies where more than one language is involved, or where
non-coding issues are significant.

There is also a psychological problem. LOC usage tends to fixate atten-
tion on coding and make the other kinds of software work invisible. For
large software projects there may be many more noncode workers than
programmers. There will be architects, designers, database administra-
tors, quality assurance, technical writers, project managers, and many
other occupations. But since none of these can be measured using LOC
metrics, the LOC literature ignores them.

Lines of Code Metrics Circa 2010

It would be nice to predict an optimistic future, but the recession has
changed the nature of industry and the future is now uncertain.

550 Chapter Eight

If current trends continue, within a few more years the software
industry will have more than 3000 programming languages, of which
about 2900 will be obsolete or nearly dead languages. The industry
will have more than 20 variations for counting lines of code, more than
50 variations for counting function points, and probably another 20
unreliable metrics such as story points, use-case points, cost per defect,
or using percentages of unknown numbers. (The software industry loves
to make claims such as “improve productivity by 10 to 1” without defin-
ing either the starting or the ending point.)

Future generations of sociologists will no doubt be interested in why
the software industry spends so much energy on creating variations of
things, and so little energy on fundamental issues. No doubt large proj-
ects will still be cancelled, litigation for failures will still be common,
software quality will still be bad, software productivity will remain low,
security flaws will be alarming, and the software literature will con-
tinue to offer unsupported claims without actually presenting quanti-
fied data.

What the software industry needs is actually fairly straightforward:

 1. Measures of defect potentials from all sources expressed in terms of
function points; that is, requirements defects, design defects, code
defects, document defects, and bad fixes.

 2. Measures of defect removal efficiency levels for all forms of inspec-
tion, static analysis, and testing.

 3. Activity-based productivity benchmarks from requirements through
delivery and then for maintenance and customer support from
delivery to retirement using function points.

 4. Certified sources of reusable material near the zero-defect level.

 5. Much improved security methods to guard against viruses, spyware,
and hacking.

 6. Licenses and board-certification for software engineering specialties.

But until measurement becomes both accurate and cost-effective,
none of these are likely to occur. An occupation that will not measure
its own performance with accuracy is not a true profession.

Lines of Code Circa 2020

If we look forward to 2020, there are best-case and worst-case scenarios
to consider.

The best-case scenario for lines of code metrics is that usage dimin-
ishes even faster than it has been and that economic productivity based
on delivery becomes the industry focus rather than development and

Programming and Code Development 551

lines of code. For this scenario to occur, the speed of function point analy-
sis needs to increase and the cost per function point counted needs to
decrease from about $6.00 per function point counted to less than $0.10
per function point counted, which is technically possible and indeed
occurs in 2009, although the high-speed methods are not yet widely
deployed since they are so new.

If these changes occur, then function point usage will increase at least
tenfold, and many new kinds of economic studies can be carried out.
Among these will be measurement of entire portfolios that might top
10 million function points. Corporate backlogs could be sized and pri-
oritized, and some of these exceed 1 million function points. Risk/value
analyses for major software applications could become both routine
and professionally competent. It will also be possible to do economic
analyses of interesting new technologies such as the Agile methods,
service-oriented architecture (SOA), software as a service (SaaS), and
of course total cost of ownership (TCO).

Under the best-case scenario, software engineering would evolve from
a craft or art form into a true engineering discipline. Reliable measures
of all activities and tasks will lead to greater success rates on large soft-
ware applications. The goal of software engineering should be to become
a true engineering discipline with recognized specialties, board certifica-
tion, and accurate information on productivity, quality, and costs. But
that cannot be accomplished when project failures outnumber successes
for large applications.

So long as quality and productivity are ambiguous and uncertain, it
is difficult to carry out multiple regression studies and to select really
effective tools and methods. LOC metrics have been a major barrier to
economic and quality studies for software.

The worst-case scenario is that LOC metrics continue at about the
same level as 2009. The software industry will continue to ignore eco-
nomic productivity and remain fixated on the illusory “lines of code per
month” metric. Under the worst-case scenario, “software engineering”
will remain an oxymoron. Trial-and-error methods will continue to dom-
inate, in part because effective tools and methodologies cannot even be
studied using LOC metrics. Under the worst-case scenario, failures and
project disasters will remain common for large software applications.

Function point analysis will continue to serve an important role for
economic studies, benchmarks, and baselines, but only for about 10
percent of software applications of medium size. The cost per function
point under the worst-case scenario will remain so high that usage
above 15,000 function points will continue to be very rare. There will
probably be even more function point variations, and the chronic lack
of conversion rules from one variation to another will make large-scale
international economic studies almost impossible.

552 Chapter Eight

Summary and Conclusions

The history of lines of code metrics is a cautionary tale for all people
who work in software. The LOC metric started out well and was fairly
effective when there was only one programming language and coding
was so difficult it constituted 90 percent of the total effort for putting
software on a computer.

But the software industry began to develop hundreds of program-
ming languages. Applications started to use multiple programming
languages, and that remains the norm today. Applications grew from
less than 1000 lines of code up to more than 10 million lines of code.
Coding is the major task for small applications, but for large systems,
the work shifts to defect removal and production of paper documents
in the forms of requirements, specifications, user manuals, test plans,
and many others.

The LOC metric was not able to keep pace with either change. It does
not work well when there is ambiguity in counting code, which always
occurs with high-level languages and multiple languages in the same
application. It does not work well for large systems where coding is only
a small fraction of the total effort.

As a result, LOC metrics became less and less useful until sometime
around 1985 they started to become actually harmful. Given the errors
and misunderstandings that LOC metrics bring to economic, productiv-
ity, and quality studies, it is fair to say that in many situations usage
of LOC metrics can be viewed as professional malpractice if more than
one programming language is part of the study or the study seeks to
measure real economic productivity.

The final point is that continued usage of LOC metrics is a significant
barrier that is delaying the progress of software engineering from a
craft to a true engineering discipline. An occupation that cannot even
measure its own work with accuracy is hardly qualified to be called
engineering.

Readings and References

Barr, Michael and Anthony Massa. Programming Embedded Systems: With C and GNU
Development Tools. Sebastopol, CA: O’Reilly Media, 2006.

Beck, K. Extreme Programming Explained: Embrace Change. Boston, MA: Addison
Wesley, 1999.

Bott, Frank, A. Coleman, J. Eaton, and D. Rowland. Professional Issues in Software
Engineering, Third Edition. London and New York: Taylor & Francis, 2000.

Cockburn, Alistair. Agile Software Development. Boston, MA: Addison Wesley, 2001.
Cohen, D., M. Lindvall, & P. Costa, “An Introduction to agile methods.” Advances in

Computers. New York: Elsevier Science (2004): 1–66.
Garmus, David and David Herron. Function Point Analysis. Boston: Addison Wesley,

2001.
Garmus, David and David Herron. Measuring the Software Process: A Practical Guide

to Functional Measurement. Englewood Cliffs, NJ: Prentice Hall, 1995.

Programming and Code Development 553

Glass, Robert L. Facts and Fallacies of Software Engineering (Agile Software
Development). Boston: Addison Wesley, 2002.

Hans, Professor van Vliet. Software Engineering Principles and Practices, Third
Edition. London, New York: John Wiley & Sons, 2008.

Highsmith, Jim. Agile Software Development Ecosystems. Boston, MA: Addison Wesley,
2002.

Humphrey, Watts. PSP: A Self-Improvement Process for Software Engineers. Upper
Saddle River, NJ: Addison Wesley, 2005.

Humphrey, Watts. TSP—Leading a Development Team. Boston, MA: Addison Wesley,
2006.

Hunt, Andrew and David Thomas. The Pragmatic Programmer. Boston, MA: Addison
Wesley, 1999.

Jeffries, R., et al. Extreme Programming Installed. Boston, MA: Addison Wesley, 2001.
Jones, Capers. Applied Software Measurement, Third Edition. New York, NY: McGraw-

Hill, 2008.
Jones, Capers. Conflict and Litigation Between Software Clients and Developers,

Version 6. Burlington, MA: Software Productivity Research, June 2006. 54 pages.
Jones, Capers. Estimating Software Costs, Second Edition. New York, NY: McGraw-Hill,

2007.
Jones, Capers. Software Assessments, Benchmarks, and Best Practices. Boston, MA:

Addison Wesley Longman, 2000.
Jones, Capers. “The Economics of Object-Oriented Software.” American Programmer

Magazine, October 1994: 29–35.
Kan, Stephen H. Metrics and Models in Software Quality Engineering, Second Edition.

Boston, MA: Addison Wesley Longman, 2003.
Krutchen, Phillippe. The Rational Unified Process—An Introduction. Boston, MA:

Addison Wesley, 2003.
Larman, Craig &, Victor Basili. “Iterative and Incremental Development—A Brief

History.” IEEE Computer Society, June 2003: 47–55.
Love, Tom. Object Lessons. New York, NY: SIGS Books, 1993.
Marciniak, John J. (Ed.) Encyclopedia of Software Engineering. (2 vols.) New York, NY:

John Wiley & Sons, 1994.
McConnell, Steve. Code Complete. Redmond, WA: Microsoft Press, 1993.
——— Software Estimation—Demystifying the Black Art. Redmond, WA: Microsoft

Press, 2006.
Mills, H., M. Dyer, & R. Linger. “Cleanroom Software Engineering.” IEEE Software, 4, 5

(Sept. 1987): 19–25.
Morrison, J. Paul. Flow-Based Programming. A New Approach to Application

Development. New York, NY: Van Nostrand Reinhold, 1994.
Park, Robert E. SEI-92-TR-20: Software Size Measurement: A Framework for Counting

Software Source Statements. Pittsburgh, PA: Software Engineering Institute, 1992.
Pressman, Roger. Software Engineering—Practitioner’s Approach, Sixth Edition. New

York, NY: McGraw-Hill, 2005.
Putnam, Lawrence and Ware Myers. Industrial Strength Software—Effective

Management Using Measurement. Los Alamitos, CA: IEEE Press, 1997.
——— Measures for Excellence—Reliable Software On-Time Within Budget. Englewood

Cliffs, NJ: Yourdon Press, Prentice Hall, 1992.
Sommerville, Ian. Software Engineering, Seventh Edition. Boston, MA: Addison Wesley,

2004.
Stapleton, J. DSDM—Dynamic System Development Method in Practice. Boston, MA :

Addison Wesley, 1997.
Stephens M. and D. Rosenberg. Extreme Programming Refactored: The Case Against

XP. Berkeley, CA: Apress L.P., 2003.

This page intentionally left blank

555

Chapter

 9
Software Quality: The Key to

Successful Software Engineering

Introduction

The overall software quality averages for the United States have
scarcely changed since 1979. Although national data is flat for quality,
a few companies have made major improvements. These happen to be
companies that measure quality because they define quality in such a
way that both prediction and measurement are possible.

The same companies also use full sets of defect removal activities that
include inspections and static analysis as well as testing. Defect preven-
tion methods such as joint application design (JAD) and development
methods that focus on quality such as Team Software Process (TSP)
are also used, once the importance of quality to successful software
engineering is realized.

Historically, large software projects spend more time and effort on
finding and fixing bugs than on any other activity. Because software
defect removal efficiency only averages about 85 percent, the major
costs of software maintenance are finding and fixing bugs accidentally
released to customers.

When development defect removal is added to maintenance defect
removal, the major cost driver for total cost of ownership (TCO) is that
of defect removal. Between 30 percent and 50 percent of every dollar
ever spent on software has gone to finding and fixing bugs.

When software projects run late and exceed their budgets, a main
reason is excessive defect levels, which slow down testing and force
applications into delays and costly overruns.

555

556 Chapter Nine

When software projects are cancelled and end up in court for breach
of contract, excessive defect levels, inadequate defect removal, and poor
quality measures are associated with every case.

Given the fact that software defect removal costs have been the pri-
mary cost driver for all major software projects for the past 50 years, it
is surprising that so little is known about software quality.

There are dozens of books about software quality and testing, but very
few of these books actually contain solid and reliable quantified data
about basic topics such as:

 1. How many bugs are going to be present in specific new software
applications?

 2. How many bugs are likely to be present in legacy software applica-
tions?

 3. How can software quality be predicted and measured?

 4. How effective are ISO standards in improving quality?

 5. How effective are software quality assurance organizations in
improving quality?

 6. How effective is software quality assurance certification for improv-
ing quality?

 7. How effective is Six Sigma for improving quality?

 8. How effective is quality function deployment (QFD) for improving
quality?

 9. How effective are the higher levels of the CMMI in improving
quality?

10. How effective are the forms of Agile development in improving
quality?

11. How effective is the Rational Unified Process (RUP) in improving
quality?

12. How effective is the Team Software Process (TSP) in improving
quality?

13. How effective are the ITIL methods in improving quality?

14. How effective is service-oriented architecture (SOA) for improving
quality?

15. How effective are certified reusable components for improving
quality?

16. How many bugs can be eliminated by inspections?

17. How many bugs can be eliminated by static analysis?

18. How many bugs can be eliminated by testing?

Software Quality: The Key to Successful Software Engineering 557

19. How many different kinds of testing are needed?

20. How many test personnel are needed?

21. How effective are test specialists compared with developers?

22. How effective is automated testing?

23. How many test cases are needed for applications of various sizes?

24. How effective is test certification in improving performance?

25. How many bug repairs will themselves include new bugs?

26. How many bugs will get delivered to users?

27. How much does it cost to improve software quality?

28. How long does it take to improve software quality?

29. How much will we save from improving software quality?

30. How much is the return on investment (ROI) for better software
quality?

This purpose of this chapter is to show the quantified results of every
major form of quality assurance activity, inspection stage, static analysis,
and testing stage on the delivered defect levels of software applications.

Defect removal comes in “private” and “public” forms. The private
forms of defect removal include desk checking, static analysis, and unit
testing. They are also covered in Chapter 8, because they concentrate
on code defects, and that chapter deals with programming and code
development.

The public forms of defect removal include formal inspections, static
analysis if run by someone other than the software engineer who wrote
the code, and many kinds of testing carried out by test specialists rather
than the developers.

Both private and public forms of defect removal are important, but
it is harder to get data on the private forms because they usually occur
with no one else being present other than the person who is doing
the desk checking or unit testing. As pointed out in Chapter 8, IBM
used volunteers to record defects found via private removal activities.
Some development methods such as Watts Humphrey’s Team Software
Process (TSP) and Personal Software Process (PSP) also record private
defect removal.

This chapter will also explain how to predict the number of bugs or
defects that might occur, and how to predict defect removal efficiency
levels. Not only code bugs, but also bugs or defects in requirements,
design, and documents need to be predicted. In addition, new bugs acci-
dentally included in bug repairs need to be predicted. These are called
“bad fixes.” Finally, there are also bugs or errors in test cases them-
selves, and these need to be predicted, too.

558 Chapter Nine

This chapter will discuss the best ways of measuring quality and will
caution against hazardous metrics such as “cost per defect” and “lines
of code,” which distort results and conceal the real facts of software
quality. In this chapter, several critical software quality topics will be
discussed:

■ Defining Software Quality

■ Predicting Software Quality

■ Measuring Software Quality

■ Software Defect Prevention

■ Software Defect Removal

■ Specialists in Software Quality

■ The Economic Value of Software Quality

Software quality is the key to successful software engineering.
Software has long been troubled by excessive numbers of software
defects both during development and after release. Technologies are
available that can reduce software defects and improve quality by sig-
nificant amounts.

Carefully planning and selecting an effective combination of defect
prevention and defect removal activities can shorten software develop-
ment schedules, lower software development costs, significantly reduce
maintenance and customer support costs, and improve both customer
satisfaction and employee morale at the same time. Improving software
quality has the highest return on investment of any current form of
software process improvement.

As the recession continues, every company is anxious to lower both
software development and software maintenance costs. Improving soft-
ware quality will assist in improving software economics more than any
other available technology.

Defining Software Quality

A good definition for software quality is fairly difficult to achieve. There
are many different definitions published in the software literature.
Unfortunately, some of the published definitions for quality are either
abstract or off the mark. A workable definition of software quality needs
to have six fundamental features:

 1. Quality should be predictable before a software application starts.

 2. Quality needs to encompass all deliverables and not just the code.

 3. Quality should be measurable during development.

Software Quality: The Key to Successful Software Engineering 559

 4. Quality should be measurable after release to customers.

 5. Quality should be apparent to customers and recognized by them.

 6. Quality should continue after release, during maintenance.

Here are some of the published definitions for quality, and explana-
tions of why some of them don’t seem to conform to the six criteria just
listed.

Quality Definition 1: “Quality means
conformance to requirements.”

There are several problems with this definition, but the major problem
is that requirements errors or bugs are numerous and severe. Errors in
requirements constitute about 20 percent of total software defects and
are responsible for more than 35 percent of high-severity defects.

Defining quality as conformance to a major source of error is circular
reasoning, and therefore this must be considered to be a flawed and
unworkable definition. Obviously, a workable definition for quality has
to include errors in requirements themselves.

Don’t forget that the famous Y2K problem originated as a specific user
requirement and not as a coding bug. Many software engineers warned
clients and managers that limiting date fields to two digits would cause
problems, but their warnings were ignored or rejected outright.

The author once worked (briefly) as an expert witness in a lawsuit
where a company attempted to sue an outsource vendor for using two-
digit date fields in a software application developed under contract.
During the discovery phase, it was revealed that the vendor cautioned
the client that two-digit date fields were hazardous, but the client
rejected the advice and insisted that the Y2K problem be included in
the application. In fact, the client’s own internal standards mandated
two-digit date fields. Needless to say, the client dropped the suit when it
became evident that they themselves were the cause of the problem. The
case illustrates that “user requirements” are often wrong and sometimes
even dangerous or “toxic.”

It also illustrates another point. Neither the corporate executives nor
the legal department of the plaintiff knew that the Y2K problem had
been caused by their own policies and practices. Obviously, there is a
need for better governance of software from the top when problems such
as this are not understood by corporate executives.

Using modern terminology from the recession, it is necessary to
remove “toxic requirements” before conformance can be safe. The defi-
nition of quality as “conformance to requirements” does not lead to any
significant quality improvements over time. No more requirements are
being met in 2009 than in 1979.

560 Chapter Nine

If software engineering is to become a true profession rather than an
art form, software engineers have a responsibility to help customers
define requirements in a thorough and effective manner. It is the job
of a professional software engineer to insist on effective requirements
methods such as joint application design (JAD), quality function deploy-
ment (QFD), and requirements inspections.

Far too often the literature on software quality is passive and makes
the incorrect assumption that users will be 100 percent effective in
identifying requirements. This is a dangerous assumption. User require-
ments are never complete and they are often wrong. For a software
project to succeed, requirements need to be gathered and analyzed in
a professional manner, and software engineering is the profession that
should know how to do this well.

It should be the responsibility of the software engineers to insist that
proper requirements methods be used. These include joint application
design (JAD), quality function deployment (QFD), and requirements
inspections. Other methods that benefit requirements, such as embedded
users or use-cases, might also be recommended. The users themselves
are not software engineers and cannot be expected to know optimal
ways of expressing and analyzing requirements. Ensuring that require-
ments collection and analysis are at state-of-the-art levels devolves to
the software engineering team.

Once user requirements have been collected and analyzed, then con-
formance to them should of course occur. However, before conformance
can be safe and effective, dangerous or toxic requirements have to be
weeded out, excess and superfluous requirements should be pointed
out to the users, and potential gaps that will cause creeping require-
ments should be identified and also quantified. The users themselves
will need professional assistance from the software engineering team,
who should not be passive bystanders for requirements gathering and
analysis.

Unfortunately, requirements bugs cannot be removed by ordinary
testing. If requirements bugs are not prevented from occurring, or not
removed via formal inspections, test cases that are constructed from the
requirements will confirm the errors and not find them. (This is why
years of software testing never found and removed the Y2K problem.)

A second problem with this definition is that it is not predictable
during development. Conformance to requirements can be measured
after the fact, but that is too late for cost-effective recovery.

A third problem with this definition is that for brand-new kinds of
innovative applications, there may not be any users other than the
original inventor. Consider the history of successful software innovation
such as the APL programming language, the first spreadsheet, and the
early web search engine that later became Google.

Software Quality: The Key to Successful Software Engineering 561

These innovative applications were all created by inventors to solve
problems that they themselves wanted to solve. They were not created
based on the normal concept of “user requirements.” Until prototypes
were developed, other people seldom even realized how valuable the
inventions would be. Therefore, “user requirements” are not completely
relevant to brand-new inventions until after they have been revealed
to the public.

Given the fact that software requirements grow and change at mea-
sured rates of 1 percent to more than 2 percent every calendar month
during the subsequent design and coding phases, it is apparent that
achieving a full understanding of requirements is a difficult task.

Software requirements are important, but the combination of toxic
requirements, missing requirements, and excess requirements makes
simplistic definitions such as “quality means conformance to require-
ments” hazardous to the software industry.

Quality Definition 2: “Quality means
reliability, portability, and many other -ilities.”

The problem with defining quality as a set of words ending with ility is
that many of these factors are neither predictable before they occur nor
easily measurable when they do occur.

While most of the -ility words are useful properties for software
applications, some don’t seem to have much to do with quality as we
would consider the term for a physical device such as an automobile or
a toaster. For example, “portability” may be useful for a software vendor,
but it does not seem to have much relevance to quality in the eyes of a
majority of users.

The use of -ility words to define quality does not lead to quality
improvements over time. In 2009, the software industry is no better in
terms of many of these -ilities than it was in 1979. Using modern lan-
guage from the recession, many of the -ilities are “subprime” definitions
that don’t prevent serious quality failures. In fact, using -ilities rather
than focusing on defect prevention and removal slows down progress
on software quality control.

Among the many words that are cited when using this definition can
be found (in alphabetical order):

 1. Augmentability

 2. Compatibility

 3. Expandability

 4. Flexibility

 5. Interoperability

562 Chapter Nine

 6. Maintainability

 7. Manageability

 8. Modifiability

 9. Operability

10. Portability

11. Reliability

12. Scalability

13. Survivability

14. Understandability

15. Usability

16. Testability

17. Traceability

18. Verifiability

Of the words on this list, only a few such as “reliability” and “test-
ability” seem to be relevant to quality as viewed by users. The other
terms range from being obscure (such as “survivability”) to useful but
irrelevant (such as “portability”). Other terms may be of interest to the
vendor or development team, but not to customers (such as “maintain-
ability”).

The -ility words seem to have an academic origin because they don’t
really address some of the real-world quality issues that bother cus-
tomers. For example, none of these terms addresses ease or difficulty
of reaching customer support to get help when a bug is noted or the
software misbehaves. None of the terms deals with the speed of fixing
bugs and providing the fix to users in a timely manner.

The new Information Technology Infrastructure Library (ITIL) does a
much better job of dealing with issues of quality in the eyes of users, such
as customer support, incident management, and defect repairs intervals
than does the standard literature dealing with software quality.

More seriously, the list of -ility words ignores two of the main topics
that have a major impact on software quality when the software is
finally released to customers: (1) defect potentials and (2) defect removal
efficiency levels.

The term defect potential refers to the total quantity of defects that
will likely occur when designing and building a software application.
Defect potentials include bugs or defects in requirements, design, code,
user documents, and bad fixes or secondary defects. The term defect
removal efficiency refers to the percentage of defects found by any
sequence of inspection, static analysis, and test stages.

Software Quality: The Key to Successful Software Engineering 563

To reach acceptable levels of quality in the view of customers, a com-
bination of low defect potentials and high defect removal efficiency rates
(greater than 95 percent) is needed. The current U.S. average for soft-
ware quality is a defect potential of about 5.0 bugs per function point
coupled with 85 percent defect removal efficiency. This combination
yields a total of delivered defects of about 0.75 per function point, which
the author regards as unprofessional and unacceptable.

Defect potentials need to drop below 2.5 per function point and defect
removal efficiency needs to average greater than 95 percent for software
engineering to be taken seriously as a true engineering discipline. This
combination would result in a delivered defect total of only 0.125 defect per
function point or about one-sixth of today’s averages. Achieving or exceed-
ing this level of quality is possible today in 2009, but seldom achieved.

One of the reasons that good quality is not achieved as widely as it
might be is that concentrating on the -ility topics rather than measuring
defects and defect removal efficiency leads to gaps and failures in defect
removal activities. In other words, the -ilities definitions of quality are
a distraction from serious study of software defect causes and the best
methods of preventing and removing software defects.

Specific levels of defect potentials and defect removal efficiency levels
could be included in outsource agreements. These would probably be
more effective than current contracting practices for quality, which are
often nonexistent or merely insist on a certain CMMI level.

If software is released with excessive quantities of defects so that it
stops, behaves erratically, or runs slowly, it will soon be discovered that
most of the -ility words fall by the wayside.

Defect quantities in released software tend to be the paramount qual-
ity issue with users of software applications, coupled with what kinds of
corrective actions the software vendor will take once defects are reported.
This brings up a third and more relevant definition of software quality.

Quality Definition 3: “Quality is the absence
of defects that would cause an application to
stop working or to produce incorrect results.”

A software defect is a bug or error that causes software to either stop
operating or to produce invalid or unacceptable results. Using IBM’s
severity scale, defects have four levels of severity:

■ Severity 1 means that the software application does not work at all.

■ Severity 2 means that major functions are disabled or produce incor-
rect results.

■ Severity 3 means that there are minor issues or minor functions are
not working.

■ Severity 4 means a cosmetic problem that does not affect operation.

564 Chapter Nine

There is some subjectivity with these defect severity levels because
they are assigned by human beings. Under the IBM model, the ini-
tial severity level is assigned when the bug is first reported, based on
symptoms described by the customer or user who reported the defect.
However, a final severity level is assigned by the change team when the
defect is repaired.

This definition of quality is one favored by the author for several reasons.
First, defects can be predicted before they occur and measured when they
do occur. Second, customer satisfaction surveys for many software applica-
tions appear to correlate more closely to delivered defect levels than to any
other factor. Third, many of the -ility factors also correlate to defects, or to
the absence of defects. For example, reliability correlates exactly to the
number of defects found in software. Usability, testability, traceability, and
verifiability also have indirect correlations to software defect levels.

Measuring defect volumes and defect severity levels and then taking
effective steps to reduce those volumes via a combination of defect pre-
vention and defect removal activities is the key to successful software
engineering.

