
Software Reading
Techniques

Twenty Techniques for More Effective
Software Review and Inspection
—
Yang-Ming Zhu

 Software Reading
Techniques

 Twenty Techniques for More
Effective Software Review and

Inspection

 Yang-Ming Zhu

Software Reading Techniques: Twenty Techniques for More Effective Software Review
and Inspection

Yang-Ming Zhu
Solon, Ohio
USA

ISBN-13 (pbk): 978-1-4842-2345-1 ISBN-13 (electronic): 978-1-4842-2346-8
DOI 10.1007/978-1-4842-2346-8

Library of Congress Control Number: 2016959789

Copyright © 2016 by Yang-Ming Zhu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Robert Hutchinson
Developmental Editor: Laura Berendson
Technical Reviewer: Weidong Liao
Editorial Board: Steve Anglin, Pramila Balen, Laura Berendson, Aaron Black,

Louise Corrigan, Jonathan Gennick, Robert Hutchinson, Celestin Suresh John,
Nikhil Karkal, James Markham, Susan McDermott, Matthew Moodie, Natalie Pao,
Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Angela Warner
Compositor: SPi Global
Indexer: SPi Global
Cover Image: Designed by Pio_pio - Freepik.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text is
available to readers at www.apress.com . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

 To Xiao-Hong, Harold, Alex, and the rest of my family.

v

Contents at a Glance

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

 ■Chapter 1: Introduction .. 1

 ■Chapter 2: Software Review Procedures .. 7

 ■Chapter 3: Basic Software Reading Techniques 21

 ■Chapter 4: Scenario-Based Reading Techniques 35

 ■Chapter 5: Requirements Reading Techniques 69

 ■Chapter 6: Design Reading Techniques .. 77

 ■Chapter 7: Code Reading Techniques ... 103

 ■Chapter 8: Conclusion .. 119

Index .. 123

vii

Contents

About the Author .. xiii

About the Technical Reviewer ... xv

Acknowledgments ... xvii

Introduction .. xix

 ■Chapter 1: Introduction .. 1

1.1 Software Quality, Software Reviews and Inspections 1

1.2 About This Book ... 4

1.2.1 Organization of This Book ... 4

1.2.2 Intended Audience and How to Use This Book ... 5

1.3 References ... 5

 ■Chapter 2: Software Review Procedures .. 7

2.1 A Generic Software Review Procedure... 7

2.2 Fagan Inspection and Extensions ... 8

2.2.1 Fagan Inspection .. 8

2.2.2 Extensions to Fagan Inspection .. 11

2.3 Active Design Review and Extensions .. 13

2.3.1 Active Design Review ... 13

2.3.2 Extensions to the Active Design Review ... 15

2.4 Other Types of Reviews .. 15

2.5 Factors Impacting Software Reviews... 16

 ■ CONTENTS

viii

2.6 Summary .. 18

2.7 References ... 19

 ■Chapter 3: Basic Software Reading Techniques 21

3.1 Introduction to Software Reading .. 21

3.1.1 Defi nition of Software Reading ... 22

3.1.2 Purposes of Software Reading ... 22

3.1.3 Taxonomy of Software Reading Techniques ... 23

3.2 Ad hoc Reading .. 23

3.3 Checklist-Based Reading ... 24

3.3.1 Checklist Defi nition, Types, and Examples ... 24

3.3.2 Checklists with Guidance ... 26

3.3.3 Best Practices of Checklists ... 28

3.3.4 Empirical Experiences .. 28

3.4 Differential Reading ... 29

3.5 Summary .. 32

3.6 References ... 33

 ■Chapter 4: Scenario-Based Reading Techniques 35

4.1 Principles of Scenario-Based Reading ... 35

4.2 Defect-Based Reading ... 37

4.2.1 Taxonomy of Defects in Requirements Specifi cations 38

4.2.2 Defect-Based Reading Techniques ... 39

4.2.3 Empirical Experiences .. 41

4.3 Perspective-Based Reading ... 42

4.3.1 A Generic Perspective-Based Reading ... 42

4.3.2 Perspective-Based Requirements Reading .. 45

4.3.3 Perspective-Based Design Reading ... 48

4.3.4 Perspective-Based Code Reading .. 52

 ■ CONTENTS

ix

4.3.5 Perspective-Based Usability Reading ... 54

4.3.6 Why Does Perspective-Based Reading Work? .. 58

4.4 Alternative Partitioning of Reading Responsibilities 64

4.4.1 Ad hoc Partition .. 64

4.4.2 Function Point-Based Partition ... 65

4.5 Summary .. 66

4.6 References ... 66

 ■Chapter 5: Requirements Reading Techniques 69

5.1 Critical Roles of Requirements in Software Development 69

5.2 A Combined Reading Technique for Requirements 70

5.2.1 Motivations for a Combined Reading.. 70

5.2.2 The Combined-Reading Technique ... 70

5.2.3 Empirical Experiences .. 72

5.3 Test-Case Driven Reading for Requirements................................ 72

5.3.1 Test-Case-Driven Reading Technique ... 72

5.3.2 Empirical Experiences .. 74

5.4 Individual Factors Impacting Requirements Reading
Effi ciency .. 74

5.5 Summary .. 75

5.6 References ... 76

 ■Chapter 6: Design Reading Techniques .. 77

6.1 Introduction .. 77

6.2 Usage-Based Reading .. 77

6.2.1 Usage-Based Reading Technique ... 78

6.2.2 Variations of Usage-Based Reading ... 80

6.2.3 Empirical Experiences .. 80

6.3 Traceability-Based Reading .. 81

6.3.1 Types of Design Defects ... 82

6.3.2 High-Level OO Designs Using UML Diagrams ... 82

 ■ CONTENTS

x

6.3.3 Traceability-Based Reading Techniques ... 83

6.3.4 Empirical Experiences .. 92

6.4 Architecture Reading .. 93

6.4.1 What Is Software Architecture? .. 93

6.4.2 Traceability-Based Architecture Reading.. 94

6.4.3 Empirical Experiences .. 95

6.4.4 Other Architecture Reading Techniques ... 96

6.5 Scope-Based Reading .. 97

6.5.1 What Is an Application Framework? ... 97

6.5.2 Scope-Based Reading Techniques ... 97

6.5.3 Empirical Experiences .. 99

6.6 Summary .. 100

6.7 References ... 100

 ■Chapter 7: Code Reading Techniques ... 103

7.1 Code Reading As a Professional Skill ... 103

7.1.1 Importance of Code Reading .. 103

7.1.2 How Do People Read Code? ... 104

7.2 Reading by Stepwise Abstraction ... 105

7.3 Object-Oriented Code Reading ... 107

7.3.1 Challenges of Object-Oriented Code Reading .. 107

7.3.2 Abstraction-Driven Reading .. 108

7.3.3 Use-Case-Driven Reading .. 109

7.3.4 Empirical Experiences .. 110

7.4 Object-Oriented Framework Code Reading 111

7.4.1 Why Yet Another Object-Oriented Code Reading Technique? 111

7.4.2 Functionality-Based Approach to Framework Understanding 112

7.4.3 Functionality-Based Reading ... 113

7.4.4 Empirical Experiences .. 114

 ■ CONTENTS

xi

7.5 Task-Directed Inspection .. 114

7.6 Code Readability Factors ... 115

7.7 Summary .. 116

7.8 References ... 117

 ■Chapter 8: Conclusion .. 119

Index .. 123

xiii

About the Author

Yang-Ming Zhu is a Principal Scientist at Philips
Healthcare, currently serving as the software architect
for the Recon and Imaging Physics team for Advanced
Molecular Imaging. He practices and researches image
processing and software engineering with a focus on
software architecture, requirements engineering, best
practices, software quality, and processes. He is a senior
member of IEEE and has published more than 80 book
chapters and papers in such journals as IEEE Software,
IT Professional, IEEE Trans Medical Imaging, IEEE
Trans Image Processing, IEEE Trans Signal Processing,
Journal of Nuclear Medicine, Physical Review Letters,
and Applied Physical Letters. He holds nine U.S. patents

(additional seven are pending approval), the Software Architecture Professional
Certificate from the Software Engineering Institute at Carnegie Mellon University, and
advanced degrees in computer science (MS from Kent State University), biomedical
engineering (MS/BS from Shanghai Jiaotong University), and bioelectronics (PhD from
Southeast University).

xv

 About the Technical
Reviewer

 Dr. Weidong Liao is currently an associate Professor at Shepherd University,
Shepherdstown, West Virginia. Dr. Liao received his Masters and Ph.D. degrees in
Computer Science from Kent State University and had software development experience
in Microsoft Corporation and other companies. Dr. Liao made his major research
contributions in Internet Accessible Mathematical Computation (IAMC) Application
Framework, Internet and Distributed Computing, and Distributed Database System, with
numerous publications in these fields. He has also participated in the review process of
many conference articles and journal papers in computing areas.

xvii

 Acknowledgments

 The idea of this book was inspired by Kollanus and Koskinen’s article, Survey of
Software Inspection Research, and based on my presentation to colleagues at Philips
on code reading techniques. I thank the researchers and practitioners in the software
review/inspection community, who created and validated many software reading
techniques upon which the book is based.

 Many thanks to Acquisitions Editor Robert Hutchinson, who bestowed trust on me
and answered many questions a first-time book author might have; to Developmental
Editor Laura Berendson, who edited the book and provided guidance on writing; to
Coordinating Editor Rita Fernando, who designed the book cover and made sure I would
be on schedule; to Technical Reviewer Professor Weidong Liao, who made sure the
book contents are technically sound; and to the rest of the Apress team who supported
the project behind the scenes. I would also like to thank Harold Zhu, who improved the
presentation in Chapters 1 , 3 , 5 , and 7 , and Kevin Wang, who provided suggestions to
improve the language in Chapters 2 and 6 . Any remaining errors are mine, however. I am
profoundly grateful to my mentor Steve Cochoff at Philips for his guidance and friendship
for the past almost 20 years.

 Most of all I want to thank my wife, Xiao-Hong, and two wonderful boys, Harold
and Alex, for letting me disappear at nights and over weekends to research for and write
this book. Harold also helped me track down many of the original papers on reading
techniques. I am not certain the joy in seeing this book finally published can entirely
compensate for the lost family time together.

 —Yang-Ming Zhu
 Solon, Ohio, September 2016

http://dx.doi.org/10.1007/978-1-4842-2346-8_1
http://dx.doi.org/10.1007/978-1-4842-2346-8_3
http://dx.doi.org/10.1007/978-1-4842-2346-8_5
http://dx.doi.org/10.1007/978-1-4842-2346-8_7
http://dx.doi.org/10.1007/978-1-4842-2346-8_2
http://dx.doi.org/10.1007/978-1-4842-2346-8_6

xix

 Introduction

 There are many best practices in the software development arena, and there is no other
practice as prominent as software review or inspection that has enjoyed the universal
agreement on its effectiveness (it finds many defects), efficiency (it finds defects at a low
cost), and practicality (it is easy to carry out).

 Ever since Fagan published his seminal Fagan Inspection in 1976, software review
or inspection has evolved in many aspects. Now the whole industry favors a lightweight,
tool-assisted method. Nevertheless, the core of the software review remains the same,
i.e., the software review is predominantly an individual reading and analysis activity,
since many issues are observed during an individual's preparation phase. The individual
reader's skill, training, and expertise play a significant role during reading and analysis
and determine the success or failure of software review or inspection. In practice, a wide
difference in individual's effectiveness is reported, often as big as 10 times.

 As software development professionals, we are trained to write software artifacts
such as requirements specifications, design diagrams and descriptions, code modules,
test cases, or user interface mockups. We are not trained to read and analyze the
documents written by peers, however. To increase an individual's capacity during
software review or inspection, reading strategies and proven practices are packaged as
reading techniques. This book is designed to promote and disseminate proven reading
techniques for professional training and industrial adoption.

 There are many reading techniques. To navigate them, the book first discusses basic
and more advanced techniques that are applicable to many, if not all, software artifacts,
then introduces techniques specially designed for requirements specifications, designs,
and code modules. We hope this framework will support your roadmap to adopt the
reading techniques in your organization or project.

 The author enjoyed researching and writing the book. He certainly hopes you will
enjoy reading it and most importantly benefit from adopting these reading techniques in
your own practices.

1© Yang-Ming Zhu 2016
Y.-M. Zhu, Software Reading Techniques, DOI 10.1007/978-1-4842-2346-8_1

 CHAPTER 1

 Introduction

 Software has become an indispensable part of our daily lives, as our dependence on
software is constantly increasing. Software fails, and these failures cost money, time,
resources, and sometimes even lives. An organization’s reputation and success depends
on its ability to create and deliver high-quality software. Software quality is thus critically
important. This chapter introduces the concept of software quality assurance, discusses
software inspection (the most frequently performed software quality assurance activity
other than testing), and outlines the contents of this book.

 1.1 Software Quality, Software Reviews and
Inspections

 The software creation process requires a lot of manpower, from requirements and
design to implementation and testing. As human beings, we all make mistakes,
which are manifested as defects or bugs in software products. Software development
is a complex process and tools are frequently used to assist development. People’s
familiarity with tools and their interaction with tools are the other complicating factors
that can potentially inject defects into software products. The nontrivial software
product development nowadays may involve many people and teams across the globe.
Coordinating the distributed team members and tasks remains a management challenge.
Despite many years of software engineering efforts, we are still unable to deliver defect-
free software products to the end users. Software defects seem to be inevitable.

 Software quality assurance is a structured approach to improve software quality and
involves defect prevention, detection and removal, and defect containment activities.
Defect detection and removal is mostly emphasized in industry practice, particularly in
non-safety critical systems. If it is hard or impossible not to inject defects into software,
the next best thing to do is to remove them before they reach end users. It is highly
desirable to detect and remove defects as soon as they are injected into software, since
defects can be several times more expensive to fix at latter stages of a software project.
The escaped or residual defects in field deployment may cause interruption to the user’s
normal operations, resulting in substantial costs including reduced productivity, data loss
or corruption, security vulnerabilities, or even physical harm.

CHAPTER 1 ■ INTRODUCTION

2

 Testing and inspection are the two most effective and commonly used methods
to detect defects in software. In software testing, a tester runs a software system or
its components, executes its functions, observes system behaviors or responses, and
determines if the system behaviors conform to its requirements, specifications, or
expectations. To test software, one needs a running executable, which is not feasible
all the time, particularly for artifacts rather than code. The effectiveness of testing also
depends on test cases, and if there is no test case to exercise a particular path of the
code, there is no way to tell if there is a defect in that path or not. Dijkstra once famously
said that testing can only confirm the presence of a defect, not the absence of a defect
(https://en.wikiquote.org/wiki/Edsger_W_Dijkstra).

 There are many other quality assurance alternatives besides testing. Software review
or inspection is one of these alternatives that is widely practiced. The terms “software
review” and “software inspection” are not used consistently in literature. IEEE Standard
1028 defines five types of software reviews: management reviews, technical reviews,
inspections, walkthroughs, and audits (IEEE 1028); it treats software inspection as a type
of software review. In general software engineering literature, inspection is specific and
has a defined process, and review is a more general term. We will use these two terms
interchangeably in this book.

 Software inspection is a formalized peer review process applicable to any software
artifact. It is a static analysis method and was first introduced by Fagan based on his
practical experience at IBM in the 1970’s (Fagan, 1976). Fagan inspection has been
influential ever since it was published. In fact, the IEEE Standard 1028 is largely based on
Fagan inspection.

 Based on decades of research and industry practices, it is widely established that
software inspection is effective (it finds many defects), efficient (low cost per defect), and
practical (easy to carry out). We will review the status of software review and inspection
in Chapter 2 . It has been reported that inspection can detect (and correct) 20% to 90% of
defects (Gilb & Graham, 1993, Laitenberger, 2002). The benefits and cost-effectiveness of
software inspection have long been recognized. Doolan (1992) reported that every hour
invested in inspection has a payback of 30 hours and Russell (1991) claimed that in his
organization, every inspection hour saved 33 hours of maintenance work. Although the
earlier benefits might be overstated (Porter et al., 1996; Laitenberger, 2002), more recent
simulation results have revealed that code inspection saves 39% of defect costs compared
to testing alone, and design inspection saves 44% of defect costs compared to testing
alone (Briand et al.,1998). Software inspection nowadays is easy to conduct. Books have
been published about it (e.g., Gilb, 1993) and standards on review procedures are also
available (e.g., IEEE 1028).

 During software development, many documents are generated by humans, e.g.,
requirements specifications, design, code, test plans, test cases, and user documentation.
If these documents are used to guide subsequent activities, any errors in these documents
may propagate to the downstream activities and artifacts. It is critical to catch and fix
errors early to prevent them from propagating down the stream. It is much cheaper for
the development organization to fix an error when it is introduced. It is believed that, in
general, it would be 10 times more expensive to fix an error if it slips to the next phase.
Defects in the released product may result in substantial costs to end users as well.

https://en.wikiquote.org/wiki/Edsger_W_Dijkstra
http://dx.doi.org/10.1007/978-1-4842-0472-6_2

CHAPTER 1 ■ INTRODUCTION

3

 Table 1-1 shows the cost of fixing a defect depending on when the defect is injected
into the software and when the defect is fixed (McConnell, 2004). The first column shows
when the defect is injected and the first row shows when the defect is fixed. It assumes the
cost to fix the defect injected in the same development phase is 1x. Although the real cost
varies and depends on the project size and industry, the general trend is clear.

 Requirements, design, and other non-executable artifacts cannot be tested by
machines and have to be reviewed by humans. Requirements not implemented yet
cannot be machine tested but can be analyzed by humans to see if they meet user needs.
Design, particularly early design sketches, can be abstract, imprecise, and incomplete.
It is not possible to test designs by machine. With inspection, both requirements and
design can be read and analyzed, which does not require the artifacts to be complete or
executable. Even for program code, which can be machine-tested, testing and inspection
are complementary and uncover different kinds of issues (Basili & Selby, 1987; Juristo
& Vegas, 2003). Issues hard to uncover via testing often can be detected by inspection
relatively easily. Mantyla and Lassenius (2009) affirmed that code reviews are a good
tool for detecting code evolvability defects (documentation, visual representation, and
structure) that cannot be found in later phase testing, since the defects do not affect the
software’s visible functionality. Inspection can be applied to test plan and test cases as
well, which further improves the defect detection efficiency of testing.

 The immediate benefit of software review is to detect and fix errors or problems
in software artifacts. As a side effect of inspection, the software artifacts become more
readable and maintainable. There are other derived benefits to individuals who participate
in the review and to the organization as a whole. The author who created the artifacts can
use the review outcome as a learning instrument, e.g., he can avoid similar errors in his
future work. To other participants, they can also learn from another person’s mistakes,
particularly if they did not catch the mistakes in their own reviews. The software review can
be used to cross-train team members and build a stronger team. Inspection enables a team
to share technical expertise. To the organization, fewer mistakes lead to higher quality and
better customer satisfaction and less rework and higher development productivity.

 If the organization builds a knowledge database of past errors and problems
uncovered during software inspection, they can use it to their competitive advantage. In the
case of code review, one can identify the most error-prone modules and decide whether
redesign or recoding is worthwhile. Certainly more review and more testing in those
problematic areas are warranted before the software is released. The organization can also
look at the distribution of error types via the Pareto chart and perform root cause analysis of
the most common errors. For common systematic errors, the organization can then decide
if additional training, better tooling, or an improved development process could help.

 Table 1-1. The Cost of Fixing a Defect (adapted from McConnell, 2004)

 Requirements Design Coding Testing Deployment

 Requirements 1x 3x 5-10x 10x 10-100x

 Design - 1x 10x 15x 25-100x

 Coding - - 1x 10x 10-25x

CHAPTER 1 ■ INTRODUCTION

4

 1.2 About This Book
 In Fagan’s inspection and its derivatives, individuals typically read software artifacts,
then come together to discuss their findings and hopefully uncover new ones. The
defect collection meeting is considered critical. There is convincing evidence, however,
that defect detection in software artifacts is primarily an individual effort and happens
during individual preparation and reading (Johnson & Tjahjono, 1998; Votta, 1993), and
the purpose of the meeting is mostly to agree on true defects and dismiss false positives.
In the state-of-industry practice, the meeting is either removed or not the emphasis
anymore. Instead, how the inspectors examine the software artifacts becomes important.
To improve an individual’s effectiveness, various reading techniques have been proposed
and tested. Reading is a key technical activity for verifying and validating software (Basili,
1997). This book is devoted to software reading techniques.

 1.2.1 Organization of This Book
 Many reading techniques have been developed and tested. This book categorizes them
based on their characteristics. Some reading techniques are generic and can be used for
many, if not all, software artifacts, while other techniques are only applicable to specific
artifacts. This book discusses general reading techniques first, then specific techniques
for software artifacts such as requirements, design, and code. The following lists the
contents of each chapter.

 Chapter 2 discusses the software review procedure. In particular, we discuss Fagan
inspection and its extensions. Active design review is discussed in detail as well, since it is
the basis of some recent reading techniques such as scenario-based reading.

 Chapter 3 defines the terms of software reading and software reading techniques.
It discusses reading purposes and classifies existing reading techniques. Ad hoc reading
and checklist-based reading are discussed in detail, including various extensions to
checklist-based reading, since they are frequently used as baselines and other reading
techniques are compared to them. Chapter 3 also discusses differential reading, which
can be used to inspect artifacts under evolution.

 Chapter 4 focuses on scenario-based reading. Although many reading techniques
are classified as scenario-based reading, we discuss defect-based reading, perspective-
based reading, and function-point-based reading, as examples of scenario-based reading
techniques. Perspective-based reading has been adapted to inspect requirements
specifications, design documents, source code files, and user interface usability. The cognitive
process of perspective-based reading is also discussed. A simple analytical model is used to
shed light on when perspective-based reading could outperform other reading techniques.

 Chapter 5 discusses reading techniques specific to requirements specifications. We
present a combined reading technique which takes advantages of the strengths of individual
reading techniques, while compensating for their weaknesses. Test-driven reading is
introduced as an economic reading technique for organizations with limited resources.

 Chapter 6 discusses specific reading techniques for design. While most reading
techniques gear to find as many defects as possible, not all defects have the same impact
on end users. Usage-based reading uses prioritized use-cases as a guiding light to focus
readers’ attention on defects that matter to users most. This chapter also discusses
traceability-based reading that checks for consistency among all design artifacts and
between design and requirement artifacts. It is a family of techniques organized as

http://dx.doi.org/10.1007/978-1-4842-0472-6_2
http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_5
http://dx.doi.org/10.1007/978-1-4842-0472-6_6

CHAPTER 1 ■ INTRODUCTION

5

horizontal and vertical readings. Traceability-based reading is also applied to architecture
review. Although most of the time we read software artifacts to detect defects, we read
software for construction under some circumstances. Scope-based reading is designed to
enhance a reader’s ability to understand object-oriented application frameworks, which
the reader can then use to design and implement their own applications.

 Chapter 7 is devoted to specific code reading techniques. It covers reading by stepwise
abstraction first and then illustrates how it is extended as abstraction-driven reading for
object-oriented code. There are unique challenges in object-oriented code reading. While
abstraction-driven reading focuses on the static behavior of an object-oriented system, use-
case-driven reading is concerned with the dynamic behavior. Legacy software applications
are abundant without much documentation. Task-directed reading can be used to improve
code quality and complete the necessary documentation on code and design.

 Chapter 8 concludes the book and encourages readers to apply reading techniques
to their practice.

 1.2.2 Intended Audience and How to Use This Book
 This book is intended for software engineering practitioners. We suggest that readers start
with Chapters 2 and 3 to get an overview of software inspection and preliminary reading
techniques.

• If you are interested in inspecting software requirements
specifications, you can continue with Chapters 4 and 5 . You may
skip non-requirements applications of perspective-based reading
in Chapter 4 , however.

• If you are interested in inspecting design documents, you can
read part of Chapter 4 (Section 4.3.3) and Chapter 6 .

• If you are interested in inspecting source code, you can read part
of Chapter 4 (Section 4.3.4) and Chapter 7 .

• If you are interested in usability inspection, you can read Chapter 4
(Section 4.3.5).

 This book is also intended for software engineering students and can be used to
supplement courses such as software engineering, software quality, and software testing.
As students are preparing themselves to join the software industry as software engineers,
it is beneficial for students to read the entire book.

 This book can be used by software engineering researchers, particularly if you are
interested in software quality assurance, software inspection, and software reading. This book
has the most comprehensive material on software reading. You can find references to the
original articles where particular reading techniques were first proposed, as well as information
on the most recent developments and experiences with those reading techniques.

 1.3 References
 (Basili, 1987) V.R. Basili and R.W. Selby, Comparing the effectiveness of software testing
strategies, IEEE Transactions on Software Engineering, vol.13, no,12m pp.1278-1296, 1987.

http://dx.doi.org/10.1007/978-1-4842-0472-6_7
http://dx.doi.org/10.1007/978-1-4842-0472-6_8
http://dx.doi.org/10.1007/978-1-4842-0472-6_2
http://dx.doi.org/10.1007/978-1-4842-0472-6_3
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_5
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_6
http://dx.doi.org/10.1007/978-1-4842-0472-6_4
http://dx.doi.org/10.1007/978-1-4842-0472-6_7
http://dx.doi.org/10.1007/978-1-4842-0472-6_4

CHAPTER 1 ■ INTRODUCTION

6

 (Basili, 1997) V.R. Basili, Evolving and packaging reading technologies, Journal of Systems
and Software, vol.38, no.1, pp.3-12, 1997.

 (Briand, 1998) L. Briand, K. EI Emam, O. Laitenberger, and T. Fussbroich, Using simulation
to build inspection efficiency benchmarks for development projects, Proceedings of
the International Conference on Software Engineering, pp.340-349, 1998.

 (Doolan, 1992) E. Doolan, Experience with Fagan’s inspection method, Software Practice
and Experience, vol.22, o.2, pp.173-182, 1992.

 (Fagan, 1976) M.E. Fagan, Design and code inspections to reduce errors in program
development, IBM Systems Journal, vol.15, no.3, pp.182-211, 1976.

 (Gilb, 1993) T. Gilb and D. Graham, Software Inspection, Addison-Wesley, 1993.

 (IEEE 1028) IEEE Std 1028-2008, IEEE Standard for Software Reviews and Audits, 2008.

 (Johnson, 1998) P.M. Johnson and D. Tjahjono, Does every inspection really need a
meeting? Empirical Software Engineering, vol.3, pp.9-35, 1998.

 (Juristo, 2003) N. Juristo and S. Vegas, Functional testing, structural testing and code
reading: what fault type do they each detect? Lecture Notes in Computer Science,
vol.2765, pp.208-232, 2003.

 (Laitenberger, 2002) O. Laitenberger, A survey of software inspection technologies, in
Handbook on Software Engineering ad Knowledge Engineering, vol.2, pp.517-555,
2002.

 (Mantyla, 2009) M.V. Mantyla and C. Lassenius, What types of defects are really
discovered in code reviews? IEEE Transactions on Software Engineering, vol.35, no.3,
pp.430-448, 2009.

 (McConnell, 2004) S. McConnell, Code Complete, 2 nd ed., Microsoft Press, 2004.

 (Porter, 1996) A. Porter, H. Siy, and L. Votta, A review of software inspections, Advances in
Computers, vol.42, pp.39-76, 1996.

 (Russell, 1991) G.W. Russell, Experience with inspection in ultra large-scale
developments, IEEE Software, vol.8, no.1, pp.25-31, 1991.

 (Votta, 1993) L.G. Votta Jr., Does every inspection need a meeting? Proceedings of the
ACM SIGSOFT Symposium on Foundations of Software Engineering, pp.107-114,
1993.

7© Yang-Ming Zhu 2016
Y.-M. Zhu, Software Reading Techniques, DOI 10.1007/978-1-4842-2346-8_2

 CHAPTER 2

 Software Review Procedures

 Although software peer review has been practiced for more than four decades, software
literature uses inconsistent and in many cases conflicting terms to refer to more or less
the same activities. According to IEEE Std-1028 (IEEE 1028), inspection is “A visual
examination of a software product to detect and identify software anomalies, including
errors and deviations from standards and specifications,” and review is “A process or
meeting during which a software product, set of software product, or a software process
is presented to project personnel, managers, users, customers, user representatives,
auditors or other interested parties for examination, comment or approval.” The standard
defines five types of reviews (management reviews, technical reviews, inspections,
walkthroughs, and audits), and software inspections are a kind of review. We use review
as a general term. This chapter describes a generic procedure for software review, then
treats Fagan inspection and active design review in more detail. Factors impacting the
effectiveness of software review are also discussed.

 2.1 A Generic Software Review Procedure
 All software review procedures share some commonalities. IEEE Std-1028 listed the
following five steps for all the five types of reviews: (1) planning the review, (2) overview
of the procedures, (3) preparation, (4) examination/evaluation/recording of results, and
(5) rework/follow-up (IEEE 1028). Laitenberger used a reference model for software
inspection processes, which has six phases: planning, overview, defect detection,
defect collection, defect correction, and follow-up (Laitenberger, 2002). Tian abstracted
a generic software review procedure with three steps, and various software review
procedures can be considered as extensions to or specialization of this generic one (Tian,
2005). We discuss Tian’s abstraction in this section.

 The generic software review procedure has three stages of activities: planning and
preparation, conducting the review, and corrections and follow-up, as illustrated in
Figure 2-1 .

 Figure 2-1. A generic software review procedure

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

8

 In the planning and preparation stage, one typically defines objectives of a review
and decides what artifacts are subject to review, who will create them, who will review
them and who else will be involved and in what capacity, when will the review happen,
and what are the overall process and follow-up activities if needed. Before conducting
a review, the document authors will assemble the material, decide the avenue for the
review, and handle the review logistics, etc.

 In the reviewing stage, people get together as a team face-to-face or on-line,
synchronously or asynchronously. The team goes through the material under review
in some pre-determined manner, discusses issues reported before the meeting or spotted
in session, agrees on the observation or dismisses false positives. The focus of this stage is
to uncover and collate issues in the document under review, and hence it is often called
collection. In the end, the review team agrees whether a follow-up review session is
warranted.

 In the correction and follow-up stage, the author corrects issues that have surfaced
during the review. The dispositions of the issues shall be agreed by the review team and
the corrections or fixes shall be verified. A follow-up review can be conducted for that
purpose, if the extent of changes is large; otherwise a lightweight follow-up shall suffice.

 We discuss two classical software review procedures, namely Fagan inspection and
active design review, which can be considered as an extension to this generic review. We
use the term Fagan inspection for historical reasons.

 Software review or inspection is independent of software development models,
like waterfall or agile. Software review can be applied to a software artifact as soon as it
is ready for review. Software review is considered a best practice and it is an important
activity of software quality assurance (Tian, 2005).

 2.2 Fagan Inspection and Extensions
 The earliest and most influential software review procedure was proposed by Fagan in
1976 (Fagan, 1976). The method was initially intended for design and code inspection
and later adapted to inspect virtually any software artifacts such as requirements, user
documentation, and test plans and test cases as long as such artifacts can be made visible
and readable (Fagan, 1986). Fagan inspection has been so influential that it is almost
synonymous with the term inspection.

 2.2.1 Fagan Inspection
 Fagan inspection consists of six steps or operations as originally called: planning, overview,
preparation, inspection, rework, and follow-up, as depicted in Figure 2-2 . The planning step
was not in Fagan’s seminal paper (Fagan, 1976) but was added later (Fagan, 1986).

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

9

 We discuss these six steps in the context of design and code inspection. The principal
ideas behind Fagan inspection can be applied to inspecting any software artifacts.

• Planning: The objectives of the planning step are to define
inspection entry criteria for the materials subject to inspect, to
arrange the availability of the appropriate participants, and to
arrange the meeting place and time.

• Overview: The objectives of the overview step are communication
and education, as well as assigning the inspection roles to
participants. This step involves the whole inspection team.
Typically a meeting is held, during which the project overview
and the specifics of the artifact to be inspected are given. The
inspection materials are distributed at the end of the meeting.

 Figure 2-2. Steps in Fagan inspection

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

10

• Preparation: The objective of the preparation step is for participants
to study the material individually to fulfill their respective roles.
One of the key ideas in the inspection is to assign different roles
to the individual participants based on their respective expertise.
The roles of the participants are discussed below. To facilitate the
preparation, a checklist of recent error types can be used, or other
kinds of reading techniques can be adopted. Software reading
techniques are discussed in the rest of the book.

• Inspection: The objective of the inspection step is to find the
errors in the material under inspection. A formal meeting is
held and the entire team participates in the discussion. At
the beginning of the meeting, if code files are under inspection,
then the implementer (author) can show the implementation of
the design. In the course of the meeting, errors are discussed; false
positives are dismissed and true errors are recognized and noted,
with possible error type classification and severity identification. It
is important to note that the team should not hunt for solution nor
discuss alternatives. After the inspection has been held, a written
report of the findings is released in a timely manner.

• Rework: The objective of the rework step is to fix all errors or
provide other responses. The author of the software artifact is
responsible for the rework and responses.

• Follow-up: The objective of the follow-up step is to ensure all fixes
are effective and there are no newly introduced problems. The
moderator decides if another round of inspection is needed. For
example, if the errors are minor and the changes are limited, then
he can declare there is no need for another round of inspection.
Regardless of whether there is another round of inspection, the
team needs to pay attention to “bad fixes.” Empirical data show
that almost one of every six fixes are incorrect or create other
defects (Fagan, 1986).

 We can view Fagan inspection in the framework of the generic review. The first
three steps of the Fagan inspection—planning, overview, and preparation—fit into the
“planning and preparation” step in the generic review diagram; the inspection step of the
Fagan inspection directly maps to the “review” block in the generic review; and the last
two steps of the Fagan inspection—rework and follow-up—map to the “correction and
follow-up” step in the generic review. Both the generic review and the Fagan inspection
allow an optional iteration.

 As mentioned above, the Fagan inspection defines the participant roles that
each participant plays. There are four roles: moderator, author, reader, and tester. The
moderator leads the inspection team and takes care of logistics; the other roles represent
the viewpoints of those with their respective expertise during the inspection.

 The moderator is the key person in a successful inspection. He or she possesses
strong interpersonal and leadership skills, coaches and guides the inspection team,
and handles meeting logistics, including scheduling the meeting and publishing the
outcome of the inspection. The moderator must be neutral and objective. The author is

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

11

the person who created the software artifacts under inspection. The author is responsible
for producing the artifacts and fixing the errors in the artifacts, with possible help from
others. The reader is an experienced peer who can be a subject matter expert on the
software artifact under inspection. The tester is responsible for writing and/or executing
test cases for the software module or the product.

 The Fagan inspection team typically consists of four people, large enough
to allow group interaction to detect errors in software artifacts but small enough to
allow individual voices to be heard. To have a healthy group dynamic, an ideal mix of
participants can include people with different background and experience.

 The Fagan-style reviews have a few noticeable drawbacks. One of them is the heavy
process involved, which requires a series of formal meetings and documentations.
This limitation is overcome by the introduction of modern lightweight reviews. The
other drawback is that the quality of review varies widely, since the participants may be
passively engaged with the review. This latter shortcoming is remediated by the active
review, which is discussed in the next subsection.

 2.2.2 Extensions to Fagan Inspection
 It has been 40 years since Fagan published the Fagan inspection. Fagan inspection has
been studied by researchers and embraced by practitioners (Aurum et al., 2002; Kollanus
& Koskinen, 2009). The inspection procedure has been extended in different ways to
further improve its efficiency or customize to unique situations. We summarize a few
important extensions below.

 2.2.2.1 Meeting or No Meeting
 Proposed improvements to Fagan inspection often center on the importance and cost
of group meetings, particularly the defect collection meeting. Fagan insisted on having a
defect collection meeting, but other researchers questioned the importance of meetings.
Reasons often cited to support a team meeting include:

• Synergy: More people working together will find more defects
than they would working alone.

• Learning and knowledge sharing: Meetings are good opportunity
for beginners to gain domain knowledge from experienced
participants.

• Milestone: Meetings serve as project milestones.

 However, it takes time and effect to schedule a group meeting, particularly when it
involves many people. Researchers questioned whether the meeting creates synergy at all.
Votta (1993) reported that most defects were found during the individual preparation stage,
which was confirmed by many others, including Porter et al. (1995). Johnson and Tjahjono
(1998) also reported that meeting-based reviews were significantly more costly than
non-meeting-based reviews, and meeting-based reviews did not detect significantly more
detects. However, meeting-based reviews were significantly better at reducing false positive
defects, and reviewers preferred meeting-based reviews over non-meeting-based reviews.

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

12

 The general consensus now is to not have a large group meeting or at least not
emphasize it. A few alternatives are proposed to replace full-team meetings. As an
example, a few experts can go through defects reported by individual reviewers during
their preparation and decide the nature of defects (true vs false positives) (Sauer et al.,
2000). Meeting-less inspections further evolved into modern lightweight inspections,
which are discussed later.

