

	

	

	

Imprint
©	2015	Smashing	Magazine	GmbH,	Freiburg,	Germany
ISBN:	978-3-945749-10-4	(Kindle)
Cover	Design:	Veerle	Pieters
eBook	Strategy	and	Editing:	Vitaly	Friedman
Technical	Editing:	Cosima	Mielke
Planning	and	Quality	Control:	Vitaly	Friedman,	Iris	Lješnjanin
Tools:	Elja	Friedman
Syntax	Highlighting:	Prism	by	Lea	Verou
Idea	&	Concept:	Smashing	Magazine	GmbH

	

About	This	Book

	

After	the	golden	times	of	Flash	were	over,	animations	led	a	rather	shadowy
existence	on	the	web	for	quite	some	time.	They	were	considered	as	unnecessary
gimmicks	and	superfluous	add-ons,	but	things	were	about	to	change.	With	apps
already	benefiting	from	their	responsive	interfaces,	the	importance	of	both
animation	and	motion	design,	as	well	as	their	ability	to	make	the	user	experience
more	delightful,	was	growing	evermore.

	

Animation	is	not	about	mere	decoration,	but	(when	used	sparingly)	can	turn	out
to	be	a	catalyst	for	making	the	interaction	with	a	website	more	intuitive	and
memorable.	So,	what	is	the	current	state	of	animation	on	the	web?	Where	is	it
heading?	And	how	can	you	tackle	the	possibilities	and	challenges	it	brings
along?	These	are	just	a	few	of	the	many	questions	that	are	tackled	and	discussed
in	this	eBook,	which	are	bound	to	help	you	grasp	what	meaningful	motion
design	is	all	about	and	how	you	can	implement	it	into	your	own	projects.

	

Furthermore,	popular	animation	libraries	are	important	to	consider	along	the
way,	as	well	as	taking	a	closer	look	at	designing	performant	UI	animations	and
diving	deep	enough	into	the	CSS	behind	motion.	To	reapproach	the	JavaScript
vs.	CSS	camps,	a	new	API	is	introduced,	among	a	good	number	of	practical
coding	examples	that	will	help	you	get	to	grips	with	the	principles	behind
smooth	and	natural	animations.	So,	what	are	we	waiting	for?	Let’s	put	the	web
in	motion.

	

	
	

	

TABLE	OF	CONTENTS

	

Imprint

	

The	State	Of	Animation	2014
by	Rachel	Nabors

	

A	Quick	Look	Into	The	Math	Of	Animations	With	JavaScript
by	Christian	Heilmann

	

Animating	Without	jQuery
by	Julian	Shapiro

	

Faster	UI	Animations	With	Velocity.js
by	Julian	Shapiro

	

Using	Motion	For	User	Experience	On	Apps	And	Websites
by	Drew	Thomas

	

Understanding	CSS	Timing	Functions

by	Stephen	Greig

	

Styling	And	Animating	SVGs	With	CSS
by	Sara	Soueidan

	

About	The	Authors

	
	

The	State	Of	Animation	2014
BY	RACHEL	NABORS	❧

	The	post-Flash	era	is	hardly	free	of	animation.	CSS	animation	is
quickly	becoming	a	cornerstone	of	user-friendly	interfaces	on	mobile
and	desktop,	and	JavaScript	libraries	already	exist	to	handle	complex
interactive	animations.	In	the	wake	of	so	much	“CSS	versus
JavaScript	animation”	infighting,	a	new	API	specifically	for	web
animation	is	coming	out		that	might	just	unite	both	camps.

	

It’s	an	exciting	time	for	web	animation,	and	also	a	time	of	grave	
miscommunication	and	misinformation.	In	2014,	I	had	the	chance	to	travel	the	
world	to	talk	about	using	animation	in	user	interfaces	and	design .	I	met	and	
interviewed	dozens	of	people	who	use	and	champion	both	CSS	and	JavaScript.	
After	interviewing	so	many	developers,	designers	and	browser	representatives,	I	
discovered	a	technical	and	human	story	to	be	told.

	

What	you’re	about	to	read	is	purely	observational	and	as	unbiased	an	account	as
you	will	be	able	to	find	on	the	subject	of	web	animation.

	

Flash	May	Be	Gone,	But	The	Era	Of	Web	Animation	
Has	Just	Begun
	

1

http://www.slideshare.net/CrowChick/animation-and-the-future-of-ux-33573726

Since	the	era	of	Flash,	it’s	become	fashionable	to	think	of	animation	as	little	
more	than	decoration,	a	“flashy”	afterthought,	often	in	poor	taste,	like	an	
unwelcome	blinkblink	tag.	But	unless	we	want	to	display	nothing	other	than	copy	on	
a	screen,	animation	is	still	very	much	our	friend.

	

For	user	interface	designers,	animation	reinforces	hierarchy,	relationships,	
structure,	and	cause	and	effect.	Research	going	back	to	the	early	’90s 	
demonstrates	that	animation	helps	humans	understand	what’s	happening	on	
screen.	Animation	stitches	together	app	states	and	offloads	that	work	to	the	
brain’s	GPU	—	the	visual	cortex.

	

For	interaction	developers,	complex	visuals	—	from	infographics	on	dashboards
to	video	games	on	tablets	—	are	impossible	to	create	without	animation	to	glue
all	the	pieces	together.	If	we	want	those	things	on	the	Internet,	we	still	need
animation.

	

Sadly,	we	have	fallen	behind	in	the	motion	design	race.	Products	that	use	
animation	to	benefit	their	users	will	succeed	where	their	static	or	animation-
abusing	competitors	will	fail.	As	it	stands,	native	apps	are	beating	the	pants	off	
the	web.	App	developers	have	been	incorporating	animation	into	their	designs	
and	fleshing	out	workflow	and	prototyping	tools	like	Flinto 	and	Mitya 	from	
day	one.

	

But	things	might	be	turning	around.	iOS’	Safari	team	pushed	out	the	CSS	
animation	and	transition	specifications	so	that	websites	can	look	and	feel	as	good	

2

3 4

https://smartech.gatech.edu/bitstream/handle/1853/3627/93-17.pdf
https://www.flinto.com/
http://www.mitya-app.com/

as	iOS	apps	do.	Even	Google	has	picked	up	on	this,	putting	animation	front	and	
center 	in	its	Material	Design	recommendations,	with	careful	do’s	and	don’ts	to	
apply	animations	and	transitions	meaningfully,	with	purpose.

	

Animation	is	the	natural	next	step	in	the	evolution	of	our	application	and	device
ecosystem.	It	makes	the	digital	world	more	intuitive	and	interesting	for	users	of
all	ages.	And	so	long	as	our	devices	sport	GPUs,	it’s	not	going	away.

	

Animating	All	The	Things
	

At	its	core,	animation	is	just	a	visual	representation	of	a	rate	of	change	over	time	

and	space.	All	animation	can	be	distilled	into	three	types:	Static	animation	runs	
from	a	start	point	to	an	end	point,	with	no	branching	or	logic.	This	can	be	
accomplished	with	CSS	alone ,	as	the	abundance	of	CSS	loading	animations 	
testifies.

	

	

Stateful	animation	in	its	simplest	form	takes	boolean	input	—	a	click	to	
open	a	menu	and	a	click	to	close	it ,	for	instance	—	and	animates	between	

5

•

6 7

•
8

http://www.google.com/design/spec/animation/authentic-motion.html
http://codepen.io/rachelnabors/full/rCost
http://codepen.io/collection/HtAne/
http://tympanus.net/Development/SimpleDropDownEffects/

the	two	states.	This	is	currently	achieved	in	JavaScript	frameworks	by	
applying	and	removing	classes	with	scoped	CSS	animation.

	

	

Dynamic	animation	can	have	many	outcomes	depending	on	user	input	and	
other	variables.	It	uses	its	own	logic	to	determine	how	things	should	
animate	and	what	their	endpoints	are.	It	could	entail	“dragging”	a	page	
along	behind	your	finger	according	to	the	speed	of	your	swipe,	or	
dynamically	changing	a	graph	as	new	data	comes	in.	This	is	the	trickiest	
kind	of	animation	to	accomplish	with	the	tools	at	our	disposal	today.	CSS	
alone	cannot	be	used	for	this	kind	of	animation.

	

•

	

MORE	STATES	!=	DYNAMIC	ANIMATION
	

The	astute	CSS	developer	might	point	out	that,	with	enough	states,	CSS
animation	could	closely	resemble	dynamic	animation.	This	is	true	to	a	point.	But
truly	dynamic	animation	has	more	end	states	than	you	can	possibly	anticipate.

	

	

Just	imagine	the	humble	loading	bar.	Having	a	different	class	for	every
percentage	point	of	“fullness”	would	easily	run	to	a	hundred	lines	of	CSS,	not	to
mention	the	number	of	times	your	JavaScript	would	have	to	touch	the	DOM	to
update	the	classes	and	the	browser	repaints.	We	definitely	could	write	a	more
performant	dynamic	loader	with	JavaScript	alone.

	

CSS	animation	is	declarative:	Aside	from	a	handful	of	pseudo-classes,	such	as	
:hover:hover	and	:target:target,	it	accepts	context	from	neither	the	user	nor	the	user’s	
surroundings.	It	does	only	what	its	author	tells	it	to	do	and	cannot	respond	to	

new	inputs	or	a	changing	environment.	There’s	no	way	to	create	a	CSS	
animation	that	says	“If	you’re	in	the	middle	of	the	page,	do	this;	otherwise,	do	
that.”	CSS	doesn’t	contain	that	sort	of	logic.

	

When	CSS-first	developers	need	logic,	they	often	start	by	scoping	CSS	to	state	
classes,	with	JavaScript	handling	the	logic	of	when	to	apply	which	class.	
Frameworks	such	as	AngularJS 	support	states,	and	many	UI	interactions	adapt	
easily	to	a	handful	of	states	like	“loading,”	“open”	and	“selected.”	These	
animations	also	degrade	gracefully	in	old	browsers,	providing	a	much	needed	
UX	boost	where	CSS	animation	and	transitions	are	supported.

	

	

Interaction	developers	have	had	a	different	time	of	it.	CSS	animation	is	often	too	
declarative	to	handle	the	things	these	developers	want	to	build.	Paying	clients	
demand	reliable	animation	across	a	wide	spread	of	browsers;	so,	many	
interaction	developers	and	their	studios	have	done	what	all	clever	developers	do:	

9

https://docs.angularjs.org/api/ngAnimate

make	labor-saving	libraries	customized	to	their	own	processes.	Some	of	these	
libraries,	like	GSAP 	and	Velocity ,	are	available	to	and	developed	for	the	
public.	But	many	others	will	never	be	released	in	the	wild,	because	the	people	
and	agencies	who	created	them	don’t	have	the	time	or	money	(or	will)	to	support	
an	open-source	project.

	

	

This	is	a	deeply	worrying	story	that	I’ve	heard	over	and	over	again,	and	it
suggests	that	many	developers	are	reinventing	the	wheel	without	moving	the
web	forward.	There	isn’t	enough	demand	for	something	considered	“nice	to
have”	to	support	many	competitors.	It’s	easy	to	see	how	libraries	like	GSAP
must	be	commercial	in	order	to	survive,	or	how	sponsorships	buoy	libraries	like
Velocity.

	

10 11

http://greensock.com/
http://julian.com/research/velocity/

And	Flash	was	a	benevolent	dictator,	for	its	people	did	have	a	visual	timeline	UI.

	

Flash	did	a	great	thing	by	giving	interaction	developers	and	UI	designers	a	
universal	workflow	that	accommodates	all	kinds	of	animations	and	a	platform	on	
which	to	edit	them.	But	since	Steve	Jobs	announced	back	in	2010	that	the	iPhone	
would	never	support	Flash ,	many	former	Flash	developers	have	quietly	gone	
into	exile,	taking	their	niche	knowledge	with	them.	Now,	an	entire	generation	of	
web	designers	has	come	online	with	relatively	no	knowledge	of	the	possibilities	
and	challenges	we	face	when	ramping	up	animation	complexity.

	

But	things	are	about	to	get	quite…	animated.

	

12

https://www.apple.com/hotnews/thoughts-on-flash/

The	Web	Animation	API:	The	Greatest	An	API	
You’ve	Never	Heard	Of
	

The	Web	Animation	API	is	a	W3C	specification	that	provides	a	unified	language	
for	CSS	and	SVG	animations	and	that	opens	up	the	browser’s	animation	engine	

for	developer	manipulation.	It	does	the	following:	provide	an	API	for	the	
animation	engine,	enabling	us	to	develop	more	in-browser	animation	tools	and	

letting	animation	libraries	tap	into	performance	boosts;	give	(qualifying)	

animation	their	own	thread,	getting	rid	of	jank;	support	motion	paths ;	provide	

post-animation	callbacks;	reintroduce	nested	and	sequenced	animations 	that	we	

haven’t	seen	since	Flash;	enable	us	to	pause,	play,	seek,	reverse,	slow	down	or	
speed	up	playback	with	timing	dictionaries 	and	animation	player	objects .

	

Here’s	just	one	example	of	what	the	Web	Animation	API	can	do	that	CSS	alone	
cannot .

	

•

•
• 13•

• 14

•
15 16

17

http://dirkschulze.github.io/specs/motion-1/
https://github.com/web-animations/web-animations-js#sequencing-and-synchronizing-animations
https://github.com/web-animations/web-animations-js#controlling-the-animation-timing
https://github.com/web-animations/web-animations-js#playing-animations
http://codepen.io/rachelnabors/pen/zxYexJ/

See	the	Pen	Running	on	Web	Animations	API 	on	CodePen.

	

SUPPORT
	

The	Web	Animation	API	has	been	over	two	years	in	the	making,	and	its	features
have	been	rolling	out	in	Chrome	and	Firefox	nightlies	for	the	past	six	months.
Mozilla	is	the	major	force	behind	the	specification.	Meanwhile,	the	Chrome
team	has	been	prioritizing	the	shipment	of	features.

18

http://codepen.io/rachelnabors/pen/zxYexJ/

	

Microsoft	has	the	API	“under	consideration” 	for	Internet	Explorer.	Apple,	
surprisingly,	has	also	adopted	a	wait-and-see	approach	for	Safari.	And	we	can	
only	fantasize	about	when	the	API	will	hit	those	web	app	engines	powered	by	
ancient	forks	of	open-source	browsers .

	

Early	adopters	who	want	to	explore	the	API	can	try	out	a	polyfill	for	the	Web	
Animations	API ,	which	is	being	replaced	by	Web	Animations	Next 	literally	
any	day	now	(more	about	the	polyfill	and	the	API	can	be	found	on	the	website	
for	the	Polymer	project).	However,	for	browsers	that	don’t	support	the	API,	the	
polyfill	is	still	less	performant	than	GSAP,	the	reigning	champion	of	JavaScript-
based	animation	libraries.	Thus,	the	polyfill	isn’t	something	interactive	that	
developers	will	want	to	put	into	production	for	high-performance	projects.

	

It	will	be	some	time	before	this	API	is	supported	across	the	board.	With	half	of
browser	makers	waiting	to	see	how	developers	will	use	it	and	most	developers
refusing	to	use	a	tool	that	isn’t	widely	supported,	the	API	faces	a	chicken-and-
egg	scenario.	However,	in	an	on-stage	conversation	with	Google’s	Paul	Kinlan
at	Fronteers,	I	suggested	that,	were	the	API	to	be	fully	supported	in	a	closed	and
monetizable	system	for	web	apps,	such	as	Google	Play,	developers	would	be
able	to	safely	use	it	in	a	walled	garden	until	it	reaches	maturity	and	fuller
support.

	

PERFORMANCE
	

19

20

21 22

23

https://status.modern.ie/webanimationsjavascriptapi?term=animations
https://developer.amazon.com/appsandservices/solutions/platforms/webapps
https://github.com/web-animations/web-animations-js
https://github.com/web-animations/web-animations-next
https://www.polymer-project.org/platform/web-animations.html

The	API’s	authors	and	implementers	hope	that	animation	library	developers	will
start	feature-sniffing	for	the	API’s	support	to	tap	into	its	performance	benefits.
Because	the	Web	Animation	API	uses	the	CSS	rendering	engine,	we	can	expect
CSS	levels	of	performance.	Animations	will	run	on	their	own	thread	as	long	as
they	don’t	depend	on	anything	happening	in	the	main	thread,	such	as	JavaScript
or	layout.

	

Speaking	of	layout,	reflowing	remains	one	of	the	biggest	processing	hurdles	for	
browsers.	No	CSS	or	JavaScript	animation	can	get	around	it	unless	you’re	
pumping	everything	through	WebGL	straight	to	the	GPU	(which	some	clever	in-
house	library	developers	have	been	doing).	Aside	from	opacityopacity	and	transformtransform,	
animating	the	bulk	of	CSS	properties	will	cause	a	reflow,	a	change	in	layout	
and/or	a	repaint	of	the	pixels	on	the	screen.	The	will-changewill-change	CSS	property	
helps	some 	by	enabling	us	to	point	at	something	and	tell	the	browser,	“That,	
that	thing	is	going	to	change.	You	do	what	you	have	to	do	change	it	efficiently.”	
The	hope	is	that	as	browsers	get	smarter	about	graphics,	they’ll	move	those	
elements	into	their	own	layer	or	otherwise	optimize	the	way	they	handle	those	
graphics.	It’s	the	first	step	in	eliminating	hacks	like	translateZ(0)translateZ(0).

	

Such	“performance	hacks”	often	get	slapped	on	as	a	magic	fix	whenever	an
animation	is	janking,	but	they	often	cause	performance	issues	when	used
unwittingly.	Performance	decisions	are	truly	best	left	to	the	browser	in	the	long
run.	Fortunately,	browser	makers	are	scrambling	to	get	fewer	properties	to
trigger	reflows,	thus	keeping	them	off	the	main	thread.	For	animation	library
developers,	this	means	that	the	Web	Animation	API	could	be	a	winning	partner
for	performance	in	the	near	future.

	

24

https://dev.opera.com/articles/css-will-change-property/

TOOLS
	

Anyone	working	with	web	animation	yearns	for	proper	animation	development	
tools:	a	timeline,	property	inspection,	better	editors,	and	the	ability	to	pause,	
rewind	and	otherwise	inspect	an	animation	while	debugging.	The	Web	
Animation	API	will	open	the	guts	of	the	CSS	rendering	engine	to	developers	and	
the	browser	vendors	themselves	to	create	these	tools.	Both	Chrome 	and	Firefox	
are	preparing	animation	features	for	their	development	tools.	This	API	opens	up	
those	possibilities.

	

The	Web	Animation	Community	Today
	

Not	many	people	other	than	those	working	on	it	are	aware	of	the	Web	Animation
API.	The	standards	community	is	eager	for	real-world	feedback	from	interaction
and	animation	library	developers.	However,	many	developers	feel	that	the
standardistas	live	in	an	ivory	tower,	far	removed	from	the	rigors	of	the	trenches,
the	demands	of	clients	and	the	lessons	learned	from	Flash.

	

25

http://src.chromium.org/viewvc/blink?view=revision&revision=183847

The	old	king’s	champion	sent	into	exile	by	the	very	people	he	once	served.

	

To	be	fair,	the	standardistas	haven’t	exactly	come	out	to	meet	their	audience	in
the	field.	To	join	the	“official”	Web	Animation	API	conversation,	you	must
jump	through	some	hoops,	and	getting	on	the	email	chain	threatens	to	overflow
the	inbox	of	any	busy	developer.	Alternatively,	you	could	get	on	IRC	and	join
the	conversation	there	—	if	only	designers	used	IRC.	The	conversation	that
needs	to	happen	is	unlikely	to	happen	if	the	people	who	have	the	most	to	say
simply	aren’t	there.	Vendors	and	specification	authors	will	need	to	find	more
ways	to	reach	out	to	their	key	audience	or	else	risk	building	an	API	without	an
audience.

	

But	the	standardistas	aren’t	the	only	ones	with	communication	problems	here.
As	a	community,	we	are	very	judgmental	and	quick	to	deride	things	that	we
deem	unworthy,	be	it	Flash	or	an	API	we	don’t	like	the	look	of.	Many	of	us
invest	our	egos	in	our	tools	and	processes.	But	those	things	don’t	define	us.

invest	our	egos	in	our	tools	and	processes.	But	those	things	don’t	define	us.
What	we	create	together	defines	us.

	

Animation	library	developers,	read	the	specification .	It	is	long,	but	if	
GreenSock’s	Jack	Doyle	can	do	it,	so	can	you.

	

Interaction	developers	who	don’t	have	all	day	to	read	a	huge	specification,	
just	read	the	readme	on	the	polyfill’s	page .	It’s	a	perfect	TLDR.	Now	that	
you	know	what’s	coming,	you	will	know	when	it	might	be	useful	to	you,	
whether	for	optimizing	your	library’s	performance	or	building	an	in-
browser	timeline	UI.

	

Designers,	prioritize	JavaScript	at	work.	Play	with	the	polyfill,	and	play	
with	GSAP	and	Velocity.	Find	out	what	these	things	can	do	for	your	work	
that	CSS	alone	cannot	accomplish.

	

With	web	animation,	we	have	a	rare	chance	to	put	our	egos	aside	and	come
together	as	a	community	to	build	a	tool	with	which	future	generations	of
designers	and	developers	can	build	great	things.	For	their	sake,	I	hope	we	can.

	

	
The	art	challenges	the	technology,	and	the	technology	inspires	the	art.
–	John	Lasseter,	CCO	Pixar

• 26

•
27

•

http://w3c.github.io/web-animations/
https://github.com/web-animations/web-animations-js#readme

	

Resources
	

Rachel	Nabors	has	an	updated	list	of	resources	on	the	Web	Animation	API .	To	
join	the	unofficial	conversation,	look	for	the	#waapi#waapi	hash	tag	wherever	you	
prefer	to	communicate.

	

Web	Animations 	(API	specification),	W3C

	

Web	Animations	polyfill 	and	Web	Animation	Next 	(the	next	incarnation	

of	the	polyfill)	GreenSock 	animation	library	Velocity ,	a	performant	
.animate().animate()	replacement	for	jQuery

	

JOIN	THE	CONVERSATION
	

Official	mailing	list:	email	public-fx@w3.org ,	starting	the	subject	line	
with	[webanimations]	…[webanimations]	…

	

IRC:	irc.w3.org#webanimations

	

28

• 29

• 30 31

• 32 • 33

• 34

• 35

http://rachelnabors.com/waapi/
http://w3c.github.io/web-animations/
https://github.com/web-animations/web-animations-js
https://github.com/web-animations/web-animations-next
http://greensock.com/
http://julian.com/research/velocity/
mailto:public-fx@w3.org
http://irc.w3.org#webanimations

Everywhere	else:	use	the	hash	tag	#waapi#waapi	and	engage	with	the	community

	

MAKE	A	DIFFERENCE
	

People	who	have	some	familiarity	with	C++	coding	can	help	implement	the	API	
in	Firefox .	Brian	Birtles 	might	even	mentor	you!	And	Mozilla	is	always	
looking	for	people	to	help	write	documentation	on	MDN .

	

Minor	corrections	to	the	specification	(grammar,	spelling,	inconsistencies,	etc.)	
can	be	submitted	as	pull	requests	on	GitHub .

	

PEOPLE	TO	FOLLOW	ON	TWITTER
	

Brian	Birtles ,	a	principal	author	of	the	specification	and	with	Mozilla	

Japan	Alex	Danilo ,	Google	platform	team	member	and	coauthor	Tab	

Atkins	—	Googler ,	coauthor	and	contributor	to	the	CSS	specification	Jack	
Doyle ,	member	of	GreenSock	and	GSAP

	

Rachel	Nabors ,	head	of	animation	think	tank	Tin	Magpie 	❧

	
	

•

36 37

38

39

• 40

• 41 •
42 •

43

• 44 45

https://developer.mozilla.org/en-US/docs/Introduction
https://twitter.com/brianskold
https://developer.mozilla.org/en-US/
https://github.com/w3c/web-animations
http://twitter.com/brianskold
http://twitter.com/alexanderdanilo
http://twitter.com/tabatkins
http://twitter.com/greensock
http://twitter.com/rachelnabors
http://tinmagpie.com/

	

—

	

1. http://www.slideshare.net/CrowChick/animation-and-the-future-of-ux-33573726

	

2. https://smartech.gatech.edu/bitstream/handle/1853/3627/93-17.pdf

	

3. https://www.flinto.com/

	

4. http://www.mitya-app.com/

	

5. http://www.google.com/design/spec/animation/authentic-motion.html

	

6. http://codepen.io/rachelnabors/full/rCost

	

7. http://codepen.io/collection/HtAne/

	

8. http://tympanus.net/Development/SimpleDropDownEffects/

	

9. https://docs.angularjs.org/api/ngAnimate

	

10. http://greensock.com/

	

http://www.slideshare.net/CrowChick/animation-and-the-future-of-ux-33573726
https://smartech.gatech.edu/bitstream/handle/1853/3627/93-17.pdf
https://www.flinto.com/
http://www.mitya-app.com/
http://www.google.com/design/spec/animation/authentic-motion.html
http://codepen.io/rachelnabors/full/rCost
http://codepen.io/collection/HtAne/
http://tympanus.net/Development/SimpleDropDownEffects/
https://docs.angularjs.org/api/ngAnimate
http://greensock.com/

11. http://julian.com/research/velocity/

	

12. https://www.apple.com/hotnews/thoughts-on-flash/

	

13. http://dirkschulze.github.io/specs/motion-1/

	

14. https://github.com/webanimations/webanimations-js#sequencing-and-synchronizing-animations

	

15. https://github.com/webanimations/webanimations-js#controlling-the-animation-timing

	

16. https://github.com/webanimations/webanimations-js#playing-animations

	

17. http://codepen.io/rachelnabors/pen/zxYexJ/

	

18. http://codepen.io/rachelnabors/pen/zxYexJ/

	

19. https://status.modern.ie/webanimationsjavascriptapi?term=animations

	

20. https://developer.amazon.com/appsandservices/solutions/platforms/webapps

	

21. https://github.com/webanimations/webanimations-js

	

22. https://github.com/webanimations/webanimations-next

http://julian.com/research/velocity/
https://www.apple.com/hotnews/thoughts-on-flash/
http://dirkschulze.github.io/specs/motion-1/
https://github.com/web-animations/web-animations-js#sequencing-and-synchronizing-animations
https://github.com/web-animations/web-animations-js#controlling-the-animation-timing
https://github.com/web-animations/web-animations-js#playing-animations
http://codepen.io/rachelnabors/pen/zxYexJ/
http://codepen.io/rachelnabors/pen/zxYexJ/
https://status.modern.ie/webanimationsjavascriptapi?term=animations
https://developer.amazon.com/appsandservices/solutions/platforms/webapps
https://github.com/web-animations/web-animations-js
https://github.com/web-animations/web-animations-next

	

23. https://www.polymer-project.org/platform/webanimations.html

	

24. https://dev.opera.com/articles/css-will-change-property/

	

25. http://src.chromium.org/viewvc/blink?view=revision&revision=183847

	

26. http://w3c.github.io/webanimations/

	

27. https://github.com/webanimations/webanimations-js#readme

	

28. http://rachelnabors.com/waapi/

	

29. http://w3c.github.io/webanimations/

	

30. https://github.com/webanimations/webanimations-js

	

31. https://github.com/webanimations/webanimations-next

	

32. http://greensock.com/

	

33. http://julian.com/research/velocity/

	

https://www.polymer-project.org/platform/web-animations.html
https://dev.opera.com/articles/css-will-change-property/
http://src.chromium.org/viewvc/blink?view=revision&revision=183847
http://w3c.github.io/web-animations/
https://github.com/web-animations/web-animations-js#readme
http://rachelnabors.com/waapi/
http://w3c.github.io/web-animations/
https://github.com/web-animations/web-animations-js
https://github.com/web-animations/web-animations-next
http://greensock.com/
http://julian.com/research/velocity/

34. mailto:public-fx@w3.org

	

35. http://irc.w3.org#webanimations

	

36. https://developer.mozilla.org/en-US/docs/Introduction

	

37. https://twitter.com/brianskold

	

38. https://developer.mozilla.org/en-US/

	

39. https://github.com/w3c/webanimations

	

40. http://twitter.com/brianskold

	

41. http://twitter.com/alexanderdanilo

	

42. http://twitter.com/tabatkins

	

43. http://twitter.com/greensock

	

44. http://twitter.com/rachelnabors

	

45. http://tinmagpie.com/

mailto:public-fx@w3.org
http://irc.w3.org#webanimations
https://developer.mozilla.org/en-US/docs/Introduction
https://twitter.com/brianskold
https://developer.mozilla.org/en-US/
https://github.com/w3c/web-animations
http://twitter.com/brianskold
http://twitter.com/alexanderdanilo
http://twitter.com/tabatkins
http://twitter.com/greensock
http://twitter.com/rachelnabors
http://tinmagpie.com/

	

	

A	Quick	Look	Into	The	Math	Of	
Animations	With	JavaScript
BY	CHRISTIAN	HEILMANN	❧

	

In	school,	I	hated	math.	It	was	a	dire,	dry	and	boring	thing	with	stuffy	old	books
and	very	theoretical	problems.	Even	worse,	a	lot	of	the	tasks	were	repetitive,
with	a	simple	logical	change	in	every	iteration	(dividing	numbers	by	hand,
differentials,	etc.).	It	was	exactly	the	reason	why	we	invented	computers.	Suffice
it	to	say,	a	lot	of	my	math	homework	was	actually	done	by	my	trusty
Commodore	64	and	some	lines	of	Basic,	with	me	just	copying	the	results	later
on.