This definition of software quality does lead to quality improvements
over time. The companies that measure defect potentials, defect removal
efficiency levels, and delivered defects have improved both factors by
significant amounts. This definition of quality supports process improve-
ments, predicting quality, measuring quality, and customer satisfaction
as measured by surveys.

Therefore, companies that measure quality such as IBM, Dovél
Technologies, and AT&T have made progress in quality control. Also,
methods that integrate defect tracking and reporting such as Team
Software Process (TSP) have made significant progress in reducing
delivered defects. This is also true for some open-source applications
that have added static-analysis to their suite of defect removal tools.

Defect and removal efficiency measures have been used to validate
the effectiveness of formal inspections, show the impact of static analy-
sis, and fine-tune more than 15 kinds of testing. The subjective mea-
sures have no ability to deal with such issues.

Every software engineer and every software project manager should
be trained in methods for predicting software defects, measuring soft-
ware defects, preventing software defects, and removing software
defects. Without knowledge of effective quality and defect control, soft-
ware engineering is a hoax.

The full definition of quality suggested by the author includes these
nine factors:

 1. Quality implies low levels of defects when software is deployed,
ideally approaching zero defects.

Software Quality: The Key to Successful Software Engineering 565

 2. Quality implies high reliability, or being able to run without stop-
page or strange and unexpected results or sluggish performance.

 3. Quality implies high levels of user satisfaction when users are sur-
veyed about software applications and its features.

 4. Quality implies a feature set that meets the normal operational
needs of a majority of customers or users.

 5. Quality implies a code structure and comment density that minimize
bad fixes or accidentally inserting new bugs when attempting to repair
old bugs. This same structure will facilitate adding new features.

 6. Quality implies effective customer support when problems do occur,
with minimal difficulty for customers in contacting the support
team and getting assistance.

 7. Quality implies rapid repairs of known defects, and especially so
for high-severity defects.

 8. Quality should be supported by meaningful guarantees and war-
ranties offered by software developers to software users.

 9. Effective definitions of quality should lead to quality improvements.
This means that quality needs to be defined rigorously enough so
that both improvements and degradations can be identified, and
also averages. If a definition for quality cannot show changes or
improvements, then it is of very limited value.

The 6th, 7th, 8th, and 9th of these quality issues tend to be sparsely
covered by the literature on software quality, other than the new ITIL
books. Unfortunately, the ITIL coverage is used only for internal software
applications and is essentially ignored by commercial software vendors.

The definition of quality as an absence of defects, combined with sup-
plemental topics such as ease of customer support and maintenance
speed, captures the essence of quality in the view of many software
users and customers.

Consider how the three definitions of quality discussed in this chapter
might relate to a well-known software product such as Microsoft Vista.
Vista has been selected as an example because it is one of the best-
known large software applications in the world, and therefore a good
test bed for trying out various quality definitions.

Applying Definition 1 to Vista: “Quality
means conformance to requirements.”

The first definition would be hard to use for Vista, since no ordinary cus-
tomers were asked what features they wanted in the operating system,
although focus groups were probably used at some point.

566 Chapter Nine

If you compare Vista with XP, Leopard, or Linux, it seems to include
a superabundance of features and functions, many of which were
neither requested nor ever used by a majority of users. One topic
that the software engineering literature does not cover well, or at
all, is that of overstuffing applications with unnecessary and useless
features.

Most people know that ordinary requirements usually omit about
20 percent of functions that users want. However, not many people
know that for commercial software put out by companies such as
Microsoft, Symantec, Computer Associates, and the like, applications
may have more than 40 percent features that customers don’t want and
never use.

Feature stuffing is essentially a competitive move to either imitate
what competitors do, or to attempt to pull ahead of smaller competi-
tors by providing hundreds of costly but marginal features that small
competitors could not imitate. In either case, feature stuffing is not a
satisfactory conformance to user requirements.

Further, certain basic features such as security and performance,
which users of operating systems do appreciate, are not particularly
well embodied in Vista.

The bottom line is that defining quality as conformance to require-
ments is almost useless for applications with greater than 1 million
users such as Vista, because it is impossible to know what such a large
group will want or not want.

Also, users seldom are able to articulate requirements in an effective
manner, so it is the job of professional software engineers to help users
in defining requirements with care and accuracy. Too often the software
literature assumes that software engineers are only passive observers of
user requirements, when in fact, software engineers should be playing
the role of physicians who are diagnosing medical conditions in order
to prescribe effective therapies.

Physicians don’t just passively ask patients what the problem is and
what kind of medicine they want to take. Our job as software engineers
is to have professional knowledge about effective requirement gather-
ing and analysis methods (i.e., like medical diagnostic tests) and to also
know what kinds of applications might provide effective “therapies” for
user needs.

Passively waiting for users to define requirements without assisting
them in using joint application design (JAD) or quality function deploy-
ment (QFD) or data mining of legacy applications is unprofessional on
the part of the software engineering community. Users are not trained
in requirements definition, so we need to step up to the task of assist-
ing them.

Software Quality: The Key to Successful Software Engineering 567

Applying Definition 2 to Vista: “Quality
means adherence to -ility terms.”

When Vista is judged by matching its features against the list of -ility
terms shown earlier, it can be seen how abstract and difficult to apply
such a list really is

1. Augmentability Ambiguous and difficult to apply to Vista

2. Compatibility Poor for Vista; many old applications don’t work

3. Expandability Applicable to Vista and fairly good

4. Flexibility Ambiguous and difficult to apply to Vista

5. Interoperability Ambiguous and difficult to apply to Vista

6. Maintainability Unknown to users but probably poor for Vista

7. Manageability Ambiguous and difficult to apply to Vista

8. Modifiability Unknown to users but probably poor for Vista

9. Operability Ambiguous and difficult to apply to Vista

10. Portability Poor for Vista

11. Reliability Originally poor for Vista but improving

12. Scalability Marginal for Vista

13. Survivability Ambiguous and difficult to apply to Vista

14. Understandability Poor for Vista

15. Usability Asserted to be good for Vista, but questionable

16. Testability Poor for Vista: complexity far too high

17. Traceability Poor for Vista: complexity far too high

18. Verifiability Ambiguous and difficult to apply to Vista

The bottom line is that more than half of the -ility words are difficult
or ambiguous to apply to Vista or any other commercial software appli-
cation. Of the ones that can be applied to Vista, the application does not
seem to have satisfied any of them but expandability and usability.

Many of the -ility words cannot be predicted nor can they be mea-
sured. Worse, even if they could be predicted and measured, they are of
marginal interest in terms of serious quality control.

Applying Definition 3 to Vista: “Quality means
an absence of defects, plus corollary factors.”

Released defects can and should be counted for every software applica-
tion. Other related topics such as ease of reporting defects and speed of
repairing defects should also be measured.

Unfortunately, for commercial software, not all of these nine topics
can be evaluated. Microsoft together with many other software vendors
does not publish data on bad-fix injections or even on total numbers

568 Chapter Nine

of bugs reported. However, six of the eight factors can be evaluated by
means of journal articles and limited Microsoft data.

 1. Vista was released with hundreds or thousands of defects, although
Microsoft will not provide the exact number of defects found and
reported by users.

 2. At first Vista was not very reliable, but achieved acceptable reli-
ability after about a year of usage. Microsoft does not report data
on mean time to failure or other measures of reliability.

 3. Vista never achieved high levels of user satisfaction compared with
XP. The major sources of dissatisfaction include lack of printer driv-
ers, poor compatibility with older applications, excessive resource
usage, and sluggish performance on anything short of high-end
computer chips and lots of memory.

 4. The feature set of Vista has been noted as adequate in customer
surveys, other than excessive security vulnerabilities.

 5. Microsoft does not release statistics on bad-fix injections or on num-
bers of defect reports, so this factor cannot be known by the general
public.

 6. Microsoft customer support is marginal and troublesome to access
and use. This is a common failing of many software vendors.

 7. Some known bugs have remained in Microsoft Vista for several
years. Microsoft is marginally adequate in defect repair speed.

 8. There is no effective warranty for Vista (or for other commercial
applications). Microsoft’s end-user license agreement (EULA)
absolves Microsoft of any liabilities other than replacing a defec-
tive disk.

 9. Microsoft’s new operating system is not yet available as this book
is published, so it is not possible to know if Microsoft has used
methods that will yield better quality than Vista. However, since
Microsoft does have substantial internal defect tracking and quality
assurance methods, hopefully quality will be better. Microsoft has
shown some improvements in quality over time.

Based on this pattern of analysis for the nine factors, it cannot be said
that Vista is a high-quality application under any of the definitions. Of
the three major definitions, defining quality as conformance to require-
ments is almost impossible to use with Vista because with millions of
users, nobody can define what everybody wants.

The second definition of quality as a string of -ility words is difficult
to apply, and many are irrelevant. These words might be marginally
useful for small internal applications, but are not particularly helpful

Software Quality: The Key to Successful Software Engineering 569

for commercial software. Also, many key quality issues such as cus-
tomer support and maintenance repair times are not found in any of
the -ility words.

The third definition that centers on defects, customer support, defect
repairs, and better warranties seems to be the most relevant. The third
also has the advantage of being both predictable and measurable, which
the first two lack.

Given the high costs of commercial software, the marginal or use-
less warranties of commercial software, and the poor customer sup-
port offered by commercial software vendors, the author would favor
mandatory defect reporting that required commercial vendors such as
Microsoft to produce data on defects reported by customers, sorted by
severity levels.

Mandatory defect reporting is already a requirement for many prod-
ucts that affect human life or safety, such as medicines, aircraft engines,
automobiles, and many other consumer products. Mandatory reporting
of business and financial information is also required. Software affects
human life and safety in critical ways, and it affects business operations
in critical ways, but to date software has been exempt from serious study
due to the lack of any mandate for measuring and reporting released
defect levels.

Somewhat surprisingly, the open-source software community appears
to be pulling ahead of old-line commercial software vendors in terms
of measuring and reporting defects. Many open-source companies have
added defect tracking and static-analysis tools to their quality arsenal,
and are making data available to customers that is not available from
many commercial software vendors.

The author would also favor a “lemon law” for commercial software
similar to the lemon law for automobiles. If serious defects occur that
users cannot get repaired when making good-faith effort to resolve the
situation with vendors, vendors should be required to return the full
purchase or lease price of the offending software application.

A form of lemon law might also be applied to outsource contracts,
except the litigation already provides relief for outsource failures that
cannot be used against commercial software vendors due to their one-
sided EULA agreements, which disclaim any responsibility for quality
other than media replacement.

No doubt software vendors would object to both mandatory defect
tracking and also to a lemon law. But shrewd and farsighted vendors
would soon perceive that both topics offer significant competitive advan-
tages to software companies that know how to control quality. Since
high-quality software is also cheaper and faster to develop and has
lower maintenance costs than buggy software, there are even more
important economic advantages for shrewd vendors.

570 Chapter Nine

The author hypothesizes that a combination of mandatory defect
reporting by software vendors plus a lemon law would have the effect
of improving software quality by about 50 percent every five years for
perhaps a 20-year period.

Software quality needs to be taken much more seriously than it has
been. Now that the recession is expanding, better software quality con-
trol is one of the most effective strategies for lowering software costs.
But effective quality control depends on better measures of quality
and on proven combinations of defect prevention and defect removal
activities.

Quality prediction, quality measurement, better defect prevention,
and better defect removal are on the critical path for advancing software
engineering to the status of a true engineering discipline instead of
a craft or art form as it is today in 2009.

Defining and Predicting Software Defects

If delivered defects are the main quality problem for software, it is
important to know what causes these defects, so that they can be pre-
vented from occurring or removed before delivery.

The software quality literature includes a great deal of pedantic
bickering about various terms such as “fault,” “error,” “bug,” “defect”
and many other terms. For this book, if software stops working, won’t
load, operates erratically, or produces incorrect results due to mis-
takes in its own code, then that is called a “defect.” (This same defi-
nition has been used in 14 of the author’s previous books and also in
more than 30 journal articles. The author’s first use of this definition
started in 1978.)

However, in the modern world, the same set of problems can occur
without the developers or the code being the cause. Software infected
by a virus or spyware can also stop working, refuse to load, operate
erratically, and produce incorrect results. In today’s world, some defect
reports may well be caused by outside attacks.

Attacks on software from hackers are not the same as self-inflicted
defects, although successful attacks do imply security vulnerabilities.

In this book and the author’s previous books, software defects have
five main points of origin:

 1. Requirements

 2. Design

 3. Code

 4. User documents

 5. Bad fixes (new defects due to repairs of older defects)

Software Quality: The Key to Successful Software Engineering 571

Because the author worked for IBM when starting research on quality,
the IBM severity scale for classifying defect severity levels is used in this
book and the author’s previous books. There are four severity levels:

■ Severity 1: Software does not operate at all

■ Severity 2: Major features disabled or incorrect

■ Severity 3: Minor features disabled or incorrect

■ Severity 4: Cosmetic error that does not affect operation

There are other methods of classifying severity levels, but these four
are the most common due to IBM introducing them in the 1960s, so they
became a de facto standard.

Software defects have seven kinds of causes, with the major causes
including

Errors of omission: Something needed was accidentally left out

Errors of commission: Something needed is incorrect

Errors of ambiguity: Something is interpreted in several ways

Errors of performance: Some routines are too slow to be useful

Errors of security: Security vulnerabilities allow attacks from outside

Errors of excess: Irrelevant code and unneeded features are included

Errors of poor removal: Defects that should easily have been found

These seven causes occur with different frequencies for different
deliverables. For paper documents such as requirements and design,
errors of ambiguity are most common, followed by errors of omission.
For source code, errors of commission are most common, followed by
errors of performance and security.

The seventh category, “errors of poor removal,” would require root-cause
analysis for identification. The implication is that the defect was neither
subtle nor hard to find, but was missed because test cases did not cover the
code segment or because of partial inspections that overlooked the defect.

In a sense, all delivered defects might be viewed as errors of poor
removal, but it is important to find out why various kinds of inspection,
static analysis, or testing missed obvious bugs. This category should not
be assigned for subtle defects, but rather for obvious defects that should
have been found but for some reason escaped to the outside world.

The main reason for including errors of poor removal is to encourage
more study and research on the effectiveness of various kinds of defect
removal operations. More solid data is needed on the removal efficiency
levels of inspections, static analysis, automatic testing, and all forms of
manual testing.

The combination of defect origins, defect severity, and defect causes
provides a useful taxonomy for classifying defects for statistical analysis
or root-cause analysis. For example, the Y2K problem was cited earlier

572 Chapter Nine

in this chapter. In its most common manifestation, the Y2K problem
might have this description using the taxonomy just discussed:

Y2K origin: Requirements
Y2K severity: Severity 2 major features disabled
Y2K primary cause: Error of commission
Y2K secondary cause: Error of poor removal

Note that this taxonomy allows the use of primary and secondary fac-
tors since sometimes more than one problem is behind having a defect
in software.

Note also that the Y2K problem did not have the same severity for
every application. An approximate distribution of Y2K severity levels
for several hundred applications noted that the software stopped in
about 15 percent of instances, which are severity 1 problems; it created
severity 2 problems in about 50 percent; it created severity 3 problems
in about 25 percent; and had no operational consequences in about 10
percent of the applications in the sample.

To know the origin of a defect, some research is required. Most defects
are initially found because the code stops working or produces erratic
results. But it is important to know if upstream problems such as
requirements or design issues are the true cause. Root-cause analysis
can find the true causes of software defects.

Several other factors should be included in a taxonomy for tracking
defects. These include whether a reported defect is valid or invalid.
(Invalid defects are common and fairly expensive, since they still require
analysis and a response.) Another factor is whether a defect report is
new and unique, or merely a duplicate of a prior defect report.

For testing and static analysis, the category of “false positives” needs
to be included. A false positive is the mistaken identification of a code
segment that initially seems to be incorrect, but which later research
reveals is actually correct.

A third factor deals with whether the repair team can make the same
problem occur on their own systems, or whether the defect was caused
by a unique configuration on the client’s system. When defects cannot be
duplicated, they were termed abeyant defects by IBM, since additional
information needed to be collected to solve the problem.

Adding these additional topics to the Y2K example would result in
an expanded taxonomy:

Y2K origin: Requirements
Y2K validity: Valid defect report
Y2K uniqueness: Duplicate (this problem was reported millions of times)
Y2K severity: Severity 2 major features disabled
Y2K primary cause: Error of commission
Y2K secondary cause: Error of poor removal

Software Quality: The Key to Successful Software Engineering 573

When defects are being counted or predicted, it is useful to have a
standard metric for normalizing the results. As discussed in Chapter 5,
there are at least ten candidates for such a normalizing metric, including
function points, story points, use-case points, lines of code, and so on.

In this book and also in the author’s previous books, the function
point metric defined by the International Function Point Users Group
(IFPUG) is used to quantify and normalize data for both defects and
productivity.

There are several reasons for using IFPUG function points. The most
important reason in terms of measuring software defects is that non-
code defects in requirements, design, and documents are major defect
sources and cannot be measured using the older “lines of code” metric.

Another important reason is that all of the major benchmark data
collections for productivity and quality use function point metrics, and
data expressed via IFPUG function points composes about 85 percent
of all known benchmarks.

It is not impossible to use other metrics for normalization, but if
results are to be compared against industry benchmarks such as those
published by the International Software Benchmarking Standards
Group (ISBSG), the IFPUG function points are the most convenient.
Later in the discussion of defect prediction, examples will be given of
using other metrics in addition to IFPUG function points.

It is interesting to combine the origin, severity, and cause factors to
examine the approximate frequency of each.

Table 9-1 shows the combination of these factors for software applica-
tions during development. Therefore, Table 9-1 shows defect potentials,
or the probable numbers of defects that will be encountered during
development and after release. Only severity 1 and severity 2 defects
are shown in Table 9-1.

Data on defect potentials is based on long-range studies of defects and
defect removal efficiency carried out by organizations such as the IBM
Software Quality Assurance groups, which have been studying software
quality for more than 35 years.

Defect
Origins

Defects per
Function Point

Severity 1
Defects

Severity 2
Defects

Most Frequent
Defect Cause

Requirements 1.00 11.00% 15.00% Omission

Design 1.25 15.00% 20.00% Omission

Code 1.75 70.00% 57.00% Commission

Documents 0.60 1.00% 1.00% Ambiguity

Bad fixes 0.40 3.00% 7.00% Commission

TOTAL 5.00 100.00% 100.00% Omission

TABLE 9-1 Overview of Software Defect Potentials

574 Chapter Nine

Other corporations such as AT&T, Coverity, Computer Aid Inc. (CAI),
Dovél Technologies, Motorola, Software Productivity Research (SPR),
Galorath Associates, the David Consulting Group, the Quality and
Productivity Management Group (QPMG), Unisys, Microsoft, and the
like, also carry out long-range studies of defects and removal efficiency
levels.

Most such studies are carried out by corporations rather than uni-
versities because academia is not really set up to carry out longitudinal
studies that may last more than ten years.

While coding bugs or coding defects are the most numerous during
development, they are also the easiest to find and to get rid of. A
combination of inspections, static analysis, and testing can wipe out
more than 95 percent of coding defects and sometimes top 99 percent.
Requirements defects and bad fixes are the toughest categories of defect
to eliminate.

Table 9-2 uses Table 9-1 as a starting point, but shows the latent
defects that will still be present when the software application is deliv-
ered to users. Table 9-2 shows approximate U.S. averages circa 2009.
Note the variations in defect removal efficiency by origin.

It is interesting that when the software is delivered to clients, require-
ments defects are the most numerous, primarily because they are the
most difficult to prevent and also the most difficult to find. Only formal
requirements-gathering methods combined with formal requirements
inspections can improve the situation for finding and removing require-
ments defects.

If not prevented or removed, both requirements bugs and design bugs
eventually find their way into the code. These are not coding bugs per
se, such as branching to a wrong address, but more serious and deep-
seated kinds of bugs or defects.

It was noted earlier in this chapter that requirements defects cannot
be found and removed by means of testing. If a requirements defect is
not prevented or removed via inspection, all test cases created using the
requirements will confirm the defect and not identify it.

Defect
Origins

Defects per
Function Point

Removal
Efficiency

Delivered Defects per
Function Point

Most Frequent
Defect Cause

Requirements 1.00 70.00% 0.30 Commission

Design 1.25 85.00% 0.19 Commission

Code 1.75 95.00% 0.09 Commission

Documents 0.60 91.00% 0.05 Omission

Bad fixes 0.40 70.00% 0.12 Commission

TOTAL 5.00 85.02% 0.75 Commission

TABLE 9-2 Overview of Delivered Software Defects

Software Quality: The Key to Successful Software Engineering 575

Since Table 9-2 reflects approximate U.S. averages, the methods
assumed are those of fairly careless requirements gathering: water-
fall development, CMMI level 1, no formal inspections of requirements,
design, or code; no static analysis; and using only five forms of testing:
(1) unit test, (2) new function test, (3) regression test, (4) system test,
and (5)acceptance test.

Note also that during development, requirements will continue to
grow and change at rates of 1 percent to 2 percent every calendar month.
These changing requirements have higher defect potentials than the
original requirements and lower levels of defect removal efficiency. This
is yet another reason why requirements defects cause more problems
than any other defect origin point.

Software requirements are the most intractable source of software
defects. However, methods such as joint application design (JAD), qual-
ity function deployment (QFD), Six Sigma analysis, root-cause analy-
sis, embedding users with the development team as practiced by Agile
development, prototypes, and the use of formal requirements inspec-
tions can assist in bringing requirements defects under control.

Table 9-3 shows what quality might look like if an optimal combina-
tion of defect prevention and defect removal activities were utilized.
Table 9-3 assumes formal requirements methods, rigorous development
such as practiced using the Team Software Process (TSP) or the higher
CMMI levels, prototypes and JAD, formal inspections of all deliverables,
static analysis of code, and a full set of eight testing stages: (1) unit
test, (2) new function test, (3) regression test, (4) performance test, (5)
security test, (6) usability test, (7) system test, and (8) acceptance test.

Table 9-3 also assumes a software quality assurance (SQA) group
and rigorous reporting of software defects starting with requirements,
continuing through inspections, static analysis and testing, and out
into the field with multiple years of customer-reported defects, main-
tenance, and enhancements. Accumulating data such as that shown in
Tables 9-1 through 9-3 requires longitudinal data collection that runs
for many years.

Defect
Origins

Defects per
Function Point

Removal
Efficiency

Delivered Defects per
Function Point

Most Frequent
Defect Cause

Requirements 0.50 95.00% 0.03 Omission

Design 0.75 97.00% 0.02 Omission

Code 0.50 99.00% 0.01 Commission

Documents 0.40 96.00% 0.02 Omission

Bad fixes 0.20 92.00% 0.02 Commission

TOTAL 2.35 96.40% 0.08 Omission

TABLE 9-3 Optimal Defect Prevention and Defect Removal Activities

576 Chapter Nine

This combination has the effect of cutting defect potentials by more
than 50 percent and of raising cumulative defect removal efficiency from
today’s average of 85 percent up to more than 96 percent.

It might be possible to even exceed the results shown in Table 9-3,
but doing so would require additional methods such as the availability
of a full suite of certified reusable materials.

Tables 9-2 and 9-3 are oversimplifications of real-life results. Defect
potentials vary with the size of the application and with other factors.
Defect removal efficiency levels also vary with application size. Bad-fix
injections also vary by defect origins. Both defect potentials and defect
removal efficiency levels vary by methodology, by CMMI levels, and by
other factors as well. These will be discussed later in the section of this
chapter dealing with defect prediction.

Because of the many definitions of quality used by the industry, it is
best to start by showing what is predictable and measurable and what is
not. To sort out the relevance of the many quality definitions, the author
has developed a 10-point scoring method for software quality factors.

■ If a factor leads to improvement in quality, its maximum score is 3.

■ If a factor leads to improvement in customer satisfaction, its maxi-
mum score is 3.

■ If a factor leads to improvement in team morale, its maximum score
is 2.

■ If a factor is predictable, its maximum score is 1.

■ If a factor is measurable, its maximum score is 1.

■ The total maximum score is 10.

■ The lowest possible score is 0.

Table 9-4 lists all of the quality factors discussed in this chapter in
rank order by using the scoring factor just outlined. Table 9-4 shows
whether a specific quality factor is measurable and predictable, and
also the relevance of the factor to quality as based on surveys of soft-
ware customers. It also includes a weighted judgment as to whether
the factor has led to improvements in quality among the organizations
that use it.

The quality definitions with a score of 10 have been the most effec-
tive in leading to quality improvements over time. As a rule, the quality
definitions scoring higher than 7 are useful. However, the quality defi-
nitions that score below 5 have no empirical data available that shows
any quality improvement at all.

While Table 9-4 is somewhat subjective, at least it provides a math-
ematical basis for scoring the relevance and importance of the rather

Software Quality: The Key to Successful Software Engineering 577

vague and ambiguous collection of quality factors used by the software
industry. In essence, Table 9-4 makes these points:

 1. Conformance to requirements is hazardous unless incorrect, toxic,
or dangerous requirements are weeded out. This definition has not
demonstrated any improvements in quality for more than 30 years.

 2. Most of the -ility quality definitions are hard to measure, and many
are of marginal significance. Some are not measurable either. None
of the -ility words tend to lead to tangible quality gains.

Measurable
Property?

Predictable
Property?

Relevance to
Quality Score

Best Quality Definitions
Defect potentials Yes Yes Very high 10.00
Defect removal efficiency Yes Yes Very high 10.00
Defect severity levels Yes Yes Very high 10.00
Defect origins Yes Yes Very high 10.00
Reliability Yes Yes Very high 10.00

Good Quality Definitions
Toxic requirements Yes No Very high 9.50
Missing requirements Yes No Very high 9.50
Requirements conformance Yes No Very high 9.00
Excess requirements Yes No Medium 9.00
Usability Yes Yes Very high 8.00
Testability Yes Yes High 8.00
Defect causes Yes No Very high 8.00

Fair Quality Definitions
Maintainability Yes Yes High 7.00
Understandability Yes Yes Medium 6.00
Traceability Yes No Low 6.00
Modifiability Yes No Medium 5.00
Verifiability Yes No Medium 5.00

Poor Quality Definitions
Portability Yes Yes Low 4.00
Expandability Yes No Low 3.00
Scalability Yes No Low 2.00
Interoperability Yes No Low 1.00
Survivability Yes No Low 1.00
Augmentability No No Low 0.00
Flexibility No No Low 0.00
Manageability No No Low 0.00
Operability No No Low 0.00

TABLE 9-4 Rank Order of Quality Factors by Importance to Quality

578 Chapter Nine

 3. Quantification of defect potentials and defect removal efficiency
levels have had the greatest impact on improving quality and also
the greatest impact on customer satisfaction levels.