 2.2.2.2 What Is the Right Team Size?
 Fagan suggested a team size of 4 people. A large team presumably allows a different kind
of defects to be found since each reviewer has different expertise and experience. The
argument of cost-effectiveness favors a smaller team. Bisant and Lyle (1989) proposed
a two-person inspection involving just the author and reviewer, which makes the
inspection accessible to teams or organizations that don’t have access to larger team
resources. Porter and colleagues (1997) conducted code inspection experiments in situ by
varying the number of inspectors on each inspection team (1, 2, or 4) and concluded that,
while 1 inspector was significantly less effective than 2 or 4 inspectors, there was little
difference in the inspection effectiveness of 2 or 4 inspectors.

 Instead of a single large team, Schneider et al. (1992) split a large team into N smaller
teams for critical projects, let the N smaller teams to inspect requirements documents on
parallel and independently, and aggregated defects from each smaller team at the end,
which is known as N-fold inspection. They reported that independent teams found more
defects than a single team.

 Perhaps there is no optimal team size. The right team size will depend on the
artifacts under review (types and complexity), organizational environment (whether
it has access to large resources), etc. For important documents such as a requirements
specification, more points of view are certainly beneficial. It is also a good idea to have
more people to review the design than code. Complex artifacts also warrant more
independent reviewers with different expertise.

 2.2.2.3 Other Extensions
 Gilb and Graham (1993) introduced a process brainstorming meeting right after the
inspection meeting. This meeting’s function is root cause analysis so that similar defects
can be prevented from happening in future projects or activities in the same project.

 Knight and Myers (1993) studied a phased inspection (for code inspections), which
consists of multiple phases or mini-inspections, each focusing on detecting one class of
defects such as issues with language, code layout, programming constructs, etc. Defects
have to be fixed before the next phase can start.

 Many software artifacts are generated in the course of project development. It
might be infeasible to inspect all documents due to resource constraints. To address
this concern, Thelin et al. (2004) developed a sampling-driven inspection, which
utilizes a pre-inspection to identify a partial list of documents that can benefit from a
focused inspection. The decision can also be based on the historical defect data and the
characteristics of the document itself, e.g., code complexity metrics.

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

13

 2.3 Active Design Review and Extensions
 The active design review was introduced by Parnas and Weiss (1985). Although the
publication came much later than Fagan’s, according to Weiss, they conceived the idea
independently about the same time as Fagan published his work.

 2.3.1 Active Design Review
 The purpose of design review is to find errors in design and its documentation.
There are many kinds of design errors—e.g., inconsistency (different assumptions),
inefficiency (inefficient to implement or use), ambiguity (allows different
interpretation or lack of clarity), and inflexibility (does not accommodate change).
Conventional reviews such as Fagan inspection tend to be incomplete and shallow.
Parnas and Weiss noticed that reviews have variable quality and many factors
contributed to it:

• The amount, quality, and time of delivery of the design
documentation varied widely

• The time that the reviewers put in preparation varied widely

• The participation of the reviewers varied widely

• The expertise and roles of the reviewers varied widely

 The active design review was proposed to reduce the variability and promote
a consistent review quality. The key part of the active design review is the use of
questionnaires to define the reviewer’s responsibilities and to ensure they play a more
active role. The main ideas behind the active design review, when compared to the
Fagan-style review, include:

• The required knowledge and skills reviewers possess are explicitly
identified before selecting the reviewers.

• Reviewers focus their efforts on the design aspects related to their
experience and expertise.

• The designers pose questions to the reviewers rather than the
reviewers asking questions. Each question is carefully designed
such that its answer requires careful study of the design under
review or some aspects of the design.

• Reviewers are actively involved in the review and make positive
assertions on the design instead of merely skimming over the
design for obvious or trivial errors.

• Reviewers and designers meet in a small group to resolves issues.

 An active design review has five phases:

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

14

 1. Make the design reviewable. A good design shall be well
structured, simple, efficient, adequate, flexible, practical,
implementable, and standardized. Design assumptions
shall be made explicit. The design document can include
redundant information for error and consistency checking.
The document shall be structured in such a way that modules
and submodules can be reviewed separately.

 2. Identify the review types. A design review shall be focused
and have a well-defined purpose. It is thus easy to identify
expertise needed to support the review. Different reviews
can concentrate on detecting different error types such
as assumption validity, sufficiency, consistency between
assumptions and functions, and adequacy.

 3. Classify reviewers. Reviewers shall be specialists, potential
users, those familiar with the design methods and
technologies used, or those skilled at finding issues. The
review shall exploit the skills and knowledge of the reviewers
to detect as many errors as possible.

 4. Design questionnaires. The questions shall not be trivial. They
ensure the reviewers take an active role and use the design
document to answer the questions. The questions shall be
rephrased to avoid yes/no answers.

 5. Conduct the review. There is no big meeting. Instead, the
designer and reviewer have 1:1 or small group discussion.
This phase has three stages:

 a. An overview meeting to discuss the material under
review and how the process works.

 b. Assign reviewers to specific sections of the document,
with a deadline of when the questions shall be answered
and returned to the designer. The designer/reviewer
meeting is also scheduled.

 c. The designer collects and reads the completed
questionnaires and meets with reviewers individually
to understand and resolve questions. The designer also
updates the design document afterwards.

 The active design review has a few challenges. It is usually hard to find subject
matter experts to serve as reviewers and get their time commitment, as everyone has
a busy schedule and other commitments in the same or different projects. There is no
big meeting, and review is managed as individual tasks, thus it takes diligence to keep
the review on track and complete on time. Lastly, it takes significant effort to design a
set of questions whose answers are not obvious and easy to find. The questions for the
reviewers to answer shall be carefully designed and non-trivial, which forces reviewers
to play the roles of users of the design and write a program to implement the design.
Answering the questions makes the reviewer active. The questions shall also be tailored
to the reviewer’s expertise and the aspects of the document under review.

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

15

 2.3.2 Extensions to the Active Design Review
 Britcher (1988) took the active design review one step further by incorporating
correctness arguments into inspection. The artifact author and inspectors collaborate in
the pursuit of correctness, developing questions and answers together centering on four
program attributes: topology, algebra, invariance, and robustness. The purpose for this
extension is not to improve inspections but to improve programming.

 The active design review was espoused the architecture tradeoff analysis method
and the new method is called active review for intermediate designs (Clements,
2000). The hybrid method fills a niche that only a portion of a system, not a complete
architecture, is available, but the designer would like to get early feedback on the design
approach.

 The ideas behind the active design review have been used in scenario-based reading,
as we will discuss in Chapter 4 .

 2.4 Other Types of Reviews
 In addition to the Fagan Inspection and active design review and their extensions, many
different kinds of software review exist in practice with different levels of discipline and
flexibility. There are, however, no commonly agreed-upon definitions of terms.
The usages are generally inconsistent, which causes confusions in many cases. Even
for the same type of reviews, the levels of procedural details can vary significantly. Fagan,
in his seminal paper, recognized that walkthroughs were practiced in many different
places with varying regularity and thoroughness (Fagan, 1976). It was also reported that
one person’s walkthrough can be another person’s inspection (Wiegers, 2001).

 Wiegers (2001) organized different types of reviews based on their levels of formality
and rigor. He discussed, in the decreasing order of formality, inspection, team review,
walkthrough, pair programming, peer desk-check or pass-around, and ad hoc review.
Cohen et al. (2006) discussed five types of review: formal inspections, over-the-shoulder
reviews (screen or desk reviews), e-mail pass-around reviews, pair programming, and
tool-assisted reviews. IEEE Standard for Software Reviews and Audits defined five types
of software reviews (management reviews, technical reviews, inspections, walkthroughs,
and software audits) (IEEE 1028). In terms of formality, walkthroughs are least formal,
inspections less formal, followed by management and technical reviews, with audits
being most formal. These types of reviews and audits are considered systematic, with
the following attributes: team participation, documented results of the review, and
documented procedures for conducting the review.

 The review or inspection procedures mentioned above are applicable to any
software artifacts, with the exception of pair programming, which is mostly applicable
to source code. There are specific review procedures for particular kinds of software
artifacts as well. Given the importance of software architecture in software life cycle,
architecture review and evaluation methods were an active area of research and now
have become mature. We use techniques (or procedures) and methods as synonyms,
although some authors distinguish them deliberately (Basili, 1997). The ways to assess
software architectures are packaged as “methods” in literature. Interested readers can
find more information in books on architecture evaluation such as Clements et al.
(2002).

http://dx.doi.org/10.1007/978-1-4842-2346-8_4

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

16

 We do not intend to define various types of reviews, rather suggest adopting the
definitions in the IEEE standard. We do want to point out the trend in industry practices.
A lightweight process is strongly favored by practitioners due to their busy schedule and
heavy workload, and therefore the synchronous, real-time, face-to-face meeting in Fagan
inspection can be impractical. The synergy of the defect collection meeting has been
questioned and the community generally agrees that its value is marginal. Thus software
reviews can be conducted without meetings. The IEEE standard permits reviews to be held
without physical meeting in a single location. Given the advancement of telecommunication
and telepresence, physical meetings can be replaced with telephone conference, video
conference, web conference, or other groupware and group electronic communications.

 Software tools to support software reviews also have made progress. Web-based tools
allow authors to upload software artifacts to web servers, invite reviewers, and set up a
review online. Reviewers can enter review comments online and see each other’s comments
instantly. Issues raised during review are tracked by tools for closure. Synchronous and
asynchronous notifications keep the author and reviewers in the same loop on progress.
Review metrics are automatically collected to provide input for future process improvement.
With these features and capabilities, the overhead of classic inspections is alleviated.

 At least for code review, many organizations, including Facebook, Google, and
Microsoft, are adopting lightweight, tool-assisted reviews (Bacchelli & Bird, 2013).
Bacchelli and Bird called this modern code review. Referring to Fagan’s inspection, only
preparation, collection (inspection), and rework stages are present in the lightweight
review, and defect collection is facilitated with tools. There is empirical evidence that
support the efficiency and effectiveness of the lightweight, tool-assisted modern practice
(Bacchelli & Bird, 2013; Cohen et al., 2006).

 2.5 Factors Impacting Software Reviews
 When the purpose of software reviews is to detect defects in the software artifacts, one
is interested in how many defects are detected and how quickly they are detected. The
number of detected defects is related to the effectiveness of software reviews. The more
defects are detected, the more effective a software review is. How quickly defects are
detected (number of detected defects per unit of time) is related to the efficiency and cost
of software reviews. The quicker the defects are detected, the lower the cost of software
review. Many factors impact the effectiveness and efficiency of software reviews, and
individual performance, meetings, preparation, the amount of inspected materials, team
size, tools, and training are frequently mentioned factors. Meetings and team sizes have
been discussed earlier. Both commercial and research tools exist to support software
inspection, mostly in the areas of asynchronous communication, artifact comprehension
and visualization, and defect tracking. We discuss the remaining factors here.

 Individual performance . Large difference (more than 10
times) in individual performance in software engineering
was observed a long time ago (Boehm, 1981). Hatton
(2008) recently reported the same in code inspection. A few
attributes contributed to the difference, including expertise
on the programming language (Knight, 1993) and software
reading expertise (Sauer, 2000). The rest of the book is
devoted to software reading techniques.

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

17

 Preparation . The importance of individual preparation to
defect detection was reported by many authors—e.g., Gilb
(1993). The more time a reviewer spent on preparation, the
more defects are typically reported. It is generally agreed that
most defects are found during individual’s preparation phase
before defects are aggregated.

 Amount of materials . Due to people’s limited attention
span, when the amount of materials to be inspected is large,
readers become overwhelmed and fatigued, which negatively
impacts the review effectiveness. For code inspection, the
rate of inspection often suggested in literature is 100-200
lines of code per hour. If readers are not given enough time to
examine the material, then the inspection loses its rigor and
readers tend to report trivial findings.

 Training . The level of training readers receive impacts the
review effectiveness. This should not be a surprise, given the
importance of individual’s skills in inspection. Researchers
found that practical training on defect finding skills was more
impactful than the training on process.

 Software development is a highly personal endeavor. Without care, software review
or inspection can easily cause anxiety and tension among participants. The social
psychological effects of computer programming were recognized from the early days of
programming (Weinberg, 1998). Weinberg published his famous book, The Psychology of
Computer Programming, in 1971, before Fagan inspection was introduced and practiced.
Authors should have a thick skin and have their egos checked when participating in
the reviews. Reviewers should recognize the IKEA effect on the artifact authors. The
IKEA effect is a cognitive bias in which the artifact creators place a disproportionately
higher value on the artifact they created (Norton et al., 2012). More labors lead to deeper
affection. Successful inspection depends on the individual capability of each team
member and how well individuals work in teams.

 Before we close this section, let’s discuss the eight maxims Kelly and Shepard (2004)
compiled based on their observations, which focus on people forces at work in inspections.

 1. Use structured inspection techniques. By inspection
techniques, Kelly and Shepard meant reading techniques. The
techniques shall be appropriate for the inspection goals and
inspectors’ experience.

 2. Set standards of acceptability. Inspections are expensive.
There should be entrance criteria to start the inspection.
Artifacts shall be cleaned up and superficial issues shall be
rooted out, preferably with tools, before inspections start.

 3. Match skills to tasks. If skills and tasks are matched, both
effectiveness and the comfort level of the inspector improve.
Inspectors who are familiar with the artifacts under review
shall be chosen first. Skills here also include soft skills such as
verbal and written communication skills, which are needed to
interact with artifact authors.

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

18

 4. Find physical, mental, and schedule space. Inspections
are mentally demanding and require concentration for an
extended period of time. Inspection shall be conducted at a
quiet place without interruption, and inspectors shall be given
enough time to complete the inspection.

 5. Encourage an inspection-based process. At minimum,
the inspection shall be planned, and the project schedule
shall reflect that. Roles and responsibilities shall be clearly
specified ahead of time.

 6. Promote responsibility, ownership, and authority.
Responsibility and ownership lead to improved inspection
efforts. Inspectors and authors jointly own the artifact and
are responsible to its quality. Inspectors shall be granted
the authority to access needed documents and resources to
complete the inspection.

 7. Ensure clear inspection goals are set. Clear goals affect the
scope of the inspection. It shall be clear to all participants if
alternative solutions shall be proposed or not. Also ensure
terminologies are defined and used consistently to avoid
potential confusion.

 8. Use metrics cautiously. Metrics can be used and interpreted
in different ways. There is no commonly agreed-upon
definition of “defect,” nor its granularity and severity. The
number of defects is strongly related to the complexity of the
task itself. Metrics shall not be used to evaluate an individual’s
job performance.

 2.6 Summary
 Software review and inspection is considered a best practice and has been practiced
over four decades. There are many flavors of reviews and inspections. We focused on the
classic Fagan inspection and active design review, as well as their various extensions.
Fagan inspection is not only the first formal inspection method but also the foundation
of many other modified versions. The ideas of the active design review are used in many
software reading techniques, as we shall see in later chapters.

 Laitenberger and DeBaud (2000) contextualized software inspection in the software
lifecycle. They provided suggestions on how Fagan inspection and its various extensions
can be customized to inspect different software artifacts created during the software
lifecycle, with different reading techniques. IEEE Std 1028 has a comprehensive list of
software artifacts that can be subject to review or inspection (IEEE 1028). Many factors
impact the performance of software reviews and inspections, chief among which is
individual factor. It is well established that software review and inspection is primarily an
individual, not a group, activity. How the reviewer reads and extracts information from
the software artifact under review impacts his or her performance. The rest of the book
focuses on reading techniques, which are meant to equip the readers and enhance their
review and inspection capacities.

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

19

 2.7 References
 (Aurum, 2002) A. Aurum, H. Petersson, and C. Wohlin, State-of-the-art: software inspections

after 25 years, Software Testing, Verification and Reliability, vol.12, pp.133-154, 2002.

 (Bacchelli, 2013) A. Bacchelli and C. Bird, Expectations, outcomes, and challenges of
modern code review, Proceedings of the 35 th IEEE/ACM International Conference on
Software Engineering, pp.712-721, 2013.

 (Basili, 1997) V.R. Basili, Evolving and packaging reading technologies, Journal of Systems
and Software, vol.38, no.1, pp.3-12, 1997.

 (Bisant, 1989) D.B. Bisant and J.R. Lyle, A two-person inspection method to improve
programming productivity, IEEE Transactions on Software Engineering, vol.15,
no.10, pp.1294-1304, 1989.

 (Boehm, 1981) B.W. Boehm, Software Engineering Economics, Prentice-Hall, 1981.

 (Britcher, 1988) R.N. Britcher, Using inspections to investigate program correctness, IEEE
Computer, vol.21, no.11, pp.38-44, 1988.

 (Clements, 2000) P.C. Clements, Active Reviews for Intermediate Designs, Technical Note,
CMU/SEI-2000-TN-009, 2000.

 (Clements, 2002) P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies, Addison-Wesley, 2002.

 (Cohen, 2006) J. Cohen, S. Teleki, and E. Brown, Best Kept Secrets of Peer Code Review,
Smart Bear Inc., 2006.

 (Fagan, 1976) M.E. Fagan, Design and code inspections to reduce errors in program
development, IBM Systems Journal, vol.15, no.3, pp.182-211, 1976.

 (Fagan, 1986) M.E. Fagan, Advances in software inspections, IEEE Transactions on
Software Engineering, vol.12, no.7, pp.744-751, July 1986.

 (Gilb, 1993) T. Gilb and D. Graham, Software Inspection, Addison-Wesley, 1993.

 (Hatton, 2008) L. Hatton, Testing the value of checklists in code inspections, IEEE
Software, vol.25, no.4, pp.82-88, 2008.

 (IEEE 1028) IEEE Std 1028-2008, IEEE Standard for Software Reviews and Audits, 2008.

 (Johnson, 1998) P.M. Johnson and D. Tjahjono, Does every inspection really need a
meeting? Empirical Software Engineering, vol.3, pp.9-35, 1998.

 (Kelly, 2004) D. Kelly and T. Shepard, Eight maxims for software inspectors, Software
Testing, Verification and Reliability, vol.14, pp.243-256, 2004.

 (Knight, 1993) J.C. Knight and E.A. Myers, An improved inspection technique,
Communications of the ACM, vol.36, no.11, pp.51-61, 1993.

 (Kollanus, 2009) S. Kollanus and J. Koskinen, Survey of software inspection research, The
Open Software Engineering Journal, vol.3, pp.15-34, 2009.

 (Laitenberger, 2000) O. Laitenberger and J.M. DeBaud, An encompassing life cycle centric
survey of software inspection, Journal of Systems and Software, vol.50, no.1,
pp.5-31, 2000.

 (Laitenberger, 2002) O. Laitenberger, A survey of software inspection technologies, in
Handbook on Software Engineering and Knowledge Engineering, vol.2 Emerging
Technologies, World Scientific, 2002.

CHAPTER 2 ■ SOFTWARE REVIEW PROCEDURES

20

 (Norton, 2012) M.I. Norton, D. Mochon, and D. Ariely, The IKEA effect: When labor leads
to love, Journal of Consumer Psychology, vol.22, no.3, pp.453-460, 2012.

 (Parnas, 1985) D.L. Parnas and D.M. Weiss, Active design reviews: principles and
practices, 8 th International conference on Software Engineering, pp.215-222, 1985.

 (Porter, 1995) A.A. Porter, L.G. Votta, and V.R. Basili, Comparing detection methods for
software requirements inspection: A replicated experiment, IEEE Transactions on
Software Engineering, vol.21, no.6, pp.563-575, 1995.

 (Porter, 1997) A.A. Porter, H.P. Siy, C.A. Toman, and L.G. Votta, An experiment to assess
the cost-benefit of code inspections in large scale software development, IEEE
Transactions on Software Engineering, vol.23, no.6, pp.329-346, 1997.

 (Sauer, 2000) C. Sauer, D.R. Jeffery, L. Land, and P. Yetton, The effectiveness of software
development technical reviews: A behaviorally motivated program of research, IEEE
Transactions on Software Engineering, vol.26, no.1, pp.1-14, 2000.

 (Schneider, 1992) M. Schneider, J. Martin, and W. Tsai, An experimental study of
fault detection in user requirements documents, ACM Transactions on Software
Engineering and Methodology, vol.1, no.2, pp.188-204, 1992.

 (Thelin, 2004) T. Thelin, H. Petersson, P. Runeson, and C. Wohlin, Applying sampling to
improve software inspections, Journal of Systems and Software, vol.73, no.2, pp.257-
269, 2004.

 (Tian, 2005) J. Tian, Software Quality Engineering: testing, quality assurance, and
quantifiable improvement, IEEE Computer Society Press, 2005.

 (Votta, 1993) L.G. Votta Jr., Does every inspection need a meeting? Proceedings of the
ACM SIGSOFT Symposium on Foundations of Software Engineering, pp.107-114,
1993.

 (Weinberg, 1998) G.M. Weinberg, The Psychology of Computer Programming: Silver
Anniversary Edition, Dorset House, 1998.

 (Wiegers, 2001) K.E. Wiegers, Peer Reviews in Software: A Practical Guide, Addison-
Wesley Professional, 2001.

21© Yang-Ming Zhu 2016
Y.-M. Zhu, Software Reading Techniques, DOI 10.1007/978-1-4842-2346-8_3

 CHAPTER 3

 Basic Software Reading
Techniques

 As software professionals we were all trained to create software artifacts. For example,
requirements engineers were taught how to define, document, and maintain requirements;
software designers were trained to conceptualize the system, come up with architecture to
deliver ever-demanding user experience, and document the architectural design; software
developers were trained to write programs in programming languages using various
constructs and concepts. However, we were not taught how to read those artifacts and
source code authored by others.

 There is ample empirical evidence that the software review is primarily an individual
effort and many anomalies are uncovered in the course of individual reading (Johnson
& Tjahjono, 1998; Votta, 1993). Thus the kinds of reading techniques the individual uses
are paramount to the outcome and effectiveness of software review. This chapter defines
what software reading is and surveys the basic software reading techniques.

 3.1 Introduction to Software Reading
 Everyone who received primary education knows how to read. However, the effectiveness
of reading varies. Wikipedia defines reading as (https://en.wikipedia.org/wiki/
Reading_(process) , accessed on Dec. 15, 2015. http://www.encyclopedia.com/topic/
reading.aspx essentially contains the same elements as Wikipedia summarizes)

 Reading is a complex cognitive process of decoding symbols
in order to construct or derive meaning. … [I]t is a complex
interaction between the text and the reader which is shaped
by the reader’s prior knowledge, experiences, attitude, … The
reading process requires continuous practice, development,
and refinement. In addition, reading requires creativity and
critical analysis. … Readers integrate the words they have read
into their existing framework of knowledge and schema.

 Based on this discussion, we conclude that (1) reading has a purpose, (2) the
reader’s background plays a role in reading, (3) reading techniques can be learned, and
(4) reading requires critical analysis. Those general characteristics exhibit in software
reading as well.

https://en.wikipedia.org/wiki/Reading_(process)
https://en.wikipedia.org/wiki/Reading_(process)
http://www.encyclopedia.com/topic/reading.aspx
http://www.encyclopedia.com/topic/reading.aspx

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

22

 3.1.1 Definition of Software Reading
 Based on the Encyclopedia of Software Engineering (Shull, 2002), software reading is
defined as the process by which a developer gains an understanding of the information
encoded in a work product sufficient to accomplish a particular task. We adopt the same
definition. The “work product” refers to the software artifact, ranging from requirements
specification, design documentation, code files, test plan, test cases, test reports, to user
documentation, etc. The “particular task” is related to the purpose of reading, whether
the reading is for gaining knowledge of the system, detecting defects, or implementing the
design. The purposes of reading are systematically treated in the next subsection.

 Associated with software reading is the software reading technique. Again, based
on the Encyclopedia of Software Engineering (Shull, 2002), a software reading technique
is a series of steps for the individual analysis of a textual software product to achieve the
understanding needed for a particular task. A series of steps is a set of instructions
that guide the reader how to read the artifacts, what areas to focus on, and what problems
to look for. Again software reading is primarily an individual activity.

 Ever since the Fagan inspection was introduced, it was recognized that some sort
of reading technique was needed. Fagan suggested using checklists (Fagan, 1976). By
now there is a big body of knowledge on software reading techniques. The software
reading technique has become an active research area since 1994 after Porter and Votta
(1994) published their paper on scenario-based reading. Between 1980 and 2008, 16% of
software inspection research papers were on software reading techniques (Kollanus &
Koskinen, 2009). This chapter surveys a few early and popular reading techniques. Latter
chapters discuss more advanced or specialized reading techniques.

 3.1.2 Purposes of Software Reading
 We read software artifacts to accomplish a particular task. The task is defined by the
purpose of reading. Broadly speaking, we read software for analysis and for construction
(Basili et al., 1996).

 In reading for analysis, we read and understand the document, then analyze and
assess the qualities and characteristics of the document. The primary objective of
reading for analysis is to detect defects in the document. When reading the requirements
specifications, we may detect various types of requirement errors such as incorrect facts,
omission, ambiguity, and inconsistency. When reading the code, we may detect various
types of coding errors such as logic errors, assumption errors, incorrect function calls, etc.
Other objectives of reading for analysis include performance predictions, requirement
tracing, usability assessment, etc. One of the main reasons to have an architecture
document is to support analysis and prediction (Clements et al., 2011). For example, we
can predict system performance by using queue theory when there are one or multiple
processing queues involved. By reading the system requirements specification and
subsystem requirements specification, we can reason whether the system requirements
specification is sufficiently decomposed to the subsystem requirements specification,
and whether the subsystem requirements specification can indeed trace back to its
system requirements specification origin and have a sufficient coverage of the system
requirements specification.

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

23

 In reading for construction, we attempt to identify if any requirements, design, code
or test cases can be reused in the same project or in a different project. We also examine
the high-level design document to come up with the low-level design or read the design
document to see how we may implement the design properly. Sometimes we read the
software just to gain the knowledge. It might be true, however, we have an interest to
maintain the software in future.

 Reading for defect detection is the focus of most researchers and is also the main
concern of this book.

 3.1.3 Taxonomy of Software Reading Techniques
 Software reading techniques can be classified along different dimensions. Based on
whether the reading technique is structured (systematic) or not, the reading techniques
can be put into the following categories:

• Unstructured, or unsystematic reading: Ad hoc reading falls into
this category. Ad hoc reading is discussed in this chapter.

• Semi-structured reading: Checklist-based reading is in this group
and is also discussed in detail in this chapter.

• Structured or systematic reading: Perspective-based reading falls
into this group, along with many other techniques. These reading
techniques collect knowledge about the best practices for defect
detection into a single procedure. To some extent, they serve a
similar role as design patterns to design. These techniques are
covered in other chapters of this book.

 When we discuss the benefits and shortcomings of each reading technique, keep
in mind that structures of any kind simultaneously enable and limit human activities.
This is known as the Paradox of Structure (Jablokow, 2003): While a structured reading
technique enables one to find anomalies in the software artifact, the same reading
technique may limit one to find anomalies only in certain categories.

 Reading techniques can be classified according to the software artifacts to which
they are applied. For example, checklist-based reading can be applied to review almost
every software artifact, while stepwise abstraction, which is discussed in a later chapter, is
only applicable to code review.

 3.2 Ad hoc Reading
 When there is no specific method provided to the reader to detect issues or defects in
the software artifacts under review, we call it an ad hoc reading. This is an unstructured,
or unsystematic, reading technique. The reader simply attempts to uncover as many
issues and defects as possible by examining the artifact using whatever intuition, skills,
knowledge, and experience he or she may have. The effectiveness of the ad hoc reading is
entirely up to the individual reader. The individual defect detection performance can vary
by a factor of 10 in terms of defects found per unit time (Hatton, 2008). Nevertheless, it is
the most common reading technique.

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

24

 One of the advantages of the ad hoc reading is that there is no training needed for the
reader. However, it has many disadvantages, among which is the wide variability
of the results. In fact, the outcome to a large extent depends on the skills, knowledge, and
experience of the reader. It is slow for readers to acquire expertise; thus inexperienced
readers will not be productive when reviewing software artifacts to uncover issues. Once
the expertise has been acquired, it is very difficult to teach or transfer the expertise to
others. Since the effectiveness of the ad hoc reading depends on individual expertise,
readers adopting this reading technique may miss major areas of concern.

 3.3 Checklist-Based Reading
 Checklists are ubiquitous. You may use a shopping list. Grade school kids often have a
school supply list for the next school year. If you are planning a family vacation, you most
likely have a packing list. The example list goes on and on.

 Checklists are widely used in software reading and they serve a similar purpose as
the above-mentioned checklists do. In fact, Fagan (1976) suggested using a checklist
during software inspection in his seminal paper. Since then checklists for software review
have flourished. In the 1999 survey, Brykczynski (1999) reviewed 117 checklists. And
checklists are continuously being proposed for software reading.

 3.3.1 Checklist Definition, Types, and Examples
 So what is a checklist? A checklist is a list of questions to provide reviewers with hints and
recommendations for finding defects during the examination of software artifacts. Since
a question can be rephrased as an imperative sentence, the checklist does not have to be
composed of questions only. The questions or imperative sentences in the checklist draw
reviewers’ attention to defect-prone areas based on historical data. A checklist may also
serve other purposes. For example, it can be used to ensure important areas are covered
by the artifact under review.

 Checklists can be classified into two groups (Tian, 2005): property-based checklists
and artifact-based checklists. Checklists for coding standards and guidelines, standard
or process conformance, etc. are property-based. Checklists for requirements
specifications, design documents, code files, or test cases are artifact-based. Checklists
for requirements specifications and design documents may contain items to ensure
correctness, consistency, and completeness of the requirements or design, while the
checklists for code review may include items for generally accepted programming
practices and for particular programming languages.

 Panel 3-1 shows a partial checklist for a requirements review. Note each checklist
item is an imperative sentence. When a reader is reviewing a requirements specification
document, he or she can check each requirement against individual items on this
checklist.

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

25

PANEL 3-1: A SAMPLE (PARTIAL) CHECKLIST FOR

REQUIREMENTS REVIEW

 1. Requirements specifications shall be testable.

 2. Requirements specifications shall not conflict with other
requirements specifications.

 3. Conditional requirements specifications shall cover all cases.

 4. Numerical values in requirements specifications shall include
physical units if applicable.

 Panel 3-2 shows a sample checklist for code review. Here each checklist item is a
question. The checklist for code review tends to be big and the items can be grouped into
different areas of concern such as control, input/output, performance, etc. For object-
oriented code reading, the areas of concern can be aligned with the features of object-
oriented programming, such as encapsulation, inheritance, and polymorphism.

PANEL 3-2: A SAMPLE (PARTIAL) CHECKLIST FOR

CODE REVIEW

 1. Have resources (e.g., memory, file descriptor, database
connection) been properly freed?

 2. Are shared variables protected/thread-safe?

 3. Is logging implemented?

 4. Are comments updated and consistent with the code?

 5. Is data unnecessarily copied, saved, or reloaded?

 6. Is the number of cores checked before spawning threads?

 Checklists are typically developed based on the analysis of past team defects in the
same or different projects. They can also be based on others’ experience, but customized
for one’s project team. Checklists can be tailored to an individual as well. Individuals
can have a personal defect checklist that compiles the problematic areas in which the
individual tends to make mistakes. The Personal Software Process prescribes the use of
such a personal checklist (Humphrey, 1997).

 Compared to ad hoc reading, checklist-based reading reduces the variability of
reading results, i.e., the results are less dependent on the reviewers’ skills, knowledge, and
experience. It also ensures coverage of important areas and is thus effective at detecting
omissions. As recent research suggests, in addition to supporting defect detection,
checklist-based reading improves software understanding and comprehension, which
makes the subsequent software modification easier (McMeekin et al., 2008).

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

26

 As the Paradox of Structure suggests, checklist-based reading might detect the
defects of particular types covered by the checklist, i.e., those previously encountered
from which the checklist was created. Therefore insidious defects, which require deep
understanding of the artifacts, are often missed. The other disadvantages of checklist-
based reading are related to the checklist itself. The checklist often includes generic
items that may not be applicable to the project or the artifact. A lengthy checklist may
overwhelm readers. The “best practices of checklists” discussed later can remediate the
issues with generic and lengthy checklists.

 3.3.2 Checklists with Guidance
 Checklist-based software reading is considered semi-structured, as it does not tell the
reader how to use the checklist and there is little verification that the reader actually
conducts an analysis relating to checklist items. To remedy this shortcoming, an active
guidance can be added to the traditional checklist-based reading (Winkler et al., 2005).

 Winkler et al. focused on design document inspection. The readers are given a
tailored checklist that provides active guidance. The specific checklist leads the reader
through the inspection process. The active guidance to be used with a checklist is shown
in Panel 3-3 (adapted from Winkler et al. [2005]).

PANEL 3-3: AN ACTIVE GUIDANCE USED WITH

CHECKLIST-BASED READING

 1. Analyze requirements and system functions in the requirements
document.

 2. Prioritize the correlations between requirements and system
function according to the reader’s own knowledge of the
application domain.

 3. Trace the requirements and functions in the design document
according to their priorities or importance.

 4. Report any differences as defects.

 5. Pick the next most important requirement and repeat steps 3
and 4, until done.

 This checklist with active guidance promotes a deep understanding of the
specification document, the system requirements, and system functions, which enables
the readers to uncover more defects in the design document. It also allows the reader to
focus on more important requirements due to the prioritization performed before the
start of the inspection. Thus it uncovers crucial defects.

 Alternatively, guidance on how to use a checklist can be implicitly built into the
checklist itself. Dunsmore et al. (2002) compiled a checklist for object-oriented code
reading. They took into account the structure of object-oriented code and deliberately
ordered the checklist questions in such a way as to support readers in building up a deep
understanding of the code under review. Their checklist has three ordered sections. Each

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

27

section has a number of ordered groups, and each group has a list of ordered questions.
Their checklist is adapted in Table 3-1 . It has three sections: the class section, the method
section, and the final section. The class section is about inheritance and constructor issues.
The method section is concerned with issues related to methods, such as data and object
referencing, messaging, and method behavior. The final section is on method overriding.

 Table 3-1. A Checklist for Object-Oriented Code Reading (adapted from Dunsmore et al.
[2002])

 Section Feature Checklist item

 For each class Inheritance Q1. Is all inheritance required by the design
implemented in the class?

 Q2. Is the inheritance appropriate?

 Constructor Q3. Are all instance variables initialized with
meaningful values?

 Q4. If a call to base class is required in the
constructor, is it present?

 For each method Data referencing Q5. Are all parameters used within a method?

 Q6. Are the correct class constants used?

 Q7. Are indices of data structures operating
within the correct boundaries?

 Object messaging Q8. Is the correct method being called on the
correct object?

 Q9. Are the correct values passed as parameters
in the correct order?

 Object referencing Q10. Should a reference to an object be used
instead of a distinct copy?

 Selection and
iteration

 Q11. Are all relational and logical operators
sufficient and correct?

 Q12. Is the correct sequence of code executed
for any conditional outcome?

 Q13. Is the use of an iterator or loop appropriate
when destructive operations are occurring on a
collection?

 Method behavior Q14. Are all assignment and state changes
made correctly?

 Q15. For each return statement, is the value
returned and its type correct?

 Q16. Does the method match the specification?

 For each class Method overriding Q17. If inherited methods need to behave
differently, are they overridden?

 Q18. Are all uses of method overriding correct?

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

28

 The purposely structured checklist accomplishes two objectives: “where to look” and
“how to detect.” “Where to look” is related to the potential problem areas and is supported
by the list of sections and features. The “how to detect” part is supported by the checklist
questions. As the readers navigate through the different groups of questions, they successively
move from a high-level view to a more detailed level view. At the end, the readers can readily
conclude whether the method implementation code matches the specification (Q16).

 3.3.3 Best Practices of Checklists
 Over the years, people have come up with a few heuristics on what makes good checklists
and what to avoid in checklists (Brykczynski, 1999). We call this general advice “the best
practices of checklists”:

• Checklists should be periodically revised based on historical data
to include new items and remove outdated items. If the checklists
are updated regularly, the reviewers may be more likely to read
and use the checklists. If the checklists are updated to reflect the
most common issues, more likely it will help reviewers in finding
defects.

• Checklists should be concise and fit on one page. A reviewer
is less likely to flip through multiple pages. The single-paged
checklist can be hung on the office wall or put on the desk close to
where the reviewer is examining the software artifact.

• Checklist items should not be too general. A general item is hard
to apply or subject to varying interpretation.

• Checklist items should not be used for conventions which are
better checked or enforced with software tools.

 3.3.4 Empirical Experiences
 Checklists have been used in software reading since Fagan (1976) reported the Fagan
Inspection. They were advocated by many authors, e.g., Gilb and Graham (1993) and
Clements et al. (2011). Checklist-based reading as well as ad hoc reading is frequently
chosen as a baseline, and other newly proposed reading techniques are compared to
them. Later chapters include many examples. Here we selectively discuss the results of a
few empirical studies.

 Winkler et al. (2005) compared the traditional checklist-based reading and checklist-
based reading with guidance. Their experimental subjects were software engineering
students. Defects were seeded into the design document, with three levels of severity:
critical, major, and minor. They reported that checklist-based reading with guidance has
a slightly longer preparation time but a shorter inspection time. When both preparation
and inspection times were considered, the total times were not significantly different
(although the total time of the checklist with guidance was slightly shorter). The
difference was notable in the number of uncovered defects. The checklist with guidance
technique uncovered more defects in all three levels of severity. It also registered less
false positive defects.