	

These	tools	and	the	few	geometry	lessons	I	had	gave	me	the	time	and	inspiration
to	make	math	interesting	for	myself.	I	did	this	first	and	foremost	by	creating
visual	effects	that	followed	mathematical	rules	in	demos,	intros	and	other
seemingly	pointless	things.

	

There	is	a	lot	of	math	in	the	visual	things	we	do,	even	if	we	don’t	realize	it.	If	
you	want	to	make	something	look	natural	and	move	naturally,	you	need	to	add	a	
bit	of	physics	and	rounding	to	it.	Nature	doesn’t	work	in	right	angles	or	linear	
acceleration.	This	is	why	zombies	in	movies	are	so	creepy.	This	was	covered	on	
Smashing	Magazine	before	in	relation	to	CSS	animation ,	but	today	let’s	go	a	bit	
deeper	and	look	at	the	simple	math	behind	the	smooth	looks.

	

1

http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/

Going	From	0	To	1	Without	Being	Boring
	

If	you’ve	just	started	programming	and	are	asked	to	go	from	0	to	1	with	a	few	
steps	in	between,	you	would	probably	go	for	a	forfor	loop:

	
forfor		((i		i	==		00;;	i		i	<<==		11;;	i		i	++==		0.10.1))		{{

		x			x	==	i	i;;

		y			y	==	i	i;;

……

}}

	

This	would	result	in	a	line	on	a	graph	that	is	45	degrees.	Nothing	in	nature
moves	with	this	precision:

	

	

A	simple	way	to	make	this	movement	a	bit	more	natural	would	be	to	simply
multiply	the	value	by	itself:

multiply	the	value	by	itself:

	
forfor		((i		i	==		00;;	i		i	<<==		11;;	i		i	++==		0.10.1))		{{

		x			x	==	i	i;;

		y			y	==	i		i	**	i	i;;

}}

	

This	means	that	0.10.1	is	0.010.01,	0.20.2	is	0.040.04,	0.30.3	is	0.090.09,	0.40.4	is	0.160.16,	0.50.5	is	0.250.25	
and	so	on.	The	result	is	a	curve	that	starts	flat	and	then	gets	steeper	towards	the	
end:

	

	

You	can	make	this	even	more	pronounced	by	continuing	to	multiply	or	by	using	
the	“to	the	power	of”	Math.pow()Math.pow()	function:

	
forfor		((i		i	==		00;;	i		i	<<==		11;;	i		i	++==		0.10.1))		{{

		x			x	==	i	i;;

		y			y	==	Math	Math..powpow((i	i,,		44));;

}}

	

	

This	is	one	of	the	tricks	of	the	easing	functions	used	in	libraries	such	as	jQuery
and	YUI,	as	well	as	in	CSS	transitions	and	animations	in	modern	browsers.

	

You	can	use	this	the	same	way,	but	there	is	an	even	simpler	option	for	getting	a
value	between	0	and	1	that	follows	a	natural	motion.

	

Not	A	Sin,	Just	A	Natural	Motion
	

Sine	waves 	are	probably	the	best	thing	ever	for	smooth	animation.	They	happen	2

http://en.wikipedia.org/wiki/Sine_wave

in	nature:	witness	a	spring	with	a	weight	on	it,	ocean	waves,	sound	and	light.	In	
our	case,	we	want	to	move	from	0	to	1	smoothly.

	

To	create	a	movement	that	goes	from	0	to	1	and	back	to	0	smoothly,	we	can	use
a	sine	wave	that	goes	from	0	to	π	in	a	few	steps.	The	full	sine	wave	going	from	0
to	π	×	2	(i.e.	a	whole	circle)	would	result	in	values	from	-1	to	1,	and	we	don’t
want	that	(yet).

	
varvar	counter		counter	==		00;;

//	100	iterations//	100	iterations

varvar	increase		increase	==	Math	Math..PI	PI	//		100100;;

forfor		((i		i	==		00;;	i		i	<<==		11;;	i		i	++==		0.010.01))		{{

		x			x	==	i	i;;

		y			y	==	Math	Math..sinsin((countercounter));;

		counter			counter	++==	increase	increase;;

}}

	

	

A	quick	aside	on	numbers	for	sine	and	cosine:	Both	Math.sin()Math.sin()	and	
Math.cos()Math.cos()	take	as	the	parameter	an	angle	that	should	be	in	radians .	As	
humans,	however,	degrees	ranging	from	0	to	360	are	much	easier	to	read.	That’s	
why	you	can	and	should	convert	between	them	with	this	simple	formula:

	
varvar	toRadian		toRadian	==	Math	Math..PI	PI	//		180180;;

varvar	toDegree		toDegree	==		180180		//	Math	Math..PIPI;;

varvar	angle		angle	==		3030;;

varvar	angleInRadians		angleInRadians	==	angle		angle	**	toRadian	toRadian;;

varvar	angleInDegrees		angleInDegrees	==	angleInRadians		angleInRadians	**	toDegree	toDegree;;

	

Back	to	our	sine	waves.	You	can	play	with	this	a	lot.	For	example,	you	could	use
the	absolute	value	of	a	full	2	×	π	loop:

	
varvar	counter		counter	==		00;;

//	100	iterations//	100	iterations

varvar	increase		increase	==	Math	Math..PI	PI	**		22		//		100100;;

forfor		((i		i	==		00;;	i		i	<<==		11;;	i		i	++==		0.010.01))		{{

		x			x	==	i	i;;

		y			y	==	Math	Math..absabs((Math	Math..sinsin((counter		counter))));;

		counter			counter	++==	increase	increase;;

}}

	

3

http://en.wikipedia.org/wiki/Radian

	

But	again,	this	looks	dirty.	If	you	want	the	full	up	and	down,	without	a	break	in
the	middle,	then	you	need	to	shift	the	values.	You	have	to	half	the	sine	and	then
add	0.5	to	it:

	
varvar	counter		counter	==		00;;

//	100	iterations//	100	iterations

varvar	increase		increase	==	Math	Math..PI	PI	**		22		//		100100;;

forfor		((i		i	==		00;;	i		i	<<==		11;;	i		i	++==		0.010.01))		{{

		x			x	==	i	i;;

		y			y	==	Math	Math..sinsin((counter		counter))		//		22		++		0.50.5;;

		counter			counter	++==	increase	increase;;

}}

	

	

So,	how	can	you	use	this?	Having	a	function	that	returns	-1	to	1	to	whatever	you
feed	it	can	be	very	cool.	All	you	need	to	do	is	multiply	it	by	the	values	that	you
want	and	add	an	offset	to	avoid	negative	numbers.

	

For	example,	check	out	this	sine	movement	demo .

	

Looks	neat,	doesn’t	it?	A	lot	of	the	trickery	is	already	in	the	CSS:

	
.stage	.stage	{{

				widthwidth::200px200px;;

				heightheight::200px200px;;

				marginmargin::2em2em;;

				positionposition::relativerelative;;

				backgroundbackground::#6cf#6cf;;

				overflowoverflow::hiddenhidden;;

}}

4

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/sinejump.html

.stage	div	.stage	div	{{

				line-heightline-height::40px40px;;

				widthwidth::100%100%;;

				text-aligntext-align::centercenter;;

				backgroundbackground::#369#369;;

				colorcolor::#fff#fff;;

				font-weightfont-weight::boldbold;;

				positionposition::absoluteabsolute;;

}}

	

The	stagestage	element	has	a	fixed	dimension	and	is	positioned	relative.	This	means	
that	everything	that	is	positioned	absolutely	inside	it	will	be	relative	to	the	
element	itself.

	

The	div	inside	the	stage	is	40	pixels	high	and	positioned	absolutely.	Now,	all	we
need	to	do	is	move	the	div	with	JavaScript	in	a	sine	wave:

	
varvar	banner		banner	==	document	document..querySelectorquerySelector(('.stage	div''.stage	div')),,

				start					start	==		00;;

functionfunction	sine	sine(()){{

		banner		banner..stylestyle..top	top	==		5050		**	Math	Math..sinsin((start		start))		++		8080		++		'px''px';;

		start			start	++==		0.050.05;;

}}

windowwindow..setIntervalsetInterval((sine	sine,,		10001000//3030));;

	

The	start	value	changes	constantly,	and	with	Math.sin()Math.sin()	we	get	a	nice	wave	
movement.	We	multiply	this	by	50	to	get	a	wider	wave,	and	we	add	80	pixels	to	
center	it	in	the	stage	element.	Yes,	the	element	is	200	pixels	high	and	100	is	half	

of	that,	but	because	the	banner	is	40	pixels	high,	we	need	to	subtract	half	of	that	
to	center	it.

	

Right	now,	this	is	a	simple	up-and-down	movement.	Nothing	stops	you,	though,
from	making	it	more	interesting.	The	multiplying	factor	of	50,	for	example,
could	be	a	sine	wave	itself	with	a	different	value:

	
varvar	banner		banner	==	document	document..querySelectorquerySelector(('.stage	div''.stage	div')),,

				start					start	==		00,,

				multiplier					multiplier	==		00;;

functionfunction	sine	sine(()){{

		multiplier			multiplier	==		5050		**	Math	Math..sinsin((start		start	**		22));;

		banner		banner..stylestyle..top	top	==	multiplier		multiplier	**	Math	Math..sinsin((start		start))		++		8080		++		'px''px';;

		start			start	++==		0.050.05;;

}}

windowwindow..setIntervalsetInterval((sine	sine,,		10001000//3030));;

	

The	result	of	this 	is	a	banner	that	seems	to	tentatively	move	up	and	down.	Back	
in	the	day	and	on	the	very	slow	Commodore	64,	calculating	the	sine	wave	live	
was	too	slow.	Instead,	we	had	tools	to	generate	sine	tables	(arrays,	if	you	will),	
and	we	plotted	those	directly.	One	of	the	tools	for	creating	great	sine	waves	so	
that	you	could	have	bouncing	scroll	texts	was	the	Wix	Bouncer:

	

5

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/growingsinejump.html

	

Circles	In	The	Sand,	Round	And	Round…
	

Circular	motion	is	a	thing	of	beauty.	It	pleases	the	eye,	reminds	us	of	spinning
wheels	and	the	earth	we	stand	on,	and	in	general	has	a	“this	is	not	computer
stuff”	feel	to	it.	The	math	of	plotting	something	on	a	circle	is	not	hard.

	

It	goes	back	to	Pythagoras ,	who,	as	rumor	has	it,	drew	a	lot	of	circles	in	the	
sand	until	he	found	his	famous	theorem .	If	you	want	to	use	all	the	good	stuff	
that	comes	from	this	theorem,	then	try	to	find	a	triangle	with	a	right	angle.	If	this	
triangle’s	hypothenuse	is	1,	then	you	can	easily	calculate	the	horizontal	leg	as	
the	cosine	of	the	angle	and	the	vertical	leg	as	the	sine	of	the	angle:

	

6

7

http://en.wikipedia.org/wiki/Pythagoras
http://en.wikipedia.org/wiki/Pythagorean_theorem

	

How	is	this	relevant	to	a	circle?	Well,	it	is	pretty	simple	to	find	a	right-angle
triangle	in	a	circle	to	every	point	of	it:

	

	

This	means	that	if	you	want	to	plot	something	on	a	circle	(or	draw	one),	you	can	

do	it	with	a	loop	and	sine	and	cosine.	A	full	circle	is	360°,	or	2	×	π	in	radians.	
We	could	have	a	go	at	it — but	first,	some	plotting	code	needs	to	be	done.

	

A	Quick	DOM	Plotting	Routine
	

Normally,	my	weapon	of	choice	here	would	be	canvas,	but	in	order	to	play	nice
with	older	browsers,	let’s	do	it	in	plain	DOM.	The	following	helper	function
adds	div	elements	to	a	stage	element	and	allows	us	to	position	them,	change	their
dimensions,	set	their	color,	change	their	content	and	rotate	them	without	having
to	go	through	the	annoying	style	settings	on	DOM	elements.

	
Plot	Plot	==		functionfunction		((stage		stage))		{{

		this		this..setDimensions	setDimensions	==		functionfunction((x	x,,	y		y))		{{

				this				this..elmelm..stylestyle..width	width	==	x		x	++		'px''px';;

				this				this..elmelm..stylestyle..height	height	==	y		y	++		'px''px';;

				this				this..width	width	==	x	x;;

				this				this..height	height	==	y	y;;

				}}

		this		this..position	position	==		functionfunction((x	x,,	y		y))		{{

								varvar	xoffset		xoffset	==	arguments	arguments[[22]]		??		00		::	this	this..width	width	//		22;;

								varvar	yoffset		yoffset	==	arguments	arguments[[22]]		??		00		::	this	this..height	height	//		22;;

				this				this..elmelm..stylestyle..left	left	==		((x	x	--	xoffset	xoffset))		++		'px''px';;

				this				this..elmelm..stylestyle..top	top	==		((y	y	--	yoffset	yoffset))		++		'px''px';;

				this				this..x	x	==	x	x;;

				this				this..y	y	==	y	y;;

				}};;

		this		this..setbackground	setbackground	==		functionfunction((col		col))		{{

				this				this..elmelm..stylestyle..background	background	==	col	col;;

				}}

		this		this..kill	kill	==		functionfunction(())		{{

				stage				stage..removeChildremoveChild((this	this..elm	elm));;

				}}

		this		this..rotate	rotate	==		functionfunction((str		str))		{{

				this				this..elmelm..stylestyle..webkitTransform	webkitTransform	==	this	this..elmelm..stylestyle..MozTransform	MozTransform	==

				this				this..elmelm..stylestyle..OTransform	OTransform	==	this	this..elmelm..stylestyle..transform	transform	==

								'rotate(''rotate('++strstr++')'')';;

				}}

		this		this..content	content	==		functionfunction((content		content))		{{

				this				this..elmelm..innerHTML	innerHTML	==	content	content;;

				}}

		this		this..round	round	==		functionfunction((round		round))		{{

				this				this..elmelm..stylestyle..borderRadius	borderRadius	==	round		round	??		'50%/50%''50%/50%'		::		'''';;

				}}

		this		this..elm	elm	==	document	document..createElementcreateElement(('div''div'));;

		this		this..elmelm..stylestyle..position	position	==		'absolute''absolute';;

		stage		stage..appendChildappendChild((this	this..elm	elm));;

}};;

	

The	only	things	that	might	be	new	here	are	the	transformation	with	different	
browser	prefixes	and	the	positioning.	People	often	make	the	mistake	of	creating	
a	div	with	the	dimensions	ww	and	hh	and	then	set	it	to	xx	and	yy	on	the	screen.	This	
means	you	will	always	have	to	deal	with	the	offset	of	the	height	and	width.	By	
subtracting	half	the	width	and	height	before	positioning	the	div,	you	really	set	it	
where	you	want	it — regardless	of	the	dimensions.	Here’s	a	proof:

	

	

Now,	let’s	use	that	to	plot	10	rectangles	in	a	circle,	shall	we?

	

	
varvar	stage		stage	==	document	document..querySelectorquerySelector(('.stage''.stage')),,

				plots					plots	==		1010;;

				increase					increase	==	Math	Math..PI	PI	**		22		//	plots	plots,,

				angle					angle	==		00,,

				x					x	==		00,,

				y					y	==		00;;

forfor((varvar	i		i	==		00;;	i		i	<<	plots	plots;;	i	i++++))		{{

				varvar	p		p	==		newnew	Plot	Plot((stage		stage));;

		p		p..setBackgroundsetBackground(('green''green'));;

		p		p..setDimensionssetDimensions((4040,,		4040));;

		x			x	==		100100		**	Math	Math..coscos((angle		angle))		++		200200;;

		y			y	==		100100		**	Math	Math..sinsin((angle		angle))		++		200200;;

		p		p..positionposition((x	x,,	y		y));;

		angle			angle	++==	increase	increase;;

}}

	

We	want	10	things	in	a	circle,	so	we	need	to	find	the	angle	that	we	want	to	put	
them	at.	A	full	circle	is	two	times	Math.PIMath.PI,	so	all	we	need	to	do	is	divide	this.	
The	x	and	y	position	of	our	rectangles	can	be	calculated	by	the	angle	we	want	
them	at.	The	x	is	the	cosine,	and	the	y	is	the	sine,	as	explained	earlier	in	the	bit	
on	Pythagoras.	All	we	need	to	do,	then,	is	center	the	circle	that	we’re	painting	in	
the	stage	(200,200200,200	is	the	center	of	the	stage),	and	we	are	done.	We’ve	painted	a	
circle	with	a	radius	of	100	pixels	on	the	canvas	in	10	steps.

	

The	problem	is	that	this	looks	terrible.	If	we	really	want	to	plot	things	on	a	
circle,	then	their	angles	should	also	point	to	the	center,	right?	For	this,	we	need	
to	calculate	the	tangent	of	the	right-angle	square,	as	explained	in	this	charming	
“Math	is	fun”	page .	In	JavaScript,	we	can	use	Math.atan2()Math.atan2() 	as	a	shortcut.	The	
result	looks	much	better:

	

8 9

http://www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan2

	
varvar	stage		stage	==	document	document..querySelectorquerySelector(('.stage''.stage')),,

				plots					plots	==		1010;;

				increase					increase	==	Math	Math..PI	PI	**		22		//	plots	plots,,

				angle					angle	==		00,,

				x					x	==		00,,

				y					y	==		00;;

forfor((varvar	i		i	==		00;;	i		i	<<	plots	plots;;	i	i++++))		{{

				varvar	p		p	==		newnew	Plot	Plot((stage		stage));;

		p		p..setBackgroundsetBackground(('green''green'));;

		p		p..setDimensionssetDimensions((4040,,		4040));;

		x			x	==		100100		**	Math	Math..coscos((angle		angle))		++		200200;;

		y			y	==		100100		**	Math	Math..sinsin((angle		angle))		++		200200;;

		p		p..rotaterotate((Math	Math..atan2atan2((y		y	--		200200,,	x		x	--		200200))		++		'rad''rad'));;

		p		p..positionposition((x	x,,	y		y));;

		angle			angle	++==	increase	increase;;

}}

	

Notice	that	the	rotate	transformation	in	CSS	helps	us	heaps	in	this	case.	
Otherwise,	the	math	to	rotate	our	rectangles	would	be	much	less	fun.	CSS	

transformations	also	take	radians	and	degrees	as	their	value.	In	this	case,	we	use	
radrad;	if	you	want	to	rotate	with	degrees,	simply	use	degdeg	as	the	value.

	

How	about	animating	the	circle	now?	Well,	the	first	thing	to	do	is	change	the	
script	a	bit,	because	we	don’t	want	to	have	to	keep	creating	new	plots.	Other	
than	that,	all	we	need	to	do	to	rotate	the	circle	is	to	keep	increasing	the	start	
angle :

	
varvar	stage		stage	==	document	document..querySelectorquerySelector(('.stage''.stage')),,

				plots					plots	==		1010;;

				increase					increase	==	Math	Math..PI	PI	**		22		//	plots	plots,,

				angle					angle	==		00,,

				x					x	==		00,,

				y					y	==		00,,

				plotcache					plotcache	==		[[]];;

forfor((varvar	i		i	==		00;;	i		i	<<	plots	plots;;	i	i++++))		{{

				varvar	p		p	==		newnew	Plot	Plot((stage		stage));;

		p		p..setBackgroundsetBackground(('green''green'));;

		p		p..setDimensionssetDimensions((4040,,		4040));;

		plotcache		plotcache..pushpush((p		p));;

}}

functionfunction	rotate	rotate(()){{

				forfor((varvar	i		i	==		00;;	i		i	<<	plots	plots;;	i	i++++))		{{

				x					x	==		100100		**	Math	Math..coscos((angle		angle))		++		200200;;

				y					y	==		100100		**	Math	Math..sinsin((angle		angle))		++		200200;;

				plotcache				plotcache[[i		i]]..rotaterotate((Math	Math..atan2atan2((y		y	--		200200,,	x		x	--		200200))		++		'rad''rad'		

));;

				plotcache				plotcache[[i		i]]..positionposition((x	x,,	y		y));;

				angle					angle	++==	increase	increase;;

				}}

		angle			angle	++==		0.060.06;;

10

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/rotatingcircle.html

}}

setIntervalsetInterval((rotate	rotate,,		10001000//3030));;

	

Want	more?	How	about	a	rotating	text	message 	based	on	this?	The	tricky	thing	
about	this	is	that	we	also	need	to	turn	the	characters	90°	on	each	iteration:

	

	
varvar	stage		stage	==	document	document..querySelectorquerySelector(('.stage''.stage')),,

				message					message	==		'Smashing	Magazine	''Smashing	Magazine	'..toUpperCasetoUpperCase(()),,

				plots					plots	==	message	message..lengthlength;;

				increase					increase	==	Math	Math..PI	PI	**		22		//	plots	plots,,

				angle					angle	==		--MathMath..PIPI,,

				turnangle					turnangle	==		00,,

				x					x	==		00,,

				y					y	==		00,,

				plotcache					plotcache	==		[[]];;

forfor((varvar	i		i	==		00;;	i		i	<<	plots	plots;;	i	i++++))		{{

				varvar	p		p	==		newnew	Plot	Plot((stage		stage));;

11

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/rotatingmessage.html

		p		p..contentcontent((message	message..substrsubstr((ii,,11))));;

		p		p..setDimensionssetDimensions((4040,,		4040));;

		plotcache		plotcache..pushpush((p		p));;

}}

functionfunction	rotate	rotate(()){{

				forfor((varvar	i		i	==		00;;	i		i	<<	plots	plots;;	i	i++++))		{{

				x					x	==		100100		**	Math	Math..coscos((angle		angle))		++		200200;;

				y					y	==		100100		**	Math	Math..sinsin((angle		angle))		++		200200;;

								//	rotation	and	rotating	the	text	90	degrees//	rotation	and	rotating	the	text	90	degrees

				turnangle					turnangle	==	Math	Math..atan2atan2((y		y	--		200200,,	x		x	--		200200))		**		180180		//	Math	Math..PI	PI	++		9090		

++		'deg''deg';;

				plotcache				plotcache[[i		i]]..rotaterotate((turnangle		turnangle));;

				plotcache				plotcache[[i		i]]..positionposition((x	x,,	y		y));;

				angle					angle	++==	increase	increase;;

				}}

		angle			angle	++==		0.060.06;;

}}

setIntervalsetInterval((rotate	rotate,,		10001000//4040));;

	

Again,	nothing	here	is	fixed.	You	can	make	the	radius	of	the	circle	change	
constantly ,	as	we	did	with	the	bouncing	banner	message	earlier	(below	is	only	
an	excerpt):

	
multiplier	multiplier	==		8080		**	Math	Math..sinsin((angle		angle));;

forfor((varvar	i		i	==		00;;	i		i	<<	plots	plots;;	i	i++++))		{{

		x			x	==	multiplier		multiplier	**	Math	Math..coscos((angle		angle))		++		200200;;

		y			y	==	multiplier		multiplier	**	Math	Math..sinsin((angle		angle))		++		200200;;

		turnangle			turnangle	==	Math	Math..atan2atan2((y		y	--		200200,,	x		x	--		200200))		**		180180		//	Math	Math..PI	PI	++		9090		++		

'deg''deg';;

		plotcache		plotcache[[i		i]]..rotaterotate((turnangle		turnangle));;

		plotcache		plotcache[[i		i]]..positionposition((x	x,,	y		y));;

		angle			angle	++==	increase	increase;;

}}

12

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/growrotatingmessage.html

angle	angle	++==		0.060.06;;

	

And,	of	course,	you	can	move	the	center	of	the	circle ,	too:

	
rx	rx	==		5050		**	Math	Math..coscos((angle		angle))		++		200200;;

ry	ry	==		5050		**	Math	Math..sinsin((angle		angle))		++		200200;;

forfor((varvar	i		i	==		00;;	i		i	<<	plots	plots;;	i	i++++))		{{

		x			x	==		100100		**	Math	Math..coscos((angle		angle))		++	rx	rx;;

		y			y	==		100100		**	Math	Math..sinsin((angle		angle))		++	ry	ry;;

		turnangle			turnangle	==	Math	Math..atan2atan2((y		y	--	ry	ry,,	x		x	--	rx		rx))		**		180180		//	Math	Math..PI	PI	++		9090		++		

'deg''deg';;

		plotcache		plotcache[[i		i]]..rotaterotate((turnangle		turnangle));;

		plotcache		plotcache[[i		i]]..positionposition((x	x,,	y		y));;

		angle			angle	++==	increase	increase;;

}}

angle	angle	++==		0.060.06;;

	

For	a	final	tip,	how	about	allowing	only	a	certain	range	of	coordinates ?