If software engineering is to evolve from a craft or art form into a true
engineering field, it is necessary to put quality on a firm quantitative
basis and to move away from vague and subjective quality definitions.
These will still have a place, of course, but they should not be the pri-
mary definitions for software quality.

Predicting Software Defect Potentials

To predict software quality, it is necessary to measure software quality.
Since companies such as IBM have been doing this for more than 40
years, the best available data comes from companies that have full life-
cycle quality measurement programs that start with requirements, con-
tinue through development, and then extend out to customer-reported
defects for as long as the software is used, which may be 25 years or
more. The next best source of data comes from benchmark and com-
mercial software estimating tool companies, since they collect historical
data on quality as well as on productivity.

Because software defects come from five different sources, the quick-
est way to get a useful approximation of software defect potentials is to
use IFPUG function point metrics.

The basic sizing rule for predicting defect potentials with function
point is: Take the size of a software application in function points and
raise it to the 1.25 power. The result will be a useful approximation
of software defect potentials for applications between a low of about
10 function points and a high of about 5000 function points.

The exponent for this rule of thumb would need to be adjusted down-
wards for the higher CMMI levels, Agile, RUP, and the Team Software
Process (TSP). But since the rule is intended to be applied early, before
any costs are expended, it still provides a useful starting point. Readers
might want to experiment with local data and find an exponent that
gives useful results against local quality and defect data.

Table 9-5 shows approximate U.S. averages for defect potentials.
Recall that defect potentials are the sum of five defect origins: require-
ments defects, design defects, code defects, document defects, and bad-
fix injections.

As can be seen from Table 9-5, defect potentials increase with applica-
tion size. Of course, other factors can reduce or increase the potentials,
as will be discussed later in the section on defect prevention.

While the total defect potential is useful, it is also useful to know
the distribution of defects among the five origins or sources. Table 9-6

Software Quality: The Key to Successful Software Engineering 579

illustrates typical defect distribution percentages using approximate
average values.

Applying the distribution shown in Table 9-6 to a sample application
of 1500 function points, Table 9-7 illustrates the approximate defect
potential, or the total number of defects that might be found during
development and by customers.

These simple overall examples are not intended as substitutes for
commercial quality estimation tools such as KnowledgePlan and SEER,
which can adjust their predictions based on CMMI levels; development
methods such as Agile, TSP, or RUP; use of inspections; use of static
analysis; and other factors which would cause defect potentials to vary
and also which cause defect removal efficiency levels to vary.

Rules of thumb are never very accurate, but their convenience and
ease of use provide value for rough estimates and early sizing. However,
such rules should not be used for contracts or serious estimates.

Predicting Code Defects

Using function point metrics as an overall tool for quality prediction is
useful because noncoding defects outnumber code defects. That being
said, there are more coding defects than any other single source.

Size in FP
Function Points

Defects per
Function Point

Defect
Potentials

1 1.50 2

10 2.34 23

100 3.04 304

1,000 4.62 4,621

10,000 6.16 61,643

100,000 7.77 777,143

1,000,000 8.56 8,557,143

Average 4.86 1,342,983

TABLE 9-5 U.S. Averages for Software Defect Potentials

TABLE 9-6 Percentages of Defects by Origin

Defect Origins
Defects per

Function Point
Percent of Total

Defects

Requirements 1.00 20.00%

Design 1.25 25.00%

Source code 1.75 35.00%

User documents 0.60 12.00%

Bad fixes 0.40 8.00%

TOTAL 5.00 100.00%

580 Chapter Nine

Predicting code defects is fairly tricky for six reasons:

 1. More than 2,500 programming languages are in existence, and they
are not equal as sources of defects.

 2. A majority of modern software applications use more than one language,
and some use as many as 15 different programming languages.

 3. The measured range of performance by a sample of programmers
using the same language for the same test application varies by
more than 10 to 1. Individual skills and programming styles create
significant variations in the amount of code written for the same
problem, in defect potentials, and also in productivity.

 4. Lines of code can be counted using either physical lines or logical
statements. For some languages, the two counts are identical, but
for others, there may be as much as a 500 percent variance between
physical and logical counts.

 5. For a number of languages starting with Visual Basic, some program-
ming is done by means of buttons or pull-down menus. Therefore,
programming is done without using procedural source code. There are
no effective rules for counting source code with such languages.

 6. Reuse of source code from older applications or from libraries of
reusable code is quite common. If the reused code is certified, it will
have very few defects compared with new custom code.

To predict coding defects, it is necessary to know the level of a pro-
gramming language. The concept of the level of a language is often used
informally in phrases such as “high-level” or “low-level” languages.

Within IBM in the 1970s, when research was first carried out on
predicting code defects, it was necessary to give a formal mathematical
definition to language levels. Within IBM the level was defined as the
number of statements in basic assembly language needed to equal the
functionality of 1 statement in a higher-level language.

(Application size = 1500 Function Points)

Defect Origins
Defects per

Function Point
Defect

Potentials
Percent of

Total Defects

Requirements 1.00 1,500 20.00%

Design 1.25 1,875 25.00%

Source code 1.75 2,625 35.00%

User documents 0.60 900 12.00%

Bad fixes 0.40 600 8.00%

TOTAL 5.00 7,500 100.00%

TABLE 9-7 Defect Potentials for a Sample Application

Software Quality: The Key to Successful Software Engineering 581

Using this definition, COBOL was a level 3 language, because it took
3 basic assembly statements to equal 1 COBOL statement. Using the
same rule, SMALLTALK is a level 15 language.

(For several years before function points were invented, IBM used
“equivalent assembly statements” as the basis for estimating non-code
work such as user manuals. Thus, instead of basing a publication budget
on 10 percent of the effort for writing a program in PL/S, the budget
would be based on 10 percent of the effort if the code were basic assem-
bly language. This method was crude but reasonably effective.)

Dissatisfaction with the equivalent assembler method for estimation
was one of the reasons IBM assigned Allan Albrecht and his colleagues
to develop function point metrics.

Additional programming languages such as APL, Forth, Jovial, and
others were starting to appear, and IBM wanted both a metric and esti-
mating methods that could deal with both noncoding and coding work
in an accurate fashion. IBM also wanted to predict coding defects.

The use of macro-assembly language had introduced reuse, and this
caused measurement problems, too. It raised the issue of how to count
reused code in software applications or any other reused material. The
solution here was to separate productivity and quality into two topics:
(1) development and (2) delivery.

The former dealt with the code and materials that had to be constructed
from scratch. The latter dealt with the final application as delivered,
including reused material. For example, using macro-assembly language
a productivity rate for development productivity might be 300 lines of
code per month. But due to reusing code in the form of macro expansions,
delivery productivity might be as high as 750 lines of code per month.

The same distinction affects quality, too. Assume a program had 1000
lines of new code and 1000 lines of reused code. There might be 15 bugs
per KLOC in the new code but 0 bugs per KLOC in the reused code.

This is an important business distinction that is not well understood
even in 2009. The true goal of software engineering is to improve the
rate of delivery productivity and quality rather than development pro-
ductivity and quality.

After function point metrics were developed circa 1975, the defini-
tion of “language level” was expanded to include the number of logical
code statements equivalent to 1 function point. COBOL, for example,
requires about 105 statements per function point in the procedure and
data divisions. (This expansion is the mathematical basis for backfiring,
or direct conversion from source code to function points.)

Table 9-8 illustrates how code size and coding defects would vary if
15 different programming languages were used for the same applica-
tion, which is 1000 function points. Table 9-8 assumes a constant value
of 15 potential coding defects per KLOC for all languages. However,

582 Chapter Nine

the 15 languages have levels that vary from 1 to 15, so very different
quantities of code will be created for the same 1000 function points.

Note: Language levels are variable and change based on volumes of
reused code or calls to external functions. The levels shown in Table 9-8
are only approximate and are not constants.

As can be seen from Table 9-8, in order to predict coding defects, it is
critical to know the programming language (or languages) that will be
used and also the size of the application using both function point and
lines of code metrics.

The situation is even more tricky when combinations of two or more
languages are used within the same application. However, this prob-
lem is handled by commercial software cost-estimating tools such as
KnowledgePlan, which include multilanguage estimating capabilities.
Reused code also adds to the complexity of predicting coding defects.

To show the results of multiple languages in the same application, let
us consider two case studies.

In Case Study A, there are three different languages and each lan-
guage has 1000 lines of code, counted using logical statements. In Case
Study B, we have the same three languages, but now each language
comprises exactly 25 function points each.

For Case A, the total volume of source code is 3000 lines of code; total
function points are 73; and total code defect potentials are 45.

(Assumes a constant of 15 defects per KLOC for all languages)

Language
Level

Sample
Languages

Source Code per
Function Point

Source Code per
1000 FP

Coding
Defects

Defects per
Function Point

1. Assembly 320 320,000 4,800 4.80

2. C 160 160,000 2,400 2.40

3. COBOL 107 106,667 1,600 1.60

4. PL/I 80 80,000 1,200 1.20

5. Ada95 64 64,000 960 0.96

6. Java 53 53,333 800 0.80

7. Ruby 46 45,714 686 0.69

8. E 40 40,000 600 0.60

9. Perl 36 35,556 533 0.53

10. C++ 32 32,000 480 0.48

11. C# 29 29,091 436 0.44

12. Visual
Basic

27 26,667 400 0.40

13. ASP NET 25 24,615 369 0.37

14. Objective C 23 22,857 343 0.34

15. Smalltalk 21 21,333 320 0.32

TABLE 9-8 Examples of Defects per KLOC and Function Point for 15 Languages

Software Quality: The Key to Successful Software Engineering 583

Case A: Three Languages with 1000 Lines of Code Each

Languages Levels
Lines of

Code (LOC)
LOC per

Function Point
Function

Points
Defect

Potential

C 2.00 1,000 160 6 15

Java 6.00 1,000 53 19 15

Smalltalk 15.00 1,000 21 48 15

TOTAL 3,000 73 45

AVERAGE 7.76 41

When we change the assumptions to Case B and use a constant value
of 25 function points for each language, the total number of function
points only changes from 73 to 75. But the volume of source code almost
doubles, as do numbers of defects. This is because of the much greater
impact of the lowest-level language, the C programming language.

When considering either Case A or Case B, it is easily seen that pre-
dicting either size or quality for a multi language application is a great
deal more complicated than for a single-language application.

Case B: Three Languages with 25 Function Points Each

Languages Levels
Lines of

Code (LOC)
LOC per

Function Point
Function

Points
Defect

Potential

C 2.00 4,000 160 25 60

Java 6.00 1,325 53 25 20

Smalltalk 15.00 525 21 25 8

TOTAL 5,850 75 88

AVERAGE 4.10 78

It is interesting to look at Case A and Case B in a side-by-side format
to highlight the differences. Note that in Case B the influence of the
lowest-level language, the C programming language, increases both
code volumes and defect potentials:

Source Code
(Logical statements) Case A Case B

C 1,000 4,000

Java 1,000 1,325

Smalltalk 1,000 525

Total lines of code 3,000 5,850

Total KLOC 3.00 5.85

Function Points 73 75

Code Defects 45 88

Defects per KLOC 15 15

Defects per Function Point 0.62 1.17

584 Chapter Nine

Cases A and B oversimplify real-life problems because each case study
uses constants for data items that in real-life are variable. For example,
the constant of 15 defects per KLOC for code defects is really a variable
that can range from less than 5 to more than 25 defects per KLOC.

The number of source code statements per function point is also a vari-
able, and each language can vary by perhaps a range of 2 to 1 around the
average values shown by the nominal language “level” default values.

These variables illustrate why predicting quality and defect levels
depends so heavily upon measuring quality and defect levels. The exam-
ples also illustrate why definitions of quality need to be both measurable
and predictable.

Other variables can affect the ability to predict size and defects as well.
Suppose, for example, that reused code composed 50 percent of the code
volume in Case A. Suppose also that the reused code is certified and has
zero defects. Now the calculations for defect predictions need to include
reuse, which in this example lowers defect potentials by 50 percent.

When the size of the application is used for productivity calculations,
it is necessary to decide whether development productivity or delivery
productivity, or both, are the figures of interest.

Predicting software defects is possible to accomplish with fairly
good accuracy, but the calculations are not trivial, and they need to
include a number of variables that can only be determined by careful
measurements.

The Quality Impacts of Creeping Requirements
Function point analysis at the end of the requirements phase and then
again at application delivery shows that requirements grow and change
at rates in excess of 1 percent per calendar month during the design
and coding phases. The total growth in creeping requirements ranges
from a low of less than 10 percent of total requirements to a high of
more than 50 percent. (One unique project had requirements growth in
excess of 200 percent.)

As an example, if an application is sized at 1000 function points when
the initial requirements phase is over, then every month at least 10 new
function points will be added in the form of new requirements. This
growth might continue for perhaps six months, and so increase the size
of the application from 1000 to 1060 function points. For small projects,
the growth of creeping requirements is more of an inconvenience than
a serious issue.

Larger applications have longer schedules and usually higher rates of
requirements change as well. For an application initially sized at 10,000
function points, new requirements might lead to monthly growth rates of
125 function points for perhaps 20 calendar months. The delivered applica-
tion might be 12,500 function points rather than 10,000 function points.

Software Quality: The Key to Successful Software Engineering 585

As this example illustrates, creeping requirements growth of a full 25
percent can have a major impact on development schedules, costs, and
also on quality and delivered defects.

Because new and changing requirements are occurring later in devel-
opment than the original requirements, they are often rushed. As a
result, defect potentials for creeping requirements are about 10 percent
greater than for the original requirements. This is true for toxic require-
ments and design errors. Code bugs may or may not increase, based
upon the schedule pressure applied to the software engineering team.

Creeping requirements also tend to bypass formal inspections and
also have fewer test cases created for them. As a result, defect removal
efficiency is lower against both toxic requirements and also design
errors by at least 5 percent. This seems to be true for code errors as well,
with the exception that applications coded in C or Java that use static
analysis tools will still achieve high levels of defect removal efficiency
against code bugs.

The combined results of higher defect potentials and lower levels
of defect removal for creeping requirements result in a much greater
percentage of delivered defects stemming from changed requirements
than any other source of error. This has been a chronic problem for the
software industry.

The bottom line is that creeping requirements combined with below
optimum levels of defect prevention and defect removal are a primary
cause of cancelled projects, schedule delays, and cost overruns.

As will be discussed later in the sections on defect prevention and
defect removal, there are technologies available for minimizing the harm
from creeping requirements. However, these effective methods, such as
formal requirements and design inspections, are not widely used.

Measuring Software Quality

In spite of the fact that defect removal efficiency is a critical topic for suc-
cessful software projects, measuring defect removal efficiency or software
quality in general are seldom done. From visiting over 300 companies
in the United States, Europe, and Asia, the author found the following
distribution of the frequency of various kinds of quality measures:

No quality measures at all 44%

Measuring only customer-reported defects 30%

Measuring test and customer-reported defects 18%

Measuring inspection, static analysis, test, and customer-reported defects 7%

Using volunteers for measuring personal defect removal 1%

Overall Distribution 100%

586 Chapter Nine

The mathematics of measuring defect removal efficiency is not com-
plicated. Twelve steps in the sequence of data collection and calculations
are needed to quantify defect removal efficiency levels:

 1. Accumulate data on every defect that occurs, starting with
requirements.

 2. Assign severity levels to each reported defect as it is fixed.

 3. Measure how many defects are removed by every defect removal
activity.

 4. Use root-cause analysis to identify origins of high-severity defects.

 5. Measure invalid defects, duplicates, and false positives, too.

 6. After the software is released, measure customer-reported defects.

 7. Record hours worked for defect prevention, removal, and repairs.

 8. Select a fixed point such as 90 days after release for the calculations.

 9. Use volunteers to record private defect removal such as desk
checking.

10. Calculate cumulative defect removal efficiency for the entire series.

11. Calculate the defect removal efficiency for each step in the series.

12. Use the data to improve both defect prevention and defect removal.

The effort and costs required to measure defect removal efficiency
levels are trivial compared with the value of such information. The total
effort required to measure each defect and its associated repair work
amounts to only about an hour. Of this time, probably half is expended
on customer-reported defects, and the other half is expended on internal
defect reports.

However, step 4, root-cause analysis, can take several additional
hours based on how well requirements and design are handled by the
development team.

The value of measuring defect removal efficiency encompasses the
following benefits:

■ Finding and fixing bugs is the most expensive activity in all of software,
so reducing these costs yields a very large return on investment.

■ Excessive numbers of bugs constitute the main reason for schedule
slippage, so reducing defects in all deliverables will shorten develop-
ment schedules.

■ Delivered defects are the major cost driver of software maintenance
for the first two years after release, so improving removal efficiency
lowers maintenance costs.

Software Quality: The Key to Successful Software Engineering 587

■ Customer satisfaction correlates inversely to numbers of delivered
defects, so reducing delivered defects will result in happier customers.

■ Team morale correlates with both effective defect prevention and
effective defect removal.

Later in the section on the economics of quality, these benefits will
be quantified to show the overall value of defect prevention and defect
removal.

Many companies and government organizations track software
defects found during static analysis, testing, and also defects reported
by customers. In fact, a number of commercial software defect tracking
tools are available.

These tools normally track defect symptoms, applications containing
defects, hardware and software platforms, and other kinds of indicative
data such as release number, built number, and so on.

However, more sophisticated organizations also utilize formal inspec-
tions of requirements, design, and other materials. Such companies
often utilize static analysis in addition to testing and therefore measure
a wider range of defects than just those found in source code by ordinary
testing.

Some additional information is needed in order to use expanded defect
data for root-cause analysis and other forms of defect prevention. These
additional topics include

Defect discovery point It is important to record information on the point
at which any specific defect is found. Since requirements defects cannot
normally be found via testing, it is important to try and identify noncode
defect discovery points.

Collectively, noncode defects in requirements and design are more
numerous than coding defects, and also may be high in severity levels.
Defect repair costs for noncode defects are often higher than for coding
defects. Note that there are more than 17 kinds of software testing, and
companies do not use the same names for various test stages.

Date of defect discovery: ________________

Defect Discovery Point:

■ Customer defect report

■ Quality assurance defect report

■ Test stage _________________ defect report

■ Static analysis defect report

■ Code inspection defect report

■ Document inspection defect report

588 Chapter Nine

■ Design inspection defect report

■ Architecture inspection defect report

■ Requirements inspection defect report

■ Other ____________________ defect report

Defect origin point It is also important to record information on where
software defects originate. This information requires careful analysis
on the part of the change team, so many companies limit defect origin
research to high-severity defects such as Severity 1 and Severity 2.

Date of defect origination: ____________________

Defect Origin Point:

■ Application name

■ Release number

■ Build number

■ Source code (internal)

■ Source code (reused from legacy application)

■ Source code (reused from commercial source)

■ Source code (commercial software package)

■ Source code (bad-fix or previous defect repair)

■ User manual

■ Design document

■ Architecture document

■ Requirement document

■ Other _____________________ origination point

Ideally, the lag time between defect origins and defect discovery will
be less than a month and hopefully less than a week. It is very impor-
tant that defects that originate within a phase such as the requirements
or design phases should also be discovered and fixed during the same
phase.

When there is a long gap between origins and discovery, such as not
finding a design problem until system test, it is a sign that software
development and quality control processes need to improve.

The best solution for shortening the gap between defect origination
and defect discovery is that of formal inspections of requirements,
design, and other deliverables. Both static analysis and code inspections
are also valuable for shortening the intervals between defect origination
and defect discovery.

Software Quality: The Key to Successful Software Engineering 589

Table 9-9 shows the best-case scenario for defect discovery methods
for various defect origins.

Inspections are best at finding subtle and complex bugs and problems
that are difficult to find via testing because sometimes no test cases
are created for them. The example of the Y2K problem is illustrative
of a problem that could be found via testing so long as two-digit dates
were mistakenly believed to be acceptable. Code inspections are useful
for finding subtle problems such as security vulnerabilities that may
escape both testing and even static analysis.

Static analysis is best at finding common coding errors such as
branches to incorrect locations, overflow conditions, poor error handling,
and the like. Static analysis prior to testing or as an adjunct to testing
will lower testing costs.

Testing is best at finding problems that only show up when the code is
operating, such as performance problems, usability problems, interface
problems, and other issues such as mathematical errors or format errors
for screens and reports.

Given the diverse nature of software bugs and defects, it is obvious
that all three defect removal methods are important for success: inspec-
tions, static analysis, and testing.

Table 9-10 illustrates the fact that long delays between defect origins
and defect discovery lead to very troubling situations. Long gaps also
raise bad-fix injections, accidentally including new defects in attempts
to repair older defects.

Defect Origins Optimal Defect Discovery

Requirements Requirements inspection

Design Design inspection

Code Static analysis

Bad fixes Static analysis

Documentation Editing

Test cases Test case inspection

TABLE 9-9 Best-Case Defect Discovery Points

Defect Origins Latest Defect Discovery

Requirements Deployment

Design System testing

Code New function testing

Bad fixes Regression testing

Documentation Deployment

Test cases Not discovered

TABLE 9-10 Worst-Case Defect Discovery Points

590 Chapter Nine

In the worst-case scenario, requirements defects are not found until
deployment, while design defects are not found until system test, when
it is difficult to fix them without extending the overall schedule for
the project. Note that in the worst-case scenario, bugs or errors in
test cases themselves are never discovered, so they fester on for many
releases.

Defect prevention and early defect removal are far more cost-effective
than depending on testing alone.

Other quality measures include some or all of the following:

Earned quality value (EQV) Since it is possible to predict defect potentials
and also to predict defect removal efficiency levels, some companies
such as IBM have used a form of “earned value” where predictions of
defects that would probably be found via inspections, static analysis,
and testing are compared with actual defect discovery rates. Predicted
and actual defect removal costs are also compared.

If fewer defects are found than predicted, then root-cause analysis can
be applied to discover if quality is really better than planned or if defect
removal is lax. (Usually quality is better when this happens.)

If more defects are found than predicted, then root-cause analysis
can be applied to discover if quality is worse than planned or if defect
removal is more effective than anticipated. (Usually, quality is worse
when this happens.)

Cost of quality (COQ) Collectively, the costs of finding and fixing bugs are
the most expensive known activity in the history of software. Therefore,
it is important to gather effort and cost data in such a fashion that cost
of quality (COQ) calculations can be performed.

However, for software, normal COQ calculations need to be tailored
to match the specifics of software engineering. Usually, data is recorded
in terms of hours and then converted into costs by applying salaries,
burden rates, and other cost items.

■ Defect discovery activity: ___________________

■ Defect prevention activities: ___________________

■ Defect effort reported by users

■ Defect damages reported by users

■ Preparation hours for inspections

■ Preparation hours for static analysis

■ Preparation hours for testing

■ Defect discovery hours

■ Defect reporting hours

Software Quality: The Key to Successful Software Engineering 591

■ Defect analysis hours

■ Defect repair hours

■ Defect inspection hours

■ Defect static analysis hours

■ Test stages used for defect

■ Test cases created for defect

■ Defect test hours

The software industry has long used the “cost per defect” metric
without actually analyzing how this metric works. Indeed, hundreds
of articles and books parrot similar phrases such as “it costs 100 times
as much to fix a bug after release than during coding” or some minor
variation on this phrase. The gist of these dogmatic statements is that
the cost per defect rises steadily as the later defects are found.

What few people realize is that cost per defect is always cheapest
where the most bugs are found and is most expensive where the fewest
bugs are found. In fact, as normally calculated, this metric violates stan-
dard economic assumptions because it ignores fixed costs. The cost per
defect metric actually penalizes quality and achieves the lowest results
for the buggiest applications!

Following is an analysis of why cost per defect penalizes quality and
achieves its best results for the buggiest applications. The same math-
ematical analysis also shows why defects seem to be cheaper if found
early rather than found later.

Furthermore, when zero-defect applications are reached, there
are still substantial appraisal and testing activities that need to be
accounted for. Obviously, the cost per defect metric is useless for zero-
defect applications.

Because of the way cost per defect is normally measured, as quality
improves, cost per defect steadily increases until zero-defect software is
achieved, at which point the metric cannot be used at all.

As with the errors in KLOC metrics, the main source of error is that
of ignoring fixed costs. Three examples will illustrate how cost per defect
behaves as quality improves.

In all three cases, A, B, and C, we can assume that test personnel work
40 hours per week and are compensated at a rate of $2500 per week or
$62.50 per hour. Assume that all three software features that are being
tested are 100 function points.

Case A: Poor Quality

Assume that a tester spent 15 hours writing test cases, 10 hours run-
ning them, and 15 hours fixing 10 bugs. The total hours spent was 40,

592 Chapter Nine

and the total cost was $2500. Since 10 bugs were found, the cost per
defect was $250. The cost per function point for the week of testing
would be $25.00.

Case B: Good Quality

In this second case, assume that a tester spent 15 hours writing test
cases, 10 hours running them, and 5 hours fixing one bug, which was
the only bug discovered. However, since no other assignments were
waiting and the tester worked a full week, 40 hours were charged to
the project.

The total cost for the week was still $2500, so the cost per defect has
jumped to $2500. If the 10 hours of slack time are backed out, leaving
30 hours for actual testing and bug repairs, the cost per defect would be
$1875. As quality improves, cost per defect rises sharply.

Let us now consider cost per function point. With the slack removed,
the cost per function point would be $18.75. As can easily be seen, cost
per defect goes up as quality improves, thus violating the assumptions
of standard economic measures.

However, as can also be seen, testing cost per function point declines
as quality improves. This matches the assumptions of standard econom-
ics. The 10 hours of slack time illustrate another issue: when quality
improves, defects can decline faster than personnel can be reassigned.

Case C: Zero Defects

In this third case, assume that a tester spent 15 hours writing test
cases and 10 hours running them. No bugs or defects were discovered.
Because no defects were found, the cost per defect metric cannot be
used at all.

But 25 hours of actual effort were expended writing and running test
cases. If the tester had no other assignments, he or she would still have
worked a 40-hour week, and the costs would have been $2500. If the 15
hours of slack time are backed out, leaving 25 hours for actual testing,
the costs would have been $1562.