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

29

 Dunsmore et al. (2002) compared the deliberately designed checklist for object-
oriented code reading with a few other reading techniques. In short, they found that
the checklist-based reading is the most effective reading technique for object-oriented
systems. The details can be found in Chapter 7 , Code Reading Techniques.

 Rong and colleagues (2014) reported a case study of code reading techniques in a
small-sized software company. Novice software inspectors used both ad hoc reading and
checklist-based reading to read source code of 20 modules. They observed that readers
using the checklist tended to have a slower reading speed but discovered more defects.

 The content of the checklists is accessible to both the authors of the artifact and
the readers. Thus the authors can use the checklists to uncover the defects themselves
before sending the artifact out for review. All the empirical studies mentioned previously
ignored this fact when the checklists were used in practice. The effectiveness of checklist-
based reading largely depends on the content of the checklists.

 3.4 Differential Reading
 Many software reading techniques assume that the reader will read the entire document,
be it a requirements specification, design document, source code file, or test case. As
a matter of fact, there are a few situations where developers typically deal with the
difference between the existing software artifact and the one that is being modified:

• Software applications are frequently released incrementally via
different projects. New features and defect fixes are added in a
latter release. Many software artifacts including requirements,
design, code implementation, and testing can be reused. New
requirements, design, code, and test cases are typically embedded
in the existing documents.

• Even for software applications that are started from scratch, an
iterative and incremental development process may be adopted.
New features and defect fixes are implemented in a latter iteration
or sprint. Along the way, documentations are also written,
revised, expanded, and reviewed incrementally.

• Regardless of how the project is structured and what development
process is used, a software artifact is reviewed, a rework might
be required, and the updated document might be subject to re-
review again.

 In all those situations, there are at least two versions of the software artifacts
available. It is not worthwhile for the reader to read the entire document from beginning
to end each time, particularly if the reader is already familiar with the previous versions.

 There is no published reading technique to deal with the situations above. We adopt
the instructions in Panel 3-4, so that the reader can focus on the changes and assess
whether those changes meet the intentions without negative side effects. We call it
differential reading, as it draws readers’ attention to the part of changes and focuses the
changes in the context. Don’t be deceived by the amount of changes, however. For source
code, a simple innocent change may have significant ramifications. Mernhart et al. (2010)
reported their positive experience on a continuous differential-based method and tool for
code reviews in agile software development.

http://dx.doi.org/10.1007/978-1-4842-2346-8_7

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

30

 There are many tools to highlight the changes in a document. Microsoft Word is
frequently used to capture requirements and describe designs. To keep track of changes
across different revisions of the document, one can enable “Track Changes”. There
are many tools to track the source code changes. For example, the Subversion client
TortoiseSVN is integrated with the Windows Explore and the Diff command from the
context menu can highlight the code change against the repository.

 We illustrate one differential reading example below. The C# code reads in a script
file, replaces some strings with other strings in each line, and writes the replaced script
to a new file. The strings and the strings to replace them are predefined and read in from
a file. However, it was noticed recently that some strings were replaced incorrectly. This
happened when the prefix of a long string was mistakenly replaced first. The source code
was modified in three places to fix the problem. The first place is simply to define a string
list to store the sortedKeys (code not shown). Figure 3-1 shows the second section of code
where the change happened. The top shows the old file and the bottom displays the new
file. New code was added in the new file from line 52 to line 55. The code simply gets the
list of strings and sorts them in reverse order. The comment explains why it is done.

 1. Get familiar with the existing software artifact if not already.

 2. Understand what drives the modification of the existing
document, be it new features, defect fixing, or some other
nature.

 3. Use a diff tool to highlight what has been changed in the newly
updated document.

 a. Pick a block of changes to focus on and read the
surrounding text where the changes are part of.

 b. Pay attention to all change types: addition, deletion, and
modification.

 c. If the amount of change is significant, consider it new
and use any reading techniques available to you or
agreed upon by the team.

 d. If the amount of change is not significant:

 i. Check whether the change is consistent with
the change driver, the assumptions or styles the
document already took, etc. If not, log as a defect.

 ii. Check if there are any side effects. If there is a side
effect, log as a defect.

 4. Repeat step 3 until all changes have been read and analyzed.

 PANEL 3-4: INSTRUCTIONS FOR DIFFERENTIAL READING

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

31

 Figure 3-2 shows the third and last section where the code was changed. Inside the loop
in which the foreach clause is embedded, lines are processed sequentially. The original string
and the string to replace it are maintained in the dictionary (keyMapping). The old code
simply loops over every possible word in the dictionary, checks if it appears in the line, and
replaces it if it does. The modified code however, loops over reversely sorted words. Based on
the reading and understanding of the code, the modified code seems working as intended.

 Figure 3-1. Code difference (part 1) in updated file to illustrate the differential reading

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

32

 In this example, the old and new code is displayed in two panels, which are arranged
vertically for display purpose here. Two panels can also be arranged horizontally. Neither
vertical nor horizontal arrangements utilize the screen optimally. It is possible to display
old and new code in a single panel, however (Lanna & Amyot, 2011).

 3.5 Summary
 Software professionals are trained to write software documents. But reading,
understanding, analyzing, assessing quality, and utilizing the software document
are equally important. This chapter defines software reading and software reading
techniques and classifies the software reading techniques based on their characteristics.
This chapter then discusses ad hoc reading, checklist-based reading, and differential
reading, which can be applied to any software artifacts. Due to its long history, checklist-
based reading has a few variations and the community accumulated some heuristics on
checklist best practices. Ad hoc reading and checklist-based reading are the two most
practiced reading techniques. According to a recent industry survey (Ciolkowski et al.,
2003), ad hoc reading is used in 35% of the software reviews and checklist-based reading
is used in 50% of the reviews. Ten percent of the reviews use some specific or advanced
reading techniques and the remaining 5% use simulation or other techniques. Ad hoc and
checklist-based reading techniques are also frequently chosen as a baseline and other
reading techniques are compared to them. Next chapter discusses advanced reading
techniques, scenario-based reading.

 Figure 3-2. Code difference (part 2) in updated file to illustrate the differential reading.

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

33

 3.6 References
 (Basili, 1996) V. Basili, G. Caldiera, F. Lanubile, and F. Shull, Studies on reading

techniques, In Proceedings of the Twenty-First Annual Software Engineering
Workshop, SEL-96-002, pp.59-65, 1996.

 (Brykczynski, 1999) B. Brykczynski, A survey of software inspection checklists, Software
Engineering Notes, vol.24, no.1, pp.82-89, 1999.

 (Ciolkowski, 2003) M. Ciolkowski, O. Laitenberger, and S. Biffl, Software reviews: the state
of the practice, IEEE Software, vol.20, no.6, pp.46-51, 2003.

 (Clements, 2011) P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
Merson, R. Nord, and J. Stafford, Documenting Software Architectures: Views and
Beyond, 2 nd ed., Addison-Wesley, 2011.

 (Dunsmore, 2002) A. Dunsmore, M. Roper, and M. Wood, Further investigations
into the development and evaluation of reading techniques for object-oriented
code inspection, Proceedings of the 24 th International Conference on Software
Engineering, pp.47-57, 2002.

 (Fagan, 1976) M.E. Fagan, Design and code inspections to reduce errors in program
development, IBM Systems Journal, vol.15, no.3, pp.182-211, 1976.

 (Gilb, 1993) T. Gilb and D. Graham, Software Inspection, Addison-Wesley, 1993.

 (Hatton, 2008) L. Hatton, Testing the value of checklists in code inspections, IEEE
Software, vol.25, no.4, pp.82-88, 2008.

 (Humphrey, 1997) W.S. Humphrey, Introduction to the Personal Software Process,
Addison-Wesley Publishing Company, 1997.

 (Jablokow, 2003) K.W. Jablokow, Systems, man, and the paradox of structure, IEEE
International Conference on Systems, Man and Cybernetics, vol.3, pp.2374-2380, 2003.

 (Johnson, 1998) P.M. Johnson and D. Tjahjono, Does every inspection really need a
meeting? Empirical Software Engineering, vol.3, pp.9-35, 1998.

 (Kollanus, 2009) S. Kollanus and J. Koskinen, Survey of software inspection research, The
Open Software Engineering Journal, vol.3, pp.15-34, 2009.

 (Lanna, 2011) M. Lanna and D. Amyot, Spotting the difference, Software: Practice and
Experience, vol.41, no.6, pp.607-622, 2011.

 (McMeekin, 2008) D.A. McMeekin, B.R. von Konsky, E. Chang, and D.J.A. Cooper,
Checklist based reading’s influence on a developer’s understanding, 19 th Australian
Conference on Software Engineering, pp.489-496, 2008.

 (Mernhart, 2010) M. Mernhart, A. Mauczka, and T. Grechenig, Adopting code reviews for
agile software development, IEEE Agile Conference, pp.44-47, 2010.

 (Porter, 1994) A.A. Porter and L.G. Votta, An experiment to assess different defect
detection methods for software requirements inspections, in Proceedings of the 16 th
International Conference on Software Engineering, pp.103-112, 1994.

 (Rong, 2014) G. Rong, H. Zhang, and D. Shao, Investigating code reading techniques for
novice inspectors: an industrial case study, Proceedings of the 18 th International
Conference on Evaluation and Assessment in Software Engineering (EASE’14),
Article No.33, 2014.

CHAPTER 3 ■ BASIC SOFTWARE READING TECHNIQUES

34

 (Shull, 2002) F. Shull, Software reading techniques, in Encyclopedia of Software
Engineering, John Wiley and Sons, 2002 (http://onlinelibrary.wiley.com/
doi/10.1002/0471028959.sof273/abstract , accessed on Dec. 17, 2015).

 (Tian, 2005) J. Tian, Software Quality Engineering: testing, quality assurance, and
quantifiable improvement, IEEE Computer Society Press, 2005.

 (Votta, 1993) L.G. Votta Jr., Does every inspection need a meeting? Proceedings of the ACM
SIGSOFT Symposium on Foundations of Software Engineering, pp.107-114, 1993.

 (Winkler, 2005) D. Winkler, S. Biffl, and B. Thurnher, Investigating the impact of active
guidance on design inspection, LNCS 3547, pp.458-473, 2005.

http://dx.doi.org/http://onlinelibrary.wiley.com/doi/10.1002/0471028959.sof273/abstract
http://dx.doi.org/http://onlinelibrary.wiley.com/doi/10.1002/0471028959.sof273/abstract

35© Yang-Ming Zhu 2016
Y.-M. Zhu, Software Reading Techniques, DOI 10.1007/978-1-4842-2346-8_4

CHAPTER 4

Scenario-Based Reading
Techniques

In the last chapter we discussed basic reading techniques such as ad hoc reading
and checklist-based reading. Those are the most frequently used reading techniques
in industry software reviews (Ciolkowski et al., 2003). This chapter discusses recent
developments of software reading techniques and focuses on the family of reading
techniques called scenario-based reading.

4.1 Principles of Scenario-Based Reading
Scenario-based reading was developed by Porter and Votta (1994), and their paper
triggered an active research on software reading techniques. Their method was later
renamed “defect-based reading” and the term “scenario-based reading” was reserved
for a group of reading techniques that use different ways to decompose reading
scenarios. The family of scenario-based reading techniques includes defect-based
reading, perspective-based reading, etc. Defect-based reading concentrates on specific
defect classes and perspective-based reading focuses on viewpoints of consumers of a
document. Defect-based reading was originally employed for requirements inspection
but could be applied to other software artifacts as well.

Scenario-based reading was motivated by the ideas behind the active design review
proposed by Parnas and Weiss (1985). In an active design review, reviewers are selected
based on their expertise. Each reviewer is given a specific area to focus on and required to
answer specifically designed questions that can only be answered after a critical reading
and analysis of the design, which solves the issue of passive participation. Scenario-
based reading is based on operational scenarios that give specific guidance to readers.
The guidance can be a set of questions, an assignment, or explicit instructions on how to
conduct reviews and look for defects. To improve effectiveness, the overlap of scenario
assignments shall be minimized. Because of detailed instructions on reading and defect
detection, this group of reading techniques is considered systematic.

The working of scenario-based reading can be best depicted by the diagram in
Figure 4-1, where the rectangle shape represents a software artifact to be reviewed, and
both open and filled circles with various sizes represent different kinds of defects in the
artifact. Two reading techniques are schematically illustrated in Figure 4-1.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

36

To the left of Figure 4-1 is an unsystematic reading, where one or more readers scan
through the document and look for defects, which are shaded as vertical, horizontal,
or slanted lines. There are at least two problems with that approach owning to its
unsystematic nature: (a) there are overlaps on the portions covered by different readers,
and (b) there are regions that are not covered by any reader. To the right is a systematic
reading, where different readers are purposely selected to exam the software artifact,
based on their individual expertise. They are also given specific instructions on where
and how to detect defects. These two ensure that there will be no or minimal overlaps
among what they will cover and the entire document is covered. Systematic approaches
with specific responsibilities improve coordination and reduce gaps, which increases the
overall defect detection effectiveness of review.

The scenario used here refers to a process-driven or operational scenario, not to be
confused with scenarios in the use-case context. It is expressed in the form of algorithms
that readers can apply to traverse a document with a particular emphasis. In practice
several scenarios must be combined to provide an adequate coverage of a document, since
each scenario is focused, detailed, and specific to a particular viewpoint (Basili et al., 1996).

Before analyzing and detecting defects in a document, one must understand the
document first. In cognitive science, comprehension is often characterized as the
construction of a mental model that represents the objects and relationships in the text
document (Schulte et al., 2010). An operational scenario has a set of activities to help a

Figure 4-1. Comparison of unsystematic and systematic (scenario-based) reading
(adapted from Porter & Votta [1994])

Chapter 4 ■ SCenario-BaSed reading teChniqueS

37

reader build a model of the software artifact and a set of review questions related to the
model. The model is simply an abstraction of the software artifact under review. In the
defect-based reading, the model can be different types of defects the document may
have. In the perspective-based reading, if the reader reads the code from a tester point of
view, the model can be related to how testing can be performed. While the reader builds
a model and answers the questions based on the analysis of the model with a particular
emphasis, he or she can note down any anomaly and log defects. To minimize the
potential reading overlap, scenarios shall be orthogonal to each other. One team member
is responsible for one scenario and multiple members provide complete coverage. The
findings of individual team members are aggregated via meeting or non-meeting, which
depends on the inspection process bestowed by the organization. The choice of model
or abstraction and the types of questions depend on artifacts, the organization’s problem
history, or the objectives of reading.

Compared with other reading techniques such as ad hoc or checklist-based reading,
the scenario-based reading techniques have the following benefits (Shull et al., 2000):

•	 Systematic: Specific steps for individual reading are well-defined.

•	 Focused: Different readers focus on distinct aspects of the
document.

•	 Allow controlled improvement: Based on experience and
feedback, one can identify and improve specific aspects of
reading techniques.

•	 Customizable: Organizations can customize reading techniques to
a specific project or organization setting.

•	 Allow training: One can use reading techniques to train oneself in
applying the techniques.

4.2 Defect-Based Reading
Defect-based reading is the first proposed reading technique in the family of scenario-
based reading and focused on detecting specific types of defects. The main idea is that
if each reader uses different but systematic techniques to search for different, specific
classes of defects, he or she and the whole team will have a better chance to detect defects
effectively than readers applying ad hoc reading or checklist-based reading (Porter et al.,
1995). In this defect-based software reading, each reader is given specific steps to discover
a particular class of defects. Each reader’s role or responsibility is specific and narrowly
defined, such as ensuring appropriate use of hardware interfaces, identifying untestable
requirements, or checking conformance to coding standards and guidelines. The defect-
based reading technique has been applied to detecting defects in software requirements
specifications (SRS) and we discuss it in the context of SRS reading.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

38

4.2.1 Taxonomy of Defects in Requirements
Specifications

Defects in SRS can be divided into two broad types: omission and commission (Porter
et al., 1995). An omission defect means important information is missing from the SRS,
while a commission type defect means incorrect, redundant, ambiguous, or conflicting
information is presented in the SRS. Depending on what is missing, the omission type can
be further divided into four groups:

•	 Missing functionality: The specification of the internal operational
behavior of the system is not included in the SRS.

•	 Missing performance: The performance specification is not
present in the SRS or is not acceptable by end users in an
acceptance testing.

•	 Missing environment: The environment in which the system will
be operated is not specified or is specified incompletely in the
SRS, including infrastructure, middleware, hardware, software,
database, personnel, and so on.

•	 Missing interface: The interfaces through which the system
interacts and interoperates with outside or communication
mechanisms or protocols through which the system exchanges
data with outside is not included in the SRS.

The commission type of defects also has four subcategories: ambiguous information,
inconsistent information, incorrect or extra functionality, and wrong section:

•	 Ambiguous information: Technical terms, phrases, or anything
essential for readers to correctly understand and interpret the SRS
is undefined or defined in such a way to cause misunderstanding
or misinterpretation.

•	 Inconsistent information: Information in different parts of the
SRS contradicts each other directly or indirectly, or actions or
behaviors cannot both be correct or carried out by the system.

•	 Incorrect fact: Specifications in the SRS cannot be true in the given
context.

•	 Wrong section: The SRS is poorly organized or the specification is
put in a wrong section of the SRS.

There are other defect taxonomies. IEEE Std. 1028-2008 categorizes anomaly
(defects) as missing, extra (superfluous), ambiguous, inconsistent, not conforming to
standards, risk-prone, incorrect, unachievable, and editorial (IEEE 2008). In the recent
survey, Walia and Carver (2009) attributed the defects to their sources, i.e., people,
process, and documentation.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

39

4.2.2 Defect-Based Reading Techniques
When readers are assigned to review and detect defects in a software artifact, they can
have the same general responsibilities, e.g., detect as many defects as they can, and
their reading activities are not coordinated. Alternatively, in a coordinated team, readers
can have separate and different responsibilities. As the active design review suggests,
individual readers can be more effective if they are assigned specific responsibilities and
provided systematic techniques to meet those responsibilities (Parnas & Weiss, 1985).
The defect-based reading technique is motivated by the ideas behind the active design
review. In this reading technique, a collection of procedures (operational scenarios)
for detecting particular classes of defects is developed. Each reader executes one single
scenario, and multiple readers are coordinated to improve the coverage while minimizing
the overlap (Porter et al., 1995).

One way to come up with operational scenarios is to make use of the defect
taxonomy, as discussed by Porter and his colleagues (1995). The general defect taxonomy
discussed earlier can be given to ad hoc readers and used to define their responsibilities.
To support checklist-based reading, detailed and concrete questions as checklist items
can be developed under each defect classes. The checklist is thus a refinement of the
taxonomy. Those questions can be motivated by industrial checklists. For example, to
detect defects related to inconsistent information, one can have following checklist items
(Porter et al., 1995):

•	 Are the requirements mutually consistent?

•	 Are the functional requirements consistent with the system
overview?

•	 Are the functional requirements consistent with the operating
environment?

The actual defect types, groups, and classes shall depend on the software artifact
under concern and be based on the organizational experience. Checklist items shall be
customized to detect those defects accordingly. Since the checklist is derived from the
defect taxonomy, checklist responsibilities are a subset of the ad hoc responsibilities.

Scenarios for defect-based reading are further derived from the checklist by
substituting the checklist items with procedures designed to implement them. Hence,
the responsibilities of defect-based reading is a subset of checklist-based reading. If
defect-based reading scenarios cover all checklist items, defect-based reading and checklist-
based reading can detect the same kinds of defects. The diagram in Figure 4-2 shows the
relationship among the ad hoc, checklist-based, and defect-based reading techniques.
The horizontal axis labels the reading technique and denotes the increased degrees of
details in reading procedures. As the reading technique becomes more sophisticated
(moving to the right), the defect coverage decreases. The reading responsibilities and the
classes of defects targeted for the latter reading technique are the subset of the former
reading techniques (moving to the left).

Chapter 4 ■ SCenario-BaSed reading teChniqueS

40

Porter et al. (1995) developed three defect detection scenarios for their defect-
based reading. Each scenario was designed for a specific subset of checklist items.
Those scenarios were intended to detect defects in areas of data type inconsistency,
incorrect functionality, and ambiguous or missing functionality. According to their
estimate, those scenarios cover about 50% of the defects present in the SRS. Their
Incorrect Functionality Scenario is reproduced in Panel 4-1: Defect-Based Reading
(Incorrect Functionality Scenario), and interested readers can refer to their original
paper for the other two reading scenarios.

PANEL 4-1: DEFECT-BASED READING (INCORRECT
FUNCTIONALITY SCENARIO)

1. For each functional requirement, identify all input and output
data objects.

a. are all values written to each output data object consistent
with its intended function?

b. identify at least one function that uses each output data
object.

2. For each functional requirement, identify all specified system
events.

a. is the specification of these events consistent with their
intended interpretation?

Figure 4-2. The relationship among ad hoc reading, checklist-based reading, and
defect-based reading (adapted from Porter et al. [1995])

Chapter 4 ■ SCenario-BaSed reading teChniqueS

41

3. develop an invariant for each system mode or state, i.e., under
what conditions must the system exit or remain in a given mode.

a. Can the system’s initial conditions fail to satisfy the initial
mode’s invariant?

b. identify a sequence of events that allows the system to
enter a mode without satisfying the mode’s invariant.

c. identify a sequence of events that allows the system to
enter a mode but never leave.

The operational scenario leads a reader through the SRS and gives the reader
instructions where and how to find defects. For example, in (1), “where” would be the
input and output data object related to a functional requirement, and “how” is to check
if all values generated for the output data object is consistent with its intended function
and check whether the output data object is used by some functions. From this scenario,
one can clearly see the influence of active design review. It turns a passive reader into an
active reader (e.g., step 3) and therefore improves readers’ effectiveness.

Defect-based reading is a systematic technique that focuses the readers on detecting
the specific class of defects that the scenario targets, providing a mechanism to
focus the reading according to project or organizational objectives. As scenarios are
typically derived from checklist items, the technique suffers the similar drawbacks as
checklist-based reading. For maximal coverage of defects, multiple scenarios have to be
defined, which could be an elaborated process. In practice, defect-based reading has to
be applied in combination with other reading techniques so that defects not covered by
the defect scenarios can still be detected.

Defect-based reading has been applied to requirements reading. In theory, it can be
applied to other artifacts. There are no other applications reported yet.

4.2.3 Empirical Experiences
Porter et al. (1994; 1995) used graduate students in computer science in their experiments
to test the effectiveness of defect-based reading by comparing it with ad hoc reading and
checklist-based reading. To some degree, they replicated and expanded their experiment
and came to the same conclusion. The taxonomy was provided to all readers, but ad hoc
readers were not given further instructions. The checklist and the scenarios were developed
in the way discussed earlier. They concluded that defect-based reading had the highest
defect detection rate (about 35% improvement over the other two reading techniques),
followed by ad hoc reading, and checklist-based reading had the lowest effectiveness.
Further analysis confirmed that defect-based scenario readers were more effective than
ad hoc and checklist readers at finding defects the scenario was designed to detect, and all
readers were equally effective at detecting other defects not targeted by scenarios. Scenarios
helped readers focus on specific defect types, and they didn’t compromise readers’ ability
to detect other defect types not covered by scenarios. Porter and Votta (1998) replicated the
same experiment using industrial professionals and reported the similar results, although
the performances of students and professionals were different.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

42

Porter et al. studies were replicated by other researchers (Fusaro et al., 1997; Miller
et al., 1998; Sandahl et al., 1998). However, the results were not consistent with the
original findings, mainly defect-based reading was not significantly better than other
ad hoc and checklist-based readings. Hayes used meta-analytic (analysis of analyses)
methods to synthesize the series of replicated experiments with seemingly contradictory
results (Hayes, 1999). He suggested that the differences might be caused by subjects’
familiarity with the formal notation used in the SRS and with the software domains used
in the experiment (e.g., cars with cruise control were popular in the United States but not
in the Europe).

4.3 Perspective-Based Reading
Perspective-based reading was developed by Basili et al. (1996). It provides a set of
operational scenarios. Each reader reads a software artifact under review using one of the
scenarios from a particular perspective, and the combination of different perspectives
yields a better coverage of the document. It was originally applied to requirements
documents but subsequently applied to high-level designs, source code, and user
interface. Perspective-based reading in fact includes a family of reading techniques. In
this section we present perspective-based reading in its generic form first, then discuss
specifics when the technique is applied to different types of software artifacts. Finally we
shed light on why the reading techniques are effective in practice.

4.3.1 A Generic Perspective-Based Reading
Software artifacts are created with various purposes. It is important to ask their
stakeholders to read and assess if the documents meet their needs and quality
expectation, from a particular point of view, which is called perspective. Perspective-
based reading focuses on a point of view or needs of the main customers of a document.
Each reader reads from their respective perspective with a narrowly defined focused view,
which leads to an in-depth analysis of potential defects or anomalies in the document.
The union of multiple perspectives provides an extensive coverage of the document so
that no defects will be missed.

Defect reports from individual readings are aggregated at the end of reading. It is not
necessarily true that we select one reader for each perspective. How many readers are
assigned to a given perspective depends on the organizational and project context. For
example, if more omission defects are expected in a requirements specification, one may
assign more readers to the user role, since a user perspective offers better opportunity for
exposing omission defects. If there are not enough resources available, one reader may be
assigned to multiple roles and he or she can simulate each perspective in turn.

When read with a particular perspective, defects that a perspective is targeting at
would have a higher probability to be detected, while other defects not targeted
by the perspective might have a lower probability to be detected. Thus an individual
using perspective-based reading may not be necessarily more effective and efficient than
one using other reading techniques. Collectively on the team level, perspective-based
reading could be more effective and efficient as each perspective detects different kinds
of defects.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

43

The idea of perspective-based reading is not completely new, however. It synthesizes
ideas that have already been applied in software inspection, but have never been worked
out in great detail. The influence of the active design review was already mentioned.
Fagan (1976) stated that the code should be inspected by its tester. When reporting AT&T
experience on in-process inspection, Fowler (1986) stated, “[E]ach meeting participant
takes a particular point of view when examining the workproduct.” Graden et al. (1986)
also reported that when collecting the software inspection data, each participant must
denote the perspective (customer, requirements, design, test, maintenance) by which
they have evaluated the deliverable.

4.3.1.1 Reading Scenarios and Template
Perspective-based reading has a set of operational scenarios that provide reading
guidance to readers. In an ideal case, those scenarios shall have a minimal overlap
in defects detection, which is very hard to achieve in practice (Regnell et al., 2000).
What scenarios to provide to readers depends on many factors such as artifact types,
organization’s history on defects, as well as organizational objectives of software reviews.

The scenarios are developed using a scenario template, which has three sections:

•	 Introduction: The introduction section explains the stakeholder’s
interests in the artifact.

•	 Instruction: The instruction section provides guidance regarding
how to read and extract relevant information from artifacts or
from the descriptions of artifacts and to optionally create other
artifacts such as test cases from a tester’s perspective or a high-
level design from a designer’s perspective. It helps a reader focus
on the most relevant information and actively work with the
document to gain a deep understanding of it.

•	 Question: The question section is for reviewers to answer by
following the instructions above. Questions are derived from past
defect classes.

It shall be noted that to review software artifacts, one can ask real stakeholders
and experts to review. One can also ask other readers to review, who will mimic real
stakeholders’ perspective. For the latter case, the introduction section of a scenario is
important to set up the scope and expectation. Even when real stakeholders and experts
are invited to review a document, they will appreciate the concrete guidance provided
in the latter two sections of the scenario. However, people with less experience seem to
follow the prescribed perspectives while people with more experience are more likely not
to conform to their prescribed perspectives (Basili et al., 1996).

4.3.1.2 Developing Reading Scenarios
Scenarios play a pivotal role in perspective-based reading. How are the scenarios created
from the first place? Herein this section, we provide some guidance on scenario creation
based on Laitenberger and Atkinson (1999).

Chapter 4 ■ SCenario-BaSed reading teChniqueS

44

 1. Document identification. Identify documents subject to
reading. This might be a software requirements specification
document, software architectural or design description
including diagrams and graphical models, source code files,
a test plan including detailed test cases, or a graphical user
interface mockup, etc.

 2. Stakeholder identification. For the identified artifacts and
their descriptions, identify key stakeholders who have a vested
interest in the artifacts to be reviewed. Those stakeholders
can be subject matter experts, users, or maintainers. They can
be the consumer of the artifacts or the producer of upstream
documents from which the current documents are based.
They can also be peers of the author who created the artifacts.
Prioritize those stakeholders according to the potential gain
from the reading activities and resource constraint.

 3. Perspective understanding. For the identified key
stakeholders, understand their perspectives by deciding and
collecting what information and descriptions are important
to them. You can interview and survey stakeholders to collect
their inputs. After having understood the stakeholders, the
scenario writer identifies which documents contain that
information and how to identify and extract the information.

 4. Introduction development. The scenario writer writes
the introduction to a particular perspective and highlights
stakeholders’ interests in the artifacts.

 5. Instruction development. The scenario writer develops the
detailed instruction on how to identify and extract, step
by step, the required information from the artifact or the
descriptions of the artifact.

 6. Questions development. The scenario writer compiles a list
of questions for a reader to answer based on the extracted
information and the reader’s understanding of the artifact.
The checklist, if available, as well as the historical defects can
be a source for those questions. The writer makes sure only
pertinent questions are included, i.e., those the reader could
answer by reading and analyzing the documents from the
given perspective.

 7. Scenario review, testing, and updating. After the scenarios
are written, the scenario writer should invite stakeholders
to review and pilot its usage to get rid of kinks in the
scenarios. The above steps shall be iterated as necessary. The
scenarios shall also be kept up to date. When new defects are
uncovered, or the contents and structures of the documents
are changed, the scenario instruction and questions shall be
updated as well.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

45

4.3.1.3 Characteristics of Perspective-Based Reading
Perspective-based reading has been developed to satisfy a variety of goals, which are
discussed below (Ciolkowski et al., 1997):

•	 Adaptable. Perspective-based reading is adaptable to particular
software artifacts, being it requirements specification, design
description, source code, and user interface. It is also adaptable
to whatever notation used in the document. For example, the
requirements might be specified using natural languages or a
more formal specification language.

•	 Tailorable: Perspective-based reading is tailorable to
organizational and project setting: The number of perspectives,
the number of readers using a scenario, and the reading
instruction and questions in a scenario are all customizable.

•	 Detailed: A reading scenario gives a reader a well-defined
instruction how to traverse a document. Hence the reading
process is repeatable and the effectiveness of defect detection
becomes less dependent on individual’s experience and expertise.

•	 Focused: A particular perspective provides particular coverage
of part of the document and multiple perspectives combined
provide coverage of the whole document. This gives individual
reader a focus, which enables an in-depth analysis. At the same
time, multiple perspectives ensure no areas are left unread.

•	 Specific: Each reader has a specific, narrowly defined
responsibility, with a specific tool (scenario) to meet
this responsibility. The reader knows what perspective to simulate,
which scenario to use, and where and how to detect defects.

Those benefits will become more evident as we go through the reading techniques for
specific types of documents in the remainder of this chapter. Perspective-based reading
is not without drawbacks. The most noticeable one is the demanded effort. The improved
rate of defect detection comes at the price of a higher effort on the reviewer. Basili et al.
(1996) reported about 30% more effort, depending on the document under review. Much
of the extra effort was spent on creating additional model and documentation, which
might be required in a later stage of the development life cycle, e.g., test cases created
during the requirement reading can be reused later in the testing phase

4.3.2 Perspective-Based Requirements Reading
Many researchers have applied perspective-based reading to requirements documents.
In fact, it was first applied to the requirements document when the reading technique was
developed. This should not be a surprise, given the importance of a requirements document
in the software development process. Any problems and issues in requirements specification
detected and corrected early can save a lot of time and money of the development
organization, since it will reduce potential rework of design, implementation, and testing, or
avoid embarrassment if the product is shipped to customers with residual defects.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

46

4.3.2.1 Reading Scenarios for Requirements Specifications
There are many possible stakeholders of a requirements document. Basili et al. (1996)
identified three key consumers of a requirements document, i.e., end user, tester, and
designer. The requirements describe functionalities and performance expectations that
the finished software product must meet; thus the end user is an important stakeholder.
The requirements are the basis for system design and the designer must create a
design that provides the functionalities with the performance constraints documented in
the requirements; therefore the designer is another important stakeholder. The finished
software system must be verified to be conformant to functional and performance
specifications, which is typically conducted by a tester; hence the tester is yet another
important stakeholder of the requirements document.

From the user’s perspective, requirements must be complete and correct and
provide necessary system functionality. From the tester’s perspective, requirements
must be testable with unambiguity so that the tester can construct test cases. From the
designer’s perspective, requirements must have enough details with accuracy so
that the designer can design major system components. Failing to satisfy any of the above
needs amounts to a requirement defect. Operational scenarios must be developed for the
perspectives of the end user, tester, and developer.

Given the overarching impact of a requirements specification, it often involves
more inspectors or readers than other types of software artifacts do. Other stakeholders
and their perspectives might be important or even critical, depending on a particular
environment. For example, for the software requirements for a nuclear power plant-
related system, designer, tester, user, maintainer, verifier, regulator, and contractor might
be identified as key stakeholder (Lahtinen, 2011). As a nuclear power plant has a long
lifetime (60 years), maintainer is a critical stakeholder as well.

One of the key ideas behind the active design review is to engage reviewers for active
participation. With the same spirit, when a reader reads from a perspective, he or she is
asked to create a physical model and answer questions from the same perspective based
on the analysis of the model. When reading from the tester’s perspective, the reader is
asked to design a set of test cases and answer questions related to the activities being
performed. Similarly, when reading from the developer’s perspective, the reader is asked
to create a high-level design, and when reading from the user’s perspective, the reader
can develop use cases or draft a user’s manual. The exact document to generate can
vary according to the reader’s experience or the organization’s needs. Shull et al. (2000)
provided a test-based reading scenario that asked a reader to develop a test case using
the equivalence partitioning technique (generating and testing the equivalent sets). Chen
et al. (2002) took a step even further, where they proposed a problem-driven approach to
select a method for test suite construction. The questions to answer are tied to the defects
taxonomy, and additional questions can be added for newly found defect classes.

An example test-based reading scenario is show in Panel 4-2: PBR – Requirement
Reading Scenario for Testers. It was adapted from Basili et al. (1996). Question 1 is
more operable than a general question one might find on a checklist such as “Are all
items sufficiently and unambiguously described?” and intended to detect defects of the
“missing information” class. Question 2 is intended to detect defects of the “inconsistent”
class. Question 4 is intended to detect defects of the “ambiguous” class. Question 5 is
intended to detect defects of the “incorrect facts” class.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

47

4.3.2.2 Empirical Experiences
Basili et al. (1996) tested their perspective-based reading techniques on requirements
documents using professional software developers as subjects. The techniques were
compared to the existing techniques at NASA Goddard Space Flight Center Software
Engineering Laboratory. Readers were given unique roles (user, tester, and designer) when
reading four requirement documents, two from NASA domain and the other two generic.
They reported that perspective-based reading provided significantly better coverage
of both domain-specific and generic documents. The experiment of Basili et al. was
replicated and original findings were confirmed in an academic environment
(Ciolkowski et al., 1997). In the replicated experiment, perspective-based reading was
compared to ad hoc reading. Perspective-based reading of requirements was replicated by
many other groups. However, the positive effects were not observed all the time. Regnell
et al. (2000) questioned whether all the perspectives were really orthogonal and people
using them found different kinds of defects. To address that, Maldonado et al. (2006)
replicated the experiment with students as subjects. They confirmed that, in general,
different perspectives detect different kinds of defects. They also reported that perspective-
based reading didn’t outperform checklist-based reading and perspective-based reading
and checklist-based reading appeared to be complementary on defect detection.

PANEL 4-2: PBR – REQUIREMENT READING SCENARIO
FOR TESTERS

Introduction: perspective-based reading is built around the concept that customers
of a document are at the best position to judge if the document meets their needs
and quality expectation. different customer reads the document and detects
defects from their respective perspective. this reading scenario assumes a tester’s
perspective. From the tester’s perspective, requirements must be testable and
unambiguous.

Instructions: For each requirement or functional specification, create a test case to
verify that the implementation satisfies the requirement. Compose test cases into a
test suite. While composing the test suite, answer questions below.

Questions:

1. do you have all information to identify the item being tested
and to identify your test criteria? Can you create reasonable test
cases for each item based on the criteria?

2. is there another requirement for which you would create a
similar test case but would get a contradictory result?

3. Can you be sure the test generated will output the correct value
in the correct units?

Chapter 4 ■ SCenario-BaSed reading teChniqueS

48

4. are there other interpretations of the requirement that the
implementer might make due to the particular description of the
requirement? Will this impact the test case and its oracle?

5. does the requirement make sense based on your domain
knowledge or from what is specified in the general description?

4.3.3 Perspective-Based Design Reading
Most software reading techniques target textual documents such as requirements
specifications and source code files. Design documents are typically written as textual
descriptions annotated with graphical models and diagrams, which is particularly true for
object-oriented designs. An object-oriented approach is more popular nowadays than other
paradigms such as procedure or structured programming, but it is much more complicated
and error-prone in both design and implementation. This section discusses how the
perspective-based reading technique can be customized to read the object-oriented designs.