	
functionfunction	rotate	rotate(())		{{

		rx			rx	==		7070		**	Math	Math..coscos((angle		angle))		++		200200;;

		ry			ry	==		7070		**	Math	Math..sinsin((angle		angle))		++		200200;;

				forfor((varvar	i		i	==		00;;	i		i	<<	plots	plots;;	i	i++++))		{{

				x					x	==		100100		**	Math	Math..coscos((angle		angle))		++	rx	rx;;

				y					y	==		100100		**	Math	Math..sinsin((angle		angle))		++	ry	ry;;

				x					x	==	contain	contain((7070,,		320320,,	x		x));;

				y					y	==	contain	contain((7070,,		320320,,	y		y));;

				turnangle					turnangle	==	Math	Math..atan2atan2((y		y	--	ry	ry,,	x		x	--	rx		rx))		**		180180		//	Math	Math..PI	PI	++		9090		++		

'deg''deg';;

				plotcache				plotcache[[i		i]]..rotaterotate((turnangle		turnangle));;

				plotcache				plotcache[[i		i]]..positionposition((x	x,,	y		y));;

13

14

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/rotaterotatingmessage.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/boxedrotatingmessage.html

				angle					angle	++==	increase	increase;;

				}}

		angle			angle	++==		0.060.06;;

}}

functionfunction	contain	contain((min	min,,	max	max,,	value		value))		{{

				returnreturn	Math	Math..minmin((max	max,,	Math	Math..maxmax((min	min,,	value		value))));;

}}

SUMMARY
	

This	was	just	a	quick	introduction	to	using	exponentials	and	sine	waves	and	to
plotting	things	on	a	circle.	Have	a	go	with	the	code,	and	play	with	the	numbers.
It	is	amazing	how	many	cool	effects	you	can	create	with	a	few	changes	to	the
radius	or	by	multiplying	the	angles.	To	make	it	easier	for	you	to	do	this,	below
are	the	examples	on	JSFiddle	to	play	with:

	

Sine	bouncing	message

	

Double	sine	bouncing	message

	

Offset	issue	with	plotting

	

Distributing	elements	on	a	circle

	

• 15

• 16

• 17

• 18

19

http://jsfiddle.net/codepo8/tgEx6/11/
http://jsfiddle.net/codepo8/tgEx6/2/
http://jsfiddle.net/codepo8/tgEx6/4/
http://jsfiddle.net/codepo8/tgEx6/8/

Distributing	elements	on	a	circle	with	correct	angles

	

Rotating	a	circle	of	boxes

	

Oscillating	rotating	message

	

Rotating	message	in	a	circle	movement

	

Boxed	rotated	message	scroller 	❧

	
	

—

	

1. http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-
examples/

	

2. http://en.wikipedia.org/wiki/Sine_wave

	

3. http://en.wikipedia.org/wiki/Radian

	

4. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/sinejump.html

	

• 19

• 20

• 21

• 22

• 23

http://jsfiddle.net/codepo8/tgEx6/9/
http://jsfiddle.net/codepo8/tgEx6/7/
http://jsfiddle.net/codepo8/tgEx6/10/
http://jsfiddle.net/codepo8/tgEx6/5/
http://jsfiddle.net/codepo8/tgEx6/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://en.wikipedia.org/wiki/Sine_wave
http://en.wikipedia.org/wiki/Radian
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/sinejump.html

	

5. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/growingsinejump.html

	

6. http://en.wikipedia.org/wiki/Pythagoras

	

7. http://en.wikipedia.org/wiki/Pythagorean_theorem

	

8. http://www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html

	

9. https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan2

	

10. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/rotatingcircle.html

	

11. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/rotatingmessage.html

	

12. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/growrotatingmessage.html

	

13. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/rotaterotatingmessage.html

	

14. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/boxedrotatingmessage.html

	

15. http://jsfiddle.net/codepo8/tgEx6/11/

	

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/growingsinejump.html
http://en.wikipedia.org/wiki/Pythagoras
http://en.wikipedia.org/wiki/Pythagorean_theorem
http://www.mathsisfun.com/algebra/trig-finding-angle-right-triangle.html
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Math/atan2
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/rotatingcircle.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/rotatingmessage.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/growrotatingmessage.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/rotaterotatingmessage.html
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2011/09/boxedrotatingmessage.html
http://jsfiddle.net/codepo8/tgEx6/11/

16. http://jsfiddle.net/codepo8/tgEx6/2/

	

17. http://jsfiddle.net/codepo8/tgEx6/4/

	

18. http://jsfiddle.net/codepo8/tgEx6/8/

	

19. http://jsfiddle.net/codepo8/tgEx6/9/

	

20. http://jsfiddle.net/codepo8/tgEx6/7/

	

21. http://jsfiddle.net/codepo8/tgEx6/10/

	

22. http://jsfiddle.net/codepo8/tgEx6/5/

	

23. http://jsfiddle.net/codepo8/tgEx6/

	

	

http://jsfiddle.net/codepo8/tgEx6/2/
http://jsfiddle.net/codepo8/tgEx6/4/
http://jsfiddle.net/codepo8/tgEx6/8/
http://jsfiddle.net/codepo8/tgEx6/9/
http://jsfiddle.net/codepo8/tgEx6/7/
http://jsfiddle.net/codepo8/tgEx6/10/
http://jsfiddle.net/codepo8/tgEx6/5/
http://jsfiddle.net/codepo8/tgEx6/

Animating	Without	jQuery
BY	JULIAN	SHAPIRO	❧

	

There’s	a	false	belief	in	the	web	development	community	that	CSS	animation	is
the	only	performant	way	to	animate	on	the	web.	This	myth	has	coerced	many
developers	to	abandon	JavaScript-based	animation	altogether,	thereby	(1)
forcing	themselves	to	manage	complex	UI	interaction	within	style	sheets,	(2)
locking	themselves	out	of	supporting	Internet	Explorer	8	and	9,	and	(3)	forgoing
the	beautiful	motion	design	physics	that	are	possible	only	with	JavaScript.

	

Reality	check:	JavaScript-based	animation	is	often	as	fast	as	CSS-based	
animation	—	sometimes	even	faster.	CSS	animation	only	appears	to	have	a	leg	
up	because	it’s	typically	compared	to	jQuery’s	$.animate()$.animate(),	which	is,	in	fact,	
very	slow.	However,	JavaScript	animation	libraries	that	bypass	jQuery	deliver	
incredible	performance	by	avoiding	DOM	manipulation	as	much	as	possible.	
These	libraries	can	be	up	to	20	times	faster	than	jQuery.

	

So,	let’s	smash	some	myths,	dive	into	some	real-world	animation	examples	and
improve	our	design	skills	in	the	process.	If	you	love	designing	practical	UI
animations	for	your	projects,	this	article	is	for	you.

	

Why	JavaScript?
	

CSS	animations	are	convenient	when	you	need	to	sprinkle	property	transitions
into	your	style	sheets.	Plus,	they	deliver	fantastic	performance	out	of	the	box	—
without	your	having	to	add	libraries	to	the	page.	However,	when	you	use	CSS
transitions	to	power	rich	motion	design	(the	kind	you	see	in	the	latest	versions	of
iOS	and	Android),	they	become	too	difficult	to	manage	or	their	features	simply
fall	short.

	

Ultimately,	CSS	animations	limit	you	to	what	the	specification	provides.	In
JavaScript,	by	the	very	nature	of	any	programming	language,	you	have	an
infinite	amount	of	logical	control.	JavaScript	animation	engines	leverage	this
fact	to	provide	novel	features	that	let	you	pull	off	some	very	useful	tricks:

	

cross-browser	SVG	support ,

	

physics-based	loader	animations ,

	

timeline	control ,

	

Bezier	translations .

	

Note:	If	you’re	interested	in	learning	more	about	performance,	you	can	read	
Julian	Shapiro’s	“CSS	vs.	JS	Animation:	Which	Is	Faster? ”	and	Jack	Doyle’s	

• 1

• 2

• 3

• 4

5

6

http://codepen.io/sol0mka/full/jpecs/
http://codepen.io/timothyrourke/full/wojke/
http://codepen.io/GreenSock/full/yhEmn/
http://codepen.io/GreenSock/full/LuIJj/
http://davidwalsh.name/css-js-animation

“Myth	Busting:	CSS	Animations	vs.	JavaScript .”	For	performance	demos,	refer	
to	the	performance	pane 	in	Velocity’s	documentation	and	GSAP’s	“Library	
Speed	Comparison ”	demo.

	

Velocity	and	GSAP
	

The	two	most	popular	JavaScript	animation	libraries	are	Velocity.js 	and	
GSAP .	They	both	work	with	and	without 	jQuery.	When	these	libraries	are	
used	alongside	jQuery,	there	is	no	performance	degradation	because	they	
completely	bypass	jQuery’s	animation	stack.

	

If	jQuery	is	present	on	your	page,	you	can	use	Velocity	and	GSAP	just	like	you	
would	jQuery’s	$.animate()$.animate().	For	example,	$element.animate({	opacity:$element.animate({	opacity:		

0.5	});0.5	});	simply	becomes	$element.velocity({	opacity:	0.5	})$element.velocity({	opacity:	0.5	}).

	

These	two	libraries	also	work	when	jQuery	is	not	present	on	the	page.	This
means	that	instead	of	chaining	an	animation	call	onto	a	jQuery	element	object	—
as	just	shown	—	you	would	pass	the	target	element(s)	to	the	animation	call:

	
/*	Working	without	jQuery	*//*	Working	without	jQuery	*/

VelocityVelocity((elementelement,,		{{	opacity	opacity::		0.50.5		}},,		10001000));;	//	Velocity	//	Velocity

TweenMaxTweenMax..toto((elementelement,,		11,,		{{	opacity	opacity::		0.50.5		}}));;	//	GSAP	//	GSAP

	

6

7

8

9

10 11

http://css-tricks.com/myth-busting-css-animations-vs-javascript/
http://velocityjs.org
http://codepen.io/GreenSock/full/srfxA/
http://velocityjs.org
http://greensock.com/gsap/
http://velocityjs.org/#dependencies

As	shown,	Velocity	retains	the	same	syntax	as	jQuery’s	$.animate()$.animate(),	even	
when	it’s	used	without	jQuery;	just	shift	all	arguments	rightward	by	one	position	
to	make	room	for	passing	in	the	targeted	elements	in	the	first	position.

	

GSAP,	in	contrast,	uses	an	object-oriented	API	design,	as	well	as	convenient
static	methods.	So,	you	can	get	full	control	over	animations.

	

In	both	cases,	you’re	no	longer	animating	a	jQuery	element	object,	but	rather	a	
raw	DOM	node.	As	a	reminder,	you	access	raw	DOM	nodes	by	using	
document.getElementByIDdocument.getElementByID,	document.getElementsByTagNamedocument.getElementsByTagName,	
document.getElementsByClassNamedocument.getElementsByClassName	or	document.querySelectorAlldocument.querySelectorAll	(which	
works	similarly	to	jQuery’s	selector	engine).	We’ll	briefly	work	with	these	
functions	in	the	next	section.

	

Working	Without	jQuery
	

(Note:	If	you	need	a	basic	primer	on	working	with	jQuery’s	$.animate()$.animate(),	refer	
to	the	first	few	panes	in	Velocity’s	documentation.)

	

Let’s	explore	querySelectorAllquerySelectorAll	further	because	it	will	likely	be	your	weapon	
of	choice	when	selecting	elements	without	jQuery:

	
documentdocument..querySelectorAllquerySelectorAll(("body""body"));;		//	Get	the	body	element//	Get	the	body	element

12

http://velocityjs.org/#arguments

documentdocument..querySelectorAllquerySelectorAll((".squares"".squares"));;		//	Get	all	elements	with	the//	Get	all	elements	with	the		

"square"	class"square"	class

documentdocument..querySelectorAllquerySelectorAll(("div""div"));;		//	Get	all	divs//	Get	all	divs

documentdocument..querySelectorAllquerySelectorAll(("#main""#main"));;		//	Get	the	element	with	an	id//	Get	the	element	with	an	id		

of	"main"of	"main"

documentdocument..querySelectorAllquerySelectorAll(("#main	div""#main	div"));;		//	Get	the	divs	contained//	Get	the	divs	contained		

by	"main"by	"main"

	

As	shown,	you	simply	pass	querySelectorAllquerySelectorAll	a	CSS	selector	(the	same	
selectors	you	would	use	in	your	style	sheets),	and	it	will	return	all	matched	
elements	in	an	array.	Hence,	you	can	do	this:

	
/*	Get	all	div	elements.	*//*	Get	all	div	elements.	*/

varvar	divs		divs	==	document	document..querySelectorAllquerySelectorAll(("div""div"));;

/*	Animate	all	divs	at	once.	*//*	Animate	all	divs	at	once.	*/

VelocityVelocity((divsdivs,,		{{	opacity	opacity::		0.50.5		}},,		10001000));;	//	Velocity	//	Velocity

TweenMaxTweenMax..toto((divsdivs,,		11,,		{{	opacity	opacity::		0.50.5		}}));;	//	GSAP	//	GSAP

	

Because	we’re	no	longer	attaching	animations	to	jQuery	element	objects,	you
may	be	wondering	how	we	can	chain	animations	back	to	back,	like	this:

	
$element	$element	//	jQuery	element	object//	jQuery	element	object

		 ..velocityvelocity(({{	opacity	opacity::		0.50.5		}},,		10001000))

		 ..velocityvelocity(({{	opacity	opacity::		11		}},,		10001000));;

	

In	Velocity,	you	simply	call	animations	one	after	another:

	

/*	These	animations	automatically	chain	onto	one	another.	*//*	These	animations	automatically	chain	onto	one	another.	*/

VelocityVelocity((elementelement,,		{{	opacity	opacity::		0.50.5		}},,		10001000));;

VelocityVelocity((elementelement,,		{{	opacity	opacity::		11		}},,		10001000));;

	

Animating	this	way	has	no	performance	drawback	(as	long	as	you	cache	the	
element	being	animated	to	a	variable,	instead	of	repeatedly	doing	
querySelectorAllquerySelectorAll	lookups	for	the	same	element).

	

(Tip:	With	Velocity’s	UI	pack,	you	can	create	your	own	multi-call	animations	
and	give	them	custom	names	that	you	can	later	reference	as	Velocity’s	first	
argument.	See	Velocity’s	UI	Pack	documentation 	for	more	information.)

	

This	one-Velocity-call-at-a-time	process	has	a	huge	benefit:	If	you’re	using	
promises 	with	your	Velocity	animations,	then	each	Velocity	call	will	return	an	
actionable	promise	object.	You	can	learn	more	about	working	with	promises	in	
Jake	Archibald’s	article .	They’re	incredibly	powerful.

	

In	the	case	of	GSAP,	its	expressive	object-oriented	API	allows	you	to	place	your
animations	in	a	timeline,	giving	you	control	over	scheduling	and
synchronization.	You’re	not	limited	to	one-after-the-other	chained	animations;
you	can	nest	timelines,	make	animations	overlap,	etc:

	
varvar	tl		tl	==		newnew	TimelineMax	TimelineMax(());;

/*	GSAP	tweens	chain	by	default,	but	you	can	specify	exact/*	GSAP	tweens	chain	by	default,	but	you	can	specify	exact		

insertion	points	in	the	timeline,	including	relative	offsets.	*/insertion	points	in	the	timeline,	including	relative	offsets.	*/

tltl

13

14

15

http://velocityjs.org/#uiPack
http://velocityjs.org/#promises
http://www.html5rocks.com/en/tutorials/es6/promises/

				..toto((elementelement,,		11,,		{{	opacity	opacity::		0.50.5		}}))

				..toto((elementelement,,		11,,		{{	opacity	opacity::		11		}}));;

JavaScript	Awesomeness:	Workflow
	

Animation	is	inherently	an	experimental	process	in	which	you	need	to	play	with
timing	and	easings	to	get	exactly	the	feel	that	your	app	needs.	Of	course,	even
once	you	think	a	design	is	perfect,	a	client	will	often	request	non-trivial	changes.
In	these	situations,	a	manageable	workflow	becomes	critical.

	

While	CSS	transitions	are	impressively	easy	to	sprinkle	into	a	project	for	effects
such	as	hovers,	they	become	unmanageable	when	you	attempt	to	sequence	even
moderately	complex	animations.	That’s	why	CSS	provides	keyframe	animations,
which	allow	you	to	group	animation	logic	into	sections.

	

However,	a	core	deficiency	of	the	keyframes	API	is	that	you	must	define
sections	in	percentages,	which	is	unintuitive.	For	example:

	
@keyframes	myAnimation	@keyframes	myAnimation	{{

						00%	%	{{

						opacity						opacity::		00;;

						transform						transform::	scale	scale((00,,		00));;

						}}

						2525%	%	{{

						opacity						opacity::		11;;

						transform						transform::	scale	scale((11,,		11));;

						}}

						5050%	%	{{

						transform						transform::	translate	translate((100px100px,,		00));;

						}}

						100100%	%	{{

						transform						transform::	translate	translate((100px100px,,	100px	100px));;

						}}

}}

#box	#box	{{

			animation			animation::	myAnimation		myAnimation	22..75s75s;;

}}

	

What	happens	if	the	client	asks	you	to	make	the	translateXtranslateX	animation	1	second	
longer?	Yikes.	That	requires	redoing	the	math	and	changing	all	(or	most)	of	the	
percentages.

	

Velocity	has	its	UI	pack 	to	deal	with	multi-animation	complexity,	and	GSAP	
offers	nestable	timelines .	These	features	allow	for	entirely	new	workflow	
possibilities.

	

But	let’s	stop	preaching	about	workflow	and	actually	dive	into	fun	animation
examples.

	

JavaScript	Awesomeness:	Physics
	

Many	powerful	effects	are	achievable	exclusively	via	JavaScript.	Let’s	examine
a	few,	starting	with	physics-based	animation.

16

17

http://velocityjs.org/#uiPack
http://greensock.com/sequence-video

	

The	utility	of	physics	in	motion	design	hits	upon	the	core	principle	of	what
makes	for	a	great	UX:	interfaces	that	flow	naturally	from	the	user’s	input	—	in
other	words,	interfaces	that	adhere	to	how	motion	works	in	the	real	world.

	

GSAP	offers	physics	plugins	that	adapt	to	the	constraints	of	your	UI.	For
example,	the	ThrowPropsPlugin	tracks	the	dynamic	velocity	of	a	user’s	finger	or
mouse,	and	when	the	user	releases,	ThrowPropsPlugin	matches	that
corresponding	velocity	to	naturally	glide	the	element	to	a	stop.	The	resulting
animation	is	a	standard	tween	that	can	be	time-manipulated	(paused,	reversed,
etc.):

	

See	the	Pen	Draggable	(Mini) 	on	CodePen.

	

18

http://codepen.io/GreenSock/pen/f5005e85b22ae5b7d5b1075c488cedde/

Velocity	offers	an	easing	type	based	on	spring	physics.	Typically	with	easing	
options,	you	pass	in	a	named	easing	type;	for	example,	easeease,	ease-in-outease-in-out	or	
easeInOutSineeaseInOutSine.	With	spring	physics,	you	pass	a	two-item	array	consisting	of	
tension	and	friction	values	(in	brackets	below):

	
VelocityVelocity((elementelement,,		{{	left	left::		500500		}},,		[[500500,,		2020]]));;		//	500	tension,	20//	500	tension,	20		

frictionfriction

	

A	higher	tension	(a	default	of	500)	increases	the	total	speed	and	bounciness.	A
lower	friction	(a	default	of	20)	increases	ending	vibration	speed.	By	tweaking
these	values,	you	can	separately	fine-tune	your	animations	to	have	different
personalities.	Try	it	out:

	

19

See	the	Pen	Velocity.js	–	Easing:	Spring	Physics	(Tester) 	on	CodePen.

	

JavaScript	Awesomeness:	Scrolling
	

In	Velocity,	you	can	enable	the	user	to	scroll	the	browser	to	the	edge	of	any	
element	by	passing	in	scrollscroll	as	Velocity’s	first	argument	(instead	of	a	
properties	map).	The	scrollscroll	command	behaves	identically	to	a	standard	
Velocity	call;	it	can	take	options	and	can	be	queued.

	
VelocityVelocity((elementelement,,		"scroll""scroll",,		{{	duration	duration::		10001000		}};;

	

See	the	Pen	Velocity.js	–	Command:	Scroll	w/	Container	Option 	on	CodePen.

	

You	can	also	scroll	elements	within	containers,	and	you	can	scroll	horizontally.	

19

20

21

http://codepen.io/julianshapiro/pen/hyeDg/
http://codepen.io/julianshapiro/pen/kBuEi/

See	Velocity’s	scroll	documentation 	for	further	information.

	

GSAP	has	ScrollToPlugin ,	which	offers	similar	functionality	and	can	
automatically	relinquish	control	when	the	user	interacts	with	the	scroll	bar.

	

JavaScript	Awesomeness:	Reverse
	

Both	Velocity	and	GSAP	have	reverse	commands	that	enable	you	to	animate	an
element	back	to	the	values	prior	to	its	last	animation.

	

In	Velocity,	pass	in	reversereverse	as	Velocity’s	first	argument:

	
//	Reverse	defaults	to	the	last	call’s	options,	which	you	can//	Reverse	defaults	to	the	last	call’s	options,	which	you	can		

extendextend

VelocityVelocity((elementelement,,		"reverse""reverse",,		{{	duration	duration::		500500		}}));;

	

Click	on	the	“JS”	tab	to	see	the	code	that	powers	this	demo:

	

21

22

http://velocityjs.org/#scroll
http://greensock.com/docs/#/HTML5/GSAP/Plugins/ScrollToPlugin/

See	the	Pen	Velocity.js	–	Command:	Reverse 	on	CodePen.

	

In	GSAP,	you	can	retain	a	reference	to	the	animation	object,	then	invoke	its	
reverse()reverse()	method	at	any	time:

	
varvar	tween		tween	==	TweenMax	TweenMax..toto((elementelement,,		11,,		{{opacityopacity::0.50.5}}));;

tweentween..reversereverse(());;

JavaScript	Awesomeness:	Transform	Control
	

With	CSS	animation,	all	transform	components	—	scale,	translation,	rotation
and	skew	—	are	contained	in	a	single	CSS	property	and,	consequently,	cannot	be
animated	independently	using	different	durations,	easings	and	start	times.

	

For	rich	motion	design,	however,	independent	control	is	imperative.	Let’s	look
at	the	dynamic	transform	control	that’s	achievable	only	in	JavaScript.	Click	the
buttons	at	any	point	during	the	animation:

	

23

http://codepen.io/julianshapiro/pen/hBFbc/

	

See	the	Pen	Independent	Transforms 	on	CodePen.

	

Both	Velocity	and	GSAP	allow	you	to	individually	animate	transform
components:

	
//	Velocity//	Velocity

24

http://codepen.io/GreenSock/pen/kingu/

/*	First	animation	*//*	First	animation	*/

VelocityVelocity((elementelement,,		{{	translateX	translateX::		500500		}},,		10001000));;

/*	Trigger	a	second	(concurrent)	animation	after	500	ms	*//*	Trigger	a	second	(concurrent)	animation	after	500	ms	*/

VelocityVelocity((elementelement,,		{{	rotateZ	rotateZ::		4545		}},,		{{	delay	delay::		500500,,	duration	duration::		20002000,,		

queuequeue::		falsefalse		}}));;

//	GSAP//	GSAP

/*	First	animation	*//*	First	animation	*/

TweenMaxTweenMax..toto((elementelement,,		11,,		{{	x	x::		500500		}}));;

/*	Trigger	a	second	(concurrent)	animation	after	500	ms	*//*	Trigger	a	second	(concurrent)	animation	after	500	ms	*/

TweenMaxTweenMax..toto((elementelement,,		22,,		{{	rotation	rotation::		4545,,	delay	delay::		0.50.5		}}));;

Wrapping	Up
	

Compared	to	CSS	animation,	JavaScript	animation	has	better	browser	
support	and	typically	more	features,	and	it	provides	a	more	manageable	
workflow	for	animation	sequences.

	

Animating	in	JavaScript	doesn’t	entail	sacrificing	speed	(or	hardware	
acceleration).	Both	Velocity	and	GSAP	deliver	blistering	speed	and	
hardware	acceleration	under	the	hood.	No	more	messing	around	with	null-null-

transformtransform	hacks.

	

You	don’t	need	to	use	jQuery	to	take	advantage	of	dedicated	JavaScript	
animation	libraries.	However,	if	you	do,	you	will	not	lose	out	on	
performance.

	

•

•

•

FINAL	NOTE
	

Refer	to	Velocity 	and	GSAP’s	documentation 	to	master	JavaScript	animation.	
❧

	
	

—

	

1. http://codepen.io/sol0mka/full/jpecs/

	

2. http://codepen.io/timothyrourke/full/wojke/

	

3. http://codepen.io/GreenSock/full/yhEmn/

	

4. http://codepen.io/GreenSock/full/LuIJj/

	

5. http://davidwalsh.name/css-js-animation

	

6. http://css-tricks.com/myth-busting-css-animations-vs-javascript/

	

7. http://velocityjs.org

	

8. http://codepen.io/GreenSock/full/srfxA/

	

25 26

http://velocityjs.org
http://greensock.com/docs/#/HTML5/GSAP/
http://codepen.io/sol0mka/full/jpecs/
http://codepen.io/timothyrourke/full/wojke/
http://codepen.io/GreenSock/full/yhEmn/
http://codepen.io/GreenSock/full/LuIJj/
http://davidwalsh.name/css-js-animation
http://css-tricks.com/myth-busting-css-animations-vs-javascript/
http://velocityjs.org
http://codepen.io/GreenSock/full/srfxA/

	

9. http://velocityjs.org

	

10. http://greensock.com/gsap/

	

11. http://velocityjs.org/#dependencies

	

12. http://velocityjs.org/#arguments

	

13. http://velocityjs.org/#uiPack

	

14. http://velocityjs.org/#promises

	

15. http://www.html5rocks.com/en/tutorials/es6/promises/

	

16. http://velocityjs.org/#uiPack

	

17. http://greensock.com/sequence-video

	

18. http://codepen.io/GreenSock/pen/f5005e85b22ae5b7d5b1075c488cedde/

	

19. http://codepen.io/julianshapiro/pen/hyeDg/

	

http://velocityjs.org
http://greensock.com/gsap/
http://velocityjs.org/#dependencies
http://velocityjs.org/#arguments
http://velocityjs.org/#uiPack
http://velocityjs.org/#promises
http://www.html5rocks.com/en/tutorials/es6/promises/
http://velocityjs.org/#uiPack
http://greensock.com/sequence-video
http://codepen.io/GreenSock/pen/f5005e85b22ae5b7d5b1075c488cedde/
http://codepen.io/julianshapiro/pen/hyeDg/

20. http://codepen.io/julianshapiro/pen/kBuEi/

	

21. http://velocityjs.org/#scroll

	

22. http://greensock.com/docs/#/HTML5/GSAP/Plugins/ScrollToPlugin/

	

23. http://codepen.io/julianshapiro/pen/hBFbc/

	

24. http://codepen.io/GreenSock/pen/kingu/

	

25. http://velocityjs.org

	

26. http://greensock.com/docs/#/HTML5/GSAP/

	

	

http://codepen.io/julianshapiro/pen/kBuEi/
http://velocityjs.org/#scroll
http://greensock.com/docs/#/HTML5/GSAP/Plugins/ScrollToPlugin/
http://codepen.io/julianshapiro/pen/hBFbc/
http://codepen.io/GreenSock/pen/kingu/
http://velocityjs.org
http://greensock.com/docs/#/HTML5/GSAP/

Faster	UI	Animations	With	Velocity.js
BY	JULIAN	SHAPIRO	❧

	

From	a	motion	design	perspective,	Facebook.com	is	phenomenally	static.	It’s
purposefully	dumbed	down	for	the	broadest	levels	of	compatibility	and	user
comfort.	Facebook’s	iOS	apps,	on	the	other	hand,	are	fluid.	They	prioritize	the
design	of	motion;	they	feel	like	living,	breathing	apps.