With slack time removed, the cost per function point would be $15.63.
As can be seen again, testing cost per function point declines as quality
improves. Here, too, the decline in cost per function point matches the
assumptions of standard economics.

Time and motion studies of defect repairs do not support the aphorism
that it costs 100 times as much to fix a bug after release as before. Bugs
typically require between 15 minutes and 4 hours to repair.

Some bugs are expensive; these are called abeyant defects by IBM.
Abeyant defects are customer-reported defects that the repair center
cannot re-create, due to some special combination of hardware and

Software Quality: The Key to Successful Software Engineering 593

software at the client site. Abeyant defects constitute less than 5 percent
of customer-reported defects.

Because of the fixed or inelastic costs associated with defect removal
operations, cost per defect always increases as numbers of defects
decline. Because more defects are found at the beginning of a testing
cycle than after release, this explains why cost per defect always goes
up later in the cycle. It is because the costs of writing test cases, running
them, and having maintenance personnel available act as fixed costs.

In any manufacturing cycle with a high percentage of fixed costs, the
cost per unit will go up as the number of units goes down. This basic fact
of manufacturing economics is why cost per defect metrics are hazard-
ous and invalid for economic analysis of software applications.

What would be more effective is to record the hours spent for all forms
of defect removal activity. Once the hours are recorded, the data could
be converted into cost data, and also normalized by converting hours
into standard units such as hours per function point.

Table 9-11 shows a sample of the kinds of data that are useful in
assessing cost of quality and also doing economic studies and effective-
ness studies.

Of course, knowing defect removal hours implies that data is also
collected on defect volumes and severity levels. Table 9-12 shows the
same set of activities as Table 9-11, but switches from hours to defects.
Both Tables 9-11 and 9-12 could also be combined into a single large
spreadsheet. However, defect counts and defect effort accumulation
tend to come from different sources and may not be simultaneously
available.

Defect effort and discovered defect counts are important data ele-
ments for long-range quality improvements. In fact, without such data,
quality improvement is likely to be minimal or not even occur at all.

Failure to record defect volumes and repair effort is a chronic weak-
ness of the software engineering domain. However, several software
development methods such as Team Software Process (TSP) and the
Rational Unified Process (RUP) do include careful defect measures.
The Agile method, on the other hand, is neither strong nor consistent
on software quality measures.

For software engineering to become a true engineering discipline and
not just a craft as it is in 2009, defect measurements, defect prediction,
defect prevention, and defect removal need to become a major focus of
software engineering.

Measuring Defect Removal Efficiency

One of the most effective metrics for demonstrating and improving soft-
ware quality is that of defect removal efficiency. This metric is simple in
concept but somewhat tricky to apply. The basic idea of this metric is to

594 Chapter Nine

calculate the percentage of software defects found by means of defect
removal operations such as inspections, static analysis, and testing.

What makes the calculations for defect removal efficiency tricky is
that it includes noncode defects found in requirements, design, and
other paper deliverables, as well as coding defects.

Table 9-13 illustrates an example of defect removal efficiency levels
for a full suite of removal operations starting with requirements inspec-
tions and ending with Acceptance testing.

Table 9-13 makes a number of simplifying assumptions. One of these
is the assumption that all delivered defects will be found by customers
in the first 90 days of usage. In real life, of course, many latent defects in
delivered software will stay hidden for months or even years. However,
after 90 days, new releases will usually occur, and they make it difficult
to measure defects for prior releases.

TABLE 9-11 Software Defect Removal Effort Accumulation

Defect Removal Effort (Hours Worked)

Removal Stage
Preparation

Hours
Execution

Hours
Repair
Hours

TOTAL
HOURS

Inspections:
Requirements

Architecture

Design

Source code

Documents

Static analysis

Test stages:
Unit

New function

Regression

Performance

Usability

Security

System

Independent

Beta

Acceptance

Supply chain

Maintenance:
Customers

Internal SQA

Software Quality: The Key to Successful Software Engineering 595

It is interesting to see what kind of defect removal efficiency levels
occur with less sophisticated series of defect removal steps that do not
include either formal inspections or static analysis.

Since noncode defects that originate in requirements and design even-
tually find their way into the code, the overall removal efficiency levels
of testing by itself without any precursor inspections or static analysis
are seriously degraded, as shown in Table 9-14.

When comparing Tables 9-13 and 9-14, it can easily be seen that a
full suite of defect removal activities is more efficient and effective than
testing alone in finding and removing software defects that originate
outside of the source code. In fact, inspections and static analysis are
also very efficient in finding coding defects and have the additional
property of raising testing efficiency and lowering testing costs.

TABLE 9-12 Software Defect Severity Level Accumulation

Defect Severity Levels

Removal Stage
Severity 1
(Critical)

Severity 2
(Serious)

Severity 3
(Minor)

Severity 4
(Cosmetic)

TOTAL
DEFECTS

Inspections:
Requirements

Architecture

Design

Source code

Documents

Static Analysis

Test stages:
Unit

New function

Regression

Performance

Usability

Security

System

Independent

Beta

Acceptance

Supply chain

Maintenance:
Customers

Internal SQA

596 Chapter Nine

(Assumes inspections, static analysis, and normal testing)

Application size
(function points) 1,000

Language C

Code size 125,000

Noncode defects 3,000

Code defects 2,000

TOTAL DEFECTS 5,000

Defect Removal Efficiency by Removal Stage

Removal Stage
Noncode
Defects

Code
Defects

Total
Defects

Removal
Efficiency

Inspections:
Requirements 750 0 750

Architecture 200 0 200

Design 1,250 0 1,250

Source code 100 800 900

Documents 250 0 250

Subtotal 2,550 800 3,350 67.00%

Static Analysis 0 800 800 66.67%

Test stages:
Unit 0 50 50

New function 50 100 150

Regression 0 25 25

Performance 0 10 10

Usability 50 0 50

Security 0 20 20

System 25 50 75

Independent 0 5 5

Beta 25 15 40

Acceptance 25 15 40

Supply chain 25 10 35

Subtotal 200 300 500 58.82%

Prerelease Defects 2,750 1,900 4,650 93.00%

Maintenance:
Customers (90 days) 250 100 350 100.00%

TOTAL 3,000 2,000 5,000

Removal Efficiency 91.67% 95.00% 93.00%

TABLE 9-13 Software Defect Removal Efficiency Levels

Software Quality: The Key to Successful Software Engineering 597

(Assumes normal testing without inspections or static analysis)

Application size 1000

(function points)

Language C

Code size 125,000

Noncode defects 3,000

Code defects 2,000

TOTAL DEFECTS 5,000

Defect Removal Efficiency by Removal Stage

Removal Stage
Noncode
Defects

Code
Defects

Total
Defects

Removal
Efficiency

Inspections:
Requirements 0 0 0

Architecture 0 0 0

Design 0 0 0

Source code 0 0 0

Documents 0 0 0

Subtotal 0 0 0 0.00%

Static Analysis 0 0 0 0.00%

Test stages:
Unit 200 350 550

New function 450 600 1,050

Regression 0 100 100

Performance 0 50 50

Usability 200 75 275

Security 0 50 50

System 300 200 500

Independent 50 10 60

Beta 150 25 175

Acceptance 175 20 195

Supply chain 75 20 95

Subtotal 1,600 1,500 3,100 62.00%

Prerelease Defects 1,600 1,500 3,100 62.00%

Maintenance:
Customers (90 days) 1,400 500 1,900 100.00%

TOTAL 3,000 2,000 5,000

Removal Efficiency 53.33% 75.00% 62.00%

TABLE 9-14 Software Defect Removal Efficiency Levels

598 Chapter Nine

Without pretest inspections and static analysis, testing will find hun-
dreds of bugs, but the overall defect removal efficiency of the full suite of
test activities will be lower than if inspections and static analysis were
part of the suite of removal activities.

In addition to elevating defect removal efficiency levels, adding formal
inspections and static analysis to the suite of defect removal opera-
tions also lowers development and maintenance costs. Development
schedules are also shortened, because traditional lengthy test cycles are
usually the dominant part of software development schedules. Indeed,
poor quality tends to stretch out test schedules by significant amounts
because the software does not work well enough to be released.

Table 9-15 shows a side-by-side comparison of cost structures for the
two examples discussed in this section. Case X is derived from Table
9-13 and uses a sophisticated combination of formal inspections, static
analysis, and normal testing.

Case Y is derived from Table 9-14 and uses only normal testing, with-
out any inspections or static analysis being performed.

The costs in Table 9-15 assume a fully burdened compensation struc-
ture of $10,000 per month. The defect-removal costs assume prepara-
tion, execution, and defect repairs for all defects found and identified.

In addition to the cost advantages, excellence in quality control also
correlates with customer satisfaction and with reliability. Reliability
and customer satisfaction both correlate inversely with levels of deliv-
ered defects.

The more defects there are at delivery, the more unhappy custom-
ers are. In addition, mean time to failure (MTTF) goes up as delivered
defects go down. The reliability correlation is based on high-severity
defects in the Severity 1 and Severity 2 classes.

Table 9-16 shows the approximate relationship between delivered
defects, reliability in terms of mean time to failure (MTTF) hours, and
customer satisfaction with software applications.

Table 9-16 uses integer values, so interpolation between these dis-
crete values would be necessary. Also, the reliability levels are only
approximate. Table 9-13 deals only with the C programming language,
so adjustments in defects per function point would be needed for the
700 other languages that exist. Additional research is needed on the
topics of reliability and customer satisfaction and their correlations
with delivered defect levels.

However, not only do excessive levels of delivered defects generate
negative scores on customer satisfaction surveys, but they also show up
in many lawsuits against outsource contractors and commercial soft-
ware developers. In fact, one lawsuit was even filed by shareholders of
a major software corporation who claimed that excessive defect levels
were lowering the value of their stock.

Software Quality: The Key to Successful Software Engineering 599

(Case X = inspections, static analysis, normal testing)
(Case Y = normal testing only)
Application size 1,000
(function points)
Language C
Code size 125,000
Noncode defects 3,000
Code defects 2,000
TOTAL DEFECTS 5,000

Defect Removal Costs by Activity

Removal Stage
Case X

Removal $
Case Y

Removal $ Difference

Inspections:
Requirements
Architecture
Design
Source code
Documents
Subtotal $168,750 $0 $168,750
Static Analysis $81,250 $0 $81,250

Test stages:
Unit
New function
Regression
Performance
Usability
Security
System
Independent
Beta
Acceptance
Supply chain
Subtotal $150,000 $775,000 –$625,000
Prerelease Defects $400,000 $775,000 –$375,000

Maintenance:
Customers (90 days) $175,000 $950,000 –$775,000
TOTAL COSTS $575,000 $1,725,000 –$1,150,000
Cost per Defect $115.00 $345.00 –$230.00
Cost per Function Pt. $575.00 $1,725.00 –$1,150.00
Cost per LOC $4.60 $13.80 –$9.20
ROI from inspections, $3.00
static analysis
Development Schedule 12.00 16.00 –4.00
(Calendar months)

TABLE 9-15 Comparison of Software Defect Removal Efficiency Costs

600 Chapter Nine

Better quality control is the key to successful software engineering.
Software quality needs to be definable, predictable, measurable, and
improvable in order for software engineering to become a true engineer-
ing discipline.

Defect Prevention

The phrase “defect prevention” refers to methods and techniques that
lower the odds of certain kinds of defects occurring at all. The liter-
ature of defect prevention is very sparse, and academic research is
even sparser. The reason for this is that studying defect prevention is
extremely difficult and also somewhat ambiguous at best.

Defect prevention is analogous to vaccination against serious illness
such as pneumonia or flu. There is statistical evidence that vaccination
will lower the odds of patients contracting the diseases for which they
are vaccinated. However, there is no proof that any specific patient
would catch the disease whether receiving a vaccination or not. Also,
a few patients who are vaccinated might contract the disease anyway,
because vaccines are not 100 percent effective. In addition, some vac-
cines may have serious and unexpected side-effects.

All of these issues can occur with software defect prevention, too.
While there is statistical evidence that certain methods such as pro-
totypes, joint application design (JAD), quality function deployment
(QFD), and participation in inspections prevent certain kinds of defects

TABLE 9-16 Delivered Defects, Reliability, Customer Satisfaction

(Note 1: Assumes the C programming language)

(Note 2: Assumes 125 LOC per function point)

(Note 3: Assumes severity 1 and 2 delivered defects)

Delivered Defects
per KLOC

Defects per
Function Point

Mean Time
to Failure (MTTF hours)

Customer
Satisfaction

0.00 0.00 Infinite Excellent

1.00 0.13 303 Very good

2.00 0.25 223 Good

3.00 0.38 157 Fair

4.00 0.50 105 Poor

5.00 0.63 66 Very poor

6.00 0.75 37 Very poor

7.00 0.88 17 Very poor

8.00 1.00 6 Litigation

9.00 1.13 1 Litigation

10.00 1.25 0 Malpractice

Software Quality: The Key to Successful Software Engineering 601

from occurring, it is hard to prove that those defects would definitely
occur in the absence of the preventive methodologies.

The way defect prevention is studied experimentally is to have two
versions of similar or identical applications developed, with one version
using a particular defect prevention method while the other version
did not. Obviously, experimental studies such as this must be small in
scale.

The easiest experiments in defect prevention are those dealing with
formal inspections of requirements, design, and code. Because inspec-
tions record all defects, companies that utilize formal inspections soon
accumulate enough data to analyze both defect prevention and defect
removal.

Formal inspections are so effective in terms of defect prevention that
they reduce defect potentials by more than 25 percent per year. In fact,
one issue with inspections is that after about three years of continuous
usage, so few defects occur that inspections become boring.

The more common method for studying defect prevention is to exam-
ine the results of large samples of applications and note differences in
the defect potentials among them. In other words, if 100 applications
that used prototypes are compared with 100 similar applications that
did not use prototypes, are requirements defects lower for the prototype
sample? Are creeping requirements lower for the prototype sample?

This kind of study can only be carried out internally by rather sophis-
ticated companies that have very sophisticated defect and quality mea-
surement programs; that is, companies such as IBM, AT&T, Microsoft,
Raytheon, Lockheed, and the like. (Consultants who work for a number
of companies in the same industry can often observe the effects of defect
prevention by noting similar applications in different companies.)

However, the results of such large-scale statistical studies are some-
times published from benchmark collections by organizations such
as the International Software Benchmarking Standards Group (ISBSG),
the David Consulting Group, Software Productivity Research (SPR),
and the Quality and Productivity Management Group (QPMG).

In addition, consultants such as the author who work as expert wit-
nesses in software litigation may have access to data that is not oth-
erwise available. This data shows the negative effects of failing to use
defect prevention on projects that ended up in court.

Table 9-17 illustrates a large sample of 30 methods and techniques
that have been observed to prevent software defects from occurring.
Although the table shows specific percentages of defect prevention effi-
ciency, the actual data is too sparse to support the results. The percent-
ages are only approximate and merely serve to show the general order
of effectiveness.

602 Chapter Nine

Note that because defect prevention deals with reducing defect poten-
tials, percentages show negative values for methods that lower defects.
Positive values indicate methods that raise defect potentials.

The two top-ranked items deserve comment. The phrase “reuse from
certified sources” implies formal reusability where specifications, source
code, test cases, and the like have gone through rigorous inspection and
test stages, and have proven themselves to be reliable in field trials.
Certified reusable components may approach zero defects, and in any

Activities Observed to Prevent Software Defects Defect Prevention Efficiency

1. Reuse (certified sources) –80.00%

2. Inspection participation –60.00%

3. Prototyping-functional –55.00%

4. PSP/TSP –53.00%

5. Six Sigma for software –53.00%

6. Risk analysis (automated) –50.00%

7. Joint application design (JAD) –45.00%

8. Test-driven development (TDD) –45.00%

9. Defect origin measurements –44.00%

10. Root cause analysis –43.00%

11. Quality function deployment (QFD) –40.00%

12. CMM 5 –37.00%

13. Agile embedded users –35.00%

14. Risk analysis (manual) –32.00%

15. CMM 4 –27.00%

16. Poka-yoke –23.00%

17. CMM 3 –23.00%

18. Scrum sessions (daily) –20.00%

19. Code complexity analysis –19.00%

20. Use-cases –18.00%

21. Reuse (uncertified sources) –17.00%

22. Security plans –15.00%

23. Rational Unified Process (RUP) –15.00%

24. Six Sigma (generic) –12.50%

25. Clean-room development –12.50%

26. Software Quality Assurance (SQA) –12.50%

27. CMM 2 –12.00%

28. Total Quality Management (TQM) –10.00%

29. No use of CMM 0.00%

30. CMM 1 5.00%

Average –30.12%

TABLE 9-17 Methods and Techniques that Prevent Defects

Software Quality: The Key to Successful Software Engineering 603

case contain very few defects. Reuse of uncertified material is somewhat
hazardous by comparison.

The second method, or participation in formal inspections, has more
than 40 years of empirical data. Inspections of requirements, design,
and other deliverables are very effective and efficient in terms of defect
removal efficiency. But in addition, participants in formal inspections
become aware of defect patterns and categories, and spontaneously
avoid them in their own work.

One emerging form of risk analysis is so new that it lacks empirical
data. This new method consists of performing very early sizing and risk
analysis prior to starting a software application or spending any money
on development.

If the risks for the project are significantly higher than its value, not
doing it at all will obviously prevent 100 percent of potential defects. The
Victorian state government in Australia has started such a program,
and by eliminating hazardous software applications before they start,
they have saved millions of dollars.

New sizing methods based on pattern matching can shift the point
at which risk analysis can be performed about six months earlier than
previously possible. This new approach is promising and needs addi-
tional study.

There are other things that also have some impact in terms of defect
prevention. One of these is certification of personnel either for testing
or for software quality assurance knowledge. Certification also has an
effect on defect removal. The defect prevention effects are shown using
negative percentages, while the defect removal effects are shown with
positive percentages.

Here too the data is only approximate, and the specific percentages
are derived from very sparse sources and should not be depended upon.
Table 9-18 is sorted in terms of defect prevention.

The data in Table 9-18 should not be viewed as accurate, but only
approximate. A great deal more research is needed on the effectiveness
of various kinds of certification. Also, the software industry circa 2009
has overlapping and redundant forms of certification. There are mul-
tiple testing and quality associations that offer certification, but these
separate groups certify using different methods and are not coordinated.
In the absence of a single association or certification body, these various
nonprofit and for-profit test and quality assurance associations offer
rival certificates that use very different criteria.

Yet another set of factors that has an effect in terms of defect pre-
vention are various kinds of metrics and measurements, as discussed
earlier in this book.

For metrics and measurements to have an effect, they need to be
capable of demonstrating quality levels and measuring changes against

604 Chapter Nine

quality baselines. Therefore, many of the -ility measures and metrics
cannot even be included because they are not measurable.

Table 9-19 shows the approximate impacts of various measurements
and metrics on defect prevention and defect removal. IFPUG function
points are top-ranked because they can be used to quantify defects in

Certificate

Defect
Prevention

Benefit

Defect
Removal
Benefit

31. Six Sigma black belt –12.50% 10.00%

32. International Software Testing Quality Board (ISTQB) –12.00% 10.00%

33. Certified Software Quality Engineer (CSQE)-ASQ –10.00% 10.00%

34. Certified. Software Quality Analyst (CSQA) –10.00% 10.00%

35. Certified Software Test Manager (CSTM) –7.00% 7.00%

36. Six Sigma green belt –6.00% 5.00%

37. Microsoft certification (testing) –6.00% 6.00%

38. Certified Software Test Professional (CSTP) –5.00% 12.00%

39. Certified Software Tester (CSTE) –5.00% 12.00%

40. Certified Software Project Manager (CSPM) –3.00% 3.00%

Average –7.65% 8.50%

TABLE 9-18 Influence of Certification on Defect Prevention and Removal

Metric
Defect Prevention

Benefit
Defect Removal

Benefit

41. IFPUG function points –30.00% 15.00%

42. Six Sigma –25.00% 20.00%

43. Cost of quality (COQ) –22.00% 15.00%

44. Root cause analysis –20.00% 12.00%

45. TSP/PSP –20.00% 18.00%

46. Monthly rate of requirements change –17.00% 5.00%

47. Goal-question metrics –15.00% 10.00%

48. Defect removal efficiency –12.00% 35.00%

49. Use-case points –12.00% 5.00%

50. COSMIC function points –10.00% 10.00%

51. Cyclomatic complexity –10.00% 7.00%

52. Test coverage percent –10.00% 22.00%

53. Percent of requirements missed –7.00% 3.00%

54. Story points 5.00% –5.00%

55. Cost per defect 10.00% –15.00%

56. Lines of code (LOC) 15.00% –12.00%

Average –11.25% 9.06%

TABLE 9-19 Software Metrics, Measures, and Defect Prevention and Removal

Software Quality: The Key to Successful Software Engineering 605

requirements and design as well as code. IFPUG function points can
also be used to measure software defect removal costs and quality eco-
nomics.

Note that the bottom two metrics, cost per defect and lines of code, are
shown as harmful metrics rather than beneficial because they violate
the assumptions of standard economics.

Note that the two bottom-ranked measurements from Table 9-16 have
a negative impact; that is, they make quality worse rather than better.
As commonly used in the software literature, both cost per defect and
lines of code are close to being professional malpractice, because they
violate the canons of standard economics and distort results.

The lines of code metric penalizes high-level languages and makes
both the quality and productivity of low-level languages look better
than it really is. In addition, this metric cannot even be used to measure
requirements and design defects or any other form of noncode defect.

The cost per defect metric penalizes quality and makes buggy applica-
tions look better than applications with few defects. This metric cannot
even be used for zero-defect applications. A nominal quality metric that
penalizes quality and can’t even be used to show the highest level of
quality is a good candidate for being professional malpractice.

The final aspect of defect prevention discussed in this chapter is that
of the effectiveness of various international standards. Unfortunately,
the effectiveness of international standards has very little empirical
data available.

There are no known controlled studies that demonstrate if adherence
to standards improves quality. There is some anecdotal evidence that at
least some standards, such as ISO 9001-9004, degrade quality because
some companies that did not use these standards had higher quality on
similar applications than companies that had been certified. Table 9-20
shows approximate results, but the table has two flaws. It only shows a
small sample of standards, and the rankings are based on very sparse
and imperfect information.

In fields outside of software such as medical practice, standards are
normally validated by field trials, controlled studies, and extensive anal-
ysis. For software, standards are not validated and are based on the
subjective views of the standards committees. While some of these com-
mittees are staffed by noted experts and the standards may be useful,
the lack of validation and field trials prior to publication is a sign that
software engineering needs additional evolution before being classified
as a full engineering discipline.

Tables 9-17 through 9-20 illustrate a total of 65 defect preven-
tion methods and practices. These are not all used at the same time.
Table 9-18 shows the approximate usage patterns observed in several
hundred U.S. companies (and in about 50 overseas companies).

606 Chapter Nine

Table 9-21 is somewhat troubling because the three top-ranked meth-
ods have been demonstrated to be harmful and make quality worse
rather than better. In fact, of the really beneficial defect prevention
methods, only a handful such as prototyping, measuring test coverage,
and joint application design (JAD) have more than 50 percent usage in
the United States.

Usage of many of the most powerful and effective methods such as
inspections or measuring cost of quality (COQ) have less than 33 per-
cent usage or penetration. The data shown in Table 9-18 is not precise,
since much larger samples would be needed. However, it does illustrate
a severe disconnect between effective methods of defect prevention and
day-to-day usage in the United States.

Part of the reason for the dismaying patterns of usage is because
of the difficulty of actually measuring and studying defect prevention
methods. Only a few large and sophisticated corporations are able to
carry out studies of defect prevention. Most universities cannot study
defect prevention because they lack sufficient contacts with corpora-
tions and therefore have little data available.

In conclusion, defect prevention is sparsely covered in the software
literature. There is very little empirical data available, and a great deal
more research is needed on this topic.

One way to improve defect prevention and defect removal would be to
create a nonprofit foundation or association that studied a wide range
of quality topics. Both defect prevention and defect removal would be
included. Following is the hypothetical structure and functions of a pro-
posed nonprofit International Software Quality Foundation (ISQF).

Standard or Government Mandate

Defect
Prevention

Benefit

Defect
Removal
Benefit

57. ISO/IEC 10181 Security Frameworks –25.00% 25.00%

58. ISO 17799 Security –15.00% 15.00%

59. Sarbanes-Oxley –12.00% 6.00%

60. ISO/IEC 25030 Software Product Quality Requirements –10.00% 5.00%

61. ISO/IEC 9126-1 Software Engineering Product Quality –10.00% 5.00%

62. IEEE 730-1998 Software Quality Assurance Plans –8.00% 5.00%

63. IEEE 1061-1992 Software Metrics –7.00% 2.00%

64. ISO 9000-9003 Quality Management –6.00% 5.00%

65. ISO 9001:2000 Quality Management System –4.00% 7.00%

Average –10.78% 8.33%

TABLE 9-20 International Standards, Defect Prevention and Removal

Software Quality: The Key to Successful Software Engineering 607

TABLE 9-21 Usage Patterns of Software Defect Prevention Methods

Defect Prevention Method Percent of U.S. Projects

1. Reuse (uncertified sources) 90.00%

2. Cost per defect 75.00%

3. Lines of code (LOC) 72.00%

4. Prototyping-functional 70.00%

5. Test coverage percent 67.00%

6. No use of CMM 50.00%

7. Joint application design (JAD) 45.00%

8. Percent of requirements missed 38.00%

9. Software quality assurance (SQA) 36.00%

10. Use-cases 33.00%

11. IFPUG function points 33.00%

12. Test-driven development (TDD) 30.00%

13. Cost of quality (COQ) 29.00%

14. Scrum sessions (daily) 28.00%

15. CMM 3 28.00%

16. Agile embedded users 27.00%

17. Six Sigma 24.00%

18. Risk analysis (manual) 22.00%

19. Rational Unified Process (RUP) 22.00%

20. Cyclomatic complexity 21.00%

21. CMM 1 20.00%

22. Monthly rate of requirements change 20.00%

23. Code complexity analysis 19.00%

24. ISO 9001:2000 Quality Management System 19.00%

25. Microsoft certification (testing) 18.00%

26. ISO 9000-9003 Quality Management 18.00%

27. Root cause analysis 17.00%

28. ISO/IEC 9126-1 Software Engineering Product
Quality

17.00%

29. TSP/PSP 16.00%

30. ISO/IEC 25030 Software Product Quality
Requirements

16.00%

31. IEEE 1061-1992 Software Metrics 16.00%

32. Defect origin measurements 15.00%

33. Root cause analysis 15.00%

34. IEEE 730-1998 Software Quality Assurance Plans 15.00%

35. PSP/TSP 14.00%

36. Six Sigma for software 13.00%

37. Six Sigma (generic) 13.00%

38. Story points 13.00%

(Continued)

608 Chapter Nine

Defect Prevention Method Percent of U.S. Projects

39. Inspection participation 12.00%

40. CMM 2 12.00%

41. Sarbanes-Oxley 12.00%

42. Six Sigma green belt 11.00%

43. ISO/IEC 10181 Security Frameworks 11.00%

44. Six Sigma black belt 10.00%

45. Defect removal efficiency 10.00%

46. Use-case points 10.00%

47. ISO 17799 Security 10.00%

48. Goal-Question Metrics 9.00%

49. CMM 4 8.00%

50. Certified Software Test Professional (CSTP) 8.00%

51. Security plans 7.00%

52. Quality function deployment (QFD) 6.00%

53. Total quality management (TQM) 6.00%

54. Certified Software Project Manager (CSPM) 6.00%

55. International Software Testing Quality Board
(ISTQB)

4.00%

56. Certified Software Quality Analyst (CSQA) 4.00%

57. Certified Software Tester (CSTE) 4.00%

58. COSMIC function points 4.00%

59. Certified Software Quality Engineer (CSQE) – ASQ 3.00%

60. Risk analysis (automated) 2.00%

61. Certified Software Test Manager (CSTM) 2.00%

62. Reuse (certified sources) 1.00%

63. CMM 5 1.00%

64. Poka-yoke 0.10%

65. Clean-room development 0.10%

TABLE 9-21 Usage Patterns of Software Defect Prevention Methods (continued)

Proposal for a Nonprofit International Software Quality Foundation (ISQF)
The ISQF will be a nonprofit foundation that is dedicated to improv-
ing the quality and economic value of software applications. The form
of incorporation is to be decided by the initial board of directors. The
intent is to incorporate under section 501(c) of the Internal Revenue
Code and thereby be a tax-exempt organization that is authorized to
receive donations.