4.3.3.1 Reading Scenarios for Design Documents
Unified modeling language (UML) is often used in object-oriented modeling at analysis
and design levels. Use-case diagrams are used to capture the interaction with the system
and the requirements of the system. Class diagrams are used to document
the static structure. The dynamic behaviors can be captured using state diagrams, activity
diagrams, sequence diagrams, or collaboration diagrams. The last two kinds of diagrams
capture identical information from different perspectives. What UML diagrams and
textual documents to generate depend on the project and team needs. Laitenberger
and Atkinson (1999) suggested operation schema, class diagrams, collaboration
diagrams, operation pseudocode, and data dictionary, where the operation schema
is simply a method description, the operation pseudocode is the pseudocode for the
method, and the data dictionary is a catalog of each modeled object with description.

We can identify the following stakeholders of a design: requirements engineer,
designer, implementer, tester, and maintainer. A requirements engineer has a high
interest to make sure requirements specifications have been fully and correctly
considered in the design. A designer is primarily interested in the correctness of the
design models and the analysis documents. An implementer wants to make sure all
necessary information is provided in the design models so that he or she can realize
the design. A tester wants to know what functionalities are implemented and how
to develop test cases to verify the correctness of those operations. A maintainer will
extend the design and implement new functionalities in the future and he or she has a
vested interest if the design has an acceptable maintainability. The number of reading
scenarios to develop for stakeholders depends on the organizational context, history,
and objectives. Laitenberger et al. (2000) used three reading scenarios (designer,
implementer, and tester), but they used four (requirements engineer, designer, tester, and
maintainer) in (Laitenberger & Atkinson, 1999). Sabaliauskaite et al. (2003) used three
reading scenarios (user, designer, and implementer).

Chapter 4 ■ SCenario-BaSed reading teChniqueS

49

Stakeholders have vested interests in different documents assembled for a design. A
possible association is shown in Table 4-1. The concern of a requirements engineer is the
correctness and completeness of the functional specification at the end of the analysis.
Particularly, various analysis models shall be consistent. Thus the requirements engineer
has a high interest in the data dictionary, method descriptions (operation schema), as
well as the responsibility assigned to each class.

The designer concerns the correctness and completeness of the design diagrams
with respect to the analysis. In terms of correctness, design diagrams shall be
consistent with analysis diagrams. In terms of completeness, all elements in analysis
diagrams shall be reflected in design diagrams with sufficient details. Thus he or she
is interested in the operation schema, collaboration or sequence diagrams, and class
diagrams. A sample design reading scenario for designer is given in Panel 4-3: PBR –
Design Reading Scenario for Designers, which is adapted from Laitenberger et al. (2000).
One can customize it when experimenting or adopting perspective-based reading.

PANEL 4-3: PBR – DESIGN READING SCENARIO FOR
DESIGNERS

Introduction: assume a designer's perspective when reading the design artifacts.
a designer concerns the correctness and completeness of design diagrams with
respect to analysis diagrams.

Instructions: get familiar with the purpose of the system and the requirements
(use cases). Locate the class diagrams, compare them with analysis diagrams, and
make sure classes, attributes, methods, associations, constraints, and other abstract
concepts are consistent. as design diagrams are a refinement of analysis diagrams,
design diagrams sometimes contain additional elements. Locate collaboration
diagrams and compare them to the corresponding operation schema, and make sure
the messages, parameters and their types, and the resulting behaviors are consistent.

Table 4-1. Stakeholders’ Interests in Different Design Description Documents (Adapted
from Laitenberger et al. [1999; 2000])

Requirements
Engineer

Designer Implementer Tester Maintainer

Operation schema x x x

Class diagram x x x

Collaboration diagram x x x x

Operation pseudocode x x x

Data dictionary x

Chapter 4 ■ SCenario-BaSed reading teChniqueS

50

Questions: While following the instruction, answer questions:

1. is there anything in analysis documents but not in design
documents?

2. are the messages appropriate and consistent from the
collaboration diagrams and operation schema?

3. are the system start-up conditions clear and correct?

4. are there corresponding sent messages in operation schema
and collaboration diagrams?

5. is the order of messages correct in the collaboration diagram?

6. For every change of attributes, objects, states, or links in the
operation schema, is there a corresponding sent message in the
collaboration diagram?

7. are there any discrepancies of functionality described in the
operation schema and in the collaboration diagram?

The main responsibility of an implementer is to translate the design into code. As
such, the implementer is concerned with the consistency and completeness of the design,
as well as whether the design is implementable. To check for consistency, the implementer
reads and detects any contradictions among design elements scattered in multiple
diagrams. To check for completeness, the implementer reads and detects any missing
elements from diagrams based on the analysis and design models. The implementer
makes a professional judgment regarding whether the design is implementable based
on project constraints, technologies and development environment, as well as other
considerations. The implementer has high vested interests in the class diagram,
collaboration diagram, and pseudocode. He or she will verify the messages received by an
object as documented in the sequence or collaboration diagram are implemented by the
class, and the collaboration diagram is consistent with the operation pseudocode.

The tester is concerned if the operations are testable. A productive approach is to
walk through test cases and ensure test cases are correct with respect to the associated
functions. The tester is thus interested in the operation schema and their collaboration
diagram as well as pseudocode that implements the collaboration. A design reading
scenario for testers is illustrated in Panel 4-4: PBR – Design Reading Scenario for Testers,
which is adapted from Laitenberger et al. (2000).

We contrast this tester-based reading scenario with that for the requirements
specification. Here since the internal implementation is available as revealed in the
pseudocode and collaboration diagrams, white-box testing becomes feasible, i.e., one can
develop test cases to cover the various branches and loops, which is not feasible when
only the requirements are available.

The maintainer is concerned with the maintainability of the system. To improve the
maintainability or modifiability of a system, the designer shall follow well-established
design principles such as low coupling and high cohesion as well as simplicity of the design.
Bass et al. (2013) have written about the tactics of improved modifiability. The proper places
to check whether best practices are followed are collaboration diagrams and pseudocode.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

51

PANEL 4-4: PBR – DESIGN READING SCENARIO FOR
TESTERS

Introduction: assume a tester's perspective when reading design artifacts. ensure
the correctness and robustness of all operations and their testability. For this
perspective-based reading, test cases are used. if they don’t exist yet, have them
created.

Instructions: get familiar with the requirements (use cases). Locate the operation
schema and identify test cases derived from the schema. Locate the collaboration
diagram associated with the operation schema. Walk through the collaboration
diagram and simulate the execution of the test cases; check if the correct results
are generated, all branches and paths are covered, and the resulting behavior is
consistent with schema.

Questions: While following the instruction, answer questions:

1. do the branches in the collaboration diagram match the
condition outcomes in the operation schema?

2. are all possible inputs and their combinations properly
addressed in the operation schema and the pseudocode?

3. are the effects of each collaboration diagram consistent with
the corresponding operation schema?

4.3.3.2 Empirical Experiences
Laitenberger et al. (2000) compared perspective-based design reading to checklist-based
reading, with practitioners (experienced students) as subjects. The software artifacts
under reading were UML design documents. Their checklist was developed from scratch.
Three reading perspectives were employed (designer, implementer, and tester). For both
reading techniques, defects were pooled through the defect collection meeting attended
by three team members. They reported that teams found more defects using perspective-
based reading than using checklist-based reading and, on average, the improvement of
detection effectiveness is 41%. When considering the defect detection effort, perspective-
based reading was also cost-effective for the defect detection phase, the meeting phase,
and the overall inspection. The readers also believed that applying perspective-based
reading helped them improve their understanding of the systems.

Sabaliauskaite et al. (2003) also compared perspective-based reading and checklist-
based reading of UML design documents with students as subjects. The UML diagrams
include class diagrams, activity diagrams, sequence diagrams, and component
diagrams. They used three reading perspectives (user, designer, and implementer). The
authors concluded that defect detection effectiveness using both reading techniques was
similar, but checklist-based reading was more effective for three-person simulated virtual
teams.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

52

4.3.4 Perspective-Based Code Reading
In industry practice, code documents are still the most frequently inspected software
artifacts. It is thus natural to apply perspective-based reading to code. This section
discusses the work in that area.

4.3.4.1 Reading Scenarios for Code Modules
Code modules subject to inspection include implementation source code files as well as
their operational descriptions as specification. We can identify two main stakeholders of
those artifacts: code analyst and tester (Laitenberger et al., 2001). While a code analyst
is concerned if the code implements the right function, a tester is concerned if the code
implements the function right.

One could certainly identify more stakeholders. Laitenberger and DeBaud (1997) split
the tester into the module tester and the integration tester. A maintainer has a high interest
in the source code and he or she is concerned if the code is easily understandable to allow
future modification with minimal effort. Code can also be checked if it is compliant to
coding standards and guidelines. This latter checking can be accomplished with modern
tools. Laitenberger et al. (2001) recommended two perspectives for reading, which is the
minimal set of viewpoints. They argued that there is some quantitative evidence that a
two-person inspection team decreases inspection cost while maintaining its effectiveness
(Bisant & Lyle, 1989); there is little difference in the inspection effectiveness of two- and
four-person inspections (both are significantly better than one-person inspection) (Porter
et al., 1997); and code in practice is inspected by a small team (Gilb & Graham, 1993).

A code analyst locates different functions in the code file, reads and understands
them, and forms high-level abstractions. When reading source code, he or she can
use any code reading techniques such as stepwise abstraction for structured code or
abstraction-driven reading for object-oriented code, which are discussed in a later
chapter. The reader then compares the high-level abstraction to the code specification
and notes any deviation as a potential defect. The reader has a set of limited questions
to answer, specifically designed for his or her reading perspective, based on the code
documents and the understanding the reader achieved at this point. A sample reading
scenario is shown in Panel 4-5: PBR – Code Reading Scenario for Code Analysts, which is
adapted from Laitenberger et al. (2001).

PANEL 4-5: PBR – CODE READING SCENARIO FOR CODE
ANALYSTS

Introduction: assume the code analyst reading perspective, who has to ensure the
right functionalities are implemented in code.

Instructions: Locate the functions implemented in the code. use the stepwise
abstraction reading technique if it is a structured code; use the abstraction-driven
and use-case-driven reading techniques if it is object-oriented code. Start with the
least-dependent code and read bottom-up to form a high-level abstraction of
the coded function. For each function, check if the abstraction you derived matches
the specification; if there is a deviation, decide if it is a defect and log your findings.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

53

Questions: While following the instruction above, answer questions:

1. does the operation implemented in code match the one
described in the specification?

2. is there any operation described in the specification, but not
implemented in the code?

3. are data (constants, variables, etc) and their type used
correctly?

4. is the calculation performed correctly?

5. is usage of the interface between different modules
semantically correct?

A code tester identifies different functions implemented in the code and develops
and runs test cases on them to ensure their correctness. The reader then mentally
simulates the execution of each function guided by test cases and compares the outcome
with specifications. Any deviation shall be noted as a potential defect. If test cases have
been developed during design reading, those test cases can be reused here. The reader
also has a set of limited questions to answer, specifically designed for this tester reading
perspective. Those questions are intended to focus the reader’s attention. A sample tester
reading scenario is shown in Panel 4-6: PBR – Code Reading Scenario for Code Testers,
which is adapted from Laitenberger et al. (2001).

PANEL 4-6: PBR – CODE READING SCENARIO FOR CODE
TESTERS

Introduction: assume the tester reading perspective, which has to ensure the
functionalities implemented in code are correct.

Instructions: Locate the functions implemented in code. determine the
dependencies among these functions and build a call graph from them. Start with
the nodes with the least dependencies and traverse the call graph backward, and
develop or reuse test cases that allow you to mentally simulate the execution of
the function implemented by the node to cover all branches and loops. For each
simulated execution, compare the outcome with that in specification. if there is a
discrepancy, decide if it is a defect and log your findings.

Questions: While following the instruction above, answer questions:

1. do you have all required information to identify a test case?

2. are branch conditions implemented correctly?

3. Can you generate test cases for all branches and loops?
Can you traverse all branches by some use cases? does the
outcome of each test case match the specification?

Chapter 4 ■ SCenario-BaSed reading teChniqueS

54

4. is memory allocated and deallocated properly?

5. Can you traverse the call graph?

As we move down from design to implementation, the details are revealed gradually.
In this code reading scenario, we are able to ask concrete questions, e.g., on the memory
usage and branch implementations and coverage. This reading scenario is meant for
module or unit testers as well as module integration testers.

4.3.4.2 Empirical Experiences
Laitenberger et al. (2001) ran a quasi-experiment and two replicates on professional
software developers to compare the performances of perspective-based reading and
checklist-based reading of C programming files. It is a quasi-experiment, since they
piggybacked experiments on their industrial training opportunities and they didn’t have
control over all experimental conditions. They used two reading perspectives, analyst
and tester. Defects were pooled through defect collection meetings and defects gain
or loss effects in meetings were almost non-existing, thus ignored. Meta-analysis was
conducted on the three experiments whenever possible. The researchers reported that
perspective-based code reading had a slightly higher team defect detection effectiveness
than checklist-based reading. The difference was statistically significant. Although
individual using perspectives seems to require more effort (time) to detect a defect, the
extra effort seems to be justified on the team level, since the team has a better cost per
defect. The difference was significant on the team level using meta-analysis. The meeting
cost of perspective-based reading was lower. Conjectured reasons include an increased
understanding enabled by perspectives. When all costs (individual reading and defect
collection meeting) were considered, perspective-based reading had a lower cost per
defect and less variability than checklist-based reading.

4.3.5 Perspective-Based Usability Reading
Usability is concerned with how easy it is for a user to perform a desired task and
what supports the system provides to the user to accomplish the task. It comprises the
following aspects: learning system features, using the system efficiently, minimizing
the impact of errors, adapting the system to user needs, and increasing user confidence
and satisfaction (Bass et al., 2013). Experiences indicate that focusing on usability is the
easiest and cheapest way to improve the user’s perceived system quality. In this section
we discuss how the ideas of perspective-based reading can be applied to inspect usability
of software applications.

4.3.5.1 Reading Scenarios for Usability
Usability problems can be detected with usability inspection or usability testing. In
usability testing, usability problems are found through the observation of and interaction
with users while they use or comment on the user interface. In usability inspection,
problems are found through the expertise of the inspectors and the inspection techniques

Chapter 4 ■ SCenario-BaSed reading teChniqueS

55

they employ. The latter costs much less than the former, and heuristic evaluation,
cognitive walkthrough, and guidelines and checklists are common inspection techniques
in practice. However, their effectiveness (percent of problems detected) is rather low,
particularly for non-experts (Zhang et al., 1999).

To improve the problem of detection effectiveness, Zhang et al. (1999) proposed
a perspective-based usability inspection method known as use-based reading. They
divided the large variety of usability issues along different perspectives (novice use,
expert use, and error handling) and held multiple inspection sessions, each focusing on
one particular perspective. Each perspective provides the inspector a point of view, a list
of questions to check, which represents typical usability issues related to the perspective,
and a specific procedure to perform the inspection. Just as perspective-based reading
of other software artifacts, the focused attention, and well-defined procedure improve
the inspector’s problem detection performance related to the given perspective, and
the combination of multiple orthogonal perspectives provides a better coverage of the
usability spectrum and uncovers more usability issues.

People use computers to accomplish a task, and the usability or lack of it is exhibited
during the human-computer interaction (HCI), which can be abstracted as the repetition
of the following sequence of steps: form the goal, form the intention, identify the action,
execute the action, perceive the system response, interpret the results, understand the
outcome, and deal with errors if any. This sequence of steps can be summarized as
execution and evaluation, with possible error correction. Therefore, usability issues
are categorized as the gulf of execution (the mismatch between the user’s intention
and the computer action) and the gulf of evaluation (the mismatch between the user’s
expectation and system’s representation) (Zhang et al., 1999). This simplistic HCI model
guides the development of reading perspectives.

Usability perspectives are scenarios of HCI, and different perspectives emphasize
different stages in the HCI model or different aspects of the same stage. Based on whether the
user knows how to achieve a certain goal and whether the user executes the action correctly,
Zhang et al. identified three perspectives: novice use, expert use, and error handling.

For the novice use perspective, the user does not have a deep knowledge regarding
how to use the system to achieve his or her goal. Thus the usability goal is for the
novice users with minimum knowledge to accomplish basic tasks. For the expert use
perspective, the user knows how to use the system but wants to accomplish the task
efficiently or easily or to achieve other higher goals. Thus the usability goal is for the
expert users to complete tasks efficiently and easily, customize the system to their desire,
and use advanced functions or features for improved productivity. For the error handling
perspective, the user has a problem with the effect of the previous action and needs to
correct the problem. Thus the usability goal is to minimize the chance to commit an error
(error prevention), help the user to understand the situation once errors happen, allow
the user recover from errors (error recovery), and deal with system failure appropriately.
Questions in reading scenarios help the reader decide if the usability goals can be met or
not and report usability gaps if not.

Panel 4-7: PBR – Expert Use Reading Scenarios shows the expert use reading
scenarios adapted from Zhang et al. (1999). The scenarios are designed specifically for a
web-based data collection form application.

Although the exact questions depend on the application being assessed, the
intention is similar. The above expert use reading scenario aims at checking the user
interface for its efficiency, flexibility, and consistency in supporting the user tasks, as well

Chapter 4 ■ SCenario-BaSed reading teChniqueS

56

as the appropriateness of its visual appearance and organization, which supports the
usability goal of the expert use discussed above.

While the perspective-based usability inspection of Zhang et al. partitions reading
scenarios from the use point of view (novice, expert, and error handling), there are
alternative ways to partition reading scenarios. Conte et al. (2009) decomposed scenarios
from design perspectives. They identified conceptual, presentation, and navigation
design perspectives for web applications that are used to guide the interpretation of
commonly used heuristics. Combinations of the heuristics and design perspectives have
yielded a set of specific reading guidance. The researchers also developed and evaluated
a tool to support their reading technique (Vaz et al., 2013). Interested readers can refer to
their papers for details.

PANEL 4-7: PBR – EXPERT USE READING SCENARIOS

Introduction: assume you are an expert user. Your goal is to fill out the web form
and submit it, which can be decomposed into multiple sub-goals in order. For each
sub-goal, go through the following stages and check the questions. if your answer to
a question is no, raise a usability issue.

Reading Instruction 1: Scan through instruction, objects, and actions in the user
interface.

Question set 1:

1. is the text easy to read?

2. is the information organized such that the most important
information can be read first?

3. are the more frequently selected items arranged on top in the
list control?

4. is redundant information avoided or minimized?

Reading Instruction 2: execute the actions for achieving the sub-goal, using
shortcuts whenever available. For each action, check the following questions.

Question set 2:

1. are common shortcuts available, e.g., to allow user to step to
the next text field via keyboard?

2. are possible default values provided?

3. does the system compute and remember information for the
user whenever possible?

Chapter 4 ■ SCenario-BaSed reading teChniqueS

57

4. Can the user make a selection by clicking on a larger area
associated with the object to be selected?

5. are unproductive activities avoided or minimized, e.g., navigation,
mouse movement, hand movement, eye movement, etc.?

6. are stressful actions avoided or minimized, e.g., clicking mouse
multiple times in a short period of time, clicking on a small
object to make a selection, etc.?

7. is the text easy to read?

Reading Instruction 3: Wait for system to respond, if necessary.

Question set 3:

1. does each user action immediately generate perceivable results
in the user interface?

General question: in addition to the specific questions in question set 3, consider
this high-level question: Can the web form be redesigned to reduce the user’s
unproductive activities?

4.3.5.2 Empirical Experiences
Zhang et al. used professionals (programmers, domain experts, technique researchers,
and cognitive researchers) as subjects and compared the use-based reading and the
heuristic evaluation in inspecting the usability of a web-based data collection form.
Heuristic evaluation is a popular inspection technique in practice. It gives the same
general responsibility and provides a list of usability issues to participants, which is
similar to ad hoc reading discussed earlier. The heuristics used include: speak the
users’ language, remain consistency, minimize the users’ memory load and fatigue,
flexibility and efficiency of use, use visually functional design, design for easy navigation,
conduct validation checks, facilitate data entry, and provide sufficient guidance. They
reported that perspective-based usability inspection found not only more issues related
to their assigned perspectives but also more overall problems. When issues from three
perspective readings were aggregated, the use-based reading uncovered about 30% more
problems. Assigning inspectors more specific, focused responsibilities leads to improved
performance, and combining multiple perspective focused inspections is a good strategy
for creating high usability user interfaces.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

58

4.3.6 Why Does Perspective-Based Reading Work?
As discussed earlier, perspective-based reading has been adapted and applied to
software artifacts such as requirements specification, design description and graphical
models and diagrams, source code and specifications, and user interface usability. Some
experiments have been replicated internally and externally. Researchers reported both
positive and negative experiences, and sometimes contradicting findings. To navigate
through the collection of replicated experiments and associated findings, Ciolkowski
(2009) performed a meta-analysis, which proved to be challenging, given the fact that
the data were reported differently and important information was sometimes missing.
Nevertheless, the author concluded that for requirements documents, perspective-
based reading was significantly more effective than ad hoc reading; for design and code
documents, perspective-based reading was significantly more effective than checklist-
based reading, but for requirements documents, it was less effective.

This section discusses a cognitive analysis that sheds light on what is going on during
perspective-based reading and how people’s experiences play a role during reading.
We also discuss a simple analytical model that provides indicative information when
perspective-based reading can outperform other reading techniques.

4.3.6.1 Cognitive Analysis of Perspective-Based Reading
The cognitive analysis from cognitive science has been applied to the understanding
of software inspection meetings. Letovsky et al. (1987) videotaped a representative
code inspection meeting at IBM and analyzed it in detail. Their observational results
suggested that participants were attempting to achieve three goals (clarity, correctness,
and consistency) by executing three corresponding behaviors (design reconstruction,
mental simulation, and document cross-checking). These categories accounted for 89%
of the duration of the session. Robbins and Carver (2009) have applied a similar protocol
analysis to perspective-based reading of requirements. Unlike the defect collection
meeting, individual’s reading of the software document typically happens quietly. To
work around that, readers were requested to think aloud, i.e., they just spoke whatever in
their mind at the moment during their reading. To facilitate the analysis, verbal reports
during reading were coded and categorized.

Perspective-based reading is a complex problem-solving task that is focused on the
problem of detecting defects in documents. A simplistic view of the task is illustrated
in Figure 4-3, where the sensory input of the documents, including the requirements
document, reading scenario description, and worksheet to log defects, goes through the
sensory memory that feeds to the short-term memory. An individual’s knowledge on
the application domain, software and programming experience, the general knowledge
on reading techniques, as well as the knowledge on the reading document newly
acquired during reading are stored in the long-term memory, which is retrieved and sent
to the short-term memory. All problem-solving tasks are performed in the short-term
memory and the outcome is formed as a response.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

59

Verbal reports during reading were audio-recorded. Words or rephrases spoken by
readers were captured and sometimes cross-checked with the defect worksheet, which
were coded according to the model above:

•	 Any mentioning of reading of the requirements document,
scenario description, and worksheet was coded as stimulus
inputs with their respective codes.

•	 Any mentioning or recalling of previous knowledge or facts on the
requirements document, training, perspective reading technique,
domain knowledge, software, or programming knowledge was coded
as retrievals from long-term memory using their respective codes.

•	 Any mentioning of combining existing knowledge into a single
fact or making assumption on the document was coded as
manipulation in short-term memory with their respective codes.

•	 Any mentioning or action of writing on the worksheet or logging
defect was coded as response output with their respective codes.

The researchers ran the experiment using graduate and upper-level undergraduate
students as subjects. The requirements document was about a web-based conference
paper submission and review system. Only user and tester perspectives were used. The
codes were analyzed using a frequency-based method. The authors were able to confirm:

•	 Most defect identifications were preceded by combining
knowledge actions, which corresponds to the “defect trigger.”

•	 The type of defects found by readers was related to the assigned
reading perspectives, user, or tester. That is, the perspectives
actually lead to detection of perspective-related defects.

•	 Perspective specific experience significantly affected
the perspective-based reading process.

Figure 4-3. Basic memory model in software reading (Adapted from Robbins & Carver
[2009]).

Chapter 4 ■ SCenario-BaSed reading teChniqueS

60

The protocol analysis provides a robust approach to understanding the cognitive
mechanisms supporting perspective-based reading. It has a potential to reconcile all
seemingly contradictory observations on the reading technique.

4.3.6.2 An Analytical Model
We can use a simple model to analyze when perspective-based reading outperforms
other reading techniques such as checklist-based reading. Assume we have two reading
scenarios A and B. Referring to Figure 4-4, Scenario A is designed to uncover defects
in oval A, and similarly Scenario B is designed to uncover defects in oval B. In terms of
defect detection, two reading scenarios have an overlap, which is the common area
of ovals A and B. There are A number of defects that are covered by Scenario A, but not B,
B number of defects that are covered by Scenario B, but not A, and C number of defects
that are covered by both Scenarios A and B. We denote those regions also as A, B, and C.
To put it another way, regions A and C are covered by Scenario A and regions B and C are
covered by Scenario B. There are A+B+C total number of defects. Further assume there
are no other defects and both perspective-based and checklist-based readings are perfect
and they can potentially detect all defects existing in the document.

We adopt a probabilistic view on defect detection. With Scenario A, defects that
Scenario A is targeting will be detected with probability p

A
, and other defects that

Scenario A is not targeting will be detected with probability q
A
. A reasonable assumption

is that p
A
>q

A
. Similarly with Scenario B, we have probabilities p

B
 and q

B
. To simplify the

matter, we assume p
A
=p

B
=p and q

A
=q

B
=q.

Assume that defect detections using Scenarios A and B are independent. When
pooling defects together via, e.g., a defect collection meeting, there is no meeting gain
or loss, which is a reasonable assumption according to Porter et al. (1995) and many
others (e.g., Laitenberger et al. [2001]). Also assume that whether individual defects will
be detected is independent of each other. A defect in region A will be missed if and only
if both Scenarios A and B miss it, the probability of which is (1-p)(1-q). Similarly, a defect
in region B will be missed with the same probability (1-p)(1-q). A defect in region C will
be missed with probability (1-p)2, however. Therefore, perspective-based reading using
Scenarios A and B by a two-reader team will report, on average, D

pbr
 number of defects, as

show below:

Figure 4-4. Defects distribution

Chapter 4 ■ SCenario-BaSed reading teChniqueS

61

D A p q B p q C

p

pbr = ⋅ − −() −()  + ⋅ − −() −()  +

⋅ − −()





1 1 1 1 1 1

1 1
2

The first term on the right-hand side of the equation is the number of defects
uncovered from region A, the second term is the number of defects uncovered from
region B, and the last term is the number of defects uncovered from region C, by
Scenarios A and/or B. With simple algebraic operations, this equation can be turned into

D A B p q pq C p ppbr = +()⋅ + −()+ ⋅ −()2 2

For checklist-based reading, let’s assume there are two independent readers with the
same defect detection probability s. It is logical to assume p>s>q. Otherwise there is no
point to develop and utilize perspective-based reading. The checklist covers all potential
defects. Therefore checklist-based reading from two readers will report, on average, D

cbr

number of defects:

D A B C scbr = + +()⋅ − −()()1 1
2

With simplification, this amounts to

D A B C s scbr = + +()⋅ −()2
2

We shall find the difference D
pbr

-D
cbr

:

∆ = − = +()⋅ + − − −() +

⋅ − − +()
D D A B p q pq s s

C p p s s

pbr cbr 2

2 2

2

2 2

Since 2p-p2 is an increasing function for p within 0 and 1 and p>s, the second term
on the right-hand side is always positive. We shall seek one sufficient condition so that
perspective-based reading outperforms checklist-based reading, which is

p q pq s s+ − − + ≥2 02

This is not a necessary condition, since the second term on the right-hand side
(i.e. the term involving C) is always positive if p>s, which may offset the first (negative)
term (i.e., the term involving A+B) and still make perspective-based reading better.

The sufficient condition can be re-rendered, following the steps below:

p pq s sq s q s sq

p s q s s q

p s
s

q
s q

− − + ≥ − − +
−() −() ≥ −() −()

− ≥
−
−

−()

2

1 1

1

1

~

Chapter 4 ■ SCenario-BaSed reading teChniqueS

62

This is the same equation as A28 in Laitenberger et al. [2001]. The difference p-s can
be considered as the gained efficiency of defect detection for defects covered by reading
scenario, and s-q the lost efficiency for defects not covered by reading scenario. That is,
when the gained and lost efficiencies satisfy the above relationship because of the scenario
focusing, perspective-based reading can outperform checklist-based reading.

We shall note that
1

1
1

−
−

<
s

q
 when s>q.

Let’s use some real numbers to put it into quantitative basis. In Figure 4-5 we plot the
relationship between p and q for s=0.4, 0.5, and 0.6. For those s values, the corresponding
defect detection effectiveness defined in percentages are 64%, 75%, and 84%, respectively.
For a given curve, when p is above the curve line, perspective-based reading will be more
effective than checklist-based reading. The smaller q is, the more focused the reading is.
The diagram also points the direction to how one can make perspective-based reading
more effective. If we suppress the defect detection probability for the non-scenario-
targeted defects, we have to increase the detection probability for the scenario-targeted
defects and the quantitative relationship of loss and gain is related by the formula given
earlier. If one completely misses the defects not targeted by the reading scenario (i.e.,
q=0), the detection effectiveness of the targeted defect p has to be at least 2s-s2 in order to
be better than the baseline reading technique.

Figure 4-5. The p-q phase diagram

Chapter 4 ■ SCenario-BaSed reading teChniqueS

63

Contradicting experimental results can be understood within this theoretical
framework.

 1. We first point out that this simple relationship is obtained
under the assumption that reading techniques, perspective-
based reading, and any other techniques that perspective-
based reading is compared to can uncover all defects.
In reality, experimental conditions may not satisfy this
assumption. We didn’t see any analysis to confirm that all
defects could be uncovered, in theory, using the investigated
reading techniques.

 2. In practice, we also find that some defects are easy to uncover,
while others are not so. That is, each defect has a different
probability to be detected. The analysis assumes a uniform
detection probability in the defect groups (the perspective
targeted or not targeted, or the entire defects).

 3. When designing reading perspectives for their targeted
defects, we purposely minimize the defects overlap, i.e., C
region in the diagram. This turns out to be a very difficult
objective to achieve. There is no discussion from experimental
designers regarding how the defect overlapping region looked
like in their experiment. The existence of a common region
favors perspective-based reading, however (see the second
term in D

pbr
-D

cbr
).

 4. The defect detection probability, p, q, and s, strongly
depends on an individual’s experience and skill. In all
published experiments, there was no explicit estimate of
those probabilities. Hence, when perspective-based reading
outperforms other reading techniques, we are not clear
why and how we attribute its success; when it does not
outperform, we don’t know why it is so.

 5. For future experiments, we suggest researchers collect or
estimate those data so that the results can be analyzed
quantitatively and the success can be properly attributed to.

Let’s examine the common defects detected by two reading perspectives. This is not
the common region C in the diagram, as the defects not targeted by a reading scenario
are detected at a probability q. In the two-person team, on average, the common defects
reported by both team members are, respectively, for perspective-based reading and
checklist-based reading:

D A B pq C p

D A B C s
pbr
c

cbr
c

= +()⋅ + ⋅
= + +()⋅

2

2

Chapter 4 ■ SCenario-BaSed reading teChniqueS

64

With those two quantities, we can rewrite the difference as

∆ = +()⋅ + −()+ ⋅ −()+ −()A B p q s C p s D Dcbr
c

pbr
c2 2

In literature it was believed that the effectiveness of perspective-based reading
was due to the reduction of overlapping defect detection (i.e. reduced value of Dc

pbr
).

We argue this is not necessarily the case. Suppose we have perfectly focused reading
scenarios that do not detect any defects the scenarios are not targeting, i.e., q=0. In that
case the overlapping defects detected by perspective-based reading is Dc

pbr
=0 when C=0

or A+B>>C, and of course, to ensure ∆>0, p has to satisfy some condition, which would
be p>2s-s2. Now suppose for a given p and q, two reading techniques give the same
performance, i.e., ∆=0. Now holding q constant, we improve the reading scenarios such
that all targeted defects are detected with probability p=1. ∆ increases as p increases and
perspective-based reading outperforms checklist-based reading. Since we fix the value
of q and improve the value of p, the overlapping defects detected by perspective-based
reading Dc

pbr
 increases. In other words, the outperforming perspective-based reading has

an increased number of defects detected by both reading scenarios. How the overlapping
defects are detected by perspective-based reading is not the driving force if perspective-
based reading outperforms the baseline reading technique. Rather it is the consequence
of the change in detection capabilities for the defects targeted and not targeted by the
perspectives. How the number of detected overlapping defects will change is determined
by the relative changes of those detection capabilities.

4.4 Alternative Partitioning of Reading
Responsibilities

We have discussed two scenario-based reading techniques, defect-based reading and
perspective-based reading. While defect-based reading partitions scenarios based on
defect classes, perspective-based reading decomposes scenarios based on stakeholders’
perspectives to the documents under review. When a defect or perspective scenario
is assigned to a reader, the portion or aspect of the document is assigned to the reader
implicitly. There exist other alternatives that partition the reading responsibilities and
coordinate reading activities, however.

4.4.1 Ad hoc Partition
A document under review usually has multiple parts. If a template is used to write the
document, it might have different chapters and sections. For example, a requirements
specification of an IT application may have chapters on web interface, billing, database,
etc. Among all those parts, a group of reviewers can decide how to assign different
portions to different people. Cheng and Jeffery (1996) called this self-set strategy. The
document author or review coordinator can make the assignment as well, based on
readers’ interests and expertise. Once the document review responsibilities are divided
among readers, each reader can use whatever reading techniques they may possess, e.g.,
ad hoc reading or checklist-based reading. This ad hoc assignment reduces the work

Chapter 4 ■ SCenario-BaSed reading teChniqueS

65

overload to individual readers and provides a specific area of focus for them, compared
to the case where the whole document is given to reviewers and the reviewers are simply
asked to detect as many defects as they could.

4.4.2 Function Point-Based Partition
Cheng and Jeffery (1996) developed a set of scenarios, function point scenarios, for
requirements reading based on function point analysis. Functional user requirements
can be categorized into five types: inputs, outputs, inquiries, internal files, and external
interfaces. Each of those types can be easily mapped to end-user business function,
e.g., an input mapped to a data entry, an inquiry mapped to a user query. Function
point analysis is frequently used to estimate the complexity and effort of the software.
The authors, however, used the five functional types to dissect the software system
into orthogonal areas, which provides the basis for reading scenario construction. Five
function point scenarios are:

•	 Overview: This is an overall description of the entire system. The
purpose of this reading scenario is to check the overall relevance,
completeness, and correctness of a requirements specification.

•	 File: This combines the internal files and external interfaces
functional types, given that they have similar characteristics with
respect to the requirements review. This contains the attributes
for the purpose of the application.

•	 Input: This is a process that requests the inputs from a user or
another system. The input may come as screen input or batch
input.

•	 Output: This is the opposite as the input and generates
information for a user or another system, which can be in a form
of report, or data transferred to other processes.

•	 Inquiry: A process that retrieves data as a response to an input
from a user or a process, and outputs the data to a user or another
system. Data update is not involved in this process.

Key issues covered by each function point analysis are constructed into domain-
specific questions, which are augmented by available checklist items. Those questions are
used directly in a scenario description, which also provides instruction to focus the reader
on specific areas of the requirements document related to the scenario/functional type.

Cheng and Jeffery used senior undergraduate and graduate students with industrial
experience as subjects. They compared the defect detection performances of self-set
strategy and function point scenarios and reported that the self-set strategy group
detected more defects. The difference was not statistically significant though. They
further reported that there was no significant difference in defect types either. While the
reading using the self-set strategy showed a dependency on the individual experience,
the same dependence was not observed in the subjects using the function point
scenarios. The researchers could not tell if function point scenario-based reading helped
the inexperienced readers or inhibited the experienced readers.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

66

4.5 Summary
We have discussed three scenario-based reading techniques, defect-based reading,
perspective-based reading, and function-point-based reading. The first and last reading
techniques have been applied to requirements specification documents. Perspective-
based reading has been customized to requirements, design, code, and usability reading
and inspection. Due to experimental variabilities and human nature, both positive and
negative findings were reported. We discussed a cognitive analysis that shed light on what
is going on during perspective-based reading and analyzed a simple model to suggest
when perspective-based reading can outperform other reading techniques. Perspective-
based reading started to see some industrial adoption (Lahtinen, 2011). Later chapters will
discuss additional scenario-based reading techniques, e.g., traceability-based reading.

4.6 References
(Basili, 1996) V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sorumgard, and

M.V. Zelkowitz, The empirical investigation of perspective-based reading, Empirical
Software Engineering, vol.1, no.2, pp.133-164, 1996.

(Bass, 2013) L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd
ed., Addison-Wesley, 2013.