	

This	article	serves	to	demonstrate	that	this	dichotomy	does	not	need	to	exist;
websites	can	benefit	from	the	same	level	of	interactive	and	performant	motion
design	found	on	mobile	apps.

	

Before	diving	into	examples,	let’s	first	address	why	motion	design	is	so
beneficial:

	

Improved	feedback	loops
As	a	UI	and	UX	designer,	you	should	use	patterns	as	much	as	possible	since	
users	will	be	subconsciously	looking	for	them.	Responsive	motion	patterns,	
in	particular,	are	the	key	to	pleasurable	interactions:	When	a	button	has	been	
clicked,	do	you	feel	that	it	has	reacted	to	the	pressure	of	your	mouse?	When	
a	file	has	been	saved,	do	you	get	the	strong	sense	that	your	data	has	truly	
been	transferred	and	stored?

	

•

Seamless	content	transitions
Motion	design	allows	you	to	avoid	contextual	breaks;	modals	fading	in	and	
out	(as	opposed	to	switching	pages	entirely)	are	a	popular	example	of	this.

	

Filled	dead	spots
When	users	are	performing	an	unengaging	task	on	your	page,	you	can	raise	
their	level	of	arousal	through	sound,	colors,	and	movement.	Diverting	a	
user’s	attention	is	a	great	way	to	make	a	pot	boil	faster.

	

Aesthetic	flourishes
For	the	same	aesthetic	reasons	that	UI	designers	spend	hours	perfecting	
their	pages’	color	and	font	combinations,	motion	designers	perfect	their	
animations’	transition	and	easing	combinations:	Refined	products	simply	
feel	superior.

	

In	the	examples	below,	we’ll	be	using	Velocity.js 	—	a	popular	animation	
engine	that	drastically	improves	the	speed	of	UI	animation.	(Velocity.js	behaves	
identically	to	jQuery’s	$.animate()$.animate()	function,	while	outperforming	both	jQuery	
animation	and	CSS	animation	libraries.)	In	particular,	this	article	focuses	on	
Velocity.js’	UI	pack ,	which	allows	you	to	quickly	inject	motion	design	into	
your	pages.	You	may	optionally	watch	this	article’s	accompanying	codecast 	(5	
minutes)	for	a	preview	of	what	we’ll	cover.

	

UI	Pack	Overview

•

•

•

1

2

3

http://velocityjs.org
http://velocityjs.org/#uiPack
https://www.youtube.com/watch?v=CdwvR6a39Tg&hd=1

	

After	including	the	UI	pack	(only	1.8	KB	ZIP’ed)	on	your	page,	you’ll	gain
access	to	UI	effects	that	are	organized	into	two	categories:

	

CALLOUTS
	

Callouts	are	effects	that	call	attention	to	an	element	in	order	to	heighten	user
experience,	such	as	shaking	an	element	to	indicate	an	input	error,	flashing	an
element	to	indicate	that	something	has	changed	on	the	page,	or	bouncing	an
element	to	indicate	that	a	message	awaits	the	user.

	

See	the	Pen	Velocity.js	–	UI	Pack:	Callout 	on	CodePen.

	

TRANSITIONS
	

4

http://codepen.io/julianshapiro/pen/Fybjq/

Transitions	are	effects	that	cause	an	element	to	appear	in	or	out	of	view.	Every	
transition	is	associated	with	either	an	“in”	or	“out”	direction.	The	value	of	
transitions	is	in	revealing	and	hiding	content	in	a	way	that’s	visually	richer	than	
merely	animating	an	element’s	opacity.	Here’s	slideUpInslideUpIn,	a	transition	that	
incorporates	a	subtle	slide	effect:

	

See	the	Pen	Velocity.js	–	UI	Pack:	Transition 	on	CodePen.

	

If	you’ve	paid	attention	to	the	evolution	of	iOS’	UI	motion	design,	you’ll	have
noticed	that	over	a	dozen	transition	effects	help	make	iOS’	interface	pleasurable
to	interact	with.	This	diversity	of	transitions	is	what	Velocity.js’	UI	pack	brings
to	everyday	websites.

	

Note	that,	thanks	to	Velocity.js’	performance,	as	well	as	the	optimizations
afforded	by	the	UI	pack,	all	of	the	pack’s	effects	are	100%	ready	for	large-scale
production	use.

	

Let’s	dive	into	some	simple	code	examples.

5

http://codepen.io/julianshapiro/pen/aLhFC/

Let’s	dive	into	some	simple	code	examples.

	

Using	The	UI	Pack
	

Callouts	and	transitions	are	referenced	via	Velocity’s	first	parameter:	Pass	in	an	
effect’s	name	instead	of	passing	in	a	standard	property	map.	For	comparison,	
here’s	the	syntax	of	a	normal	Velocity.js	call,	which	behaves	identically	to	
jQuery’s	$.animate()$.animate():

	
$elements$elements..velocityvelocity(({{	opacity	opacity::		0.50.5		}}));;

	

In	contrast,	below	are	Velocity.js	calls	using	effects	from	the	UI	pack:

	
/*	Shake	an	element.	*//*	Shake	an	element.	*/

$elements$elements..velocityvelocity(("callout.shake""callout.shake"));;

/*	Transition	an	element	into	view	using	slideUp.	*//*	Transition	an	element	into	view	using	slideUp.	*/

$elements$elements..velocityvelocity(("transition.slideUpIn""transition.slideUpIn"));;

	

Just	as	with	normal	Velocity.js	calls,	UI	effects	may	be	chained	onto	each	other
and	may	take	options:

	
/*	Call	the	shake	effect	with	a	2000ms	duration,	then	slide	the/*	Call	the	shake	effect	with	a	2000ms	duration,	then	slide	the		

elements	out	of	view.	*/elements	out	of	view.	*/

$elements$elements

		 ..velocityvelocity(("callout.shake""callout.shake",,		20002000))

		 ..velocityvelocity(("transition.slideDownOut""transition.slideDownOut"));;

	

Effects	from	the	UI	pack	optionally	take	three	unique	options:	staggerstagger,	dragdrag	
and	backwardsbackwards.

	

STAGGER
	

Specify	staggerstagger	in	milliseconds	to	successively	delay	the	animation	of	each	
element	in	a	set	by	the	specified	amount.	(Setting	a	staggerstagger	value	prevents	
elements	from	animating	in	parallel,	which	tends	to	lack	elegance.)

	
/*	Animate	elements	into	view	with	intermittent	delays	of	250ms.	*//*	Animate	elements	into	view	with	intermittent	delays	of	250ms.	*/

$divs$divs..velocityvelocity(("transition.slideLeftIn""transition.slideLeftIn",,		{{	stagger	stagger::		250250		}}));;

	

See	the	Pen	Velocity.js	–	UI	Pack:	Stagger 	on	CodePen.

	

6

http://codepen.io/julianshapiro/pen/mqsnk/

	

DRAG
	

Set	dragdrag	to	truetrue	to	successively	increase	the	animation	duration	of	each	
element	in	a	set.	The	last	element	will	animate	with	a	duration	equal	to	the	
animation’s	original	value,	whereas	the	elements	prior	to	the	last	will	have	their	
duration	values	gradually	approach	the	original	value.

	

The	result	is	a	cross-element	easing	effect.	(If	you’ve	ever	been	wowed	by
motion	typography	demos	made	with	After	Effects,	drag	is	a	key	yet	subtle
component	behind	their	visual	richness.)

	

See	the	Pen	Velocity.js	–	UI	Pack:	Drag 	on	CodePen.

	

BACKWARDS
	

7

http://codepen.io/julianshapiro/pen/lxfie/

	

Set	backwardsbackwards	to	truetrue	to	animate	starting	with	the	last	element	in	a	set.	This	
option	is	ideal	for	an	effect	that	transitions	elements	out	of	view,	because	the	
backwardsbackwards	option	mirrors	the	behavior	of	elements	transitioning	into	view	
(which,	by	default,	animate	in	a	forward	direction,	from	the	first	element	to	the	
last).

	

See	the	Pen	Velocity.js	–	UI	Pack:	Backwards 	on	CodePen.

	

Together,	these	three	options	bring	the	power	of	motion	design	suites	to	the
Web.	When	used	sparingly,	the	results	are	beautiful	—	so	long	as	you	design
with	user	experience	in	mind:

	

Designing	For	UX
	

Spicing	up	a	page	with	motion	design	can	escalate	quickly .	Here	are	a	few	

8

9

http://codepen.io/julianshapiro/pen/fEKsw/
https://www.youtube.com/watch?v=FONN-0uoTHI

considerations	to	keep	in	mind:

	

Make	them	finish	quickly
When	applying	transitions,	developers	often	make	the	mistake	of	letting	
them	run	too	long,	causing	users	to	wait	needlessly.	Never	let	UI	flourishes	
slow	down	the	apparent	speed	of	your	page.	If	you	have	a	lot	of	content	
fading	in,	keep	the	animation’s	total	duration	short.

	

Use	an	appropriate	effect
For	example,	don’t	use	a	playful	bounce	effect	on	a	page	that	features	
formal	content.

	

Use	them	sparingly
Having	transitions	in	every	corner	of	your	page	is	overkill.

	

Avoid	extreme	repetition
Avoid	transitions	of	medium-to-long	duration	in	places	where	they’ll	be	
repeatedly	triggered.

	

Experiment
Find	the	right	duration,	stagger,	drag	and	backwards	combinations	that	will	
produce	the	right	fit	for	each	of	your	individual	animations.

	

•

•

•

•

•

Benefits	Of	JavaScript-Based	Animation
	

Let’s	step	back	and	contextualize	why	powering	these	types	of	UI	transitions	
through	JavaScript	is	a	good	idea	in	the	first	place.	After	all,	up	until	now,	these	
effects	have	been	most	commonly	applied	using	pre-made	CSS	classes	from	
libraries	such	as	Animate.css :

	

Because	the	UI	pack’s	effects	behave	identically	to	standard	animation	calls	
in	Velocity.js,	they	can	be	chained	and	take	options.	(Doing	this	with	raw	
CSS	can	be	cumbersome.)

	

The	effects	have	all	been	optimized	for	performance	(minimal	DOM	
interaction).

	

Elements	animated	via	the	UI	pack	automatically	switch	to	display:	nonedisplay:	none	
after	transitioning	out,	and	back	to	display:	blockdisplay:	block	or	inlineinline	before	
transitioning	in.	(Doing	this	via	CSS	requires	multiple	calls	and	messy	
code.)

	

Velocity.js	doesn’t	leave	your	text	blurry.	If	you’ve	applied	transition	
effects	via	CSS	before,	then	you’ll	know	that	text	can	look	fuzzy	when	
you’re	done	animating	and	haven’t	removed	the	associated	class.	This	
doesn’t	happen	in	Velocity.js	because	its	underlying	engine	completely	
clears	unneeded	transformation	effects	upon	completion	of	an	animation.

10

•

•

•

•

https://github.com/daneden/animate.css

	

The	effects	work	everywhere	but	Internet	Explorer	8,	where	they	gracefully	
fall	back	to	simply	fading	in	and	out.

	

With	all	of	these	benefits,	including	the	effects’	great	performance	across	all
browsers	and	devices	(including	older	mobile	devices),	you	have	no	excuse	to
not	start	experimenting	with	motion	design	on	your	sites.	Enjoy!

	

Note:	Look	through	Velocity.js’	documentation 	to	play	around	with	all	of	the	
UI	pack’s	effects.

	

LINKS
	

Download	Velocity	on	GitHub

	

Velocity	demo	gallery 	❧

	
	

—

	

1. http://velocityjs.org

•

11

• 12

• 13

http://velocityjs.org/#uiPack
https://github.com/julianshapiro/velocity
http://codepen.io/collection/tIjGb/
http://velocityjs.org

	

2. http://velocityjs.org/#uiPack

	

3. https://www.youtube.com/watch?v=CdwvR6a39Tg&hd=1

	

4. http://codepen.io/julianshapiro/pen/Fybjq/

	

5. http://codepen.io/julianshapiro/pen/aLhFC/

	

6. http://codepen.io/julianshapiro/pen/mqsnk/

	

7. http://codepen.io/julianshapiro/pen/lxfie/

	

8. http://codepen.io/julianshapiro/pen/fEKsw/

	

9. https://www.youtube.com/watch?v=FONN-0uoTHI

	

10. https://github.com/daneden/animate.css

	

11. http://velocityjs.org/#uiPack

	

12. https://github.com/julianshapiro/velocity

	

http://velocityjs.org/#uiPack
https://www.youtube.com/watch?v=CdwvR6a39Tg&hd=1
http://codepen.io/julianshapiro/pen/Fybjq/
http://codepen.io/julianshapiro/pen/aLhFC/
http://codepen.io/julianshapiro/pen/mqsnk/
http://codepen.io/julianshapiro/pen/lxfie/
http://codepen.io/julianshapiro/pen/fEKsw/
https://www.youtube.com/watch?v=FONN-0uoTHI
https://github.com/daneden/animate.css
http://velocityjs.org/#uiPack
https://github.com/julianshapiro/velocity

13. http://codepen.io/collection/tIjGb/

	

	

http://codepen.io/collection/tIjGb/

Using	Motion	For	User	Experience	On	
Apps	And	Websites
BY	DREW	THOMAS	❧

	

Digital	experiences	are	emulating	real	life	more	and	more	every	day.	This	may
seem	counterintuitive,	considering	the	hate	that	rains	down	on	skeuomorphic
visual	design,	but	there’s	a	lot	more	to	emulating	real	life	than	aesthetics.
Interface	designers	can	emulate	real-life	physics	and	movement	on	a	digital
screen.	This	type	of	motion	is	becoming	more	common,	which	is	why	it’s
becoming	easier	for	people	to	understand	computers.	We’re	not	getting	better,
the	interfaces	are!

	

A	quick	and	common	example	is	how	iOS	opens	and	closes	apps.	The	transitions
are	very	subtle,	but	they’re	realistic.	Tapping	an	app	icon	doesn’t	just	snap	a	new
app	on	to	the	screen.	Instead,	users	see	the	app	physically	grow	out	of	the	icon.
In	reverse,	pressing	the	home	key	shrinks	the	app	back	into	the	icon.

	

Those	interactions	are	based	on	properties	of	the	real	world.	The	app	appears	to
come	from	somewhere	physical	and	disappear	back	to	that	place.	The	high
quality	and	realistic	transitions	here	go	a	long	way	toward	helping	the	user
understand	what’s	happening	and	why.

	

Opening	an	iOS	app	without	a	transition 	vs.	with	the	transition.

	

In	this	article,	I’ll	cover	a	little	bit	of	the	history	of	motion	on	the	web,	why
that’s	important,	and	what	the	future	of	motion	on	the	web	will	look	like.	(Hint:
motion	is	really	important	for	usability,	and	it’s	changing	everything.)	Then	I’ll
explain	the	CSS	behind	motion	and	how	to	use	motion	well.

	

The	History	Of	Motion	On	The	Web
	

It	was	only	2011	when	all	major	browsers	officially	recognized	CSS	animation,
and	even	now	it	requires	browser	prefixes	to	work	everywhere.	In	large	part,	the
push	for	CSS-driven	animation	was	sparked	by	the	death	of	Flash,	where
“movement	was	common”	is	an	understatement.

	

1 2

http://player.vimeo.com/video/116757193?byline=0&portrait=0&loop=1
http://player.vimeo.com/video/116757194?byline=0&portrait=0&loop=1
http://player.vimeo.com/video/116757193?byline=0&portrait=0&loop=1
http://player.vimeo.com/video/116757194?byline=0&portrait=0&loop=1

	

In	the	days	of	Flash,	some	websites	were	basically	movies.	There	was	a	lot	of
movement	and	animation,	but	most	of	it	was	unnecessary	to	navigate	and	absorb
the	content.	It	was	for	wow	effect	at	best.

	

Flash	was	eventually	forced	out	of	the	picture,	but	designers	and	developers
were	left	without	any	really	good	tools	for	movement	and	animation	on	the	web.

	

JavaScript	and	jQuery	became	really	popular,	and	they	were	huge	leaps	forward,
but	there	are	all	kinds	of	reasons	not	to	rely	on	JavaScript	for	your	site	to
function.	Plus,	JavaScript	animation	was,	and	in	some	ways	still	is,	taxing	for
browsers.	Some	motion	was	possible,	but	it	needed	to	be	used	sparingly.

	

It	wasn’t	long	before	the	CSS3	animation	and	transitions	specs	were	accepted
and	implemented	by	modern	browsers.

	

Designers	now	have	the	ability	to	take	advantage	of	hardware	acceleration	and
can	control	movement	with	their	style	sheets,	further	separating	content	and
visual	markup.	In	addition,	today’s	average	computers	are	more	than	capable	of
rendering	complex	animations,	and	even	phones	are	powerful	enough	to	process
an	impressive	amount	of	movement.

	

The	Future	Of	Motion	On	The	Web
	

	

The	combination	of	capable	machines	and	evolving	CSS	specs	means	things	are
going	to	change	in	interface	design.	Websites	and	apps	are	going	to	start	taking
advantage	of	motion	and	what	it	can	do	for	usability.	It’s	already	happening	in	a
lot	of	ways,	but	here	are	some	examples	to	look	out	for.

	

LAYERS
	

Layers	are	everywhere	in	modern	web	and	app	interfaces.	Apple	really	pushed
the	concept	of	layers	with	iOS7.	An	example	is	the	Control	Center,	which	slides
up	from	the	bottom	as	a	new	layer	that	partially	covers	whatever’s	on	the	screen.

	

The	iOS	Control	Center	slides	in	over	the	current	screen	as	a	new	layer.	(View	a	video	of	the	animation)

	

3

http://player.vimeo.com/video/116756637?byline=0&portrait=0&loop=1
http://player.vimeo.com/video/116756637?byline=0&portrait=0&loop=1

Although	layers	aren’t	movement	in	themselves,	they	go	hand	in	hand	because
they	work	best	when	they	animate	in	and	animate	out.

	

Layers	are	important	because	designers	can	keep	information	hidden	on	another
layer	until	it’s	called	on,	instead	of	refreshing	the	entire	page	to	display	large
amounts	of	new	information.	This	allows	users	to	think	less	and	understand
more.	It	gives	them	context,	which	is	the	next	thing	you’ll	start	to	see	a	lot	of
with	motion.

	

CONTEXT
	

Context	is	a	broad	term.	For	this	discussion,	I	use	it	to	refer	to	elements	and
pages	that	don’t	just	snap	from	one	state	to	another	without	showing	where	they
came	from	and	why.	Context	helps	us	remove	the	digital	mystery	and	therefore	it
helps	users’	brains	focus	less	on	interpreting	the	interface	and	more	on	the
content	and	their	goals.

	

To	illustrate	how	transitions	can	convey	context,	take	a	look	at	the	Instacart	iOS
app.	Tapping	on	an	item	to	see	more	detail	about	it	doesn’t	just	snap	open	a	new
view	with	the	item	details.

	

While	that	would	likely	be	understood	by	most	users,	take	a	look	at	the	image
below	to	see	what	happens	instead.	We	see	the	item’s	picture	move	from	its
current	position	to	a	new	position	above	the	details	view.	We	completely
understand	what	happened	and	how	it	relates	to	the	previous	view.	In	fact,	this

understand	what	happened	and	how	it	relates	to	the	previous	view.	In	fact,	this
doesn’t	even	feel	like	we’re	switching	from	one	view	to	another.	This	seems
much	more	natural	than	that.

	

The	transition	into	the	detail	view	in	the	Instacart	app	helps	to	give	the	user	context.	(View	a	video	of	the	
transition)

	

The	effect	is	subtle,	but	it	has	huge	usability	implications.	Another	example	is
the	newly	popular	drawer	menu,	where	clicking	a	hamburger	icon	reveals	a	full
menu.

	

If	the	user	taps	the	icon	and	their	entire	screen	is	instantly	replaced	by	the	menu,
they	have	no	context	as	to	where	that	menu	came	from	and	why.	It	won’t
completely	derail	anyone,	but	it’s	not	a	good	user	experience.

	

4

http://player.vimeo.com/video/116757192?byline=0&portrait=0&loop=1
http://player.vimeo.com/video/116757192?byline=0&portrait=0&loop=1

All	it	needs	is	to	slide	in	from	the	left	and	suddenly	the	user	has	context	for
what’s	happening:	“Oh,	the	menu	was	just	sitting	offscreen,	waiting	to	be
called.”

	

You	can	see	a	drawer	menu	example	in	almost	every	popular	app	these	days	and
on	most	mobile	versions	of	websites.	The	GMail	and	Facebook	apps	are	both
excellent	examples	of	this	concept.

	

THE	SINGLE	PAGE	APPLICATION
	

The	next	trend	we’ll	see	are	single	page	applications	(SPAs).	As	we	add	motion
and	transitions	to	parts	of	our	user	interfaces,	we’ll	start	to	want	more	control	of
the	interface	as	a	whole	(not	the	interface	within	each	page).	Websites	can	now
handle	all	kinds	of	transitions	from	state	to	state	within	a	page,	but	what	about
the	transition	from	page	to	page?	Any	small	gap	when	the	screen	goes	white	or
shifts	content	around	hurts	usability.

	

That	explains	the	rising	popularity	of	the	single	page	application.	Right	now,
there	are	a	lot	of	popular	frameworks	to	build	SPAs,	and	they’re	more	like	native
mobile	applications	than	webpages	(at	least	in	some	ways).

	

The	sign-in	and	sign-up	process	for	Dance	It	Yourself	(an	SPA	I’m	currently	
building)	illustrates	this	well.	If	you	go	to	http://app.danceityourself.com ,	you’ll	5

http://app.danceityourself.com

see	the	page	initially	loads	like	a	normal	website,	but	if	you	tap	the	Sign	Up	
button,	instead	of	refreshing	the	page,	the	content	either	slides	up	from	the	
bottom	(on	smaller	screens)	or	in	from	the	left	(larger	screens).	The	technique	
uses	JavaScript	to	add	a	class	to	the	Sign	Up	page,	which	triggers	a	CSS	
transition.

	

The	result	is	a	smooth,	fast	and	logical	transition	from	one	screen	to	another.
Once	you	sign	in	to	the	app,	the	entire	experience	is	treated	the	same	way.	All
the	movement	and	transitions	are	driven	by	logic	and	context,	and	they	make	this
web	application	feel	more	like	a	native	application	than	a	website.

	

How	To	Do	CSS	Motion
	

Single	page	applications	present	a	good	opportunity	to	take	advantage	of	CSS
motion,	but	there	are	plenty	of	other	places	to	use	it,	including	potentially	every
element	on	every	website	you	make	from	now	on.	But	how	do	we	actually	do	it?
What	does	the	CSS	look	like?

	

To	understand	the	basics	of	CSS	motion,	it’s	important	to	start	simple.	What	
follows	are	explanations	with	examples,	but	they’re	definitely	minimum	viable	
examples.	Follow	some	of	the	links	to	learn	much	more	about	the	in-depth	
aspects	of	each	type	of	CSS	motion.

	

CSS	TRANSITIONS
	

There	are	many	times	when	a	little	transition	can	go	a	long	way.	Instead	of
changing	properties	of	an	element	in	a	split	second,	a	transition	gives	the	user
some	real	context	and	a	visual	clue	as	to	what’s	happening	and	why.

	

This	helps	usability	because	it	removes	the	mystery	behind	digital	state	change.
In	real	life,	based	on	physics,	there	is	always	a	transition	from	any	one	thing	to
another.	The	human	brain	understands	this,	so	it’s	important	to	translate	that
visual	information	into	our	interfaces.

	

To	start	explaining	CSS	transitions,	let’s	first	look	at	a	state	change	without	any
transition.

	
button	button	{{

						margin-leftmargin-left::00;;

}}

button:hover	button:hover	{{

						margin-leftmargin-left::10px10px;;

}}

	

When	the	user	hovers	over	the	button,	it	jumps	10	pixels	to	the	right.	Check	out	
the	demo	to	see	it	in	action .

	

Now	let’s	add	the	most	basic	form	of	a	transition.	I’ve	left	out	browser	prefixes,
but	they’re	in	the	demos,	because	we	still	need	to	use	them	in	production	code.

6

http://codepen.io/drewbrolik/pen/opskq

but	they’re	in	the	demos,	because	we	still	need	to	use	them	in	production	code.

	
button	button	{{

						margin-leftmargin-left::00;;

						transitiontransition::	margin-left	1s	margin-left	1s;;

}}

button:hover	button:hover	{{

						margin-leftmargin-left::10px10px;;

}}

	

That	code	will	animate	the	margin-leftmargin-left	CSS	property	when	a	user	hovers	over	
the	button.	It	will	animate	from	0	to	10px	in	1	second.

	

Here’s	a	demo	for	that .	Notice	how	unnatural	it	looks,	though.

	

Next,	we’ll	make	the	motion	look	a	little	more	realistic	with	just	a	small
adjustment.

	
button	button	{{

						margin-leftmargin-left::00;;

						transitiontransition::	margin-left	.25s	ease-out	margin-left	.25s	ease-out;;

}}

button:hover	button:hover	{{

						margin-leftmargin-left::10px10px;;

}}

	

7

8

http://codepen.io/drewbrolik/pen/ivzfK

Here’s	that	demo .	This	example	looks	nice	and	natural.	There’s	probably	little	
reason	to	animate	the	margin-leftmargin-left	property	of	a	button.	You	can	imagine	how	
this	can	apply	to	many	different	circumstances.

	

The	last	important	thing	to	know	about	CSS	transitions	(and	CSS	animation	for	
that	matter),	is	that	we	can’t	animate	every	CSS	property.	As	time	goes	on,	we’ll	
be	able	to	animate	more	and	more,	but	for	now,	we	need	to	stick	to	a	select	few.	
Here’s	a	list	of	all	the	properties	that	will	animate	using	the	CSS	transitiontransition	
property .

	

When	we	talk	about	the	hover	state,	it’s	easy	to	see	how	CSS	transitions	apply,
but	also	consider	triggering	transitions	by	adding	an	additional	class	to	an
element.	This	trick	will	come	in	handy.	How	the	class	gets	added	has	to	do	with
your	implementation,	but	any	time	a	class	is	added	or	removed,	it	will	trigger	the
CSS	transition.

	
button	button	{{

						margin-leftmargin-left::00;;

						transitiontransition::	margin-left	.25s	ease-out	margin-left	.25s	ease-out;;

}}

button.moveRight	button.moveRight	{{

						margin-leftmargin-left::10px10px;;

}}

CSS	ANIMATIONS
	

The	basic	CSS	for	an	animation	is	a	little	more	complicated,	but	it’s	similar	to

8

9

http://codepen.io/drewbrolik/pen/LFijf
http://css3.bradshawenterprises.com/transitions/#animatable

CSS	transitions	in	a	lot	of	ways.