The fundamental principles of ISQF are the following:

 1. Poor quality has been and is damaging the professional reputation
of the software community.

Software Quality: The Key to Successful Software Engineering 609

 2. Poor quality has been and is causing significant litigation between
clients and software development corporations.

 3. Significant software quality improvements are technically possible.

 4. Improved software quality has substantial economic benefits in
reducing software costs and schedules.

 5. Improved software quality depends upon accurate measurement
of quality in many forms, including, but not limited to, measuring
software defects, software defect origins, software defect severity
levels, methods of defect prevention, methods of defect removal,
customer satisfaction, and software team morale.

 6. The major cost of software development and maintenance is that
of eliminating defects. ISQF will mount major studies on measur-
ing the economic value of defect prevention, defect removal, and
customer satisfaction.

 7. Measurement and estimation are synergistic technologies. ISQF
will evaluate software quality and reliability estimation methods,
and will publish the results of their evaluations. No fees from esti-
mation tool vendors will be accepted. The evaluations will be inde-
pendent and based on standard benchmarks and test cases.

 8. Software defects can originate in requirements, design, coding, user
documents, and also in test plans and test cases themselves. In
addition, there are secondary defects that are introduced while
attempting to repair earlier defects. ISQF will study all sources of
software problems and attempt to improve all sources of software
defects and user dissatisfaction.

 9. ISQF will sponsor research in technical topics that may include, but
are not be limited to, inspections, static analysis, test case design,
test coverage analysis, test tools, defect reporting, defect tracking
tools, bad-fix injections, error-prone module removal, complexity
analysis, defect prevention, formal inspections, quality measure-
ments, and quality metrics.

10. The ISQF will also sponsor research to quantify the effects of all
social factors that influence software quality, including the effective-
ness of software quality assurance organizations (SQA), separate
test organizations, separate maintenance organizations, interna-
tional standards, and the value of certification. Methods of studying
software customer satisfaction will also be supported.

11. The service metrics defined in the Information Technology
Infrastructure Library (ITIL) are all dependent upon achieving
satisfactory levels of quality. ISQF will incorporate principles from
the ITIL library, and will also sponsor research studies to show the

610 Chapter Nine

correlations between reliability and availability and quality levels
in terms of delivered defects.

12. As new technologies appear in the software industry, it is impor-
tant to stay current with their quality impacts. ISQF will perform
or commission studies on the quality results of a variety of new
approaches including but not limited to Agile development, cloud
computing, crystal development, extreme programming, open-
source development, and service-oriented architecture (SOA).

13. ISQF will provide model curricula for university training in soft-
ware measurement, metrics, defect prevention, defect removal, cus-
tomer support, customer satisfaction, and the economic value of
software quality.

14. ISQF will provide model curricula for MBA programs that deal with
the economics of software and the principles of software manage-
ment. The economics of quality will be a major subtopic.

15. ISQF will provide model curricula for corporate and in-house train-
ing in software measurement, metrics, defect prevention, defect
removal, customer support, customer satisfaction, and the economic
value of software quality.

16. ISQF will provide recommended skill profiles for the occupations of
software quality assurance (SQA), software testing, software cus-
tomer support, and software quality measurement.

17. ISQF will offer examinations and licensing certificates for the
occupations of software quality assurance (SQA), software testing,
software customer support, and software quality measurement. Of
these, software quality measurement has no current certification.

18. ISQF will establish boards of competence to administer examina-
tions and define the state of the art for software quality assurance
(SQA), software testing, and software quality measurement. Other
boards and specialties may be added at future times.

19. ISQF will define the conditions of professional malpractice as they
apply to inadequate methods of software quality control. Examples
of such conditions may include failing to keep adequate records of
software defects, failing to utilize sufficient test stages and test cases,
and failing to perform adequate inspections of critical materials.

20. ISQF will cooperate with other nonprofit organizations that are
concerned with similar issues. These organizations include but are
not limited to the Global Association for Software Quality (GASQ)
in Belgium, the World Quality Conference, the IEEE, the ISO, ANSI,
IFPUG, SPIN, and the SEI. IASQ will also cooperate with other
organizations such as universities, the Information Technology

Software Quality: The Key to Successful Software Engineering 611

Metrics and Productivity Institute (ITMPI), the Project Management
Institute (PMI), the Quality Assurance Institute (QAI), software
testing societies, and relevant engineering, benchmarking, and pro-
fessional organizations such as the ISBSG benchmarking group.
ISQF will also cooperate with similar quality organizations abroad
such as those in China, Japan, India, and Russia. This cooperation
might include reciprocal memberships if other organizations are
willing to participate in that fashion.

21. ISQF will be governed by a board of five directors, to be elected by
the membership. The board of directors will appoint a president
or chief executive officer. The president will appoint a treasurer,
secretary, and such additional officers as may be required by the
terms and place of incorporation. Initially, the board, president,
and officers will serve as volunteers on a pro bono basis. To ensure
inclusion of fresh information, the term of president will be two
calendar years.

22. Funding for the ISQF will be a combination of dues, donations,
grants, and possible fund-raising activities such as conferences and
events.

23. The ISQF will also have a technical advisory board of five members
to be appointed by the president. The advisory board will assist
ISQF in staying at the leading edge of research into topics such as
testing, inspections, quality metrics, and also availability and reli-
ability and other ITIL metrics.

24. The ISQF will use modern communication methods to expand the
distribution of information on quality topics. These methods will
include an ISQF web site, webinars, a possible quality Wikipedia,
Twitter, blogs, and online newsletters.

25. The ISQF will have several subcommittees that deal with topics
such as membership, grants and donations, press liaison, university
liaison, and liaison with other nonprofit organizations such as the
Global Association of Software Quality in Belgium.

26. To raise awareness of the importance of quality, the ISQF will
produce a quarterly journal, with a tentative name of Software
Quality Progress. This will be a refereed journal, with the referees
all coming from the ISQF membership.

27. To raise awareness of the importance of quality, the ISQF will spon-
sor an annual conference and will solicit nominations for a series
of “outstanding quality awards.” The initial set of awards will be
organized by type of software (information systems, commercial
applications, military software, outsourced applications, systems
and embedded software, web applications). The awards will be for

612 Chapter Nine

lowest numbers of delivered defects, highest levels of defect removal
efficiency, best customer service, and highest rankings of customer
satisfaction.

28. To raise awareness of the importance of software quality, ISQF
members will be encouraged to write and review articles and
books on software quality topics. Both technical journals such as
CrossTalk and mainstream business journals such as the Harvard
Business Review will be journals of choice.

29. To raise awareness of the importance of software quality, ISQF will
begin the collection of a major library of books, journal articles, and
monographs on topics and issues associated with software quality.

30. To raise awareness of the importance of software quality, ISQF will
sponsor benchmark studies of software defects, defect severity levels,
defect removal efficiency, test coverage, inspection efficiency, inspec-
tion and test costs, cost of quality (COQ), and software litigation where
poor quality was one of the principal complaints by the plaintiffs.

31. To raise awareness of the economic consequences of poor quality,
the ISQF will sponsor research on consequential damages, deaths,
and property losses associated with poor software quality.

32. To raise awareness of the economic consequences of poor quality,
the ISQF will collect public information on the results of software
litigation where poor quality was part of the plaintiff ’s claims. Such
litigation includes breach of contract cases, fraud cases, and cases
where poor quality damaged plaintiff business operations.

33. To raise awareness of the importance of software quality, ISQF
chapters will be encouraged at state and local levels, such as Rhode
Island Software Quality Association or a Boston Software Quality
Association.

34. To ensure high standards of quality education, the ISQF will review
and certify specific courses on software quality matters offered by
universities and private corporations as well. Courses will be sub-
mitted for certification on a voluntary basis. Minimal fees will be
charged for certification in order to defray expenses. Fees will be
based on time and material charges and will be levied whether or
not a specific course passes certification or is denied certification.

35. To ensure that quality topics are included and are properly defined
in contracts and outsource agreements, the ISQF will cooperate
with the American Bar Association, state bar associations, the
American Arbitration Society, and various law schools on the legal
status of software quality and on contractual issues.

Software Quality: The Key to Successful Software Engineering 613

36. ISQF members will be asked to subscribe to a code of ethics that
will be fully defined by the ISQF technical advisory board. The
code of ethics will include topics such as providing full and honest
information about quality to all who ask, avoiding conflicts of inter-
est, and basing recommendations about quality on solid empirical
information.

37. Because security and quality are closely related, the ISQF will also
include security attack prevention and also recovery from security
attacks topics as part of the overall mission. However, security is
highly specialized and requires additional skills outside the normal
training of quality assurance and test personnel.

38. Because of the serious global recession, the ISQF will attempt to
rapidly disseminate empirical data on the economic value of quality.
High quality for software has been proven to shorten development
schedules, lower development costs, improve customer support, and
reduce maintenance costs. But few managers and executives have
access to the data that supports such claims.

Software engineering and software quality need to be more closely
coupled than has been the norm in the past. Better prediction of quality,
better measurement of quality, more widespread usage of effective defect
prevention methods and defect removal methods are all congruent with
advancing software engineering to the status of a true engineering
discipline.

Software Defect Removal

Although both defect prevention and defect removal are important, it
is easier to study and measure defect removal. This is because counts
of defects found by means of inspections, static analysis, and testing
provide a quantitative basis for calculating defect removal efficiency
levels.

In spite of the fact that defect removal is theoretically easy to study,
the literature remains distressingly sparse. For example, testing has
an extensive literature with hundreds of books, thousands of journal
articles, many professional associations, and numerous conferences.
Yet hardly any of the testing literature contains empirical data on
the measured numbers of test cases created, actual counts of defects
found and removed, data on bad-fix injection rates, or other tangible
data points.

Several important topics have almost no citations at all in the test-
ing literature. For example, a study done at IBM found more errors in
test cases than in the software that was being tested. The same study

614 Chapter Nine

found about 35 percent duplicate or redundant test cases. Yet neither
test case errors nor redundant test cases are discussed in the software
testing literature.

Another gap in the literature of both testing and other forms of defect
removal concerns bad-fix injections. About 7 percent of attempts to
repair software defects contain new defects in the repairs themselves.
In fact, sometimes there are secondary and even tertiary bad fixes; that
is, three consecutive attempts to fix a bug may fail to fix the original
bug and introduce new bugs that were not there before!

Another problem with the software engineering literature and also
with software professional associations is a very narrow focus. Most
testing organizations tend to ignore static analysis and inspections.

As a result of this narrow focus, the synergies among various kinds of
defect removal operations are not well covered in the quality or software
engineering literature. For example, carrying out formal inspections
of requirements and design not only finds defects, but also raises the
defect removal efficiency levels of subsequent test stages by at least
5 percent by providing better and more complete source material for
constructing test cases.

Running automated static analysis prior to testing will find numerous
defects having to do with limits, boundary conditions, and structural
problems, and therefore speed up subsequent testing.

Formal inspections are best at finding very complicated and subtle
problems that require human intelligence and insight. Formal inspec-
tions are also best at finding errors of omission and errors of ambiguity.

Static analysis is best at finding structural and mechanical problems
such as boundary conditions, duplications, failures of error-handling,
and branches to incorrect routines. Static analysis can also find security
flaws.

Testing is best at finding problems that occur when software is execut-
ing, such as performance issues, usability issues, and security issues.

Individually, these three methods are useful but incomplete. When
used together, their synergies can elevate defect removal efficiency
levels and also reduce the effort and costs associated with defect removal
activities.

Table 9-22 provides an overview of 80 different forms of software defect
removal: static analysis, inspections, many kinds of testing, and some
special forms of defect removal associated with software litigation.

Although Table 9-22 shows overall values for defect removal efficiency,
the data really deals with removal efficiency against selected defect cat-
egories. For example, automated static analysis might find 87 percent
of structural code problems, but it can’t find requirements omissions or
problems such as the Y2K problem that originate in requirements.

Software Quality: The Key to Successful Software Engineering 615

DEFECT REMOVAL ACTIVITIES

Activities

Number of
Test Cases

per FP

Defect
Removal
Efficiency

Bad-Fix
Injection
Percent

STATIC ANALYSIS
1. Automated static analysis 0.00 87.00% 2.00%

2. Requirements inspections 0.00 85.00% 6.00%

3. External design inspection 0.00 85.00% 6.00%

4. Use-case inspection 0.00 85.00% 4.00%

5. Internal design inspection 0.00 85.00% 4.00%

6. New code inspections 0.00 85.00% 4.00%

7. Reuse certification inspection 0.00 84.00% 2.00%

8. Test case inspection 0.00 83.00% 5.00%

9. Automated document analysis 0.00 83.00% 6.00%

10. Legacy code inspections 0.00 83.00% 6.00%

11. Quality function deployment 0.00 82.00% 3.00%

12. Document proof reading 0.00 82.00% 1.00%

13. Nationalization inspection 0.00 81.00% 3.00%

14. Architecture inspections 0.00 80.00% 3.00%

15. Test plan inspection 0.00 80.00% 5.00%

16. Test script inspection 0.00 78.00% 4.00%

17. Test coverage analysis 0.00 77.00% 3.00%

18. Document editing 0.00 77.00% 2.50%

19. Pair programming review 0.00 75.00% 5.00%

20. Six Sigma analysis 0.00 75.00% 3.00%

21. Bug repair inspection 0.00 70.00% 3.00%

22. Business plan inspections 0.00 70.00% 8.00%

23. Root-cause analysis 0.00 65.00% 4.00%

24. Governance reviews 0.00 63.00% 5.00%

25. Refactoring of code 0.00 62.00% 5.00%

26. Error-prone module analysis 0.00 60.00% 10.00%

27. Independent audits 0.00 55.00% 10.00%

28. Internal audits 0.00 52.00% 10.00%

29. Scrum sessions (daily) 0.00 50.00% 2.00%

30. Quality assurance review 0.00 45.00% 7.00%

31. Sarbanes-Oxley review 0.00 45.00% 10.00%

32. User story reviews 0.00 40.00% 10.00%

33. Informal peer reviews 0.00 40.00% 10.00%

34. Independent verification and validation 0.00 35.00% 12.00%

35. Private desk checking 0.00 35.00% 7.00%

TABLE 9-22 Overview of 80 Varieties of Software Defect Removal Activities

(Continued)

616 Chapter Nine

DEFECT REMOVAL ACTIVITIES

Activities

Number of
Test Cases

per FP

Defect
Removal
Efficiency

Bad-Fix
Injection
Percent

36. Phase reviews 0.00 30.00% 15.00%

37. Correctness proofs 0.00 27.00% 20.00%

Average 0.00 66.92% 6.09%

GENERAL TESTING
38. PSP/TSP unit testing 3.50 52.00% 2.00%

39. Subroutine testing 0.25 50.00% 2.00%

40. XP testing 2.00 40.00% 3.00%

41. Component testing 1.75 40.00% 3.00%

42. System testing 1.50 40.00% 7.00%

43. New function testing 2.50 35.00% 5.00%

44. Regression testing 2.00 30.00% 7.00%

45. Unit testing 3.00 25.00% 4.00%

Average 2.06 41.00% 4.13%

Sum 16.50

AUTOMATIC TESTING
46. Virus/spyware test 3.50 80.00% 4.00%

47. System test 2.00 40.00% 8.00%

48. Regression test 2.00 37.00% 7.00%

49. Unit test 0.05 35.00% 4.00%

50. New function test 3.00 35.00% 5.00%

Average 2.11 45.40% 5.60%

Sum 10.55

SPECIALIZED TESTING
51. Virus testing 0.70 98.00% 2.00%

52. Spyware testing 1.00 98.00% 2.00%

53. Security testing 0.40 90.00% 4.00%

54. Limits/capacity testing 0.50 90.00% 5.00%

55. Penetration testing 4.00 90.00% 4.00%

56. Reusability testing 4.00 88.00% 0.25%

57. Firewall testing 2.00 87.00% 3.00%

58. Performance testing 0.50 80.00% 7.00%

59. Nationalization testing 0.30 75.00% 10.00%

60. Scalability testing 0.40 65.00% 6.00%

61. Platform testing 0.20 55.00% 5.00%

62. Clean-room testing 3.00 45.00% 7.00%

63. Supply chain testing 0.30 35.00% 10.00%

TABLE 9-22 Overview of 80 Varieties of Software Defect Removal Activities
(continued)

Software Quality: The Key to Successful Software Engineering 617

Table 9-22 is sorted in descending order of defect removal efficiency.
However, the results shown are maximum values. In real life, the range
of measured defect removal efficiency can be less than half of the nomi-
nal maximum values shown in Table 9-18.

Although Table 9-22 lists 80 different kinds of software defect removal
activities, that does not imply that all of them are used at the same time.

DEFECT REMOVAL ACTIVITIES

Activities

Number of
Test Cases

per FP

Defect
Removal
Efficiency

Bad-Fix
Injection
Percent

64. SOA orchestration 0.20 30.00% 5.00%

65. Independent testing 0.20 25.00% 12.00%

Average 1.18 70.07% 5.48%

Sum 17.70

USER TESTING
66. Usability testing 0.25 65.00% 4.00%

67. Local nationalization testing 0.40 60.00% 3.00%

68. Lab testing 1.25 45.00% 5.00%

69. External beta testing 1.00 40.00% 7.00%

70. Internal acceptance testing 0.30 30.00% 8.00%

71. Outsource acceptance testing 0.05 30.00% 6.00%

72. COTS acceptance testing 0.10 25.00% 8.00%

Average 0.48 42.14% 5.86%

Sum 3.35

LITIGATION ANALYSIS, TESTING
73. Intellectual property testing 2.00 80.00% 1.00%

74. Intellectual property review 0.00 80.00% 3.00%

75. Breach of contract review 0.00 80.00% 2.00%

76. Breach of contract testing 2.00 70.00% 2.00%

77. Tax litigation review 0.00 80.00% 4.00%

78. Tax litigation testing 1.00 70.00% 4.00%

79. Fraud code review 0.00 80.00% 2.00%

80. Embezzlement code review 0.00 80.00% 2.00%

Average 2.35 77.14% 2.71%

Sum 5.00

TOTAL TEST CASES 53.10

PER FUNCTION POINT

TABLE 9-22 Overview of 80 Varieties of Software Defect Removal Activities
(continued)

618 Chapter Nine

In fact, the U.S. average for defect removal activities includes only six
kinds of testing:

U.S. Average Sequence of Defect Removal

 1. Unit test

 2. New function test

 3. Performance test

 4. Regression test

 5. System test

 6. Acceptance or beta test

These six forms of testing, collectively, range between about 70 per-
cent and 85 percent in cumulative defect removal efficiency levels: far
below what is needed to achieve high levels of reliability and customer
satisfaction. The bottom line is that testing, by itself, is insufficient to
achieve professional levels of quality.

An optimum sequence of defect removal activities would include sev-
eral kinds of pretest inspections, static analysis, and at least eight forms
of testing:

Optimal Sequence of Software
Defect Removal

Pretest Defect Removal

 1. Requirements inspection

 2. Architecture inspection

 3. Design inspection

 4. Code inspection

 5. Test case inspection

 6. Automated static analysis

Testing Defect Removal

 7. Subroutine test

 8. Unit test

 9. New function test

10. Security test

11. Performance test

12. Usability test

Software Quality: The Key to Successful Software Engineering 619

13. System test

14. Acceptance or beta test

This combination of synergistic forms of defect removal will achieve
cumulative defect removal efficiency levels in excess of 95 percent for
every software project and can achieve 99 percent for some projects.

When the most effective forms of defect removal are combined with
the most effective forms of defect prevention, then software engineering
should be able to achieve consistent levels of excellent quality. If this
combination can occur widely enough to become the norm, then software
engineering can be considered a true engineering discipline.

Software Quality Specialists

As noted earlier in the book, more than 115 types of occupations and
specialists are working in the software engineering domain. In most
knowledge-based occupations such as medicine and law, specialists have
extra training and sometimes extra skills that allow them to outperform
generalists in selected areas such as in neurosurgery or maritime law.

For software engineering, the literature is sparse and somewhat
ambiguous about the roles of specialists. Much of the literature on
software specialization is vaporous and merely expresses some kind
of bias. Many authors prefer a generalist model where individuals are
interchangeable and can handle requirements, design, development,
and testing as needed. Other authors prefer a specialist model where
key skills such as testing, quality assurance, and maintenance are per-
formed by trained specialists.

In this chapter, we will focus primarily on two basic questions:

 1. Do specialized skills lower defect potentials and benefit defect
prevention?

 2. Do specialized skills raise defect removal efficiency levels?

Not all of the 115 or so specialists will be discussed, but those whose
roles have a potential impact on quality levels will be discussed in terms
of defect prevention and defect removal.

The 20 specialist categories discussed in this chapter include, in
alphabetical order:

 1. Architects

 2. Business analysts

 3. Database analysts

 4. Data quality analysts

620 Chapter Nine

 5. Enterprise architects

 6. Estimating specialists

 7. Function point specialists

 8. Inspection moderators

 9. Maintenance specialists

10. Requirements analysts

11. Performance specialists

12. Risk analysis specialists

13. Security specialists

14. Six Sigma specialists

15. Systems analysts

16. Software quality assurance (SQA)

17. Technical writers

18. Testers

19. Usability specialists

20. Web designers

For each of these 20 specialist groups, we will consider the volume of
potential defects they face, and whether they have a tangible impact on
defect prevention and defect removal activities.

Table 9-23 ranks the specialists in terms of assignment scope. This
metric represents the number of function points normally assigned to
one practitioner. Table 9-23 also shows the volume of defects that the
various occupations face as part of their jobs. Table 9-23 then shows the
approximate impacts of these specialized occupations on both defect
prevention and defect removal.

The top-ranked specialists face large numbers of potential defects
that are also capable of causing great damage to entire corporations
as well as to the software applications owned by those corporations.
Following are short discussions of each of the 20 kinds of specialists.

Risk Analysis Specialists

Assignment scope = 300,000 function points
Defect potentials = 7.00
Defect prevention impact = –75 percent
Defect removal impact = 25 percent

The large assignment scope of 300,000 function points indicates that
companies do not need many risk analysts, but the ones they employ need
to be very competent and understand both technical and financial risks.

Software Quality: The Key to Successful Software Engineering 621

Given the enormous number of business failures as part of the recession,
it is obvious that risk analysis is not yet as sophisticated as it should
be; especially for dealing with financial risks.

Risk analysts face more than 100 percent of the potential defects
associated with any given software application. Not only do they have
to deal with technical risks and quality risks, but they also need to
address financial risks and legal risks that are outside the normal realm
of software quality and defect measurement.

A formal and careful risk analysis prior to committing funds to a
major software application can stop investments in excessively haz-
ardous projects before any serious money is spent. For questionable
projects, a formal and careful risk analysis prior to starting the project
can introduce better technologies prior to committing funds.

The keys to successful early risk analysis include the ability to do
early sizing, early cost estimating, early quality estimating, and knowl-
edge of dozens of potential risks derived from analysis of project failures
and successes.

Specialized Occupations
Assignment

Scope
Defect

Potential
Defect

Prevention
Defect

Removal

1. Risk analysis specialists 300,000 7.00 75.00% 25.00%

2. Enterprise architects 250,000 6.00 25.00% 20.00%

3. Six Sigma specialists 250,000 5.00 25.00% 30.00%

4. Database analysts 100,000 3.00 15.00% 10.00%

5. Architects 100,000 3.00 17.00% 12.00%

6. Usability specialists 100,000 1.00 10.00% 15.00%

7. Security specialists 50,000 7.00 70.00% 20.00%

8. Data quality analysts 50,000 5.00 12.00% 15.00%

9. Business analysts 50,000 3.50 25.00% 10.00%

10. Estimating specialists 25,000 3.00 20.00% 25.00%

11. Systems analysts 20,000 6.00 20.00% 20.00%

12. Performance specialists 20,000 1.00 10.00% 12.00%

13. Quality assurance (QA) 10,000 5.50 15.00% 40.00%

14. Web designers 10,000 4.00 15.00% 12.00%

15. Requirements analysts 10,000 4.00 20.00% 15.00%

16. Testers 10,000 3.00 15.00% 50.00%

17. Function point specialists 5,000 4.00 10.00% 10.00%

18. Technical writers 2,000 1.00 10.00% 10.00%

19. Maintenance specialists 1,500 3.50 30.00% 20.00%

20. Inspection moderators 1,000 4.50 27.00% 35.00%

Average 68,225 4.00 23.30% 20.30%

TABLE 9-23 Software Specialization Impact on Software Quality

622 Chapter Nine

The main role of risk analysts in terms of quality are to stop bad proj-
ects before they start, and to ensure that projects that do start utilize
state-of-the-art quality methods. Risk analysts also need to understand
the main reasons for software failures, and they should be familiar
with software litigation results for cases dealing with cancelled proj-
ects, breach of contract, theft of intellectual property, patent violations,
embezzlement via software, fraud, tax issues, Sarbanes-Oxley issues,
and other forms of litigation as well.