(Bisant, 1989) D. Bisant and J. Lyle, A two-person inspection method to improve
programming productivity, IEEE Transactions on Software Engineering, vol.15,
no.10, pp.1294-1304, 1989.

(Chen, 2002) T.Y Chen, P.L. Poon, S.F. Tang, T.H. Tse, and Y.T. Yu, Towards a problem-
driven approach to perspective-based reading, Proceedings of the 7th IEEE
International Symposium on High Assurance Systems Engineering, pp.221-229, 2002.

(Cheng, 1996) B. Cheng and R. Jeffery, Comparing inspection strategies for software
requirement specifications, Proceedings of Australian Software Engineering
Conference, pp.201-211, 1996.

(Ciolkowski, 1997) M. Ciolkowski, C. Differding, O. Laitenberger, and J. Munch, Empirical
investigation of perspective-based reading: A replicated experiment, Technical
Report No.13, International Software Engineering Research Network, 1997.

(Ciolkowski, 2003) M. Ciolkowski, O. Laitenberger, and S. Biffl, Software reviews, the state
of the practice, IEEE Software, vol.20, no.6, pp.46-51, 2003.

(Ciolkowski, 2009) M. Ciolkowski, What do we know about perspective-based reading?
An approach for quantitative aggregation in software engineering, 3rd International
Symposium on Empirical Software Engineering and Measurement, pp.133-144, 2009.

(Conte, 2009) T. Conte, J. Massolar, E. Mendes, and G.H. Travassos, Web usability
inspection technique based on design perspectives, IET Software, vol.3, no.2,
pp.106-123, 2009.

(Fagan, 1976) M.E. Fagan, Design and code inspections to reduce errors in program
development, IBM Systems Journal, vol.15, no.3, pp.182-211, 1976.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

67

(Fowler, 1986) P.J. Fowler, In-process inspections of workproducts at AT&T, AT&T
Technical Journal, vol.65, no.2, pp.102-112, 1986. Also in Software Inspection: An
Industry Best Practice, D.A. Wheeler, B. Brykczynski, and R.N. Meeson Jr., IEEE
Computer Society Press, 1996.

(Fusaro, 1997) P. Fusaro, F. Lanubile, and G. Visagggio, A replicated experiment to assess
requirements inspection techniques, Empirical Software Engineering, vol.2, no.1,
pp.39-57, 1997.

(Gilb, 1993) T. Gilb and D. Graham, Software Inspection, Addison-Wesley, 1993.

(Graden, 1986) M.E. Graden, P.S. Horsley, and T.C. Pingel, The effects of software
inspections on a major telecommunication project, AT&T Technical Journal, vol.65,
no.3, pp.32-40, 1986. Also in Software Inspection: An Industry Best Practice, D.A.
Wheeler, B. Brykczynski, and R.N. Meeson Jr., IEEE Computer Society Press, 1996.

(Hayes, 1999) W. Hayes, Research synthesis in software engineering: a case for meta-analysis,
Proc, of the 6th International Software Metrics Symposium, pp.143-151, 1999.

(IEEE, 2008) IEEE, IEEE Standard for Software Reviews and Audits, IEEE Std 1028-2008.

(Lahtinen, 2011) J. Lahtinen, Application of the perspective-based reading technique in
the nuclear I&C context, CORSICA work report, 2011.

(Laitenberger, 1997) O. Laitenberger and J.M. DeBaud, Perspective-based reading of code
documents at Robert Bosch GmbH, Information and Software Technology, vol.39,
no.11, pp.781-791, 1997.

(Laitenberger, 1999) O. Laitenberger and C. Atkinson, Generalizing perspective-based
inspection to handle object-oriented development artifacts, Proceedings of the 21st
International Conference on Software Engineering, pp.494-503, 1999.

(Laitenberger, 2000) O. Laitenberger, C. Atkinson, M. Schlich, K. El Emam, An
experimental comparison of reading techniques for defect detection in UML design
documents, Journal of Systems and Software, vol.53, no.2, pp.183-204, 2000.

(Laitenberger, 2001) O. Laitenberger, K. El Emam, and T.G. Harbich, An internally replicated
quasi-experimental comparison of checklist and perspective-based reading of code
documents, IEEE Transactions on Software Engineering, vol.27, no.5, pp.387-421, 2001.

(Letovsky, 1987) S. Letovsky, J. Pinto, R. Lampert, and E. Soloway, A cognitive analysis of
a code inspection, in Empirical Studies of Programming, Chapter 15, G. Olson, S.
Sheppard, E. Soloway, eds., pp.231-247, 1987. Also in Software Inspection: An Industry
Best Practice, D.A. Wheeler, B. Brykczynski, and R.N. Meeson Jr., IEEE Computer
Society Press, 1996.

(Maldonado, 2006) J.C. Maldonado, J. Carver, F. Shull, S. Fabbri, E. Doria, L. Martimiano,
M. Mendonca, and V. Basili, Perspective-based reading: A replicated experiment
focused on individual reviewer effectiveness, Empirical Software Engineering, vol.11,
pp.119-142, 2006.

(Miller, 1998) J. Miller, M. Wood, and M. Roper, Further experiences with scenarios and
checklists, Empirical Software Engineering, vol.3, no.1, pp.37-64, 1998.

(Parnas, 1985) D.L. Parnas and D.M. Weiss, Active design reviews: principles and
practices, 8th International conference on Software Engineering, pp.215-222, 1985.

Chapter 4 ■ SCenario-BaSed reading teChniqueS

68

(Porter, 1994) A.A. Porter and L.G. Votta, An experiment to assess different defect
detection methods for software requirements inspections, in Proceedings of the 16th
International Conference on Software Engineering, pp.103-112, 1994.

(Porter, 1995) A.A. Porter, L.G. Votta, and V.R. Basili, Comparing detection methods for
software requirements inspection: A replicated experiment, IEEE Transactions on
Software Engineering, vol.21, no.6, pp.563-575, 1995.

(Porter, 1997) A.A. Porter, H.P. Siy, C.A. Toman, and L.G. Votta, An experiment to assess
the cost-benefits of code inspection in large scale software development, IEEE
Transactions on Software Engineering, vol.3, no.6, pp.329-346, 1997.

(Porter, 1998) A.A. Porter and L.G. Votta, Comparing detection methods for software
requirements inspection: A replication using professional subjects, Empirical
Software Engineering, vol.3, no.4, pp.355-379, 1998.

(Regnell, 2000) B. Regnell, P. Runeson, and T. Thelin, Are the perspective really different?
– Further experimentation on scenario-based reading of requirements, Empirical
Software Engineering, vol.5, no.4, pp.331-355, 2000.

(Robbins, 2009) B. Robbins and J. Carver, Cognitive factors in perspective-based reading
(PBR): A protocol analysis study, 3rd International Symposium on Empirical Software
Engineering and Measurement, pp.145-155, 2009.

(Sandahl, 1998) K. Sandahl, O. Blomkvist, J. Karlsson, C. Krysander, M. Lindvall, and
N. Ohlsson, An extended replication of an experiment for assessing methods for
software requirements inspection, Empirical Software Engineering, vol.3, no.4,
pp.327-354, 1998.

(Sabaliauskaite, 2003) G. Sabaliauskaite, F. Matsukawa, S. Kusumoto, and K. Inoue,
Further investigations of reading techniques for object-oriented design inspection,
Information and Software Technology, vol.45, no.9, pp.571-585, 2003.

(Schulte, 2010) C. Schulte, T. Busjahn, T. Clear, J.H. Paterson, and A. Taherkhani, An
introduction to program comprehension from computer science educators,
Innovation and Technology in Computer Science Education Working Group Reports
ITiCSE-WGR’10, pp.65-86, 2010.

(Shull, 2000) F. Shull, I. Rus, and V. Basili, How perspective-based reading can improve
requirements inspections, IEEE Computer, vol.33, no,7, pp.73-79, 2000.

(Vaz, 2013) V.T. Vaz, T. Conte, G.H. Travassos, Empirical assessments of a tool to support
web usability inspection, CLEI Electronic Journal vol.16 no.3, paper 6, 2013.

(Walia, 2009) G.S. Walia and J.C. Carver, A systematic literature review to identify and
classify software requirement errors, Information and Software Technology, vol.51,
pp.1087-1109, 2009.

(Zhang, 1999) Z. Zhang, V.R. Basili, B. Schneiderman, Perspective-based usability
inspection: an empirical validation of efficacy, Empirical Software Engineering, vol.4,
no.1, pp.43-69, 1999.

69© Yang-Ming Zhu 2016
Y.-M. Zhu, Software Reading Techniques, DOI 10.1007/978-1-4842-2346-8_5

 CHAPTER 5

 Requirements Reading
Techniques

 The general reading techniques, ad hoc reading, checklist-based reading, defect-based
reading, and perspective-based reading, have all been applied to inspect software
requirements specifications. A detailed account of these techniques and their empirical
experiences can be found in Chapters 3 and 4 . Here we discuss additional reading
techniques that are applicable specifically to requirements specifications. We also discuss
what factors impact the effectiveness of requirements reading, which can be used to
guide reading team selection and training.

 5.1 Critical Roles of Requirements in Software
Development

 A requirements specification is an important document generated in the early stages of a
software development project. It defines the functionality, scope, and constraints of the
software system. It can also serve as a basis for contract negotiations or communication
between the software development organization and end users.

 The importance of the requirements specification cannot be emphasized enough.
If the development is based on an incomplete and incorrect requirements specification,
then the finished software product will not fulfill users’ needs. Defects in a vague or
ambiguous specification can be propagated down to subsequent development phases
such as design and/or coding. Designers or developers would potentially still be able to
catch these problems, but it will be at the expense of schedule delays, which can be costly.
Even worse, if the defects remain undetected and a faulty software product is delivered
to users, the users’ working environment could be damaged. So it is paramount to read,
detect, and correct requirements issues early in the development process.

http://dx.doi.org/10.1007/978-1-4842-2346-8_3
http://dx.doi.org/10.1007/978-1-4842-2346-8_4

CHAPTER 5 ■ REQUIREMENTS READING TECHNIQUES

70

 5.2 A Combined Reading Technique for
Requirements

 The number and types of defects each reading technique can detect vary from one
technique to another. A combined-reading (CR) technique is intended to take advantage
of the strengths of individual reading techniques while compensating for their
weaknesses.

 5.2.1 Motivations for a Combined Reading
 Checklist-based reading (CBR), defect-based reading (DBR), and perspective-based
reading (PBR) techniques have all been applied to software requirements specifications.
Maldonado et al. (2006) reported that PBR and CBR are complementary to each other
for reading some requirements specifications. Alshazly et al. (2014) compared the three
reading techniques and reported that, in terms of total number of defects detected,
PBR > DBR > CBR (“>” means “is better than”); in terms of ambiguous and omission
defect detection capability, PBR > DBR > CBR; in terms of inconsistent defect detection
capability, PBR > DBR ≈ CBR (“≈” means “roughly the same as”); in terms of incorrect
defect detection capability, DBR > CBR > PBR; and in terms of superfluous defect detection
capability, CBR = DBR > PBR. Each reading technique has its own strength and weakness.

 Thus it is difficult to detect most or all defects using a single reading technique alone.
An apparent solution is to combine multiple reading techniques, which exploits the
advantages of each reading technique and avoids its limitations at the same time.

 5.2.2 The Combined-Reading Technique
 A software requirements specification document has multiple constituent parts. For
example, IEEE STD 830-1998 has a recommended structure for a software requirements
specification (this recommendation has been superseded by ISO/IEC/IEEE 29148:2011).
Not all classes of defects could occur in all parts of the document, and there is only a
limited number of defect classes that could appear in a given part. The main idea behind
CR is to examine every constituent parts of the software requirements specification in
detail. For software organizations, the historical defect patterns and root causes can be
analyzed to determine what classes of defects can occur in what parts of the document
and how the defects are introduced. After that, specific questions can be developed
for each part of the document to cover different types of defects from the perspectives
of different stakeholders, taking into account defect history and the purpose of the
individual parts of the requirements specification.

 The influences of CBR, DBR, and PBR are apparent. Combined reading is based on
defect class analysis, and specific questions are designed for it (DBR). The questions are
designed to cover the defects from the perspectives of different stakeholders (PBR). The
guidance is constructed as a list of yes/no questions (CBR).

 An excerpt of the reading guidance is shown in Table 5-1 , where checked items
are the areas of concern, defect types are typical types of defects the organization may
have, defect sources list the main and sub-error sources, and the checklist items are the
questions for the reader to answer throughout the course of reading.

CHAPTER 5 ■ REQUIREMENTS READING TECHNIQUES

71

 Ta
bl

e
5-

1.
 A

n
 E

xc
er

pt
 G

u
id

an
ce

 o
f t

he
 C

om
bi

n
ed

 R
ea

di
n

g
Te

ch
n

iq
u

e
(a

da
pt

ed
 fr

om
 A

ls
ha

zl
y

et
 a

l.
[2

01
4]

)

 Q

 C
he

ck
ed

 it
em

 D

ef
ec

t t
yp

e
 D

ef
ec

t s
ou

rc
e

 C
he

ck
lis

t i
te

m

 M
ai

n
 Su

b

 1
 E

xt
er

n
al

 in
te

rf
ac

es

 O
m

is
si

on

 P
ro

ce
ss

 A

n
al

ys
is

 H

av
e

al
l i

n
p

u
ts

 a
n

d
 o

u
tp

u
ts

 o
f t

h
e

sy
st

em
 b

ee
n

d

es
cr

ib
ed

 in
 d

et
ai

l?

 2
 U

se
r

in
te

rf
ac

es

 O
m

is
si

on

 P
eo

p
le

 C

on
ce

n
tr

at
io

n

 H
av

e
al

l i
n

te
rf

ac
es

 b
et

w
ee

n
 th

e
so

ft
w

ar
e

p
ro

d
u

ct

an
d

 it
s

u
se

rs
 b

ee
n

 s
p

ec
if

ie
d

?

 3
 C

on
st

ra
in

ts

 O
m

is
si

on

 P
ro

ce
ss

 A

n
al

ys
is

 D

o
al

l s
ig

n
ifi

ca
nt

 c
on

su
m

er
s

ha
ve

 s
ca

rc
e

re
so

ur
ce

s,

su
ch

 a
s

m
em

or
y,

 n
et

w
or

k
ba

n
dw

id
th

, p
ro

ce
ss

or

ca
pa

ci
ty

, e
tc

. i
de

nt
ifi

ed
?

H
as

 th
e

an
tic

ip
at

ed

co
n

su
m

pt
io

n
 o

f r
es

ou
rc

es
 b

ee
n

 s
pe

ci
fie

d?

 4
 U

se
-c

as
e

n
am

e
an

d

n
u

m
b

er

 A
m

b
ig

u
ou

s
 P

eo
p

le

 C
on

ce
n

tr
at

io
n

 D

oe
s

th
e

u
se

-c
as

e
n

am
e

re
fle

ct
 it

s
go

al
?

 5
 In

co
n

si
st

en
t

 D
oc

u
m

en
ta

ti
on

 O

rg
an

iz
at

io
n

 A

re
 th

e
re

q
u

ir
em

en
ts

 a
rr

an
ge

d
 n

u
m

er
ic

al
ly

ac

co
rd

in
g

to
 th

e
lo

gi
ca

l o
rd

er
 o

f o
cc

u
rr

en
ce

an

d
 in

 o
rd

er
 to

 p
re

ve
n

t c
on

fu
si

on
 b

et
w

ee
n

 th
e

re
q

u
ir

em
en

ts
?

 6
 In

co
n

si
st

en
t

 P
ro

ce
ss

 T

ra
ce

ab
ili

ty

 Is
 th

er
e

a
co

n
fli

ct
 b

et
w

ee
n

 th
e

fu
n

ct
io

n
al

re

q
u

ir
em

en
ts

 n
am

es
 a

n
d

 th
e

re
le

va
n

t u
se

-c
as

es

n
am

es
?

 …

 68

 N
on

-f
u

n
ct

io
n

al

re
q

u
ir

em
en

ts

 O
m

is
si

on

 P
ro

ce
ss

 E

lic
it

at
io

n

 A
re

 th
e

n
ec

es
sa

ry
 n

on
-f

u
n

ct
io

n
al

 r
eq

u
ir

em
en

ts

sp
ec

if
ie

d
, i

n
cl

u
d

in
g

re
lia

b
ili

ty
, a

va
ila

b
ili

ty
,

se
cu

ri
ty

, m
ai

n
ta

in
ab

ili
ty

, a
n

d
 p

or
ta

b
ili

ty
?

 69

 G
en

er
al

 q
u

es
ti

on
s

 In
co

n
si

st
en

t
 D

oc
u

m
en

ta
ti

on

 D
oc

u
m

en
ta

ti
on

st

an
d

ar
d

s
 D

id
 th

e
au

th
or

 o
f t

h
e

d
oc

u
m

en
t u

se
 n

u
m

b
er

in
g

le
ve

ls
 to

 id
en

ti
fy

 s
ec

ti
on

s
of

 th
e

d
oc

u
m

en
t a

n
d

th

e
fu

n
ct

io
n

al
 r

eq
u

ir
em

en
ts

?

CHAPTER 5 ■ REQUIREMENTS READING TECHNIQUES

72

 The CR technique guides the reader through what is being inspected and provides
instruction on how the inspection should be conducted. The required training is minimal
and a novice reader can benefit from it. As the empirical evidence shows, it is more
effective than CBR, DBR, and PBR.

 An apparent limitation of the CR technique is that the list of questions is relatively
large (69 questions in total). It could be overwhelming to a single reader and would
be more manageable if the questions were divided among multiple readers. The other
drawback is, just like the checklist, it is effective for known defects and defect types but
might not be so for defects not previously seen.

 5.2.3 Empirical Experiences
 Alshazly et al. (2014) applied the CR technique to four requirements specification
documents and compared its defect detection effectiveness with those of CBR, DBR,
and PBR in case studies. In terms of the total number of defects detected, CR > PBR >
DBR > CBR; in terms of ambiguous defect detection capability, CR > CBR > DBR > PBR;
in terms of inconsistent defect detection capability, CR > PBR > DBR ≈ CBR; in terms of
incorrect defect detection capability, CR > DBR ≈ CBR > PBR; in terms of omission defect
detection capability, CR > PBR > DBR > CBR; in terms of superfluous defect detection
capability, CR > CBR ≈ DBR ≈ PBR; and in terms of non-conforming to standard defect
detection capability, CR ≈ CBR ≈ DBR ≈ PBR. These findings have not been confirmed by
independently replicated experiments yet.

 5.3 Test-Case Driven Reading for Requirements
 Most of the time when we read requirements, we detect and remove defects for a full-
fledged project to avoid propagating issues down to subsequent development phases.
The requirements document is typically inspected by multiple stakeholders. There
are other situations in which we inspect the requirements to ensure that we have good
enough requirements to support decision making during planning and before the
project is kicked off (pre-project), e.g., what requirements to select for realization and
cost estimation. Companies operating in a market-driven environment typically have
a large amount of requirements coming from different sources with different levels of
quality. With limited resources, they want to inspect the requirements in a lean manner
and amortize the effort across different development phases, since they have many more
pre-project requirements than their development organization can handle. Gorschek and
Fogelstrom (2005) and Fogelstrom and Gorschek (2007) developed a test-case-driven
requirements reading to satisfy the above needs. They proposed an inspection process in
which the test-case-driven reading is embedded. Here we focus on the reading technique.

 5.3.1 Test-Case-Driven Reading Technique
 The goal of the test-case-driven reading technique is to enable the software development
organization to inspect the requirements effectively with minimal cost. It utilizes the
test-cases as a tool for inspection and involves real testers at an early stage of the pre-

CHAPTER 5 ■ REQUIREMENTS READING TECHNIQUES

73

project decision making. The test- cases developed during reading can be used in latter
development phases, and thus the cost and time demand in the early requirement phase
is spread along the project phases.

 The tester ensures the testability, completeness, and non-conflicting aspects of
those requirements. If the tester can create test-cases based on a requirement, then the
requirement is considered testable. Since the tester is an expert in the use of the system,
any missing or incomplete functionality can be easily detected. This provides another
angle for the tester to examine the system, from the perspective of the end-user. When the
tester goes through the set of requirements thoroughly by creating test-cases along the
way, any conflicting and inconsistent requirements can be caught.

 We shall contrast test-case-driven reading with perspective-based reading to further
understand the test-case-driven reading technique:

• To support PBR, reading scenarios, including the tester’s reading
scenario, must be developed and maintained from different
stakeholders’ perspectives. In test-case-driven reading, no
reading scenario is required since the real testers are employed.

• In the tester’s PBR, individuals such as requirements engineers
or developers—not necessarily the real testers—are employed to
simulate the tester’s perspective. Thus education, training, and
practice will be required for these readers. In test-case-driven
reading, the experienced testers are doing the reading, which not
only represents the tester’s perspective better than the simulated
one, but also alleviates the education and training costs. This
might also utilize resources better, since typically, the testers
could have a light workload during the requirements definition
phase if there are no other active projects.

• In the tester’s PBR, the reader develops test cases. Since these
test cases are developed by non-testers, it is always in question
whether these test cases can be reused in a later phase. In test-
case-driven reading, the tester’s competence and efforts are
exploited to develop test-cases, which serves the inspection for
now, and could also be reused in later development and testing
phases. The test-cases can be used to augment the requirements
so that developers understand the requirements better, which
reduces the chance of misinterpreting the requirements.

• Perspective-based reading typically takes advantages of
the perspectives of multiple stakeholders, with each reader
representing one perspective. However, test-case-driven
reading utilizes one tester who brings two perspective: tester
and end-user. The tester’s perspective is an obvious one. The
tester is familiar with the real usage of the system. He or she is
thus a system functionality expert and an expert at reading and
interpreting the requirements.

CHAPTER 5 ■ REQUIREMENTS READING TECHNIQUES

74

 5.3.2 Empirical Experiences
 Gorschek and Fogelstrom (2005) conducted a pilot study and concluded that the benefit
of test-case-driven requirements reading was substantial based on the subjective feedback
from people who were involved. Product managers felt the inspected and reworked
requirements were of high quality, offered better support for decision making, prevented
unviable requirements from passing down to the next step, and improved the product
manager’s requirements specification skills. The testers felt it enabled them to create a
realistic test plan early. However, they also reported that non-functional requirements
were hard to inspect due to potential conflicts among different quality attributes.

 In a follow-up study, Fogelstrom and Gorschek (2007) compared test-case-driven
requirements reading to CBR, using software engineering graduate students as subjects.
They reported that CBR found a high amount of false positive defects, but fewer major
defects. Conflicting requirements, missing requirements, and missing or wrong information
in requirements are considered major. When only major defects were considered, test-case-
driven reading is 44% to 55% more effective than CBR, where the effectiveness is defined as
the percentage of major defects uncovered among the total major defects. When efficiency
is concerned (number of major defects uncovered per hour), the result is not conclusive.
In one case, test-case-driven reading is more efficient, and in the other case, CBR is more
efficient, but the difference is not significant in both cases.

 5.4 Individual Factors Impacting Requirements
Reading Efficiency

 Researchers have reported that individual defect detection performance can vary by a
factor of 10 in terms of defects found per unit time (Hatton, 2008). This wide variation
in the defect detection effectiveness (total number of defects or the percentage of
defects detected) is also reported, even when readers are using the same technique
and same process on the same artifact. For example, Basili et al. (1996) reported that
the effectiveness of individual readers ranged from 10% to 90% when applying PBR on
requirements specifications. Similar variation exhibits at the team level as well (Schneider
et al., 1992). We often see different, sometimes contradicting, empirical findings in
replicated experiments (Hayes, 1999; Ciolkowski, 2009). People’s backgrounds and
experiences play a significant role during software reading and analysis. It is thus prudent
to study what factors impact the effectiveness of requirements reading.

 Miller and Yin (2004) studied a characteristic of readers not related to software
engineering expertise, the Myers-Briggs personality type. Miller and Yin reported that
personality type was not a good predictor of the individual effectiveness of requirements
reading. However, a team formed by people of different personalities with diverse
information processing strategies maximizes the number of different defects detected.

 Biffl and Halling (2002) studied the characteristics directly related to software
engineering expertise, development skills, quality assurance experience, and
performance on a pre-test with a mini-inspection. Biffl and Halling concluded that
only readers’ performance on a pre-test of mini-inspection, not their development and
quality assurance capability and experience, was considerably correlated to reading
performance. Two other software engineering characteristics, IT experience and

CHAPTER 5 ■ REQUIREMENTS READING TECHNIQUES

75

data-flow diagram experience, were investigated by Hungerford et al. (2004) with
experienced software developers. Although the researchers did not find that these
characteristics affect reading performance, they reported that the ability to rapidly switch
between diagrams impacted the reading performance.

 Carver et al. (2008) studied the impact of educational background (field of study),
education degree, and requirements writing experience on requirements defect detection
effectiveness using professionals as subjects. The researchers reported that readers
with an education background not related to computing such as engineering, math,
science, business, or the arts, were significantly more effective in detecting omission
and inconsistency defects. Upon further analysis, readers with computer science or
software engineering background were the least effective. Readers with requirements
writing experience were significantly more effective than those without, regardless of
whether the experience was gained through industry practice or classroom learning.
Their effectiveness was not related to particular defect categories. Education degree was
not found to be significantly related to defect detection performance. The experiment of
Carver et al. was replicated by Albayrak and Carver (2014) with industry practitioners in a
different country. The original findings were confirmed in the replicated study.

 The reason people with computing-related education backgrounds have poor
defect detection effectiveness is not well understood. One possible reason is that people
with computing backgrounds tend to think in terms of design and coding immediately
upon reading requirements. Meanwhile, people with non-computing backgrounds may
approach requirements as a user, rather than designer or implementer. Another possible
explanation might be that precise writing was part of training in non-computing fields.

 The research findings discussed earlier have interesting implications to software
inspection practice in industry. When selecting people to inspect software artifacts, it is
a wise decision to select people with different education backgrounds, particularly those
with non-computing-related disciplines. If defect collection meetings will be held, people
with different personality types should be chosen as well. When inspecting software
requirements specification documents, it is good to include people with requirements
writing experience.

 5.5 Summary
 Software requirements specifications play a critical role during the software development
process and it is important to get them right as early as possible. Ad hoc reading and CBR
are mostly used in practice. Scenario-based reading, DBR, and PBR in particular, have
been applied to requirements reading with reported success. This chapter discusses a few
newly proposed reading techniques: CR, which combines the benefits of the CBR, DBR,
and PBR techniques, and test-case-driven reading, which is applicable to organizations
with limited resources and can provide good-enough requirements for project decision
making early in the software development lifecycle. It is known that individuals with
different backgrounds exhibit a varying performance in software reading. Factors that
impact requirements reading performance are discussed, which can be utilized when
assembling and training a requirements inspection team.

CHAPTER 5 ■ REQUIREMENTS READING TECHNIQUES

76

 5.6 References
 (Albayrak, 2014) O. Albayrak and J.C. Carver, Investigation of individual factors impacting

the effectiveness of requirements inspections: a replicated experiment, Empirical
Software Engineering, vol.19, pp.241-266, 2014.

 (Alshazly, 2014) A.A. Alshazly, A.M. Elfatatry, and M.S. Abougabal, Detecting defects in
software requirements specification, Alexandria Engineering Journal, vol.53, pp.513-
527, 2014.

 (Basili, 1996) V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Sorumgard, and
M.V. Zelkowitz, The empirical investigation of perspective-based reading, Empirical
Software Engineering, vol.1, no.2, pp.133-164, 1996.

 (Biffl, 2002) S. Biffl and M. Halling, Investigating the influence of inspector capability
factors with four inspection techniques on inspection performance, Proceedings of
8 th IEEE Symposium on Software Metrics, pp.107-117, 2002.

 (Carver, 2008) J.C. Carver, N. Nagappan, and A. Page, The impact of educational
background on the effectiveness of requirements inspections: an empirical study,
IEEE Transactions on Software Engineering, vol.34, no.6, pp.800-812, 2008.

 (Ciolkowski, 2009) M. Ciolkowski, What do we know about perspective-based reading?
An approach for quantitative aggregation in software engineering, 3 rd International
Symposium on Empirical Software Engineering and Measurement, pp.133-144, 2009.

 (Fogelstrom, 2007) N.D. Fogelstrom and T. Gorschek, Test-case driven versus checklist-
based inspections of software requirements – An experimental evaluation, Workshop
emEngenharia de Requisitos, pp.116-126, 2007.

 (Gorschek, 2005) T. Gorschek and N.D. Fogelstrom, Test-case driven inspections of
pre-project requirements – Process proposal and industry experience report,
Proceedings of the Requirements Engineering Decision Support Workshop held
in conjunction with the 13 th IEEE International Conference on Requirements
Engineering, 2005.

 (Hatton, 2008) L. Hatton, Testing the value of checklists in code inspections, IEEE
Software, vol.25, no.4, pp.82-88, 2008.

 (Hayes, 1999) W. Hayes, Research synthesis in software engineering: a case for meta-analysis,
Proc, of the 6 th International Software Metrics Symposium, pp.143-151, 1999.

 (Hungerford, 2004) B.C. Hungerford, A.R. Hevner, and R.W. Collins, Reviewing software
diagrams: A cognitive study, IEEE Transactions on Software Engineering, vol.30,
no.2, pp.82-96, 2004.

 (Maldonado, 2006) J.C. Maldonado, J. Carver, F. Shull, S. Fabbri, E. Doria, L. Martimiano,
M. Mendonca, and V. Basili, Perspective-based reading: A replicated experiment
focused on individual reviewer effectiveness, Empirical Software Engineering, vol.11,
pp.119-142, 2006.

 (Miller, 2004) J. Miller and Z. Yin, A cognitive-based mechanism for constructing software
inspection teams, IEEE Transactions on Software Engineering, vol.30, no.11,
pp.811-825, 2004.

 (Schneider, 1992) G.M. Schneider, J. Martin, and W.T. Tsai, An experimental study of
fault detection in user requirements documents, ACM Transactions on Software
Engineering and Methodology, vol.1, no.2, pp.188-204, 1992.

77© Yang-Ming Zhu 2016
Y.-M. Zhu, Software Reading Techniques, DOI 10.1007/978-1-4842-2346-8_6

 CHAPTER 6

 Design Reading Techniques

 The general reading techniques discussed in Chapters 3 and 4 , ad hoc reading, checklist-
based reading, and perspective-based reading, have all been applied to inspect design
documents. This chapter discusses a few more reading techniques applicable specifically
to design artifacts, namely usage-based reading, traceability-based reading, and scope-
based reading.

 6.1 Introduction
 In a software development process, the development of software architecture and
design is between requirements engineering and code implementation. Thus software
design needs to satisfy a requirements specification and provide guidance to subsequent
implementation. As far as software design inspection is considered, a reasonable
assumption is that the requirements specification as input is free of error. Of course, any
issues with the requirements specification uncovered during design inspection shall be
captured and dealt with. The focus of design reading and inspection is, however, to make
sure the design is correct and complete with respect to requirements and the design itself
is consistent and clear and has adequate information to start the subsequent detailed
design and implementation. Design reading or inspection is crucial since the design
quality directly affects the quality of and effort required for the implementation.

 6.2 Usage-Based Reading
 One of the reasons to read software artifacts is to detect defects early in a development
process. However, not all defects have the same impact on end users. Thus the goal of
software reading should not be to find as many defects as possible but to find the most
critical defects that matter to users. Usage-based reading is developed just for that. A
similar idea is employed in the operational profile-based software testing, which greatly
improves software reliability (Musa, 1993).

http://dx.doi.org/10.1007/978-1-4842-2346-8_3
http://dx.doi.org/10.1007/978-1-4842-2346-8_4

CHAPTER 6 ■ DESIGN READING TECHNIQUES

78

 6.2.1 Usage-Based Reading Technique
 The main idea of usage-based reading is to use prioritized use cases to drive and focus an
inspection effort on detecting critical defects that matter most to end users. Use cases are
generally developed as specifications of a system. A use case is a set of scenarios together
satisfying a common user goal, where a scenario is a sequence of steps describing an
interaction between an agent (user) and the software system. Usage-based reading
focuses on software quality from a user’s perspective. It was suggested by Wohlin and
Olsson, and further developed by Thelin et al. (2004).

 The usage-based reading is schematically illustrated in Figure 6-1 , where the
artifact to be read and the list of prioritized use cases are input, and the list of defects
are the outcome of the reading. Depending on how many use cases a system supports,
prioritization can be done in an ad hoc way or systematically through, e.g., a pairwise
comparison using the analytic hierarchy process (Saaty & Vargas, 2001). It is important
to note that prioritization shall be done by perspective users or someone who is familiar
with the usage of the system.

 Two schemes, time-boxed and rank-based, can be employed in usage-based reading.
In the time-boxed reading, one allocates a fixed amount of time to the whole reading
and divides the allocated time to individual use cases proportionally by their priority
weights. Thus an important use case will be allotted more time for a close examination.
Alternatively, a rank-based reading can be performed. That is, use cases are examined in
their priority order and there is no forced time limit except the whole allocated time. The
basic steps of a rank-based reading are listed in Panel 6-1: Instructions for Usage-Based
Reading (Rank-Based).

 Figure 6-1. Illustration of the usage-based reading technique

CHAPTER 6 ■ DESIGN READING TECHNIQUES

79

PANEL 6-1: INSTRUCTIONS FOR USAGE-BASED READING

(RANK-BASED)

 1. Prioritize and sort use cases in order of importance from end
users’ point of view.

 2. Select a use case with the highest priority.

 3. Trace and manually execute the use case scenarios through the
document under inspection.

 4. Ensure the document fulfills the use case goals (the needed
functionality is provided, the interfaces are correct, etc.). Identify
and report issues found.

 5. Select the next use case with the highest priority among the
remaining ones and repeat steps 3 and 4, until allocated time is
used up or use cases have been exhausted.

 Use-case is the common instrument that helps to focus on users’ needs. In usage-
based reading, prioritized use cases are used to focus the defect detection effort. Use
cases are used or involved in other reading techniques as well. For example:

• Perspective-based reading can have a user’s perspective, where
a reader, who takes the end user’s perspective, creates a user’s
manual or use cases during reading. This is discussed in Chapter 4 .

• A reader performs a vertical reading, which is a technique in the
traceability-based reading family, and compares design diagrams
with use cases to ensure the design is correct and complete.
Traceability-based reading is discussed in the next section.

• Use cases are also used in object-oriented (OO) code reading to
understand dynamic aspects of an OO system. Use-case-driven
reading is discussed in Chapter 7 .

 The predominant application of usage-based reading is design reading, although
it has been applied to requirements documents as well (see the empirical experiences
below). It is our opinion that it is a bit awkward to apply usage-based reading to
requirements, however. A textual description of requirements is typically developed first,
followed by a use-case document. Upstream documents are frequently used to guide the
development and review of downstream documents. When used as guidance, upstream
documents are assumed to be correct. So employing use cases to guide requirements
inspection has a limited value in practice.

 Prioritized use cases can be used to direct code reading, e.g., which areas readers
focus on and put more effort in. Once a piece of code is selected, a reader tends to have
a local view of the code and its functionality implemented, not a global view such as the
priority order of use cases. The sheer amount of code in a project is typically much more
than an individual can deal with in a reasonable time. It is thus unproductive to apply
usage-based reading to code documents. We therefore discuss usage-based reading as a
specialized reading technique for design documents.

http://dx.doi.org/10.1007/978-1-4842-2346-8_4
http://dx.doi.org/10.1007/978-1-4842-2346-8_7

CHAPTER 6 ■ DESIGN READING TECHNIQUES

80

 6.2.2 Variations of Usage-Based Reading
 In the usage-based reading developed by Thelin et al. (2004), use case prioritization is
performed by an expert of the end system. Winkler et al. (2005), however, suggested that
use case prioritization can also be done by readers individually when reading software
artifacts, based on one’s own understanding of the application domain.

 Cantone et al. (2003) reported a use-case-driven reading technique for analysis and
design of Unified Modeling Language (UML) diagrams. This is not the same reading
technique as that for OO code reading (see Chapter 7), although they have the same
name; rather, it is closely related to usage-based reading with the exception that use
cases are not prioritized. Analysis and design artifacts under review include a vision
document, a use case diagram, a view of participating classes, and sequence diagrams.
Four checklists were developed, one for each artifact type, that specify what issues to
look for. In addition to checklists, the other idea behind the use-case-driven reading is
to specify how to find defects in artifacts ranging from the informal specifications down
to use-case realizations and sequence diagrams, using use cases as a guiding light. Their
procedure guides a reader to examine the entire set of artifacts, following the order
in which they are created using a development process, such as the Rational Unified
Process. The authors compared the reading technique with a checklist-based one and
concluded that checklist-based reading was more effective. In terms of defect detection
rate, checklist-based reading peaked later but at a higher value. The authors indicated
that the difference was not statistically significant, however.