	

The	reasons	to	use	CSS	animations	are	also	similar	to	transitions,	but	there	are
some	different	applications.	We	want	to	emulate	real	life	as	much	as	possible	so
that	human	brains	can	do	less	work	to	understand	what’s	going	on.	Unlike
transitions,	however,	animations	can	be	looped	and	can	move	independently	of
user	input.	Therefore,	we	can	use	animation	to	draw	attention	to	elements	on	a
page.	Or	we	can	add	subtle	movement	to	illustrations	or	background	elements	to
give	our	interfaces	some	life.

	

Animation	benefits	may	seem	less	tangible,	but	they’re	equally	as	important.	It
pays	to	add	some	fun	to	our	interfaces.	Users	should	love	to	use	our	products,
and	animation	can	have	a	big	impact	on	the	overall	user	experience.

	

Here’s	a	shorthand	example	of	a	CSS	animation.	We	use	a	block	of	CSS
keyframes	and	give	it	a	name,	and	we	assign	that	keyframe	animation	to	an
element.	Again,	since	browser	prefixes	add	a	lot	of	code,	I	didn’t	include	them.	I
did,	however,	include	them	in	the	demo,	because,	unfortunately,	we	still	need	to
include	all	browser	prefixes	in	the	real	world.

	
div.circle	div.circle	{{

						backgroundbackground::#000#000;;

						border-radiusborder-radius::50%50%;;

						animationanimation::circleGrow	800ms	ease-in-out	infinite	alternate	bothcircleGrow	800ms	ease-in-out	infinite	alternate	both;;

}}

@keyframes	circleGrow	@keyframes	circleGrow	{{

						0%	0%	{{

												heightheight::2px2px;;

												widthwidth::2px2px;;

						}}

						50%	50%	{{

												heightheight::40px40px;;

												widthwidth::40px40px;;

						}}

						100%	100%	{{

												heightheight::34px34px;;

												widthwidth::34px34px;;

						}}

}}

	

Here’s	the	animation	demo .

	

To	break	it	down,	there	are	really	only	two	things	going	on	here.

	

First,	there’s	the	animationanimation	property	itself.	It’s	very	much	like	the	transitiontransition	
property,	but	it	has	a	lot	more	that	we	can	control.	I	used	the	shorthand	version	
in	my	example,	but	just	like	the	transitiontransition	property,	each	part	can	be	
controlled	as	a	separate	CSS	property	(you	probably	do	this	with	backgroundbackground	all	
the	time).

	

The	shorthand	animationanimation	property	breaks	down	like	this:

	

10

http://codepen.io/drewbrolik/pen/mJgqb

	
animation:	[animation	name	(from	keyframe	block)]	[duration]	[timing	
function]	[delay]	[number	of	times	the	animation	repeats]	[animation	
direction]	[fill	mode]

→	Here’s	a	more	thorough	explanation	of	all	the	different	CSS	
animation	properties .

	

	

The	second	thing	going	on	is	the	keyframes	block.	At	a	very	basic	level,	this	is
self	explanatory.	Set	any	number	of	percentages	from	0–100	to	represent	how	far
through	the	animation	we	are	from	start	(0%)	to	finish	(100%).	Then	add	any
styles	for	that	stage	of	the	animation.	When	the	animation	runs,	all	styles	will
animate	between	the	values	you	specify	at	each	percentage	number.

	

Again,	not	all	properties	animate,	but	as	time	goes	on,	we’ll	be	able	to	do	more
and	more.

	

How	To	Do	CSS	Motion	Well
	

Now	that	you	know	how	to	write	the	CSS	for	motion,	it’s	time	to	think	about
using	motion	well.	All	of	the	concepts	here	will	fail	if	executed	improperly.
Transition	and	animation	need	to	feel	real.	If	they	don’t,	they’ll	be	surprisingly

11

http://www.css3files.com/animation/

Transition	and	animation	need	to	feel	real.	If	they	don’t,	they’ll	be	surprisingly
distracting,	and	the	distraction	will	actually	hurt	usability.

	

The	trick	to	making	motion	look	natural	is	two-fold:	easing	and	object	weight.

	

EASING
	

You	may	have	noticed	the	easing	part	in	the	code	examples.	In	real	life,	objects	
start	moving	gradually	and	slow	to	a	stop.	Things	don’t	just	start	moving	at	
100%	speed.	That’s	where	the	third	property	for	the	transition	style	comes	in	
from	the	examples:	ease-outease-out	or	ease-inease-in.	Sometimes,	your	best	bet	is	actually	
ease-in-outease-in-out	(here’s	a	list	of	all	the	possible	easing	(timing)	functions).

	

WEIGHT
	

Weight,	on	the	other	hand,	is	not	a	specific	property	of	the	transition	or
animation	style.	Weight	mainly	affects	motion	speed,	and	the	basic	concept	is
that	smaller	objects	would	have	less	physical	weight	in	real	life,	so	they’d	move
faster	than	larger	objects.	That’s	why	we	increased	the	transition	speed	on	the
button	from	the	second	to	the	third	example	above.	A	small	button	seems	really
slow	when	it	takes	1	second	to	move	10	pixels.	A	quarter	of	a	second	seems
much	more	natural.	(You	can	also	use	milliseconds,	as	in	the	example	below.)

	

12

http://css3.bradshawenterprises.com/transitions/#differentTiming

transitiontransition::	margin-left	250ms	ease-out	margin-left	250ms	ease-out;;

A	Tip	If	You’re	Just	Getting	Started
	

This	all	may	seem	like	a	lot.	If	you’re	new	to	CSS	transitions	and	animation,	I’d
recommend	one	important	thing.	Build	in	steps.	If	you	write	an	entire,	complex
keyframes	block	in	one	shot	and	then	add	timing,	easing	and	looping	into	the
animation	property,	you’ll	find	out	very	quickly	that	you’re	confused.	It	will	be
hard	to	tweak	and	edit	that	animation.	Start	simple,	and	build	the	animation	up
by	testing	and	iterating.

	

Coming	Full	Circle
	

When	you’re	up	and	running	and	using	CSS	motion,	you’ll	start	to	notice	all
kinds	of	different	uses	for	these	techniques.	In	most	cases,	it’s	much	more	than	a
bell	and	whistle	or	a	superfluous	add-on.	Movement	is	a	tool,	and	it	conveys
context,	meaning,	importance	and	more.	It	can	be	just	as	important	as	any	other
usability	technique	that	we	use	today.

	

As	interface	designers	take	advantage	of	motion,	and	as	interfaces	start	to
behave	more	like	objects	and	environments	in	the	real	world,	usability	and	user
experience	will	improve	as	well.	Humans	will	have	to	think	less	about	computer
interfaces	and	therefore	the	interfaces	will	be	easier	to	learn	and	easier	to	use.
Users	may	feel	like	they’re	getting	smarter	or	more	tech	savvy,	but	really,	the
interfaces	are	just	conforming	more	to	the	ideas	and	concepts	they’re	already

interfaces	are	just	conforming	more	to	the	ideas	and	concepts	they’re	already
familiar	with	in	real	life.

	

So	take	advantage	of	CSS	motion	as	a	usability	tool.	Help	your	users	by	giving	
them	realism	and	context.	The	world	on	the	small	screen	doesn’t	have	to	be	so	
different	from	the	real	world	around	us,	and	the	more	similar	it	is,	the	easier	it	is	
for	users	to	understand	it.	❧

	
	

—

	

1. http://player.vimeo.com/video/116757193?byline=0&portrait=0&loop=1

	

2. http://player.vimeo.com/video/116757194?byline=0&portrait=0&loop=1

	

3. http://player.vimeo.com/video/116756637?byline=0&portrait=0&loop=1

	

4. http://player.vimeo.com/video/116757192?byline=0&portrait=0&loop=1

	

5. http://app.danceityourself.com

	

6. http://codepen.io/drewbrolik/pen/opskq

	

7. http://codepen.io/drewbrolik/pen/ivzfK

http://player.vimeo.com/video/116757193?byline=0&portrait=0&loop=1
http://player.vimeo.com/video/116757194?byline=0&portrait=0&loop=1
http://player.vimeo.com/video/116756637?byline=0&portrait=0&loop=1
http://player.vimeo.com/video/116757192?byline=0&portrait=0&loop=1
http://app.danceityourself.com
http://codepen.io/drewbrolik/pen/opskq
http://codepen.io/drewbrolik/pen/ivzfK

	

8. http://codepen.io/drewbrolik/pen/LFijf

	

9. http://css3.bradshawenterprises.com/transitions/#animatable

	

10. http://codepen.io/drewbrolik/pen/mJgqb

	

11. http://www.css3files.com/animation/

	

12. http://css3.bradshawenterprises.com/transitions/#differentTiming

	

	

http://codepen.io/drewbrolik/pen/LFijf
http://css3.bradshawenterprises.com/transitions/#animatable
http://codepen.io/drewbrolik/pen/mJgqb
http://www.css3files.com/animation/
http://css3.bradshawenterprises.com/transitions/#differentTiming

Understanding	CSS	Timing	Functions
BY	STEPHEN	GREIG	❧

	

People	of	the	world,	strap	yourself	in	and	hold	on	tight,	for	you	are	about	to
experience	truly	hair-raising	excitement	as	you	get	to	grips	with	the	intricacies	of
the	hugely	interesting	CSS	timing	function!

	

OK,	so	the	subject	matter	of	this	article	probably	hasn’t	sent	your	blood	racing,
but	all	jokes	aside,	the	timing	function	is	a	bit	of	a	hidden	gem	when	it	comes	to
CSS	animation,	and	you	could	well	be	surprised	by	just	how	much	you	can	do
with	it.

	

First	of	all,	let’s	set	the	scene	and	ensure	we’re	all	familiar	with	the	scenarios	in
which	the	timing	function	is	relevant.	As	alluded	to,	the	functionality	becomes
available	when	you’re	working	in	the	realm	of	CSS	animation,	which	includes
CSS	transitions	as	well	as	keyframe-based	animation.	So,	what	exactly	is	it	and
what	does	it	do?

	

The	CSS	Timing	Function	Explained
	

It’s	one	of	the	less	obvious	animation-based	CSS	properties,	whereas	most	of	its
counterparts	are	rather	self-explanatory.	Nevertheless,	the	gist	of	it	is	that	it
enables	you	to	control	and	vary	the	acceleration	of	an	animation	—	that	is,	it

enables	you	to	control	and	vary	the	acceleration	of	an	animation	—	that	is,	it
defines	where	the	animation	speeds	up	and	slows	down	over	the	specified
duration.

	

While	it	does	not	affect	the	actual	duration	of	an	animation,	it	could	have	
profound	effects	on	how	fast	or	slow	the	user	perceives	the	animation	to	be.	If	
you’re	not	sold	having	learned	of	its	actual	purpose,	then	stick	with	me	here	
because	the	timing-function	property	gets	a	lot	more	interesting	than	the	
definition	suggests.

	

Note:	There	is	no	actual	property	named	“timing-function.”	When	I	refer	to	this	
“property,”	I	am	actually	referring	to	both	the	transition-timing-functiontransition-timing-function	
and	the	animation-timing-functionanimation-timing-function	properties.

	

Before	moving	on,	let’s	just	familiarize	ourselves	with	the	syntax	and	where	it
fits	into	the	whole	process	of	defining	an	animation	in	CSS.	To	keep	things
simple,	let’s	use	a	CSS	transition	for	this	example.	We’ll	begin	with	the	full
array	of	transition	properties:

	
div	div	{{

						transition-propertytransition-property::	background	background;;

						transition-durationtransition-duration::	1s	1s;;

						transition-delaytransition-delay::	.5s	.5s;;

						transition-timing-functiontransition-timing-function::	linear	linear;;

}}

/*	This	could,	of	course,	be	shortened	to:	*//*	This	could,	of	course,	be	shortened	to:	*/

div	div	{{

						transitiontransition::	background	1s	.5s	linear	background	1s	.5s	linear;;

}}

	

The	shorthand	for	defining	a	transition	is	fairly	lenient,	the	only	requirement	for	
the	order	being	that	the	delay	parameter	must	be	stated	after	the	duration	value	
(but	not	necessarily	immediately	after).	Furthermore,	the	transition-durationtransition-duration	
value	is	the	only	one	that	is	actually	required	for	the	code	to	function;	and	
because	the	default	values	of	the	other	parameters	are	adequate	most	of	the	time,	
your	transitions	seldom	need	to	be	anything	more	than	the	following	snippet:

	
div	div	{{

						transitiontransition::	1s	1s;;

}}

/*	This	is	the	same	as	saying:	*//*	This	is	the	same	as	saying:	*/

div	div	{{

						transitiontransition::	all	1s	0s	ease	all	1s	0s	ease;;

}}

	

But	that’s	a	bit	boring.	While	the	defaults	are	often	sufficient	for	standard	hover
events	and	such,	if	you’re	working	on	something	a	little	more	substantial,	then
the	timing	function	is	a	serious	trick	for	fine-tuning	an	animation!

	

Anyway,	you	now	have	an	idea	of	what	the	timing	function	does.	Let’s	look	at
how	it	does	it.

	

Looking	Under	the	Hood
	

Many	of	you	probably	don’t	look	past	the	available	keywords	for	the	timing-
function	property,	of	which	there	are	five:	easeease	(the	default),	ease-inease-in,	ease-ease-

outout,	ease-in-outease-in-out	and	linearlinear.	However,	these	keywords	are	simply	shorthands	
for	defining	the	Bézier	curve.

	

The	what?!

	

You	might	not	be	familiar	with	the	term,	but	I’d	wager	that	you’ve	actually	seen
a	Bézier	curve	—	heck,	if	you’ve	used	graphical	editing	software,	then	you’ve
probably	even	created	one!	That’s	right,	when	you	use	the	Pen	or	Path	tool	to
create	a	nice	smooth	curve,	then	you’re	drawing	a	Bézier	curve!	Anyway,	to	get
to	the	point	of	this	section,	the	Bézier	curve	is	the	magic	behind	the	timing
function;	it	basically	describes	the	acceleration	pattern	on	a	graph.

	

This	Bézier	curve	translates	to	the	easeease	keyword.

	

If	you’re	anything	like	me	the	first	time	I	saw	a	Bézier	curve	like	this,	then	you
might	be	wondering	how	on	earth	that	curve	could	be	formed	from	four	points
plotted	on	a	graph!	I	couldn’t	possibly	tell	you	in	words,	but,	fortunately,	I	have
a	particularly	fantastic	GIF	to	do	the	job	for	me,	courtesy	of	Wikipedia.

	

A	cubic	Bézier	curve	being	drawn	(View	the	animated	GIF	on	Wikipedia)

	

1

http://en.wikipedia.org/wiki/File:Bezier_3_big.gif

Because	this	curve	is	formed	from	four	points,	we	refer	to	it	as	a	“cubic”	Bézier
curve,	as	opposed	to	a	“quadratic”	curve	(three	points)	or	a	“quartic”	curve	(five
points).

	

Introducing	The	cubic-bezier()	Function
	

Now	then,	this	is	where	things	get	really	exciting,	as	I	reveal	that	you	can	
actually	get	access	to	this	curve	through	the	cubic-bezier()cubic-bezier()	function,	which	
can	simply	be	used	in	place	of	the	keywords	of	the	timing-function	property	
value.	I	appreciate	that	you	may	need	a	moment	to	contain	your	excitement…

	

With	the	cubic-bezier()cubic-bezier()	function,	you	can	manipulate	the	Bézier	curve	
whichever	way	you	desire,	creating	completely	custom	acceleration	patterns	for	
your	animation!	So,	let’s	look	at	how	this	function	works	and	how	it	enables	you	
to	create	your	very	own	Bézier	curve.

	

First,	we	know	that	the	curve	is	formed	by	four	points,	which	are	referred	to	as	
point	0,	point	1,	point	2	and	point	3.	The	other	important	thing	to	note	is	that	the	
first	and	last	points	(0	and	3)	are	already	defined	on	the	graph,	with	point	0	
always	sitting	at	0,00,0	(bottom	left)	and	point	3	always	sitting	at	1,11,1	(top	right).

	

That	leaves	just	point	1	and	point	2	available	for	you	to	plot	on	the	graph,	which	
you	can	do	using	the	cubic-bezier()cubic-bezier()	function!	The	function	takes	four	

parameters,	the	first	two	being	the	x	and	y	coordinates	of	point	1	and	the	latter	
two	being	the	x	and	y	coordinates	of	point	2.

	
transition-timing-functiontransition-timing-function::	cubic-bezier(x,	y,	x,	y)	cubic-bezier(x,	y,	x,	y);;

	

To	get	comfortable	with	the	syntax,	as	well	as	with	how	it	creates	the	curve	and	
with	its	physical	effect	on	the	animation,	I’ll	take	you	through	the	five	timing-
function	keywords,	their	equivalent	cubic-bezier()cubic-bezier()	values	and	the	resulting	
effect	on	the	animation.

	

EASE-IN-OUT
	

Let’s	start	with	the	ease-in-outease-in-out	keyword	because	the	logic	behind	this	curve	
and	how	it	translates	to	the	animation	are	probably	the	easiest	to	understand.

	
/*	The	cubic-bezier()	equivalent	of	the	ease-in-out	keyword	*//*	The	cubic-bezier()	equivalent	of	the	ease-in-out	keyword	*/

transition-timing-functiontransition-timing-function::	cubic-bezier(.42,	0,	.58,	1)	cubic-bezier(.42,	0,	.58,	1);;

	

A	perfectly	symmetrical	Bézier	curve,	which	means	that	the	animation	will	ease	in	to	full	speed	and	then	
ease	out	at	exactly	the	same	rate.

	

You	can	see	that	point	1	is	positioned	at	0.42	along	the	x-axis	and	at	0	on	the	y-
axis,	whereas	point	2	is	positioned	at	0.58	on	the	x-axis	and	1	on	the	y-axis.	The
result	is	a	perfectly	symmetrical	Bézier	curve,	which	means	that	the	animation
will	ease	in	to	full	speed	and	then	ease	out	at	exactly	the	same	rate;	hence,	the
name	of	this	keyword.

	

If	you	look	at	the	demo	below,	you	will	see	the	physical	effect	of	the	ease-in-ease-in-

outout	value,	as	well	as	how	it	compares	to	the	other	keyword	values.

	

See	the	Pen	on	CodePen

	

EASE
	

The	easeease	keyword	is	the	default	value	of	the	CSS	timing-function	property,	and	
it	is	actually	quite	similar	to	the	previous	one,	although	it	eases	in	at	a	faster	rate	
before	easing	out	much	more	gradually.

	
/*	The	ease	keyword	and	its	cubic-bezier()	equivalent	*//*	The	ease	keyword	and	its	cubic-bezier()	equivalent	*/

2

http://codepen.io/stephengreig/pen/bHzqm/

transition-timing-functiontransition-timing-function::	cubic-bezier(.25,	.1,	.25,	1)	cubic-bezier(.25,	.1,	.25,	1);;

	

The	curve	for	the	keyword	easeease	eases	in	at	a	faster	pace	before	easing	out	much	more	gradually.

	

You	can	see	a	sharper	incline	in	the	curve	initially,	while	the	finish	is	more
drawn	out,	which	directly	translates	to	the	physical	effect	of	this	timing	function
on	the	animation.	Don’t	forget	to	refer	to	the	earlier	demo	after	reviewing	each
of	these	examples	to	compare	the	effects.

	

EASE-IN	AND	EASE-OUT
	

The	ease-inease-in	and	ease-outease-out	keywords	are,	unsurprisingly,	exact	opposites.	The	
former	eases	in	before	maintaining	full	speed	right	through	to	the	finish,	while	
the	latter	hits	full	speed	right	off	the	bat	before	easing	to	a	finish.	The	ease-in-ease-in-

outout	keyword	that	we	looked	at	previously	is,	as	logic	would	suggest,	a	perfect	
combination	of	these	two	Bézier	curves.

	
/*	The	ease-in	keyword	and	its	cubic-bezier()	equivalent	*//*	The	ease-in	keyword	and	its	cubic-bezier()	equivalent	*/

transition-timing-functiontransition-timing-function::	cubic-bezier(.42,	0,	1,	1)	cubic-bezier(.42,	0,	1,	1);;

/*	The	ease-out	keyword	and	its	cubic-bezier()	equivalent	*//*	The	ease-out	keyword	and	its	cubic-bezier()	equivalent	*/

transition-timing-functiontransition-timing-function::	cubic-bezier(0,	0,	.58,	1)	cubic-bezier(0,	0,	.58,	1);;

	

Bézier	curve	for	the	ease-inease-in	keyword	(left)	and	the	ease-outease-out	keyword	(right).	(View	large	version)

	

LINEAR
	

3

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/04/05-bezier-curve-ease-in-ease-out.jpg

The	final	keyword	to	address	does	not	correspond	to	a	curve	at	all.	As	the	name	
implies,	the	linearlinear	timing-function	value	maintains	the	same	speed	throughout	
the	animation,	which	means	that	the	resulting	Bézier	curve	(or	lack	of)	would	be	
just	a	straight	line.	There	is	simply	no	varying	acceleration	pattern	to	depict	on	
the	graph.

	
/*	The	linear	keyword	and	its	cubic-bezier()	equivalent	*//*	The	linear	keyword	and	its	cubic-bezier()	equivalent	*/

transition-timing-functiontransition-timing-function::	cubic-bezier(0,	0,	1,	1)	cubic-bezier(0,	0,	1,	1);;

	

The	linearlinear	timing-function	value	maintains	the	same	speed	throughout	the	animation.

	

If	you	refer	back	to	the	demo,	you	will	probably	notice	that,	despite	all	of	the	
examples	having	the	exact	same	duration	values,	some	of	the	animations	appear	

to	be	slower	than	the	others.	Why	is	that?	Well,	to	take	the	ease-in-outease-in-out	
keyword	as	an	example,	we	know	that	it	starts	and	finishes	at	a	slower	pace,	
which	means	that	it	has	to	cover	the	middle	ground	of	the	animation	at	a	much	
faster	pace.	This	effectively	ensures	that	we	perceive	the	actual	animation	to	be	
both	shorter	and	faster,	while,	say,	the	linear	animation	appears	longer	and	more	
drawn	out.

	

You	might	feel	that	this	article	is	very	slowly	easing	into	its	full	pace	(see	what	I	
did	there?),	so	now	it’s	finally	time	to	step	things	up	a	bit	and	look	at	how	to	use	
the	cubic-bezier()cubic-bezier()	function	to	create	our	own	custom	timing	functions.

	

Creating	Custom	Acceleration	Patterns	With	The	
cubic-bezier()	Function
	

Now	that	we’ve	seen	how	the	keywords	equate	to	the	corresponding	Bézier
curves	and	seen	their	effect	on	the	animation,	let’s	look	at	how	to	manipulate	the
curve	to	create	custom	acceleration	patterns.

	

You	should	now	be	able	to	plot	points	1	and	2	on	the	graph	using	the	cubic-cubic-

bezier()bezier()	function	and	have	a	pretty	solid	idea	of	how	this	will	affect	the	
animation.	However,	considering	that	you’re	plotting	points	on	a	graph	that	you	
typically	can’t	see,	obviously	this	could	get	very	tedious	very	quickly.

	

Fortunately,	people	like	Lea	Verou	exist,	who	seemingly	won’t	rest	until	CSS	
development	couldn’t	be	made	any	easier!	Lea	has	developed	the	aptly	named	
Cubic	Bézier,	which	is	basically	a	playground	for	creating	completely	custom	
Bézier	curves	and	comparing	them	in	action	to	the	predefined	keywords.	What	
this	means	for	you	is	that,	instead	of	tediously	editing	the	decimals	in	your	
cubic-bezier()cubic-bezier()	functions,	you	can	just	visit	Cubic	Bezier 	and	play	around	
with	the	curve	until	you’ve	achieved	the	desired	effect.	Much	more	convenient.

	

Lea	Verou’s	superbly	useful	Cubic	Bézier

	

The	shorthand	keywords	give	you	great	options	for	timing	functions	to	start
with,	but	the	differences	between	them	often	appear	minor.	Only	when	you	start
to	create	custom	Bézier	curves	will	you	realize	the	radical	effect	the	timing
function	can	have	on	an	animation.

	

Just	look	at	the	following	working	examples	to	see	the	extreme	differences
between	the	animations,	despite	all	of	them	having	the	exact	same	duration
values.

4

5

http://cubic-bezier.com/
http://cubic-bezier.com/

values.

	

See	the	Pen	on	CodePen

	

Let’s	take	a	closer	look	at	the	first	of	these	examples	and	try	to	understand	why
it	produces	such	a	radically	different	effect.

	
/*	cubic-bezier()	values	for	first	example	from	preceding	demo	page/*	cubic-bezier()	values	for	first	example	from	preceding	demo	page		

//

transition-timing-functiontransition-timing-function::	cubic-bezier(.1,	.9,	.9,	.1)	cubic-bezier(.1,	.9,	.9,	.1);;

	

6

http://codepen.io/stephengreig/pen/baFhH/

Example	of	a	custom	Bézier	curve

	

The	main	difference	between	this	timing	function	and	the	default	keywords	is
the	sharp	inclines	of	the	Bézier	curve	against	the	“progression”	scale	(the	y-
axis).	This	means	that	the	animation	progresses	in	short	bursts,	with	a	long
gradual	pause	in	the	middle	(where	the	curve	levels	out).	This	pattern	contrasts
starkly	with	what	we’ve	become	used	to	with	the	timing-function	keywords,
which	take	the	opposite	approach,	with	the	easing	periods	coming	at	the
beginning	or	the	end	of	the	animation,	rather	than	in	the	middle.

	

With	custom	Bézier	curves	now	in	the	bag,	surely	we	have	all	but	exhausted	the	
capabilities	of	the	cubic-bezier()cubic-bezier()	function,	right?!	You’d	think	so,	but	this	

crafty	beggar	has	got	even	more	up	its	sleeve!

	

Getting	Creative	With	Bézier	Curves
	

Yep,	it’s	true:	Bézier	curves	get	even	more	exciting!	Who’d	have	thought?	The
scope	widens	with	the	revelation	that	only	the	time	scale	(x-axis)	is	limited	to	the
0–1	range	on	the	graph,	whereas	the	progression	scale	(y-axis)	can	extend	below
and	beyond	the	typical	0–1	range.

	

The	progression	scale	is	exactly	what	you’d	think	it	is,	with	the	bottom	end	(0)	
marking	the	beginning	of	the	animation	and	the	top	end	(1)	marking	the	end	of	
the	animation.	Typically,	the	cubic	Bézier	curve	always	travels	north	along	this	
progression	scale	at	varying	intensities	until	it	reaches	the	end	point	of	the	
animation.	However,	the	ability	to	plot	points	1	and	2	outside	of	this	0–1	range	
allows	the	curve	to	meander	back	down	the	progression	scale,	which	actually	
causes	reverse	motion	in	the	animation!	As	ever,	the	best	way	to	understand	this	
is	through	visuals:

	

A	custom	Bézier	curve	using	a	value	outside	of	the	typical	0–1	range

	

You	can	see	that	point	2	is	plotted	outside	of	the	typical	0–1	range	at	-0.5,	which
in	turn	pulls	the	curve	downward.	If	you	look	at	the	following	demo,	you’ll	see
that	this	creates	a	bouncing	effect	in	the	middle	of	the	animation.