Enterprise Architects

Assignment scope = 250,000 function points
Defect potentials = 6.00
Defect prevention impact = –25 percent
Defect removal impact = 20 percent

Enterprise architects are key players whose job is to understand every
aspect of corporate business and to match business needs against entire
portfolios, which may contain more than 3000 separate applications and
total to more than 10 million function points. Not only internal software,
but also open-source applications and commercial software packages
such as Vista and SAP need to be part of the enterprise architect’s
domain of knowledge.

The main role of enterprise analysts in terms of quality is to under-
stand the business value of quality to corporate operations, and to
ensure that top executives have similar understandings. Both enter-
prise architects and corporate executives need to push for excellence in
order to achieve speed of delivery.

Enterprise architects also play a role in corporate governance, by
ensuring that critical mistakes such as the Y2K problem are prevented
from occurring in the future.

Six Sigma Specialists

Assignment scope = 250,000 function points
Defect potentials = 5.00
Defect prevention impact = –25 percent
Defect removal impact = 30 percent

The large assignment scope for Six Sigma specialists indicates that
their work is corporate in nature rather than being limited to specific
applications. The main role of Six Sigma specialists in terms of quality
is to provide expert analysis of defect origins and defect causes, and
to suggest effective methods of continuous improvement to reduce the
major sources of software error.

Software Quality: The Key to Successful Software Engineering 623

Database Analysts

Assignment scope = 100,000 function points
Defect potentials = 7.00
Defect prevention impact = –75 percent
Defect removal impact = –25 percent

In today’s world of 2009, major corporations and government agencies
own even more data than they own software. Customer data, employee
data, manufacturing data, total to millions of records scattered over
dozens of databases and repositories. This collection of enterprise data
is a valuable asset that needs to be accessed for key business decisions,
and also protected against hacking, theft, and unauthorized access.

There is a major quality weakness in 2009 in the area of data qual-
ity. There are no “data point” metrics that express the size of databases
and repositories. As a result, it is very hard to quantify data quality. In
fact, for all practical purposes, no literature at all on data quality uses
actual counts of errors.

As a result, database analysts and data quality analysts are severely
handicapped. They both play key roles in quality, but lack all of the tools
they need to do a good job.

The major role played by database analysts in terms of quality is to
ensure that databases and repositories are designed and organized in
optimal fashions, and that processes are in place to validate the accu-
racy of all data elements that are added to enterprise data storage.

Architects

Assignment scope = 100,000 function points
Defect potentials = 3.00
Defect prevention impact = –17 percent
Defect removal impact = 12 percent

Architects also have a large assignment scope, and need to be able to
envision and deal with the largest known applications of the modern
world, such as Vista, ERP packages like SAP and Oracle, air-traffic
control, defense applications, and major business applications.

Over the past 50 years, software applications have evolved from run-
ning by themselves to running under an operating system to running
as part of a multitier network and indeed to running in fragments scat-
tered over a cloud of hardware and software platforms that may be
thousands of miles apart.

As a result, the role of architects has become much more complex
in 2009 than it was even ten years ago. Architects need to understand
modern application practices such as service-oriented architecture (SOA),

624 Chapter Nine

cloud computing, and multitier hierarchies. In addition, architects need
to know the sources and certification methods of various kinds of reus-
able material that constitutes more than 50 percent of many large appli-
cations circa 2009.

The main role that architects play in terms of quality is to under-
stand the implications of software defects in complex, multitier, highly
distributed environments where software components may come from
dozens of sources.

Usability Specialists

Assignment scope = 100,000 function points
Defect potentials = 1.00
Defect prevention impact = –10 percent
Defect removal impact = 15 percent

The word “usability” defines what customers need to do to operate
software successfully. It also includes what software customers need to
do when the software misbehaves.

Usability specialists often have a background in cognitive psychol-
ogy and are well versed in various kinds of software interfaces: key-
board commands, buttons, touch screens, voice recognitions, and even
more.

The main role of usability specialists in terms of quality is to ensure
that software applications have interfaces and control sequences that
are as natural and intuitive as possible. Usability studies are normally
carried out with volunteer clients who use the software while it is under
development.

Large computer and software companies such as IBM and Microsoft
have usability laboratories where customers can be observed while they
are using prerelease versions of software and hardware products. These
labs monitor keystrokes, screen touches, voice commands, and other
interface methods. Usability specialists also debrief customers after
every session to find out what customers like and dislike about inter-
faces and command sequences.

Security Specialists

Assignment scope = 50,000 function points
Defect potentials = 7.00
Defect prevention impact = –70 percent
Defect removal impact = 20 percent

There is an increasing need for more software security specialists,
and also for better training of software security specialists both at the
university level and after employment, as security threats evolve and
change.

Software Quality: The Key to Successful Software Engineering 625

As of 2009, due in part to the recession, attacks and data theft are
increasing rapidly in numbers and sophistication. Hacking is rapidly
moving from the domain of individual amateurs to organized crime and
even to hostile foreign governments.

Software applications are not entirely safe behind firewalls, even with
active antivirus and antispyware applications installed. There is an
urgent need to raise the immunity levels of software applications by
using techniques such as Google’s Caja, the E programming language,
and changing permission schemas.

Security and quality are not identical, but they are very close together,
and both prevention and removal methods are congruent and synergistic.
The closeness of quality and security is indicated by the fact that major
avenues of attack on software applications are error-handling routines.

The main role of security specialists in terms of quality is to stay cur-
rent on the latest kinds of threats, and to ensure that both new applica-
tions and legacy applications have state-of-the-art security defenses.

Data Quality Analysts

Assignment scope = 50,000 function points
Defect potentials = 5.00
Defect prevention impact = –12 percent
Defect removal impact = 15 percent

As of 2009, data quality analysts are few in number and woefully
under-equipped in terms of tools and technology. There is no effective
size metric for data volumes (i.e., a data point metric similar to func-
tion points). As a result, no empirical data is available on topics such as
defect potentials for databases and repositories, effective defect removal
methods, defect estimation, or defect measurement.

The theoretical role of data quality analysts is to prevent data errors
from occurring, and to recommend effective removal methods. However,
given the very large number of apparent data errors in public records,
credit scores, accounting, taxes, and so on, it is obvious that data quality
lags behind even software quality. In fact, data and software appear to
lag behind every other engineering and technical domain in terms of
quality control.

Business Analysts

Assignment scope = 50,000 function points.
Defect potentials = 3.5
Defect prevention impact = –25 percent
Defect removal impact = 10 percent

In many information technology organizations, business analysts
are the primary connection between the software community and the

626 Chapter Nine

community of software users. Business analysts are required to be well
versed in both business needs and in software engineering technologies.

The main role that business analysts should play in terms of qual-
ity is to convince both the business and technical communities that
high levels of software quality will shorten development schedules and
lower development costs. Too often, the business clients set arbitrary
schedules and then attempt to force the software community to try
and meet those schedules by skimping on inspections and truncating
testing.

Good business analysts should have data available from sources
such as the International Software Benchmarking Standards Group
(ISBSG) that shows the relationships between quality, schedules, and
costs. Business analysts should also understand the value of methods
such as joint application design (JAD), quality function deployment
(QFD), and requirements inspections.

Estimating Specialists

Assignment scope = 25,000 function points
Defect potentials = 3.00
Defect prevention impact = –20
Defect removal impact = 25 percent

It is a sign of sophistication when a company employs software esti-
mating specialists. Usually these specialists work in project offices or
special staff groups that support line managers, who often are not well
trained in estimation.

Estimation specialists should have access to and be familiar with the
major software estimating tools that can predict quality, schedules, and
costs. Examples of such tools include COCOMO, KnowledgePlan, Price-
S, SoftCost, SEER, Slim, and a number of others. In fact, a number of
companies utilize several of these tools for the same applications and
look for convergence.

The main role of an estimating specialist in terms of quality is to pre-
dict quality early. Ideally, quality will be predicted before substantial
funds are spent. Not only that, but multiple estimates may be needed
to show the effects of variations in development practices such as Agile
development, Team Software Process (TSP), Rational Unified Process
(RUP), formal inspections, static analysis, and various kinds of testing.

Systems Analysts

Assignment scope = 20,000 function points
Defect potentials = 6.00
Defect prevention impact = –25 percent
Defect removal impact = 20 percent

Software Quality: The Key to Successful Software Engineering 627

Software systems analysts are one of the interface points between
the software engineering or programming community and end users
of software. Systems analysts and business analysts perform similar
roles, but the title “systems analyst” occurs more often for embedded
and systems software, which are developed for technical purposes rather
than to satisfy local business needs.

The main role of systems analysts in terms of quality is to understand
that all forms of representation for software (user stories, use-cases,
formal specification languages, flowcharts, Nassi-Schneiderman charts,
etc.) may contain errors. These errors may not be amenable to discovery
via testing, which would be too late in any case. Therefore, a key role
of systems analysts is to participate in formal inspections of require-
ments, internal design documents, and external design documents. If
the application is being constructed using test-driven development,
systems analysts will participate in test case design and construction.
Systems analysts will also participate in activities such as joint applica-
tion design (JAD) and quality function deployment (QFD).

Performance Specialists

Assignment scope = 20,000 function points
Defect potentials = 1.00
Defect prevention impact = –10 percent
Defect removal impact = 12 percent

The occupation of “performance specialist” is usually found only in
very large companies that build very large and complex software appli-
cations; that is, IBM, Raytheon, Lockheed, Boeing, SAP, Oracle, Unisys,
Google, Motorola, and the like.

The general role of performance specialists is to understand every
potential bottleneck in hardware and software platforms that might
slow down performance.

Sluggish or poor performance is viewed as a quality issue, so the role
of performance specialists is to assist software engineers and software
designers in building software that will achieve good performance levels.

In today’s world of 2009, with multitier architectures as the dominant
model and with multiple programming languages as the dominant form
of development, the work of performance specialists has become much
more difficult than it was only ten years ago. Looking ahead, the work
of performance specialists will probably become even more difficult ten
years from now.

Software Quality Assurance

Assignment scope = 10,000 function points
Defect potentials = 5.50

628 Chapter Nine

Defect prevention impact = –15 percent
Defect removal impact = 40 percent

The general title of “quality assurance” is much older than software
and has been used by engineering companies for about 100 years.
Within the software world, the title of “software quality assurance” has
existed for more than 50 years. Today in 2009, software quality special-
ists average between 2 percent and 6 percent of total software employ-
ment in most large companies. The hi-tech companies such as IBM and
Lockheed employ more software quality assurance personnel than do
lo-tech companies such as insurance and general manufacturing.

A small percentage of software quality assurance personnel have been
certified by one or more of the software quality assurance associations.

The roles of software quality assurance vary from company to com-
pany, but they usually include these core activities: ensuring that
relevant international and corporate quality standards are used and
adhered to, measuring defect removal efficiency, measuring cyclomatic
and essential complexity, teaching classes in quality, and estimating or
predicting quality levels.

A few very sophisticated companies such as IBM have quality assurance
research positions, where the personnel can develop new and improved
quality control methods. Some of the results of these QA research groups
include formal inspections, function point metrics, automated con-
figuration control tools, clean-room development, and joint application
design (JAD).

Given the fact that quality assurance positions have existed for more
than 50 years and that SQA personnel number in the thousands, why is
software quality in 2009 not much better than it was in 1979?

One reason is that in many companies, quality assurance plays an advi-
sory role, but their advice does not have to be followed. In some companies
such as IBM, formal QA approval is necessary prior to delivering a prod-
uct to customers. If the QA team feels that quality methods were deficient,
then delivery will not occur. This is a very serious business issue.

In fact, very few projects are stopped from being delivered. But the
theoretical power to stop delivery if quality is inadequate is a strong
incentive to pursue state-of-the-art quality control methods.

Therefore, a major role of software quality assurance is to ensure that
state-of-the-art measures, methods, and tools are used for quality control,
with the knowledge that poor quality can lead to delays in delivery.

Web Designers

Assignment scope = 10,000 function points
Defect potentials =4.00
Defect prevention impact = –15 percent
Defect removal impact = 12 percent

Software Quality: The Key to Successful Software Engineering 629

Software web design is a fairly new occupation, but one that is grow-
ing faster than almost any other. The fast growth in web design is due
to software companies and other businesses migrating to the Web as
their main channel for marketing and information.

The role of web design in terms of software quality is still evolving
and will continue to do so as web sites move toward virtual reality and
3-D representation. As of 2009, some of the roles are to ensure that all
interfaces are fairly intuitive, and that all links and connections actu-
ally work.

Unfortunately, due to the exponential increase in hacking, data theft,
and denial of service attacks, web quality and web security are now
overlapping. Effective quality for web sites must include effective secu-
rity, and many web design specialists do not yet know enough about
security to be fully effective.

Requirements Analysts

Assignment scope = 10,000 function points
Defect potentials = 4.00
Defect prevention impact = –20 percent
Defect removal impact = 15 percent

The work of requirements analysts overlaps the work of systems ana-
lysts and business analysts. However, those who specialize in require-
ments analysis also know topics such as quality function deployment
(QFD), joint application design (JAD), requirements inspections, and at
least half a dozen requirements representation methods such as use-
cases, user stories, and several others.

Because the majority of “new” applications being developed circa
2009 are really nothing more than replacements for legacy applications,
requirements analysts should also be conversant with data mining. In
fact, the best place to start the requirements analysis for a replacement
application is to mine the older legacy application for business rules
and algorithms that are hidden in the code. Data mining is necessary
because usually the original specifications are either missing completely
or long out of date.

The role of requirements analysis in terms of quality is to ensure that
toxic requirements defects are removed before they enter the design or
find their way into source code. The frequently cited Y2K problem is an
example of a toxic requirement.

Because the measured rate at which requirements grow after the
requirements phase is between 1 percent and 3 percent per calendar
month, another quality role is to ensure that prototypes, embedded
users, JAD, or other methods are used that minimize unplanned changes
in requirements.

630 Chapter Nine

Requirements analysts should also be members of or support change
control boards that review and approve requirements changes.

Testers

Assignment scope = 10,000 function points
Defect potentials = 3.00
Defect prevention impact = –15 percent
Defect removal impact = 50 percent

Software testing is one of the specialized occupations where there is
some empirical evidence that specialists can outperform generalists.

Not every kind of testing is performed by test specialists. For example,
unit testing is almost always carried out by the developers. However, the
forms of testing that integrate the work of entire teams of developers need
testing specialists for large applications. Such forms of testing include new
function testing, regression testing, and system testing among others.

The role of test specialists in terms of quality is to ensure that test
coverage approaches 99 percent, that test cases themselves do not con-
tain errors, and that test libraries are effectively maintained and purged
of duplicate test cases that add cost but not value.

Although not a current requirement for test case personnel, it would
be useful if test specialists also measured defect removal efficiency
levels and attempted to raise average testing efficiency from today’s
average of around 35 percent up to at least 75 percent.

Test specialists should also be pioneers in new testing technologies
such as automated testing. Running static analysis tools prior to testing
could also be added with some value accruing.

Function Point Specialists

Assignment scope = 5000 function points
Defect potentials = 4.00
Defect prevention impact = –10 percent
Defect removal impact = 10 percent

Because function point metrics are the best choice for normalizing
quality data and creating effective benchmarks of quality information,
function point specialists are rapidly becoming part of successful quality
improvement programs.

However, traditional manual counts of function points are too slow and
too costly to be used as standard quality control methods. The average
counting speed by a certified function point specialist is only about 400
function points per day. This explains why function point analysis is almost
never used for applications larger than about 10,000 function points.

However, new methods have been developed that allow function points
to be calculated at least six months earlier than previously possible.

Software Quality: The Key to Successful Software Engineering 631

These same methods operate at speeds in excess of 10,000 function
points per minute. This makes it possible to use function points for early
quality estimation, as well as for measuring quality and producing qual-
ity benchmarks.

The role of function point specialists in terms of quality is to create
useful size information fast enough and early enough that it can serve
for risk analysis, quality prediction, and quality measures.

Technical Writers

Assignment scope = 2000 function points
Defect potentials = 1.00
Defect prevention impact = –10 percent
Defect removal impact = 10 percent

Good writing is a fairly rare skill in the human species. As a result,
good software technical manuals are also fairly rare. Many kinds of
quality problems are common in software manuals, including ambigu-
ity, missing information, poor organization structures, and incurred
data.

There are automated tools available that can analyze the readabil-
ity of text, such as the FOG index and the Fleisch index. But these
are seldom used for software manuals. Editing is useful, as are formal
inspections of user documentation.

Another approach, which was actually used by IBM, was to select
examples of user documents with the highest user evaluation scores
and use them as samples.

The role of technical writers in terms of software quality is make sure
that factual data is complete and correct, and that manuals are easy to
read and understand.

Maintenance Specialists

Assignment scope = 1,500 function points
Defect potentials = 3.5
Defect prevention impact = –30 percent
Defect removal impact = 20 percent

Maintenance programming in terms of both enhancing legacy soft-
ware and repairing bugs has been the dominant activity for the software
industry for more than 20 years. This should not be a surprise, because
for every industry older than 50 years, more people are working on
repairs of existing products than are working on new development.

As the recession deepens and lengthens, the U.S. automobile industry
is providing a very painful example of this fact: automotive manufac-
turing is shrinking faster than the polar ice fields, while automotive
repairs are increasing.

632 Chapter Nine

Aging legacy applications have a number of quality problems, includ-
ing poor structure, dead code, error-prone modules, and poor or missing
comments.

As the recession continues, many companies are considering ways of
stretching out the useful lives of legacy applications. In fact, renovation
and data mining of legacy software are both growing, even in the face
of the recession.

The main role of maintenance programmers in terms of quality is to
strengthen the quality of legacy software. The methods available to do this
include full renovation using automated tools; complexity measurement
and reduction; dead code removal; improving comments; identification
and surgical removal of error-prone modules; converting code from orphan
languages such as MUMPS or Coral into modern languages such as Java
or Ruby, and improving the security flaws of legacy applications.

Inspection Moderators

Assignment scope = 1000 function points
Defect potentials = 4.5
Defect prevention impact = –25 percent
Defect removal impact = 35 percent

Software inspections have a number of standard roles, including the
moderator, the recorder, the inspectors, and the person whose work is
being inspected. The moderator is the key to a successful inspection.
The tasks of the moderator include keeping the discussions on track,
minimizing disruptive events, and ensuring that the inspection session
starts and ends on time.

The main role of inspection moderators in terms of quality include
ensuring the materials to be inspected are delivered in time for pre-inspec-
tion review, making sure that the inspectors and other personnel show up
on time, keeping the inspection team focused on defect identification (as
opposed to repairs), and intervening in potential arguments or disputes.

The inspection recorder plays a key role too, because the recorder
keeps notes and fills out the defect reports of all bugs or defects that
the inspection identified. This is not as easy as it sounds, because there
may be some debate as to whether a particular issue is a defect or a
possible enhancement.

Summary and Conclusions on
Software Specialization

The overall topic of software specialization is not well covered in the
software engineering literature. Considering that there are more than
115 specialists associated with software, this fact is mildly surprising.

Software Quality: The Key to Successful Software Engineering 633

When it comes to software quality, some forms of specialization do add
value, and this can be shown by analysis of both defect prevention and
defect removal. The key specialists who add the most value to software
quality include risk analysts, Six Sigma specialists, quality assurance
personnel, inspection moderators, maintenance specialists, and profes-
sional test personnel.

However, many other specialists such as business analysts, enterprise
architects, architects, estimating specialists, and function point special-
ists also add value.

The Economic Value of
Software Quality

The economic value of software quality is not well covered in the soft-
ware engineering literature. There are several reasons for this prob-
lem. One major reason is the rather poor measurement practices of
the software engineering domain. Many cost factors such as unpaid
overtime are routinely ignored. In addition, there are frequent gaps and
omissions in software cost data, such as omission of project manage-
ment costs and the omission of part-time specialists such as technical
writers. In fact, only the effort and costs of coding have fairly good data
available. Everything else, such as requirements, design, inspections,
testing, quality assurance, project offices, and documentation tend to be
underreported or ignored.

As pointed out in other sections, the software engineering literature
depends too much on vague and unpredictable definitions of quality
such as “conformance to requirements” or adhering to a collection of
ambiguous terms ending in ility. These unscientific definitions slow
down research on software quality economics.

Two other measurement problems also affect quality economic stud-
ies. These problems are the usage of two invalid economic measures:
cost per defect and lines of code. As discussed earlier in this chapter,
cost per defect penalizes quality and achieves its lowest costs for the
buggiest applications. Lines of code penalizes high-level programming
languages and disguises the value of high-level languages for studying
either quality or productivity.

In this section, the economic value of quality will be shown by means
of eight case studies. Because the value of software quality correlates
to application size, four discrete size ranges will be used: 100 function
points, 1000 function points, 10,000 function points, and 100,000 func-
tion points.

Applications in the 100–function point range are usually small fea-
tures for larger systems rather than stand-alone applications. However,
this is a very common size range for prototypes of larger applications.

634 Chapter Nine

There may be small stand-alone applications in this range such as cur-
rency converters or applets for devices such as iPhones.

Applications in the 1000–function point range are normally stand-
alone software applications such as fuel-injection controls, atomic watch
controls, compilers for languages such as Java, and software estimating
tools in the class of COCOMO.

Applications in the 10,000–function point range are normally impor-
tant systems that control aspects of business, such as insurance claims
processing, motor vehicle registration, or child-support applications.

Applications in the 100,000–function point range are normally major
systems in the class of large international telephone-switching systems,
operating systems in the class of Vista and IBM’s MVS, or suites of
linked applications such as Microsoft Office. Some enterprise resource
planning (ERP) applications are in this size range, and may even top
300,000 function points. Also, large defense applications such as the
World Wide Military Command and Control System (WWMCCS) also
top 100,000 function points.

To reduce the number of variables, all eight of the examples are
assumed to be coded in the C programming language and have a ratio
of about 125 code statements per function point.

Because all eight of the applications are assumed to be written in the
same programming language, productivity and quality can be expressed
using the lines of code metric without distortion. The lines of code metric
is invalid for comparisons between unlike programming languages.

For each size plateau, two cases will be illustrated: average quality
and excellent quality. The average quality case assumes waterfall devel-
opment, CMMI level 1, normal testing, and nothing special in terms of
defect prevention.

The excellent quality case assumes at least CMMI level 3, formal
inspections, static analysis, rigorous development such as the Team
Software Process (TSP), and the use of prototypes and joint application
design (JAD) for requirements gathering.

(Some readers may wonder why Agile development is not used for the
case studies. The main reason is that there are no Agile applications
in the 10,000– and 100,000–function point ranges. The Agile method
is used primarily for smaller applications in the 1000–function point
range.)

Although all of the case studies are derived from actual applications,
to make the calculations consistent, a number of simplifying assump-
tions are used. These assumptions include the following key points:

■ All cost data is based on a fully burdened cost of $10,000 per staff
month. A staff month is considered to have 132 working hours. This
is equivalent to $75.75 per hour.

Software Quality: The Key to Successful Software Engineering 635

■ Work months are assumed to consist of 22 days, and each day consists
of 8 hours. Unpaid overtime is not shown nor is paid overtime.

■ Defect potentials are the total numbers of defects found in five categories:
requirements defects, design defects, code defects, documentation
defects, and bad fixes, or secondary defects accidentally included in
defect repairs.

■ Creeping requirements are not shown. The sizes of the six case studies
reflect application size as delivered to clients.

■ Software reuse is not shown. All six cases can be assumed to reuse
about 15 percent of legacy code. But to simplify assumptions, the
defect potentials in the reused code and other materials are assumed
to equal defect potentials of new material. Larger volumes of certified
reusable material would significantly improve both the quality and
productivity of all six case studies, and especially so for the larger
systems above 10,000 function points.

■ Bad-fix injections are not shown. About 7 percent of attempts to repair
bugs accidentally introduce a new bug, but the mathematics of bad-fix
injection is complicated since the bugs are not found in the activity
where they originate.

■ The first year of maintenance is assumed to find 100 percent of latent
bugs delivered with the software. In reality, many bugs fester for
years, but the examples only show the first year of maintenance.

■ The maintenance data only shows defect repairs. Enhancements
and adding new features are excluded in order to highlight quality
value.

■ Maintenance defect repair rates are based on average values of
12 bugs fixed per staff month. In real life, ranges can run from fewer
than 4 to more than 20 bugs repaired each month.

■ Application staff size is based on U.S. average assignment scopes for
all classes of software personnel, which is approximately 150 function
points. That is, if you divide application size in function points by the
total staffing complement of technical workers plus project manag-
ers, the result will be close to 150 function points. This value includes
software engineers and also specialists such as quality assurance,
technical writers, and test personnel.

■ Schedules for the “average” cases are based on raising function point
size to the 0.4 power. This rule of thumb provides a fairly good approx-
imation of schedules from start of requirements to delivery in terms
of calendar months.

■ Schedules for the “excellent” cases are based on raising function point
size to the 0.36 power. This exponent works well with object-oriented

636 Chapter Nine

software and rigorous development practices. It is also a good fit for
Agile projects, except that the lack of data above 10,000 function
points for Agile makes the upper level uncertain.

■ Data in this section is expressed using the function point metric defined
by the International Function Point Users’ Group (IFPUG) version 4.2
of the counting rules. Other functional metrics such as COSMIC func-
tion points or engineering function points or Mark II function points
would yield different results from the values shown here.

■ Data on source code in this section is expressed using counts of logical
statements rather than counts of physical lines. There can be as much
as 500 percent difference in apparent code size based on whether
counts are physical or logical lines. The counting rules are those of
the author’s book Applied Software Measurement.

The reason for these simplifying assumptions is to minimize extra-
neous variations among the eight case studies, so that the data is pre-
sented in a consistent fashion for each. Because all of these assumptions
vary in real life, readers are urged to try out alternative values based on
their own local data or on benchmarks from organizations such as the
International Software Benchmarking Standards Group (ISBSG).