 6.2.3 Empirical Experiences
 Usage-based reading has been tested on design documents in academic settings where
subjects were software engineering students (Thelin et al., 2001; 2003; 2004). The effect
of use case prioritization in the usage-based reading was assessed first (Thelin et al.,
2001). Defects were classified as critical, major, and minor. Thelin et al. reported that
readers found different defects using prioritized use cases compared to randomly
ordered use cases. Readers who used prioritized use cases detected more critical and
major defects than readers who used randomly ordered use cases, and the difference was
significant. When all defect categories (i.e., critical, major, and minor) were considered,
the difference was not significant anymore, which suggested that prioritized use cases
enable readers to detect important defects from the users’ point of view. Readers using
prioritized use cases were also more efficient, i.e., they detected more defects per hour in
areas of all defects, critical defects, and critical and major defects.

 Usage-based reading (with prioritized use cases) was compared to checklist-based
reading (Thelin et al., 2003). Researchers concluded that usage-based reading was more
effective and efficient than a checklist-based one. Readers using usage-based reading
detected 75% more critical defects than readers using checklist-based reading, 51%
more critical and major defects, but were not significantly more effective in detecting all
defects. Readers using usage-based reading detected 35% more total defects per hour
than readers using checklist-based reading, 95% more critical defects, and 70% more
critical and major defects. Readers using usage-based reading found different and more
unique defects, and they started to find defects earlier as well. These findings were
confirmed in a replicated experiment (Thelin et al., 2004a).

http://dx.doi.org/10.1007/978-1-4842-2346-8_7

CHAPTER 6 ■ DESIGN READING TECHNIQUES

81

 In their experiment, Thelin et al. (2003) didn’t use any active guidance in checklist-
based reading. As discussed in Chapter 3 , it is possible to incorporate an active guidance
in checklist-based reading. Winkler et al. (2005) extended the traditional checklist-based
reading by providing an active guidance in design inspection. In particular, readers were
instructed to prioritize use cases according to their knowledge of the application domain,
and use the prioritized use cases during reading. The difference is that, in usage-based
reading, use cases are prioritized by experts. They further compared usage-based reading
with the traditional checklist-based reading and its variant with an active guidance and
concluded that (1) checklist-based reading with an active guidance was significantly
more effective and efficient than the traditional checklist-based reading in finding major
defects, and (2) usage-based reading was more effective and efficient than both types of
checklist-based reading.

 It takes time to develop detailed use cases. Use cases themselves shall be reviewed
for accuracy and consistency. Thus use cases shall just have enough details to serve the
purpose of usage-based reading. Thelin et al. (2004) set forth to investigate if usage-based
reading was still efficient and effective if use cases were prioritized, but without details
except only their purposes. Readers were actively developing use cases to fill in more
details during reading. Not surprisingly, the researchers reported that reading with full
use cases was more efficient and more effective than reading with incomplete use cases.
Reading with pre-developed use cases focused readers on detecting defects, while reading
with incomplete use cases forced readers to develop a detailed understanding of the
documents, enabling them to detect different kinds of defects. Should an organization
develop detailed use cases for usage-based reading beforehand or on the fly during
reading? Considering the total effort in developing use cases, the authors suggested not
to spend time on developing use cases if these use cases are not used in the application
development. The authors further suggested a hybrid approach, i.e., develop complete use
cases if they are important and develop incomplete use cases if they are less important.

 Erlansson et al. (2002) tested usage-based reading on detecting defects in
requirements document written in English. They compared usage-based reading to
checklist-based reading, using graduate students as subjects. They reported that readers
using usage-based reading didn’t detect more defects, even though they spent more time
on the documents. However, when the severity of defects was considered, usage-based
reading detected much fewer minor defects and more moderate defects than checklist-
based reading, and to their surprise, checklist-based reading seemed more effective in
detecting critical defects. The researchers added that their findings were not conclusive
and they attributed the ineffectiveness of usage-based reading on requirements to
several factors inherent to their experiments, including lack of training of the subjects.
Information-overloading in usage-based reading could be another factor. Certainly
readers had to read through more documents such as, in this case, use cases.

 6.3 Traceability-Based Reading
 Traceability-based reading is a family of reading techniques for inspecting high-level
OO design in UML diagrams. The central feature of this family of reading techniques is
to trace information between design documents (diagrams and textual descriptions) for
design consistency and between design and requirements for design correctness and
completeness, thus the name.

http://dx.doi.org/10.1007/978-1-4842-2346-8_3

CHAPTER 6 ■ DESIGN READING TECHNIQUES

82

 6.3.1 Types of Design Defects
 Defects in software artifacts can generally be classified as omitted, ambiguous,
inconsistent, incorrect, or extraneous information, which is consistent with the defect
classification in requirements specification as discussed in defect-based reading. This
classification can be tailored to design documents. The types of defects traceability-based
reading intended to detect include (Travassos et al., 1999):

 1. Omission: concept(s) from the requirements for a system are
missing in the design document.

 2. Incorrect fact: a design document has a misrepresentation of
a concept described in the requirements for a system.

 3. Inconsistency: a representation of a concept in one design
document is inconsistent with a representation of the same
concept in the same or another design document.

 4. Ambiguity: a representation of a concept in the design is
unclear and could cause a user of the design to misinterpret
or misunderstand the meaning of the concept.

 5. Extraneous information: the design includes unnecessary
information.

 6.3.2 High-Level OO Designs Using UML Diagrams
 Software design is concerned with the description of real world concepts that are part
of the solution for the system envisioned in a requirements specification. High-level
design deals with the problem description without considering constraints. That is, it
takes functional requirements and maps them to, e.g., UML design diagrams. This allows
designers and developers to understand the problem first before attempting a solution.
Low-level design deals with possible solutions. Low-level designs, which serve as a model
for coding, depend on a high-level design and the non-functional requirements. We shall
point out that what Travassos et al. called high-level designs are sometimes referred to as
analysis models (Laitenberger et al., 2000).

 Object-oriented development is widely practiced in industry nowadays and UML
diagrams are frequently used to document OO designs. Multiple UML diagrams are used
to capture different views, different levels of abstraction, or different aspects of a system
such as static or dynamic behaviors. These diagrams might be drawn at different times by
different designers using different viewpoints and abstractions. Consequently, it is hard to
guarantee that these diagrams are consistent among themselves and that requirements are
correctly and completely captured by these diagrams. It is important to review and inspect
high-level designs to ensure developers fully understand the problem before defining a
solution as low-level designs (e.g., an activity diagram). It is more difficult and expensive to
fix problems in low-level designs or code than fixing them in high-level designs.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

83

 6.3.3 Traceability-Based Reading Techniques
 Travassos and colleagues (1999; 2002) developed a family of software reading techniques
to detect defects in high-level OO designs captured in UML diagrams. They assume
that the requirements specification document is available, along with use cases.
However, these documents are not subject to review but used to aid the review of the
design. Designs are captured in UML diagrams and textual descriptions, including class
diagrams, class descriptions, sequence diagrams, and state diagrams.

 Traceability-based reading includes seven reading techniques, as shown in
Figure 6-2 . Each reading technique focuses readers on some aspects of the design.
When all reading techniques are combined, a high degree of coverage of the design can
be achieved. The seven reading techniques are organized into two groups, horizontal
reading and vertical reading. Relevant artifacts (design and/or requirement) are
connected by lines with or without arrows and the lines are labeled with numbers 1
through 7. The lines without arrows indicate a horizontal reading (readings 1-4) and
the lines with arrows signal a vertical reading (readings 5-7). The dashed line separates
lifecycle documents: above the dashed line are requirements description and use cases,
which are generated in requirements definition phase; below the dashed line are high-
level design artifacts created in the design phase and are subject to review. Each reading
technique has a detailed instruction on what to do and where to look for issues. Detected
issues are logged as “discrepancy” instead of defect and then the author of the design
can decide if it is a defect, since the reader and author/designer may have different ideas
about the design.

 To facilitate the understanding of the reading techniques, let’s define some key
terminologies (Travassos et al., 2002):

• Functionality : A functionality describes the behavior of a system
from the user’s point of view.

• Service : A service is an atomic action performed by a system. One
or multiple services are used to compose a system functionality.
A service can be used in one or more functionalities.

 Figure 6-2. Reading techniques 1 through 7 in the family of traceability-based reading

CHAPTER 6 ■ DESIGN READING TECHNIQUES

84

• Message : A message is a lowest level behavior. It represents
a communication between objects. It is typically shown on
sequence diagrams and must be associated with object behaviors.
One or more messages are used to compose a service.

• Condition : A condition describes what must be true for a
particular message to be executed.

• Constraint : A nonfunctional constraint such as performance
restricts the way a certain system functionality has to be
implemented.

 Functional requirements describe concepts and services a system has to fulfill.
A use case describes important concepts and services a system provides for a user to
accomplish a particular task and it typically describes execution paths through the system
functionality. A class diagram describes classes of a system and how they are associated
(inheritance, uses, composition, etc). A set of class descriptions lists the classes of a
system along with their attributes (properties, data members) and behaviors (methods).
A state diagram describes internal states of an object and transitions between different
states. State transitions are typically annotated with triggers. A sequence diagram
describes classes and objects of a system and how they collaborate through sending and
receiving messages to accomplish system services.

 6.3.3.1 Horizontal Readings
 Horizontal readings are designed to check if all of the design artifacts (class diagram,
class description, state diagram, and sequence diagram) describe the same system.
All diagrams are created in the same design phase, perhaps at different times. The
consistency among them is the focus of horizontal reading. Different diagrams contain
complementary views to a system. Class diagrams and state diagrams capture the static
behavior of the system, while sequence diagrams capture the dynamic one. All views
are important, and together they allow developers to understand system behaviors and
figure out how to accomplish them. With reading techniques in this group, a reader
mostly performs syntactic checking mechanically. There is not much application domain
knowledge required. Instead, the reader’s development expertise plays a role here.

 6.3.3.1.1 Reading 1: Sequence Diagram vs Class Diagrams

 The purpose of this horizontal reading is to verify that classes and their relationships
captured in a class diagram are consistent with the behaviors captured in a sequence
diagram. This reading is thus concerned with the static behavior of a system. To this end, a
reader first verifies that classes and objects appearing in sequence diagrams also appear in
class diagrams and then verifies that the relationships, behaviors, and conditions in class
diagrams capture the services as described in sequence diagrams (Travassos et al., 2002).

 Travassos et al. (2002) provided a detailed reading instruction. Here we sketch their
main ideas:

CHAPTER 6 ■ DESIGN READING TECHNIQUES

85

• For every sequence diagram, read and understand services the
system provides and how these services should be implemented.
In particular,

• identify objects, classes, and actors in the sequence diagram;

• identify the information exchanged between objects and
determine if the information exchange represents messages
or services (services are composed by messages); and

• identify constraints on these messages and services and
conditions when a message will be sent.

• Identify and read class diagrams, and determine if the
corresponding objects are documented correctly.

• First verify for every object, class, and actor identified on
sequence diagrams, there is a concrete class in a class
diagram.

• Then verify for every service or message identified on
sequence diagrams, there is a class on a class diagram, which
encapsulates the service or message, and the association
between the sending and receiving object is also reflected on
a class diagram. Note that in some cases, a reader may need
to trace to the parent class of a class. The reader shall also
determine if the series of messages is adequate to achieve
the intended service.

• Verify that constraints identified on sequence diagrams
can be met based on the information on class diagrams.
Those constraints can be the number of objects, permissible
values of an attribute, dependencies between objects, timing
constraints, etc.

• Lastly, exercise some professional judgement if the design
is sound, with respect to general design principles such
as cohesion and decoupling as well as standards and
guidelines.

 If the reader cannot perform any steps or verify any points above, he or she shall
raise a discrepancy. The author of the design will decide if a discrepancy is a defect or not.

 6.3.3.1.2 Reading 2: State Diagrams vs Class Descriptions

 The purpose of this horizontal reading is to verify that class descriptions capture the
functionality specified in state diagrams (Travassos et al., 2002). Thus this reading is
related to the static aspects of a system.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

86

 Travassos et al. (2002) provided a detailed reading instruction. Here we sketch their
main ideas. To perform this reading, a reader starts with state diagrams, and for each state
diagram, he or she performs the following steps and verifies the associated points. If any
step cannot be performed or any verification fails, the reader raises a discrepancy that will
be analyzed by the author of the design.

• Read and understand all possible and permissible states of an
object, all actions that trigger state transitions, and how states and
actions fit together.

• Identify the class which the state diagram is for.

• Start with the start state, trace all transitions and actions to
trigger state transitions, and finish at the end state.

• Read and understand the class or class hierarchy for which the
state diagram models.

• On the class description, identify the class or class hierarchy
associated with the state diagram.

• Identify how the class describes and encapsulates states
identified from the state diagram above. Encapsulation may
be done as an explicit or implicit attribute, a combination
of attributes, or a class. If encapsulated as a class type,
read the class and class hierarchy. Make sure all states are
encapsulated in the same manner.

• For each transition action identified on the state diagram,
verify that there are behaviors to achieve that state transition.
Behaviors can be implemented by the class or its parent
classes in the inheritance chain. The transition action can be
an event or constraint; thus look for an appropriate behavior.

• Make sure the class as described in the class description captures
the appropriate functionality, considering the system context and
object behaviors and states.

 6.3.3.1.3 Reading 3: Sequence Diagrams vs State Diagrams

 State diagrams capture the static information and sequence diagrams capture the
dynamic information. These different views allow developers to understand the system
and objects from complementary viewpoints. However, these differences complicate
reading and inspection, since a reader must combine them and identify possible
discrepancies. The purpose of this horizontal reading is to verify that every state
transition for any object (read from state diagrams) can be achieved by messages sent
and received by that object (read from sequence diagrams). Thus this reading is related to
dynamic aspects of a system.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

87

 Travassos et al. (2002) provided a detailed reading instruction. Here we sketch their
main ideas. To perform this reading, a reader starts with state diagrams and reads them
one by one. For each state diagram, the reader performs the following steps and verifies
the associated points and raises a discrepancy if any step cannot be performed or any
verification fails.

• Read and understand state diagrams. The relevant reading steps
are the same as those for reading state diagrams in Reading 2.

• Read sequence diagrams and understand how state transitions
are achieved via messages sent and received by an object.

• Identify the relevant sequence diagram(s) in which the
object (modeled in the above state diagram) is used.

• For each of these sequence diagrams, identify services and
messages this object receives. On the state diagram, identify
the states related to the service and the states leading to and
from these states.

• Map the messages on the sequence diagram to the state
transitions on the state diagram. Make sure the mapping
makes semantic sense.

• Look for conditions and constraints of the mapped messages
and verify those conditions and constraints are captured
consistently on the state diagram.

• Read through all state diagrams to ensure all state transitions are
accounted for and have associated messages identified.

• Identify any state transition on the state diagram that is
not yet associated with object messages. If the transition
is labeled with a constraint or event, check if there is a
message, series of messages, or some action performed by
an actor from outside of the system that can achieve the
transition action.

 When multiple messages are identified on the same sequence diagram for different
state transitions of the same object, the reader shall also verify that the ordering of these
messages reflects the topological order of the states (the state transition diagram is a
directed graph).

 6.3.3.1.4 Reading 4: Class Diagrams vs Class Descriptions

 The purpose of this horizontal reading is to verify that class descriptions have all the
information required by class diagrams and the class as described in class descriptions
makes semantic sense (Travassos et al., 2002). Thus this reading is related to static
aspects of a system.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

88

 Travassos et al. (2002) provided a detailed reading instruction. Here we sketch their
main ideas. To perform this reading, a reader starts with class diagrams and reads them
one by one. For each class in a class diagram, the reader verifies the following points and
raises a discrepancy if any verification fails:

• The class has a class description.

• The name and textual description of the class are meaningful and
the description is at the right level of abstraction.

• All attributes along with their types read from the class diagram
are listed in and consistent with the class description. The
class can encapsulate those attributes, and those attributes are
implementable.

• All behaviors and constraints read from the class diagram are
present in and consistent with the class description. The class can
encapsulate those behaviors, the behaviors are implementable,
the constraints make sense for the class and are satisfiable, and
the class has a minimal dependencies on other classes.

• The inheritance relationship is included in the class description,
if applicable, and the class hierarchy is reasonable (i.e., it is an
“is-a” relationship).

• All class relationships (association, aggregation, or composition)
are correctly annotated with regard to the multiplicity in the class
diagram, the relationships make sense, the correct cardinalities
are documented in the class description if important, and the
relationship is represented by some class attribute, with a feasible
type or data structure. Object roles and responsibilities are
documented in the class description as well.

 As the last step, the reader goes through all class descriptions and ensures that there
is no class that is mentioned in the description but does not appear in any class diagrams.
Otherwise this should be reported as a discrepancy, since it represents extraneous
information.

 6.3.3.2 Vertical Readings
 Vertical readings are to check if design artifacts represent the right system as captured
in the requirements specification and use cases, which are assumed to be correct for
the design purpose. The artifacts involved here come from two different development
phases, requirements definition and design. Vertical reading thus prompts readers to
trace and compare documents to ensure designs are correct and complete. The artifacts
represent different levels of abstraction and contain different levels of details. The design
is considered a refinement of the requirements, and there is no single, direct mapping
from requirements to the design. Vertical readings are thus complicated and a reader is
required to abstract concepts from the design in order to match them in the requirements
and use cases.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

89

 6.3.3.2.1 Reading 5: Class Descriptions vs Requirements
Description

 The purpose of this vertical reading is to verify concepts, and services described in the
requirements are captured in class descriptions accurately and completely (Travassos
et al., 2002). This reading is thus concerned with the static behavior of a system.

 A reader starts with the requirements description to understand the functionality, as
Travassos et al. (2002) suggested. The reader will then:

• Read through the requirements one by one.

• Identify nouns in the requirement that can be possible classes,
objects, or attributes.

• Also identify verbs or descriptions of actions that can be possible
services or behaviors in the design.

• Look for conditions, limitations, or constraints on these identified
nouns and verbs.

 With these identified nouns, verbs, conditions, and constraints, the reader next
verifies these concepts are properly captured in class descriptions. For each and every
action verb, find a related behavior or combination of behaviors in the class description.
For each and every noun, find a related class in the class description. The noun may
be used as class name, an instance name of the class, or an attribute name. If a class
is matched, make sure its class description has sufficient information related to the
concepts, the class encapsulates attributes and behaviors, and the conditions and
constraints are described in the class description as well. If a class attribute is matched,
make sure a feasible type is used for that attribute.

 Lastly, make sure all nouns, verbs, conditions and constraints are reflected and not
omitted in class descriptions.

 6.3.3.2.2 Reading 6: Sequence Diagrams vs Use Cases

 The purpose of this vertical reading is to verify that combinations of objects and messages
sent among those objects as captured in sequence diagrams fulfill functionalities
described by use cases (Travassos et al., 2002). This reading is related to both static and
dynamic aspects of a system.

 To achieve the reading purpose, a reader reads and understands use cases first. He
or she goes through each use case, identifies the functionality the use case describes, and
identifies important system concepts that are necessary to accomplish the functionality.
Nouns in the use case describe concepts of the system. For those identified nouns, the
reader further identifies verbs that describe actions applied to or by the nouns. Those
identified verbs represent services the system provides. Constraints and conditions for
those services, if any, shall also be identified. The reader also pays attention to the data or
information exchanges in order to perform the actions.

 Once having understood use cases, the reader identifies and reads related sequence
diagrams, and identifies on these sequence diagrams the corresponding system objects,
services, and data or information exchanges that were identified earlier in the use case. A
correct set of sequence diagrams must be selected, which relies on deep understanding

CHAPTER 6 ■ DESIGN READING TECHNIQUES

90

of the system as well as traceability information. As sequence diagrams are refinement of
the use case, the reader may need to identify messages and abstract out the services from
these messages.

 With these two sets of information identified on use cases and sequence diagrams,
the reader next compares them semantically and verifies that they represent the same
domain concepts.

• The reader first verifies for every noun identified on the use
case, there is a corresponding noun represented on sequence
diagrams. For every unmatched noun identified on the sequence
diagrams, the reader makes sure it is an attribute of some class by
searching through class descriptions; otherwise this could be an
extraneous data.

• The reader compares the services identified on sequence
diagrams and on the use case. The reader shall focus on the
ordering of the messages/services and data exchanged between
objects.

• Lastly the reader verifies that the constraints and conditions
identified on the use case are observed on sequence diagrams.

 While reading and performing the above steps, the reader shall raise a discrepancy if
any steps cannot be performed or any point fails the verification.

 6.3.3.2.3 Reading 7: State Diagrams vs Requirements
Descriptions and Use Cases

 The purpose of this vertical reading is to verify that object states and events that trigger
state transitions are correct and complete as described in the requirements and use cases
(Travassos et al., 2002). This reading is related to the dynamic behavior of a system.

 To achieve the reading purpose, for each state diagram, a reader performs the
following steps:

• Read the state diagram to understand the object whose states are
modelled.

• Read the requirements description, compile a list of states for
the object and complete the state adjacency matrix. To complete
the task, the reader reads through the requirements description
and focuses on where the concept related to the object is
described, participates, or is affected. Among those places, the
reader abstracts the different states. To identify a state, look for
the situations where the object behaves differently as a result of
the change of an attribute or a group of attributes. Among all the
states identified, determine the start state and end state. Draw an
adjacency matrix table, where the row signals a “from” state and
the column signals a “to” state. For each pair of states (the order
matters), mark if the state transition is allowed with the event and
constraints if known or if the transition is forbidden.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

91

• Read use cases and further complete the adjacency matrix.
Choose the use case descriptions where the concept is involved. If
the state transition is allowed, but the event is missing, complete
the event. For the state transitions not determined from the
requirements, use the use cases to determine if the transitions are
allowed with events or forbidden.

• With those preparations, the reader is ready to examine the
state diagram. The reader first checks if all states identified from
requirements are represented on the state diagram. Be aware
that those corresponding states may have different names. Also
be mindful that two states might be merged. Conversely, make
sure for every state shown on the state diagram, there is a state
identified from the requirements. Once the states from the state
diagram and from the requirements are paired, compare the state
transitions and their triggers. Again the comparison is a two-way
check. Finally, make sure constraints captured in the adjacency
matrix are reflected on the state diagram. This is also a two-way
check to guard against missing and extraneous constraints.

 Like all other traceability-based reading techniques, the reader shall log any
discrepancy if any above steps cannot be performed or any verification fails.

 6.3.3.3 Semantic Checking
 The traceability-based reading family includes seven reading techniques grouped into
horizontal reading and vertical reading. In the horizontal reading, a reader compares
design diagrams and a textual description. Since those documents represent the same
level of abstraction, the comparison is relatively easy and syntactic checking is sufficient
most of the time. With tools, the syntactic checking can be automated, which relieves the
burdens on readers.

 It is the semantic checking that proves to be challenging. This is apparent in the
vertical reading group. For example, state names identified from the requirements may
not be the same as those directly captured in the state diagrams. Even worse, two or
more states can be merged in the design. The reader must understand the requirements
and design in order to adequately deal with the situation. As another example, the
requirements and use cases talk about system services, but sequence diagrams use
messages between objects. In order to properly trace between them, the reader must
abstract services out of a group of messages.

 The semantic checking is performed or required in the horizontal readings as well,
although not as pervasive as in the vertical readings. The aforementioned situation of
messages versus services also exists when reading sequence diagrams and state diagrams
(in Reading 3, state diagrams use services, but sequence diagrams use messages). In
Reading 4, Class Diagrams vs Class Description, the reader is asked to decide if the class
description makes semantic sense in terms of encapsulations of attributes and behaviors.

 Because of this semantic checking, some level of subjectivity might be involved and
a reader’s domain experiences play a significant role. That is why Travassos et al. call the
detected issues discrepancies, not defects, since the authors may have different ideas or
opinions than the reviewer.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

92

 6.3.3.4 Practical Considerations
 Traceability-based reading defines seven individual reading techniques. For an
industrial-scale project, many diagrams may have been created. It is thus a huge effort
to conduct a full traceability-based reading. Here we offer a few suggestions to tame the
complexity.

 If an incremental development process is used in your project, you can review
artifacts gradually, as they are created incrementally. If this is not the case for your
project, you can subdivide your system into units for inspection. Travassos et al. (1999)
offered two alternatives. Each inspection can be focused on some subset of system
functionality in requirements or subset of conceptual entities in designs. As the mapping
between the functionality and OO concepts is not trivial, there are issues with either
approach.

 The reading responsibilities can be distributed among team members, to reduce the
workload of and to provide focus to individuals. The responsibilities can be divided along
the dimension of reading techniques. One possibility is to ask one or more readers to
perform the horizontal reading for consistency checking, ask one or more readers to focus
on the vertical reading for traceability, and discuss and resolve the discrepancies at the end.
The other possibility is to ask one or more readers to focus on static views of a design (i.e.,
Readings 1, 2, 4, 5) and ask another one or more readers to focus on dynamic views (i.e.,
Readings 3, 7), with one in common for both static and dynamic views (i.e., Reading 6). The
reading responsibilities can also be divided along the dimension of artifacts. For example,
reader A can focus on artifacts a, b, and c, while reader B can focus on artifacts x, y, and z.
All readers use the seven reading techniques. Of course, the responsibilities can be divided
using both reading techniques and artifacts.

 If all diagrams and descriptions are available, the development team can use all
seven reading techniques defined by traceability-based reading. If some design artifacts
do not exist, the team can just skip those reading techniques in which missing artifacts
are used. Even if all artifacts exist, the development team can choose and apply a subset
of reading techniques, depending on what attributes of the designs are important and
what kinds of defects the team wants to detect.

 In general, horizontal reading shall be performed before vertical reading, since
we want to make sure the designs are consistent before validating them against the
requirements. Specific situations may warrant the need to alter the reading order.

 6.3.4 Empirical Experiences
 Travassos et al. (1999) used undergraduate students to evaluate the feasibility of
traceability-based reading. They reported that the reading techniques did allow
subjects to detect defects, and a majority of the subjects thought the techniques were
helpful. Vertical reading tended to find more defects in types of omission and incorrect
facts, while horizontal reading tended to find more defects in types of ambiguity
and inconsistency. The research team continued to improve and refine the reading
techniques by conducting observational studies and case studies, and the results were
summarized in Travassos et al. (2002). The reading techniques could be easily integrated
into a development process, they indeed caught critical defects, and the effort was not
prohibitively high when compared to other system tasks.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

93

 Traceability-based reading was successfully applied in industrial environments.
Melo et al. (2001) reported a case study in which the reading techniques were applied
in an industrial environment at Oracle Brazil, where a team of five people participated.
Reading techniques allowed participants to find, on average, 35 defects (the most was
57 and the least 12). The number of false-positive defects was very low (0.8 on average).
The average time spent (individual reading and meeting) was 5.8 hours and the average
time per defect was 15 minutes. Conradi et al. (2003) conducted an industrial experiment
at Ericsson in Norway. Traceability-based reading techniques were slightly tailored to
their environment. They reported that traceability-based reading techniques fit well
in an incremental development process, and engineers employing the techniques
found more defects (39 vs 25) than their existing reading techniques, which were a
mixture of checklists and guidelines, while the cost efficiency was almost the same
(1.28 vs 1.37 defects per hour). Traceability-based reading seems to be complementary
to their existing reading techniques as they found different types of defects, and
engineers employing the new reading techniques found more defects of omission and
inconsistency types. However, the new techniques need to be simplified with added
questions and special guidelines for their project.

 The ideas behind traceability-based reading have been used in other reading
techniques. One can clearly see the influence of traceability-based reading in
perspective-based reading of design from an analyst’s viewpoint (Laitenberger et al.,
2000). The architecture reading techniques presented in the next section was also
motivated by traceability-based reading.

 6.4 Architecture Reading
 Software architecture is becoming a mature discipline. It is the blueprint for the software
system development and has a far-reaching impact on organizations. Thus it is critical
to review and get it right early on (and review it regularly afterward). The principal
objectives of architecture reviews are to evaluate if the architecture can potentially
deliver a system to fulfill the quality requirements and to identify potential risks. Babar
and Gorton (2009) surveyed the current industry practice, and Knodel and Naab (2014)
reported their own experiences on assessing industrial software architectures.

 Architecting a system is to make fundamental, long-lasting, and hard-to-change
decisions. These decisions can be implicit as made in an architect’s head or explicit as
found in documentation and manifested as implemented in the system (Knodel & Naab,
2014). Architecture review or evaluation is to assess all of these decisions. In this section
we discuss architecture reading techniques, i.e., we are only concerned with reading and
finding defects in software architecture documentation.

 6.4.1 What Is Software Architecture?
 Software architecture is a widely used term now. There are many definitions that capture
different aspects of software architecture, and there is no commonly accepted definition.
We like the definition used by Clements et al. (2011; Bass et al., 2013) : The software
architecture of a system is the set of structures needed to reason about the system, which
comprises software elements, relations among them, and properties of both.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

94

 Software architecture is important. Bass et al. (2013) listed many reasons, including
inhibiting or enabling a system's quality attributes (-ilities), reasoning about and managing
changes, predicting system qualities even before it is built, enhancing communication
among stakeholders, carrying early and fundamental design decisions, defining
constraints on an implementation, influencing the organizational structure, enabling
evolutionary prototyping, improving cost and schedule estimates, supplying a transferable
and reusable model, allowing incorporation of independently developed components,
restricting the vocabulary of design alternatives, and providing a basis for training.

 A software architecture is shaped by many factors, and in turn, the architecture
influences these factors. In addition to technique requirements, business, technical,
project, and professional contexts influence the architecture (Bass et al., 2013). A software
architecture is documented in a software architecture description that is both descriptive
and prescriptive. An architecture description typically has textual description decorated
with graphical diagrams, capturing module views, component-and-connector views, and
allocation views using architecture patterns, styles, and frameworks (Clements et al., 2011).

 We shall mention the differences between architecture and design. Architecture
is design, but not all designs are architecture. The architecture is concerned with the
fundamental structure of the system that delivers the quality attributes. These quality
attributes are non-functional requirements and typically referred to as –ilities, such as
availability, interoperability, modifiability, performance, security, testability, usability,
and so on. High-level design as discussed in the traceability-based reading is a form of
requirements analysis and expresses the requirements in analysis models, which are easy
for designers to consume. Design is figuring out how to implement the functionalities
within the software architecture constraints. Some authors dislike the term “detailed
design,” as architecture design can occasionally be very detailed in some areas if the
architects think they are important.

 6.4.2 Traceability-Based Architecture Reading
 The general concerns of architecture reading are thus to make sure different views are
consistent in addition to complementary, and all views are correct with respect to and
traceable to the requirements as well as other architecture drivers. The general ideas
behind the traceability-based reading appear to be applicable to architecture reading.
Carver and Lemon (2005) developed the architectural reading techniques, which were
rightly motivated by the traceability-based reading.

 One horizontal reading and three vertical reading techniques are available for
traceability-based architecture reading:

• The horizontal reading is to compare the information in one
part of the architecture description to the other parts of the
architecture description and ensure they are consistent. More
specifically, the following pairwise comparisons between views
are performed:

• Logical structures (module views) vs communications
patterns (component-and-connector views)

• Logical structures vs physical structures (allocation views)

• Communication patterns vs physical structures

CHAPTER 6 ■ DESIGN READING TECHNIQUES

95

• The first vertical reading is to check if the logical decomposition
captured in the module views is realistic, judged from the
information in the requirements document.

• The second vertical reading is to check if the communication
patterns captured in the component-and-connector views are
accurate based on the requirements document.

• The third vertical reading is to compare the information about
the stakeholders, architectural concerns, and rationale captured
in the architecture description to the information in the
requirements and ensure they are consistent.

 Note that besides the requirements, other architectural drivers are not considered
in the initial version of the architecture reading. An excerpt of the first vertical reading
(module views vs requirements) is shown here (Carver & Lemon, 2005):

 1. Read through the requirements and compile a list of modules
that implement the system.

 2. For each module view in the architecture document, read
through all relevant sections of the architecture document.

 a. For each module in the module view, make sure there is a
module identified from requirements in Step 1. If there is no
match, log an issue as potentially extraneous information.

 b. Conversely, for each module identified in Step 1, make
sure there is a module view in architecture that contains
that module. If there is no match, log an issue on potential
missing information. If the match is not found in the current
module view, decide if that module should have been
included in the view.

 c. Use the requirements as the guide to examine the
relationship among modules. If the relationship does not
make semantic sense (e.g., use relation, is-a relation, part-of
relation), log an issue as potential incorrect fact. This also
decides whether the existence of a module in the module
view makes sense or not, taking into account the intentions
of the module view.

 6.4.3 Empirical Experiences
 Carver and Lemon (2005) conducted a feasibility study of the traceability-based
architecture reading and compared it with checklist-based reading, using students
as subjects. The checklist was adopted from the first edition of the book by Clements
et al. (2011). They concluded that, with checklist-based reading, subjects were more
effective at finding defects of commission than defects of omission; with traceability-
based architecture reading, subjects were more effective at finding defects of omission
than defects of commission. Subjects reported that they preferred traceability-based
architecture reading over checklist-based reading, as the former helps readers focus and

CHAPTER 6 ■ DESIGN READING TECHNIQUES

96

provides more detailed and structured guidance to read and inspect the whole document
set. Traceability-based architecture reading appears to be feasible and easy to understand
and use. The authors didn’t publish a follow-up study of the reading technique and there
was no independent replication yet.

 We shall be cautious on the omission defects, however. As the architecture
description is meant to document the architecturally significant decisions, the architect
may choose to leave some details to downstream designers. In other words, the architect
does not care whatsoever how a subpart of the system is designed and constructed. Thus
a miss is not really a miss from the architect’s point of view. For that reason, readers log
potential issues for architects to address.

 6.4.4 Other Architecture Reading Techniques
 As mentioned earlier, architecture reading is only a small portion of architecture
review or evaluation and is concerned with reading and finding defects in architecture
documentation. Clements et al. (2011) devoted one chapter to software architecture
document review. They presented a six-step procedure, and the fifth step is to perform the
review, which is assisted with sets of questions. They defined a template for a question set.
Which set of questions to use depends on the purpose of an architecture review. During the
lifecycle of a system, the architecture document shall be reviewed often and for different
purposes, such as to check if it has captured the right stakeholders and their concerns in
the concept phase or to check if it can support development in the development phase.
The questions for a purposed review are organized for different stakeholders. For example,
software development managers, designers and implementers, integrators, testers, and
quality assurance engineers are stakeholders when assessing whether the architecture
document can support development. The concerns of these stakeholders are also provided
to assist the architecture document review. The styles of the questions are sometimes
similar to what one would expect in an active design review. One can clearly see some
flavors of checklist-based and perspective-based readings in their approach.

 We would be remiss if we didn’t mention the state of the practice for software
architecture evaluation. Broadly speaking, there are two approaches to software
architecture assessment, scenario-based and model-based. The very first architecture
review technique is software architecture analysis method (SAAM). The SAAM is a
scenario-based method. Here a scenario is a brief description of some anticipated or
desired use of a system. Essentially the SAAM develops, classifies, and prioritizes the
scenarios and assesses how and if the scenarios can be mapped to the architecture.
The method was originally developed to assess an architecture for modifiability and
superseded by a new general method, architecture tradeoff analysis method (ATAM).
ATAM is applicable to assess almost any quality attribute, particularly the tradeoff among
conflicting ones, but it is a very expensive method – it involves a big team for a few days. A
lightweight version has recently been proposed by the team at the Software Engineering
Institute. Besides the general purpose methods, there are specific ones focusing on
particular quality attributes, e.g., architecture-level modifiability analysis (ALMA),
performance analysis of software architecture (PASA). On the other hand, the model-
based approach uses some formal models that can be automatically analyzed with tools.
Architecture description languages are formal languages for describing and analyzing
architectures. Interested readers can find more information in books on architecture
evaluation, such as Clements et al. (2002).

CHAPTER 6 ■ DESIGN READING TECHNIQUES

97

 6.5 Scope-Based Reading
 The objectives of software reading are for analysis or for construction. Almost all the
reading techniques discussed in this book belong to the category of reading for analysis
(defect detection). Here we discuss one reading technique, scope-based reading, of which
the purpose is for construction (Shull, 1998; Shull et al. 2000). Reading for construction is
useful for software maintenance or new system development from reusable components,
frameworks, and architectures. Scope-based reading was developed to enable readers to
reuse both the design and implementation of OO application frameworks.

 6.5.1 What Is an Application Framework?
 An application framework—particularly an OO framework—is a reusable design and
implementation of all or part of a system for a specific class of software, represented as a
set of cooperating classes, including abstract ones, and the way their instances interact.
It provides a skeleton application for a particular domain and regulates interactions
among various constituting elements. It typically has a set of hotspots where framework
users can extent, customize, or plug in their own components. A framework serves to
speed up application development by providing a foundation and a set of design and
implementation elements that can be built upon and expanded as required.

 From a software engineering perspective, it is desirable to develop an application
framework to facilitate software development, since there are many advantages of
framework-based development as claimed by proponents of this technology and
supported by many successful industrial stories. Although the development of OO
frameworks requires significant effort, the benefits generally justify the initial effort.

 There are many different kinds of application frameworks. The development of OO
application frameworks in general and domain-specific frameworks in particular has
been a major industry thrust. There is big body of literature on framework construction,
but literature on how to learn and use frameworks is scarce. The very steep learning curve
of application framework is notoriously known among software practitioners.