	

See	the	Pen	on	CodePen

	

Conversely,	you	could	place	this	backward	motion	at	the	beginning	of	the
animation	and	also	make	it	temporarily	run	past	its	intended	finishing	point.
Think	of	it	like	taking	a	couple	of	steps	back	to	get	a	running	start;	then,	at	the
end,	your	momentum	carries	you	past	your	destination,	causing	you	to	take	a
couple	of	steps	back	to	ensure	that	you	arrive	at	the	intended	destination.	Look	at
the	working	example	to	really	understand	what	we’re	talking	about	here.	In
addition,	the	Bézier	curve	that	produces	this	effect	can	be	seen	below.

	

See	the	Pen	on	CodePen

7

8

http://codepen.io/stephengreig/pen/kILDb/
http://codepen.io/stephengreig/pen/xcCqj/

	

A	custom	Bézier	curve	using	a	value	outside	of	the	typical	0–1	range

	

You	should	now	have	a	pretty	good	idea	of	how	cubic-bezier()cubic-bezier()	values	outside	
of	the	typical	0–1	range	can	physically	affect	how	an	animation	plays	out.	We	
can	look	at	moving	boxes	all	day	long,	but	let’s	finish	this	section	with	an	
example	that	clearly	demonstrates	this	type	of	creative	timing	function.

	

See	the	Pen	on	CodePen

	

That’s	right:	We’re	animating	a	floating	balloon!	…What?	Haven’t	you	always
wanted	to	do	that	with	CSS?

9

http://codepen.io/stephengreig/pen/vbqBh/

wanted	to	do	that	with	CSS?

	

The	brief	for	this	animation	is	to	“add	helium”	to	the	balloon	on	click	so	that	it	
floats	to	the	“ceiling,”	where	it	will	bounce	slightly	before	sticking	to	the	top,	as	
it	naturally	would.	Using	a	cubic-bezier()cubic-bezier()	value	outside	of	the	0–1	range	
allows	us	to	create	the	bounce	and	ultimately	helps	to	produce	a	realistic	effect.	
The	following	snippet	shows	the	coordinates	used	in	the	cubic-bezier()cubic-bezier()	
function,	and	the	resulting	Bézier	curve	appears	below	that.

	
/*	The	cubic-bezier()	values	for	the	bouncing	balloon	*//*	The	cubic-bezier()	values	for	the	bouncing	balloon	*/

transition-timing-functiontransition-timing-function::	cubic-bezier(.65,	1.95,	.03,	.32)	cubic-bezier(.65,	1.95,	.03,	.32);;

	

A	custom	Bézier	curve	to	emulate	a	bouncing	balloon

	

This	example	explains	particularly	well	how	the	curve	translates	to	the	resulting
animation	because	it	reflects	it	almost	perfectly.	First,	you	can	see	that	the	curve
travels	from	the	beginning	of	the	progression	scale	to	the	end	in	a	straight	line,
indicating	that	the	balloon	travels	from	the	start	of	the	animation	to	the	finish	at
a	constant	speed.	Then,	very	similarly	to	the	balloon,	the	curve	bounces	off	the

a	constant	speed.	Then,	very	similarly	to	the	balloon,	the	curve	bounces	off	the
tip	of	the	scale	and	goes	into	reverse	before	returning	steadily	and	gradually	to
the	top.	All	quite	straightforward	really!

	

Once	you’ve	mastered	the	curve	and	the	art	of	manipulating	it	to	do	what	you
want,	you’ve	nailed	it.

	

Timing	Functions	And	Keyframe-Based	CSS	
Animation
	

One	final	thing	to	note	before	moving	on	(yes,	there	is	more	to	cover!)	is	how
timing	functions	behave	when	applied	to	CSS	keyframe	animation.	The	concepts
are	all	exactly	the	same	as	those	in	the	transition	examples	we’ve	been	working
with	so	far,	but	with	one	exception	that	is	important	to	be	aware	of:	When	you
apply	a	timing	function	to	a	set	of	keyframes,	it	is	executed	per	keyframe,	rather
than	for	the	animation	as	a	whole.

	

To	clarify,	if	you	have	four	keyframes	that	move	a	box	around	four	corners	of	a	
square,	and	you	apply	the	“bouncing”	timing	function	that	we	used	in	the	earlier	
balloon	example,	then	each	of	the	four	movements	would	experience	the	
bounce,	rather	than	the	entire	animation.	Let’s	see	this	in	action	and	view	the	
code.

	

See	the	Pen	on	CodePen

	
@keyframes	square	@keyframes	square	{{

						25%	25%	{{

												toptop::200px200px;;

												leftleft::00;;

						}}

						50%	50%	{{

												toptop::200px200px;;

												leftleft::400px400px;;

						}}

						75%	75%	{{

												toptop::00;;

												leftleft::400px400px;;

						}}										

}}

div	div	{{

10

http://codepen.io/stephengreig/pen/rscGb/

						animationanimation::	square	8s	infinite	cubic-bezier(.65,	1.95,	.03,	.32)	square	8s	infinite	cubic-bezier(.65,	1.95,	.03,	.32);;

						toptop::	0	0;;

						leftleft::	0	0;;

						/*	Other	styles	*//*	Other	styles	*/

}}

	

Note	that	if	the	100%100%	keyframe	isn’t	defined,	then	the	element	will	simply	return	
to	its	original	style,	which	is	the	desired	result	in	this	case,	so	defining	it	is	not	
necessary.	It	is	clearly	evident	from	the	demo	that	the	timing	function	is	applied	
to	each	of	the	four	keyframes	because	they	each	appear	to	bounce	off	the	walls	
of	the	container.

	

If	you	need	certain	keyframes	to	take	on	a	timing	function	that	is	different	from
the	others,	then	go	ahead	and	apply	a	separate	timing-function	value	directly	to
the	keyframe,	as	indicated	in	the	following	snippet.

	
@keyframes	square	@keyframes	square	{{		

						50%	50%	{{

												toptop::	200px	200px;;

												leftleft::	400px	400px;;

												animation-timing-functionanimation-timing-function::	ease-in-out	ease-in-out;;

						}}

}}

Introducing	The	steps()	Timing	Function
	

Did	you	think	we	were	done	with	timing	functions?	Ha,	think	again,	pal!	I	told
you	that	there’s	a	lot	more	to	CSS	timing	functions	than	a	few	predefined	easing
functions!

functions!

	

For	this	section,	we	can	swap	our	curves	for	straight	lines	as	we	explore	the	
concept	of	“stepping	functions,”	which	are	achieved	through	the	steps()steps()	timing	
function.

	

The	steps()steps()	function	is	more	of	a	niche	tool,	but	it’s	useful	to	have	in	the	
toolkit	nonetheless.	It	enables	you	to	break	up	an	animation	into	steps,	rather	
than	the	usual	tweened	motion	that	we’re	used	to.	For	example,	if	we	wanted	to	
animate	a	square	moving	400	pixels	to	the	right	in	four	steps	over	4	seconds,	
then	the	square	would	jump	100	pixels	to	the	right	every	second,	rather	than	
animating	in	a	continuous	motion.	Let’s	examine	the	syntax	that	we’d	need	for	
this	particular	example,	which	should	be	an	absolute	breeze	now	that	we’ve	
tackled	the	intricacies	of	the	cubic-bezier()cubic-bezier()	function!

	

See	the	Pen	on	CodePen

	
div	div	{{

						transitiontransition::	4s	steps(4)	4s	steps(4);;

}}

11

http://codepen.io/stephengreig/pen/Gwbry/

div:target	div:target	{{

						leftleft::	400px	400px;;

}}

	

As	you	can	see,	it’s	a	simple	matter	of	stating	the	number	of	steps	to	divide	the	
animation	into	—	but	bear	in	mind	that	this	number	must	be	a	positive	integer,	
so	no	negatives	or	decimals.	However,	a	second,	optional	parameter	affords	us	
slightly	more	control,	the	possible	values	for	which	are	startstart	and	endend,	the	latter	
being	the	default	value.

	
transition-timing-functiontransition-timing-function::	steps(4,	start)	steps(4,	start);;

transition-timing-functiontransition-timing-function::	steps(4,	end)	steps(4,	end);;

	

A	value	of	startstart	would	run	the	animation	at	the	beginning	of	each	step,	
whereas	a	value	of	endend	would	run	the	animation	at	the	end	of	each	step.	Using	
the	previous	“moving	box”	example,	the	following	image	does	a	far	better	job	of	
explaining	the	difference	between	these	values.

	

The	difference	between	the	start	and	end	values	in	the	steps()steps()	function.

	

You	can	see	that	with	a	value	of	startstart,	the	animation	begins	as	soon	as	it	is	
triggered,	whereas	with	a	value	of	endend,	it	begins	at	the	end	of	the	first	step	(in	
this	case,	one	second	after	being	triggered).

	

And	just	to	ensure	that	this	overview	is	truly	comprehensive,	there	are	also	two	
predefined	keywords	for	the	steps()steps()	function:	step-startstep-start	and	step-endstep-end.	The	
former	is	equivalent	to	steps(1,	start)steps(1,	start),	and	the	latter	is	the	same	as	steps(1,steps(1,		

end)end).

	

Creative	Use	Cases	For	Stepping	Functions
	

OK,	so	you	probably	don’t	have	much	of	a	need	to	animate	a	moving	box	in	
steps	very	often,	but	there	are	plenty	of	other	cool	uses	for	the	steps()steps()	function.	
For	example,	if	you	have	all	of	the	sprites	for	a	basic	cartoon,	then	you	could	use	
this	technique	to	play	it	through	frame	by	frame,	using	just	a	couple	of	CSS	
properties!	Let’s	look	at	a	demo	and	the	code	that	makes	it	function.

	

See	the	Pen	on	CodePen

	
div	div	{{

						widthwidth::	125px	125px;;

						heightheight::	150px	150px;;

						backgroundbackground::		url(images/sprite.jpg)url(images/sprite.jpg)	left	left;;

						transitiontransition::	2s	steps(16)	2s	steps(16);;

						/*	The	number	of	steps	=	the	number	of	frames	in	the	cartoon	*//*	The	number	of	steps	=	the	number	of	frames	in	the	cartoon	*/

}}

div:target	div:target	{{

						background-positionbackground-position::	-2000px	0	-2000px	0;;

}}

12

http://codepen.io/stephengreig/pen/tuvfp/

	

First,	we	have	a	small	rectangular	box	(125	pixels	wide),	which	has	a	
background	image	(2000	pixels	wide)	containing	16	frames	side	by	side.	This	
background	image	is	initially	flush	with	the	left	edge	of	the	box;	so,	all	we	need	
to	do	now	is	move	the	background	image	all	the	way	to	the	left	so	that	all	16	
frames	pass	through	the	small	rectangular	window.	With	a	normal	animation,	the	
frames	would	just	slide	in	and	out	of	view	as	the	background	image	moves	
leftwards;	however,	with	the	steps()steps()	function,	the	background	image	can	move	
to	the	left	in	16	steps,	ensuring	that	each	of	the	16	frames	snaps	in	and	out	of	
view,	as	desired.	And	just	like	that,	you	are	playing	a	basic	cartoon	using	just	a	
CSS	transition!

	

This	GIF	demonstrates	the	concept	of	the	background	image	passing	through	the	“window”	in	steps,	so	
that	each	frame	snaps	in	and	out	of	view.	(View	it	in	action)

	

Another	creative	use	of	the	steps()steps()	function	that	I’ve	found	comes	courtesy	of	
Lea	Verou	(who	else?),	who	has	come	up	with	a	particularly	clever	typing	
animation,	which	I’ll	break	down	for	you	now.

	

13

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/04/13-frames-concept.gif

See	the	Pen	on	CodePen

	

First,	you	need	some	text,	and	—	unfortunately	—	you	need	to	know	exactly
how	many	characters	you’re	working	with	because	you’ll	need	to	use	this
number	in	the	CSS.	Another	requirement	is	that	the	font	must	be	monospaced,	so
that	all	characters	are	exactly	the	same	width.

	
<p>smashingmag</p><p>smashingmag</p>

.text	.text	{{

						widthwidth::	6.6em	6.6em;;

						widthwidth::	11ch	11ch;;		/*	Number	of	characters	*//*	Number	of	characters	*/

						border-rightborder-right::	.1em	solid	.1em	solid;;

						fontfont::	5em	monospace	5em	monospace;;

}}

	

The	text	we’re	working	with	has	11	characters.	With	the	help	of	the	chch	CSS	unit,	
we	can	actually	use	this	figure	to	define	the	width	of	the	paragraph,	although	we	
should	specify	a	fallback	width	for	browsers	that	don’t	support	this	unit.	The	
paragraph	is	then	given	a	solid	black	border	on	the	right	side,	which	will	become	
the	cursor.	Now	everything	is	in	place;	we	just	need	to	animate	it,	which	is	
extremely	simple.

14

http://codepen.io/stephengreig/pen/Blbcs/

	

Two	separate	animations	are	required:	one	for	the	cursor	and	one	for	the	typing.
To	achieve	the	former,	all	we	need	to	do	is	make	the	black	border	blink,	which
couldn’t	be	simpler.

	
@keyframes	cursor	@keyframes	cursor	{{

						50%	50%	{{

										border-colorborder-color::	transparent	transparent;;

						}}

}}

.text	.text	{{

						/*	existing	styles	*//*	existing	styles	*/

						animationanimation::	cursor	1s	step-end	infinite	cursor	1s	step-end	infinite;;

}}

	

As	intended,	the	black	border	simply	switches	between	black	and	transparent	
and	then	loops	continuously.	This	is	where	the	steps()steps()	function	is	vital	because,	
without	it,	the	cursor	would	just	fade	in	and	out,	rather	than	blink.

	

Finally,	the	typing	animation	is	just	as	simple.	All	we	need	to	do	is	reduce	the
width	of	the	paragraph	to	zero,	before	animating	it	back	to	full	width	in	11	steps
(the	number	of	characters).

	
@keyframes	typing	@keyframes	typing	{{

						from	from	{{

												widthwidth::	0	0;;

						}}

}}

.text	.text	{{

						/*	existing	styles	*//*	existing	styles	*/

						animationanimation::	typing	8s	steps(11),		typing	8s	steps(11),	

														cursor	1s	step-end	infinite														cursor	1s	step-end	infinite;;

}}

	

With	this	single	keyframe	in	place,	the	text	will	reveal	itself	one	letter	at	a	time	
over	8	seconds,	while	the	black	border-rightborder-right	(the	cursor)	will	blink	away	
continuously.	The	technique	is	very	simple	yet	extremely	effective.

	

Just	to	add	to	this	excellent	use	of	the	steps()steps()	function	by	Lea	Verou,	reversing	
the	effect	and	making	the	text	appear	to	be	deleted	is	also	a	cinch.	To	achieve	
this,	just	change	the	keyframe	keyword	so	that	it	reads	toto	rather	than	fromfrom,	and	
then	add	an	animation-fill-modeanimation-fill-mode	parameter	of	forwardsforwards	to	the	set	of	
animationanimation	rules.	This	will	ensure	that	once	the	text	“deletes”	(i.e.	when	the	
animation	has	finished),	the	text	will	remain	deleted.	Look	at	the	demo	below	to	
see	this	in	action.

	

See	the	Pen	on	CodePen

	

15

http://codepen.io/stephengreig/pen/LmohC/

	

The	downside	to	both	of	the	examples	featured	in	this	section	is	that	you	must	
know	the	number	of	frames	or	characters	beforehand	in	order	to	specify	the	right	
number	of	steps,	and	if	this	number	changes	at	all,	then	you	will	need	to	alter	the	
code	as	well.	Still,	the	steps()steps()	function	has	shown	its	worth	here	and	is	another	
fantastic	piece	of	functionality	of	the	CSS	timing	function.

	

The	Browser	Support	Situation
	

We’ve	established	that	you	can’t	use	a	CSS	timing	function	unless	the	browser
supports	CSS-based	animation	—	namely,	the	CSS	Transitions	and	CSS
Animation	(keyframe-based)	modules.	Fortunately,	support	is	in	pretty	great
shape	these	days.

	

SUPPORT	FOR	CSS	TRANSITIONS

Browser Prefixed	support Unprefixed	support

Internet	Explorer N/A 10+

Firefox 4+	(-moz--moz-) 16+

Chrome 4+	(-webkit--webkit-) 26+

Safari 3.1+	(-webkit--webkit-) 6.1+

Opera 10.5+	(-o--o-	prefix) 12.1+

	

Although	all	current	browser	versions	have	dropped	the	prefix	for	transitions	
(which	is	awesome),	you’d	be	wise	to	still	include	the	-webkit--webkit-	prefix	to	cater	
to	old	mobile	browsers.	I	think	the	need	to	include	the	-moz--moz-	and	-o--o-	prefixes,	
however,	has	passed,	as	long	as	you	progressively	enhance,	which	you	should	be	
doing	anyway!

	

SUPPORT	FOR	CSS	ANIMATION

Browser Prefixed	support Unprefixed	support

Internet
Explorer N/A 10+

Firefox 5+	(-moz--moz-) 16+

Chrome 4+	(-webkit--webkit-) Not	supported

Safari 4+	(-webkit--webkit-) Not	Supported

Opera
12	(-o--o-	prefix),	15+	(--
webkit-webkit-	prefix)

12.1	only	(not	supported	since
switch	to	WebKit)

	

Again,	for	keyframe	animations,	include	only	the	-webkit--webkit-	prefix	alongside	
your	unprefixed	code.

	

Evidently,	browser	support	for	CSS-based	animation	is	in	excellent	shape,	but
support	is	slightly	more	fragmented	when	it	comes	to	the	nuances	of	timing
functions.	The	following	table	explains	in	more	detail.

functions.	The	following	table	explains	in	more	detail.

	

SUPPORT	FOR	CSS	TIMING	FUNCTIONS

Browser Basic
support

cubic-bezier()	outside	of	0-1
range steps()

Internet
Explorer 10+ 10+ 10+

Firefox 4+ 4+ 4+

Chrome 4+ 16+ 8+

Safari 3.1+ 6+ 5.1+

Opera 10.5+ 12.1+ 12.1+

	

Again,	although	certain	browsers	have	taken	a	little	longer	to	support	the	full
range	of	timing-function	capabilities,	you	can	see	that	support	is	now	universal
across	current	browser	versions.

	

Summary
	

So,	what	have	we	learned	about	CSS	timing	functions?	Time	to	recap.

	

They	define	where	an	animation	accelerates	and	decelerates.

	

There	is	a	great	deal	more	to	them	than	just	the	predefined	keywords.

	

You	can	create	bounce	effects	with	cubic-bezier()cubic-bezier()	values	outside	of	the	
0–1	range.

	

You	can	break	an	animation	into	any	number	of	steps,	rather	than	tweened	
motion.

	

Browser	support	is	in	fantastic	shape	and	ever	improving.

	

Finally,	although	these	techniques	are	now	supported	across	the	board,	this
wouldn’t	be	an	article	about	CSS3	techniques	if	I	didn’t	mention	progressive
enhancement.	Always	work	from	the	bottom	up;	that	is	to	say,	ensure	that	your
work	is	acceptable	and	accessible	on	devices	and	browsers	that	can’t	deal	with
this	functionality	before	enhancing	for	browsers	that	can	cope	with	them.

	

Other	than	that,	go	wild!	Happy	curving	and	stepping!

	

OTHER	RESOURCES

•

•

•

•

•

	

“Cubic	Bézier ,”	Lea	Verou
A	playground	for	creating	and	comparing	Bézier	curves

	

“Timing	Functions ,”	Mozilla	Developer	Network
A	more	technical	overview	of	Bézier	curves.

	

“Bézier	Curves ,”	Wikipedia
More	information	❧

	
	

—

	

1. http://en.wikipedia.org/wiki/File:Bezier_3_big.gif

	

2. http://codepen.io/stephengreig/pen/bHzqm/

	

3. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/04/05-bezier-curve-ease-in-
ease-out.jpg

	

4. http://cubic-bezier.com/

	

5. http://cubic-bezier.com/

• 16

• 17

• 18

http://cubic-bezier.com/
https://developer.mozilla.org/en/docs/Web/CSS/timing-function
http://en.wikipedia.org/wiki/B%C3%A9zier_curve
http://en.wikipedia.org/wiki/File:Bezier_3_big.gif
http://codepen.io/stephengreig/pen/bHzqm/
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/04/05-bezier-curve-ease-in-ease-out.jpg
http://cubic-bezier.com/
http://cubic-bezier.com/

	

6. http://codepen.io/stephengreig/pen/baFhH/

	

7. http://codepen.io/stephengreig/pen/kILDb/

	

8. http://codepen.io/stephengreig/pen/xcCqj/

	

9. http://codepen.io/stephengreig/pen/vbqBh/

	

10. http://codepen.io/stephengreig/pen/rscGb/

	

11. http://codepen.io/stephengreig/pen/Gwbry/

	

12. http://codepen.io/stephengreig/pen/tuvfp/

	

13. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/04/13-frames-concept.gif

	

14. http://codepen.io/stephengreig/pen/Blbcs/

	

15. http://codepen.io/stephengreig/pen/LmohC/

	

16. http://cubic-bezier.com/

	

http://codepen.io/stephengreig/pen/baFhH/
http://codepen.io/stephengreig/pen/kILDb/
http://codepen.io/stephengreig/pen/xcCqj/
http://codepen.io/stephengreig/pen/vbqBh/
http://codepen.io/stephengreig/pen/rscGb/
http://codepen.io/stephengreig/pen/Gwbry/
http://codepen.io/stephengreig/pen/tuvfp/
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/04/13-frames-concept.gif
http://codepen.io/stephengreig/pen/Blbcs/
http://codepen.io/stephengreig/pen/LmohC/
http://cubic-bezier.com/

17. https://developer.mozilla.org/en/docs/Web/CSS/timing-function

	

18. http://en.wikipedia.org/wiki/B%C3%A9zier_curve

	

	

https://developer.mozilla.org/en/docs/Web/CSS/timing-function
http://en.wikipedia.org/wiki/B%C3%A9zier_curve

Styling	And	Animating	SVGs	With	CSS
BY	SARA	SOUEIDAN	❧

	

CSS	can	be	used	to	style	and	animate	scalable	vector	graphics,	much	like	it	is	
used	to	style	and	animate	HTML	elements.	In	this	article,	which	is	a	modified	
transcript	of	a	talk	I	recently	gave 	at	CSSconf	EU 	and	From	the	Front ,	I’ll	go	
over	the	prerequisites	and	techniques	for	working	with	CSS	in	SVG.

	

I’ll	also	go	over	how	to	export	and	optimize	SVGs,	techniques	for	embedding
them	and	how	each	one	affects	the	styles	and	animations	applied,	and	then	we’ll
actually	style	and	animate	with	CSS.

	

Introduction
	

Scalable	vector	graphics	(SVG)	is	an	XML-based	vector	image	format	for	two-
dimensional	graphics,	with	support	for	interactivity	and	animation.	In	other
words,	SVGs	are	XML	tags	that	render	shapes	and	graphics,	and	these	shapes
and	graphics	can	be	interacted	with	and	animated	much	like	HTML	elements	can
be.

	

Animations	and	interactivity	can	be	added	via	CSS	or	JavaScript.	In	this	article,
we’ll	focus	on	CSS.

1 2 3

https://www.youtube.com/watch?v=lf7L8X6ZBu8
http://2014.cssconf.eu/
http://2014.fromthefront.it/

	

There	are	many	reasons	why	SVGs	are	great	and	why	you	should	be	using	them
today:

	

SVG	graphics	are	scalable	and	resolution-independent.	They	look	great	
everywhere,	from	high-resolution	“Retina”	screens	to	printed	media.

	

SVGs	have	very	good	browser	support .	Fallbacks	for	non-supporting	
browsers	are	easy	to	implement,	too,	as	we’ll	see	later	in	the	article.

	

Because	SVGs	are	basically	text,	they	can	be	gzipped,	making	the	files	
smaller	that	their	bitmap	counterparts	(JPEG	and	PNG).

	

SVGs	are	interactive	and	styleable	with	CSS	and	JavaScript.

	

SVG	comes	with	built-in	graphics	effects	such	as	clipping	and	masking	
operations,	background	blend	modes,	and	filters.	This	is	basically	the	
equivalent	of	having	Photoshop	photo-editing	capabilities	right	in	the	
browser.

	

SVGs	are	accessible.	In	one	sense,	they	have	a	very	accessible	DOM	API,	
which	makes	them	a	perfect	tool	for	infographics	and	data	visualizations	

•

• 4

•

•

•

•

http://caniuse.com/#feat=svg

and	which	gives	them	an	advantage	over	HTML5	Canvas	because	the	
content	of	the	latter	is	not	accessible.	In	another	sense,	you	can	inspect	each	
and	every	element	in	an	SVG	using	your	favorite	browser’s	developer	tools,	
just	like	you	can	inspect	HTML	elements.	And	SVGs	are	accessible	to	
screen	readers	if	you	make	them	so.	We’ll	go	over	accessibility	a	little	more	
in	the	last	section	of	this	article.

	

Several	tools	are	available	for	creating,	editing	and	optimizing	SVGs.	And	
other	tools	make	it	easier	to	work	with	SVGs	and	save	a	lot	of	time	in	our	
workflows.	We’ll	go	over	some	of	these	tools	next.

	

Exporting	SVGs	From	Graphics	Editors	And	
Optimizing	Them
	

The	three	most	popular	vector	graphics	editors	are:

	

Adobe	Illustrator ,

	

Inkscape ,

	

Sketch .

	

•

• 5

• 6

• 7

http://www.adobe.com/products/illustrator.html
https://inkscape.org/en/
http://bohemiancoding.com/sketch/

	

Adobe	Illustrator	is	a	paid	application	from	Adobe.	It	is	a	highly	popular	editor,
with	a	nice	UI	and	many	capabilities	that	make	it	the	favorite	of	most	designers.

	

Inkscape	is	a	popular	free	alternative.	Even	though	its	UI	is	not	as	nice	as
Illustrator’s,	it	has	everything	you	need	to	work	with	vector	graphics.

	

Sketch	is	a	Mac	OS	X-only	graphics	app.	It	is	not	free	either,	but	it	has	been	
making	the	rounds 	among	designers	lately	and	gaining	popularity ,	with	a	lot	of	
resources	and	tools 	being	created	recently	to	improve	the	workflow.

	

Choose	any	editor	to	create	your	SVGs.	After	choosing	your	favorite	editor	and
creating	an	SVG	but	before	embedding	it	on	a	web	page,	you	need	to	export	it
from	the	editor	and	clean	it	up	to	make	it	ready	to	work	with.

	

I’ll	refer	to	exporting	and	optimizing	an	SVG	created	in	Illustrator.	But	the
workflow	applies	to	pretty	much	any	editor,	except	for	the	Illustrator-specific
options	we’ll	go	over	next.

	

To	export	an	SVG	from	Illustrator,	start	by	going	to	“File”	→	“Save	as,”	and	
then	choose	“.svg”	from	the	file	extensions	dropdown	menu.	Once	you’ve	
chosen	the	.svg	extension,	a	panel	will	appear	containing	a	set	of	options	for	
exporting	the	SVG,	such	as	which	version	of	SVG	to	use,	whether	to	embed	
images	in	the	graphic	or	save	them	externally	and	link	to	them	in	the	SVG,	and	

8 9

10

https://medium.com/@jm_denis/discovering-sketch-25545f6cb161
http://hackingui.com/design/sketch-design/why-i-moved-to-sketch/
http://www.sketchappsources.com/

how	to	add	the	styles	to	the	SVG	(by	using	presentation	attributes	or	by	using	
CSS	properties	in	a	<style><style>	element).