The simplifying assumptions serve to make the results consistent,
but each of the assumptions can change in either direction by fairly
large amounts.

The Value of Quality for Very Small
Applications of 100 Function Points

Small applications in this range usually have low defect potentials and
fairly high defect removal efficiency levels. This is because such small
applications can be developed by a single person, so there are no inter-
face problems between features developed by different individuals or
different teams. Table 9-24 shows quality value for very small applica-
tions of 100 function points.

Note that cost per defect goes up as quality improves; not down. This
phenomenon distorts economic analysis. As will be shown in the later
examples, cost per defect tends to decline as applications grow larger. This
is because large applications have many more defects than small ones.

Prototypes or applications in this size range are very sensitive to
individual skill levels, primarily because one person does almost all of
the work. The measured variations for this size range are about 5 to 1 in
how much code gets written for a given specification and about 6 to 1 in
terms of productivity and quality levels. Therefore, average values need
to be used with caution. Averages are particularly unreliable for applica-
tions where one person performs the bulk of the entire application.

Software Quality: The Key to Successful Software Engineering 637

The Value of Quality for Small Applications
of 1000 Function Points

For small applications of 1000 function points, quality starts to become
very important, but it is also somewhat easier to achieve than it is for
large systems. At this size range, teams are small and methods such
as Agile development tend to be dominant, other than for systems and
embedded software where more rigorous methods such as the Team
Software Process (TSP) and the Rational Unified Process (RUP) are
more common. Table 9-25 shows the value of quality for small applica-
tions in the 1000–function point range.

The bulk of the savings for the Excellent Quality column shown in
Table 9-25 would come from shorter testing schedules due to the use of
requirements, design, and code inspections. Other changes that added
value include the use of Team Software Process (TSP), static analysis
prior to testing, and the achievement of higher CMMI levels.

(Note: 100 function points = 12,500 C statements)

Average
Quality

Excellent
Quality Difference

Defects per function point 3.50 1.50 –2.00

Defect potential 350 150 –200.00

Defect removal efficiency 94.00% 99.00% 5.00%

Defects removed 329 149 –181

Defects delivered 21 2 –20

Cost per defect prerelease $379 $455 $76

Cost per defect postrelease $1,061 $1,288 $227

Development schedule (calendar months) 6 5 –1

Development staffing 1 1 0

Development effort (staff months) 6 5 –1

Development costs $63,096 $52,481 –$10,615

Function points per staff month 15.85 19.05 3.21

LOC per staff month 1,981 2,382 401

Maintenance staff 1 1 0

Maintenance effort (staff months) 2 0 –1.63

Maintenance costs (year 1) $17,500 $1,250 –$16,250

TOTAL EFFORT 8 5 –3

TOTAL COST $80,596 $53,731 –$26,865

TOTAL COST PER STAFF MEMBER $40,298 $26,865 –$13,432

TOTAL COST PER FUNCTION POINT $805.96 $537.31 –$269

TOTAL COST PER LOC $6.45 $4.30 –$2.15

AVERAGE COST PER DEFECT $720 $871 $152

TABLE 9-24 Quality Value for 100 Function Point Applications

638 Chapter Nine

In the size range of 1000 function points, numerous methods are fairly
effective. For example, both Agile development and extreme program-
ming report good results in this size range as do the Rational Unified
Process (RUP) and the Team Software Process (TSP).

The Value of Quality for Large Applications
of 10,000 Function Points

When software applications reach 10,000 function points, they are
very significant systems that require close attention to quality control,
change control, and corporate governance. In fact, without careful qual-
ity and change control, the odds of failure or cancellation top 35 percent
for this size range.

Note that as application size increases, defect potentials increase rap-
idly and defect removal efficiency levels decline, even with sophisticated
quality control steps in place. This is due to the exponential increase in

(Note: 1000 function points = 125,000 C statements)

Average
Quality

Excellent
Quality Difference

Defects per function point 4.50 2.50 –2.00

Defect potential 4,500 2,500 –2,000

Defect removal efficiency 93.00% 97.00% 4.00%

Defects removed 4,185 2,425 –1,760

Defects delivered 315 75 –240.00

Cost per defect prerelease $341 $417 $76

Cost per defect postrelease $909 $1,136 $227

Development schedule (calendar months) 16 12 –4

Development staffing 7 7 0.00

Development effort (staff months) 106 80 –26

Development costs $1,056,595 $801,510 –$255,086

Function points per staff month 9.46 12.48 3.01

LOC per staff month 1,183 1,560 376.51

Maintenance staff 2 2 0

Maintenance effort (staff months) 26 6 –20.00

Maintenance costs (year 1) $262,500 $62,500 –$200,000

TOTAL EFFORT 132 86 –46

TOTAL COST $1,319,095 $864,010 –$455,086

TOTAL COST PER STAFF MEMBER $158,291 $103,681 –$54,610

TOTAL COST PER FUNCTION POINT $1,319.10 $864.01 –$455

TOTAL COST PER LOC $10.55 $6.91 –$3.64

AVERAGE COST PER DEFECT $625 $776 $152

TABLE 9-25 Quality Value for 1000–Function Point Applications

Software Quality: The Key to Successful Software Engineering 639

the volume of paperwork for requirements and design, which often leads
to partial inspections rather than 100 percent inspections. For large
systems, test coverage declines and the number of test cases mounts rap-
idly, but cannot usually keep pace with complexity. Table 9-26 shows the
increasing value of quality as size goes up to 10,000 function points.

Cost savings from better quality increase as application sizes increase.
The general rule is that the larger the software application, the more valu-
able quality becomes. The same principle is true for change control, because
the volume of creeping requirements goes up with application size.

For large systems, the available methods that demonstrate improve-
ment begin to decline. For example, Agile methods are difficult to apply,
and when they are, the results are not always good. For large systems,
rigorous methods such as the Rational Unified Process (RUP) or Team
Software Process (TSP) yield the best results and have the greatest
amount of empirical data.

(Note: 10,000 function points = 1,250,000 C statements)

Average
Quality

Excellent
Quality Difference

Defects per function point 6.00 3.50 –2.50

Defect potential 60,000 35,000 –25,000

Defect removal efficiency 84.00% 96.00% 12.00%

Defects removed 50,400 33,600 –16,800

Defects delivered 9,600 1,400 –8,200

Cost per defect prerelease $341 $417 $76

Cost per defect postrelease $833 $1,061 $227

Development schedule (calendar months) 40 28 –12

Development staffing 67 67 0.00

Development effort (staff months) 2,654 1,836 –818

Development costs $26,540,478 $18,361,525 –$8,178,953

Function points per staff month 3.77 5.45 1.68

LOC per staff month 471 681 209.79

Maintenance staff 17 17 0

Maintenance effort (staff months) 800 117 –683.33

Maintenance costs (year 1) $8,000,000 $1,166,667 –$6,833,333

TOTAL EFFORT (STAFF MONTHS) 3,454 1,953 –1501

TOTAL COST $34,540,478 $19,528,191 –$15,012,287

TOTAL COST PER STAFF MEMBER $414,486 $234,338 –$180,147

TOTAL COST PER FUNCTION POINT $3,454.05 $1,952.82 –$1,501.23

TOTAL COST PER LOC $27.63 $15.62 –$12.01

AVERAGE COST PER DEFECT $587 $739 $152

TABLE 9-26 Quality Value for 10,000–Function Point Applications

640 Chapter Nine

The Value of Quality for Very Large
Applications of 100,000 Function Points

Software applications in the 100,000–function point range are among
the most costly endeavors of modern business. These large systems
are also hazardous, because many of them fail, and almost all of them
exceed their budgets and planned schedules.

Without excellence in software quality control, the odds of complet-
ing a software application of 100,000 function points are only about
20 percent. The odds of finishing it on time and within budget hover
close to 0 percent.

Even with excellent quality control and excellent change control, mas-
sive applications in the 100,000–function point range are expensive
and troublesome. Table 9-27 illustrates the two cases for such massive
applications.

(Note: 100,000 function points = 12,500,000 C statements)

Average
Quality

Excellent
Quality Difference

Defects per function point 7.00 4.00 –3.00

Defect potential 700,000 400,000 –300,000

Defect removal efficiency 81.00% 94.00% 13.00%

Defects removed 567,000 376,000 –191,000

Defects delivered 133,000 24,000 –109,000

Cost per defect prerelease $303 $379 $76

Cost per defect postrelease $758 $985 $227

Development schedule (calendar months) 100 63 –37

Development staffing 667 667 0.00

Development effort (staff months) 66,667 42,064 –24,603

Development costs $666,666,667 $420,638,230 –$246,028,437

Function points per staff month 1.50 2.38 0.88

LOC per staff month 188 297 109.67

Maintenance staff 167 167 0

Maintenance effort (staff months) 11,083 2,000 –9,083

Maintenance costs (year 1) $110,833,333 $20,000,000 –$90,833,333

TOTAL EFFORT 77,750 44,064 –33686

TOTAL COST $777,500,000 $440,638,230 –$336,861,770

TOTAL COST PER STAFF MEMBER $933,000 $528,766 –$404,234

TOTAL COST PER FUNCTION POINT $7,775.00 $4,406.38 –$3,368.62

TOTAL COST PER LOC $62.20 $352.51 $290.31

AVERAGE COST PER DEFECT $530 $682 $152

TABLE 9-27 Quality Value for 100,000–Function Point Applications

Software Quality: The Key to Successful Software Engineering 641

There are several reasons why defect potentials are so high for mas-
sive applications and why defect removal efficiency levels are reduced.
The first reason is that for such massive applications, requirements
changes will be so numerous that they exceed most companies’ ability
to control them well.

The second reason is that paperwork volumes tend to rise with applica-
tion size, and this slows down activities such as inspections of requirements
and design. As a result, massive applications tend to use partial inspec-
tions rather than 100 percent inspections of major deliverable items.

A third reason, which was worked out mathematically at IBM in the
1970s, is that the number of test cases needed to achieve 90 percent
coverage of code rise exponentially with size. In fact, the number of test
cases required to fully test a massive system of 100,000 function points
approaches infinity. As a result, testing efficiency declines with size,
even though static analysis and inspections stay about the same.

A useful rule of thumb for predicting overall number of test cases is to
raise application size in function points to the 1.2 power. As can be seen,
test case volumes rise very rapidly, and most companies cannot keep
pace, so test coverage declines. Automated static analysis is still effec-
tive. Inspections are also effective, but for 100,000 function points, partial
inspections of key deliverables are the norm rather than 100 percent
inspections. This is because paperwork volumes also rise exponentially
with size.

Return on Investment in Software Quality

As already mentioned, the value of software quality goes up as appli-
cation size goes up. Table 9-28 calculates the approximate return on
investment for the “excellent” case studies of 100 function points, 1000
function points, 10,000 function points, and 100,000 function points.

Here too the assumptions are simplified to make calculations easy
and understandable. The basic assumption is that every software team
member needs five days of training to get up to speed in software inspec-
tions and the Team Software Process (TSP). These training days are
then multiplied by average hourly costs of $75.75 per employee.

These training expenses are then divided into the total savings figure
that includes both development and maintenance savings due to high
quality. The final result is the approximate ROI based on dividing value
by training expenses. Table 9-28 illustrates the ROI calculations.

The ROI figure reflects the total savings divided by the total train-
ing expenses needed to bring team members up to speed in quality
technologies.

In real life, these simple assumptions would vary widely, and other
factors might also be considered. Even so, high levels of software quality

642 Chapter Nine

have a very solid return on investment due to the reduction in develop-
ment schedules, development costs, and maintenance costs.

There may be many other topics where software engineers and man-
agers need training, and there may be other cost elements such as the
costs of ascending to the higher levels of the capability maturity model.
While the savings from high quality are frequently observed, the exact
ROI will vary based on the way training and process improvement work
is handled under local accounting rules.

If the reduced risks of cancelled projects or major overruns were
included in the ROI calculations, the value would be even higher.

Other technologies such as high volumes of certified reusable mate-
rial would also have a beneficial impact on both quality and productiv-
ity. However, as this book is written in 2009, only limited sources are
available for certified reusable materials. Uncertified reuse is hazardous
and may even be harmful rather than beneficial.

Summary and Conclusions

In spite of the fact that the software industry spends more money on
finding and fixing bugs than any other activity, software quality remains
ambiguous and poorly covered in the software engineering literature.

There are dozens of books on software quality and testing, but hardly
any of them contain quantitative data on defect volumes, numbers of
test cases, test coverage, or the costs associated with defect removal
activities.

Even worse, much of the literature on quality merely cites urban
legends of how “cost per defect rises throughout development and into
the field,” without realizing that such a trend is caused by ignoring
fixed costs.

Software quality does have value, and the value increases as applica-
tion sizes get bigger. In fact, without excellence in quality control, even
completing a large software application is highly unlikely. Completing
it on time and within budget in the absence of excellent quality control
is essentially impossible.

TABLE 9-28 Return on Investment in Software Quality

Function point size 100 1,000 10,000 100,000

Education hours 80 560 5,360 53,360

Education costs $6,060 $42,420 $406,020 $4,042,020

Savings from high quality $26,865 $455,086 $15,012,287 $336,861,770

Return on investment (ROI) $4.43 $10.73 $36.97 $83.34

Software Quality: The Key to Successful Software Engineering 643

Readings and References

Beck, Kent. Test-Driven Development. Boston, MA: Addison Wesley, 2002.
Chelf, Ben and Raoul Jetley. Diagnosing Medical Device Software Defects Using Static

Analysis. San Francisco, CA: Coverity Technical Report, 2008.
Chess, Brian and Jacob West. Secure Programming with Static Analysis. Boston, MA:

Addison Wesley, 2007.
Cohen, Lou. Quality Function Deployment—How to Make QFD Work for You. Upper

Saddle River, NJ: Prentice Hall, 1995.
Crosby, Philip B. Quality is Free. New York, NY: New American Library, Mentor Books,

1979.
Everett, Gerald D. and Raymond McLeod. Software Testing. Hoboken, NJ: John Wiley &

Sons, 2007.
Gack, Gary. Applying Six Sigma to Software Implementation Projects. http://software

.isixsigma.com/library/content/c040915b.asp.
Gilb, Tom and Dorothy Graham. Software Inspections. Reading, MA: Addison Wesley,

1993.
Hallowell, David L. Six Sigma Software Metrics, Part 1. http://software.isixsigma.com/

library/content/c03910a.asp.
International Organization for Standards. ISO 9000 / ISO 14000. http://www.iso.org/iso/

en/iso9000-14000/index.html.
Jones, Capers. Software Quality—Analysis and Guidelines for Success. Boston, MA:

International Thomson Computer Press, 1997.
Kan, Stephen H. Metrics and Models in Software Quality Engineering, Second Edition.

Boston, MA: Addison Wesley Longman, 2003.
Land, Susan K., Douglas B. Smith, John Z. Walz. Practical Support for Lean Six Sigma

Software Process Definition: Using IEEE Software Engineering Standards. Los
Alamitos, CA; Wiley-IEEE Computer Society Press, 2008.

Mosley, Daniel J. The Handbook of MIS Application Software Testing. Englewood Cliffs,
NJ: Yourdon Press, Prentice Hall, 1993.

Myers, Glenford. The Art of Software Testing. New York, NY: John Wiley & Sons, 1979.
Nandyal. Raghav. Making Sense of Software Quality Assurance. New Delhi: Tata

McGraw-Hill Publishing, 2007.
Radice, Ronald A. High Quality Low Cost Software Inspections. Andover, MA:

Paradoxicon Publishing, 2002.
Wiegers, Karl E. Peer Reviews in Software—A Practical Guide. Boston, MA: Addison

Wesley Longman, 2002.

This page intentionally left blank

645

Index

A
abeyant defects, 512
access control lists (ACLs), 143
acquisition, circa 2049, 204–207
activities, 60
activity-level productivity and

quality benchmarks, 416–417
actors, 373
administrative access, 143
administrative rights, 149
adware, 142–143
Agile

requirements with embedded
users, 456

self-organizing Agile teams,
289–293

taxonomy for software
methodology analysis, 66–67

algorithm view, 481
analogy, sizing by, 363–365
appraisals

for software personnel, 50–51
of technical staff, 45–46

approval, 90
approximations, 383
architects, 623–624
architecture

best practices, 75–77
circa 2049, 210–213
enterprise, 210–213, 475–479
software, 470–475
See also service-oriented

architecture (SOA)
assemblers, 491
assembly languages, 491
assessment benchmarks, 419–421

assignment scope, 620
attribute view, 482
attributes, 60
attrition benchmarks, 426
authentication, authorization, and

access, 143
Authorization Oriented

Architecture (Hamer-Hodges),
140, 141

automated debugging, for defect
removal, 531

automated static analysis
as defect prevention, 523
for defect removal, 531–533

automated unit testing, for defect
removal, 535–536

award benchmarks, 428–429

B
back doors, 143–144
backfiring, 318

sizing legacy applications based
on, 385–389

bad fixes, 513
bad-fix injections, 337
balanced matrix, 306

See also matrix management
baselines, best practices, 112–115
benchmarking, 408–411
benchmarks

academic benchmarks, 410
activity-level productivity and

quality benchmarks, 416–417
assessment benchmarks,

419–421
award benchmarks, 428–429

646 Index

benchmarks (continued)
best practices, 112–115
blind benchmarks, 430
categories of, 411–413
chart of accounts for activity-

level software benchmarks, 68
consultant collection for internal

benchmarks, 409
consultant collection for

proprietary benchmarks, 410
corporate software portfolio

benchmarks, 415
cost of quality (COQ)

benchmarks, 423
customer satisfaction

benchmarks, 427
earned-value benchmarks, 422
hybrid assessment and

benchmark studies, 421–422
industry benchmarks, 413–414
internal collection for internal

benchmarks, 409
internal collection for public or

ISBSG benchmarks, 410
international software

benchmarks, 413
ISO quality benchmarks, 424
methodology, 418–419
open benchmarks, 429
organizations, 430–431
overall software cost and

resource benchmarks, 414
partly open benchmarks, 429–430
phase-level productivity and

quality benchmarks, 415–416
quality and test coverage

benchmarks, 422–423
reporting methods for benchmark

and assessment data,
431–433

security benchmarks, 424–425
Six Sigma benchmarks,

423–424
software compensation

benchmarks, 426
software data center

benchmarks, 427
software litigation and failure

benchmarks, 428

software maintenance
and customer support
benchmarks, 417–418

software outsource vs. internal
performance benchmarks, 417

software performance
benchmarks, 426–427

software personnel and skill
benchmarks, 425–426

software turnover and attrition
benchmarks, 426

software usage benchmarks,
427–428

types of benchmark studies
performed, 429–430

best practices, 39–41
30 best practices for 1000– and

10,000–function point
projects, 31

30 best practices of IT projects
and embedded/systems
projects, 32

appraisals and career planning
for software personnel, 50–51

canceling or turning around
troubled projects, 84–86

certification of reusable
materials, 101–107

certifying methods, tools, and
practices, 64–70

certifying software engineers,
specialists, and managers,
94–97

communication during software
projects, 97–99

configuration control, 119–120
customer support of software

applications, 156–158
defining and evaluating, 7–10
early sizing and scope control of

software applications, 51–53
executive management support of

software applications, 74–75
inspections and static analysis,

124–128
international software standards,

135–136
minimizing harm from layoffs

and downsizing, 41–45

Index 647

motivation and morale of
managers and executives,
47–50

motivation and morale of
technical staff, 45–47

outsourcing software
applications, 53–58

programming or coding,
107–109

protecting against viruses,
spyware, and hacking,
138–153

protecting intellectual property
in software, 136–138

requirements of software
applications, 70–72

selecting software methods, tools,
and practices, 59–64

selection and hiring of software
personnel, 50

software architecture and design,
75–77

software benchmarks and
baselines, 112–115

software change control before
release, 117–119

software change management
after release, 159–161

software deployment and
customization, 154–155

software maintenance and
enhancement, 161–164

software performance analysis,
134–135

software project cost estimating,
79–81

software project governance,
109–110

software project measurements
and metrics, 110–112

software project milestone and
cost tracking, 115–116

software project organization
structures, 87–89

software project planning, 77–78
software project risk analysis,

81–83
software project value analysis,

83–84

software quality assurance
(SQA), 120–124

software reusability, 99–101
software security analysis and

control, 132–134
software warranties and recalls,

158–159
terminating or withdrawing

legacy applications, 166–167
testing and test library control,

128–132
training clients or users of

software applications,
155–156

training managers of software
projects, 89–91

training software technical
personnel, 91–92

updates and releases of software
applications, 164–165

use of software specialists,
92–94

user involvement in software
projects, 72–73

using contractors and
management consultants,
58–59

See also neutral practices; worst
practices

black box testing, 128, 329, 533
See also testing

blacklists, 148
blind benchmarks, 430
bohrbug, 135
books, 258–259, 260–263
bot herders, 144
botnets, 144
browser hijackers, 144
browsing, 244
bugs, 509–512
business analysis, 468–470
business analysts, 625–626

C
canceling troubled projects, best

practices, 84–86
capability-based security, 143
career planning, for software

personnel, 50–51

648 Index

cautions and counter indications
customer support

organizations, 327
hierarchical organizations, 304
matrix organizations, 308
one-person projects, 286
pair programming, 289
self-organizing Agile teams, 293
software maintenance

organizations, 321
software test organizations, 340
Team Software Process (TSP)

teams, 297
certification

best practices, 94–97
circa 2049, 218–220
influence of on defect prevention

and removal, 604
and specialization, 241

certification of reusable materials,
best practices, 101–107

certification of web sites, 142
certifying methods, tools, and

practices, best practices, 64–70
change control before release, best

practices, 117–119
change management after release,

best practices, 159–161
chart of accounts for activity-level

software benchmarks, 68
class, defined, 65
client management, 90
cloud computing, 474–475
code complexity, 393, 451
code inspections, 125
code reuse, as defect

prevention, 521
code structure, as defect

prevention, 525–526
coding, best practices, 107–109
colocation, vs. distributed

development, 278–281
commercial education, 250–252
communication, best practices,

97–99
compensation benchmarks, 426
compilers, 491
complexity of software, 122

conferences, 254–255
configuration control, best

practices, 119–120
contractors, best practices, 58–59
cookie poisoning, 145
cookies, 144–145
corporate software portfolio

benchmarks, 415
cost, of learning methods, 230
cost drivers for software

applications, 2
revised sequence circa 2019, 3

cost estimating, best practices,
79–81

cost of quality control and defect
repairs, 122–123

cost of quality (COQ), 590–591
benchmarks, 423

cost per defect, 17–18
cost tracking, best practices,

115–116
cost-estimating tool circa 2049,

features, 178–179, 193
costs, of software development, 4–5
creeping requirements, 457

quality impacts of, 584–585
See also requirements creep

critical topics, 19–23
Crosby, Phil, 123
CrossTalk, 257
cumulative defect removal

efficiency, 330, 515
currency, 230
curricula, proposed, 269–273
customer satisfaction, 121

benchmarks, 427
customer support

benchmarks, 417–418
best practices, 156–158
circa 2049, 188–190

customer support organizations,
322–328

customer training, circa 2049,
190–191

customization, best practices,
154–155

Cutter Journal, 257
cyberextortion, 145

Index 649

cyberstalking, 145
cyclomatic complexity, 516, 526

D
data center benchmarks, 427
data complexity, 393, 451–452
data defects, 513
data mining for legacy

requirements, 457–458
data quality specialists, 625
data view, 481–482
database analysts, 623
defect discovery point, 587–588, 589
defect origin point, 588–590
defect potential, 69, 422, 515, 562

overview, 573
predicting, 578–579
for a sample application, 580

defect prevention, 130–131,
330–331, 518

forms of, 520–529
influence of certification on, 604
international standards, 606
methods and techniques, 602
metrics and measures, 604
optimal activities, 575
overview, 600–608
proposal for a nonprofit

international software quality
foundation, 608–613

usage patterns of defect
prevention methods,
607–608

defect quantities and origins,
121–122

defect removal, 130, 131, 518–520
effort accumulation, 594
forms of, 529–537
forms of software defect removal

activities, 332
influence of certification on, 604
international standards, 606
for legacy applications, 536–537
metrics and measures, 604
optimal activities, 575
overview, 613–619
overview of 80 varieties of

activities, 615–617

synergies and combinations
of, 537

defect removal efficiency, 69–70,
122, 422, 515, 562

costs, 599
cumulative defect removal

efficiency, 330, 515
by defect type, 336
levels, 596–597
measuring, 593–600

defect repair rates, 314
defect severity levels, 122, 512, 571

accumulation, 595
defects

causes, 571
defined, 512
defining and predicting,

570–578
examples of defects per KLOC

and function point, 582
kinds of defects occurring in

source code, 509–512
logistics of software code defects,

512–516
overview of delivered software

defects, 574
percentages of defects by

origin, 579
points of origin, 570
predicting, 579–584

delivered defects by
application, 122

delivered defects, reliability and
customer satisfaction, 600

delivery productivity, 540–541, 581
demographics

customer support organizations,
325–326

hierarchical organizations,
302–303

matrix organizations, 306
one-person projects, 284
pair programming, 288
self-organizing Agile teams, 291
software maintenance

organizations, 319
software quality assurance (SQA)

organizations, 345

650 Index

demographics (continued)
software test organizations,

337–338
Team Software Process (TSP)

teams, 295
denial of service, 145–146
deployment

best practices, 154–155
circa 2049, 190–191
paths, 12–14
quantifying, 16–19

design, 479–480
best practices, 75–77
circa 2049, 182–184
views, 481–484

desk checking, for defect removal,
530–531

development
circa 2049, 184–186
paths, 10–12
practices by size of

application, 11
quantifying, 16–19

development methodology. See
development process

development process, 61–62
development productivity,

540–541, 581
disposable prototypes, 460
distributed development, vs.

colocation, 278–281
documentation, circa 2049,

186–188
dotted line reporting authority, 305
downsizing, best practices for

minimizing harm from, 41–45
drivers, 286
due diligence, circa 2049, 216–218

E
earned quality value (EQV), 590
earned value, 111
earned-value benchmarks, 422
e-bombs, 146
e-books, 246–247, 258–259
economic value of quality, 123
education

commercial, 250–252

graduate university education,
265–266

in-house, 248–249
knowledge areas, 232
learning methods, 227–230
proposed curricula, 269–273
ranking of learning channels in