 6.5.2 Scope-Based Reading Techniques
 Scope-based reading is meant to help developers learn and use white-box OO frameworks.
Here white-box means that the internal part of the framework, particularly the class
hierarchy, is exposed to the users who typically derive subclasses to implement new
functionalities for new applications. As the application domain becomes better understood,
the framework becomes mature and it evolves from white-box toward black-box.

 There are two effective ways to learn an OO application framework: by studying
the class hierarchy of the framework, and by studying example applications. Shull et al.
(2000) proposed two corresponding reading techniques: hierarchy-based reading and
example-based reading, together known as scope-based reading. These techniques give
readers a different scope or breadth of knowledge about the framework, thus the name.

 Scope-based reading assumes an OO application framework is given, the reader
wants to construct an application making use of the framework, he or she already has the
object model and dynamic model of the application to be built, and the object model and
dynamic model are not adapted to the application framework yet.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

98

 6.5.2.1 Hierarchy-Based Reading
 Hierarchy-based reading uses a stepwise approach. To help developers understand the
functionality provided by the framework, it concentrates readers on the base or abstract
classes first, then moves down the class hierarchy to the derived classes to find the most
specific instantiation. It has the following steps (Shull et al., 2000):

 1. Study the class hierarchy of the application framework.
Determine which part of the framework architecture contains
the functionalities that can be used or modified for the
application under construction and identify base classes that
can be used in the new application.

 2. Identify classes related to the new application. For each
class in the object model, find an appropriate class in the
framework from which the class can be derived, and read and
understand the framework class. If an appropriate class is not
found, consider aggregating multiple framework classes to
create a new class with the required attributes and operations.

 3. Revise the object model and dynamic model for the
application by using classes from the framework directly or
classes composed from multiple framework classes, with
details such as relevant attributes and operations.

 4. Develop the application using the modified object models by
deriving or aggregating framework classes wherever possible
to reuse the attributes and operations provided by the
framework. Write code as needed to extend the functionality
and add new classes as needed to complete the new
application.

 Hierarchy-based reading has a steep learning curve. The reader has to understand
how different pieces of the framework fit together before being productive. In practice,
it is almost always supplemented with other reading techniques, such as the example-
based reading technique discussed in the next section.

 6.5.2.2 Example-Based Reading
 The main idea behind the example-based reading is to learn from examples (Shull et al.,
2000). It assumes there is a collection of examples, illustrating the range of functionality
and behavior provided by the framework. The examples can be provided by framework
developers as applets or developed by others as real-world applications. Further assume
the reader understands the functionality of the application he or she is constructing.
Example-based reading is an iterative process, since the new application will be built
incrementally, feature by feature.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

99

 1. Decide which functionality should be added to the
application under construction in the current increment.
Search the collection of examples to find out which example
provides the most complete coverage of that functionality.
The reader can run each example in turn to check what
features were implemented in the example.

 2. Study the selected example in depth, but focus on the
functionality being sought. By running the example, the
reader constructs a set of use cases related to the sought-after
functionality. For each use case, the reader traces the code, e.g.,
in the debug mode, to identify which objects/classes, attributes,
and operations/methods are involved and how they cooperate
to achieve the functionality. It is necessary to read, understand,
and document the relevant code along the way, including the
object models and dynamic models related to the use cases.

 3. Revise the object model and dynamic model for the
application, based on the newly discovered or learned
information.

 4. Add the functionality to the application. The reader adds new
classes modified from the example and augments existing
ones with new attributes or methods. If the example does
not implement the complete functionality, the reader writes
additional code as needed. He or she also provides code
to integrate the newly implemented functionality to the
application.

 5. Go back to Step 1 for the remaining functionalities, if the
application is not complete yet.

 During the above reading process, it is a good practice to record what is done, what
decision is made, and the rationale behind the decision. For example, when selecting one
particular example to study in depth, the reader can note which functionality is being
sought, what are the candidate examples, and why a particular example is chosen, etc.

 Example-based reading can quickly make the reader more productive. However, it is
unlikely that the framework originator will or can provide a big set of examples to cover
the complete features the framework provides and enables. It is also a concern, at least for
a non-trivial application, whether the functionalities borrowed from different examples
can coherently coexist in the final, finished application.

 6.5.3 Empirical Experiences
 Shull (1998) and Shull et al. (2000) used software engineering students as subjects
and conducted an exploratory experiment in an academic environment to test the
effectiveness of hierarchy-based and example-based techniques. They concluded, in
their environment, that example-based techniques are well-suited to use by beginning
learners and hierarchy-based techniques are not well-suited to use by beginners under
a tight schedule. Example-based learning is a natural way to approach learning of a

CHAPTER 6 ■ DESIGN READING TECHNIQUES

100

complicated system. Hierarchy-based technique is time-consuming and does not give
developers an idea of where the starting place for implementation is or where they can
look for certain functionality. The hierarchy-based technique would have been very
effective if there has been sufficient documentation or the developers have been given
more time. The example-based technique is not without problems, however. Developers
experienced difficulty in finding and extracting a small functionality embedded in
much larger examples. The effectiveness of the example-based technique depends on
breadth of functionality and other characteristics of example applications. Quite often
the rationale of the design choice is missing from examples, which makes it hard for
developers to reason about their choice. The example-based technique may limit the
developers to explore beyond what examples provide.

 6.6 Summary
 In addition to generic reading techniques such as ad hoc, checklist-based, and
perspective-based reading discussed in earlier chapters, this chapter introduced specific
reading techniques for design inspection. Usage-based reading employs prioritized use
cases to focus readers’ attention on what matters most to end users. Traceability-based
reading is applicable to inspecting OO designs. The family includes seven techniques
organized as horizontal reading and vertical reading, with the semantic checking as a
theme across both. Horizontal reading ensures all design artifacts are consistent among
themselves and vertical reading ensures designs are consistent with the requirements
specification. Architecture reading is an emerging reading technique, motivated by the
ideas behind traceability-based reading. While these reading techniques focus on defect
detection in software artifacts such as design and architecture, scope-based reading is
meant for developers to read the application framework and figure out how to construct
software applications. With these ranges of reading techniques, you are ready to read and
understand various software design artifacts to accomplish various tasks, be it for defect
detection or for constructions.

 6.7 References
 (Bass, 2013) L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3 rd

ed., Addison-Wesley, 2013.

 (Babar, 2009) M.A. Babar and I. Gorton, Software architecture review: the state of
practice, IEEE Computer, vol.42, no.7, pp.26-32, 2009.

 (Cantone, 2003) G. Cantone, L. Colasanti, Z.A. Abdulnabi, A. Lomartire, and G. Calavaro,
Evaluating checklist-based and use-case-driven reading techniques as applied to
software analysis and design UML artifacts, LNCS 2765, pp.142-165, 2003.

 (Carver, 2005) J. Carver and K. Lemon, Architecture reading techniques: a feasibility
study, Proceedings of 4 th International Symposium on Empirical Software
Engineering (late breaking research track), pp.17-20, 2005.

 (Clements, 2002) P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies, Addison-Wesley, 2002.

CHAPTER 6 ■ DESIGN READING TECHNIQUES

101

 (Clements, 2011) P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P.
merson, R. Nord, and J. Stafford, Documenting Software Architectures: Views and
Beyond, 2 nd ed., Addison-Wesley, 2011.

 (Conradi, 2003) R. Conradi, P. Mohagheghi, T. Arif, L.C. Hegde, G.A. Bunde, and
A. Pedersen, Object-oriented reading techniques for inspection of UML models – An
industrial experiment, Lecture Notes in Computer Science, vol.2743, pp.483-500, 2003.

 (Erlansson, 2002) M. Erlansson, T. Thelin, and M. Host, Usage-based reading for
inspections of software requirements, 2 nd Conference on Software Engineering
Research and Practice in Sweden, 2002.

 (Knodel, 2014) J. Knodel and M. Naab, Software architecture evaluation in practice
– retrospective on more than 50 architecture evaluations in industry, IEEE/IFIP
Conference on Software Architecture (WICSA), pp.115-124, 2014.

 (Laitenberger, 2000) O. Laitenberger, C. Atkinson, M. Schlich, K. El Emam, An
experimental comparison of reading techniques for defect detection in UML design
documents, Journal of Systems and Software, vol.53, no.2, pp.183-204, 2000.

 (Melo, 2001) W. Melo, F. Shull, and G.H. Travassos, Software review guidelines, Technical
Report ES-556/01, Systems Engineering and Computer Science Program, COPPE.
Federal University of Rio de Janeiro, 2011 (http://www.cos.ufrj.br/uploadfile/
es55601.pdf accessed on March 10, 2016).

 (Musa, 1993) J.D. Musa, Operational profiles in software reliability engineering, IEEE
Software, vol.10, no.2, pp.14-32, 1993.

 (Saaty, 2001) T.L Saaty and L.G. Vargas, Models, Methods, Concepts and Applications of
the Analytic Hierarchy Process, Kluwer Acdemic Publishers, 2001.

 (Shull, 1998) F. Shull, Developing techniques for using software documents: A series of
empirical studies, Ph.D Dissertation, University of Maryland at College Park, MD, 1998.

 (Shull, 2000) F. Shull, F. Lanubile, and V.R. Basili, Investigating reading techniques for
object-oriented framework learning, IEEE Transactions on Software Engineering,
vol.26, no.11, pp.1101-1118, 2000.

 (Thelin, 2001) T. Thelin, P. Runeson, and B. Regnell, Usage-based reading – an
experiment to guide reviewers with use-cases, Information and Software
Technology, vol.43, no.15, pp.925-938, 2001.

 (Thelin, 2003) T. Thelin, P. Runeson, and C. Wohlin, An experimental comparison
of usage-based ad checklist-based reading, IEEE Transactions on Software
Engineering, vol.29, no.8, pp.687-704, 2003.

 (Thelin, 2004a) T. Thelin, C. Andersson, P. Runeson, N. Dzamashvili-Fogelstrom, A
replicated experiment of usage-based and checklist-based reading, 10 th International
Symposium on Software Metrics, pp.246-256, 2004.

 (Thelin, 2004) T. Thelin, P. Runeson, C. Wohlin, T. Olsson, and C. Andersson, Evaluation
of usage-based reading – conclusions after three experiments, Empirical Software
Engineering, vol.9, pp.77-110, 2004.

 (Travassos, 1999) G.H. Travassos, F. Shull, M. Fredericks, and V.R. Basili, Detecting
defects in object-oriented designs: using reading techniques to increase software
quality, Proceedings of the 14 th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, pp.47-56, 1999.

http://www.cos.ufrj.br/uploadfile/es55601.pdf
http://www.cos.ufrj.br/uploadfile/es55601.pdf

CHAPTER 6 ■ DESIGN READING TECHNIQUES

102

 (Travassos, 2002) G.H. Travassos, F. Shull, J. Carver, and V.R. Basili, Reading techniques
for OO design inspections, Technical Report CS-TR4353, University of Maryland,
2002 (http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/CS-TR4353.pdf
accessed on March 10, 2016).

 (Winkler, 2005) D. Winkler, S. Biffl, and B. Thurnher, Investigating the impact of active
guidance on design inspection, LNCS 3547, pp.458-473, 2005.

http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/CS-TR4353.pdf

103© Yang-Ming Zhu 2016
Y.-M. Zhu, Software Reading Techniques, DOI 10.1007/978-1-4842-2346-8_7

 CHAPTER 7

 Code Reading Techniques

 Most of the reading techniques discussed in Chapters 3 and 4 can be applied to code
reading. This chapter first emphasizes the importance of code reading as a professional skill
and discusses how people actually read code in practice. It then focuses on a few specific
reading techniques for programmers to read and comprehend the programming source
code. Reading by stepwise abstraction can be used for structured code. Object-oriented (OO)
languages such as C++, Java, and C# are very popular nowadays. However, OO code reading
is challenging. Stepwise abstraction is extended to support OO reading. To understand both
static and dynamic aspects of the OO code, use-cases are used to direct the reading process.
Object-oriented framework reading is even more challenging and functionality-based reading
is an effective and efficient technique in finding defects in frameworks. Software developers
spend most of their professional lives on reading other developers’ code and there are many
legacy codes that developers are tasked to maintain. Task-directed reading is developed to
fill that need. To read and understand the programming code, the readers themselves shall
be familiar with the program constructs. This is not covered here, however. We instead cover
techniques that are applicable to any high-level programming languages. Lastly, factors that
impact code readability are also examined before we conclude the chapter.

 7.1 Code Reading As a Professional Skill
 7.1.1 Importance of Code Reading
 We read programming code for different purposes. As students, we read code in books,
magazines, and journals or on the web to learn language constructs and how to master
them. As professionals, we may still read code for learning, but most of the time it is for
other reasons. We read code written by colleagues as part of the code inspection process;
in this case, we read and analyze the code to verify its quality and detect possible defects.
We also read code to identify reuse opportunities or figure out how to use it in our own
projects. As software developers, a large part of our professional lives is spent maintaining,
adapting, correcting, perfecting, and modifying existing code. Empirical data show that
developers spend about half of their time on reading and comprehending programs
during software maintenance (Maalej et al., 2014). We want to introduce minimal
disruption to the existing functionality to maintain its original architectural and stylistic
integrity. These purposes are consistent with the schema Basili et al. (1996) categorized,
i.e., reading for analysis and reading for construction. To fulfill all these purposes, we
must read and achieve a necessary level of understanding of the code. Successful software
engineering professionals must learn, cultivate, and master code reading skills.

http://dx.doi.org/10.1007/978-1-4842-2346-8_3
http://dx.doi.org/10.1007/978-1-4842-2346-8_4

CHAPTER 7 ■ CODE READING TECHNIQUES

104

 7.1.2 How Do People Read Code?
 Program comprehension is an important activity in software engineering and a central
activity during software maintenance, evolution and reuse. Comprehension is a process
in which individuals build their own mental representation of the program. It has
continued to be an active research topic since the 1970s for computer science researchers
as well as cognitive psychologists, and there is a rich body of literature in the field. The
IEEE Computer Society has been running an annual meeting, the IEEE International
Conference on Program Comprehension, since 1992. Von Mayrhauser and Vans (1995)
provided a survey of program understanding in 1995. Storey (2005) provided an updated
review in 2005 and Schulte et al. (2010) surveyed the topic from the computer science
education point of view.

 Although program comprehension is a broad topic, much of the research has been
focused on code reading and comprehension. Researchers are interested in how people,
both experts and novices, read and understand code and what strategies they exploit to
facilitate comprehension. Due to its practical importance, program comprehension is still
an active and interesting topic today (Maalej et al., 2014).

 To understand the empirical findings on how people read and understand programs,
researchers put forth numerous, sometimes conflicting, models, which tend to have a set
of common elements: an assimilation process, cognitive structures, and the knowledge
base (Schulte et al., 2010). The assimilation process is the reading process or strategy
the programmer uses to extract information from the code in order to build their
mental representation of the code. Such strategies may include top-down and bottom-
up. It is similar to the reading techniques we have discussed but less well-structured.
The cognitive structure may include a programmer’s existing knowledge base on the
programming and application domain, and his/her mental representation of the model.
Although the elements are common, the views on them are not. It is not our interest here
to review and analyze cognitive models, for which interested readers can refer to the
aforementioned surveys. We rather summarize the empirical findings related to code
reading and comprehension.

 Source code is not read like a novel, nor is its meaning determined by seeing how
it behaves when run or traced using test data (Deimel & Naveda, 1990). To read and
understand the code, one has to build layered abstractions of the code. There are various
strategies to build the layered abstractions, one of which is top-down reading. Top-down
reading is similar to how we write code. When we write code, we typically follow a divide
and conquer approach to decompose a high-level function into multiple low-level ones,
recursively as needed. In top-down reading, one gains the understanding of the code
by appreciating the overall purpose first, followed by understanding how the function is
implemented by constituent components. During this process, the reader repeatedly forms
hypotheses about the code, which are subsequently verified, modified, or rejected. The
reader scans the code and searches for familiar clues in the text, which are called beacons
(Brooks, 1983) or program plans (Soloway & Ehrlich, 1984). For this reading strategy to be
effective, one needs to know the overall programming purpose, and well-documented code
can usually be read top-down (Linger et al., 1979). This top-down reading approach was
theorized by Brooks (1983) and was observed by Soloway and Ehrlich (1984).

CHAPTER 7 ■ CODE READING TECHNIQUES

105

 Bottom-up reading is the opposite of top-down reading. In bottom-up reading,
understanding of the code is accumulated by understanding of small fragments of code.
The reader recognizes the function of groups of statements as chunks and combines these
chunks to explain increasingly larger program fragments (Shneiderman & Mayer, 1979). Deep
knowledge of the programming language and constructs, and of the application domain,
helps the reader read and understand the code. Identifying and understanding the control
flow and data flow of the program greatly facilitates the global program comprehension
(Pennington, 1987). Cross-referencing the program domain and the application domain
tends to confirm and enhance the level of understanding, which points to the significant roles
the reader’s experience and knowledge play during reading and comprehension.

 Empirical studies of professional programmers reveal that people do not employ
pure top-down or bottom-up strategies but mix them freely (Letovsky, 1987; Littman
et al., 1987). Code reading and comprehension is a hard and time-consuming task,
and programmers often adopt “as-needed” (opportunistic) approaches to avoid deep
understanding (Littman et al., 1987; Maalej et al., 2014). They focus on the task at hand
and gain just enough knowledge to complete the task. They do a deep understanding
of the code only when they have to. Littman et al. suggested that people adopting
the as-needed reading strategy focus on local program behavior and fail to construct
successful modifications to the program, since they fail to detect critical interactions
among program components and don’t have a complete and accurate understanding
of the code. The pragmatic approach to code reading and comprehension has also been
recently related to code reuse (Holmes & Walker, 2013). Which strategy to use is typically
driven by what question the reader is seeking to answer. For example, to answer a “how”
question (how a sorting algorithm is implemented), top-down reading is warranted in
order to find out the low-level implementation.

 Maalej et al. (2014) recently studied the state of the practice of software reading
and comprehension. They were interested in the workflows followed by professional
developers to read and understand programs, tools they used, and knowledge they
needed, accessed, and shared. They observed and surveyed professional software
developers at different companies. Their findings confirmed the results of previous
studies and revealed some aspects of industry practices. The workflows including reading
strategies vary among developers and depend on their skills, experience, personality, tasks
at hand, and technology used. The tool usage was very low or limited and some developers
were even not aware of the existence of certain features in tools they used daily.

 7.2 Reading by Stepwise Abstraction
 Reading by stepwise abstraction is a bottom-up reading technique that formulates an
abstract description of what a fragment of code does from the fragment itself. It was first
presented by Linger et al. (1979), which became the basis for what Basili and Mills (1982)
did with greater formality. The reading technique was later integrated into the Cleanroom
process, as the verification-based inspection to assert the implementation correctness
(Selby et al., 1987; Dyer, 1992).

CHAPTER 7 ■ CODE READING TECHNIQUES

106

 Linger et al. (1979) have argued that program writing is expanding the known function
into a program and program reading is abstracting the known program into a function.
When reading code for defect detection, one compares the known functions (design) to
their expansions (code). Code reading is thus to recognize directly what the code does or
mentally transform it into something that can be recognized directly. The result of this
mental transformation is an abstraction, irrespective of all implementation details.

 Reading by stepwise abstraction can be applied to reading any programming code.
According to Linger et al., a structured program of any size can be read and understood
in a completely systematic manner by reading and understanding its hierarchy of prime
programs and their abstractions. A prime program is a fragment of code that has one
entry and one exit and is irreducible in some sense. The purpose of reading the prime
programs is to discover their program functions, and the program functions can be
captured as comments in code. A well-structured and documented program can be
read top-down, from overall design to lower levels of details. For poorly structured and
documented code, however, bottom-up reading is a better strategy, which allows one
to discover the intermediate abstractions, successively at higher levels. The process of
bottom-up reading is called stepwise abstraction.

 The description of reading by stepwise abstraction is not very clear in literature.
We can, however, identify the reading instruction in Panel 7-1: Instruction for Stepwise
Abstraction.

 PANEL 7-1: INSTRUCTION FOR STEPWISE ABSTRACTION

 1. Read code line by line to build up a conceptual understanding of
code fragments.

 2. Connect code fragments to form an overall picture.
 3. Compare with specifications to detect defects.
 4. Repeat until all code is abstracted and compared with

specifications.

 Reading by stepwise abstraction can be better understood with the example in
Figure 7-1 . From code in lines 23-25, one can conclude that b stores the maximum value
of the array samples seen so far. Similarly, from code in lines 20-22, a stores the minimum
value of the array seen so far. Lines 17 and 18 assign the first element of the array to both a
and b , assuming the array is allocated with at least one element. The loop at line 19 loops
over the remaining array elements. At the end of the code segment, a holds the minimum
value of the array and b holds the maximum value of the array, i.e., a =max(samples ())
and b =min(samples ()), which is the abstraction one gains after reading this piece of code.
Imagine this code segment is part of a larger chunk of code. With reading by stepwise
abstraction, that small piece of code can be abstracted as such. Note that the conditional
statements inside the loop have a gap (the element value is within a and b , inclusive), and
it is appropriate to have an empty operation for the missing condition.

CHAPTER 7 ■ CODE READING TECHNIQUES

107

 Since it was proposed in the 1970s, reading by stepwise abstraction was well studied
and compared with other dynamic testing techniques such as functional testing and
structural testing (Basili & Selby, 1987; Juristo & Vegas, 2003; Juristo et al., 2012). The
general consensus is that the effectiveness of reading by stepwise abstraction varies
significantly from code to code, and code reading shall be combined with other dynamic
testing techniques in order to detect different kinds of coding defects.

 7.3 Object-Oriented Code Reading
 In early times, the code reading techniques were proposed mostly for procedural
languages. As OO languages and programming techniques became popular, there was
a growing collection of evidence suggesting that early code reading techniques couldn’t
deal with issues with OO programming (Dunsmore et al., 2001). In the following section,
we first discuss the challenges raised in OO code reading and then introduce two reading
techniques that address the challenges. We conclude our OO code reading with a
summary of empirical findings.

 7.3.1 Challenges of Object-Oriented Code Reading
 OO programming has three hallmarks: encapsulation, inheritance, and polymorphism.
These influence how the code is created, structured, and executed. The OO programming
paradigm encourages the distribution of functionality related code elements across the
system. Understanding of code frequently requires the understanding of code not in
the same class, e.g., in its base class or in other composed class. Polymorphism and late
binding make the dynamic behavior of the code hard to comprehend. To fully appreciate
the code, one needs to understand its static and dynamic behaviors.

 Figure 7-1. Sample code for reading by stepwise abstraction

CHAPTER 7 ■ CODE READING TECHNIQUES

108

 Soloway and Ehrlich (1984) introduced the concept of programming plan, which
is a generic fragment of code that represents typical scenarios in programming. They
observed that when a programming plan is distributed non-contiguously in a program,
it becomes hard to comprehend since only a part of the code is seen at a time and the
reader has to guess based on local information. They called this kind of plan delocalized.
This delocalized nature is pervasive in OO programming, and Dunsmore et al. (2001)
named the characteristic delocalization. Effective OO code reading has to address this
delocalization.

 In the following we discuss two reading techniques: abstraction-driven reading,
which addresses the delocalization nature of the OO code, and use-case-driven reading,
which is intended to address the difference between static and dynamic behaviors in OO
systems.

 7.3.2 Abstraction-Driven Reading
 Dunsmore and colleagues extended the idea of stepwise abstraction to OO code reading,
and their systematic reading technique is called abstraction-driven reading. In essence,
the reading techniques have the following ingredients, as shown in Panel 7-2: Instruction
for Abstraction-Driven Reading.

 There are many kinds of dependencies and couplings, such as data dependencies
and control dependencies. Dunemore et al. didn’t provide details on how to quantify
them. Skoglund and Kjellgren (2004) used coupling metrics (interaction coupling,
component coupling, and inheritance coupling) to measure and rank the classes and
methods so that the reading order can be objectively determined.

 When developing the abstraction of a method, the reader should identify any
changes of state and outputs in terms of inputs and prior states. The specifications should
be brief and complete, describing what the method does but not how. A vigilant reader
may have noticed that the abstraction development process is similar to the stepwise
abstraction discussed earlier.

 Abstraction-driven reading is a systematic approach. It encourages a deep
understanding of the code and helps the readers stay focused and on track. The
abstract specification generated during reading can be used in future code reading. It
is a promising technique to address the delocalization nature of OO code. However,
abstraction-driven reading has its shortcomings. It is often slow and time-consuming,
and it is not designed to address the dynamic nature of OO software.

PANEL 7-2: INSTRUCTION FOR ABSTRACTION-DRIVEN

READING

 1. Determine the reading order.
 a. Analyze the interdependencies and couplings within the

whole object-oriented system. Read the classes with the
least amount of dependencies first.

 b. Analyze the methods within classes. Read the methods
with the least amount of dependencies first.

CHAPTER 7 ■ CODE READING TECHNIQUES

109

 2. Read using abstraction.
 a. For each method, reverse-engineer an abstract

specification of the method. The method abstract
specification may be used to compare with the class
specification; it can also be used to support further reading
and understanding of other methods (see tracing of
referenced methods and classes below).

 b. Trace and understand all referenced classes during
reading. This includes reading methods/classes,
documentations, previously created abstractions, etc.

 7.3.3 Use-Case-Driven Reading
 The abstraction-driven reading technique has the potential to discover delocalized
defects. To deal with the highly dynamic nature of the OO system behavior, however,
additional reading techniques are needed. Use-cases play a significant role in OO system
development. For example, they are used to capture the system requirements and play
a driving role in the Rational Unified Process (Jacobson et al., 1999). It is natural to use
use-cases to guide code reading. We describe use-case-driven reading as originally
documented by Dunsmore et al. (2002).

 The aim of use-case-driven reading is to check if each and every object behaves
correctly in all the possible ways they are used. Specifically, we seek the answers to the
following questions: Are correct methods called? Are decisions and state changes made
within each method correct and consistent? The reading procedure is described in Panel
7-3: Instruction for Use-Case-Driven Reading.

PANEL 7-3: INSTRUCTION FOR USE-CASE-DRIVEN

READING

 1. For each use-case in turn, devise a set of scenarios that include
preconditions, success or failure conditions, and exceptions.

 2. For each scenario derived from a use-case:

 a. Document the expected outcome (e.g., state changes,
outputs).

 b. Use a sequence diagram or other diagrams that capture
the dynamic aspects of the system. Trace the interactions
among participating objects that the scenario dictates by
following the message calls.

 c. For the class whose code is under reading, verify that the
correct methods of the object of that class are called to
support the scenario.

 d. Note any decision and state changes in the method of the
class under reading and verify that they are correct and
consistent with respect to the scenario.

CHAPTER 7 ■ CODE READING TECHNIQUES

110

 e. When reading the method code, follow the call to other methods
if any. If the called method is in the class under reading, follow
the method call, read the method and verify its correctness in
a similar fashion; otherwise return and follow the sequence
diagram.

 f. At the end of the scenario tracing, make a note on the final
outcomes and compare them to the expected ones. If there is
any difference or anomaly, note the location of the difference
and mark it as a defect.

 In use-case reading, one devises a number of scenarios from a use-case and
examines how the classes deal with those scenarios. It forces the readers to consider
object behavior in the given concrete contexts, giving the readers a better idea of whether
the code is operating as expected. The readers pay attention to missing/incorrect method
calls, erroneous state changes, etc. The readers compare the sequence diagram and the
implementing code to verify whether the correct method is called in the right context and
whether a side effect of the method call is consistent between the code implementation
and the sequence diagram, etc. The readers shall also trace other method calls and
ensure their correctness. For defect detection, any difference, inconsistency and missing
information, as well as its location in code, is noted and analyzed.

 It is not feasible to exercise all scenarios and use-cases. Therefore readers take a
dynamic slice of the system. In practice, it will detect fewer defects than other reading
techniques. Hence, use-case reading is meant to be complementary to other reading
methods.

 7.3.4 Empirical Experiences
 Dunsmore and colleagues (2002) introduced two new reading techniques, abstraction-
driven reading and use-case-driven reading, for OO code and compared them to other
reading methods, namely ad hoc reading and checklist-based reading. The details of
ad hoc reading and checklist-based reading are covered in Chapter 3 . To overcome the
known shortcomings of the checklist approach, the authors designed their checklist
carefully and based their questions off of historical defect. The final checklist includes
18 carefully ordered questions, covering “where to look” (class-level, method-level, and
method-overriding issues) and “how to detect” components.

 Dunsmore et al. (2001) reported that there is no significant difference between
abstraction-based reading and ad hoc reading in terms of number of defects discovered.
However, there is a small improvement using abstraction-based reading. Readers using
ad hoc reading went through the code two or three times to build up their understanding,
while readers using abstraction-based reading read through the code once, at most
twice, albeit slowly. Some defects are completely undetected by all readers using ad hoc
reading, but this was not the case for readers using abstraction-based reading. That is,
abstraction-based reading has the potential to detect delocalized defects. Compared with
ad hoc reading, abstraction-based reading also helps readers stay focused and on track.

http://dx.doi.org/10.1007/978-1-4842-2346-8_3

CHAPTER 7 ■ CODE READING TECHNIQUES

111

 Dunsmore et al. (2002; 2003) empirically compared the defect detection capabilities
of abstraction-driven reading, use-case-driven reading, and checklist-based reading,
using experienced students as subjects. They observed that readers using checklist-based
reading found more defects and at a quicker rate. However, the detection performance
dropped off sharply after the first 60 minutes. The defect detection of abstraction-driven
reading and use-case-driven reading appeared to be similar to each other due to a higher
initial overhead. Their defect detection performance leveled off at a later time, but not
to the same degree. Readers using the use-case-driven method might have discovered
more defects if they were given more time. In terms of the number of false-positive defects
reported, checklist-based reading reported the most false positives and use-case-driven
reading reported the least. These results are not totally unexpected. Abstraction-driven
reading is slow and it aims at full understanding of the code. With use-case-driven reading,
one has to generate scenarios before comparing the code and the sequence diagram.
The researchers reported that although the performance of abstraction-driven reading
is not as strong as that of checklist-based reading, abstraction-driven reading appears to
be effective at detecting delocalized defects (but less effective at detecting other defects).
Use-case-driven reading had the worst performance among the three studied. However,
the method deals with the behaviors in the context of executing systems. Among the
three reading techniques studied, no single method detected all defects, and there was
not much overlap regarding the kinds of defects detected, suggesting a complementary
reading approach would work best. This is in line with the underlining idea behind
perspective-based reading (see Chapter 4). The combination of these three reading
techniques would have the potential to detect recurring defect types (checklist-based),
unusual defects that require deeper understanding (abstraction-driven), and particularly
defects that are associated with OO programming (abstraction-driven reading and use-
case-driven reading).

 Skoglund and Kjellgren (2004) independently conducted two experiments to
compare the performance of abstraction-driven reading and checklist-based reading.
Their experimental results are inconsistent with those reported by Dunsmore et al.
Further, Skoglund and Kjellgren reported that abstraction-driven reading gave more
support in understanding the code.

 7.4 Object-Oriented Framework Code Reading
 Object-oriented framework is getting popular. We discussed scope-based reading for OO
application construction in Chapter 6 . Here we present an OO framework code reading
technique for defect detection developed by Abdelnabi et al. (2004), functionality-based
reading.

 7.4.1 Why Yet Another Object-Oriented Code Reading
Technique?

 The OO code reading techniques discussed earlier are presumably applicable to OO
framework code reading, so why do we need yet another reading technique? Application
frameworks are generalized from existing applications in a specific domain. They have
light requirements with no specific or fixed set of use-cases. It is not feasible to define all

http://dx.doi.org/10.1007/978-1-4842-2346-8_4
http://dx.doi.org/10.1007/978-1-4842-2346-8_6

CHAPTER 7 ■ CODE READING TECHNIQUES

112

possible use-cases the framework is going to support, since the concrete applications
have not been instantiated yet when the application framework is being actively
developed. The dynamic behavior of the framework is at least incomplete, since the
hotspots will be extended by application developers. Therefore, the OO code reading
techniques discussed earlier have only a limited use. Additionally, reading framework
involves two aspects: code reading and design reading. The latter is crucial, otherwise a
framework with very poor design will seriously limit its potential adoption.

 Application framework has a steep learning curve, and understanding the framework
remains a challenging task. It is important to understand the structure, both static and
dynamic, of the framework when reading the framework code for defect detection. It is
thus a wise approach to use the framework understanding to guide framework reading for
defect detection.

 7.4.2 Functionality-Based Approach to Framework
Understanding

 Chapter 6 discussed the hierarchy-based and example-based approaches. Similarly, an
OO application framework can also be understood by first understanding its top-most
framework constructs and then general OO constructs. General OO constructs typically
include basic constructs (classes and their relationships, such as inheritance and
composition) and advanced constructs (e.g., meta-classes and reflection). The top-most
framework constructs include:

• Components : Here framework components are fully implemented
functionalities that application developers can reuse directly.

• Interfaces : Framework interfaces are a collection of abstract
operations called hotspots, which are customized and
implemented by application developers without altering the
structure and behavior of the basic framework.

• Design patterns: A design pattern is a reusable, proven solution to
a commonly occurring problem within a given context.

• Framelets: Framelets are small frameworks that package
components, interfaces, and design patterns. They are used to
structure and document large and complex frameworks.

 To understand a framework, one must extract and understand its functionalities,
which can be traced to an operation or a set of operations the framework provides or
supports. A functionality can expand to, be implemented by, or use another functionality.
Functionalities supported by a framework can be categorized as:

• Do-functionality: A do-functionality is a fully implemented
capability that every instantiation of the framework application
must have.

• Can-functionality: A can-functionality is not fully implemented,
and application developers must supply their own specific code at
those hotspots.

http://dx.doi.org/10.1007/978-1-4842-2346-8_6

CHAPTER 7 ■ CODE READING TECHNIQUES

113

• Offer-functionality: An offer-functionality is a fully implemented
capability, but its use is not mandatory in an instantiated
application.

 In the functionality-based approach to framework understanding, one reads the
framework code with the intent to extract and abstract framework functionalities, trace
them to framework operations (methods), and relate them to other functionalities. In
the end, the reader compiles “functionality rules.” A functionality rule categorizes a
functionality (do-functionality, can-functionality, or offer-functionality), documents the
code locations where the functionality is implemented, provides a concise and precise
description of the functionality, and lists other functionalities this functionality relates to
and the relationship type (use, expand, implemented by). Generating the functionality rules
is an additional documentation effort that should happen before code reading takes place.

 To develop the functionality rules, one reads the framework documents in a top-
down manner, from requirements to designs, and to code as needed. The class source
code is read recursively, from the top-most classes in the inheritance hierarchy to the
derived ones. The implementation class is read to abstract its function. Overriding
methods are read to verify, refine, and update the abstractions established earlier.
During reading and tracing, the relationships with other functionalities are established,
particularly when an object sends a message to another. Lastly, the functionality is
classified as a do-, can-, or offer-functionality.

 7.4.3 Functionality-Based Reading
 Functionality-based reading is motivated by the framework-based reading and
understanding of OO frameworks. Its purpose is to trace the functionality to concrete
framework constructs and their associated code. It is a hybrid reading technique: It uses
the functionality rules as a guidance (top-down) and reads the code from bottom-up. It
has steps as shown in Panel 7-4: Instruction for Functionality-Based Reading (Abdelnabi
et al., 2004).

PANEL 7-4: INSTRUCTION FOR FUNCTIONALITY-BASED

READING

 1. Locate the functionality rules. Arrange for their development if
they do not exist.

 2. Read the functionality rules in order of categories Do-, Can-,
and Offer-functionality.

 3. For each functionality rule:

 a. Locate the associated method in the lowest level class;
read the code with respect to the description of the
functionality, and log any discrepancies as a defect.

 b. Locate the related functionalities. Read them for defect
detection, if not already inspected.

CHAPTER 7 ■ CODE READING TECHNIQUES

114

 7.4.4 Empirical Experiences
 Abdelnabi et al. (2004) compared functionality-based reading with checklist-based
reading and abstraction-driven reading for defect detection in OO frameworks, using
students as subjects. The objects were real and professional C++ OO frameworks, with
carefully seeded defects of different types. To make it manageable, subjects were asked
to inspect about 1000 lines of code. The researchers concluded that functionality-based
reading was significantly more effective (more positive total defects detected) and
efficient (more positive defects detected per unit of time) than the other two reading
techniques.

 7.5 Task-Directed Inspection
 There are a lot of legacy software applications around, and software developers are
tasked to maintain them. Legacy software code may not be well documented, or
the documentation is outdated or simply inaccurate. Quite often it is necessary to
continuously improve the software quality of a legacy system, particularly for safety-
related and mission-critical systems. Kelly and Shepard (2004) introduced so-called
task-directed inspection for legacy code reading. Their main idea was to combine
code inspection for defect detection with other software development tasks to reduce
the potential resistance to the idea of code inspection, thus “task-directed.” They also
reported a lightweight process far removed from Fagan-style inspection, which is not
discussed here.

 Based on the particular circumstances when the reading technique was introduced,
Kelly and Shepard defined three tasks, all aligned with the objective to produce useful
documentation for the legacy software system:

• Task 1 . Create a data dictionary for the module. A dictionary is
simply a catalog of all variables in the module, including their
definitions, units of measurement if appropriate, and the meaning
of each discrete value if applicable. The roles of these variables
in module calling sequences is also of interest. The reader is to
confirm that each usage of the variables is consistent with its
definition.