	

The	following	image	shows	the	best	settings	to	choose	when	exporting	an	SVG
for	the	web:

	

	

	

The	reasons	why	the	options	above	are	best	are	explained	in	Michaël	Chaize’s	
excellent	article	“Export	SVG	for	the	Web	With	Illustrator	CC .”

	

Whichever	graphics	editor	you	choose,	it	will	not	output	perfectly	clean	and
optimized	code.	SVG	files,	especially	ones	exported	from	editors,	usually
contain	a	lot	of	redundant	information,	such	as	meta	data	from	the	editor,
comments,	empty	groups,	default	values,	non-optimal	values	and	other	stuff	that
can	be	safely	removed	or	converted	without	affecting	the	rendering	of	the	SVG.
And	if	you’re	using	an	SVG	that	you	didn’t	create	yourself,	then	the	code	is
almost	certainly	not	optimal,	so	using	a	standalone	optimization	tool	is
advisable.

	

Several	tools	for	optimizing	SVG	code	are	out	there.	Peter	Collingridge’s	SVG	
Editor 	is	an	online	tool	that	you	input	SVG	code	into	either	directly	or	by	
uploading	an	SVG	file	and	that	then	provides	you	with	several	optimization	
options,	like	removing	redundant	code,	comments,	empty	groups,	white	space	
and	more.	One	option	allows	you	to	specify	the	number	of	decimal	places	of	
point	coordinates.

	

11

12

http://creativedroplets.com/export-svg-for-the-web-with-illustrator-cc/
http://petercollingridge.appspot.com/svg-editor

(View	large	version)

	

Peter’s	optimizer	can	also	automatically	move	inline	SVG	properties	to	a	style	
block	at	the	top	of	the	document.	The	nice	thing	about	it	is	that,	when	you	check	
an	option,	you	can	see	the	result	of	the	optimization	live,	which	enables	you	to	
better	decide	which	optimizations	to	make.	Certain	optimizations	could	end	up	
breaking	your	SVG.	For	example,	one	decimal	place	should	normally	be	enough.	
If	you’re	working	with	a	path-heavy	SVG	file,	reducing	the	number	of	decimal	
places	from	four	to	one	could	slash	your	file’s	size	by	as	much	as	half.	However,	
it	could	also	entirely	break	the	SVG.	So,	being	able	to	preview	an	optimization	is	
a	big	plus.

	

13

14

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/10/02-svg-editor-large-preview-opt.png

Peter’s	tool	is	an	online	one.	If	you’d	prefer	an	offline	tool,	try	SVGO 	(the	“O”	
is	for	“optimizer”),	a	Node.js-based	tool	that	comes	with	a	nice	and	simple	drag-
and-drop	GUI .	If	you	don’t	want	to	use	an	online	tool,	this	one	is	a	nice	
alternative.

	

The	following	screenshot	(showing	the	path	from	the	image	above)	is	a	simple
before-and-after	illustration	of	how	much	Peter’s	tool	optimizes	SVG.

	

14

15

https://github.com/svg/svgo
https://github.com/svg/svgo-gui

	

Notice	the	size	of	the	original	SVG	compared	to	the	optimized	version.	Not	to
mention,	the	optimized	version	is	much	more	readable.

	

After	optimizing	the	SVG,	it’s	ready	to	be	embedded	on	a	web	page	and	further
customized	or	animated	with	CSS.

	

	

Styling	SVGs	With	CSS
	

The	line	between	HTML	and	CSS	is	clear:	HTML	is	about	content	and	structure,
and	CSS	is	about	the	look.	SVG	blurs	this	line,	to	say	the	least.	SVG	1.1	did	not
require	CSS	to	style	SVG	nodes	—	styles	were	applied	to	SVG	elements	using
attributes	known	as	“presentation	attributes.”

	

Presentation	attributes	are	a	shorthand	for	setting	a	CSS	property	on	an	element.
Think	of	them	as	special	style	properties.	They	even	contribute	to	the	style
cascade,	but	we’ll	get	to	that	shortly.

	

The	following	example	shows	an	SVG	snippet	that	uses	presentation	attributes	
to	style	the	“border”	(strokestroke)	and	“background	color”	(fillfill)	of	a	star-shaped	
polygon:

	
<<svgsvg		xmlnsxmlns=="http://www.w3.org/2000/svg""http://www.w3.org/2000/svg"		versionversion=="1.1""1.1"		widthwidth=="300px""300px"		

heightheight=="300px""300px"		viewBoxviewBox=="0	0	300	300""0	0	300	300">>

				<<polygonpolygon

fillfill	=	"#	=	"#FF931EFF931E""

strokestroke	=	"#	=	"#ED1C24ED1C24""

stroke-widthstroke-width	=	"	=	"55""

pointspoints	=	"	=	"279279..11,,160160..88		195195..22,,193193..33		174174..44,,280280..88						117117..66,,211211..11		

2727..99,,218218..33		7676..77,,142142..77		4242..11,,5959..66		129129..11,,8282..77		197197..44,,2424..11		202202..33,,114114	"	"/>/>

</</svgsvg>>

	

The	fillfill,	strokestroke	and	stroke-widthstroke-width	attributes	are	presentation	attributes.

	

In	SVG,	a	subset	of	all	CSS	properties	may	be	set	by	SVG	attributes,	and	vice	
versa.	The	SVG	specification	lists	the	SVG	attributes	that	may	be	set	as	CSS	
properties .	Some	of	these	attributes	are	shared	with	CSS,	such	as	opacityopacity	and	
transformtransform,	among	others,	while	some	are	not,	such	as	fillfill,	strokestroke	and	
stroke-widthstroke-width,	among	others.

	

In	SVG	2,	this	list	will	include	xx,	yy,	widthwidth,	heightheight,	cxcx,	cycy	and	a	few	other	
presentation	attributes	that	were	not	possible	to	set	via	CSS	in	SVG	1.1.	The	new	
list	of	attributes	can	be	found	in	the	SVG	2	specification .

	

Another	way	to	set	the	styles	of	an	SVG	element	is	to	use	CSS	properties.	Just
like	in	HTML,	styles	may	be	set	on	an	element	using	inline	style	attributes:

	
<<svgsvg		xmlnsxmlns=="http://www.w3.org/2000/svg""http://www.w3.org/2000/svg"		versionversion=="1.1""1.1"		stylestyle=="width:"width:		

300px;	height:	300px;"300px;	height:	300px;"		viewBoxviewBox=="0	0	300	300""0	0	300	300">>

<<polygonpolygon

				stylestyle	=	"	=	"fill:fill:	#	#FF931EFF931E;	;	stroke:stroke:	#	#ED1C24ED1C24;	;	stroke-width:stroke-width:		55;";"

				pointspoints	=	"	=	"279279..11,,160160..88		195195..22,,193193..33		174174..44,,280280..88						117117..66,,211211..11		

2727..99,,218218..33		7676..77,,142142..77		4242..11,,5959..66		129129..11,,8282..77		197197..44,,2424..11		202202..33,,114114	"	"/>/>

</</svgsvg>>

	

Styles	may	also	be	set	in	rule	sets	in	a	<style><style>	tag.	The	<style><style>	tag	can	be	
placed	in	the	<svg><svg>	tag:

	

16

17

http://www.w3.org/TR/SVG/propidx.html
http://www.w3.org/TR/SVG2/styling.html#SVGStylingProperties

	
<<svgsvg		xmlnsxmlns=="http://www.w3.org/2000/svg""http://www.w3.org/2000/svg"		versionversion=="1.1""1.1"		widthwidth=="300px""300px"		

heightheight=="300px""300px"		viewBoxviewBox=="0	0	300	300""0	0	300	300">>

				<<stylestyle		typetype=="text/css""text/css">>

				<![CDATA[<![CDATA[

		selector	{/*	styles	*/}		selector	{/*	styles	*/}

]]>]]>

				</</stylestyle>>

				<<gg		idid=="..""..">>	…		…	</</gg>>

</</svgsvg>>

	

And	it	can	be	placed	outside	of	it,	if	you’re	embedding	the	SVG	inline	in	the
document:

	
<!DOCTYPE	html><!DOCTYPE	html><!--	HTML5	document	--><!--	HTML5	document	-->

<<htmlhtml>>

<<headhead>>	…		…	</</headhead>>

<<bodybody>>

<<stylestyle		typetype=="text/css""text/css">>

				/*	style	rules	*//*	style	rules	*/

</</stylestyle>>

<!--	xmlns	is	optional	in	an	HTML5	document	→<!--	xmlns	is	optional	in	an	HTML5	document	→

<svg	viewBox="0	0	300	300"><svg	viewBox="0	0	300	300">

<!--	SVG	content	--><!--	SVG	content	-->

</</svgsvg>>

</</bodybody>>

</</htmlhtml>>

	

And	if	you	want	to	completely	separate	style	from	markup,	then	you	could	
always	link	to	an	external	style	sheet	from	the	SVG	file,	using	the	<?xml-<?xml-

stylesheet>stylesheet>	tag,	as	shown	below:

	

	
<?xml	version="1.0"	standalone="no"?><?xml	version="1.0"	standalone="no"?>

<?xml-stylesheet	type="text/css"	href="style.css"?><?xml-stylesheet	type="text/css"	href="style.css"?>

<<svgsvg		xmlnsxmlns=="http://www.w3.org/2000/svg""http://www.w3.org/2000/svg"		versionversion=="1.1""1.1"		widthwidth==".."".."		

heightheight==".."".."		viewBoxviewBox=="..""..">>

				<!--	SVG	content	--><!--	SVG	content	-->

</</svgsvg>>

STYLE	CASCADES
	

We	mentioned	earlier	that	presentation	attributes	are	sort	of	special	style
properties	and	that	they	are	just	shorthand	for	setting	a	CSS	property	on	an	SVG
node.	For	this	reason,	it	only	makes	sense	that	SVG	presentation	attributes
would	contribute	to	the	style	cascade.

	

Indeed,	presentation	attributes	count	as	low-level	“author	style	sheets”	and	are
overridden	by	any	other	style	definitions:	external	style	sheets,	document	style
sheets	and	inline	styles.

	

The	following	diagram	shows	the	order	of	styles	in	the	cascade.	Styles	lower	in
the	diagram	override	those	above	them.	As	you	can	see,	presentation	attribute
styles	are	overridden	by	all	other	styles	except	for	those	specific	to	the	user
agent.

	

	

For	example,	in	the	following	code	snippet,	an	SVG	circle	element	has	been
drawn.	The	fill	color	of	the	circle	will	be	deep	pink,	which	overrides	the	blue	fill

drawn.	The	fill	color	of	the	circle	will	be	deep	pink,	which	overrides	the	blue	fill
specified	in	the	presentation	attribute.

	
<<circlecircle		cxcx=="100""100"		cycy=="100""100"		rr=="75""75"		fillfill=="blue""blue"		stylestyle=="fill:deepPink;""fill:deepPink;"		

/>/>

SELECTORS
	

Most	CSS	selectors	can	be	used	to	select	SVG	elements.	In	addition	to	the	
general	type,	class	and	ID	selectors,	SVGs	can	be	styled	using	CSS2’s	dynamic	
pseudo-classes 	(:hover:hover,	:active:active	and	:focus:focus)	and	pseudo-classes 	(:first-:first-

childchild,	:visited:visited,	:link:link	and	:lang:lang.	The	remaining	CSS2	pseudo-classes,	
including	those	having	to	do	with	generated	content 	(such	as	::before::before	and	
::after::after),	are	not	part	of	the	SVG	language	definition	and,	hence,	have	no	effect	
on	the	style	of	SVGs.

	

The	following	is	a	simple	animation	of	the	fill	color	of	a	circle	from	deep	pink	to	
green	when	it	is	hovered	over	using	the	tag	selector	and	the	:hover:hover	pseudo-
class:

	
<<stylestyle>>

circle	circle	{{

				fillfill::	deepPink	deepPink;;

				transitiontransition::	fill	.3s	ease-out	fill	.3s	ease-out;;

}}

circle:hover	circle:hover	{{

				fillfill::	#009966	#009966;;

}}

18 19

20

http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#q15
http://www.w3.org/TR/2008/REC-CSS2-20080411/generate.html

</</stylestyle>>

	

Much	more	impressive	effects	can	be	created.	A	simple	yet	very	nice	effect	
comes	from	the	Iconic 	icons	set,	in	which	a	light	bulb	is	lit	up	when	hovered	
over.	A	demo	of	the	effect 	is	available.

	

Notes
	

Because	presentation	attributes	are	expressed	as	XML	attributes,	they	are	case-
sensitive.	For	example,	when	specifying	the	fill	color	of	an	element,	the	attribute	
must	be	written	as	fill="…"fill="…"	and	not	Fill="…"Fill="…".

	

Furthermore,	keyword	values	for	these	attributes,	such	as	the	italicitalic	in	font-font-

style="italic"style="italic",	are	also	case-sensitive	and	must	be	specified	using	the	exact	
case	defined	in	the	specification	that	defines	that	value.

	

All	other	styles	specified	as	CSS	properties	—	whether	in	a	style	attribute	or	a	
<style><style>	tag	or	in	an	external	style	sheet	—	are	subject	to	the	grammar	rules	
specified	in	the	CSS	specifications,	which	are	generally	less	case-sensitive.	That	
being	said,	the	SVG	“Styling” 	specification	recommends	using	the	exact	
property	names	(usually,	lowercase	letters	and	hyphens)	as	defined	in	the	CSS	
specifications	and	expressing	all	keywords	in	the	same	case,	as	required	by	
presentation	attributes,	and	not	taking	advantage	of	CSS’s	ability	to	ignore	case.

	

21

22

23

https://useiconic.com/
http://tutsplus.github.io/Styling-Iconic/styling/index.html
http://www.w3.org/TR/SVG11/styling.html#StylingWithCSS

	

Animating	SVGs	With	CSS
	

SVGs	can	be	animated	the	same	way	that	HTML	elements	can,	using	CSS
keyframes	and	animation	properties	or	using	CSS	transitions.

	

In	most	cases,	complex	animations	will	usually	contain	some	kind	of
transformation	—	a	translation,	a	rotation,	scaling	and/or	skewing.

	

In	most	respects,	SVG	elements	respond	to	transformtransform	and	transform-origintransform-origin	
in	the	same	way	that	HTML	elements	do.	However,	a	few	inevitable	differences	
result	from	the	fact	that,	unlike	HTML	elements,	SVG	elements	aren’t	governed	
by	a	box	model	and,	hence,	have	no	margin,	border,	padding	or	content	boxes.

	

By	default,	the	transform	origin	of	an	HTML	element	is	at	(50%,	50%)(50%,	50%),	which	is	
the	element’s	center.	By	contrast,	an	SVG	element’s	transform	origin	is	
positioned	at	the	origin	of	the	user’s	current	coordinate	system,	which	is	the	(0,(0,		

0)0)	point,	in	the	top-left	corner	of	the	canvas.

	

Suppose	we	have	an	HTML	<div><div>	and	an	SVG	<rect><rect>	element:

	
<!DOCTYPE	html><!DOCTYPE	html>

……

<<divdiv		stylestyle=="width:	100px;	height:	100px;	background-color:	orange""width:	100px;	height:	100px;	background-color:	orange">>		

</</divdiv>>

<<svgsvg		stylestyle=="width:	150px;	height:	150px;	background-color:	#eee""width:	150px;	height:	150px;	background-color:	#eee">>

				<<rectrect		widthwidth=="100""100"		heightheight=="100""100"		xx=="25""25"		yy=="25""25"		fillfill=="orange""orange"		/>/>

</</svgsvg>>

	

If	were	were	to	rotate	both	of	them	by	45	degrees,	without	changing	the	default
transform	origin,	we	would	get	the	following	result	(the	red	circle	indicates	the
position	of	the	transform	origin):

	

(View	large	version)

	

What	if	we	wanted	to	rotate	the	SVG	element	around	its	own	center,	rather	than	
the	top-left	corner	of	the	SVG	canvas?	We	would	need	to	explicitly	set	the	
transform	origin	using	the	transform-origintransform-origin	property.

	

Setting	the	transform	origin	on	an	HTML	element	is	straightforward:	Any	value
you	specify	will	be	set	relative	to	the	element’s	border	box.

	

In	SVG,	the	transform	origin	can	be	set	using	either	a	percentage	value	or	an

24

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/10/05-transform-svg-html-large-preview-opt.png

absolute	value	(for	example,	pixels).	If	you	specify	a	transform-origin	value	in
percentages,	then	the	value	will	be	set	relative	to	the	element’s	bounding	box,
which	includes	the	stroke	used	to	draw	its	border.	If	you	specify	the	transform
origin	in	absolute	values,	then	it	will	be	set	relative	to	the	SVG	canvas’	current
coordinate	system	of	the	user.

	

If	we	were	to	set	the	transform	origin	of	the	<div><div>	and	<rect><rect>	from	the	previous	
example	to	the	center	using	percentage	values,	we	would	do	this:

	
<!DOCTYPE	html><!DOCTYPE	html>

<<stylestyle>>

				div,	rect	div,	rect	{{

				transform-origintransform-origin::	50%	50%	50%	50%;;

}}

</</stylestyle>>

	

The	resulting	transformation	would	look	like	so:

	

(View	large	version)

	

25

http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/10/06-transform-svg-html-large-preview-opt.png

That	being	said,	at	the	time	of	writing,	setting	the	transform	origin	in	percentage	
values	currently	does	not	work	in	Firefox.	This	is	a	known	bug .	So,	for	the	time	
being,	your	best	bet	is	to	use	absolute	values	so	that	the	transformations	behave	
as	expected.	You	can	still	use	percentage	values	for	WebKit	browsers,	though.

	

In	the	following	example,	we	have	a	pinwheel	on	a	stick	that	we’ll	rotate	using
CSS	animation.	To	have	the	wheel	rotate	around	its	own	center,	we’ll	set	its
transform	origin	in	pixels	and	percentages:

	
<<svgsvg>>

<<stylestyle>>

.wheel	.wheel	{{

				transform-origintransform-origin::	193px	164px	193px	164px;;

				-webkit-transform-origin-webkit-transform-origin::	50%	50%	50%	50%;;

				-webkit-animation-webkit-animation::	rotate	4s	cubic-bezier(.49,.05,.32,1.04)	rotate	4s	cubic-bezier(.49,.05,.32,1.04)		

infinite	alternateinfinite	alternate;;

				animationanimation::	rotate	4s	cubic-bezier(.49,.05,.32,1.04)	infinite	rotate	4s	cubic-bezier(.49,.05,.32,1.04)	infinite		

alternatealternate;;

}}

@-webkit-keyframes	rotate	@-webkit-keyframes	rotate	{{

				50%	50%	{{

								-webkit-transform-webkit-transform::	rotate(360deg)	rotate(360deg);;

				}}

}}

@keyframes	rotate	@keyframes	rotate	{{

				50%	50%	{{

								transformtransform::	rotate(360deg)	rotate(360deg);;

				}}

}}

26

https://bugzilla.mozilla.org/show_bug.cgi?id=891074

</</stylestyle>>

<!--	SVG	content	--><!--	SVG	content	-->

</</svgsvg>>

	

You	can	check	out	the	live	result	on	Codepen .	Note	that,	at	the	time	of	writing,	
CSS	3D	transformations	are	not	hardware-accelerated	when	used	on	SVG	
elements;	they	have	the	same	performance	profile	as	SVG	transform	attributes.	
However,	Firefox	does	accelerate	transforms	on	SVGs	to	some	extent.

	

Animating	SVG	Paths
	

There	is	no	way	to	animate	an	SVG	path	from	one	shape	to	another	in	CSS.	If	
you	want	to	morph	paths	—	that	is,	animate	from	one	path	to	another	—	then	
you	will	need	to	use	JavaScript	for	the	time	being.	If	you	do	that,	I	recommend	
using	Snap.svg 	by	Dmitry	Baranovskiy,	the	same	person	behind	the	SVG	
library	Raphaël .

	

Snap.svg	is	described	as	being	to	SVG	what	jQuery	is	to	HTML,	and	it	makes
dealing	with	SVGs	and	its	quirks	a	lot	easier.

	

That	being	said,	you	could	create	an	animated	line-drawing	effect	using	CSS.	
The	animation	would	require	you	to	know	the	total	length	of	the	path	you’re	
animating	and	then	to	use	the	stroke-dashoffsetstroke-dashoffset	and	stroke-dasharraystroke-dasharray	SVG	
properties	to	achieve	the	drawing	effect.	Once	you	know	the	length	of	the	path,	

27

28

29

http://codepen.io/SaraSoueidan/pen/d0f94390e6c9af38fa562974399b6222?editors=100
http://snapsvg.io/
http://raphaeljs.com/

you	can	animate	it	with	CSS	using	the	following	rules:

	
#path	#path	{{

stroke-dasharraystroke-dasharray::	pathLength	pathLength;;

stroke-dashoffsetstroke-dashoffset::	pathLength	pathLength;;

/*	transition	stroke-dashoffset	*//*	transition	stroke-dashoffset	*/

transitiontransition::	stroke-dashoffset	2s	linear	stroke-dashoffset	2s	linear;;

}}

svg:hover	#pathsvg:hover	#path{{

				stroke-dashoffsetstroke-dashoffset::	0	0;;

}}

	

In	the	example	above,	the	path	is	drawn	over	the	course	of	two	seconds	when	the
SVG	is	hovered	over.

	

In	the	next	demo,	we’ll	use	the	same	technique	and	then	use	a	CSS	transition	—
with	a	delay	—	to	light	up	the	bulb	once	the	path’s	animation	ends.

	
#cable	#cable	{{

				strokestroke::	#FFF2B1	#FFF2B1;;

				stroke-dasharraystroke-dasharray::	4000	4000	4000	4000;;				

				stroke-dashoffsetstroke-dashoffset::	4000	4000;;

				stroke-widthstroke-width::	4	4;;

				transitiontransition::	stroke-dashoffset	8s	linear	stroke-dashoffset	8s	linear;;

}}

svg:hover	#cable	svg:hover	#cable	{{

				stroke-dashoffsetstroke-dashoffset::	0	0;;

}}

/*	turn	lamp	on	*//*	turn	lamp	on	*/

.inner-lamp.inner-lamp{{

				fillfill::greygrey;;

				transitiontransition::	fill	.5s	ease-in	6s	fill	.5s	ease-in	6s;;

}}

svg:hover	.inner-lamp	svg:hover	.inner-lamp	{{

				fillfill::	#FBFFF8	#FBFFF8;;

}}

/*	…	*//*	…	*/

	

You	can	view	the	live	demo	on	JS	Bin .	Note	that	you	can	also	write	stroke-stroke-

dasharray:	4000;dasharray:	4000;	instead	of	stroke-dasharray:	4000	4000stroke-dasharray:	4000	4000	—	if	the	two	line	
and	gap	values	are	equal,	then	you	can	specify	only	one	value	to	be	applied	to	
both.

	

Sometimes,	you	might	not	know	the	exact	length	of	the	path	to	animate.	In	this	
case,	you	can	use	JavaScript	to	retrieve	the	length	of	the	path	using	the	
getTotalLength()getTotalLength()	method:

	
varvar	path		path	==	document	document..querySelectorquerySelector(('.drawing-path''.drawing-path'));;

pathpath..getTotalLengthgetTotalLength(());;

//set	CSS	properties	up//set	CSS	properties	up

pathpath..stylestyle..strokeDasharray	strokeDasharray	==	length	length;;

pathpath..stylestyle..strokeDashoffset	strokeDashoffset	==	length	length;;

//set	transition	up//set	transition	up

pathpath..stylestyle..transition	transition	==		'stroke-dashoffset	2s	ease-in-out''stroke-dashoffset	2s	ease-in-out';;

//	animate//	animate

pathpath..stylestyle..strokeDashoffset	strokeDashoffset	==		'0''0';;

	

30

http://jsbin.com/haxaqa/1/edit?html,output

	

The	snippet	above	is	a	very	simplified	example	showing	that	you	can	do	the
same	thing	we	did	with	CSS	but	using	JavaScript.

	

Jake	Archibald	has	written	an	excellent	article	explaining	the	technique 	in	more	
detail.	Jake	includes	a	nice	interactive	demo	that	makes	it	easy	to	see	exactly	
what’s	going	on	in	the	animation	and	how	the	two	SVG	properties	work	together	
to	achieve	the	desired	effect.	I	recommend	reading	his	article	if	you’re	interested	
in	learning	more	about	this	technique.

	

Embedding	SVGs
	

An	SVG	can	be	embedded	in	a	document	in	six	ways,	each	of	which	has	its	own
pros	and	cons.

	

The	reason	we’re	covering	embedding	techniques	is	because	the	way	you	embed
an	SVG	will	determine	whether	certain	CSS	styles,	animations	and	interactions
will	work	once	the	SVG	is	embedded.

	

An	SVG	can	be	embedded	in	any	of	the	following	ways:

	

as	an	image	using	the		tag:

31

1.

http://jakearchibald.com/2013/animated-line-drawing-svg/

	

as	a	background	image	in	CSS:
.el	{background-image:	url(mySVG.svg);}.el	{background-image:	url(mySVG.svg);}

	

as	an	object	using	the	<object>	tag:
<object	type="image/svg+xml"	data="mySVG.svg"><!--	fallback<object	type="image/svg+xml"	data="mySVG.svg"><!--	fallback		

here	--></object>here	--></object>

	

as	an	iframe	using	an	<iframe>	tag:
<iframe	src="mySVG.svg"><!--	fallback	here	--></iframe><iframe	src="mySVG.svg"><!--	fallback	here	--></iframe>

	

using	the	<embed>	tag:
<embed	type="image/svg+xml"	src="mySVG.svg"	/><embed	type="image/svg+xml"	src="mySVG.svg"	/>

	

inline	using	the	<svg>	tag:
<svg	version="1.1"	xmlns="http://www.w3.org/2000/svg"	…><svg	version="1.1"	xmlns="http://www.w3.org/2000/svg"	…>

<!--	svg	content	--><!--	svg	content	-->

</svg></svg>

	

The	<object><object>	tag	is	the	primary	way	to	include	an	external	SVG	file.	The	main	
advantage	of	this	tag	is	that	there	is	a	standard	mechanism	for	providing	an	
image	(or	text)	fallback	in	case	the	SVG	does	not	render.	If	the	SVG	cannot	be	
displayed	for	any	reason	—	such	as	because	the	provided	URI	is	wrong	—	then	
the	browser	will	display	the	content	between	the	opening	and	closing	<object><object>	
tags.

	

2.

3.

4.

5.

6.

	
<<objectobject		typetype=="image/svg+xml""image/svg+xml"		datadata=="mySVG.svg""mySVG.svg">>

				<<imgimg		srcsrc=="fallback-image.png""fallback-image.png"		altalt=="…""…"		/>/>

</</objectobject>>

	

If	you	intend	using	any	advanced	SVG	features,	such	as	CSS	or	scripting,	then	
the	HTML5	<object><object>	tag	is	your	best	bet.

	

Because	browsers	can	render	SVG	documents	in	their	own	right,	embedding	and	
displaying	an	SVG	using	an	iframe	is	possible.	This	might	be	a	good	method	if	
you	want	to	completely	separate	the	SVG	code	and	script	from	your	main	page.	
However,	manipulating	an	SVG	image	from	your	main	page’s	JavaScript	
becomes	a	little	more	difficult	and	will	be	subject	to	the	same-origin	policy .