2009, 231
topics software engineers need to

learn in 2009, 230–233
undergraduate university

education, 263–265
vendor, 252–253

e-learning, 245–246
electromagnetic pulse (EMP), 146
electromagnetic radiation,

146–147
electronic books, 246–247, 258–259
e-mail address harvesting, 150
EMP. See electromagnetic

pulse (EMP)
end user license agreements

(EULAs), 158–159
enhancements, 103, 104

best practices, 161–164
circa 2049, 191–195
enhancement value of high-

quality reusable
materials, 105

paths, 14–16
enterprise architects, 622
enterprise architecture, 475–479

circa 2049, 210–213
value of increases with

applications, 477
entropy, 315
error-prone modules, 316–318, 514
essential complexity, 516, 526
estimated software security

costs, 153
estimating, defined, 78
estimating specialists, 626
EULAs. See end user license

agreements (EULAs)
evaluation, circa 2049, 204–207
evangelists, 236–240
evolutionary prototypes, 460
executable English, 458

Index 651

executives
management support of software

applications, 74–75
motivation and morale, 47–50

external view, 481
externally caused defects, 513

F
facilitation, 90
Fagan, Michael, 124
failure benchmarks, 428
failure rate, 5
false positives, 512, 572
focus groups, 121, 458–459
formal inspections, 125
function point analysis, sizing

based on, 376–379
function point approximations,

high-speed sizing using,
383–385

Function Point Outlook tool, 384–
385

function point specialists, 630–631
function points

number of pages created per
function point, 377

sizing using function point
variations, 380–383

See also micro function points
functional requirements, 459
funding, 90

G
Gilb, Tom, 124, 125
governance, 476

best practices, 109–110
graduate university education,

265–266
gray box testing, 128, 329

See also testing

H
hacking, 147
hacking protection, best practices,

138–153
heisenbug, 134–135
hierarchical organizations,

298–304

high-level programming
languages, 491

as defect prevention, 524
hiring, software personnel, 50
Hull, Raymond, 301
hybrid assessment and benchmark

studies, 421–422

I
identity theft, 147

insurance, 142
IEEE Computer, 257
IFPUG

sizing based on IFPUG function
point analysis, 376–379

See also function point analysis;
function points

-ility words, 561–563
incidents, 514
industry benchmarks, 413–414
Information Technology

Infrastructure Library
(ITIL), 196

information technology (IT)
organizations, vs. systems
software organizations,
277–278

Information Technology Metrics
and Productivity Institute
Journal, 258

in-house education, 248–249
inspection moderators, 632
inspections

best practices, 124–128
as defect prevention, 522–523

instrumentation, 134
intangible value, 84
intellectual property protection,

best practices, 136–138
intepreters, 491
international software

benchmarks, 413
international software quality

foundation (ISQF), proposal for,
608–613

international software standards,
best practices, 135–136

invalid defects, 512

652 Index

ISO quality benchmarks, 424
ITIL. See Information Technology

Infrastructure Library (ITIL)

J
Joint Application Design (JAD),

requirements, 459
journals, 257–258

K
Kawasaki, Guy, 240
key practice areas, 120
keystroke loggers, 147–148
knowledge areas, circa 2009, 232
knowledge representation, 481

L
language development

chronology of, 494
history of, 490–491
See also programming languages

layoff, best practices for minimizing
harm from, 41–45

learning effectiveness, 230
learning efficiency, 230
learning methods

commercial education, 250–252
education channels available in

1995, 229
electronic books, 246–247
evaluating, 229–230
evolution of learning channels,

228–230
gaps in training circa 2009,

266–267
graduate university education,

265–266
in-house education, 248–249
live conferences, 254–255
mentoring, 260
new directions in software

learning, 267–268
omissions from, 227–228,

266–267
on-the-job training, 259–260
professional books, monographs,

and technical reports, 260–263

proposed curricula, 269–273
ranking of learning channels in

2009, 231
self-study using books, e-books,

and training material,
258–259

self-study with CDs or DVDs,
249–250

simulation web sites,
256–257

software journals, 257–258
undergraduate university

education, 263–265
vendor education, 252–253
web browsing, 244
webinars, podcasts, and

e-learning, 245–246
wiki sites, 255–256
See also knowledge areas;

training
legacy defects, 514
licensing

circa 2049, 218–220
and specialization, 241

lines of code (LOC), 17
circa 1960, 538–539
circa 1970, 539–542
circa 1980, 542–546
circa 1990, 546–548
circa 2000, 548–549
circa 2010, 549–550
circa 2020, 550–551
overview, 537–538
sizing based on, 366–370

litigation
benchmarks, 428
circa 2049, 221–225

live conferences, 254–255
LOC. See lines of code (LOC)
LOC to function point conversion

ratios of logical source code
statements to function
points, 387

sizing legacy applications based
on, 385–389

logistical view,
482–483

Index 653

M
macro viruses, 151
maintenance, 103

benchmarks, 417–418
best practices, 161–164
circa 2049, 191–195
kinds of maintenance work, 311
maintenance value of high-

quality reusable
materials, 104

paths, 14–16
quantifying, 16–19
software maintenance

organizations, 309–322
specialists, 631–632

maintenance assignment scope,
314, 418

malicious software engineers,
514–515

malware, 148
management consultants, best

practices, 58–59
managers

motivation and morale, 47–50
training, 89–91

mandelbug, 135
manual unit testing, for defect

removal, 533–535
matrix management, 304–308
measurements, as defect

prevention, 527–528
measurements and metrics, best

practices, 110–112
mentoring, 260
methodologies, as defect

prevention, 527–528
methodologies, practices, and

results, 24–29
methodology benchmarks, 418–419
Metric Views, 257
micro function points, 318
milestone tracking, best practices,

115–116
milestones

defined, 116
tracking milestones for large

software projects, 404–405

monographs, 260–263
monthly status reports, 406
motivation and morale

of managers and executives,
47–50

of technical staff, 45–47

N
nature, 60

defined, 65
navigators, 286
neutral practices, 17, 24, 35

See also best practices; worst
practices

nonfunctional requirements, 459
Northern Scope, 53

O
object code, 491
object-oriented (OO) paradigm,

181–182
observers, 286
occupation titles, 235–236
one-person projects, 284–286
online education, 229
on-the-job training, 259–260
open benchmarks, 429
organization structures

best practices, 87–89
customer support organizations,

322–328
hierarchical organizations,

298–304
matrix organizations, 304–308
one-person projects, 284–286
pair programming, 286–289
self-organizing Agile teams,

289–293
software maintenance

organizations, 309–322
software quality assurance (SQA)

organizations, 342–348
software test organizations,

328–342
specialist organizations, 308–309
Team Software Process (TSP)

teams, 293–298

654 Index

outsourcing
best practices, 53–58
circa 2049, 195–204
distribution of outsource results

after 24 months, 54
overall software cost and resource

benchmarks, 414

P
pair programming, 108, 286–289

as defect prevention, 528
partly open benchmarks, 429–430
pattern matching

initial starting values for sizing
by, 395

requirements, 459–460
sizing based on, 389–401

pattern view, 482
patterns, 389

150 applications sized used
pattern matching, 396–400

architectural, 76–77
as defect prevention, 521–522
staffing patterns for software

projects, 88
payloads, 152
performance benchmarks, 426–427
performance issues, 515–516
performance specialists, 627
personnel

appraisals and career planning,
50–51

motivation and morale, 45–47
ratio of specialists to general

software personnel, 241–243
selection and hiring of, 50
See also specialists

Peter, Lawrence J., 301
the Peter Principle, 301
phase-level productivity and

quality benchmarks, 415–416
phishing, 148

See also spear phishing
physical security, 148
piracy, 148–149
planning

best practices, 77–78
defined, 78

podcasts, 245–246
polymorphic viruses, 151
portfolio analysis, circa 2049,

210–213
private defect removal, 529–530
Priven, Lew, 124
problem complexity, 392, 451
problem domains of software

applications, 500
problem tracking, 403–408
process assessments, 411–412
productivity rates

customer support
organizations, 326

hierarchical organizations, 303
matrix organizations, 307
one-person projects, 285
pair programming, 288
self-organizing Agile teams,

291–292
software maintenance

organizations, 320
software quality assurance (SQA)

organizations, 345
software test organizations, 338
Team Software Process (TSP)

teams, 296
professional malpractice

defined, 34
methods and practices considered

professional malpractice, 34
profilers, 134
programming

best practices, 107–109
history of, 490–491
pair programming, 108

programming languages, 492–495
chronology of programming

language development, 494
creating a national programming

language translation center,
501–504

estimated number of software
engineers by language, 507

how many needed, 499–501
how many programmers use

various languages,
506–508

Index 655

impact of multiple languages
on cost, 505

multiple languages in the same
applications, 504–505

popularity of, 494–499
typed vs. un-typed, 494
used for critical software

applications, 503
progress tracking, 403–408
project class, 391, 449–450
project management

numbers and size ranges of
project management
tools, 356

overview, 351–359
performance circa 2009, 352
performance on successful and

unsuccessful projects, 355
potential performance

by 2019, 353
See also sizing of software

applications
project nature, 390, 448–449
project offices, 78
project planning, best practices,

77–78
project risk analysis, best practices,

81–83
project scope, 390–391, 449
project size

customer support
organizations, 326

hierarchical organizations, 303
matrix organizations, 306–307
one-person projects, 284–285
pair programming, 288
self-organizing Agile

teams, 291
software maintenance

organizations, 319
software quality assurance (SQA)

organizations, 345
software test organizations, 338
Team Software Process (TSP)

teams, 295–296
project type, 391–392, 450
project value analysis, best

practices, 83–84

protecting intellectual property,
best practices, 136–138

prototypes, 460
as defect prevention, 525

Q
quality

applying definitions to Vista,
565–570

customer support organizations,
326–327

defining, 558–565
economic value of quality, 633–642
hierarchical organizations, 303
impact of creeping requirements,

584–585
matrix organizations, 307
measuring, 585–587
one-person projects, 285
overview, 555–558
pair programming, 289
rank order of quality factors by

importance, 577
return on investment in quality,

641–642
self-organizing Agile teams, 292
software maintenance

organizations, 320–321
software quality assurance (SQA)

organizations, 346
software test organizations, 339
Team Software Process (TSP)

teams, 296
value of for applications of 100

function points, 636–637
value of for applications of 1000

function points, 637–638
value of for applications of 10,000

function points, 638–639
value of for applications of

100,000 function points,
640–641

See also defect prevention; defect
removal

quality benchmarks, 422–423
quality function deployment (QFD),

requirements, 460–461
quality specialists, 619–632

656 Index

R
Radice, Ron, 124
recalls, best practices, 158–159
refactoring, 162
releases, best practices, 164–165
renovation, 14, 313, 499–500
renovation productivity, 314
requirements, 439

Agile requirements with
embedded users, 456

completeness by software
size, 445

creating taxonomies of reusable
software requirements,
447–456

creeping requirements, 457
data mining for legacy

requirements, 457–458
defects by application size, 446
defects per function point, 445
engineering, 461
executable English, 458
focus groups, 458–459
functional and nonfunctional

requirements, 459
inspections, 462
Joint Application Design

(JAD), 459
pages per function point, 444
pages produced by application

size, 444
pattern matching, 459–460
prototypes, 460
quality function deployment

(QFD), 460–461
reusable requirements, 463–464
security requirements

deployment (SRD), 464–465
statistical analysis of software

requirements, 442–447
structure and contents of

software requirements,
440–442

toxic requirements that cause
serious harm, 446

traceability, 462–463
unified modeling language

(UML), 465–466

use-cases, 466
user stories, 466–467

requirements analysis, circa 2049,
179–182

requirements analysts, 629–630
requirements changes, sizing,

401–402
requirements churn, 202, 402, 403
requirements creep, 402, 403

quality impacts of, 584–585
requirements of software

applications, best practices,
70–72

reusability, best practices, 99–101
reusable materials

certification of, 101–107
customer support value of

high-quality reusable
materials, 105

development value of
high-quality reusable
materials, 103

enhancement value of
high-quality reusable
materials, 105

maintenance value of
high-quality reusable
materials, 104

total cost of ownership of
high-quality reusable
materials, 106

reusable requirements, 463–464
reused defects, 514
reverse appraisals, of technical

staff, 45–46
risk analysis, best practices, 81–83
risk analysis specialists, 620–622
rogue security sites, 144
root users, 149
rootkits, 149

S
SANS report, 509–512
Sarbanes-Oxley (SOX) Act,

109–110
schedules

customer support
organizations, 326

Index 657

hierarchical organizations, 303
matrix organizations, 307
one-person projects, 285
pair programming, 288
self-organizing Agile teams, 292
software maintenance

organizations, 320
software quality assurance (SQA)

organizations, 345–346
software test organizations, 339
Team Software Process (TSP)

teams, 296
schrodenbug, 135
scope, defined, 65
scope control, best practices,

51–53
scope managers, 53
Scrum masters, 291
Scrum sessions, 290–291
secondhand defects, 512–513
security analysis and control, best

practices, 132–134
security benchmarks, 424–425
security costs, 153
security requirements deployment

(SRD), 464–465
security specialists, 624–625
security view, 482
security vulnerabilities, 514
segmentation, as defect prevention,

526–527
SEI scoring system for the

CMM, 419
selecting software methods, tools,

and practices, best practices,
59–64

self-organizing Agile teams,
289–293

self-study
using books, e-books, and

training material, 258–259
using CDs or DVDs, 249–250

Selling of the Dream
(Kawasaki), 240

Service and Support Professionals
Association (SSPA), 323–324

service-oriented architecture
(SOA), 101, 181–182, 474

Shoulders Corporation, project
tracking method, 116

simulation web sites, 256–257
Six Sigma

benchmarks, 423–424
as defect prevention, 528
specialists, 622

size of application, 60
sizing of software applications,

359–363
based on IFPUG function point

analysis, 376–379
based on pattern matching,

389–401
best practices, 51–53
deliverables whose sizes should

be quantified, 360–361
high-speed sizing using function

point approximations,
383–385

legacy applications based on
backfiring or LOC to function
point conversion, 385–389

requirements changes, 401–402
traditional sizing based on

lines of code (LOC) metrics,
366–370

traditional sizing by analogy,
363–365

using function point variations,
380–383

using story point metrics,
370–373

using use-case metrics,
373–376

See also scope control
smart card hijacking, 149
SOA. See service-oriented

architecture (SOA)
software architecture, 470–475

value of increases with structural
size, 471

Software Assurance (SwA), 139
software compensation

benchmarks, 426
software design, 479–480

views, 481–484
software journals, 257–258

658 Index

software learning, circa 2049,
213–216

software outsource vs. internal
performance benchmarks, 417

software package evaluation and
acquisition, circa 2049, 204–207

software personnel. See personnel
software personnel and skill

benchmarks, 425–426
software quality assurance (SQA)

best practices, 120–124
organizations, 342–348
specialists, 627–628

Software Security State of the Art
Report (SOAR), 139

software test organizations,
328–342

software turnover and attrition
benchmarks, 426

solid line reporting authority, 305
source code, 491
Southern Scope, 53
SOX. See Sarbanes-Oxley (SOX) Act
spam, 149–150
span of control, 89, 290
spear phishing, 150

See also phishing
specialist organizations, 308–309
specialists

best practices for use of, 92–94
the challenge of organizing,

281–284
circa 2009, 233–236
distribution of specialists for

1000 total software staff, 283
occupation groups, 93–94
quality specialists, 619–632
ratio of specialists to general

software personnel, 241–243
See also personnel

specialization
customer support

organizations, 327
hierarchical organizations, 304
impact on software quality, 621
in large software organizations,

237–239
matrix organizations, 307–308

one-person projects, 285–286
pair programming, 289
self-organizing Agile teams, 292
software maintenance

organizations, 321
software quality assurance (SQA)

organizations, 347
software test organizations, 340
Team Software Process (TSP)

teams, 296–297
varieties of circa 2009, 236–241

SPR assessment scoring system, 420
sprints, 52, 292, 527
spyware, 150–151
spyware protection, best practices,

138–153
SQA. See software quality

assurance (SQA)
SSPA. See Service and Support

Professionals Association (SSPA)
staffing patterns for software

projects, 88
standards, best practices, 135–136
Starr, Paul, 218–219
static analysis, best practices,

124–128
status reports, 406
Stewart, Roger, 124
story point metrics, sizing using,

370–373
strong matrix, 306

See also matrix management
structural view, 481
structured programming, 525
subroutine testing, for defect

removal, 533
systems analysis. See business

analysis
systems analysts, 626–627
systems software organizations,

vs. information technology (IT)
organizations, 277–278

T
tangible financial value, 83
taxonomies, proposed taxonomy for

software methodology analysis,
65–66

Index 659

TCO. See total cost of
ownership (TCO)

Team Software Process (TSP)
taxonomy for software

methodology analysis, 67
teams, 293–298

teams, overview, 275–277
technical reports, 260–263
technical staff

motivation and morale, 45–47
skill sets needed, 92
training best practices, 91–92
See also personnel

technical writers, 631
technology selection, circa 2049,

207–210
technology transfer, circa 2049,

207–210
terminating legacy applications,

best practices, 166–167
test case coverage, 122
test coverage benchmarks,

422–423
test-based development (TBD), as

defect prevention, 523–524
test-driven development

(TDD), 330
testers, 630
testing

best practices, 128–132
black box testing, 128, 329, 533
by customers or users, 129
by developers, 128
gray box testing, 128, 329
software test organizations,

328–342
test cases for selected test

stages, 335
by test specialists or software

quality assurance, 129
test staffing for selected test

stages, 333
unit tests, 329
white box testing, 128, 329,

533–534
The Social Transformation of

American Medicine (Starr),
218–219

total cost of ownership (TCO), 106
toxic requirements, 516
traceability, 119
tracking progress and problems,

403–408
training

best practices for training clients
or users of software, 155–156

best practices for training
managers, 89–91

best practices for training
technical personnel, 91–92

gaps in training circa 2009,
266–267

proposed curricula, 269–273
See also learning methods

training material, 258–259
Trojans, 151
troubled projects, best practices,

84–86
turning around troubled projects,

best practices, 84–86
turnover benchmarks, 426
type, 60

defined, 65

U
UCITA. See Uniform Computer

Information Transaction Act
(UCITA)

undergraduate university
education, 263–265

undetected defects, 513
unified modeling language (UML),

requirements, 465–466
Uniform Computer Information

Transaction Act (UCITA),
158–159

unit tests, 329, 533–536
updates, best practices, 164–165
usability labs, 121
usability specialists, 624
usage benchmarks, 427–428
use-case metrics

requirements, 466
sizing using, 373–376

user documentation, circa 2049,
186–188

660 Index

user groups and forums, 121
user involvement in software

projects, best practices, 72–73
user stories, requirements,

466–467

V
value analysis

best practices, 83–84
intangible value, 84
tangible financial value, 83

vendor education, 252–253
vendor project management, 90
virtual environments, 97–98
virus protection, best practices,

138–153
viruses, 151

W
war driving, 152
warranties, best practices, 158–159
weak matrix, 306

See also matrix management

web browsing, 244
web designers, 628–629
web sites, simulation, 256–257
webinars, 229, 245–246
whaling, 152
white box testing, 128, 329,

533–535
See also testing

wiki sites, 98, 255–256
wireless security leaks, 152
withdrawing legacy applications,

best practices, 166–167
worms, 152
worst practices, 17

See also best practices; neutral
practices

Z
Zachman, John, 75
Zachman architectural schema,

75–76
zombies, 146

	McGraw Hill - Software Engineering Best Practices (12-2009) (ATTiCA)
	Contents
	Foreword
	Acknowledgments
	Introduction
	Chapter 1. Introduction and Definitions of Software Best Practices
	What Are "Best Practices" and How Can They Be Evaluated?
	Multiple Paths for Software Development, Deployment, and Maintenance
	Paths for Software Deployment
	Paths for Maintenance and Enhancements
	Quantifying Software Development, Deployment, and Maintenance
	Critical Topics in Software Engineering
	Overall Ranking of Methods, Practices, and Sociological Factors
	Summary and Conclusions
	Readings and References

	Chapter 2. Overview of 50 Software Best Practices
	1. Best Practices for Minimizing Harm from Layoffs and Downsizing
	2. Best Practices for Motivation and Morale of Technical Staff
	3. Best Practices for Motivation and Morale of Managers and Executives
	4. Best Practices for Selection and Hiring of Software Personnel
	5. Best Practices for Appraisals and Career Planning for Software Personnel
	6. Best Practices for Early Sizing and Scope Control of Software Applications
	7. Best Practices for Outsourcing Software Applications
	8. Best Practices for Using Contractors and Management Consultants
	9. Best Practices for Selecting Software Methods, Tools, and Practices
	10. Best Practices for Certifying Methods, Tools, and Practices
	11. Best Practices for Requirements of Software Applications
	12. Best Practices for User Involvement in Software Projects
	13. Best Practices for Executive Management Support of Software Applications
	14. Best Practices for Software Architecture and Design
	15. Best Practices for Software Project Planning
	16. Best Practices for Software Project Cost Estimating
	17. Best Practices for Software Project Risk Analysis
	18. Best Practices for Software Project Value Analysis
	19. Best Practices for Canceling or Turning Around Troubled Projects
	20. Best Practices for Software Project Organization Structures
	21. Best Practices for Training Managers of Software Projects
	22. Best Practices for Training Software Technical Personnel
	23. Best Practices for Use of Software Specialists
	24. Best Practices for Certifying Software Engineers, Specialists, and Managers
	25. Best Practices for Communication During Software Projects
	26. Best Practices for Software Reusability
	27. Best Practices for Certification of Reusable Materials
	28. Best Practices for Programming or Coding
	29. Best Practices for Software Project Governance
	30. Best Practices for Software Project Measurements and Metrics
	31. Best Practices for Software Benchmarks and Baselines
	32. Best Practices for Software Project Milestone and Cost Tracking
	33. Best Practices for Software Change Control Before Release
	34. Best Practices for Configuration Control
	35. Best Practices for Software Quality Assurance (SQA)
	36. Best Practices for Inspections and Static Analysis
	37. Best Practices for Testing and Test Library Control
	38. Best Practices for Software Security Analysis and Control
	39. Best Practices for Software Performance Analysis
	40. Best Practices for International Software Standards
	41. Best Practices for Protecting Intellectual Property in Software
	42. Best Practices for Protecting Against Viruses, Spyware, and Hacking
	43. Best Practices for Software Deployment and Customization
	44. Best Practices for Training Clients or Users of Software Applications
	45. Best Practices for Customer Support of Software Applications
	46. Best Practices for Software Warranties and Recalls
	47. Best Practices for Software Change Management After Release
	48. Best Practices for Software Maintenance and Enhancement
	49. Best Practices for Updates and Releases of Software Applications
	50. Best Practices for Terminating or Withdrawing Legacy Applications
	Summary and Conclusions
	Readings and References

	Chapter 3. A Preview of Software Development and Maintenance in 2049
	Introduction
	Requirements Analysis Circa 2049
	Design Circa 2049
	Software Development Circa 2049
	User Documentation Circa 2049
	Customer Support in 2049
	Deployment and Customer Training in 2049
	Maintenance and Enhancement in 2049
	Software Outsourcing in 2049
	Software Package Evaluation and Acquisition in 2049
	Technology Selection and Technology Transfer in 2049
	Enterprise Architecture and Portfolio Analysis in 2049
	A Preview of Software Learning in 2049
	Due Diligence in 2049
	Certification and Licensing in 2049
	Software Litigation in 2049
	Summary and Conclusions
	Readings and References

	Chapter 4. How Software Personnel Learn New Skills
	Introduction
	The Evolution of Software Learning Channels
	What Topics Do Software Engineers Need to Learn Circa 2009?
	Software Engineering Specialists Circa 2009
	Varieties of Software Specialization Circa 2009
	Approximate Ratios of Specialists to General Software Personnel
	Evaluating Software Learning Channels Used by Software Engineers
	Software Areas Where Additional Education Is Needed
	New Directions in Software Learning
	Summary and Conclusions
	Curricula of Software Management and Technical Topics
	Readings and References

	Chapter 5. Software Team Organization and Specialization
	Introduction
	Quantifying Organizational Results
	The Separate Worlds of Information Technology and Systems Software
	Colocation vs. Distributed Development
	The Challenge of Organizing Software Specialists
	Software Organization Structures from Small to Large
	One-Person Software Projects
	Pair programming for software development and maintenance
	Self-Organizing Agile Teams
	Team Software Process (TSP) Teams
	Conventional Departments with Hierarchical Organization Structures
	Conventional Departments with Matrix Organization Structures
	Specialist Organizations in Large Companies
	Software Maintenance Organizations
	Customer Support Organizations
	Software Test Organizations
	Software Quality Assurance (SQA) Organizations
	Summary and Conclusions
	Readings and References

	Chapter 6. Project Management and Software Engineering
	Introduction
	Software Sizing
	Software Progress and Problem Tracking
	Software Benchmarking
	Summary and Conclusions
	Readings and References

	Chapter 7. Requirements, Business Analysis, Architecture, Enterprise Architecture, and Design
	Introduction
	Software Requirements
	Statistical Analysis of Software Requirements
	Business Analysis
	Software Architecture
	Enterprise Architecture
	Software Design
	Summary and Conclusions
	Readings and References

	Chapter 8. Programming and Code Development
	Introduction
	A Short History of Programming and Language Development
	Why Do We Have More than 2500 Programming Languages?
	Exploring the Popularity of Programming Languages
	How Many Programming Languages Are Really Needed?
	Creating a National Programming Language Translation Center
	Why Do Most Applications Use Between 2 and 15 Programming Languages
	How Many Programmers Use Various Programming Languages?
	What Kinds of Bugs or Defects Occur in Source Code?
	Logistics of Software Code Defects
	Preventing and Removing Defects from Application Source Code
	Forms of Programming Defect Prevention
	Forms of Programming Defect Removal
	Economic Problems of the "Lines of Code" Metric
	Summary and Conclusions
	Readings and References

	Chapter 9. Software Quality: The Key to Successful Software Engineering
	Introduction
	Defining Software Quality
	Measuring Software Quality
	Defect Prevention
	Software Defect Removal
	Software Quality Specialists
	Summary and Conclusions on Software Specialization
	The Economic Value of Software Quality
	Summary and Conclusions
	Readings and References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