• Task 2 . Document the logic of the module and add a description
as comments in code files.

• Task 3 . Compile a cross-reference between the code and
specifications. Cross-reference tags are created and embedded
in both code and specification to signal individual matches.
Any mismatches or missing of materials in either the code or
specification are recoded.

 To accomplish these tasks, a reader will have to read and understand the code, trace
the data flow and control flow, and cross-check the code and specification. Since the
readers have clear objectives in mind, they are forced to scrutinize the code and related
document closely.

CHAPTER 7 ■ CODE READING TECHNIQUES

115

 Modules are assigned to readers deliberately, considering their background and
expertise. All three tasks associated with the same module are assigned to a single reader,
taking advantage of the potential synergies between tasks. The three different tasks give
the inspectors different viewpoints on the source code. Each reader completes their
assigned tasks in parallel, and task-directed reading doesn’t dictate any interactions
among individual readers, if there are any.

 Kelly and Shepard also conducted a case study in the industry environment
using professional developers as subjects. According to the authors, 50,000 lines-of-
code scientific legacy software was read and 950 findings were recorded. Among all
these findings, 6% were considered serious defects and received immediate attention
for correction, 56% were related to style and maintenance issues, 33% identified
inconsistencies between code and specifications, and the remaining 5% were related
to enhanced functionalities. The code was inspected at a rate of 20 lines/hour. At
completion, the amount of comments in the code increased from 20% to 60%, which
is consistent with the code. The experiment was considered a success and the same
technique was applied to other software systems.

 7.6 Code Readability Factors
 We all know that some articles or books are easy to read and understand, while others
are not. We also know that the format of the page can affect reading speed. According to
Wikipedia, readability is the ease with which a reader can understand written text, and it
can be measured in many different ways.

 When it comes to code reading, experience tells us that people read code at different
speeds with different levels of understanding. However, we do not have a complete
account of what impacts code readability. In the early days of computing programming,
researchers kept track of eye motions and focus, trying to figure out how people read
code. Based on the observational studies, concrete and sometimes radical changes were
proposed regarding code display and formatting (Miara et al., 1983; Oman & Cook, 1990).

 There are many factors that can affect code readability. Deimel and Naveda (1990)
classify these into five categories. Their classification is still relevant today.

• Reader characteristics : A reader’s experience and knowledge of
programming, programming languages, and application domains
play a significant role during code reading and comprehension.

• Intrinsic factors : Similar to the intrinsic and accidental complexity
of a design, code can have its own intrinsic and accidental
complexity, which affects its readability. As we learned earlier,
object-oriented programming makes delocalization more
prevalent, and delocalized code is harder to read and understand.

• Representational factors : Representation factors are broad and
can include the programming language, whether the code has
adequate and accurate comments, the complexity of the design,
the naming conventions for variables and methods, etc.

• Typographic factors : Typographic factors include font, color-
coding of keywords or other programming entities, usage of white
space and indentation, etc.

CHAPTER 7 ■ CODE READING TECHNIQUES

116

• Environmental factors : Environmental factors are meant to
contain anything else, e.g., the lighting in the reading spot, the
integrated development environment (IDE), etc.

 Numerous books, discussions, and postings on programming styles, standards, or
conventions are available. We don’t want to start another heated debate here. Rather, we
make a few suggestions to improve code readability:

• Pick a coding standard, including formatting and indentation, for
the team that most of you agree with. Uniformity and consistency
will improve code readability.

• Add comments to the code and keep the comments up to date.
Don’t document facts obvious from the code. Instead capture the
design rationale, assumptions, and decisions as comments.

• Choose your variables, function or method names, and other
identifiers carefully and wisely. Make sure the names reflect their
intentions. Also make sure the names are consistent with the
usage in the application domain.

• Use simple programming structures. Be aware of the KISS (keep it
simple, stupid) principle. Stay away from nonstandard language
features.

• Add white spaces whenever feasible. Don’t clutter the display.
Logically group your code.

 Different stakeholders will read the code you are writing today, including yourself at
a later time. It might be true that the code logic is perfectly clear in your mind at the time
of writing. However, you will appreciate your efforts to make the code easier to read if you
come back to the code again in a few years, or even a few months.

 7.7 Summary
 Among all types of software artifacts, source code is probably read, reviewed, or inspected
most by different people at different times. People read source code for analysis and for
construction. While many of these reading techniques discussed earlier can be used for
code reading, we focused on specific ones just for code reading in this chapter. Stepwise
abstraction is a classic technique and was developed mostly for procedural programming.
As the object-oriented programming paradigm gained popularity, the intrinsic
complexity of OO code reading became evident. We discussed the abstraction-driven
reading technique, which is meant to deal with the strong delocalization inherent to OO
code. To cope with the unpredictable dynamic behavior of an OO system from its static
code view, use-case-driven reading can be used as a complement. OO framework code
reading is even more challenging, and functionality-based reading is meant to make the
reading a bit easier. Legacy software applications are abundant and software developers
are often tasked with maintaining and extending them. Task-directed reading can be used
to improve code quality and complete the necessary documentation on the code and
design. As the empirical and observational studies suggest, in the end, no single reading

CHAPTER 7 ■ CODE READING TECHNIQUES

117

technique performs best under all conditions. Software developers need to understand
the pros and cons of individual reading techniques so that they can call upon different
techniques or combine techniques in various ways to fit unique situations.

 7.8 References
 (Abdelnabi, 2004) Z. Abdelnabi, G. Cantone, M. Ciolkowski, and D. Rombach, Comparing

code reading techniques applied to object-oriented software frameworks with
regard to effectiveness and defect detection rate, Proceedings of the International
Symposium on Empirical Software Engineering, pp.239-248, 2004.

 (Basili, 1982) V.R. Basili and H.D. Mills, Understanding and documenting programs, IEEE
Trans. Software Engineering, vol.8, no.3, pp.270-283, 1982.

 (Basili, 1987) V.R. Basili and R.W. Selby, Comparing the effectiveness of software testing
strategies, IEEE Transactions on Software Engineering, vol.13, no.2, pp.1278-1296, 1987.

 (Basili, 1996) V. Basili, G. Caldiera, F. Lanubile, and F. Shull, Studies on reading
techniques, In Proc. of the Twenty-First Annual Software Engineering Workshop,
SEL-96-002, pp.59-65, 1996.

 (Brooks, 1983) R. Brooks, Towards a Theory of the Comprehension of Computer
Programs, Intl. J. Man-Machine Studies, vol.18, no.6, pp.543-554, 1983.

 (Deimel, 1990) L.E. Deimel and J.F. Naveda, Reading computer programs: Instructor’s
guide and exercises, CMU/SEI-90-EM-3, Carnegie Mellon University, 1990.

 (Dunsmore, 2001) A. Dunsmore, M. Roper, and M. Wood, Practical code inspection
for object-oriented systems, Proc. of the 1 st Workshop on Inspection in Software
Engineering, pp.49-57, 2001.

 (Dunsmore, 2002) A. Dunsmore, M. Roper, and M. Wood, Further investigations into
the development and evaluation of reading techniques for object-oriented code
inspection, Proc. of the 24 th Int’l Conf. Software Engineering, pp.47-57, 2002.

 (Dunsmore, 2003) A. Dunsmore, M. Roper, and M. Wood, Practical code inspection
techniques for object-oriented systems: an experimental comparison, IEEE Software,
vol.20, no.4, pp.21-29, 2003.

 (Dyer, 1992) M. Dyer, Verification-based inspection, Proceedings of the 26 th Annual
Hawaii International Conference on System Sciences, pp.418-427, 1992.

 (Fagan, 1976) M.E. Fagan, Design and code inspections to reduce errors in program
development, IBM Systems Journal, vol.15, no.3, pp.182-211, 1976.

 (Holmes, 2013) R. Holmes and R.J. Walker, Systematizing pragmatic software reuse, ACM
Transactions on Software Engineering and Methodology, vol.21, no.4, Article 20, 2013.

 (Jacobson, 1999) I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process, Addison-Wesley Professional, 1999.

 (Juristo, 2003) N. Juristo and S. Vegas, Functional testing, structural testing, and code reading:
what fault type do they each detect? In Empirical Methods and Studies in Software
Engineering, vol.2765 of Lecture Notes in Computer Science, pp.208-232, 2003.

CHAPTER 7 ■ CODE READING TECHNIQUES

118

 (Juristo, 2012) N. Juristo, S. Vegas, M. Solari, S. Abrahao, and I. Ramos, Comparing the
effectiveness of equivalence partitioning, branch testing, and code reading by
stepwise abstraction applied by subjects, IEEE 5 th International Conference on
Software Testing, Verification and Validation, pp.330-339, 2012.

 (Kelly, 2004) D. Kelly and T. Shepard, Task-directed software inspection, Journal of
Systems and Software, vol.73, pp.361-368, 2004.

 (Letovsky, 1987) S. Letovsky, Cognitive processes in program comprehension, Journal of
Systems and Software, vol.7, no.4, pp.325-339, 1987.

 (Linger, 1979) R.C. Linger, H.D. Mills, and B.I. Witt, Structured Programming: Theory and
Practice, Addison-Wesley, 1979, chap. 5 .

 (Littman, 1987) D.C. Littman, J. Pinto, S. Letovsky, and E. Soloway, Mental models and
software maintenance, Journal of Systems and Software, vol.7, no.4, pp.341-355, 1987.

 (Maalej, 2014) W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, On the comprehension
of program comprehension, ACM Transactions on Software Engineering and
Methodology, vol.23, no.4, Article 31, 2014.

 (Mayrhauser, 1995) A. von Mayrhauser and A.M. Vans, Program comprehension during
software maintenance and evolution, IEEE Computer, vol.28, no.8, pp.44-55, 1995.

 (Miara, 1983) J.R. Miara, J.A. Musselman, J.A. Navarro, and B. Shneiderman, Program
indentation and comprehensibility, Comm. ACM, vol.26, no.11, pp861-867, 1983.

 (Oman, 1990) P.W. Oman and C.R. Cook, Typographic style is more than cosmetic,
Comm. ACM, vol.33, no.5, pp.506-520, 1990.

 (Pennington, 1987) N. Pennington, Stimulus structures and mental representations in
expert comprehension of computer programs, Cognitive Psychology, vol.19, pp.295-
341, 1987.

 (Schulte, 2010) C. Schulte, T. Busjahn, T. Clear, J.H. Paterson, and A. Taherkhani, An
introduction to program comprehension from computer science educators,
Innovation and Technology in Computer Science Education Working Group Reports
ITiCSE-WGR’10, pp.65-86, 2010.

 (Selby, 1987) R.W. Selby, V.R. Basili, and F.T. Baker, Cleanroom software development: An
empirical evaluation, IEEE Trans. Software Engineering, vol.13, no.9, pp.1027-1037, 1987.

 (Shneiderman, 1979) B. Shneiderman and R. Mayer, Syntactic semantic interactions
in programmer behavior: A model and experimental results, Intl. J. Comp. & Info.
Sciences, vol.8, no.3, pp.219-238, 1979.

 (Skoglund, 2004) M. Skoglund and V. Kjellgren, An experimental comparison of the
effectiveness and usefulness of inspection techniques for object-oriented programs,
Proceedings of the Conference on Empirical Assessment in Software Engineering
(EASE’04), Edinburgh, Scotland, 2004.

 (Soloway, 1984) E. Soloway and K. Ehrlich, Empirical studies of programming knowledge,
IEEE Trans. Software Engineering, vol.10, no.5, pp.595-609, 1984.

 (Storey, 2005) M-A. Storey, Theories, methods and tools in programming comprehension:
Past, present and future, Proceedings of the 13 th International Workshop on Program
Comprehension, 2005.

http://dx.doi.org/10.1007/978-1-4842-2346-8_5

119© Yang-Ming Zhu 2016
Y.-M. Zhu, Software Reading Techniques, DOI 10.1007/978-1-4842-2346-8_8

 CHAPTER 8

 Conclusion

 We have explored general and specific reading techniques for software artifacts such as
requirements, design, code, and usability. Those techniques are summarized here, with
the chapter number where it is introduced. It is a big list. There is no general consensus
which reading technique is most effective. We doubt there will ever be for all types
of software artifacts in all development contexts. The outcome of software reading is
context- and situation-dependent and varies individually.

• Ad hoc reading (Chapter 3) . No reading instruction is provided in
ad hoc reading and the results strongly depend on an individual’s
skill and experiences. It can be applied to any software artifacts
and is used widely in practice.

• Checklist-based reading (Chapter 3) . It can be applied to any
software artifacts and is used widely in practice. Checklists are
usually artifact-specific and built from historical data or learned
from others but customized to project or team’s needs. Checklist-
based reading enables readers to detect defects covered by the
checklist and may limit readers to detect defects not covered by
the checklist.

• As a variant, an active guidance can be provided how to use
the checklist. The guidance can also be implicitly embedded
in the structure or ordering of checklist items.

• Differential reading (Chapter 3) . It can be applied to any artifacts
that are changed. Two versions of the document are displayed
side by side or in a single view, and changes are highlighted and
examined in context.

• Defect-based reading (Chapter 4) . In defect-based reading, each
reader is given specific steps to discover a particular class of
defects. Multiple readers or a review team collectively detect more
defects. Defect classes have to be understood and analyzed before
specific reading steps can be devised to target specific defect
classes. Defect classes are typically software artifact-dependent.
In theory defect-based reading can be applied to any software
artifact types, but only applications to software requirements were
reported.

http://dx.doi.org/10.1007/978-1-4842-2346-8_3
http://dx.doi.org/10.1007/978-1-4842-2346-8_3
http://dx.doi.org/10.1007/978-1-4842-2346-8_3
http://dx.doi.org/10.1007/978-1-4842-2346-8_4

CHAPTER 8 ■ CONCLUSION

120

• Perspective-based reading (Chapter 4) . In perspective-based
reading, each reader reads a software artifact using one specific
operational scenario from a particular perspective, and the
combination of different and complementary perspectives
provides a better coverage of the artifact. It is adaptable to
different artifacts and tailorable to organizational or project
setting and assigns specific reading responsibilities to readers
and provides well-defined reading instructions to focus reading
analysis efforts. It has been gaining increased industry adoption
in detecting defects in requirements, design, code, and usability.
In fact, perspective-based reading includes a family of reading
techniques. For a given artifact, key stakeholders shall be
identified and then specific reading scenarios shall be developed.
For the same stakeholders, different reading scenarios shall be
prepared and applied for inspecting different artifact types, since
the concerns vary as artifact types vary.

• Function-point-based reading (Chapter 4) . Function-point
scenarios are alternative to partition software requirements and
the scenarios augmented with checklists can be used to focus
requirements reading.

• Combined reading of requirements (Chapter 5) . Checklist-based
reading, defect-based reading, and perspective-based reading
have different defect detection capabilities in detecting different
classes of defects in requirements. Combined reading takes
advantage of the strength of the aforementioned three reading
techniques while compensating each other’s weaknesses.

• Test-case-driven reading (Chapter 5) . Test-case-driven reading
employs real testers to screen requirements by writing test
cases. The purpose is to inspect the requirements effectively
with minimal cost and amortizes the effort across different
development phases. It is applicable to organizations with limited
resources and can provide good-enough requirements for project
decision making early in the software development lifecycle.

• Usage-based reading (Chapter 6) . The goal of software reading
should not be to find as many defects as possible but to find the
most critical defects that matter to users. Usage-based reading is
just for that and has been applied to design reading. To do that,
use cases prioritized by experts are used to drive and focus design
reading. It has a couple variants, e.g., use cases can be prioritized
by individual readers themselves.

http://dx.doi.org/10.1007/978-1-4842-2346-8_4
http://dx.doi.org/10.1007/978-1-4842-2346-8_4
http://dx.doi.org/10.1007/978-1-4842-2346-8_5
http://dx.doi.org/10.1007/978-1-4842-2346-8_5
http://dx.doi.org/10.1007/978-1-4842-2346-8_6

CHAPTER 8 ■ CONCLUSION

121

• Traceability-based reading (Chapter 6) . This seven-member
family of reading is applicable to high-level object-oriented
design and documents, and the techniques are organized
into horizontal reading and vertical reading. Which reading
technique to use depends on the availability of design diagrams
and descriptions. As documents may represent different levels of
abstractions of the same system, special attention shall be paid
to semantic checking, which proves to be challenging. It certainly
takes coordination among all readers using different reading
techniques on different artifacts.

• The group of horizontal reading has four reading techniques
that trace information between design documents, including
diagrams and textual descriptions for design consistency.

• The group of vertical reading has three reading techniques
that trace information between design and requirements for
design correctness and completeness.

• Architecture reading (Chapter 6) . The ideas behind traceability-
based reading are applied to architecture reading. Horizontal
reading compares module views and component-and-connector
views and module views and allocation views to detect any
inconsistency. Vertical reading checks the information captured
in module views, component-and-connector views, and
allocation views to be consistent with requirements.

• Scope-based reading (Chapter 6) . While all other reading
techniques intend to detect defects in software artifacts, scope-
based reading intends to aid software construction using object-
oriented frameworks.

• Hierarchy-based reading concentrates readers on class
hierarchy in order to learn and use the framework
functionalities.

• Example-based reading is simply motivated by learning from
examples. It guides readers through examples in order to
reuse or extend functionalities exhibited in examples.

• Stepwise abstraction (Chapter 7) . This classical technique is
for reading any programming code in a bottom-up fashion.
It abstracts the programming code recursively and compares
the abstraction to the intended specification in order to detect
defects.

http://dx.doi.org/10.1007/978-1-4842-2346-8_6
http://dx.doi.org/10.1007/978-1-4842-2346-8_6
http://dx.doi.org/10.1007/978-1-4842-2346-8_6
http://dx.doi.org/10.1007/978-1-4842-2346-8_7

CHAPTER 8 ■ CONCLUSION

122

• Abstraction-driven reading (Chapter 7) . This reading technique
is applicable to object-oriented code. It builds atop of stepwise
abstraction and adds a step to determine the reading order,
considering interdependencies among code modules. It copes
with the delocalization nature of object-oriented code and
focuses on the static code behavior.

• Use-case-driven reading (Chapter 7) . While abstraction-driven
reading focuses on static behavior, use-case-driven reading
emphasizes the dynamic behavior of an object-oriented system.
It uses use-cases to slice the software and thus does not provide
a complete coverage of code. It works best when use-case-driven
reading is utilized as a complementary instrument to other
reading techniques.

• Functionality-based reading (Chapter 7) . This is intended for
object-oriented framework code and design reading. Framework
code reading poses a unique challenge as there is no concrete
requirement or fixed use case for it – it provides an application
skeleton to enable development of other applications. A
framework can be understood from the functionalities it provides.
And the functionality-based reading combines top-down and
bottom-up reading strategies.

• Task-directed inspection (Chapter 7) . This is designed to piggyback
code review or inspection for defect detection as part of otherwise
required tasks that are part of project effort and management
mandate. Legacy code is abundant and there is not much
documentation (comments and design rationale) for it. Task-
directed inspection can be exploited to complete documentation,
at the same time improving code quality.

 Like design patterns, software reading techniques codify best practices for software
review and inspection. Now those techniques are at your disposal. It is expected
that those techniques will be tailored to your unique circumstances for their best
effectiveness. You could customize, modify, subset, or extend a reading technique, or
combine good ideas from multiple reading techniques to create your own. Agile software
development has been widely practiced nowadays. Since agile practitioners favor
working software over comprehensive documentation, there may be no complete or
explicitly written documentation for requirements specification, architecture description,
and design. It remains interesting to figure out how reading techniques can be effectively
customized and applied in that context.

 Software reading is a learned skill. You are encouraged to apply them in order to
cultivate your own ability and improve personal effectiveness. You are also encouraged to
share with others your experience and lessons learned with those reading techniques.

http://dx.doi.org/10.1007/978-1-4842-2346-8_7
http://dx.doi.org/10.1007/978-1-4842-2346-8_7
http://dx.doi.org/10.1007/978-1-4842-2346-8_7
http://dx.doi.org/10.1007/978-1-4842-2346-8_7

123© Yang-Ming Zhu 2016
Y.-M. Zhu, Software Reading Techniques, DOI 10.1007/978-1-4842-2346-8

 A
 Abstraction-driven reading , 5, 52,

108–111, 114, 116, 122
 Active design review , 4, 7, 8, 13–15, 18, 35,

39, 41, 43, 46, 96
 Active guidance , 26, 81, 119
 Activity diagram , 48, 51, 82
 Ad hoc partition , 64
 Ad hoc reading , 4, 23–25, 28, 29, 32, 35, 37,

40, 41, 47, 57, 58, 64, 69, 75, 77,
110, 119

 Analytical model for perspective-based
reading , 4, 58, 60

 Application framework , 5, 97, 98,
100, 111, 112

 Architecture reading , 93–96, 100, 121
 Architecture review , 5, 15, 93, 96
 Architecture tradeoff analysis (ATAM) , 15, 96
 Artifact-based checklist , 24, 36
 Assimilation process , 104

 B
 Bad fi xes , 10
 Base class , 27, 98, 107
 Beacon , 104
 Best practice , 8, 18, 23, 32, 50, 122
 Black box , 97
 Bottom-up , 52, 104–106, 113, 121, 122

 C
 Checklists

 based reading (CBR) , 4, 23–29, 32, 35,
37, 39–42, 47, 51, 54, 58, 60–64,
69, 70, 72, 74, 75, 80, 81, 95, 110,
111, 114, 119, 120

 best practice of , 26, 28
 with guidance , 28

 Class diagram , 48–51, 83–85, 87–88, 91
 Class hierarchy , 86, 88, 97, 98, 121
 Code

 inspection , 2, 8, 9, 12, 16, 17, 58, 103, 114
 reading , 5, 26, 27, 29, 52–54, 79, 80,

103–117, 122
 review , 3, 16, 23–25, 29, 122

 Cognitive
 analysis , 58–60, 66
 bias , 17
 process , 4, 21
 structure , 104

 Collaboration diagram , 48–51
 Combined reading of

requirements , 70–72, 120
 Commission defect , 38, 95
 Completeness , 24, 49, 50, 65, 73, 81, 121
 Consistency , 4, 14, 24, 50, 55, 57, 58, 81,

84, 92, 116, 121
 Control fl ow , 105, 114
 Correctness , 15, 24, 48, 49, 51, 53, 58, 65,

81, 105, 110, 121

 D
 Data fl ow , 105, 114
 Data-fl ow diagram , 74–75
 Defect-based reading (DBR) , 4, 35, 37–42,

64, 66, 69, 70, 72, 75, 82, 119, 120
 Defects

 collection , 4, 7, 11, 16, 51, 54, 58, 60, 75
 containment , 1
 detection , 1, 3, 4, 7, 17, 23, 25, 35, 36,

40, 41, 45, 47, 51, 54, 60–65, 70,
72, 74, 75, 79, 80, 97, 100, 106,
110–114, 120, 122

 Index

■ INDEX

124

 injection , 1, 3
 prevention , 1
 removal , 1

 Delocalization , 108, 115, 116, 122
 Design

 inspection , 2, 77, 81, 100
 pattern , 23, 112, 122
 reading , 48–51, 53, 77–100, 112, 120, 122

 Diff erential reading , 4, 29–32, 119
 Discrepancy , 53, 83, 85–88, 90, 91
 Distributed development , 1
 Divide and conquer , 104
 Dynamic behavior , 5, 48, 82, 90, 107, 108,

112, 116, 122
 Dynamic testing , 107

 E
 Educational background , 75
 Empirical evidence , 16, 21, 72
 Empirical experience , 28–29, 41–42, 47–48,

51, 54, 57, 69, 72, 74, 79–81, 92–93,
95–96, 99–100, 110–111, 114

 Encapsulation , 25, 86, 91, 107
 Environmental factors , 116
 Escaped defects , 1
 Example-based reading , 97–99, 121

 F
 Fagan inspection , 2, 4, 7–13, 15–18, 22, 28
 False positives , 4, 8, 10–12, 28, 74, 93, 111
 Follow-up , 7, 8, 10, 74, 96
 Framework , 5, 10, 21, 63, 94, 97–100, 103,

111–114, 116, 121, 122
 Functionality-based reading , 103,

111–114, 116, 122
 Function point analysis , 65
 Function-point-based reading , 4, 66, 120
 Function point scenarios , 65, 120

 G
 General reading techniques , 4, 69, 77

 H
 Hierarchy-based reading , 97, 98, 121
 Horizontal reading , 83–88, 91, 92, 94,

100, 121

 Hotspot , 97, 112
 Human-computer interaction (HCI) , 55

 I, J
 Individual factor , 18, 74–75
 Individual performance , 16
 Information overloading , 81
 Information processing , 74
 Inheritance , 25, 27, 84, 86, 88, 107, 108,

112, 113
 Inspection

 maxims , 17
 roles , 9

 Intrinsic factors , 115

 K
 Knowledge base , 104

 L
 Late binding , 107
 Legacy software , 114–116
 Lifecycle , 18, 75, 83, 96, 120

 M
 Management review , 2, 7, 15
 Meeting-based review , 11
 Meeting-less inspection , 12
 Mental model , 36
 Message , 49, 50, 84–87, 89–91,

109, 113
 Metrics , 12, 16, 18, 108
 Model-based , 96
 Modern code review , 16

 N
 N-fold inspection , 12
 Non-meeting-based review , 11

 O
 Object-oriented (OO) , 5, 25–27, 29, 48, 52,

79, 82, 103, 107–116, 121, 122
 Omission defects , 38, 42, 70, 72, 96
 Operational scenarios , 35, 36, 39, 41–43,

46, 120
 Orthogonal perspectives , 55

Defects (cont.)

■ INDEX

125

 P
 Pair programming , 15
 Paradox of structure , 23, 26
 Peer review , 2, 7
 Personality type , 74, 75
 Perspective-based

 code reading , 52–54
 design reading , 48–51
 reading , 4, 5, 23, 35, 37, 42–64, 66, 69,

70, 73, 77, 79, 93, 96, 100, 111, 120
 requirements reading , 45–48
 usability reading , 54–57

 Phased inspection , 12
 Polymorphism , 25, 107
 Prime program , 106
 Prioritized use cases , 4, 78–81, 100
 Program comprehension , 104, 105
 Program plan , 104
 Property-based checklist , 24
 Purpose of software reading , 4, 22–23

 Q
 Questionnaire , 13, 14

 R
 Rank-based , 78, 79
 Reader characteristics , 115
 Reading for analysis , 22, 97, 103
 Reading for construction , 23, 97, 103
 Reading scenarios , 35, 39, 40, 43–44, 46,

48–57, 60, 64, 73, 120
 Reading techniques , 4–5, 10, 17, 18, 35–66,

69–75, 77–100, 103–117, 119–122
 Representational factors , 115
 Requirements reading , 41, 45, 65, 69–75, 120
 Requirements specifi cation , 2, 4, 5, 12, 22,

24, 25, 29, 37, 38, 42, 44–46, 48,
50, 58, 64–66, 69, 70, 72, 74, 75,
77, 82, 83, 88, 100, 122

 Reuse , 23, 29, 45, 53, 73, 97, 98, 103–105,
112, 121

 Root cause analysis , 3, 12

 S
 Sampling-driven inspection , 12
 Scenario-based , 96

 Scenario-based reading , 4, 15, 22, 32,
35–66, 75

 Scenario template , 43
 Scope-based reading , 5, 97–100,

111, 121
 Semantic checking , 91, 100, 121
 Semi-structured reading , 23, 26
 Sequence diagram , 48, 49, 51, 80, 83–87,

89–91, 109–111
 Service , 83–85, 87, 89–91
 Software

 architecture , 15, 77, 93, 94, 96
 artifacts , 2–5, 8–12, 15, 16, 18, 21–24,

28–30, 32, 35–37, 39, 42, 43, 45,
46, 51, 52, 55, 58, 75, 77, 80, 82,
100, 116, 119–121

 audit , 15
 design , 21, 77, 82, 100
 engineering , 1, 2, 5, 16, 22, 28, 47, 74,

75, 80, 96, 97, 99, 103, 104
 implementation , 1, 77
 inspection , 1–3, 5, 7, 16, 18, 22, 24, 43,

58, 75
 lifecycle , 18
 product , 1, 7, 22, 46, 69, 71
 quality , 1–3, 5, 8, 78, 114
 quality insurance , 1, 5, 8
 reading , 4, 5, 16, 37, 59, 74, 75, 77, 83,

97, 105, 119, 120, 122
 reading techniques , 4, 10, 16, 18,

21–32, 35, 48, 83, 122
 requirements , 5, 37, 44, 46, 69, 70, 75,

119, 120
 review , 1–4, 21, 24, 32, 35, 43, 122
 review procedure , 4, 7–18
 specifi cation , 5, 22, 44, 48,

69, 70, 75
 Specifi c reading techniques , 4, 100,

103, 119
 Stakeholders , 42–44, 46, 48, 49, 52, 64, 70,

72, 73, 94–96, 116, 120
 State diagram , 48, 83–87, 90–91
 Static analysis , 2
 Static behavior , 5, 84, 89, 122
 Static structure , 48
 Stepwise abstraction , 5, 23, 52, 103,

105–108, 116, 121, 122
 Structured program , 48, 106
 Structured reading , 23

■ INDEX

126

 Subject matter experts , 11, 14, 44
 Syntactic checking , 84, 91
 Systematic reading , 23, 36, 108

 T
 Task-directed inspection , 114–115, 122
 Taxonomy of defects , 38
 Taxonomy of software reading

techniques , 23
 Team size , 12, 16
 Technical review , 2, 7, 15
 Testability , 51, 73, 94
 Test case , 2, 3, 8, 11, 22–24, 29, 43–48, 50,

51, 53, 72–74
 Test-case driven reading , 72–75, 120
 Test-driven reading , 4
 Testing , 1–3, 5, 29, 37, 38, 44–46, 50, 54, 73,

77, 107
 Test plan , 2, 3, 8, 22, 44, 74
 Textual description , 48, 79, 81, 83, 88, 91, 121
 Time-boxed , 78
 Top-down , 104–106, 113, 122
 Traceability-based reading , 4, 5, 66, 77, 79,

81–96, 100, 121
 Two-person inspection , 12, 52
 Typographic factors , 115

 U
 UML diagrams , 48, 51, 80–83
 Unifi ed Modeling Language (UML) , 48,

51, 80–83
 Unstructured reading , 23
 Unsystematic reading , 23, 36
 Usability goal , 55, 56
 Usability inspection , 5, 54–57, 66
 Usability testing , 54
 Usage-based reading , 4, 77–81, 100, 120
 Use-based reading , 55, 57
 Use-case diagram , 48, 80
 Use-case-driven reading , 5, 52, 79, 80,

108–111, 116, 122
 User documentation , 2, 8, 22
 User interface , 4, 42, 44, 45, 54–58, 71

 V
 Vertical reading , 5, 79, 83, 88–92, 94, 95,

100, 121

 W, X, Y, Z
 Walkthrough , 2, 7, 15, 55
 White box , 50, 97

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	1.1 Software Quality, Software Reviews and Inspections
	1.2 About This Book
	1.2.1 Organization of This Book
	1.2.2 Intended Audience and How to Use This Book

	1.3 References

	Chapter 2: Software Review Procedures
	2.1 A Generic Software Review Procedure
	2.2 Fagan Inspection and Extensions
	2.2.1 Fagan Inspection
	2.2.2 Extensions to Fagan Inspection
	2.2.2.1 Meeting or No Meeting
	2.2.2.2 What Is the Right Team Size?
	2.2.2.3 Other Extensions

	2.3 Active Design Review and Extensions
	2.3.1 Active Design Review
	2.3.2 Extensions to the Active Design Review

	2.4 Other Types of Reviews
	2.5 Factors Impacting Software Reviews
	2.6 Summary
	2.7 References

	Chapter 3: Basic Software Reading Techniques
	3.1 Introduction to Software Reading
	3.1.1 Definition of Software Reading
	3.1.2 Purposes of Software Reading
	3.1.3 Taxonomy of Software Reading Techniques

	3.2 Ad hoc Reading
	3.3 Checklist-Based Reading
	3.3.1 Checklist Definition, Types, and Examples
	3.3.2 Checklists with Guidance
	3.3.3 Best Practices of Checklists
	3.3.4 Empirical Experiences

	3.4 Differential Reading
	3.5 Summary
	3.6 References

	Chapter 4: Scenario-Based Reading Techniques
	4.1 Principles of Scenario-Based Reading
	4.2 Defect-Based Reading
	4.2.1 Taxonomy of Defects in Requirements Specifications
	4.2.2 Defect-Based Reading Techniques
	4.2.3 Empirical Experiences

	4.3 Perspective-Based Reading
	4.3.1 A Generic Perspective-Based Reading
	4.3.1.1 Reading Scenarios and Template
	4.3.1.2 Developing Reading Scenarios
	4.3.1.3 Characteristics of Perspective-Based Reading

	4.3.2 Perspective-Based Requirements Reading
	4.3.2.1 Reading Scenarios for Requirements Specifications
	4.3.2.2 Empirical Experiences

	4.3.3 Perspective-Based Design Reading
	4.3.3.1 Reading Scenarios for Design Documents
	4.3.3.2 Empirical Experiences

	4.3.4 Perspective-Based Code Reading
	4.3.4.1 Reading Scenarios for Code Modules
	4.3.4.2 Empirical Experiences

	4.3.5 Perspective-Based Usability Reading
	4.3.5.1 Reading Scenarios for Usability
	4.3.5.2 Empirical Experiences

	4.3.6 Why Does Perspective-Based Reading Work?
	4.3.6.1 Cognitive Analysis of Perspective-Based Reading
	4.3.6.2 An Analytical Model

	4.4 Alternative Partitioning of Reading Responsibilities
	4.4.1 Ad hoc Partition
	4.4.2 Function Point-Based Partition

	4.5 Summary
	4.6 References

	Chapter 5: Requirements Reading Techniques
	5.1 Critical Roles of Requirements in Software Development
	5.2 A Combined Reading Technique for Requirements
	5.2.1 Motivations for a Combined Reading
	5.2.2 The Combined-Reading Technique
	5.2.3 Empirical Experiences

	5.3 Test-Case Driven Reading for Requirements
	5.3.1 Test-Case-Driven Reading Technique
	5.3.2 Empirical Experiences

	5.4 Individual Factors Impacting Requirements Reading Efficiency
	5.5 Summary
	5.6 References

	Chapter 6: Design Reading Techniques
	6.1 Introduction
	6.2 Usage-Based Reading
	6.2.1 Usage-Based Reading Technique
	6.2.2 Variations of Usage-Based Reading
	6.2.3 Empirical Experiences

	6.3 Traceability-Based Reading
	6.3.1 Types of Design Defects
	6.3.2 High-Level OO Designs Using UML Diagrams
	6.3.3 Traceability-Based Reading Techniques
	6.3.3.1 Horizontal Readings
	6.3.3.1.1 Reading 1: Sequence Diagram vs Class Diagrams
	6.3.3.1.2 Reading 2: State Diagrams vs Class Descriptions
	6.3.3.1.3 Reading 3: Sequence Diagrams vs State Diagrams
	6.3.3.1.4 Reading 4: Class Diagrams vs Class Descriptions

	6.3.3.2 Vertical Readings
	6.3.3.2.1 Reading 5: Class Descriptions vs Requirements Description
	6.3.3.2.2 Reading 6: Sequence Diagrams vs Use Cases
	6.3.3.2.3 Reading 7: State Diagrams vs Requirements Descriptions and Use Cases

	6.3.3.3 Semantic Checking
	6.3.3.4 Practical Considerations

	6.3.4 Empirical Experiences

	6.4 Architecture Reading
	6.4.1 What Is Software Architecture?
	6.4.2 Traceability-Based Architecture Reading
	6.4.3 Empirical Experiences
	6.4.4 Other Architecture Reading Techniques

	6.5 Scope-Based Reading
	6.5.1 What Is an Application Framework?
	6.5.2 Scope-Based Reading Techniques
	6.5.2.1 Hierarchy-Based Reading
	6.5.2.2 Example-Based Reading

	6.5.3 Empirical Experiences

	6.6 Summary
	6.7 References

	Chapter 7: Code Reading Techniques
	7.1 Code Reading As a Professional Skill
	7.1.1 Importance of Code Reading
	7.1.2 How Do People Read Code?

	7.2 Reading by Stepwise Abstraction
	7.3 Object-Oriented Code Reading
	7.3.1 Challenges of Object-Oriented Code Reading
	7.3.2 Abstraction-Driven Reading
	7.3.3 Use-Case-Driven Reading
	7.3.4 Empirical Experiences

	7.4 Object-Oriented Framework Code Reading
	7.4.1 Why Yet Another Object-Oriented Code Reading Technique?
	7.4.2 Functionality-Based Approach to Framework Understanding
	7.4.3 Functionality-Based Reading
	7.4.4 Empirical Experiences

	7.5 Task-Directed Inspection
	7.6 Code Readability Factors
	7.7 Summary
	7.8 References

	Chapter 8: Conclusion
	Index