	

The	<iframe><iframe>	tag,	just	like	the	<object><object>	tag,	comes	with	a	default	way	to	
provide	a	fallback	for	browsers	that	don’t	support	SVG,	or	those	that	do	support	
it	but	can’t	render	it	for	whatever	reason.

	
<<iframeiframe		srcsrc=="mySVG.svg""mySVG.svg">>

				<<imgimg		srcsrc=="fallback-image.png""fallback-image.png"		altalt=="…""…"		/>/>

</</iframeiframe>>

	

The	<embed><embed>	tag	was	never	a	part	of	any	HTML	specification,	but	it	is	still	
widely	supported.	It	is	intended	for	including	content	that	needs	an	external	
plugin	to	work.	The	Adobe	Flash	plugin	requires	the	<embed><embed>	tag,	and	
supporting	this	tag	is	the	only	real	reason	for	its	use	with	SVG.	The	<embed><embed>	tag	

32

http://en.wikipedia.org/wiki/Same-origin_policy

does	not	come	with	a	default	fallback	mechanism.

	

An	SVG	can	also	be	embedded	in	a	document	inline	—	as	a	“code	island”	—	
using	the	<svg><svg>	tag.	This	is	one	of	the	most	popular	ways	to	embed	SVGs	today.	
Working	with	inline	SVG	and	CSS	is	a	lot	easier	because	the	SVG	can	be	styled	
and	animated	by	targeting	it	with	style	rules	placed	anywhere	in	the	document.	
That	is,	the	styles	don’t	need	to	be	included	between	the	opening	and	closing	
<svg><svg>	tags	to	work;	whereas	this	condition	is	necessary	for	the	other	techniques.

	

Embedding	SVGs	inline	is	a	good	choice,	as	long	as	you’re	willing	to	add	to	the
size	of	the	page	and	give	up	backwards	compatibility	(since	it	does	not	come
with	a	default	fallback	mechanism	either).	Also,	note	that	an	inline	SVG	cannot
be	cached.

	

An	SVG	embedded	with	an		tag	and	one	embedded	as	a	CSS	background	
image	are	treated	in	a	similar	way	when	it	comes	to	CSS	styling	and	animation.	
Styles	and	animations	applied	to	an	SVG	using	an	external	CSS	resource	will	
not	be	preserved	once	the	SVG	is	embedded.

	

The	following	table	shows	whether	CSS	animations	and	interactions	(such	as	
hover	effects)	are	preserved	when	an	SVG	is	embedded	using	one	of	the	six	
embedding	techniques,	as	compared	to	SVG	SMIL	animations .	The	last	
column	shows	that,	in	all	cases,	SVG	animations	(SMIL)	are	preserved.

	

33

http://css-tricks.com/guide-svg-animations-smil/

CSS	Interactions
(e.g.	:hover:hover)

CSS
Animations

SVG
Animations
(SMIL)

 No Yes	only	if
inside	<svg><svg>

Yes

CSS
background
image

No Yes	only	if
inside	<svg><svg>

Yes

<object><object>
Yes	only	if	inside	
<svg><svg>

Yes	only	if
inside	<svg><svg>

Yes

<iframe><iframe>
Yes	only	if	inside	
<svg><svg>

Yes	only	if
inside	<svg><svg>

Yes

<embed><embed>
Yes	only	if	inside	
<svg><svg>

Yes	only	if
inside	<svg><svg>

Yes

<svg><svg>	(inline) Yes Yes Yes

	

The	behavior	indicated	in	the	table	above	is	the	standard	behavior.	However,
implementations	may	differ	between	browsers,	and	bugs	may	exist.

	

Note	that,	even	though	SMIL	animations	will	be	preserved,	SMIL	interactions	
will	not	work	for	an	SVG	embedded	as	an	image	(i.e.		or	via	CSS).

	

Making	SVGs	Responsive
	

After	embedding	an	SVG,	you	need	to	make	sure	it	is	responsive.

	

Depending	on	the	embedding	technique	you	choose,	you	might	need	to	apply
certain	hacks	and	fixes	to	get	your	SVG	to	be	cross-browser	responsive.	The
reason	for	this	is	that	the	way	browsers	determine	the	dimensions	of	an	SVG
differs	for	some	embedding	techniques,	and	SVG	implementations	among
browsers	also	differ.	Therefore,	the	way	SVG	is	handled	is	different	and	requires
some	style	tweaking	to	make	it	behave	consistently	across	all	browsers.

	

I	won’t	get	into	details	of	browser	inconsistencies,	for	the	sake	of	brevity.	I	will	
only	cover	the	fix	or	hack	needed	for	each	embedding	technique	to	make	the	
SVG	responsive	in	all	browsers	for	that	technique.	For	a	detailed	look	at	the	
inconsistencies	and	bugs,	check	out	my	article	on	Codrops .

	

Whichever	technique	you	choose,	the	first	thing	you’ll	need	to	do	is	remove	the	
heightheight	and	widthwidth	attributes	from	the	root	<svg><svg>	element.

	

You	will	need	to	preserve	the	viewBoxviewBox	attribute	and	set	the	
preserveAspectRatiopreserveAspectRatio	attribute	to	xMidYMid	meetxMidYMid	meet	—	if	it	isn’t	already	set	to	
that	value.	Note	that	you	might	not	need	to	explicitly	set	preserveAspectRatiopreserveAspectRatio	
to	xMidYMid	meetxMidYMid	meet	at	all	because	it	will	default	to	this	value	anyway	if	you	don’t	
change	it.

	

When	an	SVG	is	embedded	as	a	CSS	background	image,	no	extra	fixes	or	hacks
are	needed.	It	will	behave	just	like	any	other	bitmap	background	image	and	will

34

http://tympanus.net/codrops/2014/08/19/making-svgs-responsive-with-css/

are	needed.	It	will	behave	just	like	any	other	bitmap	background	image	and	will
respond	to	CSS’	background-image	properties	as	expected.

	

An	SVG	embedded	using	an		tag	will	automatically	be	stretched	to	the	
width	of	the	container	in	all	browsers	(once	the	width	has	been	removed	from	
the	<svg><svg>,	of	course).	It	will	then	scale	as	expected	and	be	fluid	in	all	browsers	
except	for	Internet	Explorer	(IE).	IE	will	set	the	height	of	the	SVG	to	150	pixels,	
preventing	it	from	scaling	correctly.	To	fix	this,	you	will	need	to	explicitly	set	
the	width	to	100%	on	the	.

	
<<imgimg		srcsrc=="mySVG.svg""mySVG.svg"		altalt=="SVG	Description.""SVG	Description."		/>/>

img	img	{{

				widthwidth::	100%	100%;;

}}

	

The	same	goes	for	an	SVG	embedded	using	an	<object><object>	tag.	For	the	same	
reason,	you	will	also	need	to	set	the	width	of	the	<object><object>	to	100%:

	
object	object	{{

				widthwidth::	100%	100%;;

}}

	

Even	though	<iframe><iframe>	has	a	lot	in	common	with	<object><object>,	browsers	seem	to	
handle	it	differently.	For	it,	all	browsers	will	default	to	the	default	size	for	
replaced	elements	in	CSS ,	which	is	300	by	150	pixels.

	

35

http://www.w3.org/TR/CSS2/visudet.html#inline-replaced-width

The	only	way	to	make	an	iframe	responsive	while	maintaining	the	aspect	ratio	of	
the	SVG	is	by	using	the	“padding	hack”	pioneered	by	Thierry	Koblentz	on	A	
List	Apart .	The	idea	behind	the	padding	hack	is	to	make	use	of	the	relationship	
of	an	element’s	padding	to	its	width	in	order	to	create	an	element	with	an	
intrinsic	ratio	of	height	to	width.

	

When	an	element’s	padding	is	set	in	percentages,	the	percentage	is	calculated
relative	to	the	width	of	the	element,	even	when	you	set	the	top	or	bottom
padding	of	the	element.

	

To	apply	the	padding	hack	and	make	the	SVG	responsive,	the	SVG	needs	to	be
wrapped	in	a	container,	and	then	you’ll	need	to	apply	some	styles	to	the
container	and	the	SVG	(i.e.	the	iframe),	as	follows:

	
<!--	wrap	svg	in	a	container	--><!--	wrap	svg	in	a	container	-->

<<divdiv		classclass=="container""container">>

				<<iframeiframe		srcsrc=="my_SVG_file.svg""my_SVG_file.svg">>

								<!--	fallback	here	--><!--	fallback	here	-->

				</</iframeiframe>>

</</divdiv>>

.container	.container	{{

				/*	collapse	the	container's	height	*//*	collapse	the	container's	height	*/

				heightheight::	0	0;;																

				/*	specify	any	width	you	want	(a	percentage	value,	basically)	*//*	specify	any	width	you	want	(a	percentage	value,	basically)	*/												

				widthwidth::	width-value	width-value;;								

				/*	apply	padding	using	the	following	formula	*//*	apply	padding	using	the	following	formula	*/

				/*	this	formula	makes	sure	the	aspect	ratio	of	the	container/*	this	formula	makes	sure	the	aspect	ratio	of	the	container		

36

http://alistapart.com/article/creating-intrinsic-ratios-for-video/

equals	that	of	the	SVG	graphic	*/equals	that	of	the	SVG	graphic	*/

				padding-toppadding-top::	(svg-height	/	svg-width)	*	width-value	(svg-height	/	svg-width)	*	width-value;;

				positionposition::	relative	relative;;								/*	create	positioning	context	for	SVG	*//*	create	positioning	context	for	SVG	*/

}}

	

The	svg-heightsvg-height	and	svg-widthsvg-width	variables	are	the	values	of	the	height	and	width	
of	the	<svg><svg>,	respectively	—	the	dimensions	that	we	removed	earlier.	And	the	
width-valuewidth-value	is	any	width	you	want	to	give	the	SVG	container	on	the	page.

	

Finally,	the	SVG	itself	(the	iframe)	needs	to	be	positioned	absolutely	inside	the
container:

	
iframe	iframe	{{

				positionposition::	absolute	absolute;;

				toptop::	0	0;;

				leftleft::	0	0;;

				widthwidth::	100%	100%;;

				heightheight::	100%	100%;;

}}

	

We	position	the	iframe	absolutely	because	collapsing	the	container’s	height	and	
then	applying	the	padding	to	it	would	push	the	iframe	beyond	the	boundaries	of	
the	container.	So,	to	“pull	it	back	up,”	we	position	it	absolutely.	You	can	read	
more	about	the	details	in	my	article	on	Codrops .

	

Finally,	an	SVG	embedded	inline	in	an	<svg><svg>	tag	becomes	responsive	when	the	
height	and	width	are	removed,	because	browsers	will	assume	a	width	of	100%	

37

http://tympanus.net/codrops/2014/08/19/making-svgs-responsive-with-css/

and	will	scale	the	SVG	accordingly.	However,	IE	has	the	same	150-pixel	fixed-
height	issue	for	the		tag	mentioned	earlier;	unfortunately,	setting	the	width	
of	the	SVG	to	100%	is	not	sufficient	to	fix	it	this	time.

	

To	make	the	inline	SVG	fluid	in	IE,	we	also	need	to	apply	the	padding	hack	to	it.	
So,	we	wrap	<svg><svg>	in	a	container,	apply	the	padding-hack	rules	mentioned	
above	to	the	container	and,	finally,	position	the	<svg><svg>	absolutely	inside	it.	The	
only	difference	here	is	that	we	do	not	need	to	explicitly	set	the	height	and	width	
of	<svg><svg>	after	positioning	it.

	
svg	svg	{{

				positionposition::	absolute	absolute;;

				toptop::	0	0;;

				leftleft::	0	0;;

}}

Using	CSS	Media	Queries
	

SVG	accepts	and	responds	to	CSS	media	queries	as	well.	You	can	use	media
queries	to	change	the	styles	of	an	SVG	at	different	viewport	sizes.

	

However,	one	important	note	here	is	that	the	viewport	that	the	SVG	responds	to	
is	the	viewport	of	the	SVG	itself,	not	the	page’s	viewport,	unless	you	are	
embedding	the	SVG	inline	in	the	document	(using	<svg><svg>).

	

An	SVG	embedded	with	an	,	<object><object>	or	<iframe><iframe>	will	respond	to	the	
viewport	established	by	these	elements.	That	is,	the	dimensions	of	these	
elements	will	form	the	viewport	inside	of	which	the	SVG	is	to	be	drawn	and,	
hence,	will	form	the	viewport	to	which	the	CSS	media-query	conditions	will	be	
applied.	This	is	very	similar	in	concept	to	element	queries .

	

The	following	example	includes	a	set	of	media	queries	inside	an	SVG	that	is	
then	referenced	using	an		tag:

	
<<svgsvg		xmlnsxmlns=="http://www.w3.org/2000/svg""http://www.w3.org/2000/svg"		versionversion=="1.1""1.1"		viewBoxviewBox=="0	0"0	0		

194	186"194	186">>

				<<stylestyle>>

								@media	all	and	(max-width:	50em)	@media	all	and	(max-width:	50em)	{{

												/*	select	SVG	elements	and	style	them	*//*	select	SVG	elements	and	style	them	*/

								}}		

								@media	all	and	(max-width:	30em)	@media	all	and	(max-width:	30em)	{{

												/*	styles		*//*	styles		*/

								}}

				</</stylestyle>>

				<!--	SVG	elements	here	--><!--	SVG	elements	here	-->

</</svgsvg>>

	

When	the	SVG	is	referenced,	it	will	get	the	styles	specified	in	the	media	queries	
above	when	the		has	a	max-widthmax-width	of	50em50em	or	30em30em,	respectively.

	
<<imgimg		srcsrc=="my-logo.svg""my-logo.svg"		altalt=="Page	Logo.""Page	Logo."		/>/>

	

You	can	learn	more	about	media	queries	inside	SVGs	in	Andreas	Bovens’s	

38

39

http://responsiveimagescg.github.io/eq-usecases/
https://dev.opera.com/blog/how-media-queries-allow-you-to-optimize-svg-icons-for-several-sizes/

article	for	Dev.Opera .

	

Final	Words
	

SVGs	are	images,	and	just	as	images	can	be	accessible,	so	can	SVGs.	And
making	sure	your	SVGs	are	accessible	is	important,	too.

	

I	can’t	emphasize	this	enough:	Make	your	SVGs	accessible.	You	can	do	several	
things	to	make	that	happen.	For	a	complete	and	excellent	guide,	I	recommend	
Leonie	Watson’s	excellent	article	on	SitePoint .	Her	tips	include	using	the	
<title><title>	and	<desc><desc>	tags	in	the	<svg><svg>,	using	ARIA	attributes	and	much	more.

	

In	addition	to	accessibility,	don’t	forget	to	optimize	your	SVGs	and	provide	
fallbacks	for	non-supporting	browsers.	I	recommend	Todd	Parker’s	
presentation .

	

Last	but	not	least,	you	can	always	check	support	for	different	SVG	features	on	
Can	I	Use .	I	hope	you’ve	found	this	article	to	be	useful.	Thank	you	for	reading.	
❧

	
	

—

	

39

40

41

42

http://www.sitepoint.com/tips-accessible-svg/
https://docs.google.com/presentation/d/1CNQLbqC0krocy_fZrM5fZ-YmQ2JgEADRh3qR6RbOOGk/pub?start=true&loop=false&delayms=5000#slide=id.p
http://caniuse.com/#search=svg

	

1. https://www.youtube.com/watch?v=lf7L8X6ZBu8

	

2. http://2014.cssconf.eu/

	

3. http://2014.fromthefront.it/

	

4. http://caniuse.com/#feat=svg

	

5. http://www.adobe.com/products/illustrator.html

	

6. https://inkscape.org/en/

	

7. http://bohemiancoding.com/sketch/

	

8. https://medium.com/@jm_denis/discovering-sketch-25545f6cb161

	

9. http://hackingui.com/design/sketch-design/why-i-moved-to-sketch/

	

10. http://www.sketchappsources.com/

	

11. http://creativedroplets.com/export-svg-for-the-web-with-illustrator-cc/

	

https://www.youtube.com/watch?v=lf7L8X6ZBu8
http://2014.cssconf.eu/
http://2014.fromthefront.it/
http://caniuse.com/#feat=svg
http://www.adobe.com/products/illustrator.html
https://inkscape.org/en/
http://bohemiancoding.com/sketch/
https://medium.com/@jm_denis/discovering-sketch-25545f6cb161
http://hackingui.com/design/sketch-design/why-i-moved-to-sketch/
http://www.sketchappsources.com/
http://creativedroplets.com/export-svg-for-the-web-with-illustrator-cc/

12. http://petercollingridge.appspot.com/svg-editor

	

13. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/10/02-svg-editor-large-
preview-opt.png

	

14. https://github.com/svg/svgo

	

15. https://github.com/svg/svgo-gui

	

16. http://www.w3.org/TR/SVG/propidx.html

	

17. http://www.w3.org/TR/SVG2/styling.html#SVGStylingProperties

	

18. http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#dynamic-pseudo-classes

	

19. http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#q15

	

20. http://www.w3.org/TR/2008/REC-CSS2-20080411/generate.html

	

21. https://useiconic.com/

	

22. http://tutsplus.github.io/Styling-Iconic/styling/index.html

	

http://petercollingridge.appspot.com/svg-editor
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/10/02-svg-editor-large-preview-opt.png
https://github.com/svg/svgo
https://github.com/svg/svgo-gui
http://www.w3.org/TR/SVG/propidx.html
http://www.w3.org/TR/SVG2/styling.html#SVGStylingProperties
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#dynamic-pseudo-classes
http://www.w3.org/TR/2008/REC-CSS2-20080411/selector.html#q15
http://www.w3.org/TR/2008/REC-CSS2-20080411/generate.html
https://useiconic.com/
http://tutsplus.github.io/Styling-Iconic/styling/index.html

23. http://www.w3.org/TR/SVG11/styling.html#StylingWithCSS

	

24. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/10/05-transform-svg-html-
large-preview-opt.png

	

25. http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/10/06-transform-svg-html-
large-preview-opt.png

	

26. https://bugzilla.mozilla.org/show_bug.cgi?id=891074

	

27. http://codepen.io/SaraSoueidan/pen/d0f94390e6c9af38fa562974399b6222?editors=100

	

28. http://snapsvg.io/

	

29. http://raphaeljs.com/

	

30. http://jsbin.com/haxaqa/1/edit?html,output

	

31. http://jakearchibald.com/2013/animated-line-drawing-svg/

	

32. http://en.wikipedia.org/wiki/Same-origin_policy

	

33. http://css-tricks.com/guide-svg-animations-smil/

	

http://www.w3.org/TR/SVG11/styling.html#StylingWithCSS
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/10/05-transform-svg-html-large-preview-opt.png
http://media.mediatemple.netdna-cdn.com/wp-content/uploads/2014/10/06-transform-svg-html-large-preview-opt.png
https://bugzilla.mozilla.org/show_bug.cgi?id=891074
http://codepen.io/SaraSoueidan/pen/d0f94390e6c9af38fa562974399b6222?editors=100
http://snapsvg.io/
http://raphaeljs.com/
http://jsbin.com/haxaqa/1/edit?html,output
http://jakearchibald.com/2013/animated-line-drawing-svg/
http://en.wikipedia.org/wiki/Same-origin_policy
http://css-tricks.com/guide-svg-animations-smil/

34. http://tympanus.net/codrops/2014/08/19/making-svgs-responsive-with-css/

	

35. http://www.w3.org/TR/CSS2/visudet.html#inline-replaced-width

	

36. http://alistapart.com/article/creating-intrinsic-ratios-for-video/

	

37. http://tympanus.net/codrops/2014/08/19/making-svgs-responsive-with-css/

	

38. http://responsiveimagescg.github.io/eq-usecases/

	

39. https://dev.opera.com/blog/how-media-queries-allow-you-to-optimize-svg-icons-for-several-sizes/

	

40. http://www.sitepoint.com/tips-accessible-svg/

	

41. https://docs.google.com/presentation/d/1CNQLbqC0krocy_fZrM5fZ-
YmQ2JgEADRh3qR6RbOOGk/pub?start=true&loop=false&delayms=5000#slide=id.p

	

42. http://caniuse.com/#search=svg

	

	

http://tympanus.net/codrops/2014/08/19/making-svgs-responsive-with-css/
http://www.w3.org/TR/CSS2/visudet.html#inline-replaced-width
http://alistapart.com/article/creating-intrinsic-ratios-for-video/
http://tympanus.net/codrops/2014/08/19/making-svgs-responsive-with-css/
http://responsiveimagescg.github.io/eq-usecases/
https://dev.opera.com/blog/how-media-queries-allow-you-to-optimize-svg-icons-for-several-sizes/
http://www.sitepoint.com/tips-accessible-svg/
https://docs.google.com/presentation/d/1CNQLbqC0krocy_fZrM5fZ-YmQ2JgEADRh3qR6RbOOGk/pub?start=true&loop=false&delayms=5000#slide=id.p
http://caniuse.com/#search=svg

About	The	Authors

Christian	Heilmann
	

An	international	Developer	Evangelist	working	for	Mozilla	in	the	lovely	town	of	
London,	England.	Twitter:	@codepo8 .

	

Drew	Thomas
	

Drew	Thomas	is	the	chief	creative	officer	and	a	co-founder	of	Brolik ,	a	
Philadelphia	digital	agency.	While	Brolik	is	his	focus,	he	also	considers	himself	
a	“maker”	and	tinkers	with	all	kinds	of	side	projects,	both	digital	and	physical.	
Twitter:	@drewbrolik .

	

Julian	Shapiro
	

Julian	Shapiro	is	a	startup	founder	and	a	developer.	His	first	startup,	NameLayer,	
was	acquired	by	Techstars.	His	current	focus	is	advancing	motion	design	on	the	
web.	Follow	him	for	tweets	on	UI	animation:	@Shapiro .

	

1

2

3

4

http://www.twitter.com/codepo8
http://brolik.com
http://www.twitter.com/drewbrolik
https://twitter.com/shapiro

Rachel	Nabors
	

Rachel	Nabors	is	an	interaction	developer	and	award-winning	cartoonist.	She	
travels	the	world,	speaking	about	and	training	teams	in	the	art	of	web	animation.	
When	not	biking	around	her	home	city	of	Portland,	she	makes	interactive	comics	
at	her	company	Tin	Magpie .	You	can	catch	her	as	@rachelnabors 	on	Twitter	
and	at	rachelnabors.com .

	

Sara	Soueidan
	

Sara	Soueidan	is	a	freelance	front-end	web	developer,	consultant,	author	and	
speaker	from	Lebanon	—	focusing	on	HTML5,	SVG,	CSS,	and	JavaScript.	She's	
a	contributing	author	to	the	Smashing	Book	#5	and	an	author	and	team	member	
at	Codrops.	She	writes	for	various	high-profile	blogs	and	magazines	including	
the	Adobe	Dream	Weaver	Blog,	Opera	Developers'	Blog,	Smashing	Magazine,	
netmag,	and	CSS-Tricks,	among	others.	You	can	find	her	writing	on	her	blog ,	
and	follow	her	on	Twitter	@SaraSoueidan .

	

Stephen	Greig
	

Stephen	specialises	in	design	and	front-end	development,	which	is	convenient	as	
he	works	as	a	Web	Designer/Front-end	guy	out	of	Nottingham	in	the	UK.	
Stephen	has	particular	expertise	in	the	more	experimental	and	cutting	edge	CSS3	

5 6

7

8

9

http://tinmagpie.com/
http://twitter.com/rachelnabors
http://rachelnabors.com/
http://sarasoueidan.com
http://twitter.com/SaraSoueidan

modules	and	is	the	author	of	extensive	publication,	CSS3	Pushing	the	Limits.	
Follow	him	on	Twitter	(@Stephen_Greig)	or	head	over	to	his	personal	blog	
(tangledindesign.com)	to	learn	more.

	

10

11

https://twitter.com/stephen_greig
http://www.tangledindesign.com

About	Smashing	Magazine

	

Smashing	Magazine 	is	an	online	magazine	dedicated	to	Web	designers	and	
developers	worldwide.	Its	rigorous	quality	control	and	thorough	editorial	work	
has	gathered	a	devoted	community	exceeding	half	a	million	subscribers,	
followers	and	fans.	Each	and	every	published	article	is	carefully	prepared,	
edited,	reviewed	and	curated	according	to	the	high	quality	standards	set	in	
Smashing	Magazine’s	own	publishing	policy .

	

Smashing	Magazine	publishes	articles	on	a	daily	basis	with	topics	ranging	from
business,	visual	design,	typography,	front-end	as	well	as	back-end	development,
all	the	way	to	usability	and	user	experience	design.	The	magazine	is	—	and
always	has	been	—	a	professional	and	independent	online	publication	neither
controlled	nor	influenced	by	any	third	parties,	delivering	content	in	the	best
interest	of	its	readers.	These	guidelines	are	continually	revised	and	updated	to
assure	that	the	quality	of	the	published	content	is	never	compromised.	Since	its
emergence	back	in	2006	Smashing	Magazine	has	proven	to	be	a	trustworthy
online	source.

	
	

—

	

1. http://www.twitter.com/codepo8

	

12

13

http://www.smashingmagazine.com
http://www.smashingmagazine.com/publishing-policy/
http://www.twitter.com/codepo8

	

2. http://www.brolik.com

	

3. http://twitter.com/drewbrolik

	

4. https://twitter.com/shapiro

	

5. http://tinmagpie.com/

	

6. http://twitter.com/rachelnabors

	

7. http://rachelnabors.com/

	

8. http://sarasoueidan.com

	

9. http://twitter.com/SaraSoueidan

	

10. https://twitter.com/stephen_greig

	

12. http://www.tangledindesign.com

	

13. http://www.smashingmagazine.com

	

13. http://www.smashingmagazine.com/publishing-policy/

http://www.brolik.com
http://twitter.com/drewbrolik
https://twitter.com/shapiro
http://tinmagpie.com/
http://twitter.com/rachelnabors
http://rachelnabors.com/
http://sarasoueidan.com
http://twitter.com/SaraSoueidan
https://twitter.com/stephen_greig
http://www.tangledindesign.com
http://www.smashingmagazine.com
http://www.smashingmagazine.com/publishing-policy/

	

	

	

TABLE	OF	CONTENTS

	

Imprint

	

The	State	Of	Animation	2014
by	Rachel	Nabors

	

A	Quick	Look	Into	The	Math	Of	Animations	With	JavaScript
by	Christian	Heilmann

	

Animating	Without	jQuery
by	Julian	Shapiro

	

Faster	UI	Animations	With	Velocity.js
by	Julian	Shapiro

	

Using	Motion	For	User	Experience	On	Apps	And	Websites
by	Drew	Thomas

	

Understanding	CSS	Timing	Functions
by	Stephen	Greig

	

Styling	And	Animating	SVGs	With	CSS
by	Sara	Soueidan

	

About	The	Authors

	
	

	Imprint
	The State Of Animation 2014
	A Quick Look Into The Math Of Animations With JavaScript
	Animating Without jQuery
	Faster UI Animations With Velocity.js
	Using Motion For User Experience On Apps And Websites
	Understanding CSS Timing Functions
	Styling And Animating SVGs With CSS
	About The Authors

